WorldWideScience

Sample records for cardiovascular molecular imaging

  1. Molecular cardiovascular imaging

    International Nuclear Information System (INIS)

    Schaefers, M.

    2007-01-01

    Although huge and long-lasting research efforts have been spent on the development of new diagnostic techniques investigating cardiovascular diseases, still fundamental challenges exist; the main challenge being the diagnosis of a suspected or known coronary artery disease or its consequences (myocardial infarction, heart failure etc.). Beside morphological techniques, functional imaging modalities are available in clinical diagnostic algorithms, whereas molecular cardiovascular imaging techniques are still under development. This review summarizes clinical-diagnostical challenges of modern cardiovascular medicine as well as the potential of new molecular imaging techniques to face these. (orig.)

  2. Cardiovascular Molecular Imaging

    International Nuclear Information System (INIS)

    Lee, Kyung Han

    2009-01-01

    Molecular imaging strives to visualize processes in living subjects at the molecular level. Monitoring biochemical processes at this level will allow us to directly track biological processes and signaling events that lead to pathophysiological abnormalities, and help make personalized medicine a reality by allowing evaluation of therapeutic efficacies on an individual basis. Although most molecular imaging techniques emerged from the field of oncology, they have now gradually gained acceptance by the cardiovascular community. Hence, the availability of dedicated high-resolution small animal imaging systems and specific targeting imaging probes is now enhancing our understanding of cardiovascular diseases and expediting the development of newer therapies. Examples include imaging approaches to evaluate and track the progress of recent genetic and cellular therapies for treatment of myocardial ischemia. Other areas include in vivo monitoring of such key molecular processes as angiogenesis and apoptosis. Cardiovascular molecular imaging is already an important research tool in preclinical experiments. The challenge that lies ahead is to implement these techniques into the clinics so that they may help fulfill the promise of molecular therapies and personalized medicine, as well as to resolve disappointments and controversies surrounding the field

  3. Molecular imaging by cardiovascular MR.

    Science.gov (United States)

    Cyrus, Tillmann; Lanza, Gregory M; Wickline, Samuel A

    2007-01-01

    Do molecularly-targeted contrast agents have what it takes to usher in a paradigm shift as to how we will image cardiovascular disease in the near future? Moreover, are non-invasive vulnerable plaque detection and preemptive treatments with these novel nanoparticulate agents within reach for clinical applications? In this article, we attempt to make a compelling case for how the advent of molecularly-targeted nanoparticle technology may change the way we detect atherosclerotic lesions, determine their clinical significance and even provide non-invasive treatments. Focusing on imaging with cardiovascular MR, an overview of the latest developments in this rapidly evolving field of so-called "intelligent" contrast agents that are able to interrogate the vascular wall and various complementary advanced imaging technologies are presented.

  4. Cardiovascular molecular imaging of apoptosis

    International Nuclear Information System (INIS)

    Wolters, S.L.; Reutelingsperger, C.P.M.; Corsten, M.F.; Hofstra, L.; Narula, J.

    2007-01-01

    Molecular imaging strives to visualise processes at the molecular and cellular level in vivo. Understanding these processes supports diagnosis and evaluation of therapeutic efficacy on an individual basis and thereby makes personalised medicine possible. Apoptosis is a well-organised mode of cell suicide that plays a role in cardiovascular diseases (CVD). Apoptosis is associated with loss of cardiomyocytes following myocardial infarction, atherosclerotic plaque instability, congestive heart failure and allograft rejection of the transplanted heart. Thus, apoptosis constitutes an attractive target for molecular imaging of CVD. Our current knowledge about the molecular players and mechanisms underlying apoptosis offers a rich palette of potential molecular targets for molecular imaging. However, only a few have been successfully developed so far. This review highlights aspects of the molecular machinery and biochemistry of apoptosis relevant to the development of molecular imaging probes. It surveys the role of apoptosis in four major areas of CVD and portrays the importance and future perspectives of apoptosis imaging. The annexin A5 imaging protocol is emphasised since it is the most advanced protocol to measure apoptosis in both preclinical and clinical studies. (orig.)

  5. Cardiovascular molecular imaging of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, S.L.; Reutelingsperger, C.P.M. [Maastricht University, Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht (Netherlands); Corsten, M.F.; Hofstra, L. [Maastricht University, Department of Cardiology, Cardiovascular Research Institute Maastricht, P.O. Box 616, Maastricht (Netherlands); Narula, J. [University of California Irvine, Department of Cardiology, Irvine (United States)

    2007-06-15

    Molecular imaging strives to visualise processes at the molecular and cellular level in vivo. Understanding these processes supports diagnosis and evaluation of therapeutic efficacy on an individual basis and thereby makes personalised medicine possible. Apoptosis is a well-organised mode of cell suicide that plays a role in cardiovascular diseases (CVD). Apoptosis is associated with loss of cardiomyocytes following myocardial infarction, atherosclerotic plaque instability, congestive heart failure and allograft rejection of the transplanted heart. Thus, apoptosis constitutes an attractive target for molecular imaging of CVD. Our current knowledge about the molecular players and mechanisms underlying apoptosis offers a rich palette of potential molecular targets for molecular imaging. However, only a few have been successfully developed so far. This review highlights aspects of the molecular machinery and biochemistry of apoptosis relevant to the development of molecular imaging probes. It surveys the role of apoptosis in four major areas of CVD and portrays the importance and future perspectives of apoptosis imaging. The annexin A5 imaging protocol is emphasised since it is the most advanced protocol to measure apoptosis in both preclinical and clinical studies. (orig.)

  6. Molecular imaging in cardiovascular diseases

    International Nuclear Information System (INIS)

    Botnar, R.M.; Ebersberger, H.; Noerenberg, D.

    2015-01-01

    Cardiovascular diseases remain the leading cause of morbidity and mortality in industrialized and developing countries. In clinical practice, the in-vivo identification of atherosclerotic lesions, which can lead to complications such as heart attack or stroke, remains difficult. Imaging techniques provide the reference standard for the detection of clinically significant atherosclerotic changes in the coronary and carotid arteries. The assessment of the luminal narrowing is feasible, while the differentiation of stable and potentially unstable or vulnerable atherosclerotic plaques is currently not possible using non-invasive imaging. With high spatial resolution and high soft tissue contrast, magnetic resonance imaging (MRI) is a suitable method for the evaluation of the thin arterial wall. In clinical practice, native MRI of the vessel wall already allows the differentiation and characterization of components of atherosclerotic plaques in the carotid arteries and the aorta. Additional diagnostic information can be gained by the use of non-specific MRI contrast agents. With the development of targeted molecular probes, that highlight specific molecules or cells, pathological processes can be visualized at a molecular level with high spatial resolution. In this review article, the development of pathophysiological changes leading to the development of the arterial wall are introduced and discussed. Additionally, principles of contrast enhanced imaging with non-specific contrast agents and molecular probes will be discussed and latest developments in the field of molecular imaging of the vascular wall will be introduced.

  7. The research progress of nuclear medicine on cardiovascular molecular imaging

    International Nuclear Information System (INIS)

    Yin Xiaohua; Zhang Yongxue

    2007-01-01

    Cardiovascular molecular imaging is a rapidly evolving discipline and its clinical application is promising. Nuclear medicine is playing a leading role in this field with its special superiority of noninvasive, quantifiability, high sensitivity and specificity. It provides broad opportunities for exploring the pathophysiologic process of cardiovascular diseases and monitoring its gene therapy in the molecular level. In this review, we mainly discuss some basic knowledge on cardiovascular molecular imaging, and then focus on the applied research prospect of nuclear medicine radionuclide imaging. (authors)

  8. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    Science.gov (United States)

    Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.

    2010-05-01

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  9. Cardiovascular imaging

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Nuclear cardiology has grown exponentially over the past decade. The introduction of the gamma camera, the development of new radionuclides, and the implementation of computers have transformed the field of nuclear cardiology from largely research in the 1970s to routine clinical applications in the 1980s. At first, noninvasive nuclear imaging techniques were used predominantly to aid disease detection. In the ensuing years, emphasis has shifted to the functional assessment of patients with known disease. Widely available noninvasive techniques now allow the quantitative assessment of left and right ventricular function, one of the most important predictors of survival in patients with cardiac disease. Exercise radionuclide ventriculography provides valuable information on the myocardial reserve in patients with normal resting function. The serial measurement of the ventricular ejection fraction assists in the timing of valvular replacement therapy. In patients receiving doxorubicin, serial ejection fraction follow-up helps prevent the development of irreversible, drug-induced cardiomyopathy. It is now generally acknowledged that the detection of latent coronary disease is improved by the addition of 201 T1 imaging to the standard exercise electrocardiogram. Thallium imaging and infarct avid imaging with /sup 99m/Tc-pyrophosphate have proven useful in quantifying myocardial infarction size, and in assessing the value of therapy aimed at limiting infarction extent. In the evaluation of coronary artery disease, scintigraphy provides physiologic data that complements angiography, which is more anatomic. An angiographic lesion, read as a 70 percent narrowing, may not necessarily be flow-limiting, whereas one read as 40 percent, may, in fact, have physiologic consequences, if it is of sufficient length or eccentricity, or is in series with another insignificant stenosis

  10. Enzymatic single-chain antibody tagging: a universal approach to targeted molecular imaging and cell homing in cardiovascular disease.

    Science.gov (United States)

    Ta, H T; Prabhu, S; Leitner, E; Jia, F; von Elverfeldt, D; Jackson, Katherine E; Heidt, T; Nair, A K N; Pearce, H; von Zur Muhlen, C; Wang, X; Peter, K; Hagemeyer, C E

    2011-08-05

    Antibody-targeted delivery of imaging agents can enhance the sensitivity and accuracy of current imaging techniques. Similarly, homing of effector cells to disease sites increases the efficacy of regenerative cell therapy while reducing the number of cells required. Currently, targeting can be achieved via chemical conjugation to specific antibodies, which typically results in the loss of antibody functionality and in severe cell damage. An ideal conjugation technique should ensure retention of antigen-binding activity and functionality of the targeted biological component. To develop a biochemically robust, highly reproducible, and site-specific coupling method using the Staphylococcus aureus sortase A enzyme for the conjugation of a single-chain antibody (scFv) to nanoparticles and cells for molecular imaging and cell homing in cardiovascular diseases. This scFv specifically binds to activated platelets, which play a pivotal role in thrombosis, atherosclerosis, and inflammation. The conjugation procedure involves chemical and enzyme-mediated coupling steps. The scFv was successfully conjugated to iron oxide particles (contrast agents for magnetic resonance imaging) and to model cells. Conjugation efficiency ranged between 50% and 70%, and bioactivity of the scFv after coupling was preserved. The targeting of scFv-coupled cells and nanoparticles to activated platelets was strong and specific as demonstrated in in vitro static adhesion assays, in a flow chamber system, in mouse intravital microscopy, and in in vivo magnetic resonance imaging of mouse carotid arteries. This unique biotechnological approach provides a versatile and broadly applicable tool for procuring targeted regenerative cell therapy and targeted molecular imaging in cardiovascular and inflammatory diseases and beyond.

  11. Assessment of Cardiovascular Apoptosis in the Isolated Rat Heart by Magnetic Resonance Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Hiller

    2006-04-01

    Full Text Available Apoptosis, an active process of cell self-destruction, is associated with myocardial ischemia. The redistribution of phosphatidylserine (PS from the inner to the outer leaflet of the cell membrane is an early event in apoptosis. Annexin V, a protein with high specificity and tight binding to PS, was used to identify and localize apoptosis in the ischemic heart. Fluorescein-labeled annexin V has been used routinely for the assessment of apoptosis in vitro. For the detection of apoptosis in vivo, positron emission tomography and single-photon emission computed tomography have been shown to be suitable tools. In view of the relatively low spatial resolution of nuclear imaging techniques, we developed a high-resolution contrast-enhanced magnetic resonance imaging (MRI method that allows rapid and noninvasive monitoring of apoptosis in intact organs. Instead of employing superparamagnetic iron oxide particles linked to annexin V, a new T1 contrast agent was used. To this effect, annexin V was linked to gadolinium diethylenetriamine pentaacetate (Gd-DTPA-coated liposomes. The left coronary artery of perfused isolated rat hearts was ligated for 30 min followed by reperfusion. T1 and T2* images were acquired by using an 11.7-T magnet before and after intracoronary injection of Gd-DTP-labeled annexin V to visualize apoptotic cells. A significant increase in signal intensity was visible in those regions containing cardiomyocytes in the early stage of apoptosis. Because labeling of early apoptotic cell death in intact organs by histological and immunohistochemical methods remains challenging, the use of Gd-DTPA-labeled annexin V in MRI is clearly an improvement in rapid targeting of apoptotic cells in the ischemic and reperfused myocardium.

  12. Molecular imaging of in vivo calcium ion expression in area postrema of total sleep deprived rats: Implications for cardiovascular regulation by TOF-SIMS analysis

    Science.gov (United States)

    Mai, Fu-Der; Chen, Li-You; Ling, Yong-Chien; Chen, Bo-Jung; Wu, Un-In; Chang, Hung-Ming

    2010-05-01

    Excessive calcium influx in chemosensitive neurons of area postrema (AP) is detrimental for sympathetic activation and participates in the disruption of cardiovascular activities. Since total sleep deprivation (TSD) is a stressful condition known to harm the cardiovascular function, the present study is aimed to determine whether the in vivo calcium expression in AP would significantly alter following TSD by the use of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and calretinin (a specific calcium sensor protein in AP neurons) immunohistochemistry. The results indicated that in normal rats, the calcium intensity was estimated to be 0.5 × 10 5 at m/ z 40.08. However, following TSD, the intensity for calcium ions was greatly increased to 1.2 × 10 5. Molecular imaging revealed that after TSD, various strongly expressed calcium signals were distributed throughout AP with clear identified profiles instead of randomly scattered within this region in normal rats. Immunohistochemical staining corresponded well with ionic image in which a majority of calcium-enriched gathering co-localized with calretinin positive neurons. The functional significance of TSD-induced calcium augmentation was demonstrated by increased heart rate and mean arterial pressure, clinical markers for cardiovascular dysfunction. Considering AP-mediated sympathetic activation is important for cardiovascular regulation, exaggerated calcium influx in AP would render this neurocircuitry more vulnerable to over-excitation, which might serve as the underlying mechanism for the development of TSD-relevant cardiovascular deficiency.

  13. Cardiovascular molecular imaging

    NARCIS (Netherlands)

    de Haas, Hans

    2018-01-01

    Moleculaire beeldvormingstechnieken zoals PET en SPECT maken biologische processen zichtbaar. Ze gebruiken radiotracers, die worden toegediend aan levende patiënten of proefdieren. Het scheuren van atherosclerotische plaque in een kransslagader is de hoofdoorzaak van het myocardinfarct en kan leiden

  14. Progress on molecular imaging

    International Nuclear Information System (INIS)

    Chen Quan; Zhang Yongxue

    2011-01-01

    Molecular imaging is a new era of medical imaging,which can non-invasively monitor biological processes at the cellular and molecular level in vivo, including molecular imaging of nuclear medicine, magnetic resonance molecular imaging, ultrasound molecular imaging,optical molecular imaging and molecular imaging with X-ray. Recently, with the development of multi-subjects amalgamation, multimodal molecular imaging technology has been applied in clinical imaging, such as PET-CT and PET-MRI. We believe that with development of molecular probe and multi-modal imaging, more and more molecular imaging techniques will be applied in clinical diagnosis and treatment. (authors)

  15. Digital imaging in cardiovascular radiology

    International Nuclear Information System (INIS)

    Heintzen, P.H.; Brennecke, R.

    1983-01-01

    The present book contains 27 papers presented at an international symposium on digital imaging in cardiovascular radiology held in Kiel in 1982. The main themes were as follows. Introductory reviews, digital systems for X-ray video imaging, quantitative X-ray image analysis, and clinical applications. (MG)

  16. Digital cardiovascular imaging

    International Nuclear Information System (INIS)

    Myerowitz, P.D.; Mistretta, C.A.; Shaw, C.-G.; Van Lysel, M.S.; Swanson, D.K.; Lasser, T.A.; Dhanani, S.P.; Zarnstorff, W.C.; Vander Ark, C.R.; Dobbins, J.T.; Peppler, W.W.; Crummy, A.B.

    1982-01-01

    The authors have previously reported on real time digital fluoroscopic subtraction techniques developed in the laboratory during the past 10 years. This paper outlines basic apparatus configuration and imaging modes used for preliminary studies involving visualization of the canine and human heart. All of the techniques involve the use of real time digital subtraction processing of data from an image intensified television fluoroscopy system. Based on the configuration of the digital processing equipment a number of different imaging modalities are possible. A brief description of the apparatus and these imaging modes is given. (Auth.)

  17. Machine learning based analysis of cardiovascular images

    NARCIS (Netherlands)

    Wolterink, JM

    2017-01-01

    Cardiovascular diseases (CVDs), including coronary artery disease (CAD) and congenital heart disease (CHD) are the global leading cause of death. Computed tomography (CT) and magnetic resonance imaging (MRI) allow non-invasive imaging of cardiovascular structures. This thesis presents machine

  18. Molecular MR Imaging Probes

    OpenAIRE

    MAHMOOD, UMAR; JOSEPHSON, LEE

    2005-01-01

    Magnetic resonance imaging (MRI) has been successfully applied to many of the applications of molecular imaging. This review discusses by example some of the advances in areas such as multimodality MR-optical agents, receptor imaging, apoptosis imaging, angiogenesis imaging, noninvasive cell tracking, and imaging of MR marker genes.

  19. Design and implementation of the Molecular Imaging Unit for large animais at the National Center for Cardiovascular Research

    International Nuclear Information System (INIS)

    Lopez, G.; Delgado Alberquilla, R.; Moreno Lopez, J.; Escudero Toro, R.

    2011-01-01

    in this paper describes the most iraportant imaging techniques to be used with the latest equipment as well as the future of PET-MRI combination, its application in research on large animals and the implications for the design of the units, shielding calculation management, sources of radiation and waste. This has reguired value and integrate the specific requirements of a research center in terms of bio security, care of large animals (pigs), health status of animals in an environment of highly demanding conditions PR.

  20. Targeted molecular imaging

    International Nuclear Information System (INIS)

    Kim, E. Edmund

    2003-01-01

    Molecular imaging aims to visualize the cellular and molecular processes occurring in living tissues, and for the imaging of specific molecules in vivo, the development of reporter probes and dedicated imaging equipment is most important. Reporter genes can be used to monitor the delivery and magnitude of therapeutic gene transfer, and the time variation involved. Imaging technologies such as micro-PET, SPECT, MRI and CT, as well as optical imaging systems, are able to non-invasively detect, measure, and report the simultaneous expression of multiple meaningful genes. It is believed that recent advances in reporter probes, imaging technologies and gene transfer strategies will enhance the effectiveness of gene therapy trials

  1. Molecular imaging in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Schober, Otmar; Riemann, Burkhard (eds.) [Universitaetsklinikum Muenster (Germany). Klinik fuer Nuklearmedizin

    2013-02-01

    Considers in detail all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. Examines technological issues and probe design. Discusses preclinical studies in detail, with particular attention to multimodality imaging. Presents current clinical use of PET/CT, SPECT/CT, and optical imagingWritten by acknowledged experts. The impact of molecular imaging on diagnostics, therapy, and follow-up in oncology is increasing significantly. The process of molecular imaging includes key biotarget identification, design of specific molecular imaging probes, and their preclinical evaluation, e.g., in vivo using small animal studies. A multitude of such innovative molecular imaging probes have already entered clinical diagnostics in oncology. There is no doubt that in future the emphasis will be on multimodality imaging in which morphological, functional, and molecular imaging techniques are combined in a single clinical investigation that will optimize diagnostic processes. This handbook addresses all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. The first section is devoted to technology and probe design, and examines a variety of PET and SPECT tracers as well as multimodality probes. Preclinical studies are then discussed in detail, with particular attention to multimodality imaging. In the third section, diverse clinical applications are presented, and the book closes by looking at future challenges. This handbook will be of value to all who are interested in the revolution in diagnostic oncology that is being brought about by molecular imaging.

  2. Molecular imaging in oncology

    International Nuclear Information System (INIS)

    Schober, Otmar; Riemann, Burkhard

    2013-01-01

    Considers in detail all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. Examines technological issues and probe design. Discusses preclinical studies in detail, with particular attention to multimodality imaging. Presents current clinical use of PET/CT, SPECT/CT, and optical imagingWritten by acknowledged experts. The impact of molecular imaging on diagnostics, therapy, and follow-up in oncology is increasing significantly. The process of molecular imaging includes key biotarget identification, design of specific molecular imaging probes, and their preclinical evaluation, e.g., in vivo using small animal studies. A multitude of such innovative molecular imaging probes have already entered clinical diagnostics in oncology. There is no doubt that in future the emphasis will be on multimodality imaging in which morphological, functional, and molecular imaging techniques are combined in a single clinical investigation that will optimize diagnostic processes. This handbook addresses all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. The first section is devoted to technology and probe design, and examines a variety of PET and SPECT tracers as well as multimodality probes. Preclinical studies are then discussed in detail, with particular attention to multimodality imaging. In the third section, diverse clinical applications are presented, and the book closes by looking at future challenges. This handbook will be of value to all who are interested in the revolution in diagnostic oncology that is being brought about by molecular imaging.

  3. EDITORIAL: Molecular Imaging Technology

    Science.gov (United States)

    Asai, Keisuke; Okamoto, Koji

    2006-06-01

    'Molecular Imaging Technology' focuses on image-based techniques using nanoscale molecules as sensor probes to measure spatial variations of various species (molecular oxygen, singlet oxygen, carbon dioxide, nitric monoxide, etc) and physical properties (pressure, temperature, skin friction, velocity, mechanical stress, etc). This special feature, starting on page 1237, contains selected papers from The International Workshop on Molecular Imaging for Interdisciplinary Research, sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan, which was held at the Sendai Mediatheque, Sendai, Japan, on 8 9 November 2004. The workshop was held as a sequel to the MOSAIC International Workshop that was held in Tokyo in 2003, to summarize the outcome of the 'MOSAIC Project', a five-year interdisciplinary project supported by Techno-Infrastructure Program, the Special Coordination Fund for Promotion of Science Technology to develop molecular sensor technology for aero-thermodynamic research. The workshop focused on molecular imaging technology and its applications to interdisciplinary research areas. More than 110 people attended this workshop from various research fields such as aerospace engineering, automotive engineering, radiotechnology, fluid dynamics, bio-science/engineering and medical engineering. The purpose of this workshop is to stimulate intermixing of these interdisciplinary fields for further development of molecular sensor and imaging technology. It is our pleasure to publish the seven papers selected from our workshop as a special feature in Measurement and Science Technology. We will be happy if this issue inspires people to explore the future direction of molecular imaging technology for interdisciplinary research.

  4. Nanoplatform-based molecular imaging

    National Research Council Canada - National Science Library

    Chen, Xiaoyuan

    2011-01-01

    "Nanoplathform-Based Molecular Imaging provides rationale for using nanoparticle-based probes for molecular imaging, then discusses general strategies for this underutilized, yet promising, technology...

  5. Magnetic resonance imaging of the cardiovascular system

    International Nuclear Information System (INIS)

    Masuda, Yoshiaki; Imai, Hiroshi; Watanabe, Sigeru; Inagaki, Yoshiaki; Tateno, Yukio; Ikehira, Hiroo.

    1990-01-01

    Magnetic resonance imaging (MRI) is a new noninvasive technique for visualization of the cardiovascular system, and is used to evaluate tissue characteristics, cardiac function and blood flow abnormalities, as well as to obtain morphological information. In this paper we presented results of clinical and laboratory research obtained using conventional spin echo MRI with regard to cardiovascular anatomy, tissue characterization and physiology. Furthermore, experience with two new techniques, cine-MRI and volume-selected MR spectroscopy, and their potential clinical usefulness in detecting cardiovascular diseases are documented. (author)

  6. Molecular imaging in oncology

    International Nuclear Information System (INIS)

    Weber, W.A.

    2007-01-01

    Molecular imaging is generally defined as noninvasive and quantitative imaging of targeted macromolecules and biological processes in living organisms. A characteristic of molecular imaging is the ability to perform repeated studies and assess changes in biological processes over time. Thus molecular imaging lends itself well for monitoring the effectiveness of tumor therapy. In animal models a variety of techniques can be used for molecular imaging. These include optical imaging (bioluminescence and fluorescence imaging), magnetic resonance imaging (MRI) and nuclear medicine techniques. In the clinical setting, however, nuclear medicine techniques predominate, because so far only radioactive tracers provide the necessary sensitivity to study expression and function of macromolecules non-invasively in patients. Nuclear medicine techniques allows to study a variety of biological processes in patients. These include the expression of various receptors (estrogen, androgen, somatostatin receptors and integrins). In addition, tracers are available to study tumor cell proliferation and hypoxia. The by far most commonly used molecular imaging technique in oncology is, however, positron emission tomography (PET) with the glucose analog [ 18 F]fluorodeoxyglucose (FDG-PET). FDG-PET permits non-invasive quantitative assessment of the accelerated exogenous glucose use of malignant tumors. Numerous studies have now shown that reduction of tumor FDG-uptake during therapy allows early prediction of tumor response and patient survival. Clinical studies are currently underway to determine whether FDG-PET can be used to individualize tumor therapy by signaling early in the course of therapy the need for therapeutic adjustments in patients with likely non-responding tumors. (orig.)

  7. Machine Learning Approaches in Cardiovascular Imaging.

    Science.gov (United States)

    Henglin, Mir; Stein, Gillian; Hushcha, Pavel V; Snoek, Jasper; Wiltschko, Alexander B; Cheng, Susan

    2017-10-01

    Cardiovascular imaging technologies continue to increase in their capacity to capture and store large quantities of data. Modern computational methods, developed in the field of machine learning, offer new approaches to leveraging the growing volume of imaging data available for analyses. Machine learning methods can now address data-related problems ranging from simple analytic queries of existing measurement data to the more complex challenges involved in analyzing raw images. To date, machine learning has been used in 2 broad and highly interconnected areas: automation of tasks that might otherwise be performed by a human and generation of clinically important new knowledge. Most cardiovascular imaging studies have focused on task-oriented problems, but more studies involving algorithms aimed at generating new clinical insights are emerging. Continued expansion in the size and dimensionality of cardiovascular imaging databases is driving strong interest in applying powerful deep learning methods, in particular, to analyze these data. Overall, the most effective approaches will require an investment in the resources needed to appropriately prepare such large data sets for analyses. Notwithstanding current technical and logistical challenges, machine learning and especially deep learning methods have much to offer and will substantially impact the future practice and science of cardiovascular imaging. © 2017 American Heart Association, Inc.

  8. Molecular MR imaging

    International Nuclear Information System (INIS)

    Fleige, G.; Hamm, B.

    2000-01-01

    Basic medicobiological research in recent years has made rapid advances in the functional understanding of normal and pathological processes down to the molecular level. At the same time, various imaging modalities have developed from the depiction of organs to approaching the depiction of the cellular level and are about to make the visualization of molecular processes an established procedure. Besides other modalities like PET and near-infrared fluorescence, MR imaging offers some promising options for molecular imaging as well as some applications that have already been tested such as the visualization of enzyme activity, the depiction of the expression of certain genes, the visualization of surface receptors, or the specific demonstration of cells involved in the body's immune response. A major advantage of molecular magnetic resonance imaging (mMRI) over other more sensitive modalities is its high spatial resolution. However, the establishment of mMRI crucially relies on further improvements in resolution and the development of molecular markers for improving its sensitivity and specificity. The state of the art of mMRI is presented by giving a survey of the literature on experimental studies and reporting the results our study group obtained during investigation on gliomas. (orig.) [de

  9. Clinical applications of cardiovascular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Marcu, C.B.; Beek, A.M.; Van Rossum, A.C.

    2006-01-01

    Cardiovascular magnetic resonance imaging (MRI) has evolved from an effective research tool into a clinically proven, safe and comprehensive imaging modality. It provides anatomic and functional information in acquired and congenital heart disease and is the most precise technique for quantification of ventricular volumes, function and mass. Owing to its excellent interstudy reproducibility, cardiovascular MRI is the optimal method for assessment of changes in ventricular parameters after therapeutic intervention. Delayed contrast enhancement is an accurate and robust method used in the diagnosis of ischemic and nonischemic cardiomyopathies and less common diseases, such as cardiac sarcoidosis and myocarditis. First-pass magnetic contrast myocardial perfusion is becoming an alternative to radionuclide techniques for the detection of coronary atherosclerotic disease. In this review we outline the techniques used in cardiovascular MRI and discuss the most common clinical applications. (author)

  10. Molecular imaging II

    International Nuclear Information System (INIS)

    Semmler, Wolfhard; Schwaiger, Markus

    2008-01-01

    The aim of this textbook of molecular imaging is to provide an up to date review of this rapidly growing field and to discuss basic methodological aspects necessary for the interpretation of experimental and clinical results. Emphasis is placed on the interplay of imaging technology and probe development, since the physical properties of the imaging approach need to be closely linked with the biologic application of the probe (i.e. nanoparticles and microbubbles). Various chemical strategies are discussed and related to the biologic applications. Reporter-gene imaging is being addressed not only in experimental protocols, but also first clinical applications are discussed. Finally, strategies of imaging to characterize apoptosis and angiogenesis are described and discussed in the context of possible clinical translation. (orig.)

  11. Design and implementation of the Molecular Imaging Unit for large animals at the National Center for Cardiovascular Research; Diseno y puesta en marcha de la Unidad de Imagen Molecular para animales grandes del Centro Nacional de Investigaciones Cardiovasculares

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, G.; Delgado Alberquilla, R.; Moreno Lopez, J.; Escudero Toro, R.

    2011-07-01

    in this paper describes the most important imaging techniques to be used with the latest equipment as well as the future of PET-MRI combination, its application in research on large animals and the implications for the design of the units, shielding calculation management sources of radiation and waste. This has required value and integrate the specific requirements of a research center in terms of bio security, care of large animals (pigs), health status of animals in an environment of highly demanding conditions PR.

  12. Magnetic resonance imaging in cardiovascular disease

    International Nuclear Information System (INIS)

    Eckel, C.G.; Mettler, F.A. Jr.; Wicks, J.D.; Stevens, G.F.

    1986-01-01

    How does magnetic resonance imaging (MRI) currently contribute in the evaluation of patients with suspected heart disease? What role will MRI play in the future in evaluation of cardiovascular disease? To understand better where MRI fits into the diagnostic algorithm of cardiovascular disease the authors first consider the characteristics that they would like to see in the ideal diagnostic test and then survey the available cardiac diagnostic tests to note the characteristics that limit or recommend a test. In the final analysis, the justification for expensive diagnostic tests such as MRI must be an overall improvement in survival or quality of life in those patients treated after diagnosis

  13. Computational methods for molecular imaging

    CERN Document Server

    Shi, Kuangyu; Li, Shuo

    2015-01-01

    This volume contains original submissions on the development and application of molecular imaging computing. The editors invited authors to submit high-quality contributions on a wide range of topics including, but not limited to: • Image Synthesis & Reconstruction of Emission Tomography (PET, SPECT) and other Molecular Imaging Modalities • Molecular Imaging Enhancement • Data Analysis of Clinical & Pre-clinical Molecular Imaging • Multi-Modal Image Processing (PET/CT, PET/MR, SPECT/CT, etc.) • Machine Learning and Data Mining in Molecular Imaging. Molecular imaging is an evolving clinical and research discipline enabling the visualization, characterization and quantification of biological processes taking place at the cellular and subcellular levels within intact living subjects. Computational methods play an important role in the development of molecular imaging, from image synthesis to data analysis and from clinical diagnosis to therapy individualization. This work will bring readers fro...

  14. NMR imaging of the cardiovascular system

    International Nuclear Information System (INIS)

    Canby, R.C.; Evanochko, W.T.; Pohost, G.M.

    1986-01-01

    Proton nuclear magnetic resonance (NMR) imaging permits high-resolution tomographic and three-dimensional images of the human body to be obtained without exposure to ionizing radiation. Such imaging not only yields anatomic resolution comparable to X-ray examinations but also provides a potential means to discriminate between healthy tissue and diseased tissue. This potential is based on certain NMR properties known as relaxation times, which determine, in part, the signal intensity in an image. These properties are related to such factors as the sizes and concentrations of proteins and mobile lipids and the compartmentalization of the protons of water. Although NMR imaging (also called magnetic resonance imaging, MRI) is becoming widely available for clinical use, application to the cardiovascular system, though promising, remains primarily a research tool. Gated proton NMR imaging can generate cardiac images with excellent morphologic detail and contrast; however, its ultimate importance as a cardiovascular diagnostic modality will depend on the development of several unique applications. These applications are discussed in this paper

  15. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  16. Flow imaging of the cardiovascular system using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Imai, Hitoshi; Sakakibara, Makoto; Sunami, Yuko

    1988-01-01

    Blood flow images by magnetic resonance imaging (MRI) using a 0.25 T unit were evaluated for nine normal volunteers and 108 subjects with a variety of cardiovascular abnormalities. Using the non-gated short-spin echo (SE) technique, blood flow in the cardiovascular systems was not imaged in the normal volunteers. Using end-systolic and end-diastolic SE techniques for the normal subjects, blood flow in the cardiac chambers was not clearly imaged. Blood flow in the ascending aorta and aortic arch often did not appear in the gated SE images of the normal subjects. However, blood flow in the descending aorta was often observed in the gated SE images. Blood flow imaging was demonstrated by both non-gated and gated SE techniques in regions where blood flow was relatively slow; for example, in the left atrium of mitral stenosis, in an aortic aneurysm, in a false lumen of an aortic dissection, and in the left ventricle having old myocardial infarction. Using the non-gated inversion recovery (IR) technique, no blood flow was imaged in the cardiovascular system except in the left atrium of one case with mitral stenosis. Using the non-gated short SE technique, there was good correlation between the thrombus formation and the presence of blood flow images in the left atria of 17 patients with mitral stenosis, and in the aneurysmal portions of the aorta or in the false lumens of aortic dissection of 18 patients. It was suggested that mural thrombi in such diseases were related to the relatively slow blood flow. Blood flow imaging easily distinguished stagnant blood flow from mural thrombi using non-gated short SE, end-systolic SE, and IR techniques. Thus, blood flow imaging using MRI should become an important means of evaluating the cardiovascular system. (author)

  17. Nuclear medicine imaging instrumentations for molecular imaging

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Song, Tae Yong; Choi, Yong

    2004-01-01

    Small animal models are extensively utilized in the study of biomedical sciences. Current animal experiments and analysis are largely restricted to in vitro measurements and need to sacrifice animals to perform tissue or molecular analysis. This prevents researchers from observing in vivo the natural evolution of the process under study. Imaging techniques can provide repeatedly in vivo anatomic and molecular information noninvasively. Small animal imaging systems have been developed to assess biological process in experimental animals and increasingly employed in the field of molecular imaging studies. This review outlines the current developments in nuclear medicine imaging instrumentations including fused multi-modality imaging systems for small animal imaging

  18. Nanomedicine for the molecular diagnosis of cardiovascular pathologies

    Energy Technology Data Exchange (ETDEWEB)

    Juenet, Maya; Varna, Mariana; Aid-Launais, Rachida [Inserm, U1148, Cardiovascular Bio-Engineering, X. Bichat Hospital, 75018, Paris (France); Université Paris 13, Institut Galilée, Sorbonne Paris Cité, 75018, Paris (France); Chauvierre, Cédric, E-mail: cedric.chauvierre@inserm.fr [Inserm, U1148, Cardiovascular Bio-Engineering, X. Bichat Hospital, 75018, Paris (France); Université Paris 13, Institut Galilée, Sorbonne Paris Cité, 75018, Paris (France); Letourneur, Didier [Inserm, U1148, Cardiovascular Bio-Engineering, X. Bichat Hospital, 75018, Paris (France); Université Paris 13, Institut Galilée, Sorbonne Paris Cité, 75018, Paris (France)

    2015-12-18

    Predicting acute clinical events caused by atherosclerotic plaque rupture remains a clinical challenge. Anatomic mapping of the vascular tree provided by standard imaging technologies is not always sufficient for a robust diagnosis. Yet biological mechanisms leading to unstable plaques have been identified and corresponding biomarkers have been described. Nanosystems charged with contrast agents and targeted towards these specific biomarkers have been developed for several types of imaging modalities. The first systems that have reached the clinic are ultrasmall superparamagnetic iron oxides for Magnetic Resonance Imaging. Their potential relies on their passive accumulation by predominant physiological mechanisms in rupture-prone plaques. Active targeting strategies are under development to improve their specificity and set up other types of nanoplatforms. Preclinical results show a huge potential of nanomedicine for cardiovascular diagnosis, as long as the safety of these nanosystems in the body is studied in depth. - Highlights: • Ischemic stroke and myocardial infarction are the main causes of death in the world. • Their prevalence is related to late detection of high-risk atherosclerotic plaques. • Biomarkers of atherosclerosis evolution and potential ligands have been identified. • Nanosystems based on these ligands appear promising for early molecular diagnosis. • Preclinical and clinical nanosystems for common imaging modalities are described.

  19. Nanomedicine for the molecular diagnosis of cardiovascular pathologies

    International Nuclear Information System (INIS)

    Juenet, Maya; Varna, Mariana; Aid-Launais, Rachida; Chauvierre, Cédric; Letourneur, Didier

    2015-01-01

    Predicting acute clinical events caused by atherosclerotic plaque rupture remains a clinical challenge. Anatomic mapping of the vascular tree provided by standard imaging technologies is not always sufficient for a robust diagnosis. Yet biological mechanisms leading to unstable plaques have been identified and corresponding biomarkers have been described. Nanosystems charged with contrast agents and targeted towards these specific biomarkers have been developed for several types of imaging modalities. The first systems that have reached the clinic are ultrasmall superparamagnetic iron oxides for Magnetic Resonance Imaging. Their potential relies on their passive accumulation by predominant physiological mechanisms in rupture-prone plaques. Active targeting strategies are under development to improve their specificity and set up other types of nanoplatforms. Preclinical results show a huge potential of nanomedicine for cardiovascular diagnosis, as long as the safety of these nanosystems in the body is studied in depth. - Highlights: • Ischemic stroke and myocardial infarction are the main causes of death in the world. • Their prevalence is related to late detection of high-risk atherosclerotic plaques. • Biomarkers of atherosclerosis evolution and potential ligands have been identified. • Nanosystems based on these ligands appear promising for early molecular diagnosis. • Preclinical and clinical nanosystems for common imaging modalities are described.

  20. Molecular nuclear cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Soo; Paeng, Jin Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2004-04-01

    Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needle injection with or without catheter guidance. TK expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect.

  1. Molecular nuclear cardiac imaging

    International Nuclear Information System (INIS)

    Lee, Dong Soo; Paeng, Jin Chul

    2004-01-01

    Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needle injection with or without catheter guidance. TK expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect

  2. Molecular Imaging of Inflammation in Atherosclerosis

    Science.gov (United States)

    Wildgruber, Moritz; Swirski, Filip K.; Zernecke, Alma

    2013-01-01

    Acute rupture of vulnerable plaques frequently leads to myocardial infarction and stroke. Within the last decades, several cellular and molecular players have been identified that promote atherosclerotic lesion formation, maturation and plaque rupture. It is now widely recognized that inflammation of the vessel wall and distinct leukocyte subsets are involved throughout all phases of atherosclerotic lesion development. The mechanisms that render a stable plaque unstable and prone to rupture, however, remain unknown and the identification of the vulnerable plaque remains a major challenge in cardiovascular medicine. Imaging technologies used in the clinic offer minimal information about the underlying biology and potential risk for rupture. New imaging technologies are therefore being developed, and in the preclinical setting have enabled new and dynamic insights into the vessel wall for a better understanding of this complex disease. Molecular imaging has the potential to track biological processes, such as the activity of cellular and molecular biomarkers in vivo and over time. Similarly, novel imaging technologies specifically detect effects of therapies that aim to stabilize vulnerable plaques and silence vascular inflammation. Here we will review the potential of established and new molecular imaging technologies in the setting of atherosclerosis, and discuss the cumbersome steps required for translating molecular imaging approaches into the clinic. PMID:24312156

  3. The future of the cardiovascular image

    International Nuclear Information System (INIS)

    Serna M, J.A.

    2007-01-01

    In this work the future of the cardiovascular image is presented, it is important to know the advantages and disadvantages of the current image methods to apply them in each case. The characteristics of the methods are presented: X R simple plate, the cardiac ultrasound, the image by magnetic resonance, the computed tomography, the helicoid tomography, the SPECT of myocardial perfusion, the PET and the PET/CT and the used radiopharmaceuticals. The SPECT of myocardial perfusion is the more used method around the world for the evacuation of the coronary illness. It has a high sensitivity (between 90 and 97%), it is a non-invasive treatment (morbidity of 0.01%), of relative low cost and it is useful in the diagnosis of ischemia in groups of high risk like diabetics, dyslipidemia, obese and hypertension. (Author)

  4. New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Oyebola O. Sogbein

    2014-01-01

    Full Text Available Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT myocardial perfusion imaging (MPI with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET and magnetic resonance imaging (MRI continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed.

  5. Clinical advances in cardiovascular magnetic resonace imaging and angiography

    NARCIS (Netherlands)

    Bosch, van den H.C.M.

    2018-01-01

    Cardiovascular magnetic resonance imaging is an important noninvasive imaging modality for the diagnosis, clinical work‐up and treatment planning in patients suspected for a wide range of cardiovascular pathology. CMR imaging is accurate and reliable, and provides invaluable information to evaluate

  6. SQL based cardiovascular ultrasound image classification.

    Science.gov (United States)

    Nandagopalan, S; Suryanarayana, Adiga B; Sudarshan, T S B; Chandrashekar, Dhanalakshmi; Manjunath, C N

    2013-01-01

    This paper proposes a novel method to analyze and classify the cardiovascular ultrasound echocardiographic images using Naïve-Bayesian model via database OLAP-SQL. Efficient data mining algorithms based on tightly-coupled model is used to extract features. Three algorithms are proposed for classification namely Naïve-Bayesian Classifier for Discrete variables (NBCD) with SQL, NBCD with OLAP-SQL, and Naïve-Bayesian Classifier for Continuous variables (NBCC) using OLAP-SQL. The proposed model is trained with 207 patient images containing normal and abnormal categories. Out of the three proposed algorithms, a high classification accuracy of 96.59% was achieved from NBCC which is better than the earlier methods.

  7. Imaging of cardiovascular malformations in Williams syndrome

    International Nuclear Information System (INIS)

    Li Shiguo; Zhao Shihua; Jiang Shiliang; Huang Lianjun; Xu Zhongying; Ling Jian; Zheng Hong; Yan Chaowu; Lu Jinguo

    2008-01-01

    Objective: To evaluate the imaging methods for cardiovascular malformations in Williams syndrome(WS). Methods: Thirteen cases of WS (7 males and 6 females) aged 10 months to 13 years were involved in this study. All patients underwent chest X-ray radiography, electrocardiography, echocardiography and physical examination. 3 cases underwent electronic beam computed tomography (EBCT), cardiac catheterization and angiography were performed in 8 cases. Results: Twelve patients were referred to our hospital for cardiac murmur and 1 case for cyanosis after birth. 7 patients were found with 'elfin-like' facial features, 6 patients with pulmonary arterial stenosis, 2 cases with patent ductus arteriosus, 2 cases with severe pulmonary hypertension and 1 case with total endocardial cushion defect. Sudden death occurred in 2 patients during and after catheterization, respectively. Conclusions: Conventional angiography is the golden standard for the diagnosis of cardiovascular malformations in WS. Noninvasive methods such as MSCT and MRI should be suggested because of the risk of sudden death in conventional angiography. (authors)

  8. Non-cardiovascular findings in clinical cardiovascular magnetic resonance imaging in children

    International Nuclear Information System (INIS)

    Ghadimi Mahani, Maryam; Morani, Ajaykumar C.; Lu, Jimmy C.; Dorfman, Adam L.; Fazeli Dehkordy, Soudabeh; Jeph, Sunil; Agarwal, Prachi P.

    2016-01-01

    With increasing use of pediatric cardiovascular MRI, it is important for all imagers to become familiar with the spectrum of non-cardiovascular imaging findings that can be encountered. This study aims to ascertain the prevalence and nature of these findings in pediatric cardiovascular MRIs performed at our institution. We retrospectively evaluated reports of all cardiovascular MRI studies performed at our institute from January 2008 to October 2012 in patients younger than18 years. Most studies (98%) were jointly interpreted by a pediatric cardiologist and a radiologist. We reviewed the electronic medical records of all cases with non-cardiovascular findings, defined as any imaging finding outside the cardiovascular system. Non-cardiovascular findings were classified into significant and non-significant, based on whether they were known at the time of imaging or they required additional workup or a change in management. In 849 consecutive studies (mean age 9.7 ± 6.3 years), 145 non-cardiovascular findings were found in 140 studies (16.5% of total studies). Overall, 51.0% (74/145) of non-cardiovascular findings were in the abdomen, 30.3% (44/145) were in the chest, and 18.6% (27/145) were in the spine. A total of 19 significant non-cardiovascular findings were observed in 19 studies in individual patients (2.2% of total studies, 47% male, mean age 5.9 ± 6.7 years). Significant non-cardiovascular findings included hepatic adenoma, arterially enhancing focal liver lesions, asplenia, solitary kidney, pelvicaliectasis, renal cystic diseases, gastric distention, adrenal hemorrhage, lung hypoplasia, air space disease, bronchial narrowing, pneumomediastinum and retained surgical sponge. Non-cardiovascular findings were seen in 16.5% of cardiovascular MRI studies in children, of which 2.2% were clinically significant findings. Prevalence and nature of these non-cardiovascular findings are different from those reported in adults. Attention to these findings is important

  9. Non-cardiovascular findings in clinical cardiovascular magnetic resonance imaging in children

    Energy Technology Data Exchange (ETDEWEB)

    Ghadimi Mahani, Maryam [University of Michigan Health System, C.S. Mott Children' s Hospital, Department of Radiology, Section of Pediatric Radiology, Ann Arbor, MI (United States); Morani, Ajaykumar C. [The University of Texas MD Anderson Cancer Center, Department of Diagnostic Radiology, Houston, TX (United States); Lu, Jimmy C.; Dorfman, Adam L. [University of Michigan Health System, C.S. Mott Children' s Hospital, Department of Pediatrics and Communicable Diseases, Division of Pediatric Cardiology, Ann Arbor, MI (United States); Fazeli Dehkordy, Soudabeh [University of Michigan Health System, C.S. Mott Children' s Hospital, Department of Radiology, Section of Pediatric Radiology, Ann Arbor, MI (United States); Providence Hospital and Medical Centers, Department of Graduate Medical Education, Southfield, MI (United States); Jeph, Sunil [The University of Texas MD Anderson Cancer Center, Department of Diagnostic Radiology, Houston, TX (United States); Geisinger Medical Center, Department of Radiology, Danville, PA (United States); Agarwal, Prachi P. [University of Michigan Health System, Department of Radiology, Division of Cardiothoracic Radiology, Ann Arbor, MI (United States)

    2016-04-15

    With increasing use of pediatric cardiovascular MRI, it is important for all imagers to become familiar with the spectrum of non-cardiovascular imaging findings that can be encountered. This study aims to ascertain the prevalence and nature of these findings in pediatric cardiovascular MRIs performed at our institution. We retrospectively evaluated reports of all cardiovascular MRI studies performed at our institute from January 2008 to October 2012 in patients younger than18 years. Most studies (98%) were jointly interpreted by a pediatric cardiologist and a radiologist. We reviewed the electronic medical records of all cases with non-cardiovascular findings, defined as any imaging finding outside the cardiovascular system. Non-cardiovascular findings were classified into significant and non-significant, based on whether they were known at the time of imaging or they required additional workup or a change in management. In 849 consecutive studies (mean age 9.7 ± 6.3 years), 145 non-cardiovascular findings were found in 140 studies (16.5% of total studies). Overall, 51.0% (74/145) of non-cardiovascular findings were in the abdomen, 30.3% (44/145) were in the chest, and 18.6% (27/145) were in the spine. A total of 19 significant non-cardiovascular findings were observed in 19 studies in individual patients (2.2% of total studies, 47% male, mean age 5.9 ± 6.7 years). Significant non-cardiovascular findings included hepatic adenoma, arterially enhancing focal liver lesions, asplenia, solitary kidney, pelvicaliectasis, renal cystic diseases, gastric distention, adrenal hemorrhage, lung hypoplasia, air space disease, bronchial narrowing, pneumomediastinum and retained surgical sponge. Non-cardiovascular findings were seen in 16.5% of cardiovascular MRI studies in children, of which 2.2% were clinically significant findings. Prevalence and nature of these non-cardiovascular findings are different from those reported in adults. Attention to these findings is important

  10. Molecular photoacoustic imaging

    Directory of Open Access Journals (Sweden)

    Frogh Jafarian Dehkordi

    2015-04-01

    Full Text Available Background: Hybrid imaging modalities which simultaneously benefit from capabilities of combined modalities provides an opportunity to modify quality of the images which can be obtained by each of the combined imaging systems. One of the imaging modalities, emerged in medical research area as a hybrid of ultrasound imaging and optical imaging, is photoacoustic imaging which apply ultrasound wave generated by tissue, after receiving laser pulse, to produce medical images. Materials and Methods: In this review, using keywords such as photoacoustic, optoacoustic, laser-ultrasound, thermoacoustic at databases such as PubMed and ISI, studies performed in the field of photoacoustic and related findings were evaluated. Results: Photoacoustic imaging, acquiring images with high contrast and desired resolution, provides an opportunity to perform physiologic and anatomic studies. Because this technique does not use ionizing radiation, it is not restricted by the limitation of the ionizing-based imaging systems therefore it can be used noninvasively to make images from cell, vessels, whole body imaging of the animal and distinguish tumor from normal tissue. Conclusion: Photoacoustic imaging is a new method in preclinical researches which can be used in various physiologic and anatomic studies. This method, because of application of non-ionizing radiation, may resolve limitation of radiation based method in diagnostic assessments.

  11. Molecular imaging in the era of personalized medicine.

    Science.gov (United States)

    Jung, Kyung-Ho; Lee, Kyung-Han

    2015-01-01

    Clinical imaging creates visual representations of the body interior for disease assessment. The role of clinical imaging significantly overlaps with that of pathology, and diagnostic workflows largely depend on both fields. The field of clinical imaging is presently undergoing a radical change through the emergence of a new field called molecular imaging. This new technology, which lies at the intersection between imaging and molecular biology, enables noninvasive visualization of biochemical processes at the molecular level within living bodies. Molecular imaging differs from traditional anatomical imaging in that biomarkers known as imaging probes are used to visualize target molecules-of-interest. This ability opens up exciting new possibilities for applications in oncologic, neurological and cardiovascular diseases. Molecular imaging is expected to make major contributions to personalized medicine by allowing earlier diagnosis and predicting treatment response. The technique is also making a huge impact on pharmaceutical development by optimizing preclinical and clinical tests for new drug candidates. This review will describe the basic principles of molecular imaging and will briefly touch on three examples (from an immense list of new techniques) that may contribute to personalized medicine: receptor imaging, angiogenesis imaging, and apoptosis imaging.

  12. Artificial intelligence as a diagnostic adjunct in cardiovascular nuclear imaging

    International Nuclear Information System (INIS)

    Duncan, J.S.

    1988-01-01

    The radiologist and/or nuclear medicine physician is literally bombarded with information from today's diagnostic imaging technologies. As a consequence of this, whereas a decade ago the emphasis in medical image analysis was on improving the extraction of diagnostic information by developing and using more sophisticated imaging modalities, today those working on the development of medical imaging technology are struggling to find ways to handle all gathered information effectively. This chapter gives an introduction to the area of artificial intelligence, with an emphasis on the research ongoing in cardiovascular nuclear imaging. This chapter has reviewed the place of artificial intelligence in cardiovascular nuclear imaging. It is intended to provide a general sense of this new and emerging field, an insight into some of its specific methodologies and applications, and a closer look at the several AI approaches currently being applied in cardiovascular nuclear imaging

  13. Molecular imaging. Fundamentals and applications

    International Nuclear Information System (INIS)

    Tian, Jie

    2013-01-01

    Covers a wide range of new theory, new techniques and new applications. Contributed by many experts in China. The editor has obtained the National Science and Technology Progress Award twice. ''Molecular Imaging: Fundamentals and Applications'' is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book.

  14. General perspectives for molecular nuclear imaging

    International Nuclear Information System (INIS)

    Chung, June Key

    2004-01-01

    Molecular imaging provides a visualization of normal as well as abnormal cellular processes at a molecular or genetic level rather than at an anatomical level. Conventional medical imaging methods utilize the imaging signals produced by nonspecific physico-chemical interaction. However, molecular imaging methods utilize the imaging signals derived from specific cellular or molecular events. Because molecular and genetic changes precede anatomical change in the course of disease development, molecular imaging can detect early events in disease progression. In the near future, through molecular imaging we can understand basic mechanisms of disease, and diagnose earlier and, subsequently, treat earlier intractable disease such as cancer, neuro-degenerative diseases, and immunologic disorders. In beginning period, nuclear medicine started as a molecular imaging, and has had a leading role in the field of molecular imaging. But recently molecular imaging has been rapidly developed. Besides nuclear imaging, molecular imaging methods such as optical imaging, magnetic resonance imaging are emerging. Each imaging modalities have their advantages and weaknesses. The opportunities from molecular imaging look bright. We should try nuclear medicine continues to have a leading role in molecular imaging

  15. Molecular imaging in cervical cancer

    International Nuclear Information System (INIS)

    KHAN, Sairah R.; ROCKALL, Andrea G.; BARWICK, Tara D.

    2016-01-01

    Despite the development of screening and of a vaccine, cervix cancer is a major cause of cancer death in young women worldwide. A third of women treated for the disease will recur, almost inevitably leading to death. Functional imaging has the potential to stratify patients at higher risk of poor response or relapse by improved delineation of disease extent and tumor characteristics. A number of molecular imaging biomarkers have been shown to predict outcome at baseline and/or early during therapy in cervical cancer. In future this could help tailor the treatment plan which could include selection of patients for close follow up, adjuvant therapy or trial entry for novel agents or adaptive clinical trials. The use of molecular imaging techniques, FDG PET/CT and functional MRI, in staging and response assessment of cervical cancer is reviewed.

  16. 3D molecular imaging SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Gillen, Greg [Surface and Microanalysis Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8371 (United States)]. E-mail: Greg.gillen@nist.gov; Fahey, Albert [Surface and Microanalysis Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8371 (United States); Wagner, Matt [Surface and Microanalysis Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8371 (United States); Mahoney, Christine [Surface and Microanalysis Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8371 (United States)

    2006-07-30

    Thin monolayer and bilayer films of spin cast poly(methyl methacrylate) (PMMA), poly(2-hydroxyethyl methacrylate) (PHEMA), poly(lactic) acid (PLA) and PLA doped with several pharmaceuticals have been analyzed by dynamic SIMS using SF{sub 5} {sup +} polyatomic primary ion bombardment. Each of these systems exhibited minimal primary beam-induced degradation under cluster ion bombardment allowing molecular depth profiles to be obtained through the film. By combing secondary ion imaging with depth profiling, three-dimensional molecular image depth profiles have been obtained from these systems. In another approach, bevel cross-sections are cut in the samples with the SF{sub 5} {sup +} primary ion beam to produce a laterally magnified cross-section of the sample that does not contain the beam-induced damage that would be induced by conventional focussed ion beam (FIB) cross-sectioning. The bevel surface can then be examined using cluster SIMS imaging or other appropriate microanalysis technique.

  17. Molecular Imaging Challenges With PET

    CERN Document Server

    Lecoq, P

    2010-01-01

    The future trends in molecular imaging and associated challenges for in-vivo functional imaging are illustrated on the basis of a few examples, such as atherosclerosis vulnerable plaques imaging or stem cells tracking. A set of parameters are derived to define the specifications of a new generation of in-vivo imaging devices in terms of sensitivity, spatial resolution and signal-to-noise ratio. The limitations of strategies used in present PET scanners are discussed and new approaches are proposed taking advantage of recent progress on materials, photodetectors and readout electronics. A special focus is put on metamaterials, as a new approach to bring more functionality to detection devices. It is shown that the route is now open towards a fully digital detector head with very high photon counting capability over a large energy range, excellent timing precision and possibility of imaging the energy deposition process.

  18. Cancer Stratification by Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Justus Weber

    2015-03-01

    Full Text Available The lack of specificity of traditional cytotoxic drugs has triggered the development of anticancer agents that selectively address specific molecular targets. An intrinsic property of these specialized drugs is their limited applicability for specific patient subgroups. Consequently, the generation of information about tumor characteristics is the key to exploit the potential of these drugs. Currently, cancer stratification relies on three approaches: Gene expression analysis and cancer proteomics, immunohistochemistry and molecular imaging. In order to enable the precise localization of functionally expressed targets, molecular imaging combines highly selective biomarkers and intense signal sources. Thus, cancer stratification and localization are performed simultaneously. Many cancer types are characterized by altered receptor expression, such as somatostatin receptors, folate receptors or Her2 (human epidermal growth factor receptor 2. Similar correlations are also known for a multitude of transporters, such as glucose transporters, amino acid transporters or hNIS (human sodium iodide symporter, as well as cell specific proteins, such as the prostate specific membrane antigen, integrins, and CD20. This review provides a comprehensive description of the methods, targets and agents used in molecular imaging, to outline their application for cancer stratification. Emphasis is placed on radiotracers which are used to identify altered expression patterns of cancer associated markers.

  19. Molecular imaging in neurology and neuroscience

    International Nuclear Information System (INIS)

    Schreckenberger, M.

    2007-01-01

    Molecular imaging in neurology and neuroscience is a suspenseful and fast developing tool in order to quantitatively image genomics and proteomics by means of direct and indirect markers. Because of its high-sensitive tracer principle, nuclear medicine imaging has the pioneering task for the methodical progression of molecular imaging. The current development of molecular imaging in neurology changes from the use of indirect markers of gene and protein expression to the direct imaging of the molecular mechanisms. It is the aim of this article to give a short review on the status quo of molecular imaging in neurology with emphasis on clinically relevant aspects. (orig.)

  20. Cardiovascular evaluation in Turner syndrome: utility of MR imaging

    International Nuclear Information System (INIS)

    Dawson-Falk, K.; Bakker, B.; Rosenfeld, R.G.

    1992-01-01

    Forty patients with karyotypically proven Turner syndrome were prospectively studied using magnetic resonance imaging (MRI) and echocardiography in order to determine the frequency of cardiovascular anomalies and to assess the utility of both imaging modalities as methods for cardiovascular evaluation in Turner syndrome. Cardiovascular anomalies were found in 45% of patients. A high absolute prevalence of bicuspid aortic valve (17.5%) and aortic coarctation (12.5%) were observed relative to comparable series. Of clinically significant abnormalities, three of five aortic coarctations and four of five ascending aortic dilatations were solely MRI detected and not evident at echocardiographic examination. MRI is thus seen as a valuable adjunct to echocardiography in the cardiovascular evaluation of Turner syndrome patients. The usefulness of MRI primarily relates to its ability to provide excellent visualisation of the entire thoracic aorta where a large proportion of clinically significant anomalies occur in Turner syndrome. 23 refs., 2 tabs., 5 figs

  1. Cardiovascular evaluation in Turner syndrome: utility of MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dawson-Falk, K; Bakker, B; Rosenfeld, R G [Stanford Univ., CA (United States). School of Medicine

    1992-08-01

    Forty patients with karyotypically proven Turner syndrome were prospectively studied using magnetic resonance imaging (MRI) and echocardiography in order to determine the frequency of cardiovascular anomalies and to assess the utility of both imaging modalities as methods for cardiovascular evaluation in Turner syndrome. Cardiovascular anomalies were found in 45% of patients. A high absolute prevalence of bicuspid aortic valve (17.5%) and aortic coarctation (12.5%) were observed relative to comparable series. Of clinically significant abnormalities, three of five aortic coarctations and four of five ascending aortic dilatations were solely MRI detected and not evident at echocardiographic examination. MRI is thus seen as a valuable adjunct to echocardiography in the cardiovascular evaluation of Turner syndrome patients. The usefulness of MRI primarily relates to its ability to provide excellent visualisation of the entire thoracic aorta where a large proportion of clinically significant anomalies occur in Turner syndrome. 23 refs., 2 tabs., 5 figs.

  2. Cardiovascular Imaging: What Have We Learned From Animal Models?

    Directory of Open Access Journals (Sweden)

    Arnoldo eSantos

    2015-10-01

    Full Text Available Cardiovascular imaging has become an indispensable tool for patient diagnosis and follow up. Probably the wide clinical applications of imaging are due to the possibility of a detailed and high quality description and quantification of cardiovascular system structure and function. Also phenomena that involve complex physiological mechanisms and biochemical pathways, such as inflammation and ischemia, can be visualized in a nondestructive way. The widespread use and evolution of imaging would not have been possible without animal studies. Animal models have allowed for instance, i the technical development of different imaging tools, ii to test hypothesis generated from human studies and finally, iii to evaluate the translational relevance assessment of in vitro and ex-vivo results. In this review, we will critically describe the contribution of animal models to the use of biomedical imaging in cardiovascular medicine. We will discuss the characteristics of the most frequent models used in/for imaging studies. We will cover the major findings of animal studies focused in the cardiovascular use of the repeatedly used imaging techniques in clinical practice and experimental studies. We will also describe the physiological findings and/or learning processes for imaging applications coming from models of the most common cardiovascular diseases. In these diseases, imaging research using animals has allowed the study of aspects such as: ventricular size, shape, global function and wall thickening, local myocardial function, myocardial perfusion, metabolism and energetic assessment, infarct quantification, vascular lesion characterization, myocardial fiber structure, and myocardial calcium uptake. Finally we will discuss the limitations and future of imaging research with animal models.

  3. Cardiovascular imaging environment: will the future be cloud-based?

    Science.gov (United States)

    Kawel-Boehm, Nadine; Bluemke, David A

    2017-07-01

    In cardiovascular CT and MR imaging large datasets have to be stored, post-processed, analyzed and distributed. Beside basic assessment of volume and function in cardiac magnetic resonance imaging e.g., more sophisticated quantitative analysis is requested requiring specific software. Several institutions cannot afford various types of software and provide expertise to perform sophisticated analysis. Areas covered: Various cloud services exist related to data storage and analysis specifically for cardiovascular CT and MR imaging. Instead of on-site data storage, cloud providers offer flexible storage services on a pay-per-use basis. To avoid purchase and maintenance of specialized software for cardiovascular image analysis, e.g. to assess myocardial iron overload, MR 4D flow and fractional flow reserve, evaluation can be performed with cloud based software by the consumer or complete analysis is performed by the cloud provider. However, challenges to widespread implementation of cloud services include regulatory issues regarding patient privacy and data security. Expert commentary: If patient privacy and data security is guaranteed cloud imaging is a valuable option to cope with storage of large image datasets and offer sophisticated cardiovascular image analysis for institutions of all sizes.

  4. Molecular imaging in biomedical research

    International Nuclear Information System (INIS)

    Jagannathan, N.R.

