WorldWideScience

Sample records for cardioprotective factor up-regulated

  1. Urban air pollution produces up-regulation of myocardial inflammatory genes and dark chocolate provides cardioprotection.

    Villarreal-Calderon, Rodolfo; Reed, William; Palacios-Moreno, Juan; Keefe, Sheyla; Herritt, Lou; Brooks, Diane; Torres-Jardón, Ricardo; Calderón-Garcidueñas, Lilian

    2012-05-01

    Air pollution is a serious environmental problem. Elderly subjects show increased cardiac morbidity and mortality associated with air pollution exposure. Mexico City (MC) residents are chronically exposed to high concentrations of fine particulate matter (PM(2.5)) and PM-associated lipopolysaccharides (PM-LPS). To test the hypothesis that chronic exposure to urban pollution produces myocardial inflammation, female Balb-c mice age 4 weeks were exposed for 16 months to two distinctly different polluted areas within MC: southwest (SW) and northwest (NW). SW mice were given either no treatment or chocolate 2g/9.5 mg polyphenols/3 times per week. Results were compared to mice kept in clean air. Key inflammatory mediator genes: cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the LPS receptor CD14 (cluster of differentiation antigen 14) were measured by real-time polymerase chain reaction. Also explored were target NFκB (nuclear factor κB), oxidative stress and antioxidant defense genes. TNF-α, IL-6, and COX-2 were significantly increased in both NW and SWMC mice (p=0.0001). CD14 was up-regulated in SW mice in keeping with the high exposures to particulate matter associated endotoxin. Chocolate administration resulted in a significant down-regulation of TNF-α (p<0.0001), IL-6 (p=0.01), and IL-1β (p=0.02). The up-regulation of antioxidant enzymes and the down-regulation of potent oxidases, toll-like receptors, and pro-apoptotic signaling genes completed the protective profile. Exposure to air pollution produces up-regulation of inflammatory myocardial genes and endotoxin plays a key role in the inflammatory response. Regular consumption of dark chocolate may reduce myocardial inflammation and have cardioprotective properties in the setting of air pollution exposures. Copyright © 2010 Elsevier GmbH. All rights reserved.

  2. Utrophin up-regulation by an artificial transcription factor in transgenic mice.

    Elisabetta Mattei

    2007-08-01

    Full Text Available Duchenne Muscular Dystrophy (DMD is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter "A". Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.

  3. TRX is up-regulated by fibroblast growth factor-2 in lung carcinoma.

    Deng, Zheng-Hao; Cao, Hui-Qiu; Hu, Yong-Bin; Wen, Ji-Fang; Zhou, Jian-Hua

    2011-01-01

    We have previously shown that exogenous fibroblast growth factor-2 (FGF-2) inhibits apoptosis of the small-cell lung cancer (SCLC) cell line NCI-H446, but the underlying mechanism remains unknown. In this study, the protein profiles of FGF-2-treated and untreated NCI-H446 cells were determined by 2-D gel electrophoresis combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and bioinformatics. Differential expression analysis of the protein profiles after FGF-2 treatment identified a total of 24 protein spots, of which nine were up-regulated and 15 were down-regulated. Four proteins were identified by MALDI-TOF-MS: thioredoxin (TRX), visfatin, ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) and Cu/Zn superoxide dismutase (CuZn-SOD). Western blotting revealed that TRX was up-regulated in NCI-H446 and A549 cells treated with FGF-2. Furthermore, immunohistochemical staining confirmed that both FGF-2 and TRX were overexpressed in lung cancer tissues and could be correlated with both lymph node metastasis and clinical stage. These data indicate that TRX may be involved in the FGF-2 signaling pathway. © 2010 The Authors. APMIS © 2010 APMIS.

  4. Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues.

    Almeida, Tânia; Menéndez, Esther; Capote, Tiago; Ribeiro, Teresa; Santos, Conceição; Gonçalves, Sónia

    2013-01-15

    The molecular processes associated with cork development in Quercus suber L. are poorly understood. A previous molecular approach identified a list of genes potentially important for cork formation and differentiation, providing a new basis for further molecular studies. This report is the first molecular characterization of one of these candidate genes, QsMYB1, coding for an R2R3-MYB transcription factor. The R2R3-MYB gene sub-family has been described as being involved in the phenylpropanoid and lignin pathways, both involved in cork biosynthesis. The results showed that the expression of QsMYB1 is putatively mediated by an alternative splicing (AS) mechanism that originates two different transcripts (QsMYB1.1 and QsMYB1.2), differing only in the 5'-untranslated region, due to retention of the first intron in one of the variants. Moreover, within the retained intron, a simple sequence repeat (SSR) was identified. The upstream regulatory region of QsMYB1 was extended by a genome walking approach, which allowed the identification of the putative gene promoter region. The relative expression pattern of QsMYB1 transcripts determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) revealed that both transcripts were up-regulated in cork tissues; the detected expression was several times higher in newly formed cork harvested from trees producing virgin, second or reproduction cork when compared with wood. Moreover, the expression analysis of QsMYB1 in several Q. suber organs showed very low expression in young branches and roots, whereas in leaves, immature acorns or male flowers, no expression was detected. These preliminary results suggest that QsMYB1 may be related to secondary growth and, in particular, with the cork biosynthesis process with a possible alternative splicing mechanism associated with its regulatory function. Copyright © 2012 Elsevier GmbH. All rights reserved.

  5. Histones Induce the Procoagulant Phenotype of Endothelial Cells through Tissue Factor Up-Regulation and Thrombomodulin Down-Regulation.

    Kim, Ji Eun; Yoo, Hyun Ju; Gu, Ja Yoon; Kim, Hyun Kyung

    2016-01-01

    The high circulating levels of histones found in various thrombotic diseases may compromise the anticoagulant barrier of endothelial cells. We determined how histones affect endothelial procoagulant tissue factor (TF) and anticoagulant thrombomodulin (TM). Surface antigens, soluble forms, and mRNA levels of TF and TM were measured by flow cytometry, ELISA, and real-time RT-PCR, respectively. TF and TM activity were measured using procoagulant activity, thrombin generation, or chromogenic assays. Involvement of the toll-like receptor (TLR) was assessed using the neutralizing antibodies. Histones dose-dependently induced surface antigens, activity and mRNA levels of endothelial TF. Histone-treated endothelial cells significantly shortened the lag time and enhanced the endogenous thrombin potential of normal plasma, which was normalized by a TF neutralizing antibody. Histones induced phosphatidylserine and protein-disulfide isomerase expression in endothelial cells. Histones also reduced the surface antigen, activity, and mRNA levels of endothelial TM. Polysialic acid and heparin reversed the histone-induced TF up-regulation and TM down-regulation. Activated protein C did not affect the TF up-regulation, but interrupted TM down-regulation. TLR2, and TLR4 inhibitors partially blocked the TF up-regulation. Histones induced the endothelial procoagulant phenotype through TF up-regulation and TM down-regulation. The effects of histones were partly mediated by TLR2, TLR4. Strategies to inhibit the harmful effects of histones in endothelial cells may be required in order to prevent a thrombotic environment.

  6. Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice

    Yoneda, Mitsugu; Sugimoto, Naotoshi; Katakura, Masanori; Matsuzaki, Kentaro; Tanigami, Hayate; Yachie, Akihiro; Ohno-Shosaku, Takako; Shido, Osamu

    2017-01-01

    Theobromine, which is a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. Theobromine works as a phosphodiesterase (PDE) inhibitor to increase intracellular cyclic adenosine monophosphate (cAMP). cAMP activates the cAMP-response element-binding protein (CREB), which is involved in a large variety of brain processes, including the induction of the brain-derived neurotrophic factor (BDNF). BDNF supports cell survival and neuronal functions, including learning and m...

  7. Hypoxic stress up-regulates the expression of Toll-like receptor 4 in macrophages via hypoxia-inducible factor.

    Kim, So Young; Choi, Yong Jun; Joung, Sun Myung; Lee, Byung Ho; Jung, Yi-Sook; Lee, Joo Young

    2010-04-01

    Toll-like receptors (TLRs) are germline-encoded innate immune receptors that recognize invading micro-organisms and induce immune and inflammatory responses. Deregulation of TLRs is known to be closely linked to various immune disorders and inflammatory diseases. Cells at sites of inflammation are exposed to hypoxic stress, which further aggravates inflammatory processes. We have examined if hypoxic stress modulates the TLR activity of macrophages. Hypoxia and CoCl(2) (a hypoxia mimetic) enhanced the expression of TLR4 messenger RNA and protein in macrophages (RAW264.7 cells), whereas the messenger RNA of other TLRs was not increased. To determine the underlying mechanism, we investigated the role of hypoxia-inducible factor 1 (HIF-1) in the regulation of TLR4 expression. Knockdown of HIF-1alpha expression by small interfering RNA inhibited hypoxia-induced and CoCl(2)-induced TLR4 expression in macrophages, while over-expression of HIF-1alpha potentiated TLR4 expression. Chromatin immunoprecipitation assays revealed that HIF-1alpha binds to the TLR4 promoter region under hypoxic conditions. In addition, deletion or mutation of a putative HIF-1-binding motif in the TLR4 promoter greatly attenuated HIF-1alpha-induced TLR4 promoter reporter expression. Up-regulation of TLR4 expression by hypoxic stress enhanced the response of macrophages to lipopolysaccharide, resulting in increased expression of cyclooxygenase-2, interleukin-6, regulated on activation normal T cell expressed and secreted, and interferon-inducible protein-10. These results demonstrate that TLR4 expression in macrophages is up-regulated via HIF-1 in response to hypoxic stress, suggesting that hypoxic stress at sites of inflammation enhances susceptibility to subsequent infection and inflammatory signals by up-regulating TLR4.

  8. Up-regulation of Ciliary Neurotrophic Factor in Astrocytes by Aspirin

    Modi, Khushbu K.; Sendtner, Michael; Pahan, Kalipada

    2013-01-01

    Ciliary neurotrophic factor (CNTF) is a promyelinating trophic factor, and the mechanisms by which CNTF expression could be increased in the brain are poorly understood. Acetylsalicylic acid (aspirin) is one of the most widely used analgesics. Interestingly, aspirin increased mRNA and protein expression of CNTF in primary mouse and human astrocytes in a dose- and time-dependent manner. Aspirin induced the activation of protein kinase A (PKA) but not protein kinase C (PKC). H-89, an inhibitor of PKA, abrogated aspirin-induced expression of CNTF. The activation of cAMP-response element-binding protein (CREB), but not NF-κB, by aspirin, the abrogation of aspirin-induced expression of CNTF by siRNA knockdown of CREB, the presence of a consensus cAMP-response element in the promoter of CNTF, and the recruitment of CREB and CREB-binding protein to the CNTF promoter by aspirin suggest that aspirin increases the expression of the Cntf gene via the activation of CREB. Furthermore, we demonstrate that aspirin-induced astroglial CNTF was also functionally active and that supernatants of aspirin-treated astrocytes of wild type, but not Cntf null, mice increased myelin-associated proteins in oligodendrocytes and protected oligodendrocytes from TNF-α insult. These results highlight a new and novel myelinogenic property of aspirin, which may be of benefit for multiple sclerosis and other demyelinating disorders. PMID:23653362

  9. Up-regulation of hepatoma-derived growth factor facilitates tumor progression in malignant melanoma [corrected].

    Han-En Tsai

    Full Text Available Cutaneous malignant melanoma is the fastest increasing malignancy in humans. Hepatoma-derived growth factor (HDGF is a novel growth factor identified from human hepatoma cell line. HDGF overexpression is correlated with poor prognosis in various types of cancer including melanoma. However, the underlying mechanism of HDGF overexpression in developing melanoma remains unclear. In this study, human melanoma cell lines (A375, A2058, MEL-RM and MM200 showed higher levels of HDGF gene expression, whereas human epidermal melanocytes (HEMn expressed less. Exogenous application of HDGF stimulated colony formation and invasion of human melanoma cells. Moreover, HDGF overexpression stimulated the degree of invasion and colony formation of B16-F10 melanoma cells whereas HDGF knockdown exerted opposite effects in vitro. To evaluate the effects of HDGF on tumour growth and metastasis in vivo, syngeneic mouse melanoma and metastatic melanoma models were performed by manipulating the gene expression of HDGF in melanoma cells. It was found that mice injected with HDGF-overexpressing melanoma cells had greater tumour growth and higher metastatic capability. In contrast, mice implanted with HDGF-depleted melanoma cells exhibited reduced tumor burden and lung metastasis. Histological analysis of excised tumors revealed higher degree of cell proliferation and neovascularization in HDGF-overexpressing melanoma. The present study provides evidence that HDGF promotes tumor progression of melanoma and targeting HDGF may constitute a novel strategy for the treatment of melanoma.

  10. Hepatocyte growth factor enhances death receptor-induced apoptosis by up-regulating DR5

    Li, Yang; Fan, Xing; Goodwin, C Rory; Laterra, John; Xia, Shuli

    2008-01-01

    Hepatocyte growth factor (HGF) and its receptor c-MET are commonly expressed in malignant gliomas and embryonic neuroectodermal tumors including medulloblastoma and appear to play an important role in the growth and dissemination of these malignancies. Dependent on cell context and the involvement of specific downstream effectors, both pro- and anti-apoptotic effects of HGF have been reported. Human medulloblastoma cells were treated with HGF for 24–72 hours followed by death receptor ligand TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) for 24 hours. Cell death was measured by MTT and Annexin-V/PI flow cytometric analysis. Changes in expression levels of targets of interest were measured by Northern blot analysis, quantitative reverse transcription-PCR, Western blot analysis as well as immunoprecipitation. In this study, we show that HGF promotes medulloblastoma cell death induced by TRAIL. TRAIL alone triggered apoptosis in DAOY cells and death was enhanced by pre-treating the cells with HGF for 24–72 h prior to the addition of TRAIL. HGF (100 ng/ml) enhanced TRAIL (10 ng/ml) induced cell death by 36% (P < 0.001). No cell death was associated with HGF alone. Treating cells with PHA-665752, a specific c-Met receptor tyrosine kinase inhibitor, significantly abrogated the enhancement of TRAIL-induced cell death by HGF, indicating that its death promoting effect requires activation of its canonical receptor tyrosine kinase. Cell death induced by TRAIL+HGF was predominately apoptotic involving both extrinsic and intrinsic pathways as evidenced by the increased activation of caspase-3, 8, 9. Promotion of apoptosis by HGF occurred via the increased expression of the death receptor DR5 and enhanced formation of death-inducing signal complexes (DISC). Taken together, these and previous findings indicate that HGF:c-Met pathway either promotes or inhibits medulloblastoma cell death via pathway and context specific mechanisms

  11. Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice.

    Yoneda, Mitsugu; Sugimoto, Naotoshi; Katakura, Masanori; Matsuzaki, Kentaro; Tanigami, Hayate; Yachie, Akihiro; Ohno-Shosaku, Takako; Shido, Osamu

    2017-01-01

    Theobromine, which is a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. Theobromine works as a phosphodiesterase (PDE) inhibitor to increase intracellular cyclic adenosine monophosphate (cAMP). cAMP activates the cAMP-response element-binding protein (CREB), which is involved in a large variety of brain processes, including the induction of the brain-derived neurotrophic factor (BDNF). BDNF supports cell survival and neuronal functions, including learning and memory. Thus, cAMP/CREB/BDNF pathways play an important role in learning and memory. Here, we investigated whether orally administered theobromine could act as a PDE inhibitor centrally and affect cAMP/CREB/BDNF pathways and learning behavior in mice. The mice were divided into two groups. The control group (CN) was fed a normal diet, whereas the theobromine group (TB) was fed a diet supplemented with 0.05% theobromine for 30 days. We measured the levels of theobromine, phosphorylated vasodilator-stimulated phosphoprotein (p-VASP), phosphorylated CREB (p-CREB), and BDNF in the brain. p-VASP was used as an index of cAMP increases. Moreover, we analyzed the performance of the mice on a three-lever motor learning task. Theobromine was detectable in the brains of TB mice. The brain levels of p-VASP, p-CREB, and BDNF were higher in the TB mice compared with those in the CN mice. In addition, the TB mice performed better on the three-lever task than the CN mice did. These results strongly suggested that orally administered theobromine acted as a PDE inhibitor in the brain, and it augmented the cAMP/CREB/BDNF pathways and motor learning in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Up-regulation of intestinal vascular endothelial growth factor by Afa/Dr diffusely adhering Escherichia coli.

    Gaëlle Cane

    Full Text Available BACKGROUND: Angiogenesis has been recently described as a novel component of inflammatory bowel disease pathogenesis. The level of vascular endothelial growth factor (VEGF has been found increased in Crohn's disease and ulcerative colitis mucosa. To question whether a pro-inflammatory Escherichia coli could regulate the expression of VEGF in human intestinal epithelial cells, we examine the response of cultured human colonic T84 cells to infection by E. coli strain C1845 that belongs to the typical Afa/Dr diffusely adhering E. coli family (Afa/Dr DAEC. METHODOLOGY: VEGF mRNA expression was examined by Northern blotting and q-PCR. VEGF protein levels were assayed by ELISA and its bioactivity was analysed in endothelial cells. The bacterial factor involved in VEGF induction was identified using recombinant E. coli expressing Dr adhesin, purified Dr adhesin and lipopolysaccharide. The signaling pathway activated for the up-regulation of VEGF was identified using a blocking monoclonal anti-DAF antibody, Western blot analysis and specific pharmacological inhibitors. PRINCIPAL FINDINGS: C1845 bacteria induce the production of VEGF protein which is bioactive. VEGF is induced by adhering C1845 in both a time- and bacteria concentration-dependent manner. This phenomenon is not cell line dependent since we reproduced this observation in intestinal LS174, Caco2/TC7 and INT407 cells. Up-regulation of VEGF production requires: (1 the interaction of the bacterial F1845 adhesin with the brush border-associated decay accelerating factor (DAF, CD55 acting as a bacterial receptor, and (2 the activation of a Src protein kinase upstream of the activation of the Erk and Akt signaling pathways. CONCLUSIONS: Results demonstrate that a Afa/Dr DAEC strain induces an adhesin-dependent activation of DAF signaling that leads to the up-regulation of bioactive VEGF in cultured human intestinal cells. Thus, these results suggest a link between an entero-adherent, pro

  13. Differential effect of glucocorticoids on tumour necrosis factor production in mice: up-regulation by early pretreatment with dexamethasone.

    Fantuzzi, G; Demitri, M T; Ghezzi, P

    1994-04-01

    Glucocorticoids (GC) are well known inhibitors of tumour necrosis factor (TNF) production. We investigated the role of endogenous GC in the regulation of TNF production in mice treated with lipopolysaccharide (LPS) using a pretreatment with dexamethasone (DEX) to down-regulate the hypothalamus-pituitary-adrenal axis (HPA). Short-term DEX pretreatment (up to 12 h before LPS) inhibited TNF production, but earlier (24-48 h) pretreatments potentiated it. This up-regulating effect was not observed in adrenalectomized mice or when GC synthesis was inhibited with cyanoketone (CK). This effect could not be explained only by the suppression of LPS-induced corticosterone (CS) levels induced by DEX, since a 48-h pretreatment potentiated TNF production without affecting LPS-induced CS levels. On the other hand, mice chronically pretreated with DEX were still responsive to its inhibitory effect on TNF production, thus ruling out the possibility of a decreased responsiveness to GC.

  14. β5 Integrin Up-Regulation in Brain-Derived Neurotrophic Factor Promotes Cell Motility in Human Chondrosarcoma

    Li, Te-Mao; Fong, Yi-Chin; Liu, Shan-Chi; Chen, Po-Chun; Tang, Chih-Hsin

    2013-01-01

    Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis; it has a poor prognosis and shows a predilection for metastasis to the lungs. Brain derived neurotrophic factor (BDNF) is a small-molecule protein from the neurotrophin family of growth factors that is associated with the disease status and outcomes of cancers. However, the effect of BDNF on migration activity in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma tissues showed significant expression of BDNF, which was higher than that in normal cartilage and primary chondrocytes. We also found that BDNF increased the migration and expression of β5 integrin in human chondrosarcoma cells. In addition, knockdown of BDNF expression markedly inhibited migratory activity. BDNF-mediated migration and β5 integrin up-regulation were attenuated by antibody, inhibitor, or siRNA against the TrkB receptor. Pretreatment of chondrosarcoma cells with PI3K, Akt, and NF-κB inhibitors or mutants also abolished BDNF-promoted migration and integrin expression. The PI3K, Akt, and NF-κB signaling pathway was activated after BDNF treatment. Taken together, our results indicate that BDNF enhances the migration of chondrosarcoma by increasing β5 integrin expression through a signal transduction pathway that involves the TrkB receptor, PI3K, Akt, and NF-κB. BDNF thus represents a promising new target for treating chondrosarcoma metastasis. PMID:23874483

  15. Up-regulation of insulin-like growth factor 2 by ketamine requires glycogen synthase kinase-3 inhibition

    Grieco, Steven F.; Cheng, Yuyan; Eldar-Finkelman, Hagit; Jope, Richard S.; Beurel, Eléonore

    2016-01-01

    An antidepressant dose of the rapidly-acting ketamine inhibits glycogen synthase kinase-3 (GSK3) in mouse hippocampus, and this inhibition is required for the antidepressant effect of ketamine in learned helplessness depression-like behavior. Here we report that treatment with an antidepressant dose of ketamine (10 mg/kg) increased expression of insulin-like growth factor 2 (IGF2) in mouse hippocampus, an effect that required ketamine-induced inhibition of GSK3. Ketamine also inhibited hippocampal GSK3 and increased expression of hippocampal IGF2 in mice when administered after the induction of learned helplessness. Treatment with the specific GSK3 inhibitor L803-mts was sufficient to up-regulate hippocampal IGF2 expression. Administration of IGF2 siRNA reduced ketamine's antidepressant effect in the learned helplessness paradigm. Mice subjected to the learned helplessness paradigm were separated into two groups, those that were resilient (non-depressed) and those that were susceptible (depressed). Non-depressed resilient mice displayed higher expression of IGF2 than susceptible mice. These results indicate that IGF2 contributes to ketamine's antidepressant effect and that IGF2 may confer resilience to depression-like behavior. PMID:27542584

  16. Up-regulation of CHAF1A, a poor prognostic factor, facilitates cell proliferation of colon cancer

    Wu, Zehua; Cui, Feifei; Yu, Fudong; Peng, Xiao; Jiang, Tao; Chen, Dawei [Department of General Surgery, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Lu, Su [Department of Pathology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Tang, Huamei, E-mail: tanghuamei@gmail.com [Department of Pathology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Peng, Zhihai, E-mail: zhihai.peng@hotmail.com [Department of General Surgery, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China)

    2014-06-27

    Highlights: • We identified that CHAF1A was up-regulated in colon tumor mucosa in TMA. • The expression pattern of CHAF1A was validated with qPCR and western-blot. • CHAF1A overexpression is an independent indicator for poor colon cancer survival. • CHAF1A facilitates cell proliferation of colon cancer both in vitro and in vivo. - Abstract: Deregulation of chromatin assembly factor 1, p150 subunit A (CHAF1A) has recently been reported to be involved in the development of some cancer types. In this study, we identified that the frequency of positive CHAF1A staining in primary tumor mucosa (45.8%, 93 of 203 samples) was significantly elevated compared to that in paired normal mucosa (18.7%, 38 of 203 samples). The increased expression was strongly associated with cancer stage, tumor invasion, and histological grade. The five-year survival rate of patients with CHAF1A-positive tumors was remarkably lower than that of patients with CHAF1A-negative tumors. Colon cancer cells with CHAF1A knockdown exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate as well as impaired colon tumorigenicity in nude mice. Hence, CHAF1A upregulation functions as a poor prognostic indicator of colon cancer, potentially contributing to its progression by mediating cancer cell proliferation.

  17. Up-regulation of CHAF1A, a poor prognostic factor, facilitates cell proliferation of colon cancer

    Wu, Zehua; Cui, Feifei; Yu, Fudong; Peng, Xiao; Jiang, Tao; Chen, Dawei; Lu, Su; Tang, Huamei; Peng, Zhihai

    2014-01-01

    Highlights: • We identified that CHAF1A was up-regulated in colon tumor mucosa in TMA. • The expression pattern of CHAF1A was validated with qPCR and western-blot. • CHAF1A overexpression is an independent indicator for poor colon cancer survival. • CHAF1A facilitates cell proliferation of colon cancer both in vitro and in vivo. - Abstract: Deregulation of chromatin assembly factor 1, p150 subunit A (CHAF1A) has recently been reported to be involved in the development of some cancer types. In this study, we identified that the frequency of positive CHAF1A staining in primary tumor mucosa (45.8%, 93 of 203 samples) was significantly elevated compared to that in paired normal mucosa (18.7%, 38 of 203 samples). The increased expression was strongly associated with cancer stage, tumor invasion, and histological grade. The five-year survival rate of patients with CHAF1A-positive tumors was remarkably lower than that of patients with CHAF1A-negative tumors. Colon cancer cells with CHAF1A knockdown exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate as well as impaired colon tumorigenicity in nude mice. Hence, CHAF1A upregulation functions as a poor prognostic indicator of colon cancer, potentially contributing to its progression by mediating cancer cell proliferation

  18. Cyclic Mechanical Stretch Up-regulates Hepatoma-Derived Growth Factor Expression in Cultured Rat Aortic Smooth Muscle Cells.

    Kao, Ying-Hsien; Chen, Po-Han; Sun, Cheuk-Kwan; Chang, Yo-Chen; Lin, Yu-Chun; Tsai, Ming-Shian; Lee, Po-Huang; Cheng, Cheng-I

    2018-02-21

    Hepatoma-derived growth factor (HDGF) is a potent mitogen for vascular smooth muscle cells (SMCs) during embryogenesis and injury repair of vessel walls. Whether mechanical stimuli modulate HDGF expression remains unknown. This study aimed at investigating whether cyclic mechanical stretch plays a regulatory role in HDGF expression and regenerative cytokine production in aortic SMCs. A SMC cell line was grown on a silicone-based elastomer chamber with extracellular matrix coatings (either type I collagen or fibronectin) and received cyclic and uni-axial mechanical stretches with 10% deformation at frequency 1 Hz. Morphological observation showed that fibronectin coating provided better cell adhesion and spreading and that consecutive 6 hours of cyclic mechanical stretch remarkably induced reorientation and realignment of SMCs. Western blotting detection demonstrated that continuous mechanical stimuli elicited up-regulation of HDGF and PCNA, a cell proliferative marker. Signal kinetic profiling study indicated that cyclic mechanical stretch induced signaling activity in RhoA/ROCK and PI3K/Akt cascades. Kinase inhibition study further showed that blockade of PI3K activity suppressed the stretch-induced TNF-a, whereas RhoA/ROCK inhibition significantly blunted the IL-6 production and HDGF over-expression. Moreover, siRNA-mediated HDGF gene silencing significantly suppressed constitutive expression of IL-6, but not TNF-α, in SMCs. These findings support the role of HDGF in maintaining vascular expression of IL-6, which has been regarded a crucial regenerative factor for acute vascular injury. In conclusion, cyclic mechanical stretch may maintain constitutive expression of HDGF in vascular walls and be regarded an important biophysical regulator in vascular regeneration. ©2018 The Author(s).

  19. Upregulation of vascular endothelial growth factor receptor-1 contributes to sevoflurane preconditioning–mediated cardioprotection

    Qian B

    2018-04-01

    Full Text Available Bin Qian,1 Yang Yang,2 Yusheng Yao,3 Yanling Liao,3 Ying Lin3 1Department of Anesthesiology, People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; 2Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; 3Department of Anesthesiology, The Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China Purpose: Sevoflurane preconditioning (SPC can provide myocardial protective effects similar to ischemic preconditioning. However, the exact mechanism of SPC remains unclear. Previous studies indicate that vascular endothelial growth factor receptor 1 (VEGFR-1 is involved in ischemic preconditioning-mediated cardioprotection. This study was designed to determine the significance of VEGFR-1 signaling in SPC-mediated cardioprotection.Materials and methods: Myocardial ischemia–reperfusion (I/R rat model was established using the Langendorff isolated heart perfusion apparatus. Additionally, after 15 min of baseline equilibration, the isolated hearts were pretreated with 2.5% sevoflurane, 2.5% sevoflurane+MF1 10 µmol/L, or 2.5% sevoflurane+placental growth factor 10 µmol/L, and then subjected to 30 min of global ischemia and 120 min of reperfusion. The changes in hemodynamic parameters, myocardial infarct size, and the levels of creatine kinase-MB, lactate dehydrogenase, cardiac troponin-I, tumor necrosis factor-α, and interleukin 6 in the myocardium were evaluated.Results: Compared to the I/R group, pretreatment with 2.5% sevoflurane significantly improved the cardiac function, limited myocardial infarct size, reduced cardiac enzyme release, upregulated VEGFR-1 expression, and decreased inflammation. In addition, the selective VEGFR-1 agonist, placental growth factor, did not enhance the cardioprotection and anti-inflammation effects of sevoflurane, while the specific VEGFR-1 inhibitor, MF1, completely reversed these effects

  20. Transforming Growth Factor β1 Promotes Migration and Invasion of Human Hepatocellular Carcinoma Cells Via Up-Regulation of Connective Tissue Growth Factor.

    Liu, Haizhou; Wang, Shaoyang; Ma, Weimin; Lu, Youguang

    2015-12-01

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with a poor patient survival. Expression of TGF-β1 is up-regulated in HCC and is thought to play a crucial role in the occurrence and development of HCC. However, the mechanism of TGF-β1-mediated facilitation of malignant growth and invasion remains unclear, although some previous studies highlighted a potential involvement of the connective tissue growth factor (CTGF). Here we demonstrate that the in vitro migration of the HCC cell line SMMC-7721 is increased in the presence of recombinant TGF-β1, and that this effect is reversed by the specific inhibitor SB431542. Furthermore, TGF-β1 treatment up-regulated the expression of its own mRNA as well as the expression of CTGF mRNA. The TGF-β1-stimulated migration of SMMC-7721 cells was diminished by siRNA silencing of CTGF. These in vitro observations were validated in a murine xenograft model. In particular, silencing of CTFG diminished the TGF-β1-induced tumorigenesis in experimental animals. In conclusion, TGF-β1 plays a critical role in HCC migration and invasion, and this effect is dependent on CTGF.

  1. CD147 induces up-regulation of vascular endothelial growth factor in U937-derived foam cells through PI3K/AKT pathway.

    Zong, JiaXin; Li, YunTian; Du, DaYong; Liu, Yang; Yin, YongJun

    2016-11-01

    Intraplaque angiogenesis has been recognized as an important risk factor for the rupture of advanced atherosclerotic plaques in recent years. CD147, also called Extracellular Matrix Metalloproteinase Inducer, has been found the ability to promote angiogenesis in many pathological conditions such as cancer diseases and rheumatoid arthritis via the up-regulation of vascular endothelial growth factor (VEGF), a critical mediator of angiogenesis. We investigated whether CD147 would also induce the up-regulation of VEGF in the foam cells formation process and explored the probable signaling pathway. The results showed the expression of CD147 and VEGF was significantly higher in U937-derived foam cells. After CD147 stealth siRNA transfection treatment, the production of VEGF was reduced depended on the inhibition efficiency of CD147 siRNAs.The special signaling pathway inhibitors LY294002, SP600125, SB203580 and U0126 were added to cultures respectively and the results showed LY294002 dose-dependently inhibited the expression of VEGF. The reduction of phospho-Akt was observed in both LY294002 and siRNA groups, suggested that the phosphatidylinositol 3-kinase/Akt pathway may be the probable signaling pathway underlying CD147 induced up-regulation of VEGF in U937-derived foam cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Up-regulation of proproliferative genes and the ligand/receptor pair placental growth factor and vascular endothelial growth factor receptor 1 in hepatitis C cirrhosis.

    Huang, Xiao X; McCaughan, Geoffrey W; Shackel, Nicholas A; Gorrell, Mark D

    2007-09-01

    Cirrhosis can lead to hepatocellular carcinoma (HCC). Non-diseased liver and hepatitis C virus (HCV)-associated cirrhosis with or without HCC were compared. Proliferation pathway genes, immune response genes and oncogenes were analysed by a quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and immunostaining. Real-time RT-PCR showed up-regulation of genes in HCV cirrhosis including the proliferation-associated genes bone morphogenetic protein 3 (BMP3), placental growth factor 3 (PGF3), vascular endothelial growth factor receptor 1 (VEGFR1) and soluble VEGFR1, the oncogene FYN, and the immune response-associated genes toll-like receptor 9 (TLR9) and natural killer cell transcript 4 (NK4). Expressions of TLR2 and the oncogenes B-cell CLL/lymphoma 9 (BCL9) and PIM2 were decreased in HCV cirrhosis. In addition, PIM2 and TLR2 were increased in HCV cirrhosis with HCC compared with HCV cirrhosis. The ligand/receptor pair PGF and VEGFR1 was intensely expressed by the portal tract vascular endothelium. VEGFR1 was expressed in reactive biliary epithelial structures in fibrotic septum and in some stellate cells and macrophages. PGF and VEGFR1 may have an important role in the pathogenesis of the neovascular response in cirrhosis.

  3. Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1.

    Wang, Ming-Yang; Chen, Pai-Sheng; Prakash, Ekambaranellore; Hsu, Hsing-Chih; Huang, Hsin-Yi; Lin, Ming-Tsan; Chang, King-Jen; Kuo, Min-Liang

    2009-04-15

    Connective tissue growth factor (CTGF) expression is elevated in advanced breast cancer and promotes metastasis. Chemotherapy response is only transient in most metastatic diseases. In the present study, we examined whether CTGF expression could confer drug resistance in human breast cancer. In breast cancer patients who received neoadjuvant chemotherapy, CTGF expression was inversely associated with chemotherapy response. Overexpression of CTGF in MCF7 cells (MCF7/CTGF) enhanced clonogenic ability, cell viability, and resistance to apoptosis on exposure to doxorubicin and paclitaxel. Reducing the CTGF level in MDA-MB-231 (MDA231) cells by antisense CTGF cDNA (MDA231/AS cells) mitigated this drug resistance capacity. CTGF overexpression resulted in resistance to doxorubicin- and paclitaxel-induced apoptosis by up-regulation of Bcl-xL and cellular inhibitor of apoptosis protein 1 (cIAP1). Knockdown of Bcl-xL or cIAP1 with specific small interfering RNAs abolished the CTGF-mediated resistance to apoptosis induced by the chemotherapeutic agents in MCF7/CTGF cells. Inhibition of extracellular signal-regulated kinase (ERK)-1/2 effectively reversed the resistance to apoptosis as well as the up-regulation of Bcl-xL and cIAP1 in MCF7/CTGF cells. A neutralizing antibody against integrin alpha(v)beta(3) significantly attenuated CTGF-mediated ERK1/2 activation and up-regulation of Bcl-xL and cIAP1, indicating that the integrin alpha(v)beta(3)/ERK1/2 signaling pathway is essential for CTGF functions. The Bcl-xL level also correlated with the CTGF level in breast cancer patients. We also found that a COOH-terminal domain peptide from CTGF could exert activities similar to full-length CTGF, in activation of ERK1/2, up-regulation of Bcl-xL/cIAP1, and resistance to apoptosis. We conclude that CTGF expression could confer resistance to chemotherapeutic agents through augmenting a survival pathway through ERK1/2-dependent Bcl-xL/cIAP1 up-regulation.

  4. Blockade of epidermal growth factor receptors chemosensitizes breast cancer cells through up-regulation of Bnip3L

    Real, PJ; Benito, A; Cuevas, J; Berciano, MT; de Juan, A; Coffer, P; Gomez-Roman, J; Lafarga, M; Lopez-Vega, JM; Fernandez-Luna, JL

    2005-01-01

    Epidermal growth factor receptor-1 (EGFR) and EGFR-2 (HER2) have become major targets for cancer treatment. Blocking antibodies and small-molecule inhibitors are being used to silence the activity of these receptors in different tumors with varying efficacy. Thus, a better knowledge on the signaling

  5. Up-regulation of intestinal epithelial cell derived IL-7 expression by keratinocyte growth factor through STAT1/IRF-1, IRF-2 pathway.

    Yu-Jiao Cai

    Full Text Available BACKGROUND: Epithelial cells(EC-derived interleukin-7 (IL-7 plays a crucial role in control of development and homeostasis of neighboring intraepithelial lymphocytes (IEL, and keratinocyte growth factor (KGF exerts protective effects on intestinal epithelial cells and up-regulates EC-derived IL-7 expression through KGFR pathway. This study was to further investigate the molecular mechanism involved in the regulation of IL-7 expression by KGF in the intestine. METHODS: Intestinal epithelial cells (LoVo cells and adult C57BL/6J mice were treated with KGF. Epithelial cell proliferation was studied by flow cytometry for BrdU-incorporation and by immunohistochemistry for PCNA staining. Western blot was used to detect the changes of expression of P-Tyr-STAT1, STAT1, and IL-7 by inhibiting STAT1. Alterations of nuclear extracts and total proteins of IRF-1, IRF-2 and IL-7 following IRF-1 and IRF-2 RNA interference with KGF treatment were also measured with western blot. Moreover, IL-7 mRNA expressions were also detected by Real-time PCR and IL-7 protein level in culture supernatants was measured by enzyme linked immunosorbent assay(ELISA. RESULTS: KGF administration significantly increased LoVo cell proliferation and also increased intestinal wet weight, villus height, crypt depth and crypt cell proliferation in mice. KGF treatment led to increased levels of P-Tyr-STAT1, RAPA and AG490 both blocked P-Tyr-STAT1 and IL-7 expression in LoVo cells. IRF-1 and IRF-2 expression in vivo and in vitro were also up-regulated by KGF, and IL-7 expression was decreased after IRF-1 and IRF-2 expression was silenced by interfering RNA, respectively. CONCLUSION: KGF could up-regulate IL-7 expression through the STAT1/IRF-1, IRF-2 signaling pathway, which is a new insight in potential effects of KGF on the intestinal mucosal immune system.

  6. Homeobox A7 increases cell proliferation by up-regulation of epidermal growth factor receptor expression in human granulosa cells

    Yanase Toshihiko

    2010-06-01

    Full Text Available Abstract Background Homeobox (HOX genes encode transcription factors, which regulate cell proliferation, differentiation, adhesion, and migration. The deregulation of HOX genes is frequently associated with human reproductive system disorders. However, knowledge regarding the role of HOX genes in human granulosa cells is limited. Methods To determine the role of HOXA7 in the regulation and associated mechanisms of cell proliferation in human granulosa cells, HOXA7 and epidermal growth factor receptor (EGFR expressions were examined in primary granulosa cells (hGCs, an immortalized human granulosa cell line, SVOG, and a granulosa tumor cell line, KGN, by real-time PCR and Western blotting. To manipulate the expression of HOXA7, the HOXA7 specific siRNA was used to knockdown HOXA7 in KGN. Conversely, HOXA7 was overexpressed in SVOG by transfection with the pcDNA3.1-HOAX7 vector. Cell proliferation was measured by the MTT assay. Results Our results show that HOXA7 and EGFR were overexpressed in KGN cells compared to hGCs and SVOG cells. Knockdown of HOXA7 in KGN cells significantly decreased cell proliferation and EGFR expression. Overexpression of HOXA7 in SVOG cells significantly promoted cell growth and EGFR expression. Moreover, the EGF-induced KGN proliferation was abrogated, and the activation of downstream signaling was diminished when HOXA7 was knocked down. Overexpression of HOXA7 in SVOG cells had an opposite effect. Conclusions Our present study reveals a novel mechanistic role for HOXA7 in modulating granulosa cell proliferation via the regulation of EGFR. This finding contributes to the knowledge of the pro-proliferation effect of HOXA7 in granulosa cell growth and differentiation.

  7. Lactoferrin promote primary rat osteoblast proliferation and differentiation via up-regulation of insulin-like growth factor-1 expression.

    Hou, Jian-ming; Wu, Man; Lin, Qing-ming; Lin, Fan; Xue, Ying; Lan, Xu-hua; Chen, En-yu; Wang, Mei-li; Yang, Hai-yan; Wang, Feng-xiong

    2014-08-01

    The aim of this study was to explore the effect of lactoferrin (LF) in primary fetal rat osteoblasts proliferation and differentiation and investigate the underlying molecular mechanisms. Primary rat osteoblasts were obtained from the calvarias of neonatal rats. Osteoblasts were treated with LF (0.1-1000 μg/mL), or OSI-906 [a selective inhibitor of insulin-like growth factor 1 (IGF-1) receptor and insulin receptor]. The IGF-1 was then knocked down by small hairpin RNA (shRNA) technology and then was treated with recombinant human IGF-1 or LF. Cell proliferation and differentiation were measured by MTT assay and alkaline phosphatase (ALP) assay, respectively. The expression of IGF-1 and IGF binding protein 2 (IGFBP2) mRNA were analyzed using real-time PCR. LF promotes the proliferation and differentiation of osteoblasts in a certain range (1-100 μg/mL) in time- and dose-dependent manner. The mRNA level of IGF-1 was significantly increased, while the expression of IGFBP2 was suppressed by LF treatment. Knockdown of IGF-1 by shRNA in primary rat osteoblast dramatically decreased the abilities of proliferation and differentiation of osteoblasts and blocked the proliferation and differentiation effect of LF in osteoblasts. OSI906 (5 μM) blocked the mitogenic and differentiation of LF in osteoblasts. Proliferation and differentiation of primary rat osteoblasts in response to LF are mediated in part by stimulating of IGF-1 gene expression and alterations in the gene expression of IGFBP2.

  8. Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells

    Biver, Emmanuel, E-mail: ebiver@yahoo.fr [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Soubrier, Anne-Sophie [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Thouverey, Cyril [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Cortet, Bernard [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Broux, Odile [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Caverzasio, Joseph [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Hardouin, Pierre [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer FGF modulates BMPs pathway in HMSCs by down-regulating BMP/BMPR expression. Black-Right-Pointing-Pointer This effect is mediated by ERK and JNK MAPKs pathways. Black-Right-Pointing-Pointer Crosstalk between FGF and BMPs must be taken into account in skeletal bioengineering. Black-Right-Pointing-Pointer It must also be considered in the use of recombinant BMPs in orthopedic and spine surgeries. -- Abstract: Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of human mesenchymal stem cells (HMSCs) and BMPs in therapeutic perspectives and bone tissue engineering. BMPs are potent inducers of osteoblastic differentiation. They exert their actions via BMP receptors (BMPR), including BMPR1A, BMPR1B and BMPR2. Fibroblast growth factor 2 (FGF2) is expressed by cells of the osteoblastic lineage, increases their proliferation and is secreted during the healing process of fractures or in surgery bone sites. We hypothesized that FGF2 might influence HMSC osteoblastic differentiation by modulating expressions of BMPs and their receptors. BMP2, BMP4, BMPR1A and mainly BMPR1B expressions were up-regulated during this differentiation. FGF2 inhibited HMSCs osteoblastic differentiation and the up-regulation of BMPs and BMPR. This effect was prevented by inhibiting the ERK or JNK mitogen-activated protein kinases which are known to be activated by FGF2. These data provide a mechanism explaining the inhibitory effect of FGF2 on osteoblastic differentiation of HMSCs. These crosstalks between growth and osteogenic factors should be considered in the use of recombinant BMPs in therapeutic purpose of fracture repair or skeletal bioengineering.

  9. Effects of Brazilian Cardioprotective Diet Program on risk factors in patients with coronary heart disease: a Brazilian Cardioprotective Diet randomized pilot trial

    Bernardete Weber

    2012-12-01

    Full Text Available OBJECTIVE: To evaluate the effectiveness of the Brazilian Cardioprotective Diet Program in reducing blood pressures, fasting glucose levels and body mass indices in patients with established atherothrombotic disease. METHOD: This randomized controlled pilot trial included outpatients who were over 45 years of age with atherothrombotic cardiovascular disease. Group A, who received the Brazilian Cardioprotective Diet Program, had weekly sessions with dietitians. Groups B and C received the usual dietary therapy that is given to patients with cardiovascular diseases as proposed by the Brazilian guidelines. This diet had the same nutrient profile as that given to Group A, but it was customized by the integration of typical Mediterranean foods. The difference between Groups B and C was the number of sessions with the dietitian. Group B received weekly sessions, while group C only had monthly sessions. ClinicalTrials.gov: NCT 01453166. RESULTS: There was a greater reduction in systolic (7.8% and diastolic (10.8% blood pressures in Group A compared with Group B (2.3% and 7.3%, and Group C (3.9% and 4.9%, respectively. Fasting glucose decreased by 5.3% and 2% in Groups A and B, respectively. Fasting glucose increased by 3.7% in Group C. The BMIs decreased by 3.5% and 3.3% in Groups A and B, respectively. Group C did not present with any changes in BMI. However, none of these data showed statistical differences between the groups, which is methodologically acceptable in pilot trials. CONCLUSIONS: The Brazilian Cardioprotective Diet Program seems to be more effective in reducing blood pressures, fasting glucose levels, weights and BMIs in patients with previous cardiovascular disease compared with the diet that has been proposed by the Brazilian guidelines.

  10. Activating transcription factor-3 (ATF3) functions as a tumor suppressor in colon cancer and is up-regulated upon heat-shock protein 90 (Hsp90) inhibition

    Hackl, Christina; Stoeltzing, Oliver; Lang, Sven A; Moser, Christian; Mori, Akira; Fichtner-Feigl, Stefan; Hellerbrand, Claus; Dietmeier, Wolfgang; Schlitt, Hans J; Geissler, Edward K

    2010-01-01

    Activating transcription factor-3 (ATF3) is involved in the complex process of cellular stress response. However, its exact role in cancer is discussed controversially because both tumor suppressive and oncogenic effects have been described. Here we followed-up on our previous observation that inhibition of Hsp90 may increase ATF3 expression and sought to determine the role of ATF3 in colon cancer. Regulation of ATF3 was determined in cancer cells using signaling inhibitors and a heat-shock protein-90 (Hsp90) antagonist. Human HCT116 cancer cells were stably transfected with an ATF3-shRNA or a luciferase-shRNA expression plasmid and alterations in cell motility were assessed in migration assays. The impact of ATF3 down-regulation on cancer growth and metastasis were investigated in a subcutaneous tumor model, a model of hepatic tumor growth and in a model of peritoneal carcinomatosis. Human colon cancer tissues were analyzed for ATF3 expression. The results show that therapeutic Hsp90 inhibition substantially up-regulates the expression of ATF3 in various cancer cells, including colon, gastric and pancreatic cancer. This effect was evident both in vitro and in vivo. RNAi mediated knock-down of ATF3 in HCT116 colon cancer cells significantly increased cancer cell migration in vitro. Moreover, in xenogenic mouse models, ATF3 knock-down promoted subcutaneous tumor growth and hepatic metastasis, as well as peritoneal carcinomatosis. Importantly, ATF3 expression was lower in human colon cancer specimens, as compared to corresponding normal surrounding tissues, suggesting that ATF3 may represent a down-regulated tumor suppressor in colon cancer. In conclusion, ATF3 down-regulation in colon cancer promotes tumor growth and metastasis. Considering that blocking Hsp90 induces ATF3 expression, Hsp90 inhibition may represent a valid strategy to treat metastatic colon cancer by up-regulating this anti-metastatic transcription factor

  11. Heme oxygenase up-regulation under ultraviolet-B radiation is not epigenetically restricted and involves specific stress-related transcriptions factors

    Diego Santa-Cruz

    2017-08-01

    Full Text Available Heme oxygenase-1 (HO-1 plays a protective role against oxidative stress in plants. The mechanisms regulating its expression, however, remain unclear. Here we studied the methylation state of a GC rich HO-1 promoter region and the expression of several stress-related transcription factors (TFs in soybean plants subjected to ultraviolet-B (UV-B radiation. Genomic DNA and total RNA were isolated from leaves of plants irradiated with 7.5 and 15 kJ m-2 UV-B. A 304 bp HO-1 promoter region was amplified by PCR from sodium bisulfite-treated DNA, cloned into pGEMT plasmid vector and evaluated by DNA sequencing. Bisulfite sequencing analysis showed similar HO-1 promoter methylation levels in control and UV-B-treated plants (C: 3.4±1.3%; 7.5: 2.6±0.5%; 15: 3.1±1.1%. Interestingly, HO-1 promoter was strongly unmethylated in control plants. Quantitative RT-PCR analysis of TFs showed that GmMYB177, GmMYBJ6, GmWRKY21, GmNAC11, GmNAC20 and GmGT2A but not GmWRK13 and GmDREB were induced by UV-B radiation. The expression of several TFs was also enhanced by hemin, a potent and specific HO inducer, inferring that they may mediate HO-1 up-regulation. These results suggest that soybean HO-1 gene expression is not epigenetically regulated. Moreover, the low level of HO-1 promoter methylation suggests that this antioxidant enzyme can rapidly respond to environmental stress. Finally, this study has identified some stress-related TFs involved in HO-1 up-regulation under UV-B radiation. Keywords: Heme oxygenase, DNA methylation, Transcription factors, Ultraviolet-B radiation, Glycine max

  12. Vascular endothelial growth factor up-regulates the expression of intracellular adhesion molecule-1 in retinal endothelial cells via reactive oxygen species, but not nitric oxide

    ZHANG Xiao-ling; WEN Liang; CHEN Yan-jiong; ZHU Yi

    2009-01-01

    Background The vascular endothelial growth factor (VEGF) is involved in the initiation of retinal vascular leakage and nonperfusion in diabetes. The intracellular adhesion molecule-1 (ICAM-1) is the key mediator of the effect of VEGFs on retinal leukostasis. Although the VEGF is expressed in an early-stage diabetic retina, whether it directly up-regulates ICAM-1 in retinal endothelial cells (ECs) is unknown. In this study, we provided a new mechanism to explain that VEGF does up-regulate the expression of ICAM-1 in retinal ECs.Methods Bovine retinal ECs (BRECs) were isolated and cultured. Immunohistochemical staining was performed to identify BRECs. The cultured cells were divided into corresponding groups. Then, VEGF (100 ng/ml) and other inhibitors were used to treat the cells. Cell lysate and the cultured supernatant were collected, and then, the protein level of ICAM-1 and phosphorylation of the endothelial nitric oxide synthase (eNOS) were detected using Western blotting. Griess reaction was used to detect nitric oxide (NO).Results Western blotting showed that the VEGF up-regulated the expression of ICAM-1 protein and increased phosphorylation of the eNOS in retinal ECs. Neither the block of NO nor protein kinase C (PKC) altered the expression of ICAM-1 or the phosphorylation of eNOS. The result of the Western blotting also showed that inhibition of phosphatidylinositol 3-kinase (PI3K) or reactive oxygen species (ROS) significantly reduced the expression of ICAM-1. Inhibition of PI3K also reduced phosphorylation of eNOS. Griess reaction showed that VEGF significantly increased during NO production. When eNOS was blocked by L-NAME or PI3K was blocked by LY294002, the basal level of NO production and the increment of NO caused by VEGF could be significantly decreased.Conclusion ROS-NO coupling in the retinal endothelium may be a new mechanism that could help to explain why VEGF induces ICAM-1 expression and the resulting leukostasis in diabetic retinopathy.

  13. The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12 expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic-ischemic injury

    Walker Aisha L

    2005-10-01

    Full Text Available Abstract Background Stromal cell-derived factor 1 (SDF-1 or CXCL12 is chemotaxic for CXCR4 expressing bone marrow-derived cells. It functions in brain embryonic development and in response to ischemic injury in helping guide neuroblast migration and vasculogenesis. In experimental adult stroke models SDF-1 is expressed perivascularly in the injured region up to 30 days after the injury, suggesting it could be a therapeutic target for tissue repair strategies. We hypothesized that SDF-1 would be expressed in similar temporal and spatial patterns following hypoxic-ischemic (HI injury in neonatal brain. Results Twenty-five 7-day-old C57BL/J mice underwent HI injury. SDF-1 expression was up regulated up to 7 days after the injury but not at the later time points. The chief sites of SDF-1 up regulation were astrocytes, their foot processes along blood vessels and endothelial cells. Conclusion The localization of SDF-1 along blood vessels in the HI injury zone suggests that these perivascular areas are where chemotaxic signaling for cellular recruitment originates and that reactive astrocytes are major mediators of this process. The associated endothelium is likely to be the site for vascular attachment and diapedesis of CXCR4 receptor expressing cells to enter the injured tissue. Here we show that, relative to adults, neonates have a significantly smaller window of opportunity for SDF-1 based vascular chemotaxic recruitment of bone marrow-derived cells. Therefore, without modification, following neonatal HI injury there is only a narrow period of time for endogenous SDF-1 mediated chemotaxis and recruitment of reparative cells, including exogenously administered stem/progenitor cells.

  14. Up-regulation of Store-operated Ca2+ Entry and Nuclear Factor of Activated T Cells Promote the Acinar Phenotype of the Primary Human Salivary Gland Cells.

    Jang, Shyh-Ing; Ong, Hwei Ling; Liu, Xibao; Alevizos, Ilias; Ambudkar, Indu S

    2016-04-15

    The signaling pathways involved in the generation and maintenance of exocrine gland acinar cells have not yet been established. Primary human salivary gland epithelial cells, derived from salivary gland biopsies, acquired an acinar-like phenotype when the [Ca(2+)] in the serum-free medium (keratinocyte growth medium, KGM) was increased from 0.05 mm (KGM-L) to 1.2 mm (KGM-H). Here we examined the mechanism underlying this Ca(2+)-dependent generation of the acinar cell phenotype. Compared with cells in KGM-L, those in KGM-H display enhancement of Orai1, STIM1, STIM2, and nuclear factor of activated T cells 1 (NFAT1) expression together with an increase in store-operated Ca(2+) entry (SOCE), SOCE-dependent nuclear translocation of pGFP-NFAT1, and NFAT-dependent but not NFκB-dependent gene expression. Importantly, AQP5, an acinar-specific protein critical for function, is up-regulated in KGM-H via SOCE/NFAT-dependent gene expression. We identified critical NFAT binding motifs in the AQP5 promoter that are involved in Ca(2+)-dependent up-regulation of AQP5. These important findings reveal that the Ca(2+)-induced switch of salivary epithelial cells to an acinar-like phenotype involves remodeling of SOCE and NFAT signaling, which together control the expression of proteins critically relevant for acinar cell function. Our data provide a novel strategy for generating and maintaining acinar cells in culture. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Up-regulation of Store-operated Ca2+ Entry and Nuclear Factor of Activated T Cells Promote the Acinar Phenotype of the Primary Human Salivary Gland Cells*

    Jang, Shyh-Ing; Ong, Hwei Ling; Liu, Xibao; Alevizos, Ilias; Ambudkar, Indu S.

    2016-01-01

    The signaling pathways involved in the generation and maintenance of exocrine gland acinar cells have not yet been established. Primary human salivary gland epithelial cells, derived from salivary gland biopsies, acquired an acinar-like phenotype when the [Ca2+] in the serum-free medium (keratinocyte growth medium, KGM) was increased from 0.05 mm (KGM-L) to 1.2 mm (KGM-H). Here we examined the mechanism underlying this Ca2+-dependent generation of the acinar cell phenotype. Compared with cells in KGM-L, those in KGM-H display enhancement of Orai1, STIM1, STIM2, and nuclear factor of activated T cells 1 (NFAT1) expression together with an increase in store-operated Ca2+ entry (SOCE), SOCE-dependent nuclear translocation of pGFP-NFAT1, and NFAT-dependent but not NFκB-dependent gene expression. Importantly, AQP5, an acinar-specific protein critical for function, is up-regulated in KGM-H via SOCE/NFAT-dependent gene expression. We identified critical NFAT binding motifs in the AQP5 promoter that are involved in Ca2+-dependent up-regulation of AQP5. These important findings reveal that the Ca2+-induced switch of salivary epithelial cells to an acinar-like phenotype involves remodeling of SOCE and NFAT signaling, which together control the expression of proteins critically relevant for acinar cell function. Our data provide a novel strategy for generating and maintaining acinar cells in culture. PMID:26903518

  16. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of β-catenin

    Cho, Il-Rae; Koh, Sang Seok; Malilas, Waraporn; Srisuttee, Ratakorn; Moon, Jeong; Choi, Young-Whan; Horio, Yoshiyuki; Oh, Sangtaek; Chung, Young-Hwa

    2012-01-01

    Highlights: ► SIRT1 inhibits protein levels of β-catenin and its transcriptional activity. ► Nuclear localization of SIRT1 is not required for the decrease of β-catenin expression. ► SIRT1-mediated degradation of β-catenin is not required for GSK-3β and Siah-1 but for proteosome. ► SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of β-catenin, we postulated that β-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, known to target β-catenin in a colon cancer model, suppresses β-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of β-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced β-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of β-catenin. Treatment with MG132, a proteasomal inhibitor, restored β-catenin protein levels, suggesting that SIRT1-mediated degradation of β-catenin requires proteasomal activity. It was reported that inhibition of GSK-3β or Siah-1 stabilizes β-catenin in colon cancer cells, but suppression of GSK-3β or Siah-1 using siRNA in the presence of resveratrol instead diminished β-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3β and Siah-1 are not involved in SIRT1-mediated degradation of β-catenin in the cells. Finally, activation of SIRT1 inhibited the proliferation of Panc-PAUF cells by down-regulation of cyclin-D1, a target

  17. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of {beta}-catenin

    Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Srisuttee, Ratakorn; Moon, Jeong [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Choi, Young-Whan [Department of Horticultural Bioscience, Pusan National University, Miryang 627-706 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Oh, Sangtaek [Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul 136-702 (Korea, Republic of); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer SIRT1 inhibits protein levels of {beta}-catenin and its transcriptional activity. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for the decrease of {beta}-catenin expression. Black-Right-Pointing-Pointer SIRT1-mediated degradation of {beta}-catenin is not required for GSK-3{beta} and Siah-1 but for proteosome. Black-Right-Pointing-Pointer SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of {beta}-catenin, we postulated that {beta}-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, known to target {beta}-catenin in a colon cancer model, suppresses {beta}-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of {beta}-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced {beta}-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of {beta}-catenin. Treatment with MG132, a proteasomal inhibitor, restored {beta}-catenin protein levels, suggesting that SIRT1-mediated degradation of {beta}-catenin requires proteasomal activity. It was reported that inhibition of GSK-3{beta} or Siah-1 stabilizes {beta}-catenin in colon cancer cells, but suppression of GSK-3{beta} or Siah-1 using siRNA in the presence of resveratrol instead diminished {beta}-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3{beta} and Siah-1 are not involved in SIRT1

  18. Fibroblast growth factor-2 up-regulates the expression of nestin through the Ras–Raf–ERK–Sp1 signaling axis in C6 glioma cells

    Chang, Kai-Wei; Huang, Yuan-Li; Wong, Zong-Ruei; Su, Peng-Han; Huang, Bu-Miin; Ju, Tsai-Kai; Yang, Hsi-Yuan

    2013-01-01

    Highlights: •Nestin expression in C6 glioma cells is induced by FGF-2. •Nestin expression is induced by FGF-2 via de novo RNA and protein synthesis. •The FGFR inhibitor SU5402 blocks the FGF-2-induced nestin expression. •The mRNA of FGFR1 and 3 are detected in C6 glioma cells. •Ras–Raf–ERK–Sp1 signaling pathway is responsibe for FGF-2-induced nestin expression. -- Abstract: Nestin is a 240-kDa intermediate filament protein expressed mainly in neural and myogenic stem cells. Although a substantial number of studies have focused on the expression of nestin during development of the central nervous system, little is known about the factors that induce and regulate its expression. Fibroblast growth factor-2 (FGF-2) is an effective mitogen and stimulates the proliferation and differentiation of a subset of nestin-expressing cells, including neural progenitor cells, glial precursor cells, and smooth muscle cells. To assess whether FGF-2 is a potent factor that induces the expression of nestin, C6 glioma cells were used. The results showed that nestin expression was up-regulated by FGF-2 via de novo RNA and protein synthesis. Our RT-PCR results showed that C6 glioma cells express FGFR1/3, and FGFRs is required for FGF-2-induced nestin expression. Further signaling analysis also revealed that FGF-2-induced nestin expression is mediated through FGFR–MAPK–ERK signaling axis and the transcriptional factor Sp1. These findings provide new insight into the regulation of nestin in glial system and enable the further studies on the function of nestin in glial cells

  19. Fibroblast growth factor-2 up-regulates the expression of nestin through the Ras–Raf–ERK–Sp1 signaling axis in C6 glioma cells

    Chang, Kai-Wei [Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan (China); Huang, Yuan-Li [Department of Biotechnology, College of Health Science, Asia University, Taichung 413, Taiwan (China); Wong, Zong-Ruei; Su, Peng-Han [Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan (China); Huang, Bu-Miin [Department of Cell Biology and Anatomy, National Cheng-Kung University, Tainan 701, Taiwan (China); Ju, Tsai-Kai [Instrumentation Center, National Taiwan University, Taipei 106, Taiwan (China); Technology Commons, College of Life Science, National Taiwan University, Taipei 106, Taiwan (China); Yang, Hsi-Yuan, E-mail: hyhy@ntu.edu.tw [Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan (China)

    2013-05-17

    Highlights: •Nestin expression in C6 glioma cells is induced by FGF-2. •Nestin expression is induced by FGF-2 via de novo RNA and protein synthesis. •The FGFR inhibitor SU5402 blocks the FGF-2-induced nestin expression. •The mRNA of FGFR1 and 3 are detected in C6 glioma cells. •Ras–Raf–ERK–Sp1 signaling pathway is responsibe for FGF-2-induced nestin expression. -- Abstract: Nestin is a 240-kDa intermediate filament protein expressed mainly in neural and myogenic stem cells. Although a substantial number of studies have focused on the expression of nestin during development of the central nervous system, little is known about the factors that induce and regulate its expression. Fibroblast growth factor-2 (FGF-2) is an effective mitogen and stimulates the proliferation and differentiation of a subset of nestin-expressing cells, including neural progenitor cells, glial precursor cells, and smooth muscle cells. To assess whether FGF-2 is a potent factor that induces the expression of nestin, C6 glioma cells were used. The results showed that nestin expression was up-regulated by FGF-2 via de novo RNA and protein synthesis. Our RT-PCR results showed that C6 glioma cells express FGFR1/3, and FGFRs is required for FGF-2-induced nestin expression. Further signaling analysis also revealed that FGF-2-induced nestin expression is mediated through FGFR–MAPK–ERK signaling axis and the transcriptional factor Sp1. These findings provide new insight into the regulation of nestin in glial system and enable the further studies on the function of nestin in glial cells.

  20. L-Cysteine-induced up-regulation of the low-density lipoprotein receptor is mediated via a transforming growth factor-alpha signalling pathway.

    Tanaka, Yuma; Shimada, Masaya; Nagaoka, Satoshi

    2014-02-14

    Sulphur-containing amino acids regulate plasma cholesterol levels in animals and humans. However, their mechanism of action remains unclear. Low-density lipoprotein receptor (LDLR) plays an important role in cholesterol metabolism. We therefore investigated the effects of sulphur-containing amino acids on the expression of LDLR in hepatocytes. HepG2 cells were cultured in Dulbecco's Modified Eagle's Medium with or without sulphur-containing amino acids and cysteine-containing compounds. We found that L-cysteine increased LDLR mRNA and enhanced LDLR gene promoter activity through the extracellular-signal-related kinase and p38 mitogen-activated protein kinase signalling pathways in HepG2 cells. Moreover, we observed that L-cysteine stimulated the release of transforming growth factor-alpha (TGF-α) and that TGF-α increased the LDLR mRNA levels. This study provides a report of the L-cysteine mediated up-regulation of the LDLR expression via TGF-α signalling pathway. Our findings provide insights into cholesterol homeostasis and amino acid signalling. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Hypoxia-inducible factor 1-alpha up-regulates the expression of phospholipase D2 in colon cancer cells under hypoxic conditions.

    Liu, Maoxi; Du, Kunli; Fu, Zhongxue; Zhang, Shouru; Wu, Xingye

    2015-01-01

    Hypoxia is a common characteristic of solid tumors. Recent studies confirmed that phospholipase D2 (PLD2) plays significant roles in cancer progression. In this study, correlation between the expression of PLD2 and the change in the protein level of hypoxia-inducible factor 1-alpha (HIF1-α) was studied. Thirty human colon cancer tissues were examined for the expression of HIF1-α and PLD2 protein, and mRNA levels. SW480 and SW620 cells were exposed to normoxia (20 %) or hypoxia (Hypoxic stress induced PLD2 mRNA and protein expression in SW480 and SW620 cells. Cells transfected with HIF1-α siRNA showed attenuation of hypoxia stress-induced PLD2 expression. In vivo growth decreased in response to HIF1-α and PLD2 inhibition. These results suggest that PLD2 expression in colon cancer cells is up-regulated via HIF1-α in response to hypoxic stress and underscores the crucial role of HIF1-α-induced PLD2 in tumor growth.

  2. Mechanical stretch up-regulates the B-type natriuretic peptide system in human cardiac fibroblasts: a possible defense against transforming growth factor-ß mediated fibrosis

    Watson, Chris J

    2012-07-07

    AbstractBackgroundMechanical overload of the heart is associated with excessive deposition of extracellular matrix proteins and the development of cardiac fibrosis. This can result in reduced ventricular compliance, diastolic dysfunction, and heart failure. Extracellular matrix synthesis is regulated primarily by cardiac fibroblasts, more specifically, the active myofibroblast. The influence of mechanical stretch on human cardiac fibroblasts’ response to pro-fibrotic stimuli, such as transforming growth factor beta (TGFβ), is unknown as is the impact of stretch on B-type natriuretic peptide (BNP) and natriuretic peptide receptor A (NPRA) expression. BNP, acting via NPRA, has been shown to play a role in modulation of cardiac fibrosis.Methods and resultsThe effect of cyclical mechanical stretch on TGFβ induction of myofibroblast differentiation in primary human cardiac fibroblasts and whether differences in response to stretch were associated with changes in the natriuretic peptide system were investigated. Cyclical mechanical stretch attenuated the effectiveness of TGFβ in inducing myofibroblast differentiation. This finding was associated with a novel observation that mechanical stretch can increase BNP and NPRA expression in human cardiac fibroblasts, which could have important implications in modulating myocardial fibrosis. Exogenous BNP treatment further reduced the potency of TGFβ on mechanically stretched fibroblasts.ConclusionWe postulate that stretch induced up-regulation of the natriuretic peptide system may contribute to the observed reduction in myofibroblast differentiation.

  3. Activating transcription factor 6 mediates oxidized LDL-induced cholesterol accumulation and apoptosis in macrophages by up-regulating CHOP expression.

    Yao, Shutong; Zong, Chuanlong; Zhang, Ying; Sang, Hui; Yang, Mingfeng; Jiao, Peng; Fang, Yongqi; Yang, Nana; Song, Guohua; Qin, Shucun

    2013-01-01

    This study was to explore whether activating transcription factor 6 (ATF6), an important sensor to endoplasmic reticulum (ER) stress, would mediate oxidized low-density lipoprotein (ox-LDL)- induced cholesterol accumulation and apoptosis in cultured macrophages and the underlying molecular mechanisms. Intracellular lipid droplets and total cholesterol levels were assayed by oil red O staining and enzymatic colorimetry, respectively. Cell viability and apoptosis were determined using MTT assay and AnnexinV-FITC apoptosis detection kit, respectively. The nuclear translocation of ATF6 in cells was detected by immunofluorescence analysis. Protein and mRNA levels were examined by Western blot analysis and real time-PCR, respectively. ATF6 siRNA was transfected to RAW264.7 cells by lipofectamin. Exposure of cells to ox-LDL induced glucose-regulated protein 78 (GRP78). C/EBP homologous protein (CHOP), a key-signaling component of ER stress-induced apoptosis, was up-regulated in ox-LDL-treated cells. ATF6, a factor that positively regulates CHOP expression, was activated by ox-LDL in a concentration- and time- dependent manner. The role of the ATF6-mediated ER stress pathway was further confirmed through the siRNA-mediated knockdown of ATF6, which attenuated ox-LDL-induced upregulation of CHOP, cholesterol accumulation and apoptosis in macrophages. In addition, the phosphorylation of double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), another factor that positively regulates CHOP expression, was induced in the presence of ox-LDL, and PERK-specific siRNA also inhibited the ox-LDL-induced upregulation of CHOP and apoptosis in RAW264.7 cells. These results demonstrate that ER stress-related proteins, particularly ATF6 and its downstream molecule CHOP, are involved in ox-LDL-induced cholesterol accumulation and apoptosis in macrophages.

  4. Up-regulation of hypoxia inducible factor-1α by cobalt chloride correlates with proliferation and apoptosis in PC-2 cells

    Dai Zhi-Jun

    2012-03-01

    Full Text Available Abstract Background The exact mechanism of the effects of hypoxia on the proliferation and apoptosis in carcinoma cells is still conflicting. This study investigated the variation of hypoxia-inducible factor-1α(HIF-1α expression and the apoptosis effect of hypoxia stimulated by cobalt chloride (CoCl2 in pancreatic cancer PC-2 cells. Methods PC-2 cells were cultured with different concentration (50-200 μmol/L of CoCl2 after 24-120 hours to simulate hypoxia in vitro. The proliferation of PC-2 cells was examined by MTT assay. The cellular morphology of PC-2 cells were observed by light inverted microscope and transmission electron microscope(EM. The expression of HIF-1α on mRNA and protein level was measured by semi-quantitive RT-PCR and Western blot analysis. Apoptosis of PC-2 cells were demonstrated by flow cytometry with Annexin V-FITC/PI double staining. Results MTT assay showed that the proliferation of PC-2 cells were stimulated in the first 72 h, while after treated over 72 h, a dose- dependent inhibition of cell growth could be observed. By using transmission electron microscope, swollen chondrosomes, accumulated chromatin under the nuclear membrane and apoptosis bodies were observed. Flow cytometer(FCM analysis showed the apoptosis rate was correlated with the dosage of CoCl2. RT-PCR and Western blot analysis indicated that hypoxia could up-regulate the expression of HIF-1α on both mRNA and protein levels. Conclusion Hypoxic microenvironment stimulated by CoCl2 could effectively induce apoptosis and influence cell proliferation in PC-2 cells, the mechanism could be related to up-expression of HIF-1α.

  5. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells.

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-03-14

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter -223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors.

  6. Glial cell line-derived neurotrophic factor up-regulates GTP-cyclohydrolase I activity and tetrahydrobiopterin levels in primary dopaminergic neurones

    Bauer, M; Suppmann, S; Meyer, M

    2002-01-01

    in tetrahydrobiopterin levels whereas tyrosine 3-monooxygenase activity was not altered. Actinomycin D, asan inhibitor of de novo biosynthesis, abolished any GDNF-mediated up-regulation of GTPCH I activity. However, GTPCH I mRNA levels in primary dopaminergic neurones were not altered by GDNF treatment, suggesting...... by triggering activation of GTP-cyclohydrolase I (GTPCH I), a key enzyme in catecholamine biosynthesis. GDNF stimulation of primary dopaminergic neurones expressing both tyrosine 3-monooxygenase and GTPCH I resulted in a dose-dependent doubling of GTPCH I activity, and a concomitant increase...... that the mode of action for that up-regulation is not directly connected to the regulation of GTPCH I transcription. We conclude that GDNF, in addition to its action in structural differentiation, also promotes differentiation regarding expression and enzymatic activity of a crucial component...

  7. Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction

    Zhao, Liyan; Liu, Xiaolin; Zhang, Yuelin; Liang, Xiaoting; Ding, Yue; Xu, Yan; Fang, Zhen; Zhang, Fengxiang

    2016-01-01

    Poor cell survival post transplantation compromises the therapeutic benefits of mesenchymal stem cells (MSCs) in myocardial infarction (MI). Hepatocyte growth factor (HGF) is an important cytokine for angiogenesis, anti-inflammation and anti-apoptosis. This study aimed to evaluate the cardioprotective effects of MSCs overexpressing HGF in a mouse model of MI. The apoptosis of umbilical cord-derived MSCs (UC-MSCs) and HGF-UC-MSCs under normoxic and hypoxic conditions was detected. The conditioned medium (CdM) of UC-MSCs and HGF-UC-MSCs under a hypoxic condition was harvested and its protective effect on neonatal cardiomyocytes (NCMs) exposed to a hypoxic challenge was examined. UC-MSCs and HGF-UC-MSCs were transplanted into the peri-infarct region in mice following MI and heart function assessed 4 weeks post transplantation. The apoptosis of HGF-UC-MSCs under hypoxic conditions was markedly decreased compared with that of UC-MSCs. NCMs treated with HGF-UC-MSC hypoxic CdM (HGF-UC-MSCs-hy-CdM) exhibited less cell apoptosis in response to hypoxic challenge than those treated with UC-MSC hypoxic CdM (UC-MSCs-hy-CdM). HGF-UC-MSCs-hy-CdM released the inhibited p-Akt and lowered the enhanced ratio of Bax/Bcl-2 induced by hypoxia in the NCMs. HGF-UC-MSCs-hy-CdM expressed higher levels of HGF, EGF, bFGF and VEGF than UC-MSCs-hy-CdM. Transplantation of HGF-UC-MSCs or UC-MSCs greatly improved heart function in the mouse model of MI. Compared with UC-MSCs, transplantation of HGF-UC-MSCs was associated with less cardiomyocyte apoptosis, enhanced angiogenesis and increased proliferation of cardiomyocytes. This study may provide a novel therapeutic strategy for MSC-based therapy in cardiovascular disease.

  8. Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction

    Zhao, Liyan; Liu, Xiaolin [Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Zhang, Yuelin [Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong (China); Liang, Xiaoting; Ding, Yue [Pudong District Clinical Translational Medical Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai (China); Xu, Yan; Fang, Zhen [Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Zhang, Fengxiang, E-mail: njzfx6@njmu.edu.cn [Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing (China)

    2016-05-15

    Poor cell survival post transplantation compromises the therapeutic benefits of mesenchymal stem cells (MSCs) in myocardial infarction (MI). Hepatocyte growth factor (HGF) is an important cytokine for angiogenesis, anti-inflammation and anti-apoptosis. This study aimed to evaluate the cardioprotective effects of MSCs overexpressing HGF in a mouse model of MI. The apoptosis of umbilical cord-derived MSCs (UC-MSCs) and HGF-UC-MSCs under normoxic and hypoxic conditions was detected. The conditioned medium (CdM) of UC-MSCs and HGF-UC-MSCs under a hypoxic condition was harvested and its protective effect on neonatal cardiomyocytes (NCMs) exposed to a hypoxic challenge was examined. UC-MSCs and HGF-UC-MSCs were transplanted into the peri-infarct region in mice following MI and heart function assessed 4 weeks post transplantation. The apoptosis of HGF-UC-MSCs under hypoxic conditions was markedly decreased compared with that of UC-MSCs. NCMs treated with HGF-UC-MSC hypoxic CdM (HGF-UC-MSCs-hy-CdM) exhibited less cell apoptosis in response to hypoxic challenge than those treated with UC-MSC hypoxic CdM (UC-MSCs-hy-CdM). HGF-UC-MSCs-hy-CdM released the inhibited p-Akt and lowered the enhanced ratio of Bax/Bcl-2 induced by hypoxia in the NCMs. HGF-UC-MSCs-hy-CdM expressed higher levels of HGF, EGF, bFGF and VEGF than UC-MSCs-hy-CdM. Transplantation of HGF-UC-MSCs or UC-MSCs greatly improved heart function in the mouse model of MI. Compared with UC-MSCs, transplantation of HGF-UC-MSCs was associated with less cardiomyocyte apoptosis, enhanced angiogenesis and increased proliferation of cardiomyocytes. This study may provide a novel therapeutic strategy for MSC-based therapy in cardiovascular disease.

  9. Alleviation of salt stress by enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants.

    Kim, Kangmin; Jang, Ye-Jin; Lee, Sang-Myeong; Oh, Byung-Taek; Chae, Jong-Chan; Lee, Kui-Jae

    2014-02-01

    Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways.

  10. Alleviation of Salt Stress by Enterobacter sp. EJ01 in Tomato and Arabidopsis Is Accompanied by Up-Regulation of Conserved Salinity Responsive Factors in Plants

    Kim, Kangmin; Jang, Ye-Jin; Lee, Sang-Myeong; Oh, Byung-Taek; Chae, Jong-Chan; Lee, Kui-Jae

    2014-01-01

    Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways. PMID:24598995

  11. Tissue factor-factor VIIa-specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration

    Hjortoe, Gertrud M; Petersen, Lars C; Albrektsen, Tatjana

    2004-01-01

    Tissue factor (TF), the cellular receptor for factor VIIa (FVIIa), besides initiating blood coagulation, is believed to play an important role in tissue repair, inflammation, angiogenesis, and tumor metastasis. Like TF, the chemokine interleukin-8 (IL-8) is shown to play a critical role...... in these processes. To elucidate the potential mechanisms by which TF contributes to tumor invasion and metastasis, we investigated the effect of FVIIa on IL-8 expression and cell migration in a breast carcinoma cell line, MDA-MB-231, a cell line that constitutively expresses abundant TF. Expression of IL-8 m......RNA in MDA-MB-231 cells was markedly up-regulated by plasma concentrations of FVII or an equivalent concentration of FVIIa (10 nM). Neither thrombin nor other proteases involved in hemostasis were effective in stimulating IL-8 in these cells. Increased transcriptional activation of the IL-8 gene...

  12. Cardioprotection by modulation of mitochondrial respiration during ischemia–reperfusion: Role of apoptosis-inducing factor

    Xu, Aijun; Szczepanek, Karol; Hu, Ying; Lesnefsky, Edward J.; Chen, Qun

    2013-01-01

    Highlights: •Blockade of electron transport prevents the loss of AIF from mitochondria during IR. •Blockade of electron transport decreases caspase-independent cell death during IR. •Mitochondrial AIF content is down-regulated in Harlequin mice. •Blockade of electron transport protects Harlequin mouse hearts during IR. •Amobarbital protection is partially dependent on mitochondrial AIF content. -- Abstract: The transient, reversible blockade of electron transport (BET) during ischemia or at the onset of reperfusion protects mitochondria and decreases cardiac injury. Apoptosis inducing factor (AIF) is located within the mitochondrial intermembrane space. A release of AIF from mitochondria into cytosol and nucleus triggers caspase-independent cell death. We asked if BET prevents the loss of AIF from mitochondria as a mechanism of protection in the buffer perfused heart. BET during ischemia with amobarbital, a rapidly reversible inhibitor of mitochondrial complex I, attenuated a release of AIF from mitochondria into cytosol, in turn decreasing the formation of cleaved and activated PARP-1. These results suggest that BET-mediated protection may occur through prevention of the loss of AIF from mitochondria during ischemia–reperfusion. In order to further clarify the role of mitochondrial AIF in BET-mediated protection, Harlequin (Hq) mice, a genetic model with mitochondrial AIF deficiency, were used to test whether BET could still decrease cell injury in Hq mouse hearts during reperfusion. BET during ischemia protected Hq mouse hearts against ischemia–reperfusion injury and improved mitochondrial function in these hearts during reperfusion. Thus, cardiac injury can still be decreased in the presence of down-regulated mitochondrial AIF content. Taken together, BET during ischemia protects both hearts with normal mitochondrial AIF content and hearts with mitochondrial AIF deficiency. Although preservation of mitochondrial AIF content plays a key role in

  13. Cardioprotection by modulation of mitochondrial respiration during ischemia–reperfusion: Role of apoptosis-inducing factor

    Xu, Aijun [Department of Internal Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298 (United States); Department of Anesthesiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030 (China); Szczepanek, Karol; Hu, Ying [Department of Internal Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298 (United States); Lesnefsky, Edward J. [Department of Internal Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298 (United States); Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298 (United States); Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298 (United States); McGuire Department of Veterans Affairs Medical Center, Richmond, VA 23249 (United States); Chen, Qun, E-mail: qchen8@vcu.edu [Department of Internal Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298 (United States)

    2013-06-14

    Highlights: •Blockade of electron transport prevents the loss of AIF from mitochondria during IR. •Blockade of electron transport decreases caspase-independent cell death during IR. •Mitochondrial AIF content is down-regulated in Harlequin mice. •Blockade of electron transport protects Harlequin mouse hearts during IR. •Amobarbital protection is partially dependent on mitochondrial AIF content. -- Abstract: The transient, reversible blockade of electron transport (BET) during ischemia or at the onset of reperfusion protects mitochondria and decreases cardiac injury. Apoptosis inducing factor (AIF) is located within the mitochondrial intermembrane space. A release of AIF from mitochondria into cytosol and nucleus triggers caspase-independent cell death. We asked if BET prevents the loss of AIF from mitochondria as a mechanism of protection in the buffer perfused heart. BET during ischemia with amobarbital, a rapidly reversible inhibitor of mitochondrial complex I, attenuated a release of AIF from mitochondria into cytosol, in turn decreasing the formation of cleaved and activated PARP-1. These results suggest that BET-mediated protection may occur through prevention of the loss of AIF from mitochondria during ischemia–reperfusion. In order to further clarify the role of mitochondrial AIF in BET-mediated protection, Harlequin (Hq) mice, a genetic model with mitochondrial AIF deficiency, were used to test whether BET could still decrease cell injury in Hq mouse hearts during reperfusion. BET during ischemia protected Hq mouse hearts against ischemia–reperfusion injury and improved mitochondrial function in these hearts during reperfusion. Thus, cardiac injury can still be decreased in the presence of down-regulated mitochondrial AIF content. Taken together, BET during ischemia protects both hearts with normal mitochondrial AIF content and hearts with mitochondrial AIF deficiency. Although preservation of mitochondrial AIF content plays a key role in

  14. Herpes simplex virus induces the marked up-regulation of the zinc finger transcriptional factor INSM1, which modulates the expression and localization of the immediate early protein ICP0

    Kimura Hiroshi

    2011-05-01

    Full Text Available Abstract Background Herpes simplex viruses (HSVs rapidly shut off macromolecular synthesis in host cells. In contrast, global microarray analyses have shown that HSV infection markedly up-regulates a number of host cell genes that may play important roles in HSV-host cell interactions. To understand the regulatory mechanisms involved, we initiated studies focusing on the zinc finger transcription factor insulinoma-associated 1 (INSM1, a host cell protein markedly up-regulated by HSV infection. Results INSM1 gene expression in HSV-1-infected normal human epidermal keratinocytes increased at least 400-fold 9 h after infection; INSM1 promoter activity was also markedly stimulated. Expression and subcellular localization of the immediate early HSV protein ICP0 was affected by INSM1 expression, and chromatin immunoprecipitation (ChIP assays revealed binding of INSM1 to the ICP0 promoter. Moreover, the role of INSM1 in HSV-1 infection was further clarified by inhibition of HSV-1 replication by INSM1-specific siRNA. Conclusions The results suggest that INSM1 up-regulation plays a positive role in HSV-1 replication, probably by binding to the ICP0 promoter.

  15. Hepatitis B Virus X Protein Up-Regulates AKR1C1 Expression Through Nuclear Factor-Y in Human Hepatocarcinoma Cells.

    Li, Kai; Ding, Shijia; Chen, Ke; Qin, Dongdong; Qu, Jialin; Wang, Sen; Sheng, Yanrui; Zou, Chengcheng; Chen, Limin; Tang, Hua

    2013-01-01

    The hepatitis B virus X (HBx) protein has long been recognized as an important transcriptional transactivator of several genes. Human aldo-keto reductase family 1, member C1 (AKR1C1), a member of the family of AKR1CS, is significantly increased in HBx-expressed cells. This study aimed to investigate the possible mechanism of HBx in regulating AKR1C1 expression in HepG2.2.15 cells and the role of AKR1C1 for HBV-induced HCC. RT-PCR was performed to detect AKR1C1 expression on mRNA level in HepG2 and HepG2.2.15 cell. The promoter activity of AKR1C1 was assayed by transient transfection and Dual-luciferase reporter assay system. The AKR1C1 promoter sequence was screened using the TFSEARCH database and the ALIBABA 2.0 software. The potential transcription factors binding sites were identified using 5' functional deletion analysis and site-directed mutagenesis. In this study, we found that HBx promoted AKR1C1 expression in HepG2.2.15 cells. Knockdown of HBx inhibited AKR1C1 activation. The role of HBx expression in regulating the promoter activity of human AKR1C1 gene was analyzed. The 5'functional deletion analysis identified that the region between -128 and -88 was the minimal promoter region of HBx to activate AKR1C1 gene expression. Site-directed mutagenesis studies suggested that nuclear factor-Y (NF-Y) plays an important role in this HBx-induced AKR1C1 activation. In HepG2.2.1.5 cell, HBx can promote AKR1C1 promoter activity and thus activates the basal transcription of AKR1C1 gene. This process is mediated by the transcription factor NF-Y. This study explored the mechanism for the regulation of HBV on AKR1C1 expression and has provided a new understanding of HBV-induced HCC.

  16. Moojenactivase, a novel pro-coagulant PIIId metalloprotease isolated from Bothrops moojeni snake venom, activates coagulation factors II and X and induces tissue factor up-regulation in leukocytes.

    Sartim, Marco A; Costa, Tassia R; Laure, Helen J; Espíndola, Milena S; Frantz, Fabiani G; Sorgi, Carlos A; Cintra, Adélia C O; Arantes, Eliane C; Faccioli, Lucia H; Rosa, José C; Sampaio, Suely V

    2016-05-01

    Coagulopathies following snakebite are triggered by pro-coagulant venom toxins, in which metalloproteases play a major role in envenomation-induced coagulation disorders by acting on coagulation cascade, platelet function and fibrinolysis. Considering this relevance, here we describe the isolation and biochemical characterization of moojenactivase (MooA), a metalloprotease from Bothrops moojeni snake venom, and investigate its involvement in hemostasis in vitro. MooA is a glycoprotein of 85,746.22 Da, member of the PIIId group of snake venom metalloproteases, composed of three linked disulfide-bonded chains: an N-glycosylated heavy chain, and two light chains. The venom protease induced human plasma clotting in vitro by activating on both blood coagulation factors II (prothrombin) and X, which in turn generated α-thrombin and factor Xa, respectively. Additionally, MooA induced expression of tissue factor (TF) on the membrane surface of peripheral blood mononuclear cells (PBMC), which led these cells to adopt pro-coagulant characteristics. MooA was also shown to be involved with production of the inflammatory mediators TNF-α, IL-8 and MCP-1, suggesting an association between MooA pro-inflammatory stimulation of PBMC and TF up-regulation. We also observed aggregation of washed platelets when in presence of MooA; however, the protease had no effect on fibrinolysis. Our findings show that MooA is a novel hemostatically active metalloprotease, which may lead to the development of coagulopathies during B. moojeni envenomation. Moreover, the metalloprotease may contribute to the development of new diagnostic tools and pharmacological approaches applied to hemostatic disorders.

  17. The inhibitory effect of dexamethasone on platelet-derived growth factor-induced vascular smooth muscle cell migration through up-regulating PGC-1α expression

    Xu, Wei; Guo, Ting; Zhang, Yan; Jiang, Xiaohong; Zhang, Yongxian; Zen, Ke; Yu, Bo; Zhang, Chen-Yu

    2011-01-01

    Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 alpha (PGC-1α) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1α in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1α expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1α mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1α expression while stimulating VSMC migration. Mechanistic study showed that suppression of PGC-1α by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1α had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1α decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPARγ activation by a PPARγ antagonist GW9662 abolished the suppressive effects of PGC-1α on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1α were enhanced by a PPARγ agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1α expression. PGC-1α suppresses PDGF-induced VSMC migration through PPARγ coactivation and, consequently, p38 MAPK inhibition.

  18. Vascular endothelial growth factor C promotes cervical cancer metastasis via up-regulation and activation of RhoA/ROCK-2/moesin cascade

    He, Mian; Cheng, Yang; Li, Wen; Liu, Qiongshan; Liu, Junxiu; Huang, Jinghe; Fu, Xiaodong

    2010-01-01

    The elevated expression of vascular endothelial growth factor C (VEGF-C) is correlated with clinical cervical cancer metastasis and patient survival, which is interpreted by VEGF-C functions to stimulate angiogenesis and lymphatic genesis. However, the direct impact of VEGF-C on cervical cancer cell motility remains largely unknown. In this study, we investigated the effects of VEGF-C on actin cytoskeleton remodeling and on cervical cancer cell migration and invasion and how the actin-regulatory protein, moesin regulated these effects through RhoA/ROCK-2 signaling pathway. On cervical carcinoma cell line SiHa cells, exposure of VEGF-C triggered remodeling of the actin cytoskeleton and the formation of membrane ruffles, which was required for cell movement. VEGF-C significantly enhanced SiHa cells horizontal migration and three-dimensional invasion into matrices. These actions were dependent on increased expression and phosphorylation of the actin-regulatory protein moesin and specific moesin siRNA severely impaired VEGF-C stimulated-cell migration. The extracellular small GTPase RhoA/ROCK-2 cascade mediated the increased moesin expression and phosphorylation, which was discovered by the use of Y-27632, a specific inhibitor of Rho kinase and by transfected constitutively active, dominant-negative RhoA as well as ROCK-2 SiRNA. Furthermore, in the surgical cervical specimen from the patients with FIGO stage at cervical intra-epithelial neoplasia and I-II cervical squamous cell carcinoma, the expression levels of moesin were found to be significantly correlated with tumor malignancy and metastasis. These results implied that VEGF-C promoted cervical cancer metastasis by upregulation and activation of moesin protein through RhoA/ROCK-2 pathway. Our findings offer new insight into the role of VEGF-C on cervical cancer progression and may provide potential targets for cervical cancer therapy

  19. Vascular endothelial growth factor C promotes cervical cancer metastasis via up-regulation and activation of RhoA/ROCK-2/moesin cascade

    Huang Jinghe

    2010-04-01

    Full Text Available Abstract Background The elevated expression of vascular endothelial growth factor C (VEGF-C is correlated with clinical cervical cancer metastasis and patient survival, which is interpreted by VEGF-C functions to stimulate angiogenesis and lymphatic genesis. However, the direct impact of VEGF-C on cervical cancer cell motility remains largely unknown. Methods In this study, we investigated the effects of VEGF-C on actin cytoskeleton remodeling and on cervical cancer cell migration and invasion and how the actin-regulatory protein, moesin regulated these effects through RhoA/ROCK-2 signaling pathway. Results On cervical carcinoma cell line SiHa cells, exposure of VEGF-C triggered remodeling of the actin cytoskeleton and the formation of membrane ruffles, which was required for cell movement. VEGF-C significantly enhanced SiHa cells horizontal migration and three-dimensional invasion into matrices. These actions were dependent on increased expression and phosphorylation of the actin-regulatory protein moesin and specific moesin siRNA severely impaired VEGF-C stimulated-cell migration. The extracellular small GTPase RhoA/ROCK-2 cascade mediated the increased moesin expression and phosphorylation, which was discovered by the use of Y-27632, a specific inhibitor of Rho kinase and by transfected constitutively active, dominant-negative RhoA as well as ROCK-2 SiRNA. Furthermore, in the surgical cervical specimen from the patients with FIGO stage at cervical intra-epithelial neoplasia and I-II cervical squamous cell carcinoma, the expression levels of moesin were found to be significantly correlated with tumor malignancy and metastasis. Conclusions These results implied that VEGF-C promoted cervical cancer metastasis by upregulation and activation of moesin protein through RhoA/ROCK-2 pathway. Our findings offer new insight into the role of VEGF-C on cervical cancer progression and may provide potential targets for cervical cancer therapy.

  20. Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia.

    Mizoguchi, Yoshito; Kato, Takahiro A; Seki, Yoshihiro; Ohgidani, Masahiro; Sagata, Noriaki; Horikawa, Hideki; Yamauchi, Yusuke; Sato-Kasai, Mina; Hayakawa, Kohei; Inoue, Ryuji; Kanba, Shigenobu; Monji, Akira

    2014-06-27

    Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca(2+)]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca(2+) elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca(2+) elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Molecular Mechanisms in Exercise-Induced Cardioprotection

    Saeid Golbidi

    2011-01-01

    Full Text Available Physical inactivity is increasingly recognized as modifiable behavioral risk factor for cardiovascular diseases. A partial list of proposed mechanisms for exercise-induced cardioprotection include induction of heat shock proteins, increase in cardiac antioxidant capacity, expression of endoplasmic reticulum stress proteins, anatomical and physiological changes in the coronary arteries, changes in nitric oxide production, adaptational changes in cardiac mitochondria, increased autophagy, and improved function of sarcolemmal and/or mitochondrial ATP-sensitive potassium channels. It is currently unclear which of these protective mechanisms are essential for exercise-induced cardioprotection. However, most investigations focus on sarcolemmal KATP channels, NO production, and mitochondrial changes although it is very likely that other mechanisms may also exist. This paper discusses current information about these aforementioned topics and does not consider potentially important adaptations within blood or the autonomic nervous system. A better understanding of the molecular basis of exercise-induced cardioprotection will help to develop better therapeutic strategies.

  2. Ceramide-induced TCR up-regulation

    Menné, C; Lauritsen, Jens Peter Holst; Dietrich, J

    2000-01-01

    to increase T cell responsiveness. The purpose of this study was to identify and characterize potential pathways for TCR up-regulation. We found that ceramide affected TCR recycling dynamics and induced TCR up-regulation in a concentration- and time-dependent manner. Experiments applying phosphatase......The TCR is a constitutively recycling receptor meaning that a constant fraction of TCR from the plasma membrane is transported inside the cell at the same time as a constant fraction of TCR from the intracellular pool is transported to the plasma membrane. TCR recycling is affected by protein...... kinase C activity. Thus, an increase in protein kinase C activity affects TCR recycling kinetics leading to a new TCR equilibrium with a reduced level of TCR expressed at the T cell surface. Down-regulation of TCR expression compromises T cell activation. Conversely, TCR up-regulation is expected...

  3. Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells.

    Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E

    1998-12-01

    Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.

  4. The Brazilian Cardioprotective Nutritional Program to reduce events and risk factors in secondary prevention for cardiovascular disease: study protocol (The BALANCE Program Trial).

    Weber, Bernardete; Bersch-Ferreira, Ângela Cristine; Torreglosa, Camila Ragne; Ross-Fernandes, Maria Beatriz; da Silva, Jacqueline Tereza; Galante, Andrea Polo; Lara, Enilda de Sousa; Costa, Rosana Perim; Soares, Rafael Marques; Cavalcanti, Alexandre Biasi; Moriguchi, Emilio H; Bruscato, Neide M; Kesties; Vivian, Lilian; Schumacher, Marina; de Carli, Waldemar; Backes, Luciano M; Reolão, Bruna R; Rodrigues, Milena P; Baldissera, Dúnnia M B; Tres, Glaucia S; Lisbôa, Hugo R K; Bem, João B J; Reolão, Jose B C; Deucher, Keyla L A L; Cantarelli, Maiara; Lucion, Aline; Rampazzo, Daniela; Bertoni, Vanessa; Torres, Rosileide S; Verríssimo, Adriana O L; Guterres, Aldair S; Cardos, Andrea F R; Coutinho, Dalva B S; Negrão, Mayara G; Alencar, Mônica F A; Pinho, Priscila M; Barbosa, Socorro N A A; Carvalho, Ana P P F; Taboada, Maria I S; Pereira, Sheila A; Heyde, Raul V; Nagano, Francisca E Z; Baumgartner, Rebecca; Resende, Fernanda P; Tabalipa, Ranata; Zanini, Ana C; Machado, Michael J R; Araujo, Hevila; Teixeira, Maria L V; Souza, Gabriela C; Zuchinali, Priccila; Fracasso, Bianca M; Ulliam, Karen; Schumacher, Marina; Pierotto, Moara; Hilário, Thamires; Carlos, Daniele M O; Cordeiro, Cintia G N C; Carvalho, Daniele A; Gonçalves, Marília S; Vasconcelos, Valdiana B; Bosquetti, Rosa; Pagano, Raira; Romano, Marcelo L P; Jardim, César A; de Abreu, Bernardo N A; Marcadenti, Aline; Schmitt, Alessandra R; Tavares, Angela M V; Faria, Christiane C; Silva, Flávia M; Fink, Jaqueline S; El Kik, Raquel M; Prates, Clarice F; Vieira, Cristiane S; Adorne, Elaine F; Magedanz, Ellen H; Chieza, Fernanda L; Silva, Ingrid S; Teixeira, Joise M; Trescastro, Eduardo P; Pellegrini, Lívia A; Pinto, Jéssika C; Telles, Cristina T; Sousa, Antonio C S; Almeida, Andreza S; Costa, Ariane A; Carmo, José A C; Silva, Juliana T; Alves, Luciana V S; Sales, Saulo O C; Ramos, Maria E M; Lucas, Marilia C S; Damiani, Monica; Cardoso, Patricia C; Ramos, Salvador S; Dantas, Clenise F; Lopes, Amanda G; Cabral, Ana M P; Lucena, Ana C A; Medeiros, Auriene L; Terceiro, Bernardino B; Leda, Neuma M F S; Baía, Sandra R D; Pinheiro, Josilene M F; Cassiano, Alexandra N; Melo, Andressa N L; Cavalcanti, Anny K O; Souza, Camila V S; Queiroz, Dayanna J M; Farias, Hercilla N C F; Souza, Larissa C F; Santos, Letícia S; Lima, Luana R M; Hoffmann, Meg S; Ribeiro, Átala S Silva; Vasconcelos, Daniel F; Dutra, Eliane S; Ito, Marina K; Neto, José A F; Santos, Alexsandro F; Sousa, Rosângela M L; Dias, Luciana Pereira P; Lima, Maria T M A; Modanesi, Victor G; Teixeira, Adriana F; Estrada, Luciana C N C D; Modanesi, Paulo V G; Gomes, Adriana B L; Rocha, Bárbara R S; Teti, Cristina; David, Marta M; Palácio, Bruna M; Junior, Délcio G S; Faria, Érica H S; Oliveira, Michelle C F; Uehara, Rose M; Sasso, Sandramara; Moreira, Annie S B; Cadinha, Ana C A H; Pinto, Carla W M; Castilhos, Mariana P; Costa, Mariana; Kovacs, Cristiane; Magnoni, Daniel; Silva, Quênia; Germini, Michele F C A; da Silva, Renata A; Monteiro, Aline S; dos Santos, Karina G; Moreira, Priscila; Amparo, Fernanda C; Paiva, Catharina C J; Poloni, Soraia; Russo, Diana S; Silveira, Izabele V; Moraes, Maria A; Boklis, Mirena; Cardoso, Quinto I; Moreira, Annie S B; Damaceno, Aline M S; Santos, Elisa M; Dias, Glauber M; Pinho, Cláudia P S; Cavalcanti, Adrilene C; Bezerra, Amanda S; Queiroga, Andrey V; Rodrigues, Isa G; Leal, Tallita V; Sahade, Viviane; Amaral, Daniele A; Souza, Diana S; Araújo, Givaldo A; Curvello, Karine; Heine, Manuella; Barretto, Marília M S; Reis, Nailson A; Vasconcelos, Sandra M L; Vieira, Danielly C; Costa, Francisco A; Fontes, Jessica M S; Neto, Juvenal G C; Navarro, Laís N P; Ferreira, Raphaela C; Marinho, Patrícia M; Abib, Renata Torres; Longo, Aline; Bertoldi, Eduardo G; Ferreira, Lauren S; Borges, Lúcia R; Azevedo, Norlai A; Martins, Celma M; Kato, Juliana T; Izar, Maria C O; Asoo, Marina T; de Capitani, Mariana D; Machado, Valéria A; Fonzar, Waléria T; Pinto, Sônia L; Silva, Kellen C; Gratão, Lúcia H A; Machado, Sheila D; de Oliveira, Susane R U; Bressan, Josefina; Caldas, Ana P S; Lima, Hatanne C F M; Hermsdorff, Helen H M; Saldanha, Tânia M; Priore, Sílvia E; Feres, Naoel H; Neves, Adila de Queiroz; Cheim, Loanda M G; Silva, Nilma F; Reis, Silvia R L; Penafort, Andreza M; de Queirós, Ana Paula O; Farias, Geysa M N; de los Santos, Mônica L P; Ambrozio, Cíntia L; Camejo, Cirília N; dos Santos, Cristiano P; Schirmann, Gabriela S; Boemo, Jorge L; Oliveira, Rosane E C; Lima, Súsi M B; Bortolini, Vera M S; Matos, Cristina H; Barretta, Claiza; Specht, Clarice M; de Souza, Simone R; Arruda, Cristina S; Rodrigues, Priscila A; Berwanger, Otávio

    2016-01-01

    This article reports the rationale for the Brazilian Cardioprotective Nutritional Program (BALANCE Program) Trial. This pragmatic, multicenter, nationwide, randomized, concealed, controlled trial was designed to investigate the effects of the BALANCE Program in reducing cardiovascular events. The BALANCE Program consists of a prescribed diet guided by nutritional content recommendations from Brazilian national guidelines using a unique nutritional education strategy, which includes suggestions of affordable foods. In addition, the Program focuses on intensive follow-up through one-on-one visits, group sessions, and phone calls. In this trial, participants 45 years or older with any evidence of established cardiovascular disease will be randomized to the BALANCE or control groups. Those in the BALANCE group will receive the afore mentioned program interventions, while controls will be given generic advice on how to follow a low-fat, low-energy, low-sodium, and low-cholesterol diet, with a view to achieving Brazilian nutritional guideline recommendations. The primary outcome is a composite of death (any cause), cardiac arrest, acute myocardial infarction, stroke, myocardial revascularization, amputation for peripheral arterial disease, or hospitalization for unstable angina. A total of 2468 patients will be enrolled in 34 sites and followed up for up to 48 months. If the BALANCE Program is found to decrease cardiovascular events and reduce risk factors, this may represent an advance in the care of patients with cardiovascular disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Cardioprotective peptides from marine sources.

    Harnedy, Padraigín A; FitzGerald, Richard J

    2013-05-01

    Elevated blood pressure or hypertension is one of the fastest growing health problems worldwide. Although the etiology of essential hypertension has a genetic component, dietary factors play an important role. With the high costs and adverse side-effects associated with synthetic antihypertensive drugs and the awareness of the link between diet and health there has been increased focus on identification of food components that may contribute to cardiovascular health. In recent years special interest has been paid to the cardioprotective activity of peptides derived from food proteins including marine proteins. These peptides are latent within the sequence of the parent protein and only become active when released by proteolytic digestion during gastrointestinal digestion or through food processing. Current data on antihypertensive activity of marine-derived protein hydrolysates/peptides in animal and human studies is reviewed herein. Furthermore, products containing protein hydrolysates/peptides from marine origin with antihypertensive effects are discussed.

  6. Qing brick tea (QBT) aqueous extract protects monosodium glutamate-induced obese mice against metabolic syndrome and involves up-regulation Transcription Factor Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2) antioxidant pathway.

    Gao, Wenqi; Xiao, Changyi; Hu, Jun; Chen, Biaoxin; Wang, Chunyan; Cui, Bangping; Deng, Pengyi; Yang, Jian; Deng, Zhifang

    2018-04-18

    Qing brick tea (QBT), traditional and popular beverage for Chinese people, is an important post-fermentation dark tea. Our present study was performed to investigate the ameliorative effects of QBT aqueous extract on metabolic syndrome (Mets) in monosodium glutamate-induced obese mice and the potential mechanisms. Monosodium glutamate-induced obese mice were used to evaluate the anti-Mets effects of QBT. Content levels of malonaldehyde (MDA), reactive oxygen species (ROS) and protein carbonylation, antioxidant enzyme activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GR) in the skeletal muscle were assessed by commercial kits, respectively. Western blot and Q-PCR were used to detect the expressions of Transcription Factor Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2) signaling pathway and downstream antioxidant factors. In addition, activity of AKT signaling and expression of glucose transporter type 4 (GLUT4) in the skeletal muscle were investigated by western blot. QBT treatment limited gain of body weight, waistline and LEE index, improved insulin resistance and glucose intolerance, reduced lipid level in MSG mice. Content levels of MDA, ROS and protein carbonylation in skeletal muscle of QBT group were significantly improved compared to those of MSG mice. The antioxidant enzyme activities of SOD, GPx, CAT, and GR were increased in skeletal muscle of MSG mice intervened with QBT. After 20-week QBT treatment, Nrf2 signaling pathway and downstream antioxidant factors were both increased in the skeletal muscle. In addition, QBT treatment improved insulin signaling by preferentially augmenting AKT signaling, as well as increased the protein expression of GLUT4 in the skeletal muscle. Our results showed that QBT intake was effective in protecting monosodium glutamate-induced obese mice against metabolic syndrome and involved in the Nrf2 signaling pathway in the skeletal muscle. Copyright © 2018

  7. Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway.

    Koshikawa, Nobuko; Hayashi, Jun-Ichi; Nakagawara, Akira; Takenaga, Keizo

    2009-11-27

    Lewis lung carcinoma-derived high metastatic A11 cells constitutively overexpress hypoxia-inducible factor (HIF)-1alpha mRNA compared with low metastatic P29 cells. Because A11 cells exclusively possess a G13997A mutation in the mitochondrial NADH dehydrogenase subunit 6 (ND6) gene, we addressed here a causal relationship between the ND6 mutation and the activation of HIF-1alpha transcription, and we investigated the potential mechanism. Using trans-mitochondrial cybrids between A11 and P29 cells, we found that the ND6 mutation was directly involved in HIF-1alpha mRNA overexpression. Stimulation of HIF-1alpha transcription by the ND6 mutation was mediated by overproduction of reactive oxygen species (ROS) and subsequent activation of phosphatidylinositol 3-kinase (PI3K)-Akt and protein kinase C (PKC) signaling pathways. The up-regulation of HIF-1alpha transcription was abolished by mithramycin A, an Sp1 inhibitor, but luciferase reporter and chromatin immunoprecipitation assays indicated that Sp1 was necessary but not sufficient for HIF-1alpha mRNA overexpression in A11 cells. On the other hand, trichostatin A, a histone deacetylase (HDAC) inhibitor, markedly suppressed HIF-1alpha transcription in A11 cells. In accordance with this, HDAC activity was high in A11 cells but low in P29 cells and in A11 cells treated with the ROS scavenger ebselene, the PI3K inhibitor LY294002, and the PKC inhibitor Ro31-8220. These results suggest that the ROS-generating ND6 mutation increases HIF-1alpha transcription via the PI3K-Akt/PKC/HDAC pathway, leading to HIF-1alpha protein accumulation in hypoxic tumor cells.

  8. Cardioprotection by gene therapy: A review paper on behalf of the Working Group on Drug Cardiotoxicity and Cardioprotection of the Italian Society of Cardiology.

    Madonna, Rosalinda; Cadeddu, Christian; Deidda, Martino; Giricz, Zoltán; Madeddu, Clelia; Mele, Donato; Monte, Ines; Novo, Giuseppina; Pagliaro, Pasquale; Pepe, Alessia; Spallarossa, Paolo; Tocchetti, Carlo Gabriele; Varga, Zoltán V; Zito, Concetta; Geng, Yong-Jian; Mercuro, Giuseppe; Ferdinandy, Peter

    2015-07-15

    Ischemic heart disease remains the leading cause of death worldwide. Ischemic pre-, post-, and remote conditionings trigger endogenous cardioprotection that renders the heart resistant to ischemic-reperfusion injury (IRI). Mimicking endogenous cardioprotection by modulating genes involved in cardioprotective signal transduction provides an opportunity to reproduce endogenous cardioprotection with better possibilities of translation into the clinical setting. Genes and signaling pathways by which conditioning maneuvers exert their effects on the heart are partially understood. This is due to the targeted approach that allowed identifying one or a few genes associated with IRI and cardioprotection. Genes critical for signaling pathways in cardioprotection include protectomiRs (e.g., microRNA 125b*), ZAC1 transcription factor, pro-inflammatory genes such as cycloxygenase (COX)-2 and inducible nitric oxide synthase (iNOS), antioxidant enzymes such as hemoxygenase (HO)-1, extracellular and manganese superoxidase dismutases (ec-SOD and Mg-SOD), heat shock proteins (HSPs), growth factors such as insulin like growth factor (IGF)-1 and hepatocyte growth factor (HGF), antiapoptotic proteins such as Bcl-2 and Bcl-xL, pro-apoptotic proteins such as FasL, Bcl-2, Bax, caspase-3 and p53, and proangiogenic genes such as TGFbeta, sphingosine kinase 1 (SPK1), and PI3K-Akt. By identifying the gene expression profiles of IRI and ischemic conditioning, one may reveal potential gene targets responsible for cardioprotection. In this manuscript, we review the current state of the art of gene therapy in cardioprotection and propose that gene expression analysis facilitates the identification of individual genes associated with cardioprotection. We discuss signaling pathways associated with cardioprotection that can be targeted by gene therapy to achieve cardioprotection. Copyright © 2015. Published by Elsevier Ireland Ltd.

  9. Cardioprotection by Conditioning Mimetic Drugs.

    Santillo, Elpidio; Migale, Monica; Postacchini, Demetrio; Balestrini, Fabrizio; Incalzi, Raffaele Antonelli

    2016-01-01

    At present, ischemic heart disease (IHD) is one of the main causes of morbidity and mortality world-wide. An important insight into both IHD pathophysiology and cardioprotection was achieved in 1986 when Murry et al. described for the first time the ischemic preconditioning (IP). IP can be defined as an innate phenomenon by which brief episodes of ischemia confer protection to a tissue from a subsequent more protracted ischemic insult. Suggested mechanisms explaining IP comprise the action of circulating substances (e.g. adenosine, bradykinin, nitric oxide). These mediators are released after a prolonged ischemic stress, causing activation of molecular pathways that induce favorable posttranslational changes of proteins and adaptive modifications in genetic expression. Briefly review evidences from clinical studies on drugs that exert their effects by mimicking IP, discussing their therapeutic properties and the potential clinical employment in order to obtain cardioprotection. Literature regarding IP mimicking pharmacological agents was searched in Medline and Google Scholar. Authors reviewed relevant researches in English language including both clinical studies and reviews of clinical studies published from 1986 to 2016. Several pharmacological agents reproducing IP protective actions have been evaluated in many clinical trials. Examined molecules include adenosine, nicorandil and atrial natriuretic peptide. Interestingly IP mimicking effects of drugs have been also analyzed perioperatively in the context of ischaemia-reperfusion heart injury. Moreover evidences suggest that also some anaesthetic drugs (especially volatile agents) are able to provide myocardial protection by inducing IP. Drugs capable of mimicking IP exhibit a high therapeutic potential because of their properties of eliciting an effective cardioprotective signaling. Future studies should clarify the optimal doses and timing of administration of IP mimetic agents in order to favor the advent of

  10. Kaempferol Sensitizes Human Ovarian Cancer Cells-OVCAR-3 and SKOV-3 to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)-Induced Apoptosis via JNK/ERK-CHOP Pathway and Up-Regulation of Death Receptors 4 and 5.

    Zhao, Yingmei; Tian, Binqiang; Wang, Yong; Ding, Haiying

    2017-10-26

    BACKGROUND Ovarian cancer is the most common gynecological malignancies in women, with high mortality rates worldwide. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) superfamily which preferentially induces apoptosis of cancer cells. However, acquired resistance to TRAIL hampers its therapeutic application. Identification of compounds that sensitize cancer cells to TRAIL is vital in combating resistance to TRAIL. The effect of kaempferol, a flavonoid enhancing TRAIL-induced apoptosis in ovarian cancer cells, was investigated in this study. MATERIAL AND METHODS The cytotoxic effects of TRAIL (25 ng/mL) and kaempferol (20-100 µM) on human ovarian cancer cells OVCAR-3 and SKOV-3 were assessed. Effect of kaempferol on the expression patterns of cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, c-FLIP) and apoptotic proteins (caspase-3, caspase-8, caspase-9, Bax) were studied. The influence of kaempferol on expression of DR4 and DR5 death receptors on the cell surface and protein and mRNA levels was also analyzed. Apoptosis following silencing of DR5 and CHOP by small interfering RNA (siRNA), and activation of MAP kinases were analyzed as well. RESULTS Kaempferol enhanced apoptosis and drastically up-regulated DR4, DR5, CHOP, JNK, ERK1/2, p38 and apoptotic protein expression with decline in the expression of anti-apoptotic proteins. Further transfection with siRNA specific to CHOP and DR5 indicated the involvement of CHOP in DR5 up-regulation and also the contribution of DR5 in kaempferol-enhanced TRAIL-induced apoptosis. CONCLUSIONS Kaempferol sensitized ovarian cancer cells to TRAIL-induced apoptosis via up-regulation of DR4 and DR5 through ERK/JNK/CHOP pathways.

  11. CARDIOPROTECTIVE EFFECTS OF PHYTOSTEROLS

    Jyotika Dhankhar

    2013-01-01

    Foods and nutrients play a vital role in normal functioning of the body. They are helpful in maintaining the health of the individual and in reducing the risk of various diseases. Worldwide acceptance of this fact formed a recognition link between "nutrition" and "health" and the concept of "nutraceuticals" has evolved. More than any other disease, the etiology of cardiovascular disease reveals many risk factors that are amenable to nutraceutical intervention. The scientific literature shows ...

  12. Up-regulation of hypoxia-inducible factor (HIF)-1α and HIF-target genes in cortical neurons by the novel multifunctional iron chelator anti-Alzheimer drug, M30.

    Avramovich-Tirosh, Y; Bar-Am, O; Amit, T; Youdim, M B H; Weinreb, O

    2010-06-01

    Based on a multimodal drug design paradigm, we have synthesized a multifunctional non-toxic, brain permeable iron chelator, M30, possessing the neuroprotective propargylamine moiety of the anti-Parkinsonian drug, rasagiline (Azilect) and antioxidant-iron chelator moiety of an 8-hydroxyquinoline derivative of our iron chelator, VK28. M30 was recently found to confer potential neuroprotective effects in vitro and in various preclinical neurodegenerative models and regulate the levels and processing of the Alzheimer's amyloid precursor protein and its toxic amyloidogenic derivative, Abeta. Here, we show that M30 activates the hypoxia-inducible factor (HIF)-1alpha signaling pathway, thus promoting HIF-1alpha mRNA and protein expression levels, as well as increasing transcription of HIF-1alpha-dependent genes, including vascular endothelial growth factor, erythropoietin, enolase-1, p21 and tyrosine hydroxylase in rat primary cortical cells. In addition, M30 also increased the expression levels of the transcripts of brain derived neurotrophic factor (BDNF) and growth-associated protein-43 (GAP-43). Regarding aspects of relevance to Alzheimer's disease (AD), western blotting analysis of glycogen synthase kinase- 3beta (GSK-3beta) signaling pathway revealed that M30 enhanced the levels of phospho-AKT (Ser473) and phospho- GSK-3beta (Ser9) and attenuated Tau phosphorylation. M30 was also shown to protect cultured cortical neurons against Abeta(25-35) toxicity. All these multimodal pharmacological activities of M30 might be beneficial for its potent efficacy in the prevention and treatment of neurodegenerative conditions, such as Parkinson's disease and AD in which oxidative stress and iron-mediated toxicity are involved.

  13. The retinoic acid-induced up-regulation of insulin-like growth factor 1 and 2 is associated with prolidase-dependent collagen synthesis in UVA-irradiated human dermal equivalents.

    Shim, Joong Hyun; Shin, Dong Wook; Lee, Tae Ryong; Kang, Hak Hee; Jin, Sun Hee; Noh, Minsoo

    2012-04-01

    Ultraviolet (UV) A irradiation causes the degeneration of extracellular matrix in the skin dermis, mainly due to disrupted collagen homeostasis, resulting in the photo-aging of human skin. All-trans retinoic acid (ATRA) improves photo-aged human skin in vivo. Although the effects of ATRA on collagen synthesis and MMP regulation are well known, the effects of ATRA on other collagen homeostasis-associated genes have not been elucidated. This study was aimed to study the factors that are pharmacologically associated with the effect of ATRA on collagen homeostasis. The gene transcription profile of collagen homeostasis-associated genes was systematically evaluated in three-dimensional human dermal equivalents (HDEs) following UVA-irradiation and/or ATRA treatment. In addition to the expected changes in MMPs and collagen synthesis in HDEs in response to ATRA, prolidase, an important enzyme in the recycling of proline and hydroxyproline from degraded collagen molecules, was significantly decreased by UVA irradiation, and its down-regulation was antagonized by ATRA. Transfection with a prolidase-specific siRNA led to a significant decrease in procollagen synthesis in human fibroblasts. ATRA inhibited the UVA irradiation-induced decrease in prolidase activity through an insulin-like growth factor (IGF) receptor signaling pathway in HDEs. ARTA increased IGF1 and IGF2 production in HDEs, and neutralizing IGFs with anti-IGF antibodies abolished the effect of ATRA on proliase activity. These data demonstrate that ATRA regulates prolidase activity in HDEs via IGF receptor signaling, suggesting one of the pharmacological mechanisms by which improves photo-aged human skin. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Angiotensin II type 1 receptor blockade by telmisartan prevents stress-induced impairment of memory via HPA axis deactivation and up-regulation of brain-derived neurotrophic factor gene expression.

    Wincewicz, D; Juchniewicz, A; Waszkiewicz, N; Braszko, J J

    2016-09-01

    Physical and psychological aspects of chronic stress continue to be a persistent clinical problem for which new pharmacological treatment strategies are aggressively sought. By the results of our previous work it has been demonstrated that telmisartan (TLM), an angiotensin type 1 receptor (AT1) blocker (ARB) and partial agonist of peroxisome proliferator-activated receptor gamma (PPARγ), alleviates stress-induced cognitive decline. Understanding of mechanistic background of this phenomenon is hampered by both dual binding sites of TLM and limited data on the consequences of central AT1 blockade and PPARγ activation. Therefore, a critical need exists for progress in the characterization of this target for pro-cognitive drug discovery. An unusual ability of novel ARBs to exert various PPARγ binding activities is commonly being viewed as predominant over angiotensin blockade in terms of neuroprotection. Here we aimed to verify this hypothesis using an animal model of chronic psychological stress (Wistar rats restrained 2.5h daily for 21days) with simultaneous oral administration of TLM (1mg/kg), GW9662 - PPARγ receptor antagonist (0.5mg/kg), or both in combination, followed by a battery of behavioral tests (open field, elevated plus maze, inhibitory avoidance - IA, object recognition - OR), quantitative determination of serum corticosterone (CORT) and evaluation of brain-derived neurotrophic factor (BDNF) gene expression in the medial prefrontal cortex (mPFC) and hippocampus (HIP). Stressed animals displayed decreased recall of the IA behavior (pBDNF in the mPFC (paxis deactivation associated with changes in primarily cortical gene expression. This study confirms the dual activities of TLM that controls hypertension and cognition through AT1 blockade. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Up-regulation of melanin synthesis by the antidepressant fluoxetine.

    Liao, Sha; Shang, Jing; Tian, Xiaoli; Fan, Xueqi; Shi, Xiupu; Pei, Siran; Wang, Qian; Yu, Boyang

    2012-08-01

    Fluoxetine, a member of the class of selective serotonin reuptake inhibitors, is a potent antidepressant commonly used in clinical practice. Here, we report that fluoxetine increases cellular tyrosinase (TYR) activity, enhances the protein levels of microphthalmia-associated transcription factor (MITF), TYR and tyrosinase-related protein-1 (TRP-1) and eventually leads to a dramatic increase in melanin production in both murine B16F10 melanoma cells and normal human melanocytes (NHMCs). In well-characterized C57BL/6 mouse models, systemic application of fluoxetine increased hair pigmentation by up-regulating hair follicular MITF, TYR, TRP-1 and tyrosinase-related protein-2 (TRP-2) protein levels. Using a serotonin 1A receptor (SR1A) antagonist and RNA interference (RNAi) technique, we revealed that SR1A appears to be one of the involved pathways in the fluoxetine-induced melanogenesis in B16F10 cells. These results suggest that fluoxetine may hold a significant therapeutic potential for treating skin hypopigmentation disorders, and SR1A may serve as a novel target in modulating melanogenesis. © 2012 John Wiley & Sons A/S.

  16. Mechanisms of Hypoxic Up-Regulation of Versican Gene Expression in Macrophages.

    Fattah Sotoodehnejadnematalahi

    Full Text Available Hypoxia is a hallmark of many pathological tissues. Macrophages accumulate in hypoxic sites and up-regulate a range of hypoxia-inducible genes. The matrix proteoglycan versican has been identified as one such gene, but the mechanisms responsible for hypoxic induction are not fully characterised. Here we investigate the up-regulation of versican by hypoxia in primary human monocyte-derived macrophages (HMDM, and, intriguingly, show that versican mRNA is up-regulated much more highly (>600 fold by long term hypoxia (5 days than by 1 day of hypoxia (48 fold. We report that versican mRNA decay rates are not affected by hypoxia, demonstrating that hypoxic induction of versican mRNA is mediated by increased transcription. Deletion analysis of the promoter identified two regions required for high level promoter activity of luciferase reporter constructs in human macrophages. The hypoxia-inducible transcription factor HIF-1 has previously been implicated as a key potential regulator of versican expression in hypoxia, however our data suggest that HIF-1 up-regulation is unlikely to be principally responsible for the high levels of induction observed in HMDM. Treatment of HMDM with two distinct specific inhibitors of Phosphoinositide 3-kinase (PI3K, LY290042 and wortmannin, significantly reduced induction of versican mRNA by hypoxia and provides evidence of a role for PI3K in hypoxic up-regulation of versican expression.

  17. Eat healthy? Attitudes of the German population towards industrially produced cardioprotective food.

    Jung, F U C E; Luck-Sikorski, C; Krüger, M; Wiacek, C; Braun, P G; Engeli, S; Riedel-Heller, S G

    2018-05-01

    Cardiovascular disease (CVD) is likely to increase in incidence. Foods with cardioprotective functions, e.g. specific functional food, could reduce CVD risk factors and hence CVD incidence. Little is known about industrially modified foods with cardioprotective functions. In a large German sample (n = 1007), attitudes of consumers in Germany towards industrially produced cardioprotective food were assessed using Cluster analyses. Consumers were contacted via telephone and interviewed using questionnaires. Overall, about 25% knew about industrially produced food with cardioprotective function. Our analysis revealed a small but determined group of consumers who think very skeptical about cardioprotective products, but we also identified a favorable group. These two groups only differed in age, with the skeptical group being ten years older. The rising number of industrially modified products with potential cardioprotective benefit is met by skepticism and a lack of knowledge by German costumers. If large scale studies show health benefits of these products, these will need to be better communicated to German customers in order to address possible doubts or concerns and to encourage healthy eating habits in consumer eating behavior. Copyright © 2018 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  18. Cardioprotective effect of valsartan in mice with short-term high-salt diet by regulating cardiac aquaporin 1 and angiogenic factor expression.

    Jiang, Yong; Wang, Hui-Yan; Zheng, Sheng; Mu, Shang-Qiang; Ma, Meng-Ni; Xie, Xin; Zhang, Yang-Yang; Zhang, Chun-Xue; Cai, Jian-Hui

    2015-01-01

    Hypertension is the most common risk factor for various cardiovascular and cerebrovascular diseases that affects approximately 61 million, or 25% of the population in United States. The dietary salt intake is one of the most important but modifiable factors for hypertension. In the current study, we aim to elucidate the role of aquaporin 1 in high-salt-induced hypertension and cardiac injuries and whether angiotensin II receptor blocker valsartan could ameliorate the effect of high salt on blood pressure. Mice were fed with normal diet, high-salt diet in the presence or absence of valsartan for 4 weeks. The body weight gain, feeding behavior, blood pressure, and cardiac pathology changes were monitored after 4 weeks. The expression of aquaporin 1, vascular endothelial growth factor, transforming growth factor β1, and basic fibroblast growth factor were analyzed using quantitative real-time polymerase chain reaction, Western blot, and immunohistochemical staining. Valsartan partially reversed the effects of high-salt diet on hypertension, cardiac injuries such as fibrosis and inflammatory cell infiltration, and inhibition of aquaporin 1 and angiogenic factors; valsartan alone did not exert such effects. The current data demonstrated that the reduction of cardiac aquaporin 1 and angiogenic factor expression level might be associated with high-salt-induced hypertension and cardiac injuries in mice, which could be ameliorated by angiotensin II receptor blocker treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. SPARC is up-regulated during skeletal muscle regeneration and inhibits myoblast differentiation

    Petersson, Stine Juhl; Jørgensen, Louise Helskov; Andersen, Ditte C.

    2013-01-01

    Skeletal muscle repair is mediated primarily by the muscle stem cell, the satellite cell. Several factors, including extracellular matrix, are known to regulate satellite cell function and regeneration. One factor, the matricellular Secreted Protein Acidic and Rich in Cysteine (SPARC) is highly up......-regulated during skeletal muscle disease, but its function remains elusive. In the present study, we demonstrate a prominent yet transient increase in SPARC mRNA and protein content during skeletal muscle regeneration that correlates with the expression profile of specific muscle factors like MyoD, Myf5, Myf6......, Myogenin, NCAM, CD34, and M-Cadherin, all known to be implicated in satellite cell activation/proliferation following muscle damage. This up regulation was detected in more cell types. Ectopic expression of SPARC in the muscle progenitor cell line C2C12 was performed to mimic the high levels of SPARC seen...

  20. Shexiang Baoxin pills promotes angiogenesis in myocardial infarction rats via up-regulation of 20-HETE-mediated endothelial progenitor cells mobilization.

    Huang, Feifei; Liu, Yang; Yang, Xia; Che, Di; Qiu, Kaifeng; Hammock, Bruce D; Wang, Jingfeng; Wang, Mong-Heng; Chen, Jie; Huang, Hui

    2017-08-01

    Therapeutic angiogenesis is a pivotal strategy for ischemic heart disease. The aim of the present study was to determine the effect and molecular mechanism of Shexiang Baoxin pills, a widely-used traditional Chinese medicine for ischemic heart disease, on angiogenesis in a rat model of myocardial infarction (MI). We used the occlusion of left anterior descending coronary artery of Sprague-Dawley rats as a model of MI. The MI rats were treated with distilled water, Shexiang Baoxin pills, or Shexiang Baoxin pills + HET0016 (a selective blocker of the biosynthesis of 20-hydroxyeicosatetraenoic acid (20-HETE) at 10 mg/kg/day), respectively. Sham-operated rats were used as controls. Treatment with Shexiang Baoxin pills increases the level of serum 20-HETE in MI rats, which can be suppressed by HET0016 treatment. Shexiang Baoxin pills shows cardio-protective effects on MI rats, including improving cardiac function, decreasing infarction area, and promoting angiogenesis in peri-infarct area. The protective effects of Shexiang Baoxin pills are partly inhibited by HET0016. Furthermore, Shexiang Baoxin pills enhances the number of circulating endothelial progenitor cells (EPCs) and the expression of the vascular endothelial growth factor (VEGF), based on immunohistochemical analysis, in peri-infarct area of MI rats, which is partly suppressed by HET0016. Shexiang Baoxin pills may partially participate in angiogenesis in MI rats. The protective mechanism of Shexiang Baoxin pills may be mediated via up-regulation of 20-HETE, which promotes EPCs mobilization and VEGF expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Possible involvement of caveolin in attenuation of cardioprotective effect of ischemic preconditioning in diabetic rat heart

    Singh Manjeet

    2011-07-01

    the diabetic myocardium, which may be due to up -regulation of caveolin and subsequently decreased activity of eNOS.

  2. Neuropilin 1 Receptor Is Up-Regulated in Dysplastic Epithelium and Oral Squamous Cell Carcinoma.

    Shahrabi-Farahani, Shokoufeh; Gallottini, Marina; Martins, Fabiana; Li, Erik; Mudge, Dayna R; Nakayama, Hironao; Hida, Kyoko; Panigrahy, Dipak; D'Amore, Patricia A; Bielenberg, Diane R

    2016-04-01

    Neuropilins are receptors for disparate ligands, including proangiogenic factors such as vascular endothelial growth factor and inhibitory class 3 semaphorin (SEMA3) family members. Differentiated cells in skin epithelium and cutaneous squamous cell carcinoma highly express the neuropilin-1 (NRP1) receptor. We examined the expression of NRP1 in human and mouse oral mucosa. NRP1 was significantly up-regulated in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC). NRP1 receptor localized to the outer suprabasal epithelial layers in normal tongue, an expression pattern similar to the normal skin epidermis. However, dysplastic tongue epithelium and OSCC up-regulated NRP1 in basal and proliferating epithelial layers, a profile unseen in cutaneous squamous cell carcinoma. NRP1 up-regulation is observed in a mouse carcinogen-induced OSCC model and in human tongue OSCC biopsies. Human OSCC cell lines express NRP1 protein in vitro and in mouse tongue xenografts. Sites of capillary infiltration into orthotopic OSCC tumors correlate with high NRP1 expression. HSC3 xenografts, which express the highest NRP1 levels of the cell lines examined, showed massive intratumoral lymphangiogenesis. SEMA3A inhibited OSCC cell migration, suggesting that the NRP1 receptor was bioactive in OSCC. In conclusion, NRP1 is regulated in the oral epithelium and is selectively up-regulated during epithelial dysplasia. NRP1 may function as a reservoir to sequester proangiogenic ligands within the neoplastic compartment, thereby recruiting neovessels toward tumor cells. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Up-regulation of reciprocal inhibition by explosive strength training

    Geertsen, Svend Sparre; Jensen, Jesper Lundbye; Nielsen, Jens Bo

    of 26 ± 7 years strength trained the ankle dorsiflexor muscles 3 times a week for 4 weeks. Each training session consisted of 4 sets of 16 isometric dorsiflexions with the aim of increasing force as rapidly as possible, separated by 4min rest periods. Test sessions were conducted before, immediately...... in the ankle plantarflexors at the onset of dorsiflexion is larger the quicker the movement, we hypothesized that DRI may be up-regulated when subjects are trained to perform dorsiflexion movements as quickly as possible.   For this purpose, 15 healthy human subjects (7 male, 8 female) with an average age...... after and 2 weeks after the training period. The rate of dorsiflexion force development measured within 30, 50, 100 and 200ms after onset of voluntary explosive isometric dorsiflexion increased by 20-30% (p

  4. Gene up-regulation in response to predator kairomones in the water flea, Daphnia pulex

    Okada Yasukazu

    2010-04-01

    Full Text Available Abstract Background Numerous cases of predator-induced polyphenisms, in which alternate phenotypes are produced in response to extrinsic stimuli, have been reported in aquatic taxa to date. The genus Daphnia (Branchiopoda, Cladocera provides a model experimental system for the study of the developmental mechanisms and evolutionary processes associated with predator-induced polyphenisms. In D. pulex, juveniles form neckteeth in response to predatory kairomones released by Chaoborus larvae (Insecta, Diptera. Results Previous studies suggest that the timing of the sensitivity to kairomones in D. pulex can generally be divided into the embryonic and postembryonic developmental periods. We therefore examined which of the genes in the embryonic and first-instar juvenile stages exhibit different expression levels in the presence or absence of predator kairomones. Employing a candidate gene approach and identifying differentially-expressed genes revealed that the morphogenetic factors, Hox3, extradenticle and escargot, were up-regulated by kairomones in the postembryonic stage and may potentially be responsible for defense morph formation. In addition, the juvenile hormone pathway genes, JHAMT and Met, and the insulin signaling pathway genes, InR and IRS-1, were up-regulated in the first-instar stage. It is well known that these hormonal pathways are involved in physiological regulation following morphogenesis in many insect species. During the embryonic stage when morphotypes were determined, one of the novel genes identified by differential display was up-regulated, suggesting that this gene may be related to morphotype determination. Biological functions of the up-regulated genes are discussed in the context of defense morph formation. Conclusions It is suggested that, following the reception of kairomone signals, the identified genes are involved in a series of defensive phenotypic alterations and the production of a defensive phenotype.

  5. Mechanisms Involved in Exercise-Induced Cardioprotection: A Systematic Review

    Borges, Juliana Pereira; Lessa, Marcos Adriano

    2015-01-01

    Background Acute myocardial infarction is the leading cause of morbidity and mortality worldwide. Furthermore, research has shown that exercise, in addition to reducing cardiovascular risk factors, can also protect the heart against injury due to ischemia and reperfusion through a direct effect on the myocardium. However, the specific mechanism involved in exerciseinduced cardiac preconditioning is still under debate. Objective To perform a systematic review of the studies that have addressed the mechanisms by which aerobic exercise promotes direct cardioprotection against ischemia and reperfusion injury. Methods A search was conducted using MEDLINE, Literatura Latino-Americana e do Caribe de Informação em Ciências da Saúde, and Scientific Electronic Library Online databases. Data were extracted in a standardized manner by two independent researchers, who were responsible for assessing the methodological quality of the studies. Results The search retrieved 78 studies; after evaluating the abstracts, 30 studies were excluded. The manuscripts of the remaining 48 studies were completely read and, of these, 20 were excluded. Finally, 28 studies were included in this systematic review. Conclusion On the basis of the selected studies, the following are potentially involved in the cardioprotective response to exercise: increased heat shock protein production, nitric oxide pathway involvement, increased cardiac antioxidant capacity, improvement in ATP-dependent potassium channel function, and opioid system activation. Despite all the previous investigations, further research is still necessary to obtain more consistent conclusions. PMID:25830711

  6. Apocynin improving cardiac remodeling in chronic renal failure disease is associated with up-regulation of epoxyeicosatrienoic acids.

    Zhang, Kun; Liu, Yu; Liu, Xiaoqiang; Chen, Jie; Cai, Qingqing; Wang, Jingfeng; Huang, Hui

    2015-09-22

    Cardiac remodeling is one of the most common cardiac abnormalities and associated with a high mortality in chronic renal failure (CRF) patients. Apocynin, a nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase inhibitor, has been showed cardio-protective effects. However, whether apocynin can improve cardiac remodeling in CRF and what is the underlying mechanism are unclear. In the present study, we enrolled 94 participants. In addition, we used 5/6 nephrectomized rats to mimic cardiac remodeling in CRF. Serum levels of epoxyeicosatrienoic acids (EETs) and its mainly metabolic enzyme-soluble epoxide hydrolase (sEH) were measured. The results showed that the serum levels of EETs were significantly decreased in renocardiac syndrome participants (P < 0.05). In 5/6 nephrectomized CRF model, the ratio of left ventricular weight / body weight, left ventricular posterior wall thickness, and cardiac interstitial fibrosis were significantly increased while ejection fraction significantly decreased (P < 0.05). All these effects could partly be reversed by apocynin. Meanwhile, we found during the process of cardiac remodeling in CRF, apocynin significantly increased the reduced serum levels of EETs and decreased the mRNA and protein expressions of sEH in the heart (P < 0.05). Our findings indicated that the protective effect of apocynin on cardiac remodeling in CRF was associated with the up-regulation of EETs. EETs may be a new mediator for the injury of kidney-heart interactions.

  7. Apocynin improving cardiac remodeling in chronic renal failure disease is associated with up-regulation of epoxyeicosatrienoic acids

    Chen, Jie; Cai, Qingqing; Wang, Jingfeng; Huang, Hui

    2015-01-01

    Cardiac remodeling is one of the most common cardiac abnormalities and associated with a high mortality in chronic renal failure (CRF) patients. Apocynin, a nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase inhibitor, has been showed cardio-protective effects. However, whether apocynin can improve cardiac remodeling in CRF and what is the underlying mechanism are unclear. In the present study, we enrolled 94 participants. In addition, we used 5/6 nephrectomized rats to mimic cardiac remodeling in CRF. Serum levels of epoxyeicosatrienoic acids (EETs) and its mainly metabolic enzyme-soluble epoxide hydrolase (sEH) were measured. The results showed that the serum levels of EETs were significantly decreased in renocardiac syndrome participants (P < 0.05). In 5/6 nephrectomized CRF model, the ratio of left ventricular weight /body weight, left ventricular posterior wall thickness, and cardiac interstitial fibrosis were significantly increased while ejection fraction significantly decreased (P < 0.05). All these effects could partly be reversed by apocynin. Meanwhile, we found during the process of cardiac remodeling in CRF, apocynin significantly increased the reduced serum levels of EETs and decreased the mRNA and protein expressions of sEH in the heart (P < 0.05). Our findings indicated that the protective effect of apocynin on cardiac remodeling in CRF was associated with the up-regulation of EETs. EETs may be a new mediator for the injury of kidney-heart interactions. PMID:26322503

  8. Up-Regulation of Mitochondrial Antioxidant Superoxide Dismutase Underpins Persistent Cardiac Nutritional-Preconditioning by Long Chain n-3 Polyunsaturated Fatty Acids in the Rat

    Grace G. Abdukeyum

    2016-03-01

    Full Text Available Reactive oxygen species paradoxically underpin both ischaemia/reperfusion (I/R damage and ischaemic preconditioning (IPC cardioprotection. Long-chain omega-3 polyunsaturated fatty acids (LCn-3 PUFA are highly susceptible to peroxidation, but are paradoxically cardioprotective. This study tested the hypothesis that LCn-3 PUFA cardioprotection is underpinned by peroxidation, upregulating antioxidant activity to reduce I/R-induced lipid oxidation, and the mechanisms of this nutritional preconditioning contrast to mechanisms of IPC. Rats were fed: fish oil (LCn-3 PUFA; sunflower seed oil (n-6 PUFA; or beef tallow (saturated fat, SF enriched diets for six weeks. Isolated hearts were subject to: 180 min normoxic perfusion; a 30 min coronary occlusion ischaemia protocol then 120 min normoxic reperfusion; or a 3 × 5 min global IPC protocol, 30 min ischaemia, then reperfusion. Dietary LCn-3 PUFA raised basal: membrane docosahexaenoic acid (22:6n-3 DHA; fatty acid peroxidisability index; concentrations of lipid oxidation products; and superoxide dismutase (MnSOD activity (but not CuZnSOD or glutathione peroxidase. Infarct size correlated inversely with basal MnSOD activity (r2 = 0.85 in the ischaemia protocol and positively with I/R-induced lipid oxidation (lipid hydroperoxides (LPO, r2 = 0.475; malondialdehyde (MDA, r2 = 0.583 across ischaemia and IPC protocols. While both dietary fish oil and IPC infarct-reduction were associated with reduced I/R-induced lipid oxidation, fish oil produced nutritional preconditioning by prior LCn-3 PUFA incorporation and increased peroxidisability leading to up-regulated mitochondrial SOD antioxidant activity.

  9. Up-regulation of microRNA-1290 impairs cytokinesis and affects the reprogramming of colon cancer cells.

    Wu, Jia; Ji, Xiaowei; Zhu, Linlin; Jiang, Qiaoli; Wen, Zhenzhen; Xu, Song; Shao, Wei; Cai, Jianting; Du, Qin; Zhu, Yongliang; Mao, Jianshan

    2013-02-28

    Abnormal cytokinesis increases the possibility of nuclear fusion in tumor cells. However, the role of microRNAs (miRNAs) in abnormal cytokinesis is unclear. Here, we found that miR-1290 was significantly up-regulated in clinical colon cancer tissues. Up-regulation of miR-1290 postponed cytokinesis and led to the formation of multinucleated cells. KIF13B was a target of miR-1290 that was involved in aberrant cytokinesis. Furthermore, enforced expression of miR-1290 activated the Wnt pathway and increased the reprogramming-related transcript factors c-Myc and Nanog. Our results suggest that up-regulation of miR-1290 in colon cancer cells impaired cytokinesis and affected reprogramming. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. The Natural Antimicrobial Enzyme Lysozyme is Up-Regulated in Gastrointestinal Inflammatory Conditions

    Carlos A. Rubio

    2014-01-01

    Full Text Available The cells that line the mucosa of the human gastrointestinal tract (GI, that is, oral cavity, oesophagus, stomach, small intestine, large intestine, and rectum are constantly challenged by adverse micro-environmental factors, such as different pH, enzymes, and bacterial flora. With exception of the oral cavity, these microenvironments also contain remnant cocktails of secreted enzymes and bacteria from upper organs along the tract. The density of the GI bacteria varies, from 103/mL near the gastric outlet, to 1010/mL at the ileocecal valve, to 1011 to 1012/mL in the colon. The total microbial population (ca. 1014 exceeds the total number of cells in the tract. It is, therefore, remarkable that despite the prima facie inauspicious mixture of harmful secretions and bacteria, the normal GI mucosa retains a healthy state of cell renewal. To counteract the hostile microenvironment, the GI epithelia react by speeding cell exfoliation (the GI mucosa has a turnover time of two to three days, by increasing peristalsis, by eliminating bacteria through secretion of plasma cell-immunoglobulins and by increasing production of natural antibacterial compounds, such as defensin-5 and lysozyme. Only recently, lysozyme was found up-regulated in Barrett’s oesophagitis, chronic gastritis, gluten-induced atrophic duodenitis (coeliac disease, collagenous colitis, lymphocytic colitis, and Crohn’s colitis. This up-regulation is a response directed to the special types of bacteria recently detected in these diseases. The aim of lysozyme up-regulation is to protect individual mucosal segments to chronic inflammation. The molecular mechanisms connected to the crosstalk between the intraluminal bacterial flora and the production of lysozyme released by the GI mucosae, are discussed. Bacterial resistance continues to exhaust our supply of commercial antibiotics. The potential use of lysozyme to treat infectious diseases is receiving much attention.

  11. Adjuvant Cardioprotection in Cardiac Surgery: Update

    Robert Wagner

    2014-01-01

    Full Text Available Cardiac surgery patients are now more risky in terms of age, comorbidities, and the need for complex procedures. It brings about reperfusion injury, which leads to dysfunction and/or loss of part of the myocardium. These groups of patients have a higher incidence of postoperative complications and mortality. One way of augmenting intraoperative myocardial protection is the phenomenon of myocardial conditioning, elicited with brief nonlethal episodes of ischaemia-reperfusion. In addition, drugs are being tested that mimic ischaemic conditioning. Such cardioprotective techniques are mainly focused on reperfusion injury, a complex response of the organism to the restoration of coronary blood flow in ischaemic tissue, which can lead to cell death. Extensive research over the last three decades has revealed the basic mechanisms of reperfusion injury and myocardial conditioning, suggesting its therapeutic potential. But despite the enormous efforts that have been expended in preclinical studies, almost all cardioprotective therapies have failed in the third phase of clinical trials. One reason is that evolutionary young cellular mechanisms of protection against oxygen handling are not very robust. Ischaemic conditioning, which is among these, is also limited by this. At present, the prevailing belief is that such options of treatment exist, but their full employment will not occur until subquestions and methodological issues with the transfer into clinical practice have been resolved.

  12. Is red wine a SAFE sip away from cardioprotection? Mechanisms involved in resveratrol- and melatonin-induced cardioprotection.

    Lamont, Kim T; Somers, Sarin; Lacerda, Lydia; Opie, Lionel H; Lecour, Sandrine

    2011-05-01

    Epidemiological studies suggest that regular moderate consumption of red wine confers cardioprotection but the mechanisms involved in this effect remain unclear. Recent studies demonstrate the presence of melatonin in wine. We propose that melatonin, at a concentration found in red wine, confers cardioprotection against ischemia-reperfusion injury. Furthermore, we investigated whether both melatonin and resveratrol protect via the activation of the newly discovered survivor activating factor enhancement (SAFE) prosurvival signaling pathway that involves the activation of tumor necrosis factor alpha (TNFα) and the signal transducer and activator of transcription 3 (STAT3). Isolated perfused male mouse (wild type, TNFα receptor 2 knockout mice, and cardiomyocyte-specific STAT3-deficient mice) or rat hearts (Wistars) were subjected to ischemia-reperfusion. Resveratrol (2.3 mg/L) or melatonin (75 ng/L) was perfused for 15 min with a 10-min washout period prior to an ischemia-reperfusion insult. Infarct size was measured at the end of the protocol, and Western blot analysis was performed to evaluate STAT3 activation prior to the ischemic insult. Both resveratrol and melatonin, at concentrations found in red wine, significantly reduced infarct size compared with control hearts in wild-type mouse hearts (25 ± 3% and 25 ± 3% respectively versus control 69 ± 3%, P < 0.001) but failed to protect in TNF receptor 2 knockout or STAT3-deficient mice. Furthermore, perfusion with either melatonin or resveratrol increased STAT3 phosphorylation prior to ischemia by 79% and 50%, respectively (P < 0.001 versus control). Our data demonstrate that both melatonin and resveratrol, as found in red wine, protect the heart in an experimental model of myocardial infarction via the SAFE pathway. © 2011 John Wiley & Sons A/S.

  13. Early and delayed cardioprotective intervention with dexrazoxane each show different potential for prevention of chronic anthracycline cardiotoxicity in rabbits

    Jirkovský, Eduard; Lenčová-Popelová, Olga; Hroch, Miloš; Adamcová, Michaela; Mazurová, Yvona; Vávrová, Jaroslava

    2013-01-01

    Despite incomplete understanding to its mechanism of action, dexrazoxane (DEX) is still the only clearly effective cardioprotectant against chronic anthracycline (ANT) cardiotoxicity. However, its clinical use is currently restricted to patients exceeding significant ANT cumulative dose (300 mg/m 2 ), although each ANT cycle may induce certain potentially irreversible myocardial damage. Therefore, the aim of this study was to compare early and delayed DEX intervention against chronic ANT cardiotoxicity and study the molecular events involved. The cardiotoxicity was induced in rabbits with daunorubicin (DAU; 3 mg/kg/week for 10 weeks); DEX (60 mg/kg) was administered either before the 1st or 7th DAU dose (i.e. after ≈300 mg/m 2 cumulative dose). While both DEX administration schedules prevented DAU-induced premature deaths and severe congestive heart failure, only the early intervention completely prevented the left ventricular dysfunction, myocardial morphological changes and mitochondrial damage. Further molecular analyses did not support the assumption that DEX cardioprotection is based and directly proportional to protection from DAU-induced oxidative damage and/or deletions in mtDNA. Nevertheless, DAU induced significant up-regulation of heme oxygenase 1 pathway while heme synthesis was inversely regulated and both changes were schedule-of-administration preventable by DEX. Early and delayed DEX interventions also differed in ability to prevent DAU-induced down-regulation of expression of mitochondrial proteins encoded by both nuclear and mitochondrial genome. Hence, the present functional, morphological as well as the molecular data highlights the enormous cardioprotective effects of DEX and provides novel insights into the molecular events involved. Furthermore, the data suggests that currently recommended delayed intervention may not be able to take advantage of the full cardioprotective potential of the drug

  14. Maggot debridement therapy promotes diabetic foot wound healing by up-regulating endothelial cell activity.

    Sun, Xinjuan; Chen, Jin'an; Zhang, Jie; Wang, Wei; Sun, Jinshan; Wang, Aiping

    2016-03-01

    To determine the role of maggot debridement therapy (MDT) on diabetic foot wound healing, we compared growth related factors in wounds before and after treatment. Furthermore, we utilized human umbilical vein endothelial cells (HUVECs) to explore responses to maggot excretions/secretions on markers of angiogenesis and proliferation. The results showed that there was neo-granulation and angiogenesis in diabetic foot wounds after MDT. Moreover, significant elevation in CD34 and CD68 levels was also observed in treated wounds. In vitro, ES increased HUVEC proliferation, improved tube formation, and increased expression of vascular endothelial growth factor receptor 2 in a dose dependent manner. These results demonstrate that MDT and maggot ES can promote diabetic foot wound healing by up-regulating endothelial cell activity. Copyright © 2016. Published by Elsevier Inc.

  15. Sildenafil prevents the up-regulation of transient receptor potential canonical channels in the development of cardiomyocyte hypertrophy

    Kiso, Hironori; Ohba, Takayoshi; Iino, Kenji; Sato, Kazuhiro; Terata, Yutaka; Murakami, Manabu; Ono, Kyoichi; Watanabe, Hiroyuki; Ito, Hiroshi

    2013-01-01

    Highlights: •Transient receptor potential canonical (TRPC1, 3 and 6) are up-regulated by ET-1. •Sildenafil inhibited hypertrophic responses (BNP, Ca entry, NFAT activation). •Sildenafil suppressed TRPC1, 3 and 6 expression. -- Abstract: Background: Transient receptor potential canonical (TRPCs) channels are up-regulated in the development of cardiac hypertrophy. Sildenafil inhibits TRPC6 activation and expression, leading to the prevention of cardiac hypertrophy. However, the effects of sildenafil on the expression of other TRPCs remain unknown. We hypothesized that in addition to its effects of TRPC6, sildenafil blocks the up-regulation of other TRPC channels to suppress cardiomyocyte hypertrophy. Methods and results: In cultured neonatal rat cardiomyocytes, a 48 h treatment with 10 nM endothelin (ET)-1 induced hypertrophic responses characterized by nuclear factor of activated T cells activation and enhancement of brain natriuretic peptide expression and cell surface area. Co-treatment with sildenafil (1 μM, 48 h) inhibited these ET-1-induced hypertrophic responses. Although ET-1 enhanced the gene expression of TRPCs, sildenafil inhibited the enhanced gene expression of TRPC1, C3 and C6. Moreover, co-treatment with sildenafil abolished the augmentation of SOCE in the hypertrophied cardiomyocytes. Conclusions: These results suggest that sildenafil inhibits cardiomyocyte hypertrophy by suppressing the up-regulation of TRPC expression

  16. Cardioprotective and nonprotective regimens of chronic hypoxia diversely affect the myocardial antioxidant systems

    Kašparová, D.; Neckář, Jan; Dabrowská, L.; Novotný, J.; Mráz, J.; Kolář, František; Žurmanová, J.

    2015-01-01

    Roč. 47, č. 12 (2015), s. 612-620 ISSN 1094-8341 R&D Projects: GA ČR(CZ) GAP303/12/1162; GA ČR(CZ) GA13-10267S Institutional support: RVO:67985823 Keywords : adaptation to hypoxia * cardioprotection * ischemia-reperfusion injury * oxidative stress * antioxidant defense Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.615, year: 2015

  17. Hypertrophied hearts: what of sevoflurane cardioprotection?

    Larsen, Jens Kjærgaard Rolighed; Smerup, Morten Holdgaard; Hasenkam, John Michael

    2009-01-01

    pigs (n=7-12/group) were subjected to 45 min distal coronary artery balloon occlusion, followed by 120 min of reperfusion. Controls were given pentobarbital, while sevoflurane cardioprotection was achieved by 3.2% inhalation throughout the experiment. Chronic banding of the ascending aorta resulted......-at-risk) was reduced from mean 55.0 (13.6%) (+/-SD) in controls to 17.5 (13.2%) by sevoflurane (P=0.001). Sevoflurane reduced the infarct size in hypertrophied hearts to 14.6 (10.4%) (P=0.001); however, in hypertrophic controls, infarcts were reduced to 34.2 (10.2%) (P=0.001). CONCLUSION: Sevoflurane abrogated...

  18. Radiation induces invasiveness of pancreatic cancer via up-regulation of heparanase

    Lerner, I.; Bensoussan, E.; Meirovitz, A.; Elkin, M.; Vlodavsky, I.

    2013-01-01

    The full text of the publication follows. Pancreatic cancer is one of the most aggressive neoplasms with an extremely low survival rate. Because most pancreatic carcinoma patients miss the opportunity for complete surgical resection at the time of diagnosis, radiotherapy remains a major component of treatment modalities. However, pancreatic cancer often shows resistance to radiation therapy. Ionizing radiation (IR)-induced aggressiveness is emerging as one of the important mechanisms responsible for the limited benefit of radiation therapy in pancreatic cancer, but the identity of downstream effectors responsible for this effect remains poorly investigated. Here we report that IR promotes pancreatic cancer aggressiveness through up-regulation of the heparanase. Heparanase is a predominant mammalian enzyme capable of degrading heparan sulfate (HS), the main polysaccharide component of the basement membrane and other types of extracellular matrix (ECM). Cleavage of HS by heparanase leads to disassembly of ECM, enables cell invasion, releases HS-bound angiogenic and growth factors from the ECM depots, and generates bioactive HS fragments. We found that clinically relevant doses of IR augment invasive ability of pancreatic cells in vitro and in vivo via induction of heparanase. Our results indicate that the effect of IR on heparanase expression is mediated by Egr1 transcription factor. Moreover, specific inhibitor of heparanase enzymatic activity abolished IR-induced invasiveness of pancreatic carcinoma cells in vitro, while combined treatment with IR and the heparanase inhibitor, but not IR alone, attenuated ortho-topic pancreatic tumor progression in vivo. The proposed up-regulation of heparanase by IR represents a new molecular pathway through which IR may promote pancreatic tumor aggressiveness, providing explanation for the limited benefit from radiation therapy in pancreatic cancer. Our research is expected to offer a new approach to improve the efficacy of

  19. Cardioprotective adaptation of rats to intermittent hypobaric hypoxia is accompanied by the increased association of hexokinase with mitochondria

    Wasková-Arnoštová, P.; Elsnicová, B.; Kašparová, D.; Horníková, D.; Kolář, František; Novotný, J.; Žurmanová, J.

    2015-01-01

    Roč. 119, č. 12 (2015), s. 1487-1493 ISSN 8750-7587 Institutional support: RVO:67985823 Keywords : hexokinase * mitochondrial colocalization * cardioprotection * chronic hypoxia * rat heart Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 3.004, year: 2015

  20. Association of Exercise Preconditioning With Immediate Cardioprotection: A Review.

    Thijssen, D.H.J.; Redington, A.; George, K.P.; Hopman, M.T.E.; Jones, H.

    2018-01-01

    Importance: Exercise reduces the risk of cardiovascular events, including through an underrecognized, clinically useful form of acute cardioprotection accessible after a single episode of exercise, which is called cardiovascular preconditioning. Observations: Preclinical evidence shows that 1 to 3

  1. Rapamycin up-regulates triglycerides in hepatocytes by down-regulating Prox1.

    Kwon, Sora; Jeon, Ji-Sook; Kim, Su Bin; Hong, Young-Kwon; Ahn, Curie; Sung, Jung-Suk; Choi, Inho

    2016-02-27

    Although the prolonged use of rapamycin may cause unwanted side effects such as hyperlipidemia, the underlying mechanism remains unknown. Prox1 is a transcription factor responsible for the development of several tissues including lymphatics and liver. There is growing evidences that Prox1 participates in metabolism in addition to embryogenesis. However, whether Prox1 is directly related to lipid metabolism is currently unknown. HepG2 human hepatoma cells were treated with rapamycin and total lipids were analyzed by thin layer chromatography. The effect of rapamycin on the expression of Prox1 was determined by western blotting. To investigate the role of Prox1 in triglycerides regulation, siRNA and overexpression system were employed. Rapamycin was injected into mice for 2 weeks and total lipids and proteins in liver were measured by thin layer chromatography and western blot analysis, respectively. Rapamycin up-regulated the amount of triglyceride and down-regulated the expression of Prox1 in HepG2 cells by reducing protein half-life but did not affect its transcript. The loss-of-function of Prox1 was coincident with the increase of triglycerides in HepG2 cells treated with rapamycin. The up-regulation of triglycerides by rapamycin in HepG2 cells reverted to normal levels by the compensation of Prox1 using the overexpression system. Rapamycin also down-regulated Prox1 expression but increased triglycerides in mouse liver. This study suggests that rapamycin can increase the amount of triglycerides by down-regulating Prox1 expression in hepatocytes, which means that the mammalian target of rapamycin (mTOR) signaling is important for the regulation of triglycerides by maintaining Prox1 expression.

  2. Medicago truncatula SOC1 Genes Are Up-regulated by Environmental Cues That Promote Flowering

    Jared B. Fudge

    2018-04-01

    Full Text Available Like Arabidopsis thaliana, the flowering of the legume Medicago truncatula is promoted by long day (LD photoperiod and vernalization. However, there are differences in the molecular mechanisms involved, with orthologs of two key Arabidopsis thaliana regulators, FLOWERING LOCUS C (FLC and CONSTANS (CO, being absent or not having a role in flowering time function in Medicago. In Arabidopsis, the MADS-box transcription factor gene, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (AtSOC1, plays a key role in integrating the photoperiodic and vernalization pathways. In this study, we set out to investigate whether the Medicago SOC1 genes play a role in regulating flowering time. Three Medicago SOC1 genes were identified and characterized (MtSOC1a–MtSOC1c. All three MtSOC1 genes, when heterologously expressed, were able to promote earlier flowering of the late-flowering Arabidopsis soc1-2 mutant. The three MtSOC1 genes have different patterns of expression. However, consistent with a potential role in flowering time regulation, all three MtSOC1 genes are expressed in the shoot apex and are up-regulated in the shoot apex of plants in response to LD photoperiods and vernalization. The up-regulation of MtSOC1 genes was reduced in Medicago fta1-1 mutants, indicating that they are downstream of MtFTa1. Insertion mutant alleles of Medicago soc1b do not flower late, suggestive of functional redundancy among Medicago SOC1 genes in promoting flowering.

  3. Up-regulation of GTPBP4 in colorectal carcinoma is responsible for tumor metastasis

    Yu, Haitao; Jin, Sufeng; Zhang, Na; Xu, Qi

    2016-01-01

    GTP binding protein 4(GTPBP4), a member of GTP-binding protein family, was previously characterized as a tumor suppressor that regulates and requires merlin to suppress cell proliferation. However, the role of GTPBP4 in the metastasis of colorectal carcinoma (CRC) remains unelucidated. Here, we observed that GTPBP4 was detected at higher levels in CRC metastatic tissues than that in the primary tumor tissues. Notably, up-regulation of GTPBP4 was closely correlated with tumor metastasis in CRCs. Kaplan-Meier and multivariate Cox regression analysis indicated GTPBP4 as an independent prognostic factor for CRC patients (hazard ratio = 2.693, 95% confident interval: 1.193–6.083, p = 0.017). Functional studies established that knockdown of GTPBP4 impeded, whereas ectopic expression of GTPBP4 enhanced cell motility and tumor metastasis in CRC cells. Interestingly, mechanistic investigations suggested that GTPBP4 may disorganize actin cytoskeleton through repressing RhoA signaling. Taken together, our research uncovered that GTPBP4 promotes CRC metastasis by disrupting actin cytoskeleton, which is mediated by the reduced RhoA activity. Strategies targeting GTPBP4 will be promising for CRC patients with metastases. - Highlights: • Up-regulation of GTPBP4 is detected in CRC metastatic tissues and closely correlated with tumor metastasis. • Increase of GTPBP4 is closely associated with poor prognosis. • GTPBP4 promotes cell motility and tumor metastasis in CRC cells. • GTPBP4 induces filamentous actin rearrangement specifically by repressing the activity of RhoA. • GTPBP4 may be a novel therapeutic target for CRC patients with metastasis.

  4. Radiation up-regulated the expression of VEGF in a canine oral melanoma cell line

    Flickinger, I.; Rütgen, B.C.; Gerner, W.; Tichy, A.; Saalmüller, A.; Kleiter, M.; Calice, I.

    2013-01-01

    To evaluate radiosensitivity and the effects of radiation on the expression of vascular endothelial growth factor (VEGF) and VEGF receptors in the canine oral melanoma cell line, TLM 1, cells were irradiated with doses of 0, 2, 4, 6, 8 and 10 Gray (Gy). Survival rates were then determined by a MTT assay, while vascular endothelial growth factor receptor (VEGFR)-1 and -2 expression was measured by flow cytometry and apoptotic cell death rates were investigated using an Annexin assay. Additionally, a commercially available canine VEGF ELISA kit was used to measure VEGF. Radiosensitivity was detected in TLM 1 cells, and mitotic and apoptotic cell death was found to occur in a radiation dose dependent manner. VEGF was secreted constitutively and significant up-regulation was observed in the 8 and 10 Gy irradiated cells. In addition, a minor portion of TLM 1 cells expressed vascular endothelial growth factor receptor (VEGFR)-1 intracellularly. VEGFR-2 was detected in the cytoplasm and was down-regulated following radiation with increasing dosages. In TLM 1 cells, apoptosis plays an important role in radiation induced cell death. It has also been suggested that the significantly higher VEGF production in the 8 and 10 Gy group could lead to tumour resistance. (author)

  5. Estrogen replacement therapy and cardioprotection: mechanisms and controversies

    M.T.R. Subbiah

    2002-03-01

    Full Text Available Epidemiological and case-controlled studies suggest that estrogen replacement therapy might be beneficial in terms of primary prevention of coronary heart disease (CHD. This beneficial effect of estrogens was initially considered to be due to the reduction of low density lipoproteins (LDL and to increases in high density lipoproteins (HDL. Recent studies have shown that estrogens protect against oxidative stress and decrease LDL oxidation. Estrogens have direct effects on the arterial tissue and modulate vascular reactivity through nitric oxide and prostaglandin synthesis. While many of the effects of estrogen on vascular tissue are believed to be mediated by estrogen receptors alpha and ß, there is evidence for `immediate non-genomic' effects. The role of HDL in interacting with 17ß-estradiol including its esterification and transfer of esterified estrogens to LDL is beginning to be elucidated. Despite the suggested positive effects of estrogens, two recent placebo-controlled clinical trials in women with CHD did not detect any beneficial effects on overall coronary events with estrogen therapy. In fact, there was an increase in CHD events in some women. Mutations in thrombogenic genes (factor V Leiden, prothrombin mutation, etc. in a subset of women may play a role in this unexpected finding. Thus, the cardioprotective effect of estrogens appears to be more complicated than originally thought and requires more research.

  6. Mast cells, peptides and cardioprotection - an unlikely marriage?

    Walsh, S K

    2012-01-31

    1 Mast cells have classically been regarded as the \\'bad guys\\' in the setting of acute myocardial ischaemia, where their released contents are believed to contribute both to tissue injury and electrical disturbances resulting from ischaemia. Recent evidence suggests, however, that if mast cell degranulation occurs in advance of ischaemia onset, this may be cardioprotective by virtue of the depletion of mast cell contents that can no longer act as instruments of injury when the tissue becomes ischaemic. 2 Many peptides, such as ET-1, adrenomedullin, relaxin and atrial natriuretic peptide, have been demonstrated to be cardioprotective when given prior to the onset of myocardial ischaemia, although their physiological functions are varied and the mechanisms of their cardioprotective actions appear to be diverse and often ill defined. However, one common denominator that is emerging is the ability of these peptides to modulate mast cell degranulation, raising the possibility that peptide-induced mast cell degranulation or stabilization may hold the key to a common mechanism of their cardioprotection. 3 The aim of this review was to consolidate the evidence implying that mast cell degranulation could play both a detrimental and protective role in myocardial ischaemia, depending upon when it occurs, and that this may underlie the cardioprotective effects of a range of diverse peptides that exerts physiological effects within the cardiovascular system.

  7. Levosimendan for Perioperative Cardioprotection: Myth or Reality?

    Santillo, Elpidio; Migale, Monica; Massini, Carlo; Incalzi, Raffaele Antonelli

    2018-03-21

    Levosimendan is a calcium sensitizer drug causing increased contractility in the myocardium and vasodilation in the vascular system. It is mainly used for the therapy of acute decompensated heart failure. Several studies on animals and humans provided evidence of the cardioprotective properties of levosimendan including preconditioning and anti-apoptotic. In view of these favorable effects, levosimendan has been tested in patients undergoing cardiac surgery for the prevention or treatment of low cardiac output syndrome. However, initial positive results from small studies have not been confirmed in three recent large trials. To summarize levosimendan mechanisms of action and clinical use and to review available evidence on its perioperative use in cardiac surgery setting. We searched two electronic medical databases for randomized controlled trials studying levosimendan in cardiac surgery patients, ranging from January 2000 to August 2017. Meta-analyses, consensus documents and retrospective studies were also reviewed. In the selected interval of time, 54 studies on the use of levosimendan in heart surgery have been performed. Early small size studies and meta-analyses have suggested that perioperative levosimendan infusion could diminish mortality and other adverse outcomes (i.e. intensive care unit stay and need for inotropic support). Instead, three recent large randomized controlled trials (LEVO-CTS, CHEETAH and LICORN) showed no significant survival benefits from levosimendan. However, in LEVO-CTS trial, prophylactic levosimendan administration significantly reduced the incidence of low cardiac output syndrome. Based on most recent randomized controlled trials, levosimendan, although effective for the treatment of acute heart failure, can't be recommended as standard therapy for the management of heart surgery patients. Further studies are needed to clarify whether selected subgroups of heart surgery patients may benefit from perioperative levosimendan

  8. Fibroblast growth factor-1 improves cardiac functional recovery and enhances cell survival after ischemia and reperfusion: a fibroblast growth factor receptor, protein kinase C, and tyrosine kinase-dependent mechanism

    Palmen, Meindert; Daemen, Mat J. A. P.; de Windt, Leon J.; Willems, Jodil; Dassen, Willem R. M.; Heeneman, Sylvia; Zimmermann, Rene; van Bilsen, Marc; Doevendans, Pieter A.

    2004-01-01

    We sought to investigate the role of fibroblast growth factor (FGF)-1 during acute myocardial ischemia and reperfusion. The FGFs display cardioprotective effects during ischemia and reperfusion. We investigated FGF-1-induced cardioprotection during ischemia and reperfusion and the intracellular

  9. The yeast PNC1 longevity gene is up-regulated by mRNA mistranslation.

    Raquel M Silva

    Full Text Available Translation fidelity is critical for protein synthesis and to ensure correct cell functioning. Mutations in the protein synthesis machinery or environmental factors that increase synthesis of mistranslated proteins result in cell death and degeneration and are associated with neurodegenerative diseases, cancer and with an increasing number of mitochondrial disorders. Remarkably, mRNA mistranslation plays critical roles in the evolution of the genetic code, can be beneficial under stress conditions in yeast and in Escherichia coli and is an important source of peptides for MHC class I complex in dendritic cells. Despite this, its biology has been overlooked over the years due to technical difficulties in its detection and quantification. In order to shed new light on the biological relevance of mistranslation we have generated codon misreading in Saccharomyces cerevisiae using drugs and tRNA engineering methodologies. Surprisingly, such mistranslation up-regulated the longevity gene PNC1. Similar results were also obtained in cells grown in the presence of amino acid analogues that promote protein misfolding. The overall data showed that PNC1 is a biomarker of mRNA mistranslation and protein misfolding and that PNC1-GFP fusions can be used to monitor these two important biological phenomena in vivo in an easy manner, thus opening new avenues to understand their biological relevance.

  10. Experimental evidence for the cardioprotective effects of red wine.

    Das, Samarjit; Santani, Dev D; Dhalla, Naranjan S

    2007-01-01

    Both epidemiological and experimental studies have revealed that intake of wine, particularly red wine, in moderation protects cardiovascular health; however, the experimental basis for such an action is not fully understood. Because all types of red wine contain varying amounts of alcohol and antioxidants, it is likely that the cardioprotective effect of red wine is due to both these constituents. In view of its direct action on the vascular smooth muscle cells, alcohol may produce coronary vasodilation in addition to attenuating oxidative stress by its action on the central nervous system. The antioxidant components of red wine may provide cardioprotection by their ability to reduce oxidative stress in the heart under different pathological conditions. Mild-to-moderate red wine consumption improves cardiac function in the ischemic myocardium through the protection of endothelial function, the expression of several cardioprotective oxidative stress-inducible proteins, as well as the activation of adenosine receptors and nitrous oxide synthase mechanisms.

  11. Experimental evidence for the cardioprotective effects of red wine

    Das, Samarjit; Santani, Dev D; Dhalla, Naranjan S

    2007-01-01

    Both epidemiological and experimental studies have revealed that intake of wine, particularly red wine, in moderation protects cardiovascular health; however, the experimental basis for such an action is not fully understood. Because all types of red wine contain varying amounts of alcohol and antioxidants, it is likely that the cardioprotective effect of red wine is due to both these constituents. In view of its direct action on the vascular smooth muscle cells, alcohol may produce coronary vasodilation in addition to attenuating oxidative stress by its action on the central nervous system. The antioxidant components of red wine may provide cardioprotection by their ability to reduce oxidative stress in the heart under different pathological conditions. Mild-to-moderate red wine consumption improves cardiac function in the ischemic myocardium through the protection of endothelial function, the expression of several cardioprotective oxidative stress-inducible proteins, as well as the activation of adenosine receptors and nitrous oxide synthase mechanisms. PMID:18650973

  12. PSG gene expression is up-regulated by lysine acetylation involving histone and nonhistone proteins.

    Soledad A Camolotto

    Full Text Available BACKGROUND: Lysine acetylation is an important post-translational modification that plays a central role in eukaryotic transcriptional activation by modifying chromatin and transcription-related factors. Human pregnancy-specific glycoproteins (PSG are the major secreted placental proteins expressed by the syncytiotrophoblast at the end of pregnancy and represent early markers of cytotrophoblast differentiation. Low PSG levels are associated with complicated pregnancies, thus highlighting the importance of studying the mechanisms that control their expression. Despite several transcription factors having been implicated as key regulators of PSG gene family expression; the role of protein acetylation has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Here, we explored the role of acetylation on PSG gene expression in the human placental-derived JEG-3 cell line. Pharmacological inhibition of histone deacetylases (HDACs up-regulated PSG protein and mRNA expression levels, and augmented the amount of acetylated histone H3 associated with PSG 5'regulatory regions. Moreover, PSG5 promoter activation mediated by Sp1 and KLF6, via the core promoter element motif (CPE, -147/-140, was markedly enhanced in the presence of the HDAC inhibitor trichostatin A (TSA. This effect correlated with an increase in Sp1 acetylation and KLF6 nuclear localization as revealed by immunoprecipitation and subcellular fractionation assays. The co-activators PCAF, p300, and CBP enhanced Sp1-dependent PSG5 promoter activation through their histone acetylase (HAT function. Instead, p300 and CBP acetyltransferase domain was dispensable for sustaining co-activation of PSG5 promoter by KLF6. CONCLUSIONS/SIGNIFICANCE: Results are consistent with a regulatory role of lysine acetylation on PSG expression through a relaxed chromatin state and an increase in the transcriptional activity of Sp1 and KLF6 following an augmented Sp1 acetylation and KLF6 nuclear localization.

  13. Neonatal maternal separation up-regulates protein signalling for cell survival in rat hypothalamus.

    Irles, Claudine; Nava-Kopp, Alicia T; Morán, Julio; Zhang, Limei

    2014-05-01

    We have previously reported that in response to early life stress, such as maternal hyperthyroidism and maternal separation (MS), the rat hypothalamic vasopressinergic system becomes up-regulated, showing enlarged nuclear volume and cell number, with stress hyperresponsivity and high anxiety during adulthood. The detailed signaling pathways involving cell death/survival, modified by adverse experiences in this developmental window remains unknown. Here, we report the effects of MS on cellular density and time-dependent fluctuations of the expression of pro- and anti-apoptotic factors during the development of the hypothalamus. Neonatal male rats were exposed to 3 h-daily MS from postnatal days 2 to 15 (PND 2-15). Cellular density was assessed in the hypothalamus at PND 21 using methylene blue staining, and neuronal nuclear specific protein and glial fibrillary acidic protein immunostaining at PND 36. Expression of factors related to apoptosis and cell survival in the hypothalamus was examined at PND 1, 3, 6, 9, 12, 15, 20 and 43 by Western blot. Rats subjected to MS exhibited greater cell-density and increased neuronal density in all hypothalamic regions assessed. The time course of protein expression in the postnatal brain showed: (1) decreased expression of active caspase 3; (2) increased Bcl-2/Bax ratio; (3) increased activation of ERK1/2, Akt and inactivation of Bad; PND 15 and PND 20 were the most prominent time-points. These data indicate that MS can induce hypothalamic structural reorganization by promoting survival, suppressing cell death pathways, increasing cellular density which may alter the contribution of these modified regions to homeostasis.

  14. DMPD: Mechanism of age-associated up-regulation in macrophage PGE2 synthesis. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 15331118 Mechanism of age-associated up-regulation in macrophage PGE2 synthesis. Wu...e-associated up-regulation in macrophage PGE2 synthesis. PubmedID 15331118 Title Mechanism of age-associated... up-regulation in macrophage PGE2 synthesis. Authors Wu D, Meydani SN. Publicatio

  15. Regulation of Sirtuin-Mediated Protein Deacetylation by Cardioprotective Phytochemicals

    Niria Treviño-Saldaña

    2017-01-01

    Full Text Available Modulation of posttranslational modifications (PTMs, such as protein acetylation, is considered a novel therapeutic strategy to combat the development and progression of cardiovascular diseases. Protein hyperacetylation is associated with the development of numerous cardiovascular diseases, including atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. In addition, decreased expression and activity of the deacetylases Sirt1, Sirt3, and Sirt6 have been linked to the development and progression of cardiac dysfunction. Several phytochemicals exert cardioprotective effects by regulating protein acetylation levels. These effects are mainly exerted via activation of Sirt1 and Sirt3 and inhibition of acetyltransferases. Numerous studies support a cardioprotective role for sirtuin activators (e.g., resveratrol, as well as other emerging modulators of protein acetylation, including curcumin, honokiol, oroxilyn A, quercetin, epigallocatechin-3-gallate, bakuchiol, tyrosol, and berberine. Studies also point to a cardioprotective role for various nonaromatic molecules, such as docosahexaenoic acid, alpha-lipoic acid, sulforaphane, and caffeic acid ethanolamide. Here, we review the vast evidence from the bench to the clinical setting for the potential cardioprotective roles of various phytochemicals in the modulation of sirtuin-mediated deacetylation.

  16. Regulation of Sirtuin-Mediated Protein Deacetylation by Cardioprotective Phytochemicals

    2017-01-01

    Modulation of posttranslational modifications (PTMs), such as protein acetylation, is considered a novel therapeutic strategy to combat the development and progression of cardiovascular diseases. Protein hyperacetylation is associated with the development of numerous cardiovascular diseases, including atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. In addition, decreased expression and activity of the deacetylases Sirt1, Sirt3, and Sirt6 have been linked to the development and progression of cardiac dysfunction. Several phytochemicals exert cardioprotective effects by regulating protein acetylation levels. These effects are mainly exerted via activation of Sirt1 and Sirt3 and inhibition of acetyltransferases. Numerous studies support a cardioprotective role for sirtuin activators (e.g., resveratrol), as well as other emerging modulators of protein acetylation, including curcumin, honokiol, oroxilyn A, quercetin, epigallocatechin-3-gallate, bakuchiol, tyrosol, and berberine. Studies also point to a cardioprotective role for various nonaromatic molecules, such as docosahexaenoic acid, alpha-lipoic acid, sulforaphane, and caffeic acid ethanolamide. Here, we review the vast evidence from the bench to the clinical setting for the potential cardioprotective roles of various phytochemicals in the modulation of sirtuin-mediated deacetylation. PMID:29234485

  17. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    Zhang, Yu; Cheng, Jung-Chien; Huang, He-Feng; Leung, Peter C.K.

    2013-01-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells

  18. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    Zhang, Yu [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Cheng, Jung-Chien [Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Huang, He-Feng, E-mail: huanghefg@hotmail.com [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Leung, Peter C.K., E-mail: peter.leung@ubc.ca [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada)

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  19. Up-regulation of endothelial monocyte chemoattractant protein-1 by coplanar PCB77 is caveolin-1-dependent

    Majkova, Zuzana; Smart, Eric; Toborek, Michal; Hennig, Bernhard

    2009-01-01

    Atherosclerosis, the primary cause of heart disease and stroke is initiated in the vascular endothelium, and risk factors for its development include environmental exposure to persistent organic pollutants. Caveolae are membrane microdomains involved in regulation of many signaling pathways, and in particular in endothelial cells. We tested the hypothesis that intact caveolae are required for coplanar PCB77-induced up-regulation of monocyte chemoattractant protein-1 (MCP-1), an endothelium-derived chemokine that attracts monocytes into sub-endothelial space in early stages of the atherosclerosis development. Atherosclerosis-prone LDL-R -/- mice (control) or caveolin-1 -/- /LDL-R -/- mice were treated with PCB77. PCB77 induced aortic mRNA expression and plasma protein levels of MCP-1 in control, but not caveolin-1 -/- /LDL-R -/- mice. To study the mechanism of this effect, primary endothelial cells were used. PCB77 increased MCP-1 levels in endothelial cells in a time- and concentration-dependent manner. This effect was abolished by caveolin-1 silencing using siRNA. Also, MCP-1 up-regulation by PCB77 was prevented by inhibiting p38 and c-Jun N-terminal kinase (JNK), but not ERK1/2, suggesting regulatory functions via p38 and JNK MAPK pathways. Finally, pre-treatment of endothelial cells with the aryl hydrocarbon receptor (AhR) inhibitor α-naphthoflavone (α-NF) partially blocked MCP-1 up-regulation. Thus, our data demonstrate that coplanar PCB77 can induce MCP-1 expression by endothelial cells and that this effect is mediated by AhR, as well as p 38 and JNK MAPK pathways. Intact caveolae are required for these processes both in vivo and in vitro. This further supports a key role for caveolae in vascular inflammation induced by persistent organic pollutants.

  20. Up-Regulation of RFC3 Promotes Triple Negative Breast Cancer Metastasis and is Associated With Poor Prognosis Via EMT

    Zhen-Yu He

    2017-02-01

    Full Text Available Triple-negative breast cancer (TNBC was regarded as the most aggressive and mortal subtype of breast cancer (BC since the molecular subtype system has been established. Abundant studies have revealed that epithelial-mesenchymal transition (EMT played a pivotal role during breast cancer metastasis and progression, especially in TNBC. Herein, we showed that inhibition the expression of replication factor C subunit 3 (RFC3 significantly attenuated TNBC metastasis and progression, which was associated with EMT signal pathway. In TNBC cells, knockdown of RFC3 can down-regulate mesenchymal markers and up-regulate epithelial markers, significantly attenuated cell proliferation, migration and invasion. Additionally, silencing RFC3 expression can decrease nude mice tumor volume, weight and relieve lung metastasis in vivo. Furthermore, we also demonstrated that overexpression of RFC3 in TNBC showed increased metastasis, progression and poor prognosis. We confirmed all of these results by immunohistochemistry analysis in 127 human TNBC tissues and found that RFC3 expression was significantly associated with poor prognosis in TNBC. Taken all these findings into consideration, we can conclude that up-regulation of RFC3 promotes TNBC progression through EMT signal pathway. Therefore, RFC3 could be an independent prognostic factor and therapeutic target for TNBC.

  1. Pleiotropic preconditioning-like cardioprotective effects of hypolipidemic drugs in acute ischemia–reperfusion in normal and hypertensive rats

    Ravingerová, T.; Ledvényiová-Farkašová, V.; Ferko, M.; Barteková, M.; Bernátová, I.; Pecháňová, O.; Adameová, A.; Kolář, František; Lazou, A.

    2015-01-01

    Roč. 93, č. 7 (2015), s. 495-503 ISSN 0008-4212 R&D Projects: GA MŠk(CZ) 7AMB14SK115 Grant - others:AV ČR(CZ) SAV-15-15 Program:Bilaterální spolupráce Institutional support: RVO:67985823 Keywords : myocardial ischemia * cardioprotection * hypolipidemic drugs Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.704, year: 2015

  2. The emerging role of m-TOR up-regulation in brain Astrocytoma.

    Ryskalin, Larisa; Limanaqi, Fiona; Biagioni, Francesca; Frati, Alessandro; Esposito, Vincenzo; Calierno, Maria Teresa; Lenzi, Paola; Fornai, Francesco

    2017-05-01

    The present manuscript is an overview of various effects of mTOR up-regulation in astrocytoma with an emphasis on its deleterious effects on the proliferation of Glioblastoma Multiforme. The manuscript reports consistent evidence indicating the occurrence of mTOR up-regulation both in experimental and human astrocytoma. The grading of human astrocytoma is discussed in relationship with mTOR up-regulation. In the second part of the manuscript, the biochemical pathways under the influence of mTOR are translated to cell phenotypes which are generated by mTOR up-regulation and reverted by its inhibition. A special section is dedicated to the prominent role of autophagy in mediating the effects of mTOR in glioblastoma. In detail, autophagy inhibition produced by mTOR up-regulation determines the fate of cancer stem cells. On the other hand, biochemical findings disclose the remarkable effects of autophagy activators as powerful inducers of cell differentiation with a strong prevalence towards neuronal phenotypes. Thus, mTOR modulation acts on the neurobiology of glioblastoma just like it operates in vivo at the level of brain stem cell niches by altering autophagy-dependent cell differentiation. In the light of such a critical role of autophagy we analyzed the ubiquitin proteasome system. The merging between autophagy and proteasome generates a novel organelle, named autophagoproteasome which is strongly induced by mTOR inhibitors in glioblastoma cells. Remarkably, when mTOR is maximally inhibited the proteasome component selectively moves within autophagy vacuoles, thus making the proteasome activity dependent on the entry within autophagy compartment.

  3. Up-regulation of the Neuronal Nicotinic Receptor α7 by HIV Glycoprotein 120

    Ballester, Leomar Y.; Capó-Vélez, Coral M.; García-Beltrán, Wilfredo F.; Ramos, Félix M.; Vázquez-Rosa, Edwin; Ríos, Raymond; Mercado, José R.; Meléndez, Roberto I.; Lasalde-Dominicci, José A.

    2012-01-01

    Approximately 30–50% of the >30 million HIV-infected subjects develop neurological complications ranging from mild symptoms to dementia. HIV does not infect neurons, and the molecular mechanisms behind HIV-associated neurocognitive decline are not understood. There are several hypotheses to explain the development of dementia in HIV+ individuals, including neuroinflammation mediated by infected microglia and neuronal toxicity by HIV proteins. A key protein associated with the neurological complications of HIV, gp120, forms part of the viral envelope and can be found in the CSF of infected individuals. HIV-1-gp120 interacts with several receptors including CD4, CCR5, CXCR4, and nicotinic acetylcholine receptors (nAChRs). However, the role of nAChRs in HIV-associated neurocognitive disorder has not been investigated. We studied the effects of gp120IIIB on the expression and function of the nicotinic receptor α7 (α7-nAChR). Our results show that gp120, through activation of the CXCR4 chemokine receptor, induces a functional up-regulation of α7-nAChRs. Because α7-nAChRs have a high permeability to Ca2+, we performed TUNEL staining to investigate the effects of receptor up-regulation on cell viability. Our data revealed an increase in cell death, which was blocked by the selective antagonist α-bungarotoxin. The in vitro data are supported by RT-PCR and Western blot analysis, confirming a remarkable up-regulation of the α7-nAChR in gp120-transgenic mice brains. Specifically, α7-nAChR up-regulation is observed in mouse striatum, a region severely affected in HIV+ patients. In summary, CXCR4 activation induces up-regulation of α7-nAChR, causing cell death, suggesting that α7-nAChR is a previously unrecognized contributor to the neurotoxicity associated with HIV infection. PMID:22084248

  4. The effect of cardioprotective diet rich with natural antioxidants on chronic inflammation and oxidized LDL during cardiac rehabilitation in patients after acute myocardial infarction

    Polona Mlakar

    2015-06-01

    Conclusions: The addition of cardioprotective diet, rich with natural antioxidants, to physical activity as a part of a CR program, positively modifies not just classic risk factors and exercise capacity, but also diminishes chronic inflammation markers. These effects, and oxLDL decline were most prominent in nonsmoking patients.

  5. mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival

    Feng, Yonghuai; Wu, Liusong

    2017-01-01

    Although mTOR (mammalian target of rapamycin) activation is frequently observed in acute myeloid leukemia (AML) patients, the precise function and the downstream targets of mTOR are poorly understood. Here we revealed that PFKFB3, but not PFKFB1, PFKFB2 nor PFKFB4 was a novel downstream substrate of mTOR signaling pathway as PFKFB3 level was augmented after knocking down TSC2 in THP1 and OCI-AML3 cells. Importantly, PFKFB3 silencing suppressed glycolysis and cell proliferation of TSC2 silencing OCI-AML3 cells and activated apoptosis pathway. These results suggested that mTOR up-regulation of PFKFB3 was essential for AML cells survival. Mechanistically, Rapamycin treatment or Raptor knockdown reduced the expression of PFKFB3 in TSC2 knockdown cells, while Rictor silencing did not have such effect. Furthermore, we also revealed that mTORC1 up-regulated PFKFB3 was dependent on hypoxia-inducible factor 1α (HIF1α), a positive regulator of glycolysis. Moreover, PFKFB3 inhibitor PFK15 and rapamycin synergistically blunted the AML cell proliferation. Taken together, PFKFB3 was a promising drug target in AML patients harboring mTOR hyper-activation.

  6. Impact of conditioning hyperglycemic on myocardial infarction rats: Cardiac cell survival factors

    Malfitano, Christiane; de Souza Junior, Alcione Lescano; Irigoyen, Maria Cláudia

    2014-01-01

    While clinical data have suggested that the diabetic heart is more susceptible to ischemic heart disease (IHD), animal data have so far pointed to a lower probability of IHD. Thus, the aim of this present review is to look at these conflicting results and discuss the protective mechanisms that conditioned hyperglycemia may confer to the heart against ischemic injury. Several mechanisms have been proposed to explain the cardioprotective action of high glucose exposure, namely, up-regulation of anti-apoptotic factor Bcl-2, inactivation of pro-apoptotic factor bad, and activation of pro-survival factors such as protein kinase B (Akt), vascular endothelial growth factor (VEGF), hypoxia inducible factor-1α and protein kinase C-ε. Indeed, cytosolic increase in Ca2+ concentration, the mitochondrial permeability transition pore, plays a key role in the genesis of ischemic injury. Previous studies have shown that the diabetic heart decreased Na+/Ca2+ and Na+/H+ exchanger activity and as such it accumulates less Ca2+ in cardiomyocyte, thus preventing cardiac injury and the associated heart dysfunctions. In addition, the expression of VEGF in diabetic animals leads to increased capillary density before myocardial infarction. Despite poor prognostic in the long-term, all these results suggest that diabetes mellitus and consequently hyperglycemia may indeed play a cardioprotective role against myocardial infarction in the short term. PMID:24976917

  7. Comparison of cardioprotective effects of salvianolic acid B and benazepril on large myocardial infarction in rats.

    He, Hai-Bo; Yang, Xian-Zhe; Shi, Meng-Qiong; Zeng, Xiao-Wei; Wu, Li-Mao; Li, Lian-Da

    2008-01-01

    In the present study, we compared cardioprotective effects of salvianolic acid B (Sal B) and the angiotension-converting enzyme inhibitor, benazepril, in rats with large myocardial infarction (MI). The large MI was produced by coronary artery ligation for 4 weeks in rats. The rats were divided into the following groups: sham operation; MI; MI + Sal B (100 mg/kg by a gavage, once a day for 4 weeks) and MI + benazepril (1 mg/kg by a gavage, once a day for 4 weeks). Echocardiogram, hemodynamic and hemorheological changes, angiogenesis, infarct size and cardiac remodeling, as well as messenger ribonucleic acid (mRNA) of vascular endothelium growth factor (VEGF) were measured. The following similar effects were observed in MI rats treated with Sal B and benazepril: (1) a marked improvement of echocardiographic, hemodynamic and hemorheological parameters, (2) significant reduction of infarct size, (3) significantly attenuated heart hypertrophy, left ventricular (LV) dilatation and fibrosis. The unique effects of Sal B were: angiogenesis and augmented VEGF expression in the border and remote noninfarcted LV area. These results suggest that Sal B and benazepril exerted beneficial cardioprotective effects. However, Sal B enforced some different modality than benazepril, which might improve myocardial microcirculation by augmenting VEGF expression and promoting angiogenesis besides similar effects to benazepril.

  8. Experimental evidence for the cardioprotective effects of red wine

    Das, Samarjit; Santani, Dev D; Dhalla, Naranjan S

    2007-01-01

    Both epidemiological and experimental studies have revealed that intake of wine, particularly red wine, in moderation protects cardiovascular health; however, the experimental basis for such an action is not fully understood. Because all types of red wine contain varying amounts of alcohol and antioxidants, it is likely that the cardioprotective effect of red wine is due to both these constituents. In view of its direct action on the vascular smooth muscle cells, alcohol may produce coronary ...

  9. Parkinson's disease proteins: Novel mitochondrial targets for cardioprotection

    Mukherjee, Uma A.; Ong, Sang-Bing; Ong, Sang-Ging; Hausenloy, Derek J.

    2015-01-01

    Ischemic heart disease (IHD) is the leading cause of death and disability worldwide. Therefore, novel therapeutic targets for protecting the heart against acute ischemia/reperfusion injury (IRI) are required to attenuate cardiomyocyte death, preserve myocardial function, and prevent the onset of heart failure. In this regard, a specific group of mitochondrial proteins, which have been linked to familial forms of Parkinson's disease (PD), may provide novel therapeutic targets for cardioprotect...

  10. Triazophos up-regulated gene expression in the female brown planthopper, Nilaparvata lugens.

    Bao, Yan-Yuan; Li, Bao-Ling; Liu, Zhao-Bu; Xue, Jian; Zhu, Zeng-Rong; Cheng, Jia-An; Zhang, Chuan-Xi

    2010-09-01

    The widespread use of insecticides has caused the resurgence of the brown planthopper, Nilaparvata lugens, in Asia. In this study, we investigated an organo-phosphorous insecticide, triazophos, and its ability to induce gene expression variation in female N. lugens nymphs just before emergence. By using the suppression subtractive hybridization method, a triazophos-induced cDNA library was constructed. In total, 402 differentially expressed cDNA clones were obtained. Real-time qPCR analysis confirmed that triazophos up-regulated the expression of six candidate genes at the transcript level in nymphs on day 3 of the 5th instar. These genes encode N. lugens vitellogenin, bystin, multidrug resistance protein (MRP), purine nucleoside phosphorylase (PNP), pyrroline-5-carboxylate reductase (P5CR) and carboxylesterase. Our results imply that the up-regulation of these genes may be involved in the induction of N. lugens female reproduction or resistance to insecticides.

  11. Catalase activity prevents exercise-induced up-regulation of vasoprotective proteins in venous tissue.

    Dao, Vu Thao-Vi; Floeren, Melanie; Kumpf, Stephanie; Both, Charlotte; Peter, Bärbel; Balz, Vera; Suvorava, Tatsiana; Kojda, Georg

    2011-11-01

    Physical activity induces favourable changes of arterial gene expression and protein activity, although little is known about its effect in venous tissue. Although our understanding of the initiating molecular signals is still incomplete, increased expression of endothelial nitric oxide synthase (eNOS) is considered a key event. This study sought to investigate the effects of two different training protocols on the expression of eNOS and extracellular superoxide dismutase (ecSOD) in venous and lung tissue and to evaluate the underlying molecular mechanisms. C57Bl/6 mice underwent voluntary exercise or forced physical activity. Changes of vascular mRNA and protein levels and activity of eNOS, ecSOD and catalase were determined in aorta, heart, lung and vena cava. Both training protocols similarly increased relative heart weight and resulted in up-regulation of aortic and myocardial eNOS. In striking contrast, eNOS expression in vena cava and lung remained unchanged. Likewise, exercise up-regulated ecSOD in the aorta and in left ventricular tissue but remained unchanged in lung tissue. Catalase expression in lung tissue and vena cava of exercised mice exceeded that in aorta by 6.9- and 10-fold, respectively, suggesting a lack of stimulatory effects of hydrogen peroxide. In accordance, treatment of mice with the catalase inhibitor aminotriazole for 6 weeks resulted in significant up-regulation of eNOS and ecSOD in vena cava. These data suggest that physiological venous catalase activity prevents exercise-induced up-regulation of eNOS and ecSOD. Furthermore, therapeutic inhibition of vascular catalase might improve pulmonary rehabilitation. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  12. Minoxidil opens mitochondrial KATP channels and confers cardioprotection

    Sato, Toshiaki; Li, Yulong; Saito, Tomoaki; Nakaya, Haruaki

    2003-01-01

    ATP-sensitive potassium channel in the mitochondrial inner membrane (mitoKATP channel) rather than in the sarcolemma (sarcKATP channel) appears to play an important role in cardioprotection. We examined the effect of minoxidil, a potent antihypertensive agent and hair growth stimulator, on sarcKATP and mitoKATP channels in guinea-pig ventricular myocytes. Minoxidil activated a glybenclamide-sensitive sarcKATP channel current in the whole-cell recording mode with an EC50 of 182.6 μM. Minoxidil reversibly increased the flavoprotein oxidation, an index of mitoKATP channel activity, in a concentration-dependent manner. The EC50 for mitoKATP channel activation was estimated to be 7.3 μM; this value was notably ≈25-fold lower than that for sarcKATP channel activation. Minoxidil (10 μM) significantly attenuated the ouabain-induced increase of mitochondrial Ca2+ concentration, which was measured by loading cells with rhod-2 fluorescence. Furthermore, pretreatment with minoxidil (10 μM) before 20-min no-flow ischaemia significantly improved the recovery of developed tension measured after 60 min of reperfusion in coronary perfused guinea-pig ventricular muscles. These cardioprotective effects of minoxidil were completely abolished by the mitoKATP channel blocker 5-hydroxydecanoate (500 μM). Our results indicate that minoxidil exerts a direct cardioprotective effect on heart muscle cells, an effect mediated by the selective activation of mitoKATP channels. PMID:14691056

  13. Mutations in BALB mitochondrial DNA induce CCL20 up-regulation promoting tumorigenic phenotypes

    Sligh, James [Department of Medicine—Dermatology Division, University of Arizona, Tucson, AZ 857 24 (United States); University of Arizona Cancer Center, Tucson, AZ 85724 (United States); Janda, Jaroslav [University of Arizona Cancer Center, Tucson, AZ 85724 (United States); Jandova, Jana, E-mail: jjandova@email.arizona.edu [Department of Medicine—Dermatology Division, University of Arizona, Tucson, AZ 857 24 (United States); University of Arizona Cancer Center, Tucson, AZ 85724 (United States)

    2014-11-15

    Highlights: • Alterations in mitochondrial DNA are commonly found in various human cancers. • Mutations in BALB mitochondrial DNA induce up-regulation of chemokine CCL20. • Increased growth and motility of mtBALB cells is associated with CCL20 levels. • mtDNA changes in BALB induce in vivo tumor growth through CCL20 up-regulation. • Mutations in mitochondrial DNA play important roles in keratinocyte neoplasia. - Abstract: mtDNA mutations are common in human cancers and are thought to contribute to the process of neoplasia. We examined the role of mtDNA mutations in skin cancer by generating fibroblast cybrids harboring a mutation in the gene encoding the mitochondrial tRNA for arginine. This somatic mutation (9821insA) was previously reported in UV-induced hyperkeratotic skin tumors in hairless mice and confers specific tumorigenic phenotypes to mutant cybrids. Microarray analysis revealed and RT-PCR along with Western blot analysis confirmed the up-regulation of CCL20 and its receptor CCR6 in mtBALB haplotype containing the mt-Tr 9821insA allele compared to wild type mtB6 haplotype. Based on reported role of CCL20 in cancer progression we examined whether the hyper-proliferation and enhanced motility of mtBALB haplotype would be associated with CCL20 levels. Treatment of both genotypes with recombinant CCL20 (rmCCL20) resulted in enhanced growth and motility of mtB6 cybrids. Furthermore, the acquired somatic alteration increased the in vivo tumor growth of mtBALB cybrids through the up-regulation of CCL20 since neutralizing antibody significantly decreased in vivo tumor growth of these cells; and tumors from anti-CCL20 treated mice injected with mtBALB cybrids showed significantly decreased CCL20 levels. When rmCCL20 or mtBALB cybrids were used as chemotactic stimuli, mtB6 cybrids showed increased motility while anti-CCL20 antibody decreased the migration and in vivo tumor growth of mtBALB cybrids. Moreover, the inhibitors of MAPK signaling and NF

  14. Isoreserpine promotes {beta}-catenin degradation via Siah-1 up-regulation in HCT116 colon cancer cells

    Gwak, Jungsug; Song, Taeyun [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Jie-Young; Yun, Yeon-Sook [Laboratory of Radiation Cancer Science, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Choi, Il-Whan [Department of Microbiology, Center for Viral Disease Research, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Jeong, Yongsu [Department of Genetic Engineering, and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 614-735 (Korea, Republic of); Oh, Sangtaek, E-mail: ohsa@inje.ac.kr [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)

    2009-09-25

    Aberrant accumulation of intracellular {beta}-catenin in intestinal epithelial cells is a frequent early event during the development of colon cancer. To identify small molecules that decrease the level of intracellular {beta}-catenin, we performed cell-based chemical screening using genetically engineered HEK293 reporter cells to detect compounds that inhibit TOPFlash reporter activity, which was stimulated by Wnt3a-conditioned medium. We found that isoreserpine promoted the degradation of intracellular {beta}-catenin by up-regulation of Siah-1 in HEK293 and HCT116 colon cancer cells. Moreover, isoreserpine repressed the expression of {beta}-catenin/T-cell factor (TCF)-dependent genes, such as cyclin D1 and c-myc, resulting in the suppression of HCT116 cell proliferation. Our findings suggest that isoreserpine can potentially be used as a chemotherapeutic agent against colon cancer.

  15. Transcriptional Up-Regulation of APE1/Ref-1 in Hepatic Tumor: Role in Hepatocytes Resistance to Oxidative Stress and Apoptosis.

    Vittorio Di Maso

    Full Text Available Human Hepatocellular Carcinoma (HCC is the fifth most frequent neoplasm worldwide and the most serious complication of long-standing chronic liver diseases (CLD. Its development is associated with chronic inflammation and sustained oxidative stress. Deregulation of apurinic apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1, a master regulator of cellular response to oxidative stress, has been associated with poor prognosis in several cancers including HCC.In the present study we investigated the APE1/Ref-1 mRNA levels in cirrhotic and HCC tissues obtained during HCC resection. The possible protective role of APE1/Ref-1 against oxidative stress and apoptosis was evaluated in vitro in immortalized human hepatocytes (IHH over-expressing APE1/Ref-1.APE1/Ref-1 was up-regulated in HCC, regulation occurring at the transcriptional level. APE1/Ref-1 mRNA content increased with the progression of liver disease with the transcriptional up-regulation present in cirrhosis significantly increased in HCC. The up-regulation was higher in the less differentiated cancers. In vitro, over-expression of APE1/Ref-1 in normal hepatocytes conferred cell protection against oxidative stress and it was associated with BAX inhibition and escape from apoptosis.APE1/Ref-1 is up-regulated in HCC and this over-expression correlates with cancer aggressiveness. The up-regulation occurs at the transcriptional level and it is present in the earliest phases of hepatocarcinogenesis. The APE-1/Ref-1 over-expression is associated with hepatocyte survival and inhibits BAX activation and apoptosis. These data suggest a possible role of APE1/Ref-1 over-expression both in hepatocyte survival and HCC development calling attention to this molecule as a promising marker for HCC diagnosis and treatment.

  16. Up-regulation of ROS by mitochondria-dependent bystander signaling contributes to genotoxicity of bystander effects

    Chen Shaopeng; Zhao Ye; Zhao Guoping; Han Wei; Bao Lingzhi; Yu, K.N.; Wu Lijun

    2009-01-01

    Genomic instability can be observed in bystander cells. However, the underlying mechanism(s) is still relatively unclear. In a previous study, we found that irradiated cells released mitochondria-dependent intracellular factor(s) which could lead to bystander γ-H2AX induction. In this paper, we used normal (ρ + ) and mtDNA-depleted (ρ 0 ) human-hamster hybrid cells to investigate mitochondrial effects on the genotoxicity in bystander effect through medium transfer experiments. Through the detection of DNA double-strand breaks with γ-H2AX, we found that the fraction of γ-H2AX positive cells changed with time when irradiation conditioned cell medium (ICCM) were harvested. ICCM harvested from irradiated ρ + cells at 10 min post-irradiation (ρ + ICCM 10min ) caused larger increases of bystander γ-H2AX induction comparing to ρ 0 ICCM 10min , which only caused a slight increase of bystander γ-H2AX induction. The ρ + ICCM 10min could also result in the up-regulation of ROS production (increased by 35% at 10 min), while there was no significant increase in cells treated with ρ 0 ICCM 10min . We treated cells with dimethyl sulfoxide (DMSO), the scavenger of ROS, and quenched γ-H2AX induction by ρ + ICCM. Furthermore, after the medium had been transferred and the cells were continuously cultured for 7 days, we found significantly increased CD59 - gene loci mutation (increased by 45.9%) and delayed cell death in the progeny of ρ + ICCM-treated bystander cells. In conclusion, the work presented here suggested that up-regulation of the mitochondria-dependent ROS might be very important in mediating genotoxicity of bystander effects.

  17. Up-regulation of ROS by mitochondria-dependent bystander signaling contributes to genotoxicity of bystander effects

    Chen Shaopeng [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Zhao Ye; Zhao Guoping [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Han Wei [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Bao Lingzhi [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Yu, K.N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Wu Lijun, E-mail: ljw@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2009-06-18

    Genomic instability can be observed in bystander cells. However, the underlying mechanism(s) is still relatively unclear. In a previous study, we found that irradiated cells released mitochondria-dependent intracellular factor(s) which could lead to bystander {gamma}-H2AX induction. In this paper, we used normal ({rho}{sup +}) and mtDNA-depleted ({rho}{sup 0}) human-hamster hybrid cells to investigate mitochondrial effects on the genotoxicity in bystander effect through medium transfer experiments. Through the detection of DNA double-strand breaks with {gamma}-H2AX, we found that the fraction of {gamma}-H2AX positive cells changed with time when irradiation conditioned cell medium (ICCM) were harvested. ICCM harvested from irradiated {rho}{sup +} cells at 10 min post-irradiation ({rho}{sup +} ICCM{sub 10min}) caused larger increases of bystander {gamma}-H2AX induction comparing to {rho}{sup 0} ICCM{sub 10min}, which only caused a slight increase of bystander {gamma}-H2AX induction. The {rho}{sup +} ICCM{sub 10min} could also result in the up-regulation of ROS production (increased by 35% at 10 min), while there was no significant increase in cells treated with {rho}{sup 0} ICCM{sub 10min}. We treated cells with dimethyl sulfoxide (DMSO), the scavenger of ROS, and quenched {gamma}-H2AX induction by {rho}{sup +} ICCM. Furthermore, after the medium had been transferred and the cells were continuously cultured for 7 days, we found significantly increased CD59{sup -} gene loci mutation (increased by 45.9%) and delayed cell death in the progeny of {rho}{sup +} ICCM-treated bystander cells. In conclusion, the work presented here suggested that up-regulation of the mitochondria-dependent ROS might be very important in mediating genotoxicity of bystander effects.

  18. Catecholamine up-regulates MMP-7 expression by activating AP-1 and STAT3 in gastric cancer

    Yu Ming

    2010-10-01

    Full Text Available Abstract Background Stress, anxiety and depression can cause complex physiological and neuroendocrine changes, resulting in increased level of stress related hormone catecholamine, which may constitute a primary mechanism by which physiological factors impact gene expression in tumors. In the present study, we investigated the effects of catecholamine stimulation on MMP-7 expression in gastric cancer cells and elucidated the molecular mechanisms of the up-regulation of MMP-7 level by catecholamine through an adrenergic signaling pathway. Results Increased MMP-7 expression was identified at both mRNA and protein levels in the gastric cancer cells in response to isoproterenol stimulation. β2-AR antigonist effectively abrogated isoproterenol-induced MMP-7 expression. The activation of STAT3 and AP-1 was prominently induced by isoproterenol stimulation and AP-1 displayed a greater efficacy than STAT3 in isoproterenol-induced MMP-7 expression. Mutagenesis of three STAT3 binding sites in MMP-7 promoter failed to repress the transactivation of MMP-7 promoter and silencing STAT3 expression was not effective in preventing isoproterenol-induced MMP-7 expression. However, isoproterenol-induced MMP-7 promoter activities were completely disappeared when the AP-1 site was mutated. STAT3 and c-Jun could physically interact and bind to the AP-1 site, implicating that the interplay of both transcriptional factors on the AP-1 site is responsible for isoproterenol-stimulated MMP-7 expression in gastric cancer cells. The expression of MMP-7 in gastric cancer tissues was found to be at the site where β2-AR was overexpressed and the levels of MMP-7 and β2-AR were the highest in the metastatic locus of gastric cancer. Conclusions Up-regulation of MMP-7 expression through β2-AR-mediated signaling pathway is involved in invasion and metastasis of gastric cancer.

  19. Cardioprotection and Anticholinesterases in Patients with Alzheimer's Disease: Time for Reappraisal

    Fiammetta Monacelli

    2014-02-01

    Full Text Available Background/Aim: Traditional risk factors, like impaired transmitral flow in diastolic filling [vortex formation time (VFT as echocardiographic parameter], contribute to Alzheimer's disease (AD. Moreover, we observed that acetylcholinesterase inhibitors provide a significant cardioprotection. We assessed the pathogenetic role of VFT as early cardiovascular risk factor in 23 AD patients and 24 controls. Results: The results showed no statistical difference between the two groups, but the VFT values were significantly lower in nontreated AD patients, and higher value were observed in AD patients treated with anticholinesterases. Conclusions: The results support the beneficial effects of anticholinesterases on the cardiovascular system of AD patients. Thus, the transition to evidence-based medicine and an in vivo model of cardiomyocytes might strengthen these results.

  20. Exposure to diesel exhaust up-regulates iNOS expression in ApoE knockout mice

    Bai Ni; Kido, Takashi; Kavanagh, Terrance J.; Kaufman, Joel D.; Rosenfeld, Michael E.; Breemen, Cornelis van; Eeden, Stephan F. van

    2011-01-01

    Traffic related particulate matter air pollution is a risk factor for cardiovascular events; however, the biological mechanisms are unclear. We hypothesize that diesel exhaust (DE) inhalation induces up-regulation of inducible nitric oxide synthase (iNOS), which is known to contribute to vascular dysfunction, progression of atherosclerosis and ultimately cardiovascular morbidity and mortality. Methods: ApoE knockout mice (30-week) were exposed to DE (at 200 μg/m 3 of particulate matter) or filtered-air (control) for 7 weeks (6 h/day, 5 days/week). iNOS expression in the blood vessels and heart was evaluated by immunohistochemistry and western blotting analysis. To examine iNOS activity, thoracic aortae were mounted in a wire myograph, and vasoconstriction stimulated by phenylephrine (PE) was measured with and without the presence of the specific inhibitor for iNOS (1400 W). NF-κB (p65) activity was examined by ELISA. The mRNA expression of iNOS and NF-κB (p65) was determined by real-time PCR. Results: DE exposure significantly enhanced iNOS expression in the thoracic aorta (4-fold) and heart (1.5 fold). DE exposure significantly attenuated PE-stimulated vasoconstriction by ∼ 20%, which was partly reversed by 1400 W. The mRNA expression of iNOS and NF-κB was significantly augmented after DE exposure. NF-κB activity was enhanced 2-fold after DE inhalation, and the augmented NF-κB activity was positively correlated with iNOS expression (R 2 = 0.5998). Conclusions: We show that exposure to DE increases iNOS expression and activity possibly via NF-κB-mediated pathway. We suspect that DE exposure-caused up-regulation of iNOS contributes to vascular dysfunction and atherogenesis, which could ultimately lead to urban air pollution-associated cardiovascular morbidity and mortality. - Highlights: → Exposed ApoE knockout mice (30-week) to diesel exhaust (DE) for 7 weeks. → Examine iNOS expression and activity in the blood vessels and heart. → DE exposure

  1. Up-regulation of CLDN1 in gastric cancer is correlated with reduced survival

    Eftang, Lars L; Esbensen, Ying; Tannæs, Tone M; Blom, Gustav P; Bukholm, Ida RK; Bukholm, Geir

    2013-01-01

    The genetic changes in gastric adenocarcinoma are extremely complex and reliable tumor markers have not yet been identified. There are also remarkable geographical differences in the distribution of this disease. Our aim was to identify the most differentially regulated genes in 20 gastric adenocarcinomas from a Norwegian selection, compared to matched normal mucosa, and we have related our findings to prognosis, survival and chronic Helicobacter pylori infection. Biopsies from gastric adenocarcinomas and adjacent normal gastric mucosa were obtained from 20 patients immediately following surgical resection of the tumor. Whole genome, cDNA microarray analysis was performed on the RNA isolated from the sample pairs to compare the gene expression profiles between the tumor against matched mucosa. The samples were microscopically examined to classify gastritis. The presence of H. pylori was examined using microscopy and immunohistochemistry. 130 genes showed differential regulation above a predefined cut-off level. Interleukin-8 (IL-8) and Claudin-1 (CLDN1) were the most consistently up-regulated genes in the tumors. Very high CLDN1 expression in the tumor was identified as an independent and significant predictor gene of reduced post-operative survival. There were distinctly different expression profiles between the tumor group and the control mucosa group, and the histological subsets of mixed type, diffuse type and intestinal type cancer demonstrated further sub-clustering. Up-regulated genes were mapped to cell-adhesion, collagen-related processes and angiogenesis, whereas normal intestinal functions such as digestion and excretion were associated with down-regulated genes. We relate the current findings to our previous study on the gene response of gastric epithelial cells to H. pylori infection. CLDN1 was highly up-regulated in gastric cancer, and CLDN1 expression was independently associated with a poor post-operative prognosis, and may have important prognostic

  2. Myostatin signaling is up-regulated in female patients with advanced heart failure.

    Ishida, Junichi; Konishi, Masaaki; Saitoh, Masakazu; Anker, Markus; Anker, Stefan D; Springer, Jochen

    2017-07-01

    Myostatin, a negative regulator of skeletal muscle mass, is up-regulated in the myocardium of heart failure (HF) and increased myostatin is associated with weight loss in animal models with HF. Although there are disparities in pathophysiology and epidemiology between male and female patients with HF, it remains unclear whether there is gender difference in myostatin expression and whether it is associated with weight loss in HF patients. Heart tissue samples were collected from patients with advanced heart failure (n=31, female n=5) as well as healthy control donors (n=14, female n=6). Expression levels of myostatin and its related proteins in the heart were evaluated by western blotting analysis. Body mass index was significantly lower in female HF patients than in male counterparts (20.0±4.2 in female vs 25.2±3.8 in male, p=0.04). In female HF patients, both mature myostatin and pSmad2 were significantly up-regulated by 1.9 fold (p=0.05) and 2.5 fold (pmyostatin was not. There was no significant difference in protein expression related to myostatin signaling between male and female patients. In this study, myostatin and pSmad2 were significantly up-regulated in the failing heart of female patients, but not male patients, and female patients displayed lower body mass index. Enhanced myostatin signaling in female failing heart may causally contribute to pathogenesis of HF and cardiac cachexia. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Up-regulation of the chemokine CCL21 in the skin of subjects exposed to irritants

    Kuznitzky Raquel

    2004-04-01

    Full Text Available Abstract Background Expression of murine CCL21 by dermal lymphatic endothelial cells (LEC has been demonstrated to be one of the most important steps in Langerhans cell emigration from skin. Previously, our group and others have found that this chemokine is up-regulated in different human inflammatory skin diseases mediated by diverse specific immune responses. This study was carried out to investigate the involvement of CCL21 in human skin after challenge with irritant agents responsible for inducing Irritant Contact Dermatitis (ICD. Results Eleven normal individuals were challenged with different chemical or physical irritants. Two patients with Allergic Contact Dermatitis (ACD were also challenged with the relevant antigen in order to have a positive control for CCL21 expression. Macroscopic as well as microscopic responses were evaluated. We observed typical ICD responses with mostly mononuclear cells in perivascular areas, but a predominance of polymorphonuclear cells away from the inflamed blood vessels and in the epidermis at 24 hours. Immunohistochemical studies showed up-regulation of CCL21 by lymphatic endothelial cells in all the biopsies taken from ICD and ACD lesions compared to normal skin. Kinetic study at 10, 48, 96 and 168 hours after contact with a classical irritant (sodium lauryl sulphate showed that the expression of CCL21 was increased in lymphatic vessels at 10 hours, peaked at 48 hours, and then gradually declined. There was a strong correlation between CCL21 expression and the macroscopic response (r = 0.69; p = 0.0008, but not between CCL21 and the number of infiltrating cells in the lesions. Conclusions These results provide new evidence for the role of CCL21 in inflammatory processes. Since the up-regulation of this chemokine was observed in ICD and ACD, it is tempting to speculate that this mechanism operates independently of the type of dermal insult, facilitating the emigration of CCR7+ cells.

  4. Erbb2 up-regulation of ADAM12 expression accelerates skin cancer progression.

    Rao, Velidi H; Vogel, Kristen; Yanagida, Jodi K; Marwaha, Nitin; Kandel, Amrit; Trempus, Carol; Repertinger, Susan K; Hansen, Laura A

    2015-10-01

    Solar ultraviolet (UV) radiation can cause severe damage to the skin and is the primary cause of most skin cancer. UV radiation causes DNA damage leading to mutations and also activates the Erbb2/HER2 receptor through indirect mechanisms involving reactive oxygen species. We hypothesized that Erbb2 activation accelerates the malignant progression of UV-induced skin cancer. Following the induction of benign squamous papillomas by UV exposure of v-ras(Ha) transgenic Tg.AC mice, mice were treated topically with the Erbb2 inhibitor AG825 and tumor progression monitored. AG825 treatment reduced tumor volume, increased tumor regression, and delayed the development of malignant squamous cell carcinoma (SCC). Progression to malignancy was associated with increased Erbb2 and ADAM12 (A Disintegin And Metalloproteinase 12) transcripts and protein, while inhibition of Erbb2 blocked the increase in ADAM12 message upon malignant progression. Similarly, human SCC and SCC cell lines had increased ADAM12 protein and transcripts when compared to normal controls. To determine whether Erbb2 up-regulation of ADAM12 contributed to malignant progression of skin cancer, Erbb2 expression was modulated in cultured SCC cells using forced over-expression or siRNA targeting, demonstrating up-regulation of ADAM12 by Erbb2. Furthermore, ADAM12 transfection or siRNA targeting revealed that ADAM12 increased both the migration and invasion of cutaneous SCC cells. Collectively, these results suggest Erbb2 up-regulation of ADAM12 as a novel mechanism contributing to the malignant progression of UV-induced skin cancer. Inhibition of Erbb2/HER2 reduced tumor burden, increased tumor regression, and delayed the progression of benign skin tumors to malignant SCC in UV-exposed mice. Inhibition of Erbb2 suppressed the increase in metalloproteinase ADAM12 expression in skin tumors, which in turn increased migration and tumor cell invasiveness. © 2014 Wiley Periodicals, Inc.

  5. Green tea diet decreases PCB 126-induced oxidative stress in mice by up-regulating antioxidant enzymes.

    Newsome, Bradley J; Petriello, Michael C; Han, Sung Gu; Murphy, Margaret O; Eske, Katryn E; Sunkara, Manjula; Morris, Andrew J; Hennig, Bernhard

    2014-02-01

    Superfund chemicals such as polychlorinated biphenyls pose a serious human health risk due to their environmental persistence and link to multiple diseases. Selective bioactive food components such as flavonoids have been shown to ameliorate PCB toxicity, but primarily in an in vitro setting. Here, we show that mice fed a green tea-enriched diet and subsequently exposed to environmentally relevant doses of coplanar PCB exhibit decreased overall oxidative stress primarily due to the up-regulation of a battery of antioxidant enzymes. C57BL/6 mice were fed a low-fat diet supplemented with green tea extract (GTE) for 12 weeks and exposed to 5 μmol PCB 126/kg mouse weight (1.63 mg/kg-day) on weeks 10, 11 and 12 (total body burden: 4.9 mg/kg). F2-isoprostane and its metabolites, established markers of in vivo oxidative stress, measured in plasma via HPLC-MS/MS exhibited fivefold decreased levels in mice supplemented with GTE and subsequently exposed to PCB compared to animals on a control diet exposed to PCB. Livers were collected and harvested for both messenger RNA and protein analyses, and it was determined that many genes transcriptionally controlled by aryl hydrocarbon receptor and nuclear factor (erythroid-derived 2)-like 2 proteins were up-regulated in PCB-exposed mice fed the green tea-supplemented diet. An increased induction of genes such as SOD1, GSR, NQO1 and GST, key antioxidant enzymes, in these mice (green tea plus PCB) may explain the observed decrease in overall oxidative stress. A diet supplemented with green tea allows for an efficient antioxidant response in the presence of PCB 126, which supports the emerging paradigm that healthful nutrition may be able to bolster and buffer a physiological system against the toxicities of environmental pollutants. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Massively parallel signature sequencing and bioinformatics analysis identifies up-regulation of TGFBI and SOX4 in human glioblastoma.

    Biaoyang Lin

    Full Text Available BACKGROUND: A comprehensive network-based understanding of molecular pathways abnormally altered in glioblastoma multiforme (GBM is essential for developing effective therapeutic approaches for this deadly disease. METHODOLOGY/PRINCIPAL FINDINGS: Applying a next generation sequencing technology, massively parallel signature sequencing (MPSS, we identified a total of 4535 genes that are differentially expressed between normal brain and GBM tissue. The expression changes of three up-regulated genes, CHI3L1, CHI3L2, and FOXM1, and two down-regulated genes, neurogranin and L1CAM, were confirmed by quantitative PCR. Pathway analysis revealed that TGF- beta pathway related genes were significantly up-regulated in GBM tumor samples. An integrative pathway analysis of the TGF beta signaling network identified two alternative TGF-beta signaling pathways mediated by SOX4 (sex determining region Y-box 4 and TGFBI (Transforming growth factor beta induced. Quantitative RT-PCR and immunohistochemistry staining demonstrated that SOX4 and TGFBI expression is elevated in GBM tissues compared with normal brain tissues at both the RNA and protein levels. In vitro functional studies confirmed that TGFBI and SOX4 expression is increased by TGF-beta stimulation and decreased by a specific inhibitor of TGF-beta receptor 1 kinase. CONCLUSIONS/SIGNIFICANCE: Our MPSS database for GBM and normal brain tissues provides a useful resource for the scientific community. The identification of non-SMAD mediated TGF-beta signaling pathways acting through SOX4 and TGFBI (GENE ID:7045 in GBM indicates that these alternative pathways should be considered, in addition to the canonical SMAD mediated pathway, in the development of new therapeutic strategies targeting TGF-beta signaling in GBM. Finally, the construction of an extended TGF-beta signaling network with overlaid gene expression changes between GBM and normal brain extends our understanding of the biology of GBM.

  7. Sevoflurane postconditioning improves myocardial mitochondrial respiratory function and reduces myocardial ischemia-reperfusion injury by up-regulating HIF-1.

    Yang, Long; Xie, Peng; Wu, Jianjiang; Yu, Jin; Yu, Tian; Wang, Haiying; Wang, Jiang; Xia, Zhengyuan; Zheng, Hong

    2016-01-01

    Sevoflurane postconditioning (SPostC) can exert myocardial protective effects similar to ischemic preconditioning. However, the exact myocardial protection mechanism by SPostC is unclear. Studies indicate that hypoxia-inducible factor-1 (HIF-1) maintains cellular respiration homeostasis by regulating mitochondrial respiratory chain enzyme activity under hypoxic conditions. This study investigated whether SPostC could regulate the expression of myocardial HIF-1α and to improve mitochondrial respiratory function, thereby relieving myocardial ischemia-reperfusion injury in rats. The myocardial ischemia-reperfusion rat model was established using the Langendorff isolated heart perfusion apparatus. Additionally, postconditioning was performed using sevoflurane alone or in combination with the HIF-1α inhibitor 2-methoxyestradiol (2ME2). The changes in hemodynamic parameters, HIF-1α protein expression levels, mitochondrial respiratory function and enzyme activity, mitochondrial reactive oxygen species (ROS) production rates, and mitochondrial ultrastructure were measured or observed. Compared to the ischemia-reperfusion (I/R) group, HIF-1α expression in the SPostC group was significantly up-regulated. Additionally, cardiac function indicators, mitochondrial state 3 respiratory rate, respiratory control ratio (RCR), cytochrome C oxidase (C c O), NADH oxidase (NADHO), and succinate oxidase (SUCO) activities, mitochondrial ROS production rate, and mitochondrial ultrastructure were significantly better than those in the I/R group. However, these advantages were completely reversed by the HIF-1α specific inhibitor 2ME2 ( P <0.05). The myocardial protective function of SPostC might be associated with the improvement of mitochondrial respiratory function after up-regulation of HIF-1α expression.

  8. Up-regulation of ALG-2 in hepatomas and lung cancer tissue

    la Cour, Jonas Marstrand; Mollerup, Jens; Winding, Pernille

    2003-01-01

    , a result confirmed by immunohistochemical analysis. Staining of four different lung cancer tissue microarrays including specimens of 263 patients showed that ALG-2 is mainly localized to epithelial cells and significantly up-regulated in small-cell lung cancers and in non-small-cell lung cancers. Our...... using Western blot analysis and immunohistochemistry. Western blot analysis of 15 different adult mouse tissues demonstrated that ALG-2 is ubiquitously expressed. We found that ALG-2 was more than threefold overexpressed in rat liver hepatoma compared to normal rat liver using Western blot analysis...

  9. Hypothalamic L-Histidine Decarboxylase Is Up-Regulated During Chronic REM Sleep Deprivation of Rats.

    Gloria E Hoffman

    Full Text Available A competition of neurobehavioral drives of sleep and wakefulness occurs during sleep deprivation. When enforced chronically, subjects must remain awake. This study examines histaminergic neurons of the tuberomammillary nucleus of the posterior hypothalamus in response to enforced wakefulness in rats. We tested the hypothesis that the rate-limiting enzyme for histamine biosynthesis, L-histidine decarboxylase (HDC, would be up-regulated during chronic rapid eye movement sleep deprivation (REM-SD because histamine plays a major role in maintaining wakefulness. Archived brain tissues of male Sprague Dawley rats from a previous study were used. Rats had been subjected to REM-SD by the flowerpot paradigm for 5, 10, or 15 days. For immunocytochemistry, rats were transcardially perfused with acrolein-paraformaldehyde for immunodetection of L-HDC; separate controls used carbodiimide-paraformaldehyde for immunodetection of histamine. Immunolocalization of histamine within the tuberomammillary nucleus was validated using carbodiimide. Because HDC antiserum has cross-reactivity with other decarboxylases at high antibody concentrations, titrations localized L-HDC to only tuberomammillary nucleus at a dilution of ≥ 1:300,000. REM-SD increased immunoreactive HDC by day 5 and it remained elevated in both dorsal and ventral aspects of the tuberomammillary complex. Our results suggest that up-regulation of L-HDC within the tuberomammillary complex during chronic REM-SD may be responsible for maintaining wakefulness.

  10. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera.

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2013-05-28

    As a managed pollinator, the honey bee Apis mellifera is critical to the American agricultural enterprise. Recent colony losses have thus raised concerns; possible explanations for bee decline include nutritional deficiencies and exposures to pesticides and pathogens. We determined that constituents found in honey, including p-coumaric acid, pinocembrin, and pinobanksin 5-methyl ether, specifically induce detoxification genes. These inducers are primarily found not in nectar but in pollen in the case of p-coumaric acid (a monomer of sporopollenin, the principal constituent of pollen cell walls) and propolis, a resinous material gathered and processed by bees to line wax cells. RNA-seq analysis (massively parallel RNA sequencing) revealed that p-coumaric acid specifically up-regulates all classes of detoxification genes as well as select antimicrobial peptide genes. This up-regulation has functional significance in that that adding p-coumaric acid to a diet of sucrose increases midgut metabolism of coumaphos, a widely used in-hive acaricide, by ∼60%. As a major component of pollen grains, p-coumaric acid is ubiquitous in the natural diet of honey bees and may function as a nutraceutical regulating immune and detoxification processes. The widespread apicultural use of honey substitutes, including high-fructose corn syrup, may thus compromise the ability of honey bees to cope with pesticides and pathogens and contribute to colony losses.

  11. Genes up-regulated during red coloration in UV-B irradiated lettuce leaves.

    Park, Jong-Sug; Choung, Myoung-Gun; Kim, Jung-Bong; Hahn, Bum-Soo; Kim, Jong-Bum; Bae, Shin-Chul; Roh, Kyung-Hee; Kim, Yong-Hwan; Cheon, Choong-Ill; Sung, Mi-Kyung; Cho, Kang-Jin

    2007-04-01

    Molecular analysis of gene expression differences between green and red lettuce leaves was performed using the SSH method. BlastX comparisons of subtractive expressed sequence tags (ESTs) indicated that 7.6% of clones encoded enzymes involved in secondary metabolism. Such clones had a particularly high abundance of flavonoid-metabolism proteins (6.5%). Following SSH, 566 clones were rescreened for differential gene expression using dot-blot hybridization. Of these, 53 were found to overexpressed during red coloration. The up-regulated expression of six genes was confirmed by Northern blot analyses. The expression of chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and dihydroflavonol 4-reductase (DFR) genes showed a positive correlation with anthocyanin accumulation in UV-B-irradiated lettuce leaves; flavonoid 3',5'-hydroxylase (F3',5'H) and anthocyanidin synthase (ANS) were expressed continuously in both samples. These results indicated that the genes CHS, F3H, and DFR coincided with increases in anthocyanin accumulation during the red coloration of lettuce leaves. This study show a relationship between red coloration and the expression of up-regulated genes in lettuce. The subtractive cDNA library and EST database described in this study represent a valuable resource for further research for secondary metabolism in the vegetable crops.

  12. Artemisia Extract Improves Insulin Sensitivity in Women With Gestational Diabetes Mellitus by Up-Regulating Adiponectin.

    Sun, Xia; Sun, Hong; Zhang, Jing; Ji, Xianghong

    2016-12-01

    Gestational diabetes mellitus (GDM) has affected a great number of pregnant women worldwide. Artemisia extracts have been found to exhibit a potent antidiabetic effect in the treatment of type 2 diabetes mellitus. We aimed to examine the effects of Artemisia extract on insulin resistance and lipid profiles in pregnant GDM patients. Patients in their second trimester were randomly assigned to the Artemisia extract group (AE) or to a placebo group (PO). They were instructed to consume either AE or PO daily for a period of 10 weeks. Glucose and insulin profiles and adiponectin level were assessed at baseline (week 0) and after the treatment (week 10). Compared to the PO group, fasting plasma glucose, serum insulin levels, homeostasis model of assessment of insulin resistance (HOMA-IR), and β-cell function (HOMA-B) were significantly reduced in the AE group participants. Moreover, levels of circulating adiponectin were also significantly up-regulated in the AE group, which also positively contributed to improved insulin sensitivity. Daily administration of Artemisia extract improves insulin sensitivity by up-regulating adiponectin in women with gestational diabetes mellitus. © 2016, The American College of Clinical Pharmacology.

  13. Neural cell 3D microtissue formation is marked by cytokines' up-regulation.

    Yinzhi Lai

    Full Text Available Cells cultured in three dimensional (3D scaffolds as opposed to traditional two-dimensional (2D substrates have been considered more physiologically relevant based on their superior ability to emulate the in vivo environment. Combined with stem cell technology, 3D cell cultures can provide a promising alternative for use in cell-based assays or biosensors in non-clinical drug discovery studies. To advance 3D culture technology, a case has been made for identifying and validating three-dimensionality biomarkers. With this goal in mind, we conducted a transcriptomic expression comparison among neural progenitor cells cultured on 2D substrates, 3D porous polystyrene scaffolds, and as 3D neurospheres (in vivo surrogate. Up-regulation of cytokines as a group in 3D and neurospheres was observed. A group of 13 cytokines were commonly up-regulated in cells cultured in polystyrene scaffolds and neurospheres, suggesting potential for any or a combination from this list to serve as three-dimensionality biomarkers. These results are supportive of further cytokine identification and validation studies with cells from non-neural tissue.

  14. Parathyroid Hormone-Related Peptide: A Novel Endocrine Cardioprotective "Conditioning Mimetic".

    Datta, Tanuka; Przyklenk, Karin; Datta, Nabanita S

    2017-11-01

    An as-yet limited body of evidence suggests that calcium-regulating endocrine hormones-in particular, parathyroid hormone-related peptide (PTHrP)-may have unappreciated cardioprotective effects. The current review focuses on the concept that PTHrP may, via modulation of classic cardioprotective signaling pathways, provide a novel strategy to attenuate myocardial ischemia-reperfusion injury.

  15. Caffeoylxanthiazonoside exerts cardioprotective effects during chronic heart failure via inhibition of inflammatory responses in cardiac cells.

    Yang, Bin; Wang, Fei; Cao, Huili; Liu, Guifang; Zhang, Yuean; Yan, Ping; Li, Bao

    2017-11-01

    Caffeoylxanthiazonoside (CYT) is an active constituent isolated from the fruit of the Xanthium strumarium L plant. The aim of the present study was to investigate the cardioprotective effects of oral administration of CYT on chronic heart failure (CHF) and its underlying mechanisms. A rat model of CHF was first established, and cardiac function indices, including the heart/body weight index, left heart/body weight index, fractional shortening (FS), ejection fraction (EF), cardiac output (CO) and heart rate (HR), were subsequently determined by cardiac ultrasound. Serum levels of lactate dehydrogenase (LDH) and creatine kinase (CK), and the levels of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β in heart tissues and cardiac microvascular endothelial cells (CMECs) were determined using ELISA. In addition, the protein expression levels of nuclear factor-κB (NF-κB) signaling pathway members were determined by western blotting in CMECs. The results demonstrated that oral administration of 10, 20, 40 mg/kg CYT significantly reduced cardiac hypertrophy and reversed FS, EF, CO and HR when compared with CHF model rats. In addition, CYT administration significantly decreased the levels of TNF-α, IL-6 and IL-1β in heart tissues, as well as serum LDH and CK levels. Furthermore, exposure of CMECs to 20, 40 and 80 µg/ml CYT significantly decreased the production of TNF-α, IL-1β and IL-6. The protein expression levels of cytoplasmic NF-κB p65 and IκB were upregulated, while nuclear NF-κB p65 was downregulated following treatment of CMECs with 20, 40 and 80 µg/ml CYT when compared with untreated CHF model controls. In conclusion, the results of the current study suggest that CYT demonstrates cardioprotective effects in CHF model rats by suppressing the expression of pro-inflammatory cytokines and the NF-κB signaling pathway.

  16. E2F-1 induces melanoma cell apoptosis via PUMA up-regulation and Bax translocation

    Hao, Hongying; Dong, Yanbin; Bowling, Maria T; Gomez-Gutierrez, Jorge G; Zhou, H Sam; McMasters, Kelly M

    2007-01-01

    PUMA is a pro-apoptotic Bcl-2 family member that has been shown to be involved in apoptosis in many cell types. We sought to ascertain whether induction of PUMA plays a crucial role in E2F-1-induced apoptosis in melanoma cells. PUMA gene and protein expression levels were detected by real-time PCR and Western blot in SK-MEL-2 and HCT116 cell lines after Ad-E2F-1 infection. Activation of the PUMA promoter by E2F-1 overexpression was detected by dual luciferase reporter assay. E2F-1-induced Bax translocation was shown by immunocytochemistry. The induction of caspase-9 activity was measured by caspase-9 colorimetric assay kit. Up-regulation of the PUMA gene and protein by E2F-1 overexpression was detected by real-time PCR and Western blot analysis in the SK-MEL-2 melanoma cell line. In support of this finding, we found six putative E2F-1 binding sites within the PUMA promoter. Subsequent dual luciferase reporter assay showed that E2F-1 expression could increase the PUMA gene promoter activity 9.3 fold in SK-MEL-2 cells. The role of PUMA in E2F-1-induced apoptosis was further investigated in a PUMA knockout cell line. Cell viability assay showed that the HCT116 PUMA-/- cell line was more resistant to Ad-E2F-1-mediated cell death than the HCT116 PUMA+/+ cell line. Moreover, a 2.2-fold induction of the PUMA promoter was also noted in the HCT116 PUMA+/+ colon cancer cell line after Ad-E2F-1 infection. Overexpression of a truncated E2F-1 protein that lacks the transactivation domain failed to up-regulate PUMA promoter, suggesting that PUMA may be a transcriptional target of E2F-1. E2F-1-induced cancer cell apoptosis was accompanied by Bax translocation from the cytosol to mitochondria and the induction of caspase-9 activity, suggesting that E2F-1-induced apoptosis is mediated by PUMA through the cytochrome C/Apaf-1-dependent pathway. Our studies strongly demonstrated that E2F-1 induces melanoma cell apoptosis via PUMA up-regulation and Bax translocation. The signaling

  17. Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats

    Ahmed, Romana; Hossen, Md. Sakib; Ahmmed, Istiyak; Rumpa, Nur-E-Noushin; Sulaiman, Siti Amrah

    2017-01-01

    Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP) has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and ferric reducing antioxidant power (FRAP) values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO-) induced myocardial infarction in rats. Male Wistar rats (n = 32) were pretreated orally with an ethanol extract of MP (100 mg/kg/day) for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation. PMID:28261310

  18. Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats

    Romana Ahmed

    2017-01-01

    Full Text Available Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH radical-scavenging activity and ferric reducing antioxidant power (FRAP values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO- induced myocardial infarction in rats. Male Wistar rats (n=32 were pretreated orally with an ethanol extract of MP (100 mg/kg/day for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.

  19. Involvement of up-regulated Necl-5/Tage4/PVR/CD155 in the loss of contact inhibition in transformed NIH3T3 cells

    Minami, Yukiko; Ikeda, Wataru; Kajita, Mihoko; Fujito, Tsutomu; Monden, Morito; Takai, Yoshimi

    2007-01-01

    Normal cells show contact inhibition of cell movement and proliferation, but this is lost following transformation. We found that Necl-5, originally identified as a poliovirus receptor and up-regulated in many cancer cells, enhances growth factor-induced cell movement and proliferation. We showed that when cells contact other cells, Necl-5 interacts in trans with nectin-3 and is removed by endocytosis from the cell surface, resulting in a reduction of cell movement and proliferation. We show here that up-regulation of the gene encoding Necl-5 by the oncogene V12-Ki-Ras causes enhanced cell movement and proliferation. Upon cell-cell contact, de novo synthesis of Necl-5 exceeds the rate of Necl-5 endocytosis, eventually resulting in a net increase in the amount of Necl-5 at the cell surface. In addition, expression of the gene encoding nectin-3 is markedly reduced in transformed cells. Thus, up-regulation of Necl-5 following transformation contributes to the loss of contact inhibition in transformed cells

  20. Wedelolactone Regulates Lipid Metabolism and Improves Hepatic Steatosis Partly by AMPK Activation and Up-Regulation of Expression of PPARα/LPL and LDLR.

    Yun Zhao

    Full Text Available Hyperlipidemia is considered one of the greatest risk factors of cardiovascular diseases. We investigated the anti-hyperlipidemic effect and the underlying mechanism of wedelolactone, a plant-derived coumestan, in HepG2 cells and high-fat diet (HFD-induced hyperlipidemic hamsters. We showed that in cultured HepG2 cells, wedelolactone up-regulated protein levels of adenosine monophosphate activated protein kinase (AMPK and peroxisome proliferator-activated receptor-alpha (PPARα as well as the gene expression of AMPK, PPARα, lipoprotein lipase (LPL, and the low-density lipoprotein receptor (LDLR. Meanwhile, administration of wedelolactone for 4 weeks decreased the lipid profiles of plasma and liver in HFD-induced hyperlipidemic hamsters, including total cholesterol (TC, triglycerides (TG, and low-density lipoprotein-cholesterol (LDL-C. The activation of AMPK and up-regulation of PPARα was also observed with wedelolactone treatment. Furthermore, wedelolactone also increased the activities of superoxidase dismutase (SOD and glutathione peroxidase (GSH-Px and decreased the level of the lipid peroxidation product malondialdehyde (MDA in the liver, therefore decreasing the activity of alanine aminotransferase (ALT. In conclusion, we provide novel experimental evidence that wedelolactone possesses lipid-lowering and steatosis-improving effects, and the underlying mechanism is, at least in part, mediated by the activation of AMPK and the up-regulation of PPARα/LPL and LDLR.

  1. Lipopolysaccharide-induced Pulpitis Up-regulates TRPV1 in Trigeminal Ganglia

    Chung, M.-K.; Lee, J.; Duraes, G.; Ro, J.Y.

    2011-01-01

    Tooth pain often accompanies pulpitis. Accumulation of lipopolysaccharides (LPS), a product of Gram-negative bacteria, is associated with painful clinical symptoms. However, the mechanisms underlying LPS-induced tooth pain are not clearly understood. TRPV1 is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and hyperalgesia under inflammation or injury. Although TRPV1 is expressed in pulpal afferents, it is not known whether the application of LPS to teeth modulates TRPV1 in trigeminal nociceptors. By assessing the levels of protein and transcript of TRPV1 in mouse trigeminal ganglia, we demonstrate that dentinal application of LPS increases the expression of TRPV1. Our results suggest that the up-regulation of TRPV1 in trigeminal nociceptors following bacterial infection could contribute to hyperalgesia under pulpitis conditions. PMID:21712529

  2. Up-regulation of β-adrenoreceptors by drugs which cause depression

    Brand, L.; Van Rooyen, J.M.; Offermeier, J.

    1988-01-01

    A number of drugs associated with depressive episodes in man were investigated for their effects on rat cortical β-adrenoceptors, in view of the down-regulation of β-adrenoceptors caused by chronic administration of anti-depressant drugs. Scatchard analyses of [ 3 H]dihydro-alprenolol binding data provided B max and K D values for the cortical β-adrenoceptors. Up-regulation of the receptors occurred after daily injections of phenobarbitone for seven days (by 55%), pentobarbitone (by 143%), reserpine (by 82%) and propranolol (by 64%). β-adrenoceptors were not affected by daily injections of clonidine, chlorpromazine and flupenthixol for seven days. This work confirms the up-regulatory effect on β-adrenoceptors of certain drugs which produce depressions in man

  3. SET protein up-regulated testosterone production in the cultured preantral follicles

    Xu Boqun

    2013-02-01

    Full Text Available Abstract Background We found previously that the expression of SET gene was up-regulated in polycystic ovaries. Evidences suggested that SET protein was essential for regulating both the promoter activity of CYP17A1 and the biological activity of P450c17. In this study, we explored whether SET regulated androgen production in preantral follicles. Methods The mouse preantral follicles were cultured in vitro. Testosterone secretion and expression of steroidogenic enzymes were observed in the preantral follicles treated in vitro by SET overexpression and knockdown. Results Testosterone levels in the media of the AdCMV-SET infected follicles significantly increased, and the CYP17A1 and HSD3B2 expression also significantly increased (P P  Conclusions SET played a positive role in regulating ovarian androgen biosynthesis by enhancing the transcription of steroidogenic enzymes CYP17A1 and HSD3B2, which maybe contribute to the hyperandrogenism in PCOS.

  4. Interferon-β-induced activation of c-Jun NH2-terminal kinase mediates apoptosis through up-regulation of CD95 in CH31 B lymphoma cells

    Takada, Eiko; Shimo, Kuniaki; Hata, Kikumi; Abiake, Maira; Mukai, Yasuo; Moriyama, Masami; Heasley, Lynn; Mizuguchi, Junichiro

    2005-01-01

    Type I interferon (IFN)-induced antitumor action is due in part to apoptosis, but the molecular mechanisms underlying IFN-induced apoptosis remain largely unresolved. In the present study, we demonstrate that IFN-β induced apoptosis and the loss of mitochondrial membrane potential (ΔΨm) in the murine CH31 B lymphoma cell line, and this was accompanied by the up-regulation of CD95, but not CD95-ligand (CD95-L), tumor necrosis factor (TNF), or TNF-related apoptosis-inducing ligand (TRAIL). Pretreatment with anti-CD95-L mAb partially prevented the IFN-β-induced loss of ΔΨm, suggesting that the interaction of IFN-β-up-regulated CD95 with CD95-L plays a crucial role in the induction of fratricide. IFN-β induced a sustained activation of c-Jun NH 2 -terminal kinase 1 (JNK1), but not extracellular signal-regulated kinases (ERKs). The IFN-β-induced apoptosis and loss of ΔΨm were substantially compromised in cells overexpressing a dominant-negative form of JNK1 (dnJNK1), and it was slightly enhanced in cells carrying a constitutively active JNK construct, MKK7-JNK1 fusion protein. The IFN-β-induced up-regulation of CD95 together with caspase-8 activation was also abrogated in the dnJNK1 cells while it was further enhanced in the MKK7-JNK1 cells. The levels of cellular FLIP (c-FLIP), competitively interacting with caspase-8, were down-regulated by stimulation with IFN-β but were reversed by the proteasome inhibitor lactacystin. Collectively, the IFN-β-induced sustained activation of JNK mediates apoptosis, at least in part, through up-regulation of CD95 protein in combination with down-regulation of c-FLIP protein

  5. Axl receptor tyrosine kinase is up-regulated in metformin resistant prostate cancer cells

    Bansal, Nitu; Mishra, Prasun J.; Stein, Mark; DiPaola, Robert S.; Bertino, Joseph R.

    2015-01-01

    Recent epidemiological studies showed that metformin, a widely used anti-diabetic drug might prevent certain cancers. Metformin also has an anti-proliferative effect in preclinical studies of both hematologic malignancies as well as solid cancers and clinical studies testing metformin as an anti-cancer drug are in progress. However, all cancer types do not respond to metformin with the same effectiveness or acquire resistance. To understand the mechanism of acquired resistance and possibly its mechanism of action as an anti-proliferative agent, we developed metformin resistant LNCaP prostate cancer cells. Metformin resistant LNCaP cells had an increased proliferation rate, increased migration and invasion ability as compared to the parental cells, and expressed markers of epithelial-mesenchymal transition (EMT). A detailed gene expression microarray comparing the resistant cells to the wild type cells revealed that Edil2, Ereg, Axl, Anax2, CD44 and Anax3 were the top up-regulated genes and calbindin 2 and TPTE (transmembrane phosphatase with tensin homology) and IGF1R were down regulated. We focused on Axl, a receptor tyrosine kinase that has been shown to be up regulated in several drug resistance cancers. Here, we show that the metformin resistant cell line as well as castrate resistant cell lines that over express Axl were more resistant to metformin, as well as to taxotere compared to androgen sensitive LNCaP and CWR22 cells that do not overexpress Axl. Forced overexpression of Axl in LNCaP cells decreased metformin and taxotere sensitivity and knockdown of Axl in resistant cells increased sensitivity to these drugs. Inhibition of Axl activity by R428, a small molecule Axl kinase inhibitor, sensitized metformin resistant cells that overexpressed Axl to metformin. Inhibitors of Axl may enhance tumor responses to metformin and other chemotherapy in cancers that over express Axl. PMID:26036314

  6. Biotin deficiency up-regulates TNF-alpha production in murine macrophages.

    Kuroishi, Toshinobu; Endo, Yasuo; Muramoto, Koji; Sugawara, Shunji

    2008-04-01

    Biotin, a water-soluble vitamin of the B complex, functions as a cofactor of carboxylases that catalyze an indispensable cellular metabolism. Although significant decreases in serum biotin levels have been reported in patients with chronic inflammatory diseases, the biological roles of biotin in inflammatory responses are unclear. In this study, we investigated the effects of biotin deficiency on TNF-alpha production. Mice were fed a basal diet or a biotin-deficient diet for 8 weeks. Serum biotin levels were significantly lower in biotin-deficient mice than biotin-sufficient mice. After i.v. administration of LPS, serum TNF-alpha levels were significantly higher in biotin-deficient mice than biotin-sufficient mice. A murine macrophage-like cell line, J774.1, was cultured in a biotin-sufficient or -deficient medium for 4 weeks. Cell proliferation and biotinylation of intracellular proteins were decreased significantly in biotin-deficient cells compared with biotin-sufficient cells. Significantly higher production and mRNA expression of TNF-alpha were detected in biotin-deficient J774.1 cells than biotin-sufficient cells in response to LPS and even without LPS stimulation. Intracellular TNF-alpha expression was inhibited by actinomycin D, indicating that biotin deficiency up-regulates TNF-alpha production at the transcriptional level. However, the expression levels of TNF receptors, CD14, and TLR4/myeloid differentiation protein 2 complex were similar between biotin-sufficient and -deficient cells. No differences were detected in the activities of the NF-kappaB family or AP-1. The TNF-alpha induction by biotin deficiency was down-regulated by biotin supplementation in vitro and in vivo. These results indicate that biotin deficiency may up-regulate TNF-alpha production or that biotin excess down-regulates TNF-alpha production, suggesting that biotin status may influence inflammatory diseases.

  7. The Vitamin E Analog Gamma-Tocotrienol (GT3 and Statins Synergistically Up-Regulate Endothelial Thrombomodulin (TM

    Rupak Pathak

    2016-11-01

    Full Text Available Statins; a class of routinely prescribed cholesterol-lowering drugs; inhibit 3-hydroxy-3-methylglutaryl-coenzymeA reductase (HMGCR and strongly induce endothelial thrombomodulin (TM; which is known to have anti-inflammatory; anti-coagulation; anti-oxidant; and radioprotective properties. However; high-dose toxicity limits the clinical use of statins. The vitamin E family member gamma-tocotrienol (GT3 also suppresses HMGCR activity and induces TM expression without causing significant adverse side effects; even at high concentrations. To investigate the synergistic effect of statins and GT3 on TM; a low dose of atorvastatin and GT3 was used to treat human primary endothelial cells. Protein-level TM expression was measured by flow cytometry. TM functional activity was determined by activated protein C (APC generation assay. Expression of Kruppel-like factor 2 (KLF2, one of the key transcription factors of TM, was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR. TM expression increased in a dose-dependent manner after both atorvastatin and GT3 treatment. A combined treatment of a low-dose of atorvastatin and GT3 synergistically up-regulated TM expression and functional activity. Finally; atorvastatin and GT3 synergistically increased KLF2 expression. These findings suggest that combined treatment of statins with GT3 may provide significant health benefits in treating a number of pathophysiological conditions; including inflammatory and cardiovascular diseases.

  8. Constitutive, Institutive and Up-Regulation of Carotenogenesis Regulatory Mechanism via In Vitro Culture Model System and Elicitors

    Rashidi Othman; Fatimah Azzahra Mohd Zaifuddin; Norazian Mohd Hassan

    2015-01-01

    Phyto hormone abscisic acid (ABA) plays a regulatory role in many physiological processes in plants and is regulated and controlled by specific key factors or genes. Different environmental stress conditions such as water, drought, cold, light, and temperature result in increased amounts of ABA. The action of ABA involves modification of gene expression and analysis of in vitro callus model system cultures revealed several potential of constitutive, institutive and up-regulation acting regulatory mechanisms. Therefore, this study was aimed at establishing in vitro cultures as potential research tools to study the regulatory mechanisms of the carotenoid biosynthesis in selected plant species through a controlled environment. The presence and absence of zeaxanthin and neoxanthin in callus cultures and intact plants could be explained by changes in gene expression in response to stress. Abiotic stress can alter gene expression and trigger cellular metabolism in plants. This study suggested that the key factors which involved in regulatory mechanisms of individual carotenoid biosynthesis in a particular biology system of plants can be either be silenced or activated. Therefore, based on the results in this study environmental stress is made possible for enhancement or enrichment of certain carotenoid of interest in food crops without altering the genes. (author)

  9. Chelidonic acid evokes antidepressant-like effect through the up-regulation of BDNF in forced swimming test.

    Jeong, Hyun-Ja; Yang, Shi-Young; Kim, Hee-Yun; Kim, Na-Rae; Jang, Jae-Bum; Kim, Hyung-Min

    2016-08-01

    Depression is usually accompanied by neuro-inflammatory reactions. Chelidonic acid, in particular, has shown anti-inflammatory effects. The objective of this study was to evaluate the anti-depressant effects of chelidonic acid and to discuss the potential mechanisms of a forced swimming test. Chelidonic acid was administered orally once a day for 14 days. On the 14th day, chelidonic acid resulted in a significant decrease in immobility time during the forced swimming test without alteration of locomotor activity, in an open field test. Chelidonic acid also increased the number of nissl bodies in the hippocampus. Brain-derived neurotrophic factor expression and extracellular signal-regulated protein kinase phosphorylation in the hippocampus were up-regulated by the administration of chelidonic acid. Chelidonic acid administration significantly increased the mRNA expression of hippocampal estrogen receptor-β. The levels of hippocampal interleukin (IL)-1β, IL-6, and tumor necrosis factor-α were effectively attenuated by the administration of chelidonic acid. In addition, chelidonic acid significantly increased the levels of 5-hydroxytryptamine (serotonin), dopamine, and norepinephrine compared with those levels for the mice that were administered distilled water in the hippocampus. These results suggest that chelidonic acid might serve as a new therapeutic strategy for the regulation of depression associated with inflammation. © 2016 by the Society for Experimental Biology and Medicine.

  10. BCL11B is up-regulated by EWS/FLI and contributes to the transformed phenotype in Ewing sarcoma.

    Elizabeth T Wiles

    Full Text Available The EWS/FLI translocation product is the causative oncogene in Ewing sarcoma and acts as an aberrant transcription factor. EWS/FLI dysregulates gene expression during tumorigenesis by abnormally activating or repressing genes. The expression levels of thousands of genes are affected in Ewing sarcoma, however, it is unknown which of these genes contribute to the transformed phenotype. Here we characterize BCL11B as an up-regulated EWS/FLI target that is necessary for the maintenance of transformation in patient derived Ewing sarcoma cells lines. BCL11B, a zinc finger transcription factor, acts as a transcriptional repressor in Ewing's sarcoma and contributes to the EWS/FLI repressed gene signature. BCL11B repressive activity is mediated by the NuRD co-repressor complex. We further demonstrate that re-expression of SPRY1, a repressed target of BCL11B, limits the transformation capacity of Ewing sarcoma cells. These data define a new pathway downstream of EWS/FLI required for oncogenic maintenance in Ewing sarcoma.

  11. Insecticide-Mediated Up-Regulation of Cytochrome P450 Genes in the Red Flour Beetle (Tribolium castaneum

    Xiao Liang

    2015-01-01

    Full Text Available Some cytochrome P450 (CYP genes are known for their rapid up-regulation in response to insecticide exposures in insects. To date, however, limited information is available with respect to the relationships among the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes. In this study, we examined the transcriptional response of eight selected CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription quantitative PCR (RT-qPCR revealed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin (1.97- and 2.06-fold, respectively, permethrin (2.00- and 2.03-fold and lambda-cyhalothrin (1.73- and 1.81-fold, whereas CYP4BR3 and CYP345A1 can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold when 20-day larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h. Our studies also showed that similar levels of up-regulation can be achieved for CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that up-regulation of these CYP genes was rapid and only required low concentrations of insecticides, and the up-regulation not only depended on the CYP genes but also the type of insecticides. Our results along with those from previous studies also indicated that there were no specific patterns for predicting the up-regulation of specific CYP gene families based on the insecticide classification.

  12. Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer

    Sun, Yue; Du, Chengli; Wang, Bo; Zhang, Yanling; Liu, Xiaoyan; Ren, Guoping

    2014-01-01

    Highlights: • The expression of eEF1A2 is up-regulated in prostate cancer tissues. • Suppression of eEF1A2 inhibits the proliferation and promotes apoptosis. • Inhibition of eEF1A2 enhances the expression of apoptotic relevant proteins. • The expressions of eEF1A2 and cleavage-caspase3 are inversely correlated. - Abstract: Background: eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development. Methods: We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis. Results: Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues. Conclusion: Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer

  13. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    Hamm, Rebecca; Zeino, Maen [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Frewert, Simon [Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken (Germany); Efferth, Thomas, E-mail: efferth@uni-mainz.de [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany)

    2014-11-15

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H{sup +}-ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation.

  14. Up-regulation of HOXB cluster genes are epigenetically regulated in tamoxifen-resistant MCF7 breast cancer cells.

    Yang, Seoyeon; Lee, Ji-Yeon; Hur, Ho; Oh, Ji Hoon; Kim, Myoung Hee

    2018-05-28

    Tamoxifen (TAM) is commonly used to treat estrogen receptor (ER)-positive breast cancer. Despite the remarkable benefits, resistance to TAM presents a serious therapeutic challenge. Since several HOX transcription factors have been proposed as strong candidates in the development of resistance to TAM therapy in breast cancer, we generated an in vitro model of acquired TAM resistance using ER-positive MCF7 breast cancer cells (MCF7-TAMR), and analyzed the expression pattern and epigenetic states of HOX genes. HOXB cluster genes were uniquely up-regulated in MCF7-TAMR cells. Survival analysis of in slico data showed the correlation of high expression of HOXB genes with poor response to TAM in ER-positive breast cancer patients treated with TAM. Gain- and loss-of-function experiments showed that the overexpression of multi HOXB genes in MCF7 renders cancer cells more resistant to TAM, whereas the knockdown restores TAM sensitivity. Furthermore, activation of HOXB genes in MCF7-TAMR was associated with histone modifications, particularly the gain of H3K9ac. These findings imply that the activation of HOXB genes mediate the development of TAM resistance, and represent a target for development of new strategies to prevent or reverse TAM resistance.

  15. Up-regulation of integrin β3 in radioresistant pancreatic cancer impairs adenovirus-mediated gene therapy

    Egami, Takuya; Ohuchida, Kenoki; Yasui, Takaharu; Onimaru, Manabu; Toma, Hiroki; Sato, Norihiro; Tanaka, Masao; Mizumoto, Kazuhiro; Matsumoto, Kunio

    2009-01-01

    Adenovirus-mediated gene therapy is a promising approach for the treatment of pancreatic cancer. We previously reported that radiation enhanced adenovirus-mediated gene expression in pancreatic cancer, suggesting that adenoviral gene therapy might be more effective in radioresistant pancreatic cancer cells. In the present study, we compared the transduction efficiency of adenovirus-delivered genes in radiosensitive and radioresistant cells, and investigated the underlying mechanisms. We used an adenovirus expressing the hepatocyte growth factor antagonist, NK4 (Ad-NK4), as a representative gene therapy. We established two radioresistant human pancreatic cancer cell lines using fractionated irradiation. Radiosensitive and radioresistant pancreatic cancer cells were infected with Ad-NK4, and NK4 levels in the cells were measured. In order to investigate the mechanisms responsible for the differences in the transduction efficiency between these cells, we measured expression of the genes mediating adenovirus infection and endocytosis. The results revealed that NK4 levels in radioresistant cells were significantly lower (P<0.01) than those in radiosensitive cells, although there were no significant differences in adenovirus uptake between radiosensitive cells and radioresistant cells. Integrin β3 was up-regulated and the Coxsackie virus and adenovirus receptor was down-regulated in radioresistant cells, and inhibition of integrin β3 promoted adenovirus gene transfer. These results suggest that inhibition of integrin β3 in radioresistant pancreatic cancer cells could enhance adenovirus-mediated gene therapy. (author)

  16. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    Hamm, Rebecca; Zeino, Maen; Frewert, Simon; Efferth, Thomas

    2014-01-01

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H + -ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation

  17. Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca2+ influx

    Moon, Dong-Oh; Kang, Chang-Hee; Kang, Sang-Hyuck; Choi, Yung-Hyun; Hyun, Jin-Won; Chang, Weon-Young; Kang, Hee-Kyoung; Koh, Young-Sang; Maeng, Young-Hee; Kim, Young-Ree; Kim, Gi-Young

    2012-01-01

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation. Highlights: ► Capsaicin sensitizes TRAIL-induced apoptosis through activation of caspases. ► Capsaicin induces expression of DR5 through Sp1 activation. ► Capsaicin activates calcium signaling pathway.

  18. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules.

    Takanobu Nagata

    Full Text Available Myocardial ischemia reperfusion injury (IRI adversely affects cardiac performance and the prognosis of patients with acute myocardial infarction. Although myocardial signal transducer and activator of transcription (STAT 3 is potently cardioprotective during IRI, the inhibitory mechanism responsible for its activation is largely unknown. The present study aimed to investigate the role of the myocardial suppressor of cytokine signaling (SOCS-3, an intrinsic negative feedback regulator of the Janus kinase (JAK-STAT signaling pathway, in the development of myocardial IRI. Myocardial IRI was induced in mice by ligating the left anterior descending coronary artery for 1 h, followed by different reperfusion times. One hour after reperfusion, the rapid expression of JAK-STAT-activating cytokines was observed. We precisely evaluated the phosphorylation of cardioprotective signaling molecules and the expression of SOCS3 during IRI and then induced myocardial IRI in wild-type and cardiac-specific SOCS3 knockout mice (SOCS3-CKO. The activation of STAT3, AKT, and ERK1/2 rapidly peaked and promptly decreased during IRI. This decrease correlated with the induction of SOCS3 expression up to 24 h after IRI in wild-type mice. The infarct size 24 h after reperfusion was significantly reduced in SOCS3-CKO compared with wild-type mice. In SOCS3-CKO mice, STAT3, AKT, and ERK1/2 phosphorylation was sustained, myocardial apoptosis was prevented, and the expression of anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1 was augmented. Cardiac-specific SOCS3 deletion led to the sustained activation of cardioprotective signaling molecules including and prevented myocardial apoptosis and injury during IRI. Our findings suggest that SOCS3 may represent a key factor that exacerbates the development of myocardial IRI.

  19. Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer.

    Takeshi Chiyomaru

    Full Text Available Genistein has been shown to inhibit cancers both in vitro and in vivo, by altering the expression of several microRNAs (miRNAs. In this study, we focused on tumor suppressor miRNAs regulated by genistein and investigated their function in prostate cancer (PCa and target pathways. Using miRNA microarray analysis and real-time RT-PCR we observed that miR-574-3p was significantly up-regulated in PCa cells treated with genistein compared with vehicle control. The expression of miR-574-3p was significantly lower in PCa cell lines and clinical PCa tissues compared with normal prostate cells (RWPE-1 and adjacent normal tissues. Low expression level of miR-574-3p was correlated with advanced tumor stage and higher Gleason score in PCa specimens. Re-expression of miR-574-3p in PCa cells significantly inhibited cell proliferation, migration and invasion in vitro and in vivo. miR-574-3p restoration induced apoptosis through reducing Bcl-xL and activating caspase-9 and caspase-3. Using GeneCodis software analysis, several pathways affected by miR-574-3p were identified, such as 'Pathways in cancer', 'Jak-STAT signaling pathway', and 'Wnt signaling pathway'. Luciferase reporter assays demonstrated that miR-574-3p directly binds to the 3' UTR of several target genes (such as RAC1, EGFR and EP300 that are components of 'Pathways in cancer'. Quantitative real-time PCR and Western analysis showed that the mRNA and protein expression levels of the three target genes in PCa cells were markedly down-regulated with miR-574-3p. Loss-of-function studies demonstrated that the three target genes significantly affect cell proliferation, migration and invasion in PCa cell lines. Our results show that genistein up-regulates tumor suppressor miR-574-3p expression targeting several cell signaling pathways. These findings enhance understanding of how genistein regulates with miRNA in PCa.

  20. Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans.

    Sadeghinejad, Lida; Cvitkovitch, Dennis G; Siqueira, Walter L; Santerre, J Paul; Finer, Yoav

    2016-01-01

    Triethylene glycol dimethacrylate (TEGDMA) is a diluent monomer used pervasively in dental composite resins. Through hydrolytic degradation of the composites in the oral cavity it yields a hydrophilic biodegradation product, triethylene glycol (TEG), which has been shown to promote the growth of Streptococcus mutans, a dominant cariogenic bacterium. Previously it was shown that TEG up-regulated gtfB, an important gene contributing to polysaccharide synthesis function in biofilms. However, molecular mechanisms related to TEG's effect on bacterial function remained poorly understood. In the present study, S. mutans UA159 was incubated with clinically relevant concentrations of TEG at pH 5.5 and 7.0. Quantitative real-time PCR, proteomics analysis, and glucosyltransferase enzyme (GTF) activity measurements were employed to identify the bacterial phenotypic response to TEG. A S. mutans vicK isogenic mutant (SMΔvicK1) and its associated complemented strain (SMΔvicK1C), an important regulatory gene for biofilm-associated genes, were used to determine if this signaling pathway was involved in modulation of the S. mutans virulence-associated genes. Extracted proteins from S. mutans biofilms grown in the presence and absence of TEG were subjected to mass spectrometry for protein identification, characterization and quantification. TEG up-regulated gtfB/C, gbpB, comC, comD and comE more significantly in biofilms at cariogenic pH (5.5) and defined concentrations. Differential response of the vicK knock-out (SMΔvicK1) and complemented strains (SMΔvicK1C) implicated this signalling pathway in TEG-modulated cellular responses. TEG resulted in increased GTF enzyme activity, responsible for synthesizing insoluble glucans involved in the formation of cariogenic biofilms. As well, TEG increased protein abundance related to biofilm formation, carbohydrate transport, acid tolerance, and stress-response. Proteomics data was consistent with gene expression findings for the selected

  1. Nitrous oxide discretely up-regulates nNOS and p53 in neonatal rat brain.

    Cattano, D; Valleggi, S; Abramo, A; Forfori, F; Maze, M; Giunta, F

    2010-06-01

    Animal studies suggest that neuronal cell death often results from anesthetic administration during synaptogenesis. Volatile anesthetics are strongly involved in triggering neuronal apoptosis, whereas other inhalational agents (xenon) demonstrate protective effects. Nitrous oxide (N2O) has modest pro-apoptotic effects on its own and potent, synergistic toxic effects when combined with volatile agents. Recent findings suggest that, during periods of rapid brain development, the enhanced neurodegeneration triggered by anesthetic drugs may be caused by a compensatory increase in intracellular free calcium, a potent activator of neuronal nitric oxide synthase (nNOS). Anesthesia-induced neuro-apoptosis is also activated via the intrinsic and the extrinsic apoptotic pathways because both pathways involve p53, a key regulatory gene. The molecular events related to neuronal cell apoptosis are not completely understood. To gain further insight into the events underlying neuro-apoptosis, we analyzed the transcriptional consequences of N2O exposure on nNOS, iNOS and p53 mRNA levels. The study used 2 groups of postnatal day seven Sprague/Dawley rats (N=6 each) that were exposed for 120 minutes to air (75% N2, 25% O2) or N2O (75% N2O, 25% O2; this N2O concentration is commonly used to induce anesthesia and has been demonstrated to trigger neurodegeneration in postnatal day seven rats). Total RNA was isolated from each brain and expression analyses on iNOS and nNOS transcripts were performed using relative Real-Time C-reactive protein PCR (using G3PDH as a housekeeping gene). A semi-quantitative RT-PCR analysis was performed on the p53 transcript (using Ciclophylin A as a housekeeping gene). Statistical analysis (REST 2005) revealed a significant, 11-fold up-regulation (P=0.026) of the nNOS transcript but no significant changes in iNOS transcription. The p53 mRNA was up-regulated almost 2-fold (P=0.0002; Student's t-Test; GraphPad Prism 4.00) in N2O-treated samples relative to

  2. No-observed effect levels are associated with up-regulation of MGMT following MMS exposure.

    Doak, Shareen H; Brüsehafer, Katja; Dudley, Ed; Quick, Emma; Johnson, George; Newton, Russell P; Jenkins, Gareth J S

    2008-12-15

    The alkylating agents methyl methanesulphonate (MMS) and ethyl methanesulphonate (EMS) have non-linear dose-response curves, with a no-observed effect level (NOEL) and a lowest observed effect level (LOEL) for both gross chromosomal damage and mutagenicity. However, the biological mechanism responsible for the NOEL has yet to be identified. A strong candidate is DNA repair as it may be able to efficiently remove alkyl adducts at low doses resulting in a NOEL, but at higher doses fails to fully remove all lesions due to saturation of enzymatic activity resulting in a LOEL and subsequent linear increases in mutagenicity. We therefore assessed the transcriptional status of N-methylpurine-DNA glycoslase (MPG) and O(6)-methylguanine DNA methyltransferase (MGMT), which represent the first line of defence following exposure to alkylating agents through the respective enzymatic removal of N7-alkylG and O(6)-alkylG. The relative MPG and MGMT gene expression profiles were assessed by real-time RT-PCR following exposure to 0-2 microg/ml MMS for 1-24h. MPG expression remained fairly steady, but in contrast significant up-regulation of MGMT was observed when cells were treated with 0.5 and 1.0 microg/ml MMS for 4h (2.5- and 6.5-fold increases respectively). These doses lie within the NOEL for MMS mutagenicity (LOEL is 1.25 microg/ml), thus this boost in MGMT expression at low doses may be responsible for efficiently repairing O(6)methylG lesions and creating the non-linear response for mutations. However, as the LOEL for MMS clastogenicity is 0.85 microg/ml, O(6)-alkylG is unlikely to be responsible for the clastogenicity observed at these concentrations. Consequently, at low doses N7-methylG is possibly the predominant cause of MMS clastogenicity, while O(6)-methylG is more likely to be responsible for MMS mutagenicity, with MGMT up-regulation playing a key role in removal of O(6)-alkylG lesions before they are fixed as permanent point mutations, resulting in non-linear dose

  3. Up-regulation of sucrose metabolizing enzymes in Oncidium goldiana grown under elevated carbon dioxide

    Chang Run Li; Sun, W.Q.; Choy Sin Hew [National Univ. of Singapore. dept. of Biological Sciences (Singapore)

    2001-07-01

    Experiments were conducted in controlled growth chambers to evaluate how increase in CO{sub 2} concentration affected sucrose metabolizing enzymes, especially sucrose phosphate synthase (SPS; EC 2.4.1.14) and sucrose synthase (SS; EC 2.4.1.13), as well as carbon metabolism and partitioning in a tropical epiphytic orchid species (Oncidium goldiana). Response of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) to elevated CO{sub 2} was determined along with dry mass production, photosynthesis rate, chlorophyll content, total nitrogen and total soluble protein content. After 60 days of growth, there was a 80% and 150% increase in dry mass production in plants grown at 750 and 1100 {mu} l{sup -}1 CO{sub 2}, respectively, compared with those grown at ambient CO{sub 2} (about 370 {mu} l{sup -}1). A similar increase in photosynthesis rate was detected throughout the growth period when measured under growth CO{sub 2} conditions. Concomitantly, there was a decline in leaf Rubisco activity in plants in elevated CO{sub 2} after 10 days of growth. Over the growth period, leaf SPS and SS activities were up-regulated by an average of 20% and 40% for plants grown at 750 and 1100 {mu} l{sup -}1 CO{sub 2}, respectively. Leaf sucrose content and starch content were significantly higher throughout the growth period in plants grown at elevated CO{sub 2} than those at ambient CO{sub 2}. The partitioning of photosynthetically fixed carbon between sucrose and starch appeared to be unaffected by the 750 {mu} l{sup -}1 CO{sub 2} treatment, but it was favored into starch under the 1100 {mu} l{sup -}1 CO{sub 2} condition. The activities of SPS and SS in leaf extracts were closely associated with photosynthetic rates and with partitioning of carbon between starch and sucrose in leaves. The data are consistent with the hypothesis that the up-regulation of leaf SPS and SS might be an acclimation response to optimize the utilization and export of organic carbon with the

  4. CARDIOPROTECTIVE EFFECT OF NATIVE ANTIHYPOXANTS IN EXPERIMENTAL COBALT CARDIOMYOPATHY

    I. V. Zadnipryany

    2016-01-01

    Full Text Available The aim of research – the study of cardioprotective properties of antioxidants in terms of histotoxic hypoxia under experimental conditions.Materials and methods. The study was conducted on 20 adult male Wistar rats divided into 3 experimental groups, which for 7 days were intraperitoneally injected aqueous CoCl2 solution at a dose of 60 mg/kg. Rats of the first experimental group (n = 6 had no administered drug correction, a the second group of animals (n = 7 after the cobalt chloride daily injections was administered intragastrically Enoant Premium aqueous solution at a dose of 2.5 ml / kg, along with 0.05 ml of water, the rats the third test group (n = 7 after the administration of cobalt chloride were exposed to cytoflavin correction concentrate and grape polyphenols administered simultaneously. Studies of myocardium were conducted using light and electron microscopy.Results of the research. The result of the cobalt toxic effect on the heart of animals in experiments lead to the development of cardiomyopathy, which required timely cardioprotection. Morphological changes in the second group of rats, despite a slight improvement compared with the group without correction,were characterized, above all, by uneven from mild to severe edema of the myocardium. Structure of myocardium observed in the third group of male rats after cobalt intoxication, generally reflected a tendency to minimization of the extent of the damage, which was manifested in the form of normalization of cell structures and muscle fibers.Conclusion. The administration of succinic acid derivatives combined with the grape polyphenols demonstrated vivid cytoprotective properties evidenced by mostly preserved myocardium structure in rats exposed to histotoxic hypoxia in comparison to only administration of plant polyphenols group. 

  5. Cardioprotective Signature of Short-Term Caloric Restriction.

    Hossein Noyan

    Full Text Available To understand the molecular pathways underlying the cardiac preconditioning effect of short-term caloric restriction (CR.Lifelong CR has been suggested to reduce the incidence of cardiovascular disease through a variety of mechanisms. However, prolonged adherence to a CR life-style is difficult. Here we reveal the pathways that are modulated by short-term CR, which are associated with protection of the mouse heart from ischemia.Male 10-12 wk old C57bl/6 mice were randomly assigned to an ad libitum (AL diet with free access to regular chow, or CR, receiving 30% less food for 7 days (d, prior to myocardial infarction (MI via permanent coronary ligation. At d8, the left ventricles (LV of AL and CR mice were collected for Western blot, mRNA and microRNA (miR analyses to identify cardioprotective gene expression signatures. In separate groups, infarct size, cardiac hemodynamics and protein abundance of caspase 3 was measured at d2 post-MI.This short-term model of CR was associated with cardio-protection, as evidenced by decreased infarct size (18.5±2.4% vs. 26.6±1.7%, N=10/group; P=0.01. mRNA and miR profiles pre-MI (N=5/group identified genes modulated by short-term CR to be associated with circadian clock, oxidative stress, immune function, apoptosis, metabolism, angiogenesis, cytoskeleton and extracellular matrix (ECM. Western blots pre-MI revealed CR-associated increases in phosphorylated Akt and GSK3ß, reduced levels of phosphorylated AMPK and mitochondrial related proteins PGC-1α, cytochrome C and cyclooxygenase (COX IV, with no differences in the levels of phosphorylated eNOS or MAPK (ERK1/2; p38. CR regimen was also associated with reduced protein abundance of cleaved caspase 3 in the infarcted heart and improved cardiac function.

  6. FOXO3-mediated up-regulation of Bim contributes to rhein-induced cancer cell apoptosis.

    Wang, Jiao; Liu, Shu; Yin, Yancun; Li, Mingjin; Wang, Bo; Yang, Li; Jiang, Yangfu

    2015-03-01

    The anthraquinone compound rhein is a natural agent in the traditional Chinese medicine rhubarb. Preclinical studies demonstrate that rhein has anticancer activity. Treatment of a variety of cancer cells with rhein may induce apoptosis. Here, we report that rhein induces atypical unfolded protein response in breast cancer MCF-7 cells and hepatoma HepG2 cells. Rhein induces CHOP expression, eIF2α phosphorylation and caspase cleavage, while it does not induce glucose-regulated protein 78 (GRP78) expression in both MCF-7 and HepG2 cells. Meanwhile, rhein inhibits thapsigargin-induced GRP78 expression and X box-binding protein 1 splicing. In addition, rhein inhibits Akt phosphorylation and stimulates FOXO transactivation activity. Rhein induces Bim expression in MCF-7 and HepG2 cells, which can be abrogated by FOXO3a knockdown. Knockdown of FOXO3a or Bim abrogates rhein-induced caspase cleavage and apoptosis. The chemical chