WorldWideScience

Sample records for cardiovascular imaging techniques

  1. Molecular cardiovascular imaging

    International Nuclear Information System (INIS)

    Schaefers, M.

    2007-01-01

    Although huge and long-lasting research efforts have been spent on the development of new diagnostic techniques investigating cardiovascular diseases, still fundamental challenges exist; the main challenge being the diagnosis of a suspected or known coronary artery disease or its consequences (myocardial infarction, heart failure etc.). Beside morphological techniques, functional imaging modalities are available in clinical diagnostic algorithms, whereas molecular cardiovascular imaging techniques are still under development. This review summarizes clinical-diagnostical challenges of modern cardiovascular medicine as well as the potential of new molecular imaging techniques to face these. (orig.)

  2. Cardiovascular dysfunction in obesity and new diagnostic imaging techniques: the role of noninvasive image methods.

    Science.gov (United States)

    Barbosa, José Augusto A; Rodrigues, Alexandre B; Mota, Cleonice Carvalho C; Barbosa, Márcia M; Simões e Silva, Ana C

    2011-01-01

    Obesity is a major public health problem affecting adults and children in both developed and developing countries. This condition often leads to metabolic syndrome, which increases the risk of cardiovascular disease. A large number of studies have been carried out to understand the pathogenesis of cardiovascular dysfunction in obese patients. Endothelial dysfunction plays a key role in the progression of atherosclerosis and the development of coronary artery disease, hypertension and congestive heart failure. Noninvasive methods in the field of cardiovascular imaging, such as measuring intima-media thickness, flow-mediated dilatation, tissue Doppler, and strain, and strain rate, constitute new tools for the early detection of cardiac and vascular dysfunction. These techniques will certainly enable a better evaluation of initial cardiovascular injury and allow the correct, timely management of obese patients. The present review summarizes the main aspects of cardiovascular dysfunction in obesity and discusses the application of recent noninvasive imaging methods for the early detection of cardiovascular alterations.

  3. Cardiovascular Molecular Imaging

    International Nuclear Information System (INIS)

    Lee, Kyung Han

    2009-01-01

    Molecular imaging strives to visualize processes in living subjects at the molecular level. Monitoring biochemical processes at this level will allow us to directly track biological processes and signaling events that lead to pathophysiological abnormalities, and help make personalized medicine a reality by allowing evaluation of therapeutic efficacies on an individual basis. Although most molecular imaging techniques emerged from the field of oncology, they have now gradually gained acceptance by the cardiovascular community. Hence, the availability of dedicated high-resolution small animal imaging systems and specific targeting imaging probes is now enhancing our understanding of cardiovascular diseases and expediting the development of newer therapies. Examples include imaging approaches to evaluate and track the progress of recent genetic and cellular therapies for treatment of myocardial ischemia. Other areas include in vivo monitoring of such key molecular processes as angiogenesis and apoptosis. Cardiovascular molecular imaging is already an important research tool in preclinical experiments. The challenge that lies ahead is to implement these techniques into the clinics so that they may help fulfill the promise of molecular therapies and personalized medicine, as well as to resolve disappointments and controversies surrounding the field

  4. Cardiovascular dysfunction in obesity and new diagnostic imaging techniques: the role of noninvasive image methods

    Directory of Open Access Journals (Sweden)

    Barbosa JA

    2011-05-01

    Full Text Available José Augusto A Barbosa¹, Alexandre B Rodrigues¹, Cleonice Carvalho C Mota¹, Márcia M Barbosa², Ana C Simões e Silva¹¹Department of Pediatrics, Faculty of Medicine, Federal University of Minas Gerais (UFMG, Belo Horizonte, Minas Gerais, Brazil; ²Ecocenter, Socor Hospital, Belo Horizonte, Minas Gerais, BrazilAbstract: Obesity is a major public health problem affecting adults and children in both developed and developing countries. This condition often leads to metabolic syndrome, which increases the risk of cardiovascular disease. A large number of studies have been carried out to understand the pathogenesis of cardiovascular dysfunction in obese patients. Endothelial dysfunction plays a key role in the progression of atherosclerosis and the development of coronary artery disease, hypertension and congestive heart failure. Noninvasive methods in the field of cardiovascular imaging, such as measuring intima-media thickness, flow-mediated dilatation, tissue Doppler, and strain, and strain rate, constitute new tools for the early detection of cardiac and vascular dysfunction. These techniques will certainly enable a better evaluation of initial cardiovascular injury and allow the correct, timely management of obese patients. The present review summarizes the main aspects of cardiovascular dysfunction in obesity and discusses the application of recent noninvasive imaging methods for the early detection of cardiovascular alterations.Keywords: cardiovascular risk, endothelium dysfunction, obesity, strain and strain rate, tissue Doppler

  5. Flow imaging of the cardiovascular system using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Imai, Hitoshi; Sakakibara, Makoto; Sunami, Yuko

    1988-01-01

    Blood flow images by magnetic resonance imaging (MRI) using a 0.25 T unit were evaluated for nine normal volunteers and 108 subjects with a variety of cardiovascular abnormalities. Using the non-gated short-spin echo (SE) technique, blood flow in the cardiovascular systems was not imaged in the normal volunteers. Using end-systolic and end-diastolic SE techniques for the normal subjects, blood flow in the cardiac chambers was not clearly imaged. Blood flow in the ascending aorta and aortic arch often did not appear in the gated SE images of the normal subjects. However, blood flow in the descending aorta was often observed in the gated SE images. Blood flow imaging was demonstrated by both non-gated and gated SE techniques in regions where blood flow was relatively slow; for example, in the left atrium of mitral stenosis, in an aortic aneurysm, in a false lumen of an aortic dissection, and in the left ventricle having old myocardial infarction. Using the non-gated inversion recovery (IR) technique, no blood flow was imaged in the cardiovascular system except in the left atrium of one case with mitral stenosis. Using the non-gated short SE technique, there was good correlation between the thrombus formation and the presence of blood flow images in the left atria of 17 patients with mitral stenosis, and in the aneurysmal portions of the aorta or in the false lumens of aortic dissection of 18 patients. It was suggested that mural thrombi in such diseases were related to the relatively slow blood flow. Blood flow imaging easily distinguished stagnant blood flow from mural thrombi using non-gated short SE, end-systolic SE, and IR techniques. Thus, blood flow imaging using MRI should become an important means of evaluating the cardiovascular system. (author)

  6. Evaluation of an improved technique for automated center lumen line definition in cardiovascular image data

    International Nuclear Information System (INIS)

    Gratama van Andel, Hugo A.F.; Meijering, Erik; Vrooman, Henri A.; Stokking, Rik; Lugt, Aad van der; Monye, Cecile de

    2006-01-01

    The aim of the study was to evaluate a new method for automated definition of a center lumen line in vessels in cardiovascular image data. This method, called VAMPIRE, is based on improved detection of vessel-like structures. A multiobserver evaluation study was conducted involving 40 tracings in clinical CTA data of carotid arteries to compare VAMPIRE with an established technique. This comparison showed that VAMPIRE yields considerably more successful tracings and improved handling of stenosis, calcifications, multiple vessels, and nearby bone structures. We conclude that VAMPIRE is highly suitable for automated definition of center lumen lines in vessels in cardiovascular image data. (orig.)

  7. Risk stratification in cardiovascular disease primary prevention - scoring systems, novel markers, and imaging techniques.

    LENUS (Irish Health Repository)

    Zannad, Faiez

    2012-04-01

    The aim of this paper is to review and discuss current methods of risk stratification for cardiovascular disease (CVD) prevention, emerging biomarkers, and imaging techniques, and their relative merits and limitations. This report is based on discussions that took place among experts in the area during a special CardioVascular Clinical Trialists workshop organized by the European Society of Cardiology Working Group on Cardiovascular Pharmacology and Drug Therapy in September 2009. Classical risk factors such as blood pressure and low-density lipoprotein cholesterol levels remain the cornerstone of risk estimation in primary prevention but their use as a guide to management is limited by several factors: (i) thresholds for drug treatment vary with the available evidence for cost-effectiveness and benefit-to-risk ratios; (ii) assessment may be imprecise; (iii) residual risk may remain, even with effective control of dyslipidemia and hypertension. Novel measures include C-reactive protein, lipoprotein-associated phospholipase A(2) , genetic markers, and markers of subclinical organ damage, for which there are varying levels of evidence. High-resolution ultrasound and magnetic resonance imaging to assess carotid atherosclerotic lesions have potential but require further validation, standardization, and proof of clinical usefulness in the general population. In conclusion, classical risk scoring systems are available and inexpensive but have a number of limitations. Novel risk markers and imaging techniques may have a place in drug development and clinical trial design. However, their additional value above and beyond classical risk factors has yet to be determined for risk-guided therapy in CVD prevention.

  8. Clinical applications of cardiovascular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Marcu, C.B.; Beek, A.M.; Van Rossum, A.C.

    2006-01-01

    Cardiovascular magnetic resonance imaging (MRI) has evolved from an effective research tool into a clinically proven, safe and comprehensive imaging modality. It provides anatomic and functional information in acquired and congenital heart disease and is the most precise technique for quantification of ventricular volumes, function and mass. Owing to its excellent interstudy reproducibility, cardiovascular MRI is the optimal method for assessment of changes in ventricular parameters after therapeutic intervention. Delayed contrast enhancement is an accurate and robust method used in the diagnosis of ischemic and nonischemic cardiomyopathies and less common diseases, such as cardiac sarcoidosis and myocarditis. First-pass magnetic contrast myocardial perfusion is becoming an alternative to radionuclide techniques for the detection of coronary atherosclerotic disease. In this review we outline the techniques used in cardiovascular MRI and discuss the most common clinical applications. (author)

  9. Magnetic resonance imaging of the cardiovascular system

    International Nuclear Information System (INIS)

    Masuda, Yoshiaki; Imai, Hiroshi; Watanabe, Sigeru; Inagaki, Yoshiaki; Tateno, Yukio; Ikehira, Hiroo.

    1990-01-01

    Magnetic resonance imaging (MRI) is a new noninvasive technique for visualization of the cardiovascular system, and is used to evaluate tissue characteristics, cardiac function and blood flow abnormalities, as well as to obtain morphological information. In this paper we presented results of clinical and laboratory research obtained using conventional spin echo MRI with regard to cardiovascular anatomy, tissue characterization and physiology. Furthermore, experience with two new techniques, cine-MRI and volume-selected MR spectroscopy, and their potential clinical usefulness in detecting cardiovascular diseases are documented. (author)

  10. The year 2012 in the European Heart Journal-Cardiovascular Imaging: Part I.

    Science.gov (United States)

    Edvardsen, Thor; Plein, Sven; Saraste, Antti; Knuuti, Juhani; Maurer, Gerald; Lancellotti, Patrizio

    2013-06-01

    The new multi-modality cardiovascular imaging journal, European Heart Journal - Cardiovascular Imaging, was started in 2012. During its first year, the new Journal has published an impressive collection of cardiovascular studies utilizing all cardiovascular imaging modalities. We will summarize the most important studies from its first year in two articles. The present 'Part I' of the review will focus on studies in myocardial function, myocardial ischaemia, and emerging techniques in cardiovascular imaging.

  11. NMR techniques in the study of cardiovascular structure and functions

    International Nuclear Information System (INIS)

    Osbakken, M.; Haselgrove, J.

    1987-01-01

    The chapter titles of this book are: Introduction to NMR Techniques;Theory of NMR Probe Design;Overview of Magnetic Resonance Imaging to Study the Cardiovascular System;Vascular Anatomy and Physiology Studied with NMR Techniques;Assessment of Myocardial Ischemia and Infarction by Nuclear Magnetic Resonance Imaging;The Use of MRI in Congenital Heart Disease;Cardiomyopathies and Myocarditis Studied with NMR Techniques;Determination of Myocardial Mechanical Function with Magnetic Resonance Imaging Techniques;Determination of Flow Using NMR Techniques;The Use of Contrast Agents in Cardiac MRI;Can Cardiovascular Disease Be Effectively Evaluated with NMR Spectroscopy? NMR Studies of ATP Synthesis Reactions in the Isolated Heart;Studies of Intermediary Metabolism in the Heart by 13C NMR Spectroscopy;23Na and 39K NMR Spectroscopic Studies of the Intact Beating Heart;and Evaluation of Skeletal Muscle Metabolism in Patients with Congestive Heart Failure Using Phosphorus Nuclear Magnetic Resonance

  12. Quantification of Imaging Biomarkers For Cardiovascular Disease in CT(A)

    NARCIS (Netherlands)

    Shahzad, R.

    2013-01-01

    For better management of cardiovascular disease, it is of utmost importance to categorize the subjects into different risk groups. This categorization can be made based on cardiovascular risk factors including the family history of the subject. Imaging techniques play an increasing role in order to

  13. Cardiovascular Imaging: What Have We Learned From Animal Models?

    Directory of Open Access Journals (Sweden)

    Arnoldo eSantos

    2015-10-01

    Full Text Available Cardiovascular imaging has become an indispensable tool for patient diagnosis and follow up. Probably the wide clinical applications of imaging are due to the possibility of a detailed and high quality description and quantification of cardiovascular system structure and function. Also phenomena that involve complex physiological mechanisms and biochemical pathways, such as inflammation and ischemia, can be visualized in a nondestructive way. The widespread use and evolution of imaging would not have been possible without animal studies. Animal models have allowed for instance, i the technical development of different imaging tools, ii to test hypothesis generated from human studies and finally, iii to evaluate the translational relevance assessment of in vitro and ex-vivo results. In this review, we will critically describe the contribution of animal models to the use of biomedical imaging in cardiovascular medicine. We will discuss the characteristics of the most frequent models used in/for imaging studies. We will cover the major findings of animal studies focused in the cardiovascular use of the repeatedly used imaging techniques in clinical practice and experimental studies. We will also describe the physiological findings and/or learning processes for imaging applications coming from models of the most common cardiovascular diseases. In these diseases, imaging research using animals has allowed the study of aspects such as: ventricular size, shape, global function and wall thickening, local myocardial function, myocardial perfusion, metabolism and energetic assessment, infarct quantification, vascular lesion characterization, myocardial fiber structure, and myocardial calcium uptake. Finally we will discuss the limitations and future of imaging research with animal models.

  14. The year 2013 in the European Heart Journal--Cardiovascular Imaging. Part I.

    Science.gov (United States)

    Edvardsen, Thor; Plein, Sven; Saraste, Antti; Pierard, Luc A; Knuuti, Juhani; Maurer, Gerald; Lancellotti, Patrizio

    2014-07-01

    The new multimodality cardiovascular imaging journal, European Heart Journal - Cardiovascular Imaging, was created in 2012. Here, we summarize the most important studies from the journal's second year in two articles. Part I of the review will focus on studies in myocardial function, myocardial ischaemia, and emerging techniques in cardiovascular imaging, and Part II will focus on valvular heart diseases, heart failure, cardiomyopathies, and congenital heart diseases. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  15. The year 2013 in the European Heart Journal--Cardiovascular Imaging: Part II.

    Science.gov (United States)

    Plein, Sven; Edvardsen, Thor; Pierard, Luc A; Saraste, Antti; Knuuti, Juhani; Maurer, Gerald; Lancellotti, Patrizio

    2014-08-01

    The new multi-modality cardiovascular imaging journal, European Heart Journal - Cardiovascular Imaging, was created in 2012. Here we summarize the most important studies from the journal's second year in two articles. Part I of the review has summarized studies in myocardial function, myocardial ischaemia, and emerging techniques in cardiovascular imaging. Part II is focussed on valvular heart diseases, heart failure, cardiomyopathies, and congenital heart diseases. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  16. Echocardiography in the Era of Multimodality Cardiovascular Imaging

    Science.gov (United States)

    Shah, Benoy Nalin

    2013-01-01

    Echocardiography remains the most frequently performed cardiac imaging investigation and is an invaluable tool for detailed and accurate evaluation of cardiac structure and function. Echocardiography, nuclear cardiology, cardiac magnetic resonance imaging, and cardiovascular-computed tomography comprise the subspeciality of cardiovascular imaging, and these techniques are often used together for a multimodality, comprehensive assessment of a number of cardiac diseases. This paper provides the general cardiologist and physician with an overview of state-of-the-art modern echocardiography, summarising established indications as well as highlighting advances in stress echocardiography, three-dimensional echocardiography, deformation imaging, and contrast echocardiography. Strengths and limitations of echocardiography are discussed as well as the growing role of real-time three-dimensional echocardiography in the guidance of structural heart interventions in the cardiac catheter laboratory. PMID:23878804

  17. IgG4-related cardiovascular disease. The emerging role of cardiovascular imaging.

    Science.gov (United States)

    Mavrogeni, Sophie; Markousis-Mavrogenis, George; Kolovou, Genovefa

    2017-01-01

    Immunoglobulin 4-related disease (IgG4-related disease) is a systemic inflammatory disease that presents with increases of serum IgG4. It may affect various systems, including the cardiovascular (CV) system. Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis. IgG4-related disease is characterized by fibrosclerosis, lymphocytic infiltration and presence of IgG4-positive plasma cells. The disease usually responds to treatment with corticosteroids and/or immunosuppressive medication. CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. IgG4-related cardiovascular disorders can severely affect patient prognosis. Various imaging techniques, including echocardiography, Computed Tomography (CT), 18FDG-PET, Cardiovascular Magnetic Resonance (CMR) and cardiac catheterisation, have been successfully used for early disease detection and follow-up. Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques for the evaluation of IgG4-related CV disease. Periaortitis/periarteritis can be also assessed by CT, showing a soft tissue thickening around arteries. Coronary artery aneurysms can be easily diagnosed by coronary CT. In case of active periarterial or coronary artery inflammation, 18FDG-PET will show FDG uptake at the area of the lesion. CMR, due to its capability to perform function and tissue characterisation, can offer an integrated imaging of aorta, coronary arteries and the heart, assessment of disease acuity, extent of fibrosis and guide further treatment. However, multimodality imaging may be necessary for assessment of disease activity and fibrosis extent in those cases with multifocal CV involvement. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. IgG4-related cardiovascular disease. The emerging role of cardiovascular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mavrogeni, Sophie, E-mail: soma13@otenet.gr; Markousis-Mavrogenis, George; Kolovou, Genovefa

    2017-01-15

    Highlights: • Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis of IgG4-related disease. • CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. • Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques. • CT can assess periarteritis and coronary artery aneurysms, while 18FDG-PET shows FDG uptake at the area of the lesion. • CMR offers an integrated imaging of CV system, including assessment of disease acuity, extent of fibrosis and can guide further treatment. - Abstract: Immunoglobulin 4-related disease (IgG4-related disease) is a systemic inflammatory disease that presents with increases of serum IgG4. It may affect various systems, including the cardiovascular (CV) system. Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis. IgG4-related disease is characterized by fibrosclerosis, lymphocytic infiltration and presence of IgG4-positive plasma cells. The disease usually responds to treatment with corticosteroids and/or immunosuppressive medication. CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. IgG4-related cardiovascular disorders can severely affect patient prognosis. Various imaging techniques, including echocardiography, Computed Tomography (CT), 18FDG-PET, Cardiovascular Magnetic Resonance (CMR) and cardiac catheterisation, have been successfully used for early disease detection and follow-up. Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques for the evaluation of IgG4-related CV disease. Periaortitis/periarteritis can be also assessed by CT, showing a soft tissue thickening around arteries. Coronary artery aneurysms can be easily diagnosed by coronary CT. In case of active periarterial or coronary artery inflammation, 18

  19. IgG4-related cardiovascular disease. The emerging role of cardiovascular imaging

    International Nuclear Information System (INIS)

    Mavrogeni, Sophie; Markousis-Mavrogenis, George; Kolovou, Genovefa

    2017-01-01

    Highlights: • Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis of IgG4-related disease. • CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. • Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques. • CT can assess periarteritis and coronary artery aneurysms, while 18FDG-PET shows FDG uptake at the area of the lesion. • CMR offers an integrated imaging of CV system, including assessment of disease acuity, extent of fibrosis and can guide further treatment. - Abstract: Immunoglobulin 4-related disease (IgG4-related disease) is a systemic inflammatory disease that presents with increases of serum IgG4. It may affect various systems, including the cardiovascular (CV) system. Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis. IgG4-related disease is characterized by fibrosclerosis, lymphocytic infiltration and presence of IgG4-positive plasma cells. The disease usually responds to treatment with corticosteroids and/or immunosuppressive medication. CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. IgG4-related cardiovascular disorders can severely affect patient prognosis. Various imaging techniques, including echocardiography, Computed Tomography (CT), 18FDG-PET, Cardiovascular Magnetic Resonance (CMR) and cardiac catheterisation, have been successfully used for early disease detection and follow-up. Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques for the evaluation of IgG4-related CV disease. Periaortitis/periarteritis can be also assessed by CT, showing a soft tissue thickening around arteries. Coronary artery aneurysms can be easily diagnosed by coronary CT. In case of active periarterial or coronary artery inflammation, 18

  20. Non-cardiovascular findings in clinical cardiovascular magnetic resonance imaging in children

    International Nuclear Information System (INIS)

    Ghadimi Mahani, Maryam; Morani, Ajaykumar C.; Lu, Jimmy C.; Dorfman, Adam L.; Fazeli Dehkordy, Soudabeh; Jeph, Sunil; Agarwal, Prachi P.

    2016-01-01

    With increasing use of pediatric cardiovascular MRI, it is important for all imagers to become familiar with the spectrum of non-cardiovascular imaging findings that can be encountered. This study aims to ascertain the prevalence and nature of these findings in pediatric cardiovascular MRIs performed at our institution. We retrospectively evaluated reports of all cardiovascular MRI studies performed at our institute from January 2008 to October 2012 in patients younger than18 years. Most studies (98%) were jointly interpreted by a pediatric cardiologist and a radiologist. We reviewed the electronic medical records of all cases with non-cardiovascular findings, defined as any imaging finding outside the cardiovascular system. Non-cardiovascular findings were classified into significant and non-significant, based on whether they were known at the time of imaging or they required additional workup or a change in management. In 849 consecutive studies (mean age 9.7 ± 6.3 years), 145 non-cardiovascular findings were found in 140 studies (16.5% of total studies). Overall, 51.0% (74/145) of non-cardiovascular findings were in the abdomen, 30.3% (44/145) were in the chest, and 18.6% (27/145) were in the spine. A total of 19 significant non-cardiovascular findings were observed in 19 studies in individual patients (2.2% of total studies, 47% male, mean age 5.9 ± 6.7 years). Significant non-cardiovascular findings included hepatic adenoma, arterially enhancing focal liver lesions, asplenia, solitary kidney, pelvicaliectasis, renal cystic diseases, gastric distention, adrenal hemorrhage, lung hypoplasia, air space disease, bronchial narrowing, pneumomediastinum and retained surgical sponge. Non-cardiovascular findings were seen in 16.5% of cardiovascular MRI studies in children, of which 2.2% were clinically significant findings. Prevalence and nature of these non-cardiovascular findings are different from those reported in adults. Attention to these findings is important

  1. Non-cardiovascular findings in clinical cardiovascular magnetic resonance imaging in children

    Energy Technology Data Exchange (ETDEWEB)

    Ghadimi Mahani, Maryam [University of Michigan Health System, C.S. Mott Children' s Hospital, Department of Radiology, Section of Pediatric Radiology, Ann Arbor, MI (United States); Morani, Ajaykumar C. [The University of Texas MD Anderson Cancer Center, Department of Diagnostic Radiology, Houston, TX (United States); Lu, Jimmy C.; Dorfman, Adam L. [University of Michigan Health System, C.S. Mott Children' s Hospital, Department of Pediatrics and Communicable Diseases, Division of Pediatric Cardiology, Ann Arbor, MI (United States); Fazeli Dehkordy, Soudabeh [University of Michigan Health System, C.S. Mott Children' s Hospital, Department of Radiology, Section of Pediatric Radiology, Ann Arbor, MI (United States); Providence Hospital and Medical Centers, Department of Graduate Medical Education, Southfield, MI (United States); Jeph, Sunil [The University of Texas MD Anderson Cancer Center, Department of Diagnostic Radiology, Houston, TX (United States); Geisinger Medical Center, Department of Radiology, Danville, PA (United States); Agarwal, Prachi P. [University of Michigan Health System, Department of Radiology, Division of Cardiothoracic Radiology, Ann Arbor, MI (United States)

    2016-04-15

    With increasing use of pediatric cardiovascular MRI, it is important for all imagers to become familiar with the spectrum of non-cardiovascular imaging findings that can be encountered. This study aims to ascertain the prevalence and nature of these findings in pediatric cardiovascular MRIs performed at our institution. We retrospectively evaluated reports of all cardiovascular MRI studies performed at our institute from January 2008 to October 2012 in patients younger than18 years. Most studies (98%) were jointly interpreted by a pediatric cardiologist and a radiologist. We reviewed the electronic medical records of all cases with non-cardiovascular findings, defined as any imaging finding outside the cardiovascular system. Non-cardiovascular findings were classified into significant and non-significant, based on whether they were known at the time of imaging or they required additional workup or a change in management. In 849 consecutive studies (mean age 9.7 ± 6.3 years), 145 non-cardiovascular findings were found in 140 studies (16.5% of total studies). Overall, 51.0% (74/145) of non-cardiovascular findings were in the abdomen, 30.3% (44/145) were in the chest, and 18.6% (27/145) were in the spine. A total of 19 significant non-cardiovascular findings were observed in 19 studies in individual patients (2.2% of total studies, 47% male, mean age 5.9 ± 6.7 years). Significant non-cardiovascular findings included hepatic adenoma, arterially enhancing focal liver lesions, asplenia, solitary kidney, pelvicaliectasis, renal cystic diseases, gastric distention, adrenal hemorrhage, lung hypoplasia, air space disease, bronchial narrowing, pneumomediastinum and retained surgical sponge. Non-cardiovascular findings were seen in 16.5% of cardiovascular MRI studies in children, of which 2.2% were clinically significant findings. Prevalence and nature of these non-cardiovascular findings are different from those reported in adults. Attention to these findings is important

  2. The year 2014 in the European Heart Journal – Cardiovascular Imaging. Part I.

    Science.gov (United States)

    Edvardsen, Thor; Bucciarelli-Ducci, Chiara; Saraste, Antti; Pierard, Luc A; Knuuti, Juhani; Maurer, Gerald; Habib, Gilbert; Lancellotti, Patrizio

    2015-07-01

    The new multimodality cardiovascular imaging journal, European Heart Journal - Cardiovascular Imaging, was created in 2012. It has already gained an impressive impact factor of 3.669 during its first 2 years. In two articles, we will summarize the most important studies from the journal's third year. Part I of the review will focus on studies in myocardial function, myocardial ischaemia, and emerging techniques in cardiovascular imaging, and Part II will focus on valvular heart diseases, heart failure, cardiomyopathies, and congenital heart diseases. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  3. Role of imaging techniques in the evaluation of cardiovascular drugs

    International Nuclear Information System (INIS)

    Sugishita, Yasuro; Matsuda, Mitsuo; Ajisaka, Ryuichi

    1985-01-01

    In order to investigate the role of imaging in the evaluation of medical treatment in heart diseases, radionuclide angiocardiography, echocardiography and Doppler echocardiography were applied in the cases of various kinds of heart diseases. Acute and chronic effects of antianginal drugs (nitrates, calcium antagonists and beta-blockers) could be evaluated by exercise radionuclide angiocardiography or exercise echocardiography in the cases of effort angina. The effects of the drugs changing myocardial contractility, preload or afterload could be evaluated by echocardiography in various kinds of heart diseases, including valvular heart biseases. The effect of calcium antagonists in improving diastolic function in hypertrophic cardiomyopathy could be evaluated by echocardiography or Doppler echocardiography. In conclusion, imaging techniqus are valuable and useful methods to evaluate the effects of cardiovascular drugs, by offering various informations. (author)

  4. Magnetic resonance imaging of the cardiovascular system: present state of the art and future potential

    International Nuclear Information System (INIS)

    Jacobson, H.G.

    1988-01-01

    State-of-the-art magnetic resonance imaging (MRI) generates high-resolution images of the cardiovascular system. Conventional MRI techniques provide images in six to ten minutes per tomographic slice. New strategies have substantially improved the speed of imaging. The technology is relatively expensive, and its cost-effectiveness remains to be defined in relation to other effective, less expensive, and noninvasive technologies, such as echocardiography and nuclear medicine. The ultimate role of MRI will depend on several factors, including the development of specific applications such as (1) noninvasive angiography, especially of the coronary arteries;(2) noninvasive, high-resolution assessment of regional myocardial blood flow distribution (e.g., using paramagnetic contrast agents); (3) characterization of myocardial diseases using proton-relaxation property changes; and (4) evaluation of in vivo myocardial biochemistry. The three-dimensional imaging capability and the ability to image cardiovascular structures without contrast material give MRI a potential advantage over existing noninvasive diagnostic imaging techniques. This report analyzes current applications of MRI to the cardiovascular system and speculates on their future

  5. Cardiovascular CT angiography in neonates and children : Image quality and potential for radiation dose reduction with iterative image reconstruction techniques

    NARCIS (Netherlands)

    Tricarico, Francesco; Hlavacek, Anthony M.; Schoepf, U. Joseph; Ebersberger, Ullrich; Nance, John W.; Vliegenthart, Rozemarijn; Cho, Young Jun; Spears, J. Reid; Secchi, Francesco; Savino, Giancarlo; Marano, Riccardo; Schoenberg, Stefan O.; Bonomo, Lorenzo; Apfaltrer, Paul

    To evaluate image quality (IQ) of low-radiation-dose paediatric cardiovascular CT angiography (CTA), comparing iterative reconstruction in image space (IRIS) and sinogram-affirmed iterative reconstruction (SAFIRE) with filtered back-projection (FBP) and estimate the potential for further dose

  6. Machine Learning Approaches in Cardiovascular Imaging.

    Science.gov (United States)

    Henglin, Mir; Stein, Gillian; Hushcha, Pavel V; Snoek, Jasper; Wiltschko, Alexander B; Cheng, Susan

    2017-10-01

    Cardiovascular imaging technologies continue to increase in their capacity to capture and store large quantities of data. Modern computational methods, developed in the field of machine learning, offer new approaches to leveraging the growing volume of imaging data available for analyses. Machine learning methods can now address data-related problems ranging from simple analytic queries of existing measurement data to the more complex challenges involved in analyzing raw images. To date, machine learning has been used in 2 broad and highly interconnected areas: automation of tasks that might otherwise be performed by a human and generation of clinically important new knowledge. Most cardiovascular imaging studies have focused on task-oriented problems, but more studies involving algorithms aimed at generating new clinical insights are emerging. Continued expansion in the size and dimensionality of cardiovascular imaging databases is driving strong interest in applying powerful deep learning methods, in particular, to analyze these data. Overall, the most effective approaches will require an investment in the resources needed to appropriately prepare such large data sets for analyses. Notwithstanding current technical and logistical challenges, machine learning and especially deep learning methods have much to offer and will substantially impact the future practice and science of cardiovascular imaging. © 2017 American Heart Association, Inc.

  7. Machine learning based analysis of cardiovascular images

    NARCIS (Netherlands)

    Wolterink, JM

    2017-01-01

    Cardiovascular diseases (CVDs), including coronary artery disease (CAD) and congenital heart disease (CHD) are the global leading cause of death. Computed tomography (CT) and magnetic resonance imaging (MRI) allow non-invasive imaging of cardiovascular structures. This thesis presents machine

  8. Computational medical imaging and hemodynamics framework for functional analysis and assessment of cardiovascular structures.

    Science.gov (United States)

    Wong, Kelvin K L; Wang, Defeng; Ko, Jacky K L; Mazumdar, Jagannath; Le, Thu-Thao; Ghista, Dhanjoo

    2017-03-21

    Cardiac dysfunction constitutes common cardiovascular health issues in the society, and has been an investigation topic of strong focus by researchers in the medical imaging community. Diagnostic modalities based on echocardiography, magnetic resonance imaging, chest radiography and computed tomography are common techniques that provide cardiovascular structural information to diagnose heart defects. However, functional information of cardiovascular flow, which can in fact be used to support the diagnosis of many cardiovascular diseases with a myriad of hemodynamics performance indicators, remains unexplored to its full potential. Some of these indicators constitute important cardiac functional parameters affecting the cardiovascular abnormalities. With the advancement of computer technology that facilitates high speed computational fluid dynamics, the realization of a support diagnostic platform of hemodynamics quantification and analysis can be achieved. This article reviews the state-of-the-art medical imaging and high fidelity multi-physics computational analyses that together enable reconstruction of cardiovascular structures and hemodynamic flow patterns within them, such as of the left ventricle (LV) and carotid bifurcations. The combined medical imaging and hemodynamic analysis enables us to study the mechanisms of cardiovascular disease-causing dysfunctions, such as how (1) cardiomyopathy causes left ventricular remodeling and loss of contractility leading to heart failure, and (2) modeling of LV construction and simulation of intra-LV hemodynamics can enable us to determine the optimum procedure of surgical ventriculation to restore its contractility and health This combined medical imaging and hemodynamics framework can potentially extend medical knowledge of cardiovascular defects and associated hemodynamic behavior and their surgical restoration, by means of an integrated medical image diagnostics and hemodynamic performance analysis framework.

  9. Digital imaging in cardiovascular radiology

    International Nuclear Information System (INIS)

    Heintzen, P.H.; Brennecke, R.

    1983-01-01

    The present book contains 27 papers presented at an international symposium on digital imaging in cardiovascular radiology held in Kiel in 1982. The main themes were as follows. Introductory reviews, digital systems for X-ray video imaging, quantitative X-ray image analysis, and clinical applications. (MG)

  10. Design and validation of Segment - freely available software for cardiovascular image analysis

    International Nuclear Information System (INIS)

    Heiberg, Einar; Sjögren, Jane; Ugander, Martin; Carlsson, Marcus; Engblom, Henrik; Arheden, Håkan

    2010-01-01

    Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format. Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page (http://segment.heiberg.se). Segment

  11. Molecular imaging by cardiovascular MR.

    Science.gov (United States)

    Cyrus, Tillmann; Lanza, Gregory M; Wickline, Samuel A

    2007-01-01

    Do molecularly-targeted contrast agents have what it takes to usher in a paradigm shift as to how we will image cardiovascular disease in the near future? Moreover, are non-invasive vulnerable plaque detection and preemptive treatments with these novel nanoparticulate agents within reach for clinical applications? In this article, we attempt to make a compelling case for how the advent of molecularly-targeted nanoparticle technology may change the way we detect atherosclerotic lesions, determine their clinical significance and even provide non-invasive treatments. Focusing on imaging with cardiovascular MR, an overview of the latest developments in this rapidly evolving field of so-called "intelligent" contrast agents that are able to interrogate the vascular wall and various complementary advanced imaging technologies are presented.

  12. NMR imaging of the cardiovascular system

    International Nuclear Information System (INIS)

    Canby, R.C.; Evanochko, W.T.; Pohost, G.M.

    1986-01-01

    Proton nuclear magnetic resonance (NMR) imaging permits high-resolution tomographic and three-dimensional images of the human body to be obtained without exposure to ionizing radiation. Such imaging not only yields anatomic resolution comparable to X-ray examinations but also provides a potential means to discriminate between healthy tissue and diseased tissue. This potential is based on certain NMR properties known as relaxation times, which determine, in part, the signal intensity in an image. These properties are related to such factors as the sizes and concentrations of proteins and mobile lipids and the compartmentalization of the protons of water. Although NMR imaging (also called magnetic resonance imaging, MRI) is becoming widely available for clinical use, application to the cardiovascular system, though promising, remains primarily a research tool. Gated proton NMR imaging can generate cardiac images with excellent morphologic detail and contrast; however, its ultimate importance as a cardiovascular diagnostic modality will depend on the development of several unique applications. These applications are discussed in this paper

  13. Clinical advances in cardiovascular magnetic resonace imaging and angiography

    NARCIS (Netherlands)

    Bosch, van den H.C.M.

    2018-01-01

    Cardiovascular magnetic resonance imaging is an important noninvasive imaging modality for the diagnosis, clinical work‐up and treatment planning in patients suspected for a wide range of cardiovascular pathology. CMR imaging is accurate and reliable, and provides invaluable information to evaluate

  14. Molecular imaging in cardiovascular diseases

    International Nuclear Information System (INIS)

    Botnar, R.M.; Ebersberger, H.; Noerenberg, D.

    2015-01-01

    Cardiovascular diseases remain the leading cause of morbidity and mortality in industrialized and developing countries. In clinical practice, the in-vivo identification of atherosclerotic lesions, which can lead to complications such as heart attack or stroke, remains difficult. Imaging techniques provide the reference standard for the detection of clinically significant atherosclerotic changes in the coronary and carotid arteries. The assessment of the luminal narrowing is feasible, while the differentiation of stable and potentially unstable or vulnerable atherosclerotic plaques is currently not possible using non-invasive imaging. With high spatial resolution and high soft tissue contrast, magnetic resonance imaging (MRI) is a suitable method for the evaluation of the thin arterial wall. In clinical practice, native MRI of the vessel wall already allows the differentiation and characterization of components of atherosclerotic plaques in the carotid arteries and the aorta. Additional diagnostic information can be gained by the use of non-specific MRI contrast agents. With the development of targeted molecular probes, that highlight specific molecules or cells, pathological processes can be visualized at a molecular level with high spatial resolution. In this review article, the development of pathophysiological changes leading to the development of the arterial wall are introduced and discussed. Additionally, principles of contrast enhanced imaging with non-specific contrast agents and molecular probes will be discussed and latest developments in the field of molecular imaging of the vascular wall will be introduced.

  15. Cardiovascular imaging environment: will the future be cloud-based?

    Science.gov (United States)

    Kawel-Boehm, Nadine; Bluemke, David A

    2017-07-01

    In cardiovascular CT and MR imaging large datasets have to be stored, post-processed, analyzed and distributed. Beside basic assessment of volume and function in cardiac magnetic resonance imaging e.g., more sophisticated quantitative analysis is requested requiring specific software. Several institutions cannot afford various types of software and provide expertise to perform sophisticated analysis. Areas covered: Various cloud services exist related to data storage and analysis specifically for cardiovascular CT and MR imaging. Instead of on-site data storage, cloud providers offer flexible storage services on a pay-per-use basis. To avoid purchase and maintenance of specialized software for cardiovascular image analysis, e.g. to assess myocardial iron overload, MR 4D flow and fractional flow reserve, evaluation can be performed with cloud based software by the consumer or complete analysis is performed by the cloud provider. However, challenges to widespread implementation of cloud services include regulatory issues regarding patient privacy and data security. Expert commentary: If patient privacy and data security is guaranteed cloud imaging is a valuable option to cope with storage of large image datasets and offer sophisticated cardiovascular image analysis for institutions of all sizes.

  16. The research progress of nuclear medicine on cardiovascular molecular imaging

    International Nuclear Information System (INIS)

    Yin Xiaohua; Zhang Yongxue

    2007-01-01

    Cardiovascular molecular imaging is a rapidly evolving discipline and its clinical application is promising. Nuclear medicine is playing a leading role in this field with its special superiority of noninvasive, quantifiability, high sensitivity and specificity. It provides broad opportunities for exploring the pathophysiologic process of cardiovascular diseases and monitoring its gene therapy in the molecular level. In this review, we mainly discuss some basic knowledge on cardiovascular molecular imaging, and then focus on the applied research prospect of nuclear medicine radionuclide imaging. (authors)

  17. Artificial intelligence as a diagnostic adjunct in cardiovascular nuclear imaging

    International Nuclear Information System (INIS)

    Duncan, J.S.

    1988-01-01

    The radiologist and/or nuclear medicine physician is literally bombarded with information from today's diagnostic imaging technologies. As a consequence of this, whereas a decade ago the emphasis in medical image analysis was on improving the extraction of diagnostic information by developing and using more sophisticated imaging modalities, today those working on the development of medical imaging technology are struggling to find ways to handle all gathered information effectively. This chapter gives an introduction to the area of artificial intelligence, with an emphasis on the research ongoing in cardiovascular nuclear imaging. This chapter has reviewed the place of artificial intelligence in cardiovascular nuclear imaging. It is intended to provide a general sense of this new and emerging field, an insight into some of its specific methodologies and applications, and a closer look at the several AI approaches currently being applied in cardiovascular nuclear imaging

  18. Digital cardiovascular imaging

    International Nuclear Information System (INIS)

    Myerowitz, P.D.; Mistretta, C.A.; Shaw, C.-G.; Van Lysel, M.S.; Swanson, D.K.; Lasser, T.A.; Dhanani, S.P.; Zarnstorff, W.C.; Vander Ark, C.R.; Dobbins, J.T.; Peppler, W.W.; Crummy, A.B.

    1982-01-01

    The authors have previously reported on real time digital fluoroscopic subtraction techniques developed in the laboratory during the past 10 years. This paper outlines basic apparatus configuration and imaging modes used for preliminary studies involving visualization of the canine and human heart. All of the techniques involve the use of real time digital subtraction processing of data from an image intensified television fluoroscopy system. Based on the configuration of the digital processing equipment a number of different imaging modalities are possible. A brief description of the apparatus and these imaging modes is given. (Auth.)

  19. Introduction to cardiac imaging in infants and children: Techniques, potential, and role in the imaging work-up of various cardiac malformations and other pediatric heart conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bailliard, Frederique [Centre for Cardiovascular MR, Cardiothoracic Unit, UCL Institute of Child Health and Great Ormond Street Hospital for Children, London (United Kingdom); North Carolina Children' s Heart Center, Department of Pediatrics, University of North Carolina at Chapel Hill (United States); Hughes, Marina L. [Centre for Cardiovascular MR, Cardiothoracic Unit, UCL Institute of Child Health and Great Ormond Street Hospital for Children, London (United Kingdom); Taylor, Andrew M. [Centre for Cardiovascular MR, Cardiothoracic Unit, UCL Institute of Child Health and Great Ormond Street Hospital for Children, London (United Kingdom)], E-mail: a.taylor@ich.ucl.ac.uk

    2008-11-15

    The increasing prevalence of congenital heart disease (CHD) can be attributed to major improvements in diagnosis and treatment. Although echocardiography is the most commonly used imaging modality for diagnosis and follow-up of subjects with CHD, the evolution of cardiovascular magnetic resonance (MR) imaging and increasingly computed tomography (CT) does offer new ways to visualize the heart and the great vessels. The development of cardiovascular MR techniques allows for a comprehensive assessment of cardiac anatomy and function. This provides information about the long-term sequlae of the underlying complex anatomy, hemodynamic assessment of residual post-operative lesions and complications of surgery. As much of the functional data in CHD patients is usually acquired with invasive X-ray angiography, non-invasive alternatives such as cardiovascular MR (and CT) are desirable. This review evaluates the role of MR imaging in the management of subjects with CHD, particularly detailing recent developments in imaging techniques as they relate to the various CHD diagnoses we commonly encounter in our practice.

  20. cGMP Signaling in the Cardiovascular System—The Role of Compartmentation and Its Live Cell Imaging

    Science.gov (United States)

    Bork, Nadja I.; Nikolaev, Viacheslav O.

    2018-01-01

    The ubiquitous second messenger 3′,5′-cyclic guanosine monophosphate (cGMP) regulates multiple physiologic processes in the cardiovascular system. Its intracellular effects are mediated by stringently controlled subcellular microdomains. In this review, we will illustrate the current techniques available for real-time cGMP measurements with a specific focus on live cell imaging methods. We will also discuss currently accepted and emerging mechanisms of cGMP compartmentation in the cardiovascular system. PMID:29534460

  1. ECG gated magnetic resonance imaging in cardiovascular disease

    International Nuclear Information System (INIS)

    Park, Jae Hyung; Im, Chung Kie; Han, Man Chung; Kim, Chu Wan

    1985-01-01

    Using KAIS 0.15 Tesla resistive magnetic imaging system, ECG gated magnetic resonance (MR) image of various cardiovascular disease was obtained in 10 patients. The findings of MR image of the cardiovascular disease were analysed and the results were as follows: 1. In 6 cases of acquired and congenital cardiac diseases, there were 2 cases of myocardial infarction, 1 case of mitral stenosis and 3 cases of corrected transportation of great vessels. The others were 3 cases of aortic disease and 1 case of pericardial effusion with lymphoma. 2. Myocardial thinning and left ventricular aneurysm were detected in MR images of myocardial infarction. The left atrium was well delineated and enlarged in the case of mitral stenosis. And segmental analysis was possible in the cases of corrected transposition since all cardiac structures were well delineated anatomically. 3. In aortic diseases, the findings of MR image were enlarged lumen, compressed cardiac chambers in ascending aortic aneurysm, intimal flap, enhanced false lumen in dissecting aneurysm and irregular narrowing of aorta with arterial obstruction in Takayasu's arteritis. 4. Pericardial effusion revealed a conspicuous contrast with neighboring mediastinal fat and cardiac wall due to it low signal encircling cardiac wall. 5. ECG gated MR image is an accurate non-invasive imaging modality for the diagnosis of cardiovascular disease and better results of its clinical application are expected in the future with further development in the imaging system and more clinical experiences

  2. Defining Quality in Cardiovascular Imaging: A Scientific Statement From the American Heart Association.

    Science.gov (United States)

    Shaw, Leslee J; Blankstein, Ron; Jacobs, Jill E; Leipsic, Jonathon A; Kwong, Raymond Y; Taqueti, Viviany R; Beanlands, Rob S B; Mieres, Jennifer H; Flamm, Scott D; Gerber, Thomas C; Spertus, John; Di Carli, Marcelo F

    2017-12-01

    The aims of the current statement are to refine the definition of quality in cardiovascular imaging and to propose novel methodological approaches to inform the demonstration of quality in imaging in future clinical trials and registries. We propose defining quality in cardiovascular imaging using an analytical framework put forth by the Institute of Medicine whereby quality was defined as testing being safe, effective, patient-centered, timely, equitable, and efficient. The implications of each of these components of quality health care are as essential for cardiovascular imaging as they are for other areas within health care. Our proposed statement may serve as the foundation for integrating these quality indicators into establishing designations of quality laboratory practices and developing standards for value-based payment reform for imaging services. We also include recommendations for future clinical research to fulfill quality aims within cardiovascular imaging, including clinical hypotheses of improving patient outcomes, the importance of health status as an end point, and deferred testing options. Future research should evolve to define novel methods optimized for the role of cardiovascular imaging for detecting disease and guiding treatment and to demonstrate the role of cardiovascular imaging in facilitating healthcare quality. © 2017 American Heart Association, Inc.

  3. Investigation progress of imaging techniques monitoring stem cell therapy

    International Nuclear Information System (INIS)

    Wu Jun; An Rui

    2006-01-01

    Recently stem cell therapy has showed potential clinical application in diabetes mellitus, cardiovascular diseases, malignant tumor and trauma. Efficient techniques of non-invasively monitoring stem cell transplants will accelerate the development of stem cell therapies. This paper briefly reviews the clinical practice of stem cell, in addition, makes a review of monitoring methods including magnetic resonance and radionuclide imaging which have been used in stem cell therapy. (authors)

  4. Interdepartmental conflict management and negotiation in cardiovascular imaging.

    Science.gov (United States)

    Otero, Hansel J; Nallamshetty, Leelakrishna; Rybicki, Frank J

    2008-07-01

    Although the relationship between cardiologists and radiologists has a thorny history, advanced cardiac imaging technology and the promise of cardiac computed tomography are forcing both specialties back to the negotiation table. These discussions represent an opportunity for better communication, collaboration, and resource allocation. The authors address the aspects of interdepartmental conflict management and negotiation through their radiology department's ongoing efforts to provide high-quality advanced noninvasive cardiovascular imaging services at a large academic institution. The definition and causes of conflict are defined, with a specific focus on noninvasive cardiovascular imaging, followed by a description of steps used in the negotiation process. The authors encourage radiologists to entertain an open dialogue with cardiology, because in many cases, both sides can benefit. The benefits of a negotiated outcome include minimizing internal competitors, incorporating cardiologists' expertise to cardiac imaging algorithms, and more effective training opportunities.

  5. Imaging of cardiovascular risk in patients with Turner's syndrome

    International Nuclear Information System (INIS)

    Marin, A.; Weir-McCall, J.R.; Webb, D.J.; Beek, E.J.R. van; Mirsadraee, S.

    2015-01-01

    Turner's syndrome is a disorder defined by an absent or structurally abnormal second X chromosome and affects around 1 in 2000 newborn females. The standardised mortality ratio in Turner's syndrome is around three-times higher than in the general female population, mainly as a result of cardiovascular disorders. Most striking is the early age at which Turner's syndrome patients develop the life-threatening complications of cardiovascular disorders compared to the general population. The cardiovascular risk stratification in Turner's syndrome is challenging and imaging is not systematically used. The aim of this article is to review cardiovascular risks in this group of patients and discuss a systematic imaging approach for early identification of cardiovascular disorders in these patients

  6. TH-B-207B-02: Optimizing Pediatic Cardiovascular MRI

    International Nuclear Information System (INIS)

    Deng, J.

    2016-01-01

    This imaging educational program will focus on solutions to common pediatric image quality optimization challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children’s hospitals. One of the most commonly encountered pediatric imaging requirements for the non-specialist hospital is pediatric CT in the emergency room setting. Thus, this educational program will begin with optimization of pediatric CT in the emergency department. Though pediatric cardiovascular MRI may be less common in the non-specialist hospitals, low pediatric volumes and unique cardiovascular anatomy make optimization of these techniques difficult. Therefore, our second speaker will review best practices in pediatric cardiovascular MRI based on experiences from a children’s hospital with a large volume of cardiac patients. Learning Objectives: To learn techniques for optimizing radiation dose and image quality for CT of children in the emergency room setting. To learn solutions for consistently high quality cardiovascular MRI of children

  7. TH-B-207B-02: Optimizing Pediatic Cardiovascular MRI

    Energy Technology Data Exchange (ETDEWEB)

    Deng, J. [Ann & Robert H. Lurie Childrens Hospital, Chicago, IL (United States)

    2016-06-15

    This imaging educational program will focus on solutions to common pediatric image quality optimization challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children’s hospitals. One of the most commonly encountered pediatric imaging requirements for the non-specialist hospital is pediatric CT in the emergency room setting. Thus, this educational program will begin with optimization of pediatric CT in the emergency department. Though pediatric cardiovascular MRI may be less common in the non-specialist hospitals, low pediatric volumes and unique cardiovascular anatomy make optimization of these techniques difficult. Therefore, our second speaker will review best practices in pediatric cardiovascular MRI based on experiences from a children’s hospital with a large volume of cardiac patients. Learning Objectives: To learn techniques for optimizing radiation dose and image quality for CT of children in the emergency room setting. To learn solutions for consistently high quality cardiovascular MRI of children.

  8. Cardiovascular evaluation in Turner syndrome: utility of MR imaging

    International Nuclear Information System (INIS)

    Dawson-Falk, K.; Bakker, B.; Rosenfeld, R.G.

    1992-01-01

    Forty patients with karyotypically proven Turner syndrome were prospectively studied using magnetic resonance imaging (MRI) and echocardiography in order to determine the frequency of cardiovascular anomalies and to assess the utility of both imaging modalities as methods for cardiovascular evaluation in Turner syndrome. Cardiovascular anomalies were found in 45% of patients. A high absolute prevalence of bicuspid aortic valve (17.5%) and aortic coarctation (12.5%) were observed relative to comparable series. Of clinically significant abnormalities, three of five aortic coarctations and four of five ascending aortic dilatations were solely MRI detected and not evident at echocardiographic examination. MRI is thus seen as a valuable adjunct to echocardiography in the cardiovascular evaluation of Turner syndrome patients. The usefulness of MRI primarily relates to its ability to provide excellent visualisation of the entire thoracic aorta where a large proportion of clinically significant anomalies occur in Turner syndrome. 23 refs., 2 tabs., 5 figs

  9. Cardiovascular evaluation in Turner syndrome: utility of MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dawson-Falk, K; Bakker, B; Rosenfeld, R G [Stanford Univ., CA (United States). School of Medicine

    1992-08-01

    Forty patients with karyotypically proven Turner syndrome were prospectively studied using magnetic resonance imaging (MRI) and echocardiography in order to determine the frequency of cardiovascular anomalies and to assess the utility of both imaging modalities as methods for cardiovascular evaluation in Turner syndrome. Cardiovascular anomalies were found in 45% of patients. A high absolute prevalence of bicuspid aortic valve (17.5%) and aortic coarctation (12.5%) were observed relative to comparable series. Of clinically significant abnormalities, three of five aortic coarctations and four of five ascending aortic dilatations were solely MRI detected and not evident at echocardiographic examination. MRI is thus seen as a valuable adjunct to echocardiography in the cardiovascular evaluation of Turner syndrome patients. The usefulness of MRI primarily relates to its ability to provide excellent visualisation of the entire thoracic aorta where a large proportion of clinically significant anomalies occur in Turner syndrome. 23 refs., 2 tabs., 5 figs.

  10. Magnetic resonance imaging in cardiovascular disease

    International Nuclear Information System (INIS)

    Eckel, C.G.; Mettler, F.A. Jr.; Wicks, J.D.; Stevens, G.F.

    1986-01-01

    How does magnetic resonance imaging (MRI) currently contribute in the evaluation of patients with suspected heart disease? What role will MRI play in the future in evaluation of cardiovascular disease? To understand better where MRI fits into the diagnostic algorithm of cardiovascular disease the authors first consider the characteristics that they would like to see in the ideal diagnostic test and then survey the available cardiac diagnostic tests to note the characteristics that limit or recommend a test. In the final analysis, the justification for expensive diagnostic tests such as MRI must be an overall improvement in survival or quality of life in those patients treated after diagnosis

  11. Measuring aortic pulse wave velocity using high-field cardiovascular magnetic resonance: comparison of techniques

    Directory of Open Access Journals (Sweden)

    Shaffer Jean M

    2010-05-01

    Full Text Available Abstract Background The assessment of arterial stiffness is increasingly used for evaluating patients with different cardiovascular diseases as the mechanical properties of major arteries are often altered. Aortic stiffness can be noninvasively estimated by measuring pulse wave velocity (PWV. Several methods have been proposed for measuring PWV using velocity-encoded cardiovascular magnetic resonance (CMR, including transit-time (TT, flow-area (QA, and cross-correlation (XC methods. However, assessment and comparison of these techniques at high field strength has not yet been performed. In this work, the TT, QA, and XC techniques were clinically tested at 3 Tesla and compared to each other. Methods Fifty cardiovascular patients and six volunteers were scanned to acquire the necessary images. The six volunteer scans were performed twice to test inter-scan reproducibility. Patient images were analyzed using the TT, XC, and QA methods to determine PWV. Two observers analyzed the images to determine inter-observer and intra-observer variabilities. The PWV measurements by the three methods were compared to each other to test inter-method variability. To illustrate the importance of PWV using CMR, the degree of aortic stiffness was assessed using PWV and related to LV dysfunction in five patients with diastolic heart failure patients and five matched volunteers. Results The inter-observer and intra-observer variability results showed no bias between the different techniques. The TT and XC results were more reproducible than the QA; the mean (SD inter-observer/intra-observer PWV differences were -0.12(1.3/-0.04(0.4 for TT, 0.2(1.3/0.09(0.9 for XC, and 0.6(1.6/0.2(1.4 m/s for QA methods, respectively. The correlation coefficients (r for the inter-observer/intra-observer comparisons were 0.94/0.99, 0.88/0.94, and 0.83/0.92 for the TT, XC, and QA methods, respectively. The inter-scan reproducibility results showed low variability between the repeated

  12. Cardiovascular imaging and image processing: Theory and practice - 1975; Proceedings of the Conference, Stanford University, Stanford, Calif., July 10-12, 1975

    Science.gov (United States)

    Harrison, D. C.; Sandler, H.; Miller, H. A.

    1975-01-01

    The present collection of papers outlines advances in ultrasonography, scintigraphy, and commercialization of medical technology as applied to cardiovascular diagnosis in research and clinical practice. Particular attention is given to instrumentation, image processing and display. As necessary concomitants to mathematical analysis, recently improved magnetic recording methods using tape or disks and high-speed computers of large capacity are coming into use. Major topics include Doppler ultrasonic techniques, high-speed cineradiography, three-dimensional imaging of the myocardium with isotopes, sector-scanning echocardiography, and commercialization of the echocardioscope. Individual items are announced in this issue.

  13. Cardiovascular CT angiography in neonates and children: Image quality and potential for radiation dose reduction with iterative image reconstruction techniques

    International Nuclear Information System (INIS)

    Tricarico, Francesco; Hlavacek, Anthony M.; Schoepf, U.J.; Ebersberger, Ullrich; Nance, John W.; Vliegenthart, Rozemarijn; Cho, Young Jun; Spears, J.R.; Secchi, Francesco; Savino, Giancarlo; Marano, Riccardo; Bonomo, Lorenzo; Schoenberg, Stefan O.; Apfaltrer, Paul

    2013-01-01

    To evaluate image quality (IQ) of low-radiation-dose paediatric cardiovascular CT angiography (CTA), comparing iterative reconstruction in image space (IRIS) and sinogram-affirmed iterative reconstruction (SAFIRE) with filtered back-projection (FBP) and estimate the potential for further dose reductions. Forty neonates and children underwent low radiation CTA with or without ECG synchronisation. Data were reconstructed with FBP, IRIS and SAFIRE. For ECG-synchronised studies, half-dose image acquisitions were simulated. Signal noise was measured and IQ graded. Effective dose (ED) was estimated. Mean absolute and relative image noise with IRIS and full-dose SAFIRE was lower than with FBP (P < 0.001), while SNR and CNR were higher (P < 0.001). Image noise was also lower and SNR and CNR higher in half-dose SAFIRE studies compared with full-and half-dose FBP studies (P < 0.001). IQ scores were higher for IRIS, full-dose SAFIRE and half-dose SAFIRE than for full-dose FBP and higher for half-dose SAFIRE than for half-dose FBP (P < 0.05). Median weight-specific ED was 0.3 mSv without and 1.36 mSv with ECG synchronisation. The estimated ED of half-dose SAFIRE studies was 0.68 mSv. IR improves image noise, SNR, CNR and subjective IQ compared with FBP in low-radiation-dose paediatric CTA and allows further dose reductions without compromising diagnostic IQ. (orig.)

  14. Cardiovascular CT angiography in neonates and children: Image quality and potential for radiation dose reduction with iterative image reconstruction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Tricarico, Francesco [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Catholic University of the Sacred Heart, ' ' A. Gemelli' ' Hospital, Department of Bioimaging and Radiological Sciences, Rome (Italy); Hlavacek, Anthony M. [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Children' s Hospital, Medical University of South Carolina, Division of Pediatric Cardiology, Charleston, SC (United States); Schoepf, U.J. [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Children' s Hospital, Medical University of South Carolina, Division of Pediatric Cardiology, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Ebersberger, Ullrich [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Heart Centre Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany); Nance, John W. [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Johns Hopkins Hospital, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Vliegenthart, Rozemarijn [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); University Medical Centre Groningen/University of Groningen, Centre for Medical Imaging - North East Netherlands, Department of Radiology, Groningen (Netherlands); Cho, Young Jun [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Konyang University School of Medicine, Department of Radiology, Daejeon (Korea, Republic of); Spears, J.R. [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); Secchi, Francesco [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Milan School of Medicine IRCCS Policlinico San Donato, Department of Medical and Surgical Sciences, Radiology Unit, Milan (Italy); Savino, Giancarlo; Marano, Riccardo; Bonomo, Lorenzo [Catholic University of the Sacred Heart, ' ' A. Gemelli' ' Hospital, Department of Bioimaging and Radiological Sciences, Rome (Italy); Schoenberg, Stefan O. [University Medical Centre Mannheim, Medical Faculty Mannheim - Heidelberg University, Institute of Clinical Radiology and Nuclear Medicine, Mannheim (Germany); Apfaltrer, Paul [Medical University of South Carolina, Ashley River Tower, Department of Radiology and Radiological Science, Charleston, SC (United States); University Medical Centre Mannheim, Medical Faculty Mannheim - Heidelberg University, Institute of Clinical Radiology and Nuclear Medicine, Mannheim (Germany)

    2013-05-15

    To evaluate image quality (IQ) of low-radiation-dose paediatric cardiovascular CT angiography (CTA), comparing iterative reconstruction in image space (IRIS) and sinogram-affirmed iterative reconstruction (SAFIRE) with filtered back-projection (FBP) and estimate the potential for further dose reductions. Forty neonates and children underwent low radiation CTA with or without ECG synchronisation. Data were reconstructed with FBP, IRIS and SAFIRE. For ECG-synchronised studies, half-dose image acquisitions were simulated. Signal noise was measured and IQ graded. Effective dose (ED) was estimated. Mean absolute and relative image noise with IRIS and full-dose SAFIRE was lower than with FBP (P < 0.001), while SNR and CNR were higher (P < 0.001). Image noise was also lower and SNR and CNR higher in half-dose SAFIRE studies compared with full-and half-dose FBP studies (P < 0.001). IQ scores were higher for IRIS, full-dose SAFIRE and half-dose SAFIRE than for full-dose FBP and higher for half-dose SAFIRE than for half-dose FBP (P < 0.05). Median weight-specific ED was 0.3 mSv without and 1.36 mSv with ECG synchronisation. The estimated ED of half-dose SAFIRE studies was 0.68 mSv. IR improves image noise, SNR, CNR and subjective IQ compared with FBP in low-radiation-dose paediatric CTA and allows further dose reductions without compromising diagnostic IQ. (orig.)

  15. What imaging techniques should be used in primary versus secondary prevention for further risk stratification?

    Science.gov (United States)

    Schiele, François; Navarese, Eliano Pio; Visoná, Adriana; Ray, Kausik

    2017-04-01

    An accurate assessment of the cardiovascular (CV) risk of an individual is key for guiding the appropriate treatment strategy for cardiovascular disease (CVD). Although conventional risk factors for CVD are well established, there can be substantial variation in the extent of atherosclerosis between patients. The use of a variety of imaging modalities can be beneficial in the primary prevention stage and in the classification of an individual's CV risk. Therefore, appropriate implementation of these imaging techniques for risk assessment purposes, in line with clinical guidelines, can influence the outcomes of CVD prevention. The expert working group collaborated to review current invasive and non-invasive imaging techniques available to healthcare practitioners and how they can be used in the measurement of preclinical vascular damage and CV risk assessment. After evaluation of the current guideline recommendations and clinical data available, the expert working group collaborated to produce recommendations regarding the use of imaging in the risk stratification in primary prevention, CV risk in peri-acute coronary syndrome and CV risk assessment in secondary prevention. Overall, a variety of both invasive and non-invasive imaging modalities were highlighted by the expert working group as having the potential to assist in the risk assessments of patients at risk of CVD. These imaging techniques can be utilised in both primary and secondary prevention strategies and have the potential to be important risk modifiers, improving the outcome of CV risk assessment. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Cardiovascular molecular imaging of apoptosis

    International Nuclear Information System (INIS)

    Wolters, S.L.; Reutelingsperger, C.P.M.; Corsten, M.F.; Hofstra, L.; Narula, J.

    2007-01-01

    Molecular imaging strives to visualise processes at the molecular and cellular level in vivo. Understanding these processes supports diagnosis and evaluation of therapeutic efficacy on an individual basis and thereby makes personalised medicine possible. Apoptosis is a well-organised mode of cell suicide that plays a role in cardiovascular diseases (CVD). Apoptosis is associated with loss of cardiomyocytes following myocardial infarction, atherosclerotic plaque instability, congestive heart failure and allograft rejection of the transplanted heart. Thus, apoptosis constitutes an attractive target for molecular imaging of CVD. Our current knowledge about the molecular players and mechanisms underlying apoptosis offers a rich palette of potential molecular targets for molecular imaging. However, only a few have been successfully developed so far. This review highlights aspects of the molecular machinery and biochemistry of apoptosis relevant to the development of molecular imaging probes. It surveys the role of apoptosis in four major areas of CVD and portrays the importance and future perspectives of apoptosis imaging. The annexin A5 imaging protocol is emphasised since it is the most advanced protocol to measure apoptosis in both preclinical and clinical studies. (orig.)