    2007-01-01

    Molecular imaging (MI) is a diverse technology that revolutionized preclinical, clinical and drug-discovery research. It integrates biology and medicine, and the technique presents a unique opportunity to examine living systems in vivo as a dynamic biological system. It is a hybrid technology that combines PET, SPECT, ultrasound, optical imaging and MR. Several MI methodologies are developed to examine the integrative functions of molecules, cells, organ systems and whole organisms. MI is superior to conventional diagnostic techniques in allowing better staging as well as to monitor the response of cancer/tumour to treatment. In addition, it helps visualization of specific molecular targets or pathways and cells in living systems and ultimately in the clinic. (author)

  5. The year 2012 in the European Heart Journal-Cardiovascular Imaging: Part I.

    Science.gov (United States)

    Edvardsen, Thor; Plein, Sven; Saraste, Antti; Knuuti, Juhani; Maurer, Gerald; Lancellotti, Patrizio

    2013-06-01

    The new multi-modality cardiovascular imaging journal, European Heart Journal - Cardiovascular Imaging, was started in 2012. During its first year, the new Journal has published an impressive collection of cardiovascular studies utilizing all cardiovascular imaging modalities. We will summarize the most important studies from its first year in two articles. The present 'Part I' of the review will focus on studies in myocardial function, myocardial ischaemia, and emerging techniques in cardiovascular imaging.

  6. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease

    Energy Technology Data Exchange (ETDEWEB)

    Noerenberg, Dominik [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); University of Munich - Grosshadern, Department of Clinical Radiology, Munich (Germany); Ebersberger, Hans U. [Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany); Diederichs, Gerd; Hamm, Bernd [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); Botnar, Rene M. [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Makowski, Marcus R. [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2016-03-15

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. (orig.)

  7. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease

    International Nuclear Information System (INIS)

    Noerenberg, Dominik; Ebersberger, Hans U.; Diederichs, Gerd; Hamm, Bernd; Botnar, Rene M.; Makowski, Marcus R.

    2016-01-01

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. (orig.)

  8. ECG gated magnetic resonance imaging in cardiovascular disease

    International Nuclear Information System (INIS)

    Park, Jae Hyung; Im, Chung Kie; Han, Man Chung; Kim, Chu Wan

    1985-01-01

    Using KAIS 0.15 Tesla resistive magnetic imaging system, ECG gated magnetic resonance (MR) image of various cardiovascular disease was obtained in 10 patients. The findings of MR image of the cardiovascular disease were analysed and the results were as follows: 1. In 6 cases of acquired and congenital cardiac diseases, there were 2 cases of myocardial infarction, 1 case of mitral stenosis and 3 cases of corrected transportation of great vessels. The others were 3 cases of aortic disease and 1 case of pericardial effusion with lymphoma. 2. Myocardial thinning and left ventricular aneurysm were detected in MR images of myocardial infarction. The left atrium was well delineated and enlarged in the case of mitral stenosis. And segmental analysis was possible in the cases of corrected transposition since all cardiac structures were well delineated anatomically. 3. In aortic diseases, the findings of MR image were enlarged lumen, compressed cardiac chambers in ascending aortic aneurysm, intimal flap, enhanced false lumen in dissecting aneurysm and irregular narrowing of aorta with arterial obstruction in Takayasu's arteritis. 4. Pericardial effusion revealed a conspicuous contrast with neighboring mediastinal fat and cardiac wall due to it low signal encircling cardiac wall. 5. ECG gated MR image is an accurate non-invasive imaging modality for the diagnosis of cardiovascular disease and better results of its clinical application are expected in the future with further development in the imaging system and more clinical experiences

  9. Introduction to basic molecular biologic techniques for molecular imaging researches

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2004-01-01

    Molecular imaging is a rapidly growing field due to the advances in molecular biology and imaging technologies. With the introduction of imaging reporter genes into the cell, diverse cellular processes can be monitored, quantified and imaged non-invasively in vivo. These processes include the gene expression, protein-protein interactions, signal transduction pathways, and monitoring of cells such as cancer cells, immune cells, and stem cells. In the near future, molecular imaging analysis will allow us to observe the incipience and progression of the disease. These will make us easier to give a diagnosis in the early stage of intractable diseases such as cancer, neuro-degenerative disease, and immunological disorders. Additionally, molecular imaging method will be a valuable tool for the real-time evaluation of cells in molecular biology and the basic biological studies. As newer and more powerful molecular imaging tools become available, it will be necessary to corporate clinicians, molecular biologists and biochemists for the planning, interpretation, and application of these techniques to their fullest potential. In order for such a multidisciplinary team to be effective, it is essential that a common understanding of basic biochemical and molecular biologic techniques is achieved. Basic molecular techniques for molecular imaging methods are presented in this paper

  10. Echocardiography in the Era of Multimodality Cardiovascular Imaging

    Science.gov (United States)

    Shah, Benoy Nalin

    2013-01-01

    Echocardiography remains the most frequently performed cardiac imaging investigation and is an invaluable tool for detailed and accurate evaluation of cardiac structure and function. Echocardiography, nuclear cardiology, cardiac magnetic resonance imaging, and cardiovascular-computed tomography comprise the subspeciality of cardiovascular imaging, and these techniques are often used together for a multimodality, comprehensive assessment of a number of cardiac diseases. This paper provides the general cardiologist and physician with an overview of state-of-the-art modern echocardiography, summarising established indications as well as highlighting advances in stress echocardiography, three-dimensional echocardiography, deformation imaging, and contrast echocardiography. Strengths and limitations of echocardiography are discussed as well as the growing role of real-time three-dimensional echocardiography in the guidance of structural heart interventions in the cardiac catheter laboratory. PMID:23878804

  11. Interdepartmental conflict management and negotiation in cardiovascular imaging.

    Science.gov (United States)

    Otero, Hansel J; Nallamshetty, Leelakrishna; Rybicki, Frank J

    2008-07-01

    Although the relationship between cardiologists and radiologists has a thorny history, advanced cardiac imaging technology and the promise of cardiac computed tomography are forcing both specialties back to the negotiation table. These discussions represent an opportunity for better communication, collaboration, and resource allocation. The authors address the aspects of interdepartmental conflict management and negotiation through their radiology department's ongoing efforts to provide high-quality advanced noninvasive cardiovascular imaging services at a large academic institution. The definition and causes of conflict are defined, with a specific focus on noninvasive cardiovascular imaging, followed by a description of steps used in the negotiation process. The authors encourage radiologists to entertain an open dialogue with cardiology, because in many cases, both sides can benefit. The benefits of a negotiated outcome include minimizing internal competitors, incorporating cardiologists' expertise to cardiac imaging algorithms, and more effective training opportunities.

  12. Molecular imaging: current status and emerging strategies

    International Nuclear Information System (INIS)

    Pysz, M.A.; Gambhir, S.S.; Willmann, J.K.

    2010-01-01

    In vivo molecular imaging has a great potential to impact medicine by detecting diseases in early stages (screening), identifying extent of disease, selecting disease- and patient-specific treatment (personalized medicine), applying a directed or targeted therapy, and measuring molecular-specific effects of treatment. Current clinical molecular imaging approaches primarily use positron-emission tomography (PET) or single photon-emission computed tomography (SPECT)-based techniques. In ongoing preclinical research, novel molecular targets of different diseases are identified and, sophisticated and multifunctional contrast agents for imaging these molecular targets are developed along with new technologies and instrumentation for multi-modality molecular imaging. Contrast-enhanced molecular ultrasound (US) with molecularly-targeted contrast microbubbles is explored as a clinically translatable molecular imaging strategy for screening, diagnosing, and monitoring diseases at the molecular level. Optical imaging with fluorescent molecular probes and US imaging with molecularly-targeted microbubbles are attractive strategies as they provide real-time imaging, are relatively inexpensive, produce images with high spatial resolution, and do not involve exposure to ionizing irradiation. Raman spectroscopy/microscopy has emerged as a molecular optical imaging strategy for ultrasensitive detection of multiple biomolecules/biochemicals with both in vivo and ex vivo versatility. Photoacoustic imaging is a hybrid of optical and US techniques involving optically-excitable molecularly-targeted contrast agents and quantitative detection of resulting oscillatory contrast agent movement with US. Current preclinical findings and advances in instrumentation, such as endoscopes and microcatheters, suggest that these molecular imaging methods have numerous potential clinical applications and will be translated into clinical use in the near future.

  13. Cardiovascular dysfunction in obesity and new diagnostic imaging techniques: the role of noninvasive image methods.

    Science.gov (United States)

    Barbosa, José Augusto A; Rodrigues, Alexandre B; Mota, Cleonice Carvalho C; Barbosa, Márcia M; Simões e Silva, Ana C

    2011-01-01

    Obesity is a major public health problem affecting adults and children in both developed and developing countries. This condition often leads to metabolic syndrome, which increases the risk of cardiovascular disease. A large number of studies have been carried out to understand the pathogenesis of cardiovascular dysfunction in obese patients. Endothelial dysfunction plays a key role in the progression of atherosclerosis and the development of coronary artery disease, hypertension and congestive heart failure. Noninvasive methods in the field of cardiovascular imaging, such as measuring intima-media thickness, flow-mediated dilatation, tissue Doppler, and strain, and strain rate, constitute new tools for the early detection of cardiac and vascular dysfunction. These techniques will certainly enable a better evaluation of initial cardiovascular injury and allow the correct, timely management of obese patients. The present review summarizes the main aspects of cardiovascular dysfunction in obesity and discusses the application of recent noninvasive imaging methods for the early detection of cardiovascular alterations.

  14. Cine MR imaging of the cardiovascular system

    International Nuclear Information System (INIS)

    Nishimura, Fumiaki; Yoshino, Yasushi; Mihara, Junji; Ichikawa, Seiichi; Kimura, Masahiko; Yano, Masao; Umeda, Masahiro; Oouchi, Toshihiro

    1990-01-01

    In recent years cine magnetic resonance imaging (MRI) has developed as a high-speed imaging technique that provides a high intensity signal even at a short repetition time (20-30 msec) by using an excited pulse with a small flip angle according to the gradient echo method, enabling about 20 to 30 continuous images of the same section per one cardiac cycle to be taken. On cine display of these continuous images, information concerning blood flow shown by a high intensity signal in comparison with that of the myocardium and vascular wall is obtained with high temporal resolution along with anatomical information. The present study reports the clinical usefulness of cine MRI in today's situation, inculding the following: calculation of the left ventricular ejection fraction and pulmonary-to-systemic flow ratio in congenital shunt disease by integration of the area of multisections through application of Simpson's method; diagnosis of the severity of valvular regurgitation, evaluation of stenosal diseases, and diagnosis of inflow from the fissured entry of dissecting aortic aneurysm by evaluating of an area of low intensity signal, probably based on the high velocity or turbulent blood flow: and evaluation of patency of the internal mammary artery bypass graft of the basis of the possible visualization of even thin blood vessels because of the high intensity signal of blood flow. In particular, the characteristics of this procedures are described by comparing it with other technologies in the field of diseases of valvular regurgitation. (author)

  15. Magnetic resonance imaging (MRI) of congenital cardiovascular malformations

    International Nuclear Information System (INIS)

    Sakakibara, Makoto; Kobayashi, Shirou; Imai, Hitoshi; Watanabe, Shigeru; Masuda, Yoshiaki; Inagaki, Yoshiaki; Morita, Huminori; Uematsu, Sadao; Arimizu, Noboru

    1986-01-01

    In order to determine the value of MRI in diagnosing congenital cardiovascular malformations, MR Images were obtained in 25 adult patients with congenital cardiovascular malformations. Gated MRI detected all of 13 atrial septal defects, and all of 4 ventricular septal defects, but ungated MRI detected none of 3 atrial septal defects. Other congenital cardiovascular malformations (2 with Ebstein's disease, 1 with Fallot's pentalogy, and 1 with Pulmonary stenosis) were well visualized. Vascular malformations (1 with Patent ducts arteriosus, 1 with Supravalvelar aortic stenosis, 1 with Coarctation of Aorta, 1 with Right Aortic Arch) were well visualized in all of 7 patients by ungated MRI. MRI was a valuable noninvasive method of diagnosing congenital heart disease. (author)

  16. The Role of Cardiovascular Magnetic Resonance Imaging in Heart Failure.

    Science.gov (United States)

    Peterzan, Mark A; Rider, Oliver J; Anderson, Lisa J

    2016-11-01

    Cardiovascular imaging is key for the assessment of patients with heart failure. Today, cardiovascular magnetic resonance imaging plays an established role in the assessment of patients with suspected and confirmed heart failure syndromes, in particular identifying aetiology. Its role in informing prognosis and guiding decisions around therapy are evolving. Key strengths include its accuracy; reproducibility; unrestricted field of view; lack of radiation; multiple abilities to characterise myocardial tissue, thrombus and scar; as well as unparalleled assessment of left and right ventricular volumes. T2* has an established role in the assessment and follow-up of iron overload cardiomyopathy and a role for T1 in specific therapies for cardiac amyloid and Anderson-Fabry disease is emerging.

  17. Molecular imaging: a new approach to nuclear cardiology

    International Nuclear Information System (INIS)

    Dobrucki, L.W.; Sinusas, A.J.

    2005-01-01

    Nuclear cardiology has historically played an important role in detection of cardiovascular disease as well as risk statification. With the growth of molecular biology have come new therapeutic interventions and the requirement for new diagnostic imaging approaches. Noninvasive targeted radiotracer based as well as transporter gene imaging strategies are evolving to meet these new needs, but require the development of an interdisciplinary approach which focuses on molecular processes, as well as the pathogenesis and progression of disease. This progress has been made possible with the availability of transgenic animal models along with many technological advances. Future adaptations of the developing experimental procedures and instrumentations will allow for the smooth translation and application to clinical practice. This review is intended as a brief overview on the subject molecular imaging. Basic concepts and historical perspective of molecular imaging will be reviewed first, followed by description of current technology, and concluding with current applications in cardiology. The emphasis will be on the use of both single photon emission computed tomography (SPECT) and positron emission tomography (PET) radiotracers, although other imaging modalities will be also briefly discussed. The specific approaches presented here will include receptor-based and reporter gene imaging of natural and therapeutical angiogenesis

  18. Molecular imaging of transcriptional regulation during inflammation

    Directory of Open Access Journals (Sweden)

    Carlsen Harald

    2010-04-01

    Full Text Available Abstract Molecular imaging enables non-invasive visualization of the dynamics of molecular processes within living organisms in vivo. Different imaging modalities as MRI, SPECT, PET and optic imaging are used together with molecular probes specific for the biological process of interest. Molecular imaging of transcription factor activity is done in animal models and mostly in transgenic reporter mice, where the transgene essentially consists of a promoter that regulates a reporter gene. During inflammation, the transcription factor NF-κB is widely involved in orchestration and regulation of the immune system and almost all imaging studies in this field has revolved around the role and regulation of NF-κB. We here present a brief introduction to experimental use and design of transgenic reporter mice and a more extensive review of the various studies where molecular imaging of transcriptional regulation has been applied during inflammation.

  19. Molecular imaging promotes progress in orthopedic research.

    Science.gov (United States)

    Mayer-Kuckuk, Philipp; Boskey, Adele L

    2006-11-01

    Modern orthopedic research is directed towards the understanding of molecular mechanisms that determine development, maintenance and health of musculoskeletal tissues. In recent years, many genetic and proteomic discoveries have been made which necessitate investigation under physiological conditions in intact, living tissues. Molecular imaging can meet this demand and is, in fact, the only strategy currently available for noninvasive, quantitative, real-time biology studies in living subjects. In this review, techniques of molecular imaging are summarized, and applications to bone and joint biology are presented. The imaging modality most frequently used in the past was optical imaging, particularly bioluminescence and near-infrared fluorescence imaging. Alternate technologies including nuclear and magnetic resonance imaging were also employed. Orthopedic researchers have applied molecular imaging to murine models including transgenic mice to monitor gene expression, protein degradation, cell migration and cell death. Within the bone compartment, osteoblasts and their stem cells have been investigated, and the organic and mineral bone phases have been assessed. These studies addressed malignancy and injury as well as repair, including fracture healing and cell/gene therapy for skeletal defects. In the joints, molecular imaging has focused on the inflammatory and tissue destructive processes that cause arthritis. As described in this review, the feasibility of applying molecular imaging to numerous areas of orthopedic research has been demonstrated and will likely result in an increase in research dedicated to this powerful strategy. Molecular imaging holds great promise in the future for preclinical orthopedic research as well as next-generation clinical musculoskeletal diagnostics.

  20. IgG4-related cardiovascular disease. The emerging role of cardiovascular imaging.

    Science.gov (United States)

    Mavrogeni, Sophie; Markousis-Mavrogenis, George; Kolovou, Genovefa

    2017-01-01

    Immunoglobulin 4-related disease (IgG4-related disease) is a systemic inflammatory disease that presents with increases of serum IgG4. It may affect various systems, including the cardiovascular (CV) system. Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis. IgG4-related disease is characterized by fibrosclerosis, lymphocytic infiltration and presence of IgG4-positive plasma cells. The disease usually responds to treatment with corticosteroids and/or immunosuppressive medication. CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. IgG4-related cardiovascular disorders can severely affect patient prognosis. Various imaging techniques, including echocardiography, Computed Tomography (CT), 18FDG-PET, Cardiovascular Magnetic Resonance (CMR) and cardiac catheterisation, have been successfully used for early disease detection and follow-up. Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques for the evaluation of IgG4-related CV disease. Periaortitis/periarteritis can be also assessed by CT, showing a soft tissue thickening around arteries. Coronary artery aneurysms can be easily diagnosed by coronary CT. In case of active periarterial or coronary artery inflammation, 18FDG-PET will show FDG uptake at the area of the lesion. CMR, due to its capability to perform function and tissue characterisation, can offer an integrated imaging of aorta, coronary arteries and the heart, assessment of disease acuity, extent of fibrosis and guide further treatment. However, multimodality imaging may be necessary for assessment of disease activity and fibrosis extent in those cases with multifocal CV involvement. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Molecular imaging of mental disorders

    International Nuclear Information System (INIS)

    Takahashi, Hidehiko; Suhara, Tetsuya

    2005-01-01

    Positron emission tomography (PET) techniques have made it possible to measure changes in neurochemical components in living human brain. PET can be used to investigate various brain functions such as receptors, transporters, enzymes and various biochemical pathways; therefore, it could be a powerful tool for molecular imaging of mental disorders. Since the pathophysiology of schizophrenia has been discussed with a functional alteration of dopaminergic transmission in the brain, we have focused the dopaminergic components for the research target of schizophrenia using PET. Using high affinity ligand [ 11 C]FLB 457, we found reduced D 2 receptor binding in the anterior cingulate cortex of patients with schizophrenia, and a significant negative correlation was observed between D 2 receptor binding and the positive symptom score. Subregions of interest were defined on the thalamus using individual magnetic resonance images. D 2 receptor binding was also lower in the central medial and posterior subregions of the thalamus in patients with schizophrenia. Alterations in D 2 receptor function in the extrastriatal region may underlie the positive symptoms of schizophrenia. On the other hand D 1 receptor binding was found to be lower in the prefrontal cortex and a significant negative correlation was observed between D 1 receptor binding and the negative symptom score. Abnormality of D 1 receptor function would be at the bottom of the negative symptoms and cognitive impairment of schizophrenia. Regarding the effect of antipsychotics on dopamine D 2 receptor, occupancy and it's time-course have been measured in a living body using PET. This approach can provide in vivo pharmacological evidences of antipsychotics and establish the rational therapeutic strategy. PET is a powerful tool not only in the field of brain research but also drug discovery. (author)

  2. The future of the cardiovascular image; El futuro de la imagen cardiovascular

    Energy Technology Data Exchange (ETDEWEB)

    Serna M, J A [Hospital Angeles del Pedregal, Mexico D.F. (Mexico)

    2007-07-01

    In this work the future of the cardiovascular image is presented, it is important to know the advantages and disadvantages of the current image methods to apply them in each case. The characteristics of the methods are presented: X R simple plate, the cardiac ultrasound, the image by magnetic resonance, the computed tomography, the helicoid tomography, the SPECT of myocardial perfusion, the PET and the PET/CT and the used radiopharmaceuticals. The SPECT of myocardial perfusion is the more used method around the world for the evacuation of the coronary illness. It has a high sensitivity (between 90 and 97%), it is a non-invasive treatment (morbidity of 0.01%), of relative low cost and it is useful in the diagnosis of ischemia in groups of high risk like diabetics, dyslipidemia, obese and hypertension. (Author)

  3. Molecular imaging of oncolytic viral therapy

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    2014-01-01

    Full Text Available Oncolytic viruses have made their mark on the cancer world as a potential therapeutic option, with the possible advantages of reduced side effects and strengthened treatment efficacy due to higher tumor selectivity. Results have been so promising, that oncolytic viral treatments have now been approved for clinical trials in several countries. However, clinical studies may benefit from the ability to noninvasively and serially identify sites of viral targeting via molecular imaging in order to provide safety, efficacy, and toxicity information. Furthermore, molecular imaging of oncolytic viral therapy may provide a more sensitive and specific diagnostic technique to detect tumor origin and, more importantly, presence of metastases. Several strategies have been investigated for molecular imaging of viral replication broadly categorized into optical and deep tissue imaging, utilizing several reporter genes encoding for fluorescence proteins, conditional enzymes, and membrane protein and transporters. Various imaging methods facilitate molecular imaging, including computer tomography, magnetic resonance imaging, positron emission tomography, single photon emission CT, gamma-scintigraphy, and photoacoustic imaging. In addition, several molecular probes are used for medical imaging, which act as targeting moieties or signaling agents. This review will explore the preclinical and clinical use of in vivo molecular imaging of replication-competent oncolytic viral therapy.

  4. Inorganic Nanoparticles for Multimodal Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Magdalena Swierczewska

    2011-01-01

    Full Text Available Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle-based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles.

  5. Cardiovascular outcomes after pharmacologic stress myocardial perfusion imaging.

    Science.gov (United States)

    Lee, Douglas S; Husain, Mansoor; Wang, Xuesong; Austin, Peter C; Iwanochko, Robert M

    2016-04-01

    While pharmacologic stress single photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) is used for noninvasive evaluation of patients who are unable to perform treadmill exercise, its impact on net reclassification improvement (NRI) of prognosis is unknown. We evaluated the prognostic value of pharmacologic stress MPI for prediction of cardiovascular death or non-fatal myocardial infarction (MI) within 1 year at a single-center, university-based laboratory. We examined continuous and categorical NRI of pharmacologic SPECT-MPI for prediction of outcomes beyond clinical factors alone. Six thousand two hundred forty patients (median age 66 years [IQR 56-74], 3466 men) were studied and followed for 5963 person-years. SPECT-MPI variables associated with increased risk of cardiovascular death or non-fatal MI included summed stress score, stress ST-shift, and post-stress resting left ventricular ejection fraction ≤50%. Compared to a clinical model which included age, sex, cardiovascular disease, risk factors, and medications, model χ(2) (210.5 vs. 281.9, P statistic (0.74 vs. 0.78, P stress score, stress ST-shift and stress resting left ventricular ejection fraction). SPECT-MPI predictors increased continuous NRI by 49.4% (P 3% annualized risk of cardiovascular death or non-fatal MI, yielded a 15.0% improvement in NRI (95% CI 7.6%-27.6%, P stress MPI substantially improved net reclassification of cardiovascular death or MI risk beyond that afforded by clinical factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Current state of molecular imaging research

    International Nuclear Information System (INIS)

    Grimm, J.; Wunder, A.

    2005-01-01

    The recent years have seen significant advances in both molecular biology, allowing the identification of genes and pathways related to disease, and imaging technologies that allow for improved spatial and temporal resolution, enhanced sensitivity, better depth penetration, improved image processing, and beneficial combinations of different imaging modalities. These advances have led to a paradigm shift in the scope of diagnostic imaging. The traditional role of radiological diagnostic imaging is to define gross anatomy and structure in order to detect pathological abnormalities. Available contrast agents are mostly non-specific and can be used to image physiological processes such as changes in blood volume, flow, and perfusion but not to demonstrate pathological alterations at molecular levels. However, alterations at the anatomical-morphological level are relatively late manifestations of underlying molecular changes. Using molecular probes or markers that bind specifically to molecular targets allows for the non-invasive visualization and quantitation of biological processes such as gene expression, apoptosis, or angiogenesis at the molecular level within intact living organisms. This rapidly evolving, multidisciplinary approach, referred to as molecular imaging, promises to enable early diagnosis, can provide improved classification of stage and severity of disease, an objective assessment of treatment efficacy, and a reliable prognosis. Furthermore, molecular imaging is an important tool for the evaluation of physiological and pathophysiological processes, and for the development of new therapies. This article comprises a review of current technologies of molecular imaging, describes the development of contrast agents and various imaging modalities, new applications in specific disease models, and potential future developments. (orig.)

  7. IgG4-related cardiovascular disease. The emerging role of cardiovascular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mavrogeni, Sophie, E-mail: soma13@otenet.gr; Markousis-Mavrogenis, George; Kolovou, Genovefa

    2017-01-15

    Highlights: • Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis of IgG4-related disease. • CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. • Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques. • CT can assess periarteritis and coronary artery aneurysms, while 18FDG-PET shows FDG uptake at the area of the lesion. • CMR offers an integrated imaging of CV system, including assessment of disease acuity, extent of fibrosis and can guide further treatment. - Abstract: Immunoglobulin 4-related disease (IgG4-related disease) is a systemic inflammatory disease that presents with increases of serum IgG4. It may affect various systems, including the cardiovascular (CV) system. Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis. IgG4-related disease is characterized by fibrosclerosis, lymphocytic infiltration and presence of IgG4-positive plasma cells. The disease usually responds to treatment with corticosteroids and/or immunosuppressive medication. CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. IgG4-related cardiovascular disorders can severely affect patient prognosis. Various imaging techniques, including echocardiography, Computed Tomography (CT), 18FDG-PET, Cardiovascular Magnetic Resonance (CMR) and cardiac catheterisation, have been successfully used for early disease detection and follow-up. Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques for the evaluation of IgG4-related CV disease. Periaortitis/periarteritis can be also assessed by CT, showing a soft tissue thickening around arteries. Coronary artery aneurysms can be easily diagnosed by coronary CT. In case of active periarterial or coronary artery inflammation, 18

  8. IgG4-related cardiovascular disease. The emerging role of cardiovascular imaging

    International Nuclear Information System (INIS)

    Mavrogeni, Sophie; Markousis-Mavrogenis, George; Kolovou, Genovefa

    2017-01-01

    Highlights: • Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis of IgG4-related disease. • CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. • Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques. • CT can assess periarteritis and coronary artery aneurysms, while 18FDG-PET shows FDG uptake at the area of the lesion. • CMR offers an integrated imaging of CV system, including assessment of disease acuity, extent of fibrosis and can guide further treatment. - Abstract: Immunoglobulin 4-related disease (IgG4-related disease) is a systemic inflammatory disease that presents with increases of serum IgG4. It may affect various systems, including the cardiovascular (CV) system. Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis. IgG4-related disease is characterized by fibrosclerosis, lymphocytic infiltration and presence of IgG4-positive plasma cells. The disease usually responds to treatment with corticosteroids and/or immunosuppressive medication. CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. IgG4-related cardiovascular disorders can severely affect patient prognosis. Various imaging techniques, including echocardiography, Computed Tomography (CT), 18FDG-PET, Cardiovascular Magnetic Resonance (CMR) and cardiac catheterisation, have been successfully used for early disease detection and follow-up. Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques for the evaluation of IgG4-related CV disease. Periaortitis/periarteritis can be also assessed by CT, showing a soft tissue thickening around arteries. Coronary artery aneurysms can be easily diagnosed by coronary CT. In case of active periarterial or coronary artery inflammation, 18

  9. Cardiovascular dysfunction in obesity and new diagnostic imaging techniques: the role of noninvasive image methods

    Directory of Open Access Journals (Sweden)

    Barbosa JA

    2011-05-01

    Full Text Available José Augusto A Barbosa¹, Alexandre B Rodrigues¹, Cleonice Carvalho C Mota¹, Márcia M Barbosa², Ana C Simões e Silva¹¹Department of Pediatrics, Faculty of Medicine, Federal University of Minas Gerais (UFMG, Belo Horizonte, Minas Gerais, Brazil; ²Ecocenter, Socor Hospital, Belo Horizonte, Minas Gerais, BrazilAbstract: Obesity is a major public health problem affecting adults and children in both developed and developing countries. This condition often leads to metabolic syndrome, which increases the risk of cardiovascular disease. A large number of studies have been carried out to understand the pathogenesis of cardiovascular dysfunction in obese patients. Endothelial dysfunction plays a key role in the progression of atherosclerosis and the development of coronary artery disease, hypertension and congestive heart failure. Noninvasive methods in the field of cardiovascular imaging, such as measuring intima-media thickness, flow-mediated dilatation, tissue Doppler, and strain, and strain rate, constitute new tools for the early detection of cardiac and vascular dysfunction. These techniques will certainly enable a better evaluation of initial cardiovascular injury and allow the correct, timely management of obese patients. The present review summarizes the main aspects of cardiovascular dysfunction in obesity and discusses the application of recent noninvasive imaging methods for the early detection of cardiovascular alterations.Keywords: cardiovascular risk, endothelium dysfunction, obesity, strain and strain rate, tissue Doppler

  10. PET-based molecular imaging in neuroscience

    International Nuclear Information System (INIS)

    Jacobs, A.H.; Heiss, W.D.; Li, H.; Knoess, C.; Schaller, B.; Kracht, L.; Monfared, P.; Vollmar, S.; Bauer, B.; Wagner, R.; Graf, R.; Wienhard, K.; Winkeler, A.; Rueger, A.; Klein, M.; Hilker, R.; Galldiks, N.; Herholz, K.; Sobesky, J.

    2003-01-01

    Positron emission tomography (PET) allows non-invasive assessment of physiological, metabolic and molecular processes in humans and animals in vivo. Advances in detector technology have led to a considerable improvement in the spatial resolution of PET (1-2 mm), enabling for the first time investigations in small experimental animals such as mice. With the developments in radiochemistry and tracer technology, a variety of endogenously expressed and exogenously introduced genes can be analysed by PET. This opens up the exciting and rapidly evolving field of molecular imaging, aiming at the non-invasive localisation of a biological process of interest in normal and diseased cells in animal models and humans in vivo. The main and most intriguing advantage of molecular imaging is the kinetic analysis of a given molecular event in the same experimental subject over time. This will allow non-invasive characterisation and ''phenotyping'' of animal models of human disease at various disease stages, under certain pathophysiological stimuli and after therapeutic intervention. The potential broad applications of imaging molecular events in vivo lie in the study of cell biology, biochemistry, gene/protein function and regulation, signal transduction, transcriptional regulation and characterisation of transgenic animals. Most importantly, molecular imaging will have great implications for the identification of potential molecular therapeutic targets, in the development of new treatment strategies, and in their successful implementation into clinical application. Here, the potential impact of molecular imaging by PET in applications in neuroscience research with a special focus on neurodegeneration and neuro-oncology is reviewed. (orig.)

  11. Computational chemical imaging for cardiovascular pathology: chemical microscopic imaging accurately determines cardiac transplant rejection.

    Directory of Open Access Journals (Sweden)

    Saumya Tiwari

    Full Text Available Rejection is a common problem after cardiac transplants leading to significant number of adverse events and deaths, particularly in the first year of transplantation. The gold standard to identify rejection is endomyocardial biopsy. This technique is complex, cumbersome and requires a lot of expertise in the correct interpretation of stained biopsy sections. Traditional histopathology cannot be used actively or quickly during cardiac interventions or surgery. Our objective was to develop a stain-less approach using an emerging technology, Fourier transform infrared (FT-IR spectroscopic imaging to identify different components of cardiac tissue by their chemical and molecular basis aided by computer recognition, rather than by visual examination using optical microscopy. We studied this technique in assessment of cardiac transplant rejection to evaluate efficacy in an example of complex cardiovascular pathology. We recorded data from human cardiac transplant patients' biopsies, used a Bayesian classification protocol and developed a visualization scheme to observe chemical differences without the need of stains or human supervision. Using receiver operating characteristic curves, we observed probabilities of detection greater than 95% for four out of five histological classes at 10% probability of false alarm at the cellular level while correctly identifying samples with the hallmarks of the immune response in all cases. The efficacy of manual examination can be significantly increased by observing the inherent biochemical changes in tissues, which enables us to achieve greater diagnostic confidence in an automated, label-free manner. We developed a computational pathology system that gives high contrast images and seems superior to traditional staining procedures. This study is a prelude to the development of real time in situ imaging systems, which can assist interventionists and surgeons actively during procedures.

  12. Role of imaging techniques in the evaluation of cardiovascular drugs

    International Nuclear Information System (INIS)

    Sugishita, Yasuro; Matsuda, Mitsuo; Ajisaka, Ryuichi

    1985-01-01

    In order to investigate the role of imaging in the evaluation of medical treatment in heart diseases, radionuclide angiocardiography, echocardiography and Doppler echocardiography were applied in the cases of various kinds of heart diseases. Acute and chronic effects of antianginal drugs (nitrates, calcium antagonists and beta-blockers) could be evaluated by exercise radionuclide angiocardiography or exercise echocardiography in the cases of effort angina. The effects of the drugs changing myocardial contractility, preload or afterload could be evaluated by echocardiography in various kinds of heart diseases, including valvular heart biseases. The effect of calcium antagonists in improving diastolic function in hypertrophic cardiomyopathy could be evaluated by echocardiography or Doppler echocardiography. In conclusion, imaging techniqus are valuable and useful methods to evaluate the effects of cardiovascular drugs, by offering various informations. (author)

  13. Nanobody: the "magic bullet" for molecular imaging?

    Science.gov (United States)

    Chakravarty, Rubel; Goel, Shreya; Cai, Weibo

    2014-01-01

    Molecular imaging involves the non-invasive investigation of biological processes in vivo at the cellular and molecular level, which can play diverse roles in better understanding and treatment of various diseases. Recently, single domain antigen-binding fragments known as 'nanobodies' were bioengineered and tested for molecular imaging applications. Small molecular size (~15 kDa) and suitable configuration of the complementarity determining regions (CDRs) of nanobodies offer many desirable features suitable for imaging applications, such as rapid targeting and fast blood clearance, high solubility, high stability, easy cloning, modular nature, and the capability of binding to cavities and difficult-to-access antigens. Using nanobody-based probes, several imaging techniques such as radionuclide-based, optical and ultrasound have been employed for visualization of target expression in various disease models. This review summarizes the recent developments in the use of nanobody-based probes for molecular imaging applications. The preclinical data reported to date are quite promising, and it is expected that nanobody-based molecular imaging agents will play an important role in the diagnosis and management of various diseases.

  14. Towards personalized treatment in cardiovascular disease : a molecular epidemiological approach

    NARCIS (Netherlands)

    Regieli, J.J.

    2009-01-01

    Patients who have experienced cardiovascular disease each differ in terms of their future risk, yet currently we have no ways to predict individual prognosis. Mass preventive treatment is therefore currently recommended for the group as a whole whereas in fact this group is highly heterogeneous and

  15. Fluorescence based molecular in vivo imaging

    International Nuclear Information System (INIS)

    Ebert, Bernd

    2008-01-01

    Molecular imaging represents a modern research area that allows the in vivo study of molecular biological process kinetics using appropriate probes and visualization methods. This methodology may be defined- apart from the contrast media injection - as non-abrasive. In order to reach an in vivo molecular process imaging as accurate as possible the effects of the used probes on the biological should not be too large. The contrast media as important part of the molecular imaging can significantly contribute to the understanding of molecular processes and to the development of tailored diagnostics and therapy. Since more than 15 years PTB is developing optic imaging systems that may be used for fluorescence based visualization of tissue phantoms, small animal models and the localization of tumors and their predecessors, and for the early recognition of inflammatory processes in clinical trials. Cellular changes occur during many diseases, thus the molecular imaging might be of importance for the early diagnosis of chronic inflammatory diseases. Fluorescent dyes can be used as unspecific or also as specific contrast media, which allow enhanced detection sensitivity

  16. Molecular and parametric imaging with iron oxides

    International Nuclear Information System (INIS)

    Matuszewski, L.; Bremer, C.; Tombach, B.; Heindel, W.

    2007-01-01

    Superparamagnetic iron oxide (SPIO) contrast agents, clinically established for high resolution magnetic resonance imaging of reticuloendothelial system containing anatomical structures, can additionally be exploited for the non-invasive characterization and quantification of pathology down to the molecular level. In this context, SPIOs can be applied for non-invasive cell tracking, quantification of tissue perfusion and target specific imaging, as well as for the detection of gene expression. This article provides an overview of new applications for clinically approved iron oxides as well of new, modified SPIO contrast agents for parametric and molecular imaging. (orig.) [de

  17. Molecular Imaging Probe Development using Microfluidics

    Science.gov (United States)

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  18. High sensitivity optical molecular imaging system

    Science.gov (United States)

    An, Yu; Yuan, Gao; Huang, Chao; Jiang, Shixin; Zhang, Peng; Wang, Kun; Tian, Jie

    2018-02-01

    Optical Molecular Imaging (OMI) has the advantages of high sensitivity, low cost and ease of use. By labeling the regions of interest with fluorescent or bioluminescence probes, OMI can noninvasively obtain the distribution of the probes in vivo, which play the key role in cancer research, pharmacokinetics and other biological studies. In preclinical and clinical application, the image depth, resolution and sensitivity are the key factors for researchers to use OMI. In this paper, we report a high sensitivity optical molecular imaging system developed by our group, which can improve the imaging depth in phantom to nearly 5cm, high resolution at 2cm depth, and high image sensitivity. To validate the performance of the system, special designed phantom experiments and weak light detection experiment were implemented. The results shows that cooperated with high performance electron-multiplying charge coupled device (EMCCD) camera, precision design of light path system and high efficient image techniques, our OMI system can simultaneously collect the light-emitted signals generated by fluorescence molecular imaging, bioluminescence imaging, Cherenkov luminance and other optical imaging modality, and observe the internal distribution of light-emitting agents fast and accurately.

  19. Biomedical nanotechnology for molecular imaging, diagnostics, and targeted therapy.

    Science.gov (United States)

    Nie, Shuming

    2009-01-01

    Biomedical nanotechnology is a cross-disciplinary area of research in science, engineering and medicine with broad applications for molecular imaging, molecular diagnosis, and targeted therapy. The basic rationale is that nanometer-sized particles such as semiconductor quantum dots and iron oxide nanocrystals have optical, magnetic or structural properties that are not available from either molecules or bulk solids. When linked with biotargeting ligands such as monoclonal antibodies, peptides or small molecules, these nanoparticles can be used to target diseased cells and organs (such as malignant tumors and cardiovascular plaques) with high affinity and specificity. In the "mesoscopic" size range of 5-100 nm diameter, nanoparticles also have large surface areas and functional groups for conjugating to multiple diagnostic (e.g., optical, radioisotopic, or magnetic) and therapeutic (e.g., anticancer) agents.

  20. Aging: Molecular Pathways and Implications on the Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Arthur José Pontes Oliveira de Almeida

    2017-01-01

    Full Text Available The world’s population over 60 years is growing rapidly, reaching 22% of the global population in the next decades. Despite the increase in global longevity, individual healthspan needs to follow this growth. Several diseases have their prevalence increased by age, such as cardiovascular diseases, the leading cause of morbidity and mortality worldwide. Understanding the aging biology mechanisms is fundamental to the pursuit of cardiovascular health. In this way, aging is characterized by a gradual decline in physiological functions, involving the increased number in senescent cells into the body. Several pathways lead to senescence, including oxidative stress and persistent inflammation, as well as energy failure such as mitochondrial dysfunction and deregulated autophagy, being ROS, AMPK, SIRTs, mTOR, IGF-1, and p53 key regulators of the metabolic control, connecting aging to the pathways which drive towards diseases. In addition, senescence can be induced by cellular replication, which resulted from telomere shortening. Taken together, it is possible to draw a common pathway unifying aging to cardiovascular diseases, and the central point of this process, senescence, can be the target for new therapies, which may result in the healthspan matching the lifespan.

  1. Has molecular imaging delivered to drug development?

    Science.gov (United States)

    Murphy, Philip S.; Patel, Neel; McCarthy, Timothy J.

    2017-10-01

    Pharmaceutical research and development requires a systematic interrogation of a candidate molecule through clinical studies. To ensure resources are spent on only the most promising molecules, early clinical studies must understand fundamental attributes of the drug candidate, including exposure at the target site, target binding and pharmacological response in disease. Molecular imaging has the potential to quantitatively characterize these properties in small, efficient clinical studies. Specific benefits of molecular imaging in this setting (compared to blood and tissue sampling) include non-invasiveness and the ability to survey the whole body temporally. These methods have been adopted primarily for neuroscience drug development, catalysed by the inability to access the brain compartment by other means. If we believe molecular imaging is a technology platform able to underpin clinical drug development, why is it not adopted further to enable earlier decisions? This article considers current drug development needs, progress towards integration of molecular imaging into studies, current impediments and proposed models to broaden use and increase impact. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

  2. Ultra-small superparamagnetic particles of iron oxide in magnetic resonance imaging of cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Stirrat CG

    2014-10-01

    Full Text Available Colin G Stirrat,1 Alex T Vesey,1 Olivia MB McBride,1 Jennifer MJ Robson,1 Shirjel R Alam,1 William A Wallace,2 Scott I Semple,1,3 Peter A Henriksen,1 David E Newby1 1British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; 2Department of Pathology, University of Edinburgh, Edinburgh, UK; 3Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK Abstract: Ultra-small superparamagnetic particles of iron oxide (USPIO are iron-oxide based contrast agents that enhance and complement in vivo magnetic resonance imaging (MRI by shortening T1, T2, and T2* relaxation times. USPIO can be employed to provide immediate blood pool contrast, or to act as subsequent markers of cellular inflammation through uptake by inflammatory cells. They can also be targeted to specific cell-surface markers using antibody or ligand labeling. This review will discuss the application of USPIO contrast in MRI studies of cardiovascular disease. Keywords: cardiac, aortic, MRI, USPIO, carotid, vascular, molecular imaging

  3. Tracers and contrast agents in cardiovascular imaging: present and future

    International Nuclear Information System (INIS)

    Marmion, M.; Deutsch, E.

    1996-01-01

    This brief article addresses the current status and future potential of nuclear medicine, X-ray computed tomography (CT), ultrasound (US), and magnetic resonance (MR) imaging in the diagnosis of cardiovascular diseases. The currently perceived advantages and disadvantages, as well as the possible future roles, of each of the modalities with regard to the evaluation of coronary artery disease are delineated. The certain advent of Mr and US myocardial contrast agents, combined with the inexorable pressures of health care reform, will alter the future usage patterns of all four modalities. Future debates about which modality should be used in which clinical situation will be based not on 'anatomy vs function', nor on the issues of cost effectiveness and patient outcomes

  4. Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging

    NARCIS (Netherlands)

    Papavassiliu, T.; Kuhl, H.P.; Schroder, M.; Suselbeck, T.; Bondarenko, O.; Bohm, C.K.; van de Beek, A.; Hofman, M.M.; van Rossum, A.C.

    2005-01-01

    PURPOSE: To prospectively assess the effect of including or excluding endocardial trabeculae in left ventricular (LV) measurements and the reproducibility of these measurements at cine cardiovascular magnetic resonance (MR) imaging with true fast imaging with steady-state precession (FISP).

  5. The role of PET quantification in cardiovascular imaging.

    Science.gov (United States)

    Slomka, Piotr; Berman, Daniel S; Alexanderson, Erick; Germano, Guido

    2014-08-01

    Positron Emission Tomography (PET) has several clinical and research applications in cardiovascular imaging. Myocardial perfusion imaging with PET allows accurate global and regional measurements of myocardial perfusion, myocardial blood flow and function at stress and rest in one exam. Simultaneous assessment of function and perfusion by PET with quantitative software is currently the routine practice. Combination of ejection fraction reserve with perfusion information may improve the identification of severe disease. The myocardial viability can be estimated by quantitative comparison of fluorodeoxyglucose ( 18 FDG) and rest perfusion imaging. The myocardial blood flow and coronary flow reserve measurements are becoming routinely included in the clinical assessment due to enhanced dynamic imaging capabilities of the latest PET/CT scanners. Absolute flow measurements allow evaluation of the coronary microvascular dysfunction and provide additional prognostic and diagnostic information for coronary disease. Standard quantitative approaches to compute myocardial blood flow from kinetic PET data in automated and rapid fashion have been developed for 13 N-ammonia, 15 O-water and 82 Rb radiotracers. The agreement between software methods available for such analysis is excellent. Relative quantification of 82 Rb PET myocardial perfusion, based on comparisons to normal databases, demonstrates high performance for the detection of obstructive coronary disease. New tracers, such as 18 F-flurpiridaz may allow further improvements in the disease detection. Computerized analysis of perfusion at stress and rest reduces the variability of the assessment as compared to visual analysis. PET quantification can be enhanced by precise coregistration with CT angiography. In emerging clinical applications, the potential to identify vulnerable plaques by quantification of atherosclerotic plaque uptake of 18 FDG and 18 F-sodium fluoride tracers in carotids, aorta and coronary arteries

  6. Molecular nuclear imaging for targeting and trafficking

    International Nuclear Information System (INIS)

    Bom, Hee Seung; Min, Jung Jun; Jeong, Hwan-Jeong

    2006-01-01

    Noninvasive molecular targeting in living subjects is highly demanded for better understanding of such diverse topics as the efficient delivery of drugs, genes, or radionuclides for the diagnosis or treatment of diseases. Progress in molecular biology, genetic engineering and polymer chemistry provides various tools to target molecules and cells in vivo. We used chitosan as a polymer, and 99m Tc as a radionuclide. We developed 99m Tc-galactosylated chitosan to target asialoglycoprotein receptors for nuclear imaging. We also developed 99m Tc-HYNIC-chitosan-transferrin to target inflammatory cells, which was more effective than 67 Ga-citrate for imaging inflammatory lesions. For an effective delivery of molecules, a longer circulation time is needed. We found that around 10% PEGylation was most effective to prolong the circulation time of liposomes for nuclear imaging of 99m Tc-HMPAO-labeled liposomes in rats. Using various characteristics of molecules, we can deliver drugs into targets more effectively. We found that 99m Tc-labeled biodegradable pullulan-derivatives are retained in tumor tissue in response to extracellular ion-strength. For the trafficking of various cells or bacteria in an intact animal, we used optical imaging techniques or radiolabeled cells. We monitored tumor-targeting bacteria by bioluminescent imaging techniques, dentritic cells by radiolabeling and neuronal stem cells by sodium-iodide symporter reporter gene imaging. In summary, we introduced recent achievements of molecular nuclear imaging technologies in targeting receptors for hepatocyte or inflammatory cells and in trafficking bacterial, immune and stem cells using molecular nuclear imaging techniques

  7. A review of molecular imaging studies reaching the clinical stage

    International Nuclear Information System (INIS)

    Wong, Franklin C.; Kim, E. Edmund

    2009-01-01

    The practice of molecular imaging in the clinics is examined across various imaging modalities to assess the current status of clinical molecular imaging. The various physiologic and scientific bases of clinical molecular imaging are surveyed to assess the possibilities and opportunities for the deployment of the different imaging modalities in the near future. The requisites for successful candidate(s) of clinical molecular imaging are reviewed for future development.

  8. Korean Society of Cardiovascular Imaging Guidelines for Cardiac Computed Tomography

    International Nuclear Information System (INIS)

    Kim, Young Jin; Choi, Byoung Wook; Choe, Kyu Ok; Yong, Hwan Seok; Kim, Yang Min; Choe, Yeon Hyeon; Lim, Tae Hwan; Park, Jae Hyung

    2011-01-01

    The Korean Society of Cardiovascular Imaging (KOCSI) has issued a guideline for the use of cardiac CT imaging in order to assist clinicians and patients in providing adequate level of medical service. In order to establish a guideline founded on evidence based medicine, it was designed based on comprehensive data such as questionnaires conducted in international and domestic hospitals, intensive journal reviews, and with experts in cardiac radiology. The recommendations of this guideline should not be used as an absolute standard and medical professionals can always refer to methods non-adherent to this guideline when it is considered more reasonable and beneficial to an individual patient's medical situation. The guideline has its limitation and should be revised appropriately with the advancement medical equipment technology and public health care system. The guideline should not be served as a measure for standard of care. KOCSI strongly disapproves the use of the guideline to be used as the standard of expected practice in medical litigation processes.

  9. In Vivo Imaging of Molecularly Targeted Phage

    Directory of Open Access Journals (Sweden)

    Kimberly A. Kelly

    2006-12-01

    Full Text Available Rapid identification of in vivo affinity ligands would have far-reaching applications for imaging specific molecular targets, in vivo systems imaging, and medical use. We have developed a high-throughput method for identifying and optimizing ligands to map and image biologic targets of interest in vivo. We directly labeled viable phage clones with far-red fluorochromes and comparatively imaged them in vivo by multichannel fluorescence ratio imaging. Using Secreted Protein Acidic and Rich in Cysteine (osteonectin and vascular cell adhesion molecule-1 as model targets, we show that: 1 fluorescently labeled phage retains target specificity on labeling; 2 in vivo distribution can be quantitated (detection thresholds of ~ 300 phage/mm3 tissue throughout the entire depth of the tumor using fluorescent tomographic imaging; and 3 fluorescently labeled phage itself can serve as a replenishable molecular imaging agent. The described method should find widespread application in the rapid in vivo discovery and validation of affinity ligands and, importantly, in the use of fluorochrome-labeled phage clones as in vivo imaging agents.

  10. Molecular Imaging in Nanotechnology and Theranostics.

    Science.gov (United States)

    Andreou, Chrysafis; Pal, Suchetan; Rotter, Lara; Yang, Jiang; Kircher, Moritz F

    2017-06-01

    The fields of biomedical nanotechnology and theranostics have enjoyed exponential growth in recent years. The "Molecular Imaging in Nanotechnology and Theranostics" (MINT) Interest Group of the World Molecular Imaging Society (WMIS) was created in order to provide a more organized and focused forum on these topics within the WMIS and at the World Molecular Imaging Conference (WMIC). The interest group was founded in 2015 and was officially inaugurated during the 2016 WMIC. The overarching goal of MINT is to bring together the many scientists who work on molecular imaging approaches using nanotechnology and those that work on theranostic agents. MINT therefore represents scientists, labs, and institutes that are very diverse in their scientific backgrounds and areas of expertise, reflecting the wide array of materials and approaches that drive these fields. In this short review, we attempt to provide a condensed overview over some of the key areas covered by MINT. Given the breadth of the fields and the given space constraints, we have limited the coverage to the realm of nanoconstructs, although theranostics is certainly not limited to this domain. We will also focus only on the most recent developments of the last 3-5 years, in order to provide the reader with an intuition of what is "in the pipeline" and has potential for clinical translation in the near future.

  11. Towards molecular imaging by means of MRI

    NARCIS (Netherlands)

    Norek, M.

    2008-01-01

    The work presented in the thesis is focused on the design of highly efficient contrast agents for molecular imaging by means of MRI based on the detailed physical characterization of the given material. Specifically, attention is paid on the development of contrast agents for magnetic fields higher

  12. Molecular Imaging in Schizophrenia Spectrum Disorders

    NARCIS (Netherlands)

    Klein, H.C.; Doorduin, J.; van Berckel, B.N.M.

    2014-01-01

    In this chapter, we aim to shed light on the schizophrenia spectrum disorders using molecular imaging. Schizophrenia spectrum disorders consist primarily of the disorders with full-blown psychosis in their course and are grouped in the DSM-IV category of schizophrenia and other psychotic disorders.

  13. Connotation and category of functional-molecular imaging

    International Nuclear Information System (INIS)

    Li Tianran; Tian Jiahe

    2007-01-01

    Function and molecular lmaging represent medical imaging' s direction. The review article introduce function and molecular's concept and category and its characteristic. Comparing with traditionary classics radiology, function and molecular imaging have many features, such as micro-mount and specificity and quantitative. There are many technology about function and molecular imaging. Function and molecular imaging is important ingredient of modern medical and play a considerable role. (authors)

  14. Molecular photoacoustic imaging of follicular thyroid carcinoma

    DEFF Research Database (Denmark)

    Levi, Jelena; Kothapalli, Sri-Rajashekar; Bohndiek, Sarah

    2013-01-01

    in living mice optically, observing the increase in Alexa750 fluorescence, and photoacoustically, using a dual wavelength imaging method. Results Active forms of both MMP2 and MMP-9 enzymes were found in FTC133 tumor homogenates, with MMP-9 detected in greater amounts. The molecular imaging agent......Purpose To evaluate the potential of targeted photoacoustic imaging as a non-invasive method for detection of follicular thyroid carcinoma. Experimental Design We determined the presence and activity of two members of matrix metalloproteinase family (MMP), MMP-2 and MMP-9, suggested as biomarkers...... for malignant thyroid lesions, in FTC133 thyroid tumors subcutaneously implanted in nude mice. The imaging agent used to visualize tumors was MMP activatable photoacoustic probe, Alexa750-CXeeeeXPLGLAGrrrrrXK-BHQ3. Cleavage of the MMP activatable agent was imaged after intratumoral and intravenous injections...

  15. Molecular Imaging and nuclear medicine: expectations and requirements

    International Nuclear Information System (INIS)

    Rollo, F.D.

    2003-01-01

    Molecular Imaging with Nuclear Medicine offers earlier, more accurate and more specific diagnosis, as well as targeted molecular therapy, providing significant improvements in clinical outcomes. (orig.)

  16. The year 2013 in the European Heart Journal--Cardiovascular Imaging. Part I.

    Science.gov (United States)

    Edvardsen, Thor; Plein, Sven; Saraste, Antti; Pierard, Luc A; Knuuti, Juhani; Maurer, Gerald; Lancellotti, Patrizio

    2014-07-01

    The new multimodality cardiovascular imaging journal, European Heart Journal - Cardiovascular Imaging, was created in 2012. Here, we summarize the most important studies from the journal's second year in two articles. Part I of the review will focus on studies in myocardial function, myocardial ischaemia, and emerging techniques in cardiovascular imaging, and Part II will focus on valvular heart diseases, heart failure, cardiomyopathies, and congenital heart diseases. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  17. The year 2014 in the European Heart Journal – Cardiovascular Imaging. Part I.

    Science.gov (United States)

    Edvardsen, Thor; Bucciarelli-Ducci, Chiara; Saraste, Antti; Pierard, Luc A; Knuuti, Juhani; Maurer, Gerald; Habib, Gilbert; Lancellotti, Patrizio

    2015-07-01

    The new multimodality cardiovascular imaging journal, European Heart Journal - Cardiovascular Imaging, was created in 2012. It has already gained an impressive impact factor of 3.669 during its first 2 years. In two articles, we will summarize the most important studies from the journal's third year. Part I of the review will focus on studies in myocardial function, myocardial ischaemia, and emerging techniques in cardiovascular imaging, and Part II will focus on valvular heart diseases, heart failure, cardiomyopathies, and congenital heart diseases. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  18. The year 2013 in the European Heart Journal--Cardiovascular Imaging: Part II.

    Science.gov (United States)

    Plein, Sven; Edvardsen, Thor; Pierard, Luc A; Saraste, Antti; Knuuti, Juhani; Maurer, Gerald; Lancellotti, Patrizio

    2014-08-01

    The new multi-modality cardiovascular imaging journal, European Heart Journal - Cardiovascular Imaging, was created in 2012. Here we summarize the most important studies from the journal's second year in two articles. Part I of the review has summarized studies in myocardial function, myocardial ischaemia, and emerging techniques in cardiovascular imaging. Part II is focussed on valvular heart diseases, heart failure, cardiomyopathies, and congenital heart diseases. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  19. Defining Quality in Cardiovascular Imaging: A Scientific Statement From the American Heart Association.

    Science.gov (United States)

    Shaw, Leslee J; Blankstein, Ron; Jacobs, Jill E; Leipsic, Jonathon A; Kwong, Raymond Y; Taqueti, Viviany R; Beanlands, Rob S B; Mieres, Jennifer H; Flamm, Scott D; Gerber, Thomas C; Spertus, John; Di Carli, Marcelo F

    2017-12-01

    The aims of the current statement are to refine the definition of quality in cardiovascular imaging and to propose novel methodological approaches to inform the demonstration of quality in imaging in future clinical trials and registries. We propose defining quality in cardiovascular imaging using an analytical framework put forth by the Institute of Medicine whereby quality was defined as testing being safe, effective, patient-centered, timely, equitable, and efficient. The implications of each of these components of quality health care are as essential for cardiovascular imaging as they are for other areas within health care. Our proposed statement may serve as the foundation for integrating these quality indicators into establishing designations of quality laboratory practices and developing standards for value-based payment reform for imaging services. We also include recommendations for future clinical research to fulfill quality aims within cardiovascular imaging, including clinical hypotheses of improving patient outcomes, the importance of health status as an end point, and deferred testing options. Future research should evolve to define novel methods optimized for the role of cardiovascular imaging for detecting disease and guiding treatment and to demonstrate the role of cardiovascular imaging in facilitating healthcare quality. © 2017 American Heart Association, Inc.

  20. Quantification of Imaging Biomarkers For Cardiovascular Disease in CT(A)

    NARCIS (Netherlands)

    Shahzad, R.

    2013-01-01

    For better management of cardiovascular disease, it is of utmost importance to categorize the subjects into different risk groups. This categorization can be made based on cardiovascular risk factors including the family history of the subject. Imaging techniques play an increasing role in order to

  1. Ethical and regulatory problems of molecular imaging

    International Nuclear Information System (INIS)

    Jeong, Jae Min

    2004-01-01

    As a molecular imaging is the most up-to-date technology in nuclear medicine, it has complicate ethical and regulatory problems. For animal experiment, we have to follow institutional animal care committee. For clinical experiment, we have to get approval of Institutional Review Board according to Helsinki declaration. In addition, approval from Korea Food and Drug Administration (KFDA) is essential for manufacturing and commercialization. However, too much regulation would suppress development of new technology, which would result in the loss of national competitive power. In addition, most new radioactive ligands for molecular imaging are administered to human at sub-pharmacological and sub-toxicological level. In conclusion, a balanced regulation is essential for the safety of clinical application and development of new technology

  2. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults

    DEFF Research Database (Denmark)

    Lancellotti, Patrizio; Nkomo, Vuyisile T; Badano, Luigi P

    2013-01-01

    . A comprehensive review of potential cardiac complications related to radiotherapy is warranted. An evidence-based review of several imaging approaches used to detect, evaluate, and monitor RIHD is discussed. Recommendations for the early identification and monitoring of cardiovascular complications...

  3. The year 2012 in the European Heart Journal-Cardiovascular Imaging. Part II.

    Science.gov (United States)

    Plein, Sven; Knuuti, Juhani; Edvardsen, Thor; Saraste, Antti; Piérard, Luc A; Maurer, Gerald; Lancellotti, Patrizio

    2013-07-01

    The part II of the best of the European Heart Journal - Cardiovascular Imaging in 2012 specifically focuses on studies of valvular heart diseases, heart failure, cardiomyopathies, and congenital heart diseases.

  4. Prognostic value of tissue Doppler imaging for predicting ventricular arrhythmias and cardiovascular mortality in ischaemic cardiomyopathy

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Olsen, Flemming Javier; Storm, Katrine

    2016-01-01

    AIMS: Only 30% of patients receiving an implantable cardioverter defibrillator (ICD) for primary prevention receive appropriately therapy. We sought to investigate the value of tissue Doppler imaging (TDI) to predict ventricular tachycardia (VT), ventricular fibrillation (VF), and cardiovascular...

  5. Cardiovascular magnetic resonance imaging of hypoplastic left heart syndrome in children

    International Nuclear Information System (INIS)

    Dillman, Jonathan R.; Hernandez, Ramiro J.; Dorfman, Adam L.; Attili, Anil K.; Agarwal, Prachi P.; Mueller, Gisela C.; Bell, Aaron

    2010-01-01

    Cardiovascular magnetic resonance imaging (CMR) plays an important complementary role to echocardiography and conventional angiography in the evaluation of hypoplastic left heart syndrome. This imaging modality is particularly useful for assessing cardiovascular postsurgical changes, extracardiac vascular anatomy, ventricular and valvular function, and a variety of complications. The purpose of this article is to provide a contemporary review of the role of CMR in the management of untreated and surgically palliated hypoplastic left heart syndrome in children. (orig.)

  6. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.

    Science.gov (United States)

    Gilad, Assaf A; Shapiro, Mikhail G

    2017-06-01

    Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

  7. Imaging of cardiovascular risk in patients with Turner's syndrome

    International Nuclear Information System (INIS)

    Marin, A.; Weir-McCall, J.R.; Webb, D.J.; Beek, E.J.R. van; Mirsadraee, S.

    2015-01-01

    Turner's syndrome is a disorder defined by an absent or structurally abnormal second X chromosome and affects around 1 in 2000 newborn females. The standardised mortality ratio in Turner's syndrome is around three-times higher than in the general female population, mainly as a result of cardiovascular disorders. Most striking is the early age at which Turner's syndrome patients develop the life-threatening complications of cardiovascular disorders compared to the general population. The cardiovascular risk stratification in Turner's syndrome is challenging and imaging is not systematically used. The aim of this article is to review cardiovascular risks in this group of patients and discuss a systematic imaging approach for early identification of cardiovascular disorders in these patients

  8. Molecular Imaging with Activatable Reporter Systems

    Directory of Open Access Journals (Sweden)

    Gang Niu, Xiaoyuan Chen

    2012-01-01

    Full Text Available Molecular imaging is a newly emerged multiple disciplinary field that aims to visualize, characterize and quantitatively measure biological processes at cellular and molecular levels in humans and other living systems. A reporter gene is a piece of DNA encoding reporter protein, which presents as a readily measurable phenotype that can be distinguished easily from the background of endogenous protein. After being transferred into cells of organ systems (transgenes, the reporter gene can be utilized to visualize transcriptional and posttranscriptional regulation of gene expression, protein-protein interactions, or trafficking of proteins or cells in living subjects. Herein, we review previous classification of reporter genes and regroup the reporter gene based imaging as basic, inducible and activatable, based on the regulation of reporter gene transcription and post-translational modification of reporter proteins. We then focus on activatable reporters, in which the signal can be activated at the posttranslational level for visualizing protein-protein interactions, protein phosphorylation or tertiary structure changes. The applications of several types of activatable reporters will also be summarized. We conclude that activatable reporter imaging can benefit both basic biomedical research and drug development.

  9. Computational medical imaging and hemodynamics framework for functional analysis and assessment of cardiovascular structures.

    Science.gov (United States)

    Wong, Kelvin K L; Wang, Defeng; Ko, Jacky K L; Mazumdar, Jagannath; Le, Thu-Thao; Ghista, Dhanjoo

    2017-03-21

    Cardiac dysfunction constitutes common cardiovascular health issues in the society, and has been an investigation topic of strong focus by researchers in the medical imaging community. Diagnostic modalities based on echocardiography, magnetic resonance imaging, chest radiography and computed tomography are common techniques that provide cardiovascular structural information to diagnose heart defects. However, functional information of cardiovascular flow, which can in fact be used to support the diagnosis of many cardiovascular diseases with a myriad of hemodynamics performance indicators, remains unexplored to its full potential. Some of these indicators constitute important cardiac functional parameters affecting the cardiovascular abnormalities. With the advancement of computer technology that facilitates high speed computational fluid dynamics, the realization of a support diagnostic platform of hemodynamics quantification and analysis can be achieved. This article reviews the state-of-the-art medical imaging and high fidelity multi-physics computational analyses that together enable reconstruction of cardiovascular structures and hemodynamic flow patterns within them, such as of the left ventricle (LV) and carotid bifurcations. The combined medical imaging and hemodynamic analysis enables us to study the mechanisms of cardiovascular disease-causing dysfunctions, such as how (1) cardiomyopathy causes left ventricular remodeling and loss of contractility leading to heart failure, and (2) modeling of LV construction and simulation of intra-LV hemodynamics can enable us to determine the optimum procedure of surgical ventriculation to restore its contractility and health This combined medical imaging and hemodynamics framework can potentially extend medical knowledge of cardiovascular defects and associated hemodynamic behavior and their surgical restoration, by means of an integrated medical image diagnostics and hemodynamic performance analysis framework.

