WorldWideScience

Sample records for cardiovascular molecular imaging

  1. Cardiovascular molecular MR imaging

    OpenAIRE

    Lamb, H J; van der Meer, R. W.; Roos, A. (Anna); Bax, J J

    2007-01-01

    Introduction Cardiovascular molecular imaging is a rapidly evolving field of research, aiming to image and quantify molecular and cellular targets in vivo. MR imaging has some inherent properties that make it very suitable for cardiovascular molecular imaging. Until now, only a limited number of studies have been published on cardiovascular molecular imaging using MR imaging. Review In the current review, MR techniques that have already shown potential are discussed. Metabolic MR imaging can ...

  2. Molecular cardiovascular imaging

    International Nuclear Information System (INIS)

    Although huge and long-lasting research efforts have been spent on the development of new diagnostic techniques investigating cardiovascular diseases, still fundamental challenges exist; the main challenge being the diagnosis of a suspected or known coronary artery disease or its consequences (myocardial infarction, heart failure etc.). Beside morphological techniques, functional imaging modalities are available in clinical diagnostic algorithms, whereas molecular cardiovascular imaging techniques are still under development. This review summarizes clinical-diagnostical challenges of modern cardiovascular medicine as well as the potential of new molecular imaging techniques to face these. (orig.)

  3. Cardiovascular Molecular Imaging

    OpenAIRE

    Khanicheh, Elham

    2009-01-01

    Although there have been significant improvements in the treatment of cardiovascular diseases they still remain the main cause of morbidity and mortality globally. Currently available diagnostic approaches may not be adequate to detect pathologic changes during the early disease stages, which may be valuable for risk stratification and also to assess a response to a therapy. Therefore molecular imaging techniques such as Contrast Enhanced Ultrasound (CEU) molecular imaging to noninvasively i...

  4. Cardiovascular molecular imaging of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, S.L.; Reutelingsperger, C.P.M. [Maastricht University, Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht (Netherlands); Corsten, M.F.; Hofstra, L. [Maastricht University, Department of Cardiology, Cardiovascular Research Institute Maastricht, P.O. Box 616, Maastricht (Netherlands); Narula, J. [University of California Irvine, Department of Cardiology, Irvine (United States)

    2007-06-15

    Molecular imaging strives to visualise processes at the molecular and cellular level in vivo. Understanding these processes supports diagnosis and evaluation of therapeutic efficacy on an individual basis and thereby makes personalised medicine possible. Apoptosis is a well-organised mode of cell suicide that plays a role in cardiovascular diseases (CVD). Apoptosis is associated with loss of cardiomyocytes following myocardial infarction, atherosclerotic plaque instability, congestive heart failure and allograft rejection of the transplanted heart. Thus, apoptosis constitutes an attractive target for molecular imaging of CVD. Our current knowledge about the molecular players and mechanisms underlying apoptosis offers a rich palette of potential molecular targets for molecular imaging. However, only a few have been successfully developed so far. This review highlights aspects of the molecular machinery and biochemistry of apoptosis relevant to the development of molecular imaging probes. It surveys the role of apoptosis in four major areas of CVD and portrays the importance and future perspectives of apoptosis imaging. The annexin A5 imaging protocol is emphasised since it is the most advanced protocol to measure apoptosis in both preclinical and clinical studies. (orig.)

  5. Molecular imaging in cardiovascular diseases

    International Nuclear Information System (INIS)

    Cardiovascular diseases remain the leading cause of morbidity and mortality in industrialized and developing countries. In clinical practice, the in-vivo identification of atherosclerotic lesions, which can lead to complications such as heart attack or stroke, remains difficult. Imaging techniques provide the reference standard for the detection of clinically significant atherosclerotic changes in the coronary and carotid arteries. The assessment of the luminal narrowing is feasible, while the differentiation of stable and potentially unstable or vulnerable atherosclerotic plaques is currently not possible using non-invasive imaging. With high spatial resolution and high soft tissue contrast, magnetic resonance imaging (MRI) is a suitable method for the evaluation of the thin arterial wall. In clinical practice, native MRI of the vessel wall already allows the differentiation and characterization of components of atherosclerotic plaques in the carotid arteries and the aorta. Additional diagnostic information can be gained by the use of non-specific MRI contrast agents. With the development of targeted molecular probes, that highlight specific molecules or cells, pathological processes can be visualized at a molecular level with high spatial resolution. In this review article, the development of pathophysiological changes leading to the development of the arterial wall are introduced and discussed. Additionally, principles of contrast enhanced imaging with non-specific contrast agents and molecular probes will be discussed and latest developments in the field of molecular imaging of the vascular wall will be introduced.

  6. Quantitative cardiovascular magnetic resonance for molecular imaging

    OpenAIRE

    Lanza Gregory M; Caruthers Shelton D; Winter Patrick M; Wickline Samuel A

    2010-01-01

    Abstract Cardiovascular magnetic resonance (CMR) molecular imaging aims to identify and map the expression of important biomarkers on a cellular scale utilizing contrast agents that are specifically targeted to the biochemical signatures of disease and are capable of generating sufficient image contrast. In some cases, the contrast agents may be designed to carry a drug payload or to be sensitive to important physiological factors, such as pH, temperature or oxygenation. In this review, examp...

  7. Molecular imaging in cardiovascular diseases; Molekulare kardiovaskulaere MRT-Bildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Botnar, R.M. [King' s College London (United Kingdom). Imaging Sciences; St. Thomas' NHS Foundation Trust, London (United Kingdom); Ebersberger, H. [Heart Center Munich-Bogenhausen, Munich (Germany). Dept. of Cardiology and Intensive Care Medicine; Noerenberg, D. [Charite, Berlin (Germany). Inst. for Radiology; and others

    2015-02-15

    Cardiovascular diseases remain the leading cause of morbidity and mortality in industrialized and developing countries. In clinical practice, the in-vivo identification of atherosclerotic lesions, which can lead to complications such as heart attack or stroke, remains difficult. Imaging techniques provide the reference standard for the detection of clinically significant atherosclerotic changes in the coronary and carotid arteries. The assessment of the luminal narrowing is feasible, while the differentiation of stable and potentially unstable or vulnerable atherosclerotic plaques is currently not possible using non-invasive imaging. With high spatial resolution and high soft tissue contrast, magnetic resonance imaging (MRI) is a suitable method for the evaluation of the thin arterial wall. In clinical practice, native MRI of the vessel wall already allows the differentiation and characterization of components of atherosclerotic plaques in the carotid arteries and the aorta. Additional diagnostic information can be gained by the use of non-specific MRI contrast agents. With the development of targeted molecular probes, that highlight specific molecules or cells, pathological processes can be visualized at a molecular level with high spatial resolution. In this review article, the development of pathophysiological changes leading to the development of the arterial wall are introduced and discussed. Additionally, principles of contrast enhanced imaging with non-specific contrast agents and molecular probes will be discussed and latest developments in the field of molecular imaging of the vascular wall will be introduced.

  8. Multi-target photoacoustic molecular imaging of cardiovascular inflammatory biomarkers using bioconjugated gold nanorods

    Science.gov (United States)

    Ha, S.; Tripathy, S.; Carson, A.; Lavery, L. L.; Zhang, H.; Agarwal, A.; Kotov, N.; Villanueva, F. S.; Kim, K.

    2011-03-01

    Multiple cardiovascular inflammatory biomarkers were simultaneously imaged in vivo using antibody conjugated gold nanorods (GNRs) injected into a mouse model of vascular injury stimulated by a photochemical reaction of Rose Bengal dye to green light. Mixed solutions of ICAM-1 antibody conjugated GNRs (715 nm) and E-selectin antibody conjugated GNRs (800 nm) were injected to bind to their respective inflammatory markers on the luminal surface of the inferior vena cava of a mouse. Photoacoustic intensity was measured by a commercial ultrasound probe synchronized to a pulsed laser (10-18 mJ/cm2) at 715 nm or 800 nm clearly identified the upregulation of targeted biomarkers. Histopathology on the harvested tissues confirmed inflammation. The feasibility of simultaneous photoacoustic molecular imaging of inflammation responses in cardiovascular system using a commercial ultrasound system has been demonstrated in vivo.

  9. Unmasking Silent Endothelial Activation in the Cardiovascular System Using Molecular Magnetic Resonance Imaging.

    Science.gov (United States)

    Belliere, Julie; Martinez de Lizarrondo, Sara; Choudhury, Robin P; Quenault, Aurélien; Le Béhot, Audrey; Delage, Christine; Chauveau, Dominique; Schanstra, Joost P; Bascands, Jean-Loup; Vivien, Denis; Gauberti, Maxime

    2015-01-01

    Endothelial activation is a hallmark of cardiovascular diseases, acting either as a cause or a consequence of organ injury. To date, we lack suitable methods to measure endothelial activation in vivo. In the present study, we developed a magnetic resonance imaging (MRI) method allowing non-invasive endothelial activation mapping in the vasculature of the main organs affected during cardiovascular diseases. In clinically relevant contexts in mice (including systemic inflammation, acute and chronic kidney diseases, diabetes mellitus and normal aging), we provided evidence that this method allows detecting endothelial activation before any clinical manifestation of organ failure in the brain, kidney and heart with an exceptional sensitivity. In particular, we demonstrated that diabetes mellitus induces chronic endothelial cells activation in the kidney and heart. Moreover, aged mice presented activated endothelial cells in the kidneys and the cerebrovasculature. Interestingly, depending on the underlying condition, the temporospatial patterns of endothelial activation in the vascular beds of the cardiovascular system were different. These results demonstrate the feasibility of detecting silent endothelial activation occurring in conditions associated with high cardiovascular risk using molecular MRI. PMID:26379785

  10. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    International Nuclear Information System (INIS)

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  11. Nuclear imaging of cardiovascular disease

    International Nuclear Information System (INIS)

    Nuclear imaging methods provide noninvasive indexes of myocardial function, perfusion, and metabolism and are well accepted in clinical cardiology. Advances in prevention and treatment of cardiac disease have resulted in decreasing cardiovascular mortality in industrialized nations. The improvement in therapeutic options has increased the demand for diagnostic tests that might guide clinical decision making. Information beyond the pure anatomic characterization of coronary stenoses is required. Nuclear imaging can be used for early detection and monitoring of the severity and extent of disease. The prognostic potential of such functional testing is being increasingly appreciated and used to guide therapy, thereby resulting in improvement of the quality and cost-effectiveness of the workup of patients with cardiovascular disease. Extensive clinical validation has resulted in growing acceptance of these techniques. Furthermore, ongoing improvement of imaging techniques and development of new radiopharmaceuticals will pave the way for disease-specific, molecular-targeted cardiac imaging in the future. (orig.)

  12. Molecular Mechanisms of Cardiovascular Aging

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2013-12-01

    Full Text Available BACKGROUND: The average lifespan of humans is increasing, and with it the percentage of people entering the 65 and older age group is growing rapidly and will continue to do so in the next 20 years. Within this age group, cardiovascular disease will remain the leading cause of death, and the cost associated with treatment will continue to increase. Aging is an inevitable part of life and unfortunately poses the largest risk factor for cardiovascular disease. CONTENT: We provide an overview of some of the molecular mechanisms involved in regulating lifespan and health, including mitochondria, telomeres, stem cells, sirtuins, Adenosine Monophosphate-activated Protein Kinase, Mammalian Target of Rapamycin and Insulin-like Growth Factor 1. We also provide future perspectives of lifespan and health, which are intimately linked fields. SUMMARY: Aging remains the biggest non-modifiable risk factor for cardiovascular disease. The biological, structural and mechanical changes in senescent cardiovascular system are thought to contribute in increasing incidence of cardiovascular disease in aging. Understanding the mechanisms contributing to such changes is therefore crucial for both prevention and development of treatment for cardiovascular diseases. KEYWORDS: cardiovascular aging, mitochondria, telomeres, sirtuin, stem cells.

  13. Image processing in cardiovascular radiology

    International Nuclear Information System (INIS)

    In the past ten years digital image processing has contributed decisively to the advance of cardiovascular radiology. Not only images of better diagnostic value could be produced, but also in many cases the risk for the patient was diminished. In this paper three topics are discussed: One of the principal methods is digital angiography especially with functional imaging. In addition, because of the rapid progress of digital imaging data compression became a major issue. Finally there is a good chance that 3D-processing of MRI data will at least partly replace the present invasive techniques

  14. Molecular Mechanisms of Cardiovascular Aging

    OpenAIRE

    Anna Meiliana; Andi Wijaya

    2013-01-01

    BACKGROUND: The average lifespan of humans is increasing, and with it the percentage of people entering the 65 and older age group is growing rapidly and will continue to do so in the next 20 years. Within this age group, cardiovascular disease will remain the leading cause of death, and the cost associated with treatment will continue to increase. Aging is an inevitable part of life and unfortunately poses the largest risk factor for cardiovascular disease. CONTENT: We provide an overview of...

  15. Molecular imaging in atherosclerosis

    International Nuclear Information System (INIS)

    Atherosclerosis is the major cause of cardiovascular disease, which still has the leading position in morbidity and mortality in the Western world. Many risk factors and pathobiological processes are acting together in the development of atherosclerosis. This leads to different remodelling stages (positive and negative) which are both associated with plaque physiology and clinical presentation. The different remodelling stages of atherosclerosis are explained with their clinical relevance. Recent advances in basic science have established that atherosclerosis is not only a lipid storage disease, but that also inflammation has a fundamental role in all stages of the disease. The molecular events leading to atherosclerosis will be extensively reviewed and described. Further on in this review different modalities and their role in the different stages of atherosclerosis will be discussed. Non-nuclear invasive imaging techniques (intravascular ultrasound, intravascular MRI, intracoronary angioscopy and intravascular optical coherence tomography) and non-nuclear non-invasive imaging techniques (ultrasound with Doppler flow, electron-bean computed tomography, coronary computed tomography angiography, MRI and coronary artery MR angiography) will be reviewed. After that we focus on nuclear imaging techniques for detecting atherosclerotic plaques, divided into three groups: atherosclerotic lesion components, inflammation and thrombosis. This emerging area of nuclear imaging techniques can provide measures of biological activity of atherosclerotic plaques, thereby improving the prediction of clinical events. As we will see in the future perspectives, at present, there is no special tracer that can be called the diagnostic tool to diagnose prospective stroke or infarction in patients. Nevertheless, we expect such a tracer to be developed in the next few years and maybe, theoretically, it could even be used for targeted therapy (in the form of a beta-emitter) to combat

  16. Cardiovascular magnetic resonance imaging - a pictorial review

    OpenAIRE

    Vijay Dahya; Spottiswoode, Bruce S.

    2010-01-01

    Cardiovascular magnetic resonance imaging (CMR) is a powerful problem-solving tool and arguably offers the most comprehensive assessment of cardiac morphology and function, as well as the opportunity of rebuilding the bridge between cardiologists and radiologists. The role of CMR-trained imaging physicists is also valuable, and many CMR centres harmoniously incorporate these three sub-specialty fields. This paper comprises an overview of several CMR techniques, outlining both the strengths...

  17. Cardiovascular magnetic resonance imaging - a pictorial review

    Directory of Open Access Journals (Sweden)

    Vijay Dahya

    2010-12-01

    Full Text Available Cardiovascular magnetic resonance imaging (CMR is a powerful problem-solving tool and arguably offers the most comprehensive assessment of cardiac morphology and function, as well as the opportunity of rebuilding the bridge between cardiologists and radiologists. The role of CMR-trained imaging physicists is also valuable, and many CMR centres harmoniously incorporate these three sub-specialty fields. This paper comprises an overview of several CMR techniques, outlining both the strengths and limitations of the modality.

  18. MACD: an imaging marker for cardiovascular disease

    DEFF Research Database (Denmark)

    Ganz, Melanie; de Bruijne, Marleen; Nielsen, Mads

    2010-01-01

    Despite general acceptance that a healthy lifestyle and the treatment of risk factors can prevent the development of cardiovascular diseases (CVD), CVD are the most common cause of death in Europe and the United States. It has been shown that abdominal aortic calcifications (AAC) correlate strongly...... with coronary artery calcifications. Hence an early detection of aortic calcified plaques helps to predict the risk of related coronary diseases. Also since two thirds of the adverse events have no prior symptoms, possibilities to screen for risk in low cost imaging are important. To this end the Morphological...... imaging markers described. Finally we present that the MACD index predicts cardiovascular death with a hazard ratio of approximately four....

  19. Design and implementation of the Molecular Imaging Unit for large animals at the National Center for Cardiovascular Research; Diseno y puesta en marcha de la Unidad de Imagen Molecular para animales grandes del Centro Nacional de Investigaciones Cardiovasculares

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, G.; Delgado Alberquilla, R.; Moreno Lopez, J.; Escudero Toro, R.

    2011-07-01

    in this paper describes the most important imaging techniques to be used with the latest equipment as well as the future of PET-MRI combination, its application in research on large animals and the implications for the design of the units, shielding calculation management sources of radiation and waste. This has required value and integrate the specific requirements of a research center in terms of bio security, care of large animals (pigs), health status of animals in an environment of highly demanding conditions PR.

  20. Molecular imaging in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Schober, Otmar; Riemann, Burkhard (eds.) [Universitaetsklinikum Muenster (Germany). Klinik fuer Nuklearmedizin

    2013-02-01

    Considers in detail all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. Examines technological issues and probe design. Discusses preclinical studies in detail, with particular attention to multimodality imaging. Presents current clinical use of PET/CT, SPECT/CT, and optical imagingWritten by acknowledged experts. The impact of molecular imaging on diagnostics, therapy, and follow-up in oncology is increasing significantly. The process of molecular imaging includes key biotarget identification, design of specific molecular imaging probes, and their preclinical evaluation, e.g., in vivo using small animal studies. A multitude of such innovative molecular imaging probes have already entered clinical diagnostics in oncology. There is no doubt that in future the emphasis will be on multimodality imaging in which morphological, functional, and molecular imaging techniques are combined in a single clinical investigation that will optimize diagnostic processes. This handbook addresses all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. The first section is devoted to technology and probe design, and examines a variety of PET and SPECT tracers as well as multimodality probes. Preclinical studies are then discussed in detail, with particular attention to multimodality imaging. In the third section, diverse clinical applications are presented, and the book closes by looking at future challenges. This handbook will be of value to all who are interested in the revolution in diagnostic oncology that is being brought about by molecular imaging.

  1. The future of the cardiovascular image

    International Nuclear Information System (INIS)

    In this work the future of the cardiovascular image is presented, it is important to know the advantages and disadvantages of the current image methods to apply them in each case. The characteristics of the methods are presented: X R simple plate, the cardiac ultrasound, the image by magnetic resonance, the computed tomography, the helicoid tomography, the SPECT of myocardial perfusion, the PET and the PET/CT and the used radiopharmaceuticals. The SPECT of myocardial perfusion is the more used method around the world for the evacuation of the coronary illness. It has a high sensitivity (between 90 and 97%), it is a non-invasive treatment (morbidity of 0.01%), of relative low cost and it is useful in the diagnosis of ischemia in groups of high risk like diabetics, dyslipidemia, obese and hypertension. (Author)

  2. Non-cardiovascular findings in clinical cardiovascular magnetic resonance imaging in children

    Energy Technology Data Exchange (ETDEWEB)

    Ghadimi Mahani, Maryam [University of Michigan Health System, C.S. Mott Children' s Hospital, Department of Radiology, Section of Pediatric Radiology, Ann Arbor, MI (United States); Morani, Ajaykumar C. [The University of Texas MD Anderson Cancer Center, Department of Diagnostic Radiology, Houston, TX (United States); Lu, Jimmy C.; Dorfman, Adam L. [University of Michigan Health System, C.S. Mott Children' s Hospital, Department of Pediatrics and Communicable Diseases, Division of Pediatric Cardiology, Ann Arbor, MI (United States); Fazeli Dehkordy, Soudabeh [University of Michigan Health System, C.S. Mott Children' s Hospital, Department of Radiology, Section of Pediatric Radiology, Ann Arbor, MI (United States); Providence Hospital and Medical Centers, Department of Graduate Medical Education, Southfield, MI (United States); Jeph, Sunil [The University of Texas MD Anderson Cancer Center, Department of Diagnostic Radiology, Houston, TX (United States); Geisinger Medical Center, Department of Radiology, Danville, PA (United States); Agarwal, Prachi P. [University of Michigan Health System, Department of Radiology, Division of Cardiothoracic Radiology, Ann Arbor, MI (United States)

    2016-04-15

    With increasing use of pediatric cardiovascular MRI, it is important for all imagers to become familiar with the spectrum of non-cardiovascular imaging findings that can be encountered. This study aims to ascertain the prevalence and nature of these findings in pediatric cardiovascular MRIs performed at our institution. We retrospectively evaluated reports of all cardiovascular MRI studies performed at our institute from January 2008 to October 2012 in patients younger than18 years. Most studies (98%) were jointly interpreted by a pediatric cardiologist and a radiologist. We reviewed the electronic medical records of all cases with non-cardiovascular findings, defined as any imaging finding outside the cardiovascular system. Non-cardiovascular findings were classified into significant and non-significant, based on whether they were known at the time of imaging or they required additional workup or a change in management. In 849 consecutive studies (mean age 9.7 ± 6.3 years), 145 non-cardiovascular findings were found in 140 studies (16.5% of total studies). Overall, 51.0% (74/145) of non-cardiovascular findings were in the abdomen, 30.3% (44/145) were in the chest, and 18.6% (27/145) were in the spine. A total of 19 significant non-cardiovascular findings were observed in 19 studies in individual patients (2.2% of total studies, 47% male, mean age 5.9 ± 6.7 years). Significant non-cardiovascular findings included hepatic adenoma, arterially enhancing focal liver lesions, asplenia, solitary kidney, pelvicaliectasis, renal cystic diseases, gastric distention, adrenal hemorrhage, lung hypoplasia, air space disease, bronchial narrowing, pneumomediastinum and retained surgical sponge. Non-cardiovascular findings were seen in 16.5% of cardiovascular MRI studies in children, of which 2.2% were clinically significant findings. Prevalence and nature of these non-cardiovascular findings are different from those reported in adults. Attention to these findings is important

  3. Imaging of cardiovascular malformations in Williams syndrome

    International Nuclear Information System (INIS)

    Objective: To evaluate the imaging methods for cardiovascular malformations in Williams syndrome(WS). Methods: Thirteen cases of WS (7 males and 6 females) aged 10 months to 13 years were involved in this study. All patients underwent chest X-ray radiography, electrocardiography, echocardiography and physical examination. 3 cases underwent electronic beam computed tomography (EBCT), cardiac catheterization and angiography were performed in 8 cases. Results: Twelve patients were referred to our hospital for cardiac murmur and 1 case for cyanosis after birth. 7 patients were found with 'elfin-like' facial features, 6 patients with pulmonary arterial stenosis, 2 cases with patent ductus arteriosus, 2 cases with severe pulmonary hypertension and 1 case with total endocardial cushion defect. Sudden death occurred in 2 patients during and after catheterization, respectively. Conclusions: Conventional angiography is the golden standard for the diagnosis of cardiovascular malformations in WS. Noninvasive methods such as MSCT and MRI should be suggested because of the risk of sudden death in conventional angiography. (authors)

  4. Molecular Modeling Approach to Cardiovascular Disease Targetting

    Directory of Open Access Journals (Sweden)

    Chandra Sekhar Akula,

    2010-05-01

    Full Text Available Cardiovascular disease, including stroke, is the leading cause of illness and death in the India. A number of studies have shown that inflammation of blood vessels is one of the major factors that increase the incidence of heart diseases, including arteriosclerosis (clogging of the arteries, stroke and myocardial infraction or heart attack. Studies have associated obesity and other components of metabolic syndrome, cardiovascular risk factors, with lowgradeinflammation. Furthermore, some findings suggest that drugs commonly prescribed to the lower cholesterol also reduce this inflammation, suggesting an additional beneficial effect of the stains. The recent development of angiotensin 11 (Ang11 receptor antagonists has enabled to improve significantly the tolerability profile of thisgroup of drugs while maintaining a high clinical efficacy. ACE2 is expressed predominantly in the endothelium and in renal tubular epithelium, and it thus may be an import new cardiovascular target. In the present study we modeled the structure of ACE and designed an inhibitor through using ARGUS lab and the validation of the Drug molecule is done basing on QSAR properties and Cache for this protein through CADD.

  5. Molecular MR imaging

    International Nuclear Information System (INIS)

    Basic medicobiological research in recent years has made rapid advances in the functional understanding of normal and pathological processes down to the molecular level. At the same time, various imaging modalities have developed from the depiction of organs to approaching the depiction of the cellular level and are about to make the visualization of molecular processes an established procedure. Besides other modalities like PET and near-infrared fluorescence, MR imaging offers some promising options for molecular imaging as well as some applications that have already been tested such as the visualization of enzyme activity, the depiction of the expression of certain genes, the visualization of surface receptors, or the specific demonstration of cells involved in the body's immune response. A major advantage of molecular magnetic resonance imaging (mMRI) over other more sensitive modalities is its high spatial resolution. However, the establishment of mMRI crucially relies on further improvements in resolution and the development of molecular markers for improving its sensitivity and specificity. The state of the art of mMRI is presented by giving a survey of the literature on experimental studies and reporting the results our study group obtained during investigation on gliomas. (orig.)

  6. Computational methods for molecular imaging

    CERN Document Server

    Shi, Kuangyu; Li, Shuo

    2015-01-01

    This volume contains original submissions on the development and application of molecular imaging computing. The editors invited authors to submit high-quality contributions on a wide range of topics including, but not limited to: • Image Synthesis & Reconstruction of Emission Tomography (PET, SPECT) and other Molecular Imaging Modalities • Molecular Imaging Enhancement • Data Analysis of Clinical & Pre-clinical Molecular Imaging • Multi-Modal Image Processing (PET/CT, PET/MR, SPECT/CT, etc.) • Machine Learning and Data Mining in Molecular Imaging. Molecular imaging is an evolving clinical and research discipline enabling the visualization, characterization and quantification of biological processes taking place at the cellular and subcellular levels within intact living subjects. Computational methods play an important role in the development of molecular imaging, from image synthesis to data analysis and from clinical diagnosis to therapy individualization. This work will bring readers fro...

  7. Artificial intelligence as a diagnostic adjunct in cardiovascular nuclear imaging

    International Nuclear Information System (INIS)

    The radiologist and/or nuclear medicine physician is literally bombarded with information from today's diagnostic imaging technologies. As a consequence of this, whereas a decade ago the emphasis in medical image analysis was on improving the extraction of diagnostic information by developing and using more sophisticated imaging modalities, today those working on the development of medical imaging technology are struggling to find ways to handle all gathered information effectively. This chapter gives an introduction to the area of artificial intelligence, with an emphasis on the research ongoing in cardiovascular nuclear imaging. This chapter has reviewed the place of artificial intelligence in cardiovascular nuclear imaging. It is intended to provide a general sense of this new and emerging field, an insight into some of its specific methodologies and applications, and a closer look at the several AI approaches currently being applied in cardiovascular nuclear imaging

  8. Imaging of cardiovascular risk in patients with Turner's syndrome.

    Science.gov (United States)

    Marin, A; Weir-McCall, J R; Webb, D J; van Beek, E J R; Mirsadraee, S

    2015-08-01

    Turner's syndrome is a disorder defined by an absent or structurally abnormal second X chromosome and affects around 1 in 2000 newborn females. The standardised mortality ratio in Turner's syndrome is around three-times higher than in the general female population, mainly as a result of cardiovascular disorders. Most striking is the early age at which Turner's syndrome patients develop the life-threatening complications of cardiovascular disorders compared to the general population. The cardiovascular risk stratification in Turner's syndrome is challenging and imaging is not systematically used. The aim of this article is to review cardiovascular risks in this group of patients and discuss a systematic imaging approach for early identification of cardiovascular disorders in these patients. PMID:25917542

  9. Evidence Base for Quality Control Activities in Cardiovascular Imaging.

    Science.gov (United States)

    Eskandari, Mehdi; Kramer, Christopher M; Hecht, Harvey S; Jaber, Wael A; Marwick, Thomas H

    2016-03-01

    Quality control is pervasive in most modern business, but, surprisingly, is in its infancy in medicine in general-and cardiovascular imaging in particular. The increasing awareness of the cost of cardiovascular imaging, matched by a desire to show benefits from imaging to patient outcome, suggests that this deficiency should be reassessed. Demonstration of improved quality has been proposed to require a focus on several domains: laboratory organization, patient selection, image acquisition, image interpretation, and results communication. Improvement in these steps will require adoption of a variety of interventions, including laboratory accreditation, appropriate use criteria, and continuous quality control and enhancements in reporting, but the evidence base for the benefit of interventions on these steps has been sparse. The purpose of this review is to evaluate the current status and future goals of developing the evidence base for these processes in cardiovascular imaging. PMID:26965731

  10. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  11. Molecular imaging of macrophage enzyme activity in cardiac inflammation

    OpenAIRE

    Ali, Muhammad; Pulli, Benjamin; Chen, John W.

    2014-01-01

    Molecular imaging is highly advantageous as various insidious inflammatory events can be imaged in a serial and quantitative fashion. Combined with the conventional imaging modalities like computed tomography (CT), magnetic resonance (MR) and nuclear imaging, it helps us resolve the extent of ongoing pathology, quantify inflammation and predict outcome. Macrophages are increasingly gaining importance as an imaging biomarker in inflammatory cardiovascular diseases. Macrophages, recruited to th...

  12. Molecular Imaging in Genetic Medicine

    Science.gov (United States)

    Jacob, Ayden; Van Gestel, Frederick; Yaghoubi, Shahriar

    2016-01-01

    The field of biomedical imaging has made significant advances in recent times. This includes extremely high-resolution anatomic imaging and functional imaging of physiologic and pathologic processes as well as novel modalities in optical imaging to evaluate molecular features within the cellular environment. The latter has made it possible to image phenotypic markers of various genotypes that are implicated in human development, behavior, and disease. This article discusses the role of molecular imaging in genetic and precision medicine. 

  13. Cardiovascular effects of cocaine: cellular, ionic and molecular mechanisms.

    Science.gov (United States)

    Turillazzi, E; Bello, S; Neri, M; Pomara, C; Riezzo, I; Fineschi, V

    2012-01-01

    Cocaine is a widely abused drug responsible for the majority of deaths ascribed to drug overdose. Many mechanisms have been proposed in order to explain the various cocaine associated cardiovascular complications. Conventionally, cocaine cardiotoxicity has been thought to be mediated indirectly through its sympathomimetic effect, i.e., by inhibiting the reuptake and thus increasing the levels of neuronal catecholamines at work on adrenoceptors. Increased oxidative stress, reactive oxygen species, and cocaine-induced apoptosis in the heart muscle have suggested a new way to understand the cardiotoxic effects of cocaine. More recent studies have led the attention to the interaction of cocaine and some metabolites with cardiac sodium, calcium and potassium channels. The current paper is aimed to investigate the molecular mechanisms of cocaine cardiotoxicity which have a specific clinical and forensic interest. From a clinical point of view the full knowledge of the exact mechanisms by which cocaine exerts cardio - vascular damage is essential to identify potential therapeutic targets and improve novel strategies for cocaine related cardiovascular diseases. From a forensic point of view, it is to be underlined that cocaine use is often associated to sudden death in young, otherwise healthy individuals. While such events are widely reported, the relationship between cardiac morphological alterations and molecular/cellular mechanisms is still controversial. In conclusion, the study of cocaine cardiovascular toxicity needs a strict collaboration between clinicians and pathologists which may be very effective in further dissecting the mechanisms underlying cocaine cardiotoxicity and understanding the cardiac cocaine connection. PMID:22856657

  14. Cardiovascular magnetic resonance and computed tomography imaging for the assessment of cardiovascular complications of type 2 diabetes mellitus

    OpenAIRE

    Graça, Bruno Miguel Silva Rosa da

    2014-01-01

    Diabetes mellitus is responsible for diverse cardiovascular complications such as increased atherosclerosis in large arteries (carotids, aorta, and femoral arteries) and increased coronary atherosclerosis. A number of noninvasive tests are now available to detect coronary atherosclerotic disease, myocardial dysfunction and myocardial ischemia. The potential of cardiovascular imaging for the assessment of cardiovascular complications of type 2 diabetic patients is an active field of res...

  15. Molecular breast imaging. An update

    International Nuclear Information System (INIS)

    The aim of molecular imaging is to visualize and quantify biological, physiological and pathological processes at cellular and molecular levels. Molecular imaging using various techniques has recently become established in breast imaging. Currently molecular imaging techniques comprise multiparametric magnetic resonance imaging (MRI) using dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted imaging (DWI), proton MR spectroscopy (1H-MRSI), nuclear imaging by breast-specific gamma imaging (BSGI), positron emission tomography (PET) and positron emission mammography (PEM) and combinations of techniques (e.g. PET-CT and multiparametric PET-MRI). Recently, novel techniques for molecular imaging of breast tumors, such as sodium imaging (23Na-MRI), phosphorus spectroscopy (31P-MRSI) and hyperpolarized MRI as well as specific radiotracers have been developed and are currently under investigation. It can be expected that molecular imaging of breast tumors will enable a simultaneous assessment of the multiple metabolic and molecular processes involved in cancer development and thus an improved detection, characterization, staging and monitoring of response to treatment will become possible. (orig.)

  16. Time-resolved molecular imaging

    Science.gov (United States)

    Xu, Junliang; Blaga, Cosmin I.; Agostini, Pierre; DiMauro, Louis F.

    2016-06-01

    Time-resolved molecular imaging is a frontier of ultrafast optical science and physical chemistry. In this article, we review present and future key spectroscopic and microscopic techniques for ultrafast imaging of molecular dynamics and show their differences and connections. The advent of femtosecond lasers and free electron x-ray lasers bring us closer to this goal, which eventually will extend our knowledge about molecular dynamics to the attosecond time domain.

  17. Cardiovascular Imaging in the Electrophysiology Laboratory.

    Science.gov (United States)

    Sanchis, Laura; Prat, Susanna; Sitges, Marta

    2016-06-01

    In recent years, rapid technological advances have allowed the development of new electrophysiological procedures that would not have been possible without the parallel development of imaging techniques used to plan and guide these procedures and monitor their outcomes. Ablation of atrial fibrillation is among the interventions with the greatest need for imaging support. Echocardiography allows the appropriate selection of patients and the detection of thrombi that would contraindicate the intervention; cardiac magnetic resonance imaging and computed tomography are also essential in planning this procedure, by allowing a detailed anatomical study of the pulmonary veins. In addition, in cardiac resynchronization therapy, echocardiography plays a central role in both patient selection and, later, in device adjustment and in assessing the effectiveness of the technique. More recently, ablation of ventricular tachycardias has been established as a treatment option; this would not be possible without planning using an imaging study such as cardiac magnetic resonance imaging of myocardial scarring. PMID:27107802

  18. Echocardiography in the Era of Multimodality Cardiovascular Imaging

    Directory of Open Access Journals (Sweden)

    Benoy Nalin Shah

    2013-01-01

    Full Text Available Echocardiography remains the most frequently performed cardiac imaging investigation and is an invaluable tool for detailed and accurate evaluation of cardiac structure and function. Echocardiography, nuclear cardiology, cardiac magnetic resonance imaging, and cardiovascular-computed tomography comprise the subspeciality of cardiovascular imaging, and these techniques are often used together for a multimodality, comprehensive assessment of a number of cardiac diseases. This paper provides the general cardiologist and physician with an overview of state-of-the-art modern echocardiography, summarising established indications as well as highlighting advances in stress echocardiography, three-dimensional echocardiography, deformation imaging, and contrast echocardiography. Strengths and limitations of echocardiography are discussed as well as the growing role of real-time three-dimensional echocardiography in the guidance of structural heart interventions in the cardiac catheter laboratory.

  19. Cardiovascular PET-CT imaging: a new frontier?

    Science.gov (United States)

    Adamson, P D; Williams, M C; Newby, D E

    2016-07-01

    Cardiovascular positron-emission tomography combined with computed tomography (PET-CT) has recently emerged as an imaging technology with the potential to simultaneously describe both anatomical structures and physiological processes in vivo. The scope for clinical application of this technique is vast, but to date this promise has not been realised. Nonetheless, significant research activity is underway to explore these possibilities and it is likely that the knowledge gained will have important diagnostic and therapeutic implications in due course. This review provides a brief overview of the current state of cardiovascular PET-CT and the likely direction of future developments. PMID:26951964

  20. Molecular imaging in oncology

    OpenAIRE

    Dzik-Jurasz, A S K

    2004-01-01

    Cancer is a genetic disease that manifests in loss of normal cellular homeostatic mechanisms. The biology and therapeutic modulation of neoplasia occurs at the molecular level. An understanding of these molecular processes is therefore required to develop novel prognostic and early biomarkers of response. In addition to clinical applications, increased impetus for the development of such technologies has been catalysed by pharmaceutical companies investing in the development of molecular ther...

  1. Phase-gated cine cardiovascular MR imaging without electrocardiography

    International Nuclear Information System (INIS)

    Cine cardiovascular MR imaging remains dependent on adequate electrocardiographic (ECG) recordings, often in the setting of arrhythmia, decreased R waves, and/or artifactual waves. The authors employed a gating strategy based on phase changes from cardiac motion (phase gating). With incorporation of an additional section or echo for monitoring such motion-related phase changes during constant phase encoding, imaging and timing data were obtained simultaneously. Following noise filtering, a search algorithm located regular phase perturbations in the timing data related to cardiac cycles. The resulting artificial ECG signals were then used in a standard retrospective gating scheme. This strategy has been used to study acquired and congenital cardiovascular abnormalities. The phase-gated images have resembled those from prospective and retrospective ECG-referenced strategies

  2. Molecular imaging in ovarian cancer.

    Science.gov (United States)

    Reyners, A K L; Broekman, K E; Glaudemans, A W J M; Brouwers, A H; Arts, H J G; van der Zee, A G J; de Vries, E G E; Jalving, M

    2016-04-01

    Ovarian cancer has a high mortality and novel-targeted treatment strategies have not resulted in breakthroughs for this disease. Insight into the molecular characteristics of ovarian tumors may improve diagnosis and selection of patients for treatment with targeted therapies. A potential way to achieve this is by means of molecular imaging. Generic tumor processes, such as glucose metabolism ((18)F-fluorodeoxyglucose) and DNA synthesis ((18)F-fluorodeoxythymidine), can be visualized non-invasively. More specific targets, such as hormone receptors, growth factor receptors, growth factors and targets of immunotherapy, can also be visualized. Molecular imaging can capture data on intra-patient tumor heterogeneity and is of potential value for individualized, target-guided treatment selection. Early changes in molecular characteristics during therapy may serve as early predictors of response. In this review, we describe the current knowledge on molecular imaging in the diagnosis and as an upfront or early predictive biomarker in patients with ovarian cancer. PMID:27141066

  3. Molecular imaging in myocardial fibrosis

    International Nuclear Information System (INIS)

    With the development of life science and medical technology, myocardial fibrosis is being increasingly recognized as a new therapeutic target for heart diseases. However, traditional methods for detection of myocardial fibrosis, such as myocardial biopsy and laboratory assay of serum metabolites or enzymes, are not satisfactory in meeting the clinical demands because of their intrinsic limitations. Molecular imaging may non-invasively and quantitatively evaluate the presence/absence, degree and turnover of myocardial fibrosis in vivo with good specificity, thus being useful for clinical assessment and intervention. Currently, the commonly used molecular imaging modalities for evaluation of myocardial fibrosis include SPECT, PET and MRI. It is hopeful that the molecular probe for targeted ultrasound technology may also be developed in the near future. This review highlights the current status and future trends of molecular imaging in myocardial fibrosis. (authors)

  4. The future of the cardiovascular image; El futuro de la imagen cardiovascular

    Energy Technology Data Exchange (ETDEWEB)

    Serna M, J.A. [Hospital Angeles del Pedregal, Mexico D.F. (Mexico)

    2007-07-01

    In this work the future of the cardiovascular image is presented, it is important to know the advantages and disadvantages of the current image methods to apply them in each case. The characteristics of the methods are presented: X R simple plate, the cardiac ultrasound, the image by magnetic resonance, the computed tomography, the helicoid tomography, the SPECT of myocardial perfusion, the PET and the PET/CT and the used radiopharmaceuticals. The SPECT of myocardial perfusion is the more used method around the world for the evacuation of the coronary illness. It has a high sensitivity (between 90 and 97%), it is a non-invasive treatment (morbidity of 0.01%), of relative low cost and it is useful in the diagnosis of ischemia in groups of high risk like diabetics, dyslipidemia, obese and hypertension. (Author)

  5. Molecular imaging of tumour hypoxia

    International Nuclear Information System (INIS)

    By allowing an earlier diagnosis and a more exhaustive assessment of extension of the disease, the tomography by emission of positrons (PET) transforms the care of numerous cancers. At present, 18F-fluorodeoxyglucose ([18F]-F.D.G.) imaging appears as the only one available but new molecular markers are being developed. In the next future they would modify the approach of cancers. In this context, the molecular imaging of the hypoxia and especially the 18Fluoromisonidazole PET ([18F]-MISO PET) can give supplementary information allowing the mapping of hypoxic regions within the tumour. Because of the links, which exist between tumour hypoxia and treatment resistance of very numerous cancers, this information can have an interest, for determination of prognosis as well as for the delineation, volumes to be irradiated. Head and neck tumours are doubtless those for which the literature gives the most elements on the therapeutic impact of tumour hypoxia. Targeted therapies, based on hypoxia, already exist and the contribution of the molecular imaging could be decisive in the evaluation of the impact of such treatment. Molecular imaging of brain tumours remains to be developed. The potential contributions of the [18F]-MISO PET for the care of these patients need to be confirmed. In this context, we propose a review of hypoxia molecular imaging taking as examples head and neck tumours and glioblastomas (GB), two tumours for which hypoxia is one of the key factors to overcome in order to increase therapeutics results

  6. Advances in Multimodality Molecular Imaging

    International Nuclear Information System (INIS)

    Multimodality molecular imaging is now playing a pivotal role in clinical setting and biomedical research. Modern molecular imaging technologies are deemed to potentially lead to a revolutionary paradigm shift in healthcare and revolutionize clinical practice. Within the spectrum of macroscopic medical imaging, sensitivity ranges from the detection of millimolar to submillimolar concentrations of contrast media with computed tomography (CT) and magnetic resonance imaging (MRI), respectively, to picomolar concentrations in single-photon emission computed tomography (SPECT) and positron emission 8 9 tomography (PET): a 108-109 difference. Even though the introduction of dedicated dual-modality imaging systems designed specifically and available commercially for clinical practice is relatively recent, the concept of combining anatomical and functional imaging has been recognized for several decades. Software- and hardware-based correlation between anatomical (x-ray CT, MRI) and physiological (PET) information is a promising research field and now offers unique capabilities for the medical imaging community and biomedical researchers. The introduction of dual-modality PET/CT imaging systems in clinical environments has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT) and functional or metabolic (PET) information provided in a 'one-stop shop' and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI) in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging where the first patient images have been shown late in 2006. This paper discusses the

  7. Molecular imaging. Fundamentals and applications

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Jie (ed.) [Chinese Academy of Sciences, Beijing (China). Intelligent Medical Research Center

    2013-07-01

    Covers a wide range of new theory, new techniques and new applications. Contributed by many experts in China. The editor has obtained the National Science and Technology Progress Award twice. ''Molecular Imaging: Fundamentals and Applications'' is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book.

  8. Molecular imaging. Fundamentals and applications

    International Nuclear Information System (INIS)

    Covers a wide range of new theory, new techniques and new applications. Contributed by many experts in China. The editor has obtained the National Science and Technology Progress Award twice. ''Molecular Imaging: Fundamentals and Applications'' is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book.

  9. Molecular imaging in cancer treatment

    International Nuclear Information System (INIS)

    The success of cancer therapy can be difficult to predict, as its efficacy is often predicated upon characteristics of the cancer, treatment, and individual that are not fully understood or are difficult to ascertain. Monitoring the response of disease to treatment is therefore essential and has traditionally been characterized by changes in tumor volume. However, in many instances, this singular measure is insufficient for predicting treatment effects on patient survival. Molecular imaging allows repeated in vivo measurement of many critical molecular features of neoplasm, such as metabolism, proliferation, angiogenesis, hypoxia, and apoptosis, which can be employed for monitoring therapeutic response. In this review, we examine the current methods for evaluating response to treatment and provide an overview of emerging PET molecular imaging methods that will help guide future cancer therapies. (orig.)

  10. Molecular Imaging Challenges With PET

    CERN Document Server

    Lecoq, P

    2010-01-01

    The future trends in molecular imaging and associated challenges for in-vivo functional imaging are illustrated on the basis of a few examples, such as atherosclerosis vulnerable plaques imaging or stem cells tracking. A set of parameters are derived to define the specifications of a new generation of in-vivo imaging devices in terms of sensitivity, spatial resolution and signal-to-noise ratio. The limitations of strategies used in present PET scanners are discussed and new approaches are proposed taking advantage of recent progress on materials, photodetectors and readout electronics. A special focus is put on metamaterials, as a new approach to bring more functionality to detection devices. It is shown that the route is now open towards a fully digital detector head with very high photon counting capability over a large energy range, excellent timing precision and possibility of imaging the energy deposition process.

  11. Molecular imaging in cervical cancer.

    Science.gov (United States)

    Khan, Sairah R; Rockall, Andrea G; Barwick, Tara D

    2016-06-01

    Despite the development of screening and of a vaccine, cervix cancer is a major cause of cancer death in young women worldwide. A third of women treated for the disease will recur, almost inevitably leading to death. Functional imaging has the potential to stratify patients at higher risk of poor response or relapse by improved delineation of disease extent and tumor characteristics. A number of molecular imaging biomarkers have been shown to predict outcome at baseline and/or early during therapy in cervical cancer. In future this could help tailor the treatment plan which could include selection of patients for close follow up, adjuvant therapy or trial entry for novel agents or adaptive clinical trials. The use of molecular imaging techniques, FDG PET/CT and functional MRI, in staging and response assessment of cervical cancer is reviewed. PMID:26859085

  12. High field magnetic resonance imaging of rodents in cardiovascular research.

    Science.gov (United States)

    Vanhoutte, Laetitia; Gerber, Bernhard L; Gallez, Bernard; Po, Chrystelle; Magat, Julie; Jean-Luc, Balligand; Feron, Olivier; Moniotte, Stéphane

    2016-07-01

    Transgenic and gene knockout rodent models are primordial to study pathophysiological processes in cardiovascular research. Over time, cardiac MRI has become a gold standard for in vivo evaluation of such models. Technical advances have led to the development of magnets with increasingly high field strength, allowing specific investigation of cardiac anatomy, global and regional function, viability, perfusion or vascular parameters. The aim of this report is to provide a review of the various sequences and techniques available to image mice on 7-11.7 T magnets and relevant to the clinical setting in humans. Specific technical aspects due to the rise of the magnetic field are also discussed. PMID:27287250

  13. Cancer Stratification by Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Justus Weber

    2015-03-01

    Full Text Available The lack of specificity of traditional cytotoxic drugs has triggered the development of anticancer agents that selectively address specific molecular targets. An intrinsic property of these specialized drugs is their limited applicability for specific patient subgroups. Consequently, the generation of information about tumor characteristics is the key to exploit the potential of these drugs. Currently, cancer stratification relies on three approaches: Gene expression analysis and cancer proteomics, immunohistochemistry and molecular imaging. In order to enable the precise localization of functionally expressed targets, molecular imaging combines highly selective biomarkers and intense signal sources. Thus, cancer stratification and localization are performed simultaneously. Many cancer types are characterized by altered receptor expression, such as somatostatin receptors, folate receptors or Her2 (human epidermal growth factor receptor 2. Similar correlations are also known for a multitude of transporters, such as glucose transporters, amino acid transporters or hNIS (human sodium iodide symporter, as well as cell specific proteins, such as the prostate specific membrane antigen, integrins, and CD20. This review provides a comprehensive description of the methods, targets and agents used in molecular imaging, to outline their application for cancer stratification. Emphasis is placed on radiotracers which are used to identify altered expression patterns of cancer associated markers.

  14. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease

    Energy Technology Data Exchange (ETDEWEB)

    Noerenberg, Dominik [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); University of Munich - Grosshadern, Department of Clinical Radiology, Munich (Germany); Ebersberger, Hans U. [Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany); Diederichs, Gerd; Hamm, Bernd [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); Botnar, Rene M. [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Makowski, Marcus R. [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2016-03-15

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. (orig.)

  15. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease

    International Nuclear Information System (INIS)

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. (orig.)

  16. Molecular imaging in neurology and neuroscience

    International Nuclear Information System (INIS)

    Molecular imaging in neurology and neuroscience is a suspenseful and fast developing tool in order to quantitatively image genomics and proteomics by means of direct and indirect markers. Because of its high-sensitive tracer principle, nuclear medicine imaging has the pioneering task for the methodical progression of molecular imaging. The current development of molecular imaging in neurology changes from the use of indirect markers of gene and protein expression to the direct imaging of the molecular mechanisms. It is the aim of this article to give a short review on the status quo of molecular imaging in neurology with emphasis on clinically relevant aspects. (orig.)

  17. Computational Chemical Imaging for Cardiovascular Pathology: Chemical Microscopic Imaging Accurately Determines Cardiac Transplant Rejection

    Science.gov (United States)

    Tiwari, Saumya; Reddy, Vijaya B.; Bhargava, Rohit; Raman, Jaishankar

    2015-01-01

    Rejection is a common problem after cardiac transplants leading to significant number of adverse events and deaths, particularly in the first year of transplantation. The gold standard to identify rejection is endomyocardial biopsy. This technique is complex, cumbersome and requires a lot of expertise in the correct interpretation of stained biopsy sections. Traditional histopathology cannot be used actively or quickly during cardiac interventions or surgery. Our objective was to develop a stain-less approach using an emerging technology, Fourier transform infrared (FT-IR) spectroscopic imaging to identify different components of cardiac tissue by their chemical and molecular basis aided by computer recognition, rather than by visual examination using optical microscopy. We studied this technique in assessment of cardiac transplant rejection to evaluate efficacy in an example of complex cardiovascular pathology. We recorded data from human cardiac transplant patients’ biopsies, used a Bayesian classification protocol and developed a visualization scheme to observe chemical differences without the need of stains or human supervision. Using receiver operating characteristic curves, we observed probabilities of detection greater than 95% for four out of five histological classes at 10% probability of false alarm at the cellular level while correctly identifying samples with the hallmarks of the immune response in all cases. The efficacy of manual examination can be significantly increased by observing the inherent biochemical changes in tissues, which enables us to achieve greater diagnostic confidence in an automated, label-free manner. We developed a computational pathology system that gives high contrast images and seems superior to traditional staining procedures. This study is a prelude to the development of real time in situ imaging systems, which can assist interventionists and surgeons actively during procedures. PMID:25932912

  18. Computational chemical imaging for cardiovascular pathology: chemical microscopic imaging accurately determines cardiac transplant rejection.

    Directory of Open Access Journals (Sweden)

    Saumya Tiwari

    Full Text Available Rejection is a common problem after cardiac transplants leading to significant number of adverse events and deaths, particularly in the first year of transplantation. The gold standard to identify rejection is endomyocardial biopsy. This technique is complex, cumbersome and requires a lot of expertise in the correct interpretation of stained biopsy sections. Traditional histopathology cannot be used actively or quickly during cardiac interventions or surgery. Our objective was to develop a stain-less approach using an emerging technology, Fourier transform infrared (FT-IR spectroscopic imaging to identify different components of cardiac tissue by their chemical and molecular basis aided by computer recognition, rather than by visual examination using optical microscopy. We studied this technique in assessment of cardiac transplant rejection to evaluate efficacy in an example of complex cardiovascular pathology. We recorded data from human cardiac transplant patients' biopsies, used a Bayesian classification protocol and developed a visualization scheme to observe chemical differences without the need of stains or human supervision. Using receiver operating characteristic curves, we observed probabilities of detection greater than 95% for four out of five histological classes at 10% probability of false alarm at the cellular level while correctly identifying samples with the hallmarks of the immune response in all cases. The efficacy of manual examination can be significantly increased by observing the inherent biochemical changes in tissues, which enables us to achieve greater diagnostic confidence in an automated, label-free manner. We developed a computational pathology system that gives high contrast images and seems superior to traditional staining procedures. This study is a prelude to the development of real time in situ imaging systems, which can assist interventionists and surgeons actively during procedures.

  19. Sparse image reconstruction for molecular imaging

    CERN Document Server

    Ting, Michael; Hero, Alfred O

    2008-01-01

    The application that motivates this paper is molecular imaging at the atomic level. When discretized at sub-atomic distances, the volume is inherently sparse. Noiseless measurements from an imaging technology can be modeled by convolution of the image with the system point spread function (psf). Such is the case with magnetic resonance force microscopy (MRFM), an emerging technology where imaging of an individual tobacco mosaic virus was recently demonstrated with nanometer resolution. We also consider additive white Gaussian noise (AWGN) in the measurements. Many prior works of sparse estimators have focused on the case when H has low coherence; however, the system matrix H in our application is the convolution matrix for the system psf. A typical convolution matrix has high coherence. The paper therefore does not assume a low coherence H. A discrete-continuous form of the Laplacian and atom at zero (LAZE) p.d.f. used by Johnstone and Silverman is formulated, and two sparse estimators derived by maximizing t...

  20. Molecular imaging for cancer targeting

    International Nuclear Information System (INIS)

    Full text: Molecular-genetic imaging which has grown rapidly is currently been applied to studies of gene expression regulation, activity of signal transduction pathways, angiogenesis, tumor metastases, stem cell migration, and monitoring cells involved in different components of immune response. Our Molecular and Genetic Imaging Core (MAGIC), established in late 2002, has developed a platform of small animal functional, molecular, and morphologic quantitative imaging techniques which are providing data about biochemical, genetic or pharmacological processes in vivo, and repetitively in the same animal. We first established chimeric reporter and therapeutic gene systems for specific targeting on hepatoma of mouse model. In- vivo microPET and bioluminescence imaging demonstrated the usefulness of tissue specific chimeric tk and hNIS genes. For trafficking the stem cell and cancer cells, we also have established dual and triple reporter gene system and correspondent reporter probes for in vivo imaging by microPET or microSPECT. The second application of translational biomedical imaging of cancer targeting therapy is on the inhibitors of tyrosine kinase, the key enzyme of epidermal growth factor receptor (EGFR). Mutations in the kinase domain of EGFR have higher levels of basal receptor phosphorylation and that are associated with clinical responsiveness to Iressa in patients with non-small cell lung cancer (NSCLC). High mutation rate for EGFR in Taiwanese patients of adenocarcinoma of lung suggests an urgent requirement of a non-invasive imaging tool for pre-treatment and during therapy evaluation of lung cancer patients using EGFR signalling inhibitor. Our current work on radiosynthesis of the analogue of Iressa--morpholino-[124I]-IPQA and in vitro and in vivo studies of high basal EGFR-expressing H1299's derivatives (L858R and E746-A750 del cell lines) subcutaneous tumor xenografts in immunocompromised mice, has proven that [124I]-IPQA is a feasible in vivo imaging

  1. Multi-color magnetic particle imaging for cardiovascular interventions

    Science.gov (United States)

    Haegele, Julian; Vaalma, Sarah; Panagiotopoulos, Nikolaos; Barkhausen, Jörg; Vogt, Florian M.; Borgert, Jörn; Rahmer, Jürgen

    2016-08-01

    Magnetic particle imaging (MPI) uses magnetic fields to visualize the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). Guidance of cardiovascular interventions is seen as one possible application of MPI. To safely guide interventions, the vessel lumen as well as all required interventional devices have to be visualized and be discernible from each other. Until now, different tracer concentrations were used for discerning devices from blood in MPI, because only one type of SPIO could be imaged at a time. Recently, it was shown for 3D MPI that it is possible to separate different signal sources in one volume of interest, i.e. to visualize and discern different SPIOs or different binding states of the same SPIO. The approach was termed multi-color MPI. In this work, the use of multi-color MPI for differentiation of a SPIO coated guide wire (Terumo Radifocus 0.035″) from the lumen of a vessel phantom filled with diluted Resovist is demonstrated. This is achieved by recording dedicated system functions of the coating material containing solid Resovist and of liquid Resovist, which allows separation of their respective signal in the image reconstruction process. Assigning a color to the different signal sources results in a differentiation of guide wire and vessel phantom lumen into colored images.

  2. The role of noninvasive imaging in promoting cardiovascular health.

    Science.gov (United States)

    Fuster, Valentin; Vahl, Torsten P

    2010-10-01

    Cardiovascular disease (CVD) is the leading cause of death worldwide, and its prevalence is likely to increase in the near future. The morbidity and mortality associated with CVD causes an enormous economic burden, which has become a major problem for many societies across the globe. The current prevention strategies are aimed at identifying and reducing established risk factors for atherosclerosis including hypertension, hypercholesterolemia, diabetes, obesity, smoking, and sedentary lifestyle. However, some of our prevention goals, such as reducing LDL cholesterol, change dramatically once a subject has been diagnosed with coronary atherosclerosis. At the present time, atherosclerosis is frequently diagnosed relatively late in the course of the disease, when a patient develops symptoms or presents with acute events such as an acute coronary syndrome or a stroke. Several studies have demonstrated that novel noninvasive imaging techniques have the potential to identify subclinical atherosclerosis and high-risk plaques. Early detection of subclinical atherosclerosis may enable clinicians to improve the control of cardiovascular risk factors in affected patients earlier, thereby helping to prevent some of the manifestations of CVD. PMID:20574768

  3. MOLECULAR MECHANISMS OF ACTION OF MAGNESIUM OROTATE ON CARDIOVASCULAR SYSTEM

    Directory of Open Access Journals (Sweden)

    I. Yu. Torshin

    2016-01-01

    Full Text Available Orotic acid is one of the intermediates in the pyrimidine biosynthesis. Mechanisms of physiological effects of orotic acid are poorly known. Analysis of data about these mechanisms is presented. Effects of orotic acid and magnesium orotate on cardiovascular system as well as therapeutic implementation of magnesium orotate in cardiology are discussed.

  4. Tracers and contrast agents in cardiovascular imaging: present and future

    International Nuclear Information System (INIS)

    This brief article addresses the current status and future potential of nuclear medicine, X-ray computed tomography (CT), ultrasound (US), and magnetic resonance (MR) imaging in the diagnosis of cardiovascular diseases. The currently perceived advantages and disadvantages, as well as the possible future roles, of each of the modalities with regard to the evaluation of coronary artery disease are delineated. The certain advent of Mr and US myocardial contrast agents, combined with the inexorable pressures of health care reform, will alter the future usage patterns of all four modalities. Future debates about which modality should be used in which clinical situation will be based not on 'anatomy vs function', nor on the issues of cost effectiveness and patient outcomes

  5. Korean Society of Cardiovascular Imaging Guidelines for Cardiac Computed Tomography

    International Nuclear Information System (INIS)

    The Korean Society of Cardiovascular Imaging (KOCSI) has issued a guideline for the use of cardiac CT imaging in order to assist clinicians and patients in providing adequate level of medical service. In order to establish a guideline founded on evidence based medicine, it was designed based on comprehensive data such as questionnaires conducted in international and domestic hospitals, intensive journal reviews, and with experts in cardiac radiology. The recommendations of this guideline should not be used as an absolute standard and medical professionals can always refer to methods non-adherent to this guideline when it is considered more reasonable and beneficial to an individual patient's medical situation. The guideline has its limitation and should be revised appropriately with the advancement medical equipment technology and public health care system. The guideline should not be served as a measure for standard of care. KOCSI strongly disapproves the use of the guideline to be used as the standard of expected practice in medical litigation processes.

  6. Cardiovascular magnetic resonance imaging findings in children with myocarditis

    Institute of Scientific and Technical Information of China (English)

    Liu Guiying; Yang Xi; Su Ying; Xu Jimin; Wen Zhaoying

    2014-01-01

    Background Myocarditis is a common,potentially life-threatening disease that presents a wide rang of symptoms in children,as an important underlying etiology of other myocardial diseases such as dilated and arrhythmogenic right ventricular cardiomyopathy.The incidence of nonfatal myocarditis is probably greater than that of the one actually diagnosed,which is the result of the challenges of establishing the diagnosis in standard clinical settings.Currently,no single clinical or imaging finding confirms the diagnosis of myocarditis with absolute certainty.Historically,clinical exam,electrocardiogram (ECG),serology and echocardiography had an unsatisfactory diagnostic accuracy in myocarditis.Endomyocardial biopsy remains as a widely accepted standard,but may not be suitable for every patient,especially for those with less severe disease.Our aim was to find the changes in cardiovascular magnetic resonance (CMR) imaging of children with myocarditis diagnosed by clinical criteria.Methods We studied 25 children (18 male,7 female; aged from 5-17 years) with diagnosed myocarditis by clinical criteria.CMR included function analyses,T2-weighted imaging,T1-weighted imaging before and after i.v.gadolinium injection (early gadolinium enhancement (EGE) and late gadolinium enhancement (LGE)).Results The T2 ratio was elevated in 21 children (84%,11 in anterolateral (44%),5 in inferolateral (20%),and 5 in septum (20%)),EGE was present in 9 children (36%,3 in anterolateral (12%),4 in inferolateral (20%),and 2 in septum (8%)),and LGE was present in 5 children (20%,2 in anterolateral (8%),1 in inferolateral (4%),1 in septum (4%),and 1 in midwall of left ventricular (LV) wall).In 9 children (36%),two (or more) out of three sequences (T2,EGE,LGE) were abnormal.Conclusions The CMR findings in children with clinically diagnosed myocarditis vary within the groups,including regional or global myocardial signal increase in T2-weighted images,EGE and LGE in T1

  7. Design and validation of Segment - freely available software for cardiovascular image analysis

    OpenAIRE

    Engblom Henrik; Carlsson Marcus; Ugander Martin; Sjögren Jane; Heiberg Einar; Arheden Håkan

    2010-01-01

    Abstract Background Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believ...

  8. Advances of molecular imaging in tumor angiogenesis

    International Nuclear Information System (INIS)

    Tumor angiogenesis has a close relationship with tumor growth, progression, metastasis and the prognosis of tumor patients. Therefore, tumor anti-angiogenic treatment arouses great public interest. Molecular imaging can characteristically display and measure the biochemical process of organisms at cellular and molecular level in vivo,which is based on the specific binding of molecular probe with high affinity and target molecules. In recent years, molecular imaging has a certain progress on visual and quantitative research of tumor angiogenesis and it is expected to become an important technique in the efficacy evaluation and prognostic assessment. This article summarizes the new advances of molecular imaging technology in tumor angiogenesis. (authors)

  9. Molecular and Functional Imaging of Internet Addiction

    OpenAIRE

    Yunqi Zhu; Hong Zhang; Mei Tian

    2015-01-01

    Maladaptive use of the Internet results in Internet addiction (IA), which is associated with various negative consequences. Molecular and functional imaging techniques have been increasingly used for analysis of neurobiological changes and neurochemical correlates of IA. This review summarizes molecular and functional imaging findings on neurobiological mechanisms of IA, focusing on magnetic resonance imaging (MRI) and nuclear imaging modalities including positron emission tomography (PET) an...

  10. Nuclear Molecular Imaging for Vulnerable Atherosclerotic Plaques

    OpenAIRE

    Lee, Soo Jin; Paeng, Jin Chul

    2015-01-01

    Atherosclerosis is an inflammatory disease as well as a lipid disorder. Atherosclerotic plaque formed in vessel walls may cause ischemia, and the rupture of vulnerable plaque may result in fatal events, like myocardial infarction or stroke. Because morphological imaging has limitations in diagnosing vulnerable plaque, molecular imaging has been developed, in particular, the use of nuclear imaging probes. Molecular imaging targets various aspects of vulnerable plaque, such as inflammatory cell...

  11. Alterations in vascular function in primary aldosteronism: a cardiovascular magnetic resonance imaging study

    OpenAIRE

    Mark, P. B.; Boyle, S; Zimmerli, L U; McQuarrie, E.P.; Delles, C.; Freel, E. M.

    2014-01-01

    Introduction: Excess aldosterone is associated with increased cardiovascular risk. Aldosterone has a permissive effect on vascular fibrosis. Cardiovascular magnetic resonance imaging (CMR) allows study of vascular function by measuring aortic distensibility. We compared aortic distensibility in primary aldosteronism (PA), essential hypertension (EH) and normal controls and explored the relationship between aortic distensibility and pulse wave velocity (PWV). Methods: We studied PA (n=14)...