  17. Cardiovascular molecular imaging of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, S.L.; Reutelingsperger, C.P.M. [Maastricht University, Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht (Netherlands); Corsten, M.F.; Hofstra, L. [Maastricht University, Department of Cardiology, Cardiovascular Research Institute Maastricht, P.O. Box 616, Maastricht (Netherlands); Narula, J. [University of California Irvine, Department of Cardiology, Irvine (United States)

    2007-06-15

    Molecular imaging strives to visualise processes at the molecular and cellular level in vivo. Understanding these processes supports diagnosis and evaluation of therapeutic efficacy on an individual basis and thereby makes personalised medicine possible. Apoptosis is a well-organised mode of cell suicide that plays a role in cardiovascular diseases (CVD). Apoptosis is associated with loss of cardiomyocytes following myocardial infarction, atherosclerotic plaque instability, congestive heart failure and allograft rejection of the transplanted heart. Thus, apoptosis constitutes an attractive target for molecular imaging of CVD. Our current knowledge about the molecular players and mechanisms underlying apoptosis offers a rich palette of potential molecular targets for molecular imaging. However, only a few have been successfully developed so far. This review highlights aspects of the molecular machinery and biochemistry of apoptosis relevant to the development of molecular imaging probes. It surveys the role of apoptosis in four major areas of CVD and portrays the importance and future perspectives of apoptosis imaging. The annexin A5 imaging protocol is emphasised since it is the most advanced protocol to measure apoptosis in both preclinical and clinical studies. (orig.)

  18. Magnetic resonance imaging (MRI) of congenital cardiovascular malformations

    International Nuclear Information System (INIS)

    Sakakibara, Makoto; Kobayashi, Shirou; Imai, Hitoshi; Watanabe, Shigeru; Masuda, Yoshiaki; Inagaki, Yoshiaki; Morita, Huminori; Uematsu, Sadao; Arimizu, Noboru

    1986-01-01

    In order to determine the value of MRI in diagnosing congenital cardiovascular malformations, MR Images were obtained in 25 adult patients with congenital cardiovascular malformations. Gated MRI detected all of 13 atrial septal defects, and all of 4 ventricular septal defects, but ungated MRI detected none of 3 atrial septal defects. Other congenital cardiovascular malformations (2 with Ebstein's disease, 1 with Fallot's pentalogy, and 1 with Pulmonary stenosis) were well visualized. Vascular malformations (1 with Patent ducts arteriosus, 1 with Supravalvelar aortic stenosis, 1 with Coarctation of Aorta, 1 with Right Aortic Arch) were well visualized in all of 7 patients by ungated MRI. MRI was a valuable noninvasive method of diagnosing congenital heart disease. (author)

  19. Cardiovascular magnetic resonance imaging of hypoplastic left heart syndrome in children

    International Nuclear Information System (INIS)

    Dillman, Jonathan R.; Hernandez, Ramiro J.; Dorfman, Adam L.; Attili, Anil K.; Agarwal, Prachi P.; Mueller, Gisela C.; Bell, Aaron

    2010-01-01

    Cardiovascular magnetic resonance imaging (CMR) plays an important complementary role to echocardiography and conventional angiography in the evaluation of hypoplastic left heart syndrome. This imaging modality is particularly useful for assessing cardiovascular postsurgical changes, extracardiac vascular anatomy, ventricular and valvular function, and a variety of complications. The purpose of this article is to provide a contemporary review of the role of CMR in the management of untreated and surgically palliated hypoplastic left heart syndrome in children. (orig.)

  20. [Screening for atherosclerosis to prevent cardiovascular risk : a pro-contra debate].

    Science.gov (United States)

    Nanchen, David; Genest, Jacques

    2018-02-28

    Detecting atherosclerosis using imaging techniques is the subject of intense debate in the scientific community. Among the arguments in favor of screening, a better identification or better stratification of cardiovascular risk is mentioned, compared to cardiovascular risk scores based solely on traditional risk factors, such as blood pressure or cholesterol levels. Imaging techniques are also used to monitor the progression of atherosclerosis among patients using lipid-lowering or antihypertensive drugs in primary prevention. However, several experts in recent years have challenged the clinical utility of these imaging techniques in asymptomatic adults. This article proposes a debate « for or against » to describe the main arguments for or against the use of imaging for screening for atherosclerosis.

  1. Cardiovascular magnetic resonance in congenital heart disease

    International Nuclear Information System (INIS)

    Cazacu, A.; Ciubotaru, A.

    2010-01-01

    The increasing prevalence of congenital heart disease can be attributed to major improvements in diagnosis and treatment. Cardiovascular magnetic resonance imaging plays an important role in the clinical management strategy of patients with congenital heart disease. The development of new cardiovascular magnetic resonance (CMR) techniques allows comprehensive assessment of complex cardiac anatomy and function and provides information about the long-term residual post-operative lesions and complications of surgery. It overcomes many of the limitations of echocardiography and cardiac catheterization. This review evaluates the role of cardiovascular magnetic resonance imaging modality in the management of subject with congenital heart disease (CHD). (authors)

  2. Cardiovascular imaging

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Nuclear cardiology has grown exponentially over the past decade. The introduction of the gamma camera, the development of new radionuclides, and the implementation of computers have transformed the field of nuclear cardiology from largely research in the 1970s to routine clinical applications in the 1980s. At first, noninvasive nuclear imaging techniques were used predominantly to aid disease detection. In the ensuing years, emphasis has shifted to the functional assessment of patients with known disease. Widely available noninvasive techniques now allow the quantitative assessment of left and right ventricular function, one of the most important predictors of survival in patients with cardiac disease. Exercise radionuclide ventriculography provides valuable information on the myocardial reserve in patients with normal resting function. The serial measurement of the ventricular ejection fraction assists in the timing of valvular replacement therapy. In patients receiving doxorubicin, serial ejection fraction follow-up helps prevent the development of irreversible, drug-induced cardiomyopathy. It is now generally acknowledged that the detection of latent coronary disease is improved by the addition of 201 T1 imaging to the standard exercise electrocardiogram. Thallium imaging and infarct avid imaging with /sup 99m/Tc-pyrophosphate have proven useful in quantifying myocardial infarction size, and in assessing the value of therapy aimed at limiting infarction extent. In the evaluation of coronary artery disease, scintigraphy provides physiologic data that complements angiography, which is more anatomic. An angiographic lesion, read as a 70 percent narrowing, may not necessarily be flow-limiting, whereas one read as 40 percent, may, in fact, have physiologic consequences, if it is of sufficient length or eccentricity, or is in series with another insignificant stenosis

  3. The future of the cardiovascular image

    International Nuclear Information System (INIS)

    Serna M, J.A.

    2007-01-01

    In this work the future of the cardiovascular image is presented, it is important to know the advantages and disadvantages of the current image methods to apply them in each case. The characteristics of the methods are presented: X R simple plate, the cardiac ultrasound, the image by magnetic resonance, the computed tomography, the helicoid tomography, the SPECT of myocardial perfusion, the PET and the PET/CT and the used radiopharmaceuticals. The SPECT of myocardial perfusion is the more used method around the world for the evacuation of the coronary illness. It has a high sensitivity (between 90 and 97%), it is a non-invasive treatment (morbidity of 0.01%), of relative low cost and it is useful in the diagnosis of ischemia in groups of high risk like diabetics, dyslipidemia, obese and hypertension. (Author)

  4. Enzymatic single-chain antibody tagging: a universal approach to targeted molecular imaging and cell homing in cardiovascular disease.

    Science.gov (United States)

    Ta, H T; Prabhu, S; Leitner, E; Jia, F; von Elverfeldt, D; Jackson, Katherine E; Heidt, T; Nair, A K N; Pearce, H; von Zur Muhlen, C; Wang, X; Peter, K; Hagemeyer, C E

    2011-08-05

    Antibody-targeted delivery of imaging agents can enhance the sensitivity and accuracy of current imaging techniques. Similarly, homing of effector cells to disease sites increases the efficacy of regenerative cell therapy while reducing the number of cells required. Currently, targeting can be achieved via chemical conjugation to specific antibodies, which typically results in the loss of antibody functionality and in severe cell damage. An ideal conjugation technique should ensure retention of antigen-binding activity and functionality of the targeted biological component. To develop a biochemically robust, highly reproducible, and site-specific coupling method using the Staphylococcus aureus sortase A enzyme for the conjugation of a single-chain antibody (scFv) to nanoparticles and cells for molecular imaging and cell homing in cardiovascular diseases. This scFv specifically binds to activated platelets, which play a pivotal role in thrombosis, atherosclerosis, and inflammation. The conjugation procedure involves chemical and enzyme-mediated coupling steps. The scFv was successfully conjugated to iron oxide particles (contrast agents for magnetic resonance imaging) and to model cells. Conjugation efficiency ranged between 50% and 70%, and bioactivity of the scFv after coupling was preserved. The targeting of scFv-coupled cells and nanoparticles to activated platelets was strong and specific as demonstrated in in vitro static adhesion assays, in a flow chamber system, in mouse intravital microscopy, and in in vivo magnetic resonance imaging of mouse carotid arteries. This unique biotechnological approach provides a versatile and broadly applicable tool for procuring targeted regenerative cell therapy and targeted molecular imaging in cardiovascular and inflammatory diseases and beyond.

  5. Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Directory of Open Access Journals (Sweden)

    Ibrahim El-Sayed H

    2011-07-01

    Full Text Available Abstract Cardiovascular magnetic resonance (CMR tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR, scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1 Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM, delay alternating with nutations for tailored excitation (DANTE, and complementary SPAMM (CSPAMM; and 2 Advanced techniques, which include harmonic phase (HARP, displacement encoding with stimulated echoes (DENSE, and strain encoding (SENC. Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention

  6. SQL based cardiovascular ultrasound image classification.

    Science.gov (United States)

    Nandagopalan, S; Suryanarayana, Adiga B; Sudarshan, T S B; Chandrashekar, Dhanalakshmi; Manjunath, C N

    2013-01-01

    This paper proposes a novel method to analyze and classify the cardiovascular ultrasound echocardiographic images using Naïve-Bayesian model via database OLAP-SQL. Efficient data mining algorithms based on tightly-coupled model is used to extract features. Three algorithms are proposed for classification namely Naïve-Bayesian Classifier for Discrete variables (NBCD) with SQL, NBCD with OLAP-SQL, and Naïve-Bayesian Classifier for Continuous variables (NBCC) using OLAP-SQL. The proposed model is trained with 207 patient images containing normal and abnormal categories. Out of the three proposed algorithms, a high classification accuracy of 96.59% was achieved from NBCC which is better than the earlier methods.

  7. The future of the cardiovascular image; El futuro de la imagen cardiovascular

    Energy Technology Data Exchange (ETDEWEB)

    Serna M, J A [Hospital Angeles del Pedregal, Mexico D.F. (Mexico)

    2007-07-01

    In this work the future of the cardiovascular image is presented, it is important to know the advantages and disadvantages of the current image methods to apply them in each case. The characteristics of the methods are presented: X R simple plate, the cardiac ultrasound, the image by magnetic resonance, the computed tomography, the helicoid tomography, the SPECT of myocardial perfusion, the PET and the PET/CT and the used radiopharmaceuticals. The SPECT of myocardial perfusion is the more used method around the world for the evacuation of the coronary illness. It has a high sensitivity (between 90 and 97%), it is a non-invasive treatment (morbidity of 0.01%), of relative low cost and it is useful in the diagnosis of ischemia in groups of high risk like diabetics, dyslipidemia, obese and hypertension. (Author)

  8. The Role of Cardiovascular Magnetic Resonance Imaging in Heart Failure.

    Science.gov (United States)

    Peterzan, Mark A; Rider, Oliver J; Anderson, Lisa J

    2016-11-01

    Cardiovascular imaging is key for the assessment of patients with heart failure. Today, cardiovascular magnetic resonance imaging plays an established role in the assessment of patients with suspected and confirmed heart failure syndromes, in particular identifying aetiology. Its role in informing prognosis and guiding decisions around therapy are evolving. Key strengths include its accuracy; reproducibility; unrestricted field of view; lack of radiation; multiple abilities to characterise myocardial tissue, thrombus and scar; as well as unparalleled assessment of left and right ventricular volumes. T2* has an established role in the assessment and follow-up of iron overload cardiomyopathy and a role for T1 in specific therapies for cardiac amyloid and Anderson-Fabry disease is emerging.

  9. Cardiovascular fluid dynamics. Methods for flow and pressure field analysis from magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ebbers, T.

    2001-01-01

    Cardiovascular blood flow is highly complex and incompletely understood. Blood flow patterns are expected to influence the opening and closing of normal and prosthetic heart valves, the efficiency of cardiac filling and ejection, and the resistance to thrombus formation within the heart. Conventional diagnostic techniques are poorly suited to the study of the three-dimensional (3D) blood flow patterns in the heart chambers and large vessels. Noninvasive methods have also been inadequate in studying intracardiac pressure differences, which are the driving force of flow and are critical in the evaluation of many cardiovascular abnormalities. This thesis focuses on the development of non-invasive methods for analysis of 3D cardiovascular blood flow. Simultaneous study of cardiovascular fluid dynamics allowed knowledge exchange across the two disciplines, facilitating the development process and broadening the applicability of the methods. A time-resolved 3D phase-contrast Magnetic Resonance Imaging (MRI) technique was used to acquire the velocity vector field in a 3D volume encompassing the entire heart or a large vessel. Cardiovascular blood flow patterns were visualized by use of particle traces, which revealed, for instance, vortical flow patterns in the left atrium. By applying the Navier-Stokes equation along a user-defined line in the 3D velocity vector field, the relative pressure could be obtained as an excellent supplement to the flow pattern visualization. Using a delineation of the blood pool, the time-varying 3D relative pressure field in the human left ventricle was obtained from the velocity field by use of the pressure Poisson equation. A delineation of the heart muscle, a task that is almost impossible to perform on 3D MRI either automatically or manually, was also achieved by usage of particle traces. This segmentation allows automatic calculation of the 3D relative pressure field, as well as calculation of well-established parameters such as

  10. Cardiovascular fluid dynamics. Methods for flow and pressure field analysis from magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, T

    2001-05-01

    Cardiovascular blood flow is highly complex and incompletely understood. Blood flow patterns are expected to influence the opening and closing of normal and prosthetic heart valves, the efficiency of cardiac filling and ejection, and the resistance to thrombus formation within the heart. Conventional diagnostic techniques are poorly suited to the study of the three-dimensional (3D) blood flow patterns in the heart chambers and large vessels. Noninvasive methods have also been inadequate in studying intracardiac pressure differences, which are the driving force of flow and are critical in the evaluation of many cardiovascular abnormalities. This thesis focuses on the development of non-invasive methods for analysis of 3D cardiovascular blood flow. Simultaneous study of cardiovascular fluid dynamics allowed knowledge exchange across the two disciplines, facilitating the development process and broadening the applicability of the methods. A time-resolved 3D phase-contrast Magnetic Resonance Imaging (MRI) technique was used to acquire the velocity vector field in a 3D volume encompassing the entire heart or a large vessel. Cardiovascular blood flow patterns were visualized by use of particle traces, which revealed, for instance, vortical flow patterns in the left atrium. By applying the Navier-Stokes equation along a user-defined line in the 3D velocity vector field, the relative pressure could be obtained as an excellent supplement to the flow pattern visualization. Using a delineation of the blood pool, the time-varying 3D relative pressure field in the human left ventricle was obtained from the velocity field by use of the pressure Poisson equation. A delineation of the heart muscle, a task that is almost impossible to perform on 3D MRI either automatically or manually, was also achieved by usage of particle traces. This segmentation allows automatic calculation of the 3D relative pressure field, as well as calculation of well-established parameters such as

  11. Cardiovascular magnetic resonance in hypertrophic cardiomyopathy and infiltrative cardiomyopathy

    OpenAIRE

    Schofield, Rebecca; Manacho, Katia; Castelletti, Silvia; Moon, James C.

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease. Cardiac imaging plays a key role in the diagnosis and management, with cardiovascular magnetic resonance (CMR) an important modality. CMR provides a number of different techniques in one examination: structure and function, flow imaging and tissue characterisation particularly with the late gadolinium enhancement (LGE) technique. Other techniques include vasodilator perfusion, mapping (especially T1 mapping and ex...

  12. Multimodal imaging of vascular network and blood microcirculation by optical diagnostic techniques

    International Nuclear Information System (INIS)

    Kuznetsov, Yu L; Kalchenko, V V; Meglinski, I V

    2011-01-01

    We present a multimodal optical diagnostic approach for simultaneous non-invasive in vivo imaging of blood and lymphatic microvessels, utilising a combined use of fluorescence intravital microscopy and a method of dynamic light scattering. This approach makes it possible to renounce the use of fluorescent markers for visualisation of blood vessels and, therefore, significantly (tenfold) reduce the toxicity of the technique and minimise side effects caused by the use of contrast fluorescent markers. We demonstrate that along with the ability to obtain images of lymph and blood microvessels with a high spatial resolution, current multimodal approach allows one to observe in real time permeability of blood vessels. This technique appears to be promising in physiology studies of blood vessels, and especially in the study of peripheral cardiovascular system in vivo. (optical technologies in biophysics and medicine)

  13. Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications

    International Nuclear Information System (INIS)

    Niendorf, Thoralf; Sodickson, Daniel K.

    2008-01-01

    Cardiovascular magnetic resonance imaging (CVMRI) is of proven clinical value in the non-invasive imaging of cardiovascular diseases. CVMRI requires rapid image acquisition, but acquisition speed is fundamentally limited in conventional MRI. Parallel imaging provides a means for increasing acquisition speed and efficiency. However, signal-to-noise (SNR) limitations and the limited number of receiver channels available on most MR systems have in the past imposed practical constraints, which dictated the use of moderate accelerations in CVMRI. High levels of acceleration, which were unattainable previously, have become possible with many-receiver MR systems and many-element, cardiac-optimized RF-coil arrays. The resulting imaging speed improvements can be exploited in a number of ways, ranging from enhancement of spatial and temporal resolution to efficient whole heart coverage to streamlining of CVMRI work flow. In this review, examples of these strategies are provided, following an outline of the fundamentals of the highly accelerated imaging approaches employed in CVMRI. Topics discussed include basic principles of parallel imaging; key requirements for MR systems and RF-coil design; practical considerations of SNR management, supported by multi-dimensional accelerations, 3D noise averaging and high field imaging; highly accelerated clinical state-of-the art cardiovascular imaging applications spanning the range from SNR-rich to SNR-limited; and current trends and future directions. (orig.)

  14. Comparative cardiac imaging

    International Nuclear Information System (INIS)

    Brundage, B.H.

    1990-01-01

    This book is designed to compare all major cardiac imaging techniques. All major imaging techniques - including conventional angiography, digital angiography, echocardiography and Doppler imaging, conventional radioisotope techniques, computed tomography, and magnetic resonance imaging - are covered in this text as they apply to the major cardiovascular disorders. There is brief coverage of positron emission tomography and an extensive presentation of ultrafast computed tomography

  15. Review of advanced imaging techniques

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2012-01-01

    Full Text Available Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies" at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy. This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques.

  16. Multimodality imaging techniques.

    Science.gov (United States)

    Martí-Bonmatí, Luis; Sopena, Ramón; Bartumeus, Paula; Sopena, Pablo

    2010-01-01

    In multimodality imaging, the need to combine morphofunctional information can be approached by either acquiring images at different times (asynchronous), and fused them through digital image manipulation techniques or simultaneously acquiring images (synchronous) and merging them automatically. The asynchronous post-processing solution presents various constraints, mainly conditioned by the different positioning of the patient in the two scans acquired at different times in separated machines. The best solution to achieve consistency in time and space is obtained by the synchronous image acquisition. There are many multimodal technologies in molecular imaging. In this review we will focus on those multimodality image techniques more commonly used in the field of diagnostic imaging (SPECT-CT, PET-CT) and new developments (as PET-MR). The technological innovations and development of new tracers and smart probes are the main key points that will condition multimodality image and diagnostic imaging professionals' future. Although SPECT-CT and PET-CT are standard in most clinical scenarios, MR imaging has some advantages, providing excellent soft-tissue contrast and multidimensional functional, structural and morphological information. The next frontier is to develop efficient detectors and electronics systems capable of detecting two modality signals at the same time. Not only PET-MR but also MR-US or optic-PET will be introduced in clinical scenarios. Even more, MR diffusion-weighted, pharmacokinetic imaging, spectroscopy or functional BOLD imaging will merge with PET tracers to further increase molecular imaging as a relevant medical discipline. Multimodality imaging techniques will play a leading role in relevant clinical applications. The development of new diagnostic imaging research areas, mainly in the field of oncology, cardiology and neuropsychiatry, will impact the way medicine is performed today. Both clinical and experimental multimodality studies, in

  17. 3D printing from cardiovascular CT: a practical guide and review

    Science.gov (United States)

    Birbara, Nicolette S.; Hussain, Tarique; Greil, Gerald; Foley, Thomas A.; Pather, Nalini

    2017-01-01

    Current cardiovascular imaging techniques allow anatomical relationships and pathological conditions to be captured in three dimensions. Three-dimensional (3D) printing, or rapid prototyping, has also become readily available and made it possible to transform virtual reconstructions into physical 3D models. This technology has been utilised to demonstrate cardiovascular anatomy and disease in clinical, research and educational settings. In particular, 3D models have been generated from cardiovascular computed tomography (CT) imaging data for purposes such as surgical planning and teaching. This review summarises applications, limitations and practical steps required to create a 3D printed model from cardiovascular CT. PMID:29255693

  18. The year 2014 in the European Heart Journal--Cardiovascular Imaging: part II.

    Science.gov (United States)

    Gerber, Bernhard L; Edvardsen, Thor; Pierard, Luc A; Saraste, Antti; Knuuti, Juhani; Maurer, Gerald; Habib, Gilbert; Lancellotti, Patrizio

    2015-11-01

    The European Heart Journal-Cardiovascular Imaging, created in 2012, has become a reference for publishing multimodality cardiovascular imaging scientific and review papers. The impressive 2014 impact factor of 4.105 confirms the important position of our journal. In this part, we summarize the most important studies from the journal's third year, with specific emphasis on cardiomyopathies, congenital heart diseases, valvular heart diseases, and heart failure. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  19. Cardiovascular cine imaging and flow evaluation using Fast Interrupted Steady-State (FISS) magnetic resonance.

    Science.gov (United States)

    Edelman, Robert R; Serhal, Ali; Pursnani, Amit; Pang, Jianing; Koktzoglou, Ioannis

    2018-02-19

    Existing cine imaging techniques rely on balanced steady-state free precession (bSSFP) or spoiled gradient-echo readouts, each of which has limitations. For instance, with bSSFP, artifacts occur from rapid through-plane flow and off-resonance effects. We hypothesized that a prototype cine technique, radial fast interrupted steady-state (FISS), could overcome these limitations. The technique was compared with standard cine bSSFP for cardiac function, coronary artery conspicuity, and aortic valve morphology. Given its advantageous properties, we further hypothesized that the cine FISS technique, in combination with arterial spin labeling (ASL), could provide an alternative to phase contrast for visualizing in-plane flow patterns within the aorta and branch vessels. The study was IRB-approved and subjects provided consent. Breath-hold cine FISS and bSSFP were acquired using similar imaging parameters. There was no significant difference in biplane left ventricular ejection fraction or cardiac image quality between the two techniques. Compared with cine bSSFP, cine FISS demonstrated a marked decrease in fat signal which improved conspicuity of the coronary arteries, while suppression of through-plane flow artifact on thin-slice cine FISS images improved visualization of the aortic valve. Banding artifacts in the subcutaneous tissues were reduced. In healthy subjects, dynamic flow patterns were well visualized in the aorta, coronary and renal arteries using cine FISS ASL, even when the slice was substantially thicker than the vessel diameter. Cine FISS demonstrates several benefits for cardiovascular imaging compared with cine bSSFP, including better suppression of fat signal and reduced artifacts from through-plane flow and off-resonance effects. The main drawback is a slight (~ 20%) decrease in temporal resolution. In addition, preliminary results suggest that cine FISS ASL provides a potential alternative to phase contrast techniques for in-plane flow

  20. Acceleration of cardiovascular MRI using parallel imaging: basic principles, practical considerations, clinical applications and future directions

    International Nuclear Information System (INIS)

    Niendorf, T.; Sodickson, D.

    2006-01-01

    Cardiovascular Magnetic Resonance (CVMR) imaging has proven to be of clinical value for non-invasive diagnostic imaging of cardiovascular diseases. CVMR requires rapid imaging; however, the speed of conventional MRI is fundamentally limited due to its sequential approach to image acquisition, in which data points are collected one after the other in the presence of sequentially-applied magnetic field gradients and radiofrequency coils to acquire multiple data points simultaneously, and thereby to increase imaging speed and efficiency beyond the limits of purely gradient-based approaches. The resulting improvements in imaging speed can be used in various ways, including shortening long examinations, improving spatial resolution and anatomic coverage, improving temporal resolution, enhancing image quality, overcoming physiological constraints, detecting and correcting for physiologic motion, and streamlining work flow. Examples of these strategies will be provided in this review, after some of the fundamentals of parallel imaging methods now in use for cardiovascular MRI are outlined. The emphasis will rest upon basic principles and clinical state-of-the art cardiovascular MRI applications. In addition, practical aspects such as signal-to-noise ratio considerations, tailored parallel imaging protocols and potential artifacts will be discussed, and current trends and future directions will be explored. (orig.)

  1. Human gene therapy and imaging: cardiology

    International Nuclear Information System (INIS)

    Wu, Joseph C.; Yla-Herttuala, Seppo

    2005-01-01

    This review discusses the basics of cardiovascular gene therapy, the results of recent human clinical trials, and the rapid progress in imaging techniques in cardiology. Improved understanding of the molecular and genetic basis of coronary heart disease has made gene therapy a potential new alternative for the treatment of cardiovascular diseases. Experimental studies have established the proof-of-principle that gene transfer to the cardiovascular system can achieve therapeutic effects. First human clinical trials provided initial evidence of feasibility and safety of cardiovascular gene therapy. However, phase II/III clinical trials have so far been rather disappointing and one of the major problems in cardiovascular gene therapy has been the inability to verify gene expression in the target tissue. New imaging techniques could significantly contribute to the development of better gene therapeutic approaches. Although the exact choice of imaging modality will depend on the biological question asked, further improvement in image resolution and detection sensitivity will be needed for all modalities as we move from imaging of organs and tissues to imaging of cells and genes. (orig.)

  2. Cardiovascular outcomes after pharmacologic stress myocardial perfusion imaging.

    Science.gov (United States)

    Lee, Douglas S; Husain, Mansoor; Wang, Xuesong; Austin, Peter C; Iwanochko, Robert M

    2016-04-01

    While pharmacologic stress single photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) is used for noninvasive evaluation of patients who are unable to perform treadmill exercise, its impact on net reclassification improvement (NRI) of prognosis is unknown. We evaluated the prognostic value of pharmacologic stress MPI for prediction of cardiovascular death or non-fatal myocardial infarction (MI) within 1 year at a single-center, university-based laboratory. We examined continuous and categorical NRI of pharmacologic SPECT-MPI for prediction of outcomes beyond clinical factors alone. Six thousand two hundred forty patients (median age 66 years [IQR 56-74], 3466 men) were studied and followed for 5963 person-years. SPECT-MPI variables associated with increased risk of cardiovascular death or non-fatal MI included summed stress score, stress ST-shift, and post-stress resting left ventricular ejection fraction ≤50%. Compared to a clinical model which included age, sex, cardiovascular disease, risk factors, and medications, model χ(2) (210.5 vs. 281.9, P statistic (0.74 vs. 0.78, P stress score, stress ST-shift and stress resting left ventricular ejection fraction). SPECT-MPI predictors increased continuous NRI by 49.4% (P 3% annualized risk of cardiovascular death or non-fatal MI, yielded a 15.0% improvement in NRI (95% CI 7.6%-27.6%, P stress MPI substantially improved net reclassification of cardiovascular death or MI risk beyond that afforded by clinical factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Computational chemical imaging for cardiovascular pathology: chemical microscopic imaging accurately determines cardiac transplant rejection.

    Directory of Open Access Journals (Sweden)

    Saumya Tiwari

    Full Text Available Rejection is a common problem after cardiac transplants leading to significant number of adverse events and deaths, particularly in the first year of transplantation. The gold standard to identify rejection is endomyocardial biopsy. This technique is complex, cumbersome and requires a lot of expertise in the correct interpretation of stained biopsy sections. Traditional histopathology cannot be used actively or quickly during cardiac interventions or surgery. Our objective was to develop a stain-less approach using an emerging technology, Fourier transform infrared (FT-IR spectroscopic imaging to identify different components of cardiac tissue by their chemical and molecular basis aided by computer recognition, rather than by visual examination using optical microscopy. We studied this technique in assessment of cardiac transplant rejection to evaluate efficacy in an example of complex cardiovascular pathology. We recorded data from human cardiac transplant patients' biopsies, used a Bayesian classification protocol and developed a visualization scheme to observe chemical differences without the need of stains or human supervision. Using receiver operating characteristic curves, we observed probabilities of detection greater than 95% for four out of five histological classes at 10% probability of false alarm at the cellular level while correctly identifying samples with the hallmarks of the immune response in all cases. The efficacy of manual examination can be significantly increased by observing the inherent biochemical changes in tissues, which enables us to achieve greater diagnostic confidence in an automated, label-free manner. We developed a computational pathology system that gives high contrast images and seems superior to traditional staining procedures. This study is a prelude to the development of real time in situ imaging systems, which can assist interventionists and surgeons actively during procedures.

  4. Imaging techniques for visualizing and phenotyping congenital heart defects in murine models.

    Science.gov (United States)

    Liu, Xiaoqin; Tobita, Kimimasa; Francis, Richard J B; Lo, Cecilia W

    2013-06-01

    Mouse model is ideal for investigating the genetic and developmental etiology of congenital heart disease. However, cardiovascular phenotyping for the precise diagnosis of structural heart defects in mice remain challenging. With rapid advances in imaging techniques, there are now high throughput phenotyping tools available for the diagnosis of structural heart defects. In this review, we discuss the efficacy of four different imaging modalities for congenital heart disease diagnosis in fetal/neonatal mice, including noninvasive fetal echocardiography, micro-computed tomography (micro-CT), micro-magnetic resonance imaging (micro-MRI), and episcopic fluorescence image capture (EFIC) histopathology. The experience we have gained in the use of these imaging modalities in a large-scale mouse mutagenesis screen have validated their efficacy for congenital heart defect diagnosis in the tiny hearts of fetal and newborn mice. These cutting edge phenotyping tools will be invaluable for furthering our understanding of the developmental etiology of congenital heart disease. Copyright © 2013 Wiley Periodicals, Inc.

  5. Radioanalytical and imaging techniques. Challenges and opportunities in biomedical applications

    International Nuclear Information System (INIS)

    Spyrou, N.M.

    2008-01-01

    Where human health worldwide is under threat, radioanalytical and imaging scientists are expected to make significant difference and contribution. Diabetes, malnutrition, Alzheimer's and cardiovascular diseases can be better understood by probing elemental distributions to nano-scales and quantifying elemental compositions to ultratrace levels. As we aim towards personalized medicine, cancer management awaits new diagnostic and therapy methods which account, for example, for tissue oxygenation. In the context of such biomedical issues, recent trends and future developments are presented taking into consideration the availability of research reactors and ion beam facilities, as well as alternative and emerging techniques such as PIXE tomography (PIXE-T) and two- and three-gamma PET. (author)

  6. Imaging of cardiovascular malformations in Williams syndrome

    International Nuclear Information System (INIS)

    Li Shiguo; Zhao Shihua; Jiang Shiliang; Huang Lianjun; Xu Zhongying; Ling Jian; Zheng Hong; Yan Chaowu; Lu Jinguo

    2008-01-01

    Objective: To evaluate the imaging methods for cardiovascular malformations in Williams syndrome(WS). Methods: Thirteen cases of WS (7 males and 6 females) aged 10 months to 13 years were involved in this study. All patients underwent chest X-ray radiography, electrocardiography, echocardiography and physical examination. 3 cases underwent electronic beam computed tomography (EBCT), cardiac catheterization and angiography were performed in 8 cases. Results: Twelve patients were referred to our hospital for cardiac murmur and 1 case for cyanosis after birth. 7 patients were found with 'elfin-like' facial features, 6 patients with pulmonary arterial stenosis, 2 cases with patent ductus arteriosus, 2 cases with severe pulmonary hypertension and 1 case with total endocardial cushion defect. Sudden death occurred in 2 patients during and after catheterization, respectively. Conclusions: Conventional angiography is the golden standard for the diagnosis of cardiovascular malformations in WS. Noninvasive methods such as MSCT and MRI should be suggested because of the risk of sudden death in conventional angiography. (authors)

  7. 2017 multimodality appropriate use criteria for noninvasive cardiac imaging: Export consensus of the Asian society of cardiovascular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Kyong Min Sarah [Dept. of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Kim, Jeong A [Dept. of Radiology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang (Korea, Republic of); Choe, Yeon Hyeon [Dept. of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); and others

    2017-11-15

    In 2010, the Asian Society of Cardiovascular Imaging (ASCI) provided recommendations for cardiac CT and MRI, and this document reflects an update of the 2010 ASCI appropriate use criteria (AUC). In 2016, the ASCI formed a new working group for revision of AUC for noninvasive cardiac imaging. A major change that we made in this document is the rating of various noninvasive tests (exercise electrocardiogram, echocardiography, positron emission tomography, single-photon emission computed tomography, radionuclide imaging, cardiac magnetic resonance, and cardiac computed tomography/angiography), compared side by side for their applications in various clinical scenarios. Ninety-five clinical scenarios were developed from eight selected pre-existing guidelines and classified into four sections as follows: 1) detection of coronary artery disease, symptomatic or asymptomatic; 2) cardiac evaluation in various clinical scenarios; 3) use of imaging modality according to prior testing; and 4) evaluation of cardiac structure and function. The clinical scenarios were scored by a separate rating committee on a scale of 1–9 to designate appropriate use, uncertain use, or inappropriate use according to a modified Delphi method. Overall, the AUC ratings for CT were higher than those of previous guidelines. These new AUC provide guidance for clinicians choosing among available testing modalities for various cardiac diseases and are also unique, given that most previous AUC for noninvasive imaging include only one imaging technique. As cardiac imaging is multimodal in nature, we believe that these AUC will be more useful for clinical decision making.

  8. Composite Techniques Based Color Image Compression

    Directory of Open Access Journals (Sweden)

    Zainab Ibrahim Abood

    2017-03-01

    Full Text Available Compression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S, composite wavelet technique (W and composite multi-wavelet technique (M. For the high energy sub-band of the 3rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet transform (MMM in M technique which has the highest values of energy (En and compression ratio (CR and least values of bit per pixel (bpp, time (T and rate distortion R(D. Also the values of the compression parameters of the color image are nearly the same as the average values of the compression parameters of the three bands of the same image.

  9. Towards automatic quantitative analysis of cardiac MR perfusion images

    NARCIS (Netherlands)

    Breeuwer, M.; Quist, M.; Spreeuwers, Lieuwe Jan; Paetsch, I.; Al-Saadi, N.; Nagel, E.

    2001-01-01

    Magnetic Resonance Imaging (MRI) is a powerful technique for imaging cardiovascular diseases. The introduction of cardiovascular MRI into clinical practice is however hampered by the lack of efficient and reliable automatic image analysis methods. This paper focuses on the automatic evaluation of

  10. Impact of long-term meditation practice on cardiovascular reactivity during perception and reappraisal of affective images.

    Science.gov (United States)

    Pavlov, Sergei V; Reva, Natalia V; Loktev, Konstantin V; Korenyok, Vladimir V; Aftanas, Lyubomir I

    2015-03-01

    Meditation has been found to be an efficient strategy for coping with stress in healthy individuals and in patients with psychosomatic disorders. The main objective of the present study was to investigate the psychophysiological mechanisms of beneficial effects of meditation on cardiovascular reactivity. We examined effects of long-term Sahaja Yoga meditation on cardiovascular reactivity during affective image processing under "unregulated" and "emotion regulation" conditions. Twenty two experienced meditators and 20 control subjects participated in the study. Under "unregulated" conditions participants were shown neutral and affective images and were asked to attend to them. Under "emotion regulation" conditions they down-regulated negative affect through reappraisal of negative images or up-regulated positive affect through reappraisal of positive images. Under "unregulated" conditions while anticipating upcoming images meditators vs. controls did not show larger pre-stimulus total peripheral resistance and greater cardiac output for negative images in comparison with neutral and positive ones. Control subjects showed TPR decrease for negative images only when they consciously intended to reappraise them (i.e. in the "emotion regulation" condition). Both meditators and controls showed comparable cardiovascular reactivity during perception of positive stimuli, whereas up-regulating of positive affect was associated with more pronounced cardiac activation in meditators. The findings provide some insight into understanding the beneficial influence of meditation on top-down control of emotion and cardiovascular reactivity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Tracking of stem cells for treatment in cardiovascular disease

    International Nuclear Information System (INIS)

    Kang, Won Jun

    2005-01-01

    Various stem cells or progenitor cells are being used to treat cardiovascular disease. In ischemic heart disease, stem cell therapy is expected to regenerate damaged myocardium. To evaluate effects of stem cell treatment, the method to image stem cell location, distribution and differentiation is necessary. Optical imaging, MRI, nuclear imaging methods have been used for tracking stem cells. The methods and problems of each imaging technique are reviewed

  12. The year 2012 in the European Heart Journal-Cardiovascular Imaging. Part II.

    Science.gov (United States)

    Plein, Sven; Knuuti, Juhani; Edvardsen, Thor; Saraste, Antti; Piérard, Luc A; Maurer, Gerald; Lancellotti, Patrizio

    2013-07-01

    The part II of the best of the European Heart Journal - Cardiovascular Imaging in 2012 specifically focuses on studies of valvular heart diseases, heart failure, cardiomyopathies, and congenital heart diseases.

  13. Medical imaging technology reviews and computational applications

    CERN Document Server

    Dewi, Dyah

    2015-01-01

    This book presents the latest research findings and reviews in the field of medical imaging technology, covering ultrasound diagnostics approaches for detecting osteoarthritis, breast carcinoma and cardiovascular conditions, image guided biopsy and segmentation techniques for detecting lung cancer, image fusion, and simulating fluid flows for cardiovascular applications. It offers a useful guide for students, lecturers and professional researchers in the fields of biomedical engineering and image processing.

  14. The deleterious effects of arteriovenous fistula-creation on the cardiovascular system: a longitudinal magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Dundon BK

    2014-09-01

    Full Text Available Benjamin K Dundon,1–3 Kim Torpey,3 Adam J Nelson,1 Dennis TL Wong,1,2 Rae F Duncan,1 Ian T Meredith,2 Randall J Faull,1,3 Stephen G Worthley,1,4 Matthew I Worthley1,4 1Cardiology Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia; 2Monash Cardiovascular Research Centre, MonashHEART, Monash Health, Melbourne, Vic, Australia; 3Central Northern Renal and Transplantation Service, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia; 4South Australian Health and Medical Research Institute, Adelaide, SA, Australia Aim: Arteriovenous fistula-formation remains critical for the provision of hemodialysis in end-stage renal failure patients. Its creation results in a significant increase in cardiac output, with resultant alterations in cardiac stroke volume, systemic blood flow, and vascular resistance. The impact of fistula-formation on cardiac and vascular structure and function has not yet been evaluated via "gold standard" imaging techniques in the modern era of end-stage renal failure care. Methods: A total of 24 patients with stage 5 chronic kidney disease undergoing fistula-creation were studied in a single-arm pilot study. Cardiovascular magnetic resonance imaging was undertaken at baseline, and prior to and 6 months following fistula-creation. This gold standard imaging modality was used to evaluate, via standard brachial flow-mediated techniques, cardiac structure and function, aortic distensibility, and endothelial function. Results: At follow up, left ventricular ejection fraction remained unchanged, while mean cardiac output increased by 25.0% (P<0.0001. Significant increases in left and right ventricular end-systolic volumes (21% [P=0.014] and 18% [P<0.01], left and right atrial area (11% [P<0.01] and 9% [P<0.01], and left ventricular mass were observed (12.7% increase (P<0.01. Endothelial

  15. Impact of Medical Therapy on Atheroma Volume Measured by Different Cardiovascular Imaging Modalities

    Directory of Open Access Journals (Sweden)

    Mohamad C. N. Sinno

    2010-01-01

    Full Text Available Atherosclerosis is a systemic disease that affects most vascular beds. The gold standard of atherosclerosis imaging has been invasive intravascular ultrasound (IVUS. Newer noninvasive imaging modalities like B-mode ultrasound, cardiac computed tomography (CT, positron emission tomography (PET, and magnetic resonance imaging (MRI have been used to assess these vascular territories with high accuracy and reproducibility. These imaging modalities have lately been used for the assessment of the atherosclerotic plaque and the response of its volume to several medical therapies used in the treatment of patients with cardiovascular disease. To study the impact of these medications on atheroma volume progression or regression, imaging modalities have been used on a serial basis providing a unique opportunity to monitor the effect these antiatherosclerotic strategies exert on plaque burden. As a result, studies incorporating serial IVUS imaging, quantitative coronary angiography (QCA, B-mode ultrasound, electron beam computed tomography (EBCT, and dynamic contrast-enhanced magnetic resonance imaging have all been used to evaluate the impact of therapeutic strategies that modify cholesterol and blood pressure on the progression/regression of atherosclerotic plaque. In this review, we intend to summarize the impact of different therapies aimed at halting the progression or even result in regression of atherosclerotic cardiovascular disease evaluated by different imaging modalities.

  16. TH-B-207B-00: Pediatric Image Quality Optimization

    International Nuclear Information System (INIS)

    2016-01-01

    This imaging educational program will focus on solutions to common pediatric image quality optimization challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children’s hospitals. One of the most commonly encountered pediatric imaging requirements for the non-specialist hospital is pediatric CT in the emergency room setting. Thus, this educational program will begin with optimization of pediatric CT in the emergency department. Though pediatric cardiovascular MRI may be less common in the non-specialist hospitals, low pediatric volumes and unique cardiovascular anatomy make optimization of these techniques difficult. Therefore, our second speaker will review best practices in pediatric cardiovascular MRI based on experiences from a children’s hospital with a large volume of cardiac patients. Learning Objectives: To learn techniques for optimizing radiation dose and image quality for CT of children in the emergency room setting. To learn solutions for consistently high quality cardiovascular MRI of children

  17. TH-B-207B-00: Pediatric Image Quality Optimization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    This imaging educational program will focus on solutions to common pediatric image quality optimization challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children’s hospitals. One of the most commonly encountered pediatric imaging requirements for the non-specialist hospital is pediatric CT in the emergency room setting. Thus, this educational program will begin with optimization of pediatric CT in the emergency department. Though pediatric cardiovascular MRI may be less common in the non-specialist hospitals, low pediatric volumes and unique cardiovascular anatomy make optimization of these techniques difficult. Therefore, our second speaker will review best practices in pediatric cardiovascular MRI based on experiences from a children’s hospital with a large volume of cardiac patients. Learning Objectives: To learn techniques for optimizing radiation dose and image quality for CT of children in the emergency room setting. To learn solutions for consistently high quality cardiovascular MRI of children.

  18. Techniques for depth-resolved imaging through turbid media including coherence-gated imaging

    International Nuclear Information System (INIS)

    Dunsby, C; French, P M W

    2003-01-01

    This article aims to review the panoply of techniques for realising optical imaging through turbid media such as biological tissue. It begins by briefly discussing optical scattering and outlines the various approaches that have been developed to image through scattering media including spatial filtering, time-gated imaging and coherence-based techniques. The discussion includes scanning and wide-field techniques and concentrates on techniques to discriminate in favour of unscattered ballistic light although imaging with scattered light is briefly reviewed. Wide-field coherence-gated imaging techniques are discussed in some detail with particular emphasis placed on techniques to achieve real-time high-resolution three-dimensional imaging including through turbid media, providing rapid whole-field acquisition and high depth and transverse spatial resolution images. (topical review)

  19. Digital subtraction angiography in the assessment of cardiovascular disease

    International Nuclear Information System (INIS)

    Harrington, D.P.; Boxt, L.M.

    1985-01-01

    Digital subtraction angiography (DSA) is a new radiographic method for evaluating the cardiovascular system. It represents another in a continuing series of computer-assisted diagnostic imaging modalities. The advantages of this technique are its relatively noninvasive nature combined with diagnostically acceptable angiographic images of a variety of cardiovascular structures. Major clinical applications of DSA include its use in imaging of localized regions of peripheral arterial disease and as a screening procedure in evaluating extracranial carotid and vertebral artery disease and renovascular hypertension. Cardiac applications of DSA include assessment of ventricular function, recognition and quantification of intracardiac shunts, visualization of coronary artery bypass grafts, and the study of complex congenital cardiac malformations. Digital subtraction angiography may also be used to evaluate intracranial aneurysms and vascular tumors

  20. Survey Of Lossless Image Coding Techniques

    Science.gov (United States)

    Melnychuck, Paul W.; Rabbani, Majid

    1989-04-01

    Many image transmission/storage applications requiring some form of data compression additionally require that the decoded image be an exact replica of the original. Lossless image coding algorithms meet this requirement by generating a decoded image that is numerically identical to the original. Several lossless coding techniques are modifications of well-known lossy schemes, whereas others are new. Traditional Markov-based models and newer arithmetic coding techniques are applied to predictive coding, bit plane processing, and lossy plus residual coding. Generally speaking, the compression ratio offered by these techniques are in the area of 1.6:1 to 3:1 for 8-bit pictorial images. Compression ratios for 12-bit radiological images approach 3:1, as these images have less detailed structure, and hence, their higher pel correlation leads to a greater removal of image redundancy.

  1. Nanoimaging in cardiovascular diseases: Current state of the art

    Directory of Open Access Journals (Sweden)

    Suryyani Deb

    2015-01-01

    Full Text Available Nanotechnology has been integrated into healthcare system in terms of diagnosis as well as therapy. The massive impact of imaging nanotechnology has a deeper intervention in cardiology i.e. as contrast agents , to target vulnerable plaques with site specificity and in a theranostic approach to treat these plaques, stem cell delivery in necrotic myocardium, etc. Thus cardiovascular nanoimaging is not limited to simple diagnosis but also can help real time tracking during therapy as well as surgery. The present review provides a comprehensive description of the molecular imaging techniques for cardiovascular diseases with the help of nanotechnology and the potential clinical implications of nanotechnology for future applications.

  2. A joint procedural position statement on imaging in cardiac sarcoidosis : from the Cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology

    NARCIS (Netherlands)

    Slart, Riemer H J A; Glaudemans, Andor W J M; Lancellotti, Patrizio; Hyafil, Fabien; Blankstein, Ron; Schwartz, Ronald G; Jaber, Wael A; Russell, Raymond; Gimelli, Alessia; Rouzet, François; Hacker, Marcus; Gheysens, Olivier; Plein, Sven; Miller, Edward J; Dorbala, Sharmila; Donal, Erwan

    2017-01-01

    This joint position paper illustrates the role and the correct use of echocardiography, radionuclide imaging with F-18-fluorodeoxyglucose positron emission tomography, radionuclide myocardial perfusion imaging and cardiovascular magnetic resonance imaging for the evaluation and management of

  3. A joint procedural position statement on imaging in cardiac sarcoidosis: from the Cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology

    NARCIS (Netherlands)

    Slart, Riemer H. J. A.; Glaudemans, Andor W. J. M.; Lancellotti, Patrizio; Hyafil, Fabien; Blankstein, Ron; Schwartz, Ronald G.; Jaber, Wael A.; Russell, Raymond; Gimelli, Alessia; Rouzet, Francois; Hacker, Marcus; Gheysens, Olivier; Plein, Sven; Miller, Edward J.; Dorbala, Sharmila; Donal, Erwan; Sciagra, Roberto; Bucerius, Jan; Verberne, Hein J.; Lindner, Oliver; Uebleis, Christopher; Agostini, Denis; Signore, Alberto; Edvardsen, Thor; Neglia, Danilo; Beanlands, Rob S.; Di Carli, Marcelo; Chareonthaitawee, Panithaya; Dilsizian, Vasken; Soman, Prem; Habib, Gilbert

    2017-01-01

    This joint position paper illustrates the role and the correct use of echocardiography, radionuclide imaging with F-18-fluorodeoxyglucose positron emission tomography, radionuclide myocardial perfusion imaging and cardiovascular magnetic resonance imaging for the evaluation and management of

  4. Cardiac magnetic resonance imaging

    African Journals Online (AJOL)

    2011-03-06

    Mar 6, 2011 ... Cardiac magnetic resonance imaging. Cardiovascular magnetic resonance imaging is becoming a routine diagnostic technique. BRUCE s sPOTTiswOOdE, PhD. MRC/UCT Medical Imaging Research Unit, University of Cape Town, and Division of Radiology, Stellenbosch University. Bruce Spottiswoode ...

  5. Image Improvement Techniques

    Science.gov (United States)

    Shine, R. A.

    1997-05-01

    Over the last decade, a repertoire of techniques have been developed and/or refined to improve the quality of high spatial resolution solar movies taken from ground based observatories. These include real time image motion corrections, frame selection, phase diversity measurements of the wavefront, and extensive post processing to partially remove atmospheric distortion. Their practical application has been made possible by the increasing availability and decreasing cost of large CCD's with fast digital readouts and high speed computer workstations with large memories. Most successful have been broad band (0.3 to 10 nm) filtergram movies which can use exposure times of 10 to 30 ms, short enough to ``freeze'' atmospheric motions. Even so, only a handful of movies with excellent image quality for more than a hour have been obtained to date. Narrowband filtergrams (about 0.01 nm), such as those required for constructing magnetograms and Dopplergrams, have been more challenging although some single images approach the quality of the best continuum images. Some promising new techniques and instruments, together with persistence and good luck, should continue the progress made in the last several years.

  6. A novel data processing technique for image reconstruction of penumbral imaging

    Science.gov (United States)

    Xie, Hongwei; Li, Hongyun; Xu, Zeping; Song, Guzhou; Zhang, Faqiang; Zhou, Lin

    2011-06-01

    CT image reconstruction technique was applied to the data processing of the penumbral imaging. Compared with other traditional processing techniques for penumbral coded pinhole image such as Wiener, Lucy-Richardson and blind technique, this approach is brand new. In this method, the coded aperture processing method was used for the first time independent to the point spread function of the image diagnostic system. In this way, the technical obstacles was overcome in the traditional coded pinhole image processing caused by the uncertainty of point spread function of the image diagnostic system. Then based on the theoretical study, the simulation of penumbral imaging and image reconstruction was carried out to provide fairly good results. While in the visible light experiment, the point source of light was used to irradiate a 5mm×5mm object after diffuse scattering and volume scattering. The penumbral imaging was made with aperture size of ~20mm. Finally, the CT image reconstruction technique was used for image reconstruction to provide a fairly good reconstruction result.

  7. Isometric stress in cardiovascular magnetic resonance - a simple and easily replicable method of assessing cardiovascular differences not apparent at rest

    International Nuclear Information System (INIS)

    Mortensen, Kristian H.; Jones, Alexander; Steeden, Jennifer A.; Taylor, Andrew M.; Muthurangu, Vivek

    2016-01-01

    Isometric exercise may unmask cardiovascular disease not evident at rest, and cardiovascular magnetic resonance (CMR) imaging is proven for comprehensive resting assessment. This study devised a simple isometric exercise CMR methodology and assessed the hemodynamic response evoked by isometric exercise. A biceps isometric exercise technique was devised for CMR, and 75 healthy volunteers were assessed at rest, after 3-minute biceps exercise, and 5-minute of recovery using: (1) blood pressure (BP) and (2) CMR measured aortic flow and left ventricular function. Total peripheral resistance (SVR) and arterial compliance (TAC), cardiac output (CO), left ventricular volumes and function (ejection fraction, stroke volume, power output), blood pressure (BP), heart rate (HR), and rate pressure product were assessed at all time points. Image quality was preserved during stress. During exercise there were increases in CO (+14.9 %), HR (+17.0 %), SVR (+9.8 %), systolic BP (+22.4 %), diastolic BP (+25.4 %) and mean BP (+23.2 %). In addition, there were decreases in TAC (-22.0 %) and left ventricular ejection fraction (-6.3 %). Age and body mass index modified the evoked response, even when resting measures were similar. Isometric exercise technique evokes a significant cardiovascular response in CMR, unmasking physiological differences that are not apparent at rest. (orig.)

  8. Isometric stress in cardiovascular magnetic resonance - a simple and easily replicable method of assessing cardiovascular differences not apparent at rest

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, Kristian H.; Jones, Alexander; Steeden, Jennifer A.; Taylor, Andrew M.; Muthurangu, Vivek [UCL Centre for Cardiovascular MR, UCL Institute of Cardiovascular Science, Level 6 Old Nurses Home, Cardiorespiratory Unit, Great Ormond Street Hospital for Children, London (United Kingdom)

    2016-04-15

    Isometric exercise may unmask cardiovascular disease not evident at rest, and cardiovascular magnetic resonance (CMR) imaging is proven for comprehensive resting assessment. This study devised a simple isometric exercise CMR methodology and assessed the hemodynamic response evoked by isometric exercise. A biceps isometric exercise technique was devised for CMR, and 75 healthy volunteers were assessed at rest, after 3-minute biceps exercise, and 5-minute of recovery using: (1) blood pressure (BP) and (2) CMR measured aortic flow and left ventricular function. Total peripheral resistance (SVR) and arterial compliance (TAC), cardiac output (CO), left ventricular volumes and function (ejection fraction, stroke volume, power output), blood pressure (BP), heart rate (HR), and rate pressure product were assessed at all time points. Image quality was preserved during stress. During exercise there were increases in CO (+14.9 %), HR (+17.0 %), SVR (+9.8 %), systolic BP (+22.4 %), diastolic BP (+25.4 %) and mean BP (+23.2 %). In addition, there were decreases in TAC (-22.0 %) and left ventricular ejection fraction (-6.3 %). Age and body mass index modified the evoked response, even when resting measures were similar. Isometric exercise technique evokes a significant cardiovascular response in CMR, unmasking physiological differences that are not apparent at rest. (orig.)

  9. Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging

    NARCIS (Netherlands)

    Papavassiliu, T.; Kuhl, H.P.; Schroder, M.; Suselbeck, T.; Bondarenko, O.; Bohm, C.K.; van de Beek, A.; Hofman, M.M.; van Rossum, A.C.

    2005-01-01

    PURPOSE: To prospectively assess the effect of including or excluding endocardial trabeculae in left ventricular (LV) measurements and the reproducibility of these measurements at cine cardiovascular magnetic resonance (MR) imaging with true fast imaging with steady-state precession (FISP).

  10. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...... various requirements to be fulfilled in the design of an imaging system for breast cancer detection and some strategies to overcome these limitations....

  11. Performance limits of ICA-based heart rate identification techniques in imaging photoplethysmography

    International Nuclear Information System (INIS)

    Mannapperuma, Kavan; Holton, Benjamin D; Lesniewski, Peter J; Thomas, John C

    2015-01-01

    Imaging photoplethysmography is a relatively new technique for extracting biometric information from video images of faces. This is useful in non-invasive monitoring of patients including neonates or the aged, with respect to sudden infant death syndrome, sleep apnoea, pulmonary disease, physical or mental stress and other cardio-vascular conditions. In this paper, we investigate the limits of detection of the heart rate (HR) while reducing the video quality. We compare the performance of three independent component analysis (ICA) methods (JADE, FastICA, RADICAL), autocorrelation with signal conditioning techniques and identify the most robust approach. We discuss sources of increasing error and other limiting conditions in three situations of reduced signal-to-noise ratio: one where the area of the analyzed face is decreased from 100 to 5%, another where the face area is progressively re-sampled down to a single RGB pixel and one where the HR signal is severely reduced with respect to the boundary noise. In most cases, the cardiac pulse rate can be reliably and accurately detected from videos containing only 5% facial area or from a face occupying just 4 pixels or containing only 5% of the facial HR modulation. (paper)

  12. Imaging Techniques in Endodontics: An Overview

    Science.gov (United States)

    Deepak, B. S.; Subash, T. S.; Narmatha, V. J.; Anamika, T.; Snehil, T. K.; Nandini, D. B.

    2012-01-01

    This review provides an overview of the relevance of imaging techniques such as, computed tomography, cone beam computed tomography, and ultrasound, to endodontic practice. Many limitations of the conventional radiographic techniques have been overcome by the newer methods. Advantages and disadvantages of various imaging techniques in endodontic practice are also discussed. PMID:22530184

  13. Urologic imaging and interventional techniques

    International Nuclear Information System (INIS)

    Bush, W.H.

    1989-01-01

    This book provides an overview of all imaging modalities and invasive techniques of the genitourinary system. Three general chapters discuss ionic and nonionic contrast media, the management of reactions to contrast media, and radiation doses from various uroradiologic procedures. Chapters are devoted to intravenous pyelography, computed tomography, magnetic resonance imaging, ultrasound, nuclear medicine, lymphography, arteriography, and venography. Two chapters discuss the pediatric applications of uroradiology and ultrasound. Two chapters integrate the various imaging techniques of the upper and lower genitourinary systems into an algorithmic approach for various pathologic entities

  14. Cardiovascular nuclear medicine and MRI

    International Nuclear Information System (INIS)

    Reiber, J.H.C.; Wall, E.E. van der

    1992-01-01

    This book is based on a meeting of the Working Group on Nuclear Cardiology, which held March 22-23,1991 under the auspices of the European Society of Cardiology and the Interuniversity Cardiology Institute of the Netherlands, and on the Second International Symposium on Computer Applications in Nuclear Medicine and Cardiac Magnetic Resonance Imaging, which was held March 20-22,1991 in Rotterdam, the Netherlands. It covers almost every aspect of quantitative cardio-vascular nuclear medicine and magnetic resonance imaging. The main topics are: single photon emission computed tomography (technical aspects); new development in cardiovascular nuclear medicine; advances in cardiovascular imaging; cardiovascular clinical applications; and cardiac magnetic resonance imaging. (A.S.). refs.; figs.; tabs

  15. Cardiovascular Magnetic Resonance in Cardiology Practice: A Concise Guide to Image Acquisition and Clinical Interpretation.

    Science.gov (United States)

    Valbuena-López, Silvia; Hinojar, Rocío; Puntmann, Valentina O

    2016-02-01

    Cardiovascular magnetic resonance plays an increasingly important role in routine cardiology clinical practice. It is a versatile imaging modality that allows highly accurate, broad and in-depth assessment of cardiac function and structure and provides information on pertinent clinical questions in diseases such as ischemic heart disease, nonischemic cardiomyopathies, and heart failure, as well as allowing unique indications, such as the assessment and quantification of myocardial iron overload or infiltration. Increasing evidence for the role of cardiovascular magnetic resonance, together with the spread of knowledge and skill outside expert centers, has afforded greater access for patients and wider clinical experience. This review provides a snapshot of cardiovascular magnetic resonance in modern clinical practice by linking image acquisition and postprocessing with effective delivery of the clinical meaning. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  16. Imaging techniques in transcatheter aortic valve replacement

    Directory of Open Access Journals (Sweden)

    Quaife RA

    2013-11-01

    Full Text Available Robert A Quaife, Jennifer Dorosz, John C Messenger, Ernesto E Salcedo Division of Cardiology, University of Colorado, Aurora, CO, USA Abstract: Calcific aortic stenosis is now understood as a complex valvular degenerative process sharing many risk factors with atherosclerosis. Once patients develop symptomatic calcific aortic stenosis, the only effective treatment is aortic valve replacement. In the past decade, transcatheter aortic valve replacement (TAVR has been developed as an alternative to surgery to treat severe calcific aortic stenosis. Cardiac imaging plays a pivotal role in the contemporary management of patients with calcific aortic stenosis, and particularly in patients being considered for TAVR, who demand detailed imaging of the aortic valve apparatus. In this review, we highlight the role of cardiac imaging for patient selection, procedural guidance, and evaluation of results of TAVR. Keywords: aortic stenosis, cardiovascular imaging, transcutaneous aortic valve replacement

  17. Cardiovascular evaluation of lowland gorillas

    International Nuclear Information System (INIS)

    Junge, R.E.; Mezei, L.E.; Muhlbauer, M.C.; Weber, M.

    1998-01-01

    To design a diagnostic protocol that uses appropriate techniques, including ultrasonography, to assess cardiovascular health and detect primary cardiac diseases in gorillas and to establish a database of reference values for cardiac measurements in clinically normal gorillas. Prospective study. 5 adult male lowland gorillas from 11 to 18 years old. A complete cardiac evaluation was performed on anesthetized gorillas, including physical examination, thoracic radiography, electrocardiography, echocardiography, blood pressure determination, CBC, serum biochemical analyses, and serologic assay for viral diseases. Standard cardiac measurements were made from images collected during ultrasonography. Cardiac measurements derived from ultrasonographic images were consistent with those considered normal in human beings. Results of other diagnostic tests were also considered normal. Cardiac disease is the primary cause of mortality in old captive gorillas. The technique used here provided excellent evaluation of cardiac function. Use of these techniques will allow early detection of cardiac disease, making treatment or medical management possible

  18. Cardiovascular nuclear medicine: state of the art

    International Nuclear Information System (INIS)

    Milcinski, M.

    1994-01-01

    Evaluation of myocardial function: first pass studies can be obtained at time of almost every investigation. Assessment of myocardial function is improved using short living isotopes and repeated stress studies as well as gated tomographic imaging and technetium perfusion agents. Nonimaging probes have limited value in continuous monitoring of cardiac function. Stress-echo (transoesophageal) is competitive to nuclear techniques in assessment of contractility. Myocardial perfusion imaging using knowledge from PET and available tomographic or planar imaging modalities gives unique possibilities to detect viable myocardium. Thallium remains the tracer for myocardial viability evaluation on convenient systems when new imaging protocols are applied. New technetium labeled radiopharmaceuticals allow better imaging possibilities for SPECT techniques. Several pharmacological agents are available in addition to traditional physical stress for assessing hemodynamic importance of coronary artery stenoses for diagnosis and in treatment evaluation. Imaging myocardial necrosis is marginal in conformation of majority of acute myocardial infarctions. It is used to assess area at risk after thrombolytic therapy for evolving myocardial infarction using dual-isotope techniques (perfusion agent with infarct-avid tracer in dual isotope technique). Antimyosin antibodies are useful also for confirmation of subacute or remote infarction, myocarditis or rejection after cardiac transplantation. Metabolic and receptor imaging are promising in evaluation of cardiomyopathies and myocardial viability not only on positron emission tomography but also on available imaging systems. In conclusion, new techniques and new radiopharmaceuticals for cardiovascular imaging allow more accurate answers to clinical problems. As the possibilities for research and clinical PET are limited, further transfer of PET-results to convenient imaging modalities is promising. (author)

  19. Imaging techniques and investigation protocols in pediatric emergency imaging

    International Nuclear Information System (INIS)

    Scharitzer, M.; Hoermann, M.; Puig, S.; Prokop, M.

    2002-01-01

    Paediatric emergencies demand a quick and efficient radiological investigation with special attention to specific adjustments related to patient age and radiation protection. Imaging modalities are improving rapidly and enable to diagnose childhood diseases and injuries more quickly, accurately and safely. This article provides an overview of imaging techniques adjusted to the age of the child and an overview of imaging strategies of common paediatric emergencies. Optimising the imaging parameters (digital radiography, different screen-film systems, exposure specifications) allows for substantial reduction of radiation dose. Spiral- and multislice-CT reduce scan time and enable a considerable reduction of radiation exposure if scanning parameters (pitch setting, tube current) are properly adjusted. MRI is still mainly used for neurological or spinal emergencies despite the advent of fast imaging sequences. The radiologist's task is to select an appropriate imaging strategy according to expected differential diagnosis and to adjust the imaging techniques to the individual patient. (orig.) [de

  20. ASCI 2010 contrast media guideline for cardiac imaging: a report of the Asian Society of Cardiovascular Imaging cardiac computed tomography and cardiac magnetic resonance imaging guideline working group

    Science.gov (United States)

    Kitagawa, Kakuya; Tsai, I-Chen; Chan, Carmen; Yu, Wei; Yong, Hwan Seok; Choi, Byoung Wook

    2010-01-01

    The use of contrast media for cardiac imaging becomes increasing as the widespread of cardiac CT and cardiac MR. A radiologist needs to carefully consider the indication and the injection protocol of contrast media to be used as well as the possibility of adverse effect. There are several guidelines for contrast media in western countries. However, these are focusing the adverse effect of contrast media. The Asian Society of Cardiovascular Imaging, the only society dedicated to cardiovascular imaging in Asia, formed a Working Group and created a guideline, which summarizes the integrated knowledge of contrast media for cardiac imaging. In cardiac imaging, coronary artery evaluation is feasible by non-contrast MR angiography, which can be an alternative examination in high risk patients for the use of iodine contrast media. Furthermore, the body habitus of Asian patients is usually smaller than that of their western counterparts. This necessitates modifications in the injection protocol and in the formula for calculation of estimated glomerular filtration rate. This guideline provided fundamental information for the use of contrast media for Asian patients in cardiac imaging. PMID:20931289

  1. Physics-based optimization of image quality in 3D X-ray flat-panel cone-beam imaging

    NARCIS (Netherlands)

    Snoeren, R.M.