  10. Neutron imaging for inertial confinement fusion and molecular optic imaging

    International Nuclear Information System (INIS)

    Delage, O.

    2010-01-01

    Scientific domains that require imaging of micrometric/nano-metric objects are dramatically increasing (Plasma Physics, Astrophysics, Biotechnology, Earth Sciences...). Difficulties encountered in imaging smaller and smaller objects make this research area more and more challenging and in constant evolution. The two scientific domains, through which this study has been led, are the neutron imaging in the context of the inertial confinement fusion and the fluorescence molecular imaging. Work presented in this thesis has two main objectives. The first one is to describe the instrumentation characteristics that require such imagery and, relatively to the scientific domains considered, identify parameters likely to optimize the imaging system accuracy. The second one is to present the developed data analysis and reconstruction methods able to provide spatial resolution adapted to the size of the observed object. Similarities of numerical algorithms used in these two scientific domains, which goals are quiet different, show how micrometric/nano-metric object imaging is a research area at the border of a large number of scientific disciplines. (author)

  11. A joint procedural position statement on imaging in cardiac sarcoidosis : from the Cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology

    NARCIS (Netherlands)

    Slart, Riemer H J A; Glaudemans, Andor W J M; Lancellotti, Patrizio; Hyafil, Fabien; Blankstein, Ron; Schwartz, Ronald G; Jaber, Wael A; Russell, Raymond; Gimelli, Alessia; Rouzet, François; Hacker, Marcus; Gheysens, Olivier; Plein, Sven; Miller, Edward J; Dorbala, Sharmila; Donal, Erwan

    2017-01-01

    This joint position paper illustrates the role and the correct use of echocardiography, radionuclide imaging with F-18-fluorodeoxyglucose positron emission tomography, radionuclide myocardial perfusion imaging and cardiovascular magnetic resonance imaging for the evaluation and management of

  12. A joint procedural position statement on imaging in cardiac sarcoidosis: from the Cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology

    NARCIS (Netherlands)

    Slart, Riemer H. J. A.; Glaudemans, Andor W. J. M.; Lancellotti, Patrizio; Hyafil, Fabien; Blankstein, Ron; Schwartz, Ronald G.; Jaber, Wael A.; Russell, Raymond; Gimelli, Alessia; Rouzet, Francois; Hacker, Marcus; Gheysens, Olivier; Plein, Sven; Miller, Edward J.; Dorbala, Sharmila; Donal, Erwan; Sciagra, Roberto; Bucerius, Jan; Verberne, Hein J.; Lindner, Oliver; Uebleis, Christopher; Agostini, Denis; Signore, Alberto; Edvardsen, Thor; Neglia, Danilo; Beanlands, Rob S.; Di Carli, Marcelo; Chareonthaitawee, Panithaya; Dilsizian, Vasken; Soman, Prem; Habib, Gilbert

    2017-01-01

    This joint position paper illustrates the role and the correct use of echocardiography, radionuclide imaging with F-18-fluorodeoxyglucose positron emission tomography, radionuclide myocardial perfusion imaging and cardiovascular magnetic resonance imaging for the evaluation and management of

  13. Molecular imaging with targeted contrast ultrasound.

    Science.gov (United States)

    Piedra, Mark; Allroggen, Achim; Lindner, Jonathan R

    2009-01-01

    Molecular imaging with contrast-enhanced ultrasound uses targeted microbubbles that are retained in diseased tissue. The resonant properties of these microbubbles produce acoustic signals in an ultrasound field. The microbubbles are targeted to diseased tissue by using certain chemical constituents in the microbubble shell or by attaching disease-specific ligands such as antibodies to the microbubble. In this review, we discuss the applications of this technique to pathological states in the cerebrovascular system including atherosclerosis, tumor angiogenesis, ischemia, intravascular thrombus, and inflammation. Copyright 2009 S. Karger AG, Basel.

  14. Molecular imaging in Libman-Sacks endocarditis

    DEFF Research Database (Denmark)

    Dahl, Anders; Schaadt, Bente K; Santoni-Rugiu, Eric

    2015-01-01

    cardiothoracic surgery and pathologic examinations showed characteristic morphology of Libman-Sacks vegetations. All microbiological examinations including blood cultures, microscopy, culture and 16s PCR of the valve were negative and the diagnosis of Libman-Sacks endocarditis was convincing. It is difficult...... to distinguish Libman-Sacks endocarditis from culture-negative infective endocarditis (IE). Molecular imaging techniques are being used increasingly in cases of suspected IE but no studies have previously reported the use in patients with Libman-Sacks endocarditis. In the present case, (18)F-FDG-PET-CT clearly...

  15. Molecular imaging of apoptosis in cancer

    International Nuclear Information System (INIS)

    Hakumaeki, Juhana M.; Liimatainen, Timo

    2005-01-01

    Apoptosis plays an important role in cancer. Mechanisms hindering its action are implicated in a number of malignancies. Also, the induction of apoptosis plays a pivotal role in non-surgical cancer treatment regimes such as irradiation, chemotherapy, or hormones. Recent advanced in imaging science have made it now possible for us to detect and visualize previously inaccessible and even unrecognized biological phenomena in cells and tissue undergoing apoptosis in vivo. Not only are these imaging techniques painting an intriguing picture of the spatiotemporal characteristics and metabolic and biophysical of apoptosis in situ, but they are expected to have an ever increasing impact in preclinical testing and design of new anticancer agents as well. Rapid and accurate visualization of apoptotic response in the clinical settings can also be of significant diagnostic and prognostic worth. With the advent of molecular medicine and patient-tailored treatment options and therapeutic agents, such monitoring techniques are becoming paramount

  16. Acceleration of cardiovascular MRI using parallel imaging: basic principles, practical considerations, clinical applications and future directions

    International Nuclear Information System (INIS)

    Niendorf, T.; Sodickson, D.

    2006-01-01

    Cardiovascular Magnetic Resonance (CVMR) imaging has proven to be of clinical value for non-invasive diagnostic imaging of cardiovascular diseases. CVMR requires rapid imaging; however, the speed of conventional MRI is fundamentally limited due to its sequential approach to image acquisition, in which data points are collected one after the other in the presence of sequentially-applied magnetic field gradients and radiofrequency coils to acquire multiple data points simultaneously, and thereby to increase imaging speed and efficiency beyond the limits of purely gradient-based approaches. The resulting improvements in imaging speed can be used in various ways, including shortening long examinations, improving spatial resolution and anatomic coverage, improving temporal resolution, enhancing image quality, overcoming physiological constraints, detecting and correcting for physiologic motion, and streamlining work flow. Examples of these strategies will be provided in this review, after some of the fundamentals of parallel imaging methods now in use for cardiovascular MRI are outlined. The emphasis will rest upon basic principles and clinical state-of-the art cardiovascular MRI applications. In addition, practical aspects such as signal-to-noise ratio considerations, tailored parallel imaging protocols and potential artifacts will be discussed, and current trends and future directions will be explored. (orig.)

  17. Advancing Cardiovascular, Neurovascular and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology

    Directory of Open Access Journals (Sweden)

    Thoralf eNiendorf

    2015-11-01

    Full Text Available Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF coils in small animal MR as a means of boosting image quality (e.g. by supporting MR microscopy and making data acquisition more efficient (e.g. by reducing measuring time; both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (biomedical imaging, molecular medicine and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (pathophysiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular and renal disease will be discussed.

  18. Cardiovascular CT angiography in neonates and children : Image quality and potential for radiation dose reduction with iterative image reconstruction techniques

    NARCIS (Netherlands)

    Tricarico, Francesco; Hlavacek, Anthony M.; Schoepf, U. Joseph; Ebersberger, Ullrich; Nance, John W.; Vliegenthart, Rozemarijn; Cho, Young Jun; Spears, J. Reid; Secchi, Francesco; Savino, Giancarlo; Marano, Riccardo; Schoenberg, Stefan O.; Bonomo, Lorenzo; Apfaltrer, Paul

    To evaluate image quality (IQ) of low-radiation-dose paediatric cardiovascular CT angiography (CTA), comparing iterative reconstruction in image space (IRIS) and sinogram-affirmed iterative reconstruction (SAFIRE) with filtered back-projection (FBP) and estimate the potential for further dose

  19. Landscape of Innovation for Cardiovascular Pharmaceuticals: From Basic Science to New Molecular Entities.

    Science.gov (United States)

    Beierlein, Jennifer M; McNamee, Laura M; Walsh, Michael J; Kaitin, Kenneth I; DiMasi, Joseph A; Ledley, Fred D

    2017-07-01

    This study examines the complete timelines of translational science for new cardiovascular therapeutics from the initiation of basic research leading to identification of new drug targets through clinical development and US Food and Drug Administration (FDA) approval of new molecular entities (NMEs) based on this research. This work extends previous studies by examining the association between the growth of research on drug targets and approval of NMEs associated with these targets. Drawing on research on innovation in other technology sectors, where technological maturity is an important determinant in the success or failure of new product development, an analytical model was used to characterize the growth of research related to the known targets for all 168 approved cardiovascular therapeutics. Categorizing and mapping the technological maturity of cardiovascular therapeutics reveal that (1) there has been a distinct transition from phenotypic to targeted methods for drug discovery, (2) the durations of clinical and regulatory processes were significantly influenced by changes in FDA practice, and (3) the longest phase of the translational process was the time required for technology to advance from initiation of research to a statistically defined established point of technology maturation (mean, 30.8 years). This work reveals a normative association between metrics of research maturation and approval of new cardiovascular therapeutics and suggests strategies for advancing translational science by accelerating basic and applied research and improving the synchrony between the maturation of this research and drug development initiatives. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  20. High-frequency ultrasonographic imaging of avian cardiovascular development.

    Czech Academy of Sciences Publication Activity Database

    McQuinn, T. C.; Bratoeva, M.; Dealmeida, A.; Remond, M.; Thompson, R.P.; Sedmera, David

    2007-01-01

    Roč. 236, - (2007), s. 3503-3513 ISSN 1058-8388 Institutional research plan: CEZ:AV0Z50450515 Keywords : chick embryo * echocardiography * heart development Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 3.084, year: 2007

  1. Bioresponsive probes for molecular imaging: concepts and in vivo applications

    NARCIS (Netherlands)

    Duijnhoven, S.M. van; Robillard, M.S.; Langereis, S.; Grull, H.

    2015-01-01

    Molecular imaging is a powerful tool to visualize and characterize biological processes at the cellular and molecular level in vivo. In most molecular imaging approaches, probes are used to bind to disease-specific biomarkers highlighting disease target sites. In recent years, a new subset of

  2. Bioresponsive probes for molecular imaging : Concepts and in vivo applications

    NARCIS (Netherlands)

    van Duijnhoven, S.M.J.; Robillard, M.S.; Langereis, S.; Grüll, H.

    2015-01-01

    Molecular imaging is a powerful tool to visualize and characterize biological processes at the cellular and molecular level in vivo. In most molecular imaging approaches, probes are used to bind to disease-specific biomarkers highlighting disease target sites. In recent years, a new subset of

  3. Design and validation of Segment - freely available software for cardiovascular image analysis

    International Nuclear Information System (INIS)

    Heiberg, Einar; Sjögren, Jane; Ugander, Martin; Carlsson, Marcus; Engblom, Henrik; Arheden, Håkan

    2010-01-01

    Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format. Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page (http://segment.heiberg.se). Segment

  4. [Molecular imaging; current status and future prospects in USA].

    Science.gov (United States)

    Kobayashi, Hisataka

    2007-02-01

    The goal of this review is to introduce the definition, current status, and future prospects of the molecular imaging, which has recently been a hot topic in medicine and the biological science in USA. In vivo imaging methods to visualize the molecular events and functions in organs or animals/humans are overviewed and discussed especially in combinations of imaging modalities (machines) and contrast agents(chemicals) used in the molecular imaging. Next, the close relationship between the molecular imaging and the nanotechnology, an important part of nanomedicine, is stressed from the aspect of united multidisciplinary sciences such as physics, chemistry, biology, and medicine.

  5. Impact of chronic kidney disease and stress myocardial perfusion imaging as a predictor of cardiovascular events

    International Nuclear Information System (INIS)

    Furuhashi, Tatsuhiko; Joki, Nobuhiko; Hase, Hiroki; Masai, Hirofumi; Kunimasa, Taeko; Nakazato, Ryo; Fukuda, Hiroshi; Sugi, Kaoru; Moroi, Masao

    2011-01-01

    Stress myocardial perfusion imaging (MPI) is an established means of predicting cardiovascular events and is suitable in chronic kidney disease (CKD) patients. We aimed to evaluate the prognostic value of CKD parameters and an abnormal stress MPI for cardiovascular events. A total of 495 patients with suspected coronary artery disease (CAD) or history of CAD including 130 CKD patients not undergoing hemodialysis, underwent stress MPI (313 males, mean age 70 years) and were followed up for 14 months (mean period). CKD was defined as an estimated GFR of 2 and/or persistent proteinuria. Cardiovascular events were defined as sudden cardiac death, acute coronary syndrome and congestive heart failure requiring hospitalization. Cardiovascular events occurred in 41 (8.3%) patients. Multivariate Cox regression analysis indicated that CKD [hazard ratio (HR) =3.76, p<0.001] and a stress MPI summed difference score (SDS) of ≥2 (HR=3.78, p<0.001) were independent predictors of cardiovascular events; CKD plus abnormal stress MPI was also a strong predictor of cardiovascular events (non-CKD and SDS <2 vs. CKD and SDS ≥2, HR=15.9, p<0.001). Both CKD and myocardial ischemia detected by stress MPI are independent predictors for cardiovascular events. Coexistence of CKD and myocardial ischemia detected by stress MPI is more useful for short-term risk stratification of cardiovascular events. (author)

  6. Impact of molecular imaging with PET on healthcare worldwide

    International Nuclear Information System (INIS)

    Alavi, Abbas

    2009-01-01

    Full text: FDG-PET imaging has substantially improved healthcare throughout the world. This technique has been applied to patients with some of the most serious diseases, including cancer, central nervous system disorders, cardiovascular disease and infections including infected prostheses. There is also enormous potential for further improvement in patient management using this technique, for example, in the detection of atherosclerosis and clots, and assessment of muscle function. Studies using FDG-PET methodology have led to the development of many novel radiotracers that have been designed to explore new diagnostic and therapeutic domains. We therefore expect that molecular imaging with PET will play an increasingly central role in research and in the optimal management of patients with many disorders. This will include diagnosing pathological processes at the molecular level and individualizing treatment for these patients. By utilizing PET and the appropriately labeled pharmaceuticals, one will be able to select the most suitable therapeutic drugs for a particular disease, instead of administering drugs to patients without a good idea of the chance of efficacy. Likewise, PET will increasingly play a major role in drug development by demonstrating the degree to which the intended pharmaceutical targets the diseased tissues in animal models and in human beings. PET will also assist in determining the rate of metabolism of the administered drugs by different tissues. PET imaging will also allow accurate staging of cancer and other serious diseases and will be adopted as the most accurate technique for monitoring response to treatment and detecting recurrence. The role of CT and/or MRI as independent modalities in medicine will decrease as the efficacy of PET is realized by scientists and clinicians alike. In particular, the use of contrast agents such as iodinated compounds and gadolinium based agents will be minimized. Similarly, imaging with single gamma

  7. Left ventricular hypertrophy: The relationship between the electrocardiogram and cardiovascular magnetic resonance imaging.

    Science.gov (United States)

    Bacharova, Ljuba; Ugander, Martin

    2014-11-01

    Conventional assessment of left ventricular hypertrophy (LVH) using the electrocardiogram (ECG), for example, by the Sokolow-Lyon, Romhilt-Estes or Cornell criteria, have relied on assessing changes in the amplitude and/or duration of the QRS complex of the ECG to quantify LV mass. ECG measures of LV mass have typically been validated by imaging with echocardiography or cardiovascular magnetic resonance imaging (CMR). However, LVH can be the result of diverse etiologies, and LVH is also characterized by pathological changes in myocardial tissue characteristics on the genetic, molecular, cellular, and tissue level beyond a pure increase in the number of otherwise normal cardiomyocytes. For example, slowed conduction velocity through the myocardium, which can be due to diffuse myocardial fibrosis, has been shown to be an important determinant of conventional ECG LVH criteria regardless of LV mass. Myocardial tissue characterization by CMR has emerged to not only quantify LV mass, but also detect and quantify the extent and severity of focal or diffuse myocardial fibrosis, edema, inflammation, myocarditis, fatty replacement, myocardial disarray, and myocardial deposition of amyloid proteins (amyloidosis), glycolipids (Fabry disease), or iron (siderosis). This can be undertaken using CMR techniques including late gadolinium enhancement (LGE), T1 mapping, T2 mapping, T2* mapping, extracellular volume fraction (ECV) mapping, fat/water-weighted imaging, and diffusion tensor CMR. This review presents an overview of current and emerging concepts regarding the diagnostic possibilities of both ECG and CMR for LVH in an attempt to narrow gaps in our knowledge regarding the ECG diagnosis of LVH. © 2014 Wiley Periodicals, Inc.

  8. Molecular ultrasound imaging: current status and future directions

    International Nuclear Information System (INIS)

    Deshpande, N.; Needles, A.; Willmann, J.K.

    2010-01-01

    Targeted contrast-enhanced ultrasound (molecular ultrasound) is an emerging imaging strategy that combines ultrasound technology with novel molecularly-targeted ultrasound contrast agents for assessing biological processes at the molecular level. Molecular ultrasound contrast agents are nano- or micro-sized particles that are targeted to specific molecular markers by adding high-affinity binding ligands onto the surface of the particles. Following intravenous administration, these targeted ultrasound contrast agents accumulate at tissue sites overexpressing specific molecular markers, thereby enhancing the ultrasound imaging signal. High spatial and temporal resolution, real-time imaging, non-invasiveness, relatively low costs, lack of ionising irradiation and wide availability of ultrasound systems are advantages compared to other molecular imaging modalities. In this article we review current concepts and future directions of molecular ultrasound imaging, including different classes of molecular ultrasound contrast agents, ongoing technical developments of pre-clinical and clinical ultrasound systems, the potential of molecular ultrasound for imaging different diseases at the molecular level, and the translation of molecular ultrasound into the clinic.

  9. Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications

    International Nuclear Information System (INIS)

    Niendorf, Thoralf; Sodickson, Daniel K.

    2008-01-01

    Cardiovascular magnetic resonance imaging (CVMRI) is of proven clinical value in the non-invasive imaging of cardiovascular diseases. CVMRI requires rapid image acquisition, but acquisition speed is fundamentally limited in conventional MRI. Parallel imaging provides a means for increasing acquisition speed and efficiency. However, signal-to-noise (SNR) limitations and the limited number of receiver channels available on most MR systems have in the past imposed practical constraints, which dictated the use of moderate accelerations in CVMRI. High levels of acceleration, which were unattainable previously, have become possible with many-receiver MR systems and many-element, cardiac-optimized RF-coil arrays. The resulting imaging speed improvements can be exploited in a number of ways, ranging from enhancement of spatial and temporal resolution to efficient whole heart coverage to streamlining of CVMRI work flow. In this review, examples of these strategies are provided, following an outline of the fundamentals of the highly accelerated imaging approaches employed in CVMRI. Topics discussed include basic principles of parallel imaging; key requirements for MR systems and RF-coil design; practical considerations of SNR management, supported by multi-dimensional accelerations, 3D noise averaging and high field imaging; highly accelerated clinical state-of-the art cardiovascular imaging applications spanning the range from SNR-rich to SNR-limited; and current trends and future directions. (orig.)

  10. Whole body cardiovascular magnetic resonance imaging to stratify symptomatic and asymptomatic atherosclerotic burden in patients with isolated cardiovascular disease

    International Nuclear Information System (INIS)

    Weir-McCall, Jonathan R.; Duce, Suzanne L.; Gandy, Stephen J.; Matthew, Shona Z.; Martin, Patricia; Cassidy, Deirdre B.; McCormick, Lynne; Belch, Jill J. F.; Struthers, Allan D.; Colhoun, Helen M.; Houston, J. Graeme

    2016-01-01

    The aim of this study was to use whole body cardiovascular magnetic resonance imaging (WB CVMR) to assess the heart and arterial network in a single examination, so as to describe the burden of atherosclerosis and subclinical disease in participants with symptomatic single site vascular disease. 64 patients with a history of symptomatic single site vascular disease (38 coronary artery disease (CAD), 9 cerebrovascular disease, 17 peripheral arterial disease (PAD)) underwent whole body angiogram and cardiac MR in a 3 T scanner. The arterial tree was subdivided into 31 segments and each scored according to the degree of stenosis. From this a standardised atheroma score (SAS) was calculated. Cine and late gadolinium enhancement images of the left ventricle were obtained. Asymptomatic atherosclerotic disease with greater than 50 % stenosis in arteries other than that responsible for their presenting complain was detected in 37 % of CAD, 33 % of cerebrovascular and 47 % of PAD patients. Unrecognised myocardial infarcts were observed in 29 % of PAD patients. SAS was significantly higher in PAD patients 24 (17.5-30.5) compared to CAD 4 (2–11.25) or cerebrovascular disease patients 6 (2-10) (ANCOVA p < 0.001). Standardised atheroma score positively correlated with age (β 0.36 p = 0.002), smoking status (β 0.34 p = 0.002), and LV mass (β -0.61 p = 0.001) on multiple linear regression. WB CVMR is an effective method for the stratification of cardiovascular disease. The high prevalence of asymptomatic arterial disease, and silent myocardial infarctions, particularly in the peripheral arterial disease group, demonstrates the importance of a systematic approach to the assessment of cardiovascular disease

  11. The year 2014 in the European Heart Journal--Cardiovascular Imaging: part II.

    Science.gov (United States)

    Gerber, Bernhard L; Edvardsen, Thor; Pierard, Luc A; Saraste, Antti; Knuuti, Juhani; Maurer, Gerald; Habib, Gilbert; Lancellotti, Patrizio

    2015-11-01

    The European Heart Journal-Cardiovascular Imaging, created in 2012, has become a reference for publishing multimodality cardiovascular imaging scientific and review papers. The impressive 2014 impact factor of 4.105 confirms the important position of our journal. In this part, we summarize the most important studies from the journal's third year, with specific emphasis on cardiomyopathies, congenital heart diseases, valvular heart diseases, and heart failure. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  12. Evaluation of an improved technique for automated center lumen line definition in cardiovascular image data

    International Nuclear Information System (INIS)

    Gratama van Andel, Hugo A.F.; Meijering, Erik; Vrooman, Henri A.; Stokking, Rik; Lugt, Aad van der; Monye, Cecile de

    2006-01-01

    The aim of the study was to evaluate a new method for automated definition of a center lumen line in vessels in cardiovascular image data. This method, called VAMPIRE, is based on improved detection of vessel-like structures. A multiobserver evaluation study was conducted involving 40 tracings in clinical CTA data of carotid arteries to compare VAMPIRE with an established technique. This comparison showed that VAMPIRE yields considerably more successful tracings and improved handling of stenosis, calcifications, multiple vessels, and nearby bone structures. We conclude that VAMPIRE is highly suitable for automated definition of center lumen lines in vessels in cardiovascular image data. (orig.)

  13. Magnetic resonance imaging of vulnerable atherosclerotic plaques: current imaging strategies and molecular imaging probes

    NARCIS (Netherlands)

    Briley-Saebo, Karen C.; Mulder, Willem J. M.; Mani, Venkatesh; Hyafil, Fabien; Amirbekian, Vardan; Aguinaldo, Juan Gilberto S.; Fisher, Edward A.; Fayad, Zahi A.

    2007-01-01

    The vulnerability or destabilization of atherosclerotic plaques has been directly linked to plaque composition. Imaging modalities, such as magnetic resonance (MR) imaging, that allow for evaluation of plaque composition at a cellular and molecular level, could further improve the detection of

  14. Translational research of optical molecular imaging for personalized medicine.

    Science.gov (United States)

    Qin, C; Ma, X; Tian, J

    2013-12-01

    In the medical imaging field, molecular imaging is a rapidly developing discipline and forms many imaging modalities, providing us effective tools to visualize, characterize, and measure molecular and cellular mechanisms in complex biological processes of living organisms, which can deepen our understanding of biology and accelerate preclinical research including cancer study and medicine discovery. Among many molecular imaging modalities, although the penetration depth of optical imaging and the approved optical probes used for clinics are limited, it has evolved considerably and has seen spectacular advances in basic biomedical research and new drug development. With the completion of human genome sequencing and the emergence of personalized medicine, the specific drug should be matched to not only the right disease but also to the right person, and optical molecular imaging should serve as a strong adjunct to develop personalized medicine by finding the optimal drug based on an individual's proteome and genome. In this process, the computational methodology and imaging system as well as the biomedical application regarding optical molecular imaging will play a crucial role. This review will focus on recent typical translational studies of optical molecular imaging for personalized medicine followed by a concise introduction. Finally, the current challenges and the future development of optical molecular imaging are given according to the understanding of the authors, and the review is then concluded.

  15. Cardiovascular Magnetic Resonance in Cardiology Practice: A Concise Guide to Image Acquisition and Clinical Interpretation.

    Science.gov (United States)

    Valbuena-López, Silvia; Hinojar, Rocío; Puntmann, Valentina O

    2016-02-01

    Cardiovascular magnetic resonance plays an increasingly important role in routine cardiology clinical practice. It is a versatile imaging modality that allows highly accurate, broad and in-depth assessment of cardiac function and structure and provides information on pertinent clinical questions in diseases such as ischemic heart disease, nonischemic cardiomyopathies, and heart failure, as well as allowing unique indications, such as the assessment and quantification of myocardial iron overload or infiltration. Increasing evidence for the role of cardiovascular magnetic resonance, together with the spread of knowledge and skill outside expert centers, has afforded greater access for patients and wider clinical experience. This review provides a snapshot of cardiovascular magnetic resonance in modern clinical practice by linking image acquisition and postprocessing with effective delivery of the clinical meaning. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  16. Magnetic resonance imaging of the cardiovascular system: present state of the art and future potential

    International Nuclear Information System (INIS)

    Jacobson, H.G.

    1988-01-01

    State-of-the-art magnetic resonance imaging (MRI) generates high-resolution images of the cardiovascular system. Conventional MRI techniques provide images in six to ten minutes per tomographic slice. New strategies have substantially improved the speed of imaging. The technology is relatively expensive, and its cost-effectiveness remains to be defined in relation to other effective, less expensive, and noninvasive technologies, such as echocardiography and nuclear medicine. The ultimate role of MRI will depend on several factors, including the development of specific applications such as (1) noninvasive angiography, especially of the coronary arteries;(2) noninvasive, high-resolution assessment of regional myocardial blood flow distribution (e.g., using paramagnetic contrast agents); (3) characterization of myocardial diseases using proton-relaxation property changes; and (4) evaluation of in vivo myocardial biochemistry. The three-dimensional imaging capability and the ability to image cardiovascular structures without contrast material give MRI a potential advantage over existing noninvasive diagnostic imaging techniques. This report analyzes current applications of MRI to the cardiovascular system and speculates on their future

  17. Molecular Imaging and Therapy of Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Beylergil, Volkan, E-mail: beylergv@mskcc.org [Molecular and Imaging Therapy Service, Department of Radiology Box 77, Memorial Sloan-Kettering Cancer Center 1275 York Ave, New York, NY 10065 (United States); Carrasquillo, Jorge A. [Molecular and Imaging Therapy Service, Department of Radiology Box 77, Memorial Sloan-Kettering Cancer Center 1275 York Ave, New York, NY 10065 (United States); Department of Radiology, Weill Cornell Medical Center, New York, NY 10065 (United States)

    2014-04-29

    Several molecular imaging modalities have been evaluated in the management of Merkel cell carcinoma (MCC), a rare and aggressive tumor with a high tendency to metastasize. Continuous progress in the field of molecular imaging might improve management in these patients. The authors review the current modalities and their impact on MCC in this brief review article.

  18. Molecular Imaging and Therapy of Merkel Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Volkan Beylergil

    2014-04-01

    Full Text Available Several molecular imaging modalities have been evaluated in the management of Merkel cell carcinoma (MCC, a rare and aggressive tumor with a high tendency to metastasize. Continuous progress in the field of molecular imaging might improve management in these patients. The authors review the current modalities and their impact on MCC in this brief review article.

  19. Molecular Imaging and Precision Medicine in Prostate Cancer.

    Science.gov (United States)

    Ceci, Francesco; Fiorentino, Michelangelo; Castellucci, Paolo; Fanti, Stefano

    2017-01-01

    The aim of the present review is to discuss about the role of new probes for molecular imaging in the evaluation of prostate cancer (PCa). This review focuses particularly on the role of new promising radiotracers for the molecular imaging with PET/computed tomography in the detection of PCa recurrence. The role of these new imaging techniques to guide lesion-target therapies and the potential application of these molecular probes as theranostics agents is discussed. Finally, the molecular mechanisms underlying resistance to castration in PCa and the maintenance of active androgen receptor are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Value of Cardiovascular Magnetic Resonance Imaging in Noninvasive Risk Stratification in Tetralogy of Fallot

    NARCIS (Netherlands)

    Bokma, Jouke P.; de Wilde, Koen C.; Vliegen, Hubert W.; van Dijk, Arie P.; van Melle, Joost P.; Meijboom, Folkert J.; Zwinderman, Aeilko H.; Groenink, Maarten; Mulder, Barbara J. M.; Bouma, Berto J.

    IMPORTANCE Adults late after total correction of tetralogy of Fallot (TOF) are at risk for majorcomplications. Cardiovascular magnetic resonance (CMR) imaging is recommended toquantify right ventricular (RV) and left ventricular (LV) function. However, a commonly usedrisk model by Khairy et al

  1. Resonance Energy Transfer Molecular Imaging Application in Biomedicine

    Directory of Open Access Journals (Sweden)

    NIE Da-hong1,2;TANG Gang-hua1,3

    2016-11-01

    Full Text Available Resonance energy transfer molecular imaging (RETI can markedly improve signal intensity and tissue penetrating capacity of optical imaging, and have huge potential application in the deep-tissue optical imaging in vivo. Resonance energy transfer (RET is an energy transition from the donor to an acceptor that is in close proximity, including non-radiative resonance energy transfer and radiative resonance energy transfer. RETI is an optical imaging technology that is based on RET. RETI mainly contains fluorescence resonance energy transfer imaging (FRETI, bioluminescence resonance energy transfer imaging (BRETI, chemiluminescence resonance energy transfer imaging (CRETI, and radiative resonance energy transfer imaging (RRETI. RETI is the hot field of molecular imaging research and has been widely used in the fields of biology and medicine. This review mainly focuses on RETI principle and application in biomedicine.

  2. Computational methods in molecular imaging technologies

    CERN Document Server

    Gunjan, Vinit Kumar; Venkatesh, C; Amarnath, M

    2017-01-01

    This book highlights the experimental investigations that have been carried out on magnetic resonance imaging and computed tomography (MRI & CT) images using state-of-the-art Computational Image processing techniques, and tabulates the statistical values wherever necessary. In a very simple and straightforward way, it explains how image processing methods are used to improve the quality of medical images and facilitate analysis. It offers a valuable resource for researchers, engineers, medical doctors and bioinformatics experts alike.

  3. Nanomedicine: Perspective and promises with ligand-directed molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pan Dipanjan [Department of Medicine, Washington University Medical School, St. Louis, MO (United States)], E-mail: dipanjan@wustl.edu; Lanza, Gregory M.; Wickline, Samuel A. [Department of Medicine, Washington University Medical School, St. Louis, MO (United States); Caruthers, Shelton D. [Department of Medicine, Washington University Medical School, St. Louis, MO (United States); Philips Healthcare, Andover, MA (United States)], E-mail: scaruthers@cmrl.wustl.edu

    2009-05-15

    Molecular imaging and targeted drug delivery play an important role toward personalized medicine, which is the future of patient management. Of late, nanoparticle-based molecular imaging has emerged as an interdisciplinary area, which shows promises to understand the components, processes, dynamics and therapies of a disease at a molecular level. The unprecedented potential of nanoplatforms for early detection, diagnosis and personalized treatment of diseases, have found application in every biomedical imaging modality. Biological and biophysical barriers are overcome by the integration of targeting ligands, imaging agents and therapeutics into the nanoplatform which allow for theranostic applications. In this article, we have discussed the opportunities and potential of targeted molecular imaging with various modalities putting a particular emphasis on perfluorocarbon nanoemulsion-based platform technology.

  4. Nanomedicine: Perspective and promises with ligand-directed molecular imaging

    International Nuclear Information System (INIS)

    Pan Dipanjan; Lanza, Gregory M.; Wickline, Samuel A.; Caruthers, Shelton D.

    2009-01-01

    Molecular imaging and targeted drug delivery play an important role toward personalized medicine, which is the future of patient management. Of late, nanoparticle-based molecular imaging has emerged as an interdisciplinary area, which shows promises to understand the components, processes, dynamics and therapies of a disease at a molecular level. The unprecedented potential of nanoplatforms for early detection, diagnosis and personalized treatment of diseases, have found application in every biomedical imaging modality. Biological and biophysical barriers are overcome by the integration of targeting ligands, imaging agents and therapeutics into the nanoplatform which allow for theranostic applications. In this article, we have discussed the opportunities and potential of targeted molecular imaging with various modalities putting a particular emphasis on perfluorocarbon nanoemulsion-based platform technology.

  5. Impact of Medical Therapy on Atheroma Volume Measured by Different Cardiovascular Imaging Modalities

    Directory of Open Access Journals (Sweden)

    Mohamad C. N. Sinno

    2010-01-01

    Full Text Available Atherosclerosis is a systemic disease that affects most vascular beds. The gold standard of atherosclerosis imaging has been invasive intravascular ultrasound (IVUS. Newer noninvasive imaging modalities like B-mode ultrasound, cardiac computed tomography (CT, positron emission tomography (PET, and magnetic resonance imaging (MRI have been used to assess these vascular territories with high accuracy and reproducibility. These imaging modalities have lately been used for the assessment of the atherosclerotic plaque and the response of its volume to several medical therapies used in the treatment of patients with cardiovascular disease. To study the impact of these medications on atheroma volume progression or regression, imaging modalities have been used on a serial basis providing a unique opportunity to monitor the effect these antiatherosclerotic strategies exert on plaque burden. As a result, studies incorporating serial IVUS imaging, quantitative coronary angiography (QCA, B-mode ultrasound, electron beam computed tomography (EBCT, and dynamic contrast-enhanced magnetic resonance imaging have all been used to evaluate the impact of therapeutic strategies that modify cholesterol and blood pressure on the progression/regression of atherosclerotic plaque. In this review, we intend to summarize the impact of different therapies aimed at halting the progression or even result in regression of atherosclerotic cardiovascular disease evaluated by different imaging modalities.

  6. Molecular imaging in the framework of personalized cancer medicine.

    Science.gov (United States)

    Belkić, Dzevad; Belkić, Karen

    2013-11-01

    With our increased understanding of cancer cell biology, molecular imaging offers a strategic bridge to oncology. This complements anatomic imaging, particularly magnetic resonance (MR) imaging, which is sensitive but not specific. Among the potential harms of false positive findings is lowered adherence to recommended surveillance post-therapy and by persons at increased cancer risk. Positron emission tomography (PET) plus computerized tomography (CT) is the molecular imaging modality most widely used in oncology. In up to 40% of cases, PET-CT leads to changes in therapeutic management. Newer PET tracers can detect tumor hypoxia, bone metastases in androgen-sensitive prostate cancer, and human epidermal growth factor receptor type 2 (HER2)-expressive tumors. Magnetic resonance spectroscopy provides insight into several metabolites at the same time. Combined with MRI, this yields magnetic resonance spectroscopic imaging (MRSI), which does not entail ionizing radiation and is thus suitable for repeated monitoring. Using advanced signal processing, quantitative information can be gleaned about molecular markers of brain, breast, prostate and other cancers. Radiation oncology has benefited from molecular imaging via PET-CT and MRSI. Advanced mathematical approaches can improve dose planning in stereotactic radiosurgery, stereotactic body radiotherapy and high dose-rate brachytherapy. Molecular imaging will likely impact profoundly on clinical decision making in oncology. Molecular imaging via MR could facilitate early detection especially in persons at high risk for specific cancers.

  7. Luminescence imaging using radionuclides: a potential application in molecular imaging

    International Nuclear Information System (INIS)

    Park, Jeong Chan; Il An, Gwang; Park, Se-Il; Oh, Jungmin; Kim, Hong Joo; Su Ha, Yeong; Wang, Eun Kyung; Min Kim, Kyeong; Kim, Jung Young; Lee, Jaetae; Welch, Michael J.; Yoo, Jeongsoo

    2011-01-01

    Introduction: Nuclear and optical imaging are complementary in many aspects and there would be many advantages when optical imaging probes are prepared using radionuclides rather than classic fluorophores, and when nuclear and optical dual images are obtained using single imaging probe. Methods: The luminescence intensities of various radionuclides having different decay modes have been assayed using luminescence imaging and in vitro luminometer. Radioiodinated Herceptin was injected into a tumor-bearing mouse, and luminescence and microPET images were obtained. The plant dipped in [ 32 P]phosphate solution was scanned in luminescence mode. Radio-TLC plate was also imaged in the same imaging mode. Results: Radionuclides emitting high energy β + /β - particles showed higher luminescence signals. NIH3T6.7 tumors were detected in both optical and nuclear imaging. The uptake of [ 32 P]phosphate in plant was easily followed by luminescence imaging. Radio-TLC plate was visualized and radiochemical purity was quantified using luminescence imaging. Conclusion: Many radionuclides with high energetic β + or β - particles during decay were found to be imaged in luminescence mode due mainly to Cerenkov radiation. 'Cerenkov imaging' provides a new optical imaging platform and an invaluable bridge between optical and nuclear imaging. New optical imaging probes could be easily prepared using well-established radioiodination methods. Cerenkov imaging will have more applications in the research field of plant science and autoradiography.

  8. Magnetic resonance imaging (MRI) of the cardiovascular system

    International Nuclear Information System (INIS)

    Yoshida, Shigeru

    1991-01-01

    Qualitative assessments of the hypertrophied myocardium were performed using spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) obtained by magnetic resonance imaging (MRI) in 15 normotensive patients with asymmetric septal hypertrophy (ASH), 10 hypertensive patients with concentric hypertrophy (CH) and 5 normal subjects (N). The changes of these values were evaluated related to cardiac cycle, and their usefulness in differentiating diseases. The wall thickness and internal dimension of the left ventricle (LV) in 10 cases were obtained using echocardiography and MRI, and there was a good correlation coefficient in wall thickness (r=0.987) and in internal dimension (r=0.991). Left ventricular short-axis images were obtained using ECG-gated spin-echo sequence (Te=30, 80 msec) and using inversion recovery sequence. T1 and T2 images were calculated at endsystolic and diastolic cardiac phases. The regional wall thickness (WT) and T1 and T2 values were measured in the anterior septum, anterior wall, lateral wall, posterior wall and posterior septum. Myocardial T1 and T2 values were significantly decreased in systole (T1: 185.6±37.9 msec, T2: 24.4±6.3 msec) compared to those in diastole (T1: 249.2±56.7 msec, T2: 31.7±9.4 msec). In both ASH and CH groups, significant correlations were observed between diastolic T1 values and WT (ASH: r=0.80, CH: r=0.45), and between diastolic T2 values and WT (ASH: r=0.58, CH: r=0.60). In the regions where diastolic WT were more than 17 mm, T1 values in the ASH group (343.4±40.5 msec) were significantly higher than those of the CH group (247.3±21.4 msec), although the mean wall thickness values were similar in both groups. These results indicate that myocardial relaxation times are related to cardiac cycle, wall thickness and types of hypertrophy. The T1 and T2 values at diastolic cardiac phase might be useful for distinguishing hypertrophic cardiomyopathy from hypertrophy due to hypertension. (author)

  9. Advances in gene therapy of myocardial ischemia and the monitoring with molecular imaging

    International Nuclear Information System (INIS)

    Zhang Guopeng; Zhang Yongxue

    2008-01-01

    Cardiovascular diseases are harmful for people. Recent advances in understanding the molecular basis of cardiovascular diseases, together with some studies of the gene therapy on cardiovascular disorders, have offered possibilities for new treatments. Gene therapies have demonstrated potential usefulness in treating myocardial ischemia. Therefore, the monitoring of the expression of therapy gene and therapeutic efficacy has become an important issue. (authors)

  10. Translational Applications of Molecular Imaging and Radionuclide Therapy

    International Nuclear Information System (INIS)

    Welch, Michael J.; Eckelman, William C.; Vera, David

    2005-01-01

    Molecular imaging is becoming a larger part of imaging research and practice. The Office of Biological and Environmental Research of the Department of Energy funds a significant number of researchers in this area. The proposal is to partially fund a workshop to inform scientists working in nuclear medicine and nuclear medicine practitioners of the recent advances of molecular imaging in nuclear medicine as well as other imaging modalities. A limited number of topics related to radionuclide therapy will also be discussed. The proposal is to request partial funds for the workshop entitled ''Translational Applications of Molecular Imaging and Radionuclide Therapy'' to be held prior to the Society of Nuclear Medicine Annual Meeting in Toronto, Canada in June 2005. The meeting will be held on June 17-18. This will allow scientists interested in all aspects of nuclear medicine imaging to attend. The chair of the organizing group is Dr. Michael J. Welch. The organizing committee consists of Dr. Welch, Dr. William C. Eckelman and Dr. David Vera. The goal is to invite speakers to discuss the most recent advances of modern molecular imaging and therapy. Speakers will present advances made in in vivo tagging imaging assays, technical aspects of small animal imaging, in vivo imaging and bench to bedside translational study; and the role of a diagnostic scan on therapy selection. This latter topic will include discussions on therapy and new approaches to dosimetry. Several of these topics are those funded by the Department of Energy Office of Biological and Environmental Research

  11. Quantitative Methods for Molecular Diagnostic and Therapeutic Imaging

    OpenAIRE

    Li, Quanzheng

    2013-01-01

    This theme issue provides an overview on the basic quantitative methods, an in-depth discussion on the cutting-edge quantitative analysis approaches as well as their applications for both static and dynamic molecular diagnostic and therapeutic imaging.

  12. Molecular-resolution imaging of pentacene on KCl(001

    Directory of Open Access Journals (Sweden)

    Julia L. Neff

    2012-02-01

    Full Text Available The growth of pentacene on KCl(001 at submonolayer coverage was studied by dynamic scanning force microscopy. At coverages below one monolayer pentacene was found to arrange in islands with an upright configuration. The molecular arrangement was resolved in high-resolution images. In these images two different types of patterns were observed, which switch repeatedly. In addition, defects were found, such as a molecular vacancy and domain boundaries.

  13. Nuclear cardiology core syllabus of the European Association of Cardiovascular Imaging (EACVI).

    Science.gov (United States)

    Gimelli, Alessia; Neglia, Danilo; Schindler, Thomas H; Cosyns, Bernard; Lancellotti, Patrizio; Kitsiou, Anastasia

    2015-04-01

    The European Association of Cardiovascular Imaging (EACVI) Core Syllabus for Nuclear Cardiology is now available online. The syllabus lists key elements of knowledge in nuclear cardiology. It represents a framework for the development of training curricula and provides expected knowledge-based learning outcomes to the nuclear cardiology trainees. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  14. Nanobody: The “Magic Bullet” for Molecular Imaging?

    Science.gov (United States)

    Chakravarty, Rubel; Goel, Shreya; Cai, Weibo

    2014-01-01

    Molecular imaging involves the non-invasive investigation of biological processes in vivo at the cellular and molecular level, which can play diverse roles in better understanding and treatment of various diseases. Recently, single domain antigen-binding fragments known as 'nanobodies' were bioengineered and tested for molecular imaging applications. Small molecular size (~15 kDa) and suitable configuration of the complementarity determining regions (CDRs) of nanobodies offer many desirable features suitable for imaging applications, such as rapid targeting and fast blood clearance, high solubility, high stability, easy cloning, modular nature, and the capability of binding to cavities and difficult-to-access antigens. Using nanobody-based probes, several imaging techniques such as radionuclide-based, optical and ultrasound have been employed for visualization of target expression in various disease models. This review summarizes the recent developments in the use of nanobody-based probes for molecular imaging applications. The preclinical data reported to date are quite promising, and it is expected that nanobody-based molecular imaging agents will play an important role in the diagnosis and management of various diseases. PMID:24578722

  15. MRI Reporter Genes for Noninvasive Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Caixia Yang

    2016-05-01

    Full Text Available Magnetic resonance imaging (MRI is one of the most important imaging technologies used in clinical diagnosis. Reporter genes for MRI can be applied to accurately track the delivery of cell in cell therapy, evaluate the therapy effect of gene delivery, and monitor tissue/cell-specific microenvironments. Commonly used reporter genes for MRI usually include genes encoding the enzyme (e.g., tyrosinase and β-galactosidase, the receptor on the cells (e.g., transferrin receptor, and endogenous reporter genes (e.g., ferritin reporter gene. However, low sensitivity limits the application of MRI and reporter gene-based multimodal imaging strategies are common including optical imaging and radionuclide imaging. These can significantly improve diagnostic efficiency and accelerate the development of new therapies.

  16. Molecular imaging of cancer using PET and SPECT

    DEFF Research Database (Denmark)

    Kjaer, Andreas

    2006-01-01

    for molecular imaging of cancer. Especially the possibility of a quick transfer of methods developed in animals to patients (translational research) is an important strength. This article will briefly discuss the newest applications and their importance and perspective in relation to the shift in paradigm......Molecular imaging allows for the study of molecular and cellular events in the living intact organism. The nuclear medicine methodologies of positron emission tomography (PET) and single photon emission computer tomography (SPECT) posses several advantages, which make them particularly suited...

  17. Molecular Imaging and Precision Medicine in Dementia and Movement Disorders.

    Science.gov (United States)

    Mallik, Atul K; Drzezga, Alexander; Minoshima, Satoshi

    2017-01-01

    Precision medicine (PM) has been defined as "prevention and treatment strategies that take individual variability into account." Molecular imaging (MI) is an ideally suited tool for PM approaches to neurodegenerative dementia and movement disorders (MD). Here we review PM approaches and discuss how they may be applied to other associated neurodegenerative dementia and MD. With ongoing major therapeutic research initiatives that include the use of molecular imaging, we look forward to established interventions targeted to specific molecular pathophysiology and expect the potential benefit of MI PM approaches in neurodegenerative dementia and MD will only increase. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Echocardiography and cardiovascular MRI entwined within the imaging domain; uniting the two. A compendium for the echocardiographer.

    Science.gov (United States)

    Shah, Moneal B; Doyle, Mark; Farah, Victor; Biederman, Robert W W

    2018-04-01

    A review of the unique and complementary roles echocardiography and cardiovascular MRI provide to the clinician. A focus on the physics of each modality as well as imaging of the left ventricle. © 2018 Wiley Periodicals, Inc.

  19. Nuclear Molecular Imaging Strategies in Immune Checkpoint Inhibitor Therapy

    DEFF Research Database (Denmark)

    Guldbrandsen, Kasper F; Hendel, Helle W; Langer, Seppo W

    2017-01-01

    this, new response criteria for evaluating these patients with morphologic imaging have been proposed. The aim of this paper is to review and discuss the current evidence for the use of molecular imaging, e.g., PET/CT (Positron Emission Tomography/Computer Tomography) with18F-Fluorodeoxyglucoes (FDG...

  20. Molecular mass spectrometry imaging in biomedical and life science research

    Czech Academy of Sciences Publication Activity Database

    Pól, Jaroslav; Strohalm, Martin; Havlíček, Vladimír; Volný, Michael

    2010-01-01

    Roč. 134, č. 5 (2010), s. 423-443 ISSN 0948-6143 R&D Projects: GA MŠk LC545; GA ČR GPP206/10/P018 Institutional research plan: CEZ:AV0Z50200510 Keywords : Mass spectrometry * Chemical imaging * Molecular imaging Subject RIV: EE - Microbiology, Virology Impact factor: 4.727, year: 2010

  1. Cardiovascular assessment of patients with Ullrich-Turner's Syndrome on Doppler echocardiography and magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Castro Ana Valéria Barros de

    2002-01-01

    Full Text Available OBJECTIVE: To assess the cardiovascular features of Ullrich-Turner's syndrome using echocardiography and magnetic resonance imaging, and to correlate them with the phenotype and karyotype of the patients. The diagnostic concordance between the 2 methods was also assessed. METHODS: Fifteen patients with the syndrome were assessed by echocardiography and magnetic resonance imaging (cardiac chambers, valves, and aorta. Their ages ranged from 10 to 28 (mean of 16.7 years. The karyotype was analyzed in 11 or 25 metaphases of peripheral blood lymphocytes, or both. RESULTS: The most common phenotypic changes were short stature and spontaneous absence of puberal development (100%; 1 patient had a cardiac murmur. The karyotypes detected were as follows: 45,X (n=7, mosaics (n=5, and deletions (n=3. No echocardiographic changes were observed. In regard to magnetic resonance imaging, coarctation and dilation of the aorta were found in 1 patient, and isolated dilation of the aorta was found in 4 patients. CONCLUSION: The frequencies of coarctation and dilation of the aorta detected on magnetic resonance imaging were similar to those reported in the literature (5.5% to 20%, and 6.3% to 29%, respectively. This confirmed the adjuvant role of magnetic resonance imaging to Doppler echocardiography for diagnosing cardiovascular alterations in patients with Ullrich-Turner's syndrome.

  2. Novel approach to improve molecular imaging research: Correlation between macroscopic and molecular pathological findings in patients

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Ingrid, E-mail: i.boehm@uni-bonn.de [Department of Diagnostic Radiology, ZARF Project, Center for Molecular Imaging Research MBMB, Philipps University of Marburg, Baldingerstrasse, 35039 Marburg (Germany)

    2011-09-15

    Purpose: Currently, clinical research approaches are sparse in molecular imaging studies. Moreover, possible links between imaging features and pathological laboratory parameters are unknown, so far. Therefore, the goal was to find a possible relationship between imaging features and peripheral blood cell apoptosis, and thereby to present a novel way to complement molecular imaging research. Materials and methods: The investigation has been done in systemic lupus erythematosus (SLE), a prototype of an autoimmune disease characterized by multiorgan involvement, autoantibody production, and disturbed apoptosis. Retrospectively, radiological findings have been compared to both autoantibody findings and percentage apoptotic blood cells. Results: Two SLE groups could be identified: patients with normal (annexin V binding < 20%), and with increased apoptosis (annexin V binding > 20%) of peripheral blood cells. The frequency of radiological examinations in SLE patients significantly correlated with an increased percentage of apoptotic cells (p < 0.005). In patients with characteristic imaging findings (e.g. lymph node swelling, pleural effusion) an elevated percentage of apoptotic cells was present. In contrast SLE-patients with normal imaging findings or uncharacteristic results of minimal severity had normal percentages of apoptotic blood cells. Conclusion: This correlation between radiographic findings and percentage of apoptotic blood cells provides (1) further insight into pathological mechanisms of SLE, (2) will offer the possibility to introduce apoptotic biomarkers as molecular probes for clinical molecular imaging approaches in future to early diagnose organ complaints in patients with SLE, and (3) is a plea to complement molecular imaging research by this clinical approach.

  3. Validation of an imaging based cardiovascular risk score in a Scottish population.

    Science.gov (United States)

    Kockelkoren, Remko; Jairam, Pushpa M; Murchison, John T; Debray, Thomas P A; Mirsadraee, Saeed; van der Graaf, Yolanda; Jong, Pim A de; van Beek, Edwin J R

    2018-01-01

    A radiological risk score that determines 5-year cardiovascular disease (CVD) risk using routine care CT and patient information readily available to radiologists was previously developed. External validation in a Scottish population was performed to assess the applicability and validity of the risk score in other populations. 2915 subjects aged ≥40 years who underwent routine clinical chest CT scanning for non-cardiovascular diagnostic indications were followed up until first diagnosis of, or death from, CVD. Using a case-cohort approach, all cases and a random sample of 20% of the participant's CT examinations were visually graded for cardiovascular calcifications and cardiac diameter was measured. The radiological risk score was determined using imaging findings, age, gender, and CT indication. Performance on 5-year CVD risk prediction was assessed. 384 events occurred in 2124 subjects during a mean follow-up of 4.25 years (0-6.4 years). The risk score demonstrated reasonable performance in the studied population. Calibration showed good agreement between actual and 5-year predicted risk of CVD. The c-statistic was 0.71 (95%CI:0.67-0.75). The radiological CVD risk score performed adequately in the Scottish population offering a potential novel strategy for identifying patients at high risk for developing cardiovascular disease using routine care CT data. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The development of nanobody probes for molecular imaging

    International Nuclear Information System (INIS)

    Ding Zhiling; Lan Xiaoli; Zhang Yongxue

    2014-01-01

    The nanobody is a novel antibody fragment, which has beneficial biophysical and pharmacokinetic properties, such as the small molecular weight, high affinity and specificity for antigen. Nanobody is ideally suitable for molecular imaging as a targeting probe that could label antigen at nmol level in vitro. In animal models of xenografted tumor, atherosclerotic plaques and brain disorders, the target tissues were specifically and clearly detected and the high tumor-to-blood (T/B) ratios were obtained. Structural or chemical modified nanobodies will have higher affinity and retention to target tissues, and be convenient for the application of molecular imaging. With the development of the related research, nanobody-based molecular imaging will be gradually transformed into the clinical applications, and play an important role in early diagnosis and therapeutic assessment. (authors)

  5. Mechanically magnified imaging of molecular interferograms

    International Nuclear Information System (INIS)

    Stibor, A.; Stefanov, A.; Goldfarb, F.; Reiger, E.; Arndt, M.

    2005-01-01

    Full text: Imaging of surface adsorbed molecules is presented as a valuable detection method for matter interferometry with fluorescent particles. A mechanical magnification scheme is implemented to circumvent the optical resolution limit. Mechanically magnified fluorescence imaging turns out to be an excellent tool for recording quantum interference patterns with high visibility. A unique advantage of this technique is its scalability: for certain classes of nanosized objects, the detection sensitivity will even increase significantly with increasing size of the particle. (author)

  6. Cancerology: to see and to treat with molecular imaging

    International Nuclear Information System (INIS)

    2004-01-01

    By allowing to visualize, beyond the organs and tissues structure, the molecules present inside cells and their action in cell functioning, to the genome level, the molecular imaging opens a new era in biology and medicine and creates the conditions for the perfecting of targeting and personalised treatments of cancers. The E.M.I.L. network is the only European network in molecular imaging for the cancer. It has been initiated and is coordinated by 'the genes expression in vivo imaging group' of the Cea at Orsay. The E.M.I.L network represents 43 organisms of 13 european countries with 6 technological platforms. (N.C.)

  7. Correlation of chronic kidney disease, diabetes and peripheral artery disease with cardiovascular events in patients using stress myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Furuhashi, Tatsuhiko; Masai, Hirofumi; Kunimasa, Taeko; Nakazato, Ryo; Fukuda, Hiroshi; Sugi, Kaoru; Moroi, Masao

    2011-01-01

    Normal stress myocardial perfusion imaging (MPI) studies generally suggest an excellent prognosis for cardiovascular events. Chronic kidney disease (CKD), diabetes and peripheral artery disease (PAD) have been established as the risk factors for cardiovascular events. However, whether these risk factors significantly predict cardiovascular events in patients with normal stress MPI is unclear. The purpose of this study was to evaluate the prognostic value of these risk factors in patients with normal stress MPI. Patients with normal stress MPI (n=372, male=215 and female=157, age=69 years, CKD without hemodialysis=95, diabetes=99, PAD=19, previous coronary artery disease=116) were followed up for 14 months. Normal stress MPI was defined as a summed stress score of 2 and/or persistent proteinuria. Cardiovascular events included cardiac death, non-fatal myocardial infarction and congestive heart failure requiring hospitalization. Cardiovascular events occurred in 20 of 372 patients (5.4%). In univariate Cox regression analysis, PAD, diabetes, diabetic retinopathy, insulin use, anemia, hypoalbuminemia, CKD, left ventricular ejection fraction and pharmacological stress tests were significant predictors of cardiovascular events. In multivariate Cox regression analysis, PAD, diabetes and CKD were independent and significant predictors for cardiovascular events, and their number was the strongest predictor for cardiovascular events (hazard ratio=21.7, P<0.001). PAD, diabetes and CKD are coexisting, independent and significant risk factors for cardiovascular events, CKD being the strongest predictor. The number of coexisting risk factors is important in predicting cardiovascular events in patients with normal stress MPI. (author)

  8. IMPACT (Imaging and Molecular Markers for Patients with Lung Cancer: Approaches with Molecular Targets and Complementary, Innovative and Therapeutic Modalities)

    National Research Council Canada - National Science Library

    Hong, Waun Ki; Herbst, Roy

    2006-01-01

    .... These projects combine targeted approaches using molecular and imaging techniques to validate activity against a target and monitor response using imaging modalities specific to the receptor using...

  9. IMPACT (Imaging and Molecular Markers for Patients with Lung Cancer: Approaches with Molecular Targets and Complementary, Innovative and Therapeutic Modalities)

    National Research Council Canada - National Science Library

    Hong, Waun K; Herbst, Roy

    2008-01-01

    .... These projects combine targeted approaches using molecular and imaging techniques to validate activity against a target and monitor response using imaging modalities specific to the receptor using...

  10. IMPACT (Imaging and Molecular Markers for Patients with Lung Cancer: Approaches with Molecular Targets and Complementary, Innovative and Therapeutic Modalities)

    National Research Council Canada - National Science Library

    Hong, Waun K; Herbst, Roy

    2007-01-01

    .... These projects combine targeted approaches using molecular and imaging techniques to validate activity against a target and monitor response using imaging modalities specific to the receptor using...

  11. [Future perspectives for diagnostic imaging in urology: from anatomic and functional to molecular imaging].

    Science.gov (United States)

    Macis, Giuseppe; Di Giovanni, Silvia; Di Franco, Davide; Bonomo, Lorenzo

    2013-01-01

    The future approach of diagnostic imaging in urology follows the technological progress, which made the visualization of in vivo molecular processes possible. From anatomo-morphological diagnostic imaging and through functional imaging molecular radiology is reached. Based on molecular probes, imaging is aimed at assessing the in vivo molecular processes, their physiology and function at cellular level. The future imaging will investigate the complex tumor functioning as metabolism, aerobic glycolysis in particular, angiogenesis, cell proliferation, metastatic potential, hypoxia, apoptosis and receptors expressed by neoplastic cells. Methods for performing molecular radiology are CT, MRI, PET-CT, PET-MRI, SPECT and optical imaging. Molecular ultrasound combines technological advancement with targeted contrast media based on microbubbles, this allowing the selective registration of microbubble signal while that of stationary tissues is suppressed. An experimental study was carried out where the ultrasound molecular probe BR55 strictly bound to prostate tumor results in strong enhancement in the early phase after contrast, this contrast being maintained in the late phase. This late enhancement is markedly significant for the detection of prostatic cancer foci and to guide the biopsy sampling. The 124I-cG250 molecular antibody which is strictly linked to cellular carbonic anhydrase IX of clear cell renal carcinoma, allows the acquisition of diagnostic PET images of clear cell renal carcinoma without biopsy. This WG-250 (RENCAREX) antibody was used as a therapy in metastatic clear cell renal carcinoma. Future advancements and applications will result in early cancer diagnosis, personalized therapy that will be specific according to the molecular features of cancer and leading to the development of catheter-based multichannel molecular imaging devices for cystoscopy-based molecular imaging diagnosis and intervention.

  12. Thermoacoustic Molecular Imaging of Small Animals

    Directory of Open Access Journals (Sweden)

    Robert A. Kruger

    2003-04-01

    Full Text Available We have designed, constructed, and tested a thermoacoustic computed tomography (TCT scanner for imaging optical absorption in small animals in three dimensions. The device utilizes pulsed laser irradiation (680–1064 nm and a unique, 128-element transducer array. We quantified the isotropic spatial resolution of this scanner to be 0.35 mm. We describe a dual-wavelength subtraction technique for isolating optical dyes with TCT. Phantom experiments demonstrate that we can detect 5 fmol of a near-infrared dye (indocyanine green, ICG in a 1-ML volume using dual-wavelength subtraction. Initial TCT imaging in phantoms and in two sacrificed mice suggests that three-dimensional, optical absorption patterns in small animals can be detected with an order of magnitude better spatial resolution and an order of magnitude better low-contrast detectability in small animals when compared to fluorescence imaging or diffusion optical tomography.

  13. Diagnostic performance of dual-energy CT stress myocardial perfusion imaging: direct comparison with cardiovascular MRI.

    Science.gov (United States)

    Ko, Sung Min; Song, Meong Gun; Chee, Hyun Kun; Hwang, Hweung Kon; Feuchtner, Gudrun Maria; Min, James K

    2014-12-01

    The purpose of this study was to assess the diagnostic performance of stress perfusion dual-energy CT (DECT) and its incremental value when used with coronary CT angiography (CTA) for identifying hemodynamically significant coronary artery disease. One hundred patients with suspected or known coronary artery disease without chronic myocardial infarction detected with coronary CTA underwent stress perfusion DECT, stress cardiovascular perfusion MRI, and invasive coronary angiography (ICA). Stress perfusion DECT and cardiovascular stress perfusion MR images were used for detecting perfusion defects. Coronary CTA and ICA were evaluated in the detection of ≥50% coronary stenosis. The diagnostic performance of coronary CTA for detecting hemo-dynamically significant stenosis was assessed before and after stress perfusion DECT on a per-vessel basis with ICA and cardiovascular stress perfusion MRI as the reference standard. The performance of stress perfusion DECT compared with cardiovascular stress perfusion MRI on a per-vessel basis in the detection of perfusion defects was sensitivity, 89%; specificity, 74%; positive predictive value, 73%; negative predictive value, 90%. Per segment, these values were sensitivity, 76%; specificity, 80%; positive predictive value, 63%; and negative predictive value, 88%. Compared with ICA and cardiovascular stress perfusion MRI per vessel territory the sensitivity, specificity, positive predictive value, and negative predictive value of coronary CTA were 95%, 61%, 61%, and 95%. The values for stress perfusion DECT were 92%, 72%, 68%, and 94%. The values for coronary CTA and stress perfusion DECT were 88%, 79%, 73%, and 91%. The ROC AUC increased from 0.78 to 0.84 (p=0.02) with the use of coronary CTA and stress perfusion DECT compared with coronary CTA alone. Stress perfusion DECT plays a complementary role in enhancing the accuracy of coronary CTA for identifying hemodynamically significant coronary stenosis.