  12. Ultrasound molecular imaging: Moving toward clinical translation

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Elkacem, Lotfi; Bachawal, Sunitha V.; Willmann, Jürgen K., E-mail: willmann@stanford.edu

    2015-09-15

    Highlights: • Ultrasound molecular imaging is a highly sensitive modality. • A clinical grade ultrasound contrast agent has entered first in human clinical trials. • Several new potential future clinical applications of ultrasound molecular imaging are being explored. - Abstract: Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging.

  13. Ultrasound molecular imaging: Moving toward clinical translation

    International Nuclear Information System (INIS)

    Highlights: • Ultrasound molecular imaging is a highly sensitive modality. • A clinical grade ultrasound contrast agent has entered first in human clinical trials. • Several new potential future clinical applications of ultrasound molecular imaging are being explored. - Abstract: Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging

  14. Molecular imaging of mental disorders

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) techniques have made it possible to measure changes in neurochemical components in living human brain. PET can be used to investigate various brain functions such as receptors, transporters, enzymes and various biochemical pathways; therefore, it could be a powerful tool for molecular imaging of mental disorders. Since the pathophysiology of schizophrenia has been discussed with a functional alteration of dopaminergic transmission in the brain, we have focused the dopaminergic components for the research target of schizophrenia using PET. Using high affinity ligand [11C]FLB 457, we found reduced D2 receptor binding in the anterior cingulate cortex of patients with schizophrenia, and a significant negative correlation was observed between D2 receptor binding and the positive symptom score. Subregions of interest were defined on the thalamus using individual magnetic resonance images. D2 receptor binding was also lower in the central medial and posterior subregions of the thalamus in patients with schizophrenia. Alterations in D2 receptor function in the extrastriatal region may underlie the positive symptoms of schizophrenia. On the other hand D1 receptor binding was found to be lower in the prefrontal cortex and a significant negative correlation was observed between D1 receptor binding and the negative symptom score. Abnormality of D1 receptor function would be at the bottom of the negative symptoms and cognitive impairment of schizophrenia. Regarding the effect of antipsychotics on dopamine D2 receptor, occupancy and it's time-course have been measured in a living body using PET. This approach can provide in vivo pharmacological evidences of antipsychotics and establish the rational therapeutic strategy. PET is a powerful tool not only in the field of brain research but also drug discovery. (author)

  15. Whole body cardiovascular magnetic resonance imaging to stratify symptomatic and asymptomatic atherosclerotic burden in patients with isolated cardiovascular disease

    OpenAIRE

    Weir-McCall, Jonathan R.; Duce, Suzanne L.; Gandy, Stephen J.; Matthew, Shona Z.; Martin, Patricia; Cassidy, Deirdre B.; McCormick, Lynne; Belch, Jill J. F.; Struthers, Allan D.; Helen M Colhoun; Houston, J. Graeme

    2016-01-01

    Background: The aim of this study was to use whole body cardiovascular magnetic resonance imaging (WB CVMR) to assess the heart and arterial network in a single examination, so as to describe the burden of atherosclerosis and subclinical disease in participants with symptomatic single site vascular disease. Methods: 64 patients with a history of symptomatic single site vascular disease (38 coronary artery disease (CAD), 9 cerebrovascular disease, 17 peripheral arterial disease (PAD)) underwen...

  16. Whole body cardiovascular magnetic resonance imaging to stratify symptomatic and asymptomatic atherosclerotic burden in patients with isolated cardiovascular disease

    OpenAIRE

    Weir-McCall, Jonathan R.; Duce, Suzanne L.; Gandy, Stephen J.; Matthew, Shona Z.; Martin, Patricia; Cassidy, Deirdre B.; McCormick, Lynne; Belch, Jill J. F.; Struthers, Allan D.; Helen M Colhoun; Houston, J. Graeme

    2016-01-01

    Background The aim of this study was to use whole body cardiovascular magnetic resonance imaging (WB CVMR) to assess the heart and arterial network in a single examination, so as to describe the burden of atherosclerosis and subclinical disease in participants with symptomatic single site vascular disease. Methods 64 patients with a history of symptomatic single site vascular disease (38 coronary artery disease (CAD), 9 cerebrovascular disease, 17 peripheral arterial disease (PAD)) underwent ...

  17. Nanodiamond Imaging: a New Molecular Imaging Approach

    OpenAIRE

    Hegyi, Alex Nathan

    2013-01-01

    Nanodiamond imaging is a novel biomedical imaging technique that non-invasively records the distribution of biologically-tagged nanodiamonds in vivo, in two or three dimensions. A nanodiamond imaging system optically detects electron spin resonance of nitrogen-vacancy centers in nanodiamonds, a non-toxic nanomaterial that is easily biologically functionalized. Two systems were built to demonstrate the feasibility of the technique. Using the first system, we imaged 2D projections of multipl...

  18. Imaging of cardiovascular risk in patients with Turner's syndrome

    International Nuclear Information System (INIS)

    Turner's syndrome is a disorder defined by an absent or structurally abnormal second X chromosome and affects around 1 in 2000 newborn females. The standardised mortality ratio in Turner's syndrome is around three-times higher than in the general female population, mainly as a result of cardiovascular disorders. Most striking is the early age at which Turner's syndrome patients develop the life-threatening complications of cardiovascular disorders compared to the general population. The cardiovascular risk stratification in Turner's syndrome is challenging and imaging is not systematically used. The aim of this article is to review cardiovascular risks in this group of patients and discuss a systematic imaging approach for early identification of cardiovascular disorders in these patients

  19. Cardiovascular magnetic resonance imaging of hypoplastic left heart syndrome in children

    International Nuclear Information System (INIS)

    Cardiovascular magnetic resonance imaging (CMR) plays an important complementary role to echocardiography and conventional angiography in the evaluation of hypoplastic left heart syndrome. This imaging modality is particularly useful for assessing cardiovascular postsurgical changes, extracardiac vascular anatomy, ventricular and valvular function, and a variety of complications. The purpose of this article is to provide a contemporary review of the role of CMR in the management of untreated and surgically palliated hypoplastic left heart syndrome in children. (orig.)

  20. Molecular and Cellular Mechanisms of Cardiovascular Disorders in Diabetes.

    Science.gov (United States)

    Shah, Manasi S; Brownlee, Michael

    2016-05-27

    The clinical correlations linking diabetes mellitus with accelerated atherosclerosis, cardiomyopathy, and increased post-myocardial infarction fatality rates are increasingly understood in mechanistic terms. The multiple mechanisms discussed in this review seem to share a common element: prolonged increases in reactive oxygen species (ROS) production in diabetic cardiovascular cells. Intracellular hyperglycemia causes excessive ROS production. This activates nuclear poly(ADP-ribose) polymerase, which inhibits GAPDH, shunting early glycolytic intermediates into pathogenic signaling pathways. ROS and poly(ADP-ribose) polymerase also reduce sirtuin, PGC-1α, and AMP-activated protein kinase activity. These changes cause decreased mitochondrial biogenesis, increased ROS production, and disturbed circadian clock synchronization of glucose and lipid metabolism. Excessive ROS production also facilitates nuclear transport of proatherogenic transcription factors, increases transcription of the neutrophil enzyme initiating NETosis, peptidylarginine deiminase 4, and activates the NOD-like receptor family, pyrin domain-containing 3 inflammasome. Insulin resistance causes excessive cardiomyocyte ROS production by increasing fatty acid flux and oxidation. This stimulates overexpression of the nuclear receptor PPARα and nuclear translocation of forkhead box O 1, which cause cardiomyopathy. ROS also shift the balance between mitochondrial fusion and fission in favor of increased fission, reducing the metabolic capacity and efficiency of the mitochondrial electron transport chain and ATP synthesis. Mitochondrial oxidative stress also plays a central role in angiotensin II-induced gap junction remodeling and arrhythmogenesis. ROS contribute to sudden death in diabetics after myocardial infarction by increasing post-translational protein modifications, which cause increased ryanodine receptor phosphorylation and downregulation of sarco-endoplasmic reticulum Ca

  1. Imaging of cardiovascular risk in patients with Turner's syndrome

    OpenAIRE

    Marin, A.; Weir-McCall, J.R.; Webb, D J; van Beek, E J R; Mirsadraee, S.

    2015-01-01

    Turner's syndrome is a disorder defined by an absent or structurally abnormal second X chromosome and affects around 1 in 2000 newborn females. The standardised mortality ratio in Turner's syndrome is around three-times higher than in the general female population, mainly as a result of cardiovascular disorders. Most striking is the early age at which Turner's syndrome patients develop the life-threatening complications of cardiovascular disorders compared to the general population. The cardi...

  2. Molecular Imaging of Pulmonary Cancer and Inflammation

    OpenAIRE

    Divgi, Chaitanya R.

    2009-01-01

    Molecular imaging (MI) may be defined as imaging in vivo using molecules that report on biologic function. This review will focus on the clinical use of radioactive tracers (nonpharmacologic amounts of compounds labeled with a radioactive substance) that permit external imaging using single photon emission computed tomography (planar, SPECT) or positron emission tomography (PET) imaging. Imaging of lung cancer has been revolutionized with the use of fluorine-18–labeled fluorodeoxyglucose (18F...

  3. Molecular Imaging Probe Development using Microfluidics

    OpenAIRE

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Anna M. Wu; James S. Tomlinson; Shen, Clifton K.-F.

    2011-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many ...

  4. Current state of molecular imaging research

    International Nuclear Information System (INIS)

    The recent years have seen significant advances in both molecular biology, allowing the identification of genes and pathways related to disease, and imaging technologies that allow for improved spatial and temporal resolution, enhanced sensitivity, better depth penetration, improved image processing, and beneficial combinations of different imaging modalities. These advances have led to a paradigm shift in the scope of diagnostic imaging. The traditional role of radiological diagnostic imaging is to define gross anatomy and structure in order to detect pathological abnormalities. Available contrast agents are mostly non-specific and can be used to image physiological processes such as changes in blood volume, flow, and perfusion but not to demonstrate pathological alterations at molecular levels. However, alterations at the anatomical-morphological level are relatively late manifestations of underlying molecular changes. Using molecular probes or markers that bind specifically to molecular targets allows for the non-invasive visualization and quantitation of biological processes such as gene expression, apoptosis, or angiogenesis at the molecular level within intact living organisms. This rapidly evolving, multidisciplinary approach, referred to as molecular imaging, promises to enable early diagnosis, can provide improved classification of stage and severity of disease, an objective assessment of treatment efficacy, and a reliable prognosis. Furthermore, molecular imaging is an important tool for the evaluation of physiological and pathophysiological processes, and for the development of new therapies. This article comprises a review of current technologies of molecular imaging, describes the development of contrast agents and various imaging modalities, new applications in specific disease models, and potential future developments. (orig.)

  5. PET-based molecular imaging in neuroscience

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) allows non-invasive assessment of physiological, metabolic and molecular processes in humans and animals in vivo. Advances in detector technology have led to a considerable improvement in the spatial resolution of PET (1-2 mm), enabling for the first time investigations in small experimental animals such as mice. With the developments in radiochemistry and tracer technology, a variety of endogenously expressed and exogenously introduced genes can be analysed by PET. This opens up the exciting and rapidly evolving field of molecular imaging, aiming at the non-invasive localisation of a biological process of interest in normal and diseased cells in animal models and humans in vivo. The main and most intriguing advantage of molecular imaging is the kinetic analysis of a given molecular event in the same experimental subject over time. This will allow non-invasive characterisation and ''phenotyping'' of animal models of human disease at various disease stages, under certain pathophysiological stimuli and after therapeutic intervention. The potential broad applications of imaging molecular events in vivo lie in the study of cell biology, biochemistry, gene/protein function and regulation, signal transduction, transcriptional regulation and characterisation of transgenic animals. Most importantly, molecular imaging will have great implications for the identification of potential molecular therapeutic targets, in the development of new treatment strategies, and in their successful implementation into clinical application. Here, the potential impact of molecular imaging by PET in applications in neuroscience research with a special focus on neurodegeneration and neuro-oncology is reviewed. (orig.)

  6. Molecular imaging of movement disorders.

    Science.gov (United States)

    Lizarraga, Karlo J; Gorgulho, Alessandra; Chen, Wei; De Salles, Antonio A

    2016-03-28

    -to-rostral direction. Uptake declines prior to symptom presentation and progresses from contralateral to the most symptomatic side to bilateral, correlating with symptom severity. In progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), striatal activity is symmetrically and diffusely decreased. The caudal-to-rostral pattern is lost in PSP, but could be present in MSA. In corticobasal degeneration (CBD), there is asymmetric, diffuse reduction of striatal activity, contralateral to the most symptomatic side. Additionally, there is hypometabolism in contralateral parieto-occipital and frontal cortices in PD; bilateral putamen and cerebellum in MSA; caudate, thalamus, midbrain, mesial frontal and prefrontal cortices in PSP; and contralateral cortices in CBD. Finally, cardiac sympathetic SPECT signal is decreased in PD. The capacity of molecular imaging to provide in vivo time courses of gene expression, protein synthesis, receptor and transporter binding, could facilitate the development and evaluation of novel medical, surgical and genetic therapies in movement disorders. PMID:27029029

  7. Molecular imaging in quality health care

    International Nuclear Information System (INIS)

    Full text: Quality health care results from translating fundamental bench discoveries and making them available to patients. During the past decade, 'molecular imaging' has emerged both as a new tool/technology and as a research and clinical discipline. Molecular imaging is an interdisciplinary approach involving biologists, physicists, physicians, mathematicians, conventional chemists, radiochemists and other specialists who have joined forces for better understanding and visualizing of both normal physiological processes and the molecular processes preceding the morphological manifestations of disease in vivo. Molecular imaging has been defined as 'non-invasive, quantitative, and repetitive imaging of targeted macromolecules and biological processes in living organisms' or as 'the visual representation, characterization, and quantification of biological processes at the cellular and sub-cellular levels within intact living organisms'. Weissleder defined molecular imaging in the most simple terms as 'studying diseases non-invasively at the molecular level'. Regardless of these semantic differences molecular imaging can contribute significantly to the preclinical and clinical drug and disease evaluation process. It is interesting to note, that despite major advances in imaging technology, cancer mortality has remained largely unchanged over the last three decades. Imaging has thus far enabled us to look through a magnifying glass at disease processes but has failed to dramatically influence disease outcomes. Emerging data suggest that molecular PET imaging is about to change this situation. High resolution molecular imaging devices designed for small animal research have developed into valuable tools for drug evaluation and imaging probe design. These include microPET, microCT, microMRI and optical imaging devices. These have enabled us to study drug effects in vivo by monitoring longitudinally their effects on tumour cell metabolism or proliferation. The only

  8. Molecular nuclear imaging for targeting and trafficking

    International Nuclear Information System (INIS)

    Progress of molecular biology, genetic engineering, and polymer chemistry provide various tools to target molecules and cells in vivo. In this paper, recent achievements in targeting receptors for hepatocyte or inflammatory cells and in trafficking bacterial, immune, and stem cells using molecular nuclear imaging techniques are introduced

  9. Visualization Software for Real-time, Image-guided Therapeutics in Cardiovascular Interventions

    OpenAIRE

    Pintilie, Stefan; Biswas, Labonny; Anderson, Kevan; Dick, Sandy; Wright, Graham; Radau, Perry

    2009-01-01

    This paper introduces RtViewer, a four-dimensional (3D + time) real-time visualization software for guiding cardiovascular interventions that is open source and freely available. RtViewer was designed to be part of a pipeline that can connect it to a magnetic resonance imaging (MRI) scanner, actively tracked catheters, and navigational devices. The architecture and features of RtViewer will be described with examples of guiding percutaneous cardiovascular interventions. The paper concludes wi...

  10. Design and validation of Segment - freely available software for cardiovascular image analysis

    Science.gov (United States)

    2010-01-01

    Background Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format. Results Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page http

  11. Design and validation of Segment - freely available software for cardiovascular image analysis

    International Nuclear Information System (INIS)

    Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format. Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page (http://segment.heiberg.se). Segment

  12. Molecular imaging of breast cancer

    NARCIS (Netherlands)

    Adams, A.L.L.

    2014-01-01

    Breast cancer is the most common type of cancer in women. Imaging techniques play a pivotal role in breast cancer management, especially in lesion detection, treatment planning and evaluation, and prognostication. These imaging techniques have however limitations such as the use of ionizing radiatio

  13. Advancing Cardiovascular, Neurovascular and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology

    Directory of Open Access Journals (Sweden)

    Thoralf eNiendorf

    2015-11-01

    Full Text Available Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF coils in small animal MR as a means of boosting image quality (e.g. by supporting MR microscopy and making data acquisition more efficient (e.g. by reducing measuring time; both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (biomedical imaging, molecular medicine and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (pathophysiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular and renal disease will be discussed.

  14. Magnetic Resonance Imaging: A Wealth of Cardiovascular Information

    OpenAIRE

    Shah, Sangeeta; Chryssos, Emanuel D.; Parker, Hugh

    2009-01-01

    Cardiac magnetic resonance imaging is a relatively new noninvasive imaging modality that provides insight into multiple facets of the human myocardium not available by other imaging modalities. This one test allows for the assessment of ventricular and valvular function, ischemic and nonischemic cardiomyopathies, congenital heart disease, and cardiac tumors. It has been coined by many as “one-stop shopping.” As with any imaging modality, it is important to understand not only the indications ...

  15. Evaluation of an improved technique for automated center lumen line definition in cardiovascular image data

    International Nuclear Information System (INIS)

    The aim of the study was to evaluate a new method for automated definition of a center lumen line in vessels in cardiovascular image data. This method, called VAMPIRE, is based on improved detection of vessel-like structures. A multiobserver evaluation study was conducted involving 40 tracings in clinical CTA data of carotid arteries to compare VAMPIRE with an established technique. This comparison showed that VAMPIRE yields considerably more successful tracings and improved handling of stenosis, calcifications, multiple vessels, and nearby bone structures. We conclude that VAMPIRE is highly suitable for automated definition of center lumen lines in vessels in cardiovascular image data. (orig.)

  16. Evaluation of an improved technique for automated center lumen line definition in cardiovascular image data

    Energy Technology Data Exchange (ETDEWEB)

    Gratama van Andel, Hugo A.F. [Erasmus MC-University Medical Center Rotterdam, Department of Medical Informatics, Rotterdam (Netherlands); Erasmus MC-University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands); Academic Medical Centre-University of Amsterdam, Department of Medical Physics, Amsterdam (Netherlands); Meijering, Erik; Vrooman, Henri A.; Stokking, Rik [Erasmus MC-University Medical Center Rotterdam, Department of Medical Informatics, Rotterdam (Netherlands); Erasmus MC-University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands); Lugt, Aad van der; Monye, Cecile de [Erasmus MC-University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands)

    2006-02-01

    The aim of the study was to evaluate a new method for automated definition of a center lumen line in vessels in cardiovascular image data. This method, called VAMPIRE, is based on improved detection of vessel-like structures. A multiobserver evaluation study was conducted involving 40 tracings in clinical CTA data of carotid arteries to compare VAMPIRE with an established technique. This comparison showed that VAMPIRE yields considerably more successful tracings and improved handling of stenosis, calcifications, multiple vessels, and nearby bone structures. We conclude that VAMPIRE is highly suitable for automated definition of center lumen lines in vessels in cardiovascular image data. (orig.)

  17. Molecular and Functional Imaging of Internet Addiction

    Directory of Open Access Journals (Sweden)

    Yunqi Zhu

    2015-01-01

    Full Text Available Maladaptive use of the Internet results in Internet addiction (IA, which is associated with various negative consequences. Molecular and functional imaging techniques have been increasingly used for analysis of neurobiological changes and neurochemical correlates of IA. This review summarizes molecular and functional imaging findings on neurobiological mechanisms of IA, focusing on magnetic resonance imaging (MRI and nuclear imaging modalities including positron emission tomography (PET and single photon emission computed tomography (SPECT. MRI studies demonstrate that structural changes in frontal cortex are associated with functional abnormalities in Internet addicted subjects. Nuclear imaging findings indicate that IA is associated with dysfunction of the brain dopaminergic systems. Abnormal dopamine regulation of the prefrontal cortex (PFC could underlie the enhanced motivational value and uncontrolled behavior over Internet overuse in addicted subjects. Further investigations are needed to determine specific changes in the Internet addictive brain, as well as their implications for behavior and cognition.

  18. Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Niendorf, Thoralf [RWTH Aachen, University Hospital, Department of Diagnostic Radiology, Aachen (Germany); Sodickson, Daniel K. [New York University School of Medicine, Department of Radiology, Center for Biomedical Imaging, New York, NY (United States)

    2008-01-15

    Cardiovascular magnetic resonance imaging (CVMRI) is of proven clinical value in the non-invasive imaging of cardiovascular diseases. CVMRI requires rapid image acquisition, but acquisition speed is fundamentally limited in conventional MRI. Parallel imaging provides a means for increasing acquisition speed and efficiency. However, signal-to-noise (SNR) limitations and the limited number of receiver channels available on most MR systems have in the past imposed practical constraints, which dictated the use of moderate accelerations in CVMRI. High levels of acceleration, which were unattainable previously, have become possible with many-receiver MR systems and many-element, cardiac-optimized RF-coil arrays. The resulting imaging speed improvements can be exploited in a number of ways, ranging from enhancement of spatial and temporal resolution to efficient whole heart coverage to streamlining of CVMRI work flow. In this review, examples of these strategies are provided, following an outline of the fundamentals of the highly accelerated imaging approaches employed in CVMRI. Topics discussed include basic principles of parallel imaging; key requirements for MR systems and RF-coil design; practical considerations of SNR management, supported by multi-dimensional accelerations, 3D noise averaging and high field imaging; highly accelerated clinical state-of-the art cardiovascular imaging applications spanning the range from SNR-rich to SNR-limited; and current trends and future directions. (orig.)

  19. Cardiovascular MRI in congenital heart disease. An imaging atlas

    International Nuclear Information System (INIS)

    This new and unique clinical resource offers rapid access to high-quality images covering a broad spectrum of paediatric and adult cardiac pathologies visualized using MRI and CT. Key images of each condition and a clear interpretation of their MR appearances allow for greater understanding of the pathology. Focus is given to the planning of imaging planes, techniques and sequences to obtain the best images and improve MR assessment. This text would benefit all health professionals involved in imaging congenital cardiac disease. (orig.)

  20. Cardiovascular MRI in congenital heart disease. An imaging atlas

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Shankar; Price, Gemma; Tann, Oliver; Hughes, Marina; Muthurangu, Vivek; Taylor, Andrew M. [UCL Institute of Child Health and Great Ormond Street Hospital for Children, London (United Kingdom). Centre for Cardiovascular MR

    2010-07-01

    This new and unique clinical resource offers rapid access to high-quality images covering a broad spectrum of paediatric and adult cardiac pathologies visualized using MRI and CT. Key images of each condition and a clear interpretation of their MR appearances allow for greater understanding of the pathology. Focus is given to the planning of imaging planes, techniques and sequences to obtain the best images and improve MR assessment. This text would benefit all health professionals involved in imaging congenital cardiac disease. (orig.)

  1. Engineered antibodies for molecular imaging of cancer.

    Science.gov (United States)

    Wu, Anna M

    2014-01-01

    Antibody technology has transformed drug development, providing robust approaches to producing highly targeted and active therapeutics that can routinely be advanced through clinical evaluation and registration. In parallel, there is an emerging need to access similarly targeted agents for diagnostic purposes, including non-invasive imaging in preclinical models and patients. Antibody engineering enables modification of key properties (immunogenicity, valency, biological inertness, pharmacokinetics, clearance route, site-specific conjugation) in order to produce targeting agents optimized for molecular imaging. Expanded availability of positron-emitting radionuclides has led to a resurgence of interest and applications of immunoPET (immuno-positron emission tomography). Molecular imaging using engineered antibodies and fragments provides a general approach for assessing cell surface phenotype in vivo and stands to play an increasingly important role in cancer diagnosis, treatment selection, and monitoring of molecularly targeted therapeutics. PMID:24091005

  2. Advance of molecular imaging with positron emission tomography

    International Nuclear Information System (INIS)

    Molecular imaging with positron emission tomography (PET) is an important field of molecular imaging. This article summarizes the fundamental of PET molecular imaging technique and its application in protein function, gene expression and gene therapy, receptor imaging, and blood-flow infusion and metabolism imaging. (authors)

  3. Molecular imaging of atherosclerosis in translational medicine

    Energy Technology Data Exchange (ETDEWEB)

    Perrone-Filardi, Pasquale; Costanzo, Pierluigi; Marciano, Caterina; Vassallo, Enrico; Marsico, Fabio; Ruggiero, Donatella; Petretta, Maria Piera; Chiariello, Massimo [University Federico II, Department of Internal Medicine, Cardiovascular and Immunological Sciences, Naples (Italy); Dellegrottaglie, Santo [University Federico II, Department of Internal Medicine, Cardiovascular and Immunological Sciences, Naples (Italy); Mount Sinai Medical Center, Z. and M.A. Wiener Cardiovascular Institute and M.-J. and H.R. Kravis Center for Cardiovascular Health, New York, NY (United States); Rudd, James H.F. [University of Cambridge, School of Clinical Medicine, Cambridge (United Kingdom); Cuocolo, Alberto [University Federico II, Department of Biomorphological and Functional Sciences, Naples (Italy); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples (Italy)

    2011-05-15

    Functional characterization of atherosclerosis is a promising application of molecular imaging. Radionuclide-based techniques for molecular imaging in the large arteries (e.g. aorta and carotids), along with ultrasound and magnetic resonance imaging (MRI), have been studied both experimentally and in clinical studies. Technical factors including cardiac and respiratory motion, low spatial resolution and partial volume effects mean that noninvasive molecular imaging of atherosclerosis in the coronary arteries is not ready for prime time. Positron emission tomography imaging with fluorodeoxyglucose can measure vascular inflammation in the large arteries with high reproducibility, and signal change in response to anti-inflammatory therapy has been described. MRI has proven of value for quantifying carotid artery inflammation when iron oxide nanoparticles are used as a contrast agent. Macrophage accumulation of the iron particles allows regression of inflammation to be measured with drug therapy. Similarly, contrast-enhanced ultrasound imaging is also being evaluated for functional characterization of atherosclerotic plaques. For all of these techniques, however, large-scale clinical trials are mandatory to define the prognostic importance of the imaging signals in terms of risk of future vascular events. (orig.)

  4. Molecular nuclear imaging for targeting and trafficking

    International Nuclear Information System (INIS)

    Noninvasive molecular targeting in living subjects is highly demanded for better understanding of such diverse topics as the efficient delivery of drugs, genes, or radionuclides for the diagnosis or treatment of diseases. Progress in molecular biology, genetic engineering and polymer chemistry provides various tools to target molecules and cells in vivo. We used chitosan as a polymer, and 99mTc as a radionuclide. We developed 99mTc-galactosylated chitosan to target asialoglycoprotein receptors for nuclear imaging. We also developed 99mTc-HYNIC-chitosan-transferrin to target inflammatory cells, which was more effective than 67Ga-citrate for imaging inflammatory lesions. For an effective delivery of molecules, a longer circulation time is needed. We found that around 10% PEGylation was most effective to prolong the circulation time of liposomes for nuclear imaging of 99mTc-HMPAO-labeled liposomes in rats. Using various characteristics of molecules, we can deliver drugs into targets more effectively. We found that 99mTc-labeled biodegradable pullulan-derivatives are retained in tumor tissue in response to extracellular ion-strength. For the trafficking of various cells or bacteria in an intact animal, we used optical imaging techniques or radiolabeled cells. We monitored tumor-targeting bacteria by bioluminescent imaging techniques, dentritic cells by radiolabeling and neuronal stem cells by sodium-iodide symporter reporter gene imaging. In summary, we introduced recent achievements of molecular nuclear imaging technologies in targeting receptors for hepatocyte or inflammatory cells and in trafficking bacterial, immune and stem cells using molecular nuclear imaging techniques

  5. Imaging cellular and molecular biological functions

    Energy Technology Data Exchange (ETDEWEB)

    Shorte, S.L. [Institut Pasteur, 75 - Paris (France). Plateforme d' Imagerie Dynamique PFID-Imagopole; Frischknecht, F. (eds.) [Heidelberg Univ. Medical School (Germany). Dept. of Parasitology

    2007-07-01

    'Imaging cellular and molecular biological function' provides a unique selection of essays by leading experts, aiming at scientist and student alike who are interested in all aspects of modern imaging, from its application and up-scaling to its development. Indeed the philosophy of this volume is to provide student, researcher, PI, professional or provost the means to enter this applications field with confidence, and to construct the means to answer their own specific questions. (orig.)

  6. Imaging of cardiovascular dynamics in early mouse embryos with swept source optical coherence tomography

    Science.gov (United States)

    Larina, Irina V.; Liebling, Michael; Dickinson, Mary E.; Larin, Kirill V.

    2009-02-01

    Congenital cardiovascular defects are very common, occurring in 1% of live births, and cardiovascular failures are the leading cause of birth defect-related deaths in infants. To improve diagnostics, prevention and treatment of cardiovascular abnormalities, we need to understand not only how cells form the heart and vessels but also how physical factors such as heart contraction and blood flow influence heart development and changes in the circulatory network. Mouse models are an excellent resource for studying cardiovascular development and disease because of the resemblance to humans, rapid generation time, and availability of mutants with cardiovascular defects linked to human diseases. In this work, we present results on development and application of Doppler Swept Source Optical Coherence Tomography (DSS-OCT) for imaging of cardiovascular dynamics and blood flow in the mouse embryonic heart and vessels. Our studies demonstrated that the spatial and temporal resolution of the DSS-OCT makes it possible to perform sensitive measurements of heart and vessel wall movements and to investigate how contractile waves facilitate the movement of blood through the circulatory system.

  7. In Vivo Imaging of Molecularly Targeted Phage

    Directory of Open Access Journals (Sweden)

    Kimberly A. Kelly

    2006-12-01

    Full Text Available Rapid identification of in vivo affinity ligands would have far-reaching applications for imaging specific molecular targets, in vivo systems imaging, and medical use. We have developed a high-throughput method for identifying and optimizing ligands to map and image biologic targets of interest in vivo. We directly labeled viable phage clones with far-red fluorochromes and comparatively imaged them in vivo by multichannel fluorescence ratio imaging. Using Secreted Protein Acidic and Rich in Cysteine (osteonectin and vascular cell adhesion molecule-1 as model targets, we show that: 1 fluorescently labeled phage retains target specificity on labeling; 2 in vivo distribution can be quantitated (detection thresholds of ~ 300 phage/mm3 tissue throughout the entire depth of the tumor using fluorescent tomographic imaging; and 3 fluorescently labeled phage itself can serve as a replenishable molecular imaging agent. The described method should find widespread application in the rapid in vivo discovery and validation of affinity ligands and, importantly, in the use of fluorochrome-labeled phage clones as in vivo imaging agents.

  8. Pretargeted Molecular Imaging and Radioimmunotherapy

    Directory of Open Access Journals (Sweden)

    David M. Goldenberg, Chien-Hsing Chang, Edmund A. Rossi, William J, McBride, Robert M. Sharkey

    2012-01-01

    Full Text Available Pretargeting is a multi-step process that first has an unlabeled bispecific antibody (bsMAb localize within a tumor by virtue of its anti-tumor binding site(s before administering a small, fast-clearing radiolabeled compound that then attaches to the other portion of the bsMAb. The compound's rapid clearance significantly reduces radiation exposure outside of the tumor and its small size permits speedy delivery to the tumor, creating excellent tumor/nontumor ratios in less than 1 hour. Haptens that bind to an anti-hapten antibody, biotin that binds to streptavidin, or an oligonucleotide binding to a complementary oligonucleotide sequence have all been radiolabeled for use by pretargeting. This review will focus on a highly flexible anti-hapten bsMAb platform that has been used to target a variety of radionuclides to image (SPECT and PET as well as treat tumors.

  9. Update of the Echocardiography Core Syllabus of the European Association of Cardiovascular Imaging (EACVI).

    OpenAIRE

    Cosyns, Bernard; Garbi, Madalina; Separovic, Jadranka; Pasquet, Agnes; Lancellotti, Patrizio

    2013-01-01

    The update of the Echocardiography Core Syllabus of European Association of Cardiovascular Imaging (EACVI) is now available online. The Echocardiography Core Syllabus enumerates the elements of knowledge to be taught, represents a framework for the development of local training curricula and provides expected learning outcomes to the echocardiography learner.

  10. Cardiac pathology and morphology relevant to cardiovascular imaging

    International Nuclear Information System (INIS)

    In this overview of coronary, valvular, and myocardial heart disease the structural abnormalities associated with these disorders have been described. Cardiac imaging attempts to portray the structural and functional abnormalities of the heart that cause symptomatic cardiac disease

  11. Diagnosis and management of ischemic cardiomyopathy: Role of cardiovascular magnetic resonance imaging

    OpenAIRE

    Doesch, Christina; Papavassiliu, Theano

    2014-01-01

    Coronary artery disease (CAD) represents an important cause of mortality. Cardiovascular magnetic resonance (CMR) imaging evolved as an imaging modality that allows the assessment of myocardial function, perfusion, contractile reserve and extent of fibrosis in a single comprehensive exam. This review highlights the role of CMR in the differential diagnosis of acute chest pain by detecting the location of obstructive CAD or necrosis and identifying other conditions like stress cardiomyopathy o...

  12. Dose reduction in molecular breast imaging

    Science.gov (United States)

    Wagenaar, Douglas J.; Chowdhury, Samir; Hugg, James W.; Moats, Rex A.; Patt, Bradley E.

    2011-10-01

    Molecular Breast Imaging (MBI) is the imaging of radiolabeled drugs, cells, or nanoparticles for breast cancer detection, diagnosis, and treatment. Screening of broad populations of women for breast cancer with mammography has been augmented by the emergence of breast MRI in screening of women at high risk for breast cancer. Screening MBI may benefit the sub-population of women with dense breast tissue that obscures small tumors in mammography. Dedicated breast imaging equipment is necessary to enable detection of early-stage tumors less than 1 cm in size. Recent progress in the development of these instruments is reviewed. Pixellated CZT for single photon MBI imaging of 99mTc-sestamibi gives high detection sensitivity for early-stage tumors. The use of registered collimators in a near-field geometry gives significantly higher detection efficiency - a factor of 3.6-, which translates into an equivalent dose reduction factor given the same acquisition time. The radiation dose in the current MBI procedure has been reduced to the level of a four-view digital mammography study. In addition to screening of selected sub-populations, reduced MBI dose allows for dual-isotope, treatment planning, and repeated therapy assessment studies in the era of molecular medicine guided by quantitative molecular imaging.

  13. Design and validation of Segment - freely available software for cardiovascular image analysis

    Directory of Open Access Journals (Sweden)

    Engblom Henrik

    2010-01-01

    Full Text Available Abstract Background Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment and to announce its release in a source code format. Results Segment can be used for image analysis in magnetic resonance imaging (MRI, computed tomography (CT, single photon emission computed tomography (SPECT and positron emission tomography (PET. Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home

  14. Molecular imaging in quality health care

    International Nuclear Information System (INIS)

    Full text: Quality Health Care results from applying fundamental basic science and preclinical concepts as well as novel technologies to patient care within specific socio-economic frameworks. Cancer mortality has improved recently but outcomes of cancer patients are still unacceptably poor. Molecular Imaging has the potential to improve the outcome of cancer patients in several ways. In the preclinical setting, high resolution molecular imaging devices designed for small animal research have developed into valuable tools for drug evaluation and imaging probe design. These have enabled us to study drug effects in vivo by monitoring longitudinally their effects on tumor cell metabolism or proliferation. The success of Imatinib in treating chronic myeloid leukemia (CML) and gastrointestinal stromal tumors (GIST) has demonstrated that targeted drugs can induce remarkable tumor responses and may even cure cancer patients. Targeted drugs have been used for treating various common solid human tumors, including breast cancer, colorectal cancer, and non-small cell lung cancer. However, diverse signaling pathways are involved in the development and progression of these genetically heterogeneous diseases. Consequently, inhibition of one specific pathway is likely to be efficacious in only in small subsets of patients with specific histological tumor types. It is unlikely that a single 'blockbuster' drug can be effective for all patients with a 'common' tumor. Rather, it will be necessary to develop multiple targeted drugs even for patients that share a single histologically defined tumor type. The inevitable consequence is a decreased revenue/cost ratio for the industry and increasing costs for patients and health care systems. It is therefore of paramount importance to identify drug failure as early as possible in preclinical and clinical trials. Human studies with positron emission tomography (PET) with molecular imaging probes targeting physiological processes such as

  15. Molecular structure by Coulomb explosion imaging of stored molecular ions

    International Nuclear Information System (INIS)

    An experimental scheme, which combines Coulomb explosion imaging (CEI) with storage of fast molecular ions, has been introduced recently at the TSR heavy ion storage ring facility in Heidelberg. CEI is an experimental technique that provides direct observation of the nuclear conformations within small molecules. The combination of CEI with the storage ring technique enables the control of the internal excitation of the measured molecules, which is an essential condition to the interpretation of CEI results in terms of ''structure'' assigned to specific molecular states. This structure is measured as a function of storage time, thus enabling one to study processes of slow intramolecular dynamics such as isomerization, metastable states, etc. Moreover in this scheme, CEI can be used as a diagnostic tool for the intramolecular excitation, while other molecular interactions (e.g. with electrons or photons) are investigated. In this report, the CEI principle and the new experimental setup are described with an emphasis on the new prospects for studies in molecular physics. CEI measurements of stored CH2+ and NH2+ molecular ions are presented. The study of the angular distribution in these molecules as a function of their vibrational relaxation to the ground state, reveals unexpected behavior near the linear conformation which is inconsistent with the current adiabatic theories

  16. [Recommendations of the ESC guidelines regarding cardiovascular imaging].

    Science.gov (United States)

    Sechtem, U; Greulich, S; Ong, P

    2016-08-01

    Cardiac imaging plays a key role in the diagnosis and risk stratification in the ESC guidelines for the management of patients with stable coronary artery disease. Demonstration of myocardial ischaemia guides the decision which further diagnostic and therapeutic strategy should be followed in these patients. One should, however, not forget that there are no randomised studies supporting this type of management. In patients with a low pretest probability coronary CT angiography is the optimal tool to exclude coronary artery stenoses rapidly and effectively. In the near future, however, better data is needed showing how much cardiac imaging is really necessary and how cost-effective it is in patients with stable coronary artery disease. PMID:27388914

  17. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Zhi-Yi Chen

    2014-01-01

    Full Text Available Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy.

  18. Imaging of murine embryonic cardiovascular development using optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Huang, Yongyang; Degenhardt, Karl R.; Astrof, Sophie; Zhou, Chao

    2016-03-01

    We have demonstrated the capability of spectral domain optical coherence tomography (SDOCT) system to image full development of mouse embryonic cardiovascular system. Monitoring morphological changes of mouse embryonic heart occurred in different embryonic stages helps identify structural or functional cardiac anomalies and understand how these anomalies lead to congenital heart diseases (CHD) present at birth. In this study, mouse embryo hearts ranging from E9.5 to E15.5 were prepared and imaged in vitro. A customized spectral domain OCT system was used for imaging, with a central wavelength of 1310nm, spectral bandwidth of ~100nm and imaging speed of 47kHz A-scans/s. Axial resolution of this system was 8.3µm in air, and transverse resolution was 6.2 µm with 5X objective. Key features of mouse embryonic cardiovascular development such as vasculature remodeling into circulatory system, separation of atria and ventricles and emergence of valves could be clearly seen in three-dimensional OCT images. Optical clearing was applied to overcome the penetration limit of OCT system. With high resolution, fast imaging speed, 3D imaging capability, OCT proves to be a promising biomedical imaging modality for developmental biology studies, rivaling histology and micro-CT.

  19. Impact of Medical Therapy on Atheroma Volume Measured by Different Cardiovascular Imaging Modalities

    Directory of Open Access Journals (Sweden)

    Mohamad C. N. Sinno

    2010-01-01

    Full Text Available Atherosclerosis is a systemic disease that affects most vascular beds. The gold standard of atherosclerosis imaging has been invasive intravascular ultrasound (IVUS. Newer noninvasive imaging modalities like B-mode ultrasound, cardiac computed tomography (CT, positron emission tomography (PET, and magnetic resonance imaging (MRI have been used to assess these vascular territories with high accuracy and reproducibility. These imaging modalities have lately been used for the assessment of the atherosclerotic plaque and the response of its volume to several medical therapies used in the treatment of patients with cardiovascular disease. To study the impact of these medications on atheroma volume progression or regression, imaging modalities have been used on a serial basis providing a unique opportunity to monitor the effect these antiatherosclerotic strategies exert on plaque burden. As a result, studies incorporating serial IVUS imaging, quantitative coronary angiography (QCA, B-mode ultrasound, electron beam computed tomography (EBCT, and dynamic contrast-enhanced magnetic resonance imaging have all been used to evaluate the impact of therapeutic strategies that modify cholesterol and blood pressure on the progression/regression of atherosclerotic plaque. In this review, we intend to summarize the impact of different therapies aimed at halting the progression or even result in regression of atherosclerotic cardiovascular disease evaluated by different imaging modalities.

  20. Nuclear magnetic resonance imaging of the cardiovascular system: normal and pathologic findings

    International Nuclear Information System (INIS)

    Whole body nuclear magnetic resonance (NMR) imaging of the cardiovascular system was carried out in early clinical trials in 244 volunteers and patients using a 3.5 KGauss (0.35 T) unit. The spin echo technique with multiple imaging parameters was used. Blood vessels were clearly discriminated from solid organs and lesions because little or no intraluminal signal is seen with laminar blood flow at normal velocities, whereas a more intense image is generated by solid organs. Characteristic flow signals were observed in normal patients and were accentuated by varying the imaging parameters. Cardiac chambers were well delineated in some patients on nongated images. In one case, internal topography of the ventricles was exquisitely displayed on a gated image. Intraluminal pathology, such as dissection of the aorta, aneurysms of the aorta and left ventricle, and aortic atheroma, was clearly demonstrated. Patency of coronary arterial bypass grafts was shown. Abnormal flow patterns due to slow or turbulent flow were accentuated on images using the second spin echo. The preliminary experience indicated the considerable potential of NMR imaging in the evaluation of cardiovascular disease

  1. Three Dimensional Molecular Imaging for Lignocellulosic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Paul W.; Sweedler, Jonathan V.

    2011-06-09

    The development of high efficiency, inexpensive processing protocols to render biomass components into fermentable substrates for the sequential processing of cell wall components into fuels and important feedstocks for the biorefinery of the future is a key goal of the national roadmap for renewable energy. Furthermore, the development of such protocols depends critically on detailed knowledge of the spatial and temporal infiltration of reagents designed to remove and separate the phenylpropenoid heteropolymer (lignin) from the processable sugar components sequestered in the rigid cell walls of plants. A detailed chemical and structural understanding of this pre-enzymatic processing in space and time was the focus of this program. We worked to develop new imaging strategies that produce real-time molecular speciation information in situ; extract sub-surface information about the effects of processing; and follow the spatial and temporal characteristics of the molecular species in the matrix and correlate this complex profile with saccharification. Spatially correlated SIMS and Raman imaging were used to provide high quality, high resolution subcellular images of Miscanthus cross sections. Furthermore, the combination of information from the mass spectrometry and Raman scattering allows specific chemical assignments of observed structures, difficult to assign from either imaging approach alone and lays the foundation for subsequent heterocorrelated imaging experiments targeted at more challenging biological systems, such as the interacting plant-microbe systems relevant to the rhizosphere.

  2. Molecular Imaging of Biomarkers in Breast Cancer

    Science.gov (United States)

    Ulaner, Gary A.; Riedl, Chris C.; Dickler, Maura N.; Jhaveri, Komal; Pandit-Taskar, Neeta; Weber, Wolfgang

    2016-01-01

    The success of breast cancer therapy is ultimately defined by clinical endpoints such as survival. It is valuable to have biomarkers that can predict the most efficacious therapies or measure response to therapy early in the course of treatment. Molecular imaging has a promising role in complementing and overcoming some of the limitations of traditional biomarkers by providing the ability to perform noninvasive, repeatable whole-body assessments. The potential advantages of imaging biomarkers are obvious and initial clinical studies have been promising, but proof of clinical utility still requires prospective multicenter clinical trials. PMID:26834103

  3. Cardiovascular hybrid imaging using PET/MRI; Kardiovaskulaere Hybridbildgebung mit PET/MRT

    Energy Technology Data Exchange (ETDEWEB)

    Nensa, Felix; Schlosser, Thomas [Universitaetsklinikum Essen (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie und Neuroradiologie

    2014-12-15

    The following overview provides a summary of the state of the art and research as well as potential clinical applications of cardiovascular PET/MR imaging. PET/MRI systems have been clinically available for a few years, and their use in cardiac imaging has been successfully demonstrated. At this period in time, some of the technical difficulties that arose at the beginning have been solved; in particular with respect to MRI-based attenuation correction, caution should be exercised with PET quantification. In addition, many promising technical options are still in the developmental stage, such as MRI-based motion correction of PET data resulting from simultaneous MR acquisition, and are not yet available for cardiovascular imaging. On the other hand, PET/MRI has been used to demonstrate significant pathologies such as acute and chronic myocardial infarction, myocarditis or cardiac sarcoidosis; future applications in clinical routine or within studies appear to be possible. In coming years additional studies will have to be performed to prove diagnostic gain at a reasonable cost-benefit ratio before valid conclusions are possible regarding the clinical utility and future of cardiovascular PET/MR imaging.

  4. Molecular imaging for the diagnosis of dementia

    International Nuclear Information System (INIS)

    Many radiotracers have been developed to visualize pathological protein accumulation and neurotransmitter deficits in the brains of patients with dementia using positron emission tomography (PET). Recent advances in the development of β-sheet binding agents enabled in vivo detection of senile plaques in Alzheimer's disease. Molecular imaging using these agents would contribute to the early and accurate diagnosis of dementia and monitoring therapeutic effect of anti-dementia drugs. (author)

  5. Quantitative Analysis in Multimodality Molecular Imaging

    International Nuclear Information System (INIS)

    PET offers the possibility of truly quantitative (physiological) measurements of tracer concentration in vivo. However, there are several issues limiting both visual qualitative interpretation and quantitative analysis capabilities of reconstructed PET images that must be considered in order to fully realize this potential. The major challenges to quantitative PET can be categorized in 5 classes: (i) factors related to imaging system performance and data acquisition protocols (instrumentation and measurement factors), (ii) those related to the physics of photon interaction with biologic tissues (physical factors), (iii) image reconstruction (reconstruction factors), (iv) factors related to patient motion and other physiological issues (physiological factors), and (v) Methodological factors: issues related to difficulties in developing accurate tracer kinetic models, especially at the voxel level. This paper reflects the tremendous increase in interest in quantitative molecular imaging using PET as both clinical and research imaging modality in the past decade. It offers an overview of the entire range of quantitative PET imaging from basic principles to various steps required for obtaining quantitatively accurate data from dedicated standalone PET and combined PET/CT and PET/MR systems including data collection methods and algorithms used to correct for physical degrading factors as well as image processing and analysis techniques and their clinical and research applications. Impact of physical degrading factors including attenuation of photons and contribution from photons scattered in the patient and partial volume effect on the diagnostic quality and quantitative accuracy of PET data will be discussed. Considerable advances have been made and much worthwhile research focused on the development of quantitative imaging protocols incorporating accurate data correction techniques and sophisticated image reconstruction algorithms. The fundamental concepts of

  6. Molecular Breast Imaging Using Emission Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gopan, O. [University of Florida; Gilland, D. [University of Florida; Weisenberger, Andrew G. [JLAB; Kross, Brian J. [JLAB; Welch, Benjamin L. [Dilon Technologies

    2013-06-01

    Purpose: Tour objective is to design a novel SPECT system for molecular breast imaging (MBI) and evaluate its performance. The limited angle SPECT system, or emission tomosynthesis, is designed to achieve 3D images of the breast with high spatial resolution/sensitivity. The system uses a simplified detector motion and is conducive to on-board biopsy and mult-modal imaging with mammography. Methods: The novel feature of the proposed gamma camera is a variable-angle, slant-hole (VASH) collimator, which is well suited for limited angle SPECT of a mildly compressed breast. The collimator holes change slant angle while the camera surface remains flush against the compression paddle. This allows the camera to vary the angular view ({+-}30{degrees}, {+-}45{degrees}) for tomographic imaging while keeping the camera close to the object for high spatial resolution and/or sensitivity. Theoretical analysis and Monte Carlo simulations were performed assuming a point source and isolated breast phantom. Spatial resolution, sensitivity, contrast and SNR were measured. Results were compared to single-view, planar images and conventional SPECT. For both conventional SPECT and VASH, data were reconstructed using iterative algorithms. Finally, a proof-of-concept VASH collimator was constructed for experimental evaluation. Results: Measured spatial resolution/sensitivity with VASH showed good agreement with theory including depth-of-interaction (DOI) effects. The DOI effect diminished the depth resolution by approximately 2 mm. Increasing the slant angle range from {+-}30{degrees} to {+-}45{degrees} resulted in an approximately 1 mm improvement in the depth resolution. In the breast phantom images, VASH showed improved contrast and SNR over conventional SPECT and improved contrast over planar scintimmammography. Reconstructed images from the proof-of-concept VASH collimator demonstrated reasonable depth resolution capabilities using limited angle projection data. Conclusion: We

  7. Targeted Gold Nanoparticles enable Molecular CT Imaging of Cancer

    OpenAIRE

    Popovtzer, Rachela; Agrawal, Ashish; Kotov, Nicholas A.; Popovtzer, Aron; Balter, James; Carey, Thomas E.; Kopelman, Raoul

    2008-01-01

    X-ray based computed tomography (CT), is among the most convenient imaging/diagnostic tools in hospitals today in terms of availability, efficiency and cost. However, in contrast to magnetic resonance imaging (MRI) and various nuclear medicine imaging modalities, CT is not considered a molecular imaging modality since targeted and molecularly specific contrast agents have not yet been developed. Here we describe a targeted molecular imaging platform that enables, for the first time, cancer de...

  8. Correlation of chronic kidney disease, diabetes and peripheral artery disease with cardiovascular events in patients using stress myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Normal stress myocardial perfusion imaging (MPI) studies generally suggest an excellent prognosis for cardiovascular events. Chronic kidney disease (CKD), diabetes and peripheral artery disease (PAD) have been established as the risk factors for cardiovascular events. However, whether these risk factors significantly predict cardiovascular events in patients with normal stress MPI is unclear. The purpose of this study was to evaluate the prognostic value of these risk factors in patients with normal stress MPI. Patients with normal stress MPI (n=372, male=215 and female=157, age=69 years, CKD without hemodialysis=95, diabetes=99, PAD=19, previous coronary artery disease=116) were followed up for 14 months. Normal stress MPI was defined as a summed stress score of 2 and/or persistent proteinuria. Cardiovascular events included cardiac death, non-fatal myocardial infarction and congestive heart failure requiring hospitalization. Cardiovascular events occurred in 20 of 372 patients (5.4%). In univariate Cox regression analysis, PAD, diabetes, diabetic retinopathy, insulin use, anemia, hypoalbuminemia, CKD, left ventricular ejection fraction and pharmacological stress tests were significant predictors of cardiovascular events. In multivariate Cox regression analysis, PAD, diabetes and CKD were independent and significant predictors for cardiovascular events, and their number was the strongest predictor for cardiovascular events (hazard ratio=21.7, P<0.001). PAD, diabetes and CKD are coexisting, independent and significant risk factors for cardiovascular events, CKD being the strongest predictor. The number of coexisting risk factors is important in predicting cardiovascular events in patients with normal stress MPI. (author)

  9. Molecular Imaging with Activatable Reporter Systems

    Directory of Open Access Journals (Sweden)

    Gang Niu, Xiaoyuan Chen

    2012-01-01

    Full Text Available Molecular imaging is a newly emerged multiple disciplinary field that aims to visualize, characterize and quantitatively measure biological processes at cellular and molecular levels in humans and other living systems. A reporter gene is a piece of DNA encoding reporter protein, which presents as a readily measurable phenotype that can be distinguished easily from the background of endogenous protein. After being transferred into cells of organ systems (transgenes, the reporter gene can be utilized to visualize transcriptional and posttranscriptional regulation of gene expression, protein-protein interactions, or trafficking of proteins or cells in living subjects. Herein, we review previous classification of reporter genes and regroup the reporter gene based imaging as basic, inducible and activatable, based on the regulation of reporter gene transcription and post-translational modification of reporter proteins. We then focus on activatable reporters, in which the signal can be activated at the posttranslational level for visualizing protein-protein interactions, protein phosphorylation or tertiary structure changes. The applications of several types of activatable reporters will also be summarized. We conclude that activatable reporter imaging can benefit both basic biomedical research and drug development.

  10. Neutron imaging for inertial confinement fusion and molecular optic imaging

    International Nuclear Information System (INIS)

    Scientific domains that require imaging of micrometric/nano-metric objects are dramatically increasing (Plasma Physics, Astrophysics, Biotechnology, Earth Sciences...). Difficulties encountered in imaging smaller and smaller objects make this research area more and more challenging and in constant evolution. The two scientific domains, through which this study has been led, are the neutron imaging in the context of the inertial confinement fusion and the fluorescence molecular imaging. Work presented in this thesis has two main objectives. The first one is to describe the instrumentation characteristics that require such imagery and, relatively to the scientific domains considered, identify parameters likely to optimize the imaging system accuracy. The second one is to present the developed data analysis and reconstruction methods able to provide spatial resolution adapted to the size of the observed object. Similarities of numerical algorithms used in these two scientific domains, which goals are quiet different, show how micrometric/nano-metric object imaging is a research area at the border of a large number of scientific disciplines. (author)

  11. PET Imaging - from Physics to Clinical Molecular Imaging

    Science.gov (United States)

    Majewski, Stan

    2008-03-01

    From the beginnings many years ago in a few physics laboratories and first applications as a research brain function imager, PET became lately a leading molecular imaging modality used in diagnosis, staging and therapy monitoring of cancer, as well as has increased use in assessment of brain function (early diagnosis of Alzheimer's, etc) and in cardiac function. To assist with anatomic structure map and with absorption correction CT is often used with PET in a duo system. Growing interest in the last 5-10 years in dedicated organ specific PET imagers (breast, prostate, brain, etc) presents again an opportunity to the particle physics instrumentation community to contribute to the important field of medical imaging. In addition to the bulky standard ring structures, compact, economical and high performance mobile imagers are being proposed and build. The latest development in standard PET imaging is introduction of the well known TOF concept enabling clearer tomographic pictures of the patient organs. Development and availability of novel photodetectors such as Silicon PMT immune to magnetic fields offers an exciting opportunity to use PET in conjunction with MRI and fMRI. As before with avalanche photodiodes, particle physics community plays a leading role in developing these devices. The presentation will mostly focus on present and future opportunities for better PET designs based on new technologies and methods: new scintillators, photodetectors, readout, software.

  12. Cardiovascular assessment of patients with Ullrich-Turner's Syndrome on Doppler echocardiography and magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Castro Ana Valéria Barros de

    2002-01-01

    Full Text Available OBJECTIVE: To assess the cardiovascular features of Ullrich-Turner's syndrome using echocardiography and magnetic resonance imaging, and to correlate them with the phenotype and karyotype of the patients. The diagnostic concordance between the 2 methods was also assessed. METHODS: Fifteen patients with the syndrome were assessed by echocardiography and magnetic resonance imaging (cardiac chambers, valves, and aorta. Their ages ranged from 10 to 28 (mean of 16.7 years. The karyotype was analyzed in 11 or 25 metaphases of peripheral blood lymphocytes, or both. RESULTS: The most common phenotypic changes were short stature and spontaneous absence of puberal development (100%; 1 patient had a cardiac murmur. The karyotypes detected were as follows: 45,X (n=7, mosaics (n=5, and deletions (n=3. No echocardiographic changes were observed. In regard to magnetic resonance imaging, coarctation and dilation of the aorta were found in 1 patient, and isolated dilation of the aorta was found in 4 patients. CONCLUSION: The frequencies of coarctation and dilation of the aorta detected on magnetic resonance imaging were similar to those reported in the literature (5.5% to 20%, and 6.3% to 29%, respectively. This confirmed the adjuvant role of magnetic resonance imaging to Doppler echocardiography for diagnosing cardiovascular alterations in patients with Ullrich-Turner's syndrome.

  13. Molecular probes for malignant melanoma imaging.

    Science.gov (United States)

    Ren, Gang; Pan, Ying; Cheng, Zhen

    2010-09-01

    Malignant melanoma represents a serious public health problem and is a deadly disease when it is diagnosed at late stage. Though (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) has been widely used clinically for melanoma imaging, other approaches to specifically identify, characterize, monitor and guide therapeutics for malignant melanoma are still needed. Consequently, many probes targeting general molecular events including metabolism, angiogenesis, hypoxia and apoptosis in melanoma have been successfully developed. Furthermore, probes targeting melanoma associated targets such as melanocortin receptor 1 (MC1R), melanin, etc. have undergone active investigation and have demonstrated high melanoma specificity. In this review, these molecular probes targeting diverse melanoma biomarkers have been summarized. Some of them may eventually contribute to the improvement of personalized management of malignant melanoma. PMID:20497118

  14. Molecular imaging of apoptosis in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hakumaeki, Juhana M. [Cellular and Molecular Imaging Group, Department of Biomedical NMR, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio (Finland) and Department of Clinical Radiology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland)]. E-mail: juhana.hakumaki@uku.fi; Liimatainen, Timo [Cellular and Molecular Imaging Group, Department of Biomedical NMR, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio (Finland)

    2005-11-01

    Apoptosis plays an important role in cancer. Mechanisms hindering its action are implicated in a number of malignancies. Also, the induction of apoptosis plays a pivotal role in non-surgical cancer treatment regimes such as irradiation, chemotherapy, or hormones. Recent advanced in imaging science have made it now possible for us to detect and visualize previously inaccessible and even unrecognized biological phenomena in cells and tissue undergoing apoptosis in vivo. Not only are these imaging techniques painting an intriguing picture of the spatiotemporal characteristics and metabolic and biophysical of apoptosis in situ, but they are expected to have an ever increasing impact in preclinical testing and design of new anticancer agents as well. Rapid and accurate visualization of apoptotic response in the clinical settings can also be of significant diagnostic and prognostic worth. With the advent of molecular medicine and patient-tailored treatment options and therapeutic agents, such monitoring techniques are becoming paramount.

  15. Extra-cardiac findings in cardiovascular magnetic resonance: what the imaging cardiologist needs to know.

    Science.gov (United States)

    Rodrigues, Jonathan C L; Lyen, Stephen M; Loughborough, William; Amadu, Antonio Matteo; Baritussio, Anna; Dastidar, Amardeep Ghosh; Manghat, Nathan E; Bucciarelli-Ducci, Chiara

    2016-01-01

    Cardiovascular magnetic resonance (CMR) is an established non-invasive technique to comprehensively assess cardiovascular structure and function in a variety of acquired and inherited cardiac conditions. A significant amount of the neck, thorax and upper abdomen are imaged at the time of routine clinical CMR, particularly in the initial multi-slice axial and coronal images. The discovery of unsuspected disease at the time of imaging has ethical, financial and medico-legal implications. Extra-cardiac findings at the time of CMR are common, can be important and can change clinical management. Certain patient groups undergoing CMR are at particular risk of important extra-cardiac findings as several of the cardiovascular risk factors for atherosclerosis are also risk factors for malignancy. Furthermore, the presence of certain extra-cardiac findings may contribute to the interpretation of the primary cardiac pathology as some cardiac conditions have multi-systemic extra-cardiac involvement. The aim of this review is to give an overview of the type of extra-cardiac findings that may become apparent on CMR, subdivided by anatomical location. We focus on normal variant anatomy that may mimic disease, common incidental extra-cardiac findings and important imaging signs that help distinguish sinister pathology from benign disease. We also aim to provide a framework to the approach and potential further diagnostic work-up of incidental extra-cardiac findings discovered at the time of CMR. However, it is beyond the scope of this review to discuss and determine the clinical significance of extracardiac findings at CMR. PMID:27156861

  16. Bioresponsive probes for molecular imaging: concepts and in vivo applications

    NARCIS (Netherlands)

    Duijnhoven, S.M. van; Robillard, M.S.; Langereis, S.; Grull, H.

    2015-01-01

    Molecular imaging is a powerful tool to visualize and characterize biological processes at the cellular and molecular level in vivo. In most molecular imaging approaches, probes are used to bind to disease-specific biomarkers highlighting disease target sites. In recent years, a new subset of molecu

  17. Risk stratification in cardiovascular disease primary prevention - scoring systems, novel markers, and imaging techniques.

    LENUS (Irish Health Repository)

    Zannad, Faiez

    2012-04-01

    The aim of this paper is to review and discuss current methods of risk stratification for cardiovascular disease (CVD) prevention, emerging biomarkers, and imaging techniques, and their relative merits and limitations. This report is based on discussions that took place among experts in the area during a special CardioVascular Clinical Trialists workshop organized by the European Society of Cardiology Working Group on Cardiovascular Pharmacology and Drug Therapy in September 2009. Classical risk factors such as blood pressure and low-density lipoprotein cholesterol levels remain the cornerstone of risk estimation in primary prevention but their use as a guide to management is limited by several factors: (i) thresholds for drug treatment vary with the available evidence for cost-effectiveness and benefit-to-risk ratios; (ii) assessment may be imprecise; (iii) residual risk may remain, even with effective control of dyslipidemia and hypertension. Novel measures include C-reactive protein, lipoprotein-associated phospholipase A(2) , genetic markers, and markers of subclinical organ damage, for which there are varying levels of evidence. High-resolution ultrasound and magnetic resonance imaging to assess carotid atherosclerotic lesions have potential but require further validation, standardization, and proof of clinical usefulness in the general population. In conclusion, classical risk scoring systems are available and inexpensive but have a number of limitations. Novel risk markers and imaging techniques may have a place in drug development and clinical trial design. However, their additional value above and beyond classical risk factors has yet to be determined for risk-guided therapy in CVD prevention.

  18. Molecular mechanisms underlying the role of nitric oxide in the cardiovascular system.

    Science.gov (United States)

    Stoclet, J C; Troncy, E; Muller, B; Brua, C; Kleschyov, A L

    1998-11-01

    In the cardiovascular system, nitric oxide (NO) is involved in the short and long-term regulation of haemodynamics, and in a number of their pathological alterations. Investigation into the biochemistry of NO-synthase isoforms has confirmed that they also all produce superoxide anion (O(*)). The free radical NO can interact with many targets on which novel information has been recently obtained. The major results of these interactions are not only the well known activation of guanylyl cyclase, but also the formation of potentially cytotoxic peroxynitrite (ONOO(-)), and the formation of S-nitrosothiols and non-haem iron-dinitrosyl dithiolate complexes. Tissue O(2), O(*), low molecular weight thiols and transition metals (especially FeII) play a pivotal role in directing NO towards targets responsible for biological effects, or storage or release from these stores. In addition, circulating forms of NO have been proposed with S-nitrosation of blood proteins. All these mechanisms provide potential pharmacological targets for future therapeutic strategies. PMID:15991928

  19. Prognostic value of tissue Doppler imaging for predicting ventricular arrhythmias and cardiovascular mortality in ischaemic cardiomyopathy

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Olsen, Flemming Javier; Storm, Katrine;

    2016-01-01

    .0 vs. 5.7 ± 1.8 cm/s, P = 0.020). Global a' remained an independent predictor of VT/VF/CVD after multivariable adjustment for age, gender, β-blocker therapy, and deceleration time (HR = 1.25 [1.02, 1.54], P = 0.032). Regional analysis revealed that a depressed a' in the inferior wall drives the......AIMS: Only 30% of patients receiving an implantable cardioverter defibrillator (ICD) for primary prevention receive appropriately therapy. We sought to investigate the value of tissue Doppler imaging (TDI) to predict ventricular tachycardia (VT), ventricular fibrillation (VF), and cardiovascular...