    2012-01-01

    This thesis describes the techniques for modeling and control of 3D X-ray cardiovascular systems in terms of Image Quality and patient dose, aiming at optimizing the diagnostic quality. When aiming at maximum Image Quality (IQ), a cascaded system constituted from inter-dependent imaging components,

  2. What's new in cardiac imaging?

    International Nuclear Information System (INIS)

    Wall, E.E. van der; Niemeyer, M.G.

    1992-01-01

    Since the introduction of myocardial perfusion imaging and radionuclide angiography in mid-seventies, cardiovascular nuclear medicine has undergone an explosive growth. Use of nuclear cardiology techniques has become one of the cornerstones of noninvasive assessment of coronary artery disease. In the past 15 years, major steps were made from visual analysis to quantitative analysis, from planar imaging to tomographic imaging, from disease-detection to prognosis, and from separate evaluations of perfusion, metabolism and function to an integrated assessment of myocardial viability.In recent years, many more advances have been made in cardiovascular nuclear imaging, such as the development of new imaging agents, re-evaluation of existing procedures, and new clinical applications. This book describes most recent developments in nuclear cardiology and also addresses new contrast agents in MRI. This book will assist clinical cardiologist, cardiology fellow, nuclear medicine physician, and radiologist in understanding the most recent achievements in clinical cardiovascular nuclear imaging

  3. ECG gated NMR-CT for cardiovascular diseases

    International Nuclear Information System (INIS)

    Nishikawa, J.; Machida, K.; Iio, M.; Yoshimoto, N.; Sugimoto, T.; Kawaguchi, H.; Mano, H.

    1984-01-01

    The authors applied NMR-CT to cardiac study with ECG gated technique to evaluate the left ventricular (LV) function and compared it with cardiovascular nuclear medicine study (NM). The NMR-CT machine has resistive air-core magnet with 0.15 Tesla. The saturation recovery image or inversion recovery image were obtained as 256 x 256 matrix and 15 mm in thickness. The study population was ten patients who were evaluated both by NMR image and by NM performed within one week interval. The heart muscle was able to be visualized without any contrast material nor radioisotopes in inversion recovery images, whereas saturation recovery images failed to separate heart muscle from blood pool. The wall motions of LV in both methods were well correlated except for inferior wall. The values of ejection fraction in NMR image were moderately low, but two modalities showed satisfactory correlation (r=0.85). The region of myocardial infarction was revealed as wall thinning and/or wall motion abnormality. It is still preliminary to draw a conclusion, however, it can be said that in the evaluation of LV function, method by NMR might be of equal value to those of NM. It can be certain that eventually gated NMR-CT will become more effective method for various aspects of cardiovascular evaluation

  4. Clinical application of nuclear magnetic resonance imaging (resistive type) on cardiovascular disease

    International Nuclear Information System (INIS)

    Imai, Hitoshi; Yoshida, Katsuya; Watanabe, Shigeru; Masuda, Yoshiaki; Inagaki, Yoshiaki; Ikehira, Hiroo; Fukuda, Nobuo; Tateno, Yukio.

    1984-01-01

    In order to evaluate the usefulness of Nuclear Magnetic Resonance (NMR) imaging in diagnosing cardiovascular disease, 27 subjects were examined using a 0.1-Tesla resistive type (ASAHI MARK-J). In 10 normal subjects, four cardiac chambers, interventricular septum, aorta, pulmonary vessels and vena cava were clearly identified in NMR imaging. In two patients with old anteroseptal myocardial infarction, anteroseptal wall thinning and left ventricular aneurysm with mural thrombi were demonstrated. In two cases of antrolateral and posterolateral myocardial infarction, however, infarcted areas were not identified in NMR imaging. In one patient with congestive cardiomyopathy, enlarged left ventricle without hypertrophy was recognized. In two patients with hypertrophic obstructive cardiomyopathy, NMR imaging disclosed thickened left ventricular wall associated with its narrowed cavity. A mural thrombus in the right ventricle was distinctly visualized in one patient with cardio-vascular Behcet's disease. In two patients with mitral valve stenosis, enlarged left atrium with a mural thrombus was clearly demonstrated in both cross and longitudinal sections. In three patients with thoratic aortic aneurysm, local dilatation of aorta and mural thrombi were recognized. In four patients with dissecting aortic aneurysm, double channels with an intimal flap in the aorta were visualized in NMR imaging. Mean T 1 values and standard deviations of left ventricle, left ventricular wall, and thrombi were 593+-89, 341+-20, 316+-84 msec, respectively. Mean T 1 values of thrombi were ordinally shorter than those of left ventricule. But some thrombi which might be expected fresh had longer T 1 values. (J.P.N.)

  5. Advances in cardiac magnetic resonance imaging of congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, Mieke M.P. [University of Utrecht, University Medical Center Utrecht, Department of Radiology, PO Box 85500, Utrecht (Netherlands); University of Utrecht, University Medical Center Utrecht, Department of Cardiology, PO Box 85500, Utrecht (Netherlands); The Interuniversity Cardiology Institute of the Netherlands (ICIN) - Netherlands Heart Institute, PO Box 19258, Utrecht (Netherlands); Breur, Johannes M.P.J. [Wilhelmina Children' s Hospital, University Medical Center Utrecht, Department of Pediatric Cardiology, PO Box 85500, Utrecht (Netherlands); Budde, Ricardo P.J.; Oorschot, Joep W.M. van; Leiner, Tim [University of Utrecht, University Medical Center Utrecht, Department of Radiology, PO Box 85500, Utrecht (Netherlands); Kimmenade, Roland R.J. van; Sieswerda, Gertjan Tj [University of Utrecht, University Medical Center Utrecht, Department of Cardiology, PO Box 85500, Utrecht (Netherlands); Meijboom, Folkert J. [University of Utrecht, University Medical Center Utrecht, Department of Cardiology, PO Box 85500, Utrecht (Netherlands); Wilhelmina Children' s Hospital, University Medical Center Utrecht, Department of Pediatric Cardiology, PO Box 85500, Utrecht (Netherlands)

    2015-01-01

    Due to advances in cardiac surgery, survival of patients with congenital heart disease has increased considerably during the past decades. Many of these patients require repeated cardiovascular magnetic resonance imaging to assess cardiac anatomy and function. In the past decade, technological advances have enabled faster and more robust cardiovascular magnetic resonance with improved image quality and spatial as well as temporal resolution. This review aims to provide an overview of advances in cardiovascular magnetic resonance hardware and acquisition techniques relevant to both pediatric and adult patients with congenital heart disease and discusses the techniques used to assess function, anatomy, flow and tissue characterization. (orig.)

  6. Biometric image enhancement using decision rule based image fusion techniques

    Science.gov (United States)

    Sagayee, G. Mary Amirtha; Arumugam, S.

    2010-02-01

    Introducing biometrics into information systems may result in considerable benefits. Most of the researchers confirmed that the finger print is widely used than the iris or face and more over it is the primary choice for most privacy concerned applications. For finger prints applications, choosing proper sensor is at risk. The proposed work deals about, how the image quality can be improved by introducing image fusion technique at sensor levels. The results of the images after introducing the decision rule based image fusion technique are evaluated and analyzed with its entropy levels and root mean square error.

  7. New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Oyebola O. Sogbein

    2014-01-01

    Full Text Available Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT myocardial perfusion imaging (MPI with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET and magnetic resonance imaging (MRI continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed.

  8. Automated medical image segmentation techniques

    Directory of Open Access Journals (Sweden)

    Sharma Neeraj

    2010-01-01

    Full Text Available Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT and Magnetic resonance (MR imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images.

  9. Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging.

    Science.gov (United States)

    Zhou, Ruixi; Huang, Wei; Yang, Yang; Chen, Xiao; Weller, Daniel S; Kramer, Christopher M; Kozerke, Sebastian; Salerno, Michael

    2018-02-01

    Cardiovascular magnetic resonance (CMR) stress perfusion imaging provides important diagnostic and prognostic information in coronary artery disease (CAD). Current clinical sequences have limited temporal and/or spatial resolution, and incomplete heart coverage. Techniques such as k-t principal component analysis (PCA) or k-t sparcity and low rank structure (SLR), which rely on the high degree of spatiotemporal correlation in first-pass perfusion data, can significantly accelerate image acquisition mitigating these problems. However, in the presence of respiratory motion, these techniques can suffer from significant degradation of image quality. A number of techniques based on non-rigid registration have been developed. However, to first approximation, breathing motion predominantly results in rigid motion of the heart. To this end, a simple robust motion correction strategy is proposed for k-t accelerated and compressed sensing (CS) perfusion imaging. A simple respiratory motion compensation (MC) strategy for k-t accelerated and compressed-sensing CMR perfusion imaging to selectively correct respiratory motion of the heart was implemented based on linear k-space phase shifts derived from rigid motion registration of a region-of-interest (ROI) encompassing the heart. A variable density Poisson disk acquisition strategy was used to minimize coherent aliasing in the presence of respiratory motion, and images were reconstructed using k-t PCA and k-t SLR with or without motion correction. The strategy was evaluated in a CMR-extended cardiac torso digital (XCAT) phantom and in prospectively acquired first-pass perfusion studies in 12 subjects undergoing clinically ordered CMR studies. Phantom studies were assessed using the Structural Similarity Index (SSIM) and Root Mean Square Error (RMSE). In patient studies, image quality was scored in a blinded fashion by two experienced cardiologists. In the phantom experiments, images reconstructed with the MC strategy had higher

  10. Radar rainfall image repair techniques

    Directory of Open Access Journals (Sweden)

    Stephen M. Wesson

    2004-01-01

    Full Text Available There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and are nearest neighbour techniques of two sub-types: Individual Target and Border Tracing. The contaminated data is estimated through Kriging, considered the optimal technique for the spatial interpolation of Gaussian data, where the 'screening effect' that occurs with the Kriging weighting distribution around target points is exploited to ensure computational efficiency. Matrix rank reduction techniques in combination with Singular Value Decomposition (SVD are also suggested for finding an efficient solution to the Kriging Equations which can cope with near singular systems. Rainfall estimation at ground level from radar rainfall volume scan data is of interest and importance in earth bound applications such as hydrology and agriculture. As an extension of the above, Ordinary Kriging is applied to three-dimensional radar rainfall data to estimate rainfall rate at ground level. Keywords: ground clutter, data infilling, Ordinary Kriging, nearest neighbours, Singular Value Decomposition, border tracing, computation time, ground level rainfall estimation

  11. Ultra-small superparamagnetic particles of iron oxide in magnetic resonance imaging of cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Stirrat CG

    2014-10-01

    Full Text Available Colin G Stirrat,1 Alex T Vesey,1 Olivia MB McBride,1 Jennifer MJ Robson,1 Shirjel R Alam,1 William A Wallace,2 Scott I Semple,1,3 Peter A Henriksen,1 David E Newby1 1British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; 2Department of Pathology, University of Edinburgh, Edinburgh, UK; 3Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK Abstract: Ultra-small superparamagnetic particles of iron oxide (USPIO are iron-oxide based contrast agents that enhance and complement in vivo magnetic resonance imaging (MRI by shortening T1, T2, and T2* relaxation times. USPIO can be employed to provide immediate blood pool contrast, or to act as subsequent markers of cellular inflammation through uptake by inflammatory cells. They can also be targeted to specific cell-surface markers using antibody or ligand labeling. This review will discuss the application of USPIO contrast in MRI studies of cardiovascular disease. Keywords: cardiac, aortic, MRI, USPIO, carotid, vascular, molecular imaging

  12. IMAGE ANALYSIS BASED ON EDGE DETECTION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K-means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model,gray level l, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.

  13. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults

    DEFF Research Database (Denmark)

    Lancellotti, Patrizio; Nkomo, Vuyisile T; Badano, Luigi P

    2013-01-01

    . A comprehensive review of potential cardiac complications related to radiotherapy is warranted. An evidence-based review of several imaging approaches used to detect, evaluate, and monitor RIHD is discussed. Recommendations for the early identification and monitoring of cardiovascular complications...

  14. Imaging and Diagnosis: Using Imaging to Fight the World’S Biggest Killers

    International Nuclear Information System (INIS)

    Madsen, Michael

    2013-01-01

    Modern medicine has developed techniques and cures for many of humanity’s ailments, treatments that often require early detection or frequent observations. Some of the most revolutionary advances in improving diagnosis and observation of diseases have been through the use of imaging. Radioisotope imaging techniques like SPECT, PET/CT and conventional imaging such as MRI and CT are instrumental in fighting modern diseases like cardiovascular disease and cancer, and the IAEA plays an important role in helping its Member States acquire the skills and resources for implementing these technologies

  15. Whole body cardiovascular magnetic resonance imaging to stratify symptomatic and asymptomatic atherosclerotic burden in patients with isolated cardiovascular disease

    International Nuclear Information System (INIS)

    Weir-McCall, Jonathan R.; Duce, Suzanne L.; Gandy, Stephen J.; Matthew, Shona Z.; Martin, Patricia; Cassidy, Deirdre B.; McCormick, Lynne; Belch, Jill J. F.; Struthers, Allan D.; Colhoun, Helen M.; Houston, J. Graeme

    2016-01-01

    The aim of this study was to use whole body cardiovascular magnetic resonance imaging (WB CVMR) to assess the heart and arterial network in a single examination, so as to describe the burden of atherosclerosis and subclinical disease in participants with symptomatic single site vascular disease. 64 patients with a history of symptomatic single site vascular disease (38 coronary artery disease (CAD), 9 cerebrovascular disease, 17 peripheral arterial disease (PAD)) underwent whole body angiogram and cardiac MR in a 3 T scanner. The arterial tree was subdivided into 31 segments and each scored according to the degree of stenosis. From this a standardised atheroma score (SAS) was calculated. Cine and late gadolinium enhancement images of the left ventricle were obtained. Asymptomatic atherosclerotic disease with greater than 50 % stenosis in arteries other than that responsible for their presenting complain was detected in 37 % of CAD, 33 % of cerebrovascular and 47 % of PAD patients. Unrecognised myocardial infarcts were observed in 29 % of PAD patients. SAS was significantly higher in PAD patients 24 (17.5-30.5) compared to CAD 4 (2–11.25) or cerebrovascular disease patients 6 (2-10) (ANCOVA p < 0.001). Standardised atheroma score positively correlated with age (β 0.36 p = 0.002), smoking status (β 0.34 p = 0.002), and LV mass (β -0.61 p = 0.001) on multiple linear regression. WB CVMR is an effective method for the stratification of cardiovascular disease. The high prevalence of asymptomatic arterial disease, and silent myocardial infarctions, particularly in the peripheral arterial disease group, demonstrates the importance of a systematic approach to the assessment of cardiovascular disease

  16. X-ray image intensifier for cardiovascular diagnosis. Development of RTP 9203 B-P4 and evaluation of image quality

    Energy Technology Data Exchange (ETDEWEB)

    Obata, Y; Suzuki, A; Noji, T; Harao, N [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1979-07-01

    The high utility of 35-mm cine fluorography with high-quality X-ray image intensifier has recently been acknowledged in the field of cardiovascular diagnosis. The newly developed 9-inch dual-field X-ray image intensifier is particularly suitable for 35-mm cinefluorography. The main characteristics of this tube are the increased contrast, brightness and resolution of images and the reduced quantum noise. These characteristics are caused by the CsI input phosphor screen which has a ''light-guide effect'', a high-sensitivity photocathode and a dark output screen. The tube is equipped with a high-voltage power supply with high reliability.

  17. Dual-energy chest imaging with the variable compensation technique

    International Nuclear Information System (INIS)

    Dobbins, J.T.; Powell, A.O.

    1988-01-01

    The authors reported on a new imaging algorithm, termed the variable compensation (VC) technique, that combines the signal-to-noise ratio (S/N) advantages of x-ray beam compensation with the ability to adjust retrospectively the amount of displayed image equalization. The VC technique acquires a compensated image of the patient and also an image of the modulated beam profile incident on the patient. A fraction of the beam profile image is then subtracted from the compensated image. A limitation of traditional dual-energy techniques is the significant S/N degradation in poorly penetrated regions. Their new VC technique permits improvement in image S/N before formation of the dual-energy image pair. Specifically, the authors subtract 100% of the beam image from the compensated image for both the high- and low-energy images and produce a pair of images that appear similar to the normal high- and low-energy pair, except for improved S/N in the mediastinum due to the beam compensator. S/N measurements in tissue-canceled chest phantom images show the improved S/N visualization of calcified squares in the mediastinum with our technique

  18. Value of Cardiovascular Magnetic Resonance Imaging in Noninvasive Risk Stratification in Tetralogy of Fallot

    NARCIS (Netherlands)

    Bokma, Jouke P.; de Wilde, Koen C.; Vliegen, Hubert W.; van Dijk, Arie P.; van Melle, Joost P.; Meijboom, Folkert J.; Zwinderman, Aeilko H.; Groenink, Maarten; Mulder, Barbara J. M.; Bouma, Berto J.

    IMPORTANCE Adults late after total correction of tetralogy of Fallot (TOF) are at risk for majorcomplications. Cardiovascular magnetic resonance (CMR) imaging is recommended toquantify right ventricular (RV) and left ventricular (LV) function. However, a commonly usedrisk model by Khairy et al

  19. Non-contact assessment of obstructive sleep apnea cardiovascular biomarkers using photoplethysmography imaging

    Science.gov (United States)

    Amelard, Robert; Pfisterer, Kaylen J.; Jagani, Shubh; Clausi, David A.; Wong, Alexander

    2018-02-01

    Obstructive sleep apnea (OSA) affects 20% of the adult population, and is associated with cardiovascular and cognitive morbidities. However, it is estimated that up to 80% of treatable OSA cases remain undiagnosed. Cur- rent methods for diagnosing OSA are expensive, labor-intensive, and involve uncomfortable wearable sensors. This study explored the feasibility of non-contact biophotonic assessment of OSA cardiovascular biomarkers via photoplethysmography imaging (PPGI). In particular, PPGI was used to monitor the hemodynamic response to obstructive respiratory events. Sleep apnea onset was simulated using Muller's maneuver in which breathing was obstructed by a respiratory clamp. A custom PPGI system, coded hemodynamic imaging (CHI), was positioned 1 m above the bed and illuminated the participant's head with 850 nm light, providing non-intrusive illumination for night-time monitoring. A video was recorded before, during and following an apnea event at 60 fps, yielding 17 ms temporal resolution. Per-pixel absorbance signals were extracted using a Beer-Lambert derived light transport model, and subsequently denoised. The extracted hemodynamic signal exhibited dynamic temporal modulation during and following the apnea event. In particular, the pulse wave amplitude (PWA) decreased during obstructed breathing, indicating vasoconstriction. Upon successful inhalation, the PWA gradually increased toward homeostasis following a temporal phase delay. This temporal vascular tone modulation provides insight into autonomic and vascular response, and may be used to assess sleep apnea using non-contact biophotonic imaging.

  20. Acoustical holographic Siamese image technique for imaging radial cracks in reactor piping

    International Nuclear Information System (INIS)

    Collins, H.D.; Gribble, R.P.

    1985-04-01

    This paper describes a unique technique (i.e., ''Siamese imaging'') for imaging quasi-vertical defects in reactor pipe weldments. The Siamese image is a bi-symmetrical view of the inner surface defect. Image construction geometry consists of two probes (i.e., source/receiver) operating either from opposite sides or the same side of the defect to be imaged. As the probes are scanned across a lower surface connected defect, they encounter two images - first the normal upright image and then the inverted image. The final integrated image consists of two images connected along their baselines, thus we call it a ''Siamese image.'' The experimental imaging results on simulated and natural cracks in reactor piping weldments graphically illustrate this unique technique. Excellent images of mechanical fatique and thermal cracks were obtained on ferritic and austenitic piping

  1. Functional imaging of the pancreas. Image processing techniques and clinical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Fumiko

    1984-02-01

    An image processing technique for functional imaging of the pancreas was developed and is here reported. In this paper, clinical efficacy of the technique for detecting pancreatic abnormality is evaluated in comparison with conventional pancreatic scintigraphy and CT. For quantitative evaluation, functional rate, i.e. the rate of normal functioning pancreatic area, was calculated from the functional image and subtraction image. Two hundred and ninety-five cases were studied using this technique. Conventional image had a sensitivity of 65% and a specificity of 78%, while the use of functional imaging improved sensitivity to 88% and specificity to 88%. The mean functional rate in patients with pancreatic disease was significantly lower (33.3 +- 24.5 in patients with chronic pancreatitis, 28.1 +- 26.9 in patients with acute pancreatitis, 43.4 +- 22.3 in patients with diabetes mellitus, 20.4 +- 23.4 in patients with pancreatic cancer) than the mean functional rate in cases without pancreatic disease (86.4 +- 14.2). It is suggested that functional image of the pancreas reflecting pancreatic exocrine function and functional rate is a useful indicator of pancreatic exocrine function.

  2. Three dimensional imaging technique for laser-plasma diagnostics

    International Nuclear Information System (INIS)

    Jiang Shaoen; Zheng Zhijian; Liu Zhongli

    2001-01-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments

  3. Three dimensional imaging technique for laser-plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Shaoen, Jiang; Zhijian, Zheng; Zhongli, Liu [China Academy of Engineering Physics, Chengdu (China)

    2001-04-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments.

  4. Refinement of gamma-camera diagnosis of cardiovascular diseases

    International Nuclear Information System (INIS)

    Shejretova, E.; Garcheva, M.; Trindev, P.; Hadzhikostova, H.

    1989-01-01

    The following new methods of radionuclide diagnostic techniques were introduced: 1. Study of regional myocardial perfusion: a) Late (on hour 18) follow-up of the redistribution of 201 Tl images in the heart muscle; b) background correction and computer processing of early and late 201 Tl images in the heart muscle. 2. Study of the pump cardiac function: a) program for manual outlining of left ventricular contours; b) phase analysis; c) method for objective differention of the reight ventricle. The methods described have been used in 210 patients with cardiovascular diseases

  5. Cardiovascular assessment of patients with Ullrich-Turner's Syndrome on Doppler echocardiography and magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Castro Ana Valéria Barros de

    2002-01-01

    Full Text Available OBJECTIVE: To assess the cardiovascular features of Ullrich-Turner's syndrome using echocardiography and magnetic resonance imaging, and to correlate them with the phenotype and karyotype of the patients. The diagnostic concordance between the 2 methods was also assessed. METHODS: Fifteen patients with the syndrome were assessed by echocardiography and magnetic resonance imaging (cardiac chambers, valves, and aorta. Their ages ranged from 10 to 28 (mean of 16.7 years. The karyotype was analyzed in 11 or 25 metaphases of peripheral blood lymphocytes, or both. RESULTS: The most common phenotypic changes were short stature and spontaneous absence of puberal development (100%; 1 patient had a cardiac murmur. The karyotypes detected were as follows: 45,X (n=7, mosaics (n=5, and deletions (n=3. No echocardiographic changes were observed. In regard to magnetic resonance imaging, coarctation and dilation of the aorta were found in 1 patient, and isolated dilation of the aorta was found in 4 patients. CONCLUSION: The frequencies of coarctation and dilation of the aorta detected on magnetic resonance imaging were similar to those reported in the literature (5.5% to 20%, and 6.3% to 29%, respectively. This confirmed the adjuvant role of magnetic resonance imaging to Doppler echocardiography for diagnosing cardiovascular alterations in patients with Ullrich-Turner's syndrome.

  6. Digital fluoroscopy: Technique and applications for evaluating left ventricular function

    International Nuclear Information System (INIS)

    Higgins, C.B.; Norris, S.L.; Gerber, K.H.; Ashburn, W.L.; Slutsky, R.A.

    1985-01-01

    Central cardiovascular dynamics can be studied without cardiac catheterization by digital processing of fluoroscopic images of the heart obtained after central intravenous injection of contrast media. While digital subtraction angiography has been used for studying peripheral vasculature for several years, it is only recently that this technique has been applied for assessing cardiac morphology and physiology. The conversion of fluoroscopic x-ray data into a digital form has an added advantage for the study of the central cardiovascular system since it not only permits contrast enhancement of the images but also facilitates quantitative and functional analysis of the x-ray data. The several applications described in this chapter suggest that digital subtraction cardiovascular angiography will prove to be a powerful tool for studying cardiovascular physiology in animals and for evaluating heart disease in patients

  7. Cardiovascular magnetic resonance in adults with previous cardiovascular surgery.

    Science.gov (United States)

    von Knobelsdorff-Brenkenhoff, Florian; Trauzeddel, Ralf Felix; Schulz-Menger, Jeanette

    2014-03-01

    Cardiovascular magnetic resonance (CMR) is a versatile non-invasive imaging modality that serves a broad spectrum of indications in clinical cardiology and has proven evidence. Most of the numerous applications are appropriate in patients with previous cardiovascular surgery in the same manner as in non-surgical subjects. However, some specifics have to be considered. This review article is intended to provide information about the application of CMR in adults with previous cardiovascular surgery. In particular, the two main scenarios, i.e. following coronary artery bypass surgery and following heart valve surgery, are highlighted. Furthermore, several pictorial descriptions of other potential indications for CMR after cardiovascular surgery are given.

  8. CATEGORICAL IMAGE COMPONENTS IN THE FORMING SYSTEM OF A MARKETING TECHNIQUES MANAGER’S IMAGE CULTURE

    Directory of Open Access Journals (Sweden)

    Anna Borisovna Cherednyakova

    2015-08-01

    Full Text Available Based on the understanding of the image culture formation of managers of marketing techniques, as a representative of the social and communication interaction of public structures, categorical apparatus of image culture with an emphasis on the etymology of the image, as an integral component of image culture was analyzed. Categorical components of the image are presented from the standpoint of image culture, as personal new formation, an integral part of the professional activity of the marketing techniques manager: object-communicative categorical component, subject-activity categorical component of image, personality-oriented categorical component, value-acmeological categorical component of image.The aim is to identify and justify the image categorical components as a component of image culture of the marketing techniques manager.Method and methodology of work – a general scientific research approach reflecting scientific apparatus of research.Results. Categorical components of the image, as an image culture component of manager of marketing techniques were defined.Practical implication of the results. The theoretical part of «Imageology» course, special course «Image culture of manager of marketing techniques», the theoretical and methodological study and the formation of image culture.

  9. A dual-view digital tomosynthesis imaging technique for improved chest imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C., E-mail: cshaw@mdanderson.org [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054 (United States)

    2015-09-15

    Purpose: Digital tomosynthesis (DTS) has been shown to be useful for reducing the overlapping of abnormalities with anatomical structures at various depth levels along the posterior–anterior (PA) direction in chest radiography. However, DTS provides crude three-dimensional (3D) images that have poor resolution in the lateral view and can only be displayed with reasonable quality in the PA view. Furthermore, the spillover of high-contrast objects from off-fulcrum planes generates artifacts that may impede the diagnostic use of the DTS images. In this paper, the authors describe and demonstrate the use of a dual-view DTS technique to improve the accuracy of the reconstructed volume image data for more accurate rendition of the anatomy and slice images with improved resolution and reduced artifacts, thus allowing the 3D image data to be viewed in views other than the PA view. Methods: With the dual-view DTS technique, limited angle scans are performed and projection images are acquired in two orthogonal views: PA and lateral. The dual-view projection data are used together to reconstruct 3D images using the maximum likelihood expectation maximization iterative algorithm. In this study, projection images were simulated or experimentally acquired over 360° using the scanning geometry for cone beam computed tomography (CBCT). While all projections were used to reconstruct CBCT images, selected projections were extracted and used to reconstruct single- and dual-view DTS images for comparison with the CBCT images. For realistic demonstration and comparison, a digital chest phantom derived from clinical CT images was used for the simulation study. An anthropomorphic chest phantom was imaged for the experimental study. The resultant dual-view DTS images were visually compared with the single-view DTS images and CBCT images for the presence of image artifacts and accuracy of CT numbers and anatomy and quantitatively compared with root-mean-square-deviation (RMSD) values

  10. Nuclear magnetic resonance imaging of the heart

    International Nuclear Information System (INIS)

    Smolorz, J.; Linden, A.; Schicha, H.; Sechtem, U.

    1988-01-01

    NMR imaging is a noninvasive technique that has been shown to provide high-quality images of the heart. Due to the signal characteristics of flowing blood, inherent contrast between blood pool and myocardium is achieved without the use of contrast media. This paper briefly describes technical aspects of NMR imaging of the heart, normal cardiovascular anatomy, applications of the technique in patients with ischemic heart disease, and the potential of NMR imaging for functional studies in various forms of heart disease. (orig.)

  11. Validation of an imaging based cardiovascular risk score in a Scottish population.

    Science.gov (United States)

    Kockelkoren, Remko; Jairam, Pushpa M; Murchison, John T; Debray, Thomas P A; Mirsadraee, Saeed; van der Graaf, Yolanda; Jong, Pim A de; van Beek, Edwin J R

    2018-01-01

    A radiological risk score that determines 5-year cardiovascular disease (CVD) risk using routine care CT and patient information readily available to radiologists was previously developed. External validation in a Scottish population was performed to assess the applicability and validity of the risk score in other populations. 2915 subjects aged ≥40 years who underwent routine clinical chest CT scanning for non-cardiovascular diagnostic indications were followed up until first diagnosis of, or death from, CVD. Using a case-cohort approach, all cases and a random sample of 20% of the participant's CT examinations were visually graded for cardiovascular calcifications and cardiac diameter was measured. The radiological risk score was determined using imaging findings, age, gender, and CT indication. Performance on 5-year CVD risk prediction was assessed. 384 events occurred in 2124 subjects during a mean follow-up of 4.25 years (0-6.4 years). The risk score demonstrated reasonable performance in the studied population. Calibration showed good agreement between actual and 5-year predicted risk of CVD. The c-statistic was 0.71 (95%CI:0.67-0.75). The radiological CVD risk score performed adequately in the Scottish population offering a potential novel strategy for identifying patients at high risk for developing cardiovascular disease using routine care CT data. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Blind High-Capacity Wavelet-Based Steganography Technique for Hiding Images into other Images

    Directory of Open Access Journals (Sweden)

    HAMAD, S.

    2014-05-01

    Full Text Available The flourishing field of Steganography is providing effective techniques to hide data into different types of digital media. In this paper, a novel technique is proposed to hide large amounts of image data into true colored images. The proposed method employs wavelet transforms to decompose images in a way similar to the Human Visual System (HVS for more secure and effective data hiding. The designed model can blindly extract the embedded message without the need to refer to the original cover image. Experimental results showed that the proposed method outperformed all of the existing techniques not only imperceptibility but also in terms of capacity. In fact, the proposed technique showed an outstanding performance on hiding a secret image whose size equals 100% of the cover image while maintaining excellent visual quality of the resultant stego-images.

  13. The cardiovascular responses of male subjects to kung fu techniques. Expert/novice paradigm.

    Science.gov (United States)

    Jones, M A; Unnithan, V B

    1998-12-01

    The primary aim was to assess cardiovascular responses of expert and novice subjects to kung fu techniques. It was hypothesised that experienced subjects would demonstrate improved economy of movement during the techniques, evidenced by reduced exercise intensity. a comparative design was established utilising two groups; experienced (group E), and novice (group N). the experimentation took place under laboratory conditions, but was designed to maximise external validity. the only preselection variables were regular attendance at training and experience. Nine experienced males (group E, exp 9.5 +/- 5.2 yrs) and nine novice males (group N, exp 1.2 +/- 0.1 yrs) participated. The only exclusion guidelines were contraindications to participate within a maximal test, no subjects were excluded upon this basis. N/A. each subject participated in three kung fu protocols (forms, kicking and punching). Each protocol, randomly allocated, consisted of ten work (30 sec) and ten rest periods (30 sec). MEASURES taken during the protocols were heart rate (HR) and oxygen consumption (VO2). These were expressed as a percentage of maximal values to reflect exercise intensity. During both the form protocol and punching protocol group E were found to be working at a significantly (p kung fu techniques differ depending upon experience level. It is difficult to directly relate this to improved economy since work output could not be accurately quantified. It was also found that kung fu protocols elicited exercise intensity into the cardiovascular training zone.

  14. Left ventricular hypertrophy: The relationship between the electrocardiogram and cardiovascular magnetic resonance imaging.

    Science.gov (United States)

    Bacharova, Ljuba; Ugander, Martin

    2014-11-01

    Conventional assessment of left ventricular hypertrophy (LVH) using the electrocardiogram (ECG), for example, by the Sokolow-Lyon, Romhilt-Estes or Cornell criteria, have relied on assessing changes in the amplitude and/or duration of the QRS complex of the ECG to quantify LV mass. ECG measures of LV mass have typically been validated by imaging with echocardiography or cardiovascular magnetic resonance imaging (CMR). However, LVH can be the result of diverse etiologies, and LVH is also characterized by pathological changes in myocardial tissue characteristics on the genetic, molecular, cellular, and tissue level beyond a pure increase in the number of otherwise normal cardiomyocytes. For example, slowed conduction velocity through the myocardium, which can be due to diffuse myocardial fibrosis, has been shown to be an important determinant of conventional ECG LVH criteria regardless of LV mass. Myocardial tissue characterization by CMR has emerged to not only quantify LV mass, but also detect and quantify the extent and severity of focal or diffuse myocardial fibrosis, edema, inflammation, myocarditis, fatty replacement, myocardial disarray, and myocardial deposition of amyloid proteins (amyloidosis), glycolipids (Fabry disease), or iron (siderosis). This can be undertaken using CMR techniques including late gadolinium enhancement (LGE), T1 mapping, T2 mapping, T2* mapping, extracellular volume fraction (ECV) mapping, fat/water-weighted imaging, and diffusion tensor CMR. This review presents an overview of current and emerging concepts regarding the diagnostic possibilities of both ECG and CMR for LVH in an attempt to narrow gaps in our knowledge regarding the ECG diagnosis of LVH. © 2014 Wiley Periodicals, Inc.

  15. Near-field three-dimensional radar imaging techniques and applications.

    Science.gov (United States)

    Sheen, David; McMakin, Douglas; Hall, Thomas

    2010-07-01

    Three-dimensional radio frequency imaging techniques have been developed for a variety of near-field applications, including radar cross-section imaging, concealed weapon detection, ground penetrating radar imaging, through-barrier imaging, and nondestructive evaluation. These methods employ active radar transceivers that operate at various frequency ranges covering a wide range, from less than 100 MHz to in excess of 350 GHz, with the frequency range customized for each application. Computational wavefront reconstruction imaging techniques have been developed that optimize the resolution and illumination quality of the images. In this paper, rectilinear and cylindrical three-dimensional imaging techniques are described along with several application results.

  16. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis

    International Nuclear Information System (INIS)

    Bucerius, Jan; Hyafil, Fabien; Verberne, Hein J.; Slart, Riemer H.J.A.; Lindner, Oliver; Sciagra, Roberto; Agostini, Denis; Uebleis, Christopher; Gimelli, Alessia; Hacker, Marcus

    2016-01-01

    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a considerable need for innovative diagnostic and therapeutic approaches to improve the quality of care and limit the burden of cardiovascular diseases. During the past 10 years, several retrospective and prospective clinical studies have been published using 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to quantify inflammation in atherosclerotic plaques. However, the current variety of imaging protocols used for vascular (arterial) imaging with FDG PET considerably limits the ability to compare results between studies and to build large multicentre imaging registries. Based on the existing literature and the experience of the Members of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee, the objective of this position paper was to propose optimized and standardized protocols for imaging and interpretation of PET scans in atherosclerosis. These recommendations do not, however, replace the individual responsibility of healthcare professionals to make appropriate decisions in the circumstances of the individual study protocols used and the individual patient, in consultation with the patient and, where appropriate and necessary, the patient's guardian or carer. These recommendations suffer from the absence of conclusive evidence on many of the recommendations. Therefore, they are not intended and should not be used as ''strict guidelines'' but should, as already mentioned, provide a basis for standardized clinical atherosclerosis PET imaging protocols, which are subject to further and continuing evaluation and improvement. However, this EANM position paper might indeed be a first step towards &apos

  17. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Bucerius, Jan [Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital RWTH Aachen, RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Maastricht University Medical Center (MUMC), Department of Nuclear Medicine and Cardiovascular Research Institute (CARIM), P. Debyelaan 25, HX, Maastricht (Netherlands); Hyafil, Fabien [Bichat University Hospital, Inserm 1148, DHU FIRE, Assistance Publique - Hopitaux de Paris, Department of Nuclear Medicine, Paris (France); Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Verberne, Hein J. [University of Amsterdam, Department of Nuclear Medicine, Academic Medical Center, Amsterdam (Netherlands); Slart, Riemer H.J.A. [University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); University of Twente, Department of Biomedical Photonic Imaging, Faculty of Science and Technology, Enschede (Netherlands); Lindner, Oliver [Heart and Diabetes Center NRW, Nuclear Medicine and Molecular Imaging, Institute of Radiology, Bad Oeynhausen (Germany); Sciagra, Roberto [University of Florence, Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, Florence (Italy); Agostini, Denis [Normandie Universite, Department of Nuclear Medicine, CHU Cote de Nacre, Caen (France); Uebleis, Christopher [Ludwig-Maximilians Universitaet Muenchen, Department of Clinical Radiology, Muenchen (Germany); Gimelli, Alessia [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Hacker, Marcus [Medical University Vienna, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided therapy, Vienna (Austria); Collaboration: on behalf of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM)

    2016-04-15

    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a considerable need for innovative diagnostic and therapeutic approaches to improve the quality of care and limit the burden of cardiovascular diseases. During the past 10 years, several retrospective and prospective clinical studies have been published using {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to quantify inflammation in atherosclerotic plaques. However, the current variety of imaging protocols used for vascular (arterial) imaging with FDG PET considerably limits the ability to compare results between studies and to build large multicentre imaging registries. Based on the existing literature and the experience of the Members of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee, the objective of this position paper was to propose optimized and standardized protocols for imaging and interpretation of PET scans in atherosclerosis. These recommendations do not, however, replace the individual responsibility of healthcare professionals to make appropriate decisions in the circumstances of the individual study protocols used and the individual patient, in consultation with the patient and, where appropriate and necessary, the patient's guardian or carer. These recommendations suffer from the absence of conclusive evidence on many of the recommendations. Therefore, they are not intended and should not be used as ''strict guidelines'' but should, as already mentioned, provide a basis for standardized clinical atherosclerosis PET imaging protocols, which are subject to further and continuing evaluation and improvement. However, this EANM position paper might indeed be a first step towards &apos

  18. Developments in medical imaging techniques

    International Nuclear Information System (INIS)

    Kramer, Cornelis

    1979-01-01

    A review of the developments in medical imaging in the past 25 years shows a strong increase in the number of physical methods which have become available for obtaining images of diagnostic value. It is shown that despite this proliferation of methods the equipment used for obtaining the images can be based on a common structure. Also the resulting images can be characterized by a few relevant parameters which indicate their information content. On the basis of this common architecture a study is made of the potential capabilities of the large number of medical imaging techniques available now and in the future. Also the requirements and possibilities for handling the images obtained and for controlling the diagnostic systems are investigated [fr

  19. Impact of chronic kidney disease and stress myocardial perfusion imaging as a predictor of cardiovascular events

    International Nuclear Information System (INIS)

    Furuhashi, Tatsuhiko; Joki, Nobuhiko; Hase, Hiroki; Masai, Hirofumi; Kunimasa, Taeko; Nakazato, Ryo; Fukuda, Hiroshi; Sugi, Kaoru; Moroi, Masao

    2011-01-01

    Stress myocardial perfusion imaging (MPI) is an established means of predicting cardiovascular events and is suitable in chronic kidney disease (CKD) patients. We aimed to evaluate the prognostic value of CKD parameters and an abnormal stress MPI for cardiovascular events. A total of 495 patients with suspected coronary artery disease (CAD) or history of CAD including 130 CKD patients not undergoing hemodialysis, underwent stress MPI (313 males, mean age 70 years) and were followed up for 14 months (mean period). CKD was defined as an estimated GFR of 2 and/or persistent proteinuria. Cardiovascular events were defined as sudden cardiac death, acute coronary syndrome and congestive heart failure requiring hospitalization. Cardiovascular events occurred in 41 (8.3%) patients. Multivariate Cox regression analysis indicated that CKD [hazard ratio (HR) =3.76, p<0.001] and a stress MPI summed difference score (SDS) of ≥2 (HR=3.78, p<0.001) were independent predictors of cardiovascular events; CKD plus abnormal stress MPI was also a strong predictor of cardiovascular events (non-CKD and SDS <2 vs. CKD and SDS ≥2, HR=15.9, p<0.001). Both CKD and myocardial ischemia detected by stress MPI are independent predictors for cardiovascular events. Coexistence of CKD and myocardial ischemia detected by stress MPI is more useful for short-term risk stratification of cardiovascular events. (author)

  20. Inner images of the human body with a 3D CT scanner

    International Nuclear Information System (INIS)

    Kobayashi, Hisashi

    1994-01-01

    This article deals with not only CT-endoscopy (CTES) technique but also various imaging and processing techniques of 3D CT. CTES images, which were obtained from 137 patients with suspected cardiovascular disorder or disease of other tubular organs, were reconstructed using a newly developed volumetric scanner with a slip-ring system. Among the 137 patients, 107 (78%) were successfully diagnosed by CTES. For cardiovascular region, dissecting aneurysm was detected in 27/32, aortitis in 9/9, and intra-arterial thrombosis in 5/6. Various imaging and processing techniques, including CT number conversion technique, multi-threshold range imaging, 'open-window' and 'virtual operation', and long segmental arteriogram by intravenous contrast injection, are displayed in futures. In conclusion, CTES might become a safe and minimally invasive means for observing the inner surface of the tubular organs, particularly of the aorta, without the need of fiberscopic manipulation. (N.K.)

  1. Secondary hypertension: Place of imaging techniques

    International Nuclear Information System (INIS)

    Marichez, M.; Jeunemaitre, X.; Despres, E.; Plouin, P.F.; Melki, J.P.; Taleb, A.

    1987-01-01

    To determine and illustrate the place of various imaging techniques in the diagnosis of arterial hypertension, a retrospective study of 4,530 patients examined during the past 2 years at Broussals and Saint Joseph Hospitals in Paris was undertaken. Between 1975 and 1984, only 20% of our patients underwent surgery, but in the past 2 years, 6% of patients with hypertension underwent either surgery or transluminal angioplasty. At our institution, imaging studies performed were Doppler US, excretory urography, CT, MR imaging, scintigraphy, adrenal venography, and arteriography. The authors encountered over 156 cases of renovascular hypertension, 23 Conn adenomas, 13 pheochromocytomas, four adrenal carcinomas, and 46 parenchymatous renal anomalies. This paper presents the modalities and the pitfalls of each imaging technique. The authors also indicate the strategies used in the diagnostic approach and the results the authors obtained

  2. The HEART score is useful to predict cardiovascular risks and reduces unnecessary cardiac imaging in low-risk patients with acute chest pain.

    Science.gov (United States)

    Dai, Siping; Huang, Bo; Zou, Yunliang; Guo, Jianbin; Liu, Ziyong; Pi, Dangyu; Qiu, Yunhong; Xiao, Chun

    2018-06-01

    The present study was to investigate whether the HEART score can be used to evaluate cardiovascular risks and reduce unnecessary cardiac imaging in China.Acute coronary syndrome patients with the thrombosis in myocardial infarction risk score risk HEART score group and 2 patients (1.5%) in the high risk HEART score group had cardiovascular events. The sensitivity of HEART score to predict cardiovascular events was 100% and the specificity was 46.7%. The potential unnecessary cardiac testing was 46.3%. Cox proportional hazards regression analysis showed that per one category increase of the HEART score was associated with nearly 1.3-fold risk of cardiovascular events.In the low-risk acute chest pain patients, the HEART score is useful to physicians in evaluating the risk of cardiovascular events within the first 30 days. In addition, the HEART score is also useful in reducing the unnecessary cardiac imaging.

  3. Technique for image interpolation using polynomial transforms

    NARCIS (Netherlands)

    Escalante Ramírez, B.; Martens, J.B.; Haskell, G.G.; Hang, H.M.

    1993-01-01

    We present a new technique for image interpolation based on polynomial transforms. This is an image representation model that analyzes an image by locally expanding it into a weighted sum of orthogonal polynomials. In the discrete case, the image segment within every window of analysis is

  4. Novel imaging techniques for the nuclear microprobe

    International Nuclear Information System (INIS)

    Saint, A.

    1998-01-01

    Many of the developments of the scanning electron microscope (SEM) have been paralleled during the development of the scanning nuclear microprobe. Secondary electrons were used in the early development of both devices to provide specimen imaging due to the large numbers of secondaries produced per incident charged particle. Other imaging contrast techniques have also been developed on both machines. These include X-ray analysis, scattering contrast, transmission microscopy, channelling induced charge and others. The 'cross-section dependent' imaging techniques such as PIXE, RBS, NRA, etc., rely on the beam current on target for a given resolution. This has prompted research and development of brighter ion sources to maintain probe resolution at high beam current. Higher beam current bring problems with beam damage to the specimen. Low beam current techniques however rely on high countrate data collection systems, but this is only for spectroscopy. To produce an image we can increase beam currents to produce live-time images for specimen manipulation and observation. The work presented here will focus on some developments in live-time imaging with a nuclear micro probe that have taken place recently at the School of Physics, Microanalytical Research Centre (MARC), University of Melbourne

  5. Big heart data: advancing health informatics through data sharing in cardiovascular imaging.

    Science.gov (United States)

    Suinesiaputra, Avan; Medrano-Gracia, Pau; Cowan, Brett R; Young, Alistair A

    2015-07-01

    The burden of heart disease is rapidly worsening due to the increasing prevalence of obesity and diabetes. Data sharing and open database resources for heart health informatics are important for advancing our understanding of cardiovascular function, disease progression and therapeutics. Data sharing enables valuable information, often obtained at considerable expense and effort, to be reused beyond the specific objectives of the original study. Many government funding agencies and journal publishers are requiring data reuse, and are providing mechanisms for data curation and archival. Tools and infrastructure are available to archive anonymous data from a wide range of studies, from descriptive epidemiological data to gigabytes of imaging data. Meta-analyses can be performed to combine raw data from disparate studies to obtain unique comparisons or to enhance statistical power. Open benchmark datasets are invaluable for validating data analysis algorithms and objectively comparing results. This review provides a rationale for increased data sharing and surveys recent progress in the cardiovascular domain. We also highlight the potential of recent large cardiovascular epidemiological studies enabling collaborative efforts to facilitate data sharing, algorithms benchmarking, disease modeling and statistical atlases.

  6. Zebrafish models of cardiovascular diseases and their applications in herbal medicine research.

    Science.gov (United States)

    Seto, Sai-Wang; Kiat, Hosen; Lee, Simon M Y; Bensoussan, Alan; Sun, Yu-Ting; Hoi, Maggie P M; Chang, Dennis

    2015-12-05

    The zebrafish (Danio rerio) has recently become a powerful animal model for cardiovascular research and drug discovery due to its ease of maintenance, genetic manipulability and ability for high-throughput screening. Recent advances in imaging techniques and generation of transgenic zebrafish have greatly facilitated in vivo analysis of cellular events of cardiovascular development and pathogenesis. More importantly, recent studies have demonstrated the functional similarity of drug metabolism systems between zebrafish and humans, highlighting the clinical relevance of employing zebrafish in identifying lead compounds in Chinese herbal medicine with potential beneficial cardiovascular effects. This paper seeks to summarise the scope of zebrafish models employed in cardiovascular studies and the application of these research models in Chinese herbal medicine to date. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  7. Magnetic resonance imaging - first human images in Australia

    International Nuclear Information System (INIS)

    Baddeley, H.; Doddrell, D.M.; Brooks, W.M.; Field, J.; Irving, M.; Williams, J.E.

    1986-01-01

    The use of magnetic resonance imaging, in the demonstration of internal human anatomy and in the diagnosis of disease, has the major advantages that the technique is non-invasive, does not require the use of ionizing radiation and that it can demonstrate neurological and cardiovascular lesions that cannot be diagnosed easily by other imaging methods. The first magnetic resonance images of humans were obtained in Australia in October 1985 on the research instrument of the Queensland Medical Magnetic Resonance Research Centre, which is based at the Mater Hospital in Brisbane

  8. Multi-Detector Computed Tomography Imaging Techniques in Arterial Injuries

    Directory of Open Access Journals (Sweden)

    Cameron Adler

    2018-04-01

    Full Text Available Cross-sectional imaging has become a critical aspect in the evaluation of arterial injuries. In particular, angiography using computed tomography (CT is the imaging of choice. A variety of techniques and options are available when evaluating for arterial injuries. Techniques involve contrast bolus, various phases of contrast enhancement, multiplanar reconstruction, volume rendering, and maximum intensity projection. After the images are rendered, a variety of features may be seen that diagnose the injury. This article provides a general overview of the techniques, important findings, and pitfalls in cross sectional imaging of arterial imaging, particularly in relation to computed tomography. In addition, the future directions of computed tomography, including a few techniques in the process of development, is also discussed.

  9. Non-linear imaging techniques visualize the lipid profile of C. elegans

    Science.gov (United States)

    Mari, Meropi; Petanidou, Barbara; Palikaras, Konstantinos; Fotakis, Costas; Tavernarakis, Nektarios; Filippidis, George

    2015-07-01

    The non-linear techniques Second and Third Harmonic Generation (SHG, THG) have been employed simultaneously to record three dimensional (3D) imaging and localize the lipid content of the muscular areas (ectopic fat) of Caenorhabditis elegans (C. elegans). Simultaneously, Two-Photon Fluorescence (TPEF) was used initially to localize the stained lipids with Nile Red, but also to confirm the THG potential to image lipids successfully. In addition, GFP labelling of the somatic muscles, proves the initial suggestion of the existence of ectopic fat on the muscles and provides complementary information to the SHG imaging of the pharynx. The ectopic fat may be related to a complex of pathological conditions including type-2 diabetes, hypertension and cardiovascular diseases. The elucidation of the molecular path leading to the development of metabolic syndrome is a vital issue with high biological significance and necessitates accurate methods competent of monitoring lipid storage distribution and dynamics in vivo. THG microscopy was employed as a quantitative tool to monitor the lipid accumulation in non-adipose tissues in the pharyngeal muscles of 12 unstained specimens while the SHG imaging revealed the anatomical structure of the muscles. The ectopic fat accumulation on the pharyngeal muscles increases in wild type (N2) C. elegans between 1 and 9 days of adulthood. This suggests a correlation of the ectopic fat accumulation with the aging. Our results can provide new evidence relating the deposition of ectopic fat with aging, but also validate SHG and THG microscopy modalities as new, non-invasive tools capable of localizing and quantifying selectively lipid accumulation and distribution.

  10. A Novel Contrast Enhancement Technique on Palm Bone Images

    Directory of Open Access Journals (Sweden)

    Yung-Tsang Chang

    2014-09-01

    Full Text Available Contrast enhancement plays a fundamental role in image processing. Many histogram-based techniques are widely used for contrast enhancement of given images, due to their simple function and effectiveness. However, the conventional histogram equalization (HE methods result in excessive contrast enhancement, which causes natural looking and satisfactory results for a variety of low contrast images. To solve such problems, a novel multi-histogram equalization technique is proposed to enhance the contrast of the palm bone X-ray radiographs in this paper. For images, the mean-variance analysis method is employed to partition the histogram of the original grey scale image into multiple sub-histograms. These histograms are independently equalized. By using this mean-variance partition method, a proposed multi-histogram equalization technique is employed to achieve the contrast enhancement of the palm bone X-ray radiographs. Experimental results show that the multi-histogram equalization technique achieves a lower average absolute mean brightness error (AMBE value. The multi-histogram equalization technique simultaneously preserved the mean brightness and enhanced the local contrast of the original image.

  11. Nuclear cardiology core syllabus of the European Association of Cardiovascular Imaging (EACVI).

    Science.gov (United States)

    Gimelli, Alessia; Neglia, Danilo; Schindler, Thomas H; Cosyns, Bernard; Lancellotti, Patrizio; Kitsiou, Anastasia

    2015-04-01

    The European Association of Cardiovascular Imaging (EACVI) Core Syllabus for Nuclear Cardiology is now available online. The syllabus lists key elements of knowledge in nuclear cardiology. It represents a framework for the development of training curricula and provides expected knowledge-based learning outcomes to the nuclear cardiology trainees. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  12. Fundamentals of functional imaging I: current clinical techniques.

    Science.gov (United States)

    Luna, A; Martín Noguerol, T; Mata, L Alcalá

    2018-05-01

    Imaging techniques can establish a structural, physiological, and molecular phenotype for cancer, which helps enable accurate diagnosis and personalized treatment. In recent years, various imaging techniques that make it possible to study the functional characteristics of tumors quantitatively and reproducibly have been introduced and have become established in routine clinical practice. Perfusion studies enable us to estimate the microcirculation as well as tumor angiogenesis and permeability using ultrafast dynamic acquisitions with ultrasound, computed tomography, or magnetic resonance (MR) imaging. Diffusion-weighted sequences now form part of state-of-the-art MR imaging protocols to evaluate oncologic lesions in any anatomic location. Diffusion-weighted imaging provides information about the occupation of the extracellular and extravascular space and indirectly estimates the cellularity and apoptosis of tumors, having demonstrated its relation with biologic aggressiveness in various tumor lines and its usefulness in the evaluation of the early response to systemic and local targeted therapies. Another tool is hydrogen proton MR spectroscopy, which is used mainly in the study of the metabolic characteristics of brain tumors. However, the complexity of the technique and its lack of reproducibility have limited its clinical use in other anatomic areas, although much experience with the use of this technique in the assessment of prostate and breast cancers as well as liver lesions has also accumulated. This review analyzes the imaging techniques that make it possible to evaluate the physiological and molecular characteristics of cancer that have already been introduced into clinical practice, such as techniques that evaluate angiogenesis through dynamic acquisitions after the administration of contrast material, diffusion-weighted imaging, or hydrogen proton MR spectroscopy, as well as their principal applications in oncology. Copyright © 2018 SERAM. Publicado

  13. Prognostic value of tissue Doppler imaging for predicting ventricular arrhythmias and cardiovascular mortality in ischaemic cardiomyopathy

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Olsen, Flemming Javier; Storm, Katrine

    2016-01-01

    AIMS: Only 30% of patients receiving an implantable cardioverter defibrillator (ICD) for primary prevention receive appropriately therapy. We sought to investigate the value of tissue Doppler imaging (TDI) to predict ventricular tachycardia (VT), ventricular fibrillation (VF), and cardiovascular...

  14. Jet-images: computer vision inspired techniques for jet tagging

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel [SLAC National Accelerator Laboratory,Menlo Park, CA 94028 (United States)

    2015-02-18

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  15. Jet-images: computer vision inspired techniques for jet tagging

    International Nuclear Information System (INIS)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel

    2015-01-01

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  16. Cellular imaging electron tomography and related techniques

    CERN Document Server

    2018-01-01

    This book highlights important techniques for cellular imaging and covers the basics and applications of electron tomography and related techniques. In addition, it considers practical aspects and broadens the technological focus by incorporating techniques that are only now becoming accessible (e.g. block face imaging).  The first part of the book describes the electron microscopy 3D technique available to scientists around the world, allowing them to characterize organelles, cells and tissues. The major emphasis is on new technologies like scanning transmission electron microscopy (STEM) tomography, though the book also reviews some of the more proven technologies like electron tomography. In turn, the second part is dedicated to the reconstruction of data sets, signal improvement and interpretation.

  17. Recent Advances in Techniques for Hyperspectral Image Processing

    Science.gov (United States)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; hide

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  18. Automated thermal mapping techniques using chromatic image analysis

    Science.gov (United States)

    Buck, Gregory M.

    1989-01-01

    Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.

  19. Nanotechnology and stem cell therapy for cardiovascular diseases: potential applications.

    Science.gov (United States)

    La Francesca, Saverio

    2012-01-01

    The use of stem cell therapy for the treatment of cardiovascular diseases has generated significant interest in recent years. Limitations to the clinical application of this therapy center on issues of stem cell delivery, engraftment, and fate. Nanotechnology-based cell labeling and imaging techniques facilitate stem cell tracking and engraftment studies. Nanotechnology also brings exciting new opportunities to translational stem cell research as it enables the controlled engineering of nanoparticles and nanomaterials that can properly relate to the physical scale of cell-cell and cell-niche interactions. This review summarizes the most relevant potential applications of nanoscale technologies to the field of stem cell therapy for the treatment of cardiovascular diseases.

  20. Cardiovascular Magnetic Resonance Imaging-Incremental Value in a Series of 361 Patients Demonstrating Cost Savings and Clinical Benefits: An Outcome-Based Study.

    Science.gov (United States)

    Hegde, Vinayak A; Biederman, Robert Ww; Mikolich, J Ronald

    2017-01-01

    This study was designed to assess the clinical impact and cost-benefit of cardiovascular magnetic resonance imaging (CMR). In the face of current health care cost concerns, cardiac imaging modalities have come under focused review. Data related to CMR clinical impact and cost-benefit are lacking. Retrospective review of 361 consecutive patients (pts) who underwent CMR exams was conducted. Indications for CMR were tabulated for appropriateness criteria. Components of the CMR exam were identified along with evidence of clinical impact. The cost of each CMR exam was ascertained along with cost savings attributable to the CMR exam for calculation of an incremental cost-effectiveness ratio. A total of 354 of 361 pts (98%) had diagnostic quality studies. Of the 361 pts, 350 (97%) had at least 1 published Appropriateness Criterion for CMR. A significant clinical impact attributable to CMR exam results was observed in 256 of 361 pts (71%). The CMR exam resulted in a new diagnosis in 69 of 361 (27%) pts. Cardiovascular magnetic resonance imaging results avoided invasive procedures in 38 (11%) pts and prevented additional diagnostic testing in 26 (7%) pts. Comparison of health care savings using CMR as opposed to current standards of care showed a net cost savings of $833 037, ie, per patient cost savings of $2308. Cardiovascular magnetic resonance imaging provides diagnostic image quality in >98% of cases. Cardiovascular magnetic resonance imaging findings have documentable clinical impact on patient management in 71% of pts undergoing the exam, in a cost beneficial manner.

  1. 5th German cardiodiagnostic meeting 2013 with the 6th Leipzig Symposium on non-invasive cardiovascular imaging. Challenges and limit of the non-invasive cardiac imaging

    International Nuclear Information System (INIS)

    2013-01-01

    The proceedings on the German cardiodiagnostic meeting 2013 together with the 6th Leipzig Symposium on non-invasive cardiovascular imaging include abstracts concerning the following topics: Imaging in the rhythmology; adults with congenital cardiac defects; cardiac myopathies - myocarditis; cardiac valves (before and after transcutaneous valve replacement); coronary heart diseases; technical developments.

  2. Cardiovascular radiology

    International Nuclear Information System (INIS)

    VanAman, M.; Mueller, C.F.

    1985-01-01

    Soon after Roentgen documented the uses of x-rays in 1895, fluoroscopic and film evaluation of the heart began. Even today the chest roentgenogram remains one of the first and most frequently used studies for the evaluation of the normal and abnormal heart and great vessels. This chapter gives an overview of plain film evaluation of the cardiovascular system and follow up with comments on the newer imaging modalities of computed tomography, and digital subtraction angiography, in the cardiovascular disease workup. The authors present an evaluation of plain films of the chest, which remains their most cost effective, available, simple, and reliable initial screening tool in the evaluation of cardiovascular disease

  3. Emerging Techniques in Brain Tumor Imaging: What Radiologists Need to Know

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjae; Kim, Ho Sung [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of)

    2016-11-01

    Among the currently available brain tumor imaging, advanced MR imaging techniques, such as diffusion-weighted MR imaging and perfusion MR imaging, have been used for solving diagnostic challenges associated with conventional imaging and for monitoring the brain tumor treatment response. Further development of advanced MR imaging techniques and postprocessing methods may contribute to predicting the treatment response to a specific therapeutic regimen, particularly using multi-modality and multiparametric imaging. Over the next few years, new imaging techniques, such as amide proton transfer imaging, will be studied regarding their potential use in quantitative brain tumor imaging. In this review, the pathophysiologic considerations and clinical validations of these promising techniques are discussed in the context of brain tumor characterization and treatment response.

  4. Korean Society of Cardiovascular Imaging Guidelines for Cardiac Computed Tomography

    International Nuclear Information System (INIS)

    Kim, Young Jin; Choi, Byoung Wook; Choe, Kyu Ok; Yong, Hwan Seok; Kim, Yang Min; Choe, Yeon Hyeon; Lim, Tae Hwan; Park, Jae Hyung

    2011-01-01

    The Korean Society of Cardiovascular Imaging (KOCSI) has issued a guideline for the use of cardiac CT imaging in order to assist clinicians and patients in providing adequate level of medical service. In order to establish a guideline founded on evidence based medicine, it was designed based on comprehensive data such as questionnaires conducted in international and domestic hospitals, intensive journal reviews, and with experts in cardiac radiology. The recommendations of this guideline should not be used as an absolute standard and medical professionals can always refer to methods non-adherent to this guideline when it is considered more reasonable and beneficial to an individual patient's medical situation. The guideline has its limitation and should be revised appropriately with the advancement medical equipment technology and public health care system. The guideline should not be served as a measure for standard of care. KOCSI strongly disapproves the use of the guideline to be used as the standard of expected practice in medical litigation processes.

  5. Fast and improved examplar-based inpainting techniques for natural images

    NARCIS (Netherlands)

    Ma, L.; Do, Q.L.; With, de P.H.N.

    2012-01-01

    Image inpainting is an image completion technique that has a wide range of applications such as image restoration, object removal and occlusion lling in view synthesis. In this paper, two novel techniques are proposed to enhance the performance of Criminisi's algorithm, which inpaints images with an

  6. A review of imaging techniques for systems biology

    Directory of Open Access Journals (Sweden)

    Po Ming J

    2008-08-01

    Full Text Available Abstract This paper presents a review of imaging techniques and of their utility in system biology. During the last decade systems biology has matured into a distinct field and imaging has been increasingly used to enable the interplay of experimental and theoretical biology. In this review, we describe and compare the roles of microscopy, ultrasound, CT (Computed Tomography, MRI (Magnetic Resonance Imaging, PET (Positron Emission Tomography, and molecular probes such as quantum dots and nanoshells in systems biology. As a unified application area among these different imaging techniques, examples in cancer targeting are highlighted.