  14. Molecular Imaging in Stem Cell Therapy for Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Fahuan Song

    2014-01-01

    Full Text Available Spinal cord injury (SCI is a serious disease of the center nervous system (CNS. It is a devastating injury with sudden loss of motor, sensory, and autonomic function distal to the level of trauma and produces great personal and societal costs. Currently, there are no remarkable effective therapies for the treatment of SCI. Compared to traditional treatment methods, stem cell transplantation therapy holds potential for repair and functional plasticity after SCI. However, the mechanism of stem cell therapy for SCI remains largely unknown and obscure partly due to the lack of efficient stem cell trafficking methods. Molecular imaging technology including positron emission tomography (PET, magnetic resonance imaging (MRI, optical imaging (i.e., bioluminescence imaging (BLI gives the hope to complete the knowledge concerning basic stem cell biology survival, migration, differentiation, and integration in real time when transplanted into damaged spinal cord. In this paper, we mainly review the molecular imaging technology in stem cell therapy for SCI.

  15. Magnetic nanoparticles as contrast agents for molecular imaging in medicine

    Science.gov (United States)

    O'Donnell, Matthew

    2018-05-01

    For over twenty years, superparamagnetic nanoparticles have been developed for a number of medical applications ranging from bioseparations, magnetic drug targeting, hyperthermia and imaging. Recent studies have shown that they can be functionalized for in vivo biological targeting, potentially enabling nanoagents for molecular imaging and site-localized drug delivery. Here we review several imaging technologies developed using functionalized superparamagnetic iron oxide nanoparticles (SPIONs) as targeted molecular agents. Several imaging modalities have exploited the large induced magnetic moment of SPIONs to create local mechanical force. Magnetic force microscopy can probe nanoparticle uptake in single cells. For in vivo applications, magnetomotive modulation of primary images in ultrasound (US), photoacoustics (PA), and optical coherence tomography (OCT) can help identify very small concentrations of nanoagents while simultaneously suppressing intrinsic background signals from tissue.

  16. Multi-target molecular imaging and its progress in research and application

    International Nuclear Information System (INIS)

    Tang Ganghua

    2011-01-01

    Multi-target molecular imaging (MMI) is an important field of research in molecular imaging. It includes multi-tracer multi-target molecular imaging(MTMI), fusion-molecule multi-target imaging (FMMI), coupling-molecule multi-target imaging (CMMI), and multi-target multifunctional molecular imaging(MMMI). In this paper,imaging modes of MMI are reviewed, and potential applications of positron emission tomography MMI in near future are discussed. (author)

  17. Cardiovascular fluid dynamics. Methods for flow and pressure field analysis from magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ebbers, T.

    2001-01-01

    Cardiovascular blood flow is highly complex and incompletely understood. Blood flow patterns are expected to influence the opening and closing of normal and prosthetic heart valves, the efficiency of cardiac filling and ejection, and the resistance to thrombus formation within the heart. Conventional diagnostic techniques are poorly suited to the study of the three-dimensional (3D) blood flow patterns in the heart chambers and large vessels. Noninvasive methods have also been inadequate in studying intracardiac pressure differences, which are the driving force of flow and are critical in the evaluation of many cardiovascular abnormalities. This thesis focuses on the development of non-invasive methods for analysis of 3D cardiovascular blood flow. Simultaneous study of cardiovascular fluid dynamics allowed knowledge exchange across the two disciplines, facilitating the development process and broadening the applicability of the methods. A time-resolved 3D phase-contrast Magnetic Resonance Imaging (MRI) technique was used to acquire the velocity vector field in a 3D volume encompassing the entire heart or a large vessel. Cardiovascular blood flow patterns were visualized by use of particle traces, which revealed, for instance, vortical flow patterns in the left atrium. By applying the Navier-Stokes equation along a user-defined line in the 3D velocity vector field, the relative pressure could be obtained as an excellent supplement to the flow pattern visualization. Using a delineation of the blood pool, the time-varying 3D relative pressure field in the human left ventricle was obtained from the velocity field by use of the pressure Poisson equation. A delineation of the heart muscle, a task that is almost impossible to perform on 3D MRI either automatically or manually, was also achieved by usage of particle traces. This segmentation allows automatic calculation of the 3D relative pressure field, as well as calculation of well-established parameters such as

  18. Cardiovascular fluid dynamics. Methods for flow and pressure field analysis from magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, T

    2001-05-01

    Cardiovascular blood flow is highly complex and incompletely understood. Blood flow patterns are expected to influence the opening and closing of normal and prosthetic heart valves, the efficiency of cardiac filling and ejection, and the resistance to thrombus formation within the heart. Conventional diagnostic techniques are poorly suited to the study of the three-dimensional (3D) blood flow patterns in the heart chambers and large vessels. Noninvasive methods have also been inadequate in studying intracardiac pressure differences, which are the driving force of flow and are critical in the evaluation of many cardiovascular abnormalities. This thesis focuses on the development of non-invasive methods for analysis of 3D cardiovascular blood flow. Simultaneous study of cardiovascular fluid dynamics allowed knowledge exchange across the two disciplines, facilitating the development process and broadening the applicability of the methods. A time-resolved 3D phase-contrast Magnetic Resonance Imaging (MRI) technique was used to acquire the velocity vector field in a 3D volume encompassing the entire heart or a large vessel. Cardiovascular blood flow patterns were visualized by use of particle traces, which revealed, for instance, vortical flow patterns in the left atrium. By applying the Navier-Stokes equation along a user-defined line in the 3D velocity vector field, the relative pressure could be obtained as an excellent supplement to the flow pattern visualization. Using a delineation of the blood pool, the time-varying 3D relative pressure field in the human left ventricle was obtained from the velocity field by use of the pressure Poisson equation. A delineation of the heart muscle, a task that is almost impossible to perform on 3D MRI either automatically or manually, was also achieved by usage of particle traces. This segmentation allows automatic calculation of the 3D relative pressure field, as well as calculation of well-established parameters such as

  19. 2017 multimodality appropriate use criteria for noninvasive cardiac imaging: Export consensus of the Asian society of cardiovascular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Kyong Min Sarah [Dept. of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Kim, Jeong A [Dept. of Radiology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang (Korea, Republic of); Choe, Yeon Hyeon [Dept. of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); and others

    2017-11-15

    In 2010, the Asian Society of Cardiovascular Imaging (ASCI) provided recommendations for cardiac CT and MRI, and this document reflects an update of the 2010 ASCI appropriate use criteria (AUC). In 2016, the ASCI formed a new working group for revision of AUC for noninvasive cardiac imaging. A major change that we made in this document is the rating of various noninvasive tests (exercise electrocardiogram, echocardiography, positron emission tomography, single-photon emission computed tomography, radionuclide imaging, cardiac magnetic resonance, and cardiac computed tomography/angiography), compared side by side for their applications in various clinical scenarios. Ninety-five clinical scenarios were developed from eight selected pre-existing guidelines and classified into four sections as follows: 1) detection of coronary artery disease, symptomatic or asymptomatic; 2) cardiac evaluation in various clinical scenarios; 3) use of imaging modality according to prior testing; and 4) evaluation of cardiac structure and function. The clinical scenarios were scored by a separate rating committee on a scale of 1–9 to designate appropriate use, uncertain use, or inappropriate use according to a modified Delphi method. Overall, the AUC ratings for CT were higher than those of previous guidelines. These new AUC provide guidance for clinicians choosing among available testing modalities for various cardiac diseases and are also unique, given that most previous AUC for noninvasive imaging include only one imaging technique. As cardiac imaging is multimodal in nature, we believe that these AUC will be more useful for clinical decision making.

  20. Online molecular image repository and analysis system: A multicenter collaborative open-source infrastructure for molecular imaging research and application.

    Science.gov (United States)

    Rahman, Mahabubur; Watabe, Hiroshi

    2018-05-01

    Molecular imaging serves as an important tool for researchers and clinicians to visualize and investigate complex biochemical phenomena using specialized instruments; these instruments are either used individually or in combination with targeted imaging agents to obtain images related to specific diseases with high sensitivity, specificity, and signal-to-noise ratios. However, molecular imaging, which is a multidisciplinary research field, faces several challenges, including the integration of imaging informatics with bioinformatics and medical informatics, requirement of reliable and robust image analysis algorithms, effective quality control of imaging facilities, and those related to individualized disease mapping, data sharing, software architecture, and knowledge management. As a cost-effective and open-source approach to address these challenges related to molecular imaging, we develop a flexible, transparent, and secure infrastructure, named MIRA, which stands for Molecular Imaging Repository and Analysis, primarily using the Python programming language, and a MySQL relational database system deployed on a Linux server. MIRA is designed with a centralized image archiving infrastructure and information database so that a multicenter collaborative informatics platform can be built. The capability of dealing with metadata, image file format normalization, and storing and viewing different types of documents and multimedia files make MIRA considerably flexible. With features like logging, auditing, commenting, sharing, and searching, MIRA is useful as an Electronic Laboratory Notebook for effective knowledge management. In addition, the centralized approach for MIRA facilitates on-the-fly access to all its features remotely through any web browser. Furthermore, the open-source approach provides the opportunity for sustainable continued development. MIRA offers an infrastructure that can be used as cross-boundary collaborative MI research platform for the rapid

  1. Molecular Imaging of Ovarian Carcinoma Angiogenesis

    Science.gov (United States)

    2007-03-01

    specifically taken up by several benign conditions such as inflammatory disease, pneumonia, brown fat, muscle, bowel uptake, and granulomatous disease...demonstrated in vivo imaging of vascular cell proliferation- associated states, whether focal, as in postangioplasty re- stenosis , or diffuse, as in pulmonary...limitations. The tracer can be nonspecifically taken up by several benign condi- tions such as inflammatory disease, pneumonia, brown fat, muscle

  2. Molecular Imaging of Breast Cancer: Present and future directions

    Directory of Open Access Journals (Sweden)

    David eAlcantara

    2014-12-01

    Full Text Available Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumour is located in the body, but also to visualize the expression and activity of specific molecules (e.g. proteases and protein kinases and biological processes (e.g. apoptosis, angiogenesis, and metastasis that influence tumour behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.

  3. Molecular imaging of prostate cancer: translating molecular biology approaches into the clinical realm.

    Science.gov (United States)

    Vargas, Hebert Alberto; Grimm, Jan; F Donati, Olivio; Sala, Evis; Hricak, Hedvig

    2015-05-01

    The epidemiology of prostate cancer has dramatically changed since the introduction of prostate-specific antigen (PSA) screening in the 1980's. Most prostate cancers today are detected at early stages of the disease and are considered 'indolent'; however, some patients' prostate cancers demonstrate a more aggressive behaviour which leads to rapid progression and death. Increasing understanding of the biology underlying the heterogeneity that characterises this disease has led to a continuously evolving role of imaging in the management of prostate cancer. Functional and metabolic imaging techniques are gaining importance as the impact on the therapeutic paradigm has shifted from structural tumour detection alone to distinguishing patients with indolent tumours that can be managed conservatively (e.g., by active surveillance) from patients with more aggressive tumours that may require definitive treatment with surgery or radiation. In this review, we discuss advanced imaging techniques that allow direct visualisation of molecular interactions relevant to prostate cancer and their potential for translation to the clinical setting in the near future. The potential use of imaging to follow molecular events during drug therapy as well as the use of imaging agents for therapeutic purposes will also be discussed. • Advanced imaging techniques allow direct visualisation of molecular interactions in prostate cancer. • MRI/PET, optical and Cerenkov imaging facilitate the translation of molecular biology. • Multiple compounds targeting PSMA expression are currently undergoing clinical translation. • Other targets (e.g., PSA, prostate-stem cell antigen, GRPR) are in development.

  4. Non-contact assessment of obstructive sleep apnea cardiovascular biomarkers using photoplethysmography imaging

    Science.gov (United States)

    Amelard, Robert; Pfisterer, Kaylen J.; Jagani, Shubh; Clausi, David A.; Wong, Alexander

    2018-02-01

    Obstructive sleep apnea (OSA) affects 20% of the adult population, and is associated with cardiovascular and cognitive morbidities. However, it is estimated that up to 80% of treatable OSA cases remain undiagnosed. Cur- rent methods for diagnosing OSA are expensive, labor-intensive, and involve uncomfortable wearable sensors. This study explored the feasibility of non-contact biophotonic assessment of OSA cardiovascular biomarkers via photoplethysmography imaging (PPGI). In particular, PPGI was used to monitor the hemodynamic response to obstructive respiratory events. Sleep apnea onset was simulated using Muller's maneuver in which breathing was obstructed by a respiratory clamp. A custom PPGI system, coded hemodynamic imaging (CHI), was positioned 1 m above the bed and illuminated the participant's head with 850 nm light, providing non-intrusive illumination for night-time monitoring. A video was recorded before, during and following an apnea event at 60 fps, yielding 17 ms temporal resolution. Per-pixel absorbance signals were extracted using a Beer-Lambert derived light transport model, and subsequently denoised. The extracted hemodynamic signal exhibited dynamic temporal modulation during and following the apnea event. In particular, the pulse wave amplitude (PWA) decreased during obstructed breathing, indicating vasoconstriction. Upon successful inhalation, the PWA gradually increased toward homeostasis following a temporal phase delay. This temporal vascular tone modulation provides insight into autonomic and vascular response, and may be used to assess sleep apnea using non-contact biophotonic imaging.

  5. Risk stratification in cardiovascular disease primary prevention - scoring systems, novel markers, and imaging techniques.

    LENUS (Irish Health Repository)

    Zannad, Faiez

    2012-04-01

    The aim of this paper is to review and discuss current methods of risk stratification for cardiovascular disease (CVD) prevention, emerging biomarkers, and imaging techniques, and their relative merits and limitations. This report is based on discussions that took place among experts in the area during a special CardioVascular Clinical Trialists workshop organized by the European Society of Cardiology Working Group on Cardiovascular Pharmacology and Drug Therapy in September 2009. Classical risk factors such as blood pressure and low-density lipoprotein cholesterol levels remain the cornerstone of risk estimation in primary prevention but their use as a guide to management is limited by several factors: (i) thresholds for drug treatment vary with the available evidence for cost-effectiveness and benefit-to-risk ratios; (ii) assessment may be imprecise; (iii) residual risk may remain, even with effective control of dyslipidemia and hypertension. Novel measures include C-reactive protein, lipoprotein-associated phospholipase A(2) , genetic markers, and markers of subclinical organ damage, for which there are varying levels of evidence. High-resolution ultrasound and magnetic resonance imaging to assess carotid atherosclerotic lesions have potential but require further validation, standardization, and proof of clinical usefulness in the general population. In conclusion, classical risk scoring systems are available and inexpensive but have a number of limitations. Novel risk markers and imaging techniques may have a place in drug development and clinical trial design. However, their additional value above and beyond classical risk factors has yet to be determined for risk-guided therapy in CVD prevention.

  6. Cardiovascular CT angiography in neonates and children: Image quality and potential for radiation dose reduction with iterative image reconstruction techniques

    International Nuclear Information System (INIS)

    Tricarico, Francesco; Hlavacek, Anthony M.; Schoepf, U.J.; Ebersberger, Ullrich; Nance, John W.; Vliegenthart, Rozemarijn; Cho, Young Jun; Spears, J.R.; Secchi, Francesco; Savino, Giancarlo; Marano, Riccardo; Bonomo, Lorenzo; Schoenberg, Stefan O.; Apfaltrer, Paul

    2013-01-01

    To evaluate image quality (IQ) of low-radiation-dose paediatric cardiovascular CT angiography (CTA), comparing iterative reconstruction in image space (IRIS) and sinogram-affirmed iterative reconstruction (SAFIRE) with filtered back-projection (FBP) and estimate the potential for further dose reductions. Forty neonates and children underwent low radiation CTA with or without ECG synchronisation. Data were reconstructed with FBP, IRIS and SAFIRE. For ECG-synchronised studies, half-dose image acquisitions were simulated. Signal noise was measured and IQ graded. Effective dose (ED) was estimated. Mean absolute and relative image noise with IRIS and full-dose SAFIRE was lower than with FBP (P < 0.001), while SNR and CNR were higher (P < 0.001). Image noise was also lower and SNR and CNR higher in half-dose SAFIRE studies compared with full-and half-dose FBP studies (P < 0.001). IQ scores were higher for IRIS, full-dose SAFIRE and half-dose SAFIRE than for full-dose FBP and higher for half-dose SAFIRE than for half-dose FBP (P < 0.05). Median weight-specific ED was 0.3 mSv without and 1.36 mSv with ECG synchronisation. The estimated ED of half-dose SAFIRE studies was 0.68 mSv. IR improves image noise, SNR, CNR and subjective IQ compared with FBP in low-radiation-dose paediatric CTA and allows further dose reductions without compromising diagnostic IQ. (orig.)

  7. Cardiovascular CT angiography in neonates and children: Image quality and potential for radiation dose reduction with iterative image reconstruction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Tricarico, Francesco [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Catholic University of the Sacred Heart, ' ' A. Gemelli' ' Hospital, Department of Bioimaging and Radiological Sciences, Rome (Italy); Hlavacek, Anthony M. [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Children' s Hospital, Medical University of South Carolina, Division of Pediatric Cardiology, Charleston, SC (United States); Schoepf, U.J. [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Children' s Hospital, Medical University of South Carolina, Division of Pediatric Cardiology, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Ebersberger, Ullrich [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Heart Centre Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany); Nance, John W. [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Johns Hopkins Hospital, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Vliegenthart, Rozemarijn [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); University Medical Centre Groningen/University of Groningen, Centre for Medical Imaging - North East Netherlands, Department of Radiology, Groningen (Netherlands); Cho, Young Jun [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Konyang University School of Medicine, Department of Radiology, Daejeon (Korea, Republic of); Spears, J.R. [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Secchi, Francesco [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Milan School of Medicine IRCCS Policlinico San Donato, Department of Medical and Surgical Sciences, Radiology Unit, Milan (Italy); Savino, Giancarlo; Marano, Riccardo; Bonomo, Lorenzo [Catholic University of the Sacred Heart, ' ' A. Gemelli' ' Hospital, Department of Bioimaging and Radiological Sciences, Rome (Italy); Schoenberg, Stefan O. [University Medical Centre Mannheim, Medical Faculty Mannheim - Heidelberg University, Institute of Clinical Radiology and Nuclear Medicine, Mannheim (Germany); Apfaltrer, Paul [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); University Medical Centre Mannheim, Medical Faculty Mannheim - Heidelberg University, Institute of Clinical Radiology and Nuclear Medicine, Mannheim (Germany)

    2013-05-15

    To evaluate image quality (IQ) of low-radiation-dose paediatric cardiovascular CT angiography (CTA), comparing iterative reconstruction in image space (IRIS) and sinogram-affirmed iterative reconstruction (SAFIRE) with filtered back-projection (FBP) and estimate the potential for further dose reductions. Forty neonates and children underwent low radiation CTA with or without ECG synchronisation. Data were reconstructed with FBP, IRIS and SAFIRE. For ECG-synchronised studies, half-dose image acquisitions were simulated. Signal noise was measured and IQ graded. Effective dose (ED) was estimated. Mean absolute and relative image noise with IRIS and full-dose SAFIRE was lower than with FBP (P < 0.001), while SNR and CNR were higher (P < 0.001). Image noise was also lower and SNR and CNR higher in half-dose SAFIRE studies compared with full-and half-dose FBP studies (P < 0.001). IQ scores were higher for IRIS, full-dose SAFIRE and half-dose SAFIRE than for full-dose FBP and higher for half-dose SAFIRE than for half-dose FBP (P < 0.05). Median weight-specific ED was 0.3 mSv without and 1.36 mSv with ECG synchronisation. The estimated ED of half-dose SAFIRE studies was 0.68 mSv. IR improves image noise, SNR, CNR and subjective IQ compared with FBP in low-radiation-dose paediatric CTA and allows further dose reductions without compromising diagnostic IQ. (orig.)

  8. Multimodality molecular imaging - from target description to clinical studies

    International Nuclear Information System (INIS)

    Schober, O.; Rahbar, K.; Riemann, B.

    2009-01-01

    This highlight lecture was presented at the closing session of the Annual Congress of the European Association of Nuclear Medicine (EANM) in Munich on 15 October 2008. The Congress was a great success: there were more than 4,000 participants, and 1,597 abstracts were submitted. Of these, 1,387 were accepted for oral or poster presentation, with a rejection rate of 14%. In this article a choice was made from 100 of the 500 lectures which received the highest scores by the scientific review panel. This article outlines the major findings and trends at the EANM 2008, and is only a brief summary of the large number of outstanding abstracts presented. Among the great number of oral and poster presentations covering nearly all fields of nuclear medicine some headlines have to be defined highlighting the development of nuclear medicine in the 21st century. This review focuses on the increasing impact of molecular and multimodality imaging in the field of nuclear medicine. In addition, the question may be asked as to whether the whole spectrum of nuclear medicine is nothing other than molecular imaging and therapy. Furthermore, molecular imaging will and has to go ahead to multimodality imaging. In view of this background the review was structured according to the single steps of molecular imaging, i.e. from target description to clinical studies. The following topics are addressed: targets, radiochemistry and radiopharmacy, devices and computer science, animals and preclinical evaluations, and patients and clinical evaluations. (orig.)

  9. Big heart data: advancing health informatics through data sharing in cardiovascular imaging.

    Science.gov (United States)

    Suinesiaputra, Avan; Medrano-Gracia, Pau; Cowan, Brett R; Young, Alistair A

    2015-07-01

    The burden of heart disease is rapidly worsening due to the increasing prevalence of obesity and diabetes. Data sharing and open database resources for heart health informatics are important for advancing our understanding of cardiovascular function, disease progression and therapeutics. Data sharing enables valuable information, often obtained at considerable expense and effort, to be reused beyond the specific objectives of the original study. Many government funding agencies and journal publishers are requiring data reuse, and are providing mechanisms for data curation and archival. Tools and infrastructure are available to archive anonymous data from a wide range of studies, from descriptive epidemiological data to gigabytes of imaging data. Meta-analyses can be performed to combine raw data from disparate studies to obtain unique comparisons or to enhance statistical power. Open benchmark datasets are invaluable for validating data analysis algorithms and objectively comparing results. This review provides a rationale for increased data sharing and surveys recent progress in the cardiovascular domain. We also highlight the potential of recent large cardiovascular epidemiological studies enabling collaborative efforts to facilitate data sharing, algorithms benchmarking, disease modeling and statistical atlases.

  10. Ultrafast molecular imaging by laser-induced electron diffraction

    International Nuclear Information System (INIS)

    Peters, M.; Nguyen-Dang, T. T.; Cornaggia, C.; Saugout, S.; Charron, E.; Keller, A.; Atabek, O.

    2011-01-01

    We address the feasibility of imaging geometric and orbital structures of a polyatomic molecule on an attosecond time scale using the laser-induced electron diffraction (LIED) technique. We present numerical results for the highest molecular orbitals of the CO 2 molecule excited by a near-infrared few-cycle laser pulse. The molecular geometry (bond lengths) is determined within 3% of accuracy from a diffraction pattern which also reflects the nodal properties of the initial molecular orbital. Robustness of the structure determination is discussed with respect to vibrational and rotational motions with a complete interpretation of the laser-induced mechanisms.

  11. Advances in study of molecular imaging reporte gene systems

    International Nuclear Information System (INIS)

    Wu Tao; An Rui

    2010-01-01

    The use of molecular imaging reporter gene systems has allowed gene therapy to move from the laboratory to the clinical application, which provides methodology to monitor the expression of therapeutic gene noninvasively and achieve quantitative outcome in vivo. Recently, the radionuclide reporter gene still is the focus many studies, but MRI and optical reporter gene have gradually played a important part in reporter gene systems. On the basis of combination of multi-subject, for example applied chemistry and molecular biology, more and more new modified reporter genes and molecular probes have spread out. This paper mainly introduces the advantages and disadvantages of reporter gene system and development trends. (authors)

  12. Development of molecular imaging in the European radiological community

    International Nuclear Information System (INIS)

    Grenier, Nicolas; Sardanelli, Francesco; Becker, Christoph D.; Walecki, Jerzy; Sebag, Guy; Lomas, David John; Krestin, Gabriel P.

    2009-01-01

    The recent and concomitant advances in molecular biology and imaging for diagnosis and therapy will place in vivo imaging techniques at the centre of their clinical transfer. Before that, a wide range of multidisciplinary preclinical research is already taking place. The involvement of radiologists in this new field of imaging sciences is therefore absolutely mandatory during these two phases of development. Achievement of such objectives requires the refinement of strategy within the European radiological community and the European Society of Radiology (ESR) will have to drive a number of actions to stimulate the younger generation of radiologists and to facilitate their access to knowledge. For that purpose, a molecular imaging (MI) subcommittee of the ESR Research Committee based on a group of involved radiologists will be constituted to develop contacts with other constitutive committees and associated societies to provide proposals to our community. (orig.)

  13. Molecular Imaging with Small Animal PET/CT

    DEFF Research Database (Denmark)

    Binderup, T.; El-Ali, H.H.; Skovgaard, D.

    2011-01-01

    is also described. In addition, the non-invasive nature of molecular imaging and the targets of these promising new tracers are attractive for other research areas as well, although these fields are much less explored. We present an example of an interesting research field with the application of small......Small animal positron emission tomography (PET) and computer tomography (CT) is an emerging field in pre-clinical imaging. High quality, state-of-the-art instruments are required for full optimization of the translational value of the small animal studies with PET and CT. However...... in this field of small animal molecular imaging with special emphasis on the targets for tissue characterization in tumor biology such as hypoxia, proliferation and cancer specific over-expression of receptors. The added value of applying CT imaging for anatomical localization and tumor volume measurements...

  14. [Microdose clinical trial--impact of PET molecular imaging].

    Science.gov (United States)

    Yano, Tsuneo; Watanabe, Yasuyoshi

    2010-10-01

    Microdose (MD) clinical trial and exploratory IND study including sub-therapeutic dose and therapeutic dose which are higher than microdoses are expected to bring about innovations in drug development. The outlines of guidances for microdose clinical trial and ICH-M3 (R2) issued by the MHLW in June, 2008, and February, 2010, are first explained, respectively, and some examples of their application to clinical developments of therapeutic drugs in the infection and cancer fields are introduced. Especially, thanks to the progress of molecular imaging research, a new field of drug development is explored by using imaging biomarkers for efficacy or safety evaluation which visualize biomarkers by PET imaging agents. Finally, the roadmap for drug development in infection and cancer fields utilizing PET molecular imaging is discussed.

  15. Molecular Imaging: A Promising Tool to Monitor Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2011-01-01

    Full Text Available Replacement of insulin production by pancreatic islet transplantation has great potential as a therapy for type 1 diabetes mellitus. At present, the lack of an effective approach to islet grafts assessment limits the success of this treatment. The development of molecular imaging techniques has the potential to fulfill the goal of real-time noninvasive monitoring of the functional status and viability of the islet grafts. We review the application of a variety of imaging modalities for detecting endogenous and transplanted beta-cell mass. The review also explores the various molecular imaging strategies for assessing islet delivery, the metabolic effects on the islet grafts as well as detection of immunorejection. Here, we highlight the use of combined imaging and therapeutic interventions in islet transplantation and the in vivo monitoring of stem cells differentiation into insulin-producing cells.

  16. Clinical application of nuclear magnetic resonance imaging (resistive type) on cardiovascular disease

    International Nuclear Information System (INIS)

    Imai, Hitoshi; Yoshida, Katsuya; Watanabe, Shigeru; Masuda, Yoshiaki; Inagaki, Yoshiaki; Ikehira, Hiroo; Fukuda, Nobuo; Tateno, Yukio.

    1984-01-01

    In order to evaluate the usefulness of Nuclear Magnetic Resonance (NMR) imaging in diagnosing cardiovascular disease, 27 subjects were examined using a 0.1-Tesla resistive type (ASAHI MARK-J). In 10 normal subjects, four cardiac chambers, interventricular septum, aorta, pulmonary vessels and vena cava were clearly identified in NMR imaging. In two patients with old anteroseptal myocardial infarction, anteroseptal wall thinning and left ventricular aneurysm with mural thrombi were demonstrated. In two cases of antrolateral and posterolateral myocardial infarction, however, infarcted areas were not identified in NMR imaging. In one patient with congestive cardiomyopathy, enlarged left ventricle without hypertrophy was recognized. In two patients with hypertrophic obstructive cardiomyopathy, NMR imaging disclosed thickened left ventricular wall associated with its narrowed cavity. A mural thrombus in the right ventricle was distinctly visualized in one patient with cardio-vascular Behcet's disease. In two patients with mitral valve stenosis, enlarged left atrium with a mural thrombus was clearly demonstrated in both cross and longitudinal sections. In three patients with thoratic aortic aneurysm, local dilatation of aorta and mural thrombi were recognized. In four patients with dissecting aortic aneurysm, double channels with an intimal flap in the aorta were visualized in NMR imaging. Mean T 1 values and standard deviations of left ventricle, left ventricular wall, and thrombi were 593+-89, 341+-20, 316+-84 msec, respectively. Mean T 1 values of thrombi were ordinally shorter than those of left ventricule. But some thrombi which might be expected fresh had longer T 1 values. (J.P.N.)

  17. Simultaneous molecular and anatomical imaging of the mouse in vivo

    International Nuclear Information System (INIS)

    Goertzen, Andrew L; Meadors, A Ken; Silverman, Robert W; Cherry, Simon R

    2002-01-01

    Non-invasive imaging technologies are opening up new windows into mouse biology. We have developed a mouse imaging system that integrates positron emission tomography (PET) with x-ray computed tomography (CT), allowing simultaneous anatomic and molecular imaging in vivo with the potential for precise registration of the two image volumes. The x-ray system consists of a compact mini-focal x-ray tube and an amorphous selenium flat panel x-ray detector with a low-noise CMOS readout. The PET system uses planar arrays of lutetium oxyorthosilicate scintillator coupled to position-sensitive photomultiplier tubes. We describe the design of this dual-modality imaging system and show, for the first time, simultaneously acquired PET and CT images in a phantom and in mice

  18. Simultaneous molecular and anatomical imaging of the mouse in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Goertzen, Andrew L [Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Meadors, A Ken [Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Silverman, Robert W [Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Cherry, Simon R [Department of Biomedical Engineering, University of California, Davis, Davis, CA (United States)

    2002-12-21

    Non-invasive imaging technologies are opening up new windows into mouse biology. We have developed a mouse imaging system that integrates positron emission tomography (PET) with x-ray computed tomography (CT), allowing simultaneous anatomic and molecular imaging in vivo with the potential for precise registration of the two image volumes. The x-ray system consists of a compact mini-focal x-ray tube and an amorphous selenium flat panel x-ray detector with a low-noise CMOS readout. The PET system uses planar arrays of lutetium oxyorthosilicate scintillator coupled to position-sensitive photomultiplier tubes. We describe the design of this dual-modality imaging system and show, for the first time, simultaneously acquired PET and CT images in a phantom and in mice.

  19. Molecular imaging of small animals with dedicated PET tomographs

    International Nuclear Information System (INIS)

    Chatziioannou, A.F.

    2002-01-01

    Biological discovery has moved at an accelerated pace in recent years, with a considerable focus on the transition from in vitro to in vivo models. As a result, there has been a significant increase in the need to adapt clinical imaging methods, as well as for novel imaging technologies for biological research. Positron emission tomography (PET) is a clinical imaging modality that permits the use of positron-labeled molecular imaging probes for non-invasive assays of biochemical processes. The imaging procedure can be repeatedly performed before and after interventions, thereby allowing each animal to be used as its own control. Positron-labeled compounds that target a range of molecular targets have been and continue to be synthesized, with examples of biological processes ranging from receptors and synthesis of transmitters in cell communication, to metabolic processes and gene expression. In animal research, PET has been used extensively in the past for studies of non-human primates and other larger animals. New detector technology has improved spatial resolution, and has made possible PET scanning for the study of the most important modern molecular biology model, the laboratory mouse. This paper presents the challenges facing PET technology as applied to small animal imaging, provides a historical overview of the development of small animal PET systems, and discusses the current state of the art in small animal PET technology. (orig.)

  20. Molecular imaging of rheumatoid arthritis by radiolabelled monoclonal antibodies: new imaging strategies to guide molecular therapies

    Energy Technology Data Exchange (ETDEWEB)

    Malviya, G.; Dierckx, R.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Conti, F. [Rheumatology Unit, I Faculty of Medicine and Surgery, Sapienza University of Rome (Italy); Chianelli, M. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Unit of Nuclear Medicine, Regina apostolorum Hospital, Albano, Rome (Italy); Scopinaro, F. [Nuclear Medicine Department, Sapienza University of Rome, St. Andrea Hospital, Rome (Italy); Signore, A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Nuclear Medicine Department, Sapienza University of Rome, St. Andrea Hospital, Rome (Italy)

    2010-02-15

    The closing of the last century opened a wide variety of approaches for inflammation imaging and treatment of patients with rheumatoid arthritis (RA). The introduction of biological therapies for the management of RA started a revolution in the therapeutic armamentarium with the development of several novel monoclonal antibodies (mAbs), which can be murine, chimeric, humanised and fully human antibodies. Monoclonal antibodies specifically bind to their target, which could be adhesion molecules, activation markers, antigens or receptors, to interfere with specific inflammation pathways at the molecular level, leading to immune-modulation of the underlying pathogenic process. These new generation of mAbs can also be radiolabelled by using direct or indirect method, with a variety of nuclides, depending upon the specific diagnostic application. For studying rheumatoid arthritis patients, several monoclonal antibodies and their fragments, including anti-TNF-{alpha}, anti-CD20, anti-CD3, anti-CD4 and anti-E-selectin antibody, have been radiolabelled mainly with {sup 99m}Tc or {sup 111}In. Scintigraphy with these radiolabelled antibodies may offer an exciting possibility for the study of RA patients and holds two types of information: (1) it allows better staging of the disease and diagnosis of the state of activity by early detection of inflamed joints that might be difficult to assess; (2) it might provide a possibility to perform 'evidence-based biological therapy' of arthritis with a view to assessing whether an antibody will localise in an inflamed joint before using the same unlabelled antibody therapeutically. This might prove particularly important for the selection of patients to be treated since biological therapies can be associated with severe side-effects and are considerably expensive. This article reviews the use of radiolabelled mAbs in the study of RA with particular emphasis on the use of different radiolabelled monoclonal antibodies for

  1. Molecular imaging of rheumatoid arthritis by radiolabelled monoclonal antibodies: new imaging strategies to guide molecular therapies

    International Nuclear Information System (INIS)

    Malviya, G.; Dierckx, R.A.; Conti, F.; Chianelli, M.; Scopinaro, F.; Signore, A.

    2010-01-01

    The closing of the last century opened a wide variety of approaches for inflammation imaging and treatment of patients with rheumatoid arthritis (RA). The introduction of biological therapies for the management of RA started a revolution in the therapeutic armamentarium with the development of several novel monoclonal antibodies (mAbs), which can be murine, chimeric, humanised and fully human antibodies. Monoclonal antibodies specifically bind to their target, which could be adhesion molecules, activation markers, antigens or receptors, to interfere with specific inflammation pathways at the molecular level, leading to immune-modulation of the underlying pathogenic process. These new generation of mAbs can also be radiolabelled by using direct or indirect method, with a variety of nuclides, depending upon the specific diagnostic application. For studying rheumatoid arthritis patients, several monoclonal antibodies and their fragments, including anti-TNF-α, anti-CD20, anti-CD3, anti-CD4 and anti-E-selectin antibody, have been radiolabelled mainly with 99m Tc or 111 In. Scintigraphy with these radiolabelled antibodies may offer an exciting possibility for the study of RA patients and holds two types of information: (1) it allows better staging of the disease and diagnosis of the state of activity by early detection of inflamed joints that might be difficult to assess; (2) it might provide a possibility to perform 'evidence-based biological therapy' of arthritis with a view to assessing whether an antibody will localise in an inflamed joint before using the same unlabelled antibody therapeutically. This might prove particularly important for the selection of patients to be treated since biological therapies can be associated with severe side-effects and are considerably expensive. This article reviews the use of radiolabelled mAbs in the study of RA with particular emphasis on the use of different radiolabelled monoclonal antibodies for therapy decision-making and

  2. cGMP Signaling in the Cardiovascular System—The Role of Compartmentation and Its Live Cell Imaging

    Science.gov (United States)

    Bork, Nadja I.; Nikolaev, Viacheslav O.

    2018-01-01

    The ubiquitous second messenger 3′,5′-cyclic guanosine monophosphate (cGMP) regulates multiple physiologic processes in the cardiovascular system. Its intracellular effects are mediated by stringently controlled subcellular microdomains. In this review, we will illustrate the current techniques available for real-time cGMP measurements with a specific focus on live cell imaging methods. We will also discuss currently accepted and emerging mechanisms of cGMP compartmentation in the cardiovascular system. PMID:29534460

  3. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine?

    International Nuclear Information System (INIS)

    Mahajan, A.; Goh, V.; Basu, S.; Vaish, R.; Weeks, A.J.; Thakur, M.H.; Cook, G.J.

    2015-01-01

    Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure–function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [ 18 F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed “theranostics”. Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research. -- Highlights: •Molecular functional imaging (MFI) gives insight into the tumor biology and intratumoral heterogeneity. •It has potential role in identifying radiomic signatures associated with underlying gene-expression. •Radiomics can be used to create a road map

  4. Proceedings of II Molecular Imaging Symposium Cuba - Japan

    International Nuclear Information System (INIS)

    2016-01-01

    In the Central Theater, University Hospital 'General Calixto Garcia' took place the II Symposium on Molecular Imaging Cuba Japan in the framework of the Scientific Convention for the 120th anniversary of the hospital. The event was organized by the hospital itself with the support of the Society of Medical Physics (medical physics section), CEADEN, the Embassy of Japan and the Theragnostic Compounds R&D Center Neuroscience Research Institute Gachon University, Incheon Korea. It was attended by 80 national scientific leaders and with the invaluable presence of Dr. Tatsuo IDO, Emeritus professor of Tohoku University (Sendai, Japan) who presented the results of the scientific papers presented this year in national and international events , referring to the new technologies of molecular imaging and the importance of medical physics in its development. During the meeting the importance of the new technologies of molecular imaging, its undisputed diagnosis intake and medical treatment and the value of human capital struggled to deal with the new technologies, the view that these are only used best when it is understood that they are multidisciplinary systems where each specialist and technical personnel plays an indispensable role. The challenge has medical physics to address these new technologies and the need for changes in the theoretical and practical training in the specialty. These analyzes will be given continuity in the next symposia molecular imaging. (author)

  5. Molecular imaging of tumor blood vessels in prostate cancer.

    Science.gov (United States)

    Tilki, Derya; Seitz, Michael; Singer, Bernhard B; Irmak, Ster; Stief, Christian G; Reich, Oliver; Ergün, Süleyman

    2009-05-01

    In the past three decades many efforts have been undertaken to understand the mechanisms of tumor angiogenesis. The introduction of anti-angiogenic drugs in tumor therapy during the last few years necessitates the establishment of new techniques enabling molecular imaging of tumor vascular remodelling. The determination of tumor size as commonly used is not appropriate since the extended necrosis under anti-angiogenic therapy does not necessarily result in the reduction of tumor diameter. The basis for the molecular imaging of tumor blood vessels is the remodelling of the tumor vessels under anti-angiogenic therapy which obviously occurs at an early stage and seems to be a convincing parameter. Beside the enormous progress in this field during the last few years the resolution is still not high enough to evaluate the remodelling of the micro tumor vessels. New imaging approaches combining specific molecular markers for tumor vessels with the different imaging techniques are needed to overcome this issue as exemplarily discussed for prostate cancer in this review. Molecular contrast agents targeting the vasculature will allow clinicians the visualization of vascular remodelling processes taking place under anti-angiogenic therapy and improve tumor diagnosis and follow-up.

  6. PET-MRI: the likely future of molecular imaging

    International Nuclear Information System (INIS)

    Chen Xiang; Zhao Jinhua; Zhao Jun

    2008-01-01

    PET-CT is a successful combination of functional and morphologic information, and it has already been shown to have great value both in clinics and in scientific research. MRI is another kind of morphologic imaging method, in contrast to CT, MRI can yield images with higher soft-tissue contrast and better spatial resolution. The combination of PET and MRI for simultaneous data acquisition should have far- reaching consequences for molecular imaging. This review will talk about the problems met in the development of PET-MRI and describe the progress to date and look forward to its potential application. (authors)

  7. Molecular Imaging and Precision Medicine in Uterine and Ovarian Cancers.

    Science.gov (United States)

    Zukotynski, Katherine A; Kim, Chun K

    2017-10-01

    Gynecologic cancer is a heterogeneous group of diseases both functionally and morphologically. Today, PET coupled with computed tomography (PET/CT) or PET/MR imaging play a central role in the precision medicine algorithm of patients with gynecologic malignancy. In particular, PET/CT and PET/MR imaging are molecular imaging techniques that not only are useful tools for initial staging and restaging but provide anatomofunctional insight and can serve as predictive and prognostic biomarkers of response in patients with gynecologic malignancy. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Molecular Imaging and Precision Medicine in Breast Cancer.

    Science.gov (United States)

    Chudgar, Amy V; Mankoff, David A

    2017-01-01

    Precision medicine, basing treatment approaches on patient traits and specific molecular features of disease processes, has an important role in the management of patients with breast cancer as targeted therapies continue to improve. PET imaging offers noninvasive information that is complementary to traditional tissue biomarkers, including information about tumor burden, tumor metabolism, receptor status, and proliferation. Several PET agents that image breast cancer receptors can visually demonstrate the extent and heterogeneity of receptor-positive disease and help predict which tumors are likely to respond to targeted treatments. This review presents applications of PET imaging in the targeted treatment of breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Molecular subtypes and imaging phenotypes of breast cancer

    International Nuclear Information System (INIS)

    Cho, Nariya

    2016-01-01

    During the last 15 years, traditional breast cancer classifications based on histopathology have been reorganized into the luminal A, luminal B, human epidermal growth factor receptor 2 (HER2), and basal-like subtypes based on gene expression profiling. Each molecular subtype has shown varying risk for progression, response to treatment, and survival outcomes. Research linking the imaging phenotype with the molecular subtype has revealed that non-calcified, relatively circumscribed masses with posterior acoustic enhancement are common in the basal-like subtype, spiculated masses with a poorly circumscribed margin and posterior acoustic shadowing in the luminal subtype, and pleomorphic calcifications in the HER2-enriched subtype. Understanding the clinical implications of the molecular subtypes and imaging phenotypes could help radiologists guide precision medicine, tailoring medical treatment to patients and their tumor characteristics

  10. Molecular subtypes and imaging phenotypes of breast cancer

    Directory of Open Access Journals (Sweden)

    Nariya Cho

    2016-10-01

    Full Text Available During the last 15 years, traditional breast cancer classifications based on histopathology have been reorganized into the luminal A, luminal B, human epidermal growth factor receptor 2 (HER2, and basal-like subtypes based on gene expression profiling. Each molecular subtype has shown varying risk for progression, response to treatment, and survival outcomes. Research linking the imaging phenotype with the molecular subtype has revealed that non-calcified, relatively circumscribed masses with posterior acoustic enhancement are common in the basal-like subtype, spiculated masses with a poorly circumscribed margin and posterior acoustic shadowing in the luminal subtype, and pleomorphic calcifications in the HER2-enriched subtype. Understanding the clinical implications of the molecular subtypes and imaging phenotypes could help radiologists guide precision medicine, tailoring medical treatment to patients and their tumor characteristics.

  11. Molecular subtypes and imaging phenotypes of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nariya [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2016-08-15

    During the last 15 years, traditional breast cancer classifications based on histopathology have been reorganized into the luminal A, luminal B, human epidermal growth factor receptor 2 (HER2), and basal-like subtypes based on gene expression profiling. Each molecular subtype has shown varying risk for progression, response to treatment, and survival outcomes. Research linking the imaging phenotype with the molecular subtype has revealed that non-calcified, relatively circumscribed masses with posterior acoustic enhancement are common in the basal-like subtype, spiculated masses with a poorly circumscribed margin and posterior acoustic shadowing in the luminal subtype, and pleomorphic calcifications in the HER2-enriched subtype. Understanding the clinical implications of the molecular subtypes and imaging phenotypes could help radiologists guide precision medicine, tailoring medical treatment to patients and their tumor characteristics.

  12. Molecular Ultrasound Imaging for the Detection of Neural Inflammation

    Science.gov (United States)

    Volz, Kevin R.

    Molecular imaging is a form of nanotechnology that enables the noninvasive examination of biological processes in vivo. Radiopharmaceutical agents are used to selectively target biochemical markers, which permits their detection and evaluation. Early visualization of molecular variations indicative of pathophysiological processes can aid in patient diagnoses and management decisions. Molecular imaging is performed by introducing molecular probes into the body. Molecular probes are often contrast agents that have been nanoengineered to selectively target and tether to molecules, enabling their radiologic identification. Ultrasound contrast agents have been demonstrated as an effective method of detecting perfusion at the tissue level. Through a nanoengineering process, ultrasound contrast agents can be targeted to specific molecules, thereby extending ultrasound's capabilities from the tissue to molecular level. Molecular ultrasound, or targeted contrast enhanced ultrasound (TCEUS), has recently emerged as a popular molecular imaging technique due to its ability to provide real-time anatomical and functional information in the absence of ionizing radiation. However, molecular ultrasound represents a novel form of molecular imaging, and consequently remains largely preclinical. A review of the TCEUS literature revealed multiple preclinical studies demonstrating its success in detecting inflammation in a variety of tissues. Although, a gap was identified in the existing evidence, as TCEUS effectiveness for detection of neural inflammation in the spinal cord was unable to be uncovered. This gap in knowledge, coupled with the profound impacts that this TCEUS application could have clinically, provided rationale for its exploration, and use as contributory evidence for the molecular ultrasound body of literature. An animal model that underwent a contusive spinal cord injury was used to establish preclinical evidence of TCEUS to detect neural inflammation. Imaging was

  13. Impact of long-term meditation practice on cardiovascular reactivity during perception and reappraisal of affective images.

    Science.gov (United States)

    Pavlov, Sergei V; Reva, Natalia V; Loktev, Konstantin V; Korenyok, Vladimir V; Aftanas, Lyubomir I

    2015-03-01

    Meditation has been found to be an efficient strategy for coping with stress in healthy individuals and in patients with psychosomatic disorders. The main objective of the present study was to investigate the psychophysiological mechanisms of beneficial effects of meditation on cardiovascular reactivity. We examined effects of long-term Sahaja Yoga meditation on cardiovascular reactivity during affective image processing under "unregulated" and "emotion regulation" conditions. Twenty two experienced meditators and 20 control subjects participated in the study. Under "unregulated" conditions participants were shown neutral and affective images and were asked to attend to them. Under "emotion regulation" conditions they down-regulated negative affect through reappraisal of negative images or up-regulated positive affect through reappraisal of positive images. Under "unregulated" conditions while anticipating upcoming images meditators vs. controls did not show larger pre-stimulus total peripheral resistance and greater cardiac output for negative images in comparison with neutral and positive ones. Control subjects showed TPR decrease for negative images only when they consciously intended to reappraise them (i.e. in the "emotion regulation" condition). Both meditators and controls showed comparable cardiovascular reactivity during perception of positive stimuli, whereas up-regulating of positive affect was associated with more pronounced cardiac activation in meditators. The findings provide some insight into understanding the beneficial influence of meditation on top-down control of emotion and cardiovascular reactivity. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. ASCI 2010 contrast media guideline for cardiac imaging: a report of the Asian Society of Cardiovascular Imaging cardiac computed tomography and cardiac magnetic resonance imaging guideline working group

    Science.gov (United States)

    Kitagawa, Kakuya; Tsai, I-Chen; Chan, Carmen; Yu, Wei; Yong, Hwan Seok; Choi, Byoung Wook

    2010-01-01

    The use of contrast media for cardiac imaging becomes increasing as the widespread of cardiac CT and cardiac MR. A radiologist needs to carefully consider the indication and the injection protocol of contrast media to be used as well as the possibility of adverse effect. There are several guidelines for contrast media in western countries. However, these are focusing the adverse effect of contrast media. The Asian Society of Cardiovascular Imaging, the only society dedicated to cardiovascular imaging in Asia, formed a Working Group and created a guideline, which summarizes the integrated knowledge of contrast media for cardiac imaging. In cardiac imaging, coronary artery evaluation is feasible by non-contrast MR angiography, which can be an alternative examination in high risk patients for the use of iodine contrast media. Furthermore, the body habitus of Asian patients is usually smaller than that of their western counterparts. This necessitates modifications in the injection protocol and in the formula for calculation of estimated glomerular filtration rate. This guideline provided fundamental information for the use of contrast media for Asian patients in cardiac imaging. PMID:20931289

  15. Current Molecular Imaging Positron Emitting Radiotracers in Oncology

    International Nuclear Information System (INIS)

    Zhu, Aizhi; Shim, Hyunsuk

    2011-01-01

    Molecular imaging is one of the fastest growing areas of medical imaging. Positron emission tomography has been widely used in the clinical management of patients with cancer. Nuclear imaging provides biological information at the cellular, subcellular, and molecular level in living subjects with noninvasive procedures. In particular, PET imaging takes advantage of traditional diagnostic imaging techniques and introduces positron emitting probes to determine the expression of indicative molecular targets at different stages of cancer. 18F fluorodeoxyglucose ( 18F FDG), the only FDA approved oncological PET tracer, has been widely utilized in cancer diagnosis, staging, restaging, and even monitoring response to therapy; however, 18F FDG is not a tumor specific PET tracer. Over the last decade, many promising tumor specific PET tracer. Over the last decade, many promising tumor specific PET tracers have been developed and evaluated in preclinical and clinical studies. This review provides an overview of the current non 18F FDG PET tracers in oncology that have been developed based on tumor characteristics such as increased metabolism, hyperproliferation, angiogenesis, hypoxia, apoptosis, and tumor specific antigens and surface receptors

  16. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    International Nuclear Information System (INIS)

    Joshi, Bishnu P.; Wang, Thomas D.

    2010-01-01

    Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research

  17. PET molecular imaging in stem cell therapy for neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiachuan; Zhang, Hong [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Zhejiang University, Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Tian, Mei [University of Texas, M.D. Anderson Cancer Center, Department of Experimental Diagnostic Imaging, Houston, TX (United States)

    2011-10-15

    Human neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal cord injury and multiple sclerosis are caused by loss of different types of neurons and glial cells in the brain and spinal cord. At present, there are no effective therapies against these disorders. Discovery of the therapeutic potential of stem cells offers new strategies for the treatment of neurological diseases. Direct assessment of stem cells' survival, interaction with the host and impact on neuronal functions after transplantation requires advanced in vivo imaging techniques. Positron emission tomography (PET) is a potential molecular imaging modality to evaluate the viability and function of transplanted tissue or stem cells in the nervous system. This review focuses on PET molecular imaging in stem cell therapy for neurological diseases. (orig.)

  18. Molecular Imaging of Apoptosis: From Micro to Macro

    Science.gov (United States)

    Zeng, Wenbin; Wang, Xiaobo; Xu, Pengfei; Liu, Gang; Eden, Henry S.; Chen, Xiaoyuan

    2015-01-01

    Apoptosis, or programmed cell death, is involved in numerous human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer, and is often confused with other types of cell death. Therefore strategies that enable visualized detection of apoptosis would be of enormous benefit in the clinic for diagnosis, patient management, and development of new therapies. In recent years, improved understanding of the apoptotic machinery and progress in imaging modalities have provided opportunities for researchers to formulate microscopic and macroscopic imaging strategies based on well-defined molecular markers and/or physiological features. Correspondingly, a large collection of apoptosis imaging probes and approaches have been documented in preclinical and clinical studies. In this review, we mainly discuss microscopic imaging assays and macroscopic imaging probes, ranging in complexity from simple attachments of reporter moieties to proteins that interact with apoptotic biomarkers, to rationally designed probes that target biochemical changes. Their clinical translation will also be our focus. PMID:25825597

  19. 5th German cardiodiagnostic meeting 2013 with the 6th Leipzig Symposium on non-invasive cardiovascular imaging. Challenges and limit of the non-invasive cardiac imaging

    International Nuclear Information System (INIS)

    2013-01-01

    The proceedings on the German cardiodiagnostic meeting 2013 together with the 6th Leipzig Symposium on non-invasive cardiovascular imaging include abstracts concerning the following topics: Imaging in the rhythmology; adults with congenital cardiac defects; cardiac myopathies - myocarditis; cardiac valves (before and after transcutaneous valve replacement); coronary heart diseases; technical developments.

  20. In vivo molecular and genomic imaging: new challenges for imaging physics.

    Science.gov (United States)

    Cherry, Simon R

    2004-02-07

    The emerging and rapidly growing field of molecular and genomic imaging is providing new opportunities to directly visualize the biology of living organisms. By combining our growing knowledge regarding the role of specific genes and proteins in human health and disease, with novel ways to target these entities in a manner that produces an externally detectable signal, it is becoming increasingly possible to visualize and quantify specific biological processes in a non-invasive manner. All the major imaging modalities are contributing to this new field, each with its unique mechanisms for generating contrast and trade-offs in spatial resolution, temporal resolution and sensitivity with respect to the biological process of interest. Much of the development in molecular imaging is currently being carried out in animal models of disease, but as the field matures and with the development of more individualized medicine and the molecular targeting of new therapeutics, clinical translation is inevitable and will likely forever change our approach to diagnostic imaging. This review provides an introduction to the field of molecular imaging for readers who are not experts in the biological sciences and discusses the opportunities to apply a broad range of imaging technologies to better understand the biology of human health and disease. It also provides a brief review of the imaging technology (particularly for x-ray, nuclear and optical imaging) that is being developed to support this new field.

  1. In vivo molecular and genomic imaging: new challenges for imaging physics

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, Simon R [Department of Biomedical Engineering, University of California, Davis, CA (United States)

    2004-02-07

    The emerging and rapidly growing field of molecular and genomic imaging is providing new opportunities to directly visualize the biology of living organisms. By combining our growing knowledge regarding the role of specific genes and proteins in human health and disease, with novel ways to target these entities in a manner that produces an externally detectable signal, it is becoming increasingly possible to visualize and quantify specific biological processes in a non-invasive manner. All the major imaging modalities are contributing to this new field, each with its unique mechanisms for generating contrast and trade-offs in spatial resolution, temporal resolution and sensitivity with respect to the biological process of interest. Much of the development in molecular imaging is currently being carried out in animal models of disease, but as the field matures and with the development of more individualized medicine and the molecular targeting of new therapeutics, clinical translation is inevitable and will likely forever change our approach to diagnostic imaging. This review provides an introduction to the field of molecular imaging for readers who are not experts in the biological sciences and discusses the opportunities to apply a broad range of imaging technologies to better understand the biology of human health and disease. It also provides a brief review of the imaging technology (particularly for x-ray, nuclear and optical imaging) that is being developed to support this new field. (topical review)

  2. In vivo molecular and genomic imaging: new challenges for imaging physics

    International Nuclear Information System (INIS)

    Cherry, Simon R

    2004-01-01

    The emerging and rapidly growing field of molecular and genomic imaging is providing new opportunities to directly visualize the biology of living organisms. By combining our growing knowledge regarding the role of specific genes and proteins in human health and disease, with novel ways to target these entities in a manner that produces an externally detectable signal, it is becoming increasingly possible to visualize and quantify specific biological processes in a non-invasive manner. All the major imaging modalities are contributing to this new field, each with its unique mechanisms for generating contrast and trade-offs in spatial resolution, temporal resolution and sensitivity with respect to the biological process of interest. Much of the development in molecular imaging is currently being carried out in animal models of disease, but as the field matures and with the development of more individualized medicine and the molecular targeting of new therapeutics, clinical translation is inevitable and will likely forever change our approach to diagnostic imaging. This review provides an introduction to the field of molecular imaging for readers who are not experts in the biological sciences and discusses the opportunities to apply a broad range of imaging technologies to better understand the biology of human health and disease. It also provides a brief review of the imaging technology (particularly for x-ray, nuclear and optical imaging) that is being developed to support this new field. (topical review)

  3. Multi-modality molecular imaging: pre-clinical laboratory configuration

    Science.gov (United States)

    Wu, Yanjun; Wellen, Jeremy W.; Sarkar, Susanta K.

    2006-02-01

    In recent years, the prevalence of in vivo molecular imaging applications has rapidly increased. Here we report on the construction of a multi-modality imaging facility in a pharmaceutical setting that is expected to further advance existing capabilities for in vivo imaging of drug distribution and the interaction with their target. The imaging instrumentation in our facility includes a microPET scanner, a four wavelength time-domain optical imaging scanner, a 9.4T/30cm MRI scanner and a SPECT/X-ray CT scanner. An electronics shop and a computer room dedicated to image analysis are additional features of the facility. The layout of the facility was designed with a central animal preparation room surrounded by separate laboratory rooms for each of the major imaging modalities to accommodate the work-flow of simultaneous in vivo imaging experiments. This report will focus on the design of and anticipated applications for our microPET and optical imaging laboratory spaces. Additionally, we will discuss efforts to maximize the daily throughput of animal scans through development of efficient experimental work-flows and the use of multiple animals in a single scanning session.

  4. Molecular imaging of brown adipose tissue in health and disease

    International Nuclear Information System (INIS)

    Bauwens, Matthias; Wierts, Roel; Brans, Boudewijn; Royen, Bart van; Backes, Walter; Bucerius, Jan; Mottaghy, Felix

    2014-01-01

    Brown adipose tissue (BAT) has transformed from an interfering tissue in oncological 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to an independent imaging research field. This review takes the perspective from the imaging methodology on which human BAT research has come to rely on heavily. This review analyses relevant PubMed-indexed publications that discuss molecular imaging methods of BAT. In addition, reported links between BAT and human diseases such as obesity are discussed, and the possibilities for imaging in these fields are highlighted. Radiopharmaceuticals aiming at several different biological mechanisms of BAT are discussed and evaluated. Prospective, dedicated studies allow visualization of BAT function in a high percentage of human subjects. BAT dysfunction has been implicated in obesity, linked with diabetes and associated with cachexia and atherosclerosis. Presently, 18 F-FDG PET/CT is the most useful tool for evaluating therapies aiming at BAT activity. In addition to 18 F-FDG, other radiopharmaceuticals such as 99m Tc-sestamibi, 123 I-metaiodobenzylguanidine (MIBG), 18 F-fluorodopa and 18 F-14(R,S)-[ 18 F]fluoro-6-thia-heptadecanoic acid (FTHA) may have a potential for visualizing other aspects of BAT activity. MRI methods are under continuous development and provide the prospect of functional imaging without ionizing radiation. Molecular imaging of BAT can be used to quantitatively assess different aspects of BAT metabolic activity. (orig.)

  5. Molecular imaging of brown adipose tissue in health and disease

    Energy Technology Data Exchange (ETDEWEB)

    Bauwens, Matthias [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Maastricht University, Research School NUTRIM, Maastricht (Netherlands); Wierts, Roel; Brans, Boudewijn [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Royen, Bart van; Backes, Walter [MUMC, Department of Medical Imaging, Division of Radiology, Maastricht (Netherlands); Bucerius, Jan [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Uniklinikum Aachen, Division of Nuclear Medicine, Aachen (Germany); Maastricht University, Research School CARIM, Maastricht (Netherlands); Mottaghy, Felix [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Uniklinikum Aachen, Division of Nuclear Medicine, Aachen (Germany)

    2014-04-15

    Brown adipose tissue (BAT) has transformed from an interfering tissue in oncological {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to an independent imaging research field. This review takes the perspective from the imaging methodology on which human BAT research has come to rely on heavily. This review analyses relevant PubMed-indexed publications that discuss molecular imaging methods of BAT. In addition, reported links between BAT and human diseases such as obesity are discussed, and the possibilities for imaging in these fields are highlighted. Radiopharmaceuticals aiming at several different biological mechanisms of BAT are discussed and evaluated. Prospective, dedicated studies allow visualization of BAT function in a high percentage of human subjects. BAT dysfunction has been implicated in obesity, linked with diabetes and associated with cachexia and atherosclerosis. Presently, {sup 18}F-FDG PET/CT is the most useful tool for evaluating therapies aiming at BAT activity. In addition to {sup 18}F-FDG, other radiopharmaceuticals such as {sup 99m}Tc-sestamibi, {sup 123}I-metaiodobenzylguanidine (MIBG), {sup 18}F-fluorodopa and {sup 18}F-14(R,S)-[{sup 18}F]fluoro-6-thia-heptadecanoic acid (FTHA) may have a potential for visualizing other aspects of BAT activity. MRI methods are under continuous development and provide the prospect of functional imaging without ionizing radiation. Molecular imaging of BAT can be used to quantitatively assess different aspects of BAT metabolic activity. (orig.)

  6. Progress in Molecular Imaging in Endoscopy and Endomicroscopy for Cancer Imaging

    Directory of Open Access Journals (Sweden)

    Supang Khondee

    2013-01-01

    Full Text Available Imaging is an essential tool for effective cancer management. Endoscopes are important medical instruments for performing in vivo imaging in hollow organs. Early detection of cancer can be achieved with surveillance using endoscopy, and has been shown to reduce mortality and to improve outcomes. Recently, great advancements have been made in endoscopic instruments, including new developments in optical designs, light sources, optical fibers, miniature scanners, and multimodal systems, allowing for improved resolution, greater tissue penetration, and multispectral imaging. In addition, progress has been made in the development of highly-specific optical probes, allowing for improved specificity for molecular targets. Integration of these new endoscopic instruments with molecular probes provides a unique opportunity for significantly improving patient outcomes and has potential to further improve early detection, image guided therapy, targeted therapy, and personalized medicine. This work summarizes current and evolving endoscopic technologies, and provides an overview of various promising optical molecular probes.

  7. Postmortem cardiovascular magnetic resonance imaging in fetuses and children: a masked comparison study with conventional autopsy.

    Science.gov (United States)

    Taylor, Andrew M; Sebire, Neil J; Ashworth, Michael T; Schievano, Silvia; Scott, Rosemary J; Wade, Angie; Chitty, Lyn S; Robertson, Nikki; Thayyil, Sudhin

    2014-05-13

    Perinatal and pediatric autopsies have declined worldwide in the past decade. We compared the diagnostic accuracy of postmortem, cardiovascular magnetic resonance (CMR) imaging with conventional autopsy and histopathology assessment in fetuses and children. We performed postmortem magnetic resonance imaging in 400 fetuses and children, using a 1.5-T Siemens Avanto magnetic resonance scanner before conventional autopsy. A pediatric CMR imager reported the CMR images, masked to autopsy information. The pathologists were masked to the information from CMR images. The institutional research ethics committee approved the study, and parental consent was obtained. Assuming a diagnostic accuracy of 50%, 400 cases were required for a 5% precision of estimate. Three cases were excluded from analysis, 2 with no conventional autopsy performed and 1 with insufficient CMR sequences performed. Thirty-eight CMR data sets were nondiagnostic (37 in fetuses ≤24 weeks; 1 in a fetus >24 weeks). In the remaining 359 cases, 44 cardiac abnormalities were noted at autopsy. Overall sensitivity and specificity (95% confidence interval) of CMR was 72.7% (58.2-83.7%) and 96.2% (93.5-97.8%) for detecting any cardiac pathology, with positive and negative predictive values of 72.7% (58.2-83.7%) and 96.2% (93.5-97.8%), respectively. Higher sensitivity of 92.6% (76.6-97.9%), specificity of 99.1% (97.4-99.7%), positive predictive value of 89.3% (72.8-96.3%), and negative predictive value of 99.4% (97.8-99.8%) were seen for major structural heart disease. Postmortem CMR imaging may be a useful alternative to conventional cardiac autopsy in fetuses and children for detecting cardiac abnormalities. http://www.clinicaltrials.gov. Unique identifier: NCT01417962.