  20. Cellular and molecular mechanisms of HGF/Met in the cardiovascular system.

    Science.gov (United States)

    Gallo, Simona; Sala, Valentina; Gatti, Stefano; Crepaldi, Tiziana

    2015-12-01

    Met tyrosine kinase receptor, also known as c-Met, is the HGF (hepatocyte growth factor) receptor. The HGF/Met pathway has a prominent role in cardiovascular remodelling after tissue injury. The present review provides a synopsis of the cellular and molecular mechanisms underlying the effects of HGF/Met in the heart and blood vessels. In vivo, HGF/Met function is particularly important for the protection of the heart in response to both acute and chronic insults, including ischaemic injury and doxorubicin-induced cardiotoxicity. Accordingly, conditional deletion of Met in cardiomyocytes results in impaired organ defence against oxidative stress. After ischaemic injury, activation of Met provides strong anti-apoptotic stimuli for cardiomyocytes through PI3K (phosphoinositide 3-kinase)/Akt and MAPK (mitogen-activated protein kinase) cascades. Recently, we found that HGF/Met is also important for autophagy regulation in cardiomyocytes via the mTOR (mammalian target of rapamycin) pathway. HGF/Met induces proliferation and migration of endothelial cells through Rac1 (Ras-related C3 botulinum toxin substrate 1) activation. In fibroblasts, HGF/Met antagonizes the actions of TGFβ1 (transforming growth factor β1) and AngII (angiotensin II), thus preventing fibrosis. Moreover, HGF/Met influences the inflammatory response of macrophages and the immune response of dendritic cells, indicating its protective function against atherosclerotic and autoimmune diseases. The HGF/Met axis also plays an important role in regulating self-renewal and myocardial regeneration through the enhancement of cardiac progenitor cells. HGF/Met has beneficial effects against myocardial infarction and endothelial dysfunction: the cellular and molecular mechanisms underlying repair function in the heart and blood vessels are common and include pro-angiogenic, anti-inflammatory and anti-fibrotic actions. Thus administration of HGF or HGF mimetics may represent a promising therapeutic agent for the

  1. Imaging of Lung Cancer in the Era of Molecular Medicine

    OpenAIRE

    Nishino, Mizuki; Jackman, David M.; Hatabu, Hiroto; Jänne, Pasi A.; Johnson, Bruce E.; Van den Abbeele, Annick D.

    2011-01-01

    Recent discoveries characterizing the molecular basis of lung cancer brought fundamental changes in lung cancer treatment. The authors review the molecular pathogenesis of lung cancer, including genomic abnormalities, targeted therapies, and resistance mechanisms, and discuss lung cancer imaging with novel techniques. Knowledge of the molecular basis of lung cancer is essential for radiologists to properly interpret imaging and assess response to therapy. Quantitative and functional imaging h...

  2. Current Progress of Aptamer-Based Molecular Imaging

    OpenAIRE

    Wang, Andrew Z.; Farokhzad, Omid C.

    2014-01-01

    Aptamers, single-stranded oligonucleotides, are an important class of molecular targeting ligand. Since their discovery, aptamers have been rapidly translated into clinical practice. They have been approved as therapeutics and molecular diagnostics. Aptamers also possess several properties that make them uniquely suited to molecular imaging. This review aims to provide an overview of aptamers’ advantages as targeting ligands and their application in molecular imaging.

  3. Molecular hydrogen polarization images of OMC-1

    Science.gov (United States)

    Burton, Michael G.; Minchin, N. R.; Hough, J. H.; Aspin, C.; Axon, D. J.

    1991-01-01

    An image of the polarization of the shocked H2 v = 1-0 S(1) line emission in the core of OMC-1 has been obtained. Along the molecular outflow of the source, the line is dichroically polarized by a medium of aligned grains located between the earth and the shock fronts. The polarization pattern traces the magnetic field direction, which is parallel to the outflow axis and to the large-scale field direction determined from far-IR continuum measurements. Close to the IR source IRc2, the likely source of the outflow, the aligned vectors twist, indicating that the magnetic field direction changes. Modeling the line ratios of scattered H2 lines in the reflection nebula, it is concluded that the size distribution of grains there is typical of the small grains in the diffuse interstellar medium. By contrast, the scattered continuum radiation from the core region suggests that the grains there are larger than this.

  4. Molecular imaging in Libman-Sacks endocarditis

    DEFF Research Database (Denmark)

    Dahl, Anders; Schaadt, Bente K; Santoni-Rugiu, Eric;

    2015-01-01

    cardiothoracic surgery and pathologic examinations showed characteristic morphology of Libman-Sacks vegetations. All microbiological examinations including blood cultures, microscopy, culture and 16s PCR of the valve were negative and the diagnosis of Libman-Sacks endocarditis was convincing. It is difficult to...... distinguish Libman-Sacks endocarditis from culture-negative infective endocarditis (IE). Molecular imaging techniques are being used increasingly in cases of suspected IE but no studies have previously reported the use in patients with Libman-Sacks endocarditis. In the present case, (18)F-FDG-PET-CT clearly...... demonstrated the increased glucose uptake caused by infiltrating white blood cells in the ongoing inflammatory process at the mitral valve. In conclusion, (18)F-FDG-PET-CT cannot be used to distinguish between IE and non-infective Libman-Sacks vegetations....

  5. Clinical application of nuclear magnetic resonance imaging (resistive type) on cardiovascular disease

    International Nuclear Information System (INIS)

    In order to evaluate the usefulness of Nuclear Magnetic Resonance (NMR) imaging in diagnosing cardiovascular disease, 27 subjects were examined using a 0.1-Tesla resistive type (ASAHI MARK-J). In 10 normal subjects, four cardiac chambers, interventricular septum, aorta, pulmonary vessels and vena cava were clearly identified in NMR imaging. In two patients with old anteroseptal myocardial infarction, anteroseptal wall thinning and left ventricular aneurysm with mural thrombi were demonstrated. In two cases of antrolateral and posterolateral myocardial infarction, however, infarcted areas were not identified in NMR imaging. In one patient with congestive cardiomyopathy, enlarged left ventricle without hypertrophy was recognized. In two patients with hypertrophic obstructive cardiomyopathy, NMR imaging disclosed thickened left ventricular wall associated with its narrowed cavity. A mural thrombus in the right ventricle was distinctly visualized in one patient with cardio-vascular Behcet's disease. In two patients with mitral valve stenosis, enlarged left atrium with a mural thrombus was clearly demonstrated in both cross and longitudinal sections. In three patients with thoratic aortic aneurysm, local dilatation of aorta and mural thrombi were recognized. In four patients with dissecting aortic aneurysm, double channels with an intimal flap in the aorta were visualized in NMR imaging. Mean T1 values and standard deviations of left ventricle, left ventricular wall, and thrombi were 593+-89, 341+-20, 316+-84 msec, respectively. Mean T1 values of thrombi were ordinally shorter than those of left ventricule. But some thrombi which might be expected fresh had longer T1 values. (J.P.N.)

  6. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    OpenAIRE

    Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.; Nimmagadda, Sridhar; Jung, Hyeyun; Goddard, James S.; Lee, Seungjoon; McKisson, John; Smith, Mark F.; Stolin, Alexander V.; Weisenberger, Andrew G.; Pomper, Martin G.

    2013-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques.

  7. Ultrasound Biomicroscopy in Small Animal Research: Applications in Molecular and Preclinical Imaging

    Directory of Open Access Journals (Sweden)

    A. Greco

    2012-01-01

    Full Text Available Ultrasound biomicroscopy (UBM is a noninvasive multimodality technique that allows high-resolution imaging in mice. It is affordable, widely available, and portable. When it is coupled to Doppler ultrasound with color and power Doppler, it can be used to quantify blood flow and to image microcirculation as well as the response of tumor blood supply to cancer therapy. Target contrast ultrasound combines ultrasound with novel molecular targeted contrast agent to assess biological processes at molecular level. UBM is useful to investigate the growth and differentiation of tumors as well as to detect early molecular expression of cancer-related biomarkers in vivo and to monitor the effects of cancer therapies. It can be also used to visualize the embryological development of mice in uterus or to examine their cardiovascular development. The availability of real-time imaging of mice anatomy allows performing aspiration procedures under ultrasound guidance as well as the microinjection of cells, viruses, or other agents into precise locations. This paper will describe some basic principles of high-resolution imaging equipment, and the most important applications in molecular and preclinical imaging in small animal research.

  8. Molecular breast imaging with gamma emitters.

    Science.gov (United States)

    Schillaci, O; Spanu, A; Danieli, R; Madeddu, G

    2013-12-01

    Following a diagnosis of breast cancer (BC), the early detection of local recurrence is important to define appropriate therapeutic strategies and increase the chances of a cure. In fact, despite major progress in surgical treatment, radiotherapy, and chemotherapy protocols, tumor recurrence is still a major problem. Moreover, the diagnosis of recurrence with conventional imaging methods can be difficult as a result of the presence of scar tissue. Molecular breast imaging (MBI) with gamma-ray emitting radiotracers may be very useful in this clinical setting, because it is not affected by the post-therapy morphologic changes. This review summarises the applications of 99mTc-sestamibi and 99mTc-tetrofosmin, the two most employed gamma emitter radiopharmaceuticals for MBI, in the diagnosis of local disease recurrence in patients with BC. The main limitation of MBI using conventional gamma-cameras is the low sensitivity for small BCs. The recent development of hybrid single photon emission computed tomography/computed tomography devices and especially of high-resolution specific breast cameras can improve the detection rate of sub-centimetric malignant lesions. Nevertheless, probably only the large availability of dedicated cameras will allow the clinical acceptance of MBI as useful complementary diagnostic technique in BC recurrence. The possible role of MBI with specific cameras in monitoring the local response of BC to neoadjuvant chemotherapy is also briefly discussed. PMID:24322791

  9. Molecular imaging of hypoxia with radiolabelled agents

    International Nuclear Information System (INIS)

    Tissue hypoxia results from an inadequate supply of oxygen (O2) that compromises biological functions. Structural and functional abnormalities of the tumour vasculature together with altered diffusion conditions inside the tumour seem to be the main causes of tumour hypoxia. Evidence from experimental and clinical studies points to a role for tumour hypoxia in tumour propagation, resistance to therapy and malignant progression. This has led to the development of assays for the detection of hypoxia in patients in order to predict outcome and identify patients with a worse prognosis and/or patients that would benefit from appropriate treatments. A variety of invasive and non-invasive approaches have been developed to measure tumour oxygenation including oxygen-sensitive electrodes and hypoxia marker techniques using various labels that can be detected by different methods such as positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), autoradiography and immunohistochemistry. This review aims to give a detailed overview of non-invasive molecular imaging modalities with radiolabelled PET and SPECT tracers that are available to measure tumour hypoxia. (orig.)

  10. Applications of molecular MRI and optical imaging in cancer

    OpenAIRE

    Penet, Marie-France; Mikhaylova, Maria; Li, Cong; Krishnamachary, Balaji; Glunde, Kristine; Pathak, Arvind P.; Bhujwalla, Zaver M.

    2010-01-01

    Some of the most exciting advances in molecular-functional imaging of cancer are occurring at the interface between chemistry and imaging. Several of these advances have occurred through the development of novel imaging probes that report on molecular pathways, the tumor micro-environment and the response of tumors to treatment; as well as through novel image-guided platforms such as nanoparticles and nanovesicles that deliver therapeutic agents against specific targets and pathways. Cancer c...

  11. Cardiac remodeling following percutaneous mitral valve repair - initial results assessed by cardiovascular magnetic resonance imaging

    DEFF Research Database (Denmark)

    Radunski, U K; Franzen, O; Barmeyer, A;

    2014-01-01

    PURPOSE: Percutaneous mitral valve repair with the MitraClip device (Abbott Vascular, Redwood City, California, USA) is a novel therapeutic option in patients with mitral regurgitation. This study evaluated the feasibility of cardiac volume measurements by cardiovascular magnetic resonance imaging...... mitral valve repair results in reverse LV but not in RV or LA remodeling. KEY POINTS: • Volume measurements by cardiovascular magnetic resonance imaging are feasible following percutaneous mitral valve repair despite device-related artifacts.• A significant reduction of left ventricular volume was found...... end-systolic (48 [42 - 80] vs. 51 [40 - 81] ml/m(2); p = 0.48), and LA (87 [55 - 124] vs. 92 [48 - 137] ml/m(2); p = 0.20) volume indices between BL and FU. CONCLUSION: CMR enables the assessment of cardiac volumes in patients after MitraClip implantation. Our CMR findings indicate that percutaneous...

  12. Cardiovascular CT angiography in neonates and children: Image quality and potential for radiation dose reduction with iterative image reconstruction techniques

    International Nuclear Information System (INIS)

    To evaluate image quality (IQ) of low-radiation-dose paediatric cardiovascular CT angiography (CTA), comparing iterative reconstruction in image space (IRIS) and sinogram-affirmed iterative reconstruction (SAFIRE) with filtered back-projection (FBP) and estimate the potential for further dose reductions. Forty neonates and children underwent low radiation CTA with or without ECG synchronisation. Data were reconstructed with FBP, IRIS and SAFIRE. For ECG-synchronised studies, half-dose image acquisitions were simulated. Signal noise was measured and IQ graded. Effective dose (ED) was estimated. Mean absolute and relative image noise with IRIS and full-dose SAFIRE was lower than with FBP (P < 0.001), while SNR and CNR were higher (P < 0.001). Image noise was also lower and SNR and CNR higher in half-dose SAFIRE studies compared with full-and half-dose FBP studies (P < 0.001). IQ scores were higher for IRIS, full-dose SAFIRE and half-dose SAFIRE than for full-dose FBP and higher for half-dose SAFIRE than for half-dose FBP (P < 0.05). Median weight-specific ED was 0.3 mSv without and 1.36 mSv with ECG synchronisation. The estimated ED of half-dose SAFIRE studies was 0.68 mSv. IR improves image noise, SNR, CNR and subjective IQ compared with FBP in low-radiation-dose paediatric CTA and allows further dose reductions without compromising diagnostic IQ. (orig.)

  13. Bio-Imaging and Subclinical Cardiovascular Disease in Low- and Middle-Income Countries

    Science.gov (United States)

    Vedanthan, Rajesh; Choi, Brian G.; Baber, Usman; Narula, Jagat; Fuster, Valentin

    2014-01-01

    Cardiovascular disease (CVD) is the leading cause of mortality worldwide and also exerts a significant economic burden, especially in low- and middle-income countries (LMICs). Detection of subclinical CVD, before an individual experiences a major event, may therefore offer the potential to prevent or delay morbidity and mortality, if combined with an appropriate care response. In this review, we discuss imaging technologies that can be used to detect subclinical atherosclerotic CVD (carotid ultrasound, coronary artery calcification) and non-atherosclerotic CVD (echocardiography). We review these imaging modalities, including aspects such as rationale, relevance, feasibility, utilization, and access in LMICs. The potential gains in detecting subclinical CVD may be substantial in LMICs, if earlier detection leads to earlier engagement with the health care system to prevent or delay cardiac events, morbidity, and premature mortality. Thus, dedicated studies examining the feasibility, utility, and cost-effectiveness of detecting subclinical CVD in LMICs are warranted. PMID:25245465

  14. Impact of long-term meditation practice on cardiovascular reactivity during perception and reappraisal of affective images.

    Science.gov (United States)

    Pavlov, Sergei V; Reva, Natalia V; Loktev, Konstantin V; Korenyok, Vladimir V; Aftanas, Lyubomir I

    2015-03-01

    Meditation has been found to be an efficient strategy for coping with stress in healthy individuals and in patients with psychosomatic disorders. The main objective of the present study was to investigate the psychophysiological mechanisms of beneficial effects of meditation on cardiovascular reactivity. We examined effects of long-term Sahaja Yoga meditation on cardiovascular reactivity during affective image processing under "unregulated" and "emotion regulation" conditions. Twenty two experienced meditators and 20 control subjects participated in the study. Under "unregulated" conditions participants were shown neutral and affective images and were asked to attend to them. Under "emotion regulation" conditions they down-regulated negative affect through reappraisal of negative images or up-regulated positive affect through reappraisal of positive images. Under "unregulated" conditions while anticipating upcoming images meditators vs. controls did not show larger pre-stimulus total peripheral resistance and greater cardiac output for negative images in comparison with neutral and positive ones. Control subjects showed TPR decrease for negative images only when they consciously intended to reappraise them (i.e. in the "emotion regulation" condition). Both meditators and controls showed comparable cardiovascular reactivity during perception of positive stimuli, whereas up-regulating of positive affect was associated with more pronounced cardiac activation in meditators. The findings provide some insight into understanding the beneficial influence of meditation on top-down control of emotion and cardiovascular reactivity. PMID:25583571

  15. The effect of aging on atherosclerotic plaque inflammation and molecular calcification: A PET CT imaging study

    DEFF Research Database (Denmark)

    Blomberg, Björn; Thomassen, Anders; Simonsen, Jane Angel;

    cardiovascular risk factors were prospectively assessed by 18F-FDG (inflammation) and sodium 18F-fluoride (18F-NaF) (molecular calcification) PET CT imaging. Global aortic uptake of 18F-FDG and 18F-NaF was determined semi-quantitatively by calculating the average blood pool corrected standardized uptake value (cSUV......) [Mean SUVAORTA - Mean SUVBLOOD POOL]. Furthermore, the average maximum 18F-NaF cSUV was determined in the coronary arteries. Calculating regression and correlation coefficients summarized the data. Results: A quadratic relationship was observed between aging and aortic 18F-FDG avidity. A second order...

  16. Molecular Imaging and Therapy of Merkel Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Volkan Beylergil

    2014-04-01

    Full Text Available Several molecular imaging modalities have been evaluated in the management of Merkel cell carcinoma (MCC, a rare and aggressive tumor with a high tendency to metastasize. Continuous progress in the field of molecular imaging might improve management in these patients. The authors review the current modalities and their impact on MCC in this brief review article.

  17. Quantum dots for multimodal molecular imaging of angiogenesis

    OpenAIRE

    Mulder, W.J.M.; Strijkers, G.J.; Nicolay, K.; Griffioen, A W

    2010-01-01

    Quantum dots exhibit unique optical properties for bioimaging purposes. We have previously developed quantum dots with a paramagnetic and functionalized coating and have shown their potential for molecular imaging purposes. In the current mini-review we summarize the synthesis procedure, the in vitro testing and, importantly, the in vivo application for multimodal molecular imaging of tumor angiogenesis.

  18. Explosive type of moderate-resistance training induces functional, cardiovascular, and molecular adaptations in the elderly

    DEFF Research Database (Denmark)

    Beltran Valls, Maria Reyes; Dimauro, Ivan; Brunelli, Andrea;

    2014-01-01

    12 weeks of low-frequency, moderate-intensity, explosive-type resistance training (EMRT) on muscle strength and power in old community-dwelling people (70-75 years), monitoring functional performance linked to daily living activities (ADL) and cardiovascular response, as well as biomarkers of muscle......Current recommendations aimed at reducing neuromuscular and functional loss in aged muscle have identified muscle power as a key target for intervention trials, although little is known about the biological and cardiovascular systemic response in the elderly. This study investigated the effects of...... damage, cardiovascular risk, and cellular stress response. The present study provides the first evidence that EMRT was highly effective in achieving a significant enhancement in muscular strength and power as well as in functional performance without causing any detrimental modification in cardiovascular...

  19. Use of molecular imaging to guide and assess radiation therapy

    International Nuclear Information System (INIS)

    Imaging is intimately associated with radiation therapy (RT). Anatomical imaging is the standard of care for crucial components of the RT process such as tumor localization, treatment planning, and positioning verification. However, as disease progression and treatment response at the molecular and cellular level precede visible structural changes to tissue, applications of functional and molecular imaging are becoming increasingly more important. Use of molecular imaging in RTcan be divided into three phases: (1) Imaging for diagnosis and staging, performed during the initial phases of RT to establish the presence and progression of disease (2) Imaging for target definition, performed prior to RT in order to determine the spatial extent of the tumor and the position of normal tissue (3) Imaging for treatment response assessment, performed during or after RT to establish effectiveness, predict outcome, and potentially modify therapy. Following diagnosis and staging molecular imaging can help to define which type of therapy should be used, as well assess the spatial extent of the tumor, thus providing grounds for more reliable target definition. Molecular imaging has been shown to significantly reduce large inter-observer variability in target definition compared to anatomical imaging. This reduction leads to significant reduction in treatment margin, thereby enabling more accurate and precise tumor targeting. Furthermore, molecular imaging has the potential to characterize biological heterogeneity within tumors, providing foundations for so-called biologically conformal radiotherapy, or dose painting. Early treatment response assessment refers to the use of molecular imaging during the course of therapy, and late treatment response assessment refers to the use of molecular imaging after the therapy has been completed. While late assessment enables prediction of treatment outcome, early assessment, in addition, enables treatment adaptation

  20. Diagnosis and management of ischemic cardiomyopathy: Role of cardiovascular magnetic resonance imaging.

    Science.gov (United States)

    Doesch, Christina; Papavassiliu, Theano

    2014-11-26

    Coronary artery disease (CAD) represents an important cause of mortality. Cardiovascular magnetic resonance (CMR) imaging evolved as an imaging modality that allows the assessment of myocardial function, perfusion, contractile reserve and extent of fibrosis in a single comprehensive exam. This review highlights the role of CMR in the differential diagnosis of acute chest pain by detecting the location of obstructive CAD or necrosis and identifying other conditions like stress cardiomyopathy or myocarditis that can present with acute chest pain. Besides, it underlines the prognostic implication of perfusion abnormalities in the setting of acute chest pain. Furthermore, the review addresses the role of CMR to detect significant CAD in patients with stable CAD. It elucidates the accuracy and clinical utility of CMR with respect to other imaging modalities like single-photon emission computed tomography and positron emission tomography. Besides, the prognostic value of CMR stress testing is discussed. Additionally, it summarizes the available CMR techniques to assess myocardial viability and describes algorithm to identify those patient who might profit from revascularization those who should be treated medically. Finally, future promising imaging techniques that will provide further insights into the fundamental disease processes in ischemic cardiomyopathy are discussed. PMID:25429329

  1. Diagnosis and management of ischemic cardiomyopathy: Role of cardiovascular magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Christina; Doesch; Theano; Papavassiliu

    2014-01-01

    Coronary artery disease(CAD) represents an important cause of mortality. Cardiovascular magnetic resonance(CMR) imaging evolved as an imaging modality that allows the assessment of myocardial function, perfusion, contractile reserve and extent of fibrosis in a single comprehensive exam. This review highlights the role of CMR in the differential diagnosis of acute chest pain by detecting the location of obstructive CAD or necrosis and identifying other conditions like stress cardiomyopathy or myocarditis that can present with acute chest pain. Besides, it underlines the prognostic implication of perfusion abnormalities in the setting of acute chest pain. Furthermore, the review addresses the role of CMR to detect significant CAD in patients with stable CAD. It elucidates the accuracy and clinical utility of CMR with respect to other imaging modalitieslike single-photon emission computed tomography and positron emission tomography. Besides, the prognostic value of CMR stress testing is discussed. Additionally, it summarizes the available CMR techniques to assess myocardial viability and describes algorithm to identify those patient who might profit from revascularization those who should be treated medically. Finally, future promising imaging techniques that will provide further insights into the fundamental disease processes in ischemic cardiomyopathy are discussed.

  2. Alterations in vascular function in primary aldosteronism: a cardiovascular magnetic resonance imaging study.

    Science.gov (United States)

    Mark, P B; Boyle, S; Zimmerli, L U; McQuarrie, E P; Delles, C; Freel, E M

    2014-02-01

    Excess aldosterone is associated with increased cardiovascular risk. Aldosterone has a permissive effect on vascular fibrosis. Cardiovascular magnetic resonance imaging (CMR) allows study of vascular function by measuring aortic distensibility. We compared aortic distensibility in primary aldosteronism (PA), essential hypertension (EH) and normal controls and explored the relationship between aortic distensibility and pulse wave velocity (PWV). We studied PA (n=14) and EH (n=33) subjects and age-matched healthy controls (n=17) with CMR, including measurement of aortic distensibility, and measured PWV using applanation tonometry. At recruitment, PA and EH patients had similar blood pressure and left ventricular mass. Subjects with PA had significantly lower aortic distensibility and higher PWV compared with EH and healthy controls. These changes were independent of other factors associated with reduced aortic distensibility, including ageing. There was a significant relationship between increasing aortic stiffness and age in keeping with physical and vascular ageing. As expected, aortic distensibility and PWV were closely correlated. These results demonstrate that PA patients display increased arterial stiffness compared with EH, independent of vascular ageing. The implication is that aldosterone invokes functional impairment of arterial function. The long-term implications of arterial stiffening in aldosterone excess require further study. PMID:23884211

  3. Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

    OpenAIRE

    Kelsey Herrmann; Johansen, Mette L.; Craig, Sonya E.; Jason Vincent; Michael Howell; Ying Gao; Lan Lu; Bernadette Erokwu; Agnes, Richard S.; Zheng-Rong Lu; Pokorski, Jonathan K.; James Basilion; Vikas Gulani; Mark Griswold; Chris Flask

    2015-01-01

    Magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM) with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T 1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA)3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T 1-weighted imaging techniques. In this study, we used a dynamic quantitative T 1 mapping strategy to more ob...

  4. Assessment of radiation dose in nuclear cardiovascular imaging using realistic computational models

    International Nuclear Information System (INIS)

    Purpose: Nuclear cardiology plays an important role in clinical assessment and has enormous impact on the management of a variety of cardiovascular diseases. Pediatric patients at different age groups are exposed to a spectrum of radiation dose levels and associated cancer risks different from those of adults in diagnostic nuclear medicine procedures. Therefore, comprehensive radiation dosimetry evaluations for commonly used myocardial perfusion imaging (MPI) and viability radiotracers in target population (children and adults) at different age groups are highly desired. Methods: Using Monte Carlo calculations and biological effects of ionizing radiation VII model, we calculate the S-values for a number of radionuclides (Tl-201, Tc-99m, I-123, C-11, N-13, O-15, F-18, and Rb-82) and estimate the absorbed dose and effective dose for 12 MPI radiotracers in computational models including the newborn, 1-, 5-, 10-, 15-yr-old, and adult male and female computational phantoms. Results: For most organs, 201Tl produces the highest absorbed dose whereas 82Rb and 15O-water produce the lowest absorbed dose. For the newborn baby and adult patient, the effective dose of 82Rb is 48% and 77% lower than that of 99mTc-tetrofosmin (rest), respectively. Conclusions: 82Rb results in lower effective dose in adults compared to 99mTc-labeled tracers. However, this advantage is less apparent in children. The produced dosimetric databases for various radiotracers used in cardiovascular imaging, using new generation of computational models, can be used for risk-benefit assessment of a spectrum of patient population in clinical nuclear cardiology practice

  5. Assessment of radiation dose in nuclear cardiovascular imaging using realistic computational models

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Lee, Choonsik [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20852 (United States); Bolch, Wesley E. [Departments of Nuclear and Radiological and Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Geneva Neuroscience Center, Geneva University, Geneva CH-1205 (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB (Netherlands)

    2015-06-15

    Purpose: Nuclear cardiology plays an important role in clinical assessment and has enormous impact on the management of a variety of cardiovascular diseases. Pediatric patients at different age groups are exposed to a spectrum of radiation dose levels and associated cancer risks different from those of adults in diagnostic nuclear medicine procedures. Therefore, comprehensive radiation dosimetry evaluations for commonly used myocardial perfusion imaging (MPI) and viability radiotracers in target population (children and adults) at different age groups are highly desired. Methods: Using Monte Carlo calculations and biological effects of ionizing radiation VII model, we calculate the S-values for a number of radionuclides (Tl-201, Tc-99m, I-123, C-11, N-13, O-15, F-18, and Rb-82) and estimate the absorbed dose and effective dose for 12 MPI radiotracers in computational models including the newborn, 1-, 5-, 10-, 15-yr-old, and adult male and female computational phantoms. Results: For most organs, {sup 201}Tl produces the highest absorbed dose whereas {sup 82}Rb and {sup 15}O-water produce the lowest absorbed dose. For the newborn baby and adult patient, the effective dose of {sup 82}Rb is 48% and 77% lower than that of {sup 99m}Tc-tetrofosmin (rest), respectively. Conclusions: {sup 82}Rb results in lower effective dose in adults compared to {sup 99m}Tc-labeled tracers. However, this advantage is less apparent in children. The produced dosimetric databases for various radiotracers used in cardiovascular imaging, using new generation of computational models, can be used for risk-benefit assessment of a spectrum of patient population in clinical nuclear cardiology practice.

  6. Functional and molecular image guidance in radiotherapy treatment planning optimization.

    Science.gov (United States)

    Das, Shiva K; Ten Haken, Randall K

    2011-04-01

    Functional and molecular imaging techniques are increasingly being developed and used to quantitatively map the spatial distribution of parameters, such as metabolism, proliferation, hypoxia, perfusion, and ventilation, onto anatomically imaged normal organs and tumor. In radiotherapy optimization, these imaging modalities offer the promise of increased dose sparing to high-functioning subregions of normal organs or dose escalation to selected subregions of the tumor as well as the potential to adapt radiotherapy to functional changes that occur during the course of treatment. The practical use of functional/molecular imaging in radiotherapy optimization must take into cautious consideration several factors whose influences are still not clearly quantified or well understood including patient positioning differences between the planning computed tomography and functional/molecular imaging sessions, image reconstruction parameters and techniques, image registration, target/normal organ functional segmentation, the relationship governing the dose escalation/sparing warranted by the functional/molecular image intensity map, and radiotherapy-induced changes in the image intensity map over the course of treatment. The clinical benefit of functional/molecular image guidance in the form of improved local control or decreased normal organ toxicity has yet to be shown and awaits prospective clinical trials addressing this issue. PMID:21356479

  7. Cardiovascular ultrahigh field magnetic resonance imaging. Challenges, technical solutions and opportunities

    International Nuclear Information System (INIS)

    This involves high spatial resolution cardiac imaging with ultrahigh magnetic fields (7 T) and clinically acceptable image quality. Cardiovascular magnetic resonance imaging (MRI) at a field strength of 1.5 T using a spatial resolution of (2 x 2 x 6-8) mm3. Cardiac MRI at ultrahigh field strength makes use of multitransmit/receive radiofrequency (RF) technology and development of novel technology that utilizes the traits of ultrahigh field MRI. Enhanced spatial resolution which is superior by a factor of 6-10 to what can be achieved by current clinical cardiac MRI. The relative spatial resolution (pixels per anatomical structure) comes close to what can be accomplished by current cardiac MRI in small rodents. Feasibility studies demonstrate the gain in spatial resolution at 7.0 T due to the sensitivity advantage inherent to ultrahigh magnetic fields. Please stay tuned and please put further weight behind the solution of the remaining technical problems of cardiac MRI at 7.0 T. (orig.)

  8. Cardiovascular imaging in the diagnosis and monitoring of cardiotoxicity: role of echocardiography.

    Science.gov (United States)

    Zito, Concetta; Longobardo, Luca; Cadeddu, Christian; Monte, Ines; Novo, Giuseppina; Dell'Oglio, Sonia; Pepe, Alessia; Madonna, Rosalinda; Tocchetti, Carlo G; Mele, Donato

    2016-05-01

    The evaluation by cardiovascular imaging of chemotherapy patients became a central topic in the last several years. The use of drugs for the treatment of cancers increased, and new molecules and protocols were developed to improve outcomes in these patients. Although, these novel approaches also produced a progressive increase in side effects, particularly myocardial dysfunction. Imaging of the heart was highly accurate in the early diagnosis of cancer therapeutics related-cardiac dysfunction. Echocardiography is the first-line method to assess ventricular function alterations, and it is required to satisfy the need for an early, easy and accurate diagnosis to stratify the risk of heart failure and manage treatments. A careful monitoring of cardiac function during the course of therapy should prevent the onset of severe heart impairment. This review provides an overview of the most important findings of the role of echocardiography in the management of chemotherapy-treated patients to create a clear and complete description of the efficacy of conventional measurements, the importance of comprehensive heart evaluations, the additional role of new echocardiographic techniques, the utility of integrated studies using other imaging tools and the positions of the most important international societies on this topic. PMID:27183524

  9. The use of multimodality cardiovascular imaging to assess right ventricular size and function.

    Science.gov (United States)

    Surkova, Elena; Muraru, Denisa; Iliceto, Sabino; Badano, Luigi P

    2016-07-01

    Right ventricular (RV) size and function have been found to be important predictors of cardiovascular morbidity and mortality in patients with various conditions. However, non-invasive assessment of the RV is a challenging task due to its complex anatomy and location in the chest. Although cardiac magnetic resonance (CMR) is considered a "gold standard" for RV assessment, the development of novel echocardiographic techniques, including three-dimensional (3DE) and two-dimensional speckle-tracking echocardiography (2DSTE) opened new exciting opportunities in RV imaging. 3DE has proven accurate in measuring RV volumes and ejection fraction when compared with CMR while 2DSTE plays a critical role in measuring RV myocardial deformation, which is a powerful predictor of patients' functional capacity and survival. Cardiac computed tomography provides an accurate and reproducible assessment of the RV volumes and can be considered a reliable alternative for patients who are not suitable for either echocardiography or CMR. The purpose of this review is to summarize currently available data on the role of the different noninvasive cardiac imaging modalities in assessment of RV size, function and mechanics, with an emphasis on the benefits of novel imaging techniques and on how the latter can be applied in the various clinical settings. PMID:27057977

  10. Cardiovascular whole-body MR imaging in patients with symptomatic peripheral arterial occlusive disease

    International Nuclear Information System (INIS)

    Purpose: To examine patients with peripheral-arterial-occlusive-disease (PAOD) for systemic effects associated with atherosclerosis using a comprehensive state-of-the-art whole-body MR examination protocol. The protocol comprises the assessment of the complete arterial vasculature (except coronary arteries), the brain, and the heart. Materials and methods: Multi-station whole-body 3D MR angiography was performed in sixty consecutive patients with clinical suspicion for PAOD at 1.5 T (Magnetom Avanto, Siemens, Erlangen, Germany). Functional and delayed enhancement cardiac images were acquired, as well as FLAIR images of the brain and TOF angiography of intracranial vessels. MR and DSA images were assessed by independent observers for artherosclerotic manifestations and other pathology. Sensitivity and specificity for the detection of vascular pathology was calculated for MR data using conventional DSA of the symptomatic region as standard-of-reference. Results: Sensitivity and specificity for the detection of significant vascular stenosis (>70% luminal narrowing) was 94% and 96% (PPV 87%, NPV 98%). Significant microangiopathic tissue alterations (n=7) and/or cerebral infarction (n=18) were diagnosed in 23/60 patients. Thirty-eight of 60 patients presented with systolic left ventricular wall motion abnormalities. In 24 patients subendocardial or transmural delayed enhancement was detected in corresponding regions, indicating prior myocardial infarction. Conclusion: For patients with PAOD and suspected systemic atherosclerotic disease a comprehensive diagnosis of accompanying cardiovascular pathology and therefore staging of systemic atherosclerotic disease is feasible within one MR examination. (orig.)

  11. Retinal vascular imaging in early life: insights into processes and risk of cardiovascular disease.

    Science.gov (United States)

    Li, Ling-Jun; Ikram, Mohammad Kamran; Wong, Tien Yin

    2016-04-15

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. In recent years, studies have shown that the origins of CVD may be traced to vascular and metabolic processes in early life. Retinal vascular imaging is a new technology that allows detailed non-invasive in vivo assessment and monitoring of the microvasculature. In this systematic review, we described the application of retinal vascular imaging in children and adolescents, and we examined the use of retinal vascular imaging in understanding CVD risk in early life. We reviewed all publications with quantitative retinal vascular assessment in two databases: PubMed and Scopus. Early life CVD risk factors were classified into four groups: birth risk factors, environmental risk factors, systemic risk factors and conditions linked to future CVD development. Retinal vascular changes were associated with lower birth weight, shorter gestational age, low-fibre and high-sugar diet, lesser physical activity, parental hypertension history, childhood hypertension, childhood overweight/obesity, childhood depression/anxiety and childhood type 1 diabetes mellitus. In summary, there is increasing evidence supporting the view that structural changes in the retinal microvasculature are associated with CVD risk factors in early life. Thus, the retina is a useful site for pre-clinical assessment of microvascular processes that may underlie the future development of CVD in adulthood. PMID:26435039

  12. Molecular imaging in the framework of personalized cancer medicine.

    Science.gov (United States)

    Belkić, Dzevad; Belkić, Karen

    2013-11-01

    With our increased understanding of cancer cell biology, molecular imaging offers a strategic bridge to oncology. This complements anatomic imaging, particularly magnetic resonance (MR) imaging, which is sensitive but not specific. Among the potential harms of false positive findings is lowered adherence to recommended surveillance post-therapy and by persons at increased cancer risk. Positron emission tomography (PET) plus computerized tomography (CT) is the molecular imaging modality most widely used in oncology. In up to 40% of cases, PET-CT leads to changes in therapeutic management. Newer PET tracers can detect tumor hypoxia, bone metastases in androgen-sensitive prostate cancer, and human epidermal growth factor receptor type 2 (HER2)-expressive tumors. Magnetic resonance spectroscopy provides insight into several metabolites at the same time. Combined with MRI, this yields magnetic resonance spectroscopic imaging (MRSI), which does not entail ionizing radiation and is thus suitable for repeated monitoring. Using advanced signal processing, quantitative information can be gleaned about molecular markers of brain, breast, prostate and other cancers. Radiation oncology has benefited from molecular imaging via PET-CT and MRSI. Advanced mathematical approaches can improve dose planning in stereotactic radiosurgery, stereotactic body radiotherapy and high dose-rate brachytherapy. Molecular imaging will likely impact profoundly on clinical decision making in oncology. Molecular imaging via MR could facilitate early detection especially in persons at high risk for specific cancers. PMID:24511645

  13. Inversion of Strong Field Photoelectron Spectra for Molecular Orbital Imaging

    CERN Document Server

    Puthumpally-Joseph, R; Peters, M; Nguyen-Dang, T T; Atabek, O; Charron, E

    2016-01-01

    Imaging structures at the molecular level is a fast developing interdisciplinary research field that spans across the boundaries of physics and chemistry. High spatial resolution images of molecules can be obtained with photons or ultrafast electrons. In addition, images of valence molecular orbitals can be extracted via tomographic techniques based on the coherent XUV radiation emitted by a molecular gas exposed to an intense ultra-short infrared laser pulse. In this paper, we demonstrate that similar information can be obtained by inverting energy resolved photoelectron spectra using a simplified analytical model.

  14. A Data Mining Approach for Cardiovascular Disease Diagnosis Using Heart Rate Variability and Images of Carotid Arteries

    OpenAIRE

    Hyeongsoo Kim; Musa Ibrahim M. Ishag; Minghao Piao; Taeil Kwon; Keun Ho Ryu

    2016-01-01

    In this paper, we proposed not only an extraction methodology of multiple feature vectors from ultrasound images for carotid arteries (CAs) and heart rate variability (HRV) of electrocardiogram signal, but also a suitable and reliable prediction model useful in the diagnosis of cardiovascular disease (CVD). For inventing the multiple feature vectors, we extract a candidate feature vector through image processing and measurement of the thickness of carotid intima-media (IMT). As a complementar...

  15. Molecular imaging: Bridging the gap between neuroradiology and neurohistology

    OpenAIRE

    Heckl, S; Pipkorn, R.; Nägele, T; Vogel, U; Küker, W.; Voigt, K.

    2004-01-01

    Historically, in vivo imaging methods have largely relied on imaging gross anatomy. More recently it has become possible to depict biological processes at the cellular and molecular level. These new research methods use magnetic resonance imaging (MRI), positron emission tomography (PET), near-infrared optical imaging, scintigraphy, and autoradiography in vivo and in vitro. Of primary interest is the development of methods using MRI and PET with which the progr...

  16. An introduction to functional and molecular imaging with MRI

    International Nuclear Information System (INIS)

    Magnetic resonance imaging (MRI) has been applied to many aspects of functional and molecular imaging. Many of the parameters used to produce image contrast in MRI are influenced by the local chemical environment around the atoms being imaged; these parameters can be exploited to probe the molecular content of tissues and this has been shown to have many applications in radiology. Diffusion-weighted imaging is a well-established method for measuring small changes in the molecular movement of water that occurs following the onset of ischaemia and in the presence of tumours. Exogenous contrast agents containing gadolinium or iron oxide have been used to image tissue vascularity, cell migration, and specific biological processes, such as cell death. MR spectroscopy is a technique for measuring the concentrations of tissue metabolites and this has been used to probe metabolic pathways in cancer, in cardiac tissue, and in the brain. Several groups are developing positron-emission tomography (PET)-MRI systems that combine the spatial resolution of MRI with the metabolic sensitivity of PET. However, the application of MRI to functional and molecular imaging is limited by its intrinsic low sensitivity. A number of techniques have been developed to overcome this which utilize a phenomenon termed hyperpolarization; these have been used to image tissue pH, cellular necrosis, and to image the lungs. Although most of these applications have been developed in animal models, they are increasingly being translated into human imaging and some are used routinely in many radiology departments.

  17. Imaging the Breakdown of Molecular Frame Dynamics through Rotational Uncoupling

    CERN Document Server

    Zipp, Lucas J; Bucksbaum, Philip H

    2016-01-01

    We have observed directly in the time domain the uncoupling of electron motion from the molecular frame due to rotational-electronic coupling in a molecular Rydberg system. In contrast to Born- Oppenheimer dynamics, in which the electron is firmly fixed to the molecular frame, there exists a regime of molecular dynamics known as $l$-uncoupling where the motion of a non-penetrating Rydberg electron decouples from the instantaneous alignment of the molecular frame. We have imaged this unusual regime in time-dependent photoelectron angular distributions of a coherently prepared electron wave packet in the 4$f$ manifold of $N_2$.

  18. Designing an university-level module on molecular imaging chemistry

    International Nuclear Information System (INIS)

    Full text: Why do we need radiopharmacy, radiopharmacy, radiopharmacy training? In this post-genomic era, molecular imaging has gain tremendous interest not only amongst physicians but also from biologists, chemists, physicists, engineers, statisticians, pharmaceutical companies and even from governments. There is no doubt that nuclear medicine has been engaged in molecular medicine more than one decade ago. Positron emission tomography (PET) has reawaken interest in long forgotten radiopharmacy. Only major hospitals in the developed countries have invested in the development of dedicated radiopharmacy laboratory and training or recruitment of radiopharmacist. But PET has forced nuclear medicine to create a radiopharmacy unit and adopt radiopharmacy guidelines such as good radiopharmaceutical practice (GRPP) and good manufacturing practice (GMP). It is compounded by the fact that SPECT radiopharmaceutical chemistry has advanced significantly for both diagnostics and therapeutics, which calls for a high level of understanding on radiopharmaceutical chemistry and technical know-how. These factors eventually lead to introduction of tran ing program, courses and degree program. The most striking examples will be European Association of Nuclear Medicine (EANM) radiopharmacy courses and a series of IAEA activities on GRPP, GMP and technologist training programs. Various forms of training or education program can be formulated for various levels, starting from basic radiopharmacy course to PhD program, depending on the following factors; (1) National interest and policies on bio/medical sector; (2) Size of the nuclear medicine community in the respective country; (3) Institution interest and policies; and (4) Existing infrastructure and programs. Current Radiopharmacy Education in Singapore: In Singapore, all of the major nuclear medicine centers are supervised by radiopharmacists with PhD degree. All of the nuclear medicine technologists in the major centers have got

  19. Molecular sources of residual cardiovascular risk, clinical signals, and innovative solutions: relationship with subclinical disease, undertreatment, and poor adherence: implications of new evidence upon optimizing cardiovascular patient outcomes

    Directory of Open Access Journals (Sweden)

    Kones R

    2013-10-01

    Full Text Available Richard KonesCardiometabolic Research Institute, Houston, TX, USAAbstract: Residual risk, the ongoing appreciable risk of major cardiovascular events (MCVE in statin-treated patients who have achieved evidence-based lipid goals, remains a concern among cardiologists. Factors that contribute to this continuing risk are atherogenic non-low-density lipoprotein (LDL particles and atherogenic processes unrelated to LDL cholesterol, including other risk factors, the inherent properties of statin drugs, and patient characteristics, ie, genetics and behaviors. In addition, providers, health care systems, the community, public policies, and the environment play a role. Major statin studies suggest an average 28% reduction in LDL cholesterol and a 31% reduction in relative risk, leaving a residual risk of about 69%. Incomplete reductions in risk, and failure to improve conditions that create risk, may result in ongoing progression of atherosclerosis, with new and recurring lesions in original and distant culprit sites, remodeling, arrhythmias, rehospitalizations, invasive procedures, and terminal disability. As a result, identification of additional agents to reduce residual risk, particularly administered together with statin drugs, has been an ongoing quest. The current model of atherosclerosis involves many steps during which disease may progress independently of guideline-defined elevations in LDL cholesterol. Differences in genetic responsiveness to statin therapy, differences in ability of the endothelium to regenerate and repair, and differences in susceptibility to nonlipid risk factors, such as tobacco smoking, hypertension, and molecular changes associated with obesity and diabetes, may all create residual risk. A large number of inflammatory and metabolic processes may also provide eventual therapeutic targets to lower residual risk. Classically, epidemiologic and other evidence suggested that raising high-density lipoprotein (HDL cholesterol

  20. Optical molecular imaging technology in genetically engineered mouse models

    International Nuclear Information System (INIS)

    Optical molecular imaging technology has been rapidly developed to non-invasively, quantitatively and dynamically monitor the in vivo biological processes in real time. It is widely used in various fields of biomedicine and life sciences with advantages like easy operation, real-time study, high sensitivity and low cost image equipment. In recent years, the generation of transgenic animal models in combination with optical molecular imaging reporter genes has greatly facilitated the development of the imaging technology and expanded its application. In this article, we review the research progress by optical molecular imaging in genetically engineered mice (GEM) for 1) investigating tumorigenesis, growth or metastasis, 2) monitoring cell cycle, cell proliferation, apoptosis or angiogenesis, 3) evaluating the inflammation process and 4) providing a modality for pharmaceutical development. (authors)

  1. Tight binding description of the STM image of molecular chains

    OpenAIRE

    Calev, Yoel; Cohen, Hezy; Cuniberti, Gianaurelio; Nitzan, Abraham; Porath, Danny

    2004-01-01

    A tight binding model for scanning tunneling microscopy images of a molecule adsorbed on a metal surface is described. The model is similar in spirit to that used to analyze conduction along molecular wires connecting two metal leads and makes it possible to relate these two measurements and the information that may be gleaned from the corresponding results. In particular, the dependence of molecular conduction properties along and across a molecular chain on the chain length, intersite elect...

  2. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Bucerius, Jan [Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital RWTH Aachen, RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Maastricht University Medical Center (MUMC), Department of Nuclear Medicine and Cardiovascular Research Institute (CARIM), P. Debyelaan 25, HX, Maastricht (Netherlands); Hyafil, Fabien [Bichat University Hospital, Inserm 1148, DHU FIRE, Assistance Publique - Hopitaux de Paris, Department of Nuclear Medicine, Paris (France); Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Verberne, Hein J. [University of Amsterdam, Department of Nuclear Medicine, Academic Medical Center, Amsterdam (Netherlands); Slart, Riemer H.J.A. [University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); University of Twente, Department of Biomedical Photonic Imaging, Faculty of Science and Technology, Enschede (Netherlands); Lindner, Oliver [Heart and Diabetes Center NRW, Nuclear Medicine and Molecular Imaging, Institute of Radiology, Bad Oeynhausen (Germany); Sciagra, Roberto [University of Florence, Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, Florence (Italy); Agostini, Denis [Normandie Universite, Department of Nuclear Medicine, CHU Cote de Nacre, Caen (France); Uebleis, Christopher [Ludwig-Maximilians Universitaet Muenchen, Department of Clinical Radiology, Muenchen (Germany); Gimelli, Alessia [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Hacker, Marcus [Medical University Vienna, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided therapy, Vienna (Austria); Collaboration: on behalf of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM)

    2016-04-15

    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a considerable need for innovative diagnostic and therapeutic approaches to improve the quality of care and limit the burden of cardiovascular diseases. During the past 10 years, several retrospective and prospective clinical studies have been published using {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to quantify inflammation in atherosclerotic plaques. However, the current variety of imaging protocols used for vascular (arterial) imaging with FDG PET considerably limits the ability to compare results between studies and to build large multicentre imaging registries. Based on the existing literature and the experience of the Members of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee, the objective of this position paper was to propose optimized and standardized protocols for imaging and interpretation of PET scans in atherosclerosis. These recommendations do not, however, replace the individual responsibility of healthcare professionals to make appropriate decisions in the circumstances of the individual study protocols used and the individual patient, in consultation with the patient and, where appropriate and necessary, the patient's guardian or carer. These recommendations suffer from the absence of conclusive evidence on many of the recommendations. Therefore, they are not intended and should not be used as ''strict guidelines'' but should, as already mentioned, provide a basis for standardized clinical atherosclerosis PET imaging protocols, which are subject to further and continuing evaluation and improvement. However, this EANM position paper might indeed be a first step towards &apos

  3. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis

    International Nuclear Information System (INIS)

    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a considerable need for innovative diagnostic and therapeutic approaches to improve the quality of care and limit the burden of cardiovascular diseases. During the past 10 years, several retrospective and prospective clinical studies have been published using 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to quantify inflammation in atherosclerotic plaques. However, the current variety of imaging protocols used for vascular (arterial) imaging with FDG PET considerably limits the ability to compare results between studies and to build large multicentre imaging registries. Based on the existing literature and the experience of the Members of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee, the objective of this position paper was to propose optimized and standardized protocols for imaging and interpretation of PET scans in atherosclerosis. These recommendations do not, however, replace the individual responsibility of healthcare professionals to make appropriate decisions in the circumstances of the individual study protocols used and the individual patient, in consultation with the patient and, where appropriate and necessary, the patient's guardian or carer. These recommendations suffer from the absence of conclusive evidence on many of the recommendations. Therefore, they are not intended and should not be used as ''strict guidelines'' but should, as already mentioned, provide a basis for standardized clinical atherosclerosis PET imaging protocols, which are subject to further and continuing evaluation and improvement. However, this EANM position paper might indeed be a first step towards &apos

  4. MRI Reporter Genes for Noninvasive Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Caixia Yang

    2016-05-01

    Full Text Available Magnetic resonance imaging (MRI is one of the most important imaging technologies used in clinical diagnosis. Reporter genes for MRI can be applied to accurately track the delivery of cell in cell therapy, evaluate the therapy effect of gene delivery, and monitor tissue/cell-specific microenvironments. Commonly used reporter genes for MRI usually include genes encoding the enzyme (e.g., tyrosinase and β-galactosidase, the receptor on the cells (e.g., transferrin receptor, and endogenous reporter genes (e.g., ferritin reporter gene. However, low sensitivity limits the application of MRI and reporter gene-based multimodal imaging strategies are common including optical imaging and radionuclide imaging. These can significantly improve diagnostic efficiency and accelerate the development of new therapies.

  5. Utilizing Systems Genetics Approaches to Identify Novel Molecular Mechanisms in Cardiovascular Diseases

    OpenAIRE

    Romay, Milagros De La Caridad

    2016-01-01

    Despite the success of focused, reductionist approaches in characterizing the pathophysiology of cardiovascular diseases (CVDs), current estimates predict that 24 million deaths annually will be due to CVDs by 2030. Emphasizing the use of genetic variation in combination with mathematical modeling and integration of next generation –omics profiling technologies, systems genetics characterizes the flow of biological information in physiologic and pathologic states to allow investigators to und...

  6. Potential Role of Polyphenols in the Prevention of Cardiovascular Diseases: Molecular Bases.

    Science.gov (United States)

    Gormaz, Juan Guillermo; Valls, Nicolas; Sotomayor, Camilo; Turner, Thomas; Rodrigo, Ramón

    2016-01-01

    Cardiovascular diseases (CVD) are the leading cause of mortality worldwide. It is widely accepted that oxidative stress plays a key role in their development and progression; hence oxidative damage might be abrogated by antioxidants. Polyphenols are phytochemicals showing extensively studied antioxidant properties in-vivo. Most representative sources of these compounds include fruits, greens, nuts, herbs, cocoa, tea and coffee. Epidemiological evidence suggests an association between the consumption of polyphenol-rich vegetables and the reduction of cardiovascular disease prevalence. This fact could be related to the anti-inflammatory, antithrombotic and vasodilatory effects of polyphenols. Even though these biological effects could be mainly attributed to the antioxidant activity of polyphenols, other pharmacological mechanisms should also be considered. The latter could comprise direct anti-inflammatory effects, modulation of intracellular signaling and gene expression, improvement of nitric oxide homeostasis, as well as platelet antiaggregation. However, it is noticeable that protocols of interventions to evaluate the properties of polyphenols have failed to show the same positive results reported from observational studies. At present, a controversy exists regarding the actual effectiveness of polyphenols in preventing cardiovascular diseases. Therefore, an improvement of the available knowledge about polyphenol pharmacokinetics, together with a better understanding of the mechanisms of action of these compounds, could be of great benefit. Thus, a rational support for the development of interventional designs could provide reliable evidence on the actual role of polyphenols in CVD prevention. PMID:26630919

  7. The development of nanobody probes for molecular imaging

    International Nuclear Information System (INIS)

    The nanobody is a novel antibody fragment, which has beneficial biophysical and pharmacokinetic properties, such as the small molecular weight, high affinity and specificity for antigen. Nanobody is ideally suitable for molecular imaging as a targeting probe that could label antigen at nmol level in vitro. In animal models of xenografted tumor, atherosclerotic plaques and brain disorders, the target tissues were specifically and clearly detected and the high tumor-to-blood (T/B) ratios were obtained. Structural or chemical modified nanobodies will have higher affinity and retention to target tissues, and be convenient for the application of molecular imaging. With the development of the related research, nanobody-based molecular imaging will be gradually transformed into the clinical applications, and play an important role in early diagnosis and therapeutic assessment. (authors)

  8. Novel approach to improve molecular imaging research: Correlation between macroscopic and molecular pathological findings in patients

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Ingrid, E-mail: i.boehm@uni-bonn.de [Department of Diagnostic Radiology, ZARF Project, Center for Molecular Imaging Research MBMB, Philipps University of Marburg, Baldingerstrasse, 35039 Marburg (Germany)

    2011-09-15

    Purpose: Currently, clinical research approaches are sparse in molecular imaging studies. Moreover, possible links between imaging features and pathological laboratory parameters are unknown, so far. Therefore, the goal was to find a possible relationship between imaging features and peripheral blood cell apoptosis, and thereby to present a novel way to complement molecular imaging research. Materials and methods: The investigation has been done in systemic lupus erythematosus (SLE), a prototype of an autoimmune disease characterized by multiorgan involvement, autoantibody production, and disturbed apoptosis. Retrospectively, radiological findings have been compared to both autoantibody findings and percentage apoptotic blood cells. Results: Two SLE groups could be identified: patients with normal (annexin V binding < 20%), and with increased apoptosis (annexin V binding > 20%) of peripheral blood cells. The frequency of radiological examinations in SLE patients significantly correlated with an increased percentage of apoptotic cells (p < 0.005). In patients with characteristic imaging findings (e.g. lymph node swelling, pleural effusion) an elevated percentage of apoptotic cells was present. In contrast SLE-patients with normal imaging findings or uncharacteristic results of minimal severity had normal percentages of apoptotic blood cells. Conclusion: This correlation between radiographic findings and percentage of apoptotic blood cells provides (1) further insight into pathological mechanisms of SLE, (2) will offer the possibility to introduce apoptotic biomarkers as molecular probes for clinical molecular imaging approaches in future to early diagnose organ complaints in patients with SLE, and (3) is a plea to complement molecular imaging research by this clinical approach.

  9. Novel approach to improve molecular imaging research: Correlation between macroscopic and molecular pathological findings in patients

    International Nuclear Information System (INIS)

    Purpose: Currently, clinical research approaches are sparse in molecular imaging studies. Moreover, possible links between imaging features and pathological laboratory parameters are unknown, so far. Therefore, the goal was to find a possible relationship between imaging features and peripheral blood cell apoptosis, and thereby to present a novel way to complement molecular imaging research. Materials and methods: The investigation has been done in systemic lupus erythematosus (SLE), a prototype of an autoimmune disease characterized by multiorgan involvement, autoantibody production, and disturbed apoptosis. Retrospectively, radiological findings have been compared to both autoantibody findings and percentage apoptotic blood cells. Results: Two SLE groups could be identified: patients with normal (annexin V binding 20%) of peripheral blood cells. The frequency of radiological examinations in SLE patients significantly correlated with an increased percentage of apoptotic cells (p < 0.005). In patients with characteristic imaging findings (e.g. lymph node swelling, pleural effusion) an elevated percentage of apoptotic cells was present. In contrast SLE-patients with normal imaging findings or uncharacteristic results of minimal severity had normal percentages of apoptotic blood cells. Conclusion: This correlation between radiographic findings and percentage of apoptotic blood cells provides (1) further insight into pathological mechanisms of SLE, (2) will offer the possibility to introduce apoptotic biomarkers as molecular probes for clinical molecular imaging approaches in future to early diagnose organ complaints in patients with SLE, and (3) is a plea to complement molecular imaging research by this clinical approach.

  10. Molecular Imaging of Healing After Myocardial Infarction

    OpenAIRE

    Naresh, Nivedita K; Ben-Mordechai, Tamar; Leor, Jonathan; Epstein, Frederick H

    2011-01-01

    The progression from acute myocardial infarction (MI) to heart failure continues to be a major cause of morbidity and mortality. Potential new therapies for improved infarct healing such as stem cells, gene therapy, and tissue engineering are being investigated. Noninvasive imaging plays a central role in the evaluation of MI and infarct healing, both clinically and in preclinical research. Traditionally, imaging has been used to assess cardiac structure, function, perfusion, and viability. H...

  11. Cancerology: to see and to treat with molecular imaging

    International Nuclear Information System (INIS)

    By allowing to visualize, beyond the organs and tissues structure, the molecules present inside cells and their action in cell functioning, to the genome level, the molecular imaging opens a new era in biology and medicine and creates the conditions for the perfecting of targeting and personalised treatments of cancers. The E.M.I.L. network is the only European network in molecular imaging for the cancer. It has been initiated and is coordinated by 'the genes expression in vivo imaging group' of the Cea at Orsay. The E.M.I.L network represents 43 organisms of 13 european countries with 6 technological platforms. (N.C.)

  12. Functional and Molecular Image Guidance in Radiotherapy Treatment Planning Optimization

    OpenAIRE

    Das, Shiva K.; Ten Haken, Randall K.

    2011-01-01

    Functional and molecular imaging techniques are increasingly being developed and used to quantitatively map the spatial distribution of parameters such as metabolism, proliferation, hypoxia, perfusion and ventilation, among others, onto anatomically-imaged normal organs and tumor. In radiotherapy optimization, these imaging modalities offer the promise of increased dose sparing to high functioning subregions of normal organs or dose escalation to selected subregions of tumor, as well as the p...

  13. Nuclear medicine - from physiology to molecular imaging

    International Nuclear Information System (INIS)

    The induction of Medical Imaging in clinical practice occurred through Nuclear Medicine in 1937 through the first application of 131-Iodine in tracer imaging. The concept translated rapidly into other areas of clinical medicine through the invention of newer radiopharmaceuticals over the next six decades. The growth of nuclear imaging acted as a catalyst for other imaging modalities like sonography, CT scan and MRI. In effect everywhere nuclear medicine was the stimulus and growth has taken place around its concepts. This in turn strengthened and stimulated further fascinating developments in nuclear medicine so much that today it is the fascinating era of 'FUSION IMAGING' in medical diagnosis. The CT and MRI succeeded in producing exquisite images of human organs with details as close to as a pathologist would see in histology room after the organ is delivered to him. Unfortunately the pathophysiological details of the disease how, why, when etc - remained unanswered. Hence the impact on treatment was not drastic as modulation of disease process is possible only if we know how and why and when it occurred. These searching questions continued to stimulate the research in nuclear medicine and outcome has been tremendous in the last few years

  14. Molecular Optical Coherence Tomography Contrast Enhancement and Imaging

    Science.gov (United States)

    Oldenburg, Amy L.; Applegate, Brian E.; Tucker-Schwartz, Jason M.; Skala, Melissa C.; Kim, Jongsik; Boppart, Stephen A.

    Histochemistry began as early as the nineteenth century, with the development of synthetic dyes that provided spatially mapped chemical contrast in tissue [1]. Stains such as hematoxylin and eosin, which contrast cellular nuclei and cytoplasm, greatly aid in the interpretation of microscopy images. An analogous development is currently taking place in biomedical imaging, whereby techniques adapted for MRI, CT, and PET now provide in vivo molecular imaging over the entire human body, aiding in both fundamental research discovery and in clinical diagnosis and treatment monitoring. Because OCT offers a unique spatial scale that is intermediate between microscopy and whole-body biomedical imaging, molecular contrast OCT (MCOCT) also has great potential for providing new insight into in vivo molecular processes. The strength of MCOCT lies in its ability to isolate signals from a molecule or contrast agent from the tissue scattering background over large scan areas at depths greater than traditional microscopy techniques while maintaining high resolution.

  15. Molecular imaging of angiogenesis with SPECT

    International Nuclear Information System (INIS)

    Single-photon emission computed tomography (SPECT) and position emission tomography (PET) are the two main imaging modalities in nuclear medicine. SPECT imaging is more widely available than PET imaging and the radionuclides used for SPECT are easier to prepare and usually have a longer half-life than those used for PET. In addition, SPECT is a less expensive technique than PET. Commonly used gamma emitters are: 99mTc (Emax 141 keV, T1/2 6.02 h), 123I (Emax 529 keV, T1/2 13.0 h) and 111In (Emax 245 keV, T1/2 67.2 h). Compared to clinical SPECT, PET has a higher spatial resolution and the possibility to more accurately estimate the in vivo concentration of a tracer. In preclinical imaging, the situation is quite different. The resolution of microSPECT cameras (1.5 mm). In this report, studies on new radiolabelled tracers for SPECT imaging of angiogenesis in tumours are reviewed. (orig.)

  16. Molecular imaging in neuroendocrine tumors : Molecular uptake mechanisms and clinical results

    NARCIS (Netherlands)

    Koopmans, Klaas P.; Neels, Oliver N.; Kema, Ido P.; Elsinga, Philip H.; Links, Thera P.; de Vries, Elisabeth G. E.; Jager, Pieter L.

    2009-01-01

    Neuroendocrine tumors can originate almost everywhere in the body and consist of a great variety of subtypes. This paper focuses on molecular imaging methods using nuclear medicine techniques in neuroendocrine tumors, coupling molecular uptake mechanisms of radiotracers with clinical results. A non-

  17. Advances of Molecular Imaging in Epilepsy.

    Science.gov (United States)

    Galovic, Marian; Koepp, Matthias

    2016-06-01

    Positron emission tomography (PET) is a neuroimaging method that offers insights into the molecular functioning of a human brain. It has been widely used to study metabolic and neurotransmitter abnormalities in people with epilepsy. This article reviews the development of several PET radioligands and their application in studying the molecular mechanisms of epilepsy. Over the last decade, tracers binding to serotonin and γ-aminobutyric acid (GABA) receptors have been used to delineate the location of the epileptic focus. PET studies have examined the role of opioids, cannabinoids, acetylcholine, and dopamine in modulating neuronal hyperexcitability and seizure termination. In vivo analyses of drug transporters, e.g., P-glycoprotein, have increased our understanding of pharmacoresistance that could inform new therapeutic strategies. Finally, PET experiments targeting neuroinflammation and glutamate receptors might guide the development of novel biomarkers of epileptogenesis. PMID:27113252

  18. Molecular Imaging in Stem Cell Therapy for Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Fahuan Song

    2014-01-01

    Full Text Available Spinal cord injury (SCI is a serious disease of the center nervous system (CNS. It is a devastating injury with sudden loss of motor, sensory, and autonomic function distal to the level of trauma and produces great personal and societal costs. Currently, there are no remarkable effective therapies for the treatment of SCI. Compared to traditional treatment methods, stem cell transplantation therapy holds potential for repair and functional plasticity after SCI. However, the mechanism of stem cell therapy for SCI remains largely unknown and obscure partly due to the lack of efficient stem cell trafficking methods. Molecular imaging technology including positron emission tomography (PET, magnetic resonance imaging (MRI, optical imaging (i.e., bioluminescence imaging (BLI gives the hope to complete the knowledge concerning basic stem cell biology survival, migration, differentiation, and integration in real time when transplanted into damaged spinal cord. In this paper, we mainly review the molecular imaging technology in stem cell therapy for SCI.