  7. Retinal Imaging Techniques for Diabetic Retinopathy Screening

    Science.gov (United States)

    Goh, James Kang Hao; Cheung, Carol Y.; Sim, Shaun Sebastian; Tan, Pok Chien; Tan, Gavin Siew Wei; Wong, Tien Yin

    2016-01-01

    Due to the increasing prevalence of diabetes mellitus, demand for diabetic retinopathy (DR) screening platforms is steeply increasing. Early detection and treatment of DR are key public health interventions that can greatly reduce the likelihood of vision loss. Current DR screening programs typically employ retinal fundus photography, which relies on skilled readers for manual DR assessment. However, this is labor-intensive and suffers from inconsistency across sites. Hence, there has been a recent proliferation of automated retinal image analysis software that may potentially alleviate this burden cost-effectively. Furthermore, current screening programs based on 2-dimensional fundus photography do not effectively screen for diabetic macular edema (DME). Optical coherence tomography is becoming increasingly recognized as the reference standard for DME assessment and can potentially provide a cost-effective solution for improving DME detection in large-scale DR screening programs. Current screening techniques are also unable to image the peripheral retina and require pharmacological pupil dilation; ultra-widefield imaging and confocal scanning laser ophthalmoscopy, which address these drawbacks, possess great potential. In this review, we summarize the current DR screening methods using various retinal imaging techniques, and also outline future possibilities. Advances in retinal imaging techniques can potentially transform the management of patients with diabetes, providing savings in health care costs and resources. PMID:26830491

  8. Quantum correlated imaging is a promising new technique in medical imaging

    Institute of Scientific and Technical Information of China (English)

    Nan Zhang; Zhaohua Yang

    2017-01-01

    Cardio-cerebral vascular diseases are common and frequently occurring serious diseases that threaten humans. In recent years, Digital Subtraction Angiography (DSA) has played a vital role in the diagnosis and treatment of cardio-cerebral vascular diseases. However, DSA is not able to visualize intravascular structures in real time, and it is especially difficult to evaluate each layer of the vascular wall and the composition of atherosclerotic plaques with DSA. Quantum correlated imaging is a new technique that can be used to perform real-time online imaging of intravascular flow, vascular wall structure, and atherosclerotic plaque composition. Quantum correlated imaging is a promising new technique that will soon be used in the diagnosis and treatment of cardio-cerebral vascular diseases.

  9. Three dimensional image presentation techniques in medical imaging

    International Nuclear Information System (INIS)

    Pizer, S.M.; Fuchs, H.

    1987-01-01

    Medical images can be presented three-dimensionally by techniques that either calculate the effect of reflections from surfaces predefined from slices or project a three-space of luminosities computed from voxel intensities onto the visual receptors. Sliced-based reflective displays are the most common type. Means of producing surface descriptions both via voxel sets and via slice contours are reviewed. Advantages of and means of transparent display to allow the appreciation of the 3D relationships among objects are set forth. Ways to produce additional depth cues by stereoscopy and the kinetic depth effect are discussed, and the importance of interactive modification of viewpoint, clipping plane, displayed objects, etc. are explained. A new device, UNC's Pixel-planes, for accomplishing this in real time are illustrated. Voxel intensity based display methods avoid the need for time-consuming predefinition of object surfaces and thus can allow exploration of 3D image data. Varifocal mirror hardware and fast computation of one or more projections based on object probabilities are two of the more important approaches. While 3D display provides important information about 3D relationships, it cannot provide the kind of appreciation of subtle grey-scale changes that 2D display can. Methods that can combine these two kinds of information by superimposing 2D grey-scale slices on or in the context of 3D displays are discussed. Applications of these techniques for both diagnosis and radiotherapy planning are used as illustrations and guides to the usefulness of these techniques with CT, MRI, and other 3D medical imaging modalities. 24 refs.; 5 figs

  10. In Vivo Imaging of Nitric Oxide by Magnetic Resonance Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Rakesh Sharma

    2014-01-01

    Full Text Available Nitric oxide (NO biosensors are novel tools for real-time bioimaging of tissue oxygen changes and physiological monitoring of tissue vasculature. Nitric oxide behavior further enhances its role in mapping signal transduction at the molecular level. Spectrometric electron paramagnetic resonance (EPR and fluorometric imaging are well known techniques with the potential for in vivo bioimaging of NO. In tissues, NO is a specific target of nitrosyl compounds for chemical reaction, which provides a unique opportunity for application of newly identified NO biosensors. However, the accuracy and sensitivity of NO biosensors still need to be improved. Another potential magnetic resonance technique based on short term NO effects on proton relaxation enhancement is magnetic resonance imaging (MRI, and some NO biosensors may be used as potent imaging contrast agents for measurement of tumor size by MRI combined with fluorescent imaging. The present review provides supporting information regarding the possible use of nitrosyl compounds as NO biosensors in MRI and fluorescent bioimaging showing their measurement limitations and quantitative accuracy. These new approaches open a perspective regarding bioimaging of NO and the in vivo elucidation of NO effects by magnetic resonance techniques.

  11. The role of PET quantification in cardiovascular imaging.

    Science.gov (United States)

    Slomka, Piotr; Berman, Daniel S; Alexanderson, Erick; Germano, Guido

    2014-08-01

    Positron Emission Tomography (PET) has several clinical and research applications in cardiovascular imaging. Myocardial perfusion imaging with PET allows accurate global and regional measurements of myocardial perfusion, myocardial blood flow and function at stress and rest in one exam. Simultaneous assessment of function and perfusion by PET with quantitative software is currently the routine practice. Combination of ejection fraction reserve with perfusion information may improve the identification of severe disease. The myocardial viability can be estimated by quantitative comparison of fluorodeoxyglucose ( 18 FDG) and rest perfusion imaging. The myocardial blood flow and coronary flow reserve measurements are becoming routinely included in the clinical assessment due to enhanced dynamic imaging capabilities of the latest PET/CT scanners. Absolute flow measurements allow evaluation of the coronary microvascular dysfunction and provide additional prognostic and diagnostic information for coronary disease. Standard quantitative approaches to compute myocardial blood flow from kinetic PET data in automated and rapid fashion have been developed for 13 N-ammonia, 15 O-water and 82 Rb radiotracers. The agreement between software methods available for such analysis is excellent. Relative quantification of 82 Rb PET myocardial perfusion, based on comparisons to normal databases, demonstrates high performance for the detection of obstructive coronary disease. New tracers, such as 18 F-flurpiridaz may allow further improvements in the disease detection. Computerized analysis of perfusion at stress and rest reduces the variability of the assessment as compared to visual analysis. PET quantification can be enhanced by precise coregistration with CT angiography. In emerging clinical applications, the potential to identify vulnerable plaques by quantification of atherosclerotic plaque uptake of 18 FDG and 18 F-sodium fluoride tracers in carotids, aorta and coronary arteries

  12. Cardiovascular involvement by osteosarcoma: an analysis of 20 patients

    Energy Technology Data Exchange (ETDEWEB)

    Yedururi, Sireesha; Morani, Ajaykumar C.; Gladish, Gregory W. [The University of Texas MD Anderson Cancer Center, Department of Diagnostic Radiology, Houston, TX (United States); Vallabhaneni, Srilakshmi [Medstar Harbor Hospital, Department of Internal Medicine, Baltimore, MD (United States); Anderson, Peter M. [Levine Children' s Hospital/Levine Cancer Institute, Department of Pediatrics Hematology/Oncology/BMT, Carolinas Healthcare System, Charlotte, NC (United States); Hughes, Dennis; Daw, Najat C. [The University of Texas MD Anderson Cancer Center, Division of Pediatrics, Houston, TX (United States); Wang, Wei-Lien [The University of Texas MD Anderson Cancer Center, Department of Pathology, Houston, TX (United States)

    2016-01-15

    Although hematogenous spread of osteosarcoma is well known, the imaging findings of cardiovascular involvement by osteosarcoma are seldom reported and can be difficult to recognize. The enhanced resolution of modern CT and MRI scanners may lead to better detection of cardiovascular involvement. To describe the key imaging findings and clinical behavior of cardiovascular involvement by osteosarcoma. We retrospectively reviewed the imaging findings and clinical characteristics of 20 patients with cardiovascular involvement by osteosarcoma identified by two pediatric radiologists from a review of imaging studies at our institution from 2007 to 2013. At initial diagnosis, the median age of the patients was 15.1 years (range 4.8-24.6 years), and 7 (35%) patients had detectable metastases. Median time to detection of cardiovascular metastases was 1.8 years (range 0-7.3 years). Sixteen patients died of disease; 4 have survived a median of 7.4 years since initial diagnosis. The sites of cardiovascular involvement were the systemic veins draining the primary and metastatic osteosarcoma, pulmonary arteries, pulmonary veins draining the pulmonary metastases, and heart. A dilated and mineralized terminal pulmonary arteriole is an early sign of metastatic osteosarcoma in the lung. Unfamiliarity with the imaging features resulted in under-recognition and misinterpretation of intravascular tumor thrombus as bland thrombus. Knowledge of imaging findings in the era of modern imaging modalities has enhanced our ability to detect cardiovascular involvement and lung metastases early and avoid misinterpreting tumor thrombus in draining systemic veins or pulmonary arteries as bland thrombus. (orig.)

  13. Cardiovascular involvement by osteosarcoma: an analysis of 20 patients

    International Nuclear Information System (INIS)

    Yedururi, Sireesha; Morani, Ajaykumar C.; Gladish, Gregory W.; Vallabhaneni, Srilakshmi; Anderson, Peter M.; Hughes, Dennis; Daw, Najat C.; Wang, Wei-Lien

    2016-01-01

    Although hematogenous spread of osteosarcoma is well known, the imaging findings of cardiovascular involvement by osteosarcoma are seldom reported and can be difficult to recognize. The enhanced resolution of modern CT and MRI scanners may lead to better detection of cardiovascular involvement. To describe the key imaging findings and clinical behavior of cardiovascular involvement by osteosarcoma. We retrospectively reviewed the imaging findings and clinical characteristics of 20 patients with cardiovascular involvement by osteosarcoma identified by two pediatric radiologists from a review of imaging studies at our institution from 2007 to 2013. At initial diagnosis, the median age of the patients was 15.1 years (range 4.8-24.6 years), and 7 (35%) patients had detectable metastases. Median time to detection of cardiovascular metastases was 1.8 years (range 0-7.3 years). Sixteen patients died of disease; 4 have survived a median of 7.4 years since initial diagnosis. The sites of cardiovascular involvement were the systemic veins draining the primary and metastatic osteosarcoma, pulmonary arteries, pulmonary veins draining the pulmonary metastases, and heart. A dilated and mineralized terminal pulmonary arteriole is an early sign of metastatic osteosarcoma in the lung. Unfamiliarity with the imaging features resulted in under-recognition and misinterpretation of intravascular tumor thrombus as bland thrombus. Knowledge of imaging findings in the era of modern imaging modalities has enhanced our ability to detect cardiovascular involvement and lung metastases early and avoid misinterpreting tumor thrombus in draining systemic veins or pulmonary arteries as bland thrombus. (orig.)

  14. Opportunities and applications of medical imaging and image processing techniques for nondestructive testing

    International Nuclear Information System (INIS)

    Song, Samuel Moon Ho; Cho, Jung Ho; Son, Sang Rock; Sung, Je Jonng; Ahn, Hyung Keun; Lee, Jeong Soon

    2002-01-01

    Nondestructive testing (NDT) of structures strives to extract all relevant data regarding the state of the structure without altering its form or properties. The success enjoyed by imaging and image processing technologies in the field of modem medicine forecasts similar success of image processing related techniques both in research and practice of NDT. In this paper, we focus on two particular instances of such applications: a modern vision technique for 3-D profile and shape measurement, and ultrasonic imaging with rendering for 3-D visualization. Ultrasonic imaging of 3-D structures for nondestructive evaluation purposes must provide readily recognizable 3-D images with enough details to clearly show various faults that may or may not be present. As a step towards Improving conspicuity and thus detection of faults, we propose a pulse-echo ultrasonic imaging technique to generate a 3-D image of the 3-D object under evaluation through strategic scanning and processing of the pulse-echo data. This three-dimensional processing and display improves conspicuity of faults and in addition, provides manipulation capabilities, such as pan and rotation of the 3-D structure. As a second application, we consider an image based three-dimensional shape determination system. The shape, and thus the three-dimensional coordinate information of the 3-D object, is determined solely from captured images of the 3-D object from a prescribed set of viewpoints. The approach is based on the shape from silhouette (SFS) technique and the efficacy of the SFS method is tested using a sample data set. This system may be used to visualize the 3-D object efficiently, or to quickly generate initial CAD data for reverse engineering purposes. The proposed system potentially may be used in three dimensional design applications such as 3-D animation and 3-D games.

  15. Echocardiography and cardiovascular MRI entwined within the imaging domain; uniting the two. A compendium for the echocardiographer.

    Science.gov (United States)

    Shah, Moneal B; Doyle, Mark; Farah, Victor; Biederman, Robert W W

    2018-04-01

    A review of the unique and complementary roles echocardiography and cardiovascular MRI provide to the clinician. A focus on the physics of each modality as well as imaging of the left ventricle. © 2018 Wiley Periodicals, Inc.

  16. Improvement of temporal and dynamic subtraction images on abdominal CT using 3D global image matching and nonlinear image warping techniques

    International Nuclear Information System (INIS)

    Okumura, E; Sanada, S; Suzuki, M; Takemura, A; Matsui, O

    2007-01-01

    Accurate registration of the corresponding non-enhanced and arterial-phase CT images is necessary to create temporal and dynamic subtraction images for the enhancement of subtle abnormalities. However, respiratory movement causes misregistration at the periphery of the liver. To reduce these misregistration errors, we developed a temporal and dynamic subtraction technique to enhance small HCC by 3D global matching and nonlinear image warping techniques. The study population consisted of 21 patients with HCC. Using the 3D global matching and nonlinear image warping technique, we registered current and previous arterial-phase CT images or current non-enhanced and arterial-phase CT images obtained in the same position. The temporal subtraction image was obtained by subtracting the previous arterial-phase CT image from the warped current arterial-phase CT image. The dynamic subtraction image was obtained by the subtraction of the current non-enhanced CT image from the warped current arterial-phase CT image. The percentage of fair or superior temporal subtraction images increased from 52.4% to 95.2% using the new technique, while on the dynamic subtraction images, the percentage increased from 66.6% to 95.2%. The new subtraction technique may facilitate the diagnosis of subtle HCC based on the superior ability of these subtraction images to show nodular and/or ring enhancement

  17. Oncologic applications of diagnostic imaging techniques

    International Nuclear Information System (INIS)

    Forrest, L.J.; Thrall, D.E.

    1995-01-01

    Before appropriate therapy can be instituted for a cancer patient, the presence and extent of tumor must be evaluated. Deciding which imaging technique to use depends on tumor location, type, and biologic behavior. Conventional radiography provides important information at a relatively low cost compared with other imaging modalities. Ultrasound is a valuable adjunct to radiography, but does not replace it because both imaging modalities provide unique information. Nuclear medicine procedures contribute additional, unique data by providing physiological information, but specificity is lacking. Both CT and MRI provide images with exquisite anatomic detail, but availability and cost prohibit their general use

  18. Fluorine cardiovascular magnetic resonance angiography in vivo at 1.5 T with perfluorocarbon nanoparticle contrast agents.

    Science.gov (United States)

    Neubauer, Anne M; Caruthers, Shelton D; Hockett, Franklin D; Cyrus, Tillman; Robertson, J David; Allen, J Stacy; Williams, Todd D; Fuhrhop, Ralph W; Lanza, Gregory M; Wickline, Samuel A

    2007-01-01

    While the current gold standard for coronary imaging is X-ray angiography, evidence is accumulating that it may not be the most sensitive technique for detecting unstable plaque. Other imaging modalities, such as cardiovascular magnetic resonance (CMR), can be used for plaque characterization, but suffer from long scan and reconstruction times for determining regions of stenosis. We have developed an intravascular fluorinated contrast agent that can be used for angiography with cardiovascular magnetic resosnace at clinical field strengths (1.5 T). This liquid perfluorocarbon nanoparticle contains a high concentration of fluorine atoms that can be used to generate contrast on 19F MR images without any competing background signal from surrounding tissues. By using a perfluorocarbon with 20 equivalent fluorine molecules, custom-built RF coils, a modified clinical scanner, and an efficient steady-state free procession sequence, we demonstrate the use of this agent for angiography of small vessels in vitro, ex vivo, and in vivo. The surprisingly high signal generated with very short scan times and low doses of perfluorocarbon indicates that this technique may be useful in clinical settings when coupled with advanced imaging strategies.

  19. Diagnosis of scaphoid fracture: optimal imaging techniques

    Directory of Open Access Journals (Sweden)

    Geijer M

    2013-07-01

    Full Text Available Mats Geijer Center for Medical Imaging and Physiology, Skåne University Hospital and Lund University, Lund, Sweden Abstract: This review aims to provide an overview of modern imaging techniques for evaluation of scaphoid fracture, with emphasis on occult fractures and an outlook on the possible evolution of imaging; it also gives an overview of the pathologic and anatomic basis for selection of techniques. Displaced scaphoid fractures detected by wrist radiography, with or without special scaphoid views, pose no diagnostic problems. After wrist trauma with clinically suspected scaphoid fracture and normal scaphoid radiography, most patients will have no clinically important fracture. Between 5% and 19% of patients (on average 16% in meta-analyses will, however, have an occult scaphoid fracture which, untreated, may lead to later, potentially devastating, complications. Follow-up imaging may be done with repeat radiography, tomosynthesis, computed tomography, magnetic resonance imaging (MRI, or bone scintigraphy. However, no method is perfect, and choice of imaging may be based on availability, cost, perceived accuracy, or personal preference. Generally, MRI and bone scintigraphy are regarded as the most sensitive modalities, but both are flawed by false positive results at various rates. Keywords: occult fracture, wrist, radiography, computed tomography, magnetic resonance imaging, radionuclide imaging

  20. Cardiovascular whole-body MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Harald [Department of Clinical Radiology, University Hospitals Munich - Grosshadern Campus, Ludwig Maxmilians University Munich, Marchioninistr. 15, 81377 Munich (Germany)], E-mail: harald.kramer@med.uni-muenchen.de; Nikolaou, Konstantin; Reiser, Maximilian F. [Department of Clinical Radiology, University Hospitals Munich - Grosshadern Campus, Ludwig Maxmilians University Munich, Marchioninistr. 15, 81377 Munich (Germany)

    2009-06-15

    Cardiovascular diseases still rank number one in mortality statistics in the industrialized world. In these countries the five most common causes of death are associated to atherosclerotic changes of the arterial vasculature. Due to its often long lasting treatment and the possible loss of ability to work atherosclerotic disease constitutes an economic factor which should not be disregarded. Thus screening for atherosclerotic disease seems to be reasonable because as known the potential to influence atherosclerotic changes is higher in an early stage of the disease. Not in every case it is possible to cure the disease but sometimes progression can be controlled and decelerated. Imaging of the arterial vasculature was limited to invasive procedures associated with ionizing radiation for a long time. Non-invasive exams like the 'ankle-brachial-index' (ABI) can indicate the presence of PAOD, an exact localization of the pathologic changes is only possible with imaging methods. For cardiac imaging likewise the only non-invasive exams have been ECG and auscultation. Certainly echocardiography is an excellent technique to access cardiac function but it depends very much on both, the examining physician and the patient. MRI constitutes a non-invasive imaging modality without ionizing radiation offering excellent reproducible image quality.

  1. Cardiovascular whole-body MRI

    International Nuclear Information System (INIS)

    Kramer, Harald; Nikolaou, Konstantin; Reiser, Maximilian F.

    2009-01-01

    Cardiovascular diseases still rank number one in mortality statistics in the industrialized world. In these countries the five most common causes of death are associated to atherosclerotic changes of the arterial vasculature. Due to its often long lasting treatment and the possible loss of ability to work atherosclerotic disease constitutes an economic factor which should not be disregarded. Thus screening for atherosclerotic disease seems to be reasonable because as known the potential to influence atherosclerotic changes is higher in an early stage of the disease. Not in every case it is possible to cure the disease but sometimes progression can be controlled and decelerated. Imaging of the arterial vasculature was limited to invasive procedures associated with ionizing radiation for a long time. Non-invasive exams like the 'ankle-brachial-index' (ABI) can indicate the presence of PAOD, an exact localization of the pathologic changes is only possible with imaging methods. For cardiac imaging likewise the only non-invasive exams have been ECG and auscultation. Certainly echocardiography is an excellent technique to access cardiac function but it depends very much on both, the examining physician and the patient. MRI constitutes a non-invasive imaging modality without ionizing radiation offering excellent reproducible image quality.

  2. Review of cardiovascular imaging in the journal of nuclear cardiology in 2015. Part 1 of 2: Plaque imaging, positron emission tomography, computed tomography, and magnetic resonance.

    Science.gov (United States)

    AlJaroudi, Wael A; Hage, Fadi G

    2016-02-01

    In 2015, many original articles pertaining to cardiovascular imaging with impressive quality were published in the Journal of Nuclear Cardiology. In a set of 2 articles, we provide an overview of these contributions to facilitate for the interested reader a quick review of the advancements that occurred in the field over this year. In this first article, we focus on arterial plaque imaging, cardiac positron emission tomography, computed tomography, and magnetic resonance imaging.

  3. Evaluation of radiographic imaging techniques in lung nodule detection

    International Nuclear Information System (INIS)

    Ho, J.T.; Kruger, R.A.

    1989-01-01

    Dual-energy radiography appears to be the most effective technique to address bone superposition that compromises conventional chest radiography. A dual-energy, single-exposure, film-based technique was compared with a dual-energy, dual-exposure technique and conventional chest radiography in a simulated lung nodule detection study. Observers detected more nodules on images produced by dual-energy techniques than on images produced by conventional chest radiography. The difference between dual-energy and conventional chest radiography is statistically significant and the difference between dual-energy, dual-exposure and single-exposure techniques is statistically insignificant. The single-exposure technique has the potential to replace the dual-exposure technique in future clinical application

  4. New calibration technique for KCD-based megavoltage imaging

    Science.gov (United States)

    Samant, Sanjiv S.; Zheng, Wei; DiBianca, Frank A.; Zeman, Herbert D.; Laughter, Joseph S.

    1999-05-01

    In megavoltage imaging, current commercial electronic portal imaging devices (EPIDs), despite having the advantage of immediate digital imaging over film, suffer from poor image contrast and spatial resolution. The feasibility of using a kinestatic charge detector (KCD) as an EPID to provide superior image contrast and spatial resolution for portal imaging has already been demonstrated in a previous paper. The KCD system had the additional advantage of requiring an extremely low dose per acquired image, allowing for superior imaging to be reconstructed form a single linac pulse per image pixel. The KCD based images utilized a dose of two orders of magnitude less that for EPIDs and film. Compared with the current commercial EPIDs and film, the prototype KCD system exhibited promising image qualities, despite being handicapped by the use of a relatively simple image calibration technique, and the performance limits of medical linacs on the maximum linac pulse frequency and energy flux per pulse delivered. This image calibration technique fixed relative image pixel values based on a linear interpolation of extrema provided by an air-water calibration, and accounted only for channel-to-channel variations. The counterpart of this for area detectors is the standard flat fielding method. A comprehensive calibration protocol has been developed. The new technique additionally corrects for geometric distortions due to variations in the scan velocity, and timing artifacts caused by mis-synchronization between the linear accelerator and the data acquisition system (DAS). The role of variations in energy flux (2 - 3%) on imaging is demonstrated to be not significant for the images considered. The methodology is presented, and the results are discussed for simulated images. It also allows for significant improvements in the signal-to- noise ratio (SNR) by increasing the dose using multiple images without having to increase the linac pulse frequency or energy flux per pulse. The

  5. Volumetric image processing: A new technique for three-dimensional imaging

    International Nuclear Information System (INIS)

    Fishman, E.K.; Drebin, B.; Magid, D.; St Ville, J.A.; Zerhouni, E.A.; Siegelman, S.S.; Ney, D.R.

    1986-01-01

    Volumetric three-dimensional (3D) image processing was performed on CT scans of 25 normal hips, and image quality and potential diagnostic applications were assessed. In contrast to surface detection 3D techniques, volumetric processing preserves every pixel of transaxial CT data, replacing the gray scale with transparent ''gels'' and shading. Anatomically, accurate 3D images can be rotated and manipulated in real time, including simulated tissue layer ''peeling'' and mock surgery or disarticulation. This pilot study suggests that volumetric rendering is a major advance in signal processing of medical image data, producing a high quality, uniquely maneuverable image that is useful for fracture interpretation, soft-tissue analysis, surgical planning, and surgical rehearsal

  6. Tracers and contrast agents in cardiovascular imaging: present and future

    International Nuclear Information System (INIS)

    Marmion, M.; Deutsch, E.

    1996-01-01

    This brief article addresses the current status and future potential of nuclear medicine, X-ray computed tomography (CT), ultrasound (US), and magnetic resonance (MR) imaging in the diagnosis of cardiovascular diseases. The currently perceived advantages and disadvantages, as well as the possible future roles, of each of the modalities with regard to the evaluation of coronary artery disease are delineated. The certain advent of Mr and US myocardial contrast agents, combined with the inexorable pressures of health care reform, will alter the future usage patterns of all four modalities. Future debates about which modality should be used in which clinical situation will be based not on 'anatomy vs function', nor on the issues of cost effectiveness and patient outcomes

  7. Millimeter-wave Imaging Systems with Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Löffler, Torsten; Krozer, Viktor; Zhurbenko, Vitaliy

    2010-01-01

    The paper describes development of a millimetre-wave imaging system using multi-element aperture filling techniques [1]. Such imaging systems are increasingly demonstrated for security applications and in particular standoff imaging of persons and bonding flaw and defect detection [2]. The major ...

  8. Combined neutron imaging techniques for cultural heritage purpose

    International Nuclear Information System (INIS)

    Materna, T.

    2009-01-01

    This article presents the different new neutron techniques developed by the Ancient Charm collaboration to image objects of cultural heritage importance: Prompt-gamma-ray activation imaging (PGAI) coupled to cold/thermal neutron transmission tomography, Neutron Resonance Capture Imaging (NRCI) and Neutron Resonance Tomography.

  9. Value of black blood T2* cardiovascular magnetic resonance

    Directory of Open Access Journals (Sweden)

    Carpenter John Paul

    2011-03-01

    Full Text Available Abstract Purpose To assess whether black blood T2* cardiovascular magnetic resonance is superior to conventional white blood imaging of cardiac iron in patients with thalassaemia major (TM. Materials and methods We performed both conventional white blood and black blood T2* CMR sequences in 100 TM patients to determine intra and inter-observer variability and presence of artefacts. In 23 patients, 2 separate studies of both techniques were performed to assess interstudy reproducibility. Results Cardiac T2* values ranged from 4.5 to 43.8 ms. The mean T2* values were not different between black blood and white blood acquisitions (20.5 vs 21.6 ms, p = 0.26. Compared with the conventional white blood diastolic acquisition, the coefficient of variance of the black blood CMR technique was superior for intra-observer reproducibility (1.47% vs 4.23%, p Conclusions Black blood T2* CMR has superior reproducibility and reduced imaging artefacts for the assessment of cardiac iron, in comparison with the conventional white blood technique, which make it the preferred technique for clinical practice.

  10. Detection and characteristics of microvascular obstruction in reperfused acute myocardial infarction using an optimized protocol for contrast-enhanced cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bekkers, Sebastiaan C.A.M.; Gorgels, Anton P.M.; Passos, Valeria Lima; Waltenberger, Johannes; Crijns, Harry J.G.M.; Schalla, Simon [Maastricht University Medical Center, Department of Cardiology, P. Debyelaan 25, PO Box 5800, Maastricht (Netherlands); Backes, Walter H.; Snoep, Gabriel [Maastricht University Medical Center, Department of Radiology, P. Debyelaan 25, PO Box 5800, Maastricht (Netherlands); Kim, Raymond J. [Duke University Medical Center, Duke Cardiovascular Magnetic Resonance Center, PO Box 3934, Durham, NC (United States)

    2009-12-15

    Several cardiovascular magnetic resonance imaging (CMR) techniques are used to detect microvascular obstruction (MVO) after acute myocardial infarction (AMI). To determine the prevalence of MVO and gain more insight into the dynamic changes in appearance of MVO, we studied 84 consecutive patients with a reperfused AMI on average 5 and 104 days after admission, using an optimised single breath-hold 3D inversion recovery gradient echo pulse sequence (IR-GRE) protocol. Early MVO (2 min post-contrast) was detected in 53 patients (63%) and late MVO (10 min post-contrast) in 45 patients (54%; p = 0.008). The extent of MVO decreased from early to late imaging (4.3 {+-} 3.2% vs. 1.8 {+-} 1.8%, p < 0.001) and showed a heterogeneous pattern. At baseline, patients without MVO (early and late) had a higher left ventricular ejection fraction (LVEF) than patients with persistent late MVO (56 {+-} 7% vs. 48 {+-} 7%, p < 0.001) and LVEF was intermediate in patients with early MVO but late MVO disappearance (54 {+-} 6%). During follow-up, LVEF improved in all three subgroups but remained intermediate in patients with late MVO disappearance. This optimised single breath-hold 3D IR-GRE technique for imaging MVO early and late after contrast administration is fast, accurate and allows detection of patients with intermediate remodelling at follow-up. (orig.)

  11. New concepts in cardiac imaging 1985

    Energy Technology Data Exchange (ETDEWEB)

    Pohost, G.M.; Higgins, C.B.; Morganroth, J.; Ritchie, J.L.; Schelbert, H.R.

    1985-01-01

    This book presents 5 specialists work on reviewing and editing the area of applications for cardiac imaging: Contents: Ultrasound Methods; 1. Echocardiography in Valvular Heart Disease, 2. Echocardiography in Ischemic Heart Disease, 3. Current Status of Doppler Ultrasound for Assessing Regurgitant Valvular Lesions, Radionuclide Methods; 4. Cardiovascular Nuclear Medicine, 5. Single Photon Emission Computed Tomography (SPECT): Validation and Application for Myocardial Perfusion Imaging, 6. Assessment of Regional Myocardial Perfusion with Positron Emission Tomography, 7. Assessment of Regional Myocardial Substrate Metabolism with Positron Emission Tomography, X-Ray Imaging Techniques; 8. The Evaluation of Left Ventricular Function in Ischemic Heart Disease by Digital Subtraction Angigraphy, 9. Digital Angiography in the Assessment of Coronary Artery Disease, 10. Cardiac Computed Tomography: Its Potential Use in Evaluation of Ischemic Heart Disease, Magnetic Methods; 11. NMR Evaluation of the Cardiovascular System, 12. Magnetic Resonance Imaging of the Heart.

  12. New concepts in cardiac imaging 1985

    International Nuclear Information System (INIS)

    Pohost, G.M.; Higgins, C.B.; Morganroth, J.; Ritchie, J.L.; Schelbert, H.R.

    1985-01-01

    This book presents 5 specialists work on reviewing and editing the area of applications for cardiac imaging: Contents: Ultrasound Methods; 1. Echocardiography in Valvular Heart Disease, 2. Echocardiography in Ischemic Heart Disease, 3. Current Status of Doppler Ultrasound for Assessing Regurgitant Valvular Lesions, Radionuclide Methods; 4. Cardiovascular Nuclear Medicine, 5. Single Photon Emission Computed Tomography (SPECT): Validation and Application for Myocardial Perfusion Imaging, 6. Assessment of Regional Myocardial Perfusion with Positron Emission Tomography, 7. Assessment of Regional Myocardial Substrate Metabolism with Positron Emission Tomography, X-Ray Imaging Techniques; 8. The Evaluation of Left Ventricular Function in Ischemic Heart Disease by Digital Subtraction Angigraphy, 9. Digital Angiography in the Assessment of Coronary Artery Disease, 10. Cardiac Computed Tomography: Its Potential Use in Evaluation of Ischemic Heart Disease, Magnetic Methods; 11. NMR Evaluation of the Cardiovascular System, 12. Magnetic Resonance Imaging of the Heart

  13. Video Multiple Watermarking Technique Based on Image Interlacing Using DWT

    Directory of Open Access Journals (Sweden)

    Mohamed M. Ibrahim

    2014-01-01

    Full Text Available Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.

  14. Video multiple watermarking technique based on image interlacing using DWT.

    Science.gov (United States)

    Ibrahim, Mohamed M; Abdel Kader, Neamat S; Zorkany, M

    2014-01-01

    Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.

  15. Meniscal tears: comparison of half-Fourier technique and conventional MR imaging

    International Nuclear Information System (INIS)

    Shabana, Wael; Maeseneer, Michel de; Machiels, Freddy; Ridder, Filip de; Osteaux, Michel

    2003-01-01

    Purpose: To determine whether half-Fourier MR image acquisition technique can provide similar information to that of conventional MR acquisition technique for evaluation of meniscal tears. Materials and methods: We studied 101 menisci in 52 patients who were referred for evaluation of meniscal tears. Sagittal MR images of the knee were obtained for all patients by using proton density and T2-weighted SE sequences on a 1-T clinical system. The half-Fourier technique and conventional technique were used for all patients. All other imaging parameters were identical for both sequences (TR/TE=2400/20,70; 3 mm slice thickness; 200x256 matrix; field of view, 200; one signal acquired). Both sets of images were filmed with standard window and level settings. Images were randomised and interpreted independently by two radiologists for the presence of meniscal tears. Images were also subjectively assessed for image quality using a five-point grading scale. Results: On half-Fourier images, Reader 1 interpreted 23 menisci as torn, compared to 28 for Reader 2. On conventional images, Reader 1 interpreted 24 menisci as torn, compared to 26 for Reader 2. Agreement between interpretation of the conventional and that of the half-Fourier images was 99% for Reader 1, and 98% for Reader 2. Agreement between readers for the half-Fourier images was 95%, and for the conventional images 96%. No statistically significant difference was found in the subjective evaluation of image quality between the conventional and half-Fourier images. Conclusion: The half-Fourier acquisition technique compares favourably with the conventional technique for the evaluation of meniscal tears

  16. Imaging unstable plaque

    International Nuclear Information System (INIS)

    SRIRANJAN, Rouchelle S.; TARKIN, Jason M.; RUDD, James H.; EVANS, Nicholas R.; CHOWDHURY, Mohammed M.

    2016-01-01

    Recent advances in imaging technology have enabled us to utilise a range of diagnostic approaches to better characterise high-risk atherosclerotic plaque. The aim of this article is to review current and emerging techniques used to detect and quantify unstable plaque in the context of large and small arterial systems and will focus on both invasive and non-invasive imaging techniques. While the diagnosis of clinically relevant atherosclerosis still relies heavily on anatomical assessment of arterial luminal stenosis, evolving multimodal cross-sectional imaging techniques that encompass novel molecular probes can provide added information with regard to plaque composition and overall disease burden. Novel molecular probes currently being developed to track precursors of plaque rupture such as inflammation, micro-calcification, hypoxia and neoangiogenesis are likely to have translational applications beyond diagnostics and have the potential to play a part in quantifying early responses to therapeutic interventions and more accurate cardiovascular risk stratification.

  17. Advanced imaging techniques in pediatric body MRI

    Energy Technology Data Exchange (ETDEWEB)

    Courtier, Jesse [UCSF Benioff Children' s Hospital, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Rao, Anil G. [Medical University of South Carolina, Department of Radiology, Charleston, SC (United States); Anupindi, Sudha A. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2017-05-15

    While there are many challenges specific to pediatric abdomino-pelvic MRI, many recent advances are addressing these challenges. It is therefore essential for radiologists to be familiar with the latest advances in MR imaging. Laudable efforts have also recently been implemented in many centers to improve the overall experience of pediatric patients, including the use of dedicated radiology child life specialists, MRI video goggles, and improved MR suite environments. These efforts have allowed a larger number of children to be scanned while awake, with fewer studies being done under sedation or anesthesia; this has resulted in additional challenges from patient motion and difficulties with breath-holding and tolerating longer scan times. In this review, we highlight common challenges faced in imaging the pediatric abdomen and pelvis and discuss the application of the newest techniques to address these challenges. Additionally, we highlight the newest advances in quantified imaging techniques, specifically in MR liver iron quantification. The techniques described in this review are all commercially available and can be readily implemented. (orig.)

  18. Reducing the absorbed dose in analogue radiography of infant chest images by improving the image quality, using image processing techniques

    International Nuclear Information System (INIS)

    Karimian, A.; Yazdani, S.; Askari, M. A.

    2011-01-01

    Radiographic inspection is one of the most widely employed techniques for medical testing methods. Because of poor contrast and high un-sharpness of radiographic image quality in films, converting radiographs to a digital format and using further digital image processing is the best method of enhancing the image quality and assisting the interpreter in their evaluation. In this research work, radiographic films of 70 infant chest images with different sizes of defects were selected. To digitise the chest images and employ image processing the two algorithms (i) spatial domain and (ii) frequency domain techniques were used. The MATLAB environment was selected for processing in the digital format. Our results showed that by using these two techniques, the defects with small dimensions are detectable. Therefore, these suggested techniques may help medical specialists to diagnose the defects in the primary stages and help to prevent more repeat X-ray examination of paediatric patients. (authors)

  19. Enhancement of SAR images using fuzzy shrinkage technique

    Indian Academy of Sciences (India)

    This paper presents speckle noise reduction in SAR images using a combination of curvelet and fuzzy logic technique to restore speckle-affected images. This method overcomes the limitation of discontinuity in hard threshold and permanent deviation in soft threshold. First, it decomposes noise image into different ...

  20. Steganalysis Techniques for Documents and Images

    Science.gov (United States)

    2005-05-01

    steganography . We then illustrated the efficacy of our model using variations of LSB steganography . For binary images , we have made significant progress in...efforts have focused on two areas. The first area is LSB steganalysis for grayscale images . Here, as we had proposed (as a challenging task), we have...generalized our previous steganalysis technique of sample pair analysis to a theoretical framework for the detection of the LSB steganography . The new

  1. Image processing techniques for remote sensing data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    interpretation and for processing of scene data for autonomous machine perception. The technique of digital image processing are used for' automatic character/pattern recognition, industrial robots for product assembly and inspection, military recognizance... and spatial co-ordinates into discrete components. The mathematical concepts involved are the sampling and transform theory. Two dimensional transforms are used for image enhancement, restoration, encoding and description too. The main objective of the image...

  2. Coronary imaging techniques with emphasis on CT and MRI

    International Nuclear Information System (INIS)

    Lederlin, Mathieu; Latrabe, Valerie; Corneloup, Olivier; Cochet, Hubert; Montaudon, Michel; Laurent, Francois; Thambo, Jean-Benoit

    2011-01-01

    Coronary artery imaging in children is challenging, with high demands both on temporal and spatial resolution due to high heart rates and smaller anatomy. Although invasive conventional coronary angiography remains the benchmark technique, over the past 10 years, CT and MRI have emerged in the field of coronary imaging. The choice of hardware is important. For CT, the minimum requirement is a 64-channel scanner. The temporal resolution of the scanner is most important for optimising image quality and minimising radiation dose. Manufacturers have developed several modes of electrocardiographic (ECG) triggering to facilitate dose reduction. Recent technical advances have opened new possibilities in MRI coronary imaging. As a non-ionising radiation technique, MRI is of great interest in paediatric imaging. It is currently recommended in centres with appropriate expertise for the screening of patients with suspected congenital coronary anomalies. However, MRI is still not feasible in infants. This review describes and discusses the technical requirements and the pros and cons of all three techniques. (orig.)

  3. A general technique for interstudy registration of multifunction and multimodality images

    International Nuclear Information System (INIS)

    Lin, K.P.; Huang, S.C.; Bacter, L.R.; Phelps, M.E.

    1994-01-01

    A technique that can register anatomic/structural brain images (e.g., MRI) with various functional images (e.g., PET-FDG and PET-FDOPA) of the same subject has been developed. The procedure of this technique includes the following steps: (1) segmentation of MRI brain images into gray matter (GM), white matter (WM), cerebral spinal fluid (CSF), and, muscle (MS) components, (2) assignment of appropriate radio-tracer concentrations to various components depending on the kind of functional image that is being registered, (3) generation of simulated functional images to have a spatial resolution that is comparable to that of the measured ones, (4) alignment of the measured functional images to the simulated ones that are based on MRI images. A self-organization clustering method is used to segment the MRI images. The image alignment is based on the criterion of least squares of the pixel-by-pixel differences between the two sets of images that are being matched and on the Powell's algorithm for minimization. The technique was applied successfully for registering the MRI, PET-FDG, and PET-FDOPA images. This technique offers a general solution to the registration of structural images to functional images and to the registration of different functional images of markedly different distributions

  4. Cardiovascular Magnetic Resonance T2-STIR Imaging is Unable to Discriminate Between Intramyocardial Haemorrhage and Microvascular Obstruction

    DEFF Research Database (Denmark)

    Søvsø Szocska Hansen, Esben; Pedersen, Steen Fjord; Pedersen, Steen Bønløkke

    2015-01-01

    Recent studies have used cardiovascular magnetic resonance (CMR) and T2-weighted short tau inversion recovery (T2-STIR) imaging to detect intramyocardial haemorrhage (IMH) as a measure of ischemic/reperfusion injury. We investigated the ability of T2-STIR to differentiate between microvascular...

  5. EMERGING APPLICATIONS OF NANOMEDICINE FOR THERAPY AND DIAGNOSIS OF CARDIOVASCULAR DISEASES

    Science.gov (United States)

    Godin, Biana; Sakamoto, Jason H.; Serda, Rita E.; Grattoni, Alessandro; Bouamrani, Ali; Ferrari, Mauro

    2010-01-01

    Nanomedicine is an emerging field of medicine which utilizes nanotechnology concepts for advanced therapy and diagnostics. This convergent discipline, which merges research areas such as chemistry, biology, physics, mathematics and engineering thus bridging the gap between molecular and cellular interactions, has a potential to revolutionize current medical practice. This review presents recent developments in nanomedicine research, which are poised to have an important impact on cardiovascular disease and treatment by improving therapy and diagnosis of such cardiovascular disorders as atherosclerosis, restenosis and myocardial infarction. Specifically, we discuss the use of nanoparticles for molecular imaging and advanced therapeutics, specially designed drug eluting stents and in vivo/ex vivo early detection techniques. PMID:20172613

  6. An enhanced approach for biomedical image restoration using image fusion techniques

    Science.gov (United States)

    Karam, Ghada Sabah; Abbas, Fatma Ismail; Abood, Ziad M.; Kadhim, Kadhim K.; Karam, Nada S.

    2018-05-01

    Biomedical image is generally noisy and little blur due to the physical mechanisms of the acquisition process, so one of the common degradations in biomedical image is their noise and poor contrast. The idea of biomedical image enhancement is to improve the quality of the image for early diagnosis. In this paper we are using Wavelet Transformation to remove the Gaussian noise from biomedical images: Positron Emission Tomography (PET) image and Radiography (Radio) image, in different color spaces (RGB, HSV, YCbCr), and we perform the fusion of the denoised images resulting from the above denoising techniques using add image method. Then some quantive performance metrics such as signal -to -noise ratio (SNR), peak signal-to-noise ratio (PSNR), and Mean Square Error (MSE), etc. are computed. Since this statistical measurement helps in the assessment of fidelity and image quality. The results showed that our approach can be applied of Image types of color spaces for biomedical images.

  7. Evaluation of the specificity of radionuclide myocardial imaging for detecting CAD

    International Nuclear Information System (INIS)

    Liu Xiujie

    1992-01-01

    In order to evaluate the specificity of radionuclide myocardial perfusion imaging for detecting coronary artery disease (CAD), 50 patients with normal coronary arteriography and radionuclide myocardial perfusion scintigraphy were analysed. The results from 201 T1 (20 cases) and 99m Tc-MIBI (30 cases) studies showed that out of 33 patients with no organic cardiovascular disease, 29 had normal myocardial imaging, and the specificity of radionuclide myocardial imaging for detecting CAD was 87.8%. 4 normal young women had false positive myocardial imaging. Out of 17 patients with cardiovascular disease and normal coronary arteriography, 15 patients had abnormal myocardial imaging. The final clinical diagnoses of these 15 patients were: 4 patients with hypertrophic cardiomyopathy, 3 with old myocardial infarction, 2 with myocarditis, 3 with small coronary vessel disease, 1 with congestive cardiomyopathy, and 2 with other cardiac disorder. The points of differentiation between CAD and other cardiovascular disease using radionuclide techniques were discussed

  8. Imaging of Hip Pain: From Radiography to Cross-Sectional Imaging Techniques

    International Nuclear Information System (INIS)

    Ruiz Santiago, Fernando; Santiago Chinchilla, Alicia; Ansari, Afshin; Guzmán Álvarez, Luis; Castellano García, Maria del Mar; Martínez Martínez, Alberto; Tercedor Sánchez, Juan

    2016-01-01

    Hip pain can have multiple causes, including intra-articular, juxta-articular, and referred pain, mainly from spine or sacroiliac joints. In this review, we discuss the causes of intra-articular hip pain from childhood to adulthood and the role of the appropriate imaging techniques according to clinical suspicion and age of the patient. Stress is put on the findings of radiographs, currently considered the first imaging technique, not only in older people with degenerative disease but also in young people without osteoarthritis. In this case plain radiography allows categorization of the hip as normal or dysplastic or with impingement signs, pincer, cam, or a combination of both

  9. TOF-SIMS imaging technique with information entropy

    International Nuclear Information System (INIS)

    Aoyagi, Satoka; Kawashima, Y.; Kudo, Masahiro

    2005-01-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is capable of chemical imaging of proteins on insulated samples in principal. However, selection of specific peaks related to a particular protein, which are necessary for chemical imaging, out of numerous candidates had been difficult without an appropriate spectrum analysis technique. Therefore multivariate analysis techniques, such as principal component analysis (PCA), and analysis with mutual information defined by information theory, have been applied to interpret SIMS spectra of protein samples. In this study mutual information was applied to select specific peaks related to proteins in order to obtain chemical images. Proteins on insulated materials were measured with TOF-SIMS and then SIMS spectra were analyzed by means of the analysis method based on the comparison using mutual information. Chemical mapping of each protein was obtained using specific peaks related to each protein selected based on values of mutual information. The results of TOF-SIMS images of proteins on the materials provide some useful information on properties of protein adsorption, optimality of immobilization processes and reaction between proteins. Thus chemical images of proteins by TOF-SIMS contribute to understand interactions between material surfaces and proteins and to develop sophisticated biomaterials

  10. Strain analysis in CRT candidates using the novel segment length in cine (SLICE) post-processing technique on standard CMR cine images

    Energy Technology Data Exchange (ETDEWEB)

    Zweerink, Alwin; Allaart, Cornelis P.; Wu, LiNa; Beek, Aernout M.; Rossum, Albert C. van; Nijveldt, Robin [VU University Medical Center, Department of Cardiology, and Institute for Cardiovascular Research (ICaR-VU), Amsterdam (Netherlands); Kuijer, Joost P.A. [VU University Medical Center, Department of Physics and Medical Technology, Amsterdam (Netherlands); Ven, Peter M. van de [VU University Medical Center, Department of Epidemiology and Biostatistics, Amsterdam (Netherlands); Meine, Mathias [University Medical Center, Department of Cardiology, Utrecht (Netherlands); Croisille, Pierre; Clarysse, Patrick [Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne (France)

    2017-12-15

    Although myocardial strain analysis is a potential tool to improve patient selection for cardiac resynchronization therapy (CRT), there is currently no validated clinical approach to derive segmental strains. We evaluated the novel segment length in cine (SLICE) technique to derive segmental strains from standard cardiovascular MR (CMR) cine images in CRT candidates. Twenty-seven patients with left bundle branch block underwent CMR examination including cine imaging and myocardial tagging (CMR-TAG). SLICE was performed by measuring segment length between anatomical landmarks throughout all phases on short-axis cines. This measure of frame-to-frame segment length change was compared to CMR-TAG circumferential strain measurements. Subsequently, conventional markers of CRT response were calculated. Segmental strains showed good to excellent agreement between SLICE and CMR-TAG (septum strain, intraclass correlation coefficient (ICC) 0.76; lateral wall strain, ICC 0.66). Conventional markers of CRT response also showed close agreement between both methods (ICC 0.61-0.78). Reproducibility of SLICE was excellent for intra-observer testing (all ICC ≥0.76) and good for interobserver testing (all ICC ≥0.61). The novel SLICE post-processing technique on standard CMR cine images offers both accurate and robust segmental strain measures compared to the 'gold standard' CMR-TAG technique, and has the advantage of being widely available. (orig.)

  11. Strain analysis in CRT candidates using the novel segment length in cine (SLICE) post-processing technique on standard CMR cine images

    International Nuclear Information System (INIS)

    Zweerink, Alwin; Allaart, Cornelis P.; Wu, LiNa; Beek, Aernout M.; Rossum, Albert C. van; Nijveldt, Robin; Kuijer, Joost P.A.; Ven, Peter M. van de; Meine, Mathias; Croisille, Pierre; Clarysse, Patrick

    2017-01-01

    Although myocardial strain analysis is a potential tool to improve patient selection for cardiac resynchronization therapy (CRT), there is currently no validated clinical approach to derive segmental strains. We evaluated the novel segment length in cine (SLICE) technique to derive segmental strains from standard cardiovascular MR (CMR) cine images in CRT candidates. Twenty-seven patients with left bundle branch block underwent CMR examination including cine imaging and myocardial tagging (CMR-TAG). SLICE was performed by measuring segment length between anatomical landmarks throughout all phases on short-axis cines. This measure of frame-to-frame segment length change was compared to CMR-TAG circumferential strain measurements. Subsequently, conventional markers of CRT response were calculated. Segmental strains showed good to excellent agreement between SLICE and CMR-TAG (septum strain, intraclass correlation coefficient (ICC) 0.76; lateral wall strain, ICC 0.66). Conventional markers of CRT response also showed close agreement between both methods (ICC 0.61-0.78). Reproducibility of SLICE was excellent for intra-observer testing (all ICC ≥0.76) and good for interobserver testing (all ICC ≥0.61). The novel SLICE post-processing technique on standard CMR cine images offers both accurate and robust segmental strain measures compared to the 'gold standard' CMR-TAG technique, and has the advantage of being widely available. (orig.)

  12. A moving image system for cardiovascular nuclear medicine. A dedicated auxiliary device for the total capacity imaging system for multiple plane dynamic colour display

    International Nuclear Information System (INIS)

    Iio, M.; Toyama, H.; Murata, H.; Takaoka, S.

    1981-01-01

    The recent device of the authors, the dedicated multiplane dynamic colour image display system for nuclear medicine, is discussed. This new device is a hardware-based auxiliary moving image system (AMIS) attached to the total capacity image processing system of the authors' department. The major purpose of this study is to develop the dedicated device so that cardiovascular nuclear medicine and other dynamic studies will include the ability to assess the real time delicate processing of the colour selection, edge detection, phased analysis, etc. The auxiliary system consists of the interface for image transferring, four IC refresh memories of 64x64 matrix with 10 bit count depth, a digital 20-in colour TV monitor, a control keyboard and a control panel with potentiometers. This system has five major functions for colour display: (1) A microcomputer board can select any one of 40 different colour tables preset in the colour transformation RAM. This key also provides edge detection at a certain level of the count by leaving the optional colour and setting the rest of the levels at 0 (black); (2) The arithmetic processing circuit performs the operation of the fundamental rules, permitting arithmetic processes of the two images; (3) The colour level control circuit is operated independently by four potentiometers for four refresh image memories, so that the gain and offset of the colour level can be manually and visually controlled to the satisfaction of the operator; (4) The simultaneous CRT display of the maximum four images with or without cinematic motion is possible; (5) The real time movie interval is also adjustable by hardware, and certain frames can be freezed with overlapping of the dynamic frames. Since this system of AMIS is linked with the whole capacity image processing system of the CPU size of 128kW, etc., clinical applications are not limited to cardiovascular nuclear medicine. (author)

  13. Imaging techniques for ultrasonic testing

    International Nuclear Information System (INIS)

    2013-01-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [de

  14. Upright CBCT: A novel imaging technique

    Directory of Open Access Journals (Sweden)

    Xenia J Fave

    2014-03-01

    Full Text Available Purpose: We present a method for acquiring and correcting upright images using the on board CBCT imager. An upright imaging technique would allow for the introduction of upright radiation therapy treatments, which would benefit a variety of patients including those with thoracic cancers whose lung volumes are increased in an upright position and those who experience substantial discomfort during supine treatment positions.Methods: To acquire upright CBCT images, the linac head was positioned at 0 degrees, the KV imager and detector arms extended to their lateral positions, and the couch placed at 270 degrees. The KV imager was programmed to begin taking continuous fluoroscopic projections as the couch rotated from 270 to 90 degrees. The FOV was extended by performing this procedure twice, once with the detector shifted 14.5 cm towards the gantry and once with it shifted 14.5 cm away from the gantry. The two resulting sets of images were stitched together prior to reconstruction. The imaging parameters were chosen to deliver the some dose as that delivered during a simulation CT. A simulation CT was deformably registered to an upright CBCT reconstruction in order to evaluate the possibility of correcting the HU values via mapping.Results: Both spatial linearity and high contrast resolution were maintained in upright CBCT when compared to a simulation CT. Low contrast resolution and HU linearity decreased. Streaking artifacts were caused by the limited 180 degree arc angle and a sharp point artifact in the center of the axial slices resulted at the site of the stitching. A method for correcting the HUs was shown to be robust against these artifacts.Conclusion: Upright CBCT could be of great benefit to many patients. This study demonstrates its feasibility and presents solutions to some of its first hurdles before clinical implementation.--------------------------Cite this article as:Fave X, Yang J, Balter P, Court L. Upright CBCT: A novel imaging

  15. Comparison of mosaicking techniques for airborne images from consumer-grade cameras

    Science.gov (United States)

    Song, Huaibo; Yang, Chenghai; Zhang, Jian; Hoffmann, Wesley Clint; He, Dongjian; Thomasson, J. Alex

    2016-01-01

    Images captured from airborne imaging systems can be mosaicked for diverse remote sensing applications. The objective of this study was to identify appropriate mosaicking techniques and software to generate mosaicked images for use by aerial applicators and other users. Three software packages-Photoshop CC, Autostitch, and Pix4Dmapper-were selected for mosaicking airborne images acquired from a large cropping area. Ground control points were collected for georeferencing the mosaicked images and for evaluating the accuracy of eight mosaicking techniques. Analysis and accuracy assessment showed that Pix4Dmapper can be the first choice if georeferenced imagery with high accuracy is required. The spherical method in Photoshop CC can be an alternative for cost considerations, and Autostitch can be used to quickly mosaic images with reduced spatial resolution. The results also showed that the accuracy of image mosaicking techniques could be greatly affected by the size of the imaging area or the number of the images and that the accuracy would be higher for a small area than for a large area. The results from this study will provide useful information for the selection of image mosaicking software and techniques for aerial applicators and other users.

  16. Evaluation of the low dose cardiac CT imaging using ASIR technique

    Science.gov (United States)

    Fan, Jiahua; Hsieh, Jiang; Deubig, Amy; Sainath, Paavana; Crandall, Peter

    2010-04-01

    Today Cardiac imaging is one of the key driving forces for the research and development activities of Computed Tomography (CT) imaging. It requires high spatial and temporal resolution and is often associated with high radiation dose. The newly introduced ASIR technique presents an efficient method that offers the dose reduction benefits while maintaining image quality and providing fast reconstruction speed. This paper discusses the study of image quality of the ASIR technique for Cardiac CT imaging. Phantoms as well as clinical data have been evaluated to demonstrate the effectiveness of ASIR technique for Cardiac CT applications.

  17. Computer technique for correction of nonhomogeneous distribution in radiologic images

    International Nuclear Information System (INIS)

    Florian, Rogerio V.; Frere, Annie F.; Schiable, Homero; Marques, Paulo M.A.; Marques, Marcio A.

    1996-01-01

    An image processing technique to provide a 'Heel' effect compensation on medical images is presented. It is reported that the technique can improve the structures detection due to background homogeneity and can be used for any radiologic system

  18. Impact of the cardiovascular system-associated adipose tissue on atherosclerotic pathology.

    Science.gov (United States)

    Chistiakov, Dimitry A; Grechko, Andrey V; Myasoedova, Veronika A; Melnichenko, Alexandra A; Orekhov, Alexander N

    2017-08-01

    Cardiac obesity makes an important contribution to the pathogenesis of cardiovascular disease. One of the important pathways of this contribution is the inflammatory process that takes place in the adipose tissue. In this review, we consider the role of the cardiovascular system-associated fat in atherosclerotic cardiovascular pathology and a non-atherosclerotic cause of coronary artery disease, such as atrial fibrillation. Cardiovascular system-associated fat not only serves as the energy store, but also releases adipokines that control local and systemic metabolism, heart/vascular function and vessel tone, and a number of vasodilating and anti-inflammatory substances. Adipokine appears to play an important protective role in cardiovascular system. Under chronic inflammation conditions, the repertoire of signaling molecules secreted by cardiac fat can be altered, leading to a higher amount of pro-inflammatory messengers, vasoconstrictors, profibrotic modulators. This further aggravates cardiovascular inflammation and leads to hypertension, induction of the pathological tissue remodeling and cardiac fibrosis. Contemporary imaging techniques showed that epicardial fat thickness correlates with the visceral fat mass, which is an established risk factor and predictor of cardiovascular disease in obese subjects. However, this correlation is no longer present after adjustment for other covariates. Nevertheless, recent studies showed that pericardial fat volume and epicardial fat thickness can probably serve as a better indicator for atrial fibrillation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Imaging evidence and recommendations for traumatic brain injury: advanced neuro- and neurovascular imaging techniques.

    Science.gov (United States)

    Wintermark, M; Sanelli, P C; Anzai, Y; Tsiouris, A J; Whitlow, C T

    2015-02-01

    Neuroimaging plays a critical role in the evaluation of patients with traumatic brain injury, with NCCT as the first-line of imaging for patients with traumatic brain injury and MR imaging being recommended in specific settings. Advanced neuroimaging techniques, including MR imaging DTI, blood oxygen level-dependent fMRI, MR spectroscopy, perfusion imaging, PET/SPECT, and magnetoencephalography, are of particular interest in identifying further injury in patients with traumatic brain injury when conventional NCCT and MR imaging findings are normal, as well as for prognostication in patients with persistent symptoms. These advanced neuroimaging techniques are currently under investigation in an attempt to optimize them and substantiate their clinical relevance in individual patients. However, the data currently available confine their use to the research arena for group comparisons, and there remains insufficient evidence at the time of this writing to conclude that these advanced techniques can be used for routine clinical use at the individual patient level. TBI imaging is a rapidly evolving field, and a number of the recommendations presented will be updated in the future to reflect the advances in medical knowledge. © 2015 by American Journal of Neuroradiology.

  20. Detection of Glaucoma Using Image Processing Techniques: A Critique.

    Science.gov (United States)

    Kumar, B Naveen; Chauhan, R P; Dahiya, Nidhi

    2018-01-01

    The primary objective of this article is to present a summary of different types of image processing methods employed for the detection of glaucoma, a serious eye disease. Glaucoma affects the optic nerve in which retinal ganglion cells become dead, and this leads to loss of vision. The principal cause is the increase in intraocular pressure, which occurs in open-angle and angle-closure glaucoma, the two major types affecting the optic nerve. In the early stages of glaucoma, no perceptible symptoms appear. As the disease progresses, vision starts to become hazy, leading to blindness. Therefore, early detection of glaucoma is needed for prevention. Manual analysis of ophthalmic images is fairly time-consuming and accuracy depends on the expertise of the professionals. Automatic analysis of retinal images is an important tool. Automation aids in the detection, diagnosis, and prevention of risks associated with the disease. Fundus images obtained from a fundus camera have been used for the analysis. Requisite pre-processing techniques have been applied to the image and, depending upon the technique, various classifiers have been used to detect glaucoma. The techniques mentioned in the present review have certain advantages and disadvantages. Based on this study, one can determine which technique provides an optimum result.

  1. Development of flow velocity measurement techniques in visible images. Improvement of particle image velocimetry techniques on image process

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Nishimura, Motohiko; Kamide, Hideki; Hishida, Koichi

    1999-10-01

    Noise reduction system was developed to improve applicability of Particle Image Velocimetry (PIV) to complicated configure bounded flows. For fast reactor safety and thermal hydraulic studies, experiments are performed in scale models which usually have rather complicated geometry and structures such as fuel subassemblies, heat exchangers, etc. The structures and stuck dusts on the view window of the models obscure the particle image. Thus the image except the moving particles can be regarded as a noise. In the present study, two noise reduction techniques are proposed. The one is the Time-averaged Light Intensity Subtraction method (TIS) which subtracts the time-averaged light intensity of each pixel in the sequential images from the each corresponding pixel. The other one is the Minimum Light Intensity Subtraction method (MIS) which subtracts the minimum light intensity of each pixel in the sequential images from the each corresponding pixel. Both methods are examined on their capabilities of noise reduction. As for the original 'bench mark' image, the image made from Large Eddy Simulation was used. To the bench mark image, noises are added which are referred as sample images. Both methods reduce the rate of vector with the error of more than one pixel from 90% to less than 5%. Also, more than 50% of the vectors have the error of less than 0.2 pixel. The analysis of uncertainty shows that these methods enhances the accuracy of vector measurement 3 ∼ 12 times if the image with noise were processed, and the MIS method has 1.1 ∼ 2.1 times accuracy compared to the TIS. Thus the present noise reduction methods are quite efficient to enhance the accuracy of flow velocity fields measured with particle images including structures and deposits on the view window. (author)

  2. Signal-to-noise ratio analysis and evaluation of the Hadamard imaging technique

    Science.gov (United States)

    Jobson, D. J.; Katzberg, S. J.; Spiers, R. B., Jr.

    1977-01-01

    The signal-to-noise ratio performance of the Hadamard imaging technique is analyzed and an experimental evaluation of a laboratory Hadamard imager is presented. A comparison between the performances of Hadamard and conventional imaging techniques shows that the Hadamard technique is superior only when the imaging objective lens is required to have an effective F (focus) number of about 2 or slower.

  3. Comparative study of image restoration techniques in forensic image processing

    Science.gov (United States)

    Bijhold, Jurrien; Kuijper, Arjan; Westhuis, Jaap-Harm

    1997-02-01

    In this work we investigated the forensic applicability of some state-of-the-art image restoration techniques for digitized video-images and photographs: classical Wiener filtering, constrained maximum entropy, and some variants of constrained minimum total variation. Basic concepts and experimental results are discussed. Because all methods appeared to produce different results, a discussion is given of which method is the most suitable, depending on the image objects that are questioned, prior knowledge and type of blur and noise. Constrained minimum total variation methods produced the best results for test images with simulated noise and blur. In cases where images are the most substantial part of the evidence, constrained maximum entropy might be more suitable, because its theoretical basis predicts a restoration result that shows the most likely pixel values, given all the prior knowledge used during restoration.

  4. Comparison of de-noising techniques of scintigraphic images; Comparaison de techniques de debruitage des images scintigraphiques

    Energy Technology Data Exchange (ETDEWEB)

    Kirkove, M.; Seret, A. [Liege Univ., Imagerie Medicale Experimentale, Institut de Physique (Belgium)

    2007-05-15

    Scintigraphic images are strongly affected by Poisson noise. This article presents the results of a comparison between de-noising methods for Poisson noise according to different criteria: the gain in signal-to-noise ratio, the preservation of resolution and contrast. and the visual quality. The wavelet techniques recently developed to de-noise Poisson noise limited images are divided into two groups based on: (1) the Haar representation. 1 (2) the transformation of Poisson noise into white Gaussian noise by the Haar-Fisz transform followed by a de-noising. In this study, three variants of the first group and three variants of the second. including the adaptative Wiener filter, four types of wavelet thresholding and the Bayesian method of Pizurica were compared to Metz and Hanning filters and to Shine, a systematic noise elimination process. All these methods, except Shine, are parametric. For each of them, ranges of optimal values for the parameters were highlighted as a function of the aforementioned criteria. The intersection of ranges for the wavelet methods without thresholding was empty, and these methods were therefore not further compared quantitatively. The thresholding techniques and Shine gave the best results in resolution and contrast. The largest improvement in signal-to-noise ratio was obtained by the filters. Ideally, these filters should be accurately defined for each image. This is difficult in the clinical context. Moreover. they generate oscillation artefacts. In addition, the wavelet techniques did not bring significant improvements, and are rather slow. Therefore, Shine, which is fast and works automatically, appears to be an interesting alternative. (authors)

  5. Prognostic aspects on the development of imaging techniques

    International Nuclear Information System (INIS)

    Biehl, H.

    1985-01-01

    The development of imaging techniques designed for medical diagnostics and their application within the health service system are forecast up to the year 2000. The changes in the structure of the imaging methods that are to be expected in the GDR are outlined. Considering the users' needs and demands to be met by the manufacturers, in the long-term forecast it is dealt with more specifically with X-ray techniques, computer tomography, ultrasonic diagnostics, video endoscopy and the use of expert systems. (author)

  6. Magnetic resonance imaging of the heart and great vessels

    International Nuclear Information System (INIS)

    Naitoh, Hiroaki; Nishimura, Tsunehiko; Takamiya, Makoto; Kozuka, Takahiro.