  8. Molecular Imaging Probes for Positron Emission Tomography and Optical Imaging of Sentinel Lymph Node and Tumor

    Science.gov (United States)

    Qin, Zhengtao

    Molecular imaging is visualizations and measurements of in vivo biological processes at the molecular or cellular level using specific imaging probes. As an emerging technology, biocompatible macromolecular or nanoparticle based targeted imaging probes have gained increasing popularities. Those complexes consist of a carrier, an imaging reporter, and a targeting ligand. The active targeting ability dramatically increases the specificity. And the multivalency effect may further reduce the dose while providing a decent signal. In this thesis, sentinel lymph node (SLN) mapping and cancer imaging are two research topics. The focus is to develop molecular imaging probes with high specificity and sensitivity, for Positron Emission Tomography (PET) and optical imaging. The objective of this thesis is to explore dextran radiopharmaceuticals and porous silicon nanoparticles based molecular imaging agents. Dextran polymers are excellent carriers to deliver imaging reporters or therapeutic agents due to its well established safety profile and oligosaccharide conjugation chemistry. There is also a wide selection of dextran polymers with different lengths. On the other hand, Silicon nanoparticles represent another class of biodegradable materials for imaging and drug delivery. The success in fluorescence lifetime imaging and enhancements of the immune activation potency was briefly discussed. Chapter 1 begins with an overview on current molecular imaging techniques and imaging probes. Chapter 2 presents a near-IR dye conjugated probe, IRDye 800CW-tilmanocept. Fluorophore density was optimized to generate the maximum brightness. It was labeled with 68Ga and 99mTc and in vivo SLN mapping was successfully performed in different animals, such as mice, rabbits, dogs and pigs. With 99mTc labeled IRDye 800CW-tilmanocept, chapter 3 introduces a two-day imaging protocol with a hand-held imager. Chapter 4 proposed a method to dual radiolabel the IRDye 800CW-tilmanocept with both 68Ga and

  9. Review of cardiovascular imaging in the journal of nuclear cardiology in 2015. Part 1 of 2: Plaque imaging, positron emission tomography, computed tomography, and magnetic resonance.

    Science.gov (United States)

    AlJaroudi, Wael A; Hage, Fadi G

    2016-02-01

    In 2015, many original articles pertaining to cardiovascular imaging with impressive quality were published in the Journal of Nuclear Cardiology. In a set of 2 articles, we provide an overview of these contributions to facilitate for the interested reader a quick review of the advancements that occurred in the field over this year. In this first article, we focus on arterial plaque imaging, cardiac positron emission tomography, computed tomography, and magnetic resonance imaging.

  10. Optimisation in X-ray and Molecular Imaging 2015

    International Nuclear Information System (INIS)

    Baath, Magnus; Hoeschen, Christoph; Mattsson, Soeren; Mansson, Lars Gunnar

    2016-01-01

    This issue of Radiation Protection Dosimetry is based on contributions to Optimisation in X-ray and Molecular Imaging 2015 - the 4. Malmoe Conference on Medical Imaging (OXMI 2015). The conference was jointly organised by members of former and current research projects supported by the European Commission EURATOM Radiation Protection Research Programme, in cooperation with the Swedish Society for Radiation Physics. The conference brought together over 150 researchers and other professionals from hospitals, universities and industries with interests in different aspects of the optimisation of medical imaging. More than 100 presentations were given at this international gathering of medical physicists, radiologists, engineers, technicians, nurses and educational researchers. Additionally, invited talks were offered by world-renowned experts on radiation protection, spectral imaging and medical image perception, thus covering several important aspects of the generation and interpretation of medical images. The conference consisted of 13 oral sessions and a poster session, as reflected by the conference title connected by their focus on the optimisation of the use ionising radiation in medical imaging. The conference included technology-specific topics such as computed tomography and tomosynthesis, but also generic issues of interest for the optimisation of all medical imaging, such as image perception and quality assurance. Radiation protection was covered by e.g. sessions on patient dose benchmarking and occupational exposure. Technically-advanced topics such as modelling, Monte Carlo simulation, reconstruction, classification, and segmentation were seen taking advantage of recent developments of hardware and software, showing that the optimisation community is at the forefront of technology and adapts well to new requirements. These peer-reviewed proceedings, representing a continuation of a series of selected reports from meetings in the field of medical imaging

  11. Molecular imaging and the neuropathologies of Parkinson's disease

    DEFF Research Database (Denmark)

    Cumming, Paul; Borghammer, Per

    2012-01-01

    The main motor symptoms of Parkinson's disease (PD) are linked to degeneration of the nigrostriatal dopamine (DA) fibers, especially those innervating the putamen. This degeneration can be assessed in molecular imaging studies with presynaptic tracers such as [(18)F]-fluoro-L-DOPA (FDOPA...... with denervation upregulation, but there is an accelerated rate of DA receptor loss as the disease advances. Animal studies and post mortem investigations reveal changes in brain opioid peptide systems, but these are poorly documented in imaging studies of PD. Relatively minor changes in the binding sites for GABA...

  12. Molecular Imaging and Precision Medicine in Head and Neck Cancer.

    Science.gov (United States)

    Mena, Esther; Thippsandra, Shwetha; Yanamadala, Anusha; Redy, Siddaling; Pattanayak, Puskar; Subramaniam, Rathan M

    2017-01-01

    The concept of using tumor genomic profiling information has revolutionized personalized cancer treatment. Head and neck (HN) cancer management is being influenced by recent discoveries of activating mutations in epidermal growth factor receptor and related targeted therapies with tyrosine kinase inhibitors, targeted therapies for Kristen Rat Sarcoma, and MET proto-oncogenes. Molecular imaging using PET plays an important role in assessing the biologic behavior of HN cancer with the goal of delivering individualized cancer treatment. This review summarizes recent genomic discoveries in HN cancer and their implications for functional PET imaging in assessing response to targeted therapies, and drug resistance mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Cardiovascular magnetic resonance imaging in the assessment of carcinoid heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Sandmann, H.; Pakkal, M. [Queen Elizabeth Hospital, Birmingham (United Kingdom); Steeds, R. [Queen Elizabeth Hospital, Birmingham (United Kingdom)], E-mail: rick.steeds@uhb.nhs.uk

    2009-08-15

    Carcinoid disease arises from a low-grade neuroendocrine tumour derived from serotonin-producing enterochromaffin cells. It is the most common tumour affecting the small bowel. The majority of patients who progress to carcinoid syndrome develop cardiac disease selectively involving the right side of the heart, whereas left heart disease is unusual. The most common cause of death is dilatation and dysfunction of the right ventricle. Right ventricular dysfunction is largely secondary to pathological endocardial fibrosis of the tricuspid and pulmonary valves, presenting with regurgitation and stenosis. Average survival falls to only 11 months with the onset of symptoms, but recent evidence suggests that survival can be improved by early surgery in selected individuals. This article reviews the particular role that cardiovascular magnetic resonance imaging has in the management of carcinoid heart disease.

  14. The role of angiography in the congruence of cardiovascular measurements between autopsy and postmortem imaging.

    Science.gov (United States)

    Troxler, Renaud; Minoiu, Costin; Vaucher, Paul; Michaud, Katarzyna; Doenz, Francesco; Ducrot, Kewin; Grabherr, Silke

    2018-01-01

    Postmortem CT angiography is the method of choice for the postmortem imaging investigations of the cardiovascular (CV) system. However, autopsy still remains the gold standard for CV measurement. Nevertheless, there are not any studies on CV measurements on the multi-phase postmortem angiography (MPMCTA) which includes comparisons with autopsy. Therefore, the aim of this study is to compare CV measurements between the native CT scan and the three phases of the MPMCTA to find out which of these modalities correlate the best with autopsy measurements. For this study, we selected retrospectively 50 postmortem cases that underwent both MPMCTA and autopsy. A comparison was carried out between the CV measurements obtained with imaging (aorta; heart cavities and cardiac wall thicknesses; maximum cardiac diameter and cardiothoracic ratio) and at the autopsy (aorta; cardiac valves, ventricular thicknesses, and weight). Our results show that the dynamic phase displays an advantage for the measurement of the aortas. However, the MPMCTA is not accurate to measure the cardiac wall thicknesses. The measurements of the heart cavities show no correlation with the heart valves. The cardiothoracic ratio measured by the MPMCTA shows no correlation with the heart weight. Nevertheless, the maximum cardiac diameter exhibits a correlation with the latter on the venous and dynamic phase. These results show that only few CV parameters measured with imaging correlate with measurement obtained at the autopsy. These results indicate that in order to better estimate values obtained at the autopsy, we need to define new reference values for the CV measurement on MPMCTA.

  15. Evolving, innovating, and revolutionary changes in cardiovascular imaging: We've only just begun!

    Science.gov (United States)

    Shaw, Leslee J; Hachamovitch, Rory; Min, James K; Di Carli, Marcelo; Mieres, Jennifer H; Phillips, Lawrence; Blankstein, Ron; Einstein, Andrew; Taqueti, Viviany R; Hendel, Robert; Berman, Daniel S

    2018-06-01

    In this review, we highlight the need for innovation and creativity to reinvent the field of nuclear cardiology. Revolutionary ideas brought forth today are needed to create greater value in patient care and highlight the need for more contemporary evidence supporting the use of nuclear cardiology practices. We put forth discussions on the need for disruptive innovation in imaging-guided care that places the imager as a central force in care coordination. Value-based nuclear cardiology is defined as care that is both efficient and effective. Novel testing strategies that defer testing in lower risk patients are examples of the kind of innovation needed in today's healthcare environment. A major focus of current research is the evolution of the importance of ischemia and the prognostic significance of non-obstructive atherosclerotic plaque and coronary microvascular dysfunction. Embracing novel paradigms, such as this, can aid in the development of optimal strategies for coronary disease management. We hope that our article will spurn the field toward greater innovation and focus on transformative imaging leading the way for new generations of novel cardiovascular care.

  16. The Center for Integrated Molecular Brain Imaging (Cimbi) database

    DEFF Research Database (Denmark)

    Knudsen, Gitte M.; Jensen, Peter S.; Erritzoe, David

    2016-01-01

    We here describe a multimodality neuroimaging containing data from healthy volunteers and patients, acquired within the Lundbeck Foundation Center for Integrated Molecular Brain Imaging (Cimbi) in Copenhagen, Denmark. The data is of particular relevance for neurobiological research questions rela...... currently contains blood and in some instances saliva samples from about 500 healthy volunteers and 300 patients with e.g., major depression, dementia, substance abuse, obesity, and impulsive aggression. Data continue to be added to the Cimbi database and biobank....

  17. Molecular imaging of retinal endothelial injury in diabetic animals

    Directory of Open Access Journals (Sweden)

    Sonja Frimmel

    2017-01-01

    Conclusion: Results indicate that molecular imaging can be used to detect subtle changes in the diabetic retina prior to the occurrence of irreversible pathology. Thus, ICAM-1 could serve as a diagnostic target in patients with diabetes. This study provides a proof of principle for non-invasive subclinical diagnosis in experimental diabetic retinopathy. Further development of this technology could improve management of diabetic complications.

  18. Intelligent Design of Nano-Scale Molecular Imaging Agents

    Directory of Open Access Journals (Sweden)

    Takeaki Ozawa

    2012-12-01

    Full Text Available Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs, biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  19. Bioresponsive probes for molecular imaging:Concepts and in vivo applications

    OpenAIRE

    Duijnhoven, van, SMJ Sander; Robillard, MS Marc; Langereis, S Sander; Grüll, H Holger

    2015-01-01

    Molecular imaging is a powerful tool to visualize and characterize biological processes at the cellular and molecular level in vivo. In most molecular imaging approaches, probes are used to bind to disease-specific biomarkers highlighting disease target sites. In recent years, a new subset of molecular imaging probes, known as bioresponsive molecular probes, has been developed. These probes generally benefit from signal enhancement at the site of interaction with its target. There are mainly ...

  20. Featured Image: A Molecular Cloud Outside Our Galaxy

    Science.gov (United States)

    Kohler, Susanna

    2018-06-01

    What do molecular clouds look like outside of our own galaxy? See for yourself in the images above and below of N55, a molecular cloud located in the Large Magellanic Cloud (LMC). In a recent study led by Naslim Neelamkodan (Academia Sinica Institute of Astronomy and Astrophysics, Taiwan), a team of scientists explore N55 to determine how its cloud properties differ from clouds within the Milky Way. The image above reveals the distribution of infrared-emitting gas and dust observed in three bands by the Spitzer Space Telescope. Overplotted in cyan are observations from the Atacama Submillimeter Telescope Experiment tracing the clumpy, warm molecular gas. Below, new observations from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the sub-parsec-scale molecular clumps in greater detail, showing the correlation of massive clumps with Spitzer-identified young stellar objects (crosses). The study presented here indicates that this cloud in the LMC is the site of massive star formation, with properties similar to equivalent clouds in the Milky Way. To learn more about the authors findings, check out the article linked below.CitationNaslim N. et al 2018 ApJ 853 175. doi:10.3847/1538-4357/aaa5b0

  1. Metal-Based Systems for Molecular Imaging Applications - COST D38 Annual Workshop - Scientific Program and Abstracts

    International Nuclear Information System (INIS)

    Mikolajczak, R.

    2009-01-01

    The main objective of the Action is the development of metal-based imaging probes for cellular and molecular imaging applications, based on MRI, PET, SPECT and optical imaging that will facilitate early diagnosis, assessment of disease progression and treatment evaluation.The goal of this Action is to further the development of innovative imaging probes through the pursuit of innovations in a number of different areas, ranging from the design of imaging units endowed with enhanced sensitivity to the control of the structural and electronic determinants responsible for the molecular recognition of the target molecule.At present, in vivo diagnostic systems basically assess the structure and function of human organs. Therefore, for important diseases such as cancer and cardiovascular pathologies,and also diseases of the central nervous system, only the late symptoms are detected. It is expected that the advances in genomics and proteomics will have a tremendous impact on human health care of the future. However, advances in molecular biology are already redefining diseases in terms of molecular abnormalities. With this knowledge, new generations of diagnostic imaging agents can be defined that aim at the detection of those molecular processes in vivo.The molecular imaging approach offers a great potential for earlier detection and characterisation of disease, and evaluation of treatment. However, more research is necessary to bring these ideas to clinical applications and a key aspect relates to the development of high-specificity, high-sensitivity imaging probes for the different detection modalities. Additionally, the Action includes research activities dealing with the exploitation of peculiar nuclear properties of given isotopes for therapeutic effects, thus integrating the diagnostic and the therapeutic stages.Apart from its use in early diagnosis in clinical practice, the molecular imaging approach will have also a major impact on the development of new

  2. Explosive type of moderate-resistance training induces functional, cardiovascular, and molecular adaptations in the elderly

    DEFF Research Database (Denmark)

    Beltran Valls, Maria Reyes; Dimauro, Ivan; Brunelli, Andrea

    2014-01-01

    of 12 weeks of low-frequency, moderate-intensity, explosive-type resistance training (EMRT) on muscle strength and power in old community-dwelling people (70-75 years), monitoring functional performance linked to daily living activities (ADL) and cardiovascular response, as well as biomarkers of muscle...

  3. UPAR targeted molecular imaging of cancers with small molecule-based probes.

    Science.gov (United States)

    Ding, Feng; Chen, Seng; Zhang, Wanshu; Tu, Yufeng; Sun, Yao

    2017-10-15

    Molecular imaging can allow the non-invasive characterization and measurement of biological and biochemical processes at the molecular and cellular levels in living subjects. The imaging of specific molecular targets that are associated with cancers could allow for the earlier diagnosis and better treatment of diseases. Small molecule-based probes play prominent roles in biomedical research and have high clinical translation ability. Here, with an emphasis on small molecule-based probes, we review some recent developments in biomarkers, imaging techniques and multimodal imaging in molecular imaging and highlight the successful applications for molecular imaging of cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cardiovascular Magnetic Resonance T2-STIR Imaging is Unable to Discriminate Between Intramyocardial Haemorrhage and Microvascular Obstruction

    DEFF Research Database (Denmark)

    Søvsø Szocska Hansen, Esben; Pedersen, Steen Fjord; Pedersen, Steen Bønløkke

    2015-01-01

    Recent studies have used cardiovascular magnetic resonance (CMR) and T2-weighted short tau inversion recovery (T2-STIR) imaging to detect intramyocardial haemorrhage (IMH) as a measure of ischemic/reperfusion injury. We investigated the ability of T2-STIR to differentiate between microvascular...

  5. Advancing Molecular Therapies through In Vivo Bioluminescent Imaging

    Directory of Open Access Journals (Sweden)

    Anton McCaffrey

    2003-04-01

    Full Text Available Effective development of therapeutics that target the molecular basis of disease is dependent on testing new therapeutic moieties and delivery strategies in animal models of human disease. Accelerating the analyses of these models and improving their predictive value through whole animal imaging methods, which provide data in real time and are sensitive to the subtle changes, are crucial for rapid advancement of these approaches. Modalities based on optics are rapid, sensitive, and accessible methods for in vivo analyses with relatively low instrumentation costs. In vivo bioluminescent imaging (BLI is one of these optically based imaging methods that enable rapid in vivo analyses of a variety of cellular and molecular events with extreme sensitivity. BLI is based on the use of light-emitting enzymes as internal biological light sources that can be detected externally as biological indicators. BLI has been used to test spatio-temporal expression patterns of both target and therapeutic genes in living laboratory animals where the contextual influences of whole biological systems are preserved. BLI has also been used to analyze gene delivery, immune cell therapies, and the in vivo efficacy of inhibitory RNAs. New tools for BLI are being developed that will offer greater flexibility in detection and analyses. BLI can be used to accelerate the evaluation of experimental therapeutic strategies and whole body imaging offers the opportunity of revealing the effects of novel approaches on key steps in disease processes.

  6. PET-based molecular nuclear neuro-imaging

    International Nuclear Information System (INIS)

    Kim, Jong Ho

    2004-01-01

    Molecular nuclear neuro-imaging in CNS drug discovery and development can be divided into four categories that are clearly inter-related. (1) Neuroreceptor mapping to examine the involvement of specific neurotransmitter system in CNS diseases, drug occupancy characteristics and perhaps examine mechanisms of action;(2) Structural and spectroscopic imaging to examine morphological changes and their consequences;(3) Metabolic mapping to provide evidence of central activity and CNS fingerprinting the neuroanatomy of drug effects;(4) Functional mapping to examine disease-drug interactions. In addition, targeted delivery of therapeutic agents could be achieved by modifying stem cells to release specific drugs at the site of transplantation('stem cell pharmacology'). Future exploitation of stem cell biology, including enhanced release of therapeutic factors through genetic stem cell engineering might thus constitute promising pharmaceutical approaches to treating diseases of the nervous system. With continued improvements in instrumentation, identification of better imaging probes by innovative chemistry, molecular nuclear neuro-imaging promise to play increasingly important roles in disease diagnosis and therapy

  7. PET-based molecular nuclear neuro-imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Ho [Gil Medical Center, Gachon (Korea, Republic of)

    2004-04-01

    Molecular nuclear neuro-imaging in CNS drug discovery and development can be divided into four categories that are clearly inter-related. (1) Neuroreceptor mapping to examine the involvement of specific neurotransmitter system in CNS diseases, drug occupancy characteristics and perhaps examine mechanisms of action;(2) Structural and spectroscopic imaging to examine morphological changes and their consequences;(3) Metabolic mapping to provide evidence of central activity and CNS fingerprinting the neuroanatomy of drug effects;(4) Functional mapping to examine disease-drug interactions. In addition, targeted delivery of therapeutic agents could be achieved by modifying stem cells to release specific drugs at the site of transplantation('stem cell pharmacology'). Future exploitation of stem cell biology, including enhanced release of therapeutic factors through genetic stem cell engineering might thus constitute promising pharmaceutical approaches to treating diseases of the nervous system. With continued improvements in instrumentation, identification of better imaging probes by innovative chemistry, molecular nuclear neuro-imaging promise to play increasingly important roles in disease diagnosis and therapy.

  8. Intravascular near-infrared fluorescence molecular imaging of atherosclerosis: toward coronary arterial visualization of biologically high-risk plaques

    Science.gov (United States)

    Calfon, Marcella A.; Vinegoni, Claudio; Ntziachristos, Vasilis; Jaffer, Farouc A.

    2010-01-01

    New imaging methods are urgently needed to identify high-risk atherosclerotic lesions prior to the onset of myocardial infarction, stroke, and ischemic limbs. Molecular imaging offers a new approach to visualize key biological features that characterize high-risk plaques associated with cardiovascular events. While substantial progress has been realized in clinical molecular imaging of plaques in larger arterial vessels (carotid, aorta, iliac), there remains a compelling, unmet need to develop molecular imaging strategies targeted to high-risk plaques in human coronary arteries. We present recent developments in intravascular near-IR fluorescence catheter-based strategies for in vivo detection of plaque inflammation in coronary-sized arteries. In particular, the biological, light transmission, imaging agent, and engineering principles that underlie a new intravascular near-IR fluorescence sensing method are discussed. Intravascular near-IR fluorescence catheters appear highly translatable to the cardiac catheterization laboratory, and thus may offer a new in vivo method to detect high-risk coronary plaques and to assess novel atherosclerosis biologics.

  9. The development of nuclear medicine molecular imaging: An era of multiparametric imaging

    International Nuclear Information System (INIS)

    Zhu Yuyuan; Huang Gang

    2010-01-01

    Nuclear medical molecular imaging is developing toward a multimodality and multitracer future. Abundant complementary data generated from different tracers in different modalities are successfully serving the biological research and clinical treatment. Among the others, PER-MRI has the greatest potential and will be a research of interest in the near future. This article focused on the evolution history on nuclear medicine from single modality to multimodality, single tracer to multitracer. It also gave a brief summary to the identifications, differences, pros and consofmultimodality, multitracer, multiparametric molecular imaging. Issues, problems and challenges concerned with her development and recognition are also discussed. (authors)

  10. Radiogenomics: Creating a link between molecular diagnostics and diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rutman, Aaron M. [Department of Radiology, University of California San Diego Medical Center, San Diego, CA 92103 (United States); Kuo, Michael D. [Department of Radiology, University of California San Diego Medical Center, San Diego, CA 92103 (United States); Center for Translational Medical Systems, University of California San Diego Medical Center, San Diego, CA 92103 (United States)], E-mail: mkuo@ucsd.edu

    2009-05-15

    Studies employing high-throughput biological techniques have recently contributed to an improved characterization of human cancers, allowing for novel sub-classification, better diagnostic accuracy, and more precise prognostication. However, requirement of surgical procurement of tissue among other things limits the clinical application of such methods in everyday patient care. Radiographic imaging is routine in clinical practice but is currently histopathology based. The use of routine radiographic imaging provides a potential platform for linking specific imaging traits with specific gene expression patterns that inform the underlying cellular pathophysiology; imaging features could then serve as molecular surrogates that contribute to the diagnosis, prognosis, and likely gene-expression-associated treatment response of various forms of human cancer. This review focuses on high-throughput methods such as microarray analysis of gene expression, their role in cancer research, and in particular, on novel methods of associating gene expression patterns with radiographic imaging phenotypes, known as 'radiogenomics.' These findings underline a potential future role of both diagnostic and interventional radiologists in genetic assessment of cancer patients with radiographic imaging studies.

  11. Radiogenomics: Creating a link between molecular diagnostics and diagnostic imaging

    International Nuclear Information System (INIS)

    Rutman, Aaron M.; Kuo, Michael D.

    2009-01-01

    Studies employing high-throughput biological techniques have recently contributed to an improved characterization of human cancers, allowing for novel sub-classification, better diagnostic accuracy, and more precise prognostication. However, requirement of surgical procurement of tissue among other things limits the clinical application of such methods in everyday patient care. Radiographic imaging is routine in clinical practice but is currently histopathology based. The use of routine radiographic imaging provides a potential platform for linking specific imaging traits with specific gene expression patterns that inform the underlying cellular pathophysiology; imaging features could then serve as molecular surrogates that contribute to the diagnosis, prognosis, and likely gene-expression-associated treatment response of various forms of human cancer. This review focuses on high-throughput methods such as microarray analysis of gene expression, their role in cancer research, and in particular, on novel methods of associating gene expression patterns with radiographic imaging phenotypes, known as 'radiogenomics.' These findings underline a potential future role of both diagnostic and interventional radiologists in genetic assessment of cancer patients with radiographic imaging studies.

  12. Molecular image in biomedical research. Molecular imaging unit of the National Cancer Research Center

    International Nuclear Information System (INIS)

    Perez Bruzon, J.; Mulero Anhiorte, F.

    2010-01-01

    This article has two basic objectives. firstly, it will review briefly the most important imaging techniques used in biomedical research indicting the most significant aspects related to their application in the preclinical stage. Secondly, it will present a practical application of these techniques in a pure biomedical research centre (not associated to a clinical facility). Practical aspects such as organisation, equipment, work norms, shielding of the Spanish National Cancer Research Centre (CNIO) Imaging Unit will be shown. This is a pioneering facility in the application of these techniques in research centres without any dependence or any direct relationship with other hospital Nuclear Medicine services. (Author) 7 refs.

  13. Cardiovascular magnetic resonance imaging (CMR) reveals characteristic pattern of myocardial damage in patients with mitochondrial myopathy.

    Science.gov (United States)

    Yilmaz, Ali; Gdynia, Hans-Jürgen; Ponfick, Matthias; Rösch, Sabine; Lindner, Alfred; Ludolph, Albert C; Sechtem, Udo

    2012-04-01

    Mitochondrial myopathy comprises various clinical subforms of neuromuscular disorders that are characterised by impaired mitochondrial energy metabolism due to dysfunction of the mitochondrial respiratory chain. No comprehensive and targeted cardiovascular magnetic resonance (CMR) studies have been performed so far in patients with mitochondrial disorders. The present study aimed at characterising cardiac disease manifestations in patients with mitochondrial myopathy and elucidating the in vivo cardiac damage pattern of patients with different subforms of mitochondrial disease by CMR studies. In a prospective study, 37 patients with mitochondrial myopathy underwent comprehensive neurological and cardiac evaluations including physical examination, resting ECG and CMR. The CMR studies comprised cine-CMR, T2-weighted "edema" imaging and T1-weighted late-gadolinium-enhancement (LGE) imaging. Various patterns and degrees of skeletal myopathy were present in the participants of this study, whereas clinical symptoms such as chest pain symptoms (in eight (22%) patients) and various degrees of dyspnea (in 16 (43%) patients) were less frequent. Pathological ECG findings were documented in eight (22%) patients. T2-weighted "edema" imaging was positive in one (3%) patient with MELAS (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes) only. LGE imaging demonstrated the presence of non-ischemic LGE in 12 (32%) patients: 10 out of 24 (42%) patients with CPEO (chronic progressive external ophthalmoplegia) or KSS (Kearns-Sayre syndrome) and 2 of 3 (67%) patients with MELAS were LGE positive. All 10 LGE-positive patients with CPEO or KSS demonstrated a potentially typical pattern of diffuse intramural LGE in the left-ventricular (LV) inferolateral segments. Cardiac involvement is a frequent finding in patients with mitochondrial myopathy. A potentially characteristic pattern of diffuse intramural LGE in the LV inferolateral segments was identified in

  14. Molecular sources of residual cardiovascular risk, clinical signals, and innovative solutions: relationship with subclinical disease, undertreatment, and poor adherence: implications of new evidence upon optimizing cardiovascular patient outcomes

    Directory of Open Access Journals (Sweden)

    Kones R

    2013-10-01

    Full Text Available Richard KonesCardiometabolic Research Institute, Houston, TX, USAAbstract: Residual risk, the ongoing appreciable risk of major cardiovascular events (MCVE in statin-treated patients who have achieved evidence-based lipid goals, remains a concern among cardiologists. Factors that contribute to this continuing risk are atherogenic non-low-density lipoprotein (LDL particles and atherogenic processes unrelated to LDL cholesterol, including other risk factors, the inherent properties of statin drugs, and patient characteristics, ie, genetics and behaviors. In addition, providers, health care systems, the community, public policies, and the environment play a role. Major statin studies suggest an average 28% reduction in LDL cholesterol and a 31% reduction in relative risk, leaving a residual risk of about 69%. Incomplete reductions in risk, and failure to improve conditions that create risk, may result in ongoing progression of atherosclerosis, with new and recurring lesions in original and distant culprit sites, remodeling, arrhythmias, rehospitalizations, invasive procedures, and terminal disability. As a result, identification of additional agents to reduce residual risk, particularly administered together with statin drugs, has been an ongoing quest. The current model of atherosclerosis involves many steps during which disease may progress independently of guideline-defined elevations in LDL cholesterol. Differences in genetic responsiveness to statin therapy, differences in ability of the endothelium to regenerate and repair, and differences in susceptibility to nonlipid risk factors, such as tobacco smoking, hypertension, and molecular changes associated with obesity and diabetes, may all create residual risk. A large number of inflammatory and metabolic processes may also provide eventual therapeutic targets to lower residual risk. Classically, epidemiologic and other evidence suggested that raising high-density lipoprotein (HDL cholesterol

  15. Molecular imaging in neurological diseases; Molekulare Bildgebung bei neurologischen Erkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Reimold, M.; Fougere, C. la [Universitaetsklinikum Tuebingen, Abteilung Nuklearmedizin und Klinische Molekulare Bildgebung, Department Radiologie, Tuebingen (Germany)

    2016-07-15

    In neurodegeneration and in neuro-oncology, the standard imaging procedure, magnetic resonance imaging (MRI), shows limited sensitivity and specificity. Molecular imaging with specific positron-emission tomography (PET) and single-photon emission computed tomography (SPECT) tracers allows various molecular targets and metabolic processes to be assessed and is thus a valuable adjunct to MRI. Two important examples are referred to here: amino acid transport for neuro-oncological issues, and the recently approved PET tracers for detecting amyloid depositions during the preclinical stage of Alzheimer's disease. This review discusses the clinical relevance and indications for the following nuclear medicine imaging procedures: amyloid PET, {sup 18}F-fluorodeoxyglucose (FDG)-PET, and dopamine transporter (DaT)-SPECT for the diagnosis of dementia and the differential diagnosis of Parkinson's disease, in addition to amino acid PET for the diagnosis of brain tumors and somatostatin receptor imaging in meningioma. (orig.) [German] Die Magnetresonanztomographie (MRT) weist als Standardverfahren bei neurodegenerativen und neuroonkologischen Fragestellungen eine eingeschraenkte Sensitivitaet und Spezifitaet auf. Die nuklearmedizinische molekulare Bildgebung mit spezifischen Positronenemissionstomographie(PET)- und single-photon-emission-computed-tomography(SPECT)-Tracern ermoeglicht die Darstellung verschiedener molekularer Targets bzw. Stoffwechselprozesse und stellt damit eine wichtige Ergaenzung zur MRT dar. Hier sei exemplarisch auf die Darstellung des Aminosaeuretransports im Rahmen neuroonkologischer Fragestellungen verwiesen, sowie auf die bereits im praeklinischen Stadium der Alzheimer-Demenz nachweisbaren Amyloidablagerungen mit hierfuer seit Kurzem zugelassenen PET-Tracern. Dieser Uebersichtsbeitrag bespricht die klinische Bedeutung bzw. die Indikationen der folgenden nuklearmedizinischen Untersuchungsverfahren: der Amyloid-PET, der {sup 18}F

  16. Prognostic value of combined CT angiography and myocardial perfusion imaging versus invasive coronary angiography and nuclear stress perfusion imaging in the prediction of major adverse cardiovascular events

    DEFF Research Database (Denmark)

    Chen, Marcus Y.; Rochitte, Carlos E.; Arbab-Zadeh, Armin

    2017-01-01

    Purpose: To compare the prognostic importance (time to major adverse cardiovascular event [MACE]) of combined computed tomography (CT) angiography and CT myocardial stress perfusion imaging with that of combined invasive coronary angiography (ICA) and stress single photon emission CT myocardial p...

  17. Cell and Tissue Imaging with Molecularly Imprinted Polymers.

    Science.gov (United States)

    Panagiotopoulou, Maria; Kunath, Stephanie; Haupt, Karsten; Tse Sum Bui, Bernadette

    2017-01-01

    Advanced tools for cell imaging are of particular interest as they can detect, localize and quantify molecular targets like abnormal glycosylation sites that are biomarkers of cancer and infection. Targeting these biomarkers is often challenging due to a lack of receptor materials. Molecularly imprinted polymers (MIPs) are promising artificial receptors; they can be tailored to bind targets specifically, be labeled easily, and are physically and chemically stable. Herein, we demonstrate the application of MIPs as artificial antibodies for selective labeling and imaging of cellular targets, on the example of hyaluronan and sialylation moieties on fixated human skin cells and tissues. Thus, fluorescently labeled MIP nanoparticles templated with glucuronic acid (MIPGlcA) and N-acetylneuraminic acid (MIPNANA) are respectively applied. Two different fluorescent probes are used: (1) MIPGlcA particles, ~400 nm in size are labeled with the dye rhodamine that target the extracellular hyaluronan on cells and tissue specimens and (2) MIP-coated InP/ZnS quantum dots (QDs) of two different colors, ~125 nm in size that target the extracellular and intracellular hyaluronan and sialylation sites. Green and red emitting QDs are functionalized with MIPGlcA and MIPNANA respectively, enabling multiplexed cell imaging. This is a general approach that can also be adapted to other target molecules on and in cells.

  18. In Situ Correlated Molecular Imaging of Chemically Communicating Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Paul W. [Univ. of Notre Dame, IN (United States); Shrout, J. D. [Univ. of Notre Dame, IN (United States); Sweedler, J. V. [Univ. of Illinois, Urbana-Champaign, IL (United States); Farrand, S. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-01-25

    This document constitutes the final technical report for DE-SC0006642, In Situ Correlated Molecular Imaging of Chemically Communicating Microbial Communities, a project carried out collaboratively by investigators at Notre Dame and UIUC. The work carried out under DOE support in this project produced advances in two areas: development of new highly sophisticated correlated imaging approaches and the application of these new tools to the growth and differentiation of microbial communities under a variety of environmental conditions. A significant effort involved the creation of technical enhancements and sampling approaches to allow us to advance heterocorrelated mass spectrometry imaging (MSI) and correlated Raman microscopy (CRM) from bacterial cultures and biofilms. We then exploited these measurement advances in heterocorrelated MS/CRM imaging to determine relationship of signaling molecules and excreted signaling molecules produced by P. aeruginosa to conditions relevant to the rhizosphere. In particular, we: (1) developed a laboratory testbed mimic for the rhizosphere to enable microbial growth on slides under controlled conditions; (2) integrated specific measurements of (a) rhamnolipids, (b) quinolone/quinolones, and (c) phenazines specific to P. aeruginosa; and (3) utilized the imaging tools to probe how messenger secretion, quorum sensing and swarming behavior are correlated with behavior.

  19. Contributions on biomedical imaging, with a side-look at molecular imaging

    International Nuclear Information System (INIS)

    Winkler, G.

    2004-05-01

    This report is intended as a brief introduction to the emerging scientific field of biomedical imaging. The breadth of the subject is shown and future fields of research are indicated, which hopefully will serve as a guide to the identification of starting points for the research in 'Biomedical and/or Molecular Imaging' at the GSF-National Research Center for Environment and Health. The report starts with a brief sketch of the history. Then a - necessarily incomplete - list of research topics is presented. It is organized in two parts: the first one addresses medical imaging, and the second one is concerned with biological point aspects of the matter. (orig.) [de

  20. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Bucerius, Jan [Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital RWTH Aachen, RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Maastricht University Medical Center (MUMC), Department of Nuclear Medicine and Cardiovascular Research Institute (CARIM), P. Debyelaan 25, HX, Maastricht (Netherlands); Hyafil, Fabien [Bichat University Hospital, Inserm 1148, DHU FIRE, Assistance Publique - Hopitaux de Paris, Department of Nuclear Medicine, Paris (France); Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Verberne, Hein J. [University of Amsterdam, Department of Nuclear Medicine, Academic Medical Center, Amsterdam (Netherlands); Slart, Riemer H.J.A. [University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); University of Twente, Department of Biomedical Photonic Imaging, Faculty of Science and Technology, Enschede (Netherlands); Lindner, Oliver [Heart and Diabetes Center NRW, Nuclear Medicine and Molecular Imaging, Institute of Radiology, Bad Oeynhausen (Germany); Sciagra, Roberto [University of Florence, Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, Florence (Italy); Agostini, Denis [Normandie Universite, Department of Nuclear Medicine, CHU Cote de Nacre, Caen (France); Uebleis, Christopher [Ludwig-Maximilians Universitaet Muenchen, Department of Clinical Radiology, Muenchen (Germany); Gimelli, Alessia [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Hacker, Marcus [Medical University Vienna, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided therapy, Vienna (Austria); Collaboration: on behalf of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM)

    2016-04-15

    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a considerable need for innovative diagnostic and therapeutic approaches to improve the quality of care and limit the burden of cardiovascular diseases. During the past 10 years, several retrospective and prospective clinical studies have been published using {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to quantify inflammation in atherosclerotic plaques. However, the current variety of imaging protocols used for vascular (arterial) imaging with FDG PET considerably limits the ability to compare results between studies and to build large multicentre imaging registries. Based on the existing literature and the experience of the Members of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee, the objective of this position paper was to propose optimized and standardized protocols for imaging and interpretation of PET scans in atherosclerosis. These recommendations do not, however, replace the individual responsibility of healthcare professionals to make appropriate decisions in the circumstances of the individual study protocols used and the individual patient, in consultation with the patient and, where appropriate and necessary, the patient's guardian or carer. These recommendations suffer from the absence of conclusive evidence on many of the recommendations. Therefore, they are not intended and should not be used as ''strict guidelines'' but should, as already mentioned, provide a basis for standardized clinical atherosclerosis PET imaging protocols, which are subject to further and continuing evaluation and improvement. However, this EANM position paper might indeed be a first step towards &apos

  1. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis

    International Nuclear Information System (INIS)

    Bucerius, Jan; Hyafil, Fabien; Verberne, Hein J.; Slart, Riemer H.J.A.; Lindner, Oliver; Sciagra, Roberto; Agostini, Denis; Uebleis, Christopher; Gimelli, Alessia; Hacker, Marcus

    2016-01-01

    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a considerable need for innovative diagnostic and therapeutic approaches to improve the quality of care and limit the burden of cardiovascular diseases. During the past 10 years, several retrospective and prospective clinical studies have been published using 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to quantify inflammation in atherosclerotic plaques. However, the current variety of imaging protocols used for vascular (arterial) imaging with FDG PET considerably limits the ability to compare results between studies and to build large multicentre imaging registries. Based on the existing literature and the experience of the Members of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee, the objective of this position paper was to propose optimized and standardized protocols for imaging and interpretation of PET scans in atherosclerosis. These recommendations do not, however, replace the individual responsibility of healthcare professionals to make appropriate decisions in the circumstances of the individual study protocols used and the individual patient, in consultation with the patient and, where appropriate and necessary, the patient's guardian or carer. These recommendations suffer from the absence of conclusive evidence on many of the recommendations. Therefore, they are not intended and should not be used as ''strict guidelines'' but should, as already mentioned, provide a basis for standardized clinical atherosclerosis PET imaging protocols, which are subject to further and continuing evaluation and improvement. However, this EANM position paper might indeed be a first step towards &apos

  2. The application of phase analysis of gated myocardial perfusion imaging to assess left ventricular mechanical dyssynchrony in cardiovascular disease

    International Nuclear Information System (INIS)

    Wang Jianfeng; Wang Yuetao

    2013-01-01

    Left ventricular mechanical dyssynchrony is closely related to the severity of cardiovascular disease, it is essential to assess left ventricular mechanical dyssynchrony accurately for early prediction of adverse cardiac events and prognosis assessment of the cardiac resynchronization therapy. As a new technology to assess left ventricular mechanical dyssynchrony, the phase analysis of gated myocardial perfusion imaging (GMPI) can get both quantitative indicators of regional myocardial perfusion, evaluation of regional myocardial viability and scar tissue, as well as quantitative analysis of left ventricular function and left ventricular mechanical synchrony, it has broad application prospects in cardiovascular disease to assess left ventricular mechanical dyssynchrony and prognosis assessment. This review mainly described the applications of GMPI phase analysis in the cardiovascular disease. (authors)

  3. Cardiovascular cine imaging and flow evaluation using Fast Interrupted Steady-State (FISS) magnetic resonance.

    Science.gov (United States)

    Edelman, Robert R; Serhal, Ali; Pursnani, Amit; Pang, Jianing; Koktzoglou, Ioannis

    2018-02-19

    Existing cine imaging techniques rely on balanced steady-state free precession (bSSFP) or spoiled gradient-echo readouts, each of which has limitations. For instance, with bSSFP, artifacts occur from rapid through-plane flow and off-resonance effects. We hypothesized that a prototype cine technique, radial fast interrupted steady-state (FISS), could overcome these limitations. The technique was compared with standard cine bSSFP for cardiac function, coronary artery conspicuity, and aortic valve morphology. Given its advantageous properties, we further hypothesized that the cine FISS technique, in combination with arterial spin labeling (ASL), could provide an alternative to phase contrast for visualizing in-plane flow patterns within the aorta and branch vessels. The study was IRB-approved and subjects provided consent. Breath-hold cine FISS and bSSFP were acquired using similar imaging parameters. There was no significant difference in biplane left ventricular ejection fraction or cardiac image quality between the two techniques. Compared with cine bSSFP, cine FISS demonstrated a marked decrease in fat signal which improved conspicuity of the coronary arteries, while suppression of through-plane flow artifact on thin-slice cine FISS images improved visualization of the aortic valve. Banding artifacts in the subcutaneous tissues were reduced. In healthy subjects, dynamic flow patterns were well visualized in the aorta, coronary and renal arteries using cine FISS ASL, even when the slice was substantially thicker than the vessel diameter. Cine FISS demonstrates several benefits for cardiovascular imaging compared with cine bSSFP, including better suppression of fat signal and reduced artifacts from through-plane flow and off-resonance effects. The main drawback is a slight (~ 20%) decrease in temporal resolution. In addition, preliminary results suggest that cine FISS ASL provides a potential alternative to phase contrast techniques for in-plane flow

  4. Multifunctional Gold Nanostars for Molecular Imaging and Cancer Therapy

    Science.gov (United States)

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew; Register, Janna; Vo-Dinh, Tuan

    2015-08-01

    Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photoluminescence (TPL) and surface-enhanced Raman spectroscopy (SERS). Their surfactant-free surface enables versatile functionalization to enhance cancer targeting, and allow triggered drug release. AuNS can also be used as an efficient platform for drug carrying, photothermal therapy, and photodynamic therapy. This review paper presents the latest progress regarding AuNS as a promising nanoplatform for cancer nanotheranostics. Future research directions with AuNS for biomedical applications will also be discussed.

  5. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT.

    Science.gov (United States)

    Rempel, Brian P; Price, Eric W; Phenix, Christopher P

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.

  6. Status and Advances of RGD Molecular Imaging in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ning YUE

    2014-12-01

    Full Text Available Lung cancer has been one of the most common and the highest mortality rates malignant tumors at home and abroad. Sustained angiogenesis was not only the characteristic of malignant tumors, but also the foundation of tumor proliferation, invasion, recurrence and metastasis, it was also one of the hot spots of treatments in lung cancer biology currently. Integrins played an important part in tumor angiogenesis. Arg-Gly-Asp (RGD peptides could combine with integrins specifically, and the application of radionuclide-labeled RGD molecular probes enabled imaging of tumor blood vessels to reflect its changes. The lung cancer imaging of RGD peptides at home and abroad in recent years was reviewed in this article.

  7. Functional histology of tumors as a basis of molecular imaging

    International Nuclear Information System (INIS)

    Ljungkvist, A.S.; Bussink, J.; Rijken, P.F.; Van Der Kogel, A.; Kaanders, J.H.

    2003-01-01

    The aim of this study was to characterize the various elements of the microenvironment and their interrelationships by quantitative image analysis. Tumor cell proliferation, hypoxia, and apoptosis are detected by immunohistochemical methods, and mapped in relation to the vasculature. This allows quantitative relationships to be measured in the context of tissue structure. Guided by e.g., gene expression profiles for hypoxia induced-genes, several molecular markers of tumor hypoxia were identified and are immunohistochemically detectable. We have thus far concentrated on the glucose transporters glut-1 and glut-3, as well as a pH-regulating enzyme, carbonic anhydrase IX. The extent and distribution of hypoxia is assessed by administering nitroimidazole-based markers such as pimonidazole, that can be detected immunohistochemically. Multiple hypoxia markers (CCI-103F, pimonidazole) can be used to study the effects of modifiers of perfusion or oxygenation on the distribution and dynamics of hypoxic cells in the same tumor. Proliferating cells are detected by thymidine analogues. Apoptotic cells are imaged by TUNEL and caspase-3 detection. In xenografted human tumors, examples of the use of quantitative imaging of hypoxia and proliferation are the study of reoxygenation after irradiation, or the investigation of the lifespan and dynamics of hypoxic cell populations over time. Perturbation of the microenvironment after cytotoxic treatments has been investigated by co-registration of the various markers, e.g. after treatment with the hypoxic cytotoxin tirapazamine. The combination of well-timed administration of external markers of hypoxia and proliferation with the detection of intrinsic molecular markers followed by quantitative image-registration yields a comprehensive view of the dynamics of the microenvironment in individual tumors

  8. Multi-detector computed tomography (MDCT imaging of cardiovascular effects of pulmonary embolism: What the radiologists need to know

    Directory of Open Access Journals (Sweden)

    Mohamed Aboul-fotouh E. Mourad

    2017-09-01

    Full Text Available Background: Patients with pulmonary embolism have high mortality and morbidity rate due to right heart failure and circulatory collapse leading to sudden death. Multi-detector computed tomography MDCT can efficiently evaluate the cardiovascular factors related to pulmonary embolism. Objectives: To evaluate the diagnostic accuracy of multi-detector computed tomography (MDCT in differentiation of between sever and non-severe pulmonary embolism groups depending on the associated cardiovascular parameters and create a simple reporting system. Patients & methods: Prospective study contained 145 patients diagnosed clinically pulmonary embolism. All patients were examined by combined electrocardiographically gated computed tomography pulmonary angiography-computed tomography venography (ECG-CTPA-CTV using certain imaging criteria in a systematic manner. Results: Our study revealed 95 and 55 non-severe and severe pulmonary embolism groups respectively. Many cardiovascular parameters related to pulmonary embolism shows significant p value and can differentiate between sever and non-severe pulmonary embolism patients include pulmonary artery diameter, intraventricular septum flattening, bowing, superior vena cava and Azygos vein diameters, right and left ventricular diameters. Conclusion: Multi-detector computed tomography (MDCT can be valuable to assess the severity of pulmonary embolism using the related cardiovascular parameters and leading the management strategy aim for best outcome. Keywords: Pulmonary embolism, MDCT, Cardiovascular, Computed tomography venography

  9. A gamma-ray tracking detector for molecular imaging

    International Nuclear Information System (INIS)

    Hall, C.J.; Lewis, R.A.; Helsby, W.I.; Nolan, P.; Boston, A.

    2003-01-01

    A design for a gamma-ray detector for molecular imaging is presented. The system is based on solid-state strip detector technology. The advantages of position sensitivity coupled with fine spectral resolution are exploited to produce a tracking detector for use with a variety of isotopes in nuclear medicine. Current design concepts employ both silicon and germanium layers to provide an energy range from 60 keV to >1 MeV. This allows a reference X-ray image to be collected simultaneously with the gamma-ray image providing accurate anatomical registration. The tracking ability of the gamma-ray detector allows ambiguities in the data set to be resolved which would otherwise cause events to be rejected in standard non-tracking system. Efficiency improvements that high solid angle coverage and the use of a higher proportion of events make time resolved imaging and multi-isotope work possible. A modular detector system, designed for viewing small animals has been accepted for funding

  10. Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue

    Science.gov (United States)

    Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.

    2015-01-01

    Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379

  11. Cardiac remodeling following percutaneous mitral valve repair - initial results assessed by cardiovascular magnetic resonance imaging

    DEFF Research Database (Denmark)

    Radunski, U K; Franzen, O; Barmeyer, A

    2014-01-01

    PURPOSE: Percutaneous mitral valve repair with the MitraClip device (Abbott Vascular, Redwood City, California, USA) is a novel therapeutic option in patients with mitral regurgitation. This study evaluated the feasibility of cardiac volume measurements by cardiovascular magnetic resonance imaging...... (CMR) to assess reverse myocardial remodeling in patients after MitraClip implantation. MATERIALS AND METHODS: 12 patients underwent CMR at baseline (BL) before and at 6 months follow-up (FU) after MitraClip implantation. Cine-CMR was performed in short- and long-axes for the assessment of left...... end-systolic (48 [42 - 80] vs. 51 [40 - 81] ml/m(2); p = 0.48), and LA (87 [55 - 124] vs. 92 [48 - 137] ml/m(2); p = 0.20) volume indices between BL and FU. CONCLUSION: CMR enables the assessment of cardiac volumes in patients after MitraClip implantation. Our CMR findings indicate that percutaneous...

  12. Advanced cardiovascular imaging in Williams syndrome: Abnormalities, usefulness, and strategy for use.

    Science.gov (United States)

    Hills, Jordan A; Zarate, Yuri A; Danylchuk, Noelle R; Lepard, Tiffany; Chen, Jean Chi-Jen; Collins, Ronnie Thomas

    2017-05-01

    Extracardiac arterial stenoses are not uncommon in Williams syndrome (WS); however, data on the utility of advanced cardiovascular imaging (CVI) to assess these stenoses are lacking. We retrospectively reviewed the frequency, indication, and diagnostic outcomes of CVI modalities performed in patients with WS evaluated at a single institution between 2001 and 2014. Data were collected and analyzed from 34 patients (56% female) who underwent CVI during the study period. The median age was 10 years (range 1.8-33 years). Excluding echocardiograms, 78 CVI studies "advanced" were performed in the 34 patients (mean 2.3 studies/patient). The most common advanced CVI was renal ultrasound with Doppler (29/34, 85%), followed by computed tomographic angiography (13/34, 38%) and magnetic resonance angiography in (9/34, 26%). Abnormalities were detected in 62% of patients (21/34). For the 20 patients in whom advanced CVI were performed for defined clinical indications, the rate of abnormalities were 73, 70, 57, and 100% when performed for anatomic delineation (15 patients), hypertension (10 patients), bruits (7 patients), and/or decreased peripheral pulses (2 patients), respectively. Advanced CVI in patients with WS reveals abnormalities in the majority of cases, and physical exam findings frequently indicate abnormalities on advanced CVI. © 2017 Wiley Periodicals, Inc.

  13. Imaging of systemic lupus erythematosus. Part I: CNS, cardiovascular, and thoracic manifestations

    International Nuclear Information System (INIS)

    Goh, Y.P.; Naidoo, P.; Ngian, G.S.

    2013-01-01

    Systemic lupus erythematosus (SLE) is a chronic, multisystem autoimmune disease that has a relapsing and remitting course. It has a wide range of non-specific symptoms with various organ manifestations. In 1982, the American College of Rheumatology (ACR) published the revised criteria for the classification of SLE. The diagnosis of SLE may be made if four or more of the 11 ACR criteria are present, either serially or simultaneously, during any interval of observation. Whilst the diagnosis of SLE is based on clinical and laboratory features, with no universally accepted radiological diagnostic criteria, imaging is nonetheless useful for diagnosing specific organ manifestations, monitoring disease progression, and identifying complications secondary to immunosuppressive therapy. In this review, we describe the spectrum of radiological findings of SLE in various organ systems and compile a list of organ manifestations including the most frequently occurring diseases as well as the rare but not-to-be-missed diseases. This review aims to serve as a concise reference tool in an endeavour to assist clinicians and radiologists in the diagnosis and monitoring of this disease. This pictorial review presents the various radiological findings of CNS, cardiovascular and thoracic manifestation of SLE. The gastrointestinal, renal and musculoskeletal systems will be covered in part II.

  14. Tunable Molecular Logic Gates Designed for Imaging Released Neurotransmitters.

    Science.gov (United States)

    Klockow, Jessica L; Hettie, Kenneth S; Secor, Kristen E; Barman, Dipti N; Glass, Timothy E

    2015-08-03

    Tunable dual-analyte fluorescent molecular logic gates (ExoSensors) were designed for the purpose of imaging select vesicular primary-amine neurotransmitters that are released from secretory vesicles upon exocytosis. ExoSensors are based on the coumarin-3-aldehyde scaffold and rely on both neurotransmitter binding and the change in environmental pH associated with exocytosis to afford a unique turn-on fluorescence output. A pH-functionality was directly integrated into the fluorophore π-system of the scaffold, thereby allowing for an enhanced fluorescence output upon the release of labeled neurotransmitters. By altering the pH-sensitive unit with various electron-donating and -withdrawing sulfonamide substituents, we identified a correlation between the pKa of the pH-sensitive group and the fluorescence output from the activated fluorophore. In doing so, we achieved a twelvefold fluorescence enhancement upon evaluating the ExoSensors under conditions that mimic exocytosis. ExoSensors are aptly suited to serve as molecular imaging tools that allow for the direct visualization of only the neurotransmitters that are released from secretory vesicles upon exocytosis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Raman molecular imaging of brain frozen tissue sections.

    Science.gov (United States)

    Kast, Rachel E; Auner, Gregory W; Rosenblum, Mark L; Mikkelsen, Tom; Yurgelevic, Sally M; Raghunathan, Aditya; Poisson, Laila M; Kalkanis, Steven N

    2014-10-01

    Raman spectroscopy provides a molecular signature of the region being studied. It is ideal for neurosurgical applications because it is non-destructive, label-free, not impacted by water concentration, and can map an entire region of tissue. The objective of this paper is to demonstrate the meaningful spatial molecular information provided by Raman spectroscopy for identification of regions of normal brain, necrosis, diffusely infiltrating glioma and solid glioblastoma (GBM). Five frozen section tissues (1 normal, 1 necrotic, 1 GBM, and 2 infiltrating glioma) were mapped in their entirety using a 300-µm-square step size. Smaller regions of interest were also mapped using a 25-µm step size. The relative concentrations of relevant biomolecules were mapped across all tissues and compared with adjacent hematoxylin and eosin-stained sections, allowing identification of normal, GBM, and necrotic regions. Raman peaks and peak ratios mapped included 1003, 1313, 1431, 1585, and 1659 cm(-1). Tissue maps identified boundaries of grey and white matter, necrosis, GBM, and infiltrating tumor. Complementary information, including relative concentration of lipids, protein, nucleic acid, and hemoglobin, was presented in a manner which can be easily adapted for in vivo tissue mapping. Raman spectroscopy can successfully provide label-free imaging of tissue characteristics with high accuracy. It can be translated to a surgical or laboratory tool for rapid, non-destructive imaging of tumor margins.

  16. Inappropriateness of cardiovascular radiological imaging testing; a tertiary care referral center study.

    Directory of Open Access Journals (Sweden)

    Clara Carpeggiani

    Full Text Available AIMS: Radiological inappropriateness in medical imaging leads to loss of resources and accumulation of avoidable population cancer risk. Aim of the study was to audit the appropriateness rate of different cardiac radiological examinations. METHODS AND PRINCIPAL FINDINGS: With a retrospective, observational study we reviewed clinical records of 818 consecutive patients (67 ± 12 years, 75% males admitted from January 1-May 31, 2010 to the National Research Council - Tuscany Region Gabriele Monasterio Foundation cardiology division. A total of 940 procedures were audited: 250 chest x-rays (CXR; 240 coronary computed tomographies (CCT; 250 coronary angiographies (CA; 200 percutaneous coronary interventions (PCI. For each test, indications were rated on the basis of guidelines class of recommendation and level of evidence: definitely appropriate (A, including class I, appropriate, and class IIa, probably appropriate, uncertain (U, class IIb, probably inappropriate, or inappropriate (I, class III, definitely inappropriate. Appropriateness was suboptimal for all tests: CXR (A = 48%, U = 10%, I = 42%; CCT (A = 58%, U = 24%, I = 18%; CA (A = 45%, U = 25%, I = 30%; PCI (A = 63%, U = 15%, I = 22%. Top reasons for inappropriateness were: routine on hospital admission (70% of inappropriate CXR; first line application in asymptomatic low-risk patients (42% of CCT or in patients with unchanged clinical status post-revascularization (20% of CA; PCI in patients either asymptomatic or with miscellaneous symptoms and without inducible ischemia on non-invasive testing (36% of inappropriate PCI. CONCLUSION AND SIGNIFICANCE: Public healthcare system--with universal access paid for with public money--is haemorrhaging significant resources and accumulating avoidable long-term cancer risk with inappropriate cardiovascular imaging prevention.

  17. Multifunctional nanomaterials for advanced molecular imaging and cancer therapy

    Science.gov (United States)

    Subramaniam, Prasad

    Nanotechnology offers tremendous potential for use in biomedical applications, including cancer and stem cell imaging, disease diagnosis and drug delivery. The development of nanosystems has aided in understanding the molecular mechanisms of many diseases and permitted the controlled nanoscale manipulation of biological phenomena. In recent years, many studies have focused on the use of several kinds of nanomaterials for cancer and stem cell imaging and also for the delivery of anticancer therapeutics to tumor cells. However, the proper diagnosis and treatment of aggressive tumors such as brain and breast cancer requires highly sensitive diagnostic agents, in addition to the ability to deliver multiple therapeutics using a single platform to the target cells. Addressing these challenges, novel multifunctional nanomaterial-based platforms that incorporate multiple therapeutic and diagnostic agents, with superior molecular imaging and targeting capabilities, has been presented in this work. The initial part of this work presents the development of novel nanomaterials with superior optical properties for efficiently delivering soluble cues such as small interfering RNA (siRNA) into brain cancer cells with minimal toxicity. Specifically, this section details the development of non-toxic quantums dots for the imaging and delivery of siRNA into brain cancer and mesenchymal stem cells, with the hope of using these quantum dots as multiplexed imaging and delivery vehicles. The use of these quantum dots could overcome the toxicity issues associated with the use of conventional quantum dots, enabled the imaging of brain cancer and stem cells with high efficiency and allowed for the delivery of siRNA to knockdown the target oncogene in brain cancer cells. The latter part of this thesis details the development of nanomaterial-based drug delivery platforms for the co-delivery of multiple anticancer drugs to brain tumor cells. In particular, this part of the thesis focuses on

  18. Cardiovascular radiology

    International Nuclear Information System (INIS)

    VanAman, M.; Mueller, C.F.

    1985-01-01

    Soon after Roentgen documented the uses of x-rays in 1895, fluoroscopic and film evaluation of the heart began. Even today the chest roentgenogram remains one of the first and most frequently used studies for the evaluation of the normal and abnormal heart and great vessels. This chapter gives an overview of plain film evaluation of the cardiovascular system and follow up with comments on the newer imaging modalities of computed tomography, and digital subtraction angiography, in the cardiovascular disease workup. The authors present an evaluation of plain films of the chest, which remains their most cost effective, available, simple, and reliable initial screening tool in the evaluation of cardiovascular disease

  19. Hsp90 molecular chaperone: structure, functions and participation in cardio-vascular pathologies

    Directory of Open Access Journals (Sweden)

    Kroupskaya I. V.

    2009-10-01

    Full Text Available The review is devoted to the analysis of structural and functional properties of molecular chaperon Hsp90. Hsp90 is a representative of highly widespread family of heat shock proteins. The protein is found in eubacteria and all branches of eukarya, but it is apparently absent in archaea. It is one of key regulators of numerous signalling pathways, cell growth and development, apoptosis, induction of autoimmunity, and progression of heart failure. The full functional activity of Hsp90 shows up in a complex with other molecular chaperones and co-chaperones. Molecular interactions between chaperones, different signalling proteins and protein-partners are highly crucial for the normal functioning of signalling pathways and their destruction causes an alteration in the cell physiology up to its death.

  20. Deep Learning in Nuclear Medicine and Molecular Imaging: Current Perspectives and Future Directions.

    Science.gov (United States)

    Choi, Hongyoon

    2018-04-01

    Recent advances in deep learning have impacted various scientific and industrial fields. Due to the rapid application of deep learning in biomedical data, molecular imaging has also started to adopt this technique. In this regard, it is expected that deep learning will potentially affect the roles of molecular imaging experts as well as clinical decision making. This review firstly offers a basic overview of deep learning particularly for image data analysis to give knowledge to nuclear medicine physicians and researchers. Because of the unique characteristics and distinctive aims of various types of molecular imaging, deep learning applications can be different from other fields. In this context, the review deals with current perspectives of deep learning in molecular imaging particularly in terms of development of biomarkers. Finally, future challenges of deep learning application for molecular imaging and future roles of experts in molecular imaging will be discussed.

  1. X-ray image intensifier for cardiovascular diagnosis. Development of RTP 9203 B-P4 and evaluation of image quality

    Energy Technology Data Exchange (ETDEWEB)

    Obata, Y; Suzuki, A; Noji, T; Harao, N [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1979-07-01

    The high utility of 35-mm cine fluorography with high-quality X-ray image intensifier has recently been acknowledged in the field of cardiovascular diagnosis. The newly developed 9-inch dual-field X-ray image intensifier is particularly suitable for 35-mm cinefluorography. The main characteristics of this tube are the increased contrast, brightness and resolution of images and the reduced quantum noise. These characteristics are caused by the CsI input phosphor screen which has a ''light-guide effect'', a high-sensitivity photocathode and a dark output screen. The tube is equipped with a high-voltage power supply with high reliability.

  2. Transferring Biomarker into Molecular Probe: Melanin Nanoparticle as a Naturally Active Platform for Multimodality Imaging

    OpenAIRE

    Fan, Quli; Cheng, Kai; Hu, Xiang; Ma, Xiaowei; Zhang, Ruiping; Yang, Min; Lu, Xiaomei; Xing, Lei; Huang, Wei; Gambhir, Sanjiv Sam; Cheng, Zhen

    2014-01-01

    Developing multifunctional and easily prepared nanoplatforms with integrated different modalities is highly challenging for molecular imaging. Here, we report the successful transfer of an important molecular target, melanin, into a novel multimodality imaging nanoplatform. Melanin is abundantly expressed in melanotic melanomas and thus has been actively studied as a target for melanoma imaging. In our work, the multifunctional biopolymer nanoplatform based on ultrasmall (

  3. Molecular and Ionized Hydrogen in 30 Doradus. I. Imaging Observations

    Science.gov (United States)

    Yeh, Sherry C. C.; Seaquist, Ernest R.; Matzner, Christopher D.; Pellegrini, Eric W.