  19. Molecular photoacoustic imaging of follicular thyroid carcinoma

    DEFF Research Database (Denmark)

    Levi, Jelena; Kothapalli, Sri-Rajashekar; Bohndiek, Sarah;

    2013-01-01

    Purpose To evaluate the potential of targeted photoacoustic imaging as a non-invasive method for detection of follicular thyroid carcinoma. Experimental Design We determined the presence and activity of two members of matrix metalloproteinase family (MMP), MMP-2 and MMP-9, suggested as biomarkers...

  20. Molecular Analysis of Oral Bacteria in Heart Valve of Patients With Cardiovascular Disease by Real-Time Polymerase Chain Reaction.

    Science.gov (United States)

    Oliveira, Francisco Artur Forte; Forte, Clarissa Pessoa Fernandes; Silva, Paulo Goberlânio de Barros; Lopes, Camile B; Montenegro, Raquel Carvalho; Santos, Ândrea Kely Campos Ribeiro Dos; Sobrinho, Carlos Roberto Martins Rodrigues; Mota, Mário Rogério Lima; Sousa, Fabrício Bitu; Alves, Ana Paula Negreiros Nunes

    2015-11-01

    Structural deficiencies and functional abnormalities of heart valves represent an important cause of cardiovascular morbidity and mortality, and a number of diseases, such as aortic stenosis, have been recently associated with infectious agents. This study aimed to analyze oral bacteria in dental plaque, saliva, and cardiac valves of patients with cardiovascular disease. Samples of supragingival plaque, subgingival plaque, saliva, and cardiac valve tissue were collected from 42 patients with heart valve disease. Molecular analysis of Streptococcus mutans, Prevotella intermedia, Porphyromonas gingivalis, and Treponema denticola was performed through real-time PCR. The micro-organism most frequently detected in heart valve samples was the S. mutans (89.3%), followed by P. intermedia (19.1%), P. gingivalis (4.2%), and T. denticola (2.1%). The mean decayed, missing, filled teeth (DMFT) was 26.4 ± 6.9 (mean ± SD), and according to the highest score of periodontal disease observed for each patient, periodontal pockets > 4 mm and dental calculus were detected in 43.4% and 34.7% of patients, respectively. In conclusion, oral bacteria, especially S. mutans, were found in the cardiac valve samples of patients with a high rate of caries and gingivitis/periodontitis. PMID:26632711

  1. Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging

    International Nuclear Information System (INIS)

    Hydroxyapatite (HAp) is the most important constituent of biological tissues such as bone and teeth and exhibits several characteristic features. HAp nanoparticles (NPs) are good host materials and can be functionalized with various kinds of dopants and substrates. By endowing HAp NPs with desired properties in order to render them suitable for biomedical applications including cellular imaging, non-invasive and quantitative visualisation of molecular process occurring at cellular and subcellular levels becomes possible. Depending on their functional properties, HAp based nanoprobes can be divided into three classes, i.e., luminescent HAp NPs (for both down conversion and up conversion luminescence), magnetic HAp NPs, and luminomagnetic HAp NPs. Luminomagnetic HAp NPs are particularly attractive in terms of bimodal imaging and even multimodal imaging by virtue of their luminescence and magnetism. Functionalized HAp NPs are potential candidates for targeted drug delivery applications. This review (with 166 references) spotlights the cellular imaging applications of three types of HAp NPs. Specific sections cover aspects of molecular imaging and the various imaging modes, a comparison of the common types of nanoprobes for bioimaging, synthetic methods for making the various kinds of HAp NPs, followed by overviews on fluorescent NPs for bioimaging (such as quantum dots, gold nanoclusters, lanthanide-doped or fluorophore-doped NPs), magnetic HAp NPs for use in magnetic resonance imaging (MRI), luminomagnetic HAp NPs for bimodal imaging, and sections on drug delivery as well as cellular imaging applications of HAp based nanoprobes (including targeted imaging). (author)

  2. Molecular Scale Imaging with a Smooth Superlens

    CERN Document Server

    Chaturvedi, Pratik; Logeeswaran, VJ; Yu, Zhaoning; Islam, M Saif; Wang, S Y; Williams, R Stanley; Fang, Nicholas

    2009-01-01

    We demonstrate a smooth and low loss silver (Ag) optical superlens capable of resolving features at 1/12th of the illumination wavelength with high fidelity. This is made possible by utilizing state-of-the-art nanoimprint technology and intermediate wetting layer of germanium (Ge) for the growth of flat silver films with surface roughness at sub-nanometer scales. Our measurement of the resolved lines of 30nm half-pitch shows a full-width at half-maximum better than 37nm, in excellent agreement with theoretical predictions. The development of this unique optical superlens lead promise to parallel imaging and nanofabrication in a single snapshot, a feat that are not yet available with other nanoscale imaging techniques such as atomic force microscope or scanning electron microscope.

  3. Molecular imaging in myeloma precursor disease

    OpenAIRE

    Mena, E.; Choyke, P; Tan, E; Landgren, O; Kurdziel, K

    2011-01-01

    Multiple myeloma (MM) is consistently preceded by its pre-malignant states, monoclonal gammopathy of undetermined significance (MGUS) and/or smoldering multiple myeloma (SMM). By definition, precursor conditions do not exhibit end-organ disease (anemia, hypercalcemia, renal failure, skeletal lytic lesions, or a combination of these). However, new imaging methods are demonstrating that some patients in the MGUS or SNM category are exhibiting early signs of MM.

  4. Molecular imaging by single-photon emission

    Energy Technology Data Exchange (ETDEWEB)

    Cusanno, F. E-mail: cusanno@iss.infn.it; Accorsi, R.; Cinti, M.N.; Colilli, S.; Fortuna, A.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lanza, R.C.; Loizzo, A.; Lucentini, M.; Pani, R.; Pellegrini, R.; Santavenere, F.; Scopinaro, F

    2004-07-11

    In vivo imaging of pharmaceuticals labeled with radionuclides has proven to be a powerful tool in human subjects. The same imaging methods have often been applied to small animal but usually only within the nuclear medicine (NM) community, and usually only to evaluate the efficacy of new radiopharmaceuticals. We have built a compact mini gamma camera, a pixellated array of NaI(Tl) crystals coupled to 3'' R2486 Hamamatsu Position Sensitive PMT; in combination with a pinhole collimator, which allows for high resolution in vivo SPECT imaging. Calculations show that reasonable counting rates are possible. The system has been tested and preliminary measurements on mice have been done. The performances of the camera are in the expectations. Improvements will be done both on the collimation technique and on the detector. Simulations have been performed to study a coded aperture collimator. The results show that the efficiency can be greatly improved without sacrificing the spatial resolution. A dedicated mask has been designed and will be used soon.

  5. Molecular imaging by single-photon emission

    International Nuclear Information System (INIS)

    In vivo imaging of pharmaceuticals labeled with radionuclides has proven to be a powerful tool in human subjects. The same imaging methods have often been applied to small animal but usually only within the nuclear medicine (NM) community, and usually only to evaluate the efficacy of new radiopharmaceuticals. We have built a compact mini gamma camera, a pixellated array of NaI(Tl) crystals coupled to 3'' R2486 Hamamatsu Position Sensitive PMT; in combination with a pinhole collimator, which allows for high resolution in vivo SPECT imaging. Calculations show that reasonable counting rates are possible. The system has been tested and preliminary measurements on mice have been done. The performances of the camera are in the expectations. Improvements will be done both on the collimation technique and on the detector. Simulations have been performed to study a coded aperture collimator. The results show that the efficiency can be greatly improved without sacrificing the spatial resolution. A dedicated mask has been designed and will be used soon

  6. Molecular Imaging of Breast Cancer: Present and future directions

    Directory of Open Access Journals (Sweden)

    David eAlcantara

    2014-12-01

    Full Text Available Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumour is located in the body, but also to visualize the expression and activity of specific molecules (e.g. proteases and protein kinases and biological processes (e.g. apoptosis, angiogenesis, and metastasis that influence tumour behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.

  7. Molecular imaging with dynamic contrast-enhanced computed tomography

    International Nuclear Information System (INIS)

    Dynamic contrast-enhanced computed tomography (DCE-CT) is a quantitative technique that employs rapid sequences of CT images after bolus administration of intravenous contrast material to measure a range of physiological processes related to the microvasculature of tissues. By combining knowledge of the molecular processes underlying changes in vascular physiology with an understanding of the relationship between vascular physiology and CT contrast enhancement, DCE-CT can be redefined as a molecular imaging technique. Some DCE-CT derived parameters reflect tissue hypoxia and can, therefore, provide information about the cellular microenvironment. DCE-CT can also depict physiological processes, such as vasodilatation, that represent the physiological consequences of molecular responses to tissue hypoxia. To date the main applications have been in stroke and oncology. Unlike some other molecular imaging approaches, DCE-CT benefits from wide availability and ease of application along with the use of contrast materials and software packages that have achieved full regulatory approval. Hence, DCE-CT represents a molecular imaging technique that is applicable in clinical practice today.

  8. Cardiac remodeling following percutaneous mitral valve repair. Initial results assessed by cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Radunski, U.K [University Heart Center, Hamburg (Germany). Cardiology; Franzen, O. [Rigshospitalet, Copenhagen (Denmark). Cardiology; Barmeyer, A. [Klinikum Dortmund (Germany). Kardiologie; and others

    2014-10-15

    Percutaneous mitral valve repair with the MitraClip device (Abbott Vascular, Redwood City, California, USA) is a novel therapeutic option in patients with mitral regurgitation. This study evaluated the feasibility of cardiac volume measurements by cardiovascular magnetic resonance imaging (CMR) to assess reverse myocardial remodeling in patients after MitraClip implantation. 12 patients underwent CMR at baseline (BL) before and at 6 months follow-up (FU) after MitraClip implantation. Cine-CMR was performed in short- and long-axes for the assessment of left ventricular (LV), right ventricular (RV) and left atrial (LA) volumes. Assessment of endocardial contours was not compromised by the device-related artifact. No significant differences in observer variances were observed for LV, RV and LA volume measurements between BL and FU. LV end-diastolic (median 127 [IQR 96-150] vs. 112 [86-150] ml/m{sup 2}; p=0.03) and LV end-systolic (82 [54-91] vs. 69 [48-99] ml/m{sup 2}; p=0.03) volume indices decreased significantly from BL to FU. No significant differences were found for RV end-diastolic (94 [75-103] vs. 99 [77-123] ml/m{sup 2}; p=0.91), RV end-systolic (48 [42-80] vs. 51 [40-81] ml/m{sup 2}; p=0.48), and LA (87 [55-124] vs. 92 [48-137]R ml/m{sup 2}; p=0.20) volume indices between BL and FU. CMR enables the assessment of cardiac volumes in patients after MitraClip implantation. Our CMR findings indicate that percutaneous mitral valve repair results in reverse LV but not in RV or LA remodeling.

  9. Left ventricular thrombus formation after acute myocardial infarction as assessed by cardiovascular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Introduction: Left ventricular (LV) thrombus formation is a feared complication of myocardial infarction (MI). We assessed the prevalence of LV thrombus in ST-segment elevated MI patients treated with percutaneous coronary intervention (PCI) and compared the diagnostic accuracy of transthoracic echocardiography (TTE) to cardiovascular magnetic resonance imaging (CMR). Also, we evaluated the course of LV thrombi in the modern era of primary PCI. Methods: 200 patients with primary PCI underwent TTE and CMR, at baseline and at 4 months follow-up. Studies were analyzed by two blinded examiners. Patients were seen at 1, 4, 12, and 24 months for assessment of clinical status and adverse events. Results: On CMR at baseline, a thrombus was found in 17 of 194 (8.8%) patients. LV thrombus resolution occurred in 15 patients. Two patients had persistence of LV thrombus on follow-up CMR. On CMR at four months, a thrombus was found in an additional 12 patients. In multivariate analysis, thrombus formation on baseline CMR was independently associated with, baseline infarct size (g) (B = 0.02, SE = 0.02, p < 0.001). Routine TTE had a sensitivity of 21–24% and a specificity of 95–98% compared to CMR for the detection of LV thrombi. Intra- and interobserver variation for detection of LV thrombus were lower for CMR (κ = 0.91 and κ = 0.96) compared to TTE (κ = 0.74 and κ = 0.53). Conclusion: LV thrombus still occurs in a substantial amount of patients after PCI-treated MI, especially in larger infarct sizes. Routine TTE had a low sensitivity for the detection of LV thrombi and the interobserver variation of TTE was large.

  10. Left ventricular thrombus formation after acute myocardial infarction as assessed by cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Delewi, Ronak [Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Interuniversity Cardiology Institute of the Netherlands (Netherlands); Nijveldt, Robin [Department of Cardiology, VU University Medical Center, Amsterdam (Netherlands); Hirsch, Alexander [Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Marcu, Constantin B.; Robbers, Lourens [Department of Cardiology, VU University Medical Center, Amsterdam (Netherlands); Hassell, Marriela E.C.J.; Bruin, Rianne H.A. de; Vleugels, Jim; Laan, Anja M. van der; Bouma, Berto J. [Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Tio, René A. [Thorax Center, University Medical Center Groningen, Groningen (Netherlands); Tijssen, Jan G.P. [Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Rossum, Albert C. van [Department of Cardiology, VU University Medical Center, Amsterdam (Netherlands); Zijlstra, Felix [Thorax Center, Department of Cardiology, Erasmus University Medical Center, Rotterdam (Netherlands); Piek, Jan J., E-mail: j.j.piek@amc.uva.nl [Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands)

    2012-12-15

    Introduction: Left ventricular (LV) thrombus formation is a feared complication of myocardial infarction (MI). We assessed the prevalence of LV thrombus in ST-segment elevated MI patients treated with percutaneous coronary intervention (PCI) and compared the diagnostic accuracy of transthoracic echocardiography (TTE) to cardiovascular magnetic resonance imaging (CMR). Also, we evaluated the course of LV thrombi in the modern era of primary PCI. Methods: 200 patients with primary PCI underwent TTE and CMR, at baseline and at 4 months follow-up. Studies were analyzed by two blinded examiners. Patients were seen at 1, 4, 12, and 24 months for assessment of clinical status and adverse events. Results: On CMR at baseline, a thrombus was found in 17 of 194 (8.8%) patients. LV thrombus resolution occurred in 15 patients. Two patients had persistence of LV thrombus on follow-up CMR. On CMR at four months, a thrombus was found in an additional 12 patients. In multivariate analysis, thrombus formation on baseline CMR was independently associated with, baseline infarct size (g) (B = 0.02, SE = 0.02, p < 0.001). Routine TTE had a sensitivity of 21–24% and a specificity of 95–98% compared to CMR for the detection of LV thrombi. Intra- and interobserver variation for detection of LV thrombus were lower for CMR (κ = 0.91 and κ = 0.96) compared to TTE (κ = 0.74 and κ = 0.53). Conclusion: LV thrombus still occurs in a substantial amount of patients after PCI-treated MI, especially in larger infarct sizes. Routine TTE had a low sensitivity for the detection of LV thrombi and the interobserver variation of TTE was large.

  11. Molecular imaging using sodium iodide symporter (NIS)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Je Yoel [School of Dentistry, Kyungpook National Univ., Daegu (Korea, Republic of)

    2004-04-01

    Radioiodide uptake in thyroid follicular epithelial cells, mediated by a plasma membrane transporter, sodium iodide symporter (NIS), provides a first step mechanism for thyroid cancer detection by radioiodide injection and effective radioiodide treatment for patients with invasive, recurrent, and/or metastatic thyroid cancers after total thyroidectomy. NIS gene transfer to tumor cells may significantly and specifically enhance internal radioactive accumulation of tumors following radioiodide administration, and result in better tumor control. NIS gene transfers have been successfully performed in a variety of tumor animal models by either plasmid-mediated transfection or virus (adenovirus or retrovirus)-mediated gene delivery. These animal models include nude mice xenografted with human melanoma, glioma, breast cancer of prostate cancer, rats with subcutaneous thyroid tumor implantation, as well as the rat intracranial glioma model. In these animal models, non-invasive imaging of in vivo tumors by gamma camera scintigraphy after radioiodide or technetium injection has been performed successfully, suggesting that the NIS can serve as an imaging reporter gene for gene therapy trials. In addition, the tumor killing effects of I-131, ReO4-188 and At-211 after NIS gene transfer have been demonstrated in in vitro clonogenic assays and in vivo radioiodide therapy studies, suggesting that NIS gene can also serve as a therapeutic requires a more efficient and specific system of gene delivery with better retention of radioiodide in tumor. Results thus far are, however, promising, and suggest that NIS gene transfer followed by radioiodide treatment will allow non-invasive in vivo imaging to assess the outcome of gene therapy and provide a therapeutic strategy for a variety of human diseases.

  12. Molecular imaging using sodium iodide symporter (NIS)

    International Nuclear Information System (INIS)

    Radioiodide uptake in thyroid follicular epithelial cells, mediated by a plasma membrane transporter, sodium iodide symporter (NIS), provides a first step mechanism for thyroid cancer detection by radioiodide injection and effective radioiodide treatment for patients with invasive, recurrent, and/or metastatic thyroid cancers after total thyroidectomy. NIS gene transfer to tumor cells may significantly and specifically enhance internal radioactive accumulation of tumors following radioiodide administration, and result in better tumor control. NIS gene transfers have been successfully performed in a variety of tumor animal models by either plasmid-mediated transfection or virus (adenovirus or retrovirus)-mediated gene delivery. These animal models include nude mice xenografted with human melanoma, glioma, breast cancer of prostate cancer, rats with subcutaneous thyroid tumor implantation, as well as the rat intracranial glioma model. In these animal models, non-invasive imaging of in vivo tumors by gamma camera scintigraphy after radioiodide or technetium injection has been performed successfully, suggesting that the NIS can serve as an imaging reporter gene for gene therapy trials. In addition, the tumor killing effects of I-131, ReO4-188 and At-211 after NIS gene transfer have been demonstrated in in vitro clonogenic assays and in vivo radioiodide therapy studies, suggesting that NIS gene can also serve as a therapeutic requires a more efficient and specific system of gene delivery with better retention of radioiodide in tumor. Results thus far are, however, promising, and suggest that NIS gene transfer followed by radioiodide treatment will allow non-invasive in vivo imaging to assess the outcome of gene therapy and provide a therapeutic strategy for a variety of human diseases

  13. Development of molecular imaging in the European radiological community

    International Nuclear Information System (INIS)

    The recent and concomitant advances in molecular biology and imaging for diagnosis and therapy will place in vivo imaging techniques at the centre of their clinical transfer. Before that, a wide range of multidisciplinary preclinical research is already taking place. The involvement of radiologists in this new field of imaging sciences is therefore absolutely mandatory during these two phases of development. Achievement of such objectives requires the refinement of strategy within the European radiological community and the European Society of Radiology (ESR) will have to drive a number of actions to stimulate the younger generation of radiologists and to facilitate their access to knowledge. For that purpose, a molecular imaging (MI) subcommittee of the ESR Research Committee based on a group of involved radiologists will be constituted to develop contacts with other constitutive committees and associated societies to provide proposals to our community. (orig.)

  14. Imaging the molecular dynamics of dissociative electron attachment to water

    Energy Technology Data Exchange (ETDEWEB)

    Adaniya, Hidihito; Rudek, B.; Osipov, Timur; Haxton, Dan; Weber, Thorsten; Rescigno, Thomas N.; McCurdy, C.W.; Belkacem, Ali

    2009-10-19

    Momentum imaging experiments on dissociative electron attachment to the water molecule are combined with ab initio theoretical calculations of the angular dependence of the quantum mechanical amplitude for electron attachment to provide a detailed picture of the molecular dynamics of dissociation attachment via the two lowest energy Feshbach resonances. The combination of momentum imaging experiments and theory can reveal dissociation dynamics for which the axial recoil approximation breaks down and thus provides a powerful reaction microscope for DEA to polyatomics.

  15. Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis

    OpenAIRE

    Maiseyeu, Andrei; Mihai, Georgeta; Kampfrath, Thomas; Simonetti, Orlando P.; Sen, Chandan K.; Roy, Sashwati; Rajagopalan, Sanjay; Parthasarathy, Sampath

    2009-01-01

    Exteriorized phosphatidylserine (PS) residues in apoptotic cells trigger rapid phagocytosis by macrophage scavenger receptor pathways. Mimicking apoptosis with liposomes containing PS may represent an attractive approach for molecular imaging of atherosclerosis. We investigated the utility of paramagnetic gadolinium liposomes enriched with PS (Gd-PS) in imaging atherosclerotic plaque. Gd-PS-containing Gd-conjugated lipids, fluorescent rhodamine, and PS were prepared and characterized. Cellula...

  16. Molecular imaging of vessels in mouse models of disease

    International Nuclear Information System (INIS)

    Vascular imaging of angiogenesis in mouse models of disease requires multi modal imaging hardware capable of targeting both structure and function at different physical scales. The three dimensional (3D) structure and function vascular information allows for accurate differentiation between biological processes. For example, image analysis of vessel development in angiogenesis vs. arteriogenesis enables more accurate detection of biological variation between subjects and more robust and reliable diagnosis of disease. In the recent years a number of micro imaging modalities have emerged in the field as preferred means for this purpose. They provide 3D volumetric data suitable for analysis, quantification, validation, and visualization of results in animal models. This review highlights the capabilities of microCT, ultrasound and microPET for multimodal imaging of angiogenesis and molecular vascular targets in a mouse model of tumor angiogenesis. The basic principles of the imaging modalities are described and experimental results are presented.

  17. Novel high resolution SPECT instrumentation and techniques for molecular imaging of small animals

    International Nuclear Information System (INIS)

    The main purpose of the project is the development and tuning of an advanced detector system for molecular imaging with radionuclides on small animal. The equipment has sub-millimeter spatial resolution, adequate sensitivity and field of view, It is designed for studies, on animal models, of diagnostic and/or therapeutic techniques in cardiovascular diseases, such as detection and identification of vulnerable plaques in atherosclerosis and stem cell therapy for cardiac repair. The present activities is carried on in collaboration with groups from Johns Hopkins University (Baltimore), Jefferson Lab (Newport News), Istituto Nazionale Fisica Nucleare (INFN) and ISS (Dept. Technology and Health and Dept. Therapeutic Research and Medicines Evaluation). The main results of the last two years are summarized as follows: development of the SPECT system prototype; set up of the technique for vulnerable plaques detection;demonstration of detectability of the cardiac perfusion via peritoneum injection of the radiotracer

  18. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S. [Oak Ridge National Laboratory; Endres, Christopher J. [Johns Hopkins, Baltimore; Foss, Catherine A. [Johns Hopkins, Baltimore; Nimmagadda, Sridhar [Johns Hopkins, Baltimore; Jung, Hyeyun [Johns Hopkins, Baltimore; Goddard, James S. [Oak Ridge National Laboratory; Lee, Seung Joon [JLAB; McKisson, John [JLAB; Smith, Mark F. [University of Maryland; Stolin, Alexander V. [West Virginia University; Weisenberger, Andrew G. [JLAB; Pomper, Martin G. [Johns Hopkins, Baltimore

    2013-06-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a ^99mTc-pertechnetate phantom, ^99mTc-methylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand ^123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of ^123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  19. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S [ORNL; Endres, Christopher [Johns Hopkins University; Foss, Catherine [Johns Hopkins University; Nimmagadda, Sridhar [Johns Hopkins University; Jung, Hyeyun [Johns Hopkins University; Goddard Jr, James Samuel [ORNL; Lee, Seung Joon [Jefferson Lab; McKisson, John [Jefferson Lab; Smith, Mark F. [University of Maryland School of Medicine, The, Baltimore, MD; Stolin, Alexander [West Virginia University, Morgantown; Weisenberger, Andrew G. [Jefferson Lab; Pomper, Martin [Johns Hopkins University

    2013-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  20. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    Science.gov (United States)

    Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.; Nimmagadda, Sridhar; Jung, Hyeyun; Goddard, James S.; Lee, Seungjoon; McKisson, John; Smith, Mark F.; Stolin, Alexander V.; Weisenberger, Andrew G.; Pomper, Martin G.

    2014-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake. PMID:23536223

  1. Molecular imaging of rheumatoid arthritis by radiolabelled monoclonal antibodies: new imaging strategies to guide molecular therapies

    Energy Technology Data Exchange (ETDEWEB)

    Malviya, G.; Dierckx, R.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Conti, F. [Rheumatology Unit, I Faculty of Medicine and Surgery, Sapienza University of Rome (Italy); Chianelli, M. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Unit of Nuclear Medicine, Regina apostolorum Hospital, Albano, Rome (Italy); Scopinaro, F. [Nuclear Medicine Department, Sapienza University of Rome, St. Andrea Hospital, Rome (Italy); Signore, A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Nuclear Medicine Department, Sapienza University of Rome, St. Andrea Hospital, Rome (Italy)

    2010-02-15

    The closing of the last century opened a wide variety of approaches for inflammation imaging and treatment of patients with rheumatoid arthritis (RA). The introduction of biological therapies for the management of RA started a revolution in the therapeutic armamentarium with the development of several novel monoclonal antibodies (mAbs), which can be murine, chimeric, humanised and fully human antibodies. Monoclonal antibodies specifically bind to their target, which could be adhesion molecules, activation markers, antigens or receptors, to interfere with specific inflammation pathways at the molecular level, leading to immune-modulation of the underlying pathogenic process. These new generation of mAbs can also be radiolabelled by using direct or indirect method, with a variety of nuclides, depending upon the specific diagnostic application. For studying rheumatoid arthritis patients, several monoclonal antibodies and their fragments, including anti-TNF-{alpha}, anti-CD20, anti-CD3, anti-CD4 and anti-E-selectin antibody, have been radiolabelled mainly with {sup 99m}Tc or {sup 111}In. Scintigraphy with these radiolabelled antibodies may offer an exciting possibility for the study of RA patients and holds two types of information: (1) it allows better staging of the disease and diagnosis of the state of activity by early detection of inflamed joints that might be difficult to assess; (2) it might provide a possibility to perform 'evidence-based biological therapy' of arthritis with a view to assessing whether an antibody will localise in an inflamed joint before using the same unlabelled antibody therapeutically. This might prove particularly important for the selection of patients to be treated since biological therapies can be associated with severe side-effects and are considerably expensive. This article reviews the use of radiolabelled mAbs in the study of RA with particular emphasis on the use of different radiolabelled monoclonal antibodies for

  2. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine?

    International Nuclear Information System (INIS)

    Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure–function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [18F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed “theranostics”. Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research. -- Highlights: •Molecular functional imaging (MFI) gives insight into the tumor biology and intratumoral heterogeneity. •It has potential role in identifying radiomic signatures associated with underlying gene-expression. •Radiomics can be used to create a road map

  3. Heme Oxygenase-1 in Cardiovascular Diseases: Molecular Mechanisms and Clinical Perspectives

    Directory of Open Access Journals (Sweden)

    Chao-Yung Wang

    2010-02-01

    Full Text Available Heme oxygenase (HO catalyzes the rate-limiting step inthe oxidative degradation of cellular heme that liberates iron,carbon monoxide (CO, and biliverdin. Two distinct HO isoformshave been identified in mammalian system. Comparedto HO-2, which is constitutively expressed, HO-1 is a stressresponsiveprotein that is highly induced by many agents,including cytokines, endotoxin, heavy metals, nitric oxide andits own substrate heme. In addition to its well-defined role inheme catabolism and erythrocyte turnover, HO-1 also plays animportant function in various physiological and pathophysiologicalstates associated with cellular stress. Over the pastdecade, compelling evidence has revealed that the induction ofHO-1 represents an important defensive mechanism againstfurther oxidative injury in tissues and cells following variousinsults; this occurs by virtue of the anti-inflammatory andantioxidant capacities of CO, biliverdin, and the subsequent metabolite of biliverdin, bilirubin.In line with the findings from the basic research, numerous studies have supported theimportance of HO-1 in various clinical diseases, including coronary artery disease, cardiachypertrophy, diabetes mellitus, ischemic/reperfusion injury, atherosclerosis and cancer. Thisreview provides an overview on the regulation and function of HO-1, ranging from the molecularmechanisms involved to various clinical perspectives. Specifically, there is a focus onthe enzyme’s role in various cardiovascular diseases.

  4. Recent Progress in Molecular Recognition Imaging Using Atomic Force Microscopy.

    Science.gov (United States)

    Senapati, Subhadip; Lindsay, Stuart

    2016-03-15

    Atomic force microscopy (AFM) is an extremely powerful tool in the field of bionanotechnology because of its ability to image single molecules and make measurements of molecular interaction forces with piconewton sensitivity. It works in aqueous media, enabling studies of molecular phenomenon taking place under physiological conditions. Samples can be imaged in their near-native state without any further modifications such as staining or tagging. The combination of AFM imaging with the force measurement added a new feature to the AFM technique, that is, molecular recognition imaging. Molecular recognition imaging enables mapping of specific interactions between two molecules (one attached to the AFM tip and the other to the imaging substrate) by generating simultaneous topography and recognition images (TREC). Since its discovery, the recognition imaging technique has been successfully applied to different systems such as antibody-protein, aptamer-protein, peptide-protein, chromatin, antigen-antibody, cells, and so forth. Because the technique is based on specific binding between the ligand and receptor, it has the ability to detect a particular protein in a mixture of proteins or monitor a biological phenomenon in the native physiological state. One key step for recognition imaging technique is the functionalization of the AFM tips (generally, silicon, silicon nitrides, gold, etc.). Several different functionalization methods have been reported in the literature depending on the molecules of interest and the material of the tip. Polyethylene glycol is routinely used to provide flexibility needed for proper binding as a part of the linker that carries the affinity molecule. Recently, a heterofunctional triarm linker has been synthesized and successfully attached with two different affinity molecules. This novel linker, when attached to AFM tip, helped to detect two different proteins simultaneously from a mixture of proteins using a so-called "two

  5. Tumor epidermal growth factor receptor molecular imaging research

    International Nuclear Information System (INIS)

    Because of the importance of epidermal growth factor signaling pathway in oncogenesis, maintenance, and progression of different types of tumors, there are great significance that non-invasive monitoring of epidermal growth factor receptor (EGFR) in the diagnosis and the judge of therapeutic efficacy. The studys of radioactive tracers for EGFR have provided a good basis for the molecular imaging of EGFR. (authors)

  6. Immunophenotyping invasive breast cancer: paving the road for molecular imaging.

    NARCIS (Netherlands)

    Vermeulen, J.F.; Brussel, A.S. van; Groep, P. van der; Morsink, F.H.; Bult, P.; Wall, E. van der; Diest, P.J. van

    2012-01-01

    ABSTRACT: BACKGROUND: Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers m

  7. Molecular imaging and the neuropathologies of Parkinson's disease

    DEFF Research Database (Denmark)

    Cumming, Paul; Borghammer, Per

    2012-01-01

    The main motor symptoms of Parkinson's disease (PD) are linked to degeneration of the nigrostriatal dopamine (DA) fibers, especially those innervating the putamen. This degeneration can be assessed in molecular imaging studies with presynaptic tracers such as [(18)F]-fluoro-L-DOPA (FDOPA) and...

  8. Molecular imaging of cancer using PET and SPECT

    DEFF Research Database (Denmark)

    Kjaer, Andreas

    2006-01-01

    molecular imaging of cancer. Especially the possibility of a quick transfer of methods developed in animals to patients (translational research) is an important strength. This article will briefly discuss the newest applications and their importance and perspective in relation to the shift in paradigm in...... medicine towards more individualized treatment....

  9. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Bishnu P. [Division of Gastroenterology, Department of Medicine, University of Michigan, School of Medicine, 109 Zina Pitcher Place, BSRB 1722, Ann Arbor, MI 48109 (United States); Wang, Thomas D., E-mail: thomaswa@umich.edu [Division of Gastroenterology, Department of Medicine, University of Michigan, School of Medicine, 109 Zina Pitcher Place, BSRB 1722, Ann Arbor, MI 48109 (United States); Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2010-06-11

    Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research.

  10. Multi-modality systems for molecular tomographic imaging

    Science.gov (United States)

    Li, Mingze; Bai, Jing

    2009-11-01

    In vivo small animal imaging is a cornerstone in the study of human diseases by providing important clues on the pathogenesis, progression and treatment of many disorders. Molecular tomographic imaging can probe complex biologic interactions dynamically and to study diseases and treatment responses over time in the same animal. Current imaging technique including microCT, microMRI, microPET, microSPECT, microUS, BLT and FMT has its own advantages and applications, however, none of them can provide structural, functional and molecular information in one context. Multi-modality imaging, which utilizes the strengths of different modalities to provide a complete understanding of the object under investigation, emerges as an important alternative in small animal imaging. This article is to introduce the latest development of multimodality systems for small animal tomographic imaging. After a systematic review of imaging principles, systems and commerical products for each stand-alone method, we introduce some multimodality strategies in the latest years. In particular, two dual-modality systems, i.e. FMT-CT and FMT-PET are presented in detail. The end of this article concludes that though most multimodality systems are still in a laboratory research stage, they will surely undergo deep development and wide application in the near future.

  11. Optical techniques for the molecular imaging of angiogenesis

    International Nuclear Information System (INIS)

    The process of angiogenesis, an essential hallmark for tumour development as well as for several inflammatory diseases and physiological phenomena, is of growing interest for diagnosis and therapy in oncology. In the context of biochemical characterisation of key molecules involved in angiogenesis, several targets for imaging and therapy could be identified in the last decade. Optical imaging (OI) relies on the visualisation of near infrared (NIR) light, either its absorption and scattering in tissue (non-enhanced OI) or using fluorescent contrast agents. OI offers excellent signal to noise ratios due to virtually absent background fluorescence in the NIR range and is thus a versatile tool to image specific molecular target structures in vivo. This work intends to provide a survey of the different approaches to imaging of angiogenesis using OI methods in preclinical research as well as first clinical trials. Different imaging modalities as well as various optical contrast agents are briefly discussed. (orig.)

  12. Inverse transport problems in quantitative PAT for molecular imaging

    Science.gov (United States)

    Ren, Kui; Zhang, Rongting; Zhong, Yimin

    2015-12-01

    Fluorescence photoacoustic tomography (fPAT) is a molecular imaging modality that combines photoacoustic tomography with fluorescence imaging to obtain high-resolution imaging of fluorescence distributions inside heterogeneous media. The objective of this work is to study inverse problems in the quantitative step of fPAT where we intend to reconstruct physical coefficients in a coupled system of radiative transport equations using internal data recovered from ultrasound measurements. We derive uniqueness and stability results on the inverse problems and develop some efficient algorithms for image reconstructions. Numerical simulations based on synthetic data are presented to validate the theoretical analysis. The results we present here complement these in Ren K and Zhao H (2013 SIAM J. Imaging Sci. 6 2024-49) on the same problem but in the diffusive regime.

  13. PET molecular imaging in stem cell therapy for neurological diseases

    International Nuclear Information System (INIS)

    Human neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal cord injury and multiple sclerosis are caused by loss of different types of neurons and glial cells in the brain and spinal cord. At present, there are no effective therapies against these disorders. Discovery of the therapeutic potential of stem cells offers new strategies for the treatment of neurological diseases. Direct assessment of stem cells' survival, interaction with the host and impact on neuronal functions after transplantation requires advanced in vivo imaging techniques. Positron emission tomography (PET) is a potential molecular imaging modality to evaluate the viability and function of transplanted tissue or stem cells in the nervous system. This review focuses on PET molecular imaging in stem cell therapy for neurological diseases. (orig.)

  14. PET molecular imaging in stem cell therapy for neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiachuan; Zhang, Hong [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Zhejiang University, Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Tian, Mei [University of Texas, M.D. Anderson Cancer Center, Department of Experimental Diagnostic Imaging, Houston, TX (United States)

    2011-10-15

    Human neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal cord injury and multiple sclerosis are caused by loss of different types of neurons and glial cells in the brain and spinal cord. At present, there are no effective therapies against these disorders. Discovery of the therapeutic potential of stem cells offers new strategies for the treatment of neurological diseases. Direct assessment of stem cells' survival, interaction with the host and impact on neuronal functions after transplantation requires advanced in vivo imaging techniques. Positron emission tomography (PET) is a potential molecular imaging modality to evaluate the viability and function of transplanted tissue or stem cells in the nervous system. This review focuses on PET molecular imaging in stem cell therapy for neurological diseases. (orig.)

  15. Novel Molecular Aspects of Ghrelin and Leptin in the Control of Adipobiology and the Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Amaia Rodríguez

    2014-03-01

    Full Text Available Ghrelin and leptin show opposite effects on energy balance. Ghrelin constitutes a gut hormone that is secreted to the bloodstream in two major forms, acylated and desacyl ghrelin. The isoforms of ghrelin not only promote adiposity by the activation of hypothalamic orexigenic neurons but also directly stimulate the expression of several fat storage-related proteins in adipocytes, including ACC, FAS, LPL and perilipin, thereby stimulating intracytoplasmic lipid accumulation. Moreover, both acylated and desacyl ghrelin reduce TNF-α-induced apoptosis and autophagy in adipocytes, suggesting an anti-inflammatory role of ghrelin in human adipose tissue. On the other hand, leptin is an adipokine with lipolytic effects. In this sense, leptin modulates via PI3K/Akt/mTOR the expression of aquaglyceroporins such as AQP3 and AQP7 that facilitate glycerol efflux from adipocytes in response to the lipolytic stimuli via its translocation from the cytosolic fraction (AQP3 or lipid droplets (AQP7 to the plasma membrane. Ghrelin and leptin also participate in the homeostasis of the cardiovascular system. Ghrelin operates as a cardioprotective factor with increased circulating acylated ghrelin concentrations in patients with left ventricular hypertrophy (LVH causally related to LV remodeling during the progression to LVH. Additionally, leptin induces vasodilation by inducible NO synthase expression (iNOS in the vascular wall. In this sense, leptin inhibits the angiotensin II-induced Ca2+ increase, contraction and proliferation of VSMC through NO-dependent mechanisms. Together, dysregulation of circulating ghrelin isoforms and leptin resistance associated to obesity, type 2 diabetes, or the metabolic syndrome contribute to cardiometabolic derangements observed in these pathologies.

  16. Low-Noise CMOS Image Sensors for Radio-Molecular Imaging

    NARCIS (Netherlands)

    Chen, Y.

    2012-01-01

    This thesis presents the development of low-noise CMOS image sensors for radio-molecular imaging. The development is described in two directions: firstly, from the technology point of view to reduce the pixel noise level, and secondly from the design point of view to reduce the pixel readout circuit

  17. On the Subjective Acceptance during Cardiovascular Magnetic Resonance Imaging at 7.0 Tesla

    Science.gov (United States)

    Klix, Sabrina; Els, Antje; Paul, Katharina; Graessl, Andreas; Oezerdem, Celal; Weinberger, Oliver; Winter, Lukas; Thalhammer, Christof; Huelnhagen, Till; Rieger, Jan; Mehling, Heidrun; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2015-01-01

    Purpose This study examines the subjective acceptance during UHF-CMR in a cohort of healthy volunteers who underwent a cardiac MR examination at 7.0T. Methods Within a period of two-and-a-half years (January 2012 to June 2014) a total of 165 healthy volunteers (41 female, 124 male) without any known history of cardiac disease underwent UHF-CMR. For the assessment of the subjective acceptance a questionnaire was used to examine the participants experience prior, during and after the UHF-CMR examination. For this purpose, subjects were asked to respond to the questionnaire in an exit interview held immediately after the completion of the UHF-CMR examination under supervision of a study nurse to ensure accurate understanding of the questions. All questions were answered with “yes” or “no” including space for additional comments. Results Transient muscular contraction was documented in 12.7% of the questionnaires. Muscular contraction was reported to occur only during periods of scanning with the magnetic field gradients being rapidly switched. Dizziness during the study was reported by 12.7% of the subjects. Taste of metal was reported by 10.1% of the study population. Light flashes were reported by 3.6% of the entire cohort. 13% of the subjects reported side effects/observations which were not explicitly listed in the questionnaire but covered by the question about other side effects. No severe side effects as vomiting or syncope after scanning occurred. No increase in heart rate was observed during the UHF-CMR exam versus the baseline clinical examination. Conclusions This study adds to the literature by detailing the subjective acceptance of cardiovascular magnetic resonance imaging examinations at a magnetic field strength of 7.0T. Cardiac MR examinations at 7.0T are well tolerated by healthy subjects. Broader observational and multi-center studies including patient cohorts with cardiac diseases are required to gain further insights into the subjective

  18. Imaging focal and interstitial fibrosis with cardiovascular magnetic resonance in athletes with left ventricular hypertrophy: implications for sporting participation.

    LENUS (Irish Health Repository)

    Waterhouse, Deirdre F

    2012-11-01

    Long-term high-intensity physical activity is associated with morphological changes, termed as the \\'athlete\\'s heart\\'. The differentiation of physiological cardiac adaptive changes in response to high-level exercise from pathological changes consistent with an inherited cardiomyopathy is imperative. Cardiovascular magnetic resonance (CMR) imaging allows definition of abnormal processes occurring at the tissue level, including, importantly, myocardial fibrosis. It is therefore vital in accurately making this differentiation. In this review, we will review the role of CMR imaging of fibrosis, and detail CMR characterisation of myocardial fibrosis in various cardiomyopathies, and the implications of fibrosis. Additionally, we will outline advances in imaging fibrosis, in particular T1 mapping. Finally we will address the role of CMR in pre-participation screening.

  19. Imprints of Molecular Clouds in Radio Continuum Images

    CERN Document Server

    Yusef-Zadeh, F

    2012-01-01

    We show radio continuum images of several molecular complexes in the inner Galaxy and report the presence of dark features that coincide with dense molecular clouds. Unlike infrared dark clouds, these features which we call "radio dark clouds" are produced by a deficiency in radio continuum emission from molecular clouds that are embedded in a bath of UV radiation field or synchrotron emitting cosmic ray particles. The contribution of the continuum emission along different pathlengths results in dark features that trace embedded molecular clouds. The new technique of identifying cold clouds can place constraints on the depth and the magnetic field of molecular clouds when compared to those of the surrounding hot plasma radiating at radio wavelengths. The study of five molecular complexes in the inner Galaxy, Sgr A, Sgr B2, radio Arc, the snake filament and G359.75-0.13 demonstrate an anti--correlation between the distributions of radio continuum and molecular line and dust emission. Radio dark clouds are iden...

  20. Molecular imaging of brown adipose tissue in health and disease

    International Nuclear Information System (INIS)

    Brown adipose tissue (BAT) has transformed from an interfering tissue in oncological 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to an independent imaging research field. This review takes the perspective from the imaging methodology on which human BAT research has come to rely on heavily. This review analyses relevant PubMed-indexed publications that discuss molecular imaging methods of BAT. In addition, reported links between BAT and human diseases such as obesity are discussed, and the possibilities for imaging in these fields are highlighted. Radiopharmaceuticals aiming at several different biological mechanisms of BAT are discussed and evaluated. Prospective, dedicated studies allow visualization of BAT function in a high percentage of human subjects. BAT dysfunction has been implicated in obesity, linked with diabetes and associated with cachexia and atherosclerosis. Presently, 18F-FDG PET/CT is the most useful tool for evaluating therapies aiming at BAT activity. In addition to 18F-FDG, other radiopharmaceuticals such as 99mTc-sestamibi, 123I-metaiodobenzylguanidine (MIBG), 18F-fluorodopa and 18F-14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid (FTHA) may have a potential for visualizing other aspects of BAT activity. MRI methods are under continuous development and provide the prospect of functional imaging without ionizing radiation. Molecular imaging of BAT can be used to quantitatively assess different aspects of BAT metabolic activity. (orig.)

  1. Molecular imaging of brown adipose tissue in health and disease

    Energy Technology Data Exchange (ETDEWEB)

    Bauwens, Matthias [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Maastricht University, Research School NUTRIM, Maastricht (Netherlands); Wierts, Roel; Brans, Boudewijn [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Royen, Bart van; Backes, Walter [MUMC, Department of Medical Imaging, Division of Radiology, Maastricht (Netherlands); Bucerius, Jan [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Uniklinikum Aachen, Division of Nuclear Medicine, Aachen (Germany); Maastricht University, Research School CARIM, Maastricht (Netherlands); Mottaghy, Felix [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Uniklinikum Aachen, Division of Nuclear Medicine, Aachen (Germany)

    2014-04-15

    Brown adipose tissue (BAT) has transformed from an interfering tissue in oncological {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to an independent imaging research field. This review takes the perspective from the imaging methodology on which human BAT research has come to rely on heavily. This review analyses relevant PubMed-indexed publications that discuss molecular imaging methods of BAT. In addition, reported links between BAT and human diseases such as obesity are discussed, and the possibilities for imaging in these fields are highlighted. Radiopharmaceuticals aiming at several different biological mechanisms of BAT are discussed and evaluated. Prospective, dedicated studies allow visualization of BAT function in a high percentage of human subjects. BAT dysfunction has been implicated in obesity, linked with diabetes and associated with cachexia and atherosclerosis. Presently, {sup 18}F-FDG PET/CT is the most useful tool for evaluating therapies aiming at BAT activity. In addition to {sup 18}F-FDG, other radiopharmaceuticals such as {sup 99m}Tc-sestamibi, {sup 123}I-metaiodobenzylguanidine (MIBG), {sup 18}F-fluorodopa and {sup 18}F-14(R,S)-[{sup 18}F]fluoro-6-thia-heptadecanoic acid (FTHA) may have a potential for visualizing other aspects of BAT activity. MRI methods are under continuous development and provide the prospect of functional imaging without ionizing radiation. Molecular imaging of BAT can be used to quantitatively assess different aspects of BAT metabolic activity. (orig.)

  2. Metal-Based Systems for Molecular Imaging Applications - COST D38 Annual Workshop - Scientific Program and Abstracts

    International Nuclear Information System (INIS)

    The main objective of the Action is the development of metal-based imaging probes for cellular and molecular imaging applications, based on MRI, PET, SPECT and optical imaging that will facilitate early diagnosis, assessment of disease progression and treatment evaluation.The goal of this Action is to further the development of innovative imaging probes through the pursuit of innovations in a number of different areas, ranging from the design of imaging units endowed with enhanced sensitivity to the control of the structural and electronic determinants responsible for the molecular recognition of the target molecule.At present, in vivo diagnostic systems basically assess the structure and function of human organs. Therefore, for important diseases such as cancer and cardiovascular pathologies,and also diseases of the central nervous system, only the late symptoms are detected. It is expected that the advances in genomics and proteomics will have a tremendous impact on human health care of the future. However, advances in molecular biology are already redefining diseases in terms of molecular abnormalities. With this knowledge, new generations of diagnostic imaging agents can be defined that aim at the detection of those molecular processes in vivo.The molecular imaging approach offers a great potential for earlier detection and characterisation of disease, and evaluation of treatment. However, more research is necessary to bring these ideas to clinical applications and a key aspect relates to the development of high-specificity, high-sensitivity imaging probes for the different detection modalities. Additionally, the Action includes research activities dealing with the exploitation of peculiar nuclear properties of given isotopes for therapeutic effects, thus integrating the diagnostic and the therapeutic stages.Apart from its use in early diagnosis in clinical practice, the molecular imaging approach will have also a major impact on the development of new

  3. Evaluation of radiolabelled annexin A5 for scintigraphic imaging of cell processes (necrosis/apoptosis) in cardiovascular diseases

    International Nuclear Information System (INIS)

    Annexin A5, a 35KDa protein, specifically binds with high affinity to phosphatidylserine (P.S.) which is actively redistributed to the external leaflet of plasmic membranes in apoptotic cells and activated platelets. Annexin A5 radiolabelled with 99mTc(99mTc-ANX5) was developed by Strauss (stanford, Usa) to image apoptosis in vivo: tumours cells apoptosis induced by chemo-radiotherapy, ischemia/reperfusion lesions in animals and patients, graft rejection. Additionally, many in vitro data suggest that annexin A5 also stains necrosis (membrane disruption), which occurs in all types of cell death. This preclinical work aimed to evaluate the potential interest of 99mTc-ANX5 imaging as a clinical tool in cardiovascular diseases. Four studies performed in rat models of myocardial infarction by coronary ligation and ischemia-reperfusion, and in rat models of subacute and acute (isoproterenol-induced) myocarditis show the ability of 99mTc-ANX5 to detect in vivo cardio myocytes death by apoptosis and necrosis. Another study demonstrates that 99mTc-ANX5 is highly accurate to evaluate in vivo the biological activity of parietal thrombus in a rat model of elastase-induced abdominal aortic aneurysm. These results suggest that 99mTc-ANX5 imaging could be used in patients for non invasive diagnosis, prognostic evaluation in acute myocarditis and in various thrombotic cardiovascular diseases. (author)

  4. Molecular application of spectral photoacoustic imaging in pancreatic cancer pathology

    Science.gov (United States)

    Lakshman, Minalini; Hupple, Clinton; Lohse, Ines; Hedley, David; Needles, Andrew; Theodoropoulos, Catherine

    2012-12-01

    Spectral imaging is an advanced photo-acoustic (PA) mode that can discern optical absorption of contrast agent(s) in the tissue micro-environment. This advancement is made possible by precise control of optical wavelength using a tunable pulsed laser, ranging from 680-970 nm. Differential optical absorption of blood oxygenation states makes spectral imaging of hemoglobin ideal to investigate remodeling of the tumor microenvironment- a molecular change that renders resistance to standard cancer treatment. Approach: Photo-acoustic imaging was performed on the Vevo® LAZR system (VisualSonics) at 5-20 Hz. Deep abdominal imaging was accomplished with a LZ250D probe at a center frequency of 21MHz and an axial resolution of 75 μm. The tumor model was generated in an immune compromised mouse by surgical implantation of primary patient derived tumors, in the pancreas. Results: Spectral imaging for oxygen saturation at 750 nm and 850 nm characterized this tumor with a poorly oxygenated core surrounded by a well oxygenated periphery. Multispectral imaging identified a sub region in the core with a four-fold signal exclusively at 750 and 800 nm. A co-registered 2D image of this region was shown to be echogenic and calcification was suspected. Perfusion imaging with contrast enhanced ultrasound using microbubbles (Vevo MicroMarker® contrast agents, VisualSonics) identified functional vessels towards this sub region. Histology confirmed calcification and vascularization in the tumor core. Taken together, non-invasive characterization of the tumor microenvironment using photo-acoustics rendered spectral imaging a sensitive tool to monitor molecular changes representative of progression of pancreatic cancer that kills within 6 months of diagnosis.

  5. Assessment of radiation dose in nuclear cardiovascular imaging using realistic computational models

    NARCIS (Netherlands)

    Xie, Tianwu; Lee, Choonsik; Bolch, Wesley E.; Zaidi, Habib

    2015-01-01

    Purpose: Nuclear cardiology plays an important role in clinical assessment and has enormous impact on the management of a variety of cardiovascular diseases. Pediatric patients at different age groups are exposed to a spectrum of radiation dose levels and associated cancer risks different from those

  6. Frequency Domain Fluorescent Molecular Tomography and Molecular Probes for Small Animal Imaging

    Science.gov (United States)

    Kujala, Naresh Gandhi

    Fluorescent molecular tomography (FMT) is a noninvasive biomedical optical imaging that enables 3-dimensional quantitative determination of fluorochromes distributed in biological tissues. There are three methods for imaging large volume tissues based on different light sources: (a) using a light source of constant intensity, through a continuous or constant wave, (b) using a light source that is intensity modulated with a radio frequency (RF), and (c) using ultrafast pulses in the femtosecond range. In this study, we have developed a frequency domain fluorescent molecular tomographic system based on the heterodyne technique, using a single source and detector pair that can be used for small animal imaging. In our system, the intensity of the laser source is modulated with a RF frequency to produce a diffuse photon density wave in the tissue. The phase of the diffuse photon density wave is measured by comparing the reference signal with the signal from the tissue using a phasemeter. The data acquisition was performed by using a Labview program. The results suggest that we can measure the phase change from the heterogeneous inside tissue. Combined with fiber optics and filter sets, the system can be used to sensitively image the targeted fluorescent molecular probes, allowing the detection of cancer at an early stage. We used the system to detect the tumor-targeting molecular probe Alexa Fluor 680 and Alexa Fluor 750 bombesin peptide conjugates in phantoms as well as mouse tissues. We also developed and evaluated fluorescent Bombesin (BBN) probes to target gastrin-releasing peptide (GRP) receptors for optical molecular imaging. GRP receptors are over-expressed in several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. BBN is a 14 amino acid peptide that is an analogue to human gastrin-releasing peptide that binds specifically to GRPr receptors. BBN conjugates are significant in cancer detection and therapy. The

  7. Molecular Imaging with Small Animal PET/CT

    DEFF Research Database (Denmark)

    Binderup, T.; El-Ali, H.H.; Skovgaard, D.;

    2011-01-01

    Small animal positron emission tomography (PET) and computer tomography (CT) is an emerging field in pre-clinical imaging. High quality, state-of-the-art instruments are required for full optimization of the translational value of the small animal studies with PET and CT. However, with this achie...... small animal PET/CT for studies of muscle and tendon in exercise models. © 2011 Bentham Science Publishers Ltd.......Small animal positron emission tomography (PET) and computer tomography (CT) is an emerging field in pre-clinical imaging. High quality, state-of-the-art instruments are required for full optimization of the translational value of the small animal studies with PET and CT. However, with this...... this field of small animal molecular imaging with special emphasis on the targets for tissue characterization in tumor biology such as hypoxia, proliferation and cancer specific over-expression of receptors. The added value of applying CT imaging for anatomical localization and tumor volume...

  8. A moving image system for cardiovascular nuclear medicine. A dedicated auxiliary device for the total capacity imaging system for multiple plane dynamic colour display

    International Nuclear Information System (INIS)

    The recent device of the authors, the dedicated multiplane dynamic colour image display system for nuclear medicine, is discussed. This new device is a hardware-based auxiliary moving image system (AMIS) attached to the total capacity image processing system of the authors' department. The major purpose of this study is to develop the dedicated device so that cardiovascular nuclear medicine and other dynamic studies will include the ability to assess the real time delicate processing of the colour selection, edge detection, phased analysis, etc. The auxiliary system consists of the interface for image transferring, four IC refresh memories of 64x64 matrix with 10 bit count depth, a digital 20-in colour TV monitor, a control keyboard and a control panel with potentiometers. This system has five major functions for colour display: (1) A microcomputer board can select any one of 40 different colour tables preset in the colour transformation RAM. This key also provides edge detection at a certain level of the count by leaving the optional colour and setting the rest of the levels at 0 (black); (2) The arithmetic processing circuit performs the operation of the fundamental rules, permitting arithmetic processes of the two images; (3) The colour level control circuit is operated independently by four potentiometers for four refresh image memories, so that the gain and offset of the colour level can be manually and visually controlled to the satisfaction of the operator; (4) The simultaneous CRT display of the maximum four images with or without cinematic motion is possible; (5) The real time movie interval is also adjustable by hardware, and certain frames can be freezed with overlapping of the dynamic frames. Since this system of AMIS is linked with the whole capacity image processing system of the CPU size of 128kW, etc., clinical applications are not limited to cardiovascular nuclear medicine. (author)

  9. Advances in radionuclide molecular imaging of pancreatic β-cells

    International Nuclear Information System (INIS)

    In both type 1 and type 2 diabetes mellitus, β-cell mass (BCM) is lost.Various treatments are developed to restore or reconstruct BCM. The development of non-invasive methods to quantify BCM in vivo offers the potential for early detection of β-cell dysfunction prior to the clinical onset of diabetes. PET imaging with radioligands that directly target the pancreatic β-cells appears promising. The ability to determine the BCM has been investigated in several targets and their corresponding radiotracers, including radiolabeled receptor ligands, antibodies, metabolites and reporter genes. Therefore, we summarize the recent progress in radionuclide molecular imaging of pancreatic β-cells. (authors)

  10. Tau PET: the next frontier in molecular imaging of dementia.

    Science.gov (United States)

    Xia, Chenjie; Dickerson, Bradford C

    2016-09-01

    We have arrived at an exciting juncture in dementia research: the second major pathological hallmark of Alzheimer's disease (AD)-tau-can now be seen for the first time in the living human brain. The major proteinopathies in AD include amyloid-β plaques and neurofibrillary tangles (NFTs) made of hyperphosphorylated paired helical filament (PHF) tau. Since its advent more than a decade ago, amyloid PET imaging has revolutionized the field of dementia research, enabling more confident diagnosis of the likely pathology in patients with a variety of clinical dementia syndromes, paving the way for the identification of people with preclinical or prodromal AD pathology, and serving as a minimally invasive molecular readout in clinical trials of putative disease-modifying interventions. Now that we are on the brink of a second revolution in molecular imaging in dementia, it is worth considering the likely potential impact of this development on the field. PMID:27334648

  11. Intelligent Design of Nano-Scale Molecular Imaging Agents

    Directory of Open Access Journals (Sweden)

    Takeaki Ozawa

    2012-12-01

    Full Text Available Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs, biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  12. Ferritin as a Novel Reporter Gene for Photoacoustic Molecular Imaging

    OpenAIRE

    Ha, Seung Han; Carson, Andrew R.; Kim, Kang

    2012-01-01

    Reporter genes may serve as endogenous contrast agents in the field of photoacoustic (PA) molecular imaging (PMI), enabling greater characterization of detailed cellular processes and disease progression. To demonstrate the feasibility of using ferritin as a reporter gene, human melanoma SK-24 (SK-MEL-24) cells were co-transfected with plasmid expressing human heavy chain ferritin (H-FT) and plasmid expressing enhanced green fluorescent protein (pEGFP-C1) using lipofectamine™ 2000. Non-transf...

  13. Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma

    OpenAIRE

    Wachsmann, Jason; PENG, FANGYU

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many ...

  14. Novel molecular imaging platform for monitoring oncological kinases

    OpenAIRE

    Ross Brian D; Nyati Shyam; Rehemtulla Alnawaz; Bhojani Mahaveer S

    2010-01-01

    Abstract Recent advances in oncology have lead to identification of a plethora of alterations in signaling pathways that are critical to oncogenesis and propagation of malignancy. Among the biomarkers identified, dysregulated kinases and associated changes in signaling cascade received the lion's share of scientific attention and have been under extensive investigations with goal of targeting them for anti-cancer therapy. Discovery of new drugs is immensely facilitated by molecular imaging te...

  15. Non-invasive Optical Molecular Imaging for Cancer Detection

    Science.gov (United States)

    Luo, Zhen

    Cancer is a leading cause of death worldwide. It remains the second most common cause of death in the US, accounting for nearly 1 out of every 4 deaths. Improved fundamental understanding of molecular processes and pathways resulting in cancer development has catalyzed a shift towards molecular analysis of cancer using imaging technologies. It is expected that the non-invasive or minimally invasive molecular imaging analysis of cancer can significantly aid in improving the early detection of cancer and will result in reduced mortality and morbidity associated with the disease. The central hypothesis of the proposed research is that non-invasive imaging of changes in metabolic activity of individual cells, and extracellular pH within a tissue will improve early stage detection of cancer. The specific goals of this research project were to: (a) develop novel optical imaging probes to image changes in choline metabolism and tissue pH as a function of progression of cancer using clinically isolated tissue biopsies; (b) correlate changes in tissue extracellular pH and metabolic activity of tissues as a function of disease state using clinically isolated tissue biopsies; (c) provide fundamental understanding of relationship between tumor hypoxia, acidification of the extracellular space and altered cellular metabolism with progression of cancer. Three novel molecular imaging probes were developed to detect changes in choline and glucose metabolism and extracellular pH in model systems and clinically isolated cells and biopsies. Glucose uptake and metabolism was measured using a fluorescence analog of glucose, 2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose), while choline metabolism was measured using a click chemistry analog of choline, propargyl choline, which can be in-situ labeled with a fluorophore Alexa-488 azide via a click chemistry reaction. Extracellular pH in tissue were measured by Alexa-647 labeled pHLIP (pH low insertion peptide

  16. Doppler-Derived Trigger Signals for High-Frame-Rate Mouse Cardiovascular Imaging

    OpenAIRE

    Aristizábal, Orlando; Mamou, Jonathan; Turnbull, Daniel H.; Ketterling, Jeffrey A.

    2009-01-01

    The availability of an electrocardiogram (ECG) waveform in the adult mouse has permitted the measurement of fast, dynamic cardiac events where data acquisition is synchronized to the R-wave of the ECG waveform. These methods can easily attain one thousand frames/s at ultrasound frequencies greater than 20 MHz. With the heart being the first organ to develop, normal cardiovascular function is crucial to the viability of the developing embryo. Thus, translating such methodologies to analyze emb...

  17. Application of infrared thermal imaging in the study of preventing cardiovascular and cerebrovascular diseases with Chinese medicine health food

    Science.gov (United States)

    Li, Ziru; Zhang, Xusheng

    2009-08-01

    To explore the assessing technique which could objectively reflect the characteristics of Chinese medicine in the prevention of cardiovascular and cerebrovascular diseases, four balance features of infrared thermal images (ITI) corresponding to the up and down, left and right, proximal and distal balance of blood circulation of human body were studied. First, the ITI features of the middle-aged and elderly people with lipid abnormality history were compared with those of the healthy youth. It was found that the balance state of the youth was significantly better than that of the middle-aged and elderly, Ppathology basis of the influences of Shengyi on the four balance features and its relationship with the clinical outcome deserves further study. So the prospect of infrared thermal imaging is indicated as the suitable evaluation technique which could objectively reflect the whole balance regulation advantage of Chinese medicinal compounds.

  18. PET-based molecular nuclear neuro-imaging

    International Nuclear Information System (INIS)

    Molecular nuclear neuro-imaging in CNS drug discovery and development can be divided into four categories that are clearly inter-related. (1) Neuroreceptor mapping to examine the involvement of specific neurotransmitter system in CNS diseases, drug occupancy characteristics and perhaps examine mechanisms of action;(2) Structural and spectroscopic imaging to examine morphological changes and their consequences;(3) Metabolic mapping to provide evidence of central activity and CNS fingerprinting the neuroanatomy of drug effects;(4) Functional mapping to examine disease-drug interactions. In addition, targeted delivery of therapeutic agents could be achieved by modifying stem cells to release specific drugs at the site of transplantation('stem cell pharmacology'). Future exploitation of stem cell biology, including enhanced release of therapeutic factors through genetic stem cell engineering might thus constitute promising pharmaceutical approaches to treating diseases of the nervous system. With continued improvements in instrumentation, identification of better imaging probes by innovative chemistry, molecular nuclear neuro-imaging promise to play increasingly important roles in disease diagnosis and therapy

  19. The development of nuclear medicine molecular imaging: An era of multiparametric imaging

    International Nuclear Information System (INIS)

    Nuclear medical molecular imaging is developing toward a multimodality and multitracer future. Abundant complementary data generated from different tracers in different modalities are successfully serving the biological research and clinical treatment. Among the others, PER-MRI has the greatest potential and will be a research of interest in the near future. This article focused on the evolution history on nuclear medicine from single modality to multimodality, single tracer to multitracer. It also gave a brief summary to the identifications, differences, pros and consofmultimodality, multitracer, multiparametric molecular imaging. Issues, problems and challenges concerned with her development and recognition are also discussed. (authors)

  20. Photoacoustic molecular imaging for in vivo liver iron quantitation

    Science.gov (United States)

    Maccarinelli, Federica; Carmona, Fernando; Regoni, Maria; Arosio, Paolo

    2016-05-01

    A recent study showed that ferritin is a suitable endogenous contrast agent for photoacoustic molecular imaging in cultured mammalian cells. We have therefore tested whether this imaging technique can be used for in vivo quantification of iron in mouse livers. To verify this hypothesis, we used multispectral optoacoustic tomography (MSOT) to image albino CD1 mice before and after experimental iron loading. Postmortem assays showed that the iron treatment caused a 15-fold increase in liver iron and a 40-fold increase in liver ferritin levels, while in vivo longitudinal analysis using MSOT revealed just a 1.6-fold increase in the ferritin/iron photoacoustic signal in the same animals. We conclude that MSOT can monitor changes in ferritin/iron levels in vivo, but its sensitivity is much lower than that of ex vivo iron assays.