    1985-01-01

    About sixty subjects with normal heart or various cardiovascular diseases were examined with 0.35 or 1.5 T superconductive magnetic resonance imaging (MRI) system, and ECG-gated spin-echo multislice technique was used to evaluate cardiovascular anatomy. MRI accurately demonstrated ventricular wall thinning caused by myocardial infarction and asymmetric ventricular hypertrophy owing to cardiomyopathy. Rheumatic valvular thickening, congenital cardiac malformations, aortic aneurysm and dissection were also clearly demonstrated by gated MRI without the use of any contrast media. MRI was shown to be an excellent non-invasive imaging modality for evaluation of pathoanatomy of the heart and great vessels. (author)

  7. Techniques for combining isotopic images obtained at different energies

    International Nuclear Information System (INIS)

    Soussaline, F.; Di Paola, R.; Bazin, J.P.

    1976-01-01

    The technique described should be considered as a first step towards the classification of scintigraphic data where the energy is included. As in all such studies the interpretation of the resulting images is not necessarily at first evident, and certain experience needs to be established. This applies in particular to the images obtained with the higher factors. It is possible that the use of this technique may resolve, without requiring a priori information, the problem previously encountered using the other 'subtraction' type techniques [fr

  8. A novel 3D volumetric voxel registration technique for volume-view-guided image registration of multiple imaging modalities

    International Nuclear Information System (INIS)

    Li Guang; Xie Huchen; Ning, Holly; Capala, Jacek; Arora, Barbara C.; Coleman, C. Norman; Camphausen, Kevin; Miller, Robert W.

    2005-01-01

    Purpose: To provide more clinically useful image registration with improved accuracy and reduced time, a novel technique of three-dimensional (3D) volumetric voxel registration of multimodality images is developed. Methods and Materials: This technique can register up to four concurrent images from multimodalities with volume view guidance. Various visualization effects can be applied, facilitating global and internal voxel registration. Fourteen computed tomography/magnetic resonance (CT/MR) image sets and two computed tomography/positron emission tomography (CT/PET) image sets are used. For comparison, an automatic registration technique using maximization of mutual information (MMI) and a three-orthogonal-planar (3P) registration technique are used. Results: Visually sensitive registration criteria for CT/MR and CT/PET have been established, including the homogeneity of color distribution. Based on the registration results of 14 CT/MR images, the 3D voxel technique is in excellent agreement with the automatic MMI technique and is indicatory of a global positioning error (defined as the means and standard deviations of the error distribution) using the 3P pixel technique: 1.8 deg ± 1.2 deg in rotation and 2.0 ± 1.3 (voxel unit) in translation. To the best of our knowledge, this is the first time that such positioning error has been addressed. Conclusion: This novel 3D voxel technique establishes volume-view-guided image registration of up to four modalities. It improves registration accuracy with reduced time, compared with the 3P pixel technique. This article suggests that any interactive and automatic registration should be safeguarded using the 3D voxel technique

  9. Fast and ultrafast MR-imaging of the heart

    International Nuclear Information System (INIS)

    Schulthess, G.K. von; Davis, C.P.; Debatin, J.F.; McKinnon, G.C.

    1995-01-01

    MRI has been hampered by long image acquisition times. This combined with its non-realtime nature and the limited spatial resolution has made it difficult to extend MRT to the study of small cardiac structures. Recent technical improvements have made breath-held or realtime MRI feasible and thus laid the foundations for further applications in the field of cardiovascular imaging, notably MR coronary angiography, imaging of cardiac valve leaflets, as well as firstpass perfusion studies. Moreover ultrafast MR techniques may eventually replace conventional data acquisition strategies and thus drastically increase patient throughput by shortening acquisition time. This article provides an overview of the technical advances in MRI and their application to the cardiovascular system and discusses possibilities of combined ultrafast and interventional strategies. (orig.) [de

  10. Raman Imaging Techniques and Applications

    CERN Document Server

    2012-01-01

    Raman imaging has long been used to probe the chemical nature of a sample, providing information on molecular orientation, symmetry and structure with sub-micron spatial resolution. Recent technical developments have pushed the limits of micro-Raman microscopy, enabling the acquisition of Raman spectra with unprecedented speed, and opening a pathway to fast chemical imaging for many applications from material science and semiconductors to pharmaceutical drug development and cell biology, and even art and forensic science. The promise of tip-enhanced raman spectroscopy (TERS) and near-field techniques is pushing the envelope even further by breaking the limit of diffraction and enabling nano-Raman microscopy.

  11. Cardiovascular involvement in myositis

    DEFF Research Database (Denmark)

    Diederichsen, Louise P

    2017-01-01

    PURPOSE OF REVIEW: The purpose of this review is to provide an update on cardiovascular involvement in idiopathic inflammatory myopathy (IIM). Studies from the past 18 months are identified and reviewed. Finally, the clinical impact of these findings is discussed. RECENT FINDINGS: Epidemiological...... on cardiac magnetic resonance (CMR) imaging suggests that CMR should be considered as a potentially viable diagnostic tool to evaluate the possibility of silent myocardial inflammation in IIM with normal routine noninvasive evaluation. SUMMARY: Updated literature on cardiovascular involvement in IIM has...... identified an increased risk for subclinical and clinical cardiovascular disease in these rare inflammatory muscle diseases....

  12. Advanced flow MRI: emerging techniques and applications

    International Nuclear Information System (INIS)

    Markl, M.; Schnell, S.; Wu, C.; Bollache, E.; Jarvis, K.; Barker, A.J.; Robinson, J.D.; Rigsby, C.K.

    2016-01-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented.

  13. Image processing techniques for digital orthophotoquad production

    Science.gov (United States)

    Hood, Joy J.; Ladner, L. J.; Champion, Richard A.

    1989-01-01

    Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.

  14. Probabilistic images (PBIS): A concise image representation technique for multiple parameters

    International Nuclear Information System (INIS)

    Wu, L.C.; Yeh, S.H.; Chen, Z.; Liu, R.S.

    1984-01-01

    Based on m parametric images (PIs) derived from a dynamic series (DS), each pixel of DS is regarded as an m-dimensional vector. Given one set of normal samples (pixels) N and another of abnormal samples A, probability density functions (pdfs) of both sets are estimated. Any unknown sample is classified into N or A by calculating the probability of its being in the abnormal set using the Bayes' theorem. Instead of estimating the multivariate pdfs, a distance ratio transformation is introduced to map the m-dimensional sample space to one dimensional Euclidean space. Consequently, the image that localizes the regional abnormalities is characterized by the probability of being abnormal. This leads to the new representation scheme of PBIs. Tc-99m HIDA study for detecting intrahepatic lithiasis (IL) was chosen as an example of constructing PBI from 3 parameters derived from DS and such a PBI was compared with those 3 PIs, namely, retention ratio image (RRI), peak time image (TNMAX) and excretion mean transit time image (EMTT). 32 normal subjects and 20 patients with proved IL were collected and analyzed. The resultant sensitivity and specificity of PBI were 97% and 98% respectively. They were superior to those of any of the 3 PIs: RRI (94/97), TMAX (86/88) and EMTT (94/97). Furthermore, the contrast of PBI was much better than that of any other image. This new image formation technique, based on multiple parameters, shows the functional abnormalities in a structural way. Its good contrast makes the interpretation easy. This technique is powerful compared to the existing parametric image method

  15. The application of phase analysis of gated myocardial perfusion imaging to assess left ventricular mechanical dyssynchrony in cardiovascular disease

    International Nuclear Information System (INIS)

    Wang Jianfeng; Wang Yuetao

    2013-01-01

    Left ventricular mechanical dyssynchrony is closely related to the severity of cardiovascular disease, it is essential to assess left ventricular mechanical dyssynchrony accurately for early prediction of adverse cardiac events and prognosis assessment of the cardiac resynchronization therapy. As a new technology to assess left ventricular mechanical dyssynchrony, the phase analysis of gated myocardial perfusion imaging (GMPI) can get both quantitative indicators of regional myocardial perfusion, evaluation of regional myocardial viability and scar tissue, as well as quantitative analysis of left ventricular function and left ventricular mechanical synchrony, it has broad application prospects in cardiovascular disease to assess left ventricular mechanical dyssynchrony and prognosis assessment. This review mainly described the applications of GMPI phase analysis in the cardiovascular disease. (authors)

  16. Use of myocardial imaging in the evaluation of patients with cardiovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, B.; Strauss, H.W.; Trhall, J.H.

    1980-01-01

    The role of radioisotope tracer techniques in the evaluation of patients with congenital heart disease, valvular heart disease, suspected myocardial infarction, ischemia or suspected ventricular dysfunction is reviewed. Thallium-201 myocardial imaging and exercise blood pool imaging and Technetium-88m pyrophosphate imaging of myocardial infarction are most commonly used.

  17. Line-Scan Hyperspectral Imaging Techniques for Food Safety and Quality Applications

    Directory of Open Access Journals (Sweden)

    Jianwei Qin

    2017-01-01

    Full Text Available Hyperspectral imaging technologies in the food and agricultural area have been evolving rapidly over the past 15 years owing to tremendous interest from both academic and industrial fields. Line-scan hyperspectral imaging is a major method that has been intensively researched and developed using different physical principles (e.g., reflectance, transmittance, fluorescence, Raman, and spatially resolved spectroscopy and wavelength regions (e.g., visible (VIS, near infrared (NIR, and short-wavelength infrared (SWIR. Line-scan hyperspectral imaging systems are mainly developed and used for surface inspection of food and agricultural products using area or line light sources. Some of these systems can also be configured to conduct spatially resolved spectroscopy measurements for internal or subsurface food inspection using point light sources. This paper reviews line-scan hyperspectral imaging techniques, with introduction, demonstration, and summarization of existing and emerging techniques for food and agricultural applications. The main topics include related spectroscopy techniques, line-scan measurement methods, hardware components and systems, system calibration methods, and spectral and image analysis techniques. Applications in food safety and quality are also presented to reveal current practices and future trends of line-scan hyperspectral imaging techniques.

  18. High Resolution Radar Imaging using Coherent MultiBand Processing Techniques

    NARCIS (Netherlands)

    Dorp, Ph. van; Ebeling, R.P.; Huizing, A.G.

    2010-01-01

    High resolution radar imaging techniques can be used in ballistic missile defence systems to determine the type of ballistic missile during the boost phase (threat typing) and to discriminate different parts of a ballistic missile after the boost phase. The applied radar imaging technique is 2D

  19. Imaging of Myocardial Fibrosis in Patients with End-Stage Renal Disease: Current Limitations and Future Possibilities

    Directory of Open Access Journals (Sweden)

    M. P. M. Graham-Brown

    2017-01-01

    Full Text Available Cardiovascular disease in patients with end-stage renal disease (ESRD is driven by a different set of processes than in the general population. These processes lead to pathological changes in cardiac structure and function that include the development of left ventricular hypertrophy and left ventricular dilatation and the development of myocardial fibrosis. Reduction in left ventricular hypertrophy has been the established goal of many interventional trials in patients with chronic kidney disease, but a recent systematic review has questioned whether reduction of left ventricular hypertrophy improves cardiovascular mortality as previously thought. The development of novel imaging biomarkers that link to cardiovascular outcomes and that are specific to the disease processes in ESRD is therefore required. Postmortem studies of patients with ESRD on hemodialysis have shown that the extent of myocardial fibrosis is strongly linked to cardiovascular death and accurate imaging of myocardial fibrosis would be an attractive target as an imaging biomarker. In this article we will discuss the current imaging methods available to measure myocardial fibrosis in patients with ESRD, the reliability of the techniques, specific challenges and important limitations in patients with ESRD, and how to further develop the techniques we have so they are sufficiently robust for use in future clinical trials.

  20. Artificial Intelligence in Precision Cardiovascular Medicine.

    Science.gov (United States)

    Krittanawong, Chayakrit; Zhang, HongJu; Wang, Zhen; Aydar, Mehmet; Kitai, Takeshi

    2017-05-30

    Artificial intelligence (AI) is a field of computer science that aims to mimic human thought processes, learning capacity, and knowledge storage. AI techniques have been applied in cardiovascular medicine to explore novel genotypes and phenotypes in existing diseases, improve the quality of patient care, enable cost-effectiveness, and reduce readmission and mortality rates. Over the past decade, several machine-learning techniques have been used for cardiovascular disease diagnosis and prediction. Each problem requires some degree of understanding of the problem, in terms of cardiovascular medicine and statistics, to apply the optimal machine-learning algorithm. In the near future, AI will result in a paradigm shift toward precision cardiovascular medicine. The potential of AI in cardiovascular medicine is tremendous; however, ignorance of the challenges may overshadow its potential clinical impact. This paper gives a glimpse of AI's application in cardiovascular clinical care and discusses its potential role in facilitating precision cardiovascular medicine. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. Correlation of chronic kidney disease, diabetes and peripheral artery disease with cardiovascular events in patients using stress myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Furuhashi, Tatsuhiko; Masai, Hirofumi; Kunimasa, Taeko; Nakazato, Ryo; Fukuda, Hiroshi; Sugi, Kaoru; Moroi, Masao

    2011-01-01

    Normal stress myocardial perfusion imaging (MPI) studies generally suggest an excellent prognosis for cardiovascular events. Chronic kidney disease (CKD), diabetes and peripheral artery disease (PAD) have been established as the risk factors for cardiovascular events. However, whether these risk factors significantly predict cardiovascular events in patients with normal stress MPI is unclear. The purpose of this study was to evaluate the prognostic value of these risk factors in patients with normal stress MPI. Patients with normal stress MPI (n=372, male=215 and female=157, age=69 years, CKD without hemodialysis=95, diabetes=99, PAD=19, previous coronary artery disease=116) were followed up for 14 months. Normal stress MPI was defined as a summed stress score of 2 and/or persistent proteinuria. Cardiovascular events included cardiac death, non-fatal myocardial infarction and congestive heart failure requiring hospitalization. Cardiovascular events occurred in 20 of 372 patients (5.4%). In univariate Cox regression analysis, PAD, diabetes, diabetic retinopathy, insulin use, anemia, hypoalbuminemia, CKD, left ventricular ejection fraction and pharmacological stress tests were significant predictors of cardiovascular events. In multivariate Cox regression analysis, PAD, diabetes and CKD were independent and significant predictors for cardiovascular events, and their number was the strongest predictor for cardiovascular events (hazard ratio=21.7, P<0.001). PAD, diabetes and CKD are coexisting, independent and significant risk factors for cardiovascular events, CKD being the strongest predictor. The number of coexisting risk factors is important in predicting cardiovascular events in patients with normal stress MPI. (author)

  2. Segmentation Technique for Image Indexing and Retrieval on Discrete Cosines Domain

    Directory of Open Access Journals (Sweden)

    Suhendro Yusuf Irianto

    2013-03-01

    Full Text Available This paper uses region growing segmentation technique to segment the Discrete Cosines (DC  image. The problem of content Based image retrieval (CBIR is the luck of accuracy in matching between image query and image in the database as it matches object and background in the same time.   This the reason previous CBIR techniques inaccurate and time consuming. The CBIR   based on the segmented region proposed in this work  separates object from background as CBIR need only match the object not the background.  By using region growing technique on DC image, it reduces the number of image       regions.    The proposed of recursive region growing is not new technique but its application on DC images to build    indexing keys is quite new and not yet presented by many     authors. The experimental results show  that the proposed methods on   segmented images present good precision which are higher than 0.60 on all classes . It can be concluded that  region growing segmented based CBIR more efficient    compare to DC images  in term of their precision 0.59 and 0.75, respectively. Moreover,  DC based CBIR  can save time and simplify algorithm compare to DCT images.

  3. Prognostic value of combined CT angiography and myocardial perfusion imaging versus invasive coronary angiography and nuclear stress perfusion imaging in the prediction of major adverse cardiovascular events

    DEFF Research Database (Denmark)

    Chen, Marcus Y.; Rochitte, Carlos E.; Arbab-Zadeh, Armin

    2017-01-01

    Purpose: To compare the prognostic importance (time to major adverse cardiovascular event [MACE]) of combined computed tomography (CT) angiography and CT myocardial stress perfusion imaging with that of combined invasive coronary angiography (ICA) and stress single photon emission CT myocardial p...

  4. The Various Applications of 3D Printing in Cardiovascular Diseases.

    Science.gov (United States)

    El Sabbagh, Abdallah; Eleid, Mackram F; Al-Hijji, Mohammed; Anavekar, Nandan S; Holmes, David R; Nkomo, Vuyisile T; Oderich, Gustavo S; Cassivi, Stephen D; Said, Sameh M; Rihal, Charanjit S; Matsumoto, Jane M; Foley, Thomas A

    2018-05-10

    To highlight the various applications of 3D printing in cardiovascular disease and discuss its limitations and future direction. Use of handheld 3D printed models of cardiovascular structures has emerged as a facile modality in procedural and surgical planning as well as education and communication. Three-dimensional (3D) printing is a novel imaging modality which involves creating patient-specific models of cardiovascular structures. As percutaneous and surgical therapies evolve, spatial recognition of complex cardiovascular anatomic relationships by cardiologists and cardiovascular surgeons is imperative. Handheld 3D printed models of cardiovascular structures provide a facile and intuitive road map for procedural and surgical planning, complementing conventional imaging modalities. Moreover, 3D printed models are efficacious educational and communication tools. This review highlights the various applications of 3D printing in cardiovascular diseases and discusses its limitations and future directions.

  5. Evaluation of a new image compression technique

    International Nuclear Information System (INIS)

    Algra, P.R.; Kroon, H.M.; Noordveld, R.B.; DeValk, J.P.J.; Seeley, G.W.; Westerink, P.H.

    1988-01-01

    The authors present the evaluation of a new image compression technique, subband coding using vector quantization, on 44 CT examinations of the upper abdomen. Three independent radiologists reviewed the original images and compressed versions. The compression ratios used were 16:1 and 20:1. Receiver operating characteristic analysis showed no difference in the diagnostic contents between originals and their compressed versions. Subjective visibility of anatomic structures was equal. Except for a few 20:1 compressed images, the observers could not distinguish compressed versions from original images. They conclude that subband coding using vector quantization is a valuable method for data compression in CT scans of the abdomen

  6. Myocardial T1 and T2 mapping: Techniques and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Pan Ki; Hong, Yoo Jin; Im, Dong Jin [Dept. of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); and others

    2017-01-15

    Cardiac magnetic resonance (CMR) imaging is widely used in various medical fields related to cardiovascular diseases. Rapid technological innovations in magnetic resonance imaging in recent times have resulted in the development of new techniques for CMR imaging. T1 and T2 image mapping sequences enable the direct quantification of T1, T2, and extracellular volume fraction (ECV) values of the myocardium, leading to the progressive integration of these sequences into routine CMR settings. Currently, T1, T2, and ECV values are being recognized as not only robust biomarkers for diagnosis of cardiomyopathies, but also predictive factors for treatment monitoring and prognosis. In this study, we have reviewed various T1 and T2 mapping sequence techniques and their clinical applications.

  7. Multi-detector computed tomography (MDCT imaging of cardiovascular effects of pulmonary embolism: What the radiologists need to know

    Directory of Open Access Journals (Sweden)

    Mohamed Aboul-fotouh E. Mourad

    2017-09-01

    Full Text Available Background: Patients with pulmonary embolism have high mortality and morbidity rate due to right heart failure and circulatory collapse leading to sudden death. Multi-detector computed tomography MDCT can efficiently evaluate the cardiovascular factors related to pulmonary embolism. Objectives: To evaluate the diagnostic accuracy of multi-detector computed tomography (MDCT in differentiation of between sever and non-severe pulmonary embolism groups depending on the associated cardiovascular parameters and create a simple reporting system. Patients & methods: Prospective study contained 145 patients diagnosed clinically pulmonary embolism. All patients were examined by combined electrocardiographically gated computed tomography pulmonary angiography-computed tomography venography (ECG-CTPA-CTV using certain imaging criteria in a systematic manner. Results: Our study revealed 95 and 55 non-severe and severe pulmonary embolism groups respectively. Many cardiovascular parameters related to pulmonary embolism shows significant p value and can differentiate between sever and non-severe pulmonary embolism patients include pulmonary artery diameter, intraventricular septum flattening, bowing, superior vena cava and Azygos vein diameters, right and left ventricular diameters. Conclusion: Multi-detector computed tomography (MDCT can be valuable to assess the severity of pulmonary embolism using the related cardiovascular parameters and leading the management strategy aim for best outcome. Keywords: Pulmonary embolism, MDCT, Cardiovascular, Computed tomography venography

  8. Bit Plane Coding based Steganography Technique for JPEG2000 Images and Videos

    Directory of Open Access Journals (Sweden)

    Geeta Kasana

    2016-02-01

    Full Text Available In this paper, a Bit Plane Coding (BPC based steganography technique for JPEG2000 images and Motion JPEG2000 video is proposed. Embedding in this technique is performed in the lowest significant bit planes of the wavelet coefficients of a cover image. In JPEG2000 standard, the number of bit planes of wavelet coefficients to be used in encoding is dependent on the compression rate and are used in Tier-2 process of JPEG2000. In the proposed technique, Tier-1 and Tier-2 processes of JPEG2000 and Motion JPEG2000 are executed twice on the encoder side to collect the information about the lowest bit planes of all code blocks of a cover image, which is utilized in embedding and transmitted to the decoder. After embedding secret data, Optimal Pixel Adjustment Process (OPAP is applied on stego images to enhance its visual quality. Experimental results show that proposed technique provides large embedding capacity and better visual quality of stego images than existing steganography techniques for JPEG2000 compressed images and videos. Extracted secret image is similar to the original secret image.

  9. Red blood cell image enhancement techniques for cells with ...

    African Journals Online (AJOL)

    quality or challenging conditions of the images such as poor illumination of blood smear and most importantly overlapping RBC. The algorithm comprises of two RBC segmentation that can be selected based on the image quality, circle mask technique and grayscale blood smear image processing. Detail explanations ...

  10. A Novel Kernel-Based Regularization Technique for PET Image Reconstruction

    Directory of Open Access Journals (Sweden)

    Abdelwahhab Boudjelal

    2017-06-01

    Full Text Available Positron emission tomography (PET is an imaging technique that generates 3D detail of physiological processes at the cellular level. The technique requires a radioactive tracer, which decays and releases a positron that collides with an electron; consequently, annihilation photons are emitted, which can be measured. The purpose of PET is to use the measurement of photons to reconstruct the distribution of radioisotopes in the body. Currently, PET is undergoing a revamp, with advancements in data measurement instruments and the computing methods used to create the images. These computer methods are required to solve the inverse problem of “image reconstruction from projection”. This paper proposes a novel kernel-based regularization technique for maximum-likelihood expectation-maximization ( κ -MLEM to reconstruct the image. Compared to standard MLEM, the proposed algorithm is more robust and is more effective in removing background noise, whilst preserving the edges; this suppresses image artifacts, such as out-of-focus slice blur.

  11. Strain analysis in CRT candidates using the novel segment length in cine (SLICE) post-processing technique on standard CMR cine images.

    Science.gov (United States)

    Zweerink, Alwin; Allaart, Cornelis P; Kuijer, Joost P A; Wu, LiNa; Beek, Aernout M; van de Ven, Peter M; Meine, Mathias; Croisille, Pierre; Clarysse, Patrick; van Rossum, Albert C; Nijveldt, Robin

    2017-12-01

    Although myocardial strain analysis is a potential tool to improve patient selection for cardiac resynchronization therapy (CRT), there is currently no validated clinical approach to derive segmental strains. We evaluated the novel segment length in cine (SLICE) technique to derive segmental strains from standard cardiovascular MR (CMR) cine images in CRT candidates. Twenty-seven patients with left bundle branch block underwent CMR examination including cine imaging and myocardial tagging (CMR-TAG). SLICE was performed by measuring segment length between anatomical landmarks throughout all phases on short-axis cines. This measure of frame-to-frame segment length change was compared to CMR-TAG circumferential strain measurements. Subsequently, conventional markers of CRT response were calculated. Segmental strains showed good to excellent agreement between SLICE and CMR-TAG (septum strain, intraclass correlation coefficient (ICC) 0.76; lateral wall strain, ICC 0.66). Conventional markers of CRT response also showed close agreement between both methods (ICC 0.61-0.78). Reproducibility of SLICE was excellent for intra-observer testing (all ICC ≥0.76) and good for interobserver testing (all ICC ≥0.61). The novel SLICE post-processing technique on standard CMR cine images offers both accurate and robust segmental strain measures compared to the 'gold standard' CMR-TAG technique, and has the advantage of being widely available. • Myocardial strain analysis could potentially improve patient selection for CRT. • Currently a well validated clinical approach to derive segmental strains is lacking. • The novel SLICE technique derives segmental strains from standard CMR cine images. • SLICE-derived strain markers of CRT response showed close agreement with CMR-TAG. • Future studies will focus on the prognostic value of SLICE in CRT candidates.

  12. Introduction to basic molecular biologic techniques for molecular imaging researches

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2004-01-01

    Molecular imaging is a rapidly growing field due to the advances in molecular biology and imaging technologies. With the introduction of imaging reporter genes into the cell, diverse cellular processes can be monitored, quantified and imaged non-invasively in vivo. These processes include the gene expression, protein-protein interactions, signal transduction pathways, and monitoring of cells such as cancer cells, immune cells, and stem cells. In the near future, molecular imaging analysis will allow us to observe the incipience and progression of the disease. These will make us easier to give a diagnosis in the early stage of intractable diseases such as cancer, neuro-degenerative disease, and immunological disorders. Additionally, molecular imaging method will be a valuable tool for the real-time evaluation of cells in molecular biology and the basic biological studies. As newer and more powerful molecular imaging tools become available, it will be necessary to corporate clinicians, molecular biologists and biochemists for the planning, interpretation, and application of these techniques to their fullest potential. In order for such a multidisciplinary team to be effective, it is essential that a common understanding of basic biochemical and molecular biologic techniques is achieved. Basic molecular techniques for molecular imaging methods are presented in this paper

  13. Magnetic resonance imaging acquisition techniques intended to decrease movement artefact in paediatric brain imaging: a systematic review

    International Nuclear Information System (INIS)

    Woodfield, Julie; Kealey, Susan

    2015-01-01

    Attaining paediatric brain images of diagnostic quality can be difficult because of young age or neurological impairment. The use of anaesthesia to reduce movement in MRI increases clinical risk and cost, while CT, though faster, exposes children to potentially harmful ionising radiation. MRI acquisition techniques that aim to decrease movement artefact may allow diagnostic paediatric brain imaging without sedation or anaesthesia. We conducted a systematic review to establish the evidence base for ultra-fast sequences and sequences using oversampling of k-space in paediatric brain MR imaging. Techniques were assessed for imaging time, occurrence of movement artefact, the need for sedation, and either image quality or diagnostic accuracy. We identified 24 relevant studies. We found that ultra-fast techniques had shorter imaging acquisition times compared to standard MRI. Techniques using oversampling of k-space required equal or longer imaging times than standard MRI. Both ultra-fast sequences and those using oversampling of k-space reduced movement artefact compared with standard MRI in unsedated children. Assessment of overall diagnostic accuracy was difficult because of the heterogeneous patient populations, imaging indications, and reporting methods of the studies. In children with shunt-treated hydrocephalus there is evidence that ultra-fast MRI is sufficient for the assessment of ventricular size. (orig.)

  14. Magnetic resonance imaging acquisition techniques intended to decrease movement artefact in paediatric brain imaging: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Woodfield, Julie [University of Edinburgh, Child Life and Health, Edinburgh (United Kingdom); Kealey, Susan [Western General Hospital, Department of Neuroradiology, Edinburgh (United Kingdom)

    2015-08-15

    Attaining paediatric brain images of diagnostic quality can be difficult because of young age or neurological impairment. The use of anaesthesia to reduce movement in MRI increases clinical risk and cost, while CT, though faster, exposes children to potentially harmful ionising radiation. MRI acquisition techniques that aim to decrease movement artefact may allow diagnostic paediatric brain imaging without sedation or anaesthesia. We conducted a systematic review to establish the evidence base for ultra-fast sequences and sequences using oversampling of k-space in paediatric brain MR imaging. Techniques were assessed for imaging time, occurrence of movement artefact, the need for sedation, and either image quality or diagnostic accuracy. We identified 24 relevant studies. We found that ultra-fast techniques had shorter imaging acquisition times compared to standard MRI. Techniques using oversampling of k-space required equal or longer imaging times than standard MRI. Both ultra-fast sequences and those using oversampling of k-space reduced movement artefact compared with standard MRI in unsedated children. Assessment of overall diagnostic accuracy was difficult because of the heterogeneous patient populations, imaging indications, and reporting methods of the studies. In children with shunt-treated hydrocephalus there is evidence that ultra-fast MRI is sufficient for the assessment of ventricular size. (orig.)

  15. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    International Nuclear Information System (INIS)

    Tilli, Maddalena T; Parrish, Angela R; Cotarla, Ion; Jones, Laundette P; Johnson, Michael D; Furth, Priscilla A

    2008-01-01

    Genetically engineered mouse models of mammary gland cancer enable the in vivo study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue. We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging. In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice. In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary

  16. Psoriatic arthritis: imaging techniques

    Directory of Open Access Journals (Sweden)

    E. Lubrano

    2012-06-01

    Full Text Available Imaging techniques to assess psoriatic arthritis (PsA include radiography, ultrasonography (US, magnetic resonance imaging (MRI, computed tomography (CT and bone scintigraphy. The radiographic hallmark of PsA is the combination of destructive changes (joint erosions, tuft resorption, osteolysis with bone proliferation (including periarticular and shaft periostitis, ankylosis, spur formation and non-marginal syndesmophytes. US has an increasing important role in the evaluation of PsA. In fact, power Doppler US is useful mainly for its ability to assess musculoskeletal (joints, tendons, entheses and cutaneous (skin and nails involvement, to monitor efficacy of therapy and to guide steroid injections at the level of inflamed joints, tendon sheaths and entheses. MRI allows direct visualization of inflammation in peripheral and axial joints, and peripheral and axial entheses, and has dramatically improved the possibilities for early diagnosis and objective monitoring of the disease process in PsA. MRI has allowed explaining the relationships among enthesitis, synovitis and osteitis in PsA, supporting a SpA pattern of inflammation where enthesitis is the primary target of inflammation. CT has little role in assessment of peripheral joints, but it may be useful in assessing elements of spine disease. CT accuracy is similar to MRI in assessment of erosions in sacroiliac joint involvement, but CT is not as effective in detecting synovial inflammation. Bone scintigraphy lacks specificity and is now supplanted with US and MRI techniques.

  17. Applications Of Binary Image Analysis Techniques

    Science.gov (United States)

    Tropf, H.; Enderle, E.; Kammerer, H. P.

    1983-10-01

    After discussing the conditions where binary image analysis techniques can be used, three new applications of the fast binary image analysis system S.A.M. (Sensorsystem for Automation and Measurement) are reported: (1) The human view direction is measured at TV frame rate while the subject's head is free movable. (2) Industrial parts hanging on a moving conveyor are classified prior to spray painting by robot. (3) In automotive wheel assembly, the eccentricity of the wheel is minimized by turning the tyre relative to the rim in order to balance the eccentricity of the components.

  18. An efficient similarity measure technique for medical image registration

    Indian Academy of Sciences (India)

    In this paper, an efficient similarity measure technique is proposed for medical image registration. The proposed approach is based on the Gerschgorin circles theorem. In this approach, image registration is carried out by considering Gerschgorin bounds of a covariance matrix of two compared images with normalized ...

  19. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM)

    International Nuclear Information System (INIS)

    Agostini, Denis; Marie, Pierre-Yves; Ben-Haim, Simona; Rouzet, Francois; Songy, Bernard; Giordano, Alessandro; Gimelli, Alessia; Hyafil, Fabien; Sciagra, Roberto; Bucerius, Jan; Verberne, Hein J.; Slart, Riemer H.J.A.; Lindner, Oliver

    2016-01-01

    The trade-off between resolution and count sensitivity dominates the performance of standard gamma cameras and dictates the need for relatively high doses of radioactivity of the used radiopharmaceuticals in order to limit image acquisition duration. The introduction of cadmium-zinc-telluride (CZT)-based cameras may overcome some of the limitations against conventional gamma cameras. CZT cameras used for the evaluation of myocardial perfusion have been shown to have a higher count sensitivity compared to conventional single photon emission computed tomography (SPECT) techniques. CZT image quality is further improved by the development of a dedicated three-dimensional iterative reconstruction algorithm, based on maximum likelihood expectation maximization (MLEM), which corrects for the loss in spatial resolution due to line response function of the collimator. All these innovations significantly reduce imaging time and result in a lower patient's radiation exposure compared with standard SPECT. To guide current and possible future users of the CZT technique for myocardial perfusion imaging, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, has decided to examine the current literature regarding procedures and clinical data on CZT cameras. The committee hereby aims (1) to identify the main acquisitions protocols; (2) to evaluate the diagnostic and prognostic value of CZT derived myocardial perfusion, and finally (3) to determine the impact of CZT on radiation exposure. (orig.)

  20. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM)

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Denis [CHU Caen and Normandy University, Department of Nuclear Medicine, Caen (France); Normandy University, Caen (France); Marie, Pierre-Yves [University of Lorraine, Faculty of Medicine, Nancyclotep Experimental Imaging Platform, Nancy (France); University of Lorraine, Faculty of Medicine, CHU Nancy, Department of Nuclear Medicine, Nancy (France); University of Lorraine, Faculty of Medicine, Nancy (France); Ben-Haim, Simona [University College London, University College Hospital, Institute of Nuclear Medicine, London (United Kingdom); Chaim Sheba Medical Center, Department of Nuclear Medicine, Ramat Gan (Israel); Rouzet, Francois [University Hospital of Paris-Bichat, UMR 1148, Inserm et Paris Diderot-Paris 7 University Paris, Department of Nuclear Medicine, Paris (France); UMR 1148, Inserm and Paris Diderot-Paris 7 University Paris, Paris (France); Songy, Bernard [Centre Cardiologique du Nord, Saint-Denis (France); Giordano, Alessandro [Institute of Nuclear Medicine, Catholic University of Sacred Heart, Largo A. Gemelli, Department of Bioimages and Radiological Sciences, Rome (Italy); Gimelli, Alessia [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Hyafil, Fabien [Bichat University Hospital, Assistance Publique - Hopitaux de Paris, UMR 1148, Inserm and Paris Diderot-Paris 7 University, Department of Nuclear Medicine, Paris (France); Sciagra, Roberto [University of Florence, Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, Florence (Italy); Bucerius, Jan [Maastricht University Medical Center, Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Verberne, Hein J. [Academic Medical Center, Department of Nuclear Medicine, Amsterdam (Netherlands); Slart, Riemer H.J.A. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Twente, Faculty of Science and Technology, Department of Biomedical Photonic Imaging, Enschede (Netherlands); Lindner, Oliver [Institute of Radiology, Nuclear Medicine and Molecular Imaging, Heart and Diabetes Center NRW, Bad Oeynhausen (Germany); Collaboration: Cardiovascular Committee of the European Association of Nuclear Medicine (EANM)

    2016-12-15

    The trade-off between resolution and count sensitivity dominates the performance of standard gamma cameras and dictates the need for relatively high doses of radioactivity of the used radiopharmaceuticals in order to limit image acquisition duration. The introduction of cadmium-zinc-telluride (CZT)-based cameras may overcome some of the limitations against conventional gamma cameras. CZT cameras used for the evaluation of myocardial perfusion have been shown to have a higher count sensitivity compared to conventional single photon emission computed tomography (SPECT) techniques. CZT image quality is further improved by the development of a dedicated three-dimensional iterative reconstruction algorithm, based on maximum likelihood expectation maximization (MLEM), which corrects for the loss in spatial resolution due to line response function of the collimator. All these innovations significantly reduce imaging time and result in a lower patient's radiation exposure compared with standard SPECT. To guide current and possible future users of the CZT technique for myocardial perfusion imaging, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, has decided to examine the current literature regarding procedures and clinical data on CZT cameras. The committee hereby aims (1) to identify the main acquisitions protocols; (2) to evaluate the diagnostic and prognostic value of CZT derived myocardial perfusion, and finally (3) to determine the impact of CZT on radiation exposure. (orig.)

  1. Special feature on imaging systems and techniques

    Science.gov (United States)

    Yang, Wuqiang; Giakos, George

    2013-07-01

    The IEEE International Conference on Imaging Systems and Techniques (IST'2012) was held in Manchester, UK, on 16-17 July 2012. The participants came from 26 countries or regions: Austria, Brazil, Canada, China, Denmark, France, Germany, Greece, India, Iran, Iraq, Italy, Japan, Korea, Latvia, Malaysia, Norway, Poland, Portugal, Sweden, Switzerland, Taiwan, Tunisia, UAE, UK and USA. The technical program of the conference consisted of a series of scientific and technical sessions, exploring physical principles, engineering and applications of new imaging systems and techniques, as reflected by the diversity of the submitted papers. Following a rigorous review process, a total of 123 papers were accepted, and they were organized into 30 oral presentation sessions and a poster session. In addition, six invited keynotes were arranged. The conference not only provided the participants with a unique opportunity to exchange ideas and disseminate research outcomes but also paved a way to establish global collaboration. Following the IST'2012, a total of 55 papers, which were technically extended substantially from their versions in the conference proceeding, were submitted as regular papers to this special feature of Measurement Science and Technology . Following a rigorous reviewing process, 25 papers have been finally accepted for publication in this special feature and they are organized into three categories: (1) industrial tomography, (2) imaging systems and techniques and (3) image processing. These papers not only present the latest developments in the field of imaging systems and techniques but also offer potential solutions to existing problems. We hope that this special feature provides a good reference for researchers who are active in the field and will serve as a catalyst to trigger further research. It has been our great pleasure to be the guest editors of this special feature. We would like to thank the authors for their contributions, without which it would

  2. Cine MR imaging of the cardiovascular system

    International Nuclear Information System (INIS)

    Nishimura, Fumiaki; Yoshino, Yasushi; Mihara, Junji; Ichikawa, Seiichi; Kimura, Masahiko; Yano, Masao; Umeda, Masahiro; Oouchi, Toshihiro

    1990-01-01

    In recent years cine magnetic resonance imaging (MRI) has developed as a high-speed imaging technique that provides a high intensity signal even at a short repetition time (20-30 msec) by using an excited pulse with a small flip angle according to the gradient echo method, enabling about 20 to 30 continuous images of the same section per one cardiac cycle to be taken. On cine display of these continuous images, information concerning blood flow shown by a high intensity signal in comparison with that of the myocardium and vascular wall is obtained with high temporal resolution along with anatomical information. The present study reports the clinical usefulness of cine MRI in today's situation, inculding the following: calculation of the left ventricular ejection fraction and pulmonary-to-systemic flow ratio in congenital shunt disease by integration of the area of multisections through application of Simpson's method; diagnosis of the severity of valvular regurgitation, evaluation of stenosal diseases, and diagnosis of inflow from the fissured entry of dissecting aortic aneurysm by evaluating of an area of low intensity signal, probably based on the high velocity or turbulent blood flow: and evaluation of patency of the internal mammary artery bypass graft of the basis of the possible visualization of even thin blood vessels because of the high intensity signal of blood flow. In particular, the characteristics of this procedures are described by comparing it with other technologies in the field of diseases of valvular regurgitation. (author)

  3. Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging.

    Science.gov (United States)

    Khairalseed, Mawia; Xiong, Fangyuan; Kim, Jung-Whan; Mattrey, Robert F; Parker, Kevin J; Hoyt, Kenneth

    2018-01-01

    H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation. Although the resolution of ultrasound plane wave imaging can be inferior to that of traditional focused ultrasound approaches, the former exhibits a homogeneous spatial resolution throughout the image plane. The purpose of this study was to implement H-scan using plane wave imaging and investigate the impact of spatial angular compounding on H-scan image quality. Parallel convolution filters using two different Gaussian-weighted Hermite polynomials that describe ultrasound scattering events are applied to the radiofrequency data. The H-scan processing is done on each radiofrequency image plane before averaging to get the angular compounded image. The relative strength from each convolution is color-coded to represent relative scatterer size. Given results from a series of phantom materials, H-scan imaging with spatial angular compounding more accurately reflects the true scatterer size caused by reductions in the system point spread function and improved signal-to-noise ratio. Preliminary in vivo H-scan imaging of tumor-bearing animals suggests this modality may be useful for monitoring early response to chemotherapeutic treatment. Overall, H-scan imaging using ultrasound plane waves and spatial angular compounding is a promising approach for visualizing the relative size and distribution of acoustic scattering sources. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  4. Evolving, innovating, and revolutionary changes in cardiovascular imaging: We've only just begun!

    Science.gov (United States)

    Shaw, Leslee J; Hachamovitch, Rory; Min, James K; Di Carli, Marcelo; Mieres, Jennifer H; Phillips, Lawrence; Blankstein, Ron; Einstein, Andrew; Taqueti, Viviany R; Hendel, Robert; Berman, Daniel S

    2018-06-01

    In this review, we highlight the need for innovation and creativity to reinvent the field of nuclear cardiology. Revolutionary ideas brought forth today are needed to create greater value in patient care and highlight the need for more contemporary evidence supporting the use of nuclear cardiology practices. We put forth discussions on the need for disruptive innovation in imaging-guided care that places the imager as a central force in care coordination. Value-based nuclear cardiology is defined as care that is both efficient and effective. Novel testing strategies that defer testing in lower risk patients are examples of the kind of innovation needed in today's healthcare environment. A major focus of current research is the evolution of the importance of ischemia and the prognostic significance of non-obstructive atherosclerotic plaque and coronary microvascular dysfunction. Embracing novel paradigms, such as this, can aid in the development of optimal strategies for coronary disease management. We hope that our article will spurn the field toward greater innovation and focus on transformative imaging leading the way for new generations of novel cardiovascular care.

  5. Performance evaluation of breast image compression techniques

    International Nuclear Information System (INIS)

    Anastassopoulos, G.; Lymberopoulos, D.; Panayiotakis, G.; Bezerianos, A.

    1994-01-01

    Novel diagnosis orienting tele working systems manipulate, store, and process medical data through real time communication - conferencing schemes. One of the most important factors affecting the performance of these systems is image handling. Compression algorithms can be applied to the medical images, in order to minimize : a) the volume of data to be stored in the database, b) the demanded bandwidth from the network, c) the transmission costs, and to minimize the speed of the transmitted data. In this paper an estimation of all the factors of the process that affect the presentation of breast images is made, from the time the images are produced from a modality, till the compressed images are stored, or transmitted in a Broadband network (e.g. B-ISDN). The images used were scanned images of the TOR(MAX) Leeds breast phantom, as well as typical breast images. A comparison of seven compression techniques has been done, based on objective criteria such as Mean Square Error (MSE), resolution, contrast, etc. The user can choose the appropriate compression ratio in order to achieve the desired image quality. (authors)

  6. Diagnostic performance of dual-energy CT stress myocardial perfusion imaging: direct comparison with cardiovascular MRI.

    Science.gov (United States)

    Ko, Sung Min; Song, Meong Gun; Chee, Hyun Kun; Hwang, Hweung Kon; Feuchtner, Gudrun Maria; Min, James K

    2014-12-01

    The purpose of this study was to assess the diagnostic performance of stress perfusion dual-energy CT (DECT) and its incremental value when used with coronary CT angiography (CTA) for identifying hemodynamically significant coronary artery disease. One hundred patients with suspected or known coronary artery disease without chronic myocardial infarction detected with coronary CTA underwent stress perfusion DECT, stress cardiovascular perfusion MRI, and invasive coronary angiography (ICA). Stress perfusion DECT and cardiovascular stress perfusion MR images were used for detecting perfusion defects. Coronary CTA and ICA were evaluated in the detection of ≥50% coronary stenosis. The diagnostic performance of coronary CTA for detecting hemo-dynamically significant stenosis was assessed before and after stress perfusion DECT on a per-vessel basis with ICA and cardiovascular stress perfusion MRI as the reference standard. The performance of stress perfusion DECT compared with cardiovascular stress perfusion MRI on a per-vessel basis in the detection of perfusion defects was sensitivity, 89%; specificity, 74%; positive predictive value, 73%; negative predictive value, 90%. Per segment, these values were sensitivity, 76%; specificity, 80%; positive predictive value, 63%; and negative predictive value, 88%. Compared with ICA and cardiovascular stress perfusion MRI per vessel territory the sensitivity, specificity, positive predictive value, and negative predictive value of coronary CTA were 95%, 61%, 61%, and 95%. The values for stress perfusion DECT were 92%, 72%, 68%, and 94%. The values for coronary CTA and stress perfusion DECT were 88%, 79%, 73%, and 91%. The ROC AUC increased from 0.78 to 0.84 (p=0.02) with the use of coronary CTA and stress perfusion DECT compared with coronary CTA alone. Stress perfusion DECT plays a complementary role in enhancing the accuracy of coronary CTA for identifying hemodynamically significant coronary stenosis.

  7. An Image Registration Based Technique for Noninvasive Vascular Elastography

    OpenAIRE

    Valizadeh, Sina; Makkiabadi, Bahador; Mirbagheri, Alireza; Soozande, Mehdi; Manwar, Rayyan; Mozaffarzadeh, Moein; Nasiriavanaki, Mohammadreza

    2018-01-01

    Non-invasive vascular elastography is an emerging technique in vascular tissue imaging. During the past decades, several techniques have been suggested to estimate the tissue elasticity by measuring the displacement of the Carotid vessel wall. Cross correlation-based methods are the most prevalent approaches to measure the strain exerted in the wall vessel by the blood pressure. In the case of a low pressure, the displacement is too small to be apparent in ultrasound imaging, especially in th...

  8. IMAGE SEGMENTATION BASED ON MARKOV RANDOM FIELD AND WATERSHED TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial estimate of x regions in the image under process where in MRF model, gray level x, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The process needs an initial segmented result. An initial segmentation is got based on K-means clustering technique and the minimum distance, then the region process in modeled by MRF to obtain an image contains different intensity regions. Starting from this we calculate the gradient values of that image and then employ a watershed technique. When using MRF method it obtains an image that has different intensity regions and has all the edge and region information, then it improves the segmentation result by superimpose closed and an accurate boundary of each region using watershed algorithm. After all pixels of the segmented regions have been processed, a map of primitive region with edges is generated. Finally, a merge process based on averaged mean values is employed. The final segmentation and edge detection result is one closed boundary per actual region in the image.

  9. Enhanced EDX images by fusion of multimodal SEM images using pansharpening techniques.

    Science.gov (United States)

    Franchi, G; Angulo, J; Moreaud, M; Sorbier, L

    2018-01-01

    The goal of this paper is to explore the potential interest of image fusion in the context of multimodal scanning electron microscope (SEM) imaging. In particular, we aim at merging the backscattered electron images that usually have a high spatial resolution but do not provide enough discriminative information to physically classify the nature of the sample, with energy-dispersive X-ray spectroscopy (EDX) images that have discriminative information but a lower spatial resolution. The produced images are named enhanced EDX. To achieve this goal, we have compared the results obtained with classical pansharpening techniques for image fusion with an original approach tailored for multimodal SEM fusion of information. Quantitative assessment is obtained by means of two SEM images and a simulated dataset produced by a software based on PENELOPE. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  10. Valvular heart disease: what does cardiovascular MRI add?

    International Nuclear Information System (INIS)

    Masci, Pier G.; Dymarkowski, Steven; Bogaert, Jan

    2008-01-01

    Although ischemic heart disease remains the leading cause of cardiac-related morbidity and mortality in the industrialized countries, a growing number of mainly elderly patients will experience a problem of valvular heart disease (VHD), often requiring surgical intervention at some stage. Doppler-echocardiography is the most popular imaging modality used in the evaluation of this disease entity. It encompasses, however, some non-negligible constraints which may hamper the quality and thus the interpretation of the exam. Cardiac catheterization has been considered for a long time the reference technique in this field, however, this technique is invasive and considered far from optimal. Cardiovascular magnetic resonance imaging (MRI) is already considered an established diagnostic method for studying ventricular dimensions, function and mass. With improvement of MRI soft- and hardware, the assessment of cardiac valve function has also turned out to be fast, accurate and reproducible. This review focuses on the usefulness of MRI in the diagnosis and management of VHD, pointing out its added value in comparison with more conventional diagnostic means. (orig.)

  11. Valvular heart disease: what does cardiovascular MRI add?

    Energy Technology Data Exchange (ETDEWEB)

    Masci, Pier G.; Dymarkowski, Steven; Bogaert, Jan [Gasthuisberg University Hospital, Department of Radiology, Leuven (Belgium)

    2008-02-15

    Although ischemic heart disease remains the leading cause of cardiac-related morbidity and mortality in the industrialized countries, a growing number of mainly elderly patients will experience a problem of valvular heart disease (VHD), often requiring surgical intervention at some stage. Doppler-echocardiography is the most popular imaging modality used in the evaluation of this disease entity. It encompasses, however, some non-negligible constraints which may hamper the quality and thus the interpretation of the exam. Cardiac catheterization has been considered for a long time the reference technique in this field, however, this technique is invasive and considered far from optimal. Cardiovascular magnetic resonance imaging (MRI) is already considered an established diagnostic method for studying ventricular dimensions, function and mass. With improvement of MRI soft- and hardware, the assessment of cardiac valve function has also turned out to be fast, accurate and reproducible. This review focuses on the usefulness of MRI in the diagnosis and management of VHD, pointing out its added value in comparison with more conventional diagnostic means. (orig.)

  12. Imaging techniques for myocardial inflammation

    International Nuclear Information System (INIS)

    O'Connell, J.B.; Henkin, R.E.; Robinson, J.A.

    1986-01-01

    Dilated cardiomyopathy (DC) represents a heterogeneous group of disorders which results in morbidity and mortality in young individuals. Recent evidence suggests that a subset of these patients have histologic evidence of myocarditis which is potentially treatable with immunosuppression. The identification of myocardial inflammation may therefore lead to development of therapeutic regimens designed to treat the cause rather than the effect of the myocardial disease. Ultimately, this may result in improvement in the abysmal prognosis of DC. The currently accepted technique for identification of active myocardial inflammation is endomyocardial biopsy. This technique is not perfect, however, since pathologic standards for the diagnosis of myocarditis have not been established. Furthermore, focal inflammation may give rise to sampling error. The inflammation-avid radioisotope gallium-67 citrate has been used as an adjunct to biopsy improving the yield of myocarditis from 7 percent to 36 percent. Serial imaging correlates well to biopsy results. Future studies are designed to study the applicability of lymphocyte labelling techniques to myocardial inflammatory disease

  13. Evaluation of radiolabelled annexin A5 for scintigraphic imaging of cell processes (necrosis/apoptosis) in cardiovascular diseases

    International Nuclear Information System (INIS)

    Sarda-Mantel, L.

    2007-03-01

    Annexin A5, a 35KDa protein, specifically binds with high affinity to phosphatidylserine (P.S.) which is actively redistributed to the external leaflet of plasmic membranes in apoptotic cells and activated platelets. Annexin A5 radiolabelled with 99m Tc( 99m Tc-ANX5) was developed by Strauss (stanford, Usa) to image apoptosis in vivo: tumours cells apoptosis induced by chemo-radiotherapy, ischemia/reperfusion lesions in animals and patients, graft rejection. Additionally, many in vitro data suggest that annexin A5 also stains necrosis (membrane disruption), which occurs in all types of cell death. This preclinical work aimed to evaluate the potential interest of 99m Tc-ANX5 imaging as a clinical tool in cardiovascular diseases. Four studies performed in rat models of myocardial infarction by coronary ligation and ischemia-reperfusion, and in rat models of subacute and acute (isoproterenol-induced) myocarditis show the ability of 99m Tc-ANX5 to detect in vivo cardio myocytes death by apoptosis and necrosis. Another study demonstrates that 99m Tc-ANX5 is highly accurate to evaluate in vivo the biological activity of parietal thrombus in a rat model of elastase-induced abdominal aortic aneurysm. These results suggest that 99m Tc-ANX5 imaging could be used in patients for non invasive diagnosis, prognostic evaluation in acute myocarditis and in various thrombotic cardiovascular diseases. (author)

  14. Microvascular imaging: techniques and opportunities for clinical physiological measurements

    International Nuclear Information System (INIS)

    Allen, John; Howell, Kevin

    2014-01-01

    The microvasculature presents a particular challenge in physiological measurement because the vessel structure is spatially inhomogeneous and perfusion can exhibit high variability over time. This review describes, with a clinical focus, the wide variety of methods now available for imaging of the microvasculature and their key applications. Laser Doppler perfusion imaging and laser speckle contrast imaging are established, commercially-available techniques for determining microvascular perfusion, with proven clinical utility for applications such as burn-depth assessment. Nailfold capillaroscopy is also commercially available, with significant published literature that supports its use for detecting microangiopathy secondary to specific connective tissue diseases in patients with Raynaud's phenomenon. Infrared thermography measures skin temperature and not perfusion directly, and it has only gained acceptance for some surgical and peripheral microvascular applications. Other emerging technologies including imaging photoplethysmography, optical coherence tomography, photoacoustic tomography, hyperspectral imaging, and tissue viability imaging are also described to show their potential as techniques that could become established tools for clinical microvascular assessment. Growing interest in the microcirculation has helped drive the rapid development in perfusion imaging of the microvessels, bringing exciting opportunities in microvascular research. (topical review)

  15. Appropriate electromagnetic techniques for imaging geothermal fracture zones

    Energy Technology Data Exchange (ETDEWEB)

    Groom, R; Walker, P [PetRos EiKon Incorporated, Ontario (Canada)

    1996-05-01

    Electromagnetic surface detection of fracture zones has often been approached by using the magnetotelluric method. This technique suffers greatly from the quantity and scale of the conductive inhomogeneities lying above the fracture zones. Additionally, it suffers from the inherent inability to focus the source on the target. There are no such source focusing capabilities in magnetotellurics. Accordingly, the quantity of magnetotelluric data required to resolve targets in such complex conditions can make the technique inefficient and insufficient from a cost perspective. When attempting to reveal a subsurface structure and image it, the basic physical responses at hand must be kept in mind, and the appropriate source must be utilized, which most effectively illuminates the target. A further advantage to controlled sources is that imaging techniques may be used to accentuate the response due to knowledge and control of the source.

  16. Cardiovascular oscillations: in search of a nonlinear parametric model

    Science.gov (United States)

    Bandrivskyy, Andriy; Luchinsky, Dmitry; McClintock, Peter V.; Smelyanskiy, Vadim; Stefanovska, Aneta; Timucin, Dogan

    2003-05-01

    We suggest a fresh approach to the modeling of the human cardiovascular system. Taking advantage of a new Bayesian inference technique, able to deal with stochastic nonlinear systems, we show that one can estimate parameters for models of the cardiovascular system directly from measured time series. We present preliminary results of inference of parameters of a model of coupled oscillators from measured cardiovascular data addressing cardiorespiratory interaction. We argue that the inference technique offers a very promising tool for the modeling, able to contribute significantly towards the solution of a long standing challenge -- development of new diagnostic techniques based on noninvasive measurements.

  17. Development of fuel number reader by ultrasonic imaging techniques

    International Nuclear Information System (INIS)

    Omote, T.; Yoshida, T.

    1991-01-01

    This paper reports on a spent fuel ID number reader using ultrasonic imaging techniques that has been developed to realize efficient and automatic verification of fuel numbers, thereby to reduce mental load and radiation exposure for operators engaged in the verification task. The ultrasonic imaging techniques for automatic fuel number recognition are described. High-speed and high reliability imaging of the spent fuel ID number are obtained by using linear array type ultrasonic probe. The ultrasonic wave is scanned by switching array probe in vertical direction, and scanned mechanically in horizontal direction. Time for imaging of spent fuel ID number on assembly was confirmed less than three seconds by these techniques. And it can recognize spent fuel ID number even if spent fuel ID number can not be visualized by an optical method because of depositing fuel number regions by soft card. In order to recognize spent fuel ID number more rapidly and more reliably, coded fuel number expressed by plural separate recesses form is developed. Every coded fuel number consists of six small holes (about 1 mm dia.) and can be marked adjacent to the existing fuel number expressed by letters and numbers

  18. Revisiting renovascular imaging for renal sympathetic denervation: current techniques and applications

    Energy Technology Data Exchange (ETDEWEB)

    Pua, Uei; Tan, Cher Heng [Tan Tock Seng Hospital, Department of Diagnostic Radiology, Singapore (Singapore); Ho, Hee Hwa; Tan, Julian Ko Beng; Ong, Paul Jau Leong [Tan Tock Seng Hospital, Department of Cardiology, Singapore (Singapore)

    2014-08-28

    Renal sympathetic denervation (RDN) is an emerging technique in the treatment of resistant hypertension, most commonly performed using an endovascular approach. Clinical and anatomical criteria for RDN are well established and imaging plays an integral role in selecting patients with suitable anatomy, procedural planning and device selection. Nevertheless, the current body of literature surrounding imaging related to RDN remains limited. The purpose of this article is to illustrate the expectations and limitations of various imaging techniques, including Doppler ultrasound, CT angiography, MR angiography and newer techniques such as non-contrast MR angiography, in the context of RDN. (orig.)

  19. Revisiting renovascular imaging for renal sympathetic denervation: current techniques and applications

    International Nuclear Information System (INIS)

    Pua, Uei; Tan, Cher Heng; Ho, Hee Hwa; Tan, Julian Ko Beng; Ong, Paul Jau Leong

    2015-01-01

    Renal sympathetic denervation (RDN) is an emerging technique in the treatment of resistant hypertension, most commonly performed using an endovascular approach. Clinical and anatomical criteria for RDN are well established and imaging plays an integral role in selecting patients with suitable anatomy, procedural planning and device selection. Nevertheless, the current body of literature surrounding imaging related to RDN remains limited. The purpose of this article is to illustrate the expectations and limitations of various imaging techniques, including Doppler ultrasound, CT angiography, MR angiography and newer techniques such as non-contrast MR angiography, in the context of RDN. (orig.)

  20. Improvement in printing technique of spiral CT three-dimensional colour image

    International Nuclear Information System (INIS)

    Wang Yicheng; Liu Feng; Zhang Ling

    2005-01-01

    Objective: To investigate the printing technique of spiral CT three-dimensional (3D) colour image. Methods: The 3D colour images of 136 patients were printed, with the equipment of Marconi spiral CT, personnel computer, colour ink printer, and network switchboard. Results: All printed images were satisfied by this method. Conclusion: This technique is economic, simple, and useful, and can meet the need for clinical diagnosis and operation. (authors)

  1. Motion estimation of tagged cardiac magnetic resonance images using variational techniques

    Czech Academy of Sciences Publication Activity Database

    Carranza-Herrezuelo, N.; Bajo, A.; Šroubek, Filip; Santamarta, C.; Cristóbal, G.; Santos, A.; Ledesma-Carbayo, M.J.

    2010-01-01

    Roč. 34, č. 6 (2010), s. 514-522 ISSN 0895-6111 Institutional research plan: CEZ:AV0Z10750506 Keywords : medical imaging processing * motion estimation * variational techniques * tagged cardiac magnetic resonance images * optical flow Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.110, year: 2010 http://library.utia.cas.cz/separaty/2010/ZOI/sroubek- motion estimation of tagged cardiac magnetic resonance images using variational techniques.pdf

  2. Hybrid cardiac imaging using PET/MRI: a joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM).

    Science.gov (United States)

    Nensa, Felix; Bamberg, Fabian; Rischpler, Christoph; Menezes, Leon; Poeppel, Thorsten D; la Fougère, Christian; Beitzke, Dietrich; Rasul, Sazan; Loewe, Christian; Nikolaou, Konstantin; Bucerius, Jan; Kjaer, Andreas; Gutberlet, Matthias; Prakken, Niek H; Vliegenthart, Rozemarijn; Slart, Riemer H J A; Nekolla, Stephan G; Lassen, Martin L; Pichler, Bernd J; Schlosser, Thomas; Jacquier, Alexis; Quick, Harald H; Schäfers, Michael; Hacker, Marcus

    2018-05-02

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) have both been used for decades in cardiovascular imaging. Since 2010, hybrid PET/MRI using sequential and integrated scanner platforms has been available, with hybrid cardiac PET/MR imaging protocols increasingly incorporated into clinical workflows. Given the range of complementary information provided by each method, the use of hybrid PET/MRI may be justified and beneficial in particular clinical settings for the evaluation of different disease entities. In the present joint position statement, we critically review the role and value of integrated PET/MRI in cardiovascular imaging, provide a technical overview of cardiac PET/MRI and practical advice related to the cardiac PET/MRI workflow, identify cardiovascular applications that can potentially benefit from hybrid PET/MRI, and describe the needs for future development and research. In order to encourage its wide dissemination, this article is freely accessible on the European Radiology and European Journal of Hybrid Imaging web sites. • Studies and case-reports indicate that PET/MRI is a feasible and robust technology. • Promising fields of application include a variety of cardiac conditions. • Larger studies are required to demonstrate its incremental and cost-effective value. • The translation of novel radiopharmaceuticals and MR-sequences will provide exciting new opportunities.

  3. Techniques necessary for multiple tracer quantitative small-animal imaging studies

    International Nuclear Information System (INIS)

    Sharp, Terry L.; Dence, Carmen S.; Engelbach, John A.; Herrero, Pilar; Gropler, Robert J.; Welch, Michael J.

    2005-01-01

    Introduction: An increasing number and variety of studies on rodent models are being conducted using small-animal positron emission tomography scanners. We aimed to determine if animal handling techniques could be developed to perform routine animal imaging in a timely and efficient manner and with minimal effect on animal physiology. These techniques need to be reproducible in the same animal while maintaining hemodynamic and physiological stability. Methods: The necessary techniques include (a) the use of inhalant anesthesia, (b) arterial and venous cannulation for multiple tracer administrations and blood sampling, (c) development of small-volume analytic columns and techniques and (d) measurement of the physiological environment during the imaging session. Results: We provide an example of a cardiac imaging study using four radiotracers ( 15 O-water, 1-[ 11 C]-acetate, 1-[ 11 C]-palmitate and 1-[ 11 C]-glucose) injected into normal rats. Plasma substrates, CO 2 production and total metabolites were measured. The animals remained anesthetized over the entire imaging session, and their physiological state was maintained. Conclusion: The intrastudy stability of the physiological measurements and substrate levels and interstudy reproducibility of the measurements are reported

  4. Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Robert K. Henderson

    2012-05-01

    Full Text Available We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD-based cameras for fluorescence lifetime imaging microscopy (FLIM by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast.

  5. Intracardiac flow patterns studied by cine MR flow imaging

    International Nuclear Information System (INIS)

    Underwood, S.R.; Firmin, D.N.; Klipstein, R.H.; Rees, R.S.O.; Longmore, D.B.

    1986-01-01

    Velocity mapping by means of cine-MR imaging allows accurate measurement of velocity and flow within the cardiovascular system. A cine display and color coding simplify interpretation. The author have used the technique in a variety of patients to illustrate its potential. Velocity mapping in coronary artery by pass grafts in six patients provided a measure of graft function. Coronary artery velocities were measured in three subjects. Flow was measured through defects in the atrial septum, the ventricular septum, and a Gerbode defect. Velocity was reduced distal to coarctation of the aorta and was increased at the level of a partial venous occlusion by thrombosis. In a patient with isomerism, velocity mapping in the central vessels aided interpretation. Cine-MR imaging velocity mapping combined with conventional imaging yields important functional information on the cardiovascular system

  6. Fractal Image Compression Based on High Entropy Values Technique

    Directory of Open Access Journals (Sweden)

    Douaa Younis Abbaas

    2018-04-01

    Full Text Available There are many attempts tried to improve the encoding stage of FIC because it consumed time. These attempts worked by reducing size of the search pool for pair range-domain matching but most of them led to get a bad quality, or a lower compression ratio of reconstructed image. This paper aims to present a method to improve performance of the full search algorithm by combining FIC (lossy compression and another lossless technique (in this case entropy coding is used. The entropy technique will reduce size of the domain pool (i. e., number of domain blocks based on the entropy value of each range block and domain block and then comparing the results of full search algorithm and proposed algorithm based on entropy technique to see each of which give best results (such as reduced the encoding time with acceptable values in both compression quali-ty parameters which are C. R (Compression Ratio and PSNR (Image Quality. The experimental results of the proposed algorithm proven that using the proposed entropy technique reduces the encoding time while keeping compression rates and reconstruction image quality good as soon as possible.