    2015-07-01

    We present the first fully calibrated H2 1-0 S(1) image of the entire 30 Doradus nebula. The observations were conducted using the NOAO Extremely Wide-field Infrared Imager (NEWFIRM) on the CTIO 4 m Blanco Telescope. Together with a NEWFIRM Brγ image of 30 Doradus, our data reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. The brightest H2-emitting area, which extends from the northeast to the southwest of R136, is a photodissociation region (PDR) viewed face-on, while many clumps and pillar features located at the outer shells of 30 Doradus are PDRs viewed edge-on. Based on the morphologies of H2, Brγ, CO, and 8 μm emission, the H2 to Brγ line ratio, and Cloudy models, we find that the H2 emission is formed inside the PDRs of 30 Doradus, 2-3 pc to the ionization front of the H ii region, in a relatively low-density environment <104 cm-3. Comparisons with Brγ, 8 μm, and CO emission indicate that H2 emission is due to fluorescence, and provide no evidence for shock excited emission of this line.

  4. Molecular Imaging Of Metabolic Reprogramming In Mutant IDH Cells

    Directory of Open Access Journals (Sweden)

    Pavithra eViswanath

    2016-03-01

    Full Text Available Mutations in the metabolic enzyme isocitrate dehydrogenase (IDH have recently been identified as drivers in the development of several tumor types. Most notably, cytosolic IDH1 is mutated in 70-90% of low-grade gliomas and upgraded glioblastomas, and mitochondrial IDH2 is mutated in ~20% of acute myeloid leukemia cases. Wild-type IDH catalyzes the interconversion of isocitrate to α-ketoglutarate (α-KG. Mutations in the enzyme lead to loss of wild-type enzymatic activity and a neomorphic activity that converts α-KG to 2-hydroxyglutarate (2-HG. In turn, 2-HG, which has been termed an oncometabolite, inhibits key α-KG- dependent enzymes, resulting in alterations of the cellular epigenetic profile and, subsequently, inhibition of differentiation and initiation of tumorigenesis. In addition, it is now clear that the IDH mutation also induces a broad metabolic reprogramming that extends beyond 2-HG production, and this reprogramming often differs from what has been previously reported in other cancer types. In this review we will discuss in detail what is known to date about the metabolic reprogramming of mutant IDH cells and how this reprogramming has been investigated using molecular metabolic imaging. We will describe how metabolic imaging has helped shed light on the basic biology of mutant IDH cells and how this information can be leveraged to identify new therapeutic targets and to develop new clinically translatable imaging methods to detect and monitor mutant IDH tumors in vivo.

  5. MOLECULAR AND IONIZED HYDROGEN IN 30 DORADUS. I. IMAGING OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Sherry C. C. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Seaquist, Ernest R.; Matzner, Christopher D. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Pellegrini, Eric W., E-mail: yeh@naoj.org [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States)

    2015-07-10

    We present the first fully calibrated H{sub 2} 1–0 S(1) image of the entire 30 Doradus nebula. The observations were conducted using the NOAO Extremely Wide-field Infrared Imager (NEWFIRM) on the CTIO 4 m Blanco Telescope. Together with a NEWFIRM Brγ image of 30 Doradus, our data reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. The brightest H{sub 2}-emitting area, which extends from the northeast to the southwest of R136, is a photodissociation region (PDR) viewed face-on, while many clumps and pillar features located at the outer shells of 30 Doradus are PDRs viewed edge-on. Based on the morphologies of H{sub 2}, Brγ, CO, and 8 μm emission, the H{sub 2} to Brγ line ratio, and Cloudy models, we find that the H{sub 2} emission is formed inside the PDRs of 30 Doradus, 2–3 pc to the ionization front of the H ii region, in a relatively low-density environment <10{sup 4} cm{sup −3}. Comparisons with Brγ, 8 μm, and CO emission indicate that H{sub 2} emission is due to fluorescence, and provide no evidence for shock excited emission of this line.

  6. Plaque Structural Stress Estimations Improve Prediction of Future Major Adverse Cardiovascular Events After Intracoronary Imaging.

    Science.gov (United States)

    Brown, Adam J; Teng, Zhongzhao; Calvert, Patrick A; Rajani, Nikil K; Hennessy, Orla; Nerlekar, Nitesh; Obaid, Daniel R; Costopoulos, Charis; Huang, Yuan; Hoole, Stephen P; Goddard, Martin; West, Nick E J; Gillard, Jonathan H; Bennett, Martin R

    2016-06-01

    Although plaque rupture is responsible for most myocardial infarctions, few high-risk plaques identified by intracoronary imaging actually result in future major adverse cardiovascular events (MACE). Nonimaging markers of individual plaque behavior are therefore required. Rupture occurs when plaque structural stress (PSS) exceeds material strength. We therefore assessed whether PSS could predict future MACE in high-risk nonculprit lesions identified on virtual-histology intravascular ultrasound. Baseline nonculprit lesion features associated with MACE during long-term follow-up (median: 1115 days) were determined in 170 patients undergoing 3-vessel virtual-histology intravascular ultrasound. MACE was associated with plaque burden ≥70% (hazard ratio: 8.6; 95% confidence interval, 2.5-30.6; P<0.001) and minimal luminal area ≤4 mm(2) (hazard ratio: 6.6; 95% confidence interval, 2.1-20.1; P=0.036), although absolute event rates for high-risk lesions remained <10%. PSS derived from virtual-histology intravascular ultrasound was subsequently estimated in nonculprit lesions responsible for MACE (n=22) versus matched control lesions (n=22). PSS showed marked heterogeneity across and between similar lesions but was significantly increased in MACE lesions at high-risk regions, including plaque burden ≥70% (13.9±11.5 versus 10.2±4.7; P<0.001) and thin-cap fibroatheroma (14.0±8.9 versus 11.6±4.5; P=0.02). Furthermore, PSS improved the ability of virtual-histology intravascular ultrasound to predict MACE in plaques with plaque burden ≥70% (adjusted log-rank, P=0.003) and minimal luminal area ≤4 mm(2) (P=0.002). Plaques responsible for MACE had larger superficial calcium inclusions, which acted to increase PSS (P<0.05). Baseline PSS is increased in plaques responsible for MACE and improves the ability of intracoronary imaging to predict events. Biomechanical modeling may complement plaque imaging for risk stratification of coronary nonculprit lesions. © 2016

  7. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging

    International Nuclear Information System (INIS)

    Ntziachristos, Vasilis; Bremer, Christoph; Weissleder, Ralph

    2003-01-01

    A recent development in biomedical imaging is the non-invasive mapping of molecular events in intact tissues using fluorescence. Underpinning to this development is the discovery of bio-compatible, specific fluorescent probes and proteins and the development of highly sensitive imaging technologies for in vivo fluorescent detection. Of particular interest are fluorochromes that emit in the near infrared (NIR), a spectral window, whereas hemoglobin and water absorb minimally so as to allow photons to penetrate for several centimetres in tissue. In this review article we concentrate on optical imaging technologies used for non-invasive imaging of the distribution of such probes. We illuminate the advantages and limitations of simple photographic methods and turn our attention to fluorescence-mediated molecular tomography (FMT), a technique that can three-dimensionally image gene expression by resolving fluorescence activation in deep tissues. We describe theoretical specifics, and we provide insight into its in vivo capacity and the sensitivity achieved. Finally, we discuss its clinical feasibility. (orig.)

  8. A Partnership Training Program in Breast Cancer Research Using Molecular Imaging Techniques

    National Research Council Canada - National Science Library

    Wang, Paul C

    2006-01-01

    In the first year of this training grant, five faculty members from different departments at the Howard University were trained in molecular imaging with the faculty at the In Vivo Cellular Molecular...

  9. Dosimetry of FDG PET/CT and other molecular imaging applications in pediatric patients

    International Nuclear Information System (INIS)

    Gelfand, Michael J.

    2009-01-01

    Effective doses for PET and SPECT imaging of molecular imaging agents depend on the radiopharmaceutical, administered activity and the weight of the patient. Effective doses for the accompanying CT scan depend on the CT protocol being used. CT protocols can be designed to produce diagnostic quality images, localization images or attenuation correction data without imaging. In each case, the co-registered molecular imaging examination (PET or SPECT) and the CT study must be acquired without patient movement. For PET/CT, attention to the respiratory phase during the CT study is also of critical importance. In addition to the molecular imaging agents 18 F-FDG and 123 I-MIBG that are frequently used in children, additional PET and SPECT imaging agents may have promise for molecular imaging in children. (orig.)

  10. Molecular Imaging and Precision Medicine in Lung Cancer.

    Science.gov (United States)

    Zukotynski, Katherine A; Gerbaudo, Victor H

    2017-01-01

    Precision medicine allows tailoring of preventive or therapeutic interventions to avoid the expense and toxicity of futile treatment given to those who will not respond. Lung cancer is a heterogeneous disease functionally and morphologically. PET is a sensitive molecular imaging technique with a major role in the precision medicine algorithm of patients with lung cancer. It contributes to the precision medicine of lung neoplasia by interrogating tumor heterogeneity throughout the body. It provides anatomofunctional insight during diagnosis, staging, and restaging of the disease. It is a biomarker of tumoral heterogeneity that helps direct selection of the most appropriate treatment, the prediction of early response to cytotoxic and cytostatic therapies, and is a prognostic biomarker in patients with lung cancer. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  11. Left ventricular thrombus formation after acute myocardial infarction as assessed by cardiovascular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Delewi, Ronak; Nijveldt, Robin; Hirsch, Alexander; Marcu, Constantin B.; Robbers, Lourens; Hassell, Marriela E.C.J.; Bruin, Rianne H.A. de; Vleugels, Jim; Laan, Anja M. van der; Bouma, Berto J.; Tio, René A.; Tijssen, Jan G.P.; Rossum, Albert C. van; Zijlstra, Felix; Piek, Jan J.

    2012-01-01

    Introduction: Left ventricular (LV) thrombus formation is a feared complication of myocardial infarction (MI). We assessed the prevalence of LV thrombus in ST-segment elevated MI patients treated with percutaneous coronary intervention (PCI) and compared the diagnostic accuracy of transthoracic echocardiography (TTE) to cardiovascular magnetic resonance imaging (CMR). Also, we evaluated the course of LV thrombi in the modern era of primary PCI. Methods: 200 patients with primary PCI underwent TTE and CMR, at baseline and at 4 months follow-up. Studies were analyzed by two blinded examiners. Patients were seen at 1, 4, 12, and 24 months for assessment of clinical status and adverse events. Results: On CMR at baseline, a thrombus was found in 17 of 194 (8.8%) patients. LV thrombus resolution occurred in 15 patients. Two patients had persistence of LV thrombus on follow-up CMR. On CMR at four months, a thrombus was found in an additional 12 patients. In multivariate analysis, thrombus formation on baseline CMR was independently associated with, baseline infarct size (g) (B = 0.02, SE = 0.02, p < 0.001). Routine TTE had a sensitivity of 21–24% and a specificity of 95–98% compared to CMR for the detection of LV thrombi. Intra- and interobserver variation for detection of LV thrombus were lower for CMR (κ = 0.91 and κ = 0.96) compared to TTE (κ = 0.74 and κ = 0.53). Conclusion: LV thrombus still occurs in a substantial amount of patients after PCI-treated MI, especially in larger infarct sizes. Routine TTE had a low sensitivity for the detection of LV thrombi and the interobserver variation of TTE was large.

  12. Left ventricular thrombus formation after acute myocardial infarction as assessed by cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Delewi, Ronak [Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Interuniversity Cardiology Institute of the Netherlands (Netherlands); Nijveldt, Robin [Department of Cardiology, VU University Medical Center, Amsterdam (Netherlands); Hirsch, Alexander [Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Marcu, Constantin B.; Robbers, Lourens [Department of Cardiology, VU University Medical Center, Amsterdam (Netherlands); Hassell, Marriela E.C.J.; Bruin, Rianne H.A. de; Vleugels, Jim; Laan, Anja M. van der; Bouma, Berto J. [Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Tio, René A. [Thorax Center, University Medical Center Groningen, Groningen (Netherlands); Tijssen, Jan G.P. [Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Rossum, Albert C. van [Department of Cardiology, VU University Medical Center, Amsterdam (Netherlands); Zijlstra, Felix [Thorax Center, Department of Cardiology, Erasmus University Medical Center, Rotterdam (Netherlands); Piek, Jan J., E-mail: j.j.piek@amc.uva.nl [Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands)

    2012-12-15

    Introduction: Left ventricular (LV) thrombus formation is a feared complication of myocardial infarction (MI). We assessed the prevalence of LV thrombus in ST-segment elevated MI patients treated with percutaneous coronary intervention (PCI) and compared the diagnostic accuracy of transthoracic echocardiography (TTE) to cardiovascular magnetic resonance imaging (CMR). Also, we evaluated the course of LV thrombi in the modern era of primary PCI. Methods: 200 patients with primary PCI underwent TTE and CMR, at baseline and at 4 months follow-up. Studies were analyzed by two blinded examiners. Patients were seen at 1, 4, 12, and 24 months for assessment of clinical status and adverse events. Results: On CMR at baseline, a thrombus was found in 17 of 194 (8.8%) patients. LV thrombus resolution occurred in 15 patients. Two patients had persistence of LV thrombus on follow-up CMR. On CMR at four months, a thrombus was found in an additional 12 patients. In multivariate analysis, thrombus formation on baseline CMR was independently associated with, baseline infarct size (g) (B = 0.02, SE = 0.02, p < 0.001). Routine TTE had a sensitivity of 21–24% and a specificity of 95–98% compared to CMR for the detection of LV thrombi. Intra- and interobserver variation for detection of LV thrombus were lower for CMR (κ = 0.91 and κ = 0.96) compared to TTE (κ = 0.74 and κ = 0.53). Conclusion: LV thrombus still occurs in a substantial amount of patients after PCI-treated MI, especially in larger infarct sizes. Routine TTE had a low sensitivity for the detection of LV thrombi and the interobserver variation of TTE was large.

  13. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    International Nuclear Information System (INIS)

    Vermeulen, Jeroen F; Brussel, Aram SA van; Groep, Petra van der; Morsink, Folkert HM; Bult, Peter; Wall, Elsken van der; Diest, Paul J van

    2012-01-01

    Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. The combination of highly tumor-specific markers glucose transporter 1 (GLUT1), epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF1-R), human epidermal growth factor receptor 2 (HER2), hepatocyte growth factor receptor (MET), and carbonic anhydrase 9 (CAIX) 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6) resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R) that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate

  14. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    Directory of Open Access Journals (Sweden)

    Vermeulen Jeroen F

    2012-06-01

    Full Text Available Abstract Background Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Methods Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. Results The combination of highly tumor-specific markers glucose transporter 1 (GLUT1, epidermal growth factor receptor (EGFR, insulin-like growth factor-1 receptor (IGF1-R, human epidermal growth factor receptor 2 (HER2, hepatocyte growth factor receptor (MET, and carbonic anhydrase 9 (CAIX 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6 resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. Conclusions In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate.

  15. The HEART score is useful to predict cardiovascular risks and reduces unnecessary cardiac imaging in low-risk patients with acute chest pain.

    Science.gov (United States)

    Dai, Siping; Huang, Bo; Zou, Yunliang; Guo, Jianbin; Liu, Ziyong; Pi, Dangyu; Qiu, Yunhong; Xiao, Chun

    2018-06-01

    The present study was to investigate whether the HEART score can be used to evaluate cardiovascular risks and reduce unnecessary cardiac imaging in China.Acute coronary syndrome patients with the thrombosis in myocardial infarction risk score risk HEART score group and 2 patients (1.5%) in the high risk HEART score group had cardiovascular events. The sensitivity of HEART score to predict cardiovascular events was 100% and the specificity was 46.7%. The potential unnecessary cardiac testing was 46.3%. Cox proportional hazards regression analysis showed that per one category increase of the HEART score was associated with nearly 1.3-fold risk of cardiovascular events.In the low-risk acute chest pain patients, the HEART score is useful to physicians in evaluating the risk of cardiovascular events within the first 30 days. In addition, the HEART score is also useful in reducing the unnecessary cardiac imaging.

  16. Optical Molecular Imaging Frontiers in Oncology: The Pursuit of Accuracy and Sensitivity

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2015-09-01

    Full Text Available Cutting-edge technologies in optical molecular imaging have ushered in new frontiers in cancer research, clinical translation, and medical practice, as evidenced by recent advances in optical multimodality imaging, Cerenkov luminescence imaging (CLI, and optical image-guided surgeries. New abilities allow in vivo cancer imaging with sensitivity and accuracy that are unprecedented in conventional imaging approaches. The visualization of cellular and molecular behaviors and events within tumors in living subjects is improving our deeper understanding of tumors at a systems level. These advances are being rapidly used to acquire tumor-to-tumor molecular heterogeneity, both dynamically and quantitatively, as well as to achieve more effective therapeutic interventions with the assistance of real-time imaging. In the era of molecular imaging, optical technologies hold great promise to facilitate the development of highly sensitive cancer diagnoses as well as personalized patient treatment—one of the ultimate goals of precision medicine.

  17. Radiation-Force Assisted Targeting Facilitates Ultrasonic Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Shukui Zhao

    2004-07-01

    Full Text Available Ultrasonic molecular imaging employs contrast agents, such as microbubbles, nanoparticles, or liposomes, coated with ligands specific for receptors expressed on cells at sites of angiogenesis, inflammation, or thrombus. Concentration of these highly echogenic contrast agents at a target site enhances the ultrasound signal received from that site, promoting ultrasonic detection and analysis of disease states. In this article, we show that acoustic radiation force can be used to displace targeted contrast agents to a vessel wall, greatly increasing the number of agents binding to available surface receptors. We provide a theoretical evaluation of the magnitude of acoustic radiation force and show that it is possible to displace micron-sized agents physiologically relevant distances. Following this, we show in a series of experiments that acoustic radiation force can enhance the binding of targeted agents: The number of biotinylated microbubbles adherent to a synthetic vessel coated with avidin increases as much as 20-fold when acoustic radiation force is applied; the adhesion of contrast agents targeted to αvβ3 expressed on human umbilical vein endothelial cells increases 27-fold within a mimetic vessel when radiation force is applied; and finally, the image signal-to-noise ratio in a phantom vessel increases up to 25 dB using a combination of radiation force and a targeted contrast agent, over use of a targeted contrast agent alone.

  18. Nuclear molecular imaging of paragangliomas; Imagerie moleculaire nucleaire des paragangliomes

    Energy Technology Data Exchange (ETDEWEB)

    Taieb, D.; Tessonnier, L.; Mundler, O. [Service central de biophysique et de medecine nucleaire, CHU de la Timone, 13 - Marseille (France)

    2010-08-15

    Paragangliomas (PGL) are relatively rare neural crest tumors originating in the adrenal medulla (usually called pheochromocytoma), chemoreceptors (i.e., carotid and aortic bodies) or autonomic ganglia. These tumors are highly vascular, usually benign and slow-growing. PGL may occur as sporadic or familial entities, the latter mostly in association with germline mutations of the succinate dehydrogenase (SDH) B, SDHC, SDHD, SDH5, von Hippel-Lindau (VHL), ret proto-oncogene (RET), neurofibromatosis 1 (NF1) (von Recklinghausen's disease), prolyl hydroxylase domain protein 2 (PHD2) genes and TMEM127. Molecular nuclear imaging has a central role in characterization of PGL and include: somatostatin receptor imaging ({sup 111}In, {sup 68}Ga), MIBG scintigraphy ({sup 131}I, {sup 123}I), {sup 18}F-dihydroxy-phenylalanine ({sup 18}F-DOPA) positron emission tomography (PET), and {sup 18}F-deoxyglucose ({sup 18}F-FDG) PET. The choice of the tracer is not yet fully established but the work-up of familial forms often require the combination of multiple approaches. (authors)

  19. Cardiovascular imaging and image processing: Theory and practice - 1975; Proceedings of the Conference, Stanford University, Stanford, Calif., July 10-12, 1975

    Science.gov (United States)

    Harrison, D. C.; Sandler, H.; Miller, H. A.

    1975-01-01

    The present collection of papers outlines advances in ultrasonography, scintigraphy, and commercialization of medical technology as applied to cardiovascular diagnosis in research and clinical practice. Particular attention is given to instrumentation, image processing and display. As necessary concomitants to mathematical analysis, recently improved magnetic recording methods using tape or disks and high-speed computers of large capacity are coming into use. Major topics include Doppler ultrasonic techniques, high-speed cineradiography, three-dimensional imaging of the myocardium with isotopes, sector-scanning echocardiography, and commercialization of the echocardioscope. Individual items are announced in this issue.

  20. Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2015-07-01

    Full Text Available Magnetic resonance imaging (MRI of glioblastoma multiforme (GBM with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA3 agent, a scrambled-Tris-(Gd-DOTA3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA3 agent over time compared to the non-specific contrast agent currently in clinical use.

  1. Contributions on biomedical imaging, with a side-look at molecular imaging; Beitraege zur biomedizinischen Bildgebung mit einem Seitenblick auf Molecular Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, G. (ed.)

    2004-05-01

    This report is intended as a brief introduction to the emerging scientific field of biomedical imaging. The breadth of the subject is shown and future fields of research are indicated, which hopefully will serve as a guide to the identification of starting points for the research in 'Biomedical and/or Molecular Imaging' at the GSF-National Research Center for Environment and Health. The report starts with a brief sketch of the history. Then a - necessarily incomplete - list of research topics is presented. It is organized in two parts: the first one addresses medical imaging, and the second one is concerned with biological point aspects of the matter. (orig.) [German] In diesem Bericht sind einige Beitraege zum Gebiet 'Bildgebende Verfahren in Biologie und Medizin' zusammengestellt. Sie stammen saemtlich aus dem Institut fuer Biomathematik und Biometrie, IBB, am Forschungszentrum fuer Umwelt und Gesundheit, GSF, in Muenchen/Neuherberg, und seinem engeren Umfeld. Ziel war es, zu sichten, was in und um diesen Themenkreis herum an Wissen und sonstiger Kompetenz hier vorhanden ist. Einige am IBB etablierte Gebiete wie Roentgen-Mammographie oder funktionelle Magnetresonanztherapie wurden ausgeblendet. Der Grund ist die Fokussierung auf ein nicht exakt definierbares, neues Gebiet der Bildgebung, das unter dem Namen 'Molecular Imaging' kursiert und derzeit Furore macht macht. (orig.)

  2. Contributions on biomedical imaging, with a side-look at molecular imaging; Beitraege zur biomedizinischen Bildgebung mit einem Seitenblick auf Molecular Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, G [ed.

    2004-05-01

    This report is intended as a brief introduction to the emerging scientific field of biomedical imaging. The breadth of the subject is shown and future fields of research are indicated, which hopefully will serve as a guide to the identification of starting points for the research in 'Biomedical and/or Molecular Imaging' at the GSF-National Research Center for Environment and Health. The report starts with a brief sketch of the history. Then a - necessarily incomplete - list of research topics is presented. It is organized in two parts: the first one addresses medical imaging, and the second one is concerned with biological point aspects of the matter. (orig.) [German] In diesem Bericht sind einige Beitraege zum Gebiet 'Bildgebende Verfahren in Biologie und Medizin' zusammengestellt. Sie stammen saemtlich aus dem Institut fuer Biomathematik und Biometrie, IBB, am Forschungszentrum fuer Umwelt und Gesundheit, GSF, in Muenchen/Neuherberg, und seinem engeren Umfeld. Ziel war es, zu sichten, was in und um diesen Themenkreis herum an Wissen und sonstiger Kompetenz hier vorhanden ist. Einige am IBB etablierte Gebiete wie Roentgen-Mammographie oder funktionelle Magnetresonanztherapie wurden ausgeblendet. Der Grund ist die Fokussierung auf ein nicht exakt definierbares, neues Gebiet der Bildgebung, das unter dem Namen 'Molecular Imaging' kursiert und derzeit Furore macht macht. (orig.)

  3. Imaging focal and interstitial fibrosis with cardiovascular magnetic resonance in athletes with left ventricular hypertrophy: implications for sporting participation.

    LENUS (Irish Health Repository)

    Waterhouse, Deirdre F

    2012-11-01

    Long-term high-intensity physical activity is associated with morphological changes, termed as the \\'athlete\\'s heart\\'. The differentiation of physiological cardiac adaptive changes in response to high-level exercise from pathological changes consistent with an inherited cardiomyopathy is imperative. Cardiovascular magnetic resonance (CMR) imaging allows definition of abnormal processes occurring at the tissue level, including, importantly, myocardial fibrosis. It is therefore vital in accurately making this differentiation. In this review, we will review the role of CMR imaging of fibrosis, and detail CMR characterisation of myocardial fibrosis in various cardiomyopathies, and the implications of fibrosis. Additionally, we will outline advances in imaging fibrosis, in particular T1 mapping. Finally we will address the role of CMR in pre-participation screening.

  4. A moving image system for cardiovascular nuclear medicine. A dedicated auxiliary device for the total capacity imaging system for multiple plane dynamic colour display

    International Nuclear Information System (INIS)

    Iio, M.; Toyama, H.; Murata, H.; Takaoka, S.

    1981-01-01

    The recent device of the authors, the dedicated multiplane dynamic colour image display system for nuclear medicine, is discussed. This new device is a hardware-based auxiliary moving image system (AMIS) attached to the total capacity image processing system of the authors' department. The major purpose of this study is to develop the dedicated device so that cardiovascular nuclear medicine and other dynamic studies will include the ability to assess the real time delicate processing of the colour selection, edge detection, phased analysis, etc. The auxiliary system consists of the interface for image transferring, four IC refresh memories of 64x64 matrix with 10 bit count depth, a digital 20-in colour TV monitor, a control keyboard and a control panel with potentiometers. This system has five major functions for colour display: (1) A microcomputer board can select any one of 40 different colour tables preset in the colour transformation RAM. This key also provides edge detection at a certain level of the count by leaving the optional colour and setting the rest of the levels at 0 (black); (2) The arithmetic processing circuit performs the operation of the fundamental rules, permitting arithmetic processes of the two images; (3) The colour level control circuit is operated independently by four potentiometers for four refresh image memories, so that the gain and offset of the colour level can be manually and visually controlled to the satisfaction of the operator; (4) The simultaneous CRT display of the maximum four images with or without cinematic motion is possible; (5) The real time movie interval is also adjustable by hardware, and certain frames can be freezed with overlapping of the dynamic frames. Since this system of AMIS is linked with the whole capacity image processing system of the CPU size of 128kW, etc., clinical applications are not limited to cardiovascular nuclear medicine. (author)

  5. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    NARCIS (Netherlands)

    Meng, C.; Janssen, M.H.M.

    2015-01-01

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the

  6. Perspectives in molecular imaging through translational research, human medicine, and veterinary medicine.

    Science.gov (United States)

    Berry, Clifford R; Garg, Predeep

    2014-01-01

    The concept of molecular imaging has taken off over the past 15 years to the point of the renaming of the Society of Nuclear Medicine (Society of Nuclear Medicine and Molecular Imaging) and Journals (European Journal of Nuclear Medicine and Molecular Imaging) and offering of medical fellowships specific to this area of study. Molecular imaging has always been at the core of functional imaging related to nuclear medicine. Even before the phrase molecular imaging came into vogue, radionuclides and radiopharmaceuticals were developed that targeted select physiological processes, proteins, receptor analogs, antibody-antigen interactions, metabolites and specific metabolic pathways. In addition, with the advent of genomic imaging, targeted genomic therapy, and theranostics, a number of novel radiopharmaceuticals for the detection and therapy of specific tumor types based on unique biological and cellular properties of the tumor itself have been realized. However, molecular imaging and therapeutics as well as the concept of theranostics are yet to be fully realized. The purpose of this review article is to present an overview of the translational approaches to targeted molecular imaging with application to some naturally occurring animal models of human disease. © 2013 Published by Elsevier Inc.

  7. Evaluation of radiolabelled annexin A5 for scintigraphic imaging of cell processes (necrosis/apoptosis) in cardiovascular diseases

    International Nuclear Information System (INIS)

    Sarda-Mantel, L.

    2007-03-01

    Annexin A5, a 35KDa protein, specifically binds with high affinity to phosphatidylserine (P.S.) which is actively redistributed to the external leaflet of plasmic membranes in apoptotic cells and activated platelets. Annexin A5 radiolabelled with 99m Tc( 99m Tc-ANX5) was developed by Strauss (stanford, Usa) to image apoptosis in vivo: tumours cells apoptosis induced by chemo-radiotherapy, ischemia/reperfusion lesions in animals and patients, graft rejection. Additionally, many in vitro data suggest that annexin A5 also stains necrosis (membrane disruption), which occurs in all types of cell death. This preclinical work aimed to evaluate the potential interest of 99m Tc-ANX5 imaging as a clinical tool in cardiovascular diseases. Four studies performed in rat models of myocardial infarction by coronary ligation and ischemia-reperfusion, and in rat models of subacute and acute (isoproterenol-induced) myocarditis show the ability of 99m Tc-ANX5 to detect in vivo cardio myocytes death by apoptosis and necrosis. Another study demonstrates that 99m Tc-ANX5 is highly accurate to evaluate in vivo the biological activity of parietal thrombus in a rat model of elastase-induced abdominal aortic aneurysm. These results suggest that 99m Tc-ANX5 imaging could be used in patients for non invasive diagnosis, prognostic evaluation in acute myocarditis and in various thrombotic cardiovascular diseases. (author)

  8. Application of Deep Learning in Automated Analysis of Molecular Images in Cancer: A Survey

    Science.gov (United States)

    Xue, Yong; Chen, Shihui; Liu, Yong

    2017-01-01

    Molecular imaging enables the visualization and quantitative analysis of the alterations of biological procedures at molecular and/or cellular level, which is of great significance for early detection of cancer. In recent years, deep leaning has been widely used in medical imaging analysis, as it overcomes the limitations of visual assessment and traditional machine learning techniques by extracting hierarchical features with powerful representation capability. Research on cancer molecular images using deep learning techniques is also increasing dynamically. Hence, in this paper, we review the applications of deep learning in molecular imaging in terms of tumor lesion segmentation, tumor classification, and survival prediction. We also outline some future directions in which researchers may develop more powerful deep learning models for better performance in the applications in cancer molecular imaging. PMID:29114182

  9. SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahi, H

    2014-06-01

    Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment response in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging.

  10. SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy

    International Nuclear Information System (INIS)

    Abdollahi, H

    2014-01-01

    Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment response in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging

  11. Molecular Imaging and Updated Diagnostic Criteria in Lewy Body Dementias.

    Science.gov (United States)

    Bohnen, Nicolaas I; Müller, Martijn L T M; Frey, Kirk A

    2017-08-14

    The aims of the study were to review recent advances in molecular imaging in the Lewy body dementias (LBD) and determine if these may support the clinical but contested temporal profile distinction between Parkinson disease (PD) with dementia (PDD) versus dementia with Lewy bodies (DLB). There do not appear to be major regional cerebral metabolic or neurotransmitter distinctions between PDD and DLB. However, recent studies highlight the relative discriminating roles of Alzheimer proteinopathies. PDD patients have lower cortical β-amyloid deposition than DLB. Preliminary tau PET studies suggest a gradient of increasing tau binding from cognitively normal PD (absent to lowest) to cognitively impaired PD (low) to DLB (intermediate) to Alzheimer disease (AD; highest). However, tau binding in DLB, including the medial temporal lobe, is substantially lower than in AD. Alzheimer-type proteinopathies appear to be more common in DLB compared to PDD with relative but no absolute differences. Given the spectrum of overlapping pathologies, future α-synuclein ligands are expected to have the best potential to distinguish the LBD from pure AD.

  12. From molecular imaging to systems diagnostics: Time for another paradigm shift?

    International Nuclear Information System (INIS)

    Li, King C.P.

    2009-01-01

    The term 'Molecular Imaging' has hit the consciousness of radiologists only in the past decade although many of the concepts that molecular imaging encompasses has been practiced in biomedical imaging, especially in nuclear medicine, for many decades. Many new imaging techniques have allowed us to interrogate biologic events at the cellular and molecular level in vivo in four dimensions but the challenge now is to translate these techniques into clinical practice in a way that will enable us to revolutionize healthcare delivery. The purpose of this article is to introduce the term 'Systems Diagnostics' and examine how radiologists can become translators of disparate sources of information into medical decisions and therapeutic actions.

  13. Diversity of radioprobes targeted to tumor angiogenesis on molecular functional imaging

    International Nuclear Information System (INIS)

    Lu Xia; Zhang Huabei

    2013-01-01

    Molecular functional imaging could visualize, characterize, and measure the bio- logical processes including tumor angiogenesis at the molecular and cellular levels in humans and other living systems. The molecular probes labeled by a variety of radionuclide used in the field of the nuclear medicine play pivotal roles in molecular imaging of tumor angiogenesis. However, the regulatory role of different probes in tumor angiogenesis has not been systematically illustrated. The current status of tumor angiogenesis imaging with radiolabeled probes of peptide, monoclonal antibody as well as its fragment, especially nanoparticle-based probes to gain insights into the robust tumor angiogenesis development were summarized. It was recognized that only the probes such as nanoparticle-based probes, which truly target the tumor vasculature rather than tumor cells because of poor extravasation, are really tumor angiogenesis imaging agent. The research of molecular probe targeted to angiogenesis would meet its flourish just after the outstanding improvements in the in vivo stability and biocompatibility, tumor-targeting efficacy, and pharmacokinetics of tumor angiogenesis imaging probes are made. Translation to clinical applications will also be critical for the maximize benefits of these novel agents. The future of tumor angiogenesis imaging lies in liable imaging probes and multiple imaging modalities, imaging of protein-protein interactions, and quantitative molecular imaging. (authors)

  14. Imaging CT findings in cases of subdural hematoma after cardiovascular surgery. Initial signs of SDH

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Michiyuki; Kuriyama, Yoshihiro; Sawada, Tohru; Ogawa, Makoto; Kaneko, Takaji; Sakamoto, Akira; Kawazoe, Kouhei; Fujita, Tsuyoshi; Omae, Teruo

    1987-12-01

    A characteristic initial sign of CT findings, as seen in cases of subdural hematoma (SDH) after cardiovascular surgery, was reported. Central-nervous-system (CNS) complications after cardiovascular surgery have been thought to be due mainly to the ischemic brain damage caused by both reduced cerebral perfusion pressure and microembolism during extracorporeal circulation. However, we observed 8 cases of SDH in 39 patients suffering from major CNS complications after cardiovascular surgery. In view of these experiences, SDH was thought to be one of the most significant factors causing CNS complications after cardiovascular surgery. In the sequential CT scans of 8 cases of SDH, four exhibited a typical, small, spotty high-density area in the early period of SDH. The clinical courses of these four patients were relatively acute or subacute, and the initial small high-density area progressed to definite SDH findings in that region in the follow-up CT. These initial findings of CT scans were regarded as ''initial signs of SDH-ISS-''. Although there have been many reports concerning the sequential CT changes in SDH, there has been no report describing the above-mentioned finding. It was emphasized that ''ISS'' is of great importance in the early management for SDH.

  15. Molecular Imaging: A Useful Tool for the Development of Natural Killer Cell-Based Immunotherapies

    Directory of Open Access Journals (Sweden)

    Prakash Gangadaran

    2017-09-01

    Full Text Available Molecular imaging is a relatively new discipline that allows visualization, characterization, and measurement of the biological processes in living subjects, including humans, at a cellular and molecular level. The interaction between cancer cells and natural killer (NK cells is complex and incompletely understood. Despite our limited knowledge, progress in the search for immune cell therapies against cancer could be significantly improved by dynamic and non-invasive visualization and tracking of immune cells and by visualization of the response of cancer cells to therapies in preclinical and clinical studies. Molecular imaging is an essential tool for these studies, and a multimodal molecular imaging approach can be applied to monitor immune cells in vivo, for instance, to visualize therapeutic effects. In this review, we discuss the usefulness of NK cells in cancer therapies and the preclinical and clinical usefulness of molecular imaging in NK cell-based therapies. Furthermore, we discuss different molecular imaging modalities for use with NK cell-based therapies, and their preclinical and clinical applications in animal and human subjects. Molecular imaging has contributed to the development of NK cell-based therapies against cancers in animal models and to the refinement of current cell-based cancer immunotherapies. Developing sensitive and reproducible non-invasive molecular imaging technologies for in vivo NK cell monitoring and for real-time assessment of therapeutic effects will accelerate the development of NK cell therapies.

  16. Multiparametric and molecular imaging of breast tumors with MRI and PET/MRI

    International Nuclear Information System (INIS)

    Pinker, K.; Marino, M.A.; Meyer-Baese, A.; Helbich, T.H.

    2016-01-01

    Magnetic resonance imaging (MRI) of the breast is an indispensable tool in breast imaging for many indications. Several functional parameters with MRI and positron emission tomography (PET) have been assessed for imaging of breast tumors and their combined application is defined as multiparametric imaging. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the hallmarks of cancer and may provide additional specificity. Multiparametric and molecular imaging of the breast comprises established MRI parameters, such as dynamic contrast-enhanced MRI, diffusion-weighted imaging (DWI), MR proton spectroscopy ( 1 H-MRSI) as well as combinations of radiological and MRI techniques (e.g. PET/CT and PET/MRI) using radiotracers, such as fluorodeoxyglucose (FDG). Multiparametric and molecular imaging of the breast can be performed at different field-strengths (range 1.5-7 T). Emerging parameters comprise novel promising techniques, such as sodium imaging ( 23 Na MRI), phosphorus spectroscopy ( 31 P-MRSI), chemical exchange saturation transfer (CEST) imaging, blood oxygen level-dependent (BOLD) and hyperpolarized MRI as well as various specific radiotracers. Multiparametric and molecular imaging has multiple applications in breast imaging. Multiparametric and molecular imaging of the breast is an evolving field that will enable improved detection, characterization, staging and monitoring for personalized medicine in breast cancer. (orig.) [de

  17. Applications of the Preclinical Molecular Image in Biomedicine; Aplicaciones de la imagen Molecular Preclínica en Biomedicina

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, M.; Bascuñana, P.; Fernández de la Rosa, R.; De Cristobal, J.; García-García, L.; Pozo, M. A.

    2014-07-01

    Molecular imaging is a broad platform, which provides valuable information about physiological and pathophysiological changes in living organisms by non-invasive methods. Depending on the used technique: anatomical, functional metabolic or molecular data could be assessed. Positron Emission Tomography (PET) provides with functional and molecular data, and combined with Computerized Tomography (CT) and Magnetic Resonance (MRI) with the multimodality equipment, it can be exponentially improved. Metabolic pathways and changes on the molecular and cellular level are target in molecular imaging cancer research. Tumour microenvironment, stroma and new vessels can be assessed by PET imaging. Additionally the visualization of functions and monitoring data of provided therapies could be obtained. The aim of the current review is to summarize principles and novel findings in molecular imaging specifically in PET and its application in preclinical cancer research. The theoretical background of techniques and main applications will be highlighted [Spanish] La imagen molecular aporta información muy valiosa, mediante métodos no invasivos, acerca de la fisiología de organismos vivos y sus cambios debidos a patologías. Dependiendo de la técnica utilizada se pueden obtener datos anatómicos, funcionales, metabólicos o moleculares. La Tomografía por Emisión de Positrones (PET) aporta datos metabólicos y moleculares con una alta sensibilidad, y en asociación con la Tomografía Computarizada (TC) o con Resonancia Magnética (RM), con la aparición de los nuevos equipos multimodalidad, las posibilidades de diagnóstico se incrementan exponencialmente. La imagen molecular en investigación oncológica presenta como objetivos principales identificar las diferentes vías metabólicas tumorales y sus cambios a nivel molecular y celular, el comportamiento del microentorno tumoral, aparición de nuevos vasos, estroma, etc. Además, es posible el análisis y cuantificación del

  18. New molecular probes of vascular inflammation

    International Nuclear Information System (INIS)

    Molecular Cardiovascular Imaging, Westfälische Wilhelms University Münster, Münster, (Germany))" data-affiliation=" (Department of Nuclear Medicine, University Hospital Münster, Münster, and DFG CRC 656 Molecular Cardiovascular Imaging, Westfälische Wilhelms University Münster, Münster, (Germany))" >VRACHIMIS, Alexis; HONOLD, Lisa; Cells in Motion Cluster of Excellence, Westfälische Wilhelms University Münster, Münster, (Germany))" data-affiliation=" (European Institute of Molecular Imaging, Westfälische Wilhelms University Münster, Münster, and DFG EXC 1003 Cells in Motion Cluster of Excellence, Westfälische Wilhelms University Münster, Münster, (Germany))" >FAUST, Andreas; Cells in Motion Cluster of Excellence, Westfälische Wilhelms University Münster, Münster, (Germany))" data-affiliation=" (European Institute of Molecular Imaging, Westfälische Wilhelms University Münster, Münster, and DFG EXC 1003 Cells in Motion Cluster of Excellence, Westfälische Wilhelms University Münster, Münster, (Germany))" >HERMANN, Sven; SCHÄFERS, Michael

    2016-01-01

    New molecular imaging approaches featuring the assessment of inflammatory processes in the vascular wall on top of existing anatomic and functional vessel imaging procedures could emerge as decisive tools for the understanding and prevention of cardiovascular events. In this respect imaging approaches addressing specific molecular and cellular targets in atherosclerosis are of high interest. This review summarizes the rationale and current status of nuclear imaging probes which possess high translational potential.

  19. Molecular Imaging of Transporters with Positron Emission Tomography

    Science.gov (United States)

    Antoni, Gunnar; Sörensen, Jens; Hall, Håkan

    Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug

  20. Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics.

    Science.gov (United States)

    Tran, Trung D; Caruthers, Shelton D; Hughes, Michael; Marsh, John N; Cyrus, Tillmann; Winter, Patrick M; Neubauer, Anne M; Wickline, Samuel A; Lanza, Gregory M

    2007-01-01

    Molecular imaging is a novel tool that has allowed non-invasive diagnostic imaging to transition from gross anatomical description to identification of specific tissue epitopes and observation of biological processes at the cellular level. This technique has been confined to the field of nuclear imaging; however, recent advances in nanotechnology have extended this research to include ultrasound (US) and magnetic resonance (MR) imaging. The exploitation of nanotechnology for MR and US molecular imaging has generated several candidate contrast agents. One multimodality platform, targeted perfluorocarbon (PFC) nanoparticles, is useful for noninvasive detection with US and MR, targeted drug delivery, and quantification.

  1. In vivo quantification of fluorescent molecular markers in real-time by ratio Imaging for diagnostic screening and image-guided surgery

    NARCIS (Netherlands)

    Bogaards, A.; Sterenborg, H. J. C. M.; Trachtenberg, J.; Wilson, B. C.; Lilge, L.

    2007-01-01

    Future applications of "molecular diagnostic screening" and "molecular image-guided surgery" will demand images of molecular markers with high resolution and high throughput (similar to >= 30 frames/second). MRI, SPECT, PET, optical fluorescence tomography, hyper-spectral fluorescence imaging, and

  2. From molecular imaging to personalized radionuclide therapy of cancer

    International Nuclear Information System (INIS)

    Baum, R.P.

    2015-01-01

    Full text of publication follows. 68 Gallium is a positron emitter (t 1/2 68 min) which can be produced from a generator in a convenient, 'in-house' preparation and used for labeling of peptides, e.g. somatostatin analogues (SA) like DOTATOC or DOTATATE for molecular imaging of SSTR expressing tumors. Since 2004, we have performed over 7700 68 Ga PET/CT studies in patients with neuroendocrine tumors (NET) and have established SSTR PET/CT as the new gold standard for imaging G1 and G2 NET (staging, re-staging, therapy response evaluation and detection of unknown primary NET). The same peptides can be labeled with 177 Lutetium or 90 Yttrium for radionuclide therapy, a form of personalized treatment (THERANOSTICS approach). PRRNT is based on the receptor-mediated internalization of SA. Several clinical trials indicate that PRRNT can deliver effective radiation doses to tumors. A German multi-institutional registry study with prospective follow up in 450 patients indicates that PRRT is an effective therapy for patients with G1-2 neuroendocrine tumors, irrespective of previous therapies, with a survival advantage of several years compared to other therapies and only minor side effects. Median overall survival (OS) of all patients from the start of treatment was 59 months. Median progression-free survival (PFS) measured from last cycle of therapy accounted to 41 mo. Median PFS of pancreatic NET was 39 mo. Similar results were obtained for NET of unknown primary (median PFS: 38 mo) whereas NET of small bowel had a median PFS of 51 months. Side effects like 3-4 NEThro- or hemato-toxicity were observed in only 0.2% and 2% of patients respectively. PRRNT is highly effective in the management of NET, even in advanced cases. In patients with progressive neuroendocrine tumors, fractionated, personalized PRRNT with lower doses of radioactivity given over a longer period of time (Bad Berka Concept using sequential (DUO) PRRNT) results in excellent therapeutic responses

  3. Shared molecular pathways and gene networks for cardiovascular disease and type 2 diabetes mellitus in women across diverse ethnicities.

    Science.gov (United States)

    Chan, Kei Hang K; Huang, Yen-Tsung; Meng, Qingying; Wu, Chunyuan; Reiner, Alexander; Sobel, Eric M; Tinker, Lesley; Lusis, Aldons J; Yang, Xia; Liu, Simin

    2014-12-01

    Although cardiovascular disease (CVD) and type 2 diabetes mellitus (T2D) share many common risk factors, potential molecular mechanisms that may also be shared for these 2 disorders remain unknown. Using an integrative pathway and network analysis, we performed genome-wide association studies in 8155 blacks, 3494 Hispanic American, and 3697 Caucasian American women who participated in the national Women's Health Initiative single-nucleotide polymorphism (SNP) Health Association Resource and the Genomics and Randomized Trials Network. Eight top pathways and gene networks related to cardiomyopathy, calcium signaling, axon guidance, cell adhesion, and extracellular matrix seemed to be commonly shared between CVD and T2D across all 3 ethnic groups. We also identified ethnicity-specific pathways, such as cell cycle (specific for Hispanic American and Caucasian American) and tight junction (CVD and combined CVD and T2D in Hispanic American). In network analysis of gene-gene or protein-protein interactions, we identified key drivers that included COL1A1, COL3A1, and ELN in the shared pathways for both CVD and T2D. These key driver genes were cross-validated in multiple mouse models of diabetes mellitus and atherosclerosis. Our integrative analysis of American women of 3 ethnicities identified multiple shared biological pathways and key regulatory genes for the development of CVD and T2D. These prospective findings also support the notion that ethnicity-specific susceptibility genes and process are involved in the pathogenesis of CVD and T2D. © 2014 American Heart Association, Inc.

  4. A CZT-based blood counter for quantitative molecular imaging.

    Science.gov (United States)

    Espagnet, Romain; Frezza, Andrea; Martin, Jean-Pierre; Hamel, Louis-André; Lechippey, Laëtitia; Beauregard, Jean-Mathieu; Després, Philippe

    2017-12-01

    Robust quantitative analysis in positron emission tomography (PET) and in single-photon emission computed tomography (SPECT) typically requires the time-activity curve as an input function for the pharmacokinetic modeling of tracer uptake. For this purpose, a new automated tool for the determination of blood activity as a function of time is presented. The device, compact enough to be used on the patient bed, relies on a peristaltic pump for continuous blood withdrawal at user-defined rates. Gamma detection is based on a 20 × 20 × 15 mm 3 cadmium zinc telluride (CZT) detector, read by custom-made electronics and a field-programmable gate array-based signal processing unit. A graphical user interface (GUI) allows users to select parameters and easily perform acquisitions. This paper presents the overall design of the device as well as the results related to the detector performance in terms of stability, sensitivity and energy resolution. Results from a patient study are also reported. The device achieved a sensitivity of 7.1 cps/(kBq/mL) and a minimum detectable activity of 2.5 kBq/ml for 18 F. The gamma counter also demonstrated an excellent stability with a deviation in count rates inferior to 0.05% over 6 h. An energy resolution of 8% was achieved at 662 keV. The patient study was conclusive and demonstrated that the compact gamma blood counter developed has the sensitivity and the stability required to conduct quantitative molecular imaging studies in PET and SPECT.

  5. MARS spectral molecular imaging of lamb tissue: data collection and image analysis

    CERN Document Server

    Aamir, R; Bateman, C.J.; Butler, A.P.H.; Butler, P.H.; Anderson, N.G.; Bell, S.T.; Panta, R.K.; Healy, J.L.; Mohr, J.L.; Rajendran, K.; Walsh, M.F.; Ruiter, N.de; Gieseg, S.P.; Woodfield, T.; Renaud, P.F.; Brooke, L.; Abdul-Majid, S.; Clyne, M.; Glendenning, R.; Bones, P.J.; Billinghurst, M.; Bartneck, C.; Mandalika, H.; Grasset, R.; Schleich, N.; Scott, N.; Nik, S.J.; Opie, A.; Janmale, T.; Tang, D.N.; Kim, D.; Doesburg, R.M.; Zainon, R.; Ronaldson, J.P.; Cook, N.J.; Smithies, D.J.; Hodge, K.

    2014-01-01

    Spectral molecular imaging is a new imaging technique able to discriminate and quantify different components of tissue simultaneously at high spatial and high energy resolution. Our MARS scanner is an x-ray based small animal CT system designed to be used in the diagnostic energy range (20 to 140 keV). In this paper, we demonstrate the use of the MARS scanner, equipped with the Medipix3RX spectroscopic photon-processing detector, to discriminate fat, calcium, and water in tissue. We present data collected from a sample of lamb meat including bone as an illustrative example of human tissue imaging. The data is analyzed using our 3D Algebraic Reconstruction Algorithm (MARS-ART) and by material decomposition based on a constrained linear least squares algorithm. The results presented here clearly show the quantification of lipid-like, water-like and bone-like components of tissue. However, it is also clear to us that better algorithms could extract more information of clinical interest from our data. Because we ...

  6. Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals

    International Nuclear Information System (INIS)

    Lee, Byeong Il; Kim, Hyeon Sik; Jeong, Hye Jin; Lee, Hyung Jae; Moon, Seung Min; Kwon, Seung Young; Jeong, Shin Young; Bom, Hee Seung; Min, Jung Joon; Choi, Eun Seo

    2009-01-01

    Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future

  7. Use of myocardial imaging in the evaluation of patients with cardiovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, B.; Strauss, H.W.; Trhall, J.H.

    1980-01-01

    The role of radioisotope tracer techniques in the evaluation of patients with congenital heart disease, valvular heart disease, suspected myocardial infarction, ischemia or suspected ventricular dysfunction is reviewed. Thallium-201 myocardial imaging and exercise blood pool imaging and Technetium-88m pyrophosphate imaging of myocardial infarction are most commonly used.

  8. The development of epidermal growth factor receptor molecular imaging in cancer

    International Nuclear Information System (INIS)

    Zhou Xiaoliang; Wang Hao; Shi Peiji; Liu Jianfeng; Meng Aimin

    2013-01-01

    In vivo epidermal growth factor receptor (EGFR) targeted therapy has great potential for cancer diagnosis and the evaluation of curative effects. Enhancement of EGFR-targeted therapy needs a reliable quantitative molecular imaging method which could enable monitoring of receptor drug binding and receptor occupancy in vivo, and identification of the mutation in EGFR. PET or SPECT is the most advanced molecular imaging technology of non-invasively selecting responders, predicting therapeutic outcome and monitoring EGFR-targeted treatment. This review analyzed the present situation and research progress of molecular imaging agents. (authors)

  9. Molecular MR imaging of cancer gene therapy. Ferritin transgene reporter takes the stage

    International Nuclear Information System (INIS)

    Hasegawa, Sumitaka; Furukawa, Takako; Saga, Tsuneo

    2010-01-01

    Molecular imaging using magnetic resonance (MR) imaging has been actively investigated and made rapid progress in the past decade. Applied to cancer gene therapy, the technique's high spatial resolution allows evaluation of gene delivery into target tissues. Because noninvasive monitoring of the duration, location, and magnitude of transgene expression in tumor tissues or cells provides useful information for assessing therapeutic efficacy and optimizing protocols, molecular imaging is expected to become a critical step in the success of cancer gene therapy in the near future. We present a brief overview of the current status of molecular MR imaging, especially in vivo reporter gene imaging using ferritin and other reporters, discuss its application to cancer gene therapy, and present our research of MR imaging detection of electroporation-mediated cancer gene therapy using the ferritin reporter gene. (author)

  10. Cardiovascular Magnetic Resonance Imaging-Incremental Value in a Series of 361 Patients Demonstrating Cost Savings and Clinical Benefits: An Outcome-Based Study.

    Science.gov (United States)

    Hegde, Vinayak A; Biederman, Robert Ww; Mikolich, J Ronald

    2017-01-01

    This study was designed to assess the clinical impact and cost-benefit of cardiovascular magnetic resonance imaging (CMR). In the face of current health care cost concerns, cardiac imaging modalities have come under focused review. Data related to CMR clinical impact and cost-benefit are lacking. Retrospective review of 361 consecutive patients (pts) who underwent CMR exams was conducted. Indications for CMR were tabulated for appropriateness criteria. Components of the CMR exam were identified along with evidence of clinical impact. The cost of each CMR exam was ascertained along with cost savings attributable to the CMR exam for calculation of an incremental cost-effectiveness ratio. A total of 354 of 361 pts (98%) had diagnostic quality studies. Of the 361 pts, 350 (97%) had at least 1 published Appropriateness Criterion for CMR. A significant clinical impact attributable to CMR exam results was observed in 256 of 361 pts (71%). The CMR exam resulted in a new diagnosis in 69 of 361 (27%) pts. Cardiovascular magnetic resonance imaging results avoided invasive procedures in 38 (11%) pts and prevented additional diagnostic testing in 26 (7%) pts. Comparison of health care savings using CMR as opposed to current standards of care showed a net cost savings of $833 037, ie, per patient cost savings of $2308. Cardiovascular magnetic resonance imaging provides diagnostic image quality in >98% of cases. Cardiovascular magnetic resonance imaging findings have documentable clinical impact on patient management in 71% of pts undergoing the exam, in a cost beneficial manner.

  11. Molecular imaging of atherosclerosis in mice with MRI and near-infrared fluorescence imaging

    International Nuclear Information System (INIS)

    Lu Tong; Wen Song; Zhou Guanhui; Ju Shenghong; Teng Gaojun

    2012-01-01

    Objective: To explore the feasibility of detecting atherosclerotic plaques with 7.0 T MRI and near-infrared fluorescence imaging (NIRF) using molecular imaging probes. Methods: Atherosclerotic plaques were established in male atherosclerotic apolipoprotein E knockout (ApoE-/-) mice fed with high-cholesterol diet for 20 weeks. Wild-type C57BL/6 mice were used as negative controls. 7.0 T MRI was performed before and 36 h after intravenously administration of ultrasmall superparamagnetic particle of iron oxide (USPIO). NIR 797 was conjugated with anti-mouse-oxidized modified low density lipoprotein (oxLDL) antibodies to construct an anti-oxLDL-Ab-NIR 797 probe while non-specific IgG-NIR 797 and PBS used as controls. NIRF was performed 24 h after tail vein injection of the probe. Independent sample t-test and one-way analysis of variance were used to analyze the data by SPSS 17.0. Results: In APOE-/-mice, in vivo 36 h post-USPIO T 2 WI images revealed strong focal signal loss in the abdominal aorta than that of pre-USPIO, with relative signal intensity 0.70 ± 0.04 and 1.28 ± 0.06, respectively (t=3.376, P<0.05). The percent of signal reduced was (-56.58 ± 4.25)%. The Prussian blue staining confirmed the depositions of iron particles in the plaque lesions. Significant fluorochrome accumulation in atherosclerotic plaques was demonstrated in aortic root, aortic arch and the starting of descending aorta 24 h after injection of the anti-oxLDL-Ab-NIR 797 probe. Minimal antibody uptake was observed in normal vessels from wild-type mice receiving the anti-oxLDL-Ab-NIR 797 (SNR: 2.29 ± 1.11) and in atherosclerotic vessels from ApoE-/- mice receiving the non-specific IgG-NIR 797 (19.58 ±3.06) or PBS (4.19 ±0.82), which was significantly different from the uptake of anti-oxLDL-Ab-NIR 797 group (42.51 ±5.24, F=25.104, P<0.05). Comparison between oil red O staining and NIRF 24 h after injection of NIR 797 labeled oxLDL-antibody revealed a significant correlation (r=0.738, P

  12. Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics

    OpenAIRE

    Tran, Trung D; Caruthers, Shelton D; Hughes, Michael; Marsh, John N; Cyrus, Tillmann; Winter, Patrick M; Neubauer, Anne M; Wickline, Samuel A; Lanza, Gregory M

    2007-01-01

    Molecular imaging is a novel tool that has allowed non-invasive diagnostic imaging to transition from gross anatomical description to identification of specific tissue epitopes and observation of biological processes at the cellular level. This technique has been confined to the field of nuclear imaging; however, recent advances in nanotechnology have extended this research to include ultrasound (US) and magnetic resonance (MR) imaging. The exploitation of nanotechnology for MR and US molecul...

  13. Molecular Imaging Probes for Diagnosis and Therapy Evaluation of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Qingqing Meng

    2013-01-01

    Full Text Available Breast cancer is a major cause of cancer death in women where early detection and accurate assessment of therapy response can improve clinical outcomes. Molecular imaging, which includes PET, SPECT, MRI, and optical modalities, provides noninvasive means of detecting biological processes and molecular events in vivo. Molecular imaging has the potential to enhance our understanding of breast cancer biology and effects of drug action during both preclinical and clinical phases of drug development. This has led to the identification of many molecular imaging probes for key processes in breast cancer. Hormone receptors, growth factor receptor, and angiogenic factors, such as ER, PR, HER2, and VEGFR, have been adopted as imaging targets to detect and stage the breast cancer and to monitor the treatment efficacy. Receptor imaging probes are usually composed of targeting moiety attached to a signaling component such as a radionuclide that can be detected using dedicated instruments. Current molecular imaging probes involved in breast cancer diagnosis and therapy evaluation are reviewed, and future of molecular imaging for the preclinical and clinical is explained.

  14. Investigating Atmospheric Oxidation with Molecular Dynamics Imaging and Spectroscopy

    Science.gov (United States)

    Merrill, W. G.; Case, A. S.; Keutsch, F. N.

    2013-06-01

    Volatile organic compounds (VOCs) in the Earth's atmosphere constitute trace gas species emitted primarily from the biosphere, and are the subject of inquiry for a variety of air quality and climate studies. Reactions intiated (primarily) by the hydroxyl radical (OH) lead to a myriad of oxygenated species (OVOCs), which in turn are prone to further oxidation. Investigations of the role that VOC oxidation plays in tropospheric chemistry have brought to light two troubling scenarios: (1) VOCs are responsible in part for the production of two EPA-regulated pollutants---tropospheric ozone and organic aerosol---and (2) the mechanistic details of VOC oxidation remain convoluted and poorly understood. The latter issue hampers the implementation of near-explicit atmospheric simulations, and large discrepancies in OH reactivity exist between measurements and models at present. Such discrepancies underscore the need for a more thorough description of VOC oxidation. Time-of-flight measurements and ion-imaging techniques are viable options for resolving some of the mechanistic and energetic details of VOC oxidation. Molecular beam studies have the advantage of foregoing unwanted bimolecular reactions, allowing for the characterization of specific processes which must typically compete with the complex manifold of VOC oxidation pathways. The focus of this work is on the unimolecular channels of organic peroxy radical intermediates, which are necessarily generated during VOC oxidation. Such intermediates may isomerize and decompose into distinct chemical channels, enabling the unambiguous detection of each pathway. For instance, a (1 + 1') resonance enhanced multiphoton ionization (REMPI) scheme may be employed to detect carbon monoxide generated from a particular unimolecular process. A number of more subtle mechanistic details may be explored as well. By varying the mean free path of the peroxy radicals in a flow tube, the role of collisional quenching in these unimolecular

  15. ASCI 2010 appropriateness criteria for cardiac computed tomography: a report of the Asian Society of Cardiovascular Imaging Cardiac Computed Tomography and Cardiac Magnetic Resonance Imaging Guideline Working Group.

    Science.gov (United States)

    Tsai, I-Chen; Choi, Byoung Wook; Chan, Carmen; Jinzaki, Masahiro; Kitagawa, Kakuya; Yong, Hwan Seok; Yu, Wei

    2010-02-01

    In Asia, the healthcare system, populations and patterns of disease differ from Western countries. The current reports on the criteria for cardiac CT scans, provided by Western professional societies, are not appropriate for Asian cultures. The Asian Society of Cardiovascular Imaging, the only society dedicated to cardiovascular imaging in Asia, formed a Working Group and invited 23 Technical Panel members representing a variety of Asian countries to rate the 51 indications for cardiac CT in clinical practice in Asia. The indications were rated as 'appropriate' (7-9), 'uncertain' (4-6), or 'inappropriate' (1-3) on a scale of 1-9. The median score was used for the final result if there was no disagreement. The final ratings for indications were 33 appropriate, 14 uncertain and 4 inappropriate. And 20 of them are highly agreed (19 appropriate and 1 inappropriate). Specifically, the Asian representatives considered cardiac CT as an appropriate modality for Kawasaki disease and congenital heart diseases in follow up and in symptomatic patients. In addition, except for some specified conditions, cardiac CT was considered to be an appropriate modality for one-stop shop ischemic heart disease evaluation due to its general appropriateness in coronary, structure and function evaluation. This report is expected to have a significant impact on the clinical practice, research and reimbursement policy in Asia.

  16. Novel molecular imaging ligands targeting matrix metalloproteinases 2 and 9 for imaging of unstable atherosclerotic plaques.

    Directory of Open Access Journals (Sweden)

    Nazanin Hakimzadeh

    Full Text Available Molecular imaging of matrix metalloproteinases (MMPs may allow detection of atherosclerotic lesions vulnerable to rupture. In this study, we develop a novel radiolabelled compound that can target gelatinase MMP subtypes (MMP2/9 with high selectivity and inhibitory potency. Inhibitory potencies of several halogenated analogues of MMP subtype-selective inhibitors (N-benzenesulfonyliminodiacetyl monohydroxamates and N-halophenoxy-benzenesulfonyl iminodiacetyl monohydroxamates were in the nanomolar range for MMP2/9. The analogue with highest inhibitory potency and selectivity was radiolabelled with [123I], resulting in moderate radiochemical yield, and high radiochemical purity. Biodistribution studies in mice, revealed stabilization in blood 1 hour after intravenous bolus injection. Intravenous infusion of the radioligand and subsequent autoradiography of excised aortas showed tracer uptake in atheroprone mice. Distribution of the radioligand showed co-localization with MMP2/9 immunohistochemical staining. In conclusion, we have developed a novel selective radiolabeled MMP2/9 inhibitor, suitable for single photon emission computed tomography (SPECT imaging that effectively targets atherosclerotic lesions in mice.

  17. Novel molecular imaging ligands targeting matrix metalloproteinases 2 and 9 for imaging of unstable atherosclerotic plaques

    Science.gov (United States)

    Molenaar, Ger; de Waard, Vivian; Lutgens, Esther; van Eck-Smit, Berthe L. F.; de Bruin, Kora; Piek, Jan J.; Eersels, Jos L. H.; Booij, Jan; Verberne, Hein J.; Windhorst, Albert D.