  1. A novel SPECT camera for molecular imaging of the prostate

    Science.gov (United States)

    Cebula, Alan; Gilland, David; Su, Li-Ming; Wagenaar, Douglas; Bahadori, Amir

    2011-10-01

    The objective of this work is to develop an improved SPECT camera for dedicated prostate imaging. Complementing the recent advancements in agents for molecular prostate imaging, this device has the potential to assist in distinguishing benign from aggressive cancers, to improve site-specific localization of cancer, to improve accuracy of needle-guided prostate biopsy of cancer sites, and to aid in focal therapy procedures such as cryotherapy and radiation. Theoretical calculations show that the spatial resolution/detection sensitivity of the proposed SPECT camera can rival or exceed 3D PET and further signal-to-noise advantage is attained with the better energy resolution of the CZT modules. Based on photon transport simulation studies, the system has a reconstructed spatial resolution of 4.8 mm with a sensitivity of 0.0001. Reconstruction of a simulated prostate distribution demonstrates the focal imaging capability of the system.

  2. Novel Molecular Imaging Approaches to Abdominal Aortic Aneurysm Risk Stratification.

    Science.gov (United States)

    Toczek, Jakub; Meadows, Judith L; Sadeghi, Mehran M

    2016-01-01

    Selection of patients for abdominal aortic aneurysm repair is currently based on aneurysm size, growth rate, and symptoms. Molecular imaging of biological processes associated with aneurysm growth and rupture, for example, inflammation and matrix remodeling, could improve patient risk stratification and lead to a reduction in abdominal aortic aneurysm morbidity and mortality. (18)F-fluorodeoxyglucose-positron emission tomography and ultrasmall superparamagnetic particles of iron oxide magnetic resonance imaging are 2 novel approaches to abdominal aortic aneurysm imaging evaluated in clinical trials. A variety of other tracers, including those that target inflammatory cells and proteolytic enzymes (eg, integrin αvβ3 and matrix metalloproteinases), have proven effective in preclinical models of abdominal aortic aneurysm and show great potential for clinical translation. PMID:26763279

  3. Breast imaging technology: Probing physiology and molecular function using optical imaging - applications to breast cancer

    International Nuclear Information System (INIS)

    The present review addresses the capacity of optical imaging to resolve functional and molecular characteristics of breast cancer. We focus on recent developments in optical imaging that allow three-dimensional reconstruction of optical signatures in the human breast using diffuse optical tomography (DOT). These technologic advances allow the noninvasive, in vivo imaging and quantification of oxygenated and deoxygenated hemoglobin and of contrast agents that target the physiologic and molecular functions of tumors. Hence, malignancy differentiation can be based on a novel set of functional features that are complementary to current radiologic imaging methods. These features could enhance diagnostic accuracy, lower the current state-of-the-art detection limits, and play a vital role in therapeutic strategy and monitoring

  4. Molecular imaging of prostate cancer: translating molecular biology approaches into the clinical realm

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Hebert Alberto; Sala, Evis; Hricak, Hedvig [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Grimm, Jan [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Program in Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York (United States); Donati, Olivio F. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2015-05-01

    The epidemiology of prostate cancer has dramatically changed since the introduction of prostate-specific antigen (PSA) screening in the 1980's. Most prostate cancers today are detected at early stages of the disease and are considered 'indolent'; however, some patients' prostate cancers demonstrate a more aggressive behaviour which leads to rapid progression and death. Increasing understanding of the biology underlying the heterogeneity that characterises this disease has led to a continuously evolving role of imaging in the management of prostate cancer. Functional and metabolic imaging techniques are gaining importance as the impact on the therapeutic paradigm has shifted from structural tumour detection alone to distinguishing patients with indolent tumours that can be managed conservatively (e.g., by active surveillance) from patients with more aggressive tumours that may require definitive treatment with surgery or radiation. In this review, we discuss advanced imaging techniques that allow direct visualisation of molecular interactions relevant to prostate cancer and their potential for translation to the clinical setting in the near future. The potential use of imaging to follow molecular events during drug therapy as well as the use of imaging agents for therapeutic purposes will also be discussed. (orig.)

  5. Molecular orbital imaging using attosecond pulses generated in N2

    International Nuclear Information System (INIS)

    Complete text of publication follows. The strong interaction of a molecule with a laser field frees by tunnel ionization an attosecond electron wave packet that probes its bound state half a laser cycle later as it re-collides with the core. Rich information on ths (possibly transient) electronic and nuclear configuration is encoded in the attosecond XUV burst emitted during recombination, a process called high-order harmonic generation (HHG). Complete characterization (intensity, phase and polarization) of this observable gives access to the transition dipole moment over a large momentum span. This transition dipole may allow direct imaging of the radiating molecular orbital using a tomographic procedure. For the first time we succeeded to characterize the intensity, phase and polarization of the XUV emission in aligned N2 molecules. Our measurements evidence multi-orbital contributions to the attosecond emission and also reveal the ellipticity of the harmonics. Recent experimental and theoretical studies have revealed that molecules could be tunnel ionized from several orbitals simultaneously. These different orbitals lead to interfering contributions in the attosecond emission. We were able to separate these contributions and by using the tomographic molecular orbital reconstruction technique, HOMO and HOMO-1 orbitals were reconstructed in N2. These reconstructions show remarkable agreement with theoretical simulations and also provide us with the sign changes in the orbital wave functions. An investigation was addressed to the validity of the plane wave approximation in our calculation. The coherent superposition of the HOMO and HOMO-1 orbitals provides time-resolved experimental images of the wave packet ('hole') left empty after coherent tunnel ionization from both orbitals. The recombining electron wave packet probes the 'hole' at the instant of recombination providing information about the electronic structure of the molecule at that moment. This imaging of

  6. Molecular Imaging of Activated Platelets Allows the Detection of Pulmonary Embolism with Magnetic Resonance Imaging.

    Science.gov (United States)

    Heidt, Timo; Ehrismann, Simon; Hövener, Jan-Bernd; Neudorfer, Irene; Hilgendorf, Ingo; Reisert, Marco; Hagemeyer, Christoph E; Zirlik, Andreas; Reinöhl, Jochen; Bode, Christoph; Peter, Karlheinz; von Elverfeldt, Dominik; von Zur Muhlen, Constantin

    2016-01-01

    Early and reliable detection of pulmonary embolism (PE) is critical for improving patient morbidity and mortality. The desire for low-threshold screening for pulmonary embolism is contradicted by unfavorable radiation of currently used computed tomography or nuclear techniques, while standard magnetic resonance imaging still struggles to provide sufficient diagnostic sensitivity in the lung. In this study we evaluate a molecular-targeted contrast agent against activated platelets for non-invasive detection of murine pulmonary thromboembolism using magnetic resonance imaging. By intravenous injection of human thrombin, pulmonary thromboembolism were consistently induced as confirmed by immunohistochemistry of the lung. Magnetic resonance imaging after thrombin injection showed local tissue edema in weighted images which co-localized with the histological presence of pulmonary thromboembolism. Furthermore, injection of a functionalized contrast agent targeting activated platelets provided sensitive evidence of focal accumulation of activated platelets within the edematous area, which, ex vivo, correlated well with the size of the pulmonary embolism. In summary, we here show delivery and specific binding of a functionalized molecular contrast agent against activated platelets for targeting pulmonary thromboembolism. Going forward, molecular imaging may provide new opportunities to increase sensitivity of magnetic resonance imaging for detection of pulmonary embolism. PMID:27138487

  7. A targeted molecular probe for colorectal cancer imaging

    Science.gov (United States)

    Attramadal, T.; Bjerke, R.; Indrevoll, B.; Moestue, S.; Rogstad, A.; Bendiksen, R.; Healey, A.; Johannesen, E.

    2008-02-01

    Colorectal cancer is a major cause of cancer death. Morbidity, mortality and healthcare costs can be reduced if the disease can be detected at an early stage. Screening is a viable approach as there is a clear link to risk factors such as age. We have developed a fluorescent contrast agent for use during colonoscopy. The agent is administered intravenously and is targeted to an early stage molecular marker for colorectal cancer. The agent consists of a targeting section comprising a peptide, and a fluorescent reporter molecule. Clinical imaging of the agent is to be performed with a far red fluorescence imaging channel (635 nm excitation/660-700 nm emission) as an adjunct to white light colonoscopy. Preclinical proof of mechanism results are presented. The compound has a K d of ~3nM. Two human xenograft tumour models were used. Tumour cells were implanted and grown subcutaneously in nude mice. Imaging using a fluorescence reflectance imaging system and quantitative biodistribution studies were performed. Substances tested include the targeted agent, and a scrambled sequence of the peptide (no binding) used as a negative control. Competition studies were also performed by co-administration of 180 times excess unlabelled peptide. Positive imaging contrast was shown in the tumours, with a clear relationship to expression levels (confirmed with quantitative biodistribution data). There was a significant difference between the positive and negative control substances, and a significant reduction in contrast in the competition experiment.

  8. Near Infrared Imaging of Molecular Beacons in Cancers

    Science.gov (United States)

    Chance, Britton

    2001-03-01

    The recent demonstrations of the efficacy of the tumor to background contrast in breast cancer using the tricarbo-cyanine near infrared (NIR) agent with time domain 2-D imaging presages the greater efficacy of site-directed optical contrast agents for early detection of cancers which show contrast (tissue to background) of over 20 fold. Further increases of contrast are obtained with structures that quench the fluorescence until the agent is delivered, recognized, and opened by specific enzymatic activity of the tumor. These are termed ``Molecular Beacons". In order to image the localization of the Beacons, we employ light pen ( 20μ) in LN2 gives the desired 3D high resolution image of the location of the Beacon within in the cancer cell. Since cancer prevention is linked to early detection, the high signal to background obtainable with Molecular Beacons enables the detection of very early subsurface cancers, especially breast and prostate (NIH, UIP). Thus the fluorescent Beacon excites and emits in the NIR window and signals from several cm deep in breast are detected by diffusive wave optical tomography (DWOT). Detection of objects ( 800 nm) affording 0.2 mm object detection of even low Beacon concentrations. One, two, and 3-D localization is made possible by one, two, and three orthogonal phase array null planes.

  9. Contributions on biomedical imaging, with a side-look at molecular imaging

    International Nuclear Information System (INIS)

    This report is intended as a brief introduction to the emerging scientific field of biomedical imaging. The breadth of the subject is shown and future fields of research are indicated, which hopefully will serve as a guide to the identification of starting points for the research in 'Biomedical and/or Molecular Imaging' at the GSF-National Research Center for Environment and Health. The report starts with a brief sketch of the history. Then a - necessarily incomplete - list of research topics is presented. It is organized in two parts: the first one addresses medical imaging, and the second one is concerned with biological point aspects of the matter. (orig.)

  10. The deleterious effects of arteriovenous fistula-creation on the cardiovascular system: a longitudinal magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Dundon BK

    2014-09-01

    Full Text Available Benjamin K Dundon,1–3 Kim Torpey,3 Adam J Nelson,1 Dennis TL Wong,1,2 Rae F Duncan,1 Ian T Meredith,2 Randall J Faull,1,3 Stephen G Worthley,1,4 Matthew I Worthley1,4 1Cardiology Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia; 2Monash Cardiovascular Research Centre, MonashHEART, Monash Health, Melbourne, Vic, Australia; 3Central Northern Renal and Transplantation Service, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia; 4South Australian Health and Medical Research Institute, Adelaide, SA, Australia Aim: Arteriovenous fistula-formation remains critical for the provision of hemodialysis in end-stage renal failure patients. Its creation results in a significant increase in cardiac output, with resultant alterations in cardiac stroke volume, systemic blood flow, and vascular resistance. The impact of fistula-formation on cardiac and vascular structure and function has not yet been evaluated via "gold standard" imaging techniques in the modern era of end-stage renal failure care. Methods: A total of 24 patients with stage 5 chronic kidney disease undergoing fistula-creation were studied in a single-arm pilot study. Cardiovascular magnetic resonance imaging was undertaken at baseline, and prior to and 6 months following fistula-creation. This gold standard imaging modality was used to evaluate, via standard brachial flow-mediated techniques, cardiac structure and function, aortic distensibility, and endothelial function. Results: At follow up, left ventricular ejection fraction remained unchanged, while mean cardiac output increased by 25.0% (P<0.0001. Significant increases in left and right ventricular end-systolic volumes (21% [P=0.014] and 18% [P<0.01], left and right atrial area (11% [P<0.01] and 9% [P<0.01], and left ventricular mass were observed (12.7% increase (P<0.01. Endothelial

  11. Cardiovascular magnetic resonance imaging assessment of diastolic dysfunction in a population without heart disease: a gender-based study

    International Nuclear Information System (INIS)

    Asymptomatic left ventricular (LV) diastolic dysfunction is increasingly recognised as an important diagnosis. Our goal was to study the prevalence and gender differences in subclinical LV diastolic dysfunction, using cardiovascular magnetic resonance imaging (CMR) at 3 T. We prospectively studied 48 volunteers (19 male and 29 female, mean age 49 ± 7 years) with no evidence of cardiovascular disease. We used CMR to measure left atrium (LA) and LV volumes, LV peak filling rate and transmitral flow. The overall prevalence of LV diastolic dysfunction in our cohort varied between 20 % (based on evaluation of LV filing profiles) and 24 % (based on the evaluation of the transmitral flow). The prevalence of diastolic dysfunction was higher in men than in women, independently of the criteria used (P between 0.004 and 0.022). Indexed LV end-diastolic volume, indexed LV stroke volume, indexed LV mass, indexed LA minimum volume and indexed LA maximum volume were significantly greater in men than in women (P < 0.05). All the subjects had LV ejection fractions within the normal range. It is clinically feasible to study diastolic flow and LV filling with CMR. CMR detected diastolic dysfunction in asymptomatic men and women. (orig.)

  12. Cardiovascular magnetic resonance imaging assessment of diastolic dysfunction in a population without heart disease: a gender-based study

    Energy Technology Data Exchange (ETDEWEB)

    Graca, Bruno; Donato, Paulo; Caseiro-Alves, Filipe [University of Coimbra, Medical Imaging Department, University Centre Hospitals of Coimbra, Faculty of Medicine, Coimbra (Portugal); Ferreira, Maria Joao [University of Coimbra, Cardiology Department, University Centre Hospitals of Coimbra, Faculty of Medicine, Coimbra (Portugal); Castelo-Branco, Miguel [University of Coimbra, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, Coimbra (Portugal)

    2014-01-15

    Asymptomatic left ventricular (LV) diastolic dysfunction is increasingly recognised as an important diagnosis. Our goal was to study the prevalence and gender differences in subclinical LV diastolic dysfunction, using cardiovascular magnetic resonance imaging (CMR) at 3 T. We prospectively studied 48 volunteers (19 male and 29 female, mean age 49 ± 7 years) with no evidence of cardiovascular disease. We used CMR to measure left atrium (LA) and LV volumes, LV peak filling rate and transmitral flow. The overall prevalence of LV diastolic dysfunction in our cohort varied between 20 % (based on evaluation of LV filing profiles) and 24 % (based on the evaluation of the transmitral flow). The prevalence of diastolic dysfunction was higher in men than in women, independently of the criteria used (P between 0.004 and 0.022). Indexed LV end-diastolic volume, indexed LV stroke volume, indexed LV mass, indexed LA minimum volume and indexed LA maximum volume were significantly greater in men than in women (P < 0.05). All the subjects had LV ejection fractions within the normal range. It is clinically feasible to study diastolic flow and LV filling with CMR. CMR detected diastolic dysfunction in asymptomatic men and women. (orig.)

  13. Status and Advances of RGD Molecular Imaging in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ning YUE

    2014-12-01

    Full Text Available Lung cancer has been one of the most common and the highest mortality rates malignant tumors at home and abroad. Sustained angiogenesis was not only the characteristic of malignant tumors, but also the foundation of tumor proliferation, invasion, recurrence and metastasis, it was also one of the hot spots of treatments in lung cancer biology currently. Integrins played an important part in tumor angiogenesis. Arg-Gly-Asp (RGD peptides could combine with integrins specifically, and the application of radionuclide-labeled RGD molecular probes enabled imaging of tumor blood vessels to reflect its changes. The lung cancer imaging of RGD peptides at home and abroad in recent years was reviewed in this article.

  14. Multifunctional Gold Nanostars for Molecular Imaging and Cancer Therapy

    Science.gov (United States)

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew; Register, Janna; Vo-Dinh, Tuan

    2015-08-01

    Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photoluminescence (TPL) and surface-enhanced Raman spectroscopy (SERS). Their surfactant-free surface enables versatile functionalization to enhance cancer targeting, and allow triggered drug release. AuNS can also be used as an efficient platform for drug carrying, photothermal therapy, and photodynamic therapy. This review paper presents the latest progress regarding AuNS as a promising nanoplatform for cancer nanotheranostics. Future research directions with AuNS for biomedical applications will also be discussed.

  15. A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging

    OpenAIRE

    Lu, Yujie; Zhu, Banghe; Shen, Haiou; Rasmussen, John C.; WANG, GE; Sevick-Muraca, Eva M.

    2010-01-01

    Fluorescence molecular imaging/tomography may play an important future role in preclinical research and clinical diagnostics. Time- and frequency-domain fluorescence imaging can acquire more measurement information than the continuous wave (CW) counterpart, improving the image quality of fluorescence molecular tomography. Although diffusion approximation (DA) theory has been extensively applied in optical molecular imaging, high-order photon migration models need to be further investigated to...

  16. PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases

    OpenAIRE

    Lu, Feng-Mei; Yuan, Zhen

    2015-01-01

    Molecular imaging is an attractive technology widely used in clinical practice that greatly enhances our understanding of the pathophysiology and treatment in central nervous system (CNS) diseases. It is a novel multidisciplinary technique that can be defined as real-time visualization, in vivo characterization and qualification of biological processes at the molecular and cellular level. It involves the imaging modalities and the corresponding imaging agents. Nowadays, molecular imaging in n...

  17. Cardiovascular calcification. An inflammatory disease

    International Nuclear Information System (INIS)

    Cardiovascular calcification is an independent risk factor for cardiovascular morbidity and mortality. This disease of dysregulated metabolism is no longer viewed as a passive degenerative disease, but instead as an active process triggered by pro-inflammatory cues. Furthermore, a positive feedback loop of calcification and inflammation is hypothesized to drive disease progression in arterial calcification. Both calcific aortic valve disease and atherosclerotic arterial calcification may possess similar underlying mechanisms. Early histopathological studies first highlighted the contribution of inflammation to cardiovascular calcification by demonstrating the accumulation of macrophages and T lymphocytes in 'early' lesions within the aortic valves and arteries. A series of in vitro work followed, which gave a mechanistic insight into the stimulation of smooth muscle cells to undergo osteogenic differentiation and mineralization. The emergence of novel technology, in the form of animal models and more recently molecular imaging, has enabled accelerated progression of this field, by providing strong evidence regarding the concept of this disorder as an inflammatory disease. Although there are still gaps in our knowledge of the mechanisms behind this disorder, this review discusses the various studies that have helped form the concept of the inflammation-dependent cardiovascular calcification paradigm. (author)

  18. Multifunctional nanomaterials for advanced molecular imaging and cancer therapy

    Science.gov (United States)

    Subramaniam, Prasad

    Nanotechnology offers tremendous potential for use in biomedical applications, including cancer and stem cell imaging, disease diagnosis and drug delivery. The development of nanosystems has aided in understanding the molecular mechanisms of many diseases and permitted the controlled nanoscale manipulation of biological phenomena. In recent years, many studies have focused on the use of several kinds of nanomaterials for cancer and stem cell imaging and also for the delivery of anticancer therapeutics to tumor cells. However, the proper diagnosis and treatment of aggressive tumors such as brain and breast cancer requires highly sensitive diagnostic agents, in addition to the ability to deliver multiple therapeutics using a single platform to the target cells. Addressing these challenges, novel multifunctional nanomaterial-based platforms that incorporate multiple therapeutic and diagnostic agents, with superior molecular imaging and targeting capabilities, has been presented in this work. The initial part of this work presents the development of novel nanomaterials with superior optical properties for efficiently delivering soluble cues such as small interfering RNA (siRNA) into brain cancer cells with minimal toxicity. Specifically, this section details the development of non-toxic quantums dots for the imaging and delivery of siRNA into brain cancer and mesenchymal stem cells, with the hope of using these quantum dots as multiplexed imaging and delivery vehicles. The use of these quantum dots could overcome the toxicity issues associated with the use of conventional quantum dots, enabled the imaging of brain cancer and stem cells with high efficiency and allowed for the delivery of siRNA to knockdown the target oncogene in brain cancer cells. The latter part of this thesis details the development of nanomaterial-based drug delivery platforms for the co-delivery of multiple anticancer drugs to brain tumor cells. In particular, this part of the thesis focuses on

  19. Myocardial infarct heterogeneity assessment by late gadolinium enhancement cardiovascular magnetic resonance imaging shows predictive value for ventricular arrhythmia development after acute myocardial infarction

    NARCIS (Netherlands)

    Robbers, Lourens F. H. J.; Delewi, Ronak; Nijveldt, Robin; Hirsch, Alexander; Beek, Aernout M.; Kemme, Michiel J. B.; van Beurden, Yvette; van der Laan, Anja M.; van der Vleuten, Pieter A.; Tio, Rene A.; Zijlstra, Felix; Piek, Jan J.; van Rossum, Albert C.

    2013-01-01

    The aim of this study was to assess the association between the proportions of penumbrauvisualized by late gadolinium enhanced cardiovascular magnetic resonance imaging (LGE-CMR)uafter acute myocardial infarction (AMI) and the prevalence of ventricular tachycardia (VT). One-hundred and sixty-two AMI

  20. Laser induced - tunneling, electron diffraction and molecular orbital imaging

    International Nuclear Information System (INIS)

    Full text: Multiphoton ionization in the tunneling limit is similar to tunneling in a scanning tunneling microscope. In both cases an electron wave packet tunnels from a bound (or valence) state to the continuum. I will show that multiphoton ionization provides a route to extend tunneling spectroscopy to the interior of transparent solids. Rotating the laser polarization is the analogue of scanning the STM tip - a means of measuring the crystal symmetry of a solid. In gas phase molecules the momentum spectrum of individual electrons can be measured. I will show that, as we rotate the molecule with respect to the laser polarization, the photoelectron spectrum samples a filter projection of the momentum wave function (the molecular analogue to the band structure) of the ionizing orbital. Some electrons created during multiphoton ionization re-collide with their parent ion. I will show that they diffract, revealing the scattering potential of the ion - the molecular structure. The electron can also interfere with the initial orbital from which it separated, creating attosecond XUV pulses or pulse trains. The amplitude and phase of the radiation contains all information needed to re-construct the image of the orbital (just as a sheared optical interferometer can fully characterize an optical pulse). Strong field methods provide an extensive range of new tools to apply to atomic, molecular and solid-state problems. (author)

  1. Molecular imaging by optically-detected electron spin resonance of nitrogen-vacancies in nanodiamond

    CERN Document Server

    Hegyi, Alex

    2012-01-01

    Molecular imaging refers to a class of noninvasive biomedical imaging techniques with the sensitivity and specificity to image biochemical variations in-vivo. An ideal molecular imaging technique visualizes a biochemical target according to a range of criteria, including high spatial and temporal resolution, high contrast relative to non-targeted tissues, depth-independent penetration into tissue, lack of harm to the organism under study, and low cost. Because no existing molecular imaging modality is ideal for all purposes, new imaging approaches are needed. Here we demonstrate a novel molecular imaging approach, called nanodiamond imaging, that uses nanodiamonds containing nitrogen-vacancy (NV) color centers as an imaging agent, and image nanodiamond targets in pieces of chicken breast. Nanodiamonds can be tagged with biologically active molecules so they bind to specific receptors; their distribution can then be quantified in-vivo via optically-detected magnetic resonance of the NVs. In effect, we are demo...

  2. Non-invasive in-vivo imaging of stem cells after transplantation in cardiovascular tissue

    DEFF Research Database (Denmark)

    Mathiasen, Anders Bruun; Kastrup, Jens

    2013-01-01

    Stem cell therapy for degenerative diseases, including ischemic heart disease is now a clinical reality. In the search for the optimal cell type for each patient category, many different stem cell subpopulations have been used. In addition, different cell processing procedures and delivery methods...... improvements. To better understand the underlying mechanisms of these results, a reverse translation from bedside to bench has been opened. Non-invasive cell tracking after implantation has a pivotal role in this translation. Imaging based methods can help elucidate important issues such as retention......, migration and efficacy of the transplanted cells. Great effort is being made in finding new and better imaging techniques for different imaging modalities, and much have already been learned. But there are still many unanswered questions. In this review, we give an overview of the imaging modalities used...

  3. Graphene-based nanomaterials as molecular imaging agents.

    Science.gov (United States)

    Garg, Bhaskar; Sung, Chu-Hsun; Ling, Yong-Chien

    2015-01-01

    Molecular imaging (MI) is a noninvasive, real-time visualization of biochemical events at the cellular and molecular level within tissues, living cells, and/or intact objects that can be advantageously applied in the areas of diagnostics, therapeutics, drug discovery, and development in understanding the nanoscale reactions including enzymatic conversions and protein-protein interactions. Consequently, over the years, great advancement has been made in the development of a variety of MI agents such as peptides, aptamers, antibodies, and various nanomaterials (NMs) including single-walled carbon nanotubes. Recently, graphene, a material popularized by Geim & Novoselov, has ignited considerable research efforts to rationally design and execute a wide range of graphene-based NMs making them an attractive platform for developing highly sensitive MI agents. Owing to their exceptional physicochemical and biological properties combined with desirable surface engineering, graphene-based NMs offer stable and tunable visible emission, small hydrodynamic size, low toxicity, and high biocompatibility and thus have been explored for in vitro and in vivo imaging applications as a promising alternative of traditional imaging agents. This review begins by describing the intrinsic properties of graphene and the key MI modalities. After which, we provide an overview on the recent advances in the design and development as well as physicochemical properties of the different classes of graphene-based NMs (graphene-dye conjugates, graphene-antibody conjugates, graphene-nanoparticle composites, and graphene quantum dots) being used as MI agents for potential applications including theranostics. Finally, the major challenges and future directions in the field will be discussed. PMID:25857851

  4. Near-infrared dyes for molecular probes and imaging

    Science.gov (United States)

    Patonay, Gabor; Beckford, Garfield; Strekowski, Lucjan; Henary, Maged; Kim, Jun Seok; Crow, Sidney

    2009-02-01

    Near-Infrared (NIR) fluorescence has been used both as an analytical tool as molecular probes and in in vitro or in vivo imaging of individual cells and organs. The NIR region (700-1100 nm) is ideal with regard to these applications due to the inherently lower background interference and the high molar absorptivities of NIR chromophores. NIR dyes are also useful in studying binding characteristics of large biomolecules, such as proteins. Throughout these studies, different NIR dyes have been evaluated to determine factors that control binding to biomolecules, including serum albumins. Hydrophobic character of NIR dyes were increased by introducing alkyl and aryl groups, and hydrophilic moieties e.g., polyethylene glycols (PEG) were used to increase aqueous solubility. Recently, our research group introduced bis-cyanines as innovative NIR probes. Depending on their microenvironment, bis-cyanines can exist as an intramolecular dimer with the two cyanines either in a stacked form, or in a linear conformation in which the two subunits do not interact with each other. In this intramolecular H-aggregate, the chromophore has a low extinction coefficient and low fluorescence quantum yield. Upon addition of biomolecules, the H-and D- bands are decreased and the monomeric band is increased, with concomitant increase in fluorescence intensity. Introduction of specific moieties into the NIR dye molecules allows for the development of physiological molecular probes to detect pH, metal ions and other parameters. Examples of these applications include imaging and biomolecule characterizations. Water soluble dyes are expected to be excellent candidates for both in vitro and in vivo imaging of cells and organs.

  5. Future imaging of atherosclerosis: molecular imaging of coronary atherosclerosis with (18)F positron emission tomography.

    Science.gov (United States)

    Scherer, Daniel J; Psaltis, Peter J

    2016-08-01

    Atherosclerosis is characterized by the formation of complex atheroma lesions (plaques) in arteries that pose risk by their flow-limiting nature and propensity for rupture and thrombotic occlusion. It develops in the context of disturbances to lipid metabolism and immune response, with inflammation underpinning all stages of plaque formation, progression and rupture. As the primary disease process responsible for myocardial infarction, stroke and peripheral vascular disease, atherosclerosis is a leading cause of morbidity and mortality on a global scale. A precise understanding of its pathogenic mechanisms is therefore critically important. Integral to this is the role of vascular wall imaging. Over recent years, the rapidly evolving field of molecular imaging has begun to revolutionize our ability to image beyond just the anatomical substrate of vascular disease, and more dynamically assess its pathobiology. Nuclear imaging by positron emission tomography (PET) can target specific molecular and biological pathways involved in atherosclerosis, with the application of (18)Fluoride PET imaging being widely studied for its potential to identify plaques that are vulnerable or high risk. In this review, we discuss the emergence of (18)Fluoride PET as a promising modality for the assessment of coronary atherosclerosis, focusing on the strengths and limitations of the two main radionuclide tracers that have been investigated to date: 2-deoxy-2-((18)F)fluoro-D-glucose ((18)F-FDG) and sodium (18)F-fluoride ((18)F-NaF). PMID:27500093

  6. Molecular and Ionized Hydrogen in 30 Doradus. I. Imaging Observations

    Science.gov (United States)

    Yeh, Sherry C. C.; Seaquist, Ernest R.; Matzner, Christopher D.; Pellegrini, Eric W.

    2015-07-01

    We present the first fully calibrated H2 1-0 S(1) image of the entire 30 Doradus nebula. The observations were conducted using the NOAO Extremely Wide-field Infrared Imager (NEWFIRM) on the CTIO 4 m Blanco Telescope. Together with a NEWFIRM Brγ image of 30 Doradus, our data reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. The brightest H2-emitting area, which extends from the northeast to the southwest of R136, is a photodissociation region (PDR) viewed face-on, while many clumps and pillar features located at the outer shells of 30 Doradus are PDRs viewed edge-on. Based on the morphologies of H2, Brγ, CO, and 8 μm emission, the H2 to Brγ line ratio, and Cloudy models, we find that the H2 emission is formed inside the PDRs of 30 Doradus, 2-3 pc to the ionization front of the H ii region, in a relatively low-density environment <104 cm-3. Comparisons with Brγ, 8 μm, and CO emission indicate that H2 emission is due to fluorescence, and provide no evidence for shock excited emission of this line.

  7. Molecular and Ionized Hydrogen in 30 Doradus. I. Imaging Observations

    CERN Document Server

    Yeh, Sherry C C; Matzner, Christopher D; Pellegrini, Eric W

    2015-01-01

    We present the first fully calibrated H$_2$, 1-0 S(1) image of the entire 30 Doradus nebula. The observations were conducted using the NOAO Extremely Wide-Field Infrared Imager on the CTIO 4-meter Blanco Telescope. Together with a NEWFIRM Br$\\gamma$ image of 30 Doradus, our data reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. The brightest H$_2$-emitting area, which extends from the northeast to the southwest of R136, is a photodissociation region viewed face-on, while many clumps and pillar features located at the outer shells of 30 Doradus are photodissociation regions viewed edge-on. Based on the morphologies of H$_2$, Br$\\gamma$, $^{12}$CO, and 8$\\mu$m emission, the H$_2$ to Br$\\gamma$ line ratio and Cloudy models, we find that the H$_2$ emission is formed inside the photodissociation regions of 30 Doradus, 2 - 3 pc to the ionization front of the HII region, in a relatively low-density environment $<$ 10$^4$ cm$^{-3}$. Comparisons with Br$\\gamma$, 8$\\mu$m, and CO emissi...

  8. The Emerging Role of Cardiovascular Magnetic Resonance Imaging in the Evaluation of Metabolic Cardiomyopathies.

    Science.gov (United States)

    Mavrogeni, S; Markousis-Mavrogenis, G; Markussis, V; Kolovou, G

    2015-08-01

    The aim of this review is to discuss the role of Cardiovascular Magnetic Resonance (CMR) in the diagnosis, risk stratification, and follow-up of metabolic cardiomyopathies. The classification of myocardial diseases, proposed by WHO/ISFC task force, distinguished specific cardiomyopathies, caused by metabolic disorders, into 4 types: 1) endocrine disorders, 2) storage or infiltration disorders (amyloidosis, hemochromatosis and familial storage disorders), 3) nutritional disorders (Kwashiorkor, beri-beri, obesity, and alcohol), and 4) diabetic heart. Thyroid disease, pheochromocytoma, and growth hormone excess or deficiency may contribute to usually reversible dilated cardiomyopathy. Glucogen storage diseases can be presented with myopathy, liver, and heart failure. Lysosomal storage diseases can provoke cardiac hypertrophy, mimicking hypertrophic cardiomyopathy and arrhythmias. Hereditary hemochromatosis, an inherited disorder of iron metabolism, leads to tissue iron overload in different organs, including the heart. Cardiac amyloidosis is the result of amyloid deposition in the heart, formed from breakdown of normal or abnormal proteins that leads to increased heart stiffness, restrictive cardiomyopathy, and heart failure. Finally, nutritional disturbances and metabolic diseases, such as Kwashiorkor, beri-beri, obesity, alcohol consumption, and diabetes mellitus may also lead to severe cardiac dysfunction. CMR, through its capability to reliably assess anatomy, function, inflammation, rest-stress myocardial perfusion, myocardial fibrosis, aortic distensibility, iron and/or fat deposition can serve as an excellent tool for early diagnosis of heart involvement, risk stratification, treatment evaluation, and long term follow-up of patients with metabolic cardiomyopathies. PMID:26197853

  9. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on Standardized Post Processing

    OpenAIRE

    Schulz-Menger, J.; Bluemke, D.A.; Bremerich, J; Flamm, S.D.; Fogel, M.A.; Friedrich, M.G.; Kim, R. J.; von Knobelsdorff-Brenkenhoff, F.; Kramer, C.M.; Pennell, D. J.; Plein, S; Nagel, E.

    2013-01-01

    With mounting data on its accuracy and prognostic value, cardiovascular magnetic resonance (CMR) is becoming an increasingly important diagnostic tool with growing utility in clinical routine. Given its versatility and wide range of quantitative parameters, however, agreement on specific standards for the interpretation and post-processing of CMR studies is required to ensure consistent quality and reproducibility of CMR reports. This document addresses this need by providing consensus recomm...

  10. Integration of an optical coherence tomography (OCT) system into a new environmental chamber to facilitate long term in vivo imaging of cardiovascular development in higher vertebrate embryos

    DEFF Research Database (Denmark)

    Thrane, Lars; Happel, Christoph M.; Thommes, Jan;

    2010-01-01

    cardiovascular development. Here we demonstrate, to the best of our knowledge, the first realization of an optical coherence tomography (OCT) system integrated into a new environmental incubation chamber (EIC) to facilitate real-time in vivo imaging of cardiovascular development in chick embryos. The EIC...... provides stable conditions for embryonic development with respect to temperature, humidity, and oxygen levels. An OCT probe is integrated into the EIC and facilitates visualization of embryos at micrometer resolution, including the acquisition of M-mode, Doppler OCT, and Doppler M-mode data....

  11. A Data Mining Approach for Cardiovascular Disease Diagnosis Using Heart Rate Variability and Images of Carotid Arteries

    Directory of Open Access Journals (Sweden)

    Hyeongsoo Kim

    2016-06-01

    Full Text Available In this paper, we proposed not only an extraction methodology of multiple feature vectors from ultrasound images for carotid arteries (CAs and heart rate variability (HRV of electrocardiogram signal, but also a suitable and reliable prediction model useful in the diagnosis of cardiovascular disease (CVD. For inventing the multiple feature vectors, we extract a candidate feature vector through image processing and measurement of the thickness of carotid intima-media (IMT. As a complementary way, the linear and/or nonlinear feature vectors are also extracted from HRV, a main index for cardiac disorder. The significance of the multiple feature vectors is tested with several machine learning methods, namely Neural Networks, Support Vector Machine (SVM, Classification based on Multiple Association Rule (CMAR, Decision tree induction and Bayesian classifier. As a result, multiple feature vectors extracted from both CAs and HRV (CA+HRV showed higher accuracy than the separative feature vectors of CAs and HRV. Furthermore, the SVM and CMAR showed about 89.51% and 89.46%, respectively, in terms of diagnosing accuracy rate after evaluating the diagnosis or prediction methods using the finally chosen multiple feature vectors. Therefore, the multiple feature vectors devised in this paper can be effective diagnostic indicators of CVD. In addition, the feature vector analysis and prediction techniques are expected to be helpful tools in the decisions of cardiologists.

  12. A Review of Tumor Specific Imaging Methods: A Glance at the Use of Molecular Imaging

    Directory of Open Access Journals (Sweden)

    M.A. Oghabian

    2005-08-01

    Full Text Available Introduction & Background: Conventional imaging modalities of CT, MRI, ultrasound, radionuclide, and even metabolic PET are insensitive to reveal tumor and metastasis of less than few millimeters containing not much fewer than 500,000 cells. At this size, a tu-mor has effectively undergone about 20 cell dou-blings, and is sufficiently stuffed with gene defects and likely to metastasize. New techniques generally known as molecular imaging lead to a patient-specific approach based on physiologic, antigenic, molecular, and genetic disease markers. In this article, Current and the near term trends and techniques in early de-tection of cancer using gene specific, cell specific, or even patient specific approaches are summarized. A number of markers are used for cancer imaging. Anatomic markers show cell morphology defects at the sub-10-µm level on CT, MRI, and OCT (Optical Coherence Tomography. These techniques often fail to provide accurate and basic information necessary to manage the patient’s disease such as true metastatic extent. Functional markers use dynamic features, such as capillary leak (using ICG, IndoCyanine Green, lymphatic transport (by colloid, or Tc-Sestamibi, blood oxygenation, and blood flow. The features provide signal by a bulk phenomenon, and hence are still insensitive. More specifically, anti-genic probes, such as targeted antibodies have been demonstrated effectively in vivo for both diagnostic and therapeutic purposes, such as PSMA in the pros-tate cancer, CEA in colorectal cancer, and HER-2/neu in breast cancer. Metabolic probes accumulate at the site of a specific metabolic activity, and rely on imag-ing agents involving certain enzymatic pathways or transport functions of the cell. Examples are 18FDG (18F-fluoroDeoxyGlucose in PET and 11C-thymidine. Recent spectroscopy techniques do not need such labeled probes. The common method for in-vivo spectroscopy is MRSI (Proton Magnetic Resonance Spectroscopy that can

  13. Ultra-Wideband Sensors for Improved Magnetic Resonance Imaging, Cardiovascular Monitoring and Tumour Diagnostics

    Directory of Open Access Journals (Sweden)

    Frank Seifert

    2010-12-01

    Full Text Available The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour’s contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied.

  14. Angle resolved photoemission from organic semiconductors: orbital imaging beyond the molecular orbital interpretation

    OpenAIRE

    Dauth, M.; Wiessner, M.; Feyer, V.; Schöll, A.; Puschnig, P.; Reinert, F.; Kümmel, S.

    2015-01-01

    Fascinating pictures that can be interpreted as showing molecular orbitals have been obtained with various imaging techniques. Among these, angle resolved photoemission spectroscopy (ARPES) has emerged as a particularly powerful method. Orbital images have been used to underline the physical credibility of the molecular orbital concept. However, from the theory of the photoemission process it is evident that imaging experiments do not show molecular orbitals, but Dyson orbitals. The latter ar...

  15. Molecular Ion Geometries from Inversion of Coulomb Explosion Imaging Data

    International Nuclear Information System (INIS)

    The inversion of Coulomb explosion imaging (CEI) data is made possible by means of a scheme termed the modified backward integration (MBI) method. This method allows one to analyze CEI data for a single Coulomb explosion event so as to infer the geometry of the relevant molecule or molecular ion. We outline the MBI scheme whose two key features are the use of a hyperspherical coordinate system and the change of the independent variable from time to the hyper-radial coordinate. We also test the method on simulated open-quote open-quote experimental close-quote close-quote data for idealized model species of known geometry, and then apply it to CEI data actually measured. copyright 1996 The American Physical Society

  16. Molecular Imaging of Ultrathin Pentacene Films: Evidence for Homoepitaxy

    Science.gov (United States)

    Wu, Yanfei; Haugstad, Greg; Frisbie, C. Daniel

    2013-03-01

    Ultrathin polycrystalline films of organic semiconductors have received intensive investigations due to the critical role they play in governing the performance of organic thin film transistors. In this work, a variety of scanning probe microscopy (SPM) techniques have been employed to investigate ultrathin polycrystalline films (1-3 nm) of the benchmark organic semiconductor pentacene. By using spatially resolved Friction Force Microscopy (FFM), Kelvin Probe Force Microscopy (KFM) and Electrostatic Force Microscopy (EFM), an interesting multi-domain structure is revealed within the second layer of the films, characterized as two distinct friction and surface potential domains correlating with each other. The existence of multiple homoepitaxial modes within the films is thus proposed and examined. By employing lattice-revolved imaging using contact mode SPM, direct molecular evidence for the unusual homoepitaxy is obtained.

  17. [Molecular imaging for early diagnosis of Alzheimer's disease].

    Science.gov (United States)

    Pozo García, Miguel Angel

    2004-01-01

    The progressive aging of the population and the difficulty of diagnosing and treating Alzheimer's disease (AD) portends an exponencial increase in the prevalence of this illness. One way to approach this social and health problem is to develop diagnostic techniques that allow us to detect the disease in its pre-clinical stages and apply early treatment that can slow down AD advance. Molecular imaging, in particular that generated by positron emission tomography with 2-fluoro-2 deoxi-D-glucose (PET-FDG) has shown high sensitivity in detecting changes in cerebral metabolic activity in the early stages of AD, and allow other dementias and physiological changes that accompany normal aging to be distinguished from AD. PMID:15997594

  18. Integration of an optical coherence tomography (OCT) system into an examination incubator to facilitate in vivo imaging of cardiovascular development in higher vertebrate embryos under stable physiological conditions

    DEFF Research Database (Denmark)

    Happel, Christoph M.; Thrane, Lars; Thommes, Jan;

    2011-01-01

    significance, should be documented under physiological conditions. However, previous studies were mostly carried out outside of an incubator or under suboptimal environmental conditions. Here we present, to the best of our knowledge, the first detailed description of an optical coherence tomography (OCT......) system integrated into an examination incubator to facilitate real-time in vivo imaging of cardiovascular development under physiological environmental conditions. We demonstrate the suitability of this OCT examination incubator unit for use in cardiovascular development studies by examples of proof of...... principle experiments. We, furthermore, point out the need for use of examination incubators for physiological OCT examinations by documenting the effects of room climate (22 ◦C) on the performance of the cardiovascular system of chick embryos (HH-stages 16/17). Upon exposure to room climate, chick embryos...

  19. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    International Nuclear Information System (INIS)

    Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. The combination of highly tumor-specific markers glucose transporter 1 (GLUT1), epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF1-R), human epidermal growth factor receptor 2 (HER2), hepatocyte growth factor receptor (MET), and carbonic anhydrase 9 (CAIX) 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6) resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R) that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate

  20. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    Directory of Open Access Journals (Sweden)

    Vermeulen Jeroen F

    2012-06-01

    Full Text Available Abstract Background Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Methods Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. Results The combination of highly tumor-specific markers glucose transporter 1 (GLUT1, epidermal growth factor receptor (EGFR, insulin-like growth factor-1 receptor (IGF1-R, human epidermal growth factor receptor 2 (HER2, hepatocyte growth factor receptor (MET, and carbonic anhydrase 9 (CAIX 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6 resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. Conclusions In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate.

  1. Recent trends in Molecular Imaging : PET/CT in Neurology

    Directory of Open Access Journals (Sweden)

    R P Tripathi

    2015-06-01

    Full Text Available PET/CT is an important molecular imaging technique for the assessment ofneurological disorders. The most widely used radiopharmaceutical for both clinical and research purposes is [18F] 2-fluoro-2-deoxy-D-glucose (FDG. It is extensively used owing to its favourable physical characteristics. It enables depiction of cerebral glucose metabolism, and has thus been used to study various pathological states. Despite this, FDG has its own limitations. This is owing to its limited specificity and high cortical uptake. This has paved the way for the development of several non-FDG PET radiopharmaceuticals. We present the insights gained at our institution, using these radiotracers in the assessment of neurological disease. Our study shows that the use of FDG and non-FDG novel PET radiopharmaceuticals facilitates the early diagnosis, delineation of extent, prognostication and monitoring of therapeutic response in several neuropathological states.PET/CT is an important molecular imaging technique for the assessment ofneurological disorders. The most widely used radiopharmaceutical for both clinicaland research purposes is [18F] 2-fluoro-2-deoxy-D-glucose (FDG. It is extensivelyused owing to its favourable physical characteristics. It enables depiction of cerebralglucose metabolism, and has thus been used to study various pathological states.Despite this, FDG has its own limitations. This is owing to its limited specificity andhigh cortical uptake. This has paved the way for the development of several non-FDGPET radiopharmaceuticals. We present the insights gained at our institution, usingthese radiotracers in the assessment of neurological disease. Our study shows that theuse of FDG and non-FDG novel PET radiopharmaceuticals facilitates the earlydiagnosis, delineation of extent, prognostication and monitoring of therapeuticresponse in several neuropathological states.

  2. Novel Metal Ion Based Estrogen Mimics for Molecular Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, Raghavan

    2006-01-30

    The overall objective of the SBIR Phase I proposal is to prepare and evaluate a new class of {sup 99m}Tc or {sup 94m}Tc containing estrogen-like small molecules ('estrogen mimics') for SPECT or PET molecular imaging of estrogen receptor positive (ER+) tumors. In this approach, the metal ion is integrated into the estrone skeleton by isosteric substitution of a carbon atom in the steroidal structure to give new class of mimics that are topologically similar to the native estrogen (Fig. 1). Although both N{sub 2}S{sub 2} and N{sub 3}S mimics 1 and 2 were considered as target structures, molecular modeling study revealed that the presence of the acetyl group at position-15 in the N{sub 3}S mimic 2 causes steric hinderance toward binding of 2 to SHBG. Therefore, initial efforts were directed at the synthesis and evaluation of the N{sub 2}S{sub 2} mimic 1.

  3. Cardiovascular Magnetic Resonance in Marfan syndrome

    OpenAIRE

    Dormand, Helen; Mohiaddin, Raad H

    2013-01-01

    This review provides an overview of Marfan syndrome with an emphasis on cardiovascular complications and cardiovascular imaging. Both pre- and post-operative imaging is addressed with an explanation of surgical management. All relevant imaging modalities are discussed with a particular focus on cardiovascular MR.

  4. Nanoimaging in cardiovascular diseases: Current state of the art

    Directory of Open Access Journals (Sweden)

    Suryyani Deb

    2015-01-01

    Full Text Available Nanotechnology has been integrated into healthcare system in terms of diagnosis as well as therapy. The massive impact of imaging nanotechnology has a deeper intervention in cardiology i.e. as contrast agents , to target vulnerable plaques with site specificity and in a theranostic approach to treat these plaques, stem cell delivery in necrotic myocardium, etc. Thus cardiovascular nanoimaging is not limited to simple diagnosis but also can help real time tracking during therapy as well as surgery. The present review provides a comprehensive description of the molecular imaging techniques for cardiovascular diseases with the help of nanotechnology and the potential clinical implications of nanotechnology for future applications.

  5. A solution for archiving and retrieving preclinical molecular imaging data in PACS using a DICOM gateway

    Science.gov (United States)

    Lee, Jasper; Liu, Bihui; Liu, Brent

    2011-03-01

    Advances in biology, computer technology and imaging technology have given rise to a scientific specialty referred to as molecular imaging, which is the in vivo imaging of cellular and molecular pathways using contrast-enhancing targeting agents. Increasing amounts of molecular imaging research are being performed at pre-clinical stages, generating diverse datasets that are unstructured and thereby lacking in archiving and distribution solutions. Since PACS in radiology is a mature clinical archiving solution, a method is proposed to convert current imaging files from preclinical molecular imaging studies into DICOM formats for archival and retrieval from PACS systems. A web-based DICOM gateway is presented with an emphasis on metadata mapping in the DICOM header, system connectivity, and overall user workflow. This effort to conform preclinical imaging data to the DICOM standard is necessary to utilize current PACS solutions for preclinical imaging data content archiving and distribution.

  6. New Researches and Application Progress of Commonly Used Optical Molecular Imaging Technology

    Directory of Open Access Journals (Sweden)

    Zhi-Yi Chen

    2014-01-01

    Full Text Available Optical molecular imaging, a new medical imaging technique, is developed based on genomics, proteomics and modern optical imaging technique, characterized by non-invasiveness, non-radiativity, high cost-effectiveness, high resolution, high sensitivity and simple operation in comparison with conventional imaging modalities. Currently, it has become one of the most widely used molecular imaging techniques and has been applied in gene expression regulation and activity detection, biological development and cytological detection, drug research and development, pathogenesis research, pharmaceutical effect evaluation and therapeutic effect evaluation, and so forth, This paper will review the latest researches and application progresses of commonly used optical molecular imaging techniques such as bioluminescence imaging and fluorescence molecular imaging.

  7. Where Does It Lead? Imaging Features of Cardiovascular Implantable Electronic Devices on Chest Radiograph and CT

    Energy Technology Data Exchange (ETDEWEB)

    Lanzman, Rotem S.; Blondin, Dirk; Furst, Gunter; Scherer, Axel; R Miese, Falk; Kroepil, Patric [University of Duesseldorf, Medical Faculty, 40225 Duesseldorf (Germany); Winter, Joachim [University Hospital Duesseldorf, 40225 Duesseldorf (Germany); Abbara, Suhny [Massachusetts General Hospital, Boston, MA (US)

    2011-10-15

    Pacemakers and implantable cardioverter defibrillators (ICDs) are being increasingly employed in patients suffering from cardiac rhythm disturbances. The principal objective of this article is to familiarize radiologists with pacemakers and ICDs on chest radiographs and CT scans. Therefore, the preferred lead positions according to pacemaker types and anatomic variants are introduced in this study. Additionally, the imaging features of incorrect lead positions and defects, as well as complications subsequent to pacemaker implantation are demonstrated herein.

  8. Non-Contrast Enhanced Cardiovascular Magnetic Resonance Imaging for Characterizing Chronic Myocardial Infarctions

    OpenAIRE

    Kali, Avinash

    2015-01-01

    Myocardial infarction (MI) is the leading cause of morbidity and death globally. Non-invasive characterization of chronic MIs is of significant clinical importance due to its association with adverse cardiac outcomes such as cardiac arrhythmias, heart failure, and sudden cardiac death. Late Gadolinium Enhancement (LGE) MRI has evolved into a robust non-invasive imaging technique for characterizing chronic MIs and identifying new pathophysiological substrates of adverse cardiac outcomes within...

  9. Where Does It Lead? Imaging Features of Cardiovascular Implantable Electronic Devices on Chest Radiograph and CT

    OpenAIRE

    Lanzman, Rotem S.; Winter, Joachim; Blondin, Dirk; Fürst, Günter; Scherer, Axel; Miese, Falk R; Abbara, Suhny; Kröpil, Patric

    2011-01-01

    Pacemakers and implantable cardioverter defibrillators (ICDs) are being increasingly employed in patients suffering from cardiac rhythm disturbances. The principal objective of this article is to familiarize radiologists with pacemakers and ICDs on chest radiographs and CT scans. Therefore, the preferred lead positions according to pacemaker types and anatomic variants are introduced in this study. Additionally, the imaging features of incorrect lead positions and defects, as well as complica...

  10. Nuclear molecular imaging of paragangliomas; Imagerie moleculaire nucleaire des paragangliomes

    Energy Technology Data Exchange (ETDEWEB)

    Taieb, D.; Tessonnier, L.; Mundler, O. [Service central de biophysique et de medecine nucleaire, CHU de la Timone, 13 - Marseille (France)

    2010-08-15

    Paragangliomas (PGL) are relatively rare neural crest tumors originating in the adrenal medulla (usually called pheochromocytoma), chemoreceptors (i.e., carotid and aortic bodies) or autonomic ganglia. These tumors are highly vascular, usually benign and slow-growing. PGL may occur as sporadic or familial entities, the latter mostly in association with germline mutations of the succinate dehydrogenase (SDH) B, SDHC, SDHD, SDH5, von Hippel-Lindau (VHL), ret proto-oncogene (RET), neurofibromatosis 1 (NF1) (von Recklinghausen's disease), prolyl hydroxylase domain protein 2 (PHD2) genes and TMEM127. Molecular nuclear imaging has a central role in characterization of PGL and include: somatostatin receptor imaging ({sup 111}In, {sup 68}Ga), MIBG scintigraphy ({sup 131}I, {sup 123}I), {sup 18}F-dihydroxy-phenylalanine ({sup 18}F-DOPA) positron emission tomography (PET), and {sup 18}F-deoxyglucose ({sup 18}F-FDG) PET. The choice of the tracer is not yet fully established but the work-up of familial forms often require the combination of multiple approaches. (authors)

  11. Imaging of multi-step hepatocarcinogenesis. Imaging, pathophysiologic and molecular correlation

    International Nuclear Information System (INIS)

    For the diagnosis of early hepatocellular carcinoma (HCC), it is essential to understand the correlation between its pathophysiology and concomitant image changes during multi-step hepatocarcinogenesis (MS-HCG). For this, authors explain about the circulatory alteration inside/outside of the nodule at MS-HCG and its pathophysiologic base, and imaging mechanics of HCC in gadolinium ethoxybenzyl-diethylene-triamine-pentaacetic acid (Gd-EOB-DTPA) enhanced MRI and its molecular base. Imaging diagnosis of early HCC has been difficult as the ordinary images only give the presence of dysplastic nodules (DN) while pathologic diagnosis can decide the disease with observed focus (or foci) of HCC within DN. The important diagnostic imaging involves CT during hepatic arteriography (CTHA) and CT during arterial portography (CTAP), which can show blood flow changes within and around DN along the progression of early to well/moderately differentiated HCC. That is, it has been shown that, with the progression of malignancy of DN in MS-HCG, the portal blood flow decreases to zero finally at the moderate phase, and arterial flow is once reduced, and due to angiogenesis, is increased to the far higher level than normal at well/moderate phases. Recently, Gd-EOB-DTPA enhanced MRI is suggested to be a useful imaging for HCC diagnosis as, not only blood flow imaging, but also the function of hepatocytes are evaluable with the agent. It is taken up in normal hepatocytes from sinusoidal blood via the organic anion transporting polypeptide (OATP) and excluded in bile via multidrug resistance associated protein 2 (Mrp2). Alteration of expression of the transporters in HCC can be reflected by the enhanced MRI. The circulatory alteration by CT detection around the nodule and Gd-EOB-DTPA enhanced MRI will be the most important imaging means of early HCC diagnosis. (T.T.)

  12. 心血管MRI第二部分--心血管MRI的基本序列和常用技术%Cardiovascular magnetic resonance imaging:Part II--the basic sequences and common techniques of cardiovascular magnetic resonance

    Institute of Scientific and Technical Information of China (English)

    尹刚; 贺光军; 赵世华

    2013-01-01

    This article is the second section. The basic contrast behaviors, sequences, and requirements of cardiovascular magnetic resonance imaging were described in detail. First, three basic fast sequences for CMR imaging and different contrast behaviors were summarized. Second, some common used technique strategies for solving the problems in CMR imaging were presented.%此文为第二部分,着重介绍心血管MRI(CMRI)的基本对比、序列及要求。首先,归纳CMRI的三种基本快速成像序列和图像的对比分类。然后,应对CMRI的技术挑战和难点,讲述CMRI质量控制的常用技术。

  13. Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2015-07-01

    Full Text Available Magnetic resonance imaging (MRI of glioblastoma multiforme (GBM with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA3 agent, a scrambled-Tris-(Gd-DOTA3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA3 agent over time compared to the non-specific contrast agent currently in clinical use.

  14. Multispectral optoacoustic and MRI coregistration for molecular imaging of orthotopic model of human glioblastoma.

    Science.gov (United States)

    Attia, Amalina Binte Ebrahim; Ho, Chris Jun Hui; Chandrasekharan, Prashant; Balasundaram, Ghayathri; Tay, Hui Chien; Burton, Neal C; Chuang, Kai-Hsiang; Ntziachristos, Vasilis; Olivo, Malini

    2016-07-01

    Multi-modality imaging methods are of great importance in oncologic studies for acquiring complementary information, enhancing the efficacy in tumor detection and characterization. We hereby demonstrate a hybrid non-invasive in vivo imaging approach of utilizing magnetic resonance imaging (MRI) and Multispectral Optoacoustic Tomography (MSOT) for molecular imaging of glucose uptake in an orthotopic glioblastoma in mouse. The molecular and functional information from MSOT can be overlaid on MRI anatomy via image coregistration to provide insights into probe uptake in the brain, which is verified by ex vivo fluorescence imaging and histological validation. In vivo MSOT and MRI imaging of an orthotopic glioma mouse model injected with IRDye800-2DG. Image coregistration between MSOT and MRI enables multifaceted (anatomical, functional, molecular) information from MSOT to be overlaid on MRI anatomy images to derive tumor physiological parameters such as perfusion, haemoglobin and oxygenation. PMID:27091626

  15. Clinical implications of microvascular obstruction and intramyocardial haemorrhage in acute myocardial infarction using cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bekkers, Sebastiaan C.A.M.; Smulders, Martijn W.; Waltenberger, Johannes; Gorgels, Anton P.M.; Schalla, Simon [Maastricht University Medical Center, Department of Cardiology, Maastricht (Netherlands); Passos, Valeria Lima [Maastricht University Medical Center, Department of Methodology and Statistics, Maastricht (Netherlands); Leiner, Tim [Maastricht University Medical Center, Department of Radiology, Maastricht (Netherlands)

    2010-11-15

    To investigate the clinical implications of microvascular obstruction (MVO) and intramyocardial haemorrhage (IMH) in acute myocardial infarction (AMI). Ninety patients with a first AMI undergoing primary percutaneous coronary intervention (PCI) were studied. T2-weighted, cine and late gadolinium-enhanced cardiovascular magnetic resonance imaging was performed at 5 {+-} 2 and 103 {+-} 11 days. Patients were categorised into three groups based on the presence or absence of MVO and IMH. MVO was observed in 54% and IMH in 43% of patients, and correlated significantly (r = 0.8, p < 0.001). Pre-PCI thrombolysis in myocardial infarction 3 flow was only observed in MVO(-)/IMH(-) patients. Infarct size and impairment of systolic function were largest in MVO(+)/IMH(+) patients (n = 39, 23 {+-} 9% and 47 {+-} 7%), smallest in MVO(-)/IMH(-) patients (n = 41, 8 {+-} 8% and 55 {+-} 8%) and intermediate in MVO(+)/IMH(-) patients (n = 10, 16 {+-} 7% and 51 {+-} 6%, p < 0.001). LVEF increased in all three subgroups at follow-up, but remained intermediate in MVO(+)/IMH(-) and was lowest in MVO(+)/IMH(+) patients. Using random intercept model analysis, only infarct size was an independent predictor for adverse LV remodelling. Intramyocardial haemorrhage and microvascular obstruction are strongly related. Pre-PCI TIMI 3 flow is less frequently observed in patients with MVO and IMH. Only infarct size was an independent predictor of LV remodelling. (orig.)

  16. Contributions on biomedical imaging, with a side-look at molecular imaging; Beitraege zur biomedizinischen Bildgebung mit einem Seitenblick auf Molecular Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, G. (ed.)

    2004-05-01

    This report is intended as a brief introduction to the emerging scientific field of biomedical imaging. The breadth of the subject is shown and future fields of research are indicated, which hopefully will serve as a guide to the identification of starting points for the research in 'Biomedical and/or Molecular Imaging' at the GSF-National Research Center for Environment and Health. The report starts with a brief sketch of the history. Then a - necessarily incomplete - list of research topics is presented. It is organized in two parts: the first one addresses medical imaging, and the second one is concerned with biological point aspects of the matter. (orig.) [German] In diesem Bericht sind einige Beitraege zum Gebiet 'Bildgebende Verfahren in Biologie und Medizin' zusammengestellt. Sie stammen saemtlich aus dem Institut fuer Biomathematik und Biometrie, IBB, am Forschungszentrum fuer Umwelt und Gesundheit, GSF, in Muenchen/Neuherberg, und seinem engeren Umfeld. Ziel war es, zu sichten, was in und um diesen Themenkreis herum an Wissen und sonstiger Kompetenz hier vorhanden ist. Einige am IBB etablierte Gebiete wie Roentgen-Mammographie oder funktionelle Magnetresonanztherapie wurden ausgeblendet. Der Grund ist die Fokussierung auf ein nicht exakt definierbares, neues Gebiet der Bildgebung, das unter dem Namen 'Molecular Imaging' kursiert und derzeit Furore macht macht. (orig.)

  17. Strengths and Limitations of Current Adult Nomograms for the Aorta Obtained by Noninvasive Cardiovascular Imaging.

    Science.gov (United States)

    Cantinotti, Massimiliano; Giordano, Raffaele; Clemente, Alberto; Assanta, Nadia; Murzi, Michele; Murzi, Bruno; Crocetti, Maura; Marotta, Marco; Scalese, Marco; Kutty, Shelby; Iervasi, Giorgio

    2016-07-01

    Normalized measurements for the evaluation of aortic disease severity are preferred to the adoption of generic cutoff values. The purpose of this review is to evaluate the strengths and limitations of currently available aortic nomograms by echocardiography, computed tomography (CT), and magnetic resonance imaging (MRI). A literature search was conducted accessing the National Library of Medicine using the keywords normal values, aorta, echocardiography, CT, and MRI. Addition of these keywords further refined the results: reference values, nomograms, aortic arch, and adults. Thirty studies were included in the final analysis. Despite the strengths noted in the recent investigations, multiple methodological and numerical limitations emerged. The numerical limitations included sample size limitation in most of the studies (only few investigations consisted of >800 subjects and many had 70-300), lack of aortic arch measurements, and paucity of data for non-Caucasian subjects. Methodological limitations consisted of lack of standardization in measurements (systole vs. diastole, internal vs. external border, axial vs. orthogonal planes), heterogeneity and data normalization issues (various age intervals used, body size often not evaluated, data expressed as observed values rather than estimated values by z-score), and study design issues. The designs were mostly retrospective with poorly defined inclusion and exclusion criteria. The nomograms presented range of normality with significant differences, but also with some reproducible pattern. Despite recent advances, multiple methodological or numerical limitations exist in adult nomograms for the aorta. Comprehensive nomograms of aortic dimensions at multiple levels including the aortic arch for different imaging techniques, involving a wide sample size, and using standardized methodology for measurements and data normalization are warranted. The availability of robust nomograms may encourage the use of personalized

  18. Cardiac pathologies in female carriers of Duchenne muscular dystrophy assessed by cardiovascular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Duchenne muscular dystrophy (DMD) is the most common and severe dystrophinopathy. DMD carriers rarely present with clinical symptoms, but may suffer from cardiac involvement. Because echocardiographic findings are inconsistent and cardiac magnetic resonance imaging (CMRI) data are limited, this study sought to investigate asymptomatic carriers for cardiac abnormalities using CMRI. Fifteen genetically confirmed DMD carriers (age, 32.3 ± 10.2 years) were prospectively examined on a 1.5T MR system. Cine, T2, and late-gadolinium-enhanced (LGE) images were acquired, and were evaluated in consensus by two experienced readers. Left ventricular (LV) parameters were analysed semiautomatically, normalized to BSA. Normalized LV end-diastolic volume was increased in 7 % (73.7 ± 16.8 ml/m2; range, 48-116 ml/m2) and normalized LV end-systolic volume in 20 % (31.5 ± 13.3 ml/m2; range, 15-74 ml/m2). EF was reduced in 33 % (58.4 ± 7.6 %; range, 37-69 %) and normalized LV myocardial mass in 80 % (40.5 ± 6.8 g/m2; range, 31-55 g/m2). In 80 %, regional myocardial thinning was detected in more than one segment. In 13 % and 40 %, apical-lateral accentuation of LV non-compaction was present. LGE was found in 60 % (midmyocardial inferolateral accentuation). Given the high frequency of cardiac pathologies detected by CMRI, regular cardiac risk assessment is advisable for DMD carriers. Besides clinical examination, CMRI is an excellent tool for this purpose. (orig.)

  19. Cardiac pathologies in female carriers of Duchenne muscular dystrophy assessed by cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schelhorn, Juliane; Schemuth, Haemi; Nensa, Felix; Nassenstein, Kai; Forsting, Michael; Schlosser, Thomas [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Schoenecker, Anne; Neudorf, Ulrich [University Hospital Essen, Department of Pediatric Cardiology, Essen (Germany); Schara, Ulrike [University Hospital Essen, Department of Pediatric Neurology, Essen (Germany)

    2015-10-15

    Duchenne muscular dystrophy (DMD) is the most common and severe dystrophinopathy. DMD carriers rarely present with clinical symptoms, but may suffer from cardiac involvement. Because echocardiographic findings are inconsistent and cardiac magnetic resonance imaging (CMRI) data are limited, this study sought to investigate asymptomatic carriers for cardiac abnormalities using CMRI. Fifteen genetically confirmed DMD carriers (age, 32.3 ± 10.2 years) were prospectively examined on a 1.5T MR system. Cine, T2, and late-gadolinium-enhanced (LGE) images were acquired, and were evaluated in consensus by two experienced readers. Left ventricular (LV) parameters were analysed semiautomatically, normalized to BSA. Normalized LV end-diastolic volume was increased in 7 % (73.7 ± 16.8 ml/m{sup 2}; range, 48-116 ml/m{sup 2}) and normalized LV end-systolic volume in 20 % (31.5 ± 13.3 ml/m{sup 2}; range, 15-74 ml/m{sup 2}). EF was reduced in 33 % (58.4 ± 7.6 %; range, 37-69 %) and normalized LV myocardial mass in 80 % (40.5 ± 6.8 g/m{sup 2}; range, 31-55 g/m{sup 2}). In 80 %, regional myocardial thinning was detected in more than one segment. In 13 % and 40 %, apical-lateral accentuation of LV non-compaction was present. LGE was found in 60 % (midmyocardial inferolateral accentuation). Given the high frequency of cardiac pathologies detected by CMRI, regular cardiac risk assessment is advisable for DMD carriers. Besides clinical examination, CMRI is an excellent tool for this purpose. (orig.)

  20. Effect of Papillary Muscles and Trabeculae on Left Ventricular Measurement Using Cardiovascular Magnetic Resonance Imaging in Patients with Hypertrophic Cardiomyopathy

    International Nuclear Information System (INIS)

    To evaluate the influence of papillary muscles and trabeculae on left ventricular (LV) cardiovascular magnetic resonance (CMR) analysis using three methods of cavity delineation (classic or modified inclusion methods, and the exclusion method) in patients with hypertrophic cardiomyopathy (HCM). This retrospective study included 20 consecutive HCM patients who underwent 1.5-T CMR imaging with short-axis cine stacks of the entire LV. LV measurements were performed using three different methods of manual cavity delineation of the endocardial and epicardial contours: method A, presumed endocardial boundary as seen on short-axis cine images; method B, including solely the cavity and closely adjacent trabeculae; or method C, excluding papillary muscles and trabeculae. Ascending aorta forward flow was measured as reference for LV-stroke volume (SV). Interobserver reproducibility was assessed using intraclass correlation coefficients. Method A showed larger end-diastole and end-systole volumes (largest percentage differences of 25% and 68%, respectively, p < 0.05), compared with method C. The ejection fraction was 55.7 ± 6.9% for method A, 68.6 ± 8.4% for B, and 71.7 ± 7.0% for C (p < 0.001). Mean mass was also significantly different: 164.6 ± 47.4 g for A, 176.5 ± 50.5 g for B, and 199.6 ± 53.2 g for C (p < 0.001). LV-SV error was largest with method B (p < 0.001). No difference in interobserver agreement was observed (p > 0.05). In HCM patients, LV measurements are strikingly different dependent on whether papillary muscles and trabeculae are included or excluded. Therefore, a consistent method of LV cavity delineation may be crucial during longitudinal follow-up to avoid misinterpretation and erroneous clinical decision-making

  1. Effect of Papillary Muscles and Trabeculae on Left Ventricular Measurement Using Cardiovascular Magnetic Resonance Imaging in Patients with Hypertrophic Cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun-Ah; Lee, Whal [Department of Radiology, Cardiovascular Division, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Kim, Hyung-Kwan [Department of Internal Medicine, Cardiovascular Division, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Chung, Jin Wook [Department of Radiology, Cardiovascular Division, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of)

    2015-11-01

    To evaluate the influence of papillary muscles and trabeculae on left ventricular (LV) cardiovascular magnetic resonance (CMR) analysis using three methods of cavity delineation (classic or modified inclusion methods, and the exclusion method) in patients with hypertrophic cardiomyopathy (HCM). This retrospective study included 20 consecutive HCM patients who underwent 1.5-T CMR imaging with short-axis cine stacks of the entire LV. LV measurements were performed using three different methods of manual cavity delineation of the endocardial and epicardial contours: method A, presumed endocardial boundary as seen on short-axis cine images; method B, including solely the cavity and closely adjacent trabeculae; or method C, excluding papillary muscles and trabeculae. Ascending aorta forward flow was measured as reference for LV-stroke volume (SV). Interobserver reproducibility was assessed using intraclass correlation coefficients. Method A showed larger end-diastole and end-systole volumes (largest percentage differences of 25% and 68%, respectively, p < 0.05), compared with method C. The ejection fraction was 55.7 ± 6.9% for method A, 68.6 ± 8.4% for B, and 71.7 ± 7.0% for C (p < 0.001). Mean mass was also significantly different: 164.6 ± 47.4 g for A, 176.5 ± 50.5 g for B, and 199.6 ± 53.2 g for C (p < 0.001). LV-SV error was largest with method B (p < 0.001). No difference in interobserver agreement was observed (p > 0.05). In HCM patients, LV measurements are strikingly different dependent on whether papillary muscles and trabeculae are included or excluded. Therefore, a consistent method of LV cavity delineation may be crucial during longitudinal follow-up to avoid misinterpretation and erroneous clinical decision-making.

  2. Exploiting Molecular Biology by Time-Resolved Fluorescence Imaging

    Science.gov (United States)

    Müller, Francis; Fattinger, Christof

    Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal fluorophore. With fluorescence lifetimes in the microsecond range and fluorescence quantum yield of 0.4 some water soluble complexes of Ruthenium like modified Ru(sulfobathophenanthroline) complexes fulfill these properties. They are outstanding fluorescent labels for ultrasensitive assays as illustrated in two examples, in drug discovery and in point of care testing.We discuss the fundamentals and the state-of-the-art of the most sensitive time-gated fluorescence assays. We reflect on how the imaging devices currently employed for readout of these assays might evolve in the future. Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal

  3. Spectral imaging of the Central Molecular Zone in multiple 3-mm molecular lines

    CERN Document Server

    Jones, P A; Cunningham, M R; Requena-Torres, M A; Menten, K M; Schilke, P; Belloche, A; Leurini, S; Martin-Pintado, J; Ott, J; Walsh, A J

    2011-01-01

    We have mapped 20 molecular lines in the Central Molecular Zone (CMZ) around the Galactic Centre, emitting from 85.3 to 93.3 GHz. This work used the 22-m Mopra radio telescope in Australia, equipped with the 8-GHz bandwidth UNSW-MOPS digital filter bank, obtaining \\sim 2 km/s spectral and \\sim 40 arcsec spatial resolution. The lines measured include emission from the c-C3H2, CH3CCH, HOCO+, SO, H13CN, H13CO+, SO, H13NC, C2H, HNCO, HCN, HCO+, HNC, HC3N, 13CS and N2H+ molecules. The area covered is Galactic longitude -0.7 to 1.8 deg. and latitude -0.3 to 0.2 deg., including the bright dust cores around Sgr A, Sgr B2, Sgr C and G1.6-0.025. We present images from this study and conduct a principal component analysis on the integrated emission from the brightest 8 lines. This is dominated by the first component, showing that the large-scale distribution of all molecules are very similar. We examine the line ratios and optical depths in selected apertures around the bright dust cores, as well as for the complete map...

  4. Positron radioactive molecular imaging agents for early diagnosis of Parkinson's disease

    International Nuclear Information System (INIS)

    Positron radioactive molecular imaging can be used to do early diagnose of Parkinson's disease, a senile neurodegenerative disease, and the method has been accepted by more and more doctors and patients. In this paper, we give a review on positron radioactive molecular imaging agents in clinical application and research of Parkinson's disease. (authors)

  5. Hybrid gold nanoparticles in molecular imaging and radiotherapy

    International Nuclear Information System (INIS)

    Metallic nanoparticles, because of their size, chemical and physical properties, are particularly attractive as therapeutic probes in treating cancer. Central to any clinical advances in nanoparticulate based therapy will be to produce hybrid nanoparticles that can be targeted to vascular, extracellular or cell surface receptors. Development of hybrid nanoparticles that specifically target cancer vasculature has received considerable attention. Most cancers have leaky vasculature and the defective vascular architecture, created due to the rapid vascularization necessary to serve fast growing cancers, in combination with poor lymphatic drainage allows increased permeation and retention effects. The leaky vasculature, because of higher porosity and permeability, serve as natural high affinity targets to metallic nanoparticles. Another attractive approach toward the application of nanotechnology to nanomedicine is the utility of nanoparticles that display inherent therapeutic properties. For example radioactive gold nanoparticles present attractive prospects in therapy of cancer. The radioactive properties of Au-198 (βmax = 0.96 MeV; t1/2 = 2.7 d) and Au-199 (βmax = 0.46 MeV; t1/2 = 3.14 d) make them ideal candidates for use in radiotherapeutic applications. In addition, they both have imageable gamma emissions for dosimetry and pharmacokinetic studies and Au-199 can be made carrier-free by indirect methods. Gold nanoparticles are of interest for treatment of disease as they can deliver agents directly into cells and cellular components with a higher concentration of radioactivity, e.g. higher dose of radioactivity, to cancerous tumour cells. This presentation will provide latest results on (i) the production of biocompatible hybrid gold nanoparticles; (ii) production, characterization and biodistribution of Au-198 nanoparticles and (iii) details on the utility of gold nanoparticles in molecular imaging using X ray contrast (CT) techniques. (author)

  6. 7 Tesla (T) human cardiovascular magnetic resonance imaging using FLASH and SSFP to assess cardiac function: validation against 1.5 T and 3 T

    OpenAIRE

    Suttie, J. J.; DelaBarre, L; Pitcher, A.; van de Moortele, P. F.; Dass, S; Snyder, C. J.; Francis, J M; Metzger, G. J.; Weale, P.; Ugurbil, K; Neubauer, S.; Robson, M; Vaughan, T

    2011-01-01

    We report the first comparison of cardiovascular magnetic resonance imaging (CMR) at 1.5 T, 3 T and 7 T field strengths using steady state free precession (SSFP) and fast low angle shot (FLASH) cine sequences. Cardiac volumes and mass measurements were assessed for feasibility, reproducibility and validity at each given field strength using FLASH and SSFP sequences. Ten healthy volunteers underwent retrospectively electrocardiogram (ECG) gated CMR at 1.5 T, 3 T and 7 T using FLASH and SSFP se...

  7. Role of multimodality cardiac imaging in preoperative cardiovascular evaluation before noncardiac surgery

    Directory of Open Access Journals (Sweden)

    Fathala Ahmed

    2011-01-01

    Full Text Available The preoperative cardiac assessment of patients undergoing noncardiac surgery is common in the daily practice of medical consultants, anesthesiologists, and surgeons. The number of patients undergoing noncardiac surgery worldwide is increasing. Currently, there are several noninvasive diagnostic tests available for preoperative evaluation. Both nuclear cardiology with myocardial perfusion single photon emission computed tomography (SPECT and stress echocardiography are well-established techniques for preoperative cardiac evaluation. Recently, some studies demonstrated that both coronary angiography by gated multidetector computed tomography and stress cardiac magnetic resonance might potentially play a role in preoperative evaluation as well, but more studies are needed to assess the role of these new modalities in preoperative risk stratification. A common question that arises in preoperative evaluation is if further preoperative testing is needed, which preoperative test should be used. The preferred stress test is the exercise electrocardiogram (ECG. Stress imaging with exercise or pharmacologic stress agents is to be considered in patients with abnormal rest ECG or patients who are unable to exercise. After reviewing this article, the reader should develop an understanding of the following: (1 the magnitude of the cardiac preoperative morbidity and mortality, (2 how to select a patient for further preoperative testing, (3 currently available noninvasive cardiac testing for the detection of coronary artery disease and assessment of left ventricular function, and (4 an approach to select the most appropriate noninvasive cardiac test, if needed.

  8. SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahi, H

    2014-06-01

    Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment response in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging.

  9. SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy

    International Nuclear Information System (INIS)

    Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment response in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging

  10. From molecular imaging to systems diagnostics: Time for another paradigm shift?

    International Nuclear Information System (INIS)

    The term 'Molecular Imaging' has hit the consciousness of radiologists only in the past decade although many of the concepts that molecular imaging encompasses has been practiced in biomedical imaging, especially in nuclear medicine, for many decades. Many new imaging techniques have allowed us to interrogate biologic events at the cellular and molecular level in vivo in four dimensions but the challenge now is to translate these techniques into clinical practice in a way that will enable us to revolutionize healthcare delivery. The purpose of this article is to introduce the term 'Systems Diagnostics' and examine how radiologists can become translators of disparate sources of information into medical decisions and therapeutic actions.

  11. Basic research and clinical application of optical molecular imaging in breast cancer

    International Nuclear Information System (INIS)

    As a rapidly developing biomedical imaging technology,in vivo optical molecular imaging has been widely applied in various research fields owing to its unique real-time, quantitative and noninvasive characteristics. The applications of in vivo optical imaging technology in the basic and clinical research of breast cancer were reviewed, including detection of distant metastasis,tumor apoptosis, cell cycle, hypoxia and angiogenesis, ER-mediated molecular pathway, breast cancer stem cells, early diagnosis, sentinel node biopsy, evaluation of drug efficacy and detection of human epidermal growth factor receptor-2 (HER-2) expression. They all seem to have a promising potential in in vivo optical molecular imaging. (authors)

  12. Diversity of radioprobes targeted to tumor angiogenesis on molecular functional imaging

    International Nuclear Information System (INIS)

    Molecular functional imaging could visualize, characterize, and measure the bio- logical processes including tumor angiogenesis at the molecular and cellular levels in humans and other living systems. The molecular probes labeled by a variety of radionuclide used in the field of the nuclear medicine play pivotal roles in molecular imaging of tumor angiogenesis. However, the regulatory role of different probes in tumor angiogenesis has not been systematically illustrated. The current status of tumor angiogenesis imaging with radiolabeled probes of peptide, monoclonal antibody as well as its fragment, especially nanoparticle-based probes to gain insights into the robust tumor angiogenesis development were summarized. It was recognized that only the probes such as nanoparticle-based probes, which truly target the tumor vasculature rather than tumor cells because of poor extravasation, are really tumor angiogenesis imaging agent. The research of molecular probe targeted to angiogenesis would meet its flourish just after the outstanding improvements in the in vivo stability and biocompatibility, tumor-targeting efficacy, and pharmacokinetics of tumor angiogenesis imaging probes are made. Translation to clinical applications will also be critical for the maximize benefits of these novel agents. The future of tumor angiogenesis imaging lies in liable imaging probes and multiple imaging modalities, imaging of protein-protein interactions, and quantitative molecular imaging. (authors)

  13. The Center for Integrated Molecular Brain Imaging (Cimbi) database.

    Science.gov (United States)

    Knudsen, Gitte M; Jensen, Peter S; Erritzoe, David; Baaré, William F C; Ettrup, Anders; Fisher, Patrick M; Gillings, Nic; Hansen, Hanne D; Hansen, Lars Kai; Hasselbalch, Steen G; Henningsson, Susanne; Herth, Matthias M; Holst, Klaus K; Iversen, Pernille; Kessing, Lars V; Macoveanu, Julian; Madsen, Kathrine Skak; Mortensen, Erik L; Nielsen, Finn Årup; Paulson, Olaf B; Siebner, Hartwig R; Stenbæk, Dea S; Svarer, Claus; Jernigan, Terry L; Strother, Stephen C; Frokjaer, Vibe G

    2016-01-01

    We here describe a multimodality neuroimaging containing data from healthy volunteers and patients, acquired within the Lundbeck Foundation Center for Integrated Molecular Brain Imaging (Cimbi) in Copenhagen, Denmark. The data is of particular relevance for neurobiological research questions related to the serotonergic transmitter system with its normative data on the serotonergic subtype receptors 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 and the 5-HT transporter (5-HTT), but can easily serve other purposes. The Cimbi database and Cimbi biobank were formally established in 2008 with the purpose to store the wealth of Cimbi-acquired data in a highly structured and standardized manner in accordance with the regulations issued by the Danish Data Protection Agency as well as to provide a quality-controlled resource for future hypothesis-generating and hypothesis-driven studies. The Cimbi database currently comprises a total of 1100 PET and 1000 structural and functional MRI scans and it holds a multitude of additional data, such as genetic and biochemical data, and scores from 17 self-reported questionnaires and from 11 neuropsychological paper/computer tests. The database associated Cimbi biobank currently contains blood and in some instances saliva samples from about 500 healthy volunteers and 300 patients with e.g., major depression, dementia, substance abuse, obesity, and impulsive aggression. Data continue to be added to the Cimbi database and biobank. PMID:25891375

  14. Cardiovascular effects of CPU-23, a novel L-type calcium channel blocker with a unique molecular structure

    OpenAIRE

    Dong, Hui; Earle, Mary L; Jiang, Yanfen; Loutzenhiser, Kathy A; Triggle, Christopher R

    1997-01-01

    The cardiovascular effects of CPU-23 (1-{1-[(6-methoxy)-naphth-2-yl]}-ethyl-2-(1-piperidinyl)-acetyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline), a cleavage product of tetrandrine, were investigated using the whole cell perforated patch-clamp technique, in vitro tension measurements and in vivo haemodynamic recordings.CPU-23 (1 and 10 μM) dose-dependently reduced concentration–response curves for KCl and phenylephrine (PE) in the rat tail artery; inhibition of KCl-induced contraction was mu...

  15. Advance in molecular imaging research of vascular smooth muscle cells in the vascular diseases

    International Nuclear Information System (INIS)

    Vascular smooth muscle cells (VSMCs) are the primary cells within the vascular wall structure and maintain the tension of blood vessels, playing a key role in the restenosis, atherosclerosis and some other vascular diseases. With the development of molecular imaging, VSMCs cellular level of imaging studies is becoming more and more attention. The phenotype modulation, proliferation, migration and molecular imaging research progress of VSMCs in pathologic state were reviewed, to improve the management of vascular restenosis and atherosclerosis. (authors)

  16. Molecular markers in breast cancer: new tools in imaging and prognosis

    OpenAIRE

    Vermeulen, J.F.

    2012-01-01

    Breast cancer is the most frequently diagnosed cancer in women. Although breast cancer is mainly diagnosed by mammography, other imaging modalities (e.g. MRI, PET) are increasingly used. The most recent developments in the field of molecular imaging comprise the application of near-infrared fluorescent labeled (NIRF) tracers for detection of breast cancer. Thus far, only a few molecular imaging tracers have been taken to the clinic of which most are suitable for PET. My thesis describes the e...

  17. Molecular imaging of HER2-positive breast cancer: a step toward an individualized 'image and treat' strategy

    DEFF Research Database (Denmark)

    Capala, Jacek; Bouchelouche, Kirsten

    2010-01-01

    HER2 overexpression is correlated with aggressive tumor behavior and poor clinical outcome. Therefore, HER2 has become an important prognostic and predictive factor, as well as a target for molecular therapies. The article reviews recent advances in molecular imaging of HER2 that could facilitate...

  18. Molecular imaging of HER2-positive breast cancer: a step toward an individualized 'image and treat' strategy

    DEFF Research Database (Denmark)

    Capala, Jacek; Bouchelouche, Kirsten

    2010-01-01

    HER2 overexpression is correlated with aggressive tumor behavior and poor clinical outcome. Therefore, HER2 has become an important prognostic and predictive factor, as well as a target for molecular therapies. The article reviews recent advances in molecular imaging of HER2 that could facilitate...... individual approaches to targeted therapy of HER2-positive breast cancers....

  19. Cardiovascular determinants of life span

    OpenAIRE

    Shi, Y; Camici, G G; Lüscher, T. F.

    2010-01-01

    The prevalence of cardiovascular diseases rises with aging and is one of the main causes of mortality in western countries. In view of the progressively aging population, there is an urge for a better understanding of age-associated cardiovascular diseases and its underlying molecular mechanisms. The risk factors for cardiovascular diseases include unhealthy diet, diabetes, obesity, smoking, alcohol consumption, physical inactivity, and aging. Increased production of oxygen-derived free radic...

  20. Investigations on the usefulness of CEACAMs as potential imaging targets for molecular imaging purposes.

    Directory of Open Access Journals (Sweden)

    Markus Heine

    Full Text Available Members of the carcinoembryonic antigen cell adhesion molecules (CEACAMs family are the prototype of tumour markers. Classically they are used as serum markers, however, CEACAMs could serve as targets for molecular imaging as well.In order to test the anti CEACAM monoclonal antibody T84.1 for imaging purposes, CEACAM expression was analysed using this antibody. Twelve human cancer cell lines from different entities were screened for their CEACAM expression using qPCR, Western Blot and FACS analysis. In addition, CEACAM expression was analyzed in primary tumour xenografts of these cells. Nine of 12 tumour cell lines expressed CEACAM mRNA and protein when grown in vitro. Pancreatic and colon cancer cell lines showed the highest expression levels with good correlation of mRNA and protein level. However, when grown in vivo, the CEACAM expression was generally downregulated except for the melanoma cell lines. As the CEACAM expression showed pronounced expression in FemX-1 primary tumours, this model system was used for further experiments. As the accessibility of the antibody after i.v. application is critical for its use in molecular imaging, the binding of the T84.1 monoclonal antibody was assessed after i.v. injection into SCID mice harbouring a FemX-1 primary tumour. When applied i.v., the CEACAM specific T84.1 antibody bound to tumour cells in the vicinity of blood vessels. This binding pattern was particularly pronounced in the periphery of the tumour xenograft, however, some antibody binding was also observed in the central areas of the tumour around blood vessels. Still, a general penetration of the tumour by i.v. application of the anti CEACAM antibody could not be achieved despite homogenous CEACAM expression of all melanoma cells when analysed in tissue sections. This lack of penetration is probably due to the increased interstitial fluid pressure in tumours caused by the absence of functional lymphatic vessels.

  1. The clinical impact of late gadolinium enhancement in Takotsubo cardiomyopathy: serial analysis of cardiovascular magnetic resonance images

    Directory of Open Access Journals (Sweden)

    Katoh Hideki

    2011-10-01

    Full Text Available Abstract Background Our study aimed to investigate both the clinical implications of late gadolinium enhancement (LGE by cardiovascular magnetic resonance (CMR and the relation of LGE to clinical findings in patients with Takotsubo cardiomyopathy (TTC. Methods We evaluated 20 consecutive patients (2 men, 18 women; median age, 77 years; interquartile range [IQR] 67-82 years who were admitted to our hospital with the diagnosis of TTC. CMR was performed within 1 week after admission, and follow-up studies were conducted 1.5 and 6 months later. Results In 8 patients, CMR imaging during the sub-acute phase revealed LGE in the area matched with wall motion impairment. Cardiogenic shock was more frequently observed in patients with LGE than in those without LGE (38% vs 0%, p = 0.049. The patients with LGE needed a longer duration for ECG normalization and recovery of wall motion than did those without LGE (median 205 days, IQR [152-363] vs 68 days, [43-145], p = 0.005; 15 days, [10-185] vs 7 days, [4-13], p = 0.030, respectively. In 5 of these 8 patients, LGE disappeared within 45-180 days (170, IQR [56-180] of onset. The patients with LGE remaining in the chronic phase had higher peak creatine kinase levels than did those without LGE (median 307 IU/L, IQR [264-460] vs 202 IU/L, [120-218], p = 0.017. Conclusion LGE by CMR in the sub-acute phase may be associated with the severity and prolonged recovery to normal of clinical findings in TTC.

  2. Molecular Imaging of Transporters with Positron Emission Tomography

    Science.gov (United States)

    Antoni, Gunnar; Sörensen, Jens; Hall, Håkan

    Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug

  3. Small animal optoacoustic tomography system for molecular imaging of contrast agents

    Science.gov (United States)

    Su, Richard; Liopo, Anton; Ermilov, Sergey A.; Oraevsky, Alexander A.

    2016-03-01

    We developed a new and improved Laser Optoacoustic Imaging System, LOIS-3D for preclinical research applications in small animal models. The advancements include (i) a new stabilized imaging module with a more homogeneous illumination of the mouse yielding a better spatial resolution (bioluminescence based modalities for molecular imaging in live mice.

  4. Cardiovascular risks and brain function: a functional magnetic resonance imaging study of executive function in older adults

    OpenAIRE

    Chuang, Yi-Fang; Eldreth, Dana; Kirk I Erickson; Varma, Vijay; Harris, Gregory; Fried, Linda P.; Rebok, George W.; Tanner, Elizabeth K.; Carlson, Michelle C.

    2013-01-01

    Cardiovascular (CV) risk factors, such as hypertension, diabetes, and hyperlipidemia are associated with cognitive impairment and risk of dementia in older adults. However, the mechanisms linking them are not clear. This study aims to investigate the association between aggregate CV risk, assessed by the Framingham general cardiovascular risk profile, and functional brain activation in a group of community-dwelling older adults. Sixty participants (mean age: 64.6 years) from the Brain Health ...

  5. From molecular imaging to personalized radionuclide therapy of cancer

    International Nuclear Information System (INIS)

    Full text of publication follows. 68Gallium is a positron emitter (t1/2 68 min) which can be produced from a generator in a convenient, 'in-house' preparation and used for labeling of peptides, e.g. somatostatin analogues (SA) like DOTATOC or DOTATATE for molecular imaging of SSTR expressing tumors. Since 2004, we have performed over 7700 68Ga PET/CT studies in patients with neuroendocrine tumors (NET) and have established SSTR PET/CT as the new gold standard for imaging G1 and G2 NET (staging, re-staging, therapy response evaluation and detection of unknown primary NET). The same peptides can be labeled with 177Lutetium or 90Yttrium for radionuclide therapy, a form of personalized treatment (THERANOSTICS approach). PRRNT is based on the receptor-mediated internalization of SA. Several clinical trials indicate that PRRNT can deliver effective radiation doses to tumors. A German multi-institutional registry study with prospective follow up in 450 patients indicates that PRRT is an effective therapy for patients with G1-2 neuroendocrine tumors, irrespective of previous therapies, with a survival advantage of several years compared to other therapies and only minor side effects. Median overall survival (OS) of all patients from the start of treatment was 59 months. Median progression-free survival (PFS) measured from last cycle of therapy accounted to 41 mo. Median PFS of pancreatic NET was 39 mo. Similar results were obtained for NET of unknown primary (median PFS: 38 mo) whereas NET of small bowel had a median PFS of 51 months. Side effects like 3-4 NEThro- or hemato-toxicity were observed in only 0.2% and 2% of patients respectively. PRRNT is highly effective in the management of NET, even in advanced cases. In patients with progressive neuroendocrine tumors, fractionated, personalized PRRNT with lower doses of radioactivity given over a longer period of time (Bad Berka Concept using sequential (DUO) PRRNT) results in excellent therapeutic responses. By

  6. MARS spectral molecular imaging of lamb tissue: data collection and image analysis

    CERN Document Server

    Aamir, R; Bateman, C.J.; Butler, A.P.H.; Butler, P.H.; Anderson, N.G.; Bell, S.T.; Panta, R.K.; Healy, J.L.; Mohr, J.L.; Rajendran, K.; Walsh, M.F.; Ruiter, N.de; Gieseg, S.P.; Woodfield, T.; Renaud, P.F.; Brooke, L.; Abdul-Majid, S.; Clyne, M.; Glendenning, R.; Bones, P.J.; Billinghurst, M.; Bartneck, C.; Mandalika, H.; Grasset, R.; Schleich, N.; Scott, N.; Nik, S.J.; Opie, A.; Janmale, T.; Tang, D.N.; Kim, D.; Doesburg, R.M.; Zainon, R.; Ronaldson, J.P.; Cook, N.J.; Smithies, D.J.; Hodge, K.

    2014-01-01

    Spectral molecular imaging is a new imaging technique able to discriminate and quantify different components of tissue simultaneously at high spatial and high energy resolution. Our MARS scanner is an x-ray based small animal CT system designed to be used in the diagnostic energy range (20 to 140 keV). In this paper, we demonstrate the use of the MARS scanner, equipped with the Medipix3RX spectroscopic photon-processing detector, to discriminate fat, calcium, and water in tissue. We present data collected from a sample of lamb meat including bone as an illustrative example of human tissue imaging. The data is analyzed using our 3D Algebraic Reconstruction Algorithm (MARS-ART) and by material decomposition based on a constrained linear least squares algorithm. The results presented here clearly show the quantification of lipid-like, water-like and bone-like components of tissue. However, it is also clear to us that better algorithms could extract more information of clinical interest from our data. Because we ...

  7. MARS spectral molecular imaging of lamb tissue: data collection and image analysis

    International Nuclear Information System (INIS)

    Spectral molecular imaging is a new imaging technique able to discriminate and quantify different components of tissue simultaneously at high spatial and high energy resolution. Our MARS scanner is an x-ray based small animal CT system designed to be used in the diagnostic energy range (20–140 keV). In this paper, we demonstrate the use of the MARS scanner, equipped with the Medipix3RX spectroscopic photon-processing detector, to discriminate fat, calcium, and water in tissue. We present data collected from a sample of lamb meat including bone as an illustrative example of human tissue imaging. The data is analyzed using our 3D Algebraic Reconstruction Algorithm (MARS-ART) and by material decomposition based on a constrained linear least squares algorithm. The results presented here clearly show the quantification of lipid-like, water-like and bone-like components of tissue. However, it is also clear to us that better algorithms could extract more information of clinical interest from our data. Because we are one of the first to present data from multi-energy photon-processing small animal CT systems, we make the raw, partial and fully processed data available with the intention that others can analyze it using their familiar routines. The raw, partially processed and fully processed data of lamb tissue along with the phantom calibration data can be found at http://hdl.handle.net/10092/8531

  8. Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals

    International Nuclear Information System (INIS)

    Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future

  9. Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Il; Kim, Hyeon Sik; Jeong, Hye Jin; Lee, Hyung Jae; Moon, Seung Min; Kwon, Seung Young; Jeong, Shin Young; Bom, Hee Seung; Min, Jung Joon [Chonnam National University Hospital, Gwangju (Korea, Republic of); Choi, Eun Seo [Chosun University, Gwangju (Korea, Republic of)

    2009-08-15

    Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future

  10. Use of cardiovascular magnetic resonance imaging for TAVR assessment in patients with bioprosthetic aortic valves: Comparison with computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Quail, Michael A., E-mail: m.quail@ucl.ac.uk [Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science and Great Ormond Street Hospital for Children, London (United Kingdom); Nordmeyer, Johannes [Department of Congenital Heart Disease and Paediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin (Germany); Schievano, Silvia [Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science and Great Ormond Street Hospital for Children, London (United Kingdom); Reinthaler, Markus; Mullen, Michael J. [The Heart Hospital, University College Hospital and Institute of Cardiovascular Sciences, UCL, 16-18 Westmoreland Street, London (United Kingdom); Taylor, Andrew M. [Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science and Great Ormond Street Hospital for Children, London (United Kingdom)

    2012-12-15

    Purpose: Transcatheter aortic valve replacement (TAVR) has been successfully used to treat patients with failing aortic bioprostheses. Computed tomography (CT) is the usual method of pre-procedural imaging for TAVR in the native position; however, the optimal modality for valve-in-valve procedures has not been established. CT can assess intracardiac anatomy and is superior to cardiovascular magnetic resonance (CMR) in the assessment of coronary artery disease. However, CMR can provide superior haemodynamic information, does not carry the risk of ionising radiation, and may be performed without contrast in patients with renal insufficiency. In this study, we compared CT and CMR for the evaluation of TAVR in a small cohort of patients with existing aortic bioprostheses. Materials and methods: 21 patients with aortic bioprostheses were prospectively evaluated by CT and CMR, as pre-assessment for TAVR; agreement between measurements of aortic geometries was assessed. Results: 16/21 patients had aortic bioprostheses constructed with a metal ring, and 5/21 patients had a metal strut construction. Patients with metal struts had significant metal-artefact on CMR, which compromised image quality in this region. There was good agreement between CT and CMR measurements of aortic geometry. The mean difference (d) in annulus area-derived diameter was 0.5 mm (95% limits of agreement [L.A] 4.2 mm). There was good agreement between modalities for the cross-sectional area of the sinuses of valsalva (d 0.5 cm{sup 2}, L.A 1.4 cm{sup 2}), sinotubular junction (d 0.9 cm{sup 2}, L.A 1.5 cm{sup 2}), and ascending aorta (d 0.6 cm{sup 2}, L.A 1.4 cm{sup 2}). In patients without metal struts, the left coronary artery height d was 0.7 mm and L.A 2.8 mm. Conclusions: Our analysis shows that CMR and CT measurements of aortic geometry show good agreement, including measurement of annulus size and coronary artery location, and thus provide the necessary anatomical information for valve

  11. Use of cardiovascular magnetic resonance imaging for TAVR assessment in patients with bioprosthetic aortic valves: Comparison with computed tomography

    International Nuclear Information System (INIS)

    Purpose: Transcatheter aortic valve replacement (TAVR) has been successfully used to treat patients with failing aortic bioprostheses. Computed tomography (CT) is the usual method of pre-procedural imaging for TAVR in the native position; however, the optimal modality for valve-in-valve procedures has not been established. CT can assess intracardiac anatomy and is superior to cardiovascular magnetic resonance (CMR) in the assessment of coronary artery disease. However, CMR can provide superior haemodynamic information, does not carry the risk of ionising radiation, and may be performed without contrast in patients with renal insufficiency. In this study, we compared CT and CMR for the evaluation of TAVR in a small cohort of patients with existing aortic bioprostheses. Materials and methods: 21 patients with aortic bioprostheses were prospectively evaluated by CT and CMR, as pre-assessment for TAVR; agreement between measurements of aortic geometries was assessed. Results: 16/21 patients had aortic bioprostheses constructed with a metal ring, and 5/21 patients had a metal strut construction. Patients with metal struts had significant metal-artefact on CMR, which compromised image quality in this region. There was good agreement between CT and CMR measurements of aortic geometry. The mean difference (d) in annulus area-derived diameter was 0.5 mm (95% limits of agreement [L.A] 4.2 mm). There was good agreement between modalities for the cross-sectional area of the sinuses of valsalva (d 0.5 cm2, L.A 1.4 cm2), sinotubular junction (d 0.9 cm2, L.A 1.5 cm2), and ascending aorta (d 0.6 cm2, L.A 1.4 cm2). In patients without metal struts, the left coronary artery height d was 0.7 mm and L.A 2.8 mm. Conclusions: Our analysis shows that CMR and CT measurements of aortic geometry show good agreement, including measurement of annulus size and coronary artery location, and thus provide the necessary anatomical information for valve-in-valve TAVR planning. However, in patients

  12. Molecular Ultrasound Imaging of Tissue Inflammation Using an Animal Model of Acute Kidney Injury

    Science.gov (United States)

    Hoyt, Kenneth; Warram, Jason M.; Wang, Dezhi; Ratnayaka, Sithira; Traylor, Amie; Agarwal, Anupam

    2016-01-01

    Purpose The objective of this study was to evaluate the use of molecular ultrasound (US) imaging for monitoring the early inflammatory effects following acute kidney injury. Procedures A population of rats underwent 30 min of renal ischemia (acute kidney injury, N=6) or sham injury (N=4) using established surgical methods. Animals were divided and molecular US imaging was performed during the bolus injection of a targeted microbubble (MB) contrast agent to either P-selectin or vascular cell adhesion molecule 1 (VCAM-1). Imaging was performed before surgery and 4 and 24 h thereafter. After manual segmentation of renal tissue space, the molecular US signal was calculated as the difference between time-intensity curve data before MB injection and after reaching steady-state US image enhancement. All animals were terminated after the 24 h imaging time point and kidneys excised for immunohistochemical (IHC) analysis. Results Renal inflammation was analyzed using molecular US imaging. While results using the P-selectin and VCAM-1 targeted MBs were comparable, it appears that the former was more sensitive to biomarker expression. All molecular US imaging measures had a positive correlation with IHC findings. Conclusions Acute kidney injury is a serious disease in need of improved noninvasive methods to help diagnose the extent of injury and monitor the tissue throughout disease progression. Molecular US imaging appears well suited to address this challenge and more research is warranted. PMID:25905474

  13. Cardiovascular events in Japanese asymptomatic patients with type 2 diabetes: a 1-year interim report of a J-ACCESS 2 investigation using myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Diabetic patients have a high risk for cardiovascular events. The role of myocardial perfusion imaging was investigated in asymptomatic diabetic patients to evaluate short-term prognosis in a Japanese population. A total of 506 asymptomatic patients ≥50 years of age who had carotid artery maximum intima-media thickness ≥1.1 mm, urinary albumin excretion of ≥30 mg/g creatinine, with additional criteria of abdominal obesity, low HDL cholesterol, high triglyceride level, and hypertension were enrolled and followed up over a 3-year period. Gated SPECT with stress-rest protocol was performed and analyzed by summed defect scores and QGS software. One-year cardiovascular events were analyzed. Myocardial ischemia was observed in 17% of patients, and abnormal perfusion findings of ischemia and/or scar were observed in 32% of patients. By the end of the 1-year follow-up, 33 (6.5%) cardiovascular events occurred including 6 all-cause deaths. Patients with summed stress score (SSS) >8 had a higher incidence of either death or cardiovascular events. Event-free survival rates for SSS 0-3, 4-8, 9-13, and ≥14 were 0.96, 0.95, 0.82, and 0.76, respectively. Multivariate Cox regression analysis showed that significant variables were SSS, history of cerebrovascular accident, and electrocardiographic abnormality at rest. The 1-year interim summary showed that cardiovascular events were significantly higher in patients with SPECT abnormality, although hard cardiac event rate was relatively low. Targeted treatment strategy is required for asymptomatic but potentially high-risk diabetic patients. (orig.)

  14. Cardiovascular events in Japanese asymptomatic patients with type 2 diabetes: a 1-year interim report of a J-ACCESS 2 investigation using myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Kenichi [Kanazawa University Hospital, Department of Nuclear Medicine, Kanazawa (Japan); Yamasaki, Yoshimitsu [Osaka University, Center for Advanced Science and Innovation, Osaka (Japan); Kusuoka, Hideo [National Hospital Organization Osaka National Hospital, Osaka (Japan); Izumi, Tohru [Kitasato University, Department of Cardiology and Internal Medicine, Sagamihara (Japan); Kashiwagi, Atsunori [Shiga University of Medical Science, Department of Medicine, Ohtsu (Japan); Kawamori, Ryuzo [Juntendo University, Department of Medicine, Metabolism and Endocrinology, School of Medicine, Tokyo (Japan); Shimamoto, Kazuaki [Sapporo Medical University School of Medicine, Second Department of Internal Medicine, Sapporo (Japan); Yamada, Nobuhiro [University of Tsukuba, Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Tsukuba (Japan); Nishimura, Tsunehiko [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science, 465 Kajii-cho, Kawara-machi, Hirokoji, Kamigyo-ku, Kyoto (Japan)

    2009-12-15

    Diabetic patients have a high risk for cardiovascular events. The role of myocardial perfusion imaging was investigated in asymptomatic diabetic patients to evaluate short-term prognosis in a Japanese population. A total of 506 asymptomatic patients {>=}50 years of age who had carotid artery maximum intima-media thickness {>=}1.1 mm, urinary albumin excretion of {>=}30 mg/g creatinine, with additional criteria of abdominal obesity, low HDL cholesterol, high triglyceride level, and hypertension were enrolled and followed up over a 3-year period. Gated SPECT with stress-rest protocol was performed and analyzed by summed defect scores and QGS software. One-year cardiovascular events were analyzed. Myocardial ischemia was observed in 17% of patients, and abnormal perfusion findings of ischemia and/or scar were observed in 32% of patients. By the end of the 1-year follow-up, 33 (6.5%) cardiovascular events occurred including 6 all-cause deaths. Patients with summed stress score (SSS) >8 had a higher incidence of either death or cardiovascular events. Event-free survival rates for SSS 0-3, 4-8, 9-13, and {>=}14 were 0.96, 0.95, 0.82, and 0.76, respectively. Multivariate Cox regression analysis showed that significant variables were SSS, history of cerebrovascular accident, and electrocardiographic abnormality at rest. The 1-year interim summary showed that cardiovascular events were significantly higher in patients with SPECT abnormality, although hard cardiac event rate was relatively low. Targeted treatment strategy is required for asymptomatic but potentially high-risk diabetic patients. (orig.)

  15. Reduced radiation dose and improved image quality at cardiovascular CT angiography by automated attenuation-based tube voltage selection: intra-individual comparison

    International Nuclear Information System (INIS)

    To evaluate the effect of automated tube voltage selection on radiation dose and image quality at cardiovascular CT angiography (CTA). We retrospectively analysed paired studies in 72 patients (41 male, 60.5 ± 16.5 years), who had undergone CTA acquisitions of the heart or aorta both before and after the implementation of an automated x-ray tube voltage selection algorithm (ATVS). All other parameters were kept identical between the two acquisitions. Subjective image quality (IQ) was rated and objective IQ was measured by image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and figure of merit (FOM). Image quality parameters and effective dose were compared between acquisitions. Overall subjective image quality improved with the percentage of cases scored as adequate or higher increasing from 79 % to 92 % after implementation of ATVS (P = 0.03). SNR (14.1 ± 5.9, 15.7 ± 6.1, P = 0.009), CNR (11.6 ± 5.3, 13.2 ± 5.6, P = 0.011), and FOM (19.9 ± 23.3, 43.8 ± 51.1, P < 0.001) were significantly higher after implementation of ATVS. Mean image noise (24.1 ± 8.4 HU, 22.7 ± 7.1 HU, P = 0.048) and mean effective dose (10.6 ± 5.9 mSv, 8.8 ± 5.0 mSv, P = 0.003) were significantly lower after implementation of ATVS. Automated tube voltage selection can operator-independently optimize cardiovascular CTA image acquisition parameters with improved image quality at reduced dose. (orig.)

  16. Present and future of clinical cardiovascular PET imaging in Europe - a position statement by the European Council of Nuclear Cardiology (ECNC)

    International Nuclear Information System (INIS)

    This position statement was prepared by the European Council of Nuclear Cardiology and summarises the current and future potential of PET as a clinical cardiovascular diagnostic imaging tool. The first section describes how methodological developments have positively influenced the transition of PET from a research tool towards a clinical diagnostic test. In the second section, evidence in support of its superior diagnostic accuracy, its value to guide decision making and to predict outcome and its cost effectiveness is summarised. The third section finally outlines new PET-based approaches and concepts, which will likely influence clinical cardiovascular medicine in the future. The notion that integration of cardiac PET into healthcare systems and disease management algorithms will advance quality of care is increasingly supported by the literature highlighted in this statement. (orig.)

  17. Cardiovascular magnetic resonance of the right ventricle

    OpenAIRE

    Alpendurada, Francisco Diogo

    2013-01-01

    Introduction: Whilst most of the attention has been devoted to the left ventricle in cardiovascular disease, the right ventricle has been somewhat neglected. In the last decades, there has been a renewal of interest in the right ventricle, in part driven by advances in cardiovascular imaging. Methods: Cardiovascular magnetic resonance is arguably the best imaging modality for the study of the right ventricle. In this research thesis, cardiovascular magnetic resonance w...

  18. Molecular MR imaging of cancer gene therapy. Ferritin transgene reporter takes the stage

    International Nuclear Information System (INIS)

    Molecular imaging using magnetic resonance (MR) imaging has been actively investigated and made rapid progress in the past decade. Applied to cancer gene therapy, the technique's high spatial resolution allows evaluation of gene delivery into target tissues. Because noninvasive monitoring of the duration, location, and magnitude of transgene expression in tumor tissues or cells provides useful information for assessing therapeutic efficacy and optimizing protocols, molecular imaging is expected to become a critical step in the success of cancer gene therapy in the near future. We present a brief overview of the current status of molecular MR imaging, especially in vivo reporter gene imaging using ferritin and other reporters, discuss its application to cancer gene therapy, and present our research of MR imaging detection of electroporation-mediated cancer gene therapy using the ferritin reporter gene. (author)

  19. Spatio-temporal (2D+T) non-rigid registration of real-time 3D echocardiography and cardiovascular MR image sequences

    International Nuclear Information System (INIS)

    In this paper we describe a method to non-rigidly co-register a 2D slice sequence from real-time 3D echocardiography with a 2D cardiovascular MR image sequence. This is challenging because the imaging modalities have different spatial and temporal resolution. Non-rigid registration is required for accurate alignment due to imprecision of cardiac gating and natural motion variations between cardiac cycles. In our approach the deformation field between the imaging modalities is decoupled into temporal and spatial components. First, temporal alignment is performed to establish temporal correspondence between a real-time 3D echocardiography frame and a cardiovascular MR frame. Spatial alignment is then performed using an adaptive non-rigid registration algorithm based on local phase mutual information on each temporally aligned image pair. Experiments on seven volunteer datasets are reported. Evaluation of registration errors based on expert-identified landmarks shows that the spatio-temporal registration algorithm gives a mean registration error of 3.56 ± 0.49 and 3.54 ± 0.27 mm for the short and long axis sequences, respectively.

  20. Human and equine cardiovascular endocrinology

    DEFF Research Database (Denmark)

    Vekens, Nicky Van Der; Hunter, Ingrid; Gøtze, Jens Peter;

    2013-01-01

    important species differences, which can partly be explained by variations in physiology or pathophysiology. Most important are physiological differences in heart rate, cardiovascular response to exercise, food and water intake, and molecular elimination in plasma. Pathological differences are even more...

  1. Handbook of nuclear medicine and molecular imaging principles and clinical applications

    CERN Document Server

    Kim, Edmund E; Tateishi, Ukihide; Baum, Richard P

    2012-01-01

    This handbook will provide updated information on nuclear medicine and molecular imaging techniques as well as its clinical applications, including radionuclide therapy, to trainees and practitioners of nuclear medicine, radiology and general medicine. Updated information on nuclear medicine and molecular imaging are vitally important and useful to both trainees and existing practitioners. Imaging techniques and agents are advancing and changing so rapidly that concise and pertinent information are absolutely necessary and helpful. It is hoped that this handbook will help readers be better equipped for the utilization of new imaging methods and treatments using radiopharmaceuticals.

  2. Investigating Atmospheric Oxidation with Molecular Dynamics Imaging and Spectroscopy

    Science.gov (United States)

    Merrill, W. G.; Case, A. S.; Keutsch, F. N.

    2013-06-01

    Volatile organic compounds (VOCs) in the Earth's atmosphere constitute trace gas species emitted primarily from the biosphere, and are the subject of inquiry for a variety of air quality and climate studies. Reactions intiated (primarily) by the hydroxyl radical (OH) lead to a myriad of oxygenated species (OVOCs), which in turn are prone to further oxidation. Investigations of the role that VOC oxidation plays in tropospheric chemistry have brought to light two troubling scenarios: (1) VOCs are responsible in part for the production of two EPA-regulated pollutants---tropospheric ozone and organic aerosol---and (2) the mechanistic details of VOC oxidation remain convoluted and poorly understood. The latter issue hampers the implementation of near-explicit atmospheric simulations, and large discrepancies in OH reactivity exist between measurements and models at present. Such discrepancies underscore the need for a more thorough description of VOC oxidation. Time-of-flight measurements and ion-imaging techniques are viable options for resolving some of the mechanistic and energetic details of VOC oxidation. Molecular beam studies have the advantage of foregoing unwanted bimolecular reactions, allowing for the characterization of specific processes which must typically compete with the complex manifold of VOC oxidation pathways. The focus of this work is on the unimolecular channels of organic peroxy radical intermediates, which are necessarily generated during VOC oxidation. Such intermediates may isomerize and decompose into distinct chemical channels, enabling the unambiguous detection of each pathway. For instance, a (1 + 1') resonance enhanced multiphoton ionization (REMPI) scheme may be employed to detect carbon monoxide generated from a particular unimolecular process. A number of more subtle mechanistic details may be explored as well. By varying the mean free path of the peroxy radicals in a flow tube, the role of collisional quenching in these unimolecular

  3. Molecular Imaging : Computer Reconstruction and Practice - Proceedings of the NATO Advanced Study Institute on Molecular Imaging from Physical Principles to Computer Reconstruction and Practice

    CERN Document Server

    Lemoigne, Yves

    2008-01-01

    This volume collects the lectures presented at the ninth ESI School held at Archamps (FR) in November 2006 and is dedicated to nuclear physics applications in molecular imaging. The lectures focus on the multiple facets of image reconstruction processing and management and illustrate the role of digital imaging in clinical practice. Medical computing and image reconstruction are introduced by analysing the underlying physics principles and their implementation, relevant quality aspects, clinical performance and recent advancements in the field. Several stages of the imaging process are specifically addressed, e.g. optimisation of data acquisition and storage, distributed computing, physiology and detector modelling, computer algorithms for image reconstruction and measurement in tomography applications, for both clinical and biomedical research applications. All topics are presented with didactical language and style, making this book an appropriate reference for students and professionals seeking a comprehen...

  4. Neurobiological mechanisms of treatment resistant depression: Functional, structural and molecular imaging studies

    NARCIS (Netherlands)

    B.P. de Kwaasteniet

    2015-01-01

    This thesis investigated the neurobiological mechanisms of TRD using functional, structural and molecular imaging studies. First the neurobiological mechanisms of MDD were investigated and revealed decreased functional connectivity between the ventral and dorsal network. Thereafter, structural conne

  5. Molecular imaging of cancer: MR spectroscopy and beyond

    International Nuclear Information System (INIS)

    Proton magnetic resonance spectroscopic imaging is a non-invasive diagnostic tool for the investigation of cancer metabolism. As an adjunct to morphologic and dynamic magnetic resonance imaging, it is routinely used for the staging, assessment of treatment response, and therapy monitoring in brain, breast, and prostate cancer. Recently, its application was extended to other cancerous diseases, such as malignant soft-tissue tumours, gastrointestinal and gynecological cancers, as well as nodal metastasis. In this review, we discuss the current and evolving clinical applications of proton magnetic resonance spectroscopic imaging. In addition, we will briefly discuss other evolving techniques, such as phosphorus magnetic resonance spectroscopic imaging, sodium imaging and diffusion-weighted imaging in cancer assessment.

  6. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    OpenAIRE

    Bowsher, James; Yan, Susu; Roper, Justin; Giles, William; Yin, Fang-Fang

    2013-01-01

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard S...

  7. 2014 Korean guidelines for appropriate utilization of cardiovascular magnetic resonance imaging: A joint report of the Korean Society of Cardiology and the Korean Society of Radiology

    International Nuclear Information System (INIS)

    The use of cardiac magnetic resonance (CMR) imaging is increasing for the assessment of certain cardiovascular diseases, due to recent technical developments. CMR can give physicians information that cannot be found with other imaging modalities. However, there has been no guideline for the use of CMR in Korean people. Therefore, we have prepared a Korean guideline for the appropriate utilization of CMR to guide Korean physicians, imaging specialists, medical associates, and patients to improve the overall performances in medical system. By addressing CMR usage and creating these guidelines, we hope to contribute to the promotion of public health. This guideline is a joint report of the Korean Society of Cardiology and the Korean Society of Radiology.

  8. 2014 Korean guidelines for appropriate utilization of cardiovascular magnetic resonance imaging: A joint report of the Korean Society of Cardiology and the Korean Society of Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yeon Yee E. [Dept. of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, Seoul (Korea, Republic of); Hong, Yoo Jin; Choi, Eui Young [Dept. of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); and others

    2015-04-15

    The use of cardiac magnetic resonance (CMR) imaging is increasing for the assessment of certain cardiovascular diseases, due to recent technical developments. CMR can give physicians information that cannot be found with other imaging modalities. However, there has been no guideline for the use of CMR in Korean people. Therefore, we have prepared a Korean guideline for the appropriate utilization of CMR to guide Korean physicians, imaging specialists, medical associates, and patients to improve the overall performances in medical system. By addressing CMR usage and creating these guidelines, we hope to contribute to the promotion of public health. This guideline is a joint report of the Korean Society of Cardiology and the Korean Society of Radiology.

  9. 2014 Korean Guidelines for Appropriate Utilization of Cardiovascular Magnetic Resonance Imaging: A Joint Report of the Korean Society of Cardiology and the Korean Society of Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yeonyee E. [Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of); Hong, Yoo Jin [Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Hyung-Kwan [Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Kim, Jeong A [Department of Radiology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang 411-706 (Korea, Republic of); Na, Jin Oh [Cardiovascular Center, Korea University Guro Hospital, Korea University College of Medicine, Seoul 152-703 (Korea, Republic of); Yang, Dong Hyun [Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Young Jin [Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Choi, Eui-Young [Division of Cardiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720 (Korea, Republic of)

    2014-07-01

    Cardiac magnetic resonance (CMR) imaging is now widely used in several fields of cardiovascular disease assessment due to recent technical developments. CMR can give physicians information that cannot be found with other imaging modalities. However, there is no guideline which is suitable for Korean people for the use of CMR. Therefore, we have prepared a Korean guideline for the appropriate utilization of CMR to guide Korean physicians, imaging specialists, medical associates and patients to improve the overall medical system performances. By addressing CMR usage and creating these guidelines we hope to contribute towards the promotion of public health. This guideline is a joint report of the Korean Society of Cardiology and the Korean Society of Radiology.

  10. 2014 Korean Guidelines for Appropriate Utilization of Cardiovascular Magnetic Resonance Imaging: A Joint Report of the Korean Society of Cardiology and the Korean Society of Radiology

    International Nuclear Information System (INIS)

    Cardiac magnetic resonance (CMR) imaging is now widely used in several fields of cardiovascular disease assessment due to recent technical developments. CMR can give physicians information that cannot be found with other imaging modalities. However, there is no guideline which is suitable for Korean people for the use of CMR. Therefore, we have prepared a Korean guideline for the appropriate utilization of CMR to guide Korean physicians, imaging specialists, medical associates and patients to improve the overall medical system performances. By addressing CMR usage and creating these guidelines we hope to contribute towards the promotion of public health. This guideline is a joint report of the Korean Society of Cardiology and the Korean Society of Radiology

  11. Endoscopic molecular imaging of human bladder cancer using a CD47 antibody.

    Science.gov (United States)

    Pan, Ying; Volkmer, Jens-Peter; Mach, Kathleen E; Rouse, Robert V; Liu, Jen-Jane; Sahoo, Debashis; Chang, Timothy C; Metzner, Thomas J; Kang, Lei; van de Rijn, Matt; Skinner, Eila C; Gambhir, Sanjiv S; Weissman, Irving L; Liao, Joseph C

    2014-10-29

    A combination of optical imaging technologies with cancer-specific molecular imaging agents is a potentially powerful strategy to improve cancer detection and enable image-guided surgery. Bladder cancer is primarily managed endoscopically by white light cystoscopy with suboptimal diagnostic accuracy. Emerging optical imaging technologies hold great potential for improved diagnostic accuracy but lack imaging agents for molecular specificity. Using fluorescently labeled CD47 antibody (anti-CD47) as molecular imaging agent, we demonstrated consistent identification of bladder cancer with clinical grade fluorescence imaging systems, confocal endomicroscopy, and blue light cystoscopy in fresh surgically removed human bladders. With blue light cystoscopy, the sensitivity and specificity for CD47-targeted imaging were 82.9 and 90.5%, respectively. We detected variants of bladder cancers, which are diagnostic challenges, including carcinoma in situ, residual carcinoma in tumor resection bed, recurrent carcinoma following prior intravesical immunotherapy with Bacillus Calmette-Guérin (BCG), and excluded cancer from benign but suspicious-appearing mucosa. CD47-targeted molecular imaging could improve diagnosis and resection thoroughness for bladder cancer. PMID:25355698

  12. Molecular shape of Lumbricus terrestris erythrocruorin studied by electron microscopy and image analysis

    NARCIS (Netherlands)

    Boekema, Egbert J.; Heel, Marin van

    1989-01-01

    The molecular structure of erythrocruorin (hemoglobin) from Lumbricus terrestris has been studied by electron microscopy of negatively stained particles. Over 1000 molecular projections were selected from a number of electron micrographs and were then classified by multivariate statistical image-pro

  13. Imaging of Flow Patterns with Fluorescent Molecular Rotors

    OpenAIRE

    Mustafic, Adnan; Huang, Hsuan-Ming; Theodorakis, Emmanuel A.; Haidekker, Mark A

    2010-01-01

    Molecular rotors are a group of fluorescent molecules that form twisted intramolecular charge transfer states (TICT) upon photoexcitation. Some classes of molecular rotors, among them those that are built on the benzylidene malononitrile motif, return to the ground state either by nonradiative intramolecular rotation or by fluorescence emission. In low-viscosity solvents, intramolecular rotation dominates, and the fluorescence quantum yield is low. Higher solvent viscosities reduce the intram...

  14. Molecular determinants for cardiovascular TRPC6 channel regulation by Ca2+/calmodulin-dependent kinase II

    DEFF Research Database (Denmark)

    Shi, Juan; Geshi, Naomi; Takahashi, Shinichi;

    2013-01-01

    The molecular mechanism underlying Ca2+/calmodulin (CaM)-dependent kinase II (CaMKII)-mediated regulation of the mouse transient receptor potential channel TRPC6 was explored by chimera, deletion and site-directed mutagenesis approaches. Induction of currents (ICCh) in TRPC6-expressing HEK293 cel...... essential for CaMKII-mediated regulation of TRPC6 channels. This mechanism may be of physiological significance in a native environment such as in vascular smooth muscle cells....

  15. Comprehensive assessment of a post-coronary bypass graft patient with cardiovascular magnetic resonance imaging and multi-detector computed tomography

    Institute of Scientific and Technical Information of China (English)

    Pairoj Rerkpattanapipat; Patcharee Paijitprapaporn; Suthipong Jongjirasiri; Jiraporn Laothamatas; Nithi Mahanonda

    2007-01-01

    Coronary bypass graft surgery (CABG) is a revascularization procedure which reduces myocardial ischemia and cardiovascular morbidity and mortality in selected patients; however, up to 40% of saphanous vein grafts may degenerate over 10 years. Although coronary angiography is the gold standard to detect graft patency and native vessel disease, sometimes it is difficult to locate the grafts resulting in increased exposure to radiation and contrast administration. This case highlights the utility of cardiac computerized tomography and magnetic resonance imaging to provide comprehensive noninvasive assessment in a patient post CABG.

  16. Deblurring molecular images using desorption electrospray ionization mass spectrometry

    Science.gov (United States)

    Parry, R. Mitchell; Galhena, Asiri S.; Fernandez, Facundo M.; Wang, May D.

    2016-01-01

    Traditional imaging techniques for studying the spatial distribution of biological molecules such as proteins, metabolites, and lipids, require the a priori selection of a handful of target molecules. Imaging mass spectrometry provides a means to analyze thousands of molecules at a time within a tissue sample, adding spatial detail to proteomic, metabolomic, and lipidomic studies. Compared to traditional microscopic images, mass spectrometric images have reduced spatial resolution and require a destructive acquisition process. In order to increase spatial detail, we propose a constrained acquisition path and signal degradation model enabling the use of a general image deblurring algorithm. Our analysis shows the potential of this approach and supports prior observations that the effect of the sprayer focuses on a central region much smaller than the extent of the spray. PMID:19963935

  17. Small-animal SPECT and SPECT/CT: application in cardiovascular research

    OpenAIRE

    Golestani, R.; Wu, C.; Tio, R.A.; Zeebregts, C. J.; Petrov, A.D.; Beekman, F.J.; Dierckx, R. A. J. O.; Boersma, H.H.; Slart, R.H.J.A.

    2010-01-01

    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstr...

  18. Molecular imaging of gene expression and protein function in vivo with PET and SPECT.

    Science.gov (United States)

    Sharma, Vijay; Luker, Gary D; Piwnica-Worms, David

    2002-10-01

    Molecular imaging is broadly defined as the characterization and measurement of biological processes in living animals, model systems, and humans at the cellular and molecular level using remote imaging detectors. One underlying premise of molecular imaging is that this emerging field is not defined by the imaging technologies that underpin acquisition of the final image per se, but rather is driven by the underlying biological questions. In practice, the choice of imaging modality and probe is usually reduced to choosing between high spatial resolution and high sensitivity to address a given biological system. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) inherently use image-enhancing agents (radiopharmaceuticals) that are synthesized at sufficiently high specific activity to enable use of tracer concentrations of the compound (picomolar to nanomolar) for detecting molecular signals while providing the desired levels of image contrast. The tracer technologies strategically provide high sensitivity for imaging small-capacity molecular systems in vivo (receptors, enzymes, transporters) at a cost of lower spatial resolution than other technologies. We review several significant PET and SPECT advances in imaging receptors (somatostatin receptor subtypes, neurotensin receptor subtypes, alpha(v)beta(3) integrin), enzymes (hexokinase, thymidine kinase), transporters (MDR1 P-glycoprotein, sodium-iodide symporter), and permeation peptides (human immunodeficiency virus type 1 (HIV-1) Tat conjugates), as well as innovative reporter gene constructs (herpes simplex virus 1 thymidine kinase, somatostatin receptor subtype 2, cytosine deaminase) for imaging gene promoter activation and repression, signal transduction pathways, and protein-protein interactions in vivo. PMID:12353250

  19. Molecular markers in breast cancer: new tools in imaging and prognosis

    NARCIS (Netherlands)

    Vermeulen, J.F.

    2012-01-01

    Breast cancer is the most frequently diagnosed cancer in women. Although breast cancer is mainly diagnosed by mammography, other imaging modalities (e.g. MRI, PET) are increasingly used. The most recent developments in the field of molecular imaging comprise the application of near-infrared fluoresc

  20. The application of molecular nuclear medicine in imaging diagnosis and targeted treatment of thyroid carcinoma

    International Nuclear Information System (INIS)

    Thyroid carcinoma is the most common malignancy of endocrine system. Different pathological classifications of thyroid carcinoma differ greatly in biological behavior and prognosis. As a newly-emerging subject, molecular nuclear medicine has made rapid advances in both diagnosis and treatment of thyroid carcinoma. With the application of new imaging agents and devices such as SPECT/CT and PET/CT, molecular nuclear imaging can demonstrate, both qualitatively and quantitatively, the alterations in specific molecules of thyroid cancer on cellular and molecular level. Meanwhile, it is capable of utilizing radiopharmaceuticals to target specifically to these molecules. Here we present a review on the latest progresses in this field. (authors)

  1. A DR-WFOI fusion system for the real-time molecular imaging in vivo

    Institute of Scientific and Technical Information of China (English)

    Kun Bi; Xiaochun Xu; Lei Xi; Shaoqun Zeng; Qingming Luo

    2008-01-01

    Digital radiography (DR) and whole-body fluorescent optical imaging (WFOI) have been widely applied in the field of molecular imaging, with the advantages in tissues and functional imaging. The integration of them contributes to the development and discovery of medicine. We introduce an equipment, performance of which is better than that of another molecular imaging system manufactured by Kodak Corp. It can take real-time small animal imaging in vivo, with lower cost and shorter development cycle on the LabVIEW platform. At last, a paradigm experiment on a nude mouse with green fluorescent protein (GFP) transgenic tumor is given to present a real-time DR-WFOI fusion simultaneous image.

  2. Society for Cardiovascular Magnetic Resonance guidelines for reporting cardiovascular magnetic resonance examinations

    OpenAIRE

    van Rossum Albert C; Raman Subha V; McConnell Michael V; Lawson Mark A; Higgins Charles B; Friedrich Matthias G; Bogaert Jan G; Bluemke David; Hundley W Gregory; Flamm Scott; Kramer Christopher M; Nagel Eike; Neubauer Stefan

    2009-01-01

    Abstract These reporting guidelines are recommended by the Society for Cardiovascular Magnetic Resonance (SCMR) to provide a framework for healthcare delivery systems to disseminate cardiac and vascular imaging findings related to the performance of cardiovascular magnetic resonance (CMR) examinations.

  3. Molecular probes for imaging cell growth and cell differentiation

    International Nuclear Information System (INIS)

    This paper summarizes PET/SPECT probes for the in vivo imaging of cell behavior such as cell growth, differentiation, migration, adhesion, angiogenesis, and apoptosis. These probes may be indispensable for the fundamental research of regenerative medicine. (author)

  4. High-order harmonic spectroscopy for molecular imaging of polyatomic molecules

    CERN Document Server

    Negro, M; Faccialà, D; De Silvestri, S; Vozzi, C; Stagira, S

    2014-01-01

    High-order harmonic generation is a powerful and sensitive tool for probing atomic and molecular structures, combining in the same measurement an unprecedented attosecond temporal resolution with a high spatial resolution, of the order of the angstrom. Imaging of the outermost molecular orbital by high-order harmonic generation has been limited for a long time to very simple molecules, like nitrogen. Recently we demonstrated a technique that overcame several of the issues that have prevented the extension of molecular orbital tomography to more complex species, showing that molecular imaging can be applied to a triatomic molecule like carbon dioxide. Here we report on the application of such technique to nitrous oxide (N2O) and acetylene (C2H2). This result represents a first step towards the imaging of fragile compounds, a category which includes most of the fundamental biological molecules.

  5. Effect of molecular organization on the image histograms of polarization SHG microscopy

    OpenAIRE

    Psilodimitrakopoulos, Sotiris; Amat Roldán, Iván; Loza Álvarez, Pablo; Artigas García, David

    2012-01-01

    Based on its polarization dependency, second harmonic generation (PSHG) microscopy has been proven capable to structurally characterize molecular architectures in different biological samples. By exploiting this polarization dependency of the SHG signal in every pixel of the image, average quantitative structural information can be retrieved in the form of PSHG image histograms. In the present study we experimentally show how the PSHG image histograms can be affected by the organization of th...

  6. Autonomic innervation of the heart. Role of molecular imaging

    International Nuclear Information System (INIS)

    Reviews in detail the value of SPECT-CT and PET-CT in the imaging of cardiac innervation. Details the role of imaging in a range of conditions and diseases. Includes important background on pathophysiology, tracers, radiopharmaceutical production, and kinetic modeling software. This book explains in detail the potential value of the hybrid modalities, SPECT-CT and PET-CT, in the imaging of cardiac innervation in a wide range of conditions and diseases, including ischemic heart disease, diabetes mellitus, heart failure, amyloidosis, heart transplantation, and ventricular arrhythmias. Imaging of the brain-heart axis in neurodegenerative disease and stress and of cardiotoxicity is also discussed. The roles of the various available tracers are fully considered, and individual chapters address radiopharmaceutical development under GMP, imaging physics, and kinetic modeling software. Highly relevant background information is included on the autonomic nervous system of the heart and its pathophysiology, and in addition future perspectives are discussed. Awareness of the importance of autonomic innervation of the heart for the optimal management of cardiac patients is growing, and there is an evident need for objective measurement techniques or imaging modalities. In this context, Autonomic Innervation of the Heart will be of wide interest to clinicians, researchers, and industry.

  7. First PET Center in Mexico: the power of molecular imaging

    International Nuclear Information System (INIS)

    Positron Emission Tomography (PET) is a non-invasive diagnostic imaging technique modality. It represents the forefront of medical images and was developed as a quantitative technique for imaging biochemical and physiological processes in the human body. PET is unique because it produces images of the body's basic biochemistry or function. Traditional diagnostic techniques such as x-rays, CT scans or MRI, produce images of the body's anatomy or structure. The premise with these techniques is that the change in anatomy or structure that occurs with disease can be seen. However, biochemical processes are also altered with disease and may occur before there is a change gross anatomy. PET is an imaging technique that is used to visualize some of these processes. The development of PET as we know it today began in 1974 with the development of a single ring detector system by Phelps et al. Today, over 350 PET scanners are in use in the world, mainly in the USA (over 140), Europe (particularly in the Anglo-Saxon countries and France) and Japan. Many of these facilities also have their own cyclotron to produce the positron emitters. In the Southern hemisphere, only Australia, Argentina. and recently Mexico, have a very small number of PET facilities. (Author)

  8. Autonomic innervation of the heart. Role of molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Slart, Riemer H.J.A; Elsinga, Philip H. [Univ. Medical Center Groningen (Netherlands). Nuclear Medicine and Molecular Imaging; Tio, Rene A. [Univ. Medical Center Groningen (Netherlands). Thorax Center Cardiology; Schwaiger, Markus (ed.) [Technische Univ. Muenchen Klinikum Rechts der Isar (Germany). Nuklearmedizinische Klinik

    2015-03-01

    Reviews in detail the value of SPECT-CT and PET-CT in the imaging of cardiac innervation. Details the role of imaging in a range of conditions and diseases. Includes important background on pathophysiology, tracers, radiopharmaceutical production, and kinetic modeling software. This book explains in detail the potential value of the hybrid modalities, SPECT-CT and PET-CT, in the imaging of cardiac innervation in a wide range of conditions and diseases, including ischemic heart disease, diabetes mellitus, heart failure, amyloidosis, heart transplantation, and ventricular arrhythmias. Imaging of the brain-heart axis in neurodegenerative disease and stress and of cardiotoxicity is also discussed. The roles of the various available tracers are fully considered, and individual chapters address radiopharmaceutical development under GMP, imaging physics, and kinetic modeling software. Highly relevant background information is included on the autonomic nervous system of the heart and its pathophysiology, and in addition future perspectives are discussed. Awareness of the importance of autonomic innervation of the heart for the optimal management of cardiac patients is growing, and there is an evident need for objective measurement techniques or imaging modalities. In this context, Autonomic Innervation of the Heart will be of wide interest to clinicians, researchers, and industry.

  9. Cardiovascular magnetic resonance in systemic hypertension

    OpenAIRE

    Maceira Alicia M; Mohiaddin Raad H

    2012-01-01

    Abstract Systemic hypertension is a highly prevalent potentially modifiable cardiovascular risk factor. Imaging plays an important role in the diagnosis of underlying causes for hypertension, in assessing cardiovascular complications of hypertension, and in understanding the pathophysiology of the disease process. Cardiovascular magnetic resonance (CMR) provides accurate and reproducible measures of ventricular volumes, mass, function and haemodynamics as well as uniquely allowing tissue char...

  10. The research progress of dual-modality probes for molecular imaging

    International Nuclear Information System (INIS)

    Various imaging modalities have been exploited to investigate the anatomic or functional dissemination of tissues in the body. However, no single imaging modality allows overall structural, functional, and molecular information as each imaging modality has its own unique strengths and weaknesses. The combination of two imaging modalities that investigates the strengths of different methods might offer the prospect of improved diagnostic abilities. As more and more dual-modality imaging system have become clinically adopted, significant progress has been made toward the creation of dual-modality imaging probes, which can be used as novel tools for future multimodality systems. These all-in-one probes take full advantage of two different imaging modalities and could provide comprehensive information for clinical diagnostics. This review discusses the advantages and challenges in developing dual-modality imaging probes. (authors)

  11. Clinical evaluation of cardiovascular disease by gated-MRI (magnetic resonance imaging) in the operating field of 0.35 and 1.5 Tesla

    International Nuclear Information System (INIS)

    To evaluate the clinical usefulness of magnetic resonance imaging (MRI) in the cardiovascular disease, 21 patients were examined using 0.35 and 1.5 Tesla superconductive type (Magnetom, Siemens). In our study, all patients were performed using ECG-gated MRI. Therefore, the cardiac chambers were discriminated clearly from the myocardial wall compared to non-gated MRI. Gated-MRI was performed in 6 normal persons in the operating field at 0.35 and 1.5 Tesla. The image of the latter showed superior than that of the former because of high S/N ratio. In myocardial infarction, infarct area was demonstrated as the wall thinning in 4 of 5 patients. Hypertrophic cardiomyopathy showed thickened left ventricle associated with its narrowed cavity in 7 patients. In the remaining such as congenital and valvular heart disease, global and regional cardiac morphology were assessed noninvasively by gated MRI. In addition, gated MRI was also applied to the diagnosis of peripheral vascular diseases. In dissecting aneurysm, double channels with an intimal flap in the aorta were clearly visualized. And in the aortitis syndrome, aortic dilatation and stenosis were also assessed noninvasively. In conclusion, gated MRI in diagnosing various abnormalities of cardiovascular disease was confirmed. (author)

  12. Molecular imaging to target transplanted muscle progenitor cells.

    Science.gov (United States)

    Gutpell, Kelly; McGirr, Rebecca; Hoffman, Lisa

    2013-01-01

    Duchenne muscular dystrophy (DMD) is a severe genetic neuromuscular disorder that affects 1 in 3,500 boys, and is characterized by progressive muscle degeneration. In patients, the ability of resident muscle satellite cells (SCs) to regenerate damaged myofibers becomes increasingly inefficient. Therefore, transplantation of muscle progenitor cells (MPCs)/myoblasts from healthy subjects is a promising therapeutic approach to DMD. A major limitation to the use of stem cell therapy, however, is a lack of reliable imaging technologies for long-term monitoring of implanted cells, and for evaluating its effectiveness. Here, we describe a non-invasive, real-time approach to evaluate the success of myoblast transplantation. This method takes advantage of a unified fusion reporter gene composed of genes (firefly luciferase [fluc], monomeric red fluorescent protein [mrfp] and sr39 thymidine kinase [sr39tk]) whose expression can be imaged with different imaging modalities. A variety of imaging modalities, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), optical imaging, and high frequency 3D-ultrasound are now available, each with unique advantages and limitations. Bioluminescence imaging (BLI) studies, for example, have the advantage of being relatively low cost and high-throughput. It is for this reason that, in this study, we make use of the firefly luciferase (fluc) reporter gene sequence contained within the fusion gene and bioluminescence imaging (BLI) for the short-term localization of viable C2C12 myoblasts following implantation into a mouse model of DMD (muscular dystrophy on the X chromosome [mdx] mouse). Importantly, BLI provides us with a means to examine the kinetics of labeled MPCs post-implantation, and will be useful to track cells repeatedly over time and following migration. Our reporter gene approach further allows us to merge multiple imaging modalities in a single living

  13. Characterising haemodialysis-associated cardiomyopathy using deformation imaging by cardiovascular magnetic resonance tagging and speckle-tracking echocardiography

    OpenAIRE

    Odudu, Aghogho

    2013-01-01

    Haemodialysis patients represent an extreme phenotype of cardiovascular risk with a pattern of disease distinct from that in the general population. Non-traditional risk factors, specific to chronic kidney disease such as hypervolaemia, arterial stiffness and advanced glycation end-product deposition are increasingly recognised. A previously demonstrated non-traditional risk factor associated with worse outcomes is the presence of uraemic cardiomyopathy. This pattern of cardiac morphology and...

  14. The BioImage Study: novel approaches to risk assessment in the primary prevention of atherosclerotic cardiovascular disease--study design and objectives

    DEFF Research Database (Denmark)

    Muntendam, Pieter; McCall, Carol; Sanz, Javier;

    2010-01-01

    eligibility criteria were randomized to a telephonic health survey only (survey only: n = 865), standard risk assessment (Framingham only: n = 718), or comprehensive risk assessment in a dedicated mobile facility equipped with advanced imaging tools (n = 6,104). Baseline examination included assessment of...... cardiovascular risk factors and screening for subclinical (asymptomatic) atherosclerosis with quantification of coronary artery calcification by computed tomography (CT), measurement of intima-media thickness, presence of carotid atherosclerotic plaques and abdominal aortic aneurysm by ultrasound, and ankle......The identification of asymptomatic individuals at risk for near-term atherothrombotic events to ensure optimal preventive treatment remains a challenging goal. In the BioImage Study, novel approaches are tested in a typical health-plan population. Based on certain demographic and risk...

  15. Imaging molecular structure and dynamics using laser driven recollisions

    International Nuclear Information System (INIS)

    Complete test of publication follows. Laser driven electron recollision provides a unique tool for measuring the structure and dynamics of matter. We illustrate this with experiments that use HHG to measure molecular structure with sub-Angstrom spatial and sub-femtosecond temporal resolution. Our recent work has looked in particular at the signal from high order harmonic generation which contains rich information about the structure and intra-molecular dynamics of small molecules. This we will illustrate by two types of experiment; (a) measurements of HHG from aligned molecular samples to observe two-centre recombination interference and electronic structure dependence of the angle dependent yield, (b) reconstruction of intra-molecular proton dynamics from the spectral dependence of the HHG using the intrinsic chirp of recolliding electrons. We experimentally investigate the process of intramolecular quantum interference in high-order harmonic generation in impulsively aligned CO2 molecules. The recombination interference effect is clearly seen through the order dependence of the harmonic yield in an aligned sample. This confirms that the effective de Broglie wavelength of the returning electron wave is not significantly altered by acceleration in the Coulomb field of the molecular ion. For the first time, to our knowledge, we demonstrate that such interference effects can be effectively controlled by changing the ellipticity of the driving laser field. Here we also report the results of angular dependence measurements of high order harmonics (17tth - 27th) from impulsively aligned organic molecules: Acetylene, Ethylene, and Allene. Since these molecules have a relatively low Ip an appropriately short pulse is required to produce as many harmonic orders as possible. This was provided by the ∼ 10 fs beam line of the ASTRA laser at Rutherford Appleton Laboratory whilst a somewhat longer pulse, properly forwarded with respect to the driving pulse, induced the

  16. Bioluminescence: a versatile technique for imaging cellular and molecular features

    Science.gov (United States)

    Paley, Miranda A.

    2016-01-01

    Bioluminescence is a ubiquitous imaging modality for visualizing biological processes in vivo. This technique employs visible light and interfaces readily with most cell and tissue types, making it a versatile technology for preclinical studies. Here we review basic bioluminescence imaging principles, along with applications of the technology that are relevant to the medicinal chemistry community. These include noninvasive cell tracking experiments, analyses of protein function, and methods to visualize small molecule metabolites. In each section, we also discuss how bioluminescent tools have revealed insights into experimental therapies and aided drug discovery. Last, we highlight the development of new bioluminescent tools that will enable more sensitive and multi-component imaging experiments and, thus, expand our broader understanding of living systems.

  17. Dynamical image-charge effect in molecular tunnel junctions

    DEFF Research Database (Denmark)

    Jin, Chengjun; Thygesen, Kristian Sommer

    2014-01-01

    When an electron tunnels between two metal contacts it temporarily induces an image charge (IC) in the electrodes which acts back on the tunneling electron. It is usually assumed that the IC forms instantaneously such that a static model for the image potential applies. Here we investigate how the...... finite IC formation time affects charge transport through a molecule suspended between two electrodes. For a single-level model, an analytical treatment shows that the conductance is suppressed by a factor Z(2), where Z is the quasiparticle renormalization factor, compared to the static IC approximation...

  18. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system

    Science.gov (United States)

    Byrne, N; Velasco Forte, M; Tandon, A; Valverde, I

    2016-01-01

    Background Shortcomings in existing methods of image segmentation preclude the widespread adoption of patient-specific 3D printing as a routine decision-making tool in the care of those with congenital heart disease. We sought to determine the range of cardiovascular segmentation methods and how long each of these methods takes. Methods A systematic review of literature was undertaken. Medical imaging modality, segmentation methods, segmentation time, segmentation descriptive quality (SDQ) and segmentation software were recorded. Results Totally 136 studies met the inclusion criteria (1 clinical trial; 80 journal articles; 55 conference, technical and case reports). The most frequently used image segmentation methods were brightness thresholding, region growing and manual editing, as supported by the most popular piece of proprietary software: Mimics (Materialise NV, Leuven, Belgium, 1992–2015). The use of bespoke software developed by individual authors was not uncommon. SDQ indicated that reporting of image segmentation methods was generally poor with only one in three accounts providing sufficient detail for their procedure to be reproduced. Conclusions and implication of key findings Predominantly anecdotal and case reporting precluded rigorous assessment of risk of bias and strength of evidence. This review finds a reliance on manual and semi-automated segmentation methods which demand a high level of expertise and a significant time commitment on the part of the operator. In light of the findings, we have made recommendations regarding reporting of 3D printing studies. We anticipate that these findings will encourage the development of advanced image segmentation methods. PMID:27170842

  19. Molecular imaging agents for SPECT (and SPECT/CT)

    Energy Technology Data Exchange (ETDEWEB)

    Gnanasegaran, Gopinath [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); Ballinger, James R. [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2014-05-15

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  20. Quantitative sensing of microviscosity in protocells and amyloid materials using fluorescence lifetime imaging of molecular rotors

    Science.gov (United States)

    Thompson, Alex J.; Tang, T.-Y. Dora; Herling, Therese W.; Che Hak, C. Rohaida; Mann, Stephen; Knowles, Tuomas P. J.; Kuimova, Marina K.

    2014-03-01

    Molecular rotors are fluorophores that have a fluorescence quantum yield that depends upon intermolecular rotation. The fluorescence quantum yield, intensity and lifetime of molecular rotors all vary as functions of viscosity, as high viscosities inhibit intermolecular rotation and cause an increase in the non-radiative decay rate. As such, molecular rotors can be used to probe viscosity on microscopic scales. Here, we apply fluorescence lifetime imaging microscopy (FLIM) to measure the fluorescence lifetimes of three different molecular rotors, in order to determine the microscopic viscosity in two model systems with significant biological interest. First, the constituents of a novel protocell - a model of a prebiotic cell - were studied using the molecular rotors BODIPY C10 and kiton red. Second, amyloid formation was investigated using the molecular rotor Cy3.

  1. Angle resolved photoemission from organic semiconductors: orbital imaging beyond the molecular orbital interpretation

    International Nuclear Information System (INIS)

    Fascinating pictures that can be interpreted as showing molecular orbitals have been obtained with various imaging techniques. Among these, angle resolved photoemission spectroscopy (ARPES) has emerged as a particularly powerful method. Orbital images have been used to underline the physical credibility of the molecular orbital concept. However, from the theory of the photoemission process it is evident that imaging experiments do not show molecular orbitals, but Dyson orbitals. The latter are not eigenstates of a single-particle Hamiltonian and thus do not fit into the usual simple interpretation of electronic structure in terms of molecular orbitals. In a combined theoretical and experimental study we thus check whether a Dyson-orbital and a molecular-orbital based interpretation of ARPES lead to differences that are relevant on the experimentally observable scale. We discuss a scheme that allows for approximately calculating Dyson orbitals with moderate computational effort. Electronic relaxation is taken into account explicitly. The comparison reveals that while molecular orbitals are frequently good approximations to Dyson orbitals, a detailed understanding of photoemission intensities may require one to go beyond the molecular orbital picture. In particular we clearly observe signatures of the Dyson-orbital character for an adsorbed semiconductor molecule in ARPES spectra when these are recorded over a larger momentum range than in earlier experiments. (paper)

  2. Synthesis and evaluation of a peptide targeted small molecular Gd-DOTA monoamide conjugate for MR molecular imaging of prostate cancer

    OpenAIRE

    Wu, Xueming; Burden-Gulley, Susan M.; Yu, Guan-Ping; Tan, Mingqian; Lindner, Daniel; Brady-Kalnay, Susann M.; Lu, Zheng-Rong

    2012-01-01

    Tumor extracellular matrix has an abundance of cancer related proteins that can be used as biomarkers for cancer molecular imaging. Innovative design and development of safe and effective targeted contrast agents to these biomarkers would allow effective MR cancer molecular imaging with high spatial resolution. In this study, we synthesized a low molecular weight CLT1 peptide targeted Gd(III) chelate CLT1-dL-(Gd-DOTA)4 specific to clotted plasma proteins in tumor stroma for cancer MR molecula...

  3. Advances of Molecular Imaging for Monitoring the Anatomical and Functional Architecture of the Olfactory System.

    Science.gov (United States)

    Zhang, Xintong; Bi, Anyao; Gao, Quansheng; Zhang, Shuai; Huang, Kunzhu; Liu, Zhiguo; Gao, Tang; Zeng, Wenbin

    2016-01-20

    The olfactory system of organisms serves as a genetically and anatomically model for studying how sensory input can be translated into behavior output. Some neurologic diseases are considered to be related to olfactory disturbance, especially Alzheimer's disease, Parkinson's disease, multiple sclerosis, and so forth. However, it is still unclear how the olfactory system affects disease generation processes and olfaction delivery processes. Molecular imaging, a modern multidisciplinary technology, can provide valid tools for the early detection and characterization of diseases, evaluation of treatment, and study of biological processes in living subjects, since molecular imaging applies specific molecular probes as a novel approach to produce special data to study biological processes in cellular and subcellular levels. Recently, molecular imaging plays a key role in studying the activation of olfactory system, thus it could help to prevent or delay some diseases. Herein, we present a comprehensive review on the research progress of the imaging probes for visualizing olfactory system, which is classified on different imaging modalities, including PET, MRI, and optical imaging. Additionally, the probes' design, sensing mechanism, and biological application are discussed. Finally, we provide an outlook for future studies in this field. PMID:26616533

  4. Progress in molecular nuclear medicine imaging of pancreatic beta cells

    International Nuclear Information System (INIS)

    Diabetes mellitus is a common and frequently occurring disease which seriously threaten the health of human beings. Type 1 and type 2 diabetes respectively results from being destroyed and insufficient beta-cell mass. The associated symptoms appear until 50%-60% decrease of beta-cell mass. Because pancreas is deeply located in the body, with few beta-cell mass, the current methods of clinical diagnosis are invasive and late. So diagnosis of metabolism disease of beta-cell early non-invasively becomes more and more popular, imaging diagnosis of diabetes mellitus becomes the focus of researches, but how to estimate the mass of beta-cell still an important subject in imaging technology. (authors)

  5. Recombinant carcinoembryonic antigen as a reporter gene for molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kenanova, Vania; Barat, Bhaswati; Olafsen, Tove; Chatziioannou, Arion; Herschman, Harvey R.; Wu, Anna M. [David Geffen School of Medicine at the University of California Los Angeles, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, Los Angeles, CA (United States); Braun, Jonathan [David Geffen School of Medicine at the University of California Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA (United States)

    2009-01-15

    Reporter genes can provide a way of noninvasively assessing gene activity in vivo. However, current reporter gene strategies may be limited by the immunogenicity of foreign reporter proteins, endogenous expression, or unwanted biological activity. We have developed a reporter gene based on carcinoembryonic antigen (CEA), a human protein with limited normal tissue expression. To construct a CEA reporter gene for PET, a CEA minigene (N-A3) was fused to the extracellular and transmembrane domains of the human Fc{gamma}RIIb receptor. The NA3-Fc{gamma}RIIb recombinant gene, driven by a CMV promoter, was transfected in Jurkat (human T cell leukemia) cells. Expression was analyzed by flow cytometry, immunohistochemistry (IHC), and microPET imaging. Flow cytometry identified Jurkat clones stably expressing NA3-Fc{gamma}RIIb at low, medium, and high levels. High and medium NA3-Fc{gamma}RIIb expression could also be detected by Western blot. Reporter gene positive and negative Jurkat cells were used to establish xenografts in athymic mice. IHC showed staining of the tumor with high reporter gene expression; medium and low N-A3 expression was not detected. MicroPET imaging, using an anti-CEA {sup 124}I-labeled single-chain Fv-Fc antibody fragment, demonstrated that only high N-A3 expression could be detected. Specific accumulation of activity was visualized at the N-A3 positive tumor as early as 4 h. MicroPET image quantitation showed tumor activity of 1.8 {+-} 0.2, 15.2 {+-} 1.3, and 4.6 {+-} 1.2 percent injected dose per gram (%ID/g) at 4, 20, and 48 h, respectively. Biodistribution at 48 h demonstrated tumor uptake of 4.8 {+-} 0.8%ID/g. The CEA N-A3 minigene has the potential to be used as a reporter gene for imaging cells in vivo. (orig.)

  6. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging.

    Science.gov (United States)

    Meng, Congsen; Janssen, Maurice H M

    2015-02-01

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude. PMID:25725826

  7. Prognostic value of cardiovascular MR imaging biomarkers on outcome in peripheral arterial disease: a 6-year follow-up pilot study.

    Science.gov (United States)

    van den Bosch, Harrie; Westenberg, Jos; Setz-Pels, Wikke; Kersten, Erik; Tielbeek, Alexander; Duijm, Lucien; Post, Johannes; Teijink, Joep; de Roos, Albert

    2016-08-01

    The objective of this pilot study was to explore the prognostic value of outcome of cardiovascular magnetic resonance (MR) imaging biomarkers in patients with symptomatic peripheral arterial disease (PAD) in comparison with traditional risk factors. Forty-two consecutive patients (mean age 64 ± 11 years, 22 men) referred for contrast-enhanced MR angiography (CE-MRA) were included. At baseline a comprehensive cardiovascular MRI examination was performed: CE-MRA of the infra-renal aorta and run-off vessels, carotid vessel wall imaging, cardiac cine imaging and aortic pulse wave velocity (PWV) assessment. Patients were categorized for outcome at 72 ± 5 months follow-up. One patient was lost to follow-up. Over 6 years, six patients had died (mortality rate 14.6 %), six patients (14.6 %) had experienced a cardiac event and three patients (7.3 %) a cerebral event. The mean MRA stenosis class (i.e., average stenosis severity visually scored over 27 standardized segments) was a significant independent predictor for all-cause mortality (beta 3.0 ± standard error 1.3, p = 0.02). Descending aorta PWV, age and diabetes mellitus were interrelated with stenosis severity but none of these were significant independent predictors. For cardiac morbidity, left ventricular ejection fraction (LVEF) and mean MRA stenosis class were associated, but only LVEF was a significant independent predictor (beta -0.14 ± 0.05, p = 0.005). Diabetes mellitus was a significant independent predictor for cerebral morbidity (beta 2.8 ± 1.3, p = 0.03). Significant independent predictors for outcome in PAD are mean MRA stenosis class for all-cause mortality, LVEF for cardiac morbidity and diabetes mellitus for cerebral morbidity. PMID:27209283

  8. Improved tumor identification using dual tracer molecular imaging in fluorescence guided brain surgery

    Science.gov (United States)

    Xu, Xiaochun; Torres, Veronica; Straus, David; Brey, Eric M.; Byrne, Richard W.; Tichauer, Kenneth M.

    2015-03-01

    Brain tumors represent a leading cause of cancer death for people under the age of 40 and the probability complete surgical resection of brain tumors remains low owing to the invasive nature of these tumors and the consequences of damaging healthy brain tissue. Molecular imaging is an emerging approach that has the potential to improve the ability for surgeons to correctly discriminate between healthy and cancerous tissue; however, conventional molecular imaging approaches in brain suffer from significant background signal in healthy tissue or an inability target more invasive sections of the tumor. This work presents initial studies investigating the ability of novel dual-tracer molecular imaging strategies to be used to overcome the major limitations of conventional "single-tracer" molecular imaging. The approach is evaluated in simulations and in an in vivo mice study with animals inoculated orthotopically using fluorescent human glioma cells. An epidermal growth factor receptor (EGFR) targeted Affibody-fluorescent marker was employed as a targeted imaging agent, and the suitability of various FDA approved untargeted fluorescent tracers (e.g. fluorescein & indocyanine green) were evaluated in terms of their ability to account for nonspecific uptake and retention of the targeted imaging agent. Signal-to-background ratio was used to measure and compare the amount of reporter in the tissue between targeted and untargeted tracer. The initial findings suggest that FDA-approved fluorescent imaging agents are ill-suited to act as untargeted imaging agents for dual-tracer fluorescent guided brain surgery as they suffer from poor delivery to the healthy brain tissue and therefore cannot be used to identify nonspecific vs. specific uptake of the targeted imaging agent where current surgery is most limited.

  9. Enhancing contrast and quantitation by spatial frequency domain fluorescence molecular imaging

    Science.gov (United States)

    Sun, Jessica; Hathi, Deep; Zhou, Haiying; Shokeen, Monica; Akers, Walter J.

    2016-03-01

    Optical imaging with fluorescent contrast agents is highly sensitive for molecular imaging but is limited in depth to a few centimeters below the skin. Planar fluorescence imaging with full-field, uniform illumination and scientific camera image capture provides a portable and robust configuration for real-time, sensitive fluorescence detection with scalable resolution, but is inherently surface weighted and therefore limited in depth to a few millimeters. At the NIR region (700-1000 nm), tissue absorption and autofluorescence are relatively reduced, increasing depth penetration and reducing background signal, respectively. Optical imaging resolution scales with depth, limiting microscopic resolution with multiphoton microscopy and optical coherence tomography to skin and peri-tumoral tissues are not uniform, varying in thickness and color, complicating subsurface fluorescence measurements. Diffuse optical imaging methods have been developed that better quantify optical signals relative to faster full-field planar reflectance imaging, but require long scan times, complex instrumentation, and reconstruction algorithms. Here we report a novel strategy for rapid measurement of subsurface fluorescence using structured light illumination to improve quantitation of deep-seated fluorescence molecular probe accumulation. This technique, in combination with highly specific, tumor-avid fluorescent molecular probes, will easily integrate noninvasive diagnostics for superficial cancers and fluorescence guided surgery.

  10. Molecular fragmentation by recombination with cold electrons studied with a mass sensitive imaging detector

    OpenAIRE

    Mendes, M

    2010-01-01

    The recombination of a molecular cation with a low-energy electron, followed by fragmentation, is a fundamental reaction process in cold and dilute plasmas. For polyatomic ions, it can yield molecular fragments in ro-vibrationally excited states. The discrimination between decay channels with chemically different fragments and the measurement of their excitation energies pose an experimental challenge. This work discusses a new experimental scheme based on fast beam fragment imaging in a stor...

  11. The triple line pattern on carotid intima media thickness imaging and its relationship to cardiovascular risk factors in patients on lipid lowering therapy

    Directory of Open Access Journals (Sweden)

    Singh TA

    2014-06-01

    Full Text Available Tania A Singh,1 Todd C Villines,2 Allen J Taylor31Division of Cardiology, Medstar Georgetown University Hospital, 2Walter Reed National Military Medical Center, Bethesda, MD, 3Georgetown University School of Medicine, Washington, DC, USA Background: Carotid intima media thickness (CIMT infrequently identifies a triple line pattern (TLP in the visualization of the internal elastic lamina. We examined the prevalence and predictors of the TLP among a consecutive series of subjects enrolled in a CIMT clinical trial, and also the effects of lipid lowering therapy.Methods: Baseline CIMT studies of subjects with known heart disease, or high risk for heart disease, were evaluated from a single site of the Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol 6-HDL and LDL Treatment Strategies in Atherosclerosis trial (N=120. One sonographer obtained four views of the right and left far wall common CIMT, using a 13 MHz ultrasound probe. Images were blindly reviewed for the presence of the TLP. The TLP was defined as absent (0, possible (1, or definite (2. A composite score from all four views was calculated. A patient was defined as having the TLP if the composite score was ≥4. Univariate predictors of the TLP were explored. Follow-up ultrasounds at 14 months were also reviewed for presence of the TLP.Results: The prevalence of the TLP at baseline was 22.5%. Among cardiovascular risk variables, systolic blood pressure was significantly higher in subjects displaying the TLP (141.3±15.6 mmHg versus 133.1±18.4 mmHg; P=0.036. There were no differences among those with, and without, the TLP, with respect to other cardiovascular risk variables (age, sex, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, C-reactive protein, glucose, weight, waist girth, tobacco use, medications, quantitative CIMT, or image quality. During ongoing lipid lowering therapy, the prevalence of the TLP increased to 54

  12. Small animal SPECT and its place in the matrix of molecular imaging technologies

    International Nuclear Information System (INIS)

    Molecular imaging refers to the use of non-invasive imaging techniques to detect signals that originate from molecules, often in the form of an injected tracer, and observe their interaction with a specific cellular target in vivo. Differences in the underlying physical principles of these measurement techniques determine the sensitivity, specificity and length of possible observation of the signal, characteristics that have to be traded off according to the biological question under study. Here, we describe the specific characteristics of single photon emission computed tomography (SPECT) relative to other molecular imaging technologies. SPECT is based on the tracer principle and external radiation detection. It is capable of measuring the biodistribution of minute (-10 molar) concentrations of radio-labelled biomolecules in vivo with sub-millimetre resolution and quantifying the molecular kinetic processes in which they participate. Like some other imaging techniques, SPECT was originally developed for human use and was subsequently adapted for imaging small laboratory animals at high spatial resolution for basic and translational research. Its unique capabilities include (i) the ability to image endogenous ligands such as peptides and antibodies due to the relative ease of labelling these molecules with technetium or iodine (ii) the ability to measure relatively slow kinetic processes (compared with positron emission tomography, for example) due to the long half-life of the commonly used isotopes and (iii) the ability to probe two or more molecular pathways simultaneously by detecting isotopes with different emission energies. In this paper, we review the technology developments and design tradeoffs that led to the current state-of-the-art in SPECT small animal scanning and describe the position SPECT occupies within the matrix of molecular imaging technologies. (topical review)

  13. Targeting the treatment of drug abuse with molecular imaging

    International Nuclear Information System (INIS)

    Although imaging studies in and of themselves have significant contributions to the study of human behavior, imaging in drug abuse has a much broader agenda. Drugs of abuse bind to molecules in specific parts of the brain in order to produce their effects. Positron emission tomography (PET) provides a unique opportunity to track this process, capturing the kinetics with which an abused compound is transported to its site of action. The specific examples discussed here were chosen to illustrate how PET can be used to map the regional distribution and kinetics of compounds that may or may not have abuse liability. We also discussed some morphological and functional changes associated with drug abuse and different stages of recovery following abstinence. PET measurements of functional changes in the brain have also led to the development of several treatment strategies, one of which is discussed in detail here. Information such as this becomes more than a matter of academic interest. Such knowledge can provide the bases for anticipating which compounds may be abused and which may not. It can also be used to identify biological markers or changes in brain function that are associated with progression from drug use to drug abuse and also to stage the recovery process. This new knowledge can guide legislative initiatives on the optimal duration of mandatory treatment stays, promoting long-lasting abstinence and greatly reducing the societal burden of drug abuse. Imaging can also give some insights into potential pharmacotherapeutic targets to manage the reinforcing effects of addictive compounds, as well as into protective strategies to minimize their toxic consequences

  14. Positron emission tomography: diagnostic imaging on a molecular level

    International Nuclear Information System (INIS)

    In human medicine positron emission tomography (PET) is a modern diagnostic imaging method. In the present paper we outline the physical principles of PET and give an overview over the main clinic fields where PET is being used, such as neurology, cardiology and oncology. Moreover, we present a current project in veterinary medicine (in collaboration with the Paul Scherrer Institute and the University Hospital Zurich), where a hypoxia tracer is applied to dogs and cats suffering from spontaneous tumors. Finally new developments in the field of PET were discussed

  15. Molecular imaging of cancer with radiolabeled peptides and PET.

    Science.gov (United States)

    Vāvere, Amy L; Rossin, Raffaella

    2012-06-01

    Radiolabeled peptides hold promise for diagnosis and therapy of cancer as well as for early monitoring of therapy outcomes, patient stratification, etc. This manuscript focuses on the development of peptides labeled with 18F, 64Cu, 68Ga and other positron-emitting radionuclides for PET imaging. The major techniques for radionuclide incorporation are briefly discussed. Then, examples of positron-emitting peptides targeting somatostatin receptors, integrins, gastrin-releasing peptide receptors, vasointestinal peptide receptors, melanocortin 1 receptors and others are reviewed. PMID:22292762

  16. Imaging Multi-Particle Atomic and Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Landers, Allen [Auburn Univ., AL (United States)

    2016-02-12

    Final Report for Grant Number: DE- FG02-10ER16146 This grant supported research in basic atomic, molecular and optical physics related to the interactions of atoms and molecules with photons and electrons. The duration of the grant was the 5 year period from 4/1/2010 – 10/31/2015. All of the support from the grant was used to pay salaries of the PI, graduate students, and undergraduates and travel to conferences and meetings. The results were in the form of publications in peer reviewed journals. There were 20 peer reviewed publications over these 5 years with 2 of the publications in Physical Review Letters and 1 in Nature; all of the other articles were in respected peer reviewed journals (Physical Review A, New Journal of Physics, Journal of Physics B ...).

  17. Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology.

    Science.gov (United States)

    Bhargava, Rohit; Madabhushi, Anant

    2016-07-11

    Pathology is essential for research in disease and development, as well as for clinical decision making. For more than 100 years, pathology practice has involved analyzing images of stained, thin tissue sections by a trained human using an optical microscope. Technological advances are now driving major changes in this paradigm toward digital pathology (DP). The digital transformation of pathology goes beyond recording, archiving, and retrieving images, providing new computational tools to inform better decision making for precision medicine. First, we discuss some emerging innovations in both computational image analytics and imaging instrumentation in DP. Second, we discuss molecular contrast in pathology. Molecular DP has traditionally been an extension of pathology with molecularly specific dyes. Label-free, spectroscopic images are rapidly emerging as another important information source, and we describe the benefits and potential of this evolution. Third, we describe multimodal DP, which is enabled by computational algorithms and combines the best characteristics of structural and molecular pathology. Finally, we provide examples of application areas in telepathology, education, and precision medicine. We conclude by discussing challenges and emerging opportunities in this area. PMID:27420575

  18. Molecular imaging: future uses in arthritides; Molekulare Bildgebung: Kuenftige Anwendungen bei Arthritiden

    Energy Technology Data Exchange (ETDEWEB)

    Brem, M.H.; Schlechtweg, P.M.; MacKenzie, J.; Winalski, C.S.; Lang, P. [Brigham and Women' s Hospital of Harvard Medical School, Department of Radiology, Boston, MA 02115 (United States)

    2006-05-15

    Molecular imaging is an upcoming field in radiology as a result of great advances in imaging technology, genetics, and biochemistry in the recent past. Early-stage imaging of molecular pathological changes in cells opens the gates to new methods in medical treatment of diseases that otherwise would only be detected in advanced stages. Methods of imaging biochemical pathways with molecular agents are currently an issue of intensive research. This article reviews current modalities of molecular imaging in arthritis that should offer future perspective on early disease detection, diagnosis, and monitoring of treatment efficiency and how they can pave the way to optimized therapy. (orig.) [German] Die molekulare Bildgebung gehoert dank immenser Fortschritte bzgl. Technologie, Genetik und Biochemie in juengster Vergangenheit zu den sehr viel versprechenden neuen Methoden der Bildgebung in der Radiologie. Die Darstellung pathophysiologischer Vorgaenge auf molekularer Ebene in Initialstadien von Erkrankungen eroeffnen ganz neue und noch weitgehend unerforschte Optionen bei der Behandlung von Erkrankungen, die mit herkoemmlichen Methoden erst in weit fortgeschrittenen Stadien erkannt werden koennen. Gegenwaertig wird intensiv an Methoden zur Darstellung dieser verschiedenen zellulaeren Vorgaenge durch Kontrastmittel auf molekularer Basis gearbeitet. In diesem Uebersichtsartikel soll veranschaulicht werden, wie die molekulare Bildgebung bei Arthritiden derzeit und zukuenftig zu verbesserter Frueherkennung, Diagnostik und durch Monitoring der verschiedenen Behandlungsregime zu optimierter Therapie beitragen kann. (orig.)

  19. The Prevalence of Magnetic Resonance Imaging Hyperintensity in Migraine Patients and Its Association with Migraine Headache Characteristics and Cardiovascular Risk Factors

    Directory of Open Access Journals (Sweden)

    Mansoureh Toghae

    2015-05-01

    Full Text Available Objectives: To determine the frequency of hyperintense foci in migraine patients and the relationship with migraine headache characteristics and cardiovascular risk factors. Methods: Ninety patients with migraine headache (70 without aura and 20 with aura were enrolled and interviewed. Information on their headache (severity, frequency, and mean disease duration and other related data was obtained by completing a clinical checklist. Subsequently, brain magnetic resonance imaging (MRI was performed and each patient was then evaluated for hyperintense lesions. Results: Of the 90 patients, 29 (32% had silent hyperintense lesions on their MRI. The mean age of the patients with hyperintense foci was 41 years while those with no lesions was 33 years (p0.050. The lesions were found significantly more frequently in the patients who experienced chronic migraine (p=0.032. Conclusion: Our study adds weight to the theory that disease duration has a key role in the formation of hyperintense brain lesions. Certain cardiovascular risk factors such as sex, smoking, serum cholesterol, and BMI, do not affect the presence or absence of such lesions, suggesting that the relationship between migraine and these lesions may be directly due to the effects of migraine itself.

  20. Molecular Beacon-Based MicroRNA Imaging During Neurogenesis.

    Science.gov (United States)

    Lee, Jonghwan; Kim, Soonhag

    2016-01-01

    The fluorescence monitoring system for examining endogenous microRNA (miRNA) activity in cellular level provides crucial information on not only understanding a critical role of miRNA involving a variety of biological processes, but also evaluating miRNA expression patterns in a noninvasive manner. In this protocol, we report the details of a new procedure for a molecular beacon-based miRNA monitoring system, which includes the illustration scheme for miRNA detection strategy, exogenous miRNA detection, and measurement of endogenous miRNA expression level during neurogenesis. The fluorescence signal of miR-124a beacon quenched by BHQ2 was gradually recovered as increasing concentration of the miR-124a in tube. The functional work of miR-124a beacon was examined in intracellular environment, allowing for the internalization of the miR-124a beacon by lipofectamine, which resulted in activated fluorescent signals of the miR-124a beacon in the HeLa cells after the addition of synthetic miR-124a. The endogenous miR-124a expression level was detected by miR-124a beacon system during neurogenesis, showing brighter fluorescence intensity in cytoplasmic area of P19 cells after induction of neuronal differentiation by retinoic acid. The molecular beacon based-miRNA detection technique could be applicable to the simultaneous visualization of a variety of miRNA expression patterns using different fluorescence dyes. For the study of examining endogenous miRNA expression level using miRNA-beacon system, if cellular differentiation step is already prepared, transfection step of miR-124a beacon into P19 cells, and acquisition of activated fluorescence signal measured by confocal microscope can be conducted approximately within 6 h. PMID:26530921

  1. Optical-based molecular imaging: contrast agents and potential medical applications

    International Nuclear Information System (INIS)

    Laser- and sensitive charge-coupled device technology together with advanced mathematical modelling of photon propagation in tissue has prompted the development of novel optical imaging technologies. Fast surface-weighted imaging modalities, such as fluorescence reflectance imaging (FRI) and 3D quantitative fluorescence-mediated tomography have now become available [1, 2]. These technical advances are paralleled by a rapid development of a whole range of new optical contrasting strategies, which are designed to generate molecular contrast within a living organism. The combination of both, technical advances of light detection and the refinement of optical contrast media, finally yields a new spectrum of tools for in vivo molecular diagnostics. Whereas the technical aspects of optical imaging are covered in more detail in a previous review article in ''European Radiology'' [3], this article focuses on new developments in optical contrasting strategies and design of optical contrast agents for in vivo diagnostics. (orig.)

  2. Recent Advance of Biological Molecular Imaging Based on Lanthanide-Doped Upconversion-Luminescent Nanomaterials

    Directory of Open Access Journals (Sweden)

    Yuanzeng Min

    2014-02-01

    Full Text Available Lanthanide-doped upconversion-luminescent nanoparticles (UCNPs, which can be excited by near-infrared (NIR laser irradiation to emit multiplex light, have been proven to be very useful for in vitro and in vivo molecular imaging studies. In comparison with the conventionally used down-conversion fluorescence imaging strategies, the NIR light excited luminescence of UCNPs displays high photostability, low cytotoxicity, little background auto-fluorescence, which allows for deep tissue penetration, making them attractive as contrast agents for biomedical imaging applications. In this review, we will mainly focus on the latest development of a new type of lanthanide-doped UCNP material and its main applications for in vitro and in vivo molecular imaging and we will also discuss the challenges and future perspectives.

  3. Somatostatin Receptor-Based Molecular Imaging and Therapy for Neuroendocrine Tumors

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2013-01-01

    Full Text Available Neuroendocrine tumors (NETs are tumors originated from neuroendocrine cells in the body. The localization and the detection of the extent of NETs are important for diagnosis and treatment, which should be individualized according to the tumor type, burden, and symptoms. Molecular imaging of NETs with high sensitivity and specificity is achieved by nuclear medicine method using single photon-emitting and positron-emitting radiopharmaceuticals. Somatostatin receptor imaging (SRI using SPECT or PET as a whole-body imaging technique has become a crucial part of the management of NETs. The radiotherapy with somatostatin analogues labeled with therapeutic beta emitters, such as lutetium-177 or yttrium-90, has been proved to be an option of therapy for patients with unresectable and metastasized NETs. Molecular imaging can deliver an important message to improve the outcome for patients with NETs by earlier diagnosis, better choice of the therapeutic method, and evaluation of the therapeutic response.

  4. Plasmon Resonance Energy Transfer (PRET)-based Molecular Imaging of Cytochrome c in Living Cells

    OpenAIRE

    Choi, Yeonho; Kang, Taewook; Lee, Luke P.

    2009-01-01

    We describe the development of innovative plasmon resonance energy transfer (PRET)-based molecular imaging of biomolecules in living cells. Our strategy of in vivo PRET imaging relies on the resonant plasmonic energy transfer from a gold nanoplasmonic probe to conjugated target molecules, which creates “quantized quenching dips” within the Rayleigh scattering spectrum of the probe. The positions of these quantized quenching dips exactly match with the absorption peaks of the target molecule s...

  5. Peptide-Targeted Nanoglobular Gd-DOTA Monoamide Conjugates for Magnetic Resonance Cancer Molecular Imaging

    OpenAIRE

    Tan, Mingqian; Wu, Xueming; Jeong, Eun-Kee; Chen, Qianjin; Lu, Zheng-Rong

    2010-01-01

    Effective imaging of cancer molecular biomarker is critical for accurate cancer diagnosis and prognosis. CLT1 peptide was observed to specifically bind to the fibrin-fibronectin complexes presented in tumor extracellular matrix. In this study, we synthesized and evaluated CLT1 peptide-targeted nanoglobular Gd-DOTA monoamide conjugates for magnetic resonance (MR) imaging of the fibrin-fibronectin complexes in tumor. The targeted nanoglobular contrast agents were prepared by conjugating peptide...

  6. Calculation of images of oriented C_60 molecules using molecular orbital theory

    OpenAIRE

    Hands, Ian D; Dunn, Janette L; Bates, Colin A.

    2010-01-01

    Using Hückel molecular-orbital theory, images are created to represent the electron distributions expected for a C60 molecule adsorbed on a substrate. Three different orientations of the C60 molecule on the substrate are considered. The effect of the interaction of the molecule with the substrate is treated purely from the basis of symmetry using group theoretical methods. The resulting electron distributions are then used to generate idealized images which represent how the molec...

  7. Early Cancer Detection and Targeted Therapy by Magnetic Resonance Molecular Imaging and Nano Medicine

    OpenAIRE

    Li, Zhao

    2015-01-01

    The common theme of my 5-year PhD research is to channel progress in spin physics and nano-bio-materials into meaningful improvements in the theoretical studies, methodological developments, and advanced applications of magnetic resonance (MR) to: 1) MR Molecular Imaging: to detect lesions (especially cancers) at early stages through imaging the existence and locations of physiologically important biomarkers; and2) MR Nano Medicine: to cure diseases (especially cancers) by targeted therapy th...

  8. Small-animal SPECT and SPECT/CT: application in cardiovascular research

    International Nuclear Information System (INIS)

    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease. (orig.)

  9. High-resolution, high sensitivity detectors for molecular imaging with radionuclides: The coded aperture option

    International Nuclear Information System (INIS)

    Molecular imaging with radionuclides is a very sensitive technique because it allows to obtain images with nanomolar or picomolar concentrations. This has generated a rapid growth of interest in radionuclide imaging of small animals. Indeed radiolabeling of small molecules, antibodies, peptides and probes for gene expression enables molecular imaging in vivo, but only if a suitable imaging system is used. Detecting small tumors in humans is another important application of such techniques. In single gamma imaging, there is always a well known tradeoff between spatial resolution and sensitivity due to unavoidable collimation requirements. Limitation of the sensitivity due to collimation is well known and affects the performance of imaging systems, especially if only radiopharmaceuticals with limited uptake are available. In many cases coded aperture collimation can provide a solution, if the near field artifact effect can be eliminated or limited. At least this is the case for 'small volumes' imaging, involving small animals. In this paper 3D-laminography simulations and preliminary measurements with coded aperture collimation are presented. Different masks have been designed for different applications showing the advantages of the technique in terms of sensitivity and spatial resolution. The limitations of the technique are also discussed

  10. High-resolution, high sensitivity detectors for molecular imaging with radionuclides: The coded aperture option

    Science.gov (United States)

    Cusanno, F.; Cisbani, E.; Colilli, S.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lo Meo, S.; Lucentini, M.; Magliozzi, M. L.; Santavenere, F.; Lanza, R. C.; Majewski, S.; Cinti, M. N.; Pani, R.; Pellegrini, R.; Orsini Cancelli, V.; De Notaristefani, F.; Bollini, D.; Navarria, F.; Moschini, G.

    2006-12-01

    Molecular imaging with radionuclides is a very sensitive technique because it allows to obtain images with nanomolar or picomolar concentrations. This has generated a rapid growth of interest in radionuclide imaging of small animals. Indeed radiolabeling of small molecules, antibodies, peptides and probes for gene expression enables molecular imaging in vivo, but only if a suitable imaging system is used. Detecting small tumors in humans is another important application of such techniques. In single gamma imaging, there is always a well known tradeoff between spatial resolution and sensitivity due to unavoidable collimation requirements. Limitation of the sensitivity due to collimation is well known and affects the performance of imaging systems, especially if only radiopharmaceuticals with limited uptake are available. In many cases coded aperture collimation can provide a solution, if the near field artifact effect can be eliminated or limited. At least this is the case for "small volumes" imaging, involving small animals. In this paper 3D-laminography simulations and preliminary measurements with coded aperture collimation are presented. Different masks have been designed for different applications showing the advantages of the technique in terms of sensitivity and spatial resolution. The limitations of the technique are also discussed.

  11. Cardiovascular MR T2-STIR imaging does not discriminate between intramyocardial haemorrhage and microvascular obstruction during the subacute phase of a reperfused myocardial infarction

    DEFF Research Database (Denmark)

    Hansen, Esben Søvsø Szocska; Pedersen, Steen Fjord; Pedersen, Steen Bønløkke;

    2016-01-01

    OBJECTIVE: Microvascular obstruction (MVO) and intramyocardial haemorrhage (IMH) are known complications of myocardial ischaemia-reperfusion injury. Whereas MVO is an established marker for a poor clinical outcome, the clinical significance of IMH remains less well defined. Cardiovascular MR (CMR...... macroscopic evaluation and T1 weighted CMR) was produced in 13 pigs by a 65-min balloon occlusion of the mid left anterior descending artery, followed by reperfusion. Eight days after injury, all pigs underwent CMR imaging and subsequently the hearts were assessed by gross pathology. RESULTS: CMR identified...... MVO in all hearts. CMR and pathology showed that IMH was present in 6 of 13 (46%) infarcts. The sensitivity and specificity of T2-STIR hypointense signal core for identification of IMH was 100% and 29%, respectively. T2-values between hypointense signal core in the pigs with and without IMH were...

  12. Two-modality γ detection of blood volume by camera imaging and nonimaging stethoscope for kinetic studies of cardiovascular control in nuclear medicine

    Science.gov (United States)

    Eclancher, Bernard; Chambron, Jacques; Dumitresco, Barbu; Karman, Miklos; Pszota, Agnes; Simon, Atilla; Didon-Poncelet, Anna; Demangeat, Jean

    2002-04-01

    The quantification of rapid hemodynamic reactions to wide and slow breathing movements has been performed, by two modalities (gamma) -left ventriculography of 99mTc-labeled blood volume, in anterior oblique incidence on standing and even exercising healthy volunteers and cardiac patients. A highly sensitive stethoscope delivered whole (gamma) -counts acquired at 30 msec intervals in a square field of view including the left ventricle, in a one dimensional low resolution imaging mode for beat to beat analysis. A planar 2D (gamma) -camera imaging of the same cardiac area was then performed without cardiac gating for alternate acquisitions during deep inspiration and deep expiration, completed by a 3D MRI assessment of the stethoscope detection field. Young healthy volunteers displayed wide variations of diastolic times and stroke volumes, as a result of enhanced baroreflex control, together with +/- 16% variations of the stethoscope's background blood volume counts. Any of the components of these responses were shifted, abolished or even inverted as a result of either obesity, hypertension, aging or cardiac pathologies. The assessment of breathing control of the cardiovascular system by the beat to beat (gamma) -ventriculography combined with nuclear 2D and 3D MRI imaging is a kinetic method allowing the detection of functional anomalies in still ambulatory patients.

  13. Cardiovascular whole-body MR imaging in patients with symptomatic peripheral arterial occlusive disease; Kardiovaskulaere MR-Ganzkoerperbildgebung bei Patienten mit symptomatischer Atherosklerose der peripheren Gefaesse

    Energy Technology Data Exchange (ETDEWEB)

    Fenchel, M.; Kramer, U.; Stauder, N.; Bretschneider, C.; Klumpp, B.; Claussen, C.D.; Miller, S. [Abt. fuer Radiologie, Eberhard-Karls-Univ. Tuebingen (Germany); Jost, D.; Scheule, A. [Abt. fuer Herz-, Thorax- und Gefaesschirurgie, Eberhard-Karls-Univ. Tuebingen (Germany); Naegele, T. [Abt. Neuroradiologie, Eberhard-Karls-Univ. Tuebingen (Germany)

    2006-05-15

    Purpose: To examine patients with peripheral-arterial-occlusive-disease (PAOD) for systemic effects associated with atherosclerosis using a comprehensive state-of-the-art whole-body MR examination protocol. The protocol comprises the assessment of the complete arterial vasculature (except coronary arteries), the brain, and the heart. Materials and methods: Multi-station whole-body 3D MR angiography was performed in sixty consecutive patients with clinical suspicion for PAOD at 1.5 T (Magnetom Avanto, Siemens, Erlangen, Germany). Functional and delayed enhancement cardiac images were acquired, as well as FLAIR images of the brain and TOF angiography of intracranial vessels. MR and DSA images were assessed by independent observers for artherosclerotic manifestations and other pathology. Sensitivity and specificity for the detection of vascular pathology was calculated for MR data using conventional DSA of the symptomatic region as standard-of-reference. Results: Sensitivity and specificity for the detection of significant vascular stenosis (>70% luminal narrowing) was 94% and 96% (PPV 87%, NPV 98%). Significant microangiopathic tissue alterations (n=7) and/or cerebral infarction (n=18) were diagnosed in 23/60 patients. Thirty-eight of 60 patients presented with systolic left ventricular wall motion abnormalities. In 24 patients subendocardial or transmural delayed enhancement was detected in corresponding regions, indicating prior myocardial infarction. Conclusion: For patients with PAOD and suspected systemic atherosclerotic disease a comprehensive diagnosis of accompanying cardiovascular pathology and therefore staging of systemic atherosclerotic disease is feasible within one MR examination. (orig.)

  14. Quantitative multicolor compositional imaging resolves molecular domains in cell-matrix adhesions.

    Directory of Open Access Journals (Sweden)

    Eli Zamir

    Full Text Available BACKGROUND: Cellular processes occur within dynamic and multi-molecular compartments whose characterization requires analysis at high spatio-temporal resolution. Notable examples for such complexes are cell-matrix adhesion sites, consisting of numerous cytoskeletal and signaling proteins. These adhesions are highly variable in their morphology, dynamics, and apparent function, yet their molecular diversity is poorly defined. METHODOLOGY/PRINCIPAL FINDINGS: We present here a compositional imaging approach for the analysis and display of multi-component compositions. This methodology is based on microscopy-acquired multicolor data, multi-dimensional clustering of pixels according to their composition similarity and display of the cellular distribution of these composition clusters. We apply this approach for resolving the molecular complexes associated with focal-adhesions, and the time-dependent effects of Rho-kinase inhibition. We show here compositional variations between adhesion sites, as well as ordered variations along the axis of individual focal-adhesions. The multicolor clustering approach also reveals distinct sensitivities of different focal-adhesion-associated complexes to Rho-kinase inhibition. CONCLUSIONS/SIGNIFICANCE: Multicolor compositional imaging resolves "molecular signatures" characteristic to focal-adhesions and related structures, as well as sub-domains within these adhesion sites. This analysis enhances the spatial information with additional "contents-resolved" dimensions. We propose that compositional imaging can serve as a powerful tool for studying complex multi-molecular assemblies in cells and for mapping their distribution at sub-micron resolution.

  15. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice.

    Science.gov (United States)

    Pu, Kanyi; Shuhendler, Adam J; Jokerst, Jesse V; Mei, Jianguo; Gambhir, Sanjiv S; Bao, Zhenan; Rao, Jianghong

    2014-03-01

    Photoacoustic imaging holds great promise for the visualization of physiology and pathology at the molecular level with deep tissue penetration and fine spatial resolution. To fully utilize this potential, photoacoustic molecular imaging probes have to be developed. Here, we introduce near-infrared light absorbing semiconducting polymer nanoparticles as a new class of contrast agents for photoacoustic molecular imaging. These nanoparticles can produce a stronger signal than the commonly used single-walled carbon nanotubes and gold nanorods on a per mass basis, permitting whole-body lymph-node photoacoustic mapping in living mice at a low systemic injection mass. Furthermore, the semiconducting polymer nanoparticles possess high structural flexibility, narrow photoacoustic spectral profiles and strong resistance to photodegradation and oxidation, enabling the development of the first near-infrared ratiometric photoacoustic probe for in vivo real-time imaging of reactive oxygen species--vital chemical mediators of many diseases. These results demonstrate semiconducting polymer nanoparticles to be an ideal nanoplatform for developing photoacoustic molecular probes. PMID:24463363

  16. Molecular Dynamics Study of a Thermal Expansion Coefficient: Ti Bulk with an Elastic Minimum Image Method

    Institute of Scientific and Technical Information of China (English)

    Yakup Hundur; Rainer Hippler; Ziya B. Güven(c)

    2006-01-01

    @@ Linear thermal expansion coefficient (TEC) of Ti bulk is investigated by means of molecular dynamics simulation.The elastic minimum image convention of periodic boundary conditions is introduced to allow the bulk to adjust its size according to the new fixed temperature. The TEC and the specific heat of Ti are compared to the available theoretical and experimental data.

  17. Molecular Imaging Using Fluorescence and Bioluminescence to Reveal Tissue Response to Laser-Mediated Thermal Injury

    Science.gov (United States)

    Mackanos, Mark A.; Jansen, E. Duco; Contag, Christopher H.

    For decades biological investigation has focused on a reductionist approach, which has greatly advanced our understanding of the biological process, but has also served to move the analysis further and further away from the living body. This was necessary as we sought to identify the cells, genes, mutations and/or etiological agents that were associated with a given process. The information generated through these approaches can now be used to advance more integrative strategies in which specific cellular and molecular events can be studied in context of the functional circulation and intact organ systems of living animals, and humans. Essential tools for integrative analyses of biology include imaging modalities that enable visualization of structure and function in the living body. The relatively recent development of molecular probes as exogenous contrast agents and reporter genes that encode proteins with unique properties that can be distinguished from tissues and cells has ushered in a new set of approaches that are being called molecular imaging.

  18. A synthetic molecular system capable of mirror-image genetic replication and transcription.

    Science.gov (United States)

    Wang, Zimou; Xu, Weiliang; Liu, Lei; Zhu, Ting F

    2016-07-01

    The overwhelmingly homochiral nature of life has left a puzzle as to whether mirror-image biological systems based on a chirally inverted version of molecular machinery could also have existed. Here we report that two key steps in the central dogma of molecular biology, the template-directed polymerization of DNA and transcription into RNA, can be catalysed by a chemically synthesized D-amino acid polymerase on an L-DNA template. We also show that two chirally mirrored versions of the 174-residue African swine fever virus polymerase X could operate in a racemic mixture without significant enantiomeric cross-inhibition to the activity of each other. Furthermore, we demonstrate that a functionally active L-DNAzyme could be enzymatically produced using the D-amino acid polymerase. The establishment of such molecular systems with an opposite handedness highlights the potential to exploit enzymatically produced mirror-image biomolecules as research and therapeutic tools. PMID:27325097

  19. Molecular images as a tool in research. From radiopharmacy to radiopharmacology

    International Nuclear Information System (INIS)

    Full text: The rapidly emerging biomedical research discipline of Molecular Imaging (MI) enables the visualization, characterization and quantification of biologic process taking place at the cellular and sub-cellular levels within the intact living organism. The overall goal of MI is to interrogate biologic process in the cell of a living subject to report on and reveal their molecular abnormalities that form the basis of disease. This is in contrast to classical diagnostic imaging where documented findings are the result of the end effects of these molecular alterations, usually in the form of macroscopic and well-established gross pathology. MI includes the field of Nuclear Medicine (SPECT and PET) and other strategies that do not depend on radioactivity to produce imaging signals (optical, bioluminescence and Magnetic Resonance). The emergence of MI strategies has made possible the achievement of several important biomedical research goals that open the door to advancement of study in molecular medicine. These various accomplishments include: (1) development of non invasive 'in vivo' imaging methods to reflect gene expression and more complex events such as protein-protein interactions; (2) ability to monitor multiple molecular events near simultaneously; (3) capacity to follow cell trafficking and cell targeting; (4) optimization of drug and gene therapy; (5) capability of imaging drug effects at a molecular and cellular level; (6) assessment of disease progression at a molecular pathologic level; (7) advancement of the possibility of achieving all the above mentioned goals rapidly, reproducibly and quantitatively, in support of monitoring a time-dependent manner the experimental, developmental, environmental and therapeutic influences on gene products in a single living subject. Although many laboratory based proof-of-principle and validation studies have been conducted using MI approaches, a great deal more experimental research will be necessary to

  20. Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology.

    Science.gov (United States)

    Petibois, Cyril; Déléris, Gérard

    2006-10-01

    Fourier-transform infrared (FT-IR) spectro-imaging enables global analysis of samples, with resolution close to the cellular level. Recent studies have shown that FT-IR imaging enables determination of the biodistribution of several molecules of interest (carbohydrates, lipids, proteins) for tissue analysis without pre-analytical modification of the sample such as staining. Molecular structure information is also available from the same analysis, notably for protein secondary structure and fatty acyl chain peroxidation level. Thus, several cancer markers can be identified from FT-IR tissue images, enabling accurate discrimination between healthy and tumor areas. FT-IR imaging applications are now able to provide unique chemical and morphological information about tissue status. With the fast image acquisition provided by modern mid-infrared imaging systems, it is now envisaged to analyze cerebral tumor exereses in delays compatible with neurosurgery. Accordingly, we propose to take FT-IR imaging into consideration for the development of new molecular histopathology tools. PMID:16935373

  1. Catalytic Molecular Imaging of MicroRNA in Living Cells by DNA-Programmed Nanoparticle Disassembly.

    Science.gov (United States)

    He, Xuewen; Zeng, Tao; Li, Zhi; Wang, Ganglin; Ma, Nan

    2016-02-24

    Molecular imaging is an essential tool for disease diagnostics and treatment. Direct imaging of low-abundance nucleic acids in living cells remains challenging because of the relatively low sensitivity and insufficient signal-to-background ratio of conventional molecular imaging probes. Herein, we report a class of DNA-templated gold nanoparticle (GNP)-quantum dot (QD) assembly-based probes for catalytic imaging of cancer-related microRNAs (miRNA) in living cells with signal amplification capacity. We show that a single miRNA molecule could catalyze the disassembly of multiple QDs with the GNP through a DNA-programmed thermodynamically driven entropy gain process, yielding significantly amplified QD photoluminescence (PL) for miRNA imaging. By combining the robust PL of QDs with the catalytic amplification strategy, three orders of magnitude improvement in detection sensitivity is achieved in comparison with non-catalytic imaging probe, which enables facile and accurate differentiation between cancer cells and normal cells by miRNA imaging in living cells. PMID:26694689

  2. Dual-Modality, Dual-Functional Nanoprobes for Cellular and Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Jyothi U. Menon, Praveen K. Gulaka, Madalyn A. McKay, Sairam Geethanath, Li Liu, Vikram D. Kodibagkar

    2012-01-01

    Full Text Available An emerging need for evaluation of promising cellular therapies is a non-invasive method to image the movement and health of cells following transplantation. However, the use of a single modality to serve this purpose may not be advantageous as it may convey inaccurate or insufficient information. Multi-modal imaging strategies are becoming more popular for in vivo cellular and molecular imaging because of their improved sensitivity, higher resolution and structural/functional visualization. This study aims at formulating Nile Red doped hexamethyldisiloxane (HMDSO nanoemulsions as dual modality (Magnetic Resonance Imaging/Fluorescence, dual-functional (oximetry/detection nanoprobes for cellular and molecular imaging. HMDSO nanoprobes were prepared using a HS15-lecithin combination as surfactant and showed an average radius of 71±39 nm by dynamic light scattering and in vitro particle stability in human plasma over 24 hrs. They were found to readily localize in the cytosol of MCF7-GFP cells within 18 minutes of incubation. As proof of principle, these nanoprobes were successfully used for fluorescence imaging and for measuring pO2 changes in cells by magnetic resonance imaging, in vitro, thus showing potential for in vivo applications.

  3. Application of digital subtraction angiography for serial rotatostereoradiography utilizing a cardio-vascular image analyzer ACIA-320

    International Nuclear Information System (INIS)

    In order to obtain cerebral angiograms in a three dimensional stereoscopic view through 180 deg using a single injection of contrast media, a new radiodiagnostic device utilizing a gantry rotated through 180 deg in 1.8 seconds was devised. Digital subtraction angiography (DSA) was integrated into this system using an Avio Cardio Vascular Image Analizer ACIA-320. A rotating ring, USZ-30, a fluoroscopic device using television, was utilized as a gantry, in which an X-ray tube and an image intensifier (I.I.) were installed. An X-ray tube (Circlex 0.6W/0.8PG 38B), a 9 inch I.I. (Philips 9/5 High Lens), a television unit AX-2000A), and a plumbicon camera tube (QX-1072) were used. The distance between the X-ray focus and I.I. was designed at 100 cm. The gantry was rotated through 180 deg in 1.8 seconds utilizing a Tsubaki motor power unit (Tsubaki SCU Motor: Type 022DMLB). DSA requires two rotations of the gantry, one for the plain radiograms and a second for angiograms. All images were stored in the digital multimemory of a DMM-80T which has an ability of 256 x 256 x 8 bits x 320 frames. Angiograms were subtracted automatically after indicating the initial rotated points of the plain and angiogram images using 4 ROI time density curves. Subtracted images were corrected using 8 gamma correction patterns with LEVEL and WIDTH changes resulting in excellent contrast images. These images were viewed in a rotational mode using an endless circulating display of the memories. These angiograms were then transferred onto a video disc recorder (VM-1000M), and the two other special modes could be displayed. Oscillating mode shows the images in oscillating manner (fan head motion), and progressive oscillating mode shows the images also in oscillating manner with advancing videomemory per each oscillation. (J.P.N.)

  4. Study on novel peptide probe 131I-RRL for tumor molecular imaging

    International Nuclear Information System (INIS)

    To study the potential application value of Ary-Ary-Leu(RRL) specially combined with tumor derived endothelial cells in tumor molecular imaging for melanoma bearing mice, a novel peptide RRL was designed and labeled with 131I by chloramine-T method, and mice bearing melanoma tumor were injected 131I-RRL to imaging. The labeling results showed that the optimized condition were following: 50 μg RRL, 10 μL (74 MBq) Na 131I, 90 μg chloramine-T, total reaction volume 100 μL, and reaction time 3 min, the labeling yield was over 69%. The labeling compound was purified by Sephadex G25, its radiochemical purity was > 95%. In vitro binding experiments, FITC-RRL was mainly combine with tumor cells and tumor angiogenesis endothelial cells, and in the SPECT imaging, 131I-RRL peptide could successfully image the tumor in nude mice bearing melanoma tumor for 24 h after injection. The results indicated that small molecular peptide RRL was a promising carrier for tumor molecular imaging and radioimmunotherapy. (authors)

  5. Target-to-background enhancement in multispectral endoscopy with background autofluorescence mitigation for quantitative molecular imaging

    Science.gov (United States)

    Yang, Chenying; Hou, Vivian W.; Girard, Emily J.; Nelson, Leonard Y.; Seibel, Eric J.

    2014-07-01

    Fluorescence molecular imaging with exogenous probes improves specificity for the detection of diseased tissues by targeting unambiguous molecular signatures. Additionally, increased diagnostic sensitivity is expected with the application of multiple molecular probes. We developed a real-time multispectral fluorescence-reflectance scanning fiber endoscope (SFE) for wide-field molecular imaging of fluorescent dye-labeled molecular probes at nanomolar detection levels. Concurrent multichannel imaging with the wide-field SFE also allows for real-time mitigation of the background autofluorescence (AF) signal, especially when fluorescein, a U.S. Food and Drug Administration approved dye, is used as the target fluorophore. Quantitative tissue AF was measured for the ex vivo porcine esophagus and murine brain tissues across the visible and near-infrared spectra. AF signals were then transferred to the unit of targeted fluorophore concentration to evaluate the SFE detection sensitivity for sodium fluorescein and cyanine. Next, we demonstrated a real-time AF mitigation algorithm on a tissue phantom, which featured molecular probe targeted cells of high-grade dysplasia on a substrate containing AF species. The target-to-background ratio was enhanced by more than one order of magnitude when applying the real-time AF mitigation algorithm. Furthermore, a quantitative estimate of the fluorescein photodegradation (photobleaching) rate was evaluated and shown to be insignificant under the illumination conditions of SFE. In summary, the multichannel laser-based flexible SFE has demonstrated the capability to provide sufficient detection sensitivity, image contrast, and quantitative target intensity information for detecting small precancerous lesions in vivo.

  6. Full-direct method for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography

    International Nuclear Information System (INIS)

    Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but also make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images

  7. Full-direct method for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography

    Science.gov (United States)

    Zhang, Guanglei; Pu, Huangsheng; He, Wei; Liu, Fei; Luo, Jianwen; Bai, Jing

    2015-02-01

    Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but also make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images.

  8. Full-direct method for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guanglei, E-mail: guangleizhang@bjtu.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044 (China); Pu, Huangsheng; Liu, Fei; Bai, Jing [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); He, Wei [China Institute of Sport Science, Beijing 100061 (China); Luo, Jianwen, E-mail: luo-jianwen@tsinghua.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing 100084 (China)

    2015-02-23

    Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but also make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images.

  9. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    International Nuclear Information System (INIS)

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  10. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Bowsher, James, E-mail: james.bowsher@duke.edu; Giles, William; Yin, Fang-Fang [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Yan, Susu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Roper, Justin [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-01-15

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  11. What role for 99mTc radiopharmaceuticals in the age of molecular imaging?

    International Nuclear Information System (INIS)

    Molecular imaging is a new paradigm that is currently emerging in the field of medical and biological sciences as a novel tool for exploring fundamental biological processes at the molecular level in integrated living organisms. Nuclear imaging is a sensitive methodological approach that employs radiolabelled probes to investigate biomolecular interactions. This approach may ultimately lead to a deeper understanding of the route through which single biochemical pathways are grouped to form networks of biological processes controlling the behaviour of a whole organism. Technetium-99m radiopharmaceuticals are playing an important role in this new scenario and are currently expanding the applications of these tracers, particularly through the use of high resolution small animal scanners. This review briefly illustrates some of the recent results in this area and the potential developments that may further stimulate the research interest in 99mTc imaging agents. (author)

  12. 心血管MRI第四部分--不同场强的心血管MR成像特点比较%Cardiovascular magnetic resonance imaging:Part IV--The comparison of imaging features of cardiovascular magnetic resonance scanners with different ifeld strength

    Institute of Scientific and Technical Information of China (English)

    尹刚; 贺光军; 赵世华

    2014-01-01

    该文为第四部分,承接前三部分讲述了当今心血管MR(cardiovascular MR,CMR)的两大主流机型,即1.5 T和3.0 T扫描仪的成像特点。3.0 T系统在很多单位已成为神经系统成像的标准,但对体部,特别是心脏,3.0 T系统的广泛应用则受限于诸多因素,充满着挑战。然而,在更高场强下行CMR成像又具有无可比拟的优越性并成为发展趋势。作者从物理基础开始,归纳了3.0 T对比1.5 T在CMR成像应用中的优缺点和发展前景。%This article is the fourth section. Following the three previous sections, the current major types of cardiovascular magnetic resonance (CMR) scanner, 1.5 T and 3.0 T, were presented. 3.0 T system has played a role as the standardization for nervous system imaging in most units. But for body imaging, especially for cardiac imaging, there is much more challenging to perform imaging at 3.0 T than 1.5 T. However, it is the trend of development to perform CMR imaging in higher ifeld strength due to the signiifcant advantages. From the magnetic resonance physics to clinical application of CMR, the 1.5 T and 3.0 T CMR systems were compared in this article.

  13. Effect of Diabetes on Brain Structure: The Action to Control Cardiovascular Risk in Diabetes MR Imaging Baseline Data

    OpenAIRE

    Bryan, R. Nick; Bilello, Michel; Davatzikos, Christos; Lazar, Ronald M.; Murray, Anne; Horowitz, Karen; Lovato, James; Miller, Michael E.; Williamson, Jeff; Launer, Lenore J

    2014-01-01

    The results of this study show that measures of longer duration of diabetes or biochemical severity correlated primarily with brain atrophy, but not with white matter lesion volume, which is the major MR imaging marker of small vessel ischemic disease.

  14. Image-guided Coring for Large-scale Studies in Molecular Pathology.

    Science.gov (United States)

    Montaser-Kouhsari, Laleh; Knoblauch, Nicholas W; Oh, Eun-Yeong; Baker, Gabrielle; Christensen, Stephen; Hazra, Aditi; Tamimi, Rulla M; Beck, Andrew H

    2016-07-01

    Sampling of formalin-fixed paraffin-embedded (FFPE) tissue blocks is a critical initial step in molecular pathology. Image-guided coring (IGC) is a new method for using digital pathology images to guide tissue block coring for molecular analyses. The goal of our study is to evaluate the use of IGC for both tissue-based and nucleic acid-based projects in molecular pathology. First, we used IGC to construct a tissue microarray (TMA); second, we used IGC for FFPE block sampling followed by RNA extraction; and third, we assessed the correlation between nuclear counts quantitated from the IGC images and RNA yields. We used IGC to construct a TMA containing 198 normal and breast cancer cores. Histopathologic analysis showed high accuracy for obtaining tumor and normal breast tissue. Next, we used IGC to obtain normal and tumor breast samples before RNA extraction. We selected a random subset of tumor and normal samples to perform computational image analysis to quantify nuclear density, and we built regression models to estimate RNA yields from nuclear count, age of the block, and core diameter. Number of nuclei and core diameter were the strongest predictors of RNA yields in both normal and tumor tissue. IGC is an effective method for sampling FFPE tissue blocks for TMA construction and nucleic acid extraction. We identify significant associations between quantitative nuclear counts obtained from IGC images and RNA yields, suggesting that the integration of computational image analysis with IGC may be an effective approach for tumor sampling in large-scale molecular studies. PMID:26186251

  15. Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green.

    Science.gov (United States)

    Fang, Cheng; Wang, Kun; Zeng, Chaoting; Chi, Chongwei; Shang, Wenting; Ye, Jinzuo; Mao, Yamin; Fan, Yingfang; Yang, Jian; Xiang, Nan; Zeng, Ning; Zhu, Wen; Fang, Chihua; Tian, Jie

    2016-01-01

    Tissue necrosis commonly accompanies the development of a wide range of serious diseases. Therefore, highly sensitive detection and precise boundary delineation of necrotic tissue via effective imaging techniques are crucial for clinical treatments; however, no imaging modalities have achieved satisfactory results to date. Although fluorescence molecular imaging (FMI) shows potential in this regard, no effective necrosis-avid fluorescent probe has been developed for clinical applications. Here, we demonstrate that indocyanine green (ICG) can achieve high avidity of necrotic tissue owing to its interaction with lipoprotein (LP) and phospholipids. The mechanism was explored at the cellular and molecular levels through a series of in vitro studies. Detection of necrotic tissue and real-time image-guided surgery were successfully achieved in different organs of different animal models with the help of FMI using in house-designed imaging devices. The results indicated that necrotic tissue with a 0.6 mm diameter could be effectively detected with precise boundary definition. We believe that the new discovery and the associated imaging techniques will improve personalized and precise surgery in the near future. PMID:26864116

  16. Cardiovascular MR T2-STIR imaging does not discriminate between intramyocardial haemorrhage and microvascular obstruction during the subacute phase of a reperfused myocardial infarction

    Science.gov (United States)

    Hansen, Esben Søvsø Szocska; Pedersen, Steen Fjord; Pedersen, Steen Bønløkke; Kjærgaard, Uffe; Schmidt, Nikolaj Hjort; Bøtker, Hans Erik; Kim, Won Yong

    2016-01-01

    Objective Microvascular obstruction (MVO) and intramyocardial haemorrhage (IMH) are known complications of myocardial ischaemia-reperfusion injury. Whereas MVO is an established marker for a poor clinical outcome, the clinical significance of IMH remains less well defined. Cardiovascular MR (CMR) and T2 weighted short tau inversion recovery (T2-STIR) imaging have been used to detect IMH and to explore its clinical importance. IMH is typically identified within the area-at-risk as a hypointense signal core on T2-STIR images. Because MVO will also appear as a hypointense signal core, T2-STIR imaging may not be an optimal method for assessing IMH. In this study, we sought to investigate the ability of T2-STIR to discriminate between MVO with IMH in a porcine myocardial ischaemia-reperfusion model that expressed MVO with and without IMH. Method MVO with and without IMH (defined from both macroscopic evaluation and T1 weighted CMR) was produced in 13 pigs by a 65-min balloon occlusion of the mid left anterior descending artery, followed by reperfusion. Eight days after injury, all pigs underwent CMR imaging and subsequently the hearts were assessed by gross pathology. Results CMR identified MVO in all hearts. CMR and pathology showed that IMH was present in 6 of 13 (46%) infarcts. The sensitivity and specificity of T2-STIR hypointense signal core for identification of IMH was 100% and 29%, respectively. T2-values between hypointense signal core in the pigs with and without IMH were similar (60.4±3 ms vs 63.0±4 ms). Conclusions T2-STIR did not allow identification of IMH in areas with MVO in a porcine model of myocardial ischaemic/reperfusion injury in the subacute phase of a reperfused myocardial infarction. PMID:27110375

  17. Dose reduction of up to 89% while maintaining image quality in cardiovascular CT achieved with prospective ECG gating

    Science.gov (United States)

    Londt, John H.; Shreter, Uri; Vass, Melissa; Hsieh, Jiang; Ge, Zhanyu; Adda, Olivier; Dowe, David A.; Sabllayrolles, Jean-Louis

    2007-03-01

    We present the results of dose and image quality performance evaluation of a novel, prospective ECG-gated Coronary CT Angiography acquisition mode (SnapShot Pulse, LightSpeed VCT-XT scanner, GE Healthcare, Waukesha, WI), and compare it to conventional retrospective ECG gated helical acquisition in clinical and phantom studies. Image quality phantoms were used to measure noise, slice sensitivity profile, in-plane resolution, low contrast detectability and dose, using the two acquisition modes. Clinical image quality and diagnostic confidence were evaluated in a study of 31 patients scanned with the two acquisition modes. Radiation dose reduction in clinical practice was evaluated by tracking 120 consecutive patients scanned with the prospectively gated scan mode. In the phantom measurements, the prospectively gated mode resulted in equivalent or better image quality measures at dose reductions of up to 89% compared to non-ECG modulated conventional helical scans. In the clinical study, image quality was rated excellent by expert radiologist reviewing the cases, with pathology being identical using the two acquisition modes. The average dose to patients in the clinical practice study was 5.6 mSv, representing 50% reduction compared to a similar patient population scanned with the conventional helical mode.

  18. PET for molecular imaging of cancer: a tool for tailored therapy

    International Nuclear Information System (INIS)

    The concept of personalised medicine has led to a need for improved phenotyping as well as prediction of treatment response early after therapy initiation. Most of the molecular biology methods used today need tissue sampling for in vitro analysis. In contrast, molecular imaging allows for non-invasive studies at the molecular level in living, intact organisms. Accordingly, molecular imaging with PET has been one of the most successful techniques in such phenotyping and response prediction using FDG. In addition, recent development of new PET tracers has further improved the value of PET in tumor characterization. Such new PET tracers allow for visualization of tumor specific receptors and tissue characteristics such as ability to metastasize. Furthermore, PET has a high sensitivity and allows for quantification and is not prone to sampling error as seen with biopsies. We will present examples of development of probes targeting the somatostatin receptor type 2, over-expressed in neuroendocrine tumors, including our first-in-man studies of 64Cu-DOTATATE. Also development in probes for visualization of the invasive phenotype will be presented. Finally, with the most recent development of true integrated PET/MRI scanners it has now become possible to add information from MRI. The value of such hybrid imaging will also be briefly discussed. (author)

  19. Cardiac Sarcoidosis or Giant Cell Myocarditis? On Treatment Improvement of Fulminant Myocarditis as Demonstrated by Cardiovascular Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Hari Bogabathina

    2012-01-01

    Full Text Available Giant cell myocarditis, but not cardiac sarcoidosis, is known to cause fulminant myocarditis resulting in severe heart failure. However, giant cell myocarditis and cardiac sarcoidosis are pathologically similar, and attempts at pathological differentiation between the two remain difficult. We are presenting a case of fulminant myocarditis that has pathological features suggestive of cardiac sarcoidosis, but clinically mimicking giant cell myocarditis. This patient was treated with cyclosporine and prednisone and recovered well. This case we believe challenges our current understanding of these intertwined conditions. By obtaining a sense of severity of cardiac involvement via delayed hyperenhancement of cardiac magnetic resonance imaging, we were more inclined to treat this patient as giant cell myocarditis with cyclosporine. This resulted in excellent improvement of patient’s cardiac function as shown by delayed hyperenhancement images, early perfusion images, and SSFP videos.

  20. Evaluation of 2 different x-ray digital systems designed for cardiovascular angiography: patient dosimetry data and image quality

    International Nuclear Information System (INIS)

    The goal of this study was the comparative assessment of dose and image quality performance of a new flat-panel detector (F.D.) and an image intensifier (II) charge coupled device (C.C.D.) installed in a Catheterization laboratory (Cathlab). Poly-methyl methacrylate (PMMA) plates were used to simulate different patient size (10,15,20,25,30 cm). Entrance dose to the phantom and image quality of a test object (Leeds T.O.R. 18-F.G.) were measured. For analysis of image quality, two methods were used. Firstly, images were evaluated directly on the monitor (low contrast resolution and high spatial resolution). Secondly, a numerical method was used (noise and signal-to-noise ratio). Finally a preliminary patient dose survey for the two most common interventional cardiology procedures (coronary angiography C.A. and percutaneous transluminal coronary angioplasty - P.T.C.A.) was performed. Dose area product (D.A.P.), fluoroscopy time (F.T.) and total number of frames (No. frames) were collected. The results showed that both systems performed within international recommendations; the F.D. system seems superior to the II system, in terms of entrance doses of the phantom and image quality. Surprisingly, however, this potential dose reduction is not reflected in the patient data; D.A.P. values of patient data were not significantly reduced with the new system. This underlines the need for a careful set-up of the system and a more detailed analysis of the procedure. (authors)

  1. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    Science.gov (United States)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-01-01

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents. PMID:27147293

  2. Molecular Imaging of Biological Gene Delivery Vehicles for Targeted Cancer Therapy: Beyond Viral Vectors

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung Joon; Nguyen, Vu H. [Chonnam National University Medical School, Gwangju (Korea, Republic of); Gambhir, Sanjiv S. [Stanford University, California(United States)

    2010-04-15

    Cancer persists as one of the most devastating diseases in the world. Problems including metastasis and tumor resistance to chemotherapy and radiotherapy have seriously limited the therapeutic effects of present clinical treatments. To overcome these limitations, cancer gene therapy has been developed over the last two decades for a broad spectrum of applications, from gene replacement and knockdown to vaccination, each with different requirements for gene delivery. So far, a number of genes and delivery vectors have been investigated, and significant progress has been made with several gene therapy modalities in clinical trials. Viral vectors and synthetic liposomes have emerged as the vehicles of choice for many applications. However, both have limitations and risks that restrict gene therapy applications, including the complexity of production, limited packaging capacity, and unfavorable immunological features. While continuing to improve these vectors, it is important to investigate other options, particularly nonarrival biological agents such as bacteria, bacteriophages, and bacteria-like particles. Recently, many molecular imaging techniques for safe, repeated, and high-resolution in vivo imaging of gene expression have been employed to assess vector-mediated gene expression in living subjects. In this review, molecular imaging techniques for monitoring biological gene delivery vehicles are described, and the specific use of these methods at different steps is illustrated. Linking molecular imaging to gene therapy will eventually help to develop novel gene delivery vehicles for preclinical study and support the development of future human applications.

  3. Molecular Imaging of Biological Gene Delivery Vehicles for Targeted Cancer Therapy: Beyond Viral Vectors

    International Nuclear Information System (INIS)

    Cancer persists as one of the most devastating diseases in the world. Problems including metastasis and tumor resistance to chemotherapy and radiotherapy have seriously limited the therapeutic effects of present clinical treatments. To overcome these limitations, cancer gene therapy has been developed over the last two decades for a broad spectrum of applications, from gene replacement and knockdown to vaccination, each with different requirements for gene delivery. So far, a number of genes and delivery vectors have been investigated, and significant progress has been made with several gene therapy modalities in clinical trials. Viral vectors and synthetic liposomes have emerged as the vehicles of choice for many applications. However, both have limitations and risks that restrict gene therapy applications, including the complexity of production, limited packaging capacity, and unfavorable immunological features. While continuing to improve these vectors, it is important to investigate other options, particularly nonarrival biological agents such as bacteria, bacteriophages, and bacteria-like particles. Recently, many molecular imaging techniques for safe, repeated, and high-resolution in vivo imaging of gene expression have been employed to assess vector-mediated gene expression in living subjects. In this review, molecular imaging techniques for monitoring biological gene delivery vehicles are described, and the specific use of these methods at different steps is illustrated. Linking molecular imaging to gene therapy will eventually help to develop novel gene delivery vehicles for preclinical study and support the development of future human applications.

  4. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design

    Science.gov (United States)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M.

    2016-05-01

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared – non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  5. Ultrasound molecular imaging of secreted frizzled related protein-2 expression in murine angiosarcoma.

    Directory of Open Access Journals (Sweden)

    James K Tsuruta

    Full Text Available Angiosarcoma is a biologically aggressive vascular malignancy with a high metastatic potential. In the era of targeted medicine, knowledge of specific molecular tumor characteristics has become more important. Molecular imaging using targeted ultrasound contrast agents can monitor tumor progression non-invasively. Secreted frizzled related protein 2 (SFRP2 is a tumor endothelial marker expressed in angiosarcoma. We hypothesize that SFRP2-directed imaging could be a novel approach to imaging the tumor vasculature. To develop an SFRP2 contrast agent, SFRP2 polyclonal antibody was biotinylated and incubated with streptavidin-coated microbubbles. SVR angiosarcoma cells were injected into nude mice, and when tumors were established the mice were injected intravenously with the SFRP2 -targeted contrast agent, or a control streptavidin-coated contrast agent. SFRP2 -targeted contrast agent detected tumor vasculature with significantly more signal intensity than control contrast agent: the normalized fold-change was 1.6 ± 0.27 (n = 13, p = 0.0032. The kidney was largely devoid of echogenicity with no significant difference between the control contrast agent and the SFRP2-targeted contrast agent demonstrating that the SFRP2-targeted contrast agent was specific to tumor vessels. Plotting average pixel intensity obtained from SFRP2-targeted contrast agent against tumor volume showed that the average pixel intensity increased as tumor volume increased. In conclusion, molecularly-targeted imaging of SFRP2 visualizes angiosarcoma vessels, but not normal vessels, and intensity increases with tumor size. Molecular imaging of SFRP2 expression may provide a rapid, non-invasive method to monitor tumor regression during therapy for angiosarcoma and other SFRP2 expressing cancers, and contribute to our understanding of the biology of SFRP2 during tumor development and progression.

  6. Rhodopsin molecular contrast imaging by optical coherence tomography for functional assessment of photoreceptors (Conference Presentation)

    Science.gov (United States)

    Nafra, Zahra; Liu, Tan; Jiao, Shuliang

    2016-03-01

    Rhodopsin, the light-sensing molecule in the outer segments of rod photoreceptors, is responsible for converting light into neuronal signals in a process known as phototransduction. Rhodopsin is thus a functional biomarker for rod photoreceptors. We developed a novel technology based on visible-light optical coherence tomography (VIS-OCT) for in vivo molecular imaging of rhodopsin. The depth resolution of OCT allows the visualization of the location where the change of optical absorption occurs and provides a potentially accurate assessment of rhodopsin content by segmentation of the image at the location. A broadband supercontinuum laser, whose filtered output was centered at 520 nm, was used as the illuminating light source. To test the capabilities of the system on rhodopsin mapping we imaged the retina of albino rats. The rats were dark adapted before imaging. An integrated near infrared OCT was used to guide the alignment in dark. VIS-OCT three-dimensional images were then acquired under dark- and light- adapted states sequentially. Rhodopsin distribution was calculated from the differential image. The rhodopsin distributions can be displayed in both en face view and depth-resolved cross-sectional image. Rhodopsin OCT can be used to quantitatively image rhodopsin distribution and thus assess the distribution of functional rod photoreceptors in the retina. Rhodopsin OCT can bring significant impact into ophthalmic clinics by providing a tool for the diagnosis and severity assessment of a variety of retinal conditions.

  7. Molecular-scale imaging of unstained deoxyribonucleic acid fibers by phase transmission electron microscopy

    International Nuclear Information System (INIS)

    The molecular structure of deoxyribonucleic acid (DNA) fibers was observed by a phase reconstruction method called three-dimensional Fourier filtering using a 200 kV transmission electron microscope. The characteristic helical structure and the spacing of adjacent base pairs of DNA were partially resolved due to an improved signal-to-noise ratio and resolution enhancement by the phase reconstruction although the molecular structure was damaged by the electron beam irradiation. In the spherical aberration-free phase images, the arrangements of single atom-sized spots forming sinusoidal curves were sometimes observed, which seem to be the contrast originating in the sulfur atoms along the main chains

  8. In vivo imaging of immuno-spin trapped radicals with molecular magnetic resonance imaging in a diabetic mouse model.

    Science.gov (United States)

    Towner, Rheal A; Smith, Nataliya; Saunders, Debra; Henderson, Michael; Downum, Kristen; Lupu, Florea; Silasi-Mansat, Robert; Ramirez, Dario C; Gomez-Mejiba, Sandra E; Bonini, Marcelo G; Ehrenshaft, Marilyn; Mason, Ronald P

    2012-10-01

    Oxidative stress plays a major role in diabetes. In vivo levels of membrane-bound radicals (MBRs) in a streptozotocin-induced diabetic mouse model were uniquely detected by combining molecular magnetic resonance imaging (mMRI) and immunotrapping techniques. An anti-DMPO (5,5-dimethyl-1-pyrroline N-oxide) antibody (Ab) covalently bound to an albumin (BSA)-Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-biotin MRI contrast agent (anti-DMPO probe), and mMRI, were used to detect in vivo levels of DMPO-MBR adducts in kidneys, livers, and lungs of diabetic mice, after DMPO administration. Magnetic resonance signal intensities, which increase in the presence of a Gd-based molecular probe, were significantly higher within the livers, kidneys, and lungs of diabetic animals administered the anti-DMPO probe compared with controls. Fluorescence images validated the location of the anti-DMPO probe in excised tissues via conjugation of streptavidin-Cy3, which targeted the probe biotin moiety, and immunohistochemistry was used to validate the presence of DMPO adducts in diabetic mouse livers. This is the first report of noninvasively imaging in vivo levels of MBRs within any disease model. This method can be specifically applied toward diabetes models for in vivo assessment of free radical levels, providing an avenue to more fully understand the role of free radicals in diabetes. PMID:22698922

  9. Identification of a Common Binding Mode for Imaging Agents to Amyloid Fibrils from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Skeby, Katrine Kirkeby; Sørensen, Jesper; Schiøtt, Birgit

    2013-01-01

    amyloid fibrils and the disease pathology. Alzheimer’s disease is very difficult to diagnose, and much research is being performed to develop noninvasive diagnostic methods, such as imaging with small-molecule agents. The interactions between amyloid fibrils and imaging agents are challenging to examine...... experimentally due to the insoluble nature of amyloid fibrils. This study uses molecular dynamics simulations to investigate the interactions between 13 aromatic amyloid imaging agents, entailing 4 different organic scaffolds, and a model of an amyloid fibril. Clustering analysis combined with free energy...... binding modes for imaging agents is proposed to originate from subtle differences in amino acid composition of the surface grooves on an amyloid fibril, resulting in fine tuning of the binding affinities for a specific amyloid fibril....

  10. Imaging intracellular viscosity by a new molecular rotor suitable for phasor analysis of fluorescence lifetime.

    Science.gov (United States)

    Battisti, Antonella; Panettieri, Silvio; Abbandonato, Gerardo; Jacchetti, Emanuela; Cardarelli, Francesco; Signore, Giovanni; Beltram, Fabio; Bizzarri, Ranieri

    2013-07-01

    The arsenal of fluorescent probes tailored to functional imaging of cells is rapidly growing and benefits from recent developments in imaging strategies. Here, we present a new molecular rotor, which displays strong absorption in the green region of the spectrum, very little solvatochromism, and strong emission sensitivity to local viscosity. The emission increase is paralleled by an increase in emission lifetime. Owing to its concentration-independent nature, fluorescence lifetime is particularly suitable to image environmental properties, such as viscosity, at the intracellular level. Accordingly, we demonstrate that intracellular viscosity measurements can be efficiently carried out by lifetime imaging with our probe and phasor analysis, an efficient method for measuring lifetime-related properties (e.g., bionalyte concentration or local physicochemical features) in living cells. Notably, we show that it is possible to monitor the partition of our probe into different intracellular regions/organelles and to follow mitochondrial de-energization upon oxidative stress. PMID:23780224

  11. Role of risk stratification by SPECT, PET, and hybrid imaging in guiding management of stable patients with ischaemic heart disease: expert panel of the EANM cardiovascular committee and EACVI.

    Science.gov (United States)

    Acampa, Wanda; Gaemperli, Oliver; Gimelli, Alessia; Knaapen, Paul; Schindler, Thomas H; Verberne, Hein J; Zellweger, Michael J

    2015-12-01

    Risk stratification has become increasingly important in the management of patients with suspected or known ischaemic heart disease (IHD). Recent guidelines recommend that these patients have their care driven by risk assessment. The purpose of this position statement is to summarize current evidence on the value of cardiac single-photon emission computed tomography, positron emission tomography, and hybrid imaging in risk stratifying asymptomatic or symptomatic patients with suspected IHD, patients with stable disease, patients after coronary revascularization, heart failure patients, and specific patient population. In addition, this position statement evaluates the impact of imaging results on clinical decision-making and thereby its role in patient management. The document represents the opinion of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee and of the European Association of Cardiovascular Imaging (EACVI) and intends to stimulate future research in this field. PMID:25902767

  12. Monitoring molecular, functional and morphologic aspects of bone metastases using non-invasive imaging.

    Science.gov (United States)

    Bauerle, Tobias; Komljenovic, Dorde; Semmler, Wolfhard

    2012-03-01

    Bone is among the most common locations of metastasis and therefore represents an important clinical target for diagnostic follow-up in cancer patients. In the pathogenesis of bone metastases, disseminated tumor cells proliferating in bone interact with the local microenvironment stimulating or inhibiting osteoclast and osteoblast activity. Non-invasive imaging methods monitor molecular, functional and morphologic changes in both compartments of these skeletal lesions - the bone and the soft tissue tumor compartment. In the bone compartment, morphologic information on skeletal destruction is assessed by computed tomography (CT) and radiography. Pathogenic processes of osteoclast and osteoblast activity, however, can be imaged using optical imaging, positron emission tomography (PET), single photon emission CT (SPECT) and skeletal scintigraphy. Accordingly, conventional magnetic resonance imaging (MRI) and CT as well as diffusion- weighted MRI and optical imaging are used to assess morphologic aspects on the macroscopic and cellular level of the soft tissue tumor compartment. Imaging methods such as PET, MR spectroscopy, dynamic contrast-enhanced techniques and vessel size imaging further elucidate on pathogenic processes in this compartment including information on metabolism and vascularization. By monitoring these aspects in bone lesions, new insights in the pathogenesis of skeletal metastases can be gained. In translation to the clinical situation, these novel methods for the monitoring of bone metastases might be applied in patients to improve follow-up of these lesions, in particular after therapeutic intervention. This review summarizes established and experimental imaging techniques for the monitoring of tumor and bone cell activity including molecular, functional and morphological aspects in bone metastases. PMID:22214500

  13. Cardiovascular and interventional radiology

    International Nuclear Information System (INIS)

    This year's cardiovascular section demonstrates a continued growth in the number of digests on cardivascular and general interventional topics and continued progress in MRI studies. The reader will also notice fewer digests on DSA and percutaneous stone removal compared with the 1985 and 1986 Year Books. While newer technology, such as extracorporeal shock wave lithotripsy, has significantly reduced the number of percutaneous procedures for renal calculi, other interventional procedures, such as those involving fibrinolysis, are increasing by leaps and bounds. A number of digests on benign and malignant bile duct strictures continue to shed light on the management of these difficult cases. While abscess drainage is growing and well accepted by most surgeons, articles on esophageal dilatations seem to be declining in the radiology literature, probably on the basis of fewer operations being performed by us and more being performed by endoscopists. Digests on MRI in the cardiovascular system continue to report excellent images of the aorta and of congenital heart disease

  14. Atmospheric-pressure molecular imaging of biological tissues and biofilms by LAESI mass spectrometry.

    Science.gov (United States)

    Nemes, Peter; Vertes, Akos

    2010-01-01

    Ambient ionization methods in mass spectrometry allow analytical investigations to be performed directly on a tissue or biofilm under native-like experimental conditions. Laser ablation electrospray ionization (LAESI) is one such development and is particularly well-suited for the investigation of water-containing specimens. LAESI utilizes a mid-infrared laser beam (2.94 μm wavelength) to excite the water molecules of the sample. When the ablation fluence threshold is exceeded, the sample material is expelled in the form of particulate matter and these projectiles travel to tens of millimeters above the sample surface. In LAESI, this ablation plume is intercepted by highly charged droplets to capture a fraction of the ejected sample material and convert its chemical constituents into gas-phase ions. A mass spectrometer equipped with an atmospheric-pressure ion source interface is employed to analyze and record the composition of the released ions originating from the probed area (pixel) of the sample. A systematic interrogation over an array of pixels opens a way for molecular imaging in the microprobe analysis mode. A unique aspect of LAESI mass spectrometric imaging is depth profiling that, in combination with lateral imaging, enables three-dimensional (3D) molecular imaging. With current lateral and depth resolutions of ~100 μm and ~40 μm, respectively, LAESI mass spectrometric imaging helps to explore the molecular structure of biological tissues. Herein, we review the major elements of a LAESI system and provide guidelines for a successful imaging experiment. PMID:20834223

  15. Justifying molecular images in cell biology textbooks: From constructions to primary data.

    Science.gov (United States)

    Serpente, Norberto

    2016-02-01

    For scientific claims to be reliable and productive they have to be justified. However, on the one hand little is known on what justification precisely means to scientists, and on the other the position held by philosophers of science on what it entails is rather limited; for justifications customarily refer to the written form (textual expressions) of scientific claims, leaving aside images, which, as many cases from the history of science show are relevant to this process. The fact that images can visually express scientific claims independently from text, plus their vast variety and origins, requires an assessment of the way they are currently justified and in turn used as sources to justify scientific claims in the case of particular scientific fields. Similarly, in view of the different nature of images, analysis is required to determine on what side of the philosophical distinction between data and phenomena these different kinds of images fall. This paper historicizes and documents a particular aspect of contemporary life sciences research: the use of the molecular image as vehicle of knowledge production in cell studies, a field that has undergone a significant shift in visual expressions from the early 1980s onwards. Focussing on textbooks as sources that have been overlooked in the historiography of contemporary biomedicine, the aim is to explore (1) whether the shift of cell studies, entailing a superseding of the optical image traditionally conceptualised as primary data, by the molecular image, corresponds with a shift of justificatory practices, and (2) to assess the role of the molecular image as primary data. This paper also explores the dual role of images as teaching resources and as resources for the construction of knowledge in cell studies especially in its relation to discovery and justification. Finally, this paper seeks to stimulate reflection on what kind of archival resources could benefit the work of present and future epistemic

  16. Molecular imaging of hypoxia in non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Connie [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); National Cancer Centre, Department of Radiation Oncology, Singapore (Singapore); St Thomas' Hospital, Imaging 2, London (United Kingdom); Blower, Philip J. [King' s College London, St Thomas' Hospital, Department of Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Goh, Vicky [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Department of Radiology, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Landau, David B. [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Department of Clinical Oncology, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Cook, Gary J.R. [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Clinical PET Imaging Centre, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom)

    2015-05-01

    Non-small-cell lung cancer (NSCLC) is the commonest cancer worldwide but survival remains poor with a high risk of relapse, particularly after nonsurgical treatment. Hypoxia is present in a variety of solid tumours, including NSCLC. It is associated with treatment resistance and a poor prognosis, although when recognised may be amenable to different treatment strategies. Thus, noninvasive assessment of intratumoral hypoxia could be used to stratify patients for modification of subsequent treatment to improve tumour control. Molecular imaging approaches targeting hypoxic cells have shown some early success in the clinical setting. This review evaluates the evidence for hypoxia imaging using PET in NSCLC and explores its potential clinical utility. (orig.)

  17. Molecular Imaging of Cyclooxygenase-2 in Canine Transitional Cell Carcinomas In Vitro and In Vivo

    OpenAIRE

    Cekanova, Maria; Uddin, Md. Jashim; Bartges, Joseph W.; Callens, Amanda; Legendre, Alfred M.; Rathore, Kusum; Wright, Laura; Carter, Amanda; Marnett, Lawrence J

    2013-01-01

    The enzyme cyclooxygenase-2 (COX-2) is induced at high levels in tumors, but not in surrounding normal tissues, which makes it an attractive target for molecular imaging of cancer. We evaluated the ability of novel optical imaging agent, fluorocoxib A to detect urinary bladder canine transitional cell carcinomas (K9TCC). Here, we show that fluorocoxib A uptake overlapped with COX-2 expression in primary K9TCC cells in vitro. Using subcutaneously implanted primary K9TCC in athymic mice, we dem...

  18. Molecular imaging of hypoxia in non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Non-small-cell lung cancer (NSCLC) is the commonest cancer worldwide but survival remains poor with a high risk of relapse, particularly after nonsurgical treatment. Hypoxia is present in a variety of solid tumours, including NSCLC. It is associated with treatment resistance and a poor prognosis, although when recognised may be amenable to different treatment strategies. Thus, noninvasive assessment of intratumoral hypoxia could be used to stratify patients for modification of subsequent treatment to improve tumour control. Molecular imaging approaches targeting hypoxic cells have shown some early success in the clinical setting. This review evaluates the evidence for hypoxia imaging using PET in NSCLC and explores its potential clinical utility. (orig.)

  19. Lipoatrofia marrón, obesidad y daño vascular: mecanismos moleculares de resistencia a la insulina en células cardiovasculares

    OpenAIRE

    Fernández Otero, Yolanda

    2010-01-01

    En las sociedades occidentales se ha producido un aumento de la prevalencia de la obesidad y de las enfermedades metabólicas relacionadas con ella, tales como el síndrome metabólico y la diabetes tipo 2 [Haffner, S. y Taegtmeyer 2003]. Los individuos aquejados de las dolencias citadas, sufren los efectos de la resistencia a la acción de la insulina [Saltiel y Kahn 2001] y del daño cardiovascular, y éste es una de las principales causas de muerte en la población con enfermedad cardiovascular. ...

  20. Cardiovascular ultrahigh field magnetic resonance imaging. Challenges, technical solutions and opportunities; Ultrahochfeld-MR-Tomographie in der Kardiologie. Herausforderungen, Loesungen und Chancen

    Energy Technology Data Exchange (ETDEWEB)

    Niendorf, T. [Max-Delbrueck Centrum fuer Molekulare Medizin, Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin (Germany); Charite Medical Faculty and the Max-Delbrueck-Center for Molecular Medicine, Campus Berlin-Buch, Experimental and Clinical Research Center, Berlin (Germany); Schulz-Menger, J. [Max-Delbrueck Centrum fuer Molekulare Medizin, Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin (Germany); Charite Medical Faculty and the Max-Delbrueck-Center for Molecular Medicine, Campus Berlin-Buch, Experimental and Clinical Research Center, Berlin (Germany); HELIOS Klinikum Berlin-Buch, Abteilung Kardiologie und Nephrologie, Berlin (Germany)

    2013-05-15

    This involves high spatial resolution cardiac imaging with ultrahigh magnetic fields (7 T) and clinically acceptable image quality. Cardiovascular magnetic resonance imaging (MRI) at a field strength of 1.5 T using a spatial resolution of (2 x 2 x 6-8) mm{sup 3}. Cardiac MRI at ultrahigh field strength makes use of multitransmit/receive radiofrequency (RF) technology and development of novel technology that utilizes the traits of ultrahigh field MRI. Enhanced spatial resolution which is superior by a factor of 6-10 to what can be achieved by current clinical cardiac MRI. The relative spatial resolution (pixels per anatomical structure) comes close to what can be accomplished by current cardiac MRI in small rodents. Feasibility studies demonstrate the gain in spatial resolution at 7.0 T due to the sensitivity advantage inherent to ultrahigh magnetic fields. Please stay tuned and please put further weight behind the solution of the remaining technical problems of cardiac MRI at 7.0 T. (orig.) [German] Es handelt sich um die raeumlich hochaufgeloeste MR-Bildgebung des menschlichen Herzens mit klinisch akzeptabler Bildqualitaet bei einer Magnetfeldstaerke von 7,0 T. Gemeint ist die Herz-MRT bei 1,5 T mit einer klinisch ueblichen raeumlichen Aufloesung von etwa (2 x 2 x 6-8) mm{sup 3}. Ultrahochfeld-MRT des Herzens in Verbindung mit mehrkanaligen Sende- und Empfangshochfrequenzantennen sowie technische Entwicklungen zur Ausnutzung der Vorteile der Ultrahochfeld-MRT. Verbesserung der raeumlichen Aufloesung bei 7,0 T um den Faktor 6-10 gegenueber der Herz-MRT bei 1,5 T. Umsetzung einer relativen raeumlichen Aufloesung - Bildelemente per anatomischer Struktur - die in die Naehe der tierexperimentellen Herz-MRT an kleinen Nagern rueckt. Festzuhalten ist eine deutliche Verbesserung der raeumlichen Aufloesung mittels Herz-MRT bei 7,0 T, die sich im Versuchsstadium inklusive Machbarkeitsstudien befindet. Verfolgung der Machbarkeitsstudien sowie Beteiligung an

  1. The Changing Face of Vascular Interventional Radiology: The Future Role of Pharmacotherapies and Molecular Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tapping, Charles R., E-mail: crtapping@doctors.org.uk; Bratby, Mark J., E-mail: mark.bratby@ouh.nhs.uk [Oxford University Hospitals, John Radcliffe Hospital, Department of Radiology (United Kingdom)

    2013-08-01

    Interventional radiology has had to evolve constantly because there is the ever-present competition and threat from other specialties within medicine, surgery, and research. The development of new technologies, techniques, and therapies is vital to broaden the horizon of interventional radiology and to ensure its continued success in the future. In part, this change will be due to improved chronic disease prevention altering what we treat and in whom. The most important of these strategies are the therapeutic use of statins, Beta-blockers, angiotensin-converting enzyme inhibitors, and substances that interfere with mast cell degeneration. Molecular imaging and therapeutic strategies will move away from conventional techniques and nano and microparticle molecular technology, tissue factor imaging, gene therapy, endothelial progenitor cells, and photodynamic therapy will become an important part of interventional radiology of the future. This review looks at these new and exciting technologies.

  2. The changing face of vascular interventional radiology: the future role of pharmacotherapies and molecular imaging.

    Science.gov (United States)

    Tapping, Charles R; Bratby, Mark J

    2013-08-01

    Interventional radiology has had to evolve constantly because there is the ever-present competition and threat from other specialties within medicine, surgery, and research. The development of new technologies, techniques, and therapies is vital to broaden the horizon of interventional radiology and to ensure its continued success in the future. In part, this change will be due to improved chronic disease prevention altering what we treat and in whom. The most important of these strategies are the therapeutic use of statins, Beta-blockers, angiotensin-converting enzyme inhibitors, and substances that interfere with mast cell degeneration. Molecular imaging and therapeutic strategies will move away from conventional techniques and nano and microparticle molecular technology, tissue factor imaging, gene therapy, endothelial progenitor cells, and photodynamic therapy will become an important part of interventional radiology of the future. This review looks at these new and exciting technologies. PMID:23636247

  3. The Changing Face of Vascular Interventional Radiology: The Future Role of Pharmacotherapies and Molecular Imaging

    International Nuclear Information System (INIS)

    Interventional radiology has had to evolve constantly because there is the ever-present competition and threat from other specialties within medicine, surgery, and research. The development of new technologies, techniques, and therapies is vital to broaden the horizon of interventional radiology and to ensure its continued success in the future. In part, this change will be due to improved chronic disease prevention altering what we treat and in whom. The most important of these strategies are the therapeutic use of statins, Beta-blockers, angiotensin-converting enzyme inhibitors, and substances that interfere with mast cell degeneration. Molecular imaging and therapeutic strategies will move away from conventional techniques and nano and microparticle molecular technology, tissue factor imaging, gene therapy, endothelial progenitor cells, and photodynamic therapy will become an important part of interventional radiology of the future. This review looks at these new and exciting technologies

  4. Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue

    Science.gov (United States)

    Davis, Scott C.; Pogue, Brian W.; Springett, Roger; Leussler, Christoph; Mazurkewitz, Peter; Tuttle, Stephen B.; Gibbs-Strauss, Summer L.; Jiang, Shudong S.; Dehghani, Hamid; Paulsen, Keith D.

    2008-06-01

    A multichannel spectrally resolved optical tomography system to image molecular targets in small animals from within a clinical MRI is described. Long source/detector fibers operate in contact mode and couple light from the tissue surface in the magnet bore to 16 spectrometers, each containing two optical gratings optimized for the near infrared wavelength range. High sensitivity, cooled charge coupled devices connected to each spectrograph provide detection of the spectrally resolved signal, with exposure times that are automated for acquisition at each fiber. The design allows spectral fitting of the remission light, thereby separating the fluorescence signal from the nonspecific background, which improves the accuracy and sensitivity when imaging low fluorophore concentrations. Images of fluorescence yield are recovered using a nonlinear reconstruction approach based on the diffusion approximation of photon propagation in tissue. The tissue morphology derived from the MR images serves as an imaging template to guide the optical reconstruction algorithm. Sensitivity studies show that recovered values of indocyanine green fluorescence yield are linear to concentrations of 1nM in a 70mm diameter homogeneous phantom, and detection is feasible to near 10pM. Phantom data also demonstrate imaging capabilities of imperfect fluorophore uptake in tissue volumes of clinically relevant sizes. A unique rodent MR coil provides optical fiber access for simultaneous optical and MR data acquisition of small animals. A pilot murine study using an orthotopic glioma tumor model demonstrates optical-MRI imaging of an epidermal growth factor receptor targeted fluorescent probe in vivo.

  5. Development of a protease-sensitive molecular imaging agent for optoacoustic tomography

    Science.gov (United States)

    La Rivière, Patrick J.; Green, Anthony; Norris, James R.

    2007-02-01

    We are working to develop a molecular imaging agent that will allow for in vivo imaging of proteases by use of optoacoustic tomography. Proteases are protein-cleaving proteins known to be overactive in a number of pathologies, including cancers and vascular disease. Protease-sensitive "smart probes" have previously been developed in the context of pure optical imaging. These involve pairs of mutually quenching fluorophores attached to a backbone by protease-cleavable peptide side chains; cleaving of the side chains liberates the fluorophores and leads to increase in fluorescence. Optoacoustic imaging is sensitive not to fluorescence but to optical absorption and so a smart imaging probe for protease imaging would need to shift its absorption peak upon cleavage. Naturally, the absorption peaks of the cleaved (and, ideally, uncleaved) molecules should be in the near infrared for maximum tissue penetration. We have designed a molecule that should achieve these specifications. It comprises two active sites, derivatives of natural photosynthetic bacteriochlorophylls that absorb in the near IR, conjugated to a lysine backbone by peptide spacers specific to the protease being imaged. When these bacteriochlorophylls dimerize and stack in the uncleaved molecule, their absorption peak shifts about 20-30 nm. When they are cleaved from the molecule the absorption peak shifts back to that of bacteriochlorophyll monomers. We have performed a preliminary synthesis of the molecule and confirmed by use of a spectrometer that the pairing of the bacteriochlorophylls leads to the expected absorption shift.

  6. Depth-resolved rhodopsin molecular contrast imaging for functional assessment of photoreceptors

    OpenAIRE

    Tan Liu; Rong Wen; Lam, Byron L.; Puliafito, Carmen A.; Shuliang Jiao

    2015-01-01

    Rhodopsin, the light-sensing molecule in the outer segments of rod photoreceptors, is responsible for converting light into neuronal signals in a process known as phototransduction. Rhodopsin is thus a functional biomarker for rod photoreceptors. Here we report a novel technology based on visible-light optical coherence tomography (VIS-OCT) for in vivo molecular imaging of rhodopsin. The depth resolution of OCT allows the visualization of the location where the change of optical absorption oc...

  7. Molecular Imaging Approaches to Understanding the Roles of Hydrogen Peroxide Biology in Stress and Development

    OpenAIRE

    Dickinson, Bryan Craig

    2010-01-01

    The production of hydrogen peroxide (H2O2) in biological systems is associated with a variety of pathologies including neurodegenerative diseases, cancer, and the general process of aging. However, a growing body of evidence suggests that the reactivity of this particular reactive oxygen species (ROS) is also harnessed for physiological processes. Molecular imaging using fluorescence microscopy offers a valuable approach for deciphering the multifaceted roles of H2O2 in biological processes. ...

  8. The dopaminergic basis of human behaviors: a review of molecular imaging studies

    OpenAIRE

    Egerton, Alice; Mehta, Mitul A; Montgomery, Andrew J; Lappin, Julia M.; Howes, Oliver D; Reeves, Suzanne J.; Cunningham, Vincent J; Grasby, Paul M.

    2009-01-01

    This systematic review describes human molecular imaging studies which have investigated alterations in extracellular DA levels during performance of behavioral tasks. Whilst heterogeneity in experimental methods limits meta-analysis, we describe the advantages and limitations of different methodological approaches. Interpretation of experimental results may be limited by regional cerebral blood flow (rCBF) changes, head movement and choice of control conditions. We revisit our original study...

  9. Molecular Sensing and Imaging of Human Disease Cells and Their Responses to Biochemical Stimuli

    OpenAIRE

    Xiao, Lifu

    2015-01-01

    The overall goal of this dissertation is to develop noninvasive imaging techniques that allow us not only to detect diseased cells but also to study the molecular mechanisms underlying these diseases. Atomic force microscopy and Raman spectroscopy are applied to measure cellular mechanical properties (e.g. Young’s Modulus, adhesion force) and biochemical composition of living cancerous vs. healthy (A549 vs. SAEC) human lung epithelial cells. These biomechanical and biochemical properties c...

  10. Noninvasive ultrasound molecular imaging of the effect of statins on endothelial inflammatory phenotype in early atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Elham Khanicheh

    Full Text Available BACKGROUND/OBJECTIVES: Inflammatory changes on the endothelium are responsible for leukocyte recruitment to plaques in atherosclerosis. Noninvasive assessment of treatment-effects on endothelial inflammation may be of use for managing medical therapy and developing novel therapies. We hypothesized that molecular imaging of vascular cell adhesion molecule-1 (VCAM-1 with contrast enhanced ultrasound (CEU could assess treatment effects on endothelial phenotype in early atherosclerosis. METHODS: Mice with atherosclerosis produced by gene deletion of the LDL-receptor and Apobec-1-editing protein were studied. At 12 weeks of age, mice received 8 weeks of regular chow or atorvastatin-enriched chow (10 mg/kg/day. At 20 weeks, CEU molecular imaging for aortic endothelial VCAM-1 expression was performed with VCAM-1-targeted (MB(VCAM and control microbubbles (MB(Ctr. Aortic wall thickness was assessed with high frequency ultrasound. Histology, immunohistology and Western blot were used to assess plaque burden and VCAM-1 expression. RESULTS: Plaque burden was reduced on histology, and VCAM-1 was reduced on Western blot by atorvastatin, which corresponded to less endothelial expression of VCAM-1 on immunohistology. High frequency ultrasound did not detect differences in aortic wall thickness between groups. In contrast, CEU molecular imaging demonstrated selective signal enhancement for MB(VCAM in non-treated animals (MB(VCAM 2±0.3 vs MB(Ctr 0.7±0.2, p<0.01, but not in statin-treated animals (MB(VCAM 0.8±0.2 vs MB(Ctr 1.0±0.2, p = ns; p<0.01 for the effect of statin on MB(VCAM signal. CONCLUSIONS: Non-invasive CEU molecular imaging detects the effects of anti-inflammatory treatment on endothelial inflammation in early atherosclerosis. This easily accessible, low-cost technique may be useful in assessing treatment effects in preclinical research and in patients.

  11. On Sensitivity of Molecular Specific Photoacoustic Imaging Using Plasmonic Gold Nanoparticles

    OpenAIRE

    Mallidi, Srivalleesha; Joshi, Pratixa P.; Sokolov, Konstantin; Emelianov, Stanislav

    2009-01-01

    Functionalized gold nanospheres undergo receptor mediated aggregation on cancer cells that overexpress the epidermal growth factor receptor (EGFR). This phenomenon leads to a red shift in the plasmon resonance frequency of the EGFR-targeted gold nanoparticles. Previously we demonstrated that highly selective detection of cancer cells can be achieved using the combination of multi-wavelength photoacoustic imaging and molecular specific gold nanoparticles. In this study, we use tissue models to...

  12. Molecular imaging in Alzheimer's disease: new perspectives on biomarkers for early diagnosis and drug development

    OpenAIRE

    Nordberg, Agneta

    2011-01-01

    Recent progress in molecular imaging has provided new important knowledge for further understanding the time course of early pathological disease processes in Alzheimer's disease (AD). Positron emission tomography (PET) amyloid beta (Aβ) tracers such as Pittsburgh Compound B detect increasing deposition of fibrillar Aβ in the brain at the prodromal stages of AD, while the levels of fibrillar Aβ appear more stable at high levels in clinical AD. There is a need for PET ligands to visualize smal...

  13. Molecular Magnetic Resonance Imaging of Tumors with a PTPµ Targeted Contrast Agent1

    OpenAIRE

    Burden-Gulley, Susan M.; Zhou, Zhuxian; Craig, Sonya EL; Lu, Zheng-Rong; Brady-Kalnay, Susann M.

    2013-01-01

    Molecular magnetic resonance imaging (MRI) of tumors improves the specificity of MRI by using targeted probes conjugated to contrast-generating metals. The limitation of this approach is in the identification of a target molecule present in sufficient concentration for visualization and the development of a labeling reagent that can penetrate tumor tissue with the fast kinetics required for use in a clinical setting. The receptor protein tyrosine phosphatase PTPµ is a transmembrane protein th...

  14. IMAGING OF THE CCS 22.3 GHz EMISSION IN THE TAURUS MOLECULAR CLOUD COMPLEX

    International Nuclear Information System (INIS)

    Thioxoethenylidene (CCS) is an abundant interstellar molecule and a good tracer of high density and evolutionary stage of dense molecular clouds. It is also a suitable candidate for Zeeman splitting observations for its high splitting factor and narrow thermal line widths. We report here Expanded Very Large Array 22.3 GHz observations of three dense molecular cores TMC-1, TMC-1C, and L1521B in the Taurus molecular cloud complex to image the CCS 21-10 transition. For all three sources, the clumpy CCS emission is most likely tracing the starless cores. However, these compact structures account for only ∼1%-13% of the integrated emission detected in single-dish observations, indicating the presence of significant large-scale diffuse emission in favorable conditions for producing CCS.

  15. 心血管MRI第一部分--磁共振基本物理原理及成像策略%Cardiovascular magnetic resonance imaging:Part I--The basic physics and imaging strategies of magnetic resonance

    Institute of Scientific and Technical Information of China (English)

    王宏宇; 贺光军; 赵世华

    2013-01-01

      MRI以其独特的优势广泛应用于临床,特别是在心血管系统疾病中的诊断价值得到日益体现。心血管MRI(CMR)能无创地一站式评价心血管的解剖、功能、心肌灌注和病变的组织特性,并且评价的可重复性高。CMR成像技术内容丰富,尚具挑战性,需克服心脏自身和随呼吸的运动伪影。MRI的软硬件系统性能不断提高,特别是磁场强度革命性地提升,使得成像技术不断地完善和更新。作者用4个篇章分别阐明上述MRI尤其是CMR的基本成像原理及技术要点,致力于用简明易懂的语言使大多数放射科一线工作者能轻松愉悦地领悟MRI尤其是CMR的魅力。此文为第一部分,归纳MRI基本物理原理及MR图像的产生过程。%Magnetic resonance (MR) imaging has been widely used in clinical routine, especially in cardiovascular disease diagnosis, due to its prominent advantage. Cardiovascular magnetic resonance (CMR) can evaluate the anatomy, function, myocardial perfusion and characterization of heart non-invasively in one-stop. Cardiac and respiratory motion is major problem in CMR imaging. It makes CMR imaging be more challenging than any other imaging modality. As the performance of MR hardware and software system uptakes, especially for the substantial increasing of the strength of magnet, the imaging technique is improved persistently. The authors try their best to describe the fundamental physics and key technological points of MR, especially CMR in four successive articles. In first article, the physics of MR and progress of MR image generating were summarized.

  16. MMP-13 In-Vivo Molecular Imaging Reveals Early Expression in Lung Adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Mathieu Salaün

    Full Text Available Several matrix metalloproteinases (MMPs are overexpressed in lung cancer and may serve as potential targets for the development of bioactivable probes for molecular imaging.To characterize and monitor the activity of MMPs during the progression of lung adenocarcinoma.K-rasLSL-G12D mice were imaged serially during the development of adenocarcinomas using fluorescence molecular tomography (FMT and a probe specific for MMP-2, -3, -9 and -13. Lung tumors were identified using FMT and MRI co-registration, and the probe concentration in each tumor was assessed at each time-point. The expression of Mmp2, -3, -9, -13 was quantified by qRT-PCR using RNA isolated from microdissected tumor cells. Immunohistochemical staining of overexpressed MMPs in animals was assessed on human lung tumors.In mice, 7 adenomas and 5 adenocarcinomas showed an increase in fluorescent signal on successive FMT scans, starting between weeks 4 and 8. qRT-PCR assays revealed significant overexpression of only Mmp-13 in mice lung tumors. In human tumors, a high MMP-13 immunostaining index was found in tumor cells from invasive lesions (24/27, but in none of the non-invasive (0/4 (p=0.001.MMP-13 is detected in early pulmonary invasive adenocarcinomas and may be a potential target for molecular imaging of lung cancer.

  17. Application of Machine Learning tools to recognition of molecular patterns in STM images

    Science.gov (United States)

    Maksov, Artem; Ziatdinov, Maxim; Fujii, Shintaro; Kiguchi, Manabu; Higashibayashi, Shuhei; Sakurai, Hidehiro; Kalinin, Sergei; Sumpter, Bobby

    The ability to utilize individual molecules and molecular assemblies as data storage elements has motivated scientist for years, concurrent with the continuous effort to shrink a size of data storage devices in microelectronics industry. One of the critical issues in this effort lies in being able to identify individual molecular assembly units (patterns), on a large scale in an automated fashion of complete information extraction. Here we present a novel method of applying machine learning techniques for extraction of positional and rotational information from scanning tunneling microscopy (STM) images of π-bowl sumanene molecules on gold. We use Markov Random Field (MRF) model to decode the polar rotational states for each molecule in a large scale STM image of molecular film. We further develop an algorithm that uses a convolutional Neural Network combined with MRF and input from density functional theory to classify molecules into different azimuthal rotational classes. Our results demonstrate that a molecular film is partitioned into distinctive azimuthal rotational domains consisting typically of 20-30 molecules. In each domain, the ``bowl-down'' molecules are generally surrounded by six nearest neighbor molecules in ``bowl-up'' configuration, and the resultant overall structure form a periodic lattice of rotational and polar states within each domain. Research was supported by the US Department of Energy.

  18. Three-dimensional imaging of the ultracold plasma formed in a supersonic molecular beam

    International Nuclear Information System (INIS)

    Double-resonant excitation of nitric oxide in a seeded supersonic molecular beam forms a state-selected Rydberg gas that evolves to form an ultracold plasma. This plasma travels with the propagation of the molecular beam in z over a variable distance as great as 600 mm to strike an imaging detector, which records the charge distribution in the dimensions, x and y. The ω1 + ω2 laser crossed molecular beam excitation geometry convolutes the axial Gaussian distribution of NO in the molecular beam with the Gaussian intensity distribution of the perpendicularly aligned laser beam to create an ellipsoidal volume of Rydberg gas. Detected images describe the evolution of this initial density as a function of selected Rydberg gas initial principal quantum number, n0, ω1 laser pulse energy (linearly related to Rydberg gas density, ρ0) and flight time. Low-density Rydberg gases of lower principal quantum number produce uniformly expanding, ellipsoidal charge-density distributions. Increase either of n0 or ρ0 breaks the ellipsoidal symmetry of plasma expansion. The volume bifurcates to form repelling plasma volumes. The velocity of separation depends on n0 and ρ0 in a way that scales uniformly with ρe, the density of electrons formed in the core of the Rydberg gas by prompt Penning ionization. Conditions under which this electron gas drives expansion in the long axis dimension of the ellipsoid favours the formation of counter-propagating shock waves

  19. The development of EGFR molecular imaging and gene mutation in non-small cell lung cancer

    International Nuclear Information System (INIS)

    In vivo epidermal growth factor receptor (EGFR) imaging has great potential to affect patient-specific treatment for NSCLC, applying a targeted therapy, and measuring molecular-specific effects of treatment. New PET/CT radiotracers,such as N-(4-bromo-2-fluorophenyl)-6-methoxy-7-[(1-methylpiperidin-4-yl) methoxy]quinazolin-4-amine (ZD6476), five 4-(anilino) quinazoline derivatives (ML01) and 4-[(3-iodophenyl) amino]-7-(2-[2-{2-(2-[2-{2-([18F]fluoroethoxy)-ethoxy}-ethoxy]-ethoxy)- ethoxy }-ethoxy]-quinazoline-6-yl-acrylamide) ([18F]F-PEG6-IPQA) are now available. But, 11C labeled-4-N-(3-bromoanilino)-6, 7-dimethoxyquinazoline (PD153035) is the only PET/CT radiotracer used for human clinical evaluation,primarily for EGFR imaging. Finally, the most important aspect of successful imaging is the identification and characterization of EGFR at the cellular or sub-cellular level with high specificity for the target. Considering the need for further development of such PET/CT tracers, EGFR molecular imaging will be presented along with an important examination of the progression that has been made thus far in the field. (authors)

  20. Depth-resolved rhodopsin molecular contrast imaging for functional assessment of photoreceptors

    Science.gov (United States)

    Liu, Tan; Wen, Rong; Lam, Byron L.; Puliafito, Carmen A.; Jiao, Shuliang

    2015-09-01

    Rhodopsin, the light-sensing molecule in the outer segments of rod photoreceptors, is responsible for converting light into neuronal signals in a process known as phototransduction. Rhodopsin is thus a functional biomarker for rod photoreceptors. Here we report a novel technology based on visible-light optical coherence tomography (VIS-OCT) for in vivo molecular imaging of rhodopsin. The depth resolution of OCT allows the visualization of the location where the change of optical absorption occurs and provides a potentially accurate assessment of rhodopsin content by segmentation of the image at the location. Rhodopsin OCT can be used to quantitatively image rhodopsin distribution and thus assess the distribution of functional rod photoreceptors in the retina. Rhodopsin OCT can bring significant impact into ophthalmic clinics by providing a tool for the diagnosis and severity assessment of a variety of retinal conditions.