  7. Performance evaluation of breast image compression techniques

    Energy Technology Data Exchange (ETDEWEB)

    Anastassopoulos, G; Lymberopoulos, D [Wire Communications Laboratory, Electrical Engineering Department, University of Patras, Greece (Greece); Panayiotakis, G; Bezerianos, A [Medical Physics Department, School of Medicine, University of Patras, Greece (Greece)

    1994-12-31

    Novel diagnosis orienting tele working systems manipulate, store, and process medical data through real time communication - conferencing schemes. One of the most important factors affecting the performance of these systems is image handling. Compression algorithms can be applied to the medical images, in order to minimize : a) the volume of data to be stored in the database, b) the demanded bandwidth from the network, c) the transmission costs, and to minimize the speed of the transmitted data. In this paper an estimation of all the factors of the process that affect the presentation of breast images is made, from the time the images are produced from a modality, till the compressed images are stored, or transmitted in a Broadband network (e.g. B-ISDN). The images used were scanned images of the TOR(MAX) Leeds breast phantom, as well as typical breast images. A comparison of seven compression techniques has been done, based on objective criteria such as Mean Square Error (MSE), resolution, contrast, etc. The user can choose the appropriate compression ratio in order to achieve the desired image quality. (authors). 12 refs, 4 figs.

  8. Copy-Move Forgery Detection Technique for Forensic Analysis in Digital Images

    Directory of Open Access Journals (Sweden)

    Toqeer Mahmood

    2016-01-01

    Full Text Available Due to the powerful image editing tools images are open to several manipulations; therefore, their authenticity is becoming questionable especially when images have influential power, for example, in a court of law, news reports, and insurance claims. Image forensic techniques determine the integrity of images by applying various high-tech mechanisms developed in the literature. In this paper, the images are analyzed for a particular type of forgery where a region of an image is copied and pasted onto the same image to create a duplication or to conceal some existing objects. To detect the copy-move forgery attack, images are first divided into overlapping square blocks and DCT components are adopted as the block representations. Due to the high dimensional nature of the feature space, Gaussian RBF kernel PCA is applied to achieve the reduced dimensional feature vector representation that also improved the efficiency during the feature matching. Extensive experiments are performed to evaluate the proposed method in comparison to state of the art. The experimental results reveal that the proposed technique precisely determines the copy-move forgery even when the images are contaminated with blurring, noise, and compression and can effectively detect multiple copy-move forgeries. Hence, the proposed technique provides a computationally efficient and reliable way of copy-move forgery detection that increases the credibility of images in evidence centered applications.

  9. Imaging of mass distribution in paper by electrography technique, (2)

    International Nuclear Information System (INIS)

    Tomimasu, Hiroshi; Luner, P.

    1991-01-01

    Four paper imaging techniques (β-radiography, electrography, light transmission, and soft x-radiography) were compared in terms of their process parameters and image characteristics (exposure time, spatial variation, contrast, spatial resolution, correlation with mass, and limitation in basis weight range) with the same newsprint sample and electron microscope film. As far as the imaging conditions chosen here are concerned, electrography gave a higher spatial resolution, shorter exposure time, and the wider basis weight range than β-radiography. Light transmission image could be obtained in a very short time, but gave the poorest spatial resolution and correlation with mass. Soft x-radiography gave the highest spatial resolution, but the poorest spatial variation and contrast. The proper imaging technique and conditions need to be selected depending on the specific paper property in question. (author)

  10. Cardiovascular magnetic resonance imaging in the assessment of carcinoid heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Sandmann, H.; Pakkal, M. [Queen Elizabeth Hospital, Birmingham (United Kingdom); Steeds, R. [Queen Elizabeth Hospital, Birmingham (United Kingdom)], E-mail: rick.steeds@uhb.nhs.uk

    2009-08-15

    Carcinoid disease arises from a low-grade neuroendocrine tumour derived from serotonin-producing enterochromaffin cells. It is the most common tumour affecting the small bowel. The majority of patients who progress to carcinoid syndrome develop cardiac disease selectively involving the right side of the heart, whereas left heart disease is unusual. The most common cause of death is dilatation and dysfunction of the right ventricle. Right ventricular dysfunction is largely secondary to pathological endocardial fibrosis of the tricuspid and pulmonary valves, presenting with regurgitation and stenosis. Average survival falls to only 11 months with the onset of symptoms, but recent evidence suggests that survival can be improved by early surgery in selected individuals. This article reviews the particular role that cardiovascular magnetic resonance imaging has in the management of carcinoid heart disease.

  11. Diagnostic imaging techniques in Rubinstein-Taybi syndrome

    International Nuclear Information System (INIS)

    Albanese, A.; Carcione, A.; Benenati, A.; Albano, S.; Rubino, F.P.; Reina, C.; Verde, V.; Giuffre, L.; Corsello, G.; Cammarata, M.; Piccione, M.

    1991-01-01

    Both etiology and pathogenesis of Rubinstein-Taybi syndrome (RTS) are still questionable, even though a genetic factor seems to be certain. A typical face, psychomotor delay, and thumb and halluces abnormalities (big, prevalently short, and often 'spoon-like' toes) are the main characteristic patterns of RTS. Eight subjects (4 male and 3 female children aged 26 days-7 years, and a 31-year old woman, mother of 1 of the affected children) with different signs of RTS were studied over the last 3 years. The results are here reported, with a special emphasis on malformations detected with conventional radiography (Rx), Computerized Tomography (CT), and ultrasound (US). Evaluated parameters were thumbs and halluces (Rx), bone age and skeleton (Rx), cranium (Rx) and encephalon (US, CT), cryptochidism (US, CT), and urogical (Rx, US) and carciovascolar (US) system. Atypical face and psycomotor delay were found in all cases, while thumb and halluces abnormalities were observed only in 6 cases. Among several clinical signs of RTS, we found: severe (<3rd centile) bone maturation delay in 4 cases; skull volume reduction (<50th centile) in 3 subjects and microcrania in 4; skeletal abnormalities in 7 cases (5 of them positive for bilateral coxofemoral abnormalities); urinary tract (4 cases) and cardiovascular (3 cases) malformation; and cryptorcidism in 3 of 4 males. A case was diagnosed during neonatal period (within the first month of life) it was a rare case associated with a variant form of Dandy-Walker anomaly; semiologic similarities were observed between mother and daughter patients. X-rays, US and CT rarely play an important role in the diagnosis of RTS, considering the several clinical signs, mainly tha face, affecting the patients. However, diagnostic imaging techniques help diagnose hidden malformations and confirm and integrate clinical signs

  12. CATEGORICAL IMAGE COMPONENTS IN THE FORMING SYSTEM OF A MARKETING TECHNIQUES MANAGER’S IMAGE CULTURE

    OpenAIRE

    Anna Borisovna Cherednyakova

    2015-01-01

    Based on the understanding of the image culture formation of managers of marketing techniques, as a representative of the social and communication interaction of public structures, categorical apparatus of image culture with an emphasis on the etymology of the image, as an integral component of image culture was analyzed. Categorical components of the image are presented from the standpoint of image culture, as personal new formation, an integral part of the professional activity of the marke...

  13. In-room CT techniques for image-guided radiation therapy

    International Nuclear Information System (INIS)

    Ma, C.-M. Charlie; Paskalev, Kamen M.S.

    2006-01-01

    Accurate patient setup and target localization are essential to advanced radiation therapy treatment. Significant improvement has been made recently with the development of image-guided radiation therapy, in which image guidance facilitates short treatment course and high dose per fraction radiotherapy, aiming at improving tumor control and quality of life. Many imaging modalities are being investigated, including x-ray computed tomography (CT), ultrasound imaging, positron emission tomography, magnetic resonant imaging, magnetic resonant spectroscopic imaging, and kV/MV imaging with flat panel detectors. These developments provide unique imaging techniques and methods for patient setup and target localization. Some of them are different; some are complementary. This paper reviews the currently available kV x-ray CT systems used in the radiation treatment room, with a focus on the CT-on-rails systems, which are diagnostic CT scanners moving on rails installed in the treatment room. We will describe the system hardware including configurations, specifications, operation principles, and functionality. We will review software development for image fusion, structure recognition, deformation correction, target localization, and alignment. Issues related to the clinical implementation of in-room CT techniques in routine procedures are discussed, including acceptance testing and quality assurance. Clinical applications of the in-room CT systems for patient setup, target localization, and adaptive therapy are also reviewed for advanced radiotherapy treatments

  14. Micro-structural characterization of materials using synchrotron hard X-ray imaging techniques

    International Nuclear Information System (INIS)

    Agrawal, Ashish; Singh, Balwant; Kashyap, Yogesh; Sarkar, P. S.; Shukla, Mayank; Sinha, Amar

    2015-01-01

    X-ray imaging has been an important tool to study the materials microstructure with the laboratory based sources however the advent of third generation synchrotron sources has introduced new concepts in X-ray imaging such as phase contrast imaging, micro-tomography, fluorescence imaging and diffraction enhance imaging. These techniques are being used to provide information of materials about their density distribution, porosity, geometrical and morphological characteristics at sub-micron scalewith improved contrast. This paper discusses the development of various imaging techniques at synchrotron based imaging beamline Indus-2 and few recent experiments carried out at this facility

  15. Functional cardiac imaging: positron emission tomography

    International Nuclear Information System (INIS)

    Mullani, N.A.; Gould, K.L.

    1984-01-01

    Dynamic cardiovascular imaging plays a vital role in the diagnosis and treatment of cardiac disease by providing information about the function of the heart. During the past 30 years, cardiovascular imaging has evolved from the simple chest x-ray and fluoroscopy to such sophisticated techniques as invasive cardiac angiography and cinearteriography and, more recently, to noninvasive cardiac CT scanning, nuclear magnetic resonance, and positron emission tomography, which reflect more complex physiologic functions. As research tools, CT, NMR, and PET provide quantitative information on global as well as regional ventricular function, coronary artery stenosis, myocardial perfusion, glucose and fatty acid metabolism, or oxygen utilization, with little discomfort or risk to the patient. As imaging modalities become more sophisticated and more oriented toward clinical application, the prospect of routinely obtaining such functional information about the heart is becoming realistic. However, these advances are double-edged in that the interpretation of functional data is more complex than that of the anatomic imaging familiar to most physicians. They will require an enhanced understanding of the physiologic and biochemical processes, as well as of the instrumentation and techniques for analyzing the data. Of the new imaging modalities that provide functional information about the heart, PET is the most useful because it quantitates the regional distribution of radionuclides in vivo. Clinical applications, interpretation of data, and the impact of PET on our understanding of cardiac pathophysiology are discussed. 5 figures

  16. On the benefit of the negative-spherical-aberration imaging technique for quantitative HRTEM

    International Nuclear Information System (INIS)

    Jia, C.L.; Houben, L.; Thust, A.; Barthel, J.

    2010-01-01

    Employing an aberration corrector in a high-resolution transmission electron microscope, the spherical aberration C S can be tuned to negative values, resulting in a novel imaging technique, which is called the negative C S imaging (NCSI) technique. The image contrast obtained with the NCSI technique is compared quantitatively with the image contrast formed with the traditional positive C S imaging (PCSI) technique. For the case of thin objects negative C S images are superior to positive C S images concerning the magnitude of the obtained contrast, which is due to constructive rather than destructive superposition of fundamental contrast contributions. As a consequence, the image signal obtained with a negative spherical aberration is significantly more robust against noise caused by amorphous surface layers, resulting in a measurement precision of atomic positions which is by a factor of 2-3 better at an identical noise level. The quantitative comparison of the two alternative C S -corrected imaging modes shows that the NCSI mode yields significantly more precise results in quantitative high-resolution transmission electron microscopy of thin objects than the traditional PCSI mode.

  17. Flame analysis using image processing techniques

    Science.gov (United States)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  18. Wear Detection of Drill Bit by Image-based Technique

    Science.gov (United States)

    Sukeri, Maziyah; Zulhilmi Paiz Ismadi, Mohd; Rahim Othman, Abdul; Kamaruddin, Shahrul

    2018-03-01

    Image processing for computer vision function plays an essential aspect in the manufacturing industries for the tool condition monitoring. This study proposes a dependable direct measurement method to measure the tool wear using image-based analysis. Segmentation and thresholding technique were used as the means to filter and convert the colour image to binary datasets. Then, the edge detection method was applied to characterize the edge of the drill bit. By using cross-correlation method, the edges of original and worn drill bits were correlated to each other. Cross-correlation graphs were able to detect the difference of the worn edge despite small difference between the graphs. Future development will focus on quantifying the worn profile as well as enhancing the sensitivity of the technique.

  19. A Review On Segmentation Based Image Compression Techniques

    Directory of Open Access Journals (Sweden)

    S.Thayammal

    2013-11-01

    Full Text Available Abstract -The storage and transmission of imagery become more challenging task in the current scenario of multimedia applications. Hence, an efficient compression scheme is highly essential for imagery, which reduces the requirement of storage medium and transmission bandwidth. Not only improvement in performance and also the compression techniques must converge quickly in order to apply them for real time applications. There are various algorithms have been done in image compression, but everyone has its own pros and cons. Here, an extensive analysis between existing methods is performed. Also, the use of existing works is highlighted, for developing the novel techniques which face the challenging task of image storage and transmission in multimedia applications.

  20. Acquisition and visualization techniques for narrow spectral color imaging.

    Science.gov (United States)

    Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón

    2013-06-01

    This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.

  1. Cardiovascular magnetic resonance in hypertrophic cardiomyopathy and infiltrative cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Rebecca Schofield

    2016-11-01

    Full Text Available Hypertrophic cardiomyopathy (HCM is the most common inherited cardiac disease. Cardiac imaging plays a key role in the diagnosis and management, with cardiovascular magnetic resonance (CMR an important modality. CMR provides a number of different techniques in one examination: structure and function, flow imaging and tissue characterisation particularly with the late gadolinium enhancement (LGE technique. Other techniques include vasodilator perfusion, mapping (especially T1 mapping and extracellular volume quantification [ECV] and diffusion-weighted imaging with its potential to detect disarray. Clinically, the uses of CMR are diverse. The imaging must be considered within the context of work-up, particularly the personal and family history, Electrocardiogram (ECG and echocardiogram findings. Subtle markers of possible HCM can be identified in genotype positive left ventricular hypertrophy (LVH-negative subjects. CMR has particular advantages for assessment of the left ventricle (LV apex and is able to detect both missed LVH (apical and basal antero-septum, when the echocardiography is normal but the ECG abnormal. CMR is important in distinguishing HCM from both common phenocopies (hypertensive heart disease, athletic adaptation, ageing related changes and rarer pheno and/or genocopies such as Fabry disease and amyloidosis. For these, in particular the LGE technique and T1 mapping are very useful with a low T1 in Fabry’s, and high T1 and very high ECV in amyloidosis. Moreover, the tissue characterisation that is possible using CMR offers a potential role in patient risk stratification, as scar is a very strong predictor of future heart failure. Scar may also play a role in the prediction of sudden death. CMR is helpful in follow-up assessment, especially after septal alcohol ablation and myomectomy.

  2. Image processing techniques for quantification and assessment of brain MRI

    NARCIS (Netherlands)

    Kuijf, H.J.

    2013-01-01

    Magnetic resonance imaging (MRI) is a widely used technique to acquire digital images of the human brain. A variety of acquisition protocols is available to generate images in vivo and noninvasively, giving great opportunities to study the anatomy and physiology of the human brain. In my thesis,

  3. Adaptive differential correspondence imaging based on sorting technique

    Directory of Open Access Journals (Sweden)

    Heng Wu

    2017-04-01

    Full Text Available We develop an adaptive differential correspondence imaging (CI method using a sorting technique. Different from the conventional CI schemes, the bucket detector signals (BDS are first processed by a differential technique, and then sorted in a descending (or ascending order. Subsequently, according to the front and last several frames of the sorted BDS, the positive and negative subsets (PNS are created by selecting the relative frames from the reference detector signals. Finally, the object image is recovered from the PNS. Besides, an adaptive method based on two-step iteration is designed to select the optimum number of frames. To verify the proposed method, a single-detector computational ghost imaging (GI setup is constructed. We experimentally and numerically compare the performance of the proposed method with different GI algorithms. The results show that our method can improve the reconstruction quality and reduce the computation cost by using fewer measurement data.

  4. A Document Imaging Technique for Implementing Electronic Loan Approval Process

    Directory of Open Access Journals (Sweden)

    J. Manikandan

    2015-04-01

    Full Text Available The image processing is one of the leading technologies of computer applications. Image processing is a type of signal processing, the input for image processor is an image or video frame and the output will be an image or subset of image [1]. Computer graphics and computer vision process uses an image processing techniques. Image processing systems are used in various environments like medical fields, computer-aided design (CAD, research fields, crime investigation fields and military fields. In this paper, we proposed a document image processing technique, for establishing electronic loan approval process (E-LAP [2]. Loan approval process has been tedious process, the E-LAP system attempts to reduce the complexity of loan approval process. Customers have to login to fill the loan application form online with all details and submit the form. The loan department then processes the submitted form and then sends an acknowledgement mail via the E-LAP to the requested customer with the details about list of documents required for the loan approval process [3]. The approaching customer can upload the scanned copies of all required documents. All this interaction between customer and bank take place using an E-LAP system.

  5. A graphical simulator for teaching basic and advanced MR imaging techniques

    DEFF Research Database (Denmark)

    Hanson, Lars G

    2007-01-01

    Teaching of magnetic resonance (MR) imaging techniques typically involves considerable handwaving, literally, to explain concepts such as resonance, rotating frames, dephasing, refocusing, sequences, and imaging. A proper understanding of MR contrast and imaging techniques is crucial for radiolog...... be visualized in an intuitive way. The cross-platform software is primarily designed for use in lectures, but is also useful for self studies and student assignments. Movies available at http://radiographics.rsnajnls.org/cgi/content/full/e27/DC1 ....

  6. Improving face image extraction by using deep learning technique

    Science.gov (United States)

    Xue, Zhiyun; Antani, Sameer; Long, L. R.; Demner-Fushman, Dina; Thoma, George R.

    2016-03-01

    The National Library of Medicine (NLM) has made a collection of over a 1.2 million research articles containing 3.2 million figure images searchable using the Open-iSM multimodal (text+image) search engine. Many images are visible light photographs, some of which are images containing faces ("face images"). Some of these face images are acquired in unconstrained settings, while others are studio photos. To extract the face regions in the images, we first applied one of the most widely-used face detectors, a pre-trained Viola-Jones detector implemented in Matlab and OpenCV. The Viola-Jones detector was trained for unconstrained face image detection, but the results for the NLM database included many false positives, which resulted in a very low precision. To improve this performance, we applied a deep learning technique, which reduced the number of false positives and as a result, the detection precision was improved significantly. (For example, the classification accuracy for identifying whether the face regions output by this Viola- Jones detector are true positives or not in a test set is about 96%.) By combining these two techniques (Viola-Jones and deep learning) we were able to increase the system precision considerably, while avoiding the need to manually construct a large training set by manual delineation of the face regions.

  7. WE-A-BRF-01: Dual-Energy CT Imaging in Diagnostic Imaging and Radiation Therapy

    International Nuclear Information System (INIS)

    Molloi, S; Li, B; Yin, F; Chen, H

    2014-01-01

    The quantification accuracy of dual-energy imaging is influenced by the fundamentals of x-ray physics, system geometry, data acquisition hardware/protocol, system calibration, and image processing technique. This symposium will provide updates on the following advanced application areas: Mammography. Volumetric breast density techniques based on standard mammograms require estimation of breast thickness, which is difficult to accurately measure. By comparison, calculation of breast density using dual energy mammography does not require measurement of breast thickness. Dual energy mammography has been implemented using both energy integrating flat panel detectors in conjunction with beam energy switching and energy resolved photon counting detectors. These techniques have been optimized using simulation studies and validated using physical phantoms and postmortem breasts. Chemical decomposition was used as the gold standard for volumetric breast density measurement in postmortem breasts. Breast density measurements have also been compared with results from four-category BI-RADS density rankings, standard image thresholding and Fuzzy k-mean clustering techniques. These studies indicate that dual energy mammography can be used to accurately measure volumetric breast density. Cardiovascular CT. The predicative accuracy of risk models for recurrent stroke and cardiac arrest depends heavily on accurate differentiation of thrombus or calcium from iodine in left atrial appendage or coronary arteries. The amount of energy separation is constrained by image noise; therefore, optimal kVp, beam filtration, and balanced flux are essential for the quantification accuracy of iodine and calcium. The basis materials are combined linearly to generate monochromatic energy images, where CT# accuracy and CNR are energy dependent. With optimal monochromatic energy, the mean iodine concentration for the thrombus, circulatory stasis, and control groups are significantly different. Risk

  8. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    Science.gov (United States)

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  9. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique.

    Science.gov (United States)

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Shaw, Philip J; Ukosakit, Kittipat; Tragoonrung, Somvong; Tongsima, Sissades

    2015-01-01

    DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. This work presents an automated genotyping tool from DNA

  10. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique

    Science.gov (United States)

    2015-01-01

    Background DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. Results We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. Conclusions This work presents an

  11. Imaging after vascular gene therapy

    International Nuclear Information System (INIS)

    Manninen, Hannu I.; Yang, Xiaoming

    2005-01-01

    Targets for cardiovascular gene therapy currently include limiting restenosis after balloon angioplasty and stent placement, inhibiting vein bypass graft intimal hyperplasia/stenosis, therapeutic angiogenesis for cardiac and lower-limb ischemia, and prevention of thrombus formation. While catheter angiography is still standard method to follow-up vascular gene transfer, other modern imaging techniques, especially intravascular ultrasound (IVUS), magnetic resonance (MR), and positron emission tomography (PET) imaging provide complementary information about the therapeutic effect of vascular gene transfer in humans. Although molecular imaging of therapeutic gene expression in the vasculatures is still in its technical development phase, it has already offered basic medical science an extremely useful in vivo evaluation tool for non- or minimally invasive imaging of vascular gene therapy

  12. MCNP simulations of a new time-resolved Compton scattering imaging technique

    International Nuclear Information System (INIS)

    Ilan, Y.

    2004-01-01

    Medical images of human tissue can be produced using Computed Tomography (CT), Positron Emission Tomography (PET), Ultrasound or Magnetic Resonance Imaging (MRI). In all of the above techniques, in order to get a three-dimensional (3D) image, one has to rotate or move the source, the detectors or the scanned target. This procedure is complicated, time consuming and increases the cost and weight of the scanning equipment. Time resolved optical tomography has been suggested as an alternative to the above conventional methods. This technique implies near infrared light (NIR) and fast time-resolved detectors to obtain a 3D image of the scanned target. However, due to the limited penetration of the NIR light in the tissue, the application of this technique is limited to soft tissue like a female breast or a premature infant brain

  13. Application of magnetic resonance techniques for imaging tumour physiology

    International Nuclear Information System (INIS)

    Stubbs, M.

    1999-01-01

    Magnetic resonance (MR) techniques have the unique ability to measure in vivo the biochemical content of living tissue in the body in a dynamic, non-invasive and non-destructive manner. MR also permits serial investigations of steady-state tumour physiology and biochemistry, as well as the response of a tumour to treatment. Magnetic resonance imaging (MRI), Magnetic resonance spectroscopy (MRS) and a mixture of the two techniques (spectroscopic imaging) allow some physiological parameters, for example pH, to be 'imaged'. Using these methods, information on tissue bioenergetics and phospolipid membrane turnover, pH, hypoxia, oxygenation, and various aspects of vascularity including blood flow, angiogenesis, permeability and vascular volume can be obtained. In addition, MRS methods can be used for monitoring anticancer drugs (e.g. 5FU, ifosfamide) and their metabolites at their sites of action. The role of these state-of-the-art MR methods in imaging tumour physiology and their potential role in the clinic are discussed. (orig.)

  14. PLEIADES-HR INNOVATIVE TECHNIQUES FOR RADIOMETRIC IMAGE QUALITY COMMISSIONING

    Directory of Open Access Journals (Sweden)

    G. Blanchet

    2012-07-01

    Full Text Available The first Pleiades-HR satellite, part of a constellation of two, has been launched on December 17, 2011. This satellite produces high resolution optical images. In order to achieve good image quality, Pleiades-HR should first undergo an important 6 month commissioning phase period. This phase consists in calibrating and assessing the radiometric and geometric image quality to offer the best images to end users. This new satellite has benefited from technology improvements in various fields which make it stand out from other Earth observation satellites. In particular, its best-in-class agility performance enables new calibration and assessment techniques. This paper is dedicated to presenting these innovative techniques that have been tested for the first time for the Pleiades- HR radiometric commissioning. Radiometric activities concern compression, absolute calibration, detector normalization, and refocusing operations, MTF (Modulation Transfer Function assessment, signal-to-noise ratio (SNR estimation, and tuning of the ground processing parameters. The radiometric performances of each activity are summarized in this paper.

  15. Cardiac imaging in valvular heart disease

    Science.gov (United States)

    Choo, W S; Steeds, R P

    2011-01-01

    The aim of this article is to provide a perspective on the relative importance and contribution of different imaging modalities in patients with valvular heart disease. Valvular heart disease is increasing in prevalence across Europe, at a time when the clinical ability of physicians to diagnose and assess severity is declining. Increasing reliance is placed on echocardiography, which is the mainstay of cardiac imaging in valvular heart disease. This article outlines the techniques used in this context and their limitations, identifying areas in which dynamic imaging with cardiovascular magnetic resonance and multislice CT are expanding. PMID:22723532

  16. Magnetic resonance imaging. 1

    International Nuclear Information System (INIS)

    Wall, E.E. van der; Roos, A.A. de; Doornbos, J.; Dijkman, P.R.M. van; Matheijssen, N.A.A.; Laarse, A. van der; Krauss, X.H.; Blokland, J.A.k.; Manger Cats, V.; Voorthuisen, A.E. van; Bruschke, A.V.G.

    1991-01-01

    The cardiovascular applications of MRI in coronary artery disease have considerably increased in recent years. Although many applications overlap those of other more cost-effective techniques, such as echocardiography, radionuclide angiography, and CT, MRI offers unique features not shared by the conventional techniques. Technical advantages are the excellent spatial resolution, the characterization of myocardial tissue, and the potential for three-dimensional imaging. This allows the accurate assessment of left ventricular mass and volume, the differentiation of infarcted tissue from normal myocardial tissue, and the determination of systolic wall thickening and regional wall motion abnormalities. Also inducible myocardial ischemia using pharmacological stress (dipyramidole or dobutamine) may be assessed by magnetic resonance imaging. Future technical developments include real-time imaging and noninvasive visualization of the coronary arteries. These advantages will have a major impact on the application of MRI in coronary artery disease, potentially unsurpassed by other techniques and certainly justifying the expenses. Consequently, the clinical use of MRI for the detection of coronary artery disease largely depends on the progress of technical developments. (author). 134 refs.; 10 figs.; 2 tabs

  17. New partially parallel acquisition technique in cerebral imaging: preliminary findings

    International Nuclear Information System (INIS)

    Tintera, Jaroslav; Gawehn, Joachim; Bauermann, Thomas; Vucurevic, Goran; Stoeter, Peter

    2004-01-01

    In MRI applications where short acquisition time is necessary, the increase of acquisition speed is often at the expense of image resolution and SNR. In such cases, the newly developed parallel acquisition techniques could provide images without mentioned limitations and in reasonably shortened measurement time. A newly designed eight-channel head coil array (i-PAT coil) allowing for parallel acquisition of independently reconstructed images (GRAPPA mode) has been tested for its applicability in neuroradiology. Image homogeneity was tested in standard phantom and healthy volunteers. BOLD signal changes were studied in a group of six volunteers using finger tapping stimulation. Phantom studies revealed an important drop of signal even after the use of a normalization filter in the center of the image and an important increase of artifact power with reduction of measurement time strongly depending on the combination of acceleration parameters. The additional application of a parallel acquisition technique such as GRAPPA decreases measurement time in the range of about 30%, but further reduction is often possible only at the expense of SNR. This technique performs best in conditions in which imaging speed is important, such as CE MRA, but time resolution still does not allow the acquisition of angiograms separating the arterial and venous phase. Significantly larger areas of BOLD activation were found using the i-PAT coil compared to the standard head coil. Being an eight-channel surface coil array, peripheral cortical structures profit from high SNR as high-resolution imaging of small cortical dysplasias and functional activation of cortical areas imaged by BOLD contrast. In BOLD contrast imaging, susceptibility artifacts are reduced, but only if an appropriate combination of acceleration parameters is used. (orig.)

  18. New partially parallel acquisition technique in cerebral imaging: preliminary findings

    Energy Technology Data Exchange (ETDEWEB)

    Tintera, Jaroslav [Institute for Clinical and Experimental Medicine, Prague (Czech Republic); Gawehn, Joachim; Bauermann, Thomas; Vucurevic, Goran; Stoeter, Peter [University Clinic Mainz, Institute of Neuroradiology, Mainz (Germany)

    2004-12-01

    In MRI applications where short acquisition time is necessary, the increase of acquisition speed is often at the expense of image resolution and SNR. In such cases, the newly developed parallel acquisition techniques could provide images without mentioned limitations and in reasonably shortened measurement time. A newly designed eight-channel head coil array (i-PAT coil) allowing for parallel acquisition of independently reconstructed images (GRAPPA mode) has been tested for its applicability in neuroradiology. Image homogeneity was tested in standard phantom and healthy volunteers. BOLD signal changes were studied in a group of six volunteers using finger tapping stimulation. Phantom studies revealed an important drop of signal even after the use of a normalization filter in the center of the image and an important increase of artifact power with reduction of measurement time strongly depending on the combination of acceleration parameters. The additional application of a parallel acquisition technique such as GRAPPA decreases measurement time in the range of about 30%, but further reduction is often possible only at the expense of SNR. This technique performs best in conditions in which imaging speed is important, such as CE MRA, but time resolution still does not allow the acquisition of angiograms separating the arterial and venous phase. Significantly larger areas of BOLD activation were found using the i-PAT coil compared to the standard head coil. Being an eight-channel surface coil array, peripheral cortical structures profit from high SNR as high-resolution imaging of small cortical dysplasias and functional activation of cortical areas imaged by BOLD contrast. In BOLD contrast imaging, susceptibility artifacts are reduced, but only if an appropriate combination of acceleration parameters is used. (orig.)

  19. Paediatric pelvic imaging: optimisation of dose and technique using digital grid-controlled pulsed fluoroscopy.

    Science.gov (United States)

    Waugh, R; McCallum, H M; McCarty, M; Montgomery, R; Aszkenasy, M

    2001-05-01

    An audit of paediatric pelvic radiographs identified deficiencies in gonad shield placement and radiographic technique. A technique using grid-controlled fluoroscopy (GCF), with hard copy images in frame grab and digital spot image (DSI) format was evaluated to optimise gonad shield placement and reduce the dose given to children with Perthes disease and Developmental Hip Dysplasia (DDH) attending for pelvic radiography. Phantom and patient dose surveys of conventional and fluoroscopic techniques were carried out. Image quality and radiation dose were compared for the frame grab and DSI techniques. Retrospective evaluation was undertaken to compare their clinical acceptability. Both fluoroscopic techniques gave considerably less radiation than conventional non-grid radiography (67-83%, P < 0.05). The frame grab technique gave less radiation than DSI (P < 0.05). There was no significant difference in the clinical acceptability scores of the DSI and frame grab images. Fluoroscopy acquired images are now used since the fluoroscopic techniques give much less dose than conventional radiography and provide images of sufficient quality for clinical assessment. Indeed, as there was no significant difference in clinical usefulness between the frame grab and DSI techniques, it is planned to use frame grab alone, thus gaining additional dose saving.

  20. Statistical methods of evaluating and comparing imaging techniques

    International Nuclear Information System (INIS)

    Freedman, L.S.

    1987-01-01

    Over the past 20 years several new methods of generating images of internal organs and the anatomy of the body have been developed and used to enhance the accuracy of diagnosis and treatment. These include ultrasonic scanning, radioisotope scanning, computerised X-ray tomography (CT) and magnetic resonance imaging (MRI). The new techniques have made a considerable impact on radiological practice in hospital departments, not least on the investigational process for patients suspected or known to have malignant disease. As a consequence of the increased range of imaging techniques now available, there has developed a need to evaluate and compare their usefulness. Over the past 10 years formal studies of the application of imaging technology have been conducted and many reports have appeared in the literature. These studies cover a range of clinical situations. Likewise, the methodologies employed for evaluating and comparing the techniques in question have differed widely. While not attempting an exhaustive review of the clinical studies which have been reported, this paper aims to examine the statistical designs and analyses which have been used. First a brief review of the different types of study is given. Examples of each type are then chosen to illustrate statistical issues related to their design and analysis. In the final sections it is argued that a form of classification for these different types of study might be helpful in clarifying relationships between them and bringing a perspective to the field. A classification based upon a limited analogy with clinical trials is suggested

  1. Study of CT image texture using deep learning techniques

    Science.gov (United States)

    Dutta, Sandeep; Fan, Jiahua; Chevalier, David

    2018-03-01

    For CT imaging, reduction of radiation dose while improving or maintaining image quality (IQ) is currently a very active research and development topic. Iterative Reconstruction (IR) approaches have been suggested to be able to offer better IQ to dose ratio compared to the conventional Filtered Back Projection (FBP) reconstruction. However, it has been widely reported that often CT image texture from IR is different compared to that from FBP. Researchers have proposed different figure of metrics to quantitate the texture from different reconstruction methods. But there is still a lack of practical and robust method in the field for texture description. This work applied deep learning method for CT image texture study. Multiple dose scans of a 20cm diameter cylindrical water phantom was performed on Revolution CT scanner (GE Healthcare, Waukesha) and the images were reconstructed with FBP and four different IR reconstruction settings. The training images generated were randomly allotted (80:20) to a training and validation set. An independent test set of 256-512 images/class were collected with the same scan and reconstruction settings. Multiple deep learning (DL) networks with Convolution, RELU activation, max-pooling, fully-connected, global average pooling and softmax activation layers were investigated. Impact of different image patch size for training was investigated. Original pixel data as well as normalized image data were evaluated. DL models were reliably able to classify CT image texture with accuracy up to 99%. Results show that the deep learning techniques suggest that CT IR techniques may help lower the radiation dose compared to FBP.

  2. Visualization of brain surface structures by weighted summation technique using multislice MR images

    International Nuclear Information System (INIS)

    Machida, Yoshio; Hatanaka, Masahiko; Hagiwara, Masayuki; Sugimoto, Hiroshi; Yoshida, Tadatoki; Katada, Kazuhiro.

    1991-01-01

    Surface anatomy scanning (SAS) technique which visualizes brain surface structures has been developed since 1987. In this paper, we propose a modified method called 'multislice SAS', which also generates such surface structure images, and has several advantages compared with conventional SAS technique. The conventional SAS technique uses a very long echo time sequence (e.g. SE(3000, 250)) with a thick slice and a surface coil to enhance CSF on the brain surface. Our modified technique also uses a long echo time sequence. But, added multislice images, each appropriately weighted, are used in stead of a thick slice and a surface coil. Our basic studies have shown that this modified method has the following advantage: Several surface images with slightly different summation directions are obtained, and they are used for stereographic display and cine display. This is very useful for visualizing the spatial relationship of brain surface structures. By choosing appropriate weighting, we can obtain clinically legible surface images. This technique dose not require a surface coil. It means that flexibility of selecting imaging direction is high. We can make a lot of modifications, because the original multislice images of weighted summation are arbitrary. And we also clarify some limitation or disadvantage of this modified method. In conclusion, we think that this technique is one of the practical approaches for surface anatomy imaging. (author)

  3. A new registration method with voxel-matching technique for temporal subtraction images

    Science.gov (United States)

    Itai, Yoshinori; Kim, Hyoungseop; Ishikawa, Seiji; Katsuragawa, Shigehiko; Doi, Kunio

    2008-03-01

    A temporal subtraction image, which is obtained by subtraction of a previous image from a current one, can be used for enhancing interval changes on medical images by removing most of normal structures. One of the important problems in temporal subtraction is that subtraction images commonly include artifacts created by slight differences in the size, shape, and/or location of anatomical structures. In this paper, we developed a new registration method with voxel-matching technique for substantially removing the subtraction artifacts on the temporal subtraction image obtained from multiple-detector computed tomography (MDCT). With this technique, the voxel value in a warped (or non-warped) previous image is replaced by a voxel value within a kernel, such as a small cube centered at a given location, which would be closest (identical or nearly equal) to the voxel value in the corresponding location in the current image. Our new method was examined on 16 clinical cases with MDCT images. Preliminary results indicated that interval changes on the subtraction images were enhanced considerably, with a substantial reduction of misregistration artifacts. The temporal subtraction images obtained by use of the voxel-matching technique would be very useful for radiologists in the detection of interval changes on MDCT images.

  4. Coded Aperture Nuclear Scintigraphy: A Novel Small Animal Imaging Technique

    Directory of Open Access Journals (Sweden)

    Dawid Schellingerhout

    2002-10-01

    Full Text Available We introduce and demonstrate the utility of coded aperture (CA nuclear scintigraphy for imaging small animals. CA imaging uses multiple pinholes in a carefully designed mask pattern, mounted on a conventional gamma camera. System performance was assessed using point sources and phantoms, while several animal experiments were performed to test the usefulness of the imaging system in vivo, with commonly used radiopharmaceuticals. The sensitivity of the CA system for 99mTc was 4.2 × 103 cps/Bq (9400 cpm/μCi, compared to 4.4 × 104 cps/Bq (990 cpm/μCi for a conventional collimator system. The system resolution was 1.7 mm, as compared to 4–6 mm for the conventional imaging system (using a high-sensitivity low-energy collimator. Animal imaging demonstrated artifact-free imaging with superior resolution and image quality compared to conventional collimator images in several mouse and rat models. We conclude that: (a CA imaging is a useful nuclear imaging technique for small animal imaging. The advantage in signal-to-noise can be traded to achieve higher resolution, decreased dose or reduced imaging time. (b CA imaging works best for images where activity is concentrated in small volumes; a low count outline may be better demonstrated using conventional collimator imaging. Thus, CA imaging should be viewed as a technique to complement rather than replace traditional nuclear imaging methods. (c CA hardware and software can be readily adapted to existing gamma cameras, making their implementation a relatively inexpensive retrofit to most systems.

  5. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Biren J; Longsine, Whitney; Han, Arum; Righetti, Raffaella [Department of Electrical and Computer Engineering, Dwight Look College of Engineering, Texas A and M University, College Station, TX (United States); Sabonghy, Eric P [OneOrtho Orthopedic Surgery Clinic, Houston, TX (United States); Tasciotti, Ennio; Ferrari, Mauro [Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, TX (United States); Weiner, Bradley K, E-mail: righetti@ece.tamu.ed [Division of Spinal Surgery, Department of Orthopaedic Surgery, Methodist Hospital, Houston, TX 77030 (United States)

    2010-08-21

    Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 {mu}m to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.

  6. Laser-induced photo-thermal strain imaging

    Science.gov (United States)

    Choi, Changhoon; Ahn, Joongho; Jeon, Seungwan; Kim, Chulhong

    2018-02-01

    Vulnerable plaque is the one of the leading causes of cardiovascular disease occurrence. However, conventional intravascular imaging techniques suffer from difficulty in finding vulnerable plaque due to limitation such as lack of physiological information, imaging depth, and depth sensitivity. Therefore, new techniques are needed to help determine the vulnerability of plaque, Thermal strain imaging (TSI) is an imaging technique based on ultrasound (US) wave propagation speed that varies with temperature of medium. During temperature increase, strain occurs in the medium and its variation tendency is depending on the type of tissue, which makes it possible to use for tissue differentiation. Here, we demonstrate laser-induced photo-thermal strain imaging (pTSI) to differentiate tissue using an intravascular ultrasound (IVUS) catheter and a 1210-nm continuous-wave laser for heating lipids intensively. During heating, consecutive US images were obtained from a custom-made phantom made of porcine fat and gelatin. A cross correlation-based speckle-tracking algorithm was then applied to calculate the strain of US images. In the strain images, the positive strain produced in lipids (porcine fat) was clearly differentiated from water-bearing tissue (gelatin). This result shows that laser-induced pTSI could be a new method to distinguish lipids in the plaque and can help to differentiate vulnerability of plaque.

  7. Tablet surface characterisation by various imaging techniques

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Rantanen, Jukka; Yliruusi, Jouko

    2003-01-01

    The aim of this study was to characterise tablet surfaces using different imaging and roughness analytical techniques including optical microscopy, scanning electron microscopy (SEM), laser profilometry and atomic force microscopy (AFM). The test materials compressed were potassium chloride (KCl......) and sodium chloride (NaCl). It was found that all methods used suggested that the KCl tablets were smoother than the NaCl tablets and higher compression pressure made the tablets smoother. Imaging methods like optical microscopy and SEM can give useful information about the roughness of the sample surface...

  8. USE OF IMAGE ENHANCEMENT TECHNIQUES FOR IMPROVING REAL TIME FACE RECOGNITION EFFICIENCY ON WEARABLE GADGETS

    Directory of Open Access Journals (Sweden)

    MUHAMMAD EHSAN RANA

    2017-01-01

    Full Text Available The objective of this research is to study the effects of image enhancement techniques on face recognition performance of wearable gadgets with an emphasis on recognition rate.In this research, a number of image enhancement techniques are selected that include brightness normalization, contrast normalization, sharpening, smoothing, and various combinations of these. Subsequently test images are obtained from AT&T database and Yale Face Database B to investigate the effect of these image enhancement techniques under various conditions such as change of illumination and face orientation and expression.The evaluation of data, collected during this research, revealed that the effect of image pre-processing techniques on face recognition highly depends on the illumination condition under which these images are taken. It is revealed that the benefit of applying image enhancement techniques on face images is best seen when there is high variation of illumination among images. Results also indicate that highest recognition rate is achieved when images are taken under low light condition and image contrast is enhanced using histogram equalization technique and then image noise is reduced using median smoothing filter. Additionally combination of contrast normalization and mean smoothing filter shows good result in all scenarios. Results obtained from test cases illustrate up to 75% improvement in face recognition rate when image enhancement is applied to images in given scenarios.

  9. Imaging of the hip and bony pelvis. Techniques and applications

    Energy Technology Data Exchange (ETDEWEB)

    Davies, A.M. [Royal Orthopaedic Hospital, Birmingham (United Kingdom). MRI Centre; Johnson, K.J. [Princess of Wales Birmingham Children' s Hospital (United Kingdom); Whitehouse, R.W. (eds.) [Manchester Royal Infirmary (United Kingdom). Dept. of Clinical Radiology

    2006-07-01

    This is a comprehensive textbook on imaging of the bony pelvis and hip joint that provides a detailed description of the techniques and imaging findings relevant to this complex anatomical region. In the first part of the book, the various techniques and procedures employed for imaging the pelvis and hip are discussed in detail. The second part of the book documents the application of these techniques to the diverse clinical problems and diseases encountered. Among the many topics addressed are congenital and developmental disorders including developmental dysplasia of the hip, irritable hip and septic arthritis, Perthes' disease and avascular necrosis, slipped upper femoral epiphysis, bony and soft tissue trauma, arthritis, tumours and hip prostheses. Each chapter is written by an acknowledged expert in the field, and a wealth of illustrative material is included. This book will be of great value to musculoskeletal and general radiologists, orthopaedic surgeons and rheumatologists. (orig.)

  10. Unsupervised color image segmentation using a lattice algebra clustering technique

    Science.gov (United States)

    Urcid, Gonzalo; Ritter, Gerhard X.

    2011-08-01

    In this paper we introduce a lattice algebra clustering technique for segmenting digital images in the Red-Green- Blue (RGB) color space. The proposed technique is a two step procedure. Given an input color image, the first step determines the finite set of its extreme pixel vectors within the color cube by means of the scaled min-W and max-M lattice auto-associative memory matrices, including the minimum and maximum vector bounds. In the second step, maximal rectangular boxes enclosing each extreme color pixel are found using the Chebychev distance between color pixels; afterwards, clustering is performed by assigning each image pixel to its corresponding maximal box. The two steps in our proposed method are completely unsupervised or autonomous. Illustrative examples are provided to demonstrate the color segmentation results including a brief numerical comparison with two other non-maximal variations of the same clustering technique.

  11. Integration of an optical coherence tomography (OCT) system into an examination incubator to facilitate in vivo imaging of cardiovascular development in higher vertebrate embryos under stable physiological conditions

    DEFF Research Database (Denmark)

    Happel, Christoph M.; Thrane, Lars; Thommes, Jan

    2011-01-01

    High-resolution in vivo imaging of higher vertebrate embryos over short or long time periods under constant physiological conditions is a technically challenging task for researchers working on cardiovascular development. In chick embryos, for example, various studies have shown that without...... significance, should be documented under physiological conditions. However, previous studies were mostly carried out outside of an incubator or under suboptimal environmental conditions. Here we present, to the best of our knowledge, the first detailed description of an optical coherence tomography (OCT......) system integrated into an examination incubator to facilitate real-time in vivo imaging of cardiovascular development under physiological environmental conditions. We demonstrate the suitability of this OCT examination incubator unit for use in cardiovascular development studies by examples of proof...

  12. Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures.

    Science.gov (United States)

    Lidke, Diane S; Lidke, Keith A

    2012-06-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.

  13. Dental CT: imaging technique, anatomy, and pathologic conditions of the jaws

    International Nuclear Information System (INIS)

    Gahleitner, Andre; Watzek, G.; Imhof, H.

    2003-01-01

    In addition to conventional imaging methods, dental CT has become an established method for anatomic imaging of the jaws prior to dental implant placement. More recently, this high-resolution imaging technique has gained importance in diagnosing dental-associated diseases of the mandible and maxilla. Since most radiologists have had little experience in these areas, many of the CT findings remain undescribed. The objective of this review article is to present the technique of dental CT, to illustrate the typical appearance of jaw anatomy and dental-related diseases of the jaws with dental CT, and to show where it can serve as an addition to conventional imaging methods in dental radiology. (orig.)

  14. Dental CT: imaging technique, anatomy, and pathologic conditions of the jaws

    Energy Technology Data Exchange (ETDEWEB)

    Gahleitner, Andre [Department of Radiology/Osteology, Medical School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria); Department of Oral Surgery, Dental School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria); Watzek, G. [Department of Oral Surgery, Dental School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria); Imhof, H. [Department of Radiology/Osteology, Medical School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria)

    2003-02-01

    In addition to conventional imaging methods, dental CT has become an established method for anatomic imaging of the jaws prior to dental implant placement. More recently, this high-resolution imaging technique has gained importance in diagnosing dental-associated diseases of the mandible and maxilla. Since most radiologists have had little experience in these areas, many of the CT findings remain undescribed. The objective of this review article is to present the technique of dental CT, to illustrate the typical appearance of jaw anatomy and dental-related diseases of the jaws with dental CT, and to show where it can serve as an addition to conventional imaging methods in dental radiology. (orig.)

  15. Electromagnetic considerations for RF current density imaging [MRI technique].

    Science.gov (United States)

    Scott, G C; Joy, M G; Armstrong, R L; Henkelman, R M

    1995-01-01

    Radio frequency current density imaging (RF-CDI) is a recent MRI technique that can image a Larmor frequency current density component parallel to B(0). Because the feasibility of the technique was demonstrated only for homogeneous media, the authors' goal here is to clarify the electromagnetic assumptions and field theory to allow imaging RF currents in heterogeneous media. The complete RF field and current density imaging problem is posed. General solutions are given for measuring lab frame magnetic fields from the rotating frame magnetic field measurements. For the general case of elliptically polarized fields, in which current and magnetic field components are not in phase, one can obtain a modified single rotation approximation. Sufficient information exists to image the amplitude and phase of the RF current density parallel to B(0) if the partial derivative in the B(0) direction of the RF magnetic field (amplitude and phase) parallel to B(0) is much smaller than the corresponding current density component. The heterogeneous extension was verified by imaging conduction and displacement currents in a phantom containing saline and pure water compartments. Finally, the issues required to image eddy currents are presented. Eddy currents within a sample will distort both the transmitter coil reference system, and create measurable rotating frame magnetic fields. However, a three-dimensional electro-magnetic analysis will be required to determine how the reference system distortion affects computed eddy current images.

  16. Imaging XPS - a new technique

    International Nuclear Information System (INIS)

    Gurker, N.; Ebel, M.F.; Ebel, H.

    1983-01-01

    XPS imaging promises to be a powerful analytic tool because it enables specific information on both elements and bonding to be recorded on a two-dimensional distribution map. As far as the authors are aware, the only scanning XPS method to date which has been found to be practical is essentially a scanned-particle-beam method, like scanning AES, and it is only applicable to thin film specimens. This paper provides the basic ideas of a new imaging XPS technique based on a quite different concept. It will be applicable to any kind of specimen that can be analysed in a conventional XPS system. It makes use of the dispersion properties of a spherical condenser-type spectrometer and applies a two-dimensional electron detection device for decoding the energy and emission position of an analysed photoelectron. Experimental arrangement and theory of operation are presented. (author)

  17. Imaging of bone tumors and tumor-like lesions. Techniques and applications

    International Nuclear Information System (INIS)

    Davies, A. Mark; Sundaram, Murali; James, Steven L.J.

    2009-01-01

    This is a comprehensive textbook that provides a detailed description of the imaging techniques and findings in patients with benign and malignant bone tumors. In the first part of the book, the various techniques and procedures employed for imaging bone tumors are discussed in detail. Individual chapters are devoted to MRI, CT, nuclear medicine, and interventional procedures. The second part of the book gives an authoritative review of the role of these imaging techniques in diagnosis, surgical staging, biopsy, and assessment of response to therapy. The third part of the book covers the imaging features of each major tumor subtype, with separate chapters on osteogenic tumors, cartilaginous tumors, etc. The final part of the book reviews the imaging features of bone tumors at particular anatomical sites such as the spine, ribs, pelvis, and scapula. Each chapter is written by an acknowledged expert in the field, and a wealth of illustrative material is included. This book will be of great value to musculoskeletal and general radiologists, orthopedic surgeons, and oncologists. (orig.)

  18. Detection of hydroxyapatite in calcified cardiovascular tissues.

    Science.gov (United States)

    Lee, Jae Sam; Morrisett, Joel D; Tung, Ching-Hsuan

    2012-10-01

    The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Molecular imaging of in vivo calcium ion expression in area postrema of total sleep deprived rats: Implications for cardiovascular regulation by TOF-SIMS analysis

    Science.gov (United States)

    Mai, Fu-Der; Chen, Li-You; Ling, Yong-Chien; Chen, Bo-Jung; Wu, Un-In; Chang, Hung-Ming

    2010-05-01

    Excessive calcium influx in chemosensitive neurons of area postrema (AP) is detrimental for sympathetic activation and participates in the disruption of cardiovascular activities. Since total sleep deprivation (TSD) is a stressful condition known to harm the cardiovascular function, the present study is aimed to determine whether the in vivo calcium expression in AP would significantly alter following TSD by the use of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and calretinin (a specific calcium sensor protein in AP neurons) immunohistochemistry. The results indicated that in normal rats, the calcium intensity was estimated to be 0.5 × 10 5 at m/ z 40.08. However, following TSD, the intensity for calcium ions was greatly increased to 1.2 × 10 5. Molecular imaging revealed that after TSD, various strongly expressed calcium signals were distributed throughout AP with clear identified profiles instead of randomly scattered within this region in normal rats. Immunohistochemical staining corresponded well with ionic image in which a majority of calcium-enriched gathering co-localized with calretinin positive neurons. The functional significance of TSD-induced calcium augmentation was demonstrated by increased heart rate and mean arterial pressure, clinical markers for cardiovascular dysfunction. Considering AP-mediated sympathetic activation is important for cardiovascular regulation, exaggerated calcium influx in AP would render this neurocircuitry more vulnerable to over-excitation, which might serve as the underlying mechanism for the development of TSD-relevant cardiovascular deficiency.

  20. Rapid musculoskeletal magnetic resonance imaging using integrated parallel acquisition techniques (IPAT) - Initial experiences

    International Nuclear Information System (INIS)

    Romaneehsen, B.; Oberholzer, K.; Kreitner, K.-F.; Mueller, L.P.

    2003-01-01

    Purpose: To investigate the feasibility of using multiple receiver coil elements for time saving integrated parallel imaging techniques (iPAT) in traumatic musculoskeletal disorders. Material and methods: 6 patients with traumatic derangements of the knee, ankle and hip underwent MR imaging at 1.5 T. For signal detection of the knee and ankle, we used a 6-channel body array coil that was placed around the joints, for hip imaging two 4-channel body array coils and two elements of the spine array coil were combined for signal detection. All patients were investigated with a standard imaging protocol that mainly consisted of different turbo spin-echo sequences (PD-, T 2 -weighted TSE with and without fat suppression, STIR). All sequences were repeated with an integrated parallel acquisition technique (iPAT) using a modified sensitivity encoding (mSENSE) technique with an acceleration factor of 2. Overall image quality was subjectively assessed using a five-point scale as well as the ability for detection of pathologic findings. Results: Regarding overall image quality, there were no significant differences between standard imaging and imaging using mSENSE. All pathologies (occult fracture, meniscal tear, torn and interpositioned Hoffa's cleft, cartilage damage) were detected by both techniques. iPAT led to a 48% reduction of acquisition time compared with standard technique. Additionally, time savings with iPAT led to a decrease of pain-induced motion artifacts in two cases. Conclusion: In times of increasing cost pressure, iPAT using multiple coil elements seems to be an efficient and economic tool for fast musculoskeletal imaging with diagnostic performance comparable to conventional techniques. (orig.) [de

  1. Development and application of the analyzer-based imaging technique with hard synchrotron radiation

    International Nuclear Information System (INIS)

    Coan, P.

    2006-07-01

    The objective of this thesis is twofold: from one side the application of the analyser-based X-ray phase contrast imaging to study cartilage, bone and bone implants using ESRF synchrotron radiation sources and on the other to contribute to the development of the phase contrast techniques from the theoretical and experimental point of view. Several human samples have been studied in vitro using the analyser based imaging (ABI) technique. Examination included projection and computed tomography imaging and 3-dimensional volume rendering of hip, big toe and ankle articular joints. X-ray ABI images have been critically compared with those obtained with conventional techniques, including radiography, computed tomography, ultrasound, magnetic resonance and histology, the latter taken as gold standard. Results show that only ABI imaging was able to either visualize or correctly estimate the early pathological status of the cartilage. The status of the bone ingrowth in sheep implants have also been examined in vitro: ABI images permitted to correctly distinguish between good and incomplete bone healing. Pioneering in-vivo ABI on guinea pigs were also successfully performed, confirming the possible use of the technique to follow up the progression of joint diseases, the bone/metal ingrowth and the efficacy of drugs treatments. As part of the development of the phase contrast techniques, two objectives have been reached. First, it has been experimentally demonstrated for the first time that the ABI and the propagation based imaging (PBI) can be combined to create images with original features (hybrid imaging, HI). Secondly, it has been proposed and experimentally tested a new simplified set-up capable to produce images with properties similar to those obtained with the ABI technique or HI. Finally, both the ABI and the HI have been theoretically studied with an innovative, wave-based simulation program, which was able to correctly reproduce experimental results. (author)

  2. Paediatric pelvic imaging: optimisation of dose and technique using digital grid-controlled pulsed fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, R.; McCarty, M. [Div. of Radiology, South Cleveland Hospital, South Tees Acute Hospitals NHS Trust, Marton Road, Middlesbrough, Cleveland (United Kingdom); McCallum, H.M. [Regional Medical Physics Dept., South Cleveland Hospital, Middlesbrough (United Kingdom); Montgomery, R. [Dept. of Orthopaedics, South Tees Hospitals NITS Trust, Middlesbrough (United Kingdom); Aszkenasy, M. [Tees and North East Yorkshire NHS Trust, West Lane Hospital, Middlesbrough (United Kingdom)

    2001-05-01

    Background. An audit of paediatric pelvic radiographs identified deficiencies in gonad shield placement and radiographic technique. Objective. A technique using grid-controlled fluoroscopy (GCF), with hard copy images in frame grab and digital spot image (DSI) format was evaluated to optimise gonad shield placement and reduce the dose given to children with Perthes disease and Developmental Hip Dysplasia (DDH) attending for pelvic radiography. Materials and methods. Phantom and patient dose surveys of conventional and fluoroscopic techniques were carried out. Image quality and radiation dose were compared for the frame grab and DSI techniques. Retrospective evaluation was undertaken to compare their clinical acceptability. Results. Both fluoroscopic techniques gave considerably less radiation than conventional non-grid radiography (67-83 %, P < 0.05). The frame grab technique gave less radiation than DSI (P < 0.05). There was no significant difference in the clinical acceptability scores of the DSI and frame grab images. Conclusion. Fluoroscopy acquired images are now used since the fluoroscopic techniques give much less dose than conventional radiography and provide images of sufficient quality for clinical assessment. Indeed, as there was no significant difference in clinical usefulness between the frame grab and DSI techniques, it is planned to use frame grab alone, thus gaining additional dose saving. (orig.)

  3. Paediatric pelvic imaging: optimisation of dose and technique using digital grid-controlled pulsed fluoroscopy

    International Nuclear Information System (INIS)

    Waugh, R.; McCarty, M.; McCallum, H.M.; Montgomery, R.; Aszkenasy, M.

    2001-01-01

    Background. An audit of paediatric pelvic radiographs identified deficiencies in gonad shield placement and radiographic technique. Objective. A technique using grid-controlled fluoroscopy (GCF), with hard copy images in frame grab and digital spot image (DSI) format was evaluated to optimise gonad shield placement and reduce the dose given to children with Perthes disease and Developmental Hip Dysplasia (DDH) attending for pelvic radiography. Materials and methods. Phantom and patient dose surveys of conventional and fluoroscopic techniques were carried out. Image quality and radiation dose were compared for the frame grab and DSI techniques. Retrospective evaluation was undertaken to compare their clinical acceptability. Results. Both fluoroscopic techniques gave considerably less radiation than conventional non-grid radiography (67-83 %, P < 0.05). The frame grab technique gave less radiation than DSI (P < 0.05). There was no significant difference in the clinical acceptability scores of the DSI and frame grab images. Conclusion. Fluoroscopy acquired images are now used since the fluoroscopic techniques give much less dose than conventional radiography and provide images of sufficient quality for clinical assessment. Indeed, as there was no significant difference in clinical usefulness between the frame grab and DSI techniques, it is planned to use frame grab alone, thus gaining additional dose saving. (orig.)

  4. Incremental value of PET and MRI in the evaluation of cardiovascular abnormalities.

    Science.gov (United States)

    Chalian, Hamid; O'Donnell, James K; Bolen, Michael; Rajiah, Prabhakar

    2016-08-01

    The cardiovascular system is affected by a wide range of pathological processes, including neoplastic, inflammatory, ischemic, and congenital aetiology. Magnetic resonance imaging (MRI) and positron emission tomography (PET) are state-of-the-art imaging modalities used in the evaluation of these cardiovascular disorders. MRI has good spatial and temporal resolutions, tissue characterization and multi-planar imaging/reconstruction capabilities, which makes it useful in the evaluation of cardiac morphology, ventricular and valvar function, disease characterization, and evaluation of myocardial viability. FDG-PET provides valuable information on the metabolic activity of the cardiovascular diseases, including ischemia, inflammation, and neoplasm. MRI and FDG-PET can provide complementary information on the evaluation of several cardiovascular disorders. For example, in cardiac masses, FDG-PET provides the metabolic information for indeterminate cardiac masses. MRI can be used for localizing and characterizing abnormal hypermetabolic foci identified incidentally on PET scan and also for local staging. A recent advance in imaging technology has been the development of integrated PET/MRI systems that utilize the advantages of PET and MRI in a single examination. The goal of this manuscript is to provide a comprehensive review on the incremental value of PET and MRI in the evaluation of cardiovascular diseases. • MRI has good spatial and temporal resolutions, tissue characterization, and multi-planar reconstruction • FDG-PET provides valuable information on the metabolic activity of cardiovascular disorders • PET and MRI provide complementary information on the evaluation of cardiovascular disorders.

  5. Characterization of arterial stenosis using 3D imaging: comparison between three imaging techniques (MRA, spiral CTA and 3D DSA) and four display methods (MIP, SR, MPVR, VA) in a phantom study

    International Nuclear Information System (INIS)

    Bendib, K.; Poirier, C.; Croisille, P.; Roux, J.P.; Devel, D.; Amiel, M.

    1999-01-01

    Introduction: accurate assessment of arterial stenosis is a major public health issue for the diagnosis and treatment of cardiovascular diseases. The number of imaging techniques and types of software for display of imaging data is increasing. Few studies that compare these different techniques are available in the literature. Materials and methods: using phantoms to reproduce the main types of arterial stenosis, the authors compared three 3D acquisition techniques (MRA, CTA, and 3D DSA) and four types of display methods (MIP, SR, MPVR, and VA). The degree, the shape, and the location of different types of stenoses were analyzed by three experienced observers during two successive readings. Intra- and inter-observer reproducibility were assessed. The results of the various acquisition techniques and display methods also were compared to the digital reference data (CFAO) of the physical phantoms. Results: the degree of intra- and inter-observer reproducibility for the assessment of shape and location of the stenoses was good. Visual assessment of the degree of stenosis showed significant differences between two observers as well as in two readings by one observer. The 3D DSA was the most accurate technique for assessing the degree of stenosis. CTA provided better results than MRA. MPVR provided an accurate assessment of the degree of the stenosis. 3D DSA and CTA assessed stenosis form and localization adequately, with no significant difference; both methods appeared to be more accurate than MRA. SR provided the best information on the eccentric nature of the stenosis. The shape was very well assessed by VA and MPVR. Conclusions: even though 3D DSA is the most accurate acquisition technique for visualization, the combined use of SR and MPVR appears to be the best compromise to describe the morphology and degree of stenosis. Further improvements in automatic 3D image processing could offer a better understanding and increased possibilities for assessing arterial

  6. Image reconstruction technique using projection data from neutron tomography system

    Directory of Open Access Journals (Sweden)

    Waleed Abd el Bar

    2015-12-01

    Full Text Available Neutron tomography is a very powerful technique for nondestructive evaluation of heavy industrial components as well as for soft hydrogenous materials enclosed in heavy metals which are usually difficult to image using X-rays. Due to the properties of the image acquisition system, the projection images are distorted by several artifacts, and these reduce the quality of the reconstruction. In order to eliminate these harmful effects the projection images should be corrected before reconstruction. This paper gives a description of a filter back projection (FBP technique, which is used for reconstruction of projected data obtained from transmission measurements by neutron tomography system We demonstrated the use of spatial Discrete Fourier Transform (DFT and the 2D Inverse DFT in the formulation of the method, and outlined the theory of reconstruction of a 2D neutron image from a sequence of 1D projections taken at different angles between 0 and π in MATLAB environment. Projections are generated by applying the Radon transform to the original image at different angles.

  7. Ultra-realistic imaging advanced techniques in analogue and digital colour holography

    CERN Document Server

    Bjelkhagen, Hans

    2013-01-01

    Ultra-high resolution holograms are now finding commercial and industrial applications in such areas as holographic maps, 3D medical imaging, and consumer devices. Ultra-Realistic Imaging: Advanced Techniques in Analogue and Digital Colour Holography brings together a comprehensive discussion of key methods that enable holography to be used as a technique of ultra-realistic imaging.After a historical review of progress in holography, the book: Discusses CW recording lasers, pulsed holography lasers, and reviews optical designs for many of the principal laser types with emphasis on attaining th

  8. Diffusion weighted imaging demystified. The technique and potential clinical applications for soft tissue imaging

    International Nuclear Information System (INIS)

    Ahlawat, Shivani; Fayad, Laura M.

    2018-01-01

    Diffusion-weighted imaging (DWI) is a fast, non-contrast technique that is readily available and easy to integrate into an existing imaging protocol. DWI with apparent diffusion coefficient (ADC) mapping offers a quantitative metric for soft tissue evaluation and provides information regarding the cellularity of a region of interest. There are several available methods of performing DWI, and artifacts and pitfalls must be considered when interpreting DWI studies. This review article will review the various techniques of DWI acquisition and utility of qualitative as well as quantitative methods of image interpretation, with emphasis on optimal methods for ADC measurement. The current clinical applications for DWI are primarily related to oncologic evaluation: For the assessment of de novo soft tissue masses, ADC mapping can serve as a useful adjunct technique to routine anatomic sequences for lesion characterization as cyst or solid and, if solid, benign or malignant. For treated soft tissue masses, the role of DWI/ADC mapping in the assessment of treatment response as well as recurrent or residual neoplasm in the setting of operative management is discussed, especially when intravenous contrast medium cannot be given. Emerging DWI applications for non-neoplastic clinical indications are also reviewed. (orig.)

  9. Diffusion weighted imaging demystified. The technique and potential clinical applications for soft tissue imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Shivani [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Fayad, Laura M. [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Oncology, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Orthopaedic Surgery, Baltimore, MD (United States)

    2018-03-15

    Diffusion-weighted imaging (DWI) is a fast, non-contrast technique that is readily available and easy to integrate into an existing imaging protocol. DWI with apparent diffusion coefficient (ADC) mapping offers a quantitative metric for soft tissue evaluation and provides information regarding the cellularity of a region of interest. There are several available methods of performing DWI, and artifacts and pitfalls must be considered when interpreting DWI studies. This review article will review the various techniques of DWI acquisition and utility of qualitative as well as quantitative methods of image interpretation, with emphasis on optimal methods for ADC measurement. The current clinical applications for DWI are primarily related to oncologic evaluation: For the assessment of de novo soft tissue masses, ADC mapping can serve as a useful adjunct technique to routine anatomic sequences for lesion characterization as cyst or solid and, if solid, benign or malignant. For treated soft tissue masses, the role of DWI/ADC mapping in the assessment of treatment response as well as recurrent or residual neoplasm in the setting of operative management is discussed, especially when intravenous contrast medium cannot be given. Emerging DWI applications for non-neoplastic clinical indications are also reviewed. (orig.)

  10. Mobile depth profiling and sub-surface imaging techniques for historical paintings—A review

    International Nuclear Information System (INIS)

    Alfeld, Matthias; Broekaert, José A.C.

    2013-01-01

    Hidden, sub-surface paint layers and features contain valuable information for the art-historical investigation of a painting's past and for its conservation for coming generations. The number of techniques available for the study of these features has been considerably extended in the last decades and established techniques have been refined. This review focuses on mobile non-destructive subsurface imaging and depth profiling techniques, which allow for the in-situ investigation of easel paintings, i.e. paintings on a portable support. Among the techniques discussed are: X-ray radiography and infrared reflectography, which are long established methods and are in use for several decades. Their capabilities of element/species specific imaging have been extended by the introduction of energy/wavelength resolved measurements. Scanning macro-X-ray fluorescence analysis made it for the first time possible to acquire elemental distribution images in-situ and optical coherence tomography allows for the non-destructive study the surface paint layers in virtual cross-sections. These techniques and their variants are presented next to other techniques, such as Terahertz imaging, Nuclear Magnetic Resonance depth profiling and established techniques for non destructive testing (thermography, ultrasonic imaging and laser based interference methods) applied in the conservation of historical paintings. Next to selected case studies the capabilities and limitations of the techniques are discussed. - Highlights: • All mobile sub-surface and depth-profiling techniques for paintings are reviewed. • The number of techniques available has increased considerably in the last years. • X-ray radiography and infrared reflectography are still the most used techniques. • Scanning macro-XRF and optical coherence tomography begin to establish. • Industrial non destructive testing techniques support the preservation of paintings

  11. MICROARRAY IMAGE GRIDDING USING GRID LINE REFINEMENT TECHNIQUE

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-05-01

    Full Text Available An important stage in microarray image analysis is gridding. Microarray image gridding is done to locate sub arrays in a microarray image and find co-ordinates of spots within each sub array. For accurate identification of spots, most of the proposed gridding methods require human intervention. In this paper a fully automatic gridding method which enhances spot intensity in the preprocessing step as per a histogram based threshold method is used. The gridding step finds co-ordinates of spots from horizontal and vertical profile of the image. To correct errors due to the grid line placement, a grid line refinement technique is proposed. The algorithm is applied on different image databases and results are compared based on spot detection accuracy and time. An average spot detection accuracy of 95.06% depicts the proposed method’s flexibility and accuracy in finding the spot co-ordinates for different database images.

  12. Aliasless fresnel transform image reconstruction in phase scrambling fourier transform technique by data interpolation

    International Nuclear Information System (INIS)

    Yamada, Yoshifumi; Liu, Na; Ito, Satoshi

    2006-01-01

    The signal in the Fresnel transform technique corresponds to a blurred one of the spin density image. Because the amplitudes of adjacent sampled signals have a high interrelation, the signal amplitude at a point between sampled points can be estimated with a high degree of accuracy even if the sampling is so coarse as to generate aliasing in the reconstructed images. In this report, we describe a new aliasless image reconstruction technique in the phase scrambling Fourier transform (PSFT) imaging technique in which the PSFT signals are converted to Fresnel transform signals by multiplying them by a quadratic phase term and are then interpolated using polynomial expressions to generate fully encoded signals. Numerical simulation using MR images showed that almost completely aliasless images are reconstructed by this technique. Experiments using ultra-low-field PSFT MRI were conducted, and aliasless images were reconstructed from coarsely sampled PSFT signals. (author)

  13. Prostate brachytherapy seed migration to the heart seen on cardiovascular computed tomographic angiography

    Directory of Open Access Journals (Sweden)

    Shilpa Sachdeva, MD

    2017-03-01

    Full Text Available Brachytherapy consists of placing radioactive sources into or adjacent to tumors, to deliver conformal radiation treatment. The technique is used for treatment of primary malignancies and for salvage in recurrent disease. Permanent prostate brachytherapy seeds are small metal implants containing radioactive sources of I-125, Pd-103, or Cs-131 encased in a titanium shell. They can embolize through the venous system to the lungs or heart and subsequently be detected by cardiovascular computed tomography. Cardiovascular imagers should be aware of the appearance of migrated seeds, as their presence in the chest is generally benign, so that unnecessary worry and testing are avoided. We report a case of a patient who underwent brachytherapy for prostate cancer and developed a therapeutic seeds embolus to the right ventricle.

  14. Indications and technique of fetal magnetic resonance imaging

    International Nuclear Information System (INIS)

    Asenbaum, U.; Woitek, R.; Furtner, J.; Prayer, D.; Brugger, P.C.

    2013-01-01

    Evaluation and confirmation of fetal pathologies previously suspected or diagnosed with ultrasound. Ultrasound and magnetic resonance imaging (MRI). Technique for prenatal fetal examination. Fetal MRI is an established supplementary technique to prenatal ultrasound. Fetal MRI should only be used as an additional method in prenatal diagnostics and not for routine screening. Fetal MRI should only be performed in perinatal medicine centers after a previous level III ultrasound examination. (orig.) [de

  15. Image fusion techniques in permanent seed implantation

    Directory of Open Access Journals (Sweden)

    Alfredo Polo

    2010-10-01

    Full Text Available Over the last twenty years major software and hardware developments in brachytherapy treatment planning, intraoperative navigation and dose delivery have been made. Image-guided brachytherapy has emerged as the ultimate conformal radiation therapy, allowing precise dose deposition on small volumes under direct image visualization. In thisprocess imaging plays a central role and novel imaging techniques are being developed (PET, MRI-MRS and power Doppler US imaging are among them, creating a new paradigm (dose-guided brachytherapy, where imaging is used to map the exact coordinates of the tumour cells, and to guide applicator insertion to the correct position. Each of these modalities has limitations providing all of the physical and geometric information required for the brachytherapy workflow.Therefore, image fusion can be used as a solution in order to take full advantage of the information from each modality in treatment planning, intraoperative navigation, dose delivery, verification and follow-up of interstitial irradiation.Image fusion, understood as the visualization of any morphological volume (i.e. US, CT, MRI together with an additional second morpholo gical volume (i.e. CT, MRI or functional dataset (functional MRI, SPECT, PET, is a well known method for treatment planning, verification and follow-up of interstitial irradiation. The term image fusion is used when multiple patient image datasets are registered and overlaid or merged to provide additional information. Fused images may be created from multiple images from the same imaging modality taken at different moments (multi-temporalapproach, or by combining information from multiple modalities. Quality means that the fused images should provide additional information to the brachythe rapy process (diagnosis and staging, treatment planning, intraoperative imaging, treatment delivery and follow-up that cannot be obtained in other ways. In this review I will focus on the role of

  16. Yoga, Anxiety, and Some Cardiovascular Risk Factors in Women

    Directory of Open Access Journals (Sweden)

    Asim CENGIZ

    2015-06-01

    Full Text Available This study aimed to examine the effects of a yoga program on anxiety, and some cardiovascular risk factors. Forty - six elderly participants aged 40 – 51 years women. The yoga program was based on 3 times/week for 10 weeks a set of yoga techniques, in the form of asana (postures and deep relaxation technique, pranayama (breathing techniques and meditation three for 60 minutes three times a week. The level of anxiety and decreased the risk factors for cardiovascular disease risk factors (CVD. The yoga program reduced the level of anxiety and decreased the risk factors for cardiovascular disease risk factors (CVD in the experimental group. After 8 weeks of the yoga program. SBP, DBP, B MI, HR and WC values were improved. It is likely that the yoga practices of controlling body, mind, and spirit combine to provide useful physiological effects for healthy people and for people compromised by cardiovascular disease.

  17. Cardiovascular disease prediction: do pulmonary disease-related chest CT features have added value?

    International Nuclear Information System (INIS)

    Jairam, Pushpa M.; Jong, Pim A. de; Mali, Willem P.T.M.; Isgum, Ivana; Graaf, Yolanda van der

    2015-01-01

    Certain pulmonary diseases are associated with cardiovascular disease (CVD). Therefore we investigated the incremental predictive value of pulmonary, mediastinal and pleural features over cardiovascular imaging findings. A total of 10,410 patients underwent diagnostic chest CT for non-cardiovascular indications. Using a case-cohort approach, we visually graded CTs from the cases and from an approximately 10 % random sample of the baseline cohort (n = 1,203) for cardiovascular, pulmonary, mediastinal and pleural findings. The incremental value of pulmonary disease-related CT findings above cardiovascular imaging findings in cardiovascular event risk prediction was quantified by comparing discrimination and reclassification. During a mean follow-up of 3.7 years (max. 7.0 years), 1,148 CVD events (cases) were identified. Addition of pulmonary, mediastinal and pleural features to a cardiovascular imaging findings-based prediction model led to marginal improvement of discrimination (increase in c-index from 0.72 (95 % CI 0.71-0.74) to 0.74 (95 % CI 0.72-0.75)) and reclassification measures (net reclassification index 6.5 % (p < 0.01)). Pulmonary, mediastinal and pleural features have limited predictive value in the identification of subjects at high risk of CVD events beyond cardiovascular findings on diagnostic chest CT scans. (orig.)

  18. Cardiovascular disease prediction: do pulmonary disease-related chest CT features have added value?

    Energy Technology Data Exchange (ETDEWEB)

    Jairam, Pushpa M. [University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht (Netherlands); University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Jong, Pim A. de; Mali, Willem P.T.M. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Isgum, Ivana [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Graaf, Yolanda van der [University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht (Netherlands); Collaboration: PROVIDI study-group

    2015-06-01

    Certain pulmonary diseases are associated with cardiovascular disease (CVD). Therefore we investigated the incremental predictive value of pulmonary, mediastinal and pleural features over cardiovascular imaging findings. A total of 10,410 patients underwent diagnostic chest CT for non-cardiovascular indications. Using a case-cohort approach, we visually graded CTs from the cases and from an approximately 10 % random sample of the baseline cohort (n = 1,203) for cardiovascular, pulmonary, mediastinal and pleural findings. The incremental value of pulmonary disease-related CT findings above cardiovascular imaging findings in cardiovascular event risk prediction was quantified by comparing discrimination and reclassification. During a mean follow-up of 3.7 years (max. 7.0 years), 1,148 CVD events (cases) were identified. Addition of pulmonary, mediastinal and pleural features to a cardiovascular imaging findings-based prediction model led to marginal improvement of discrimination (increase in c-index from 0.72 (95 % CI 0.71-0.74) to 0.74 (95 % CI 0.72-0.75)) and reclassification measures (net reclassification index 6.5 % (p < 0.01)). Pulmonary, mediastinal and pleural features have limited predictive value in the identification of subjects at high risk of CVD events beyond cardiovascular findings on diagnostic chest CT scans. (orig.)

  19. Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells

    Science.gov (United States)

    Itoh, Kazuyoshi

    2015-12-01

    Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.

  20. MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  1. MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management

    International Nuclear Information System (INIS)

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  2. Development of phase-contrast imaging technique for material science and medical science applications

    International Nuclear Information System (INIS)

    Kashyap, Y.S.; Roy, Tushar; Sarkar, P.S; Shukla, Mayank; Yadav, P.S; Sinha, Amar; Verma, Vishnu; Ghosh, A.K.

    2007-07-01

    In-line phase contrast imaging technique is an emerging method for study of materials such as carbon fibres, carbon composite materials, polymers etc. These represent the class of materials for which x-ray attenuation cross-section is very small. Similarly, this technique is also well suited for imaging of soft materials such as tissues, distinguishing between tumour and normal tissue. Thus this method promises a far better contrast for low x-ray absorbing substances than the conventional radiography method for material and medical science applications. Though the conventional radiography technique has been carried out for decades, the phase-imaging technique is being demonstrated for the first time within, the country. We have set up an experimental facility for phase contrast imaging using a combination of x-ray CCD detector and a microfocus x-ray source. This facility is dedicated for micro-imaging experiments such as micro-tomography and high resolution phase contrast experiments. In this report, the results of phase contrast imaging using microfocus source and ELETTRA, synchrotron source are discussed. We have also discussed the basic design and heat load calculation for upcoming imaging beamline at Indus-II, RRCAT, Indore. (author)

  3. Can state-of-the-art HVS-based objective image quality criteria be used for image reconstruction techniques based on ROI analysis?

    Science.gov (United States)

    Dostal, P.; Krasula, L.; Klima, M.

    2012-06-01

    Various image processing techniques in multimedia technology are optimized using visual attention feature of the human visual system. Spatial non-uniformity causes that different locations in an image are of different importance in terms of perception of the image. In other words, the perceived image quality depends mainly on the quality of important locations known as regions of interest. The performance of such techniques is measured by subjective evaluation or objective image quality criteria. Many state-of-the-art objective metrics are based on HVS properties; SSIM, MS-SSIM based on image structural information, VIF based on the information that human brain can ideally gain from the reference image or FSIM utilizing the low-level features to assign the different importance to each location in the image. But still none of these objective metrics utilize the analysis of regions of interest. We solve the question if these objective metrics can be used for effective evaluation of images reconstructed by processing techniques based on ROI analysis utilizing high-level features. In this paper authors show that the state-of-the-art objective metrics do not correlate well with subjective evaluation while the demosaicing based on ROI analysis is used for reconstruction. The ROI were computed from "ground truth" visual attention data. The algorithm combining two known demosaicing techniques on the basis of ROI location is proposed to reconstruct the ROI in fine quality while the rest of image is reconstructed with low quality. The color image reconstructed by this ROI approach was compared with selected demosaicing techniques by objective criteria and subjective testing. The qualitative comparison of the objective and subjective results indicates that the state-of-the-art objective metrics are still not suitable for evaluation image processing techniques based on ROI analysis and new criteria is demanded.

  4. Assessment of biological leaf tissue using biospeckle laser imaging technique

    Science.gov (United States)

    Ansari, M. Z.; Mujeeb, A.; Nirala, A. K.

    2018-06-01

    We report on the application of an optical imaging technique, the biospeckle laser, as a potential tool to assess biological and medicinal plant leaves. The biospeckle laser technique is a non-invasive and non-destructive optical technique used to investigate biological objects. Just after their removal from plants, the torn leaves were used for biospeckle laser imaging. Quantitative evaluation of the biospeckle data using the inertia moment (IM) of the time history speckle pattern, showed that the IM can be utilized to provide a biospeckle signature to the plant leaves. It showed that leaves from different plants can have their own characteristic IM values. We further investigated the infected regions of the leaves that display a relatively lower biospeckle activity than the healthy tissue. It was easy to discriminate between the infected and healthy regions of the leaf tissue. The biospeckle technique can successfully be implemented as a potential tool for the taxonomy of quality leaves. Furthermore, the technique can help boost the quality of ayurvedic medicines.

  5. Mobile depth profiling and sub-surface imaging techniques for historical paintings—A review

    Energy Technology Data Exchange (ETDEWEB)

    Alfeld, Matthias, E-mail: matthias.alfeld@desy.de [University of Hamburg, Department of Chemistry, Martin-Luther-King Platz 6, D-20146 Hamburg (Germany); University of Antwerp, Department of Chemistry, Groenenbrogerlaan 171, B-2020 Antwerp (Belgium); Broekaert, José A.C., E-mail: jose.broekaert@chemie.uni-hamburg.de [University of Hamburg, Department of Chemistry, Martin-Luther-King Platz 6, D-20146 Hamburg (Germany)

    2013-10-01

    Hidden, sub-surface paint layers and features contain valuable information for the art-historical investigation of a painting's past and for its conservation for coming generations. The number of techniques available for the study of these features has been considerably extended in the last decades and established techniques have been refined. This review focuses on mobile non-destructive subsurface imaging and depth profiling techniques, which allow for the in-situ investigation of easel paintings, i.e. paintings on a portable support. Among the techniques discussed are: X-ray radiography and infrared reflectography, which are long established methods and are in use for several decades. Their capabilities of element/species specific imaging have been extended by the introduction of energy/wavelength resolved measurements. Scanning macro-X-ray fluorescence analysis made it for the first time possible to acquire elemental distribution images in-situ and optical coherence tomography allows for the non-destructive study the surface paint layers in virtual cross-sections. These techniques and their variants are presented next to other techniques, such as Terahertz imaging, Nuclear Magnetic Resonance depth profiling and established techniques for non destructive testing (thermography, ultrasonic imaging and laser based interference methods) applied in the conservation of historical paintings. Next to selected case studies the capabilities and limitations of the techniques are discussed. - Highlights: • All mobile sub-surface and depth-profiling techniques for paintings are reviewed. • The number of techniques available has increased considerably in the last years. • X-ray radiography and infrared reflectography are still the most used techniques. • Scanning macro-XRF and optical coherence tomography begin to establish. • Industrial non destructive testing techniques support the preservation of paintings.

  6. Chest trauma in children: current imaging guidelines and techniques.

    LENUS (Irish Health Repository)

    Moore, Michael A

    2011-09-01

    Given the heterogeneous nature of pediatric chest trauma, the optimal imaging approach is tailored to the specific patient. Chest radiography remains the most important imaging modality for initial triage. The decision to perform a chest computed tomography scan should be based on the nature of the trauma, the child\\'s clinical condition, and the initial radiographic findings, taking the age-related pretest probabilities of serious injury into account. The principles of as low as reasonably achievable and Image Gently should be followed. The epidemiology and pathophysiology, imaging techniques, characteristic findings, and evidence-based algorithms for pediatric chest trauma are discussed.

  7. MR plaque imaging of the carotid artery

    International Nuclear Information System (INIS)

    Watanabe, Yuji; Nagayama, Masako

    2010-01-01

    Atherosclerotic carotid plaque represents a major cause of cerebral ischemia. The detection of vulnerable plaque is important for preventing future cardiovascular events. The key factors in advanced plaque that are most likely to lead to patient complications are the condition of the fibrous cap, the size of the necrotic core and hemorrhage, and the extent of inflammatory activity within the plaque. Magnetic resonance (MR) imaging has excellent soft tissue contrast and can allow for a more accurate and objective estimation of carotid wall morphology and plaque composition. Recent advances in MR imaging techniques have permitted serial monitoring of atherosclerotic disease evolution and the identification of intraplaque risk factors for accelerated progression. The purpose of this review article is to review the current state of techniques of carotid wall MR imaging and the characterization of plaque components and surface morphology with MR imaging, and to describe the clinical practice of carotid wall MR imaging for the determination of treatment plan. (orig.)

  8. Characterization of European sword blades through neutron imaging techniques

    Science.gov (United States)

    Salvemini, F.; Grazzi, F.; Peetermans, S.; Gener, M.; Lehmann, E. H.; Zoppi, M.

    2014-09-01

    In the present work, we have studied two European rapier blades, dating back to the period ranging from the Late Renaissance to the Early Modern Age (about 17th to 18th century). In order to determine variation in quality and differences in technology, a study was undertaken with the purpose to observe variations in the blade microstructure (and consequently in the construction processes). The samples, which in the present case were expendable, have been investigated, preliminarily, through standard metallography and then by means of white beam and energy-selective neutron imaging. The comparison of the results, using the two techniques, turned out to be satisfactory, with a substantial quantitative agreement of the results obtained with the two techniques, and show the complementarity of the two methods. Metallography has been considered up to now the method of choice for metal material characterization. The correspondence between the two methods, as well as the non-invasive character of the neutron-based techniques and its possibility to obtain 3D reconstruction, candidate neutron imaging as an important and quantitatively reliable technique for metal characterization.

  9. 3D temporal subtraction on multislice CT images using nonlinear warping technique

    Science.gov (United States)

    Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio

    2007-03-01

    The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.

  10. Pre-clinical functional magnetic resonance imaging. Pt. II. The heart

    Energy Technology Data Exchange (ETDEWEB)

    Messner, Nadja M.; Zoellner, Frank G.; Kalayciyan, Raffi; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine

    2014-07-01

    One third of all deaths worldwide in 2008 were caused by cardiovascular diseases (CVD), and the incidence of CVD related deaths rises ever more. Thus, improved imaging techniques and modalities are needed for the evaluation of cardiac morphology and function. Cardiac magnetic resonance imaging (CMRI) is a minimally invasive technique that is increasingly important due to its high spatial and temporal resolution, its high soft tissue contrast and its ability of functional and quantitative imaging. It is widely accepted as the gold standard of cardiac functional analysis. In the short period of small animal MRI, remarkable progress has been achieved concerning new, fast imaging schemes as well as purpose-built equipment. Dedicated small animal scanners allow for tapping the full potential of recently developed animal models of cardiac disease. In this paper, we review state-of-the-art cardiac magnetic resonance imaging techniques and applications in small animals at ultra-high fields (UHF).

  11. STUDY OF IMAGE SEGMENTATION TECHNIQUES ON RETINAL IMAGES FOR HEALTH CARE MANAGEMENT WITH FAST COMPUTING

    Directory of Open Access Journals (Sweden)

    Srikanth Prabhu

    2012-02-01

    Full Text Available The role of segmentation in image processing is to separate foreground from background. In this process, the features become clearly visible when appropriate filters are applied on the image. In this paper emphasis has been laid on segmentation of biometric retinal images to filter out the vessels explicitly for evaluating the bifurcation points and features for diabetic retinopathy. Segmentation on images is performed by calculating ridges or morphology. Ridges are those areas in the images where there is sharp contrast in features. Morphology targets the features using structuring elements. Structuring elements are of different shapes like disk, line which is used for extracting features of those shapes. When segmentation was performed on retinal images problems were encountered during image pre-processing stage. Also edge detection techniques have been deployed to find out the contours of the retinal images. After the segmentation has been performed, it has been seen that artifacts of the retinal images have been minimal when ridge based segmentation technique was deployed. In the field of Health Care Management, image segmentation has an important role to play as it determines whether a person is normal or having any disease specially diabetes. During the process of segmentation, diseased features are classified as diseased one’s or artifacts. The problem comes when artifacts are classified as diseased ones. This results in misclassification which has been discussed in the analysis Section. We have achieved fast computing with better performance, in terms of speed for non-repeating features, when compared to repeating features.

  12. A Novel Technique for Shape Feature Extraction Using Content Based Image Retrieval

    Directory of Open Access Journals (Sweden)

    Dhanoa Jaspreet Singh

    2016-01-01

    Full Text Available With the advent of technology and multimedia information, digital images are increasing very quickly. Various techniques are being developed to retrieve/search digital information or data contained in the image. Traditional Text Based Image Retrieval System is not plentiful. Since it is time consuming as it require manual image annotation. Also, the image annotation differs with different peoples. An alternate to this is Content Based Image Retrieval (CBIR system. It retrieves/search for image using its contents rather the text, keywords etc. A lot of exploration has been compassed in the range of Content Based Image Retrieval (CBIR with various feature extraction techniques. Shape is a significant image feature as it reflects the human perception. Moreover, Shape is quite simple to use by the user to define object in an image as compared to other features such as Color, texture etc. Over and above, if applied alone, no descriptor will give fruitful results. Further, by combining it with an improved classifier, one can use the positive features of both the descriptor and classifier. So, a tryout will be made to establish an algorithm for accurate feature (Shape extraction in Content Based Image Retrieval (CBIR. The main objectives of this project are: (a To propose an algorithm for shape feature extraction using CBIR, (b To evaluate the performance of proposed algorithm and (c To compare the proposed algorithm with state of art techniques.

  13. High-Performance Region-of-Interest Image Error Concealment with Hiding Technique

    Directory of Open Access Journals (Sweden)

    Shih-Chang Hsia

    2010-01-01

    Full Text Available Recently region-of-interest (ROI based image coding is a popular topic. Since ROI area contains much more important information for an image, it must be prevented from error decoding while suffering from channel lost or unexpected attack. This paper presents an efficient error concealment method to recover ROI information with a hiding technique. Based on the progressive transformation, the low-frequency components of ROI are encoded to disperse its information into the high-frequency bank of original image. The capability of protection is carried out with extracting the ROI coefficients from the damaged image without increasing extra information. Simulation results show that the proposed method can efficiently reconstruct the ROI image when ROI bit-stream occurs errors, and the measurement of PSNR result outperforms the conventional error concealment techniques by 2 to 5 dB.

  14. Radiation dose reduction in cardiovascular CT angiography with iterative reconstruction (AIDR 3D) in a swine model: a model of paediatric cardiac imaging

    International Nuclear Information System (INIS)

    Zhao, Pengfei; Hou, Yang; Liu, Qin; Ma, Yue; Guo, Qiyong

    2016-01-01

    Aim: To investigate the potential dose reduction in cardiovascular computed tomography angiography (CTA) in a swine model using 320-detector volume CT with adaptive iterative dose reduction in three dimensions (AIDR 3D) reconstruction to maintain a comparable image quality (IQ) to that reconstructed by a conventional filtered back projection (FBP) algorithm. Methods and materials: Twenty-four mini-pigs underwent cardiovascular CTA four times at 80 KVp and different tube currents. An automatic exposure control (AEC) system was used and the noise index (NI) was predetermined at a standard deviation (SD) of 20 (Method A, routine dose), and 25, 30, 35 (Methods B–D) to reduce the dose gradually. Method A was reconstructed with FBP. Methods B–D were reconstructed using AIDR 3D (strong). Two radiologists graded IQ by reviewing both cardiac and vascular structures using a five-point scale. Quantitative IQ parameters of image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured and compared. A receiver-operating characteristic (ROC) analysis was performed to select a radiation reduction threshold and maintain comparable IQ (score ≥4). Results: Method B and C had significantly lower image noise (p<0.0001), higher CNR and SNR than Method A (p<0.0001). Compared with Method A (noise: 52.7±8.3; SNR: 11.7±2.8; and CNR: 9.9±2.7), Method C had comparable subjective IQ and higher objective IQ (noise: 38.9±6.1; SNR: 16.3±3.5; and CNR: 13.5±3.3). The results of the ROC curve showed that Method C (SD30) was the optimal dose threshold to maintain a comparable subjective IQ (AUC: 0.85, 95% confidence interval [CI]: 0.80–0.90). The effective dose (ED) of Method C was reduced by 49%, compared to that of Method A (0.33±0.08 mSv versus 0.65±0.15 mSv). Conclusion: AIDR 3D at a strong level combined with an AEC system can potentially reduce the ED by 49% and maintain an IQ comparable to that achieved using a routine-dose and FBP reconstruction

  15. Experimental and theoretical contributions to X-ray phase-contrast techniques for medical imaging

    International Nuclear Information System (INIS)

    Diemoz, P.C.

    2011-01-01

    Several X-ray phase-contrast techniques have recently been developed. Unlike conventional X-ray methods, which measure the absorption properties of the tissues, these techniques derive contrast also from the modulation of the phase produced by the sample. Since the phase shift can be significant even for small details characterized by weak or absent absorption, the achievable image contrast can be greatly increased, notably for the soft biological tissues. These methods are therefore very promising for applications in the medical domain. The aim of this work is to contribute to a deeper understanding of these techniques, in particular propagation-based imaging (PBI), analyzer-based imaging (ABI) and grating interferometry (GIFM), and to study their potential and the best practical implementation for medical imaging applications. An important part of this work is dedicated to the use of mathematical algorithms for the extraction, from the acquired images, of quantitative sample information (the absorption, refraction and scattering sample properties). In particular, five among the most known algorithms based on the geometrical optics approximation have been theoretically analysed and experimentally compared, in planar and tomographic modalities, by using geometrical phantoms and human bone-cartilage and breast samples. A semi-quantitative method for the acquisition and reconstruction of tomographic images in the ABI and GIFM techniques has also been proposed. The validity conditions are analyzed in detail and the method, enabling a considerable simplification of the imaging procedure, has been experimentally checked on phantoms and human samples. Finally, a theoretical and experimental comparison of the PBI, ABI and GIFM techniques is presented. The advantages and drawbacks of each of these techniques are discussed. The results obtained from this analysis can be very useful for determining the most adapted technique for a given application. (author)

  16. Cardiovascular magnetic resonance imaging to assess myocardial fibrosis in valvular heart disease.

    Science.gov (United States)

    Podlesnikar, Tomaz; Delgado, Victoria; Bax, Jeroen J

    2018-01-01

    The left ventricular (LV) remodeling process associated with significant valvular heart disease (VHD) is characterized by an increase of myocardial interstitial space with deposition of collagen and loss of myofibers. These changes occur before LV systolic function deteriorates or the patient develops symptoms. Cardiovascular magnetic resonance (CMR) permits assessment of reactive fibrosis, with the use of T1 mapping techniques, and replacement fibrosis, with the use of late gadolinium contrast enhancement. In addition, functional consequences of these structural changes can be evaluated with myocardial tagging and feature tracking CMR, which assess the active deformation (strain) of the LV myocardium. Several studies have demonstrated that CMR techniques may be more sensitive than the conventional measures (LV ejection fraction or LV dimensions) to detect these structural and functional changes in patients with severe left-sided VHD and have shown that myocardial fibrosis may not be reversible after valve surgery. More important, the presence of myocardial fibrosis has been associated with lesser improvement in clinical symptoms and recovery of LV systolic function. Whether assessment of myocardial fibrosis may better select the patients with severe left-sided VHD who may benefit from surgery in terms of LV function and clinical symptoms improvement needs to be demonstrated in prospective studies. The present review article summarizes the current status of CMR techniques to assess myocardial fibrosis and appraises the current evidence on the use of these techniques for risk stratification of patients with severe aortic stenosis or regurgitation and mitral regurgitation.

  17. MR-based full-body preventative cardiovascular and tumor imaging: technique and preliminary experience

    International Nuclear Information System (INIS)

    Goyen, Mathias; Goehde, Susanne C.; Herborn, Christoph U.; Hunold, Peter; Vogt, Florian M.; Gizewski, Elke R.; Lauenstein, Thomas C.; Ajaj, Waleed; Forsting, Michael; Debatin, Joerg F.; Ruehm, Stefan G.

    2004-01-01

    Recent improvements in hardware and software, lack of side effects, as well as diagnostic accuracy make magnetic resonance imaging a natural candidate for preventative imaging. Thus, the purpose of the study was to evaluate the feasibility of a comprehensive 60-min MR-based screening examination in healthy volunteers and a limited number of patients with known target disease. In ten healthy volunteers (7 men, 3 women; mean age, 32.4 years) and five patients (4 men, 1 woman; mean age, 56.2 years) with proven target disease we evaluated the performance of a comprehensive MR screening strategy by combining well-established organ-based MR examination components encompassing the brain, the arterial system, the heart, the lungs, and the colon. All ten volunteers and five patients tolerated the comprehensive MR examination well. The mean in-room time was 63 min. In one volunteer, insufficient colonic cleansing on the part of the volunteer diminished the diagnostic reliability of MR colonography. All remaining components of the comprehensive MR examination were considered diagnostic in all volunteers and patients. In the five patients, the examination revealed the known pathologies [aneurysm of the anterior communicating artery (n=1), renal artery stenosis (n=1), myocardial infarct (n=1), and colonic polyp (n=2)]. The outlined MR screening strategy encompassing the brain, the arterial system, the heart, the lung, and the colon is feasible. Further studies have to show that MR-based screening programs are cost-effective in terms of the life-years saved. (orig.)

  18. Fluorescence hyperspectral imaging technique for foreign substance detection on fresh-cut lettuce.

    Science.gov (United States)

    Mo, Changyeun; Kim, Giyoung; Kim, Moon S; Lim, Jongguk; Cho, Hyunjeong; Barnaby, Jinyoung Yang; Cho, Byoung-Kwan

    2017-09-01

    Non-destructive methods based on fluorescence hyperspectral imaging (HSI) techniques were developed to detect worms on fresh-cut lettuce. The optimal wavebands for detecting the worms were investigated using the one-way ANOVA and correlation analyses. The worm detection imaging algorithms, RSI-I (492-626)/492 , provided a prediction accuracy of 99.0%. The fluorescence HSI techniques indicated that the spectral images with a pixel size of 1 × 1 mm had the best classification accuracy for worms. The overall results demonstrate that fluorescence HSI techniques have the potential to detect worms on fresh-cut lettuce. In the future, we will focus on developing a multi-spectral imaging system to detect foreign substances such as worms, slugs and earthworms on fresh-cut lettuce. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Segmentation techniques for extracting humans from thermal images

    CSIR Research Space (South Africa)

    Dickens, JS

    2011-11-01

    Full Text Available A pedestrian detection system for underground mine vehicles is being developed that requires the segmentation of people from thermal images in underground mine tunnels. A number of thresholding techniques are outlined and their performance on a...

  20. The use of echocardiography in acute cardiovascular care

    DEFF Research Database (Denmark)

    Lancellotti, Patrizio; Price, Susanna; Edvardsen, Thor

    2014-01-01

    Echocardiography is one of the most powerful diagnostic and monitoring tools available to the modern emergency/critical care practitioner. Currently, there is a lack of specific European Association of Cardiovascular Imaging/Acute Cardiovascular Care Association recommendations for the use...... of echocardiography in acute cardiovascular care. In this document, we describe the practical applications of echocardiography in patients with acute cardiac conditions, in particular with acute chest pain, acute heart failure, suspected cardiac tamponade, complications of myocardial infarction, acute valvular heart...

  1. The use of echocardiography in acute cardiovascular care

    DEFF Research Database (Denmark)

    Lancellotti, Patrizio; Price, Susanna; Edvardsen, Thor

    2015-01-01

    Echocardiography is one of the most powerful diagnostic and monitoring tools available to the modern emergency/ critical care practitioner. Currently, there is a lack of specific European Association of Cardiovascular Imaging/Acute Cardiovascular Care Association recommendations for the use...... of echocardiography in acute cardiovascular care. In this document, we describe the practical applications of echocardiography in patients with acute cardiac conditions, in particular with acute chest pain, acute heart failure, suspected cardiac tamponade, complications of myocardial infarction, acute valvular heart...

  2. The use of echocardiography in acute cardiovascular care

    DEFF Research Database (Denmark)

    Lancellotti, Patrizio; Price, Susanna; Edvardsen, Thor

    2015-01-01

    Echocardiography is one of the most powerful diagnostic and monitoring tools available to the modern emergency/critical care practitioner. Currently, there is a lack of specific European Association of Cardiovascular Imaging/Acute Cardiovascular Care Association recommendations for the use...... of echocardiography in acute cardiovascular care. In this document, we describe the practical applications of echocardiography in patients with acute cardiac conditions, in particular with acute chest pain, acute heart failure, suspected cardiac tamponade, complications of myocardial infarction, acute valvular heart...

  3. Advantages and Limitations of Current Imaging Techniques for Characterizing Liposome Morphology

    Directory of Open Access Journals (Sweden)

    Annie-Louise Robson

    2018-02-01

    Full Text Available There are currently a number of imaging techniques available for evaluating the morphology of liposomes and other nanoparticles, with each having its own advantages and disadvantages that should be considered when interpreting data. Controlling and validating the morphology of nanoparticles is of key importance for the effective clinical translation of liposomal formulations. There are a number of physical characteristics of liposomes that determine their in vivo behavior, including size, surface characteristics, lamellarity, and homogeneity. Despite the great importance of the morphology of nanoparticles, it is generally not well-characterized and is difficult to control. Appropriate imaging techniques provide important details regarding the morphological characteristics of nanoparticles, and should be used in conjunction with other methods to assess physicochemical parameters. In this review, we will discuss the advantages and limitations of available imaging techniques used to evaluate liposomal formulations.

  4. A Kalman filter technique applied for medical image reconstruction

    International Nuclear Information System (INIS)

    Goliaei, S.; Ghorshi, S.; Manzuri, M. T.; Mortazavi, M.

    2011-01-01

    Medical images contain information about vital organic tissues inside of human body and are widely used for diagnoses of disease or for surgical purposes. Image reconstruction is essential for medical images for some applications such as suppression of noise or de-blurring the image in order to provide images with better quality and contrast. Due to vital rule of image reconstruction in medical sciences the corresponding algorithms with better efficiency and higher speed is desirable. Most algorithms in image reconstruction are operated on frequency domain such as the most popular one known as filtered back projection. In this paper we introduce a Kalman filter technique which is operated in time domain for medical image reconstruction. Results indicated that as the number of projection increases in both normal collected ray sum and the collected ray sum corrupted by noise the quality of reconstructed image becomes better in terms of contract and transparency. It is also seen that as the number of projection increases the error index decreases.

  5. Local gray level S-curve transformation - A generalized contrast enhancement technique for medical images.

    Science.gov (United States)

    Gandhamal, Akash; Talbar, Sanjay; Gajre, Suhas; Hani, Ahmad Fadzil M; Kumar, Dileep

    2017-04-01

    Most medical images suffer from inadequate contrast and brightness, which leads to blurred or weak edges (low contrast) between adjacent tissues resulting in poor segmentation and errors in classification of tissues. Thus, contrast enhancement to improve visual information is extremely important in the development of computational approaches for obtaining quantitative measurements from medical images. In this research, a contrast enhancement algorithm that applies gray-level S-curve transformation technique locally in medical images obtained from various modalities is investigated. The S-curve transformation is an extended gray level transformation technique that results into a curve similar to a sigmoid function through a pixel to pixel transformation. This curve essentially increases the difference between minimum and maximum gray values and the image gradient, locally thereby, strengthening edges between adjacent tissues. The performance of the proposed technique is determined by measuring several parameters namely, edge content (improvement in image gradient), enhancement measure (degree of contrast enhancement), absolute mean brightness error (luminance distortion caused by the enhancement), and feature similarity index measure (preservation of the original image features). Based on medical image datasets comprising 1937 images from various modalities such as ultrasound, mammograms, fluorescent images, fundus, X-ray radiographs and MR images, it is found that the local gray-level S-curve transformation outperforms existing techniques in terms of improved contrast and brightness, resulting in clear and strong edges between adjacent tissues. The proposed technique can be used as a preprocessing tool for effective segmentation and classification of tissue structures in medical images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Advanced imaging techniques II: using a compound microscope for photographing point-mount specimens

    Science.gov (United States)

    Digital imaging technology has revolutionized the practice photographing insects for scientific study. Herein described are lighting and mounting techniques designed for imaging micro Hymenoptera. Techniques described here are applicable to all small insects, as well as other invertebrates. The ke...

  7. Time-Reversal MUSIC Imaging with Time-Domain Gating Technique

    Science.gov (United States)

    Choi, Heedong; Ogawa, Yasutaka; Nishimura, Toshihiko; Ohgane, Takeo

    A time-reversal (TR) approach with multiple signal classification (MUSIC) provides super-resolution for detection and localization using multistatic data collected from an array antenna system. The theory of TR-MUSIC assumes that the number of antenna elements is greater than that of scatterers (targets). Furthermore, it requires many sets of frequency-domain data (snapshots) in seriously noisy environments. Unfortunately, these conditions are not practical for real environments due to the restriction of a reasonable antenna structure as well as limited measurement time. We propose an approach that treats both noise reduction and relaxation of the transceiver restriction by using a time-domain gating technique accompanied with the Fourier transform before applying the TR-MUSIC imaging algorithm. Instead of utilizing the conventional multistatic data matrix (MDM), we employ a modified MDM obtained from the gating technique. The resulting imaging functions yield more reliable images with only a few snapshots regardless of the limitation of the antenna arrays.

  8. Image-analysis techniques for investigation localized corrosion processes

    International Nuclear Information System (INIS)

    Quinn, M.J.; Bailey, M.G.; Ikeda, B.M.; Shoesmith, D.W.

    1993-12-01

    We have developed a procedure for determining the mode and depth of penetration of localized corrosion by combining metallography and image analysis of corroded coupons. Two techniques, involving either a face-profiling or an edge-profiling procedure, have been developed. In the face-profiling procedure, successive surface grindings and image analyses were performed until corrosion was no longer visible. In this manner, the distribution of corroded sites on the surface and the total area of the surface corroded were determined as a function of depth into the specimen. In the edge-profiling procedure, surface grinding exposed successive cross sections of the corroded region. Image analysis of the cross section quantified the distribution of depths across the corroded section, and a three-dimensional distribution of penetration depths was obtained. To develop these procedures, we used artificially creviced Grade-2 titanium specimens that were corroded in saline solutions containing various amounts of chloride maintained at various fixed temperatures (105 to 150 degrees C) using a previously developed galvanic-coupling technique. We discuss some results from these experiments to illustrate how the procedures developed can be applied to a real corroded system. (author). 6 refs., 4 tabs., 21 figs

  9. Automated synthesis of image processing procedures using AI planning techniques

    Science.gov (United States)

    Chien, Steve; Mortensen, Helen

    1994-01-01

    This paper describes the Multimission VICAR (Video Image Communication and Retrieval) Planner (MVP) (Chien 1994) system, which uses artificial intelligence planning techniques (Iwasaki & Friedland, 1985, Pemberthy & Weld, 1992, Stefik, 1981) to automatically construct executable complex image processing procedures (using models of the smaller constituent image processing subprograms) in response to image processing requests made to the JPL Multimission Image Processing Laboratory (MIPL). The MVP system allows the user to specify the image processing requirements in terms of the various types of correction required. Given this information, MVP derives unspecified required processing steps and determines appropriate image processing programs and parameters to achieve the specified image processing goals. This information is output as an executable image processing program which can then be executed to fill the processing request.

  10. Metal Artifacts Reduction of Pedicle Screws on Spine Computed Tomography Images Using Variable Thresholding Technique

    International Nuclear Information System (INIS)

    Kaewlek, T.; Koolpiruck, D.; Thongvigitmanee, S.; Mongkolsuk, M.; Chiewvit, P.; Thammakittiphan, S.

    2012-01-01

    Metal artifacts are one of significant problems in computed tomography (CT). The streak lines and air gaps arise from metal implants of orthopedic patients, such as prosthesis, dental bucket, and pedicle screws that cause incorrect diagnosis and local treatment planning. A common technique to suppressed artifacts is by adjusting windows, but those artifacts still remain on the images. To improve the detail of spine CT images, the variable thresholding technique is proposed in this paper. Three medical cases of spine CT images categorized by the severity of artifacts (screws head, one full screw, and two full screws) were investigated. Metal regions were segmented by k-mean clustering, then transformed into a sinogram domain. The metal sinogram was identified by the variable thresholding method, and then replaced the new estimated values by linear interpolation. The modified sinogram was reconstructed by the filtered back- projection algorithm, and added the metal region back to the modified reconstructed image in order to reproduce the final image. The image quality of the proposed technique, the automatic thresholding (Kalender) technique, and window adjustment technique was compared in term of noise and signal to noise ratio (SNR). The propose method can reduce metal artifacts between pedicle screws. After processing by our proposed technique, noise in the modified images is reduced (screws head 121.15 to73.83, one full screw 160.88 to 94.04, and two full screws 199.73 to 110.05 from the initial image) and SNR is increased (screws head 0.87 to 1.88, one full screw 1.54 to 2.82, and two full screws 0.32 to 0.41 from the initial image). The variable thresholding technique can identify the suitable boundary for restoring the missing data. The efficiency of the metal artifacts reduction is indicated on the case of partial and full pedicle screws. Our technique can improve the detail of spine CT images better than automatic thresholding (Kalender) technique, and

  11. An image processing technique for the radiographic assessment of vertebral derangements

    Energy Technology Data Exchange (ETDEWEB)

    Breen, A.C. (Anglo-European Coll. of Chiropractic, Bournemouth (UK)); Allen, R. (Southampton Univ. (UK). Dept. of Mechanical Engineering); Morris, A. (Odstock Hospital, Salisbury (UK). Dept. of Radiology)

    1989-01-01

    A technique for measuring inter-vertebral motion by the digitization and processing of intensifier images is described. The technique reduces the time and X-ray dosage currently required to make such assessments. The errors associated with computing kinematic indices at increments of coronal plane rotations in the lumbar spine have been calculated using a calibration model designed to produce a facsimile of in vivo conditions in terms of image quality and geometric distortion. (author).

  12. Multispectral fluorescence imaging techniques for nondestructive food safety inspection

    Science.gov (United States)

    Kim, Moon S.; Lefcourt, Alan M.; Chen, Yud-Ren

    2004-03-01

    The use of spectral sensing has gained acceptance as a rapid means for nondestructive inspection of postharvest food produce. Current technologies generally use color or a single wavelength camera technology. The applicability and sensitivity of these techniques can be expanded through the use of multiple wavelengths. Reflectance in the Vis/NIR is the prevalent spectral technique. Fluorescence, compared to reflectance, is regarded as a more sensitive technique due to its dynamic responses to subtle changes in biological entities. Our laboratory has been exploring fluorescence as a potential means for detection of quality and wholesomeness of food products. Applications of fluorescence sensing require an understanding of the spectral characteristics emanating from constituents and potential contaminants. A number of factors affecting fluorescence emission characteristics are discussed. Because of relatively low fluorescence quantum yield from biological samples, a system with a powerful pulse light source such as a laser coupled with a gated detection device is used to harvest fluorescence, in the presence of ambient light. Several fluorescence sensor platforms developed in our laboratory, including hyperspectral imaging, and laser-induced fluorescence (LIF) and steady-state fluorescence imaging systems with multispectral capabilities are presented. We demonstrate the potential uses of recently developed fluorescence imaging platforms in food safety inspection of apples contaminated with animal feces.

  13. A rapid compression technique for 4-D functional MRI images using data rearrangement and modified binary array techniques.

    Science.gov (United States)

    Uma Vetri Selvi, G; Nadarajan, R

    2015-12-01

    Compression techniques are vital for efficient storage and fast transfer of medical image data. The existing compression techniques take significant amount of time for performing encoding and decoding and hence the purpose of compression is not fully satisfied. In this paper a rapid 4-D lossy compression method constructed using data rearrangement, wavelet-based contourlet transformation and a modified binary array technique has been proposed for functional magnetic resonance imaging (fMRI) images. In the proposed method, the image slices of fMRI data are rearranged so that the redundant slices form a sequence. The image sequence is then divided into slices and transformed using wavelet-based contourlet transform (WBCT). In WBCT, the high frequency sub-band obtained from wavelet transform is further decomposed into multiple directional sub-bands by directional filter bank to obtain more directional information. The relationship between the coefficients has been changed in WBCT as it has more directions. The differences in parent–child relationships are handled by a repositioning algorithm. The repositioned coefficients are then subjected to quantization. The quantized coefficients are further compressed by modified binary array technique where the most frequently occurring value of a sequence is coded only once. The proposed method has been experimented with fMRI images the results indicated that the processing time of the proposed method is less compared to existing wavelet-based set partitioning in hierarchical trees and set partitioning embedded block coder (SPECK) compression schemes [1]. The proposed method could also yield a better compression performance compared to wavelet-based SPECK coder. The objective results showed that the proposed method could gain good compression ratio in maintaining a peak signal noise ratio value of above 70 for all the experimented sequences. The SSIM value is equal to 1 and the value of CC is greater than 0.9 for all

  14. Watermarking techniques for electronic delivery of remote sensing images

    Science.gov (United States)

    Barni, Mauro; Bartolini, Franco; Magli, Enrico; Olmo, Gabriella

    2002-09-01

    Earth observation missions have recently attracted a growing interest, mainly due to the large number of possible applications capable of exploiting remotely sensed data and images. Along with the increase of market potential, the need arises for the protection of the image products. Such a need is a very crucial one, because the Internet and other public/private networks have become preferred means of data exchange. A critical issue arising when dealing with digital image distribution is copyright protection. Such a problem has been largely addressed by resorting to watermarking technology. A question that obviously arises is whether the requirements imposed by remote sensing imagery are compatible with existing watermarking techniques. On the basis of these motivations, the contribution of this work is twofold: assessment of the requirements imposed by remote sensing applications on watermark-based copyright protection, and modification of two well-established digital watermarking techniques to meet such constraints. More specifically, the concept of near-lossless watermarking is introduced and two possible algorithms matching such a requirement are presented. Experimental results are shown to measure the impact of watermark introduction on a typical remote sensing application, i.e., unsupervised image classification.

  15. Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy

    Science.gov (United States)

    Rasta, Seyed Hossein; Manivannan, Ayyakkannu; Sharp, Peter F.

    2012-11-01

    To evaluate retinal perfusion in the human eye, a dual-wavelength confocal scanning laser ophthalmoscope (cSLO) was developed that provides spectral imaging of the fundus using a combination of red (670 nm) and near-infrared (810 nm) wavelengths. The image of the ocular fundus was analyzed to find out if quantitative measurements of the reflectivity of tissue permit assessment of the oxygen perfusion of tissue. We explored problems that affect the reproducibility of patient measurements such as non-uniformity errors on the image. For the first time, an image processing technique was designed and used to minimize the errors of oxygen saturation measurements by illumination correction in retina wide field by increasing SNR. Retinal images were taken from healthy and diabetic retinopathy eyes using the cSLO with a confocal aperture of 100 μm. The ratio image (RI) of red/IR, as oxygen saturation (SO2) index, was calculated for normal eyes. The image correction technique improved the reproducibility of the measurements. Average RI intensity variation of healthy retina tissue was determined within a range of about 5.5%. The capability of the new technique to discriminate oxygenation levels of retinal artery and vein was successfully demonstrated and showed good promise in the diagnosis of the perfused retina.

  16. Super-Resolution Enhancement From Multiple Overlapping Images: A Fractional Area Technique

    Science.gov (United States)

    Michaels, Joshua A.

    With the availability of large quantities of relatively low-resolution data from several decades of space borne imaging, methods of creating an accurate, higher-resolution image from the multiple lower-resolution images (i.e. super-resolution), have been developed almost since such imagery has been around. The fractional-area super-resolution technique developed in this thesis has never before been documented. Satellite orbits, like Landsat, have a quantifiable variation, which means each image is not centered on the exact same spot more than once and the overlapping information from these multiple images may be used for super-resolution enhancement. By splitting a single initial pixel into many smaller, desired pixels, a relationship can be created between them using the ratio of the area within the initial pixel. The ideal goal for this technique is to obtain smaller pixels with exact values and no error, yielding a better potential result than those methods that yield interpolated pixel values with consequential loss of spatial resolution. A Fortran 95 program was developed to perform all calculations associated with the fractional-area super-resolution technique. The fractional areas are calculated using traditional trigonometry and coordinate geometry and Linear Algebra Package (LAPACK; Anderson et al., 1999) is used to solve for the higher-resolution pixel values. In order to demonstrate proof-of-concept, a synthetic dataset was created using the intrinsic Fortran random number generator and Adobe Illustrator CS4 (for geometry). To test the real-life application, digital pictures from a Sony DSC-S600 digital point-and-shoot camera with a tripod were taken of a large US geological map under fluorescent lighting. While the fractional-area super-resolution technique works in perfect synthetic conditions, it did not successfully produce a reasonable or consistent solution in the digital photograph enhancement test. The prohibitive amount of processing time (up to

  17. Image processing techniques for thermal, x-rays and nuclear radiations

    International Nuclear Information System (INIS)

    Chadda, V.K.

    1998-01-01

    The paper describes image acquisition techniques for the non-visible range of electromagnetic spectrum especially thermal, x-rays and nuclear radiations. Thermal imaging systems are valuable tools used for applications ranging from PCB inspection, hot spot studies, fire identification, satellite imaging to defense applications. Penetrating radiations like x-rays and gamma rays are used in NDT, baggage inspection, CAT scan, cardiology, radiography, nuclear medicine etc. Neutron radiography compliments conventional x-rays and gamma radiography. For these applications, image processing and computed tomography are employed for 2-D and 3-D image interpretation respectively. The paper also covers main features of image processing systems for quantitative evaluation of gray level and binary images. (author)

  18. High-frequency ultrasonographic imaging of avian cardiovascular development.

    Czech Academy of Sciences Publication Activity Database

    McQuinn, T. C.; Bratoeva, M.; Dealmeida, A.; Remond, M.; Thompson, R.P.; Sedmera, David

    2007-01-01

    Roč. 236, - (2007), s. 3503-3513 ISSN 1058-8388 Institutional research plan: CEZ:AV0Z50450515 Keywords : chick embryo * echocardiography * heart development Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 3.084, year: 2007

  19. Imaging focal and interstitial fibrosis with cardiovascular magnetic resonance in athletes with left ventricular hypertrophy: implications for sporting participation.

    LENUS (Irish Health Repository)

    Waterhouse, Deirdre F

    2012-11-01

    Long-term high-intensity physical activity is associated with morphological changes, termed as the \\'athlete\\'s heart\\'. The differentiation of physiological cardiac adaptive changes in response to high-level exercise from pathological changes consistent with an inherited cardiomyopathy is imperative. Cardiovascular magnetic resonance (CMR) imaging allows definition of abnormal processes occurring at the tissue level, including, importantly, myocardial fibrosis. It is therefore vital in accurately making this differentiation. In this review, we will review the role of CMR imaging of fibrosis, and detail CMR characterisation of myocardial fibrosis in various cardiomyopathies, and the implications of fibrosis. Additionally, we will outline advances in imaging fibrosis, in particular T1 mapping. Finally we will address the role of CMR in pre-participation screening.

  20. Wavelet techniques for reversible data embedding into images

    NARCIS (Netherlands)

    L. Kamstra; H.J.A.M. Heijmans (Henk)

    2004-01-01

    textabstractThe proliferation of digital information in our society has enticed a lot of research into data embedding techniques that add information to digital content like images, audio and video. This additional information can be used for various purposes and different applications place

  1. The molecular imaging approach to image infections and inflammation by nuclear medicine techniques

    NARCIS (Netherlands)

    Signore, Alberto; Glaudemans, Andor W. J. M.

    2011-01-01

    Inflammatory and infectious diseases are a heterogeneous class of diseases that may be divided into infections, acute inflammation and chronic inflammation. Radiological imaging techniques have, with the exception of functional MRI, high sensitivity but lack in specificity. Nuclear medicine

  2. PET imaging of the autonomic nervous system

    International Nuclear Information System (INIS)

    THACKERAY, James T.; BENGEL, Frank M.

    2016-01-01

    The autonomic nervous system is the primary extrinsic control of heart rate and contractility, and is subject to adaptive and maladaptive changes in cardiovascular disease. Consequently, noninvasive assessment of neuronal activity and function is an attractive target for molecular imaging. A myriad of targeted radiotracers have been developed over the last 25 years for imaging various components of the sympathetic and parasympathetic signal cascades. While routine clinical use remains somewhat limited, a number of larger scale studies in recent years have supplied momentum to molecular imaging of autonomic signaling. Specifically, the findings of the ADMIRE HF trial directly led to United States Food and Drug Administration approval of 123I-metaiodobenzylguanidine (MIBG) for Single Photon Emission Computed Tomography (SPECT) assessment of sympathetic neuronal innervation, and comparable results have been reported using the analogous PET agent 11C-meta-hydroxyephedrine (HED). Due to the inherent capacity for dynamic quantification and higher spatial resolution, regional analysis may be better served by PET. In addition, preliminary clinical and extensive preclinical experience has provided a broad foundation of cardiovascular applications for PET imaging of the autonomic nervous system. Recent years have witnessed the growth of novel quantification techniques, expansion of multiple tracer studies, and improved understanding of the uptake of different radiotracers, such that the transitional biology of dysfunctional subcellular catecholamine handling can be distinguished from complete denervation. As a result, sympathetic neuronal molecular imaging is poised to play a role in individualized patient care, by stratifying cardiovascular risk, visualizing underlying biology, and guiding and monitoring therapy.

  3. Cardiovascular dynamics of Canadian Indigenous peoples.

    Science.gov (United States)

    Foulds, Heather J A; Bredin, Shannon S D; Warburton, Darren E R

    2018-12-01

    Limited understanding of Indigenous adults' cardiovascular structure and function exists despite high rates of cardiovascular disease. This investigation characterised cardiovascular structure and function among young Indigenous adults and compared to age- and sex-matched European descendants. Echocardiographic assessments included apical two- and four-chamber images, parasternal short-axis images and Doppler. Analyses included cardiac volumes, dimensions, velocities and strains. Cardiovascular structure and function were similar between Indigenous (n=10, 25 ± 3 years, 4 women) and European-descendant (n=10, 24 ± 4 years, 4 women,) adults, though European descendants demonstrated greater systemic vascular resistance (18.19 ± 3.94 mmHg∙min -1 ∙L -1 vs. 15.36 ± 2.97 mmHg∙min -1 ∙L -1 , p=0.03). Among Indigenous adults, women demonstrated greater arterial elastance (0.80 ± 0.15 mmHg·mL -1 ·m -2 vs. 0.55 ± 0.17 mmHg·mL -1 ·m -2 , p=0.02) and possibly greater systemic vascular resistance (17.51 ± 2.20 mmHg∙min -1 ∙L -1 vs. 13.93 ± 2.61 mmHg∙min -1 ∙L -1 , p=0.07). Indigenous men had greater cardiac size, dimensions and output, though body size differences accounted for cardiac size differences. Similar cardiac rotation and strains were observed across sexes. Arterial elastance and cardiac size were different between Indigenous men and women while cardiovascular structure and function may be similar between Indigenous and European descendants.

  4. Molecular imaging in the era of personalized medicine.

    Science.gov (United States)

    Jung, Kyung-Ho; Lee, Kyung-Han

    2015-01-01

    Clinical imaging creates visual representations of the body interior for disease assessment. The role of clinical imaging significantly overlaps with that of pathology, and diagnostic workflows largely depend on both fields. The field of clinical imaging is presently undergoing a radical change through the emergence of a new field called molecular imaging. This new technology, which lies at the intersection between imaging and molecular biology, enables noninvasive visualization of biochemical processes at the molecular level within living bodies. Molecular imaging differs from traditional anatomical imaging in that biomarkers known as imaging probes are used to visualize target molecules-of-interest. This ability opens up exciting new possibilities for applications in oncologic, neurological and cardiovascular diseases. Molecular imaging is expected to make major contributions to personalized medicine by allowing earlier diagnosis and predicting treatment response. The technique is also making a huge impact on pharmaceutical development by optimizing preclinical and clinical tests for new drug candidates. This review will describe the basic principles of molecular imaging and will briefly touch on three examples (from an immense list of new techniques) that may contribute to personalized medicine: receptor imaging, angiogenesis imaging, and apoptosis imaging.

  5. Techniques and software architectures for medical visualisation and image processing

    NARCIS (Netherlands)

    Botha, C.P.

    2005-01-01

    This thesis presents a flexible software platform for medical visualisation and image processing, a technique for the segmentation of the shoulder skeleton from CT data and three techniques that make contributions to the field of direct volume rendering. Our primary goal was to investigate the use

  6. MRI technique for the snapshot imaging of quantitative velocity maps using RARE

    Science.gov (United States)

    Shiko, G.; Sederman, A. J.; Gladden, L. F.

    2012-03-01

    A quantitative PGSE-RARE pulse sequence was developed and successfully applied to the in situ dissolution of two pharmaceutical formulations dissolving over a range of timescales. The new technique was chosen over other existing fast velocity imaging techniques because it is T2 weighted, not T2∗ weighted, and is, therefore, robust for imaging time-varying interfaces and flow in magnetically heterogeneous systems. The complex signal was preserved intact by separating odd and even echoes to obtain two phase maps which are then averaged in post-processing. Initially, the validity of the technique was shown when imaging laminar flow in a pipe. Subsequently, the dissolution of two drugs was followed in situ, where the technique enables the imaging and quantification of changes in the form of the tablet and the flow field surrounding it at high spatial and temporal resolution. First, the complete 3D velocity field around an eroding salicylic acid tablet was acquired at a resolution of 98 × 49 μm2, within 20 min, and monitored over ˜13 h. The tablet was observed to experience a heterogeneous flow field and, hence a heterogeneous shear field, which resulted in the non-symmetric erosion of the tablet. Second, the dissolution of a fast dissolving immediate release tablet was followed using one-shot 2D velocity images acquired every 5.2 s at a resolution of 390 × 390 μm2. The quantitative nature of the technique and fast acquisition times provided invaluable information on the dissolution behaviour of this tablet, which had not been attainable previously with conventional quantitative MRI techniques.

  7. MRI technique for the snapshot imaging of quantitative velocity maps using RARE.

    Science.gov (United States)

    Shiko, G; Sederman, A J; Gladden, L F

    2012-03-01

    A quantitative PGSE-RARE pulse sequence was developed and successfully applied to the in situ dissolution of two pharmaceutical formulations dissolving over a range of timescales. The new technique was chosen over other existing fast velocity imaging techniques because it is T(2) weighted, not T(2)(∗) weighted, and is, therefore, robust for imaging time-varying interfaces and flow in magnetically heterogeneous systems. The complex signal was preserved intact by separating odd and even echoes to obtain two phase maps which are then averaged in post-processing. Initially, the validity of the technique was shown when imaging laminar flow in a pipe. Subsequently, the dissolution of two drugs was followed in situ, where the technique enables the imaging and quantification of changes in the form of the tablet and the flow field surrounding it at high spatial and temporal resolution. First, the complete 3D velocity field around an eroding salicylic acid tablet was acquired at a resolution of 98×49 μm(2), within 20 min, and monitored over ∼13 h. The tablet was observed to experience a heterogeneous flow field and, hence a heterogeneous shear field, which resulted in the non-symmetric erosion of the tablet. Second, the dissolution of a fast dissolving immediate release tablet was followed using one-shot 2D velocity images acquired every 5.2 s at a resolution of 390×390 μm(2). The quantitative nature of the technique and fast acquisition times provided invaluable information on the dissolution behaviour of this tablet, which had not been attainable previously with conventional quantitative MRI techniques. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Radiation dose reduction and new image modalities development for interventional C-arm imaging system

    Science.gov (United States)

    Niu, Kai

    Cardiovascular disease and stroke are the leading health problems and causes of death in the US. Due to the minimally invasive nature of the evolution of image guided techniques, interventional radiological procedures are becoming more common and are preferred in treating many cardiovascular diseases and strokes. In addition, with the recent advances in hardware and device technology, the speed and efficacy of interventional treatment has significantly improved. This implies that more image modalities can be developed based on the current C-arm system and patients treated in interventional suites can potentially experience better health outcomes. However, during the treatment patients are irradiated with substantial amounts of ionizing radiation with a high dose rate (digital subtraction angiography (DSA) with 3muGy/frame and 3D cone beam CT image with 0.36muGy/frame for a Siemens Artis Zee biplane system) and/or a long irradiation time (a roadmapping image sequence can be as long as one hour during aneurysm embolization). As a result, the patient entrance dose is extremely high. Despite the fact that the radiation dose is already substantial, image quality is not always satisfactory. By default a temporal average is used in roadmapping images to overcome poor image quality, but this technique can result in motion blurred images. Therefore, reducing radiation dose while maintaining or even improving the image quality is an important area for continued research. This thesis is focused on improving the clinical applications of C-arm cone beam CT systems in two ways: (1) Improve the performance of current image modalities on the C-arm system. (2) Develop new image modalities based on the current system. To be more specific, the objectives are to reduce radiation dose for current modalities (e.g., DSA, fluoroscopy, roadmapping, and cone beam CT) and enable cone beam CT perfusion and time resolved cone beam CT angiography that can be used to diagnose and triage acute

  9. Small-animal SPECT and SPECT/CT: application in cardiovascular research

    Energy Technology Data Exchange (ETDEWEB)

    Golestani, Reza; Dierckx, Rudi A.J.O. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Wu, Chao [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University Medical Center Utrecht, Image Sciences Institute and Rudolf Magnus Institute of Neurosciences, Utrecht (Netherlands); Tio, Rene A. [University Medical Center Groningen, Thorax Center, Department of Cardiology, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands); Zeebregts, Clark J. [University Medical Center Groningen, Department of Surgery, Division of Vascular Surgery, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands); Petrov, Artiom D. [University of California, Irvine, Division of Cardiology, School of Medicine, Irvine, California (United States); Beekman, Freek J. [University Medical Center Utrecht, Image Sciences Institute and Rudolf Magnus Institute of Neurosciences, Utrecht (Netherlands); Delft University of Technology, Faculty of Applied Sciences, Section Radiation Detection and Medical Imaging, Delft (Netherlands); MILabs, Utrecht (Netherlands); Boersma, Hendrikus H. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University Medical Center Groningen, Department of Clinical and Hospital Pharmacy, Hanzeplein 1, P.O. Box 30001, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands); Slart, Riemer H.J.A. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands)

    2010-09-15

    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease. (orig.)

  10. Small-animal SPECT and SPECT/CT: application in cardiovascular research

    International Nuclear Information System (INIS)

    Golestani, Reza; Dierckx, Rudi A.J.O.; Wu, Chao; Tio, Rene A.; Zeebregts, Clark J.; Petrov, Artiom D.; Beekman, Freek J.; Boersma, Hendrikus H.; Slart, Riemer H.J.A.

    2010-01-01

    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease. (orig.)

  11. The Effect of Mental Imaging Technique on Idiom Comprehension in EFL Learners

    Directory of Open Access Journals (Sweden)

    Burcu AYDIN

    2017-12-01

    Full Text Available In an English Foreign Language learning context, where access to native like use of metaphorical language is limited, gaining this ability becomes challenging. For many years, foreign language educators didn’t pay much attention to idiomatic language and assumed that idioms could only be taught through rote learning. For this reason, they face with difficulties in using appropriate approaches to idiom instruction. Furthermore, learners struggle with comprehending and practicing idioms. To resolve the concern, linguists are trying to develop cognitive approaches to the teaching of idiomatic language. The purpose of this study is to provide educators with guidelines to choose the appropriate idiom teaching technique for English Foreign Language learners taking into account the learners’ metaphorical competence level and their cognitive style preferences. In evaluating the appropriate teaching technique, three different techniques (context out, context in and mental imaging technique were used. The participants were presented 50 idioms. As a first technique, context out, idioms were taught with their definitions in the dictionary without additional contextual support. As a second technique, context in, in an attempt to investigate the effect of contextual support, idioms were both presented in a sentence and with their definitions. As a third technique, mental imaging technique, in an attempt to investigate the effect of Dual Coding approach, both pictorial representations of a mapping of literal senses of each idiomatic expression and verbal support (the definition of the idiom and the sentence in which the idiom is used were used concurrently. The findings point that mental imaging technique has positive effect on learning and recalling of the idiomatic expressions as it provides simultaneous verbal information with mental image which creates a supplementary pathway for recollecting the verbal information. In contrast, the results indicate no

  12. Performance evaluation of cardiac MRI image denoising techniques

    NARCIS (Netherlands)

    AlAttar, M.A.; Mohamed, A.G.A.; Osman, N.F.; Fahmy, A.S.

    2008-01-01

    Black-blood cardiac magnetic resonance imaging (MRI) plays an important role in diagnosing a number of heart diseases. The technique suffers inherently from low contrast-to-noise ratio between the myocardium and the blood. In this work, we examined the performance of different classification

  13. Imaging techniques in clay sciences: a key tool to go a step further

    International Nuclear Information System (INIS)

    Robinet, J.C.; Michau, N.; Schaefer, T.

    2012-01-01

    Document available in extended abstract form only. Clay-rocks and clay based materials are greatly considered in nuclear waste geological repository due to their multiple favourable properties (low permeability, low diffusion coefficients, high retention capacity for radionuclides, swelling...). In this context, the study of clays and clay rocks covers a large variety of scientific disciplines such as geology, mineralogy, geomechanics, geochemistry or hydrodynamics. These disciplines are linked together by a common issue which is the understanding and the predicting of clay and clay-rock behaviors and properties under various thermal-hydrological-mechanical- chemical (THMC) conditions. Linking the fundamental forces to macroscopic (from millimeter to several meters) behaviors and properties is nevertheless not straightforward for porous media such as clay-rocks and clay based materials. Currently, it remains a key challenge for the scientific community. Imaging techniques offer solutions to face up this challenge by characterizing the internal microstructure of material and rocks at different levels of resolution. Due to the reactivity of clay minerals with water (swelling, mechanical deformation) or with repository components (mineral transformations at iron, copper or concrete interfaces) and the multi-scale distribution of pore and mineral sizes, classically ranged from nano-meter to millimeter, imaging clay based materials and clay-rocks itself is unanimously recognized as a challenging task. In the 80's, despite several constraints and limits, the microstructure of clays had been intensively imaged using conventional 2D imaging techniques such as optical microscopy, X-ray radiography, scanning electron microscopy or transmission electron microscopy [1]. The images acquired using these techniques have given us a pictorial frame of reference of the internal structures of clay rocks and clay based materials at various resolution levels. They have also highlighted

  14. Comparing Four Touch-Based Interaction Techniques for an Image-Based Audience Response System

    NARCIS (Netherlands)

    Jorritsma, Wiard; Prins, Jonatan T.; van Ooijen, Peter M. A.

    2015-01-01

    This study aimed to determine the most appropriate touch-based interaction technique for I2Vote, an image-based audience response system for radiology education in which users need to accurately mark a target on a medical image. Four plausible techniques were identified: land-on, take-off,

  15. Automated image-matching technique for comparative diagnosis of the liver on CT examination

    International Nuclear Information System (INIS)

    Okumura, Eiichiro; Sanada, Shigeru; Suzuki, Masayuki; Tsushima, Yoshito; Matsui, Osamu

    2005-01-01

    When interpreting enhanced computer tomography (CT) images of the upper abdomen, radiologists visually select a set of images of the same anatomical positions from two or more CT image series (i.e., non-enhanced and contrast-enhanced CT images at arterial and delayed phase) to depict and to characterize any abnormalities. The same process is also necessary to create subtraction images by computer. We have developed an automated image selection system using a template-matching technique that allows the recognition of image sets at the same anatomical position from two CT image series. Using the template-matching technique, we compared several anatomical structures in each CT image at the same anatomical position. As the position of the liver may shift according to respiratory movement, not only the shape of the liver but also the gallbladder and other prominent structures included in the CT images were compared to allow appropriate selection of a set of CT images. This novel technique was applied in 11 upper abdominal CT examinations. In CT images with a slice thickness of 7.0 or 7.5 mm, the percentage of image sets selected correctly by the automated procedure was 86.6±15.3% per case. In CT images with a slice thickness of 1.25 mm, the percentages of correct selection of image sets by the automated procedure were 79.4±12.4% (non-enhanced and arterial-phase CT images) and 86.4±10.1% (arterial- and delayed-phase CT images). This automated method is useful for assisting in interpreting CT images and in creating digital subtraction images. (author)

  16. Nuclear imaging in pediatrics

    International Nuclear Information System (INIS)

    Siddiqui, A.R.

    1985-01-01

    The author's intent is to familiarize practicing radiologists with the technical aspects and interpretation of nuclear medicine procedures in children and to illustrate the indications for nuclear medicine procedures in pediatric problems. Pediatric doses, dosimetry, sedation, and injection techniques, organ systems, oncology and infection, testicular scanning and nuclear crystography, pediatric endocrine and skeletal systems, ventilation and perfusion imaging of both congenital and acquired pediatric disorders, cardiovascular problems, gastrointestinal, hepatobiliary, reticuloendothelial studies, and central nervous system are all topics which are included and discussed

  17. Technique Based on Image Pyramid and Bayes Rule for Noise Reduction in Unsupervised Change Detection

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-qiang; HUO hong; FANG Tao; ZHU Ju-lian; GE Wei-li

    2009-01-01

    In this paper, a technique based on image pyramid and Bayes rule for reducing noise effects in unsupervised change detection is proposed. By using Gaussian pyramid to process two multitemporal images respectively, two image pyramids are constructed. The difference pyramid images are obtained by point-by-point subtraction between the same level images of the two image pyramids. By resizing all difference pyramid images to the size of the original multitemporal image and then making product operator among them, a map being similar to the difference image is obtained. The difference image is generated by point-by-point subtraction between the two multitemporal images directly. At last, the Bayes rule is used to distinguish the changed pixels. Both synthetic and real data sets are used to evaluate the performance of the proposed technique. Experimental results show that the map from the proposed technique is more robust to noise than the difference image.

  18. Cell-based therapies and imaging in cardiology.

    Science.gov (United States)

    Bengel, Frank M; Schachinger, Volker; Dimmeler, Stefanie

    2005-12-01

    Cell therapy for cardiac repair has emerged as one of the most exciting and promising developments in cardiovascular medicine. Evidence from experimental and clinical studies is increasing that this innovative treatment will influence clinical practice in the future. But open questions and controversies with regard to the basic mechanisms of this therapy continue to exist and emphasise the need for specific techniques to visualise the mechanisms and success of therapy in vivo. Several non-invasive imaging approaches which aim at tracking of transplanted cells in the heart have been introduced. Among these are direct labelling of cells with radionuclides or paramagnetic agents, and the use of reporter genes for imaging of cell transplantation and differentiation. Initial studies have suggested that these molecular imaging techniques have great potential. Integration of cell imaging into studies of cardiac cell therapy holds promise to facilitate further growth of the field towards a broadly clinically useful application.

  19. Cell-based therapies and imaging in cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Bengel, Frank M. [Technische Universitaet Muenchen, Nuklearmedizinische Klinik und Poliklinik, Munich (Germany); Schachinger, Volker; Dimmeler, Stefanie [University of Frankfurt, Department of Molecular Cardiology, Frankfurt (Germany)

    2005-12-01

    Cell therapy for cardiac repair has emerged as one of the most exciting and promising developments in cardiovascular medicine. Evidence from experimental and clinical studies is increasing that this innovative treatment will influence clinical practice in the future. But open questions and controversies with regard to the basic mechanisms of this therapy continue to exist and emphasise the need for specific techniques to visualise the mechanisms and success of therapy in vivo. Several non-invasive imaging approaches which aim at tracking of transplanted cells in the heart have been introduced. Among these are direct labelling of cells with radionuclides or paramagnetic agents, and the use of reporter genes for imaging of cell transplantation and differentiation. Initial studies have suggested that these molecular imaging techniques have great potential. Integration of cell imaging into studies of cardiac cell therapy holds promise to facilitate further growth of the field towards a broadly clinically useful application. (orig.)

  20. Head and neck computed tomography virtual endoscopy: evaluation of a new imaging technique.

    Science.gov (United States)

    Gallivan, R P; Nguyen, T H; Armstrong, W B

    1999-10-01

    To evaluate a new radiographic imaging technique: computed tomography virtual endoscopy (CTVE) for head and neck tumors. Twenty-one patients presenting with head and neck masses who underwent axial computed tomography (CT) scan with contrast were evaluated by CTVE. Comparisons were made with video-recorded images and operative records to evaluate the potential utility of this new imaging technique. Twenty-one patients with aerodigestive head and neck tumors were evaluated by CTVE. One patient had a nasal cylindrical cell papilloma; the remainder, squamous cell carcinomas distributed throughout the upper aerodigestive tract. Patients underwent complete head and neck examination, flexible laryngoscopy, axial CT with contrast, CTVE, and in most cases, operative endoscopy. Available clinical and radiographic evaluations were compared and correlated to CTVE findings. CTVE accurately demonstrated abnormalities caused by intraluminal tumor, but where there was apposition of normal tissue against tumor, inaccurate depictions of surface contour occurred. Contour resolution was limited, and mucosal irregularity could not be defined. There was very good overall correlation between virtual images, flexible laryngoscopic findings, rigid endoscopy, and operative evaluation in cases where oncological resections were performed. CTVE appears to be most accurate in evaluation of subglottic and nasopharyngeal anatomy in our series of patients. CTVE is a new radiographic technique that provides surface-contour details. The technique is undergoing rapid technical evolution, and although the image quality is limited in situations where there is apposition of tissue folds, there are a number of potential applications for this new imaging technique.

  1. Fast damage imaging using the time-reversal technique in the frequency–wavenumber domain

    International Nuclear Information System (INIS)

    Zhu, R; Huang, G L; Yuan, F G

    2013-01-01

    The time-reversal technique has been successfully used in structural health monitoring (SHM) for quantitative imaging of damage. However, the technique is very time-consuming when it is implemented in the time domain. In this paper, we study the technique in the frequency–wavenumber (f–k) domain for fast real-time imaging of multiple damage sites in plates using scattered flexural plate waves. Based on Mindlin plate theory, the time reversibility of dispersive flexural waves in an isotropic plate is theoretically investigated in the f–k domain. A fast damage imaging technique is developed by using the cross-correlation between the back-propagated scattered wavefield and the incident wavefield in the frequency domain. Numerical simulations demonstrate that the proposed technique cannot only localize multiple damage sites but also potentially identify their sizes. Moreover, the time-reversal technique in the f–k domain is about two orders of magnitude faster than the method in the time domain. Finally, experimental testing of an on-line SHM system with a sparse piezoelectric sensor array is conducted for fast multiple damage identification using the proposed technique. (paper)

  2. Magnetic resonance imaging of the elbow. Part I: Normal anatomy, imaging technique, and osseous abnormalities

    International Nuclear Information System (INIS)

    Kijowski, Richard; Tuite, Michael; Sanford, Matthew

    2004-01-01

    Part I of this comprehensive review on magnetic resonance imaging of the elbow discusses normal elbow anatomy and the technical factors involved in obtaining high-quality magnetic resonance images of the elbow. Part I also discusses the role of magnetic resonance imaging in evaluating patients with osseous abnormalities of the elbow. With proper patient positioning and imaging technique, magnetic resonance imaging can yield high-quality multiplanar images which are useful in evaluating the osseous structures of the elbow. Magnetic resonance imaging can detect early osteochondritis dissecans of the capitellum and can be used to evaluate the size, location, stability, and viability of the osteochondritis dissecans fragment. Magnetic resonance imaging can detect early stress injury to the proximal ulna in athletes. Magnetic resonance imaging can detect radiographically occult fractures of the elbow in both children and adults. Magnetic resonance imaging is also useful in children to further evaluate elbow fractures which are detected on plain-film radiographs. (orig.)

  3. A Novel Feature Extraction Technique Using Binarization of Bit Planes for Content Based Image Classification

    Directory of Open Access Journals (Sweden)

    Sudeep Thepade

    2014-01-01

    Full Text Available A number of techniques have been proposed earlier for feature extraction using image binarization. Efficiency of the techniques was dependent on proper threshold selection for the binarization method. In this paper, a new feature extraction technique using image binarization has been proposed. The technique has binarized the significant bit planes of an image by selecting local thresholds. The proposed algorithm has been tested on a public dataset and has been compared with existing widely used techniques using binarization for extraction of features. It has been inferred that the proposed method has outclassed all the existing techniques and has shown consistent classification performance.

  4. Cardiovascular screening in Turner syndrome

    International Nuclear Information System (INIS)

    Dawson, K.L.; Wright, A.M.; Pitlick, P.T.

    1990-01-01

    This paper determines the utility of MR imaging as a cardiovascular screening method in patients with Turner syndrome and to compare its utility with that of echocardiography. Forty females with karytotypically proved Turner syndrome were prospectively evaluated with MR imaging and echocardiography. A 0.38-T resistive magnet was used to obtain ECG-gated axial and off-sagittal oblique images through the thorax with a spin-echo pulse sequence and TR 400--600 msec, TE 15--30 msec. Two-dimensional, M-mode, and Doppler echocardiography were performed and standard echocardiographic views were obtained

  5. Evaluation of New Ultrasound Techniques for Clinical Imaging in selected Liver and Vascular Applications

    DEFF Research Database (Denmark)

    Brandt, Andreas Hjelm

    blinded to information about the technique, which B-mode images they preferred, as well as detection of pathology. Evaluation showed that the techniques were preferred equally and tumor could be detected equally well. Study II deals with the ability of vector flow imaging (VFI) to monitor patients......This Ph.D. project is based on a longstanding collaboration between physicists and engineers from the Center of Fast Ultrasound Imaging (CFU) at the Technical University of Denmark and medical doctors from the department of Radiology at Rigshospitalet. The intent of this cooperation is to validate...... new ultrasonic methods for future clinical use. Study I compares two B-mode ultrasound methods: the new experimental technique Synthetic Aperture Sequential Beamforming combined with Tissue Harmonic Imaging (SASB-THI), and a conventional technique combined with THI. While SASB reduces the amount...

  6. A new combined technique for automatic contrast enhancement of digital images

    Directory of Open Access Journals (Sweden)

    Ismail A. Humied

    2012-03-01

    Full Text Available Some low contrast images have certain characteristics makes it difficult to use traditional methods to improve it. An example of these characteristics, that the amplitudes of images histogram components are very high at one location on the gray scale and very small in the rest of the gray scale. In the present paper, a new method is described. It can deal with such cases. The proposed method is a combination of Histogram Equalization (HE and Fast Gray-Level Grouping (FGLG. The basic procedure of this method is segments the original histogram of a low contrast image into two sub-histograms according to the location of the highest amplitude of the histogram components, and achieving contrast enhancement by equalizing the left segment of the histogram components using (HE technique and using (FGLG technique to equalize the right segment of this histogram components. The results have shown that the proposed method does not only produce better results than each individual contrast enhancement technique, but it is also fully automated. Moreover, it is applicable to a broad variety of images that satisfy the properties mentioned above and suffer from low contrast.

  7. Bolt-loosening identification of bolt connections by vision image-based technique

    Science.gov (United States)

    Nguyen, Tuan-Cuong; Huynh, Thanh-Canh; Ryu, Joo-Young; Park, Jae-Hyung; Kim, Jeong-Tae

    2016-04-01

    In this study, an algorithm using image processing techniques is proposed to identify bolt-loosening in bolted connections of steel structures. Its basic concept is to identify rotation angles of nuts from a pictured image, and is mainly consisted of the following 3 steps: (1) taking a picture for a bolt joint, (2) segmenting the images for each nut by image processing techniques, and (3) identifying rotation angle of each nut and detecting bolt-loosening. By using the concept, an algorithm is designed for continuous monitoring and inspection of the bolt connections. As a key imageprocessing technique, Hough transform is used to identify rotation angles of nuts, and then bolt-loosening is detected by comparing the angles before and after bolt-loosening. Then the applicability of the proposed algorithm is evaluated by experimental tests for two lab-scaled models. A bolted joint model which consists of a splice plate and 8 sets of bolts and nuts with 2×4 array is used to simulate inspection of bridge connections, and a model which is consisted of a ring flange and 32 sets of bolt and nut is used to simulate continuous monitoring of bolted connections in wind turbine towers.

  8. New approaches in intelligent image analysis techniques, methodologies and applications

    CERN Document Server

    Nakamatsu, Kazumi

    2016-01-01

    This book presents an Introduction and 11 independent chapters, which are devoted to various new approaches of intelligent image processing and analysis. The book also presents new methods, algorithms and applied systems for intelligent image processing, on the following basic topics: Methods for Hierarchical Image Decomposition; Intelligent Digital Signal Processing and Feature Extraction; Data Clustering and Visualization via Echo State Networks; Clustering of Natural Images in Automatic Image Annotation Systems; Control System for Remote Sensing Image Processing; Tissue Segmentation of MR Brain Images Sequence; Kidney Cysts Segmentation in CT Images; Audio Visual Attention Models in Mobile Robots Navigation; Local Adaptive Image Processing; Learning Techniques for Intelligent Access Control; Resolution Improvement in Acoustic Maps. Each chapter is self-contained with its own references. Some of the chapters are devoted to the theoretical aspects while the others are presenting the practical aspects and the...

  9. Healthcare Policy Statement on the Utility of Coronary Computed Tomography for Evaluation of Cardiovascular Conditions and Preventive Healthcare: From the Health Policy Working Group of the Society of Cardiovascular Computed Tomography.

    Science.gov (United States)

    Slim, Ahmad M; Jerome, Scott; Blankstein, Ron; Weigold, Wm Guy; Patel, Amit R; Kalra, Dinesh K; Miller, Ryan; Branch, Kelley; Rabbat, Mark G; Hecht, Harvey; Nicol, Edward D; Villines, Todd C; Shaw, Leslee J

    The rising cost of healthcare is prompting numerous policy and advocacy discussions regarding strategies for constraining growth and creating a more efficient and effective healthcare system. Cardiovascular imaging is central to the care of patients at risk of, and living with, heart disease. Estimates are that utilization of cardiovascular imaging exceeds 20 million studies per year. The Society of Cardiovascular CT (SCCT), alongside Rush University Medical Center, and in collaboration with government agencies, regional payers, and industry healthcare experts met in November 2016 in Chicago, IL to evaluate obstacles and hurdles facing the cardiovascular imaging community and how they can contribute to efficacy while maintaining or even improving outcomes and quality. The summit incorporated inputs from payers, providers, and patients' perspectives, providing a platform for all voices to be heard, allowing for a constructive dialogue with potential solutions moving forward. This article outlines the proceedings from the summit, with a detailed review of past hurdles, current status, and potential solutions as we move forward in an ever-changing healthcare landscape. Copyright © 2017 Society of Cardiovascular Computed Tomography. All rights reserved.

  10. Comparative study of low-energy neutral atom imaging techniques

    International Nuclear Information System (INIS)

    Funsten, H.O.; McComas, D.J.; Scime, E.E.

    1994-01-01

    Low-energy neutral atom (LENA) imaging promise to be a revolutionary tool for global imaging of space plasmas. The technical challenges of LENA detection include separating them from the intense ambient UV without losing information about their incident trajectories, quantifying their trajectories, and obtaining high-sensitivity measurements. Two techniques that have been proposed for this purpose are based on fundamentally different atomic interaction mechanisms between LENAs and a solid; LENA transmission through an ultra thin foil and LENA reflection from a solid surface. Both of these methods provide LENA ionization (for subsequent removal from the UV by electrostatic deflection) and secondary electron emission (for time-of-flight start pulse generation and/or coincidence). They present a comparative study of the transmission and reflection techniques based on differences in atomic interactions with solids and surfaces. Transmission methods are shown to be superior for secondary electron emission rather than reflection methods. Furthermore, transmission methods are shown to be a sufficient for LENA imaging at LENA energies of approximately 1 keV to greater than 30 keV. A hybrid instrument using reflection from a low work function surface for LENA ionization and transmission for secondary electron emission is optimal for imaging of LENAs with energies less than approximately 1 keV

  11. Prewarping techniques in imaging: applications in nanotechnology and biotechnology

    Science.gov (United States)

    Poonawala, Amyn; Milanfar, Peyman

    2005-03-01

    In all imaging systems, the underlying process introduces undesirable distortions that cause the output signal to be a warped version of the input. When the input to such systems can be controlled, pre-warping techniques can be employed which consist of systematically modifying the input such that it cancels out (or compensates for) the process losses. In this paper, we focus on the mask (reticle) design problem for 'optical micro-lithography', a process similar to photographic printing used for transferring binary circuit patterns onto silicon wafers. We use a pixel-based mask representation and model the above process as a cascade of convolution (aerial image formation) and thresholding (high-contrast recording) operations. The pre-distorted mask is obtained by minimizing the norm of the difference between the 'desired' output image and the 'reproduced' output image. We employ the regularization framework to ensure that the resulting masks are close-to-binary as well as simple and easy to fabricate. Finally, we provide insight into two additional applications of pre-warping techniques. First is 'e-beam lithography', used for fabricating nano-scale structures, and second is 'electronic visual prosthesis' which aims at providing limited vision to the blind by using a prosthetic retinally implanted chip capable of electrically stimulating the retinal neuron cells.

  12. Prognostic value of heart valve calcifications for cardiovascular events in a lung cancer screening population

    OpenAIRE

    Willemink, Martin J.; Takx, Richard A. P.; I?gum, Ivana; de Koning, Harry J.; Oudkerk, Matthijs; Mali, Willem P. Th. M.; Budde, Ricardo P. J.; Leiner, Tim; Vliegenthart, Rozemarijn; de Jong, Pim A.

    2015-01-01

    textabstractTo assess the prognostic value of aortic valve and mitral valve/annulus calcifications for cardiovascular events in heavily smoking men without a history of cardiovascular disease. Heavily smoking men without a cardiovascular disease history who underwent non-contrast-enhanced low-radiation-dose chest CT for lung cancer screening were included. Non-imaging predictors (age, smoking status and pack-years) were collected and imaging-predictors (calcium volume of the coronary arteries...

  13. Non-invasive in-vivo imaging of stem cells after transplantation in cardiovascular tissue

    DEFF Research Database (Denmark)

    Mathiasen, Anders Bruun; Kastrup, Jens

    2013-01-01

    Stem cell therapy for degenerative diseases, including ischemic heart disease is now a clinical reality. In the search for the optimal cell type for each patient category, many different stem cell subpopulations have been used. In addition, different cell processing procedures and delivery methods......, migration and efficacy of the transplanted cells. Great effort is being made in finding new and better imaging techniques for different imaging modalities, and much have already been learned. But there are still many unanswered questions. In this review, we give an overview of the imaging modalities used...

  14. Digital image analysis in breast pathology-from image processing techniques to artificial intelligence.

    Science.gov (United States)

    Robertson, Stephanie; Azizpour, Hossein; Smith, Kevin; Hartman, Johan

    2018-04-01

    Breast cancer is the most common malignant disease in women worldwide. In recent decades, earlier diagnosis and better adjuvant therapy have substantially improved patient outcome. Diagnosis by histopathology has proven to be instrumental to guide breast cancer treatment, but new challenges have emerged as our increasing understanding of cancer over the years has revealed its complex nature. As patient demand for personalized breast cancer therapy grows, we face an urgent need for more precise biomarker assessment and more accurate histopathologic breast cancer diagnosis to make better therapy decisions. The digitization of pathology data has opened the door to faster, more reproducible, and more precise diagnoses through computerized image analysis. Software to assist diagnostic breast pathology through image processing techniques have been around for years. But recent breakthroughs in artificial intelligence (AI) promise to fundamentally change the way we detect and treat breast cancer in the near future. Machine learning, a subfield of AI that applies statistical methods to learn from data, has seen an explosion of interest in recent years because of its ability to recognize patterns in data with less need for human instruction. One technique in particular, known as deep learning, has produced groundbreaking results in many important problems including image classification and speech recognition. In this review, we will cover the use of AI and deep learning in diagnostic breast pathology, and other recent developments in digital image analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Multimodality cardiac imaging in Turner syndrome.

    Science.gov (United States)

    Mortensen, Kristian H; Gopalan, Deepa; Nørgaard, Bjarne L; Andersen, Niels H; Gravholt, Claus H

    2016-06-01

    Congenital and acquired cardiovascular diseases contribute significantly to the threefold elevated risk of premature death in Turner syndrome. A multitude of cardiovascular anomalies and disorders, many of which deleteriously impact morbidity and mortality, is frequently left undetected and untreated because of poor adherence to screening programmes and complex clinical presentations. Imaging is essential for timely and effective primary and secondary disease prophylaxis that may alleviate the severe impact of cardiovascular disease in Turner syndrome. This review illustrates how cardiovascular disease in Turner syndrome manifests in a complex manner that ranges in severity from incidental findings to potentially fatal anomalies. Recommendations regarding the use of imaging for screening and surveillance of cardiovascular disease in Turner syndrome are made, emphasising the key role of non-invasive and invasive cardiovascular imaging to the management of all patients with Turner syndrome.

  16. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    Science.gov (United States)

    Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.

    2010-05-01

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  17. Authenticity techniques for PACS images and records

    Science.gov (United States)

    Wong, Stephen T. C.; Abundo, Marco; Huang, H. K.

    1995-05-01

    Along with the digital radiology environment supported by picture archiving and communication systems (PACS) comes a new problem: How to establish trust in multimedia medical data that exist only in the easily altered memory of a computer. Trust is characterized in terms of integrity and privacy of digital data. Two major self-enforcing techniques can be used to assure the authenticity of electronic images and text -- key-based cryptography and digital time stamping. Key-based cryptography associates the content of an image with the originator using one or two distinct keys and prevents alteration of the document by anyone other than the originator. A digital time stamping algorithm generates a characteristic `digital fingerprint' for the original document using a mathematical hash function, and checks that it has not been modified. This paper discusses these cryptographic algorithms and their appropriateness for a PACS environment. It also presents experimental results of cryptographic algorithms on several imaging modalities.

  18. Quantitation of structural distortion with gradient-echo imaging techniques

    International Nuclear Information System (INIS)

    Tien, R.D.; Schwaighofer, B.W.; Hesselink, J.R.; Chu, P.K.

    1990-01-01

    This paper determines the structural distortion and measurement error associated with fast MR imaging of the spinal neural foramina. Dry skeletal specimens and a thin cadaveric sagittal section through the neural foramina were placed in a water bath. MR images were obtained with a 1.5-T unit in different planes and with various pulse sequences. The size and shape of each neural foramen were carefully measured on the images and on the skeletal specimens. Gradient-echo (GRE) techniques (gradient recalled acquisition in a steady state, MPGR, three-dimensional volume acquisition) resulted in structural distortion in up to 10% on the fresh skeleton and 30% of the dry skeleton specimens when a small TE was used (the foramina appear narrower on the images)

  19. Muscle perfusion and metabolic heterogeneity: insights from noninvasive imaging techniques

    DEFF Research Database (Denmark)

    Kalliokoski, Kari K; Scheede-Bergdahl, Celena; Kjaer, Michael

    2006-01-01

    Recent developments in noninvasive imaging techniques have enabled the study of local changes in perfusion and metabolism in skeletal muscle as well as patterns of heterogeneity in these variables in humans. In this review, the principles of these techniques along with some recent findings...... on functional heterogeneity in human skeletal muscle will be presented....

  20. WE-G-18C-08: Real Time Tumor Imaging Using a Novel Dynamic Keyhole MRI Reconstruction Technique

    International Nuclear Information System (INIS)

    Lee, D; Pollock, S; Whelan, B; Keall, P; Greer, P; Kim, T

    2014-01-01

    Purpose: To test the hypothesis that the novel Dynamic Keyhole MRI reconstruction technique can accelerate image acquisition whilst maintaining high image quality for lung cancer patients. Methods: 18 MRI datasets from 5 lung cancer patients were acquired using a 3T MRI scanner. These datasets were retrospectively reconstructed using (A) The novel Dynamic Keyhole technique, (B) The conventional keyhole technique and (C) the conventional zero filling technique. The dynamic keyhole technique in MRI refers to techniques in which previously acquired k-space data is used to supplement under sampled data obtained in real time. The novel Dynamic Keyhole technique utilizes a previously acquired a library of kspace datasets in conjunction with central k-space datasets acquired in realtime. A simultaneously acquired respiratory signal is utilized to sort, match and combine the two k-space streams with respect to respiratory displacement. Reconstruction performance was quantified by (1) comparing the keyhole size (which corresponds to imaging speed) required to achieve the same image quality, and (2) maintaining a constant keyhole size across the three reconstruction methods to compare the resulting image quality to the ground truth image. Results: (1) The dynamic keyhole method required a mean keyhole size which was 48% smaller than the conventional keyhole technique and 60% smaller than the zero filling technique to achieve the same image quality. This directly corresponds to faster imaging. (2) When a constant keyhole size was utilized, the Dynamic Keyhole technique resulted in the smallest difference of the tumor region compared to the ground truth. Conclusion: The dynamic keyhole is a simple and adaptable technique for clinical applications requiring real-time imaging and tumor monitoring such as MRI guided radiotherapy. Based on the results from this study, the dynamic keyhole method could increase the imaging frequency by a factor of five compared with full k

  1. Current cardiac imaging techniques for detection of left ventricular mass

    Directory of Open Access Journals (Sweden)

    Celebi Aksuyek S

    2010-06-01

    Full Text Available Abstract Estimation of left ventricular (LV mass has both prognostic and therapeutic value independent of traditional risk factors. Unfortunately, LV mass evaluation has been underestimated in clinical practice. Assessment of LV mass can be performed by a number of imaging modalities. Despite inherent limitations, conventional echocardiography has fundamentally been established as most widely used diagnostic tool. 3-dimensional echocardiography (3DE is now feasible, fast and accurate for LV mass evaluation. 3DE is also superior to conventional echocardiography in terms of LV mass assessment, especially in patients with abnormal LV geometry. Cardiovascular magnetic resonance (CMR and cardiovascular computed tomography (CCT are currently performed for LV mass assessment and also do not depend on cardiac geometry and display 3-dimensional data, as well. Therefore, CMR is being increasingly employed and is at the present standard of reference in the clinical setting. Although each method demonstrates advantages over another, there are also disadvantages to receive attention. Diagnostic accuracy of methods will also be increased with the introduction of more advanced systems. It is also likely that in the coming years new and more accurate diagnostic tests will become available. In particular, CMR and CCT have been intersecting hot topic between cardiology and radiology clinics. Thus, good communication and collaboration between two specialties is required for selection of an appropriate test.

  2. Cardiovascular imaging by Roentgen television computer techniques

    International Nuclear Information System (INIS)

    Heintzen, P.

    1987-01-01

    The purpose of this contribution is to describe the principles and essential results of videodensitometry and videometry and to outline the path from analog to digital angiocardiographic methods. (Auth.)

  3. Black-blood thrombus imaging (BTI): a contrast-free cardiovascular magnetic resonance approach for the diagnosis of non-acute deep vein thrombosis.

    Science.gov (United States)

    Xie, Guoxi; Chen, Hanwei; He, Xueping; Liang, Jianke; Deng, Wei; He, Zhuonan; Ye, Yufeng; Yang, Qi; Bi, Xiaoming; Liu, Xin; Li, Debiao; Fan, Zhaoyang

    2017-01-18

    Deep vein thrombosis (DVT) is a common but elusive illness that can result in long-term disability or death. Accurate detection of thrombosis and assessment of its size and distribution are critical for treatment decision-making. In the present study, we sought to develop and evaluate a cardiovascular magnetic resonance (CMR) black-blood thrombus imaging (BTI) technique, based on delay alternating with nutation for tailored excitation black-blood preparation and variable flip angle turbo-spin-echo readout, for the diagnosis of non-acute DVT. METHODS: This prospective study was approved by institutional review board and informed consent obtained from all subjects. BTI was first conducted in 11 healthy subjects for parameter optimization and then conducted in 18 non-acute DVT patients to evaluate its diagnostic performance. Two clinically used CMR techniques, contrast-enhanced CMR venography (CE-MRV) and three dimensional magnetization prepared rapid acquisition gradient echo (MPRAGE), were also conducted in all patients for comparison. All images obtained from patients were analyzed on a per-segment basis. Using the consensus diagnosis of CE-MRV as the reference, the sensitivity (SE), specificity (SP), positive and negative predictive values (PPV and NPV), and accuracy (ACC) of BTI and MPRAGE as well as their diagnostic agreement with CE-MRV were calculated. Besides, diagnostic confidence and interreader diagnostic agreement were evaluated for all three techniques. BTI with optimized parameters effectively nulled the venous blood flow signal and allowed directly visualizing the thrombus within the black-blood lumen. Higher SE (90.4% vs 67.6%), SP (99.0% vs. 97.4%), PPV (95.4% vs. 85.6%), NPV (97.8% vs 92.9%) and ACC (97.4% vs. 91.8%) were obtained by BTI in comparison with MPRAGE. Good diagnostic confidence and excellent diagnostic and interreader agreements were achieved by BTI, which were superior to MPRAGE on detecting the chronic thrombus. BTI allows

  4. Analysis of Cultural Heritage by Accelerator Techniques and Analytical Imaging

    Science.gov (United States)

    Ide-Ektessabi, Ari; Toque, Jay Arre; Murayama, Yusuke

    2011-12-01

    In this paper we present the result of experimental investigation using two very important accelerator techniques: (1) synchrotron radiation XRF and XAFS; and (2) accelerator mass spectrometry and multispectral analytical imaging for the investigation of cultural heritage. We also want to introduce a complementary approach to the investigation of artworks which is noninvasive and nondestructive that can be applied in situ. Four major projects will be discussed to illustrate the potential applications of these accelerator and analytical imaging techniques: (1) investigation of Mongolian Textile (Genghis Khan and Kublai Khan Period) using XRF, AMS and electron microscopy; (2) XRF studies of pigments collected from Korean Buddhist paintings; (3) creating a database of elemental composition and spectral reflectance of more than 1000 Japanese pigments which have been used for traditional Japanese paintings; and (4) visible light-near infrared spectroscopy and multispectral imaging of degraded malachite and azurite. The XRF measurements of the Japanese and Korean pigments could be used to complement the results of pigment identification by analytical imaging through spectral reflectance reconstruction. On the other hand, analysis of the Mongolian textiles revealed that they were produced between 12th and 13th century. Elemental analysis of the samples showed that they contained traces of gold, copper, iron and titanium. Based on the age and trace elements in the samples, it was concluded that the textiles were produced during the height of power of the Mongol empire, which makes them a valuable cultural heritage. Finally, the analysis of the degraded and discolored malachite and azurite demonstrates how multispectral analytical imaging could be used to complement the results of high energy-based techniques.

  5. A review of the associated particle imaging technique

    International Nuclear Information System (INIS)

    Hurley, J.P.; Beyerle, A.; Durkee, R.; Headley, G.; Tunnell, L.

    1992-01-01

    Associated particle imaging (API) is a fast-neutron reaction imaging system. An object is illuminated with 14-MeV neutrons and these neutron interaction sites are imaged. The T(d,n) 4 He reaction is used to produce a neutron and an alpha particle which move apart in opposite directions. By detecting the alpha particle, the direction of travel of the neutron is known. When the neutron strikes any material (except hydrogen and helium) it causes the material to emit gamma radiation. If one of the gamma-rays is detected it is then known that a reaction has taken place. By measuring the time between alpha detection and gammadetection, it is known how long the neutron traveled before reacting. By constructing a tally (or histogram) of these reaction sites an image is constructed. By examining the gamma-ray spectra corresponding to each region of space, elemental analysis of that region can be performed. This technique and it's applications are discussed in this paper

  6. Noninvasive radiographic assessment of cardiovascular function in acute and chronic respiratory failure

    International Nuclear Information System (INIS)

    Berger, H.J.; Matthay, R.A.

    1981-01-01

    Noninvasive radiographic techniques have provided a means of studying the natural history and pathogenesis of cardiovascular performance in acute and chronic respiratory failure. Chest radiography, radionuclide angiocardiography and thallium-201 imaging, and M mode and cross-sectional echocardiography have been employed. Each of these techniques has specific uses, attributes and limitations. For example, measurement of descending pulmonary arterial diameters on the plain chest radiograph allows determination of the presence or absence of pulmonary arterial hypertension. Right and left ventricular performance can be evaluated at rest and during exercise using radionuclide angiocardiography. The biventricular response to exercise and to therapeutic interventions also can be assessed with this approach. Evaluation of the pulmonary valve echogram and echocardiographic right ventricular dimensions have been shown to reflect right ventricular hemodynamics and size. Each of these noninvasive techniques has been applied to the study of patients with respiratory failure and has provided important physiologic data

  7. Fast in vivo bioluminescence tomography using a novel pure optical imaging technique

    Directory of Open Access Journals (Sweden)

    Shuang Zhang

    2017-05-01

    Full Text Available Bioluminescence tomography (BLT is a novel optical molecular imaging technique that advanced the conventional planar bioluminescence imaging (BLI into a quantifiable three-dimensional (3D approach in preclinical living animal studies in oncology. In order to solve the inverse problem and reconstruct tumor lesions inside animal body accurately, the prior structural information is commonly obtained from X-ray computed tomography (CT. This strategy requires a complicated hybrid imaging system, extensive post imaging analysis and involvement of ionizing radiation. Moreover, the overall robustness highly depends on the fusion accuracy between the optical and structural information. Here, we present a pure optical bioluminescence tomographic (POBT system and a novel BLT workflow based on multi-view projection acquisition and 3D surface reconstruction. This method can reconstruct the 3D surface of an imaging subject based on a sparse set of planar white-light and bioluminescent images, so that the prior structural information can be offered for 3D tumor lesion reconstruction without the involvement of CT. The performance of this novel technique was evaluated through the comparison with a conventional dual-modality tomographic (DMT system and a commercialized optical imaging system (IVIS Spectrum using three breast cancer xenografts. The results revealed that the new technique offered comparable in vivo tomographic accuracy with the DMT system (P>0.05 in much shorter data analysis time. It also offered significantly better accuracy comparing with the IVIS system (P<0.04 without sacrificing too much time.

  8. A rapid and robust gradient measurement technique using dynamic single-point imaging.

    Science.gov (United States)

    Jang, Hyungseok; McMillan, Alan B

    2017-09-01

    We propose a new gradient measurement technique based on dynamic single-point imaging (SPI), which allows simple, rapid, and robust measurement of k-space trajectory. To enable gradient measurement, we utilize the variable field-of-view (FOV) property of dynamic SPI, which is dependent on gradient shape. First, one-dimensional (1D) dynamic SPI data are acquired from a targeted gradient axis, and then relative FOV scaling factors between 1D images or k-spaces at varying encoding times are found. These relative scaling factors are the relative k-space position that can be used for image reconstruction. The gradient measurement technique also can be used to estimate the gradient impulse response function for reproducible gradient estimation as a linear time invariant system. The proposed measurement technique was used to improve reconstructed image quality in 3D ultrashort echo, 2D spiral, and multi-echo bipolar gradient-echo imaging. In multi-echo bipolar gradient-echo imaging, measurement of the k-space trajectory allowed the use of a ramp-sampled trajectory for improved acquisition speed (approximately 30%) and more accurate quantitative fat and water separation in a phantom. The proposed dynamic SPI-based method allows fast k-space trajectory measurement with a simple implementation and no additional hardware for improved image quality. Magn Reson Med 78:950-962, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Column ratio mapping: a processing technique for atomic resolution high-angle annular dark-field (HAADF) images.

    Science.gov (United States)

    Robb, Paul D; Craven, Alan J

    2008-12-01

    An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [110]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 angstroms-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.

  10. Column ratio mapping: A processing technique for atomic resolution high-angle annular dark-field (HAADF) images

    International Nuclear Information System (INIS)

    Robb, Paul D.; Craven, Alan J.

    2008-01-01

    An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [1 1 0]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 A-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.

  11. The parallel-sequential field subtraction technique for coherent nonlinear ultrasonic imaging

    Science.gov (United States)

    Cheng, Jingwei; Potter, Jack N.; Drinkwater, Bruce W.

    2018-06-01

    Nonlinear imaging techniques have recently emerged which have the potential to detect cracks at a much earlier stage than was previously possible and have sensitivity to partially closed defects. This study explores a coherent imaging technique based on the subtraction of two modes of focusing: parallel, in which the elements are fired together with a delay law and sequential, in which elements are fired independently. In the parallel focusing a high intensity ultrasonic beam is formed in the specimen at the focal point. However, in sequential focusing only low intensity signals from individual elements enter the sample and the full matrix of transmit-receive signals is recorded and post-processed to form an image. Under linear elastic assumptions, both parallel and sequential images are expected to be identical. Here we measure the difference between these images and use this to characterise the nonlinearity of small closed fatigue cracks. In particular we monitor the change in relative phase and amplitude at the fundamental frequencies for each focal point and use this nonlinear coherent imaging metric to form images of the spatial distribution of nonlinearity. The results suggest the subtracted image can suppress linear features (e.g. back wall or large scatters) effectively when instrumentation noise compensation in applied, thereby allowing damage to be detected at an early stage (c. 15% of fatigue life) and reliably quantified in later fatigue life.

  12. Hyperspectral imaging using the single-pixel Fourier transform technique

    Science.gov (United States)

    Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo

    2017-03-01

    Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400-1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes.

  13. RESTORATION TECHNIQUE FOR PLEIADES-HR PANCHROMATIC IMAGES

    Directory of Open Access Journals (Sweden)

    C. Latry

    2012-07-01

    Full Text Available 17th of December 2011 from Kourou Space Centre, French Guyana. Like others high resolution optical satellites, it acquires both panchromatic images, with 70cm spatial resolution, and lower resolution multispectral images with 2.8m spatial resolution. Pleiades-HR is an optimized system, which means that the Modulation Transfer Function has a low value at Nyquist frequency, in order to reduce both the telescope diameter and aliasing effects. Shannon sampling condition is thus met at first order, which also makes classical ground processing, such as image matching or resampling, more justified for a mathematical point of view. Raw images are thus blurry which implies a deconvolution stage that restores sharpness but also increases the noise level in the high frequency domain. A denoising step, based upon wavelet packet coefficients thresholding/shrinkage technique, allows controlling the final noise level. Each of these methods includes numerous parameters that have to be assessed during the inflight commissioning period: deconvolution filter that depends on MTF assessment, instrumental noise model, noise level target for denoised images, wavelet packet decomposition level. This paper aims to precisely describe the deconvolution/denoising algorithms and how their main parameters have been set up during the inflight commissioning stage. Special attention will be given to structured noise induced by Pleiades-HR on board wavelet-based compression algorithm

  14. Application of magnetic resonance imaging (MRI) technique on monitoring flower bud differentiation of tulip

    International Nuclear Information System (INIS)

    Han Haojun; Yang Hongguang; Han Hongbin; Sun Xiaomei

    2009-01-01

    Magnetic resonance imaging (MRI) was used for observing morphogenesis process in the living specimen situation of tulip flower buds. Through a comparison of different MRI imaging formation technique (longitudinal relaxation-T1WI, transverse relaxation time weighted imaging-T2WI, proton density weighted imaging-PDWI), seeking for an accurate and practical MRI technique to observe tulip bulb and differentiation period of flower bud. The results showed that in the demonstration of the morphological characters as well as morphogenesis process of flower bud differentiation, the T1WI was completely consistent with the results of rough slice, PDWI and T1WI also had obviously higher map quality than the T2WI (P<0.05). It is indicated that the magnetic resonance imaging technique could monitor the development of flower bud differentiation in vivo. (authors)

  15. Study on Efficiency of Fusion Techniques for IKONOS Images

    International Nuclear Information System (INIS)

    Liu, Yanmei; Yu, Haiyang; Guijun, Yang; Nie, Chenwei; Yang, Xiaodong; Ren, Dong

    2014-01-01

    Many image fusion techniques have been proposed to achieve optimal resolution in the spatial and spectral domains. Six different merging methods were listed in this paper and the efficiency of fusion techniques was assessed in qualitative and quantitative aspect. Both local and global evaluation parameters were used in the spectral quality and a Laplace filter method was used in spatial quality assessment. By simulation, the spectral quality of the images merged by Brovery was demonstrated to be the worst. In contrast, GS and PCA algorithms, especially the Pansharpening provided higher spectral quality than the standard Brovery, wavelet and CN methods. In spatial quality assessment, the CN method represented best compared with that of others, while the Brovery algorithm was worst. The wavelet parameters that performed best achieved acceptable spectral and spatial quality compared to the others

  16. Improved Sectional Image Analysis Technique for Evaluating Fiber Orientations in Fiber-Reinforced Cement-Based Materials.

    Science.gov (United States)

    Lee, Bang Yeon; Kang, Su-Tae; Yun, Hae-Bum; Kim, Yun Yong

    2016-01-12

    The distribution of fiber orientation is an important factor in determining the mechanical properties of fiber-reinforced concrete. This study proposes a new image analysis technique for improving the evaluation accuracy of fiber orientation distribution in the sectional image of fiber-reinforced concrete. A series of tests on the accuracy of fiber detection and the estimation performance of fiber orientation was performed on artificial fiber images to assess the validity of the proposed technique. The validation test results showed that the proposed technique estimates the distribution of fiber orientation more accurately than the direct measurement of fiber orientation by image analysis.

  17. Phase-coded multi-pulse technique for ultrasonic high-order harmonic imaging of biological tissues in vitro

    International Nuclear Information System (INIS)

    Ma Qingyu; Zhang Dong; Gong Xiufen; Ma Yong

    2007-01-01

    Second or higher order harmonic imaging shows significant improvement in image clarity but is degraded by low signal-noise ratio (SNR) compared with fundamental imaging. This paper presents a phase-coded multi-pulse technique to provide the enhancement of SNR for the desired high-order harmonic ultrasonic imaging. In this technique, with N phase-coded pulses excitation, the received Nth harmonic signal is enhanced by 20 log 10 N dB compared with that in the single-pulse mode, whereas the fundamental and other order harmonic components are efficiently suppressed to reduce image confusion. The principle of this technique is theoretically discussed based on the theory of the finite amplitude sound waves, and examined by measurements of the axial and lateral beam profiles as well as the phase shift of the harmonics. In the experimental imaging for two biological tissue specimens, a plane piston source at 2 MHz is used to transmit a sequence of multiple pulses with equidistant phase shift. The second to fifth harmonic images are obtained using this technique with N = 2 to 5, and compared with the images obtained at the fundamental frequency. Results demonstrate that this technique of relying on higher order harmonics seems to provide a better resolution and contrast of ultrasonic images

  18. Fast magnetic resonance imaging of the knee using a parallel acquisition technique (mSENSE): a prospective performance evaluation

    International Nuclear Information System (INIS)

    Kreitner, K.F.; Romaneehsen, Bernd; Oberholzer, Katja; Dueber, Christoph; Krummenauer, Frank; Mueller, L.P.

    2006-01-01

    The performance of a magnetic resonance (MR) imaging strategy that uses multiple receiver coil elements and integrated parallel imaging techniques (iPAT) in traumatic and degenerative disorders of the knee and to compare this technique with a standard MR imaging protocol was evaluated. Ninety patients with suspected internal derangements of the knee joint prospectively underwent MR imaging at 1.5 T. For signal detection, a 6-channel array coil was used. All patients were investigated with a standard imaging protocol consisting of different turbo spin-echo sequences proton density (PD), T 2 -weighted turbo spin echo (TSE) with and without fat suppression in three imaging planes. All sequences were repeated with an integrated parallel acquisition technique (iPAT) using the modified sensitivity encoding (mSENSE) algorithm with an acceleration factor of 2. Two radiologists independently evaluated and scored all images with regard to overall image quality, artefacts and pathologic findings. Agreement of the parallel ratings between readers and imaging techniques, respectively, was evaluated by means of pairwise kappa coefficients that were stratified for the area of evaluation. Agreement between the parallel readers for both the iPAT imaging and the conventional technique, respectively, as well as between imaging techniques was found encouraging with inter-observer kappa values ranging between 0.78 and 0.98 for both imaging techniques, and the inter-method kappa values ranging between 0.88 and 1.00 for both clinical readers. All pathological findings (e.g. occult fractures, meniscal and cruciate ligament tears, torn and interpositioned Hoffa's cleft, cartilage damage) were detected by both techniques with comparable performance. The use of iPAT lead to a 48% reduction of acquisition time compared with standard technique. Parallel imaging using mSENSE proved to be an efficient and economic tool for fast musculoskeletal MR imaging of the knee joint with comparable

  19. Reconstructing flaw image using dataset of full matrix capture technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hun; Kim, Yong Sik; Lee, Jeong Seok [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    A conventional phased array ultrasonic system offers the ability to steer an ultrasonic beam by applying independent time delays of individual elements in the array and produce an ultrasonic image. In contrast, full matrix capture (FMC) is a data acquisition process that collects a complete matrix of A-scans from every possible independent transmit-receive combination in a phased array transducer and makes it possible to reconstruct various images that cannot be produced by conventional phased array with the post processing as well as images equivalent to a conventional phased array image. In this paper, a basic algorithm based on the LLL mode total focusing method (TFM) that can image crack type flaws is described. And this technique was applied to reconstruct flaw images from the FMC dataset obtained from the experiments and ultrasonic simulation.

  20. Innovative Hyperspectral Imaging-Based Techniques for Quality Evaluation of Fruits and Vegetables: A Review

    Directory of Open Access Journals (Sweden)

    Yuzhen Lu

    2017-02-01

    Full Text Available New, non-destructive sensing techniques for fast and more effective quality assessment of fruits and vegetables are needed to meet the ever-increasing consumer demand for better, more consistent and safer food products. Over the past 15 years, hyperspectral imaging has emerged as a new generation of sensing technology for non-destructive food quality and safety evaluation, because it integrates the major features of imaging and spectroscopy, thus enabling the acquisition of both spectral and spatial information from an object simultaneously. This paper first provides a brief overview of hyperspectral imaging configurations and common sensing modes used for food quality and safety evaluation. The paper is, however, focused on the three innovative hyperspectral imaging-based techniques or sensing platforms, i.e., spectral scattering, integrated reflectance and transmittance, and spatially-resolved spectroscopy, which have been developed in our laboratory for property and quality evaluation of fruits, vegetables and other food products. The basic principle and instrumentation of each technique are described, followed by the mathematical methods for processing and extracting critical information from the acquired data. Applications of these techniques for property and quality evaluation of fruits and vegetables are then presented. Finally, concluding remarks are given on future research needs to move forward these hyperspectral imaging techniques.

  1. Biomedical Imaging and Computational Modeling in Biomechanics

    CERN Document Server

    Iacoviello, Daniela

    2013-01-01

    This book collects the state-of-art and new trends in image analysis and biomechanics. It covers a wide field of scientific and cultural topics, ranging from remodeling of bone tissue under the mechanical stimulus up to optimizing the performance of sports equipment, through the patient-specific modeling in orthopedics, microtomography and its application in oral and implant research, computational modeling in the field of hip prostheses, image based model development and analysis of the human knee joint, kinematics of the hip joint, micro-scale analysis of compositional and mechanical properties of dentin, automated techniques for cervical cell image analysis, and iomedical imaging and computational modeling in cardiovascular disease.   The book will be of interest to researchers, Ph.D students, and graduate students with multidisciplinary interests related to image analysis and understanding, medical imaging, biomechanics, simulation and modeling, experimental analysis.

  2. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Berbeco, R. [Brigham and Women’s Hospital and Dana-Farber Cancer Institute (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  3. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Low, D. [University of California Los Angeles: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  4. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Keall, P. [University of Sydney (Australia)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  5. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    International Nuclear Information System (INIS)

    Low, D.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  6. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    International Nuclear Information System (INIS)

    Keall, P.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  7. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    International Nuclear Information System (INIS)

    Berbeco, R.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  8. VLSI ARCHITECTURE FOR IMAGE COMPRESSION THROUGH ADDER MINIMIZATION TECHNIQUE AT DCT STRUCTURE

    Directory of Open Access Journals (Sweden)

    N.R. Divya

    2014-08-01

    Full Text Available Data compression plays a vital role in multimedia devices to present the information in a succinct frame. Initially, the DCT structure is used for Image compression, which has lesser complexity and area efficient. Similarly, 2D DCT also has provided reasonable data compression, but implementation concern, it calls more multipliers and adders thus its lead to acquire more area and high power consumption. To contain an account of all, this paper has been dealt with VLSI architecture for image compression using Rom free DA based DCT (Discrete Cosine Transform structure. This technique provides high-throughput and most suitable for real-time implementation. In order to achieve this image matrix is subdivided into odd and even terms then the multiplication functions are removed by shift and add approach. Kogge_Stone_Adder techniques are proposed for obtaining a bit-wise image quality which determines the new trade-off levels as compared to the previous techniques. Overall the proposed architecture produces reduced memory, low power consumption and high throughput. MATLAB is used as a funding tool for receiving an input pixel and obtaining output image. Verilog HDL is used for implementing the design, Model Sim for simulation, Quatres II is used to synthesize and obtain details about power and area.

  9. Comparative study of quantitative phase imaging techniques for refractometry of optical fibers

    Science.gov (United States)

    de Dorlodot, Bertrand; Bélanger, Erik; Bérubé, Jean-Philippe; Vallée, Réal; Marquet, Pierre

    2018-02-01

    The refractive index difference profile of optical fibers is the key design parameter because it determines, among other properties, the insertion losses and propagating modes. Therefore, an accurate refractive index profiling method is of paramount importance to their development and optimization. Quantitative phase imaging (QPI) is one of the available tools to retrieve structural characteristics of optical fibers, including the refractive index difference profile. Having the advantage of being non-destructive, several different QPI methods have been developed over the last decades. Here, we present a comparative study of three different available QPI techniques, namely the transport-of-intensity equation, quadriwave lateral shearing interferometry and digital holographic microscopy. To assess the accuracy and precision of those QPI techniques, quantitative phase images of the core of a well-characterized optical fiber have been retrieved for each of them and a robust image processing procedure has been applied in order to retrieve their refractive index difference profiles. As a result, even if the raw images for all the three QPI methods were suffering from different shortcomings, our robust automated image-processing pipeline successfully corrected these. After this treatment, all three QPI techniques yielded accurate, reliable and mutually consistent refractive index difference profiles in agreement with the accuracy and precision of the refracted near-field benchmark measurement.

  10. Diagnostic accuracy of new imaging techniques in breast diseases

    Energy Technology Data Exchange (ETDEWEB)

    Gordenne, W; Bauduin, E [Liege Univ. (Belgium)

    1989-01-01

    During the last decade, the hypothetical carcinogenic effects of mammography have lead to new technical developments in X-ray diagnosis and to use of other imaging techniques such as ultrasonography (US), transillumination, magnetic resonance imaging (MRI). Many preliminary studies were published but few clinical trials are really convincing. According to the definition of a diagnostic tool, none of these new modalities is supposed to supplant mammography in the diagnosis of breast cancer. Improvements are expected by digital mammography in the near future. (Authors).

  11. Comparative study of image registration techniques for bladder video-endoscopy

    Science.gov (United States)

    Ben Hamadou, Achraf; Soussen, Charles; Blondel, Walter; Daul, Christian; Wolf, Didier

    2009-07-01

    Bladder cancer is widely spread in the world. Many adequate diagnosis techniques exist. Video-endoscopy remains the standard clinical procedure for visual exploration of the bladder internal surface. However, video-endoscopy presents the limit that the imaged area for each image is about nearly 1 cm2. And, lesions are, typically, spread over several images. The aim of this contribution is to assess the performance of two mosaicing algorithms leading to the construction of panoramic maps (one unique image) of bladder walls. The quantitative comparison study is performed on a set of real endoscopic exam data and on simulated data relative to bladder phantom.

  12. An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    Science.gov (United States)

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128

  13. BOLD magnetic resonance imaging in nephrology

    Directory of Open Access Journals (Sweden)

    Hall ME

    2018-03-01

    Full Text Available Michael E Hall,1,2 Jennifer H Jordan,3 Luis A Juncos,1,2 W Gregory Hundley,3 John E Hall2 1Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA; 2Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA; 3Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA Abstract: Magnetic resonance (MR imaging, a non-invasive modality that provides anatomic and physiologic information, is increasingly used for diagnosis of pathophysiologic conditions and for understanding renal physiology in humans. Although functional MR imaging methods were pioneered to investigate the brain, they also offer powerful techniques for investigation of other organ systems such as the kidneys. However, imaging the kidneys provides unique challenges due to potential complications from contrast agents. Therefore, development of non-contrast techniques to study kidney anatomy and physiology is important. Blood oxygen level-dependent (BOLD MR is a non-contrast imaging technique that provides functional information related to renal tissue oxygenation in various pathophysiologic conditions. Here we discuss technical considerations, clinical uses and future directions for use of BOLD MR as well as complementary MR techniques to better understand renal pathophysiology. Our intent is to summarize kidney BOLD MR applications for the clinician rather than focusing on the complex physical challenges that functional MR imaging encompasses; however, we briefly discuss some of those issues. Keywords: functional MRI, kidney, oxygenation, chronic kidney disease 

  14. A new approach to electrical impedance imaging technique

    International Nuclear Information System (INIS)

    Afroj Quadir, K.; Nasir, F.; Rahman, M.; Rabbani, K.S.

    2004-09-01

    It is possible to obtain a 2 dimensional (2D) image of a volume conductor, to locate a few widely separated objects, by driving ac constant currents through two orthogonal pairs of electrodes and measuring the resulting potential differences between several diagonally placed electrodes at the centre and back-projecting their impedance values along equi-potential lines. This has been termed as Pigeon Hole Imaging (PHI). Experimental verification has been attempted using a small insulating object placed at different locations in a saline filled 2D phantom. For a 6 x 6 matrix, the image in 16 pixels in close proximity of the diagonal along which electrodes are arranged, coincide with the object positions, while they do nt for the remaining 20 pixels. We applied a new technique where image smearing patterns have been used to correct the images in 14 of these pixels while 6 pixels near the two opposite comers still remain uncertain. Thus 30 pixels out of 36 give the right object position which may be termed a success. The concept may be extended further to higher order matrices by increasing the number of diagonal electrodes. The present work mainly concentrates on the feasibility of localization of a single small object in one matrix position of the image. (author)

  15. Image Analysis Technique for Material Behavior Evaluation in Civil Structures

    Science.gov (United States)

    Moretti, Michele; Rossi, Gianluca

    2017-01-01

    The article presents a hybrid monitoring technique for the measurement of the deformation field. The goal is to obtain information about crack propagation in existing structures, for the purpose of monitoring their state of health. The measurement technique is based on the capture and analysis of a digital image set. Special markers were used on the surface of the structures that can be removed without damaging existing structures as the historical masonry. The digital image analysis was done using software specifically designed in Matlab to follow the tracking of the markers and determine the evolution of the deformation state. The method can be used in any type of structure but is particularly suitable when it is necessary not to damage the surface of structures. A series of experiments carried out on masonry walls of the Oliverian Museum (Pesaro, Italy) and Palazzo Silvi (Perugia, Italy) have allowed the validation of the procedure elaborated by comparing the results with those derived from traditional measuring techniques. PMID:28773129

  16. Point of Technique

    African Journals Online (AJOL)

    .

    Minimally invasive techniques are becoming popular choice for the recent times. These techniques are lowering the cost and giving the best cosmetic results. For cardiovascular surgery these techniques are much more newer and much more unknown. Open lumbar sympathectomy for certain indications is a very well ...

  17. Application of acoustic microscopy to assessment of cardiovascular biomechanics

    Science.gov (United States)

    Saijo, Yoshifumi; Sasaki, Hidehiko; Nitta, Shin-ichi; Tanaka, Motonao; Joergensen, Claus S.; Falk, Erling

    2002-11-01

    Acoustic microscopy provides information on physical and mechanical properties of biological tissues, while optical microscopy with various staining techniques provides chemical properties. The biomechanics of tissues is especially important in cardiovascular system because its pathophysiology is closely related with mechanical stresses such as blood pressure or blood flow. A scanning acoustic microscope (SAM) system with tone-burst ultrasound in the frequency range of 100-200 MHz has been developed, and attenuation and sound speed of tissues have been measured. In human coronary arteries, attenuation and sound speed were high in calcification and collagen, while both values were low in smooth muscle and lipid. Another SAM system with 800-MHz-1.3-GHz ultrasound was applied for aortas of Apo-E deficient mouse, which is known to develop atherosclerosis. Attenuation of ultrasound was significantly higher in type 1 collagen compared to type 3 collagen. Recently, a new type FFT-SAM using a single-pulse, broadband frequency range ultrasound (20-150 MHz) has been developed. Cardiac allograft was observed by FFT-SAM and the acoustic properties were able to grade allograft rejection. SAM provides very useful information for assessing cardiovascular biomechanics and for understanding normal and abnormal images of clinical ultrasound.

  18. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    Science.gov (United States)

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  19. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Zhiwei Ye

    2015-01-01

    Full Text Available Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  20. Tooling Techniques Enhance Medical Imaging

    Science.gov (United States)

    2012-01-01

    mission. The manufacturing techniques developed to create the components have yielded innovations advancing medical imaging, transportation security, and even energy efficiency.