    2017-01-01

    Molecular imaging of matrix metalloproteinases (MMPs) may allow detection of atherosclerotic lesions vulnerable to rupture. In this study, we develop a novel radiolabelled compound that can target gelatinase MMP subtypes (MMP2/9) with high selectivity and inhibitory potency. Inhibitory potencies of several halogenated analogues of MMP subtype-selective inhibitors (N-benzenesulfonyliminodiacetyl monohydroxamates and N-halophenoxy-benzenesulfonyl iminodiacetyl monohydroxamates) were in the nanomolar range for MMP2/9. The analogue with highest inhibitory potency and selectivity was radiolabelled with [123I], resulting in moderate radiochemical yield, and high radiochemical purity. Biodistribution studies in mice, revealed stabilization in blood 1 hour after intravenous bolus injection. Intravenous infusion of the radioligand and subsequent autoradiography of excised aortas showed tracer uptake in atheroprone mice. Distribution of the radioligand showed co-localization with MMP2/9 immunohistochemical staining. In conclusion, we have developed a novel selective radiolabeled MMP2/9 inhibitor, suitable for single photon emission computed tomography (SPECT) imaging that effectively targets atherosclerotic lesions in mice. PMID:29190653

  18. Molecular Imaging : Computer Reconstruction and Practice - Proceedings of the NATO Advanced Study Institute on Molecular Imaging from Physical Principles to Computer Reconstruction and Practice

    CERN Document Server

    Lemoigne, Yves

    2008-01-01

    This volume collects the lectures presented at the ninth ESI School held at Archamps (FR) in November 2006 and is dedicated to nuclear physics applications in molecular imaging. The lectures focus on the multiple facets of image reconstruction processing and management and illustrate the role of digital imaging in clinical practice. Medical computing and image reconstruction are introduced by analysing the underlying physics principles and their implementation, relevant quality aspects, clinical performance and recent advancements in the field. Several stages of the imaging process are specifically addressed, e.g. optimisation of data acquisition and storage, distributed computing, physiology and detector modelling, computer algorithms for image reconstruction and measurement in tomography applications, for both clinical and biomedical research applications. All topics are presented with didactical language and style, making this book an appropriate reference for students and professionals seeking a comprehen...

  19. The deleterious effects of arteriovenous fistula-creation on the cardiovascular system: a longitudinal magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Dundon BK

    2014-09-01

    Full Text Available Benjamin K Dundon,1–3 Kim Torpey,3 Adam J Nelson,1 Dennis TL Wong,1,2 Rae F Duncan,1 Ian T Meredith,2 Randall J Faull,1,3 Stephen G Worthley,1,4 Matthew I Worthley1,4 1Cardiology Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia; 2Monash Cardiovascular Research Centre, MonashHEART, Monash Health, Melbourne, Vic, Australia; 3Central Northern Renal and Transplantation Service, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia; 4South Australian Health and Medical Research Institute, Adelaide, SA, Australia Aim: Arteriovenous fistula-formation remains critical for the provision of hemodialysis in end-stage renal failure patients. Its creation results in a significant increase in cardiac output, with resultant alterations in cardiac stroke volume, systemic blood flow, and vascular resistance. The impact of fistula-formation on cardiac and vascular structure and function has not yet been evaluated via "gold standard" imaging techniques in the modern era of end-stage renal failure care. Methods: A total of 24 patients with stage 5 chronic kidney disease undergoing fistula-creation were studied in a single-arm pilot study. Cardiovascular magnetic resonance imaging was undertaken at baseline, and prior to and 6 months following fistula-creation. This gold standard imaging modality was used to evaluate, via standard brachial flow-mediated techniques, cardiac structure and function, aortic distensibility, and endothelial function. Results: At follow up, left ventricular ejection fraction remained unchanged, while mean cardiac output increased by 25.0% (P<0.0001. Significant increases in left and right ventricular end-systolic volumes (21% [P=0.014] and 18% [P<0.01], left and right atrial area (11% [P<0.01] and 9% [P<0.01], and left ventricular mass were observed (12.7% increase (P<0.01. Endothelial

  20. Computed tomography imaging of early coronary artery lesions in stable individuals with multiple cardiovascular risk factors

    Directory of Open Access Journals (Sweden)

    Xi Yang

    2015-04-01

    Full Text Available OBJECTIVES: To investigate the prevalence, extent, severity, and features of coronary artery lesions in stable patients with multiple cardiovascular risk factors. METHODS: Seventy-seven patients with more than 3 cardiovascular risk factors were suspected of having coronary artery disease. Patients with high-risk factors and 39 controls with no risk factors were enrolled in the study. The related risk factors included hypertension, impaired glucose tolerance, dyslipidemia, smoking history, and overweight. The characteristics of coronary lesions were identified and evaluated by 64-slice coronary computed tomography angiography. RESULTS: The incidence of coronary atherosclerosis was higher in the high-risk group than in the no-risk group. The involved branches of the coronary artery, the diffusivity of the lesion, the degree of stenosis, and the nature of the plaques were significantly more severe in the high-risk group compared with the no-risk group (all p < 0.05. CONCLUSION: Among stable individuals with high-risk factors, early coronary artery lesions are common and severe. Computed tomography has promising value for the early screening of coronary lesions.

  1. Multimodality molecular imaging of disease progression in living ...

    Indian Academy of Sciences (India)

    immune cell trafficking, stem cell therapy, transgenic animals and even molecular interactions in living subjects. .... measurement of the effect of absorbed electromagnetic ..... Changes in intracellular pH, electrical impulses by nerve cells and ...

  2. Potential of luminescence based molecular animal imaging in research areas pertaining to cancer biology and therapy

    International Nuclear Information System (INIS)

    Yadav, Hansa D.; Shetake, Neena G.; Balla Murali, M.S.; Kumar, Amit; Pandey, B.N.

    2017-01-01

    Animal imaging is getting tremendous importance in biomedical research areas including drug delivery, radiobiology and cancer research. Even though, imaging techniques like CT, PET, SPECT, MRI are available for experimental animals, luminescence-based molecular imaging is still considered as crucial and common tool for biomedical laboratories due to easy handling/maintenance, cost effectiveness and various strategies available to manipulate the molecules/cells employed for imaging purposes. The Molecular Animal Imaging System available in our laboratory is being utilized for various cancer research activities including measurement of tumor growth kinetics, angiogenesis, therapeutic efficacy evaluation and metastasis studies. Moreover, the imaging system is also been used for radio-luminescence imaging based on Cherenkov radiation of radio-pharmaceuticals. (author)

  3. Dynamic fluorescence imaging with molecular agents for cancer detection

    Science.gov (United States)

    Kwon, Sun Kuk

    Non-invasive dynamic optical imaging of small animals requires the development of a novel fluorescence imaging modality. Herein, fluorescence imaging is demonstrated with sub-second camera integration times using agents specifically targeted to disease markers, enabling rapid detection of cancerous regions. The continuous-wave fluorescence imaging acquires data with an intensified or an electron-multiplying charge-coupled device. The work presented in this dissertation (i) assessed dose-dependent uptake using dynamic fluorescence imaging and pharmacokinetic (PK) models, (ii) evaluated disease marker availability in two different xenograft tumors, (iii) compared the impact of autofluorescence in fluorescence imaging of near-infrared (NIR) vs. red light excitable fluorescent contrast agents, (iv) demonstrated dual-wavelength fluorescence imaging of angiogenic vessels and lymphatics associated with a xenograft tumor model, and (v) examined dynamic multi-wavelength, whole-body fluorescence imaging with two different fluorescent contrast agents. PK analysis showed that the uptake of Cy5.5-c(KRGDf) in xenograft tumor regions linearly increased with doses of Cy5.5-c(KRGDf) up to 1.5 nmol/mouse. Above 1.5 nmol/mouse, the uptake did not increase with doses, suggesting receptor saturation. Target to background ratio (TBR) and PK analysis for two different tumor cell lines showed that while Kaposi's sarcoma (KS1767) exhibited early and rapid uptake of Cy5.5-c(KRGDf), human melanoma tumors (M21) had non-significant TBR differences and early uptake rates similar to the contralateral normal tissue regions. The differences may be due to different compartment location of the target. A comparison of fluorescence imaging with NIR vs. red light excitable fluorescent dyes demonstrates that NIR dyes are associated with less background signal, enabling rapid tumor detection. In contrast, animals injected with red light excitable fluorescent dyes showed high autofluorescence. Dual

  4. Review of cardiovascular imaging in the Journal of Nuclear Cardiology in 2017. Part 2 of 2: Myocardial perfusion imaging.

    Science.gov (United States)

    Hage, Fadi G; AlJaroudi, Wael A

    2018-04-16

    In 2017, the Journal of Nuclear Cardiology published many high-quality articles. In this review, we will summarize a selection of these articles to provide a concise review of the main advancements that have recently occurred in the field. In the first article of this 2-part series, we focused on publications dealing with positron emission tomography, computed tomography, and magnetic resonance. This review will place emphasis on myocardial perfusion imaging using single-photon emission computed tomography summarizing advances in the field including prognosis, safety and tolerability, the impact of imaging on management, and the use of novel imaging protocols.

  5. Current applications of molecular imaging and luminescence-based techniques in traditional Chinese medicine.

    Science.gov (United States)

    Li, Jinhui; Wan, Haitong; Zhang, Hong; Tian, Mei

    2011-09-01

    Traditional Chinese medicine (TCM), which is fundamentally different from Western medicine, has been widely investigated using various approaches. Cellular- or molecular-based imaging has been used to investigate and illuminate the various challenges identified and progress made using therapeutic methods in TCM. Insight into the processes of TCM at the cellular and molecular changes and the ability to image these processes will enhance our understanding of various diseases of TCM and will provide new tools to diagnose and treat patients. Various TCM therapies including herbs and formulations, acupuncture and moxibustion, massage, Gua Sha, and diet therapy have been analyzed using positron emission tomography, single photon emission computed tomography, functional magnetic resonance imaging and ultrasound and optical imaging. These imaging tools have kept pace with developments in molecular biology, nuclear medicine, and computer technology. We provide an overview of recent developments in demystifying ancient knowledge - like the power of energy flow and blood flow meridians, and serial naturopathies - which are essential to visually and vividly recognize the body using modern technology. In TCM, treatment can be individualized in a holistic or systematic view that is consistent with molecular imaging technologies. Future studies might include using molecular imaging in conjunction with TCM to easily diagnose or monitor patients naturally and noninvasively. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Non-invasive in-vivo imaging of stem cells after transplantation in cardiovascular tissue

    DEFF Research Database (Denmark)

    Mathiasen, Anders Bruun; Kastrup, Jens

    2013-01-01

    Stem cell therapy for degenerative diseases, including ischemic heart disease is now a clinical reality. In the search for the optimal cell type for each patient category, many different stem cell subpopulations have been used. In addition, different cell processing procedures and delivery methods......, migration and efficacy of the transplanted cells. Great effort is being made in finding new and better imaging techniques for different imaging modalities, and much have already been learned. But there are still many unanswered questions. In this review, we give an overview of the imaging modalities used...

  7. Integration of an optical coherence tomography (OCT) system into an examination incubator to facilitate in vivo imaging of cardiovascular development in higher vertebrate embryos under stable physiological conditions

    DEFF Research Database (Denmark)

    Happel, Christoph M.; Thrane, Lars; Thommes, Jan

    2011-01-01

    High-resolution in vivo imaging of higher vertebrate embryos over short or long time periods under constant physiological conditions is a technically challenging task for researchers working on cardiovascular development. In chick embryos, for example, various studies have shown that without...... significance, should be documented under physiological conditions. However, previous studies were mostly carried out outside of an incubator or under suboptimal environmental conditions. Here we present, to the best of our knowledge, the first detailed description of an optical coherence tomography (OCT......) system integrated into an examination incubator to facilitate real-time in vivo imaging of cardiovascular development under physiological environmental conditions. We demonstrate the suitability of this OCT examination incubator unit for use in cardiovascular development studies by examples of proof...

  8. Accelerated two-dimensional cine DENSE cardiovascular magnetic resonance using compressed sensing and parallel imaging.

    Science.gov (United States)

    Chen, Xiao; Yang, Yang; Cai, Xiaoying; Auger, Daniel A; Meyer, Craig H; Salerno, Michael; Epstein, Frederick H

    2016-06-14

    Cine Displacement Encoding with Stimulated Echoes (DENSE) provides accurate quantitative imaging of cardiac mechanics with rapid displacement and strain analysis; however, image acquisition times are relatively long. Compressed sensing (CS) with parallel imaging (PI) can generally provide high-quality images recovered from data sampled below the Nyquist rate. The purposes of the present study were to develop CS-PI-accelerated acquisition and reconstruction methods for cine DENSE, to assess their accuracy for cardiac imaging using retrospective undersampling, and to demonstrate their feasibility for prospectively-accelerated 2D cine DENSE imaging in a single breathhold. An accelerated cine DENSE sequence with variable-density spiral k-space sampling and golden angle rotations through time was implemented. A CS method, Block LOw-rank Sparsity with Motion-guidance (BLOSM), was combined with sensitivity encoding (SENSE) for the reconstruction of under-sampled multi-coil spiral data. Seven healthy volunteers and 7 patients underwent 2D cine DENSE imaging with fully-sampled acquisitions (14-26 heartbeats in duration) and with prospectively rate-2 and rate-4 accelerated acquisitions (14 and 8 heartbeats in duration). Retrospectively- and prospectively-accelerated data were reconstructed using BLOSM-SENSE and SENSE. Image quality of retrospectively-undersampled data was quantified using the relative root mean square error (rRMSE). Myocardial displacement and circumferential strain were computed for functional assessment, and linear correlation and Bland-Altman analyses were used to compare accelerated acquisitions to fully-sampled reference datasets. For retrospectively-undersampled data, BLOSM-SENSE provided similar or lower rRMSE at rate-2 and lower rRMSE at rate-4 acceleration compared to SENSE (p cine DENSE provided good image quality and expected values of displacement and strain. BLOSM-SENSE-accelerated spiral cine DENSE imaging with 2D displacement encoding can be

  9. Lipid-based nanoparticles for magnetic resonance molecular imaging : design, characterization, and application

    NARCIS (Netherlands)

    Mulder, W.J.M.

    2006-01-01

    In this thesis research is described which was aimed to develop lipidic nanoparticles for the investigation and visualization of atherosclerosis and angiogenesis with both magnetic resonance molecular imaging and optical techniques. The underlying rationale for this is that conventional MR imaging

  10. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging

    NARCIS (Netherlands)

    Mulder, Willem J. M.; Strijkers, Gustav J.; van Tilborg, Geralda A. F.; Griffioen, Arjan W.; Nicolay, Klaas

    2006-01-01

    In the field of MR imaging and especially in the emerging field of cellular and molecular MR imaging, flexible strategies to synthesize contrast agents that can be manipulated in terms of size and composition and that can be easily conjugated with targeting ligands are required. Furthermore, the

  11. Molecular imaging for theranostics in gastroenterology: one stone to kill two birds.

    Science.gov (United States)

    Ko, Kwang Hyun; Kown, Chang-Il; Park, Jong Min; Lee, Hoo Geun; Han, Na Young; Hahm, Ki Baik

    2014-09-01

    Molecular imaging in gastroenterology has become more feasible with recent advances in imaging technology, molecular genetics, and next-generation biochemistry, in addition to advances in endoscopic imaging techniques including magnified high-resolution endoscopy, narrow band imaging or autofluorescence imaging, flexible spectral imaging color enhancement, and confocal laser endomicroscopy. These developments have the potential to serve as "red flag" techniques enabling the earlier and accurate detection of mucosal abnormalities (such as precancerous lesions) beyond biomarkers, virtual histology of detected lesions, and molecular targeted therapy-the strategy of "one stone to kill two or three birds"; however, more effort should be done to be "blue ocean" benefit. This review deals with the introduction of Raman spectroscopy endoscopy, imaging mass spectroscopy, and nanomolecule development for theranostics. Imaging of molecular pathological changes in cells/tissues/organs might open the "royal road" to either convincing diagnosis of diseases that otherwise would only be detected in the advanced stages or novel therapeutic methods targeted to personalized medicine.

  12. PBCA-based polymeric microbubbles for molecular imaging and drug delivery

    NARCIS (Netherlands)

    Koczera, Patrick; Appold, Lia; Shi, Yang; Liu, Mengjiao; Dasgupta, Anshuman; Pathak, Vertika; Ojha, Tarun; Fokong, Stanley; Wu, Zhuojun; Van Zandvoort, Marc; Iranzo, Olga; Kuehne, Alexander J C; Pich, Andrij; Kiessling, Fabian; Lammers, Twan

    2017-01-01

    Microbubbles (MB) are routinely used as contrast agents for ultrasound (US) imaging. We describe different types of targeted and drug-loaded poly(n-butyl cyanoacrylate) (PBCA) MB, and demonstrate their suitability for multiple biomedical applications, including molecular US imaging and US-mediated

  13. Molecular markers in breast cancer: new tools in imaging and prognosis

    NARCIS (Netherlands)

    Vermeulen, J.F.

    2012-01-01

    Breast cancer is the most frequently diagnosed cancer in women. Although breast cancer is mainly diagnosed by mammography, other imaging modalities (e.g. MRI, PET) are increasingly used. The most recent developments in the field of molecular imaging comprise the application of near-infrared

  14. Applications of the Preclinical Molecular Imaging in Biomedicine: Gene Therapy

    International Nuclear Information System (INIS)

    Collantes, M.; Peñuelas, I.

    2014-01-01

    Gene therapy constitutes a promising option for efficient and targeted treatment of several inherited disorders. Imaging techniques using ionizing radiation as PET or SPECT are used for non-invasive monitoring of the distribution and kinetics of vector-mediated gene expression. In this review the main reporter gene/reporter probe strategies are summarized, as well as the contribution of preclinical models to the development of this new imaging modality previously to its application in clinical arena. [es

  15. Nanotechnology-Enabled Optical Molecular Imaging of Breast Cancer

    Science.gov (United States)

    2013-09-01

    percent of invasive carcinoma and grows slowly over the course of years. It is very soft and looks like gray-blue gelatin . Two other invasive...Nitin, N., D. J. Javier, et al. (2007). "Widefield and high-resolution reflectance imaging of gold and silver nanospheres." J Biomed Opt 12(5...2010. “Widefield and High-resolution Reflectance Imaging of Gold and Silver Nanospheres.” Journal of Biomedical Optics 12 (5): 051505. doi:10.1117

  16. First PET Center in Mexico: the power of molecular imaging

    International Nuclear Information System (INIS)

    Avila R, M.A.

    2001-01-01

    Positron Emission Tomography (PET) is a non-invasive diagnostic imaging technique modality. It represents the forefront of medical images and was developed as a quantitative technique for imaging biochemical and physiological processes in the human body. PET is unique because it produces images of the body's basic biochemistry or function. Traditional diagnostic techniques such as x-rays, CT scans or MRI, produce images of the body's anatomy or structure. The premise with these techniques is that the change in anatomy or structure that occurs with disease can be seen. However, biochemical processes are also altered with disease and may occur before there is a change gross anatomy. PET is an imaging technique that is used to visualize some of these processes. The development of PET as we know it today began in 1974 with the development of a single ring detector system by Phelps et al. Today, over 350 PET scanners are in use in the world, mainly in the USA (over 140), Europe (particularly in the Anglo-Saxon countries and France) and Japan. Many of these facilities also have their own cyclotron to produce the positron emitters. In the Southern hemisphere, only Australia, Argentina. and recently Mexico, have a very small number of PET facilities. (Author)

  17. First PET Center in Mexico: the power of molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Avila R, M.A. [Unidad PET, Facultad de Medicina, UNAM (Mexico)

    2001-09-01

    Positron Emission Tomography (PET) is a non-invasive diagnostic imaging technique modality. It represents the forefront of medical images and was developed as a quantitative technique for imaging biochemical and physiological processes in the human body. PET is unique because it produces images of the body's basic biochemistry or function. Traditional diagnostic techniques such as x-rays, CT scans or MRI, produce images of the body's anatomy or structure. The premise with these techniques is that the change in anatomy or structure that occurs with disease can be seen. However, biochemical processes are also altered with disease and may occur before there is a change gross anatomy. PET is an imaging technique that is used to visualize some of these processes. The development of PET as we know it today began in 1974 with the development of a single ring detector system by Phelps et al. Today, over 350 PET scanners are in use in the world, mainly in the USA (over 140), Europe (particularly in the Anglo-Saxon countries and France) and Japan. Many of these facilities also have their own cyclotron to produce the positron emitters. In the Southern hemisphere, only Australia, Argentina. and recently Mexico, have a very small number of PET facilities. (Author)

  18. Autonomic innervation of the heart. Role of molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Slart, Riemer H.J.A; Elsinga, Philip H. [Univ. Medical Center Groningen (Netherlands). Nuclear Medicine and Molecular Imaging; Tio, Rene A. [Univ. Medical Center Groningen (Netherlands). Thorax Center Cardiology; Schwaiger, Markus (ed.) [Technische Univ. Muenchen Klinikum Rechts der Isar (Germany). Nuklearmedizinische Klinik

    2015-03-01

    Reviews in detail the value of SPECT-CT and PET-CT in the imaging of cardiac innervation. Details the role of imaging in a range of conditions and diseases. Includes important background on pathophysiology, tracers, radiopharmaceutical production, and kinetic modeling software. This book explains in detail the potential value of the hybrid modalities, SPECT-CT and PET-CT, in the imaging of cardiac innervation in a wide range of conditions and diseases, including ischemic heart disease, diabetes mellitus, heart failure, amyloidosis, heart transplantation, and ventricular arrhythmias. Imaging of the brain-heart axis in neurodegenerative disease and stress and of cardiotoxicity is also discussed. The roles of the various available tracers are fully considered, and individual chapters address radiopharmaceutical development under GMP, imaging physics, and kinetic modeling software. Highly relevant background information is included on the autonomic nervous system of the heart and its pathophysiology, and in addition future perspectives are discussed. Awareness of the importance of autonomic innervation of the heart for the optimal management of cardiac patients is growing, and there is an evident need for objective measurement techniques or imaging modalities. In this context, Autonomic Innervation of the Heart will be of wide interest to clinicians, researchers, and industry.

  19. Autonomic innervation of the heart. Role of molecular imaging

    International Nuclear Information System (INIS)

    Slart, Riemer H.J.A; Elsinga, Philip H.; Tio, Rene A.; Schwaiger, Markus

    2015-01-01

    Reviews in detail the value of SPECT-CT and PET-CT in the imaging of cardiac innervation. Details the role of imaging in a range of conditions and diseases. Includes important background on pathophysiology, tracers, radiopharmaceutical production, and kinetic modeling software. This book explains in detail the potential value of the hybrid modalities, SPECT-CT and PET-CT, in the imaging of cardiac innervation in a wide range of conditions and diseases, including ischemic heart disease, diabetes mellitus, heart failure, amyloidosis, heart transplantation, and ventricular arrhythmias. Imaging of the brain-heart axis in neurodegenerative disease and stress and of cardiotoxicity is also discussed. The roles of the various available tracers are fully considered, and individual chapters address radiopharmaceutical development under GMP, imaging physics, and kinetic modeling software. Highly relevant background information is included on the autonomic nervous system of the heart and its pathophysiology, and in addition future perspectives are discussed. Awareness of the importance of autonomic innervation of the heart for the optimal management of cardiac patients is growing, and there is an evident need for objective measurement techniques or imaging modalities. In this context, Autonomic Innervation of the Heart will be of wide interest to clinicians, researchers, and industry.

  20. Integrated Molecular Imaging and Therapy for Breast Cancer

    National Research Council Canada - National Science Library

    Panchapakesan, Balaji

    2008-01-01

    ...) and NIR dosing of cancer cells using SWCNT. While previous studies have shown the transport of DNA into cells using nanotubes, in this study we show multi-component molecular targeting of both IGF1R and Her2 surface markers in cancer cells...

  1. Development of neuroradiology. From the visualization of bones to molecular imaging

    International Nuclear Information System (INIS)

    Reith, W.

    2005-01-01

    Since the discovery of X-rays, rapid and significant progress has been and continues to be made in imaging techniques, particularly neuroradiology. Milestones along the way included use of contrast agents, digital subtraction angiography, computed tomography, and magnetic resonance imaging. The most recent achievements are visualization of cerebral activation and fiber systems in the brain parenchyma. Application of new contrast agents seems to make imaging at the ''molecular'' level also possible. (orig.) [de

  2. SPECT and PET Serve as Molecular Imaging Techniques and in Vivo Biomarkers for Brain Metastases

    Science.gov (United States)

    Palumbo, Barbara; Buresta, Tommaso; Nuvoli, Susanna; Spanu, Angela; Schillaci, Orazio; Fravolini, Mario Luca; Palumbo, Isabella

    2014-01-01

    Nuclear medicine techniques (single photon emission computerized tomography, SPECT, and positron emission tomography, PET) represent molecular imaging tools, able to provide in vivo biomarkers of different diseases. To investigate brain tumours and metastases many different radiopharmaceuticals imaged by SPECT and PET can be used. In this review the main and most promising radiopharmaceuticals available to detect brain metastases are reported. Furthermore the diagnostic contribution of the combination of SPECT and PET data with radiological findings (magnetic resonance imaging, MRI) is discussed. PMID:24897023

  3. Coronary magnetic resonance imaging: visualization of the vessel lumen and the vessel wall and molecular imaging of arteriothrombosis

    International Nuclear Information System (INIS)

    Spuentrup, Elmar; Botnar, Rene M.

    2006-01-01

    Coronary magnetic resonance (MR) imaging has dramatically emerged over the last decade. Technical improvements have enabled reliable visualization of the proximal and midportion of the coronary artery tree for exclusion of significant coronary artery disease. However, current technical developments focus also on direct visualization of the diseased coronary vessel wall and imaging of coronary plaque because plaques without stenoses are typically more vulnerable with higher risk of plaque rupture. Plaque rupture with subsequent thrombosis and vessel occlusion is the main cause of myocardial infarction. Very recently, the first success of molecular imaging in the coronary arteries has been demonstrated using a fibrin-specific contrast agent for selective visualization of coronary thrombosis. This demonstrates in general the high potential of molecular MR imaging in the field of coronary artery disease. In this review, we will address recent technical advances in coronary MR imaging, including visualization of the lumen and the vessel wall and molecular imaging of coronary arteriothrombosis. First results of these new approaches will be discussed. (orig.)

  4. From molecular imaging to systems diagnostics: Time for another paradigm shift?

    Energy Technology Data Exchange (ETDEWEB)

    Li, King C.P. [Department of Radiology, Methodist Hospital, Weill Cornell Medical College, 6565 Fannin Street, D280 Houston, TX 77030 (United States)], E-mail: kli@tmhs.org

    2009-05-15

    The term 'Molecular Imaging' has hit the consciousness of radiologists only in the past decade although many of the concepts that molecular imaging encompasses has been practiced in biomedical imaging, especially in nuclear medicine, for many decades. Many new imaging techniques have allowed us to interrogate biologic events at the cellular and molecular level in vivo in four dimensions but the challenge now is to translate these techniques into clinical practice in a way that will enable us to revolutionize healthcare delivery. The purpose of this article is to introduce the term 'Systems Diagnostics' and examine how radiologists can become translators of disparate sources of information into medical decisions and therapeutic actions.

  5. Potentials and limits of modern tomographic methods (CT, MR, PET) in molecular imaging

    International Nuclear Information System (INIS)

    Hentschel, M.; Paul, D.; Moser, E.; Brink, I.

    2007-01-01

    The present survey gives an introduction into the basics of computed tomography, magnetic resonance tomography and positron emission tomography. The current potentials of these methods in relation to their temporal, spatial and contrast resolutions as well as their sensitivities within clinical routine and experimental studies (in vitro, ex vivo) will be presented. Computed tomography constitutes the anatomical reference method with well defined contrast, high spatial resolution but low sensitivity (10 -2 mol/l) for functional and molecular imaging. Magnetic resonance tomography represents the anatomical method for research with variable tissue contrast, physiological image information, highest spatial resolution but moderate sensitivity (10 -3 -10 -5 mol/l) for functional and molecular imaging. Positron emission tomography offers good suitability for molecular imaging due to highest sensitivity (10 -11 -10 -12 mol/l). However, the spatial resolution of positron emission tomography is low. (orig.)

  6. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    Science.gov (United States)

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  7. Integration of molecular imaging in treatment planning and delivery of modern radiotherapy

    International Nuclear Information System (INIS)

    Jacob, V.; Wilkens, J.J.

    2011-01-01

    Among various imaging modalities currently available, positron emission tomography (PET) has the potential to visualize processes on a molecular level. Molecular imaging, often also referred to as functional or biological imaging, brought a new dimension to diagnostics and therapy of cancer by providing images of metabolism and other processes in the human body and in tumours. PET was first applied for diagnostics and staging of various tumours with high diagnostic precision. Modern radiotherapy asks increasingly for individualized treatment strategies, taking molecular imaging into account. Technical developments over the last years, in particular methods to register various imaging modalities within software packages for treatment planning and target delineation, facilitated the use of PET imaging in radiotherapy. In order to exploit the full potential of modern high-precision radiotherapy, exact imaging procedures are necessary, for example for precise target volume definition. In the long run, concepts employing an inhomogeneous dose prescription based on biological imaging may become routine in clinical applications, leading to individualized, biologically adaptive therapy. (orig.)

  8. Imaging and Molecular Markers for Patients with Lung Cancer: Approaches with Molecular Targets, Complementary/Innovative Treatment, and Therapeutic Modalities

    Science.gov (United States)

    2011-02-01

    Therapeutic and Imaging Agents to Lung Cancer (PI and co-PI: Renata Pasqualini , Ph.D., Wadih Arap, M.D., Ph.D.) The studies outlined in this proposal...with Drs. Pasqualini , Arap, and Wistuba. The IHC staining of lung cancer TMAs (390 cases) has been completed. We are working with investigators to...Project 3, R. Pasqualini ). This project was completed and a manuscript is in preparation by Dr. Pasqualini’s lab. b) Molecular abnormalities

  9. Cardiovascular magnetic resonance imaging to assess myocardial fibrosis in valvular heart disease.

    Science.gov (United States)

    Podlesnikar, Tomaz; Delgado, Victoria; Bax, Jeroen J

    2018-01-01

    The left ventricular (LV) remodeling process associated with significant valvular heart disease (VHD) is characterized by an increase of myocardial interstitial space with deposition of collagen and loss of myofibers. These changes occur before LV systolic function deteriorates or the patient develops symptoms. Cardiovascular magnetic resonance (CMR) permits assessment of reactive fibrosis, with the use of T1 mapping techniques, and replacement fibrosis, with the use of late gadolinium contrast enhancement. In addition, functional consequences of these structural changes can be evaluated with myocardial tagging and feature tracking CMR, which assess the active deformation (strain) of the LV myocardium. Several studies have demonstrated that CMR techniques may be more sensitive than the conventional measures (LV ejection fraction or LV dimensions) to detect these structural and functional changes in patients with severe left-sided VHD and have shown that myocardial fibrosis may not be reversible after valve surgery. More important, the presence of myocardial fibrosis has been associated with lesser improvement in clinical symptoms and recovery of LV systolic function. Whether assessment of myocardial fibrosis may better select the patients with severe left-sided VHD who may benefit from surgery in terms of LV function and clinical symptoms improvement needs to be demonstrated in prospective studies. The present review article summarizes the current status of CMR techniques to assess myocardial fibrosis and appraises the current evidence on the use of these techniques for risk stratification of patients with severe aortic stenosis or regurgitation and mitral regurgitation.

  10. Non-invasive methods for estimating mPAP in COPD using cardiovascular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Johns, C.S.; Capener, D.A.; Oram, C.; Wild, J.M.; Rajaram, S.; Elliot, C.; Condliffe, R.; Kiely, D.G.; Swift, A.J.

    2018-01-01

    Pulmonary hypertension (PH) is associated with a poor outcome in chronic obstructive pulmonary disease (COPD) and is diagnosed invasively. We aimed to assess the diagnostic accuracy and prognostic value of non-invasive cardiovascular magnetic resonance (CMR) models. Patients with COPD and suspected PH, who underwent CMR and right heart catheter (RHC) were identified. Three candidate models were assessed: 1, CMR-RV model, based on right ventricular (RV) mass and interventricular septal angle; 2, CMR PA/RV includes RV mass, septal angle and pulmonary artery (PA) measurements; 3, the Alpha index, based on RV ejection fraction and PA size. Of 102 COPD patients, 87 had PH. The CMR-PA/RV model had the strongest diagnostic accuracy (sensitivity 92%, specificity 80%, positive predictive value 96% and negative predictive value 63%, AUC 0.93, p<0.0001). Splitting RHC-mPAP, CMR-RV and CMR-PA/RV models by 35mmHg gave a significant difference in survival, with log-rank chi-squared 5.03, 5.47 and 7.10. RV mass and PA relative area change were the independent predictors of mortality at multivariate Cox regression (p=0.002 and 0.030). CMR provides diagnostic and prognostic information in PH-COPD. The CMR-PA/RV model is useful for diagnosis, the RV mass index and PA relative area change are useful to assess prognosis. (orig.)

  11. The research progress of dual-modality probes for molecular imaging

    International Nuclear Information System (INIS)

    Cao Feng; Chen Yue

    2010-01-01

    Various imaging modalities have been exploited to investigate the anatomic or functional dissemination of tissues in the body. However, no single imaging modality allows overall structural, functional, and molecular information as each imaging modality has its own unique strengths and weaknesses. The combination of two imaging modalities that investigates the strengths of different methods might offer the prospect of improved diagnostic abilities. As more and more dual-modality imaging system have become clinically adopted, significant progress has been made toward the creation of dual-modality imaging probes, which can be used as novel tools for future multimodality systems. These all-in-one probes take full advantage of two different imaging modalities and could provide comprehensive information for clinical diagnostics. This review discusses the advantages and challenges in developing dual-modality imaging probes. (authors)

  12. Detection of hydroxyapatite in calcified cardiovascular tissues.

    Science.gov (United States)

    Lee, Jae Sam; Morrisett, Joel D; Tung, Ching-Hsuan

    2012-10-01

    The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Ultra-Wideband Sensors for Improved Magnetic Resonance Imaging, Cardiovascular Monitoring and Tumour Diagnostics

    Directory of Open Access Journals (Sweden)

    Frank Seifert

    2010-12-01

    Full Text Available The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour’s contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied.

  14. Ultra-wideband sensors for improved magnetic resonance imaging, cardiovascular monitoring and tumour diagnostics.

    Science.gov (United States)

    Thiel, Florian; Kosch, Olaf; Seifert, Frank

    2010-01-01

    The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar) make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI) and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour's contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied.

  15. Molecular imaging in the management of cervical cancer

    Directory of Open Access Journals (Sweden)

    Chyong-Huey Lai

    2012-08-01

    Full Text Available Positron emission tomography (PET, magnetic resonance imaging (MRI, and integrated 18-fluorodeoxyglucose (18F-FDG PET/computed tomography are valuable techniques for assessing prognosis, treatment response after the completion of concurrent chemoradiation, suspicious or documented recurrence, unexplained post therapy elevations in tumor markers, and the response to salvage treatment when managing cervical cancer. However, PET plays a limited role in the primary staging of MRI-defined node-negative patients. Currently, 18F-FDG is still the only tracer approved for routine use, but several novel targeting PET compounds, high-Tesla MRI machines, diffusion-weighted imaging without contrast, and dynamic nuclear polarized-enhanced 13C-MR spectroscopic imaging may hold promising applications.

  16. Nanotechnology-Enabled Optical Molecular Imaging of Breast Cancer

    Science.gov (United States)

    2011-07-01

    quantitatively and dynamically detect molecular markers of breast cancer in vivo without tissue removal or directly after removal in a surgical...hour oshells by c es, the nano ting to a fin ER2- positiv (CHTN) th tinction spect ter of 276 nm sert depicts co microscopy. n was visua rption...conclusively determine the penetration depth of the nanoshells. Additionally, a quantitative difference of the nanoshell signal at the surface of the Her2

  17. Molecular spectral imaging system for quantitative immunohistochemical analysis of early diabetic retinopathy.

    Science.gov (United States)

    Li, Qingli; Zhang, Jingfa; Wang, Yiting; Xu, Guoteng

    2009-12-01

    A molecular spectral imaging system has been developed based on microscopy and spectral imaging technology. The system is capable of acquiring molecular spectral images from 400 nm to 800 nm with 2 nm wavelength increments. The basic principles, instrumental systems, and system calibration method as well as its applications for the calculation of the stain-uptake by tissues are introduced. As a case study, the system is used for determining the pathogenesis of diabetic retinopathy and evaluating the therapeutic effects of erythropoietin. Some molecular spectral images of retinal sections of normal, diabetic, and treated rats were collected and analyzed. The typical transmittance curves of positive spots stained for albumin and advanced glycation end products are retrieved from molecular spectral data with the spectral response calibration algorithm. To explore and evaluate the protective effect of erythropoietin (EPO) on retinal albumin leakage of streptozotocin-induced diabetic rats, an algorithm based on Beer-Lambert's law is presented. The algorithm can assess the uptake by histologic retinal sections of stains used in quantitative pathology to label albumin leakage and advanced glycation end products formation. Experimental results show that the system is helpful for the ophthalmologist to reveal the pathogenesis of diabetic retinopathy and explore the protective effect of erythropoietin on retinal cells of diabetic rats. It also highlights the potential of molecular spectral imaging technology to provide more effective and reliable diagnostic criteria in pathology.

  18. Molecular imaging agents for SPECT (and SPECT/CT)

    International Nuclear Information System (INIS)

    Gnanasegaran, Gopinath; Ballinger, James R.

    2014-01-01

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  19. Towards imaging of ultrafast molecular dynamics using FELs

    NARCIS (Netherlands)

    Rouzee, A.; Johnsson, P.; Rading, L.; Siu, W.; Huismans, Y.; Duesterer, S.; Redlin, H.; Tavella, F.; Stojanovic, N.; Al-Shemmary, A.; Lepine, F.; Holland, D. M. P.; Schlathölter, Thomas; Hoekstra, R.; Fukuzawa, H.; Ueda, K.; Vrakking, M. J. J.; Hundertmark, A.

    2013-01-01

    The dissociation dynamics induced by a 100 fs, 400 nm laser pulse in a rotationally cold Br-2 sample was characterized by Coulomb explosion imaging (CEI) using a time-delayed extreme ultra-violet (XUV) FEL pulse, obtained from the Free electron LASer in Hamburg (FLASH). The momentum distribution of

  20. Molecular imaging agents for SPECT (and SPECT/CT)

    Energy Technology Data Exchange (ETDEWEB)

    Gnanasegaran, Gopinath [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); Ballinger, James R. [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2014-05-15

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  1. Homing peptide guiding optical molecular imaging for the diagnosis of bladder cancer

    Science.gov (United States)

    Yang, Xiao-feng; Pang, Jian-zhi; Liu, Jie-hao; Zhao, Yang; Jia, Xing-you; Li, Jun; Liu, Reng-xin; Wang, Wei; Fan, Zhen-wei; Zhang, Zi-qiang; Yan, San-hua; Luo, Jun-qian; Zhang, Xiao-lei

    2014-11-01

    Background: The limitations of primary transurethral resection of bladder tumor (TURBt) have led the residual tumors rates as high as 75%. The intraoperative fluorescence imaging offers a great potential for improving TURBt have been confirmed. So we aim to distinguish the residual tumors and normal mucosa using fluorescence molecular imaging formed by conjugated molecule of the CSNRDARRC bladder cancer homing peptide with fluorescent dye. The conjugated molecule was abbreviated FIuo-ACP. In our study, we will research the image features of FIuo-ACP probe targeted bladder cancer for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo. Methods: After the FIuo-ACP probe was synthetized, the binding sites, factors affecting binding rates, the specificity and the targeting of Fluo-ACP labeled with bladder cancer cells were studied respectively by laser scanning confocal microscope (LSCM), immunofluorescence and multispectral fluorescence ex vivo optical molecular imaging system. Results: The binding sites were located in nucleus and the binding rates were correlated linearly with the dose of probe and the grade of pathology. Moreover, the probe has a binding specificity with bladder cancer in vivo and ex vivo. Tumor cells being labeled by the Fluo-ACP, bright green spots were observed under LSCM. The tissue samples and tumor cells can be labeled and identified by fluorescence microscope. Optical molecular imaging of xenograft tumor tissues was exhibited as fluorescent spots under EMCCD. Conclusion: The CSNRDARRC peptides might be a useful bladder cancer targeting vector. The FIuo-ACP molecular probe was suitable for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo.

  2. Cardiovascular calcification. An inflammatory disease

    International Nuclear Information System (INIS)

    New, S.E.P.; Aikawa, E.

    2011-01-01

    Cardiovascular calcification is an independent risk factor for cardiovascular morbidity and mortality. This disease of dysregulated metabolism is no longer viewed as a passive degenerative disease, but instead as an active process triggered by pro-inflammatory cues. Furthermore, a positive feedback loop of calcification and inflammation is hypothesized to drive disease progression in arterial calcification. Both calcific aortic valve disease and atherosclerotic arterial calcification may possess similar underlying mechanisms. Early histopathological studies first highlighted the contribution of inflammation to cardiovascular calcification by demonstrating the accumulation of macrophages and T lymphocytes in 'early' lesions within the aortic valves and arteries. A series of in vitro work followed, which gave a mechanistic insight into the stimulation of smooth muscle cells to undergo osteogenic differentiation and mineralization. The emergence of novel technology, in the form of animal models and more recently molecular imaging, has enabled accelerated progression of this field, by providing strong evidence regarding the concept of this disorder as an inflammatory disease. Although there are still gaps in our knowledge of the mechanisms behind this disorder, this review discusses the various studies that have helped form the concept of the inflammation-dependent cardiovascular calcification paradigm. (author)

  3. Where Does It Lead? Imaging Features of Cardiovascular Implantable Electronic Devices on Chest Radiograph and CT

    Energy Technology Data Exchange (ETDEWEB)

    Lanzman, Rotem S.; Blondin, Dirk; Furst, Gunter; Scherer, Axel; R Miese, Falk; Kroepil, Patric [University of Duesseldorf, Medical Faculty, 40225 Duesseldorf (Germany); Winter, Joachim [University Hospital Duesseldorf, 40225 Duesseldorf (Germany); Abbara, Suhny [Massachusetts General Hospital, Boston, MA (US)

    2011-10-15

    Pacemakers and implantable cardioverter defibrillators (ICDs) are being increasingly employed in patients suffering from cardiac rhythm disturbances. The principal objective of this article is to familiarize radiologists with pacemakers and ICDs on chest radiographs and CT scans. Therefore, the preferred lead positions according to pacemaker types and anatomic variants are introduced in this study. Additionally, the imaging features of incorrect lead positions and defects, as well as complications subsequent to pacemaker implantation are demonstrated herein.

  4. Where Does It Lead? Imaging Features of Cardiovascular Implantable Electronic Devices on Chest Radiograph and CT

    International Nuclear Information System (INIS)

    Lanzman, Rotem S.; Blondin, Dirk; Furst, Gunter; Scherer, Axel; R Miese, Falk; Kroepil, Patric; Winter, Joachim; Abbara, Suhny

    2011-01-01

    Pacemakers and implantable cardioverter defibrillators (ICDs) are being increasingly employed in patients suffering from cardiac rhythm disturbances. The principal objective of this article is to familiarize radiologists with pacemakers and ICDs on chest radiographs and CT scans. Therefore, the preferred lead positions according to pacemaker types and anatomic variants are introduced in this study. Additionally, the imaging features of incorrect lead positions and defects, as well as complications subsequent to pacemaker implantation are demonstrated herein.

  5. Combined blood pool and extracellular contrast agents for pediatric and young adult cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Joyce T. [Ann and Robert Lurie Children' s Hospital of Chicago, Division of Pediatric Cardiology, 225 E. Chicago Ave., Box 21, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Robinson, Joshua D. [Ann and Robert Lurie Children' s Hospital of Chicago, Division of Pediatric Cardiology, 225 E. Chicago Ave., Box 21, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Deng, Jie [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Rigsby, Cynthia K. [Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States)

    2016-12-15

    A comprehensive cardiac magnetic resonance (cardiac MR) study including both late gadolinium enhancement (LGE) and MR angiography may be indicated for patients with a history of acquired or congenital heart disease. To study the novel use of an extracellular agent for assessment of LGE combined with a blood pool contrast agent for detailed MR angiography evaluation to yield a comprehensive cardiac MR study in these patients. We reviewed clinical cardiac MR studies utilizing extracellular and blood pool contrast agents and noted demographics, clinical data and adverse events. We rated LGE image quality and MR angiography image quality for each vascular segment and calculated inter-rater variability. We also quantified contrast-to-noise ratio (CNR). Thirty-three patients (mean age 13.9 ± 3 years) received an extracellular contrast agent (10 gadobenate dimeglumine, 23 gadopentetate dimeglumine) and blood pool contrast agent (33 gadofosveset trisodium). No adverse events were reported. MRI indications included Kawasaki disease (8), cardiomyopathy and coronary anatomy (15), repaired congenital heart disease (8), and other (2). Mean LGE quality was 2.6 ± 0.6 with 97% diagnostic imaging. LGE quality did not vary by type of contrast agent given (P = 0.07). Mean MR angiography quality score was 4.7 ± 0.6, with high inter-rater agreement (k = 0.6-0.8, P < 0.002). MR angiography quality did not vary by type of contrast agent used (P = 0.6). Cardiac MR studies utilizing both extracellular and blood pool contrast agents are feasible and safe and provide excellent-quality LGE and MR angiography images. The use of two contrast agents allows for a comprehensive assessment of both myocardial viability and vascular anatomy during the same exam. (orig.)

  6. Combined blood pool and extracellular contrast agents for pediatric and young adult cardiovascular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Johnson, Joyce T.; Robinson, Joshua D.; Deng, Jie; Rigsby, Cynthia K.

    2016-01-01

    A comprehensive cardiac magnetic resonance (cardiac MR) study including both late gadolinium enhancement (LGE) and MR angiography may be indicated for patients with a history of acquired or congenital heart disease. To study the novel use of an extracellular agent for assessment of LGE combined with a blood pool contrast agent for detailed MR angiography evaluation to yield a comprehensive cardiac MR study in these patients. We reviewed clinical cardiac MR studies utilizing extracellular and blood pool contrast agents and noted demographics, clinical data and adverse events. We rated LGE image quality and MR angiography image quality for each vascular segment and calculated inter-rater variability. We also quantified contrast-to-noise ratio (CNR). Thirty-three patients (mean age 13.9 ± 3 years) received an extracellular contrast agent (10 gadobenate dimeglumine, 23 gadopentetate dimeglumine) and blood pool contrast agent (33 gadofosveset trisodium). No adverse events were reported. MRI indications included Kawasaki disease (8), cardiomyopathy and coronary anatomy (15), repaired congenital heart disease (8), and other (2). Mean LGE quality was 2.6 ± 0.6 with 97% diagnostic imaging. LGE quality did not vary by type of contrast agent given (P = 0.07). Mean MR angiography quality score was 4.7 ± 0.6, with high inter-rater agreement (k = 0.6-0.8, P < 0.002). MR angiography quality did not vary by type of contrast agent used (P = 0.6). Cardiac MR studies utilizing both extracellular and blood pool contrast agents are feasible and safe and provide excellent-quality LGE and MR angiography images. The use of two contrast agents allows for a comprehensive assessment of both myocardial viability and vascular anatomy during the same exam. (orig.)

  7. Hybrid cardiac imaging using PET/MRI: a joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM).

    Science.gov (United States)

    Nensa, Felix; Bamberg, Fabian; Rischpler, Christoph; Menezes, Leon; Poeppel, Thorsten D; la Fougère, Christian; Beitzke, Dietrich; Rasul, Sazan; Loewe, Christian; Nikolaou, Konstantin; Bucerius, Jan; Kjaer, Andreas; Gutberlet, Matthias; Prakken, Niek H; Vliegenthart, Rozemarijn; Slart, Riemer H J A; Nekolla, Stephan G; Lassen, Martin L; Pichler, Bernd J; Schlosser, Thomas; Jacquier, Alexis; Quick, Harald H; Schäfers, Michael; Hacker, Marcus

    2018-05-02

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) have both been used for decades in cardiovascular imaging. Since 2010, hybrid PET/MRI using sequential and integrated scanner platforms has been available, with hybrid cardiac PET/MR imaging protocols increasingly incorporated into clinical workflows. Given the range of complementary information provided by each method, the use of hybrid PET/MRI may be justified and beneficial in particular clinical settings for the evaluation of different disease entities. In the present joint position statement, we critically review the role and value of integrated PET/MRI in cardiovascular imaging, provide a technical overview of cardiac PET/MRI and practical advice related to the cardiac PET/MRI workflow, identify cardiovascular applications that can potentially benefit from hybrid PET/MRI, and describe the needs for future development and research. In order to encourage its wide dissemination, this article is freely accessible on the European Radiology and European Journal of Hybrid Imaging web sites. • Studies and case-reports indicate that PET/MRI is a feasible and robust technology. • Promising fields of application include a variety of cardiac conditions. • Larger studies are required to demonstrate its incremental and cost-effective value. • The translation of novel radiopharmaceuticals and MR-sequences will provide exciting new opportunities.

  8. Advances of Molecular Imaging for Monitoring the Anatomical and Functional Architecture of the Olfactory System.

    Science.gov (United States)

    Zhang, Xintong; Bi, Anyao; Gao, Quansheng; Zhang, Shuai; Huang, Kunzhu; Liu, Zhiguo; Gao, Tang; Zeng, Wenbin

    2016-01-20

    The olfactory system of organisms serves as a genetically and anatomically model for studying how sensory input can be translated into behavior output. Some neurologic diseases are considered to be related to olfactory disturbance, especially Alzheimer's disease, Parkinson's disease, multiple sclerosis, and so forth. However, it is still unclear how the olfactory system affects disease generation processes and olfaction delivery processes. Molecular imaging, a modern multidisciplinary technology, can provide valid tools for the early detection and characterization of diseases, evaluation of treatment, and study of biological processes in living subjects, since molecular imaging applies specific molecular probes as a novel approach to produce special data to study biological processes in cellular and subcellular levels. Recently, molecular imaging plays a key role in studying the activation of olfactory system, thus it could help to prevent or delay some diseases. Herein, we present a comprehensive review on the research progress of the imaging probes for visualizing olfactory system, which is classified on different imaging modalities, including PET, MRI, and optical imaging. Additionally, the probes' design, sensing mechanism, and biological application are discussed. Finally, we provide an outlook for future studies in this field.

  9. Exploratory use of cardiovascular magnetic resonance imaging in liver transplantation: a one-stop shop for preoperative cardiohepatic evaluation.

    Science.gov (United States)

    Reddy, Sahadev T; Thai, Ngoc L; Fakhri, Asghar A; Oliva, Jose; Tom, Kusum B; Dishart, Michael K; Doyle, Mark; Yamrozik, June A; Williams, Ronald B; Grant, Saundra B; Poydence, Jacqueline; Shah, Moneal; Singh, Anil; Nathan, Swami; Biederman, Robert W W

    2013-11-15

    Preoperative cardiovascular risk stratification in orthotopic liver transplantation candidates has proven challenging due to limitations of current noninvasive modalities. Additionally, the preoperative workup is logistically cumbersome and expensive given the need for separate cardiac, vascular, and abdominal imaging. We evaluated the feasibility of a "one-stop shop" in a magnetic resonance suite, performing assessment of cardiac structure, function, and viability, along with simultaneous evaluation of thoracoabdominal vasculature and liver anatomy. In this pilot study, patients underwent steady-state free precession sequences and stress cardiac magnetic resonance (CMR), thoracoabdominal magnetic resonance angiography, and abdominal magnetic resonance imaging (MRI) on a standard MRI scanner. Pharmacologic stress was performed using regadenoson, adenosine, or dobutamine. Viability was assessed using late gadolinium enhancement. Over 2 years, 51 of 77 liver transplant candidates (mean age, 56 years; 35% female; mean Model for End-stage Liver Disease score, 10.8; range, 6-40) underwent MRI. All referred patients completed standard dynamic CMR, 98% completed stress CMR, 82% completed late gadolinium enhancement for viability, 94% completed liver MRI, and 88% completed magnetic resonance angiography. The mean duration of the entire study was 72 min, and 45 patients were able to complete the entire examination. Among all 51 patients, 4 required follow-up coronary angiography (3 for evidence of ischemia on perfusion CMR and 1 for postoperative ischemia), and none had flow-limiting coronary disease. Nine proceeded to orthotopic liver transplantation (mean 74 days to transplantation after MRI). There were six ascertained mortalities in the nontransplant group and one death in the transplanted group. Explant pathology confirmed 100% detection/exclusion of hepatocellular carcinoma. No complications during CMR examination were encountered. In this proof-of-concept study, it

  10. Current perspectives in the use of molecular imaging to target surgical treatments for genitourinary cancers.

    Science.gov (United States)

    Greco, Francesco; Cadeddu, Jeffrey A; Gill, Inderbir S; Kaouk, Jihad H; Remzi, Mesut; Thompson, R Houston; van Leeuwen, Fijs W B; van der Poel, Henk G; Fornara, Paolo; Rassweiler, Jens

    2014-05-01

    Molecular imaging (MI) entails the visualisation, characterisation, and measurement of biologic processes at the molecular and cellular levels in humans and other living systems. Translating this technology to interventions in real-time enables interventional MI/image-guided surgery, for example, by providing better detection of tumours and their dimensions. To summarise and critically analyse the available evidence on image-guided surgery for genitourinary (GU) oncologic diseases. A comprehensive literature review was performed using PubMed and the Thomson Reuters Web of Science. In the free-text protocol, the following terms were applied: molecular imaging, genitourinary oncologic surgery, surgical navigation, image-guided surgery, and augmented reality. Review articles, editorials, commentaries, and letters to the editor were included if deemed to contain relevant information. We selected 79 articles according to the search strategy based on the Preferred Reporting Items for Systematic Reviews and Meta-analysis criteria and the IDEAL method. MI techniques included optical imaging and fluorescent techniques, the augmented reality (AR) navigation system, magnetic resonance imaging spectroscopy, positron emission tomography, and single-photon emission computed tomography. Experimental studies on the AR navigation system were restricted to the detection and therapy of adrenal and renal malignancies and in the relatively infrequent cases of prostate cancer, whereas fluorescence techniques and optical imaging presented a wide application of intraoperative GU oncologic surgery. In most cases, image-guided surgery was shown to improve the surgical resectability of tumours. Based on the evidence to date, image-guided surgery has promise in the near future for multiple GU malignancies. Further optimisation of targeted imaging agents, along with the integration of imaging modalities, is necessary to further enhance intraoperative GU oncologic surgery. Copyright © 2013

  11. Dynamical image-charge effect in molecular tunnel junctions

    DEFF Research Database (Denmark)

    Jin, Chengjun; Thygesen, Kristian Sommer

    2014-01-01

    the finite IC formation time affects charge transport through a molecule suspended between two electrodes. For a single-level model, an analytical treatment shows that the conductance is suppressed by a factor Z(2), where Z is the quasiparticle renormalization factor, compared to the static IC approximation...... that the dynamical corrections can reduce the conductance by more than a factor of two when compared to static GW or density functional theory where the molecular energy levels have been shifted to match the exact quasiparticle levels....

  12. Progress in molecular nuclear medicine imaging of pancreatic beta cells

    International Nuclear Information System (INIS)

    Wu Haifei; Yin Hongyan; Liu Shuai; Zhang Yifan

    2010-01-01

    Diabetes mellitus is a common and frequently occurring disease which seriously threaten the health of human beings. Type 1 and type 2 diabetes respectively results from being destroyed and insufficient beta-cell mass. The associated symptoms appear until 50%-60% decrease of beta-cell mass. Because pancreas is deeply located in the body, with few beta-cell mass, the current methods of clinical diagnosis are invasive and late. So diagnosis of metabolism disease of beta-cell early non-invasively becomes more and more popular, imaging diagnosis of diabetes mellitus becomes the focus of researches, but how to estimate the mass of beta-cell still an important subject in imaging technology. (authors)

  13. Advancing Precision Nuclear Medicine and Molecular Imaging for Lymphoma.

    Science.gov (United States)

    Wright, Chadwick L; Maly, Joseph J; Zhang, Jun; Knopp, Michael V

    2017-01-01

    PET with fluorodeoxyglucose F 18 ( 18 F FDG-PET) is a meaningful biomarker for the detection, targeted biopsy, and treatment of lymphoma. This article reviews the evolution of 18 F FDG-PET as a putative biomarker for lymphoma and addresses the current capabilities, challenges, and opportunities to enable precision medicine practices for lymphoma. Precision nuclear medicine is driven by new imaging technologies and methodologies to more accurately detect malignant disease. Although quantitative assessment of response is limited, such technologies will enable a more precise metabolic mapping with much higher definition image detail and thus may make it a robust and valid quantitative response assessment methodology. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Recombinant carcinoembryonic antigen as a reporter gene for molecular imaging

    International Nuclear Information System (INIS)

    Kenanova, Vania; Barat, Bhaswati; Olafsen, Tove; Chatziioannou, Arion; Herschman, Harvey R.; Wu, Anna M.; Braun, Jonathan

    2009-01-01

    Reporter genes can provide a way of noninvasively assessing gene activity in vivo. However, current reporter gene strategies may be limited by the immunogenicity of foreign reporter proteins, endogenous expression, or unwanted biological activity. We have developed a reporter gene based on carcinoembryonic antigen (CEA), a human protein with limited normal tissue expression. To construct a CEA reporter gene for PET, a CEA minigene (N-A3) was fused to the extracellular and transmembrane domains of the human FcγRIIb receptor. The NA3-FcγRIIb recombinant gene, driven by a CMV promoter, was transfected in Jurkat (human T cell leukemia) cells. Expression was analyzed by flow cytometry, immunohistochemistry (IHC), and microPET imaging. Flow cytometry identified Jurkat clones stably expressing NA3-FcγRIIb at low, medium, and high levels. High and medium NA3-FcγRIIb expression could also be detected by Western blot. Reporter gene positive and negative Jurkat cells were used to establish xenografts in athymic mice. IHC showed staining of the tumor with high reporter gene expression; medium and low N-A3 expression was not detected. MicroPET imaging, using an anti-CEA 124 I-labeled single-chain Fv-Fc antibody fragment, demonstrated that only high N-A3 expression could be detected. Specific accumulation of activity was visualized at the N-A3 positive tumor as early as 4 h. MicroPET image quantitation showed tumor activity of 1.8 ± 0.2, 15.2 ± 1.3, and 4.6 ± 1.2 percent injected dose per gram (%ID/g) at 4, 20, and 48 h, respectively. Biodistribution at 48 h demonstrated tumor uptake of 4.8 ± 0.8%ID/g. The CEA N-A3 minigene has the potential to be used as a reporter gene for imaging cells in vivo. (orig.)

  15. Pheochromocytoma and Paraganglioma: Current Functional and Future Molecular Imaging

    International Nuclear Information System (INIS)

    Blanchet, Elise M.; Martucci, Victoria; Pacak, Karel

    2012-01-01

    Paragangliomas are neural crest-derived tumors, arising either from chromaffin sympathetic tissue (in adrenal, abdominal, intra-pelvic, or thoracic paraganglia) or from parasympathetic tissue (in head and neck paraganglia). They have a specific cellular metabolism, with the ability to synthesize, store, and secrete catecholamines (although most head and neck paragangliomas do not secrete any catecholamines). This disease is rare and also very heterogeneous, with various presentations (e.g., in regards to localization, multifocality, potential to metastasize, biochemical phenotype, and genetic background). With growing knowledge, notably about the pathophysiology and genetic background, guidelines are evolving rapidly. In this context, functional imaging is a challenge for the management of paragangliomas. Nuclear imaging has been used for exploring paragangliomas for the last three decades, with MIBG historically as the first-line exam. Tracers used in paragangliomas can be grouped in three different categories. Agents that specifically target catecholamine synthesis, storage, and secretion pathways include: 123 and 131I-metaiodobenzylguanidine (123/131I-MIBG), 18F-fluorodopamine (18F-FDA), and 18F-fluorodihydroxyphenylalanine (18F-FDOPA). Agents that bind somatostatin receptors include 111In-pentetreotide and 68Ga-labeled somatostatin analog peptides (68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE). The non-specific agent most commonly used in paragangliomas is 18F-fluorodeoxyglucose (18F-FDG). This review will first describe conventional scintigraphic exams that are used for imaging paragangliomas. In the second part we will emphasize the interest in new PET approaches (specific and non-specific), considering the growing knowledge about genetic background and pathophysiology, with the aim of understanding how tumors behave, and optimally adjusting imaging technique for each tumor type.

  16. Insight into the Molecular Imaging of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Abishek Arora

    2016-01-01

    Full Text Available Alzheimer’s disease is a complex neurodegenerative disease affecting millions of individuals worldwide. Earlier it was diagnosed only via clinical assessments and confirmed by postmortem brain histopathology. The development of validated biomarkers for Alzheimer’s disease has given impetus to improve diagnostics and accelerate the development of new therapies. Functional imaging like positron emission tomography (PET, single photon emission computed tomography (SPECT, functional magnetic resonance imaging (fMRI, and proton magnetic resonance spectroscopy provides a means of detecting and characterising the regional changes in brain blood flow, metabolism, and receptor binding sites that are associated with Alzheimer’s disease. Multimodal neuroimaging techniques have indicated changes in brain structure and metabolic activity, and an array of neurochemical variations that are associated with neurodegenerative diseases. Radiotracer-based PET and SPECT potentially provide sensitive, accurate methods for the early detection of disease. This paper presents a review of neuroimaging modalities like PET, SPECT, and selected imaging biomarkers/tracers used for the early diagnosis of AD. Neuroimaging with such biomarkers and tracers could achieve a much higher diagnostic accuracy for AD and related disorders in the future.

  17. Transferring biomarker into molecular probe: melanin nanoparticle as a naturally active platform for multimodality imaging.

    Science.gov (United States)

    Fan, Quli; Cheng, Kai; Hu, Xiang; Ma, Xiaowei; Zhang, Ruiping; Yang, Min; Lu, Xiaomei; Xing, Lei; Huang, Wei; Gambhir, Sanjiv Sam; Cheng, Zhen

    2014-10-29

    Developing multifunctional and easily prepared nanoplatforms with integrated different modalities is highly challenging for molecular imaging. Here, we report the successful transfer of an important molecular target, melanin, into a novel multimodality imaging nanoplatform. Melanin is abundantly expressed in melanotic melanomas and thus has been actively studied as a target for melanoma imaging. In our work, the multifunctional biopolymer nanoplatform based on ultrasmall (passive nanoplatforms require complicated and time-consuming processes for prebuilding reporting moieties or chemical modifications using active groups to integrate different contrast properties into one entity. In comparison, utilizing functional biomarker melanin can greatly simplify the building process. We further conjugated αvβ3 integrins, cyclic c(RGDfC) peptide, to MNPs to allow for U87MG tumor accumulation due to its targeting property combined with the enhanced permeability and retention (EPR) effect. The multimodal properties of MNPs demonstrate the high potential of endogenous materials with multifunctions as nanoplatforms for molecular theranostics and clinical translation.

  18. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Congsen [LaserLaB Amsterdam, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Department of Physics, National University of Defense Technology, Changsha 410073 (China); Janssen, Maurice H. M. [LaserLaB Amsterdam, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2015-02-15

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude.

  19. Molecular imaging techniques in magnetic resonance imaging and nuclear imaging; Molekulare Bildgebung in der Magnetresonanztomographie und der Nuklearmedizin

    Energy Technology Data Exchange (ETDEWEB)

    Hoegemann, D.; Basilion, J.P.; Weissleder, R. [Center for Molecular Imaging Research, Massachusetts General Hospital, Charleston, MA (United States)

    2001-02-01

    The identification of genetic and biochemical changes allows a more conclusive characterization and classification of disease. Up to now this information is mostly obtained through in vitro analysis after resection or biopsy by immunohistopathology and molecular biology. There is a definite need for non-invasive detection and repeated monitoring of such changes in experimental research as well as in clinical trials. Therefore, it is necessary to develop radiological imaging techniques that not only visualize morphologic and physiologic alterations, but track genetic and biochemical processes. This short review reports some of the various ongoing research projects that address this problem and provide some very promising approaches. (orig.) [German] Die Bestimmung genetischer und biochemischer Veraenderungen erlaubt in zunehmendem Masse die eindeutige Charakterisierung und Klassifikation von Erkrankungen. Bisher ist hierzu in der Regel eine gezielte immunohistopathologische oder molekularbiologische In-vitro-Analyse nach Resektion oder Entnahme einer Biopsie erforderlich. In der experimentellen Forschung wie auch in der klinischen Anwendung sind bildgebende Verfahren wuenschenswert, die eine nichtinvasive Detektion und ein wiederholt durchfuehrbares Monitoring gewaehrleisten. Aus diesem Grunde ist die Entwicklung radiologischer Untersuchungsmethoden erforderlich, die ueber die morphologischen und physiologischen Veraenderungen hinaus eine Beurteilung der genetischen und biochemischen Vorgaenge ermoeglichen. In diesem kurzen Uebersichtsartikel werden einige der zahlreichen aktuellen Forschungsprojekte zusammengefasst, die sich mit diesem Problem beschaeftigen und inzwischen aussichtsreiche Techniken zur Verfuegung stellen. (orig.)

  20. MR-based full-body preventative cardiovascular and tumor imaging: technique and preliminary experience

    International Nuclear Information System (INIS)

    Goyen, Mathias; Goehde, Susanne C.; Herborn, Christoph U.; Hunold, Peter; Vogt, Florian M.; Gizewski, Elke R.; Lauenstein, Thomas C.; Ajaj, Waleed; Forsting, Michael; Debatin, Joerg F.; Ruehm, Stefan G.

    2004-01-01

    Recent improvements in hardware and software, lack of side effects, as well as diagnostic accuracy make magnetic resonance imaging a natural candidate for preventative imaging. Thus, the purpose of the study was to evaluate the feasibility of a comprehensive 60-min MR-based screening examination in healthy volunteers and a limited number of patients with known target disease. In ten healthy volunteers (7 men, 3 women; mean age, 32.4 years) and five patients (4 men, 1 woman; mean age, 56.2 years) with proven target disease we evaluated the performance of a comprehensive MR screening strategy by combining well-established organ-based MR examination components encompassing the brain, the arterial system, the heart, the lungs, and the colon. All ten volunteers and five patients tolerated the comprehensive MR examination well. The mean in-room time was 63 min. In one volunteer, insufficient colonic cleansing on the part of the volunteer diminished the diagnostic reliability of MR colonography. All remaining components of the comprehensive MR examination were considered diagnostic in all volunteers and patients. In the five patients, the examination revealed the known pathologies [aneurysm of the anterior communicating artery (n=1), renal artery stenosis (n=1), myocardial infarct (n=1), and colonic polyp (n=2)]. The outlined MR screening strategy encompassing the brain, the arterial system, the heart, the lung, and the colon is feasible. Further studies have to show that MR-based screening programs are cost-effective in terms of the life-years saved. (orig.)

  1. Molecular imaging in stem cell-based therapies of cardiac diseases.

    Science.gov (United States)

    Li, Xiang; Hacker, Marcus

    2017-10-01

    In the past 15years, despite that regenerative medicine has shown great potential for cardiovascular diseases, the outcome and safety of stem cell transplantation has shown controversial results in the published literature. Medical imaging might be useful for monitoring and quantifying transplanted cells within the heart and to serially characterize the effects of stem cell therapy of the myocardium. From the multiple available noninvasive imaging techniques, magnetic resonance imaging and nuclear imaging by positron (PET) or single photon emission computer tomography (SPECT) are the most used clinical approaches to follow the fate of transplanted stem cells in vivo. In this article, we provide a review on the role of different noninvasive imaging modalities and discuss their advantages and disadvantages. We focus on the different in-vivo labeling and reporter gene imaging strategies for stem cell tracking as well as the concept and reliability to use imaging parameters as noninvasive surrogate endpoints for the evaluation of the post-therapeutic outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Imaging Multi-Particle Atomic and Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Landers, Allen [Auburn Univ., AL (United States)

    2016-02-12

    Final Report for Grant Number: DE- FG02-10ER16146 This grant supported research in basic atomic, molecular and optical physics related to the interactions of atoms and molecules with photons and electrons. The duration of the grant was the 5 year period from 4/1/2010 – 10/31/2015. All of the support from the grant was used to pay salaries of the PI, graduate students, and undergraduates and travel to conferences and meetings. The results were in the form of publications in peer reviewed journals. There were 20 peer reviewed publications over these 5 years with 2 of the publications in Physical Review Letters and 1 in Nature; all of the other articles were in respected peer reviewed journals (Physical Review A, New Journal of Physics, Journal of Physics B ...).

  3. Molecular targeting of angiogenesis for imaging and therapy

    International Nuclear Information System (INIS)

    Brack, Simon S.; Neri, Dario; Dinkelborg, Ludger M.

    2004-01-01

    Angiogenesis, i.e. the proliferation of new blood vessels from pre-existing ones, is an underlying process in many human diseases, including cancer, blinding ocular disorders and rheumatoid arthritis. The ability to selectively target and interfere with neovascularisation would potentially be useful in the diagnosis and treatment of angiogenesis-related diseases. This review presents the authors' views on some of the most relevant markers of angiogenesis described to date, as well as on specific ligands which have been characterised in pre-clinical animal models and/or clinical studies. Furthermore, we present an overview on technologies which are likely to have an impact on the way molecular targeting of angiogenesis is performed in the future. (orig.)

  4. Radiosynthesis of [{sup 18}F]fluoromethyldeoxyspergualin for molecular imaging of heat shock proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pradip; Li, King C. [Department of Radiology, Nuclear Medicine Division, Methodist Hospital Research Institute, Weill Cornell Medical College, 6565 Fannin Street, MB1-066, Houston, TX 77030 (United States); Lee, Daniel Y., E-mail: dlee@tmhs.or [Department of Radiology, Nuclear Medicine Division, Methodist Hospital Research Institute, Weill Cornell Medical College, 6565 Fannin Street, MB1-066, Houston, TX 77030 (United States)

    2011-03-15

    To probe the in vivo role of stress response factors in normal physiology and in solid tumors we have designed a stable {sup 18}F-labeled molecular imaging agent based on a ligand for heat shock protein 70 (HSP70). We describe the synthesis of [{sup 18}F] fluorodeoxymethylspergualin ([{sup 18}F]MeDSG) as a new radiopharmaceutical probe using a prosthetic group, [{sup 18}F]SFB, for efficient and rapid radiolabeling. Ongoing molecular imaging studies are under way to detect HSP70 expression in tumors by positron emission tomography.

  5. Effect of Chinese Herbal Medicine on Molecular Imaging of Neurological Disorders.

    Science.gov (United States)

    Yao, Yao; Chen, Ting; Huang, Jing; Zhang, Hong; Tian, Mei

    2017-01-01

    Chinese herbal medicine has been used to treat a wide variety of neurological disorders including stroke, Alzheimer's disease, and Parkinson's disease. However, its mechanism behind the effectiveness remains unclear. Recently, molecular imaging technology has been applied for this purpose, since it can assess the cellular or molecular function in a living subject by using specific imaging probes and/or radioactive tracers, which enable efficient analysis and monitoring the therapeutic response repetitively. This chapter reviews the in vivo functional and metabolic changes after administration of Chinese herbal medicine in various neurological disorders and provides perspectives on the future evaluations of therapeutic response of Chinese herbal medicine. © 2017 Elsevier Inc. All rights reserved.

  6. Targeting the treatment of drug abuse with molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, Wynne K. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)], E-mail: wynne@bnl.gov; Liebling, Courtney N.B.; Patel, Vinal; Dewey, Stephen L. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2007-10-15

    Although imaging studies in and of themselves have significant contributions to the study of human behavior, imaging in drug abuse has a much broader agenda. Drugs of abuse bind to molecules in specific parts of the brain in order to produce their effects. Positron emission tomography (PET) provides a unique opportunity to track this process, capturing the kinetics with which an abused compound is transported to its site of action. The specific examples discussed here were chosen to illustrate how PET can be used to map the regional distribution and kinetics of compounds that may or may not have abuse liability. We also discussed some morphological and functional changes associated with drug abuse and different stages of recovery following abstinence. PET measurements of functional changes in the brain have also led to the development of several treatment strategies, one of which is discussed in detail here. Information such as this becomes more than a matter of academic interest. Such knowledge can provide the bases for anticipating which compounds may be abused and which may not. It can also be used to identify biological markers or changes in brain function that are associated with progression from drug use to drug abuse and also to stage the recovery process. This new knowledge can guide legislative initiatives on the optimal duration of mandatory treatment stays, promoting long-lasting abstinence and greatly reducing the societal burden of drug abuse. Imaging can also give some insights into potential pharmacotherapeutic targets to manage the reinforcing effects of addictive compounds, as well as into protective strategies to minimize their toxic consequences.

  7. Targeting the treatment of drug abuse with molecular imaging

    International Nuclear Information System (INIS)

    Schiffer, Wynne K.; Liebling, Courtney N.B.; Patel, Vinal; Dewey, Stephen L.

    2007-01-01

    Although imaging studies in and of themselves have significant contributions to the study of human behavior, imaging in drug abuse has a much broader agenda. Drugs of abuse bind to molecules in specific parts of the brain in order to produce their effects. Positron emission tomography (PET) provides a unique opportunity to track this process, capturing the kinetics with which an abused compound is transported to its site of action. The specific examples discussed here were chosen to illustrate how PET can be used to map the regional distribution and kinetics of compounds that may or may not have abuse liability. We also discussed some morphological and functional changes associated with drug abuse and different stages of recovery following abstinence. PET measurements of functional changes in the brain have also led to the development of several treatment strategies, one of which is discussed in detail here. Information such as this becomes more than a matter of academic interest. Such knowledge can provide the bases for anticipating which compounds may be abused and which may not. It can also be used to identify biological markers or changes in brain function that are associated with progression from drug use to drug abuse and also to stage the recovery process. This new knowledge can guide legislative initiatives on the optimal duration of mandatory treatment stays, promoting long-lasting abstinence and greatly reducing the societal burden of drug abuse. Imaging can also give some insights into potential pharmacotherapeutic targets to manage the reinforcing effects of addictive compounds, as well as into protective strategies to minimize their toxic consequences

  8. Molecular Beacon-Based MicroRNA Imaging During Neurogenesis.

    Science.gov (United States)

    Lee, Jonghwan; Kim, Soonhag

    2016-01-01

    The fluorescence monitoring system for examining endogenous microRNA (miRNA) activity in cellular level provides crucial information on not only understanding a critical role of miRNA involving a variety of biological processes, but also evaluating miRNA expression patterns in a noninvasive manner. In this protocol, we report the details of a new procedure for a molecular beacon-based miRNA monitoring system, which includes the illustration scheme for miRNA detection strategy, exogenous miRNA detection, and measurement of endogenous miRNA expression level during neurogenesis. The fluorescence signal of miR-124a beacon quenched by BHQ2 was gradually recovered as increasing concentration of the miR-124a in tube. The functional work of miR-124a beacon was examined in intracellular environment, allowing for the internalization of the miR-124a beacon by lipofectamine, which resulted in activated fluorescent signals of the miR-124a beacon in the HeLa cells after the addition of synthetic miR-124a. The endogenous miR-124a expression level was detected by miR-124a beacon system during neurogenesis, showing brighter fluorescence intensity in cytoplasmic area of P19 cells after induction of neuronal differentiation by retinoic acid. The molecular beacon based-miRNA detection technique could be applicable to the simultaneous visualization of a variety of miRNA expression patterns using different fluorescence dyes. For the study of examining endogenous miRNA expression level using miRNA-beacon system, if cellular differentiation step is already prepared, transfection step of miR-124a beacon into P19 cells, and acquisition of activated fluorescence signal measured by confocal microscope can be conducted approximately within 6 h.

  9. Small animal SPECT and its place in the matrix of molecular imaging technologies

    International Nuclear Information System (INIS)

    Meikle, Steven R; Kench, Peter; Kassiou, Michael; Banati, Richard B

    2005-01-01

    Molecular imaging refers to the use of non-invasive imaging techniques to detect signals that originate from molecules, often in the form of an injected tracer, and observe their interaction with a specific cellular target in vivo. Differences in the underlying physical principles of these measurement techniques determine the sensitivity, specificity and length of possible observation of the signal, characteristics that have to be traded off according to the biological question under study. Here, we describe the specific characteristics of single photon emission computed tomography (SPECT) relative to other molecular imaging technologies. SPECT is based on the tracer principle and external radiation detection. It is capable of measuring the biodistribution of minute ( -10 molar) concentrations of radio-labelled biomolecules in vivo with sub-millimetre resolution and quantifying the molecular kinetic processes in which they participate. Like some other imaging techniques, SPECT was originally developed for human use and was subsequently adapted for imaging small laboratory animals at high spatial resolution for basic and translational research. Its unique capabilities include (i) the ability to image endogenous ligands such as peptides and antibodies due to the relative ease of labelling these molecules with technetium or iodine (ii) the ability to measure relatively slow kinetic processes (compared with positron emission tomography, for example) due to the long half-life of the commonly used isotopes and (iii) the ability to probe two or more molecular pathways simultaneously by detecting isotopes with different emission energies. In this paper, we review the technology developments and design tradeoffs that led to the current state-of-the-art in SPECT small animal scanning and describe the position SPECT occupies within the matrix of molecular imaging technologies. (topical review)

  10. Nanoimaging in cardiovascular diseases: Current state of the art

    Directory of Open Access Journals (Sweden)

    Suryyani Deb

    2015-01-01

    Full Text Available Nanotechnology has been integrated into healthcare system in terms of diagnosis as well as therapy. The massive impact of imaging nanotechnology has a deeper intervention in cardiology i.e. as contrast agents , to target vulnerable plaques with site specificity and in a theranostic approach to treat these plaques, stem cell delivery in necrotic myocardium, etc. Thus cardiovascular nanoimaging is not limited to simple diagnosis but also can help real time tracking during therapy as well as surgery. The present review provides a comprehensive description of the molecular imaging techniques for cardiovascular diseases with the help of nanotechnology and the potential clinical implications of nanotechnology for future applications.

  11. Current research in nuclear medicine and molecular imaging in Italy: highlights of the 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging.

    Science.gov (United States)

    Cuocolo, A

    2011-06-01

    The 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging (AIMN) took place in Rimini on March 18-21, 2011 under the chairmanship of Professor Stefano Fanti. The program was of excellent quality and put a further step for the settlement of the standardized AIMN congress structure. A large industrial exhibition demonstrated the latest technological innovations and developments within the field. The congress was a great success with more than 1100 total participants and more than 360 abstracts received. Of these, 40 abstracts were accepted for oral and 285 for poster presentations. The original investigations presented were related to different areas of nuclear medicine and molecular imaging, with particular focus on advances in instrumentation and data processing, progress in radiochemistry and pharmacy, novel diagnostics and therapeutics, and new insights in well established areas of clinical application, such as oncology, cardiology, neurology, psychiatry, endocrinology, paediatrics, and infection and inflammation. Noteworthy, several presentations at this congress, focusing on quantitative interpretation of the imaging data and on pragmatic endpoints, such as adverse outcomes, identified when nuclear medicine procedures achieved clinical effectiveness for patient care and patient management and further demonstrated that nuclear medicine plays a crucial role in the contemporary medical scenario. This highlights lecture is only a brief summary of the large amount of data presented and discussed, which can be found in much greater detail in the congress abstract book, published as volume 55, supplement 1 of the Q J Nucl Med Mol Imaging in April 2011.

  12. A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging

    International Nuclear Information System (INIS)

    Lu Yujie; Zhu Banghe; Rasmussen, John C; Sevick-Muraca, Eva M; Shen Haiou; Wang Ge

    2010-01-01

    Fluorescence molecular imaging/tomography may play an important future role in preclinical research and clinical diagnostics. Time- and frequency-domain fluorescence imaging can acquire more measurement information than the continuous wave (CW) counterpart, improving the image quality of fluorescence molecular tomography. Although diffusion approximation (DA) theory has been extensively applied in optical molecular imaging, high-order photon migration models need to be further investigated to match quantitation provided by nuclear imaging. In this paper, a frequency-domain parallel adaptive finite element solver is developed with simplified spherical harmonics (SP N ) approximations. To fully evaluate the performance of the SP N approximations, a fast time-resolved tetrahedron-based Monte Carlo fluorescence simulator suitable for complex heterogeneous geometries is developed using a convolution strategy to realize the simulation of the fluorescence excitation and emission. The validation results show that high-order SP N can effectively correct the modeling errors of the diffusion equation, especially when the tissues have high absorption characteristics or when high modulation frequency measurements are used. Furthermore, the parallel adaptive mesh evolution strategy improves the modeling precision and the simulation speed significantly on a realistic digital mouse phantom. This solver is a promising platform for fluorescence molecular tomography using high-order approximations to the radiative transfer equation.

  13. Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology.

    Science.gov (United States)

    Bhargava, Rohit; Madabhushi, Anant

    2016-07-11

    Pathology is essential for research in disease and development, as well as for clinical decision making. For more than 100 years, pathology practice has involved analyzing images of stained, thin tissue sections by a trained human using an optical microscope. Technological advances are now driving major changes in this paradigm toward digital pathology (DP). The digital transformation of pathology goes beyond recording, archiving, and retrieving images, providing new computational tools to inform better decision making for precision medicine. First, we discuss some emerging innovations in both computational image analytics and imaging instrumentation in DP. Second, we discuss molecular contrast in pathology. Molecular DP has traditionally been an extension of pathology with molecularly specific dyes. Label-free, spectroscopic images are rapidly emerging as another important information source, and we describe the benefits and potential of this evolution. Third, we describe multimodal DP, which is enabled by computational algorithms and combines the best characteristics of structural and molecular pathology. Finally, we provide examples of application areas in telepathology, education, and precision medicine. We conclude by discussing challenges and emerging opportunities in this area.

  14. Radiological informed consent in cardiovascular imaging: towards the medico-legal perfect storm?

    Directory of Open Access Journals (Sweden)

    Loré Cosimo

    2007-10-01

    Full Text Available Abstract Use of radiation for medical examinations and tests is the largest manmade source of radiation exposure. No one can doubt the immense clinical and scientific benefits of imaging to the modern practice of medicine. Every radiological and nuclear medicine examination confers a definite (albeit low long-term risk of cancer, but patients undergoing such examinations often receive no or inaccurate information about radiological dose exposure and corresponding risk directly related to the radiological dose received. Too detailed information on radiological dose and risk may result in undue anxiety, but information "economical with the truth" may violate basic patients' rights well embedded in ethics (Oviedo convention 1997 and law (97/43 Euratom Directive 1997. Informed consent is a procedure needed to establish a respectful and ethical relation between doctors and patients. Nevertheless, in an "ideal" consent process, the principle of patient autonomy in current radiological practice might be reinforced by making it mandatory to obtain explicit and transparent informed consent form for radiological examination with high exposure (≥ 500 chest x-rays. The form may spell-out the type of examination, the exposure in effective dose (mSv, derived from reference values in guidelines or – better – from actual values from their department. The dose equivalent might be also expressed in number of chest radiographs and the risk of cancer as number of extra cases in the exposed population, derived from most recent and authorative guidelines (e.g., BEIR VII Committee, release 2006. Common sense, deontological code, patients'rights, medical imaging guidelines, Euratom law, all coherently and concordantly encourage and recommend a justified, optimized, responsible and informed use of testing with ionizing radiation. Although the idea of informed consent for radiation dose does not seem to be on the immediate radar screen at least in the US, the

  15. Cardiac pathologies in female carriers of Duchenne muscular dystrophy assessed by cardiovascular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Schelhorn, Juliane; Schemuth, Haemi; Nensa, Felix; Nassenstein, Kai; Forsting, Michael; Schlosser, Thomas; Schoenecker, Anne; Neudorf, Ulrich; Schara, Ulrike

    2015-01-01

    Duchenne muscular dystrophy (DMD) is the most common and severe dystrophinopathy. DMD carriers rarely present with clinical symptoms, but may suffer from cardiac involvement. Because echocardiographic findings are inconsistent and cardiac magnetic resonance imaging (CMRI) data are limited, this study sought to investigate asymptomatic carriers for cardiac abnormalities using CMRI. Fifteen genetically confirmed DMD carriers (age, 32.3 ± 10.2 years) were prospectively examined on a 1.5T MR system. Cine, T2, and late-gadolinium-enhanced (LGE) images were acquired, and were evaluated in consensus by two experienced readers. Left ventricular (LV) parameters were analysed semiautomatically, normalized to BSA. Normalized LV end-diastolic volume was increased in 7 % (73.7 ± 16.8 ml/m 2 ; range, 48-116 ml/m 2 ) and normalized LV end-systolic volume in 20 % (31.5 ± 13.3 ml/m 2 ; range, 15-74 ml/m 2 ). EF was reduced in 33 % (58.4 ± 7.6 %; range, 37-69 %) and normalized LV myocardial mass in 80 % (40.5 ± 6.8 g/m 2 ; range, 31-55 g/m 2 ). In 80 %, regional myocardial thinning was detected in more than one segment. In 13 % and 40 %, apical-lateral accentuation of LV non-compaction was present. LGE was found in 60 % (midmyocardial inferolateral accentuation). Given the high frequency of cardiac pathologies detected by CMRI, regular cardiac risk assessment is advisable for DMD carriers. Besides clinical examination, CMRI is an excellent tool for this purpose. (orig.)

  16. Cardiac pathologies in female carriers of Duchenne muscular dystrophy assessed by cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schelhorn, Juliane; Schemuth, Haemi; Nensa, Felix; Nassenstein, Kai; Forsting, Michael; Schlosser, Thomas [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Schoenecker, Anne; Neudorf, Ulrich [University Hospital Essen, Department of Pediatric Cardiology, Essen (Germany); Schara, Ulrike [University Hospital Essen, Department of Pediatric Neurology, Essen (Germany)

    2015-10-15

    Duchenne muscular dystrophy (DMD) is the most common and severe dystrophinopathy. DMD carriers rarely present with clinical symptoms, but may suffer from cardiac involvement. Because echocardiographic findings are inconsistent and cardiac magnetic resonance imaging (CMRI) data are limited, this study sought to investigate asymptomatic carriers for cardiac abnormalities using CMRI. Fifteen genetically confirmed DMD carriers (age, 32.3 ± 10.2 years) were prospectively examined on a 1.5T MR system. Cine, T2, and late-gadolinium-enhanced (LGE) images were acquired, and were evaluated in consensus by two experienced readers. Left ventricular (LV) parameters were analysed semiautomatically, normalized to BSA. Normalized LV end-diastolic volume was increased in 7 % (73.7 ± 16.8 ml/m{sup 2}; range, 48-116 ml/m{sup 2}) and normalized LV end-systolic volume in 20 % (31.5 ± 13.3 ml/m{sup 2}; range, 15-74 ml/m{sup 2}). EF was reduced in 33 % (58.4 ± 7.6 %; range, 37-69 %) and normalized LV myocardial mass in 80 % (40.5 ± 6.8 g/m{sup 2}; range, 31-55 g/m{sup 2}). In 80 %, regional myocardial thinning was detected in more than one segment. In 13 % and 40 %, apical-lateral accentuation of LV non-compaction was present. LGE was found in 60 % (midmyocardial inferolateral accentuation). Given the high frequency of cardiac pathologies detected by CMRI, regular cardiac risk assessment is advisable for DMD carriers. Besides clinical examination, CMRI is an excellent tool for this purpose. (orig.)

  17. Recent Advance of Biological Molecular Imaging Based on Lanthanide-Doped Upconversion-Luminescent Nanomaterials

    Directory of Open Access Journals (Sweden)

    Yuanzeng Min

    2014-02-01

    Full Text Available Lanthanide-doped upconversion-luminescent nanoparticles (UCNPs, which can be excited by near-infrared (NIR laser irradiation to emit multiplex light, have been proven to be very useful for in vitro and in vivo molecular imaging studies. In comparison with the conventionally used down-conversion fluorescence imaging strategies, the NIR light excited luminescence of UCNPs displays high photostability, low cytotoxicity, little background auto-fluorescence, which allows for deep tissue penetration, making them attractive as contrast agents for biomedical imaging applications. In this review, we will mainly focus on the latest development of a new type of lanthanide-doped UCNP material and its main applications for in vitro and in vivo molecular imaging and we will also discuss the challenges and future perspectives.

  18. Optical-based molecular imaging: contrast agents and potential medical applications

    International Nuclear Information System (INIS)

    Bremer, Christoph; Ntziachristos, Vasilis; Weissleder, Ralph

    2003-01-01

    Laser- and sensitive charge-coupled device technology together with advanced mathematical modelling of photon propagation in tissue has prompted the development of novel optical imaging technologies. Fast surface-weighted imaging modalities, such as fluorescence reflectance imaging (FRI) and 3D quantitative fluorescence-mediated tomography have now become available [1, 2]. These technical advances are paralleled by a rapid development of a whole range of new optical contrasting strategies, which are designed to generate molecular contrast within a living organism. The combination of both, technical advances of light detection and the refinement of optical contrast media, finally yields a new spectrum of tools for in vivo molecular diagnostics. Whereas the technical aspects of optical imaging are covered in more detail in a previous review article in ''European Radiology'' [3], this article focuses on new developments in optical contrasting strategies and design of optical contrast agents for in vivo diagnostics. (orig.)

  19. Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.

    Science.gov (United States)

    Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe

    2018-01-01

    Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

  20. Molecular Imaging to Identify Tumor Recurrence following Chemoradiation in a Hostile Surgical Environment

    Directory of Open Access Journals (Sweden)

    Olugbenga T. Okusanya

    2015-01-01

    Full Text Available Surgical biopsy of potential tumor recurrence is a common challenge facing oncologists, surgeons, and cancer patients. Imaging modalities have limited ability to accurately detect recurrent cancer in fields affected by previous surgery, chemotherapy, or radiation. However, definitive tissue diagnosis is often needed to initiate treatment and to direct therapy. We sought to determine if a targeted fluorescent intraoperative molecular imaging technique could be applied in a clinical setting to assist a surgical biopsy in a “hostile” field. We describe the use of a folate-fluorescein conjugate to direct the biopsy of a suspected recurrent lung adenocarcinoma invading the mediastinum that had been previously treated with chemoradiation. We found that intraoperative imaging allowed the identification of small viable tumor deposits that were otherwise indistinguishable from scar and necrosis. Our operative observations were confirmed by histology, fluorescence microscopy, and immunohistochemistry. Our results demonstrate one possible application and clinical value of intraoperative molecular imaging.

  1. Coronary artery calcification score by multislice computed tomography predicts the outcome of dobutamine cardiovascular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Janssen, Caroline H.C.; Vliegenthart, Rozemarijn; Overbosch, Jelle; Oudkerk, Matthijs; Kuijpers, Dirkjan; Dijkman, Paul R.M. van; Zijlstra, Felix

    2005-01-01

    The aim of this study was to determine whether a coronary artery calcium (CAC) score of less than 11 can reliably rule out myocardial ischemia detected by dobutamine cardiovascular magnetic resonance imaging (CMR) in patients suspected of having myocardial ischemia. In 114 of 136 consecutive patients clinically suspected of myocardial ischemia with an inconclusive diagnosis of myocardial ischemia, dobutamine CMR was performed and the CAC score was determined. The CAC score was obtained by 16-row multidetector computed tomography (MDCT) and was calculated according to the method of Agatston. The CAC score and the results of the dobutamine CMR were correlated and the positive predictive value (PPV) and the negative predictive value (NPV) of the CAC score for dobutamine CMR were calculated. A total of 114 (87%) of the patients were eligible for this study. There was a significant correlation between the CAC score and dobutamine CMR (p<0.001). Patients with a CAC score of less than 11 showed no signs of inducible ischemia during dobutamine CMR. For a CAC score of less than 101, the NPV and the PPV of the CAC score for the outcome of dobutamine CMR were, respectively, 0.96 and 0.29. In patients with an inconclusive diagnosis of myocardial ischemia a MDCT CAC score of less than 11 reliably rules out myocardial ischemia detected by dobutamine CMR. (orig.)

  2. Coronary artery calcification score by multislice computed tomography predicts the outcome of dobutamine cardiovascular magnetic resonance imaging.

    Science.gov (United States)

    Janssen, Caroline H C; Kuijpers, Dirkjan; Vliegenthart, Rozemarijn; Overbosch, Jelle; van Dijkman, Paul R M; Zijlstra, Felix; Oudkerk, Matthijs

    2005-06-01

    The aim of this study was to determine whether a coronary artery calcium (CAC) score of less than 11 can reliably rule out myocardial ischemia detected by dobutamine cardiovascular magnetic resonance imaging (CMR) in patients suspected of having myocardial ischemia. In 114 of 136 consecutive patients clinically suspected of myocardial ischemia with an inconclusive diagnosis of myocardial ischemia, dobutamine CMR was performed and the CAC score was determined. The CAC score was obtained by 16-row multidetector compued tomography (MDCT) and was calculated according to the method of Agatston. The CAC score and the results of the dobutamine CMR were correlated and the positive predictive value (PPV) and the negative predictive value (NPV) of the CAC score for dobutamine CMR were calculated. A total of 114 (87%) of the patients were eligible for this study. There was a significant correlation between the CAC score and dobutamine CMR (p<0.001). Patients with a CAC score of less than 11 showed no signs of inducible ischemia during dobutamine CMR. For a CAC score of less than 101, the NPV and the PPV of the CAC score for the outcome of dobutamine CMR were, respectively, 0.96 and 0.29. In patients with an inconclusive diagnosis of myocardial ischemia a MDCT CAC score of less than 11 reliably rules out myocardial ischemia detected by dobutamine CMR.

  3. Coronary artery calcification score by multislice computed tomography predicts the outcome of dobutamine cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Caroline H.C.; Vliegenthart, Rozemarijn; Overbosch, Jelle; Oudkerk, Matthijs [University Hospital Groningen, Department of Radiology, Groningen (Netherlands); Kuijpers, Dirkjan [University Hospital Groningen, Department of Radiology, Groningen (Netherlands); Bronovo Hospital, Department of Radiology, The Hague (Netherlands); Dijkman, Paul R.M. van [Bronovo Hospital, Department of Cardiology, The Hague (Netherlands); Zijlstra, Felix [University Hospital Groningen, Department of Cardiology, Groningen (Netherlands)

    2005-06-01

    The aim of this study was to determine whether a coronary artery calcium (CAC) score of less than 11 can reliably rule out myocardial ischemia detected by dobutamine cardiovascular magnetic resonance imaging (CMR) in patients suspected of having myocardial ischemia. In 114 of 136 consecutive patients clinically suspected of myocardial ischemia with an inconclusive diagnosis of myocardial ischemia, dobutamine CMR was performed and the CAC score was determined. The CAC score was obtained by 16-row multidetector computed tomography (MDCT) and was calculated according to the method of Agatston. The CAC score and the results of the dobutamine CMR were correlated and the positive predictive value (PPV) and the negative predictive value (NPV) of the CAC score for dobutamine CMR were calculated. A total of 114 (87%) of the patients were eligible for this study. There was a significant correlation between the CAC score and dobutamine CMR (p<0.001). Patients with a CAC score of less than 11 showed no signs of inducible ischemia during dobutamine CMR. For a CAC score of less than 101, the NPV and the PPV of the CAC score for the outcome of dobutamine CMR were, respectively, 0.96 and 0.29. In patients with an inconclusive diagnosis of myocardial ischemia a MDCT CAC score of less than 11 reliably rules out myocardial ischemia detected by dobutamine CMR. (orig.)

  4. The future of cardiovascular imaging and non-invasive diagnosis. A joint statement from the European Association of Echocardiography, the Working Groups on Cardiovascular Magnetic Resonance, Computers in Cardiology, and Nuclear Cardiology, of the European Society of Cardiology, the European Association of Nuclear Medicine and the Association for European Paediatric Cardiology.

    Science.gov (United States)

    Fraser, Alan G; Buser, Peter T; Bax, Jeroen J; Dassen, Willem R; Nihoyannopoulos, Petros; Schwitter, Jürg; Knuuti, Juhani M; Höher, Martin; Bengel, Frank; Szatmári, András

    2006-08-01

    Advances in medical imaging now make it possible to investigate any patient with cardiovascular disease using multiple methods which vary widely in their technical requirements, benefits, limitations and costs. The appropriate use of alternative tests requires their integration into joint clinical diagnostic services where experts in all methods collaborate. This statement summarises the principles that should guide developments in cardiovascular diagnostic services.

  5. The future of cardiovascular imaging and non-invasive diagnosis. A joint statement from the European Association of Echocardiography, the Working Groups on Cardiovascular Magnetic Resonance, Computers in Cardiology, and Nuclear Cardiology, of the European Society of Cardiology, the European Association of Nuclear Medicine and the Association for European Paediatric Cardiology

    International Nuclear Information System (INIS)

    Fraser, Alan G.; Nihoyannopoulos, Petros; Buser, Peter T.; Schwitter, Juerg; Bax, Jeroen J.; Knuuti, Juhani M.; Dassen, Willem R.; Hoeher, Martin; Bengel, Frank; Szatmari, Andras

    2006-01-01

    Advances in medical imaging now make it possible to investigate any patient with cardiovascular disease using multiple methods which vary widely in their technical requirements, benefits, limitations and costs. The appropriate use of alternative tests requires their integration into joint clinical diagnostic services where experts in all methods collaborate. This statement summarises the principles that should guide developments in cardiovascular diagnostic services. (orig.)

  6. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Xiao Y

    2015-02-01

    Full Text Available Yunbin Xiao,1,* Zuan Tao Lin,2,* Yanmei Chen,1 He Wang,1 Ya Li Deng,2 D Elizabeth Le,3 Jianguo Bin,1 Meiyu Li,1 Yulin Liao,1 Yili Liu,1 Gangbiao Jiang,2 Jianping Bin1 1State Key Laboratory of Organ Failure Research, Division of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China; 2Department of Pharmaceutical Engineering, South China Agricultural University, Guangzhou, People’s Republic of China; 3Cardiovascular Division, Oregon Health and Science University, Portland, OR, USA *These authors contributed equally to this work Abstract: Magnetic resonance imaging (MRI contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors. Keywords: superparamagnetic

  7. Final Technical Report for SISGR: Ultrafast Molecular Scale Chemical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hersam, Mark C. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Guest, Jeffrey R. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Guisinger, Nathan P. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Hla, Saw Wai [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Schatz, George C. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Seideman, Tamar [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Van Duyne, Richard P. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry

    2017-04-10

    The Northwestern-Argonne SISGR program utilized newly developed instrumentation and techniques including integrated ultra-high vacuum tip-enhanced Raman spectroscopy/scanning tunneling microscopy (UHV-TERS/STM) and surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS) to advance the spatial and temporal resolution of chemical imaging for the study of photoinduced dynamics of molecules on plasmonically active surfaces. An accompanying theory program addressed modeling of charge transfer processes using constrained density functional theory (DFT) in addition to modeling of SE-FSRS, thereby providing a detailed description of the excited state dynamics. This interdisciplinary and highly collaborative research resulted in 62 publications with ~ 48% of them being co-authored by multiple SISGR team members. A summary of the scientific accomplishments from this SISGR program is provided in this final technical report.

  8. Radiopharmaceuticals: nanoparticles like multi-functional systems for the obtaining in vivo of molecular images

    International Nuclear Information System (INIS)

    Ferro F, G.; Ramirez de la Cruz, F. M.; Ocampo G, B. E.; Morales A, E.; Santos C, C. L.; Mendoza S, A. N.

    2010-01-01

    The techniques of obtaining direct or indirect molecular images detect and register the space-temporary distribution of molecular or cellular processes for biochemical, biological, diagnostic and therapeutic applications. The advanced techniques of image like the nuclear magnetic resonance, the single photon emission computed tomography, the positron emission tomography and the images of optic fluorescence have been used successfully to detect these processes. On the other hand, the utility of the nanoparticles for any application is dependent of the physicochemical properties that present, being possible to modify their surface when making them react with different biomolecules what allows the formation of conjugates with specific molecular recognition. The joint of various protein molecules, peptides or oligonucleotides to the surface of a nanoparticle produce a multi-functional system able to increase the multivalent joints from the nanoparticles-biomolecules to their receivers for the obtaining of molecular images in vivo. The peptides stimulate, regulate or inhibit numerous functions of the life, acting mainly as information transmitters and activity coordinators of several tissues in the organism. The receivers of regulator peptides are over represented in numerous types of cancer cells and they are protein structures. These receivers have been used as white molecular of marked peptides, to locate primary malignant tumors and their metastasis, using the diagnostic techniques of molecular image mentioned above, which consist basically on the radio peptides use and conjugated peptides to fluoro chromes, to metallic nanoparticles and nano crystals. A summary of the work is presented carried out by the personnel of the Radio-active Materials and Chemistry Departments of the Instituto Nacional de Investigaciones Nucleares in this field. (Author)

  9. Molecular imaging of lipids in cells and tissues

    Science.gov (United States)

    Borner, Katrin; Malmberg, Per; Mansson, Jan-Eric; Nygren, Hakan

    2007-02-01

    The distribution pattern of lipid species in biological tissues was analyzed with imaging mass spectrometry (TOF-SIMS; time-of-flight secondary ion mass spectrometry). The first application shows distribution of a glycosphingolipid, the galactosylceramide-sulfate (sulfatide) with different hydrocarbon chain lengths and the fatty acids palmitate and oleate in rat cerebellum. Sulfatides were seen localized in regions suggested as paranodal areas of rat cerebellar white matter as well as in the granular layer, with highest concentrations at the borders of the white matter. Different distribution patterns could be shown for the fatty acid C16:0 palmitate and C18:1 oleate in rat cerebellum, which seem to origin partly from the hydrocarbon chains of phosphatidylcholine. Results were shown for two different tissue preparation methods, which were plunge-freezing and cryostat sectioning as well as high-pressure freezing, freeze-fracturing and freeze-drying. The second application shows TOF-SIMS analysis on a biological trial of choleratoxin treatment in mouse intestine. The effect of cholera toxin on lipids in the intestinal epithelium was shown by comparing control and cholera toxin treated mouse intestine samples. A significant increase of the cholesterol concentration was seen after treatment. Cholesterol was mainly localized to the brush border of enterocytes of the intestinal villi, which could be explained by the presence of cholesterol-rich lipid rafts present on the microvilli or by relations to cholesterol uptake. After cholera toxin exposure, cholesterol was seen increased in the nuclei of enterocytes and apparently in the interstitium of the villi. We find that imaging TOF-SIMS is a powerful tool for studies of lipid distributions in cells and tissues, enabling the elucidation of their role in cell function and biology.

  10. Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Directory of Open Access Journals (Sweden)

    Joel Saltz

    2018-04-01

    Full Text Available Summary: Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumor-infiltrating lymphocytes (TILs based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment. : Tumor-infiltrating lymphocytes (TILs were identified from standard pathology cancer images by a deep-learning-derived “computational stain” developed by Saltz et al. They processed 5,202 digital images from 13 cancer types. Resulting TIL maps were correlated with TCGA molecular data, relating TIL content to survival, tumor subtypes, and immune profiles. Keywords: digital pathology, immuno-oncology, machine learning, lymphocytes, tumor microenvironment, deep learning, tumor-infiltrating lymphocytes, artificial intelligence, bioinformatics, computer vision

  11. Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Shan, Liang; Chopra, Arvind; Leung, Kam; Eckelman, William C.; Menkens, Anne E.

    2012-01-01

    The development of molecular imaging agents is currently undergoing a dramatic expansion. As of October 2011, ∼4,800 newly developed agents have been synthesized and characterized in vitro and in animal models of human disease. Despite this rapid progress, the transfer of these agents to clinical practice is rather slow. To address this issue, the National Institutes of Health launched the Molecular Imaging and Contrast Agents Database (MICAD) in 2005 to provide freely accessible online information regarding molecular imaging probes and contrast agents for the imaging community. While compiling information regarding imaging agents published in peer-reviewed journals, the MICAD editors have observed that some important information regarding the characterization of a contrast agent is not consistently reported. This makes it difficult for investigators to evaluate and meta-analyze data generated from different studies of imaging agents, especially for the agents based on nanoparticles. This article is intended to serve as a guideline for new investigators for the characterization of preclinical studies performed with nanoparticle-based MRI contrast agents. The common characterization parameters are summarized into seven categories: contrast agent designation, physicochemical properties, magnetic properties, in vitro studies, animal studies, MRI studies, and toxicity. Although no single set of parameters is suitable to define the properties of the various types of contrast agents, it is essential to ensure that these agents meet certain quality control parameters at the preclinical stage, so that they can be used without delay for clinical studies.

  12. The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging

    Directory of Open Access Journals (Sweden)

    Ali Hariri

    2018-03-01

    Full Text Available Photoacoustic imaging (PAI is a non-invasive, high-resolution hybrid imaging modality that combines optical excitation and ultrasound detection. PAI can image endogenous chromophores (melanin, hemoglobin, etc. and exogenous contrast agents in different medical applications. However, most current equipment uses sophisticated and complicated OPO lasers with tuning and stability features inconsistent with broad clinical deployment. As the number of applications of PAI in medicine increases, there is an urgent need to make the imaging equipment more compact, portable, and affordable. Here, portable light emitting diode – based photoacoustic imaging (PLED-PAI was introduced and characterized in terms of system specifications, light source characterizations, photoacoustic spatial/temporal resolution, and penetration. The system uses two LED arrays attached to the sides of a conventional ultrasound transducer. The LED pulse repetition rate is tunable between 1 K Hz, 2 K Hz, 3 K Hz, and 4 K Hz. The axial resolution was 0.268 mm, and the lateral resolution was between 0.55 and 0.59 mm. The system could detect optical absorber (pencil lead at a depth of 3.2 cm and the detection limits of indocyanine green (ICG and methylene blue (MB were 9 μM and 0.78 mM. In vivo imaging of labeled human mesenchymal stem cells was achieved to confirm compatibility with small animal imaging. The characterization we report here may have value to other groups evaluating commercially available photoacoustic imaging equipment. Keywords: Portable photoacoustic imaging, LED, Optoacoustic imaging, Molecular imaging

  13. Cardiovascular magnetic resonance imaging in hypertrophic cardiomyopathy: Current state of the art.

    Science.gov (United States)

    Kamal, Muhammad Umar; Riaz, Irbaz Bin; Janardhanan, Rajesh

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy with a prevalence of 1:500 (0.2%) in the general population. Sudden cardiac death (SCD) is the most feared presentation of HCM. Therefore, it is essential to identify individuals at high risk in order to prevent SCD. The absence of conventional risk factors does not nullify the risk of HCM related SCD. Although echocardiography is currently the most widely used imaging modality, cardiac magnetic resonance (CMR) allows detailed characterization of the HCM phenotype, which makes it possible to differentiate HCM from other causes of left ventricular hypertrophy. CMR has the potential to further refine risk stratification. Late gadolinium enhancement (LGE) on CMR is a high-risk feature and there is emerging data to suggest that the presence of LGE should be employed as a marker for major adverse outcomes such as SCD, arrhythmias, systolic and diastolic heart failure. Hence, LGE on CMR may be considered an additional risk factor for SCD in HCM patients and should be incorporated in decision-making for implant-able cardioverter defibrillator implantation to aid primary prevention. Novel markers such as the extent of myocardial fibrosis on CMR must be accounted for comprehensive risk stratifica-tion of HCM patients. The purpose of this review is to discuss the current status and emerging role of CMR in HCM.

  14. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis

    NARCIS (Netherlands)

    Bucerius, Jan; Hyafil, Fabien; Verberne, Hein J.; Slart, Riemer H. J. A.; Lindner, Oliver; Sciagra, Roberto; Agostini, Denis; Uebleis, Christopher; Gimelli, Alessia; Hacker, Marcus

    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a

  15. Molecular imaging of serotonin degeneration in mild cognitive impairment.

    Science.gov (United States)

    Smith, Gwenn S; Barrett, Frederick S; Joo, Jin Hui; Nassery, Najlla; Savonenko, Alena; Sodums, Devin J; Marano, Christopher M; Munro, Cynthia A; Brandt, Jason; Kraut, Michael A; Zhou, Yun; Wong, Dean F; Workman, Clifford I

    2017-09-01

    Neuropathological and neuroimaging studies have consistently demonstrated degeneration of monoamine systems, especially the serotonin system, in normal aging and Alzheimer's disease. The evidence for degeneration of the serotonin system in mild cognitive impairment is limited. Thus, the goal of the present study was to measure the serotonin transporter in vivo in mild cognitive impairment and healthy controls. The serotonin transporter is a selective marker of serotonin terminals and of the integrity of serotonin projections to cortical, subcortical and limbic regions and is found in high concentrations in the serotonergic cell bodies of origin of these projections (raphe nuclei). Twenty-eight participants with mild cognitive impairment (age 66.6±6.9, 16 males) and 28 healthy, cognitively normal, demographically matched controls (age 66.2±7.1, 15 males) underwent magnetic resonance imaging for measurement of grey matter volumes and high-resolution positron emission tomography with well-established radiotracers for the serotonin transporter and regional cerebral blood flow. Beta-amyloid imaging was performed to evaluate, in combination with the neuropsychological testing, the likelihood of subsequent cognitive decline in the participants with mild cognitive impairment. The following hypotheses were tested: 1) the serotonin transporter would be lower in mild cognitive impairment compared to controls in cortical and limbic regions, 2) in mild cognitive impairment relative to controls, the serotonin transporter would be lower to a greater extent and observed in a more widespread pattern than lower grey matter volumes or lower regional cerebral blood flow and 3) lower cortical and limbic serotonin transporters would be correlated with greater deficits in auditory-verbal and visual-spatial memory in mild cognitive impairment, not in controls. Reduced serotonin transporter availability was observed in mild cognitive impairment compared to controls in cortical and limbic

  16. Hybrid gold nanoparticles in molecular imaging and radiotherapy

    International Nuclear Information System (INIS)

    Katti, K.V.; Kannan, R.; Katti, K.; Kattumuri, V.; Pandrapragada, R.; Rahing, V.; Cutler, C.; Boote, E.; Casteel, S.W.; Smith, C.J.; Robertson, J.D.; Jurrison, S.

    2006-01-01

    Metallic nanoparticles, because of their size, chemical and physical properties, are particularly attractive as therapeutic probes in treating cancer. Central to any clinical advances in nanoparticulate based therapy will be to produce hybrid nanoparticles that can be targeted to vascular, extracellular or cell surface receptors. Development of hybrid nanoparticles that specifically target cancer vasculature has received considerable attention. Most cancers have leaky vasculature and the defective vascular architecture, created due to the rapid vascularisation necessary to serve fast growing cancers, in combination with poor lymphatic drainage allows increased permeation and retention effects. The leaky vasculature, because of higher porosity and permeability, serve as natural high affinity targets to metallic nanoparticles. Another attractive approach toward the application of nanotechnology to nanomedicine is the utility of nanoparticles that display inherent therapeutic properties. For example radioactive gold nanoparticles present attractive prospects in therapy of cancer. The radioactive properties of Au-198 (β(max) = 0.96 MeV; t(1/2) = 2.7 d) and Au-199 (β(max) 0.46 MeV; t(1/2) = 3.14 d) make them ideal candidates for use in radiotherapeutic applications. In addition, they both have imageable gamma emissions for dosimetry and pharmacokinetic studies and Au-199 can be made carrier-free by indirect methods. Gold nanoparticles are of interest for treatment of disease as they can deliver agents directly into cells and cellular components with a higher concentration of radioactivity, e.g. higher dose of radioactivity, to cancerous tumor cells

  17. Hypoxia-Targeting Fluorescent Nanobodies for Optical Molecular Imaging of Pre-Invasive Breast Cancer

    NARCIS (Netherlands)

    van Brussel, Aram S A; Adams, Arthur; Oliveira, Sabrina; Dorresteijn, Bram; El Khattabi, Mohamed; Vermeulen, J. F.; van der Wall, Elsken; Mali, Willem P Th M; Derksen, Patrick W B; van Diest, Paul J; van Bergen En Henegouwen, Paul M P

    PURPOSE: The aim of this work was to develop a CAIX-specific nanobody conjugated to IRDye800CW for molecular imaging of pre-invasive breast cancer. PROCEDURES: CAIX-specific nanobodies were selected using a modified phage display technology, conjugated site-specifically to IRDye800CW and evaluated

  18. Hypoxia-Targeting Fluorescent Nanobodies for Optical Molecular Imaging of Pre-Invasive Breast Cancer

    NARCIS (Netherlands)

    van Brussel, Aram S A; Adams, Arthur; Oliveira, Sabrina; Dorresteijn, Bram; El Khattabi, Mohamed; Vermeulen, Jeroen F.; van der Wall, Elsken; Mali, W.P.T.M.; Derksen, Patrick W B; van Diest, Paul J.; van Bergen En Henegouwen, Paul M P

    Purpose: The aim of this work was to develop a CAIX-specific nanobody conjugated to IRDye800CW for molecular imaging of pre-invasive breast cancer. Procedures: CAIX-specific nanobodies were selected using a modified phage display technology, conjugated site-specifically to IRDye800CW and evaluated

  19. Translation of New Molecular Imaging Approaches to the Clinical Setting : Bridging the Gap to Implementation

    NARCIS (Netherlands)

    van Es, Suzanne C; Venema, Clasina M; Glaudemans, Andor W J M; Lub-de Hooge, Marjolijn N; Elias, Sjoerd G; Boellaard, Ronald; Hospers, Geke A P; Schröder, Carolina P; de Vries, Elisabeth G E

    Molecular imaging with PET is a rapidly emerging technique. In breast cancer patients, more than 45 different PET tracers have been or are presently being tested. With a good rationale, after development of the tracer and proven feasibility, it is of interest to evaluate whether there is a potential

  20. Translation of New Molecular Imaging Approaches to the Clinical Setting : Bridging the Gap to Implementation

    NARCIS (Netherlands)

    van Es, Suzanne C; Venema, Clasina M; Glaudemans, Andor W J M; Lub-de Hooge, Marjolijn N; Elias, Sjoerd G; Boellaard, Ronald; Hospers, Geke A.P.; Schröder, Carolina P; de Vries, Elisabeth G E

    2016-01-01

    Molecular imaging with PET is a rapidly emerging technique. In breast cancer patients, more than 45 different PET tracers have been or are presently being tested. With a good rationale, after development of the tracer and proven feasibility, it is of interest to evaluate whether there is a potential

  1. Identification of a Common Binding Mode for Imaging Agents to Amyloid Fibrils from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Skeby, Katrine Kirkeby; Sørensen, Jesper; Schiøtt, Birgit

    2013-01-01

    experimentally due to the insoluble nature of amyloid fibrils. This study uses molecular dynamics simulations to investigate the interactions between 13 aromatic amyloid imaging agents, entailing 4 different organic scaffolds, and a model of an amyloid fibril. Clustering analysis combined with free energy...

  2. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis

    Science.gov (United States)

    Ghasemi, Mojtaba; Nabipour, Iraj; Omrani, Abdolmajid; Alipour, Zeinab; Assadi, Majid

    2016-01-01

    This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine. PMID:28078184

  3. Application of molecular imaging combined with genetic screening in diagnosing MELAS, diabetes and recurrent pancreatitis.

    Science.gov (United States)

    Zhiping, W; Quwen, L; Hai, Z; Jian, Z; Peiyi, G

    2016-01-01

    We report molecular imaging combined with gene diagnosis in a family with 7 members who carried an A3243G mutation in mitochondrial tRNA and p.Thr 137 Met in cationic trypsinogen (PRSS1) gene presented with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), diabetes, and recurrent pancreatitis. DNA sequencing was used to detect and validate mitochondrial DNA and PRSS1. We also verified that mitochondrial heterozygous mutations and c.410 C>T mutation causing p.Thr 137 Met could be detected in oral epithelial cells or in urine sediment cells. In addition, molecular imaging was carried out in the affected family members. In this pedigree, MELAS syndrome accompanied by pancreatitis was an important clinical feature, followed by diabetes. Heteroplasmy of the mtDNA A3243G and c.410 C>T mutation of PRSS1 was found in all tissue samples of these patients, but no mutations were found in 520 normal control and normal individuals of the family. However, based on molecular imaging observations, patients with relatively higher lactate/pyruvate levels had more typical and more severe symptoms, particularly those of pancreatic disease (diabetes or pancreatitis). MELAS syndrome may be associated with pancreatitis. For the diagnosis, it is more reasonable to perform molecular imaging combined with gene diagnosis.

  4. Oligometastatic prostate cancer: shaping the definition with molecular imaging and an improved understanding of tumor biology.

    Science.gov (United States)

    Joice, Gregory A; Rowe, Steven P; Pienta, Kenneth J; Gorin, Michael A

    2017-11-01

    The aim of this review is to discuss how novel imaging modalities and molecular markers are shaping the definition of oligometastatic prostate cancer. To effectively classify a patient as having oligometastatic prostate cancer, diagnostic tests must be sensitive enough to detect subtle sites of metastatic disease. Conventional imaging modalities can readily detect widespread polymetastatic disease but do not have the sensitivity necessary to reliably classify patients as oligometastatic. Molecular imaging using both metabolic- and molecularly-targeted radiotracers has demonstrated great promise in aiding in our ability to define the oligometastatic state. Perhaps the most promising data to date have been generated with radiotracers targeting prostate-specific membrane antigen. In addition, early studies are beginning to define biologic markers in the oligometastatic state that may be indicative of disease with minimal metastatic potential. Recent developments in molecular imaging have allowed for improved detection of metastatic prostate cancer allowing for more accurate staging of patients with oligometastatic disease. Future development of biologic markers may assist in defining the oligometastatic state and determining prognosis.

  5. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis.

    Science.gov (United States)

    Ghasemi, Mojtaba; Nabipour, Iraj; Omrani, Abdolmajid; Alipour, Zeinab; Assadi, Majid

    2016-01-01

    This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine.

  6. Molecular MR imaging of fibrosis in a mouse model of pancreatic cancer

    Czech Academy of Sciences Publication Activity Database

    Polášek, Miloslav; Yang, Y.; Schühle, D. T.; Yaseen, M. A.; Kim, Y. R.; Sung, Y. S.; Guimaraes, A. R.; Caravan, P.

    2017-01-01

    Roč. 7, Aug 14 (2017), č. článku 8114. ISSN 2045-2322 Institutional support: RVO:61388963 Keywords : fibrosis * molecular imaging * pancreatic cancer Subject RIV: FD - Oncology ; Hematology OBOR OECD: Oncology Impact factor: 4.259, year: 2016 https://www.nature.com/ articles /s41598-017-08838-6

  7. Magnetically engineered smart thin films: toward lab-on-chip ultra-sensitive molecular imaging.

    Science.gov (United States)

    Hassan, Muhammad A; Saqib, Mudassara; Shaikh, Haseeb; Ahmad, Nasir M; Elaissari, Abdelhamid

    2013-03-01

    Magnetically responsive engineered smart thin films of nanoferrites as contrast agent are employed to develop surface based magnetic resonance imaging to acquire simple yet fast molecular imaging. The work presented here can be of significant potential for future lab-on-chip point-of-care diagnostics from the whole blood pool on almost any substrates to reduce or even prevent clinical studies involve a living organism to enhance the non-invasive imaging to advance the '3Rs' of work in animals-replacement, refinement and reduction.

  8. SPECT and PET Serve as Molecular Imaging Techniques and in Vivo Biomarkers for Brain Metastases

    Directory of Open Access Journals (Sweden)

    Barbara Palumbo

    2014-06-01

    Full Text Available Nuclear medicine techniques (single photon emission computerized tomography, SPECT, and positron emission tomography, PET represent molecular imaging tools, able to provide in vivo biomarkers of different diseases. To investigate brain tumours and metastases many different radiopharmaceuticals imaged by SPECT and PET can be used. In this review the main and most promising radiopharmaceuticals available to detect brain metastases are reported. Furthermore the diagnostic contribution of the combination of SPECT and PET data with radiological findings (magnetic resonance imaging, MRI is discussed.

  9. Molecular images as a tool in research. From radiopharmacy to radiopharmacology

    International Nuclear Information System (INIS)

    Zubillaga, M.

    2008-01-01

    Full text: The rapidly emerging biomedical research discipline of Molecular Imaging (MI) enables the visualization, characterization and quantification of biologic process taking place at the cellular and sub-cellular levels within the intact living organism. The overall goal of MI is to interrogate biologic process in the cell of a living subject to report on and reveal their molecular abnormalities that form the basis of disease. This is in contrast to classical diagnostic imaging where documented findings are the result of the end effects of these molecular alterations, usually in the form of macroscopic and well-established gross pathology. MI includes the field of Nuclear Medicine (SPECT and PET) and other strategies that do not depend on radioactivity to produce imaging signals (optical, bioluminescence and Magnetic Resonance). The emergence of MI strategies has made possible the achievement of several important biomedical research goals that open the door to advancement of study in molecular medicine. These various accomplishments include: (1) development of non invasive 'in vivo' imaging methods to reflect gene expression and more complex events such as protein-protein interactions; (2) ability to monitor multiple molecular events near simultaneously; (3) capacity to follow cell trafficking and cell targeting; (4) optimization of drug and gene therapy; (5) capability of imaging drug effects at a molecular and cellular level; (6) assessment of disease progression at a molecular pathologic level; (7) advancement of the possibility of achieving all the above mentioned goals rapidly, reproducibly and quantitatively, in support of monitoring a time-dependent manner the experimental, developmental, environmental and therapeutic influences on gene products in a single living subject. Although many laboratory based proof-of-principle and validation studies have been conducted using MI approaches, a great deal more experimental research will be necessary to

  10. Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging

    Science.gov (United States)

    Gao, Yang; Chen, Maomao; Wu, Junyu; Zhou, Yuan; Cai, Chuangjian; Wang, Daliang; Luo, Jianwen

    2017-09-01

    Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.

  11. Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials.

    Science.gov (United States)

    Van Heertum, Ronald L; Scarimbolo, Robert; Ford, Robert; Berdougo, Eli; O'Neal, Michael

    2015-01-01

    In the era of personalized medicine, diagnostic approaches are helping pharmaceutical and biotechnology sponsors streamline the clinical trial process. Molecular assays and diagnostic imaging are routinely being used to stratify patients for treatment, monitor disease, and provide reliable early clinical phase assessments. The importance of diagnostic approaches in drug development is highlighted by the rapidly expanding global cancer diagnostics market and the emergent attention of regulatory agencies worldwide, who are beginning to offer more structured platforms and guidance for this area. In this paper, we highlight the key benefits of using companion diagnostics and diagnostic imaging with a focus on oncology clinical trials. Nuclear imaging using widely available radiopharmaceuticals in conjunction with molecular imaging of oncology targets has opened the door to more accurate disease assessment and the modernization of standard criteria for the evaluation, staging, and treatment responses of cancer patients. Furthermore, the introduction and validation of quantitative molecular imaging continues to drive and optimize the field of oncology diagnostics. Given their pivotal role in disease assessment and treatment, the validation and commercialization of diagnostic tools will continue to advance oncology clinical trials, support new oncology drugs, and promote better patient outcomes.

  12. Molecular imaging in drug development: Update and challenges for radiolabeled antibodies and nanotechnology.

    Science.gov (United States)

    Colombo, Ilaria; Overchuk, Marta; Chen, Juan; Reilly, Raymond M; Zheng, Gang; Lheureux, Stephanie

    2017-11-01

    Despite the significant advancement achieved in understanding the molecular mechanisms responsible for cancer transformation and aberrant proliferation, leading to novel targeted cancer therapies, significant effort is still needed to "personalize" cancer treatment. Molecular imaging is an emerging field that has shown the ability to characterize in vivo the molecular pathways present at the cancer cell level, enabling diagnosis and personalized treatment of malignancies. These technologies, particularly SPECT and PET also permit the development of novel radiotheranostic probes, which provide capabilities for diagnosis and treatment with the same agent. The small therapeutic index of most anticancer agents is a limitation in the drug development process. Incorporation of molecular imaging in clinical research may help in overcoming this limitation and favouring selection of patient populations most likely to achieve benefit from targeted therapy. This review will focus on two of the most advanced theranostic approaches with promising potential for application in the clinic: 1) therapeutic monoclonal antibodies which may be linked to a radionuclide for SPECT or PET imaging to guide cancer diagnosis, staging, molecular characterization, and assessment of the response to treatment and 2) multifunctional nanotechnology that allows image guided drug delivery through encapsulation of multiple therapeutic, targeting and imaging agents into a single nanoparticle. Porphysome, a liposome-like nanoparticle, is an example of a novel and promising application of nanotechnology for cancer diagnosis and treatment. These technologies have proven to be effective in preclinical models, warranting further clinical investigation to advance their application for the benefit of cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study

    Directory of Open Access Journals (Sweden)

    Reuveni T

    2011-11-01

    Full Text Available Tobi Reuveni1, Menachem Motiei1, Zimam Romman2, Aron Popovtzer3, Rachela Popovtzer11Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-ilan University, Ramat Gan, 2GE HealthCare, Tirat Hacarmel, 3Department of Otorhinolaryngology, Head and Neck Surgery and Onology, Davidoff Center, Rabin Medical Center, Beilinson Campus, Petah Tiqwa, IsraelAbstract: In recent years, advances in molecular biology and cancer research have led to the identification of sensitive and specific biomarkers that associate with various types of cancer. However, in vivo cancer detection methods with computed tomography, based on tracing and detection of these molecular cancer markers, are unavailable today. This paper demonstrates in vivo the feasibility of cancer diagnosis based on molecular markers rather than on anatomical structures, using clinical computed tomography. Anti-epidermal growth factor receptor conjugated gold nanoparticles (30 nm were intravenously injected into nude mice implanted with human squamous cell carcinoma head and neck cancer. The results clearly demonstrate that a small tumor, which is currently undetectable through anatomical computed tomography, is enhanced and becomes clearly visible by the molecularly-targeted gold nanoparticles. It is further shown that active tumor targeting is more efficient and specific than passive targeting. This noninvasive and nonionizing molecular cancer imaging tool can facilitate early cancer detection and can provide researchers with a new technique to investigate in vivo the expression and activity of cancer-related biomarkers and molecular processes.Keywords: functional computed tomography, molecular imaging, gold nanoparticles, biologically targeted in vivo imaging, contrast agents

  14. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    International Nuclear Information System (INIS)

    Bowsher, James; Giles, William; Yin, Fang-Fang; Yan, Susu; Roper, Justin

    2014-01-01

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  15. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Bowsher, James, E-mail: james.bowsher@duke.edu; Giles, William; Yin, Fang-Fang [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Yan, Susu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Roper, Justin [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-01-15

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  16. Molecular imaging and the unification of multilevel mechanisms and data in medical physics

    International Nuclear Information System (INIS)

    Nikiforidis, George C.; Sakellaropoulos, George C.; Kagadis, George C.

    2008-01-01

    Molecular imaging (MI) constitutes a recently developed approach of imaging, where modalities and agents have been reinvented and used in novel combinations in order to expose and measure biologic processes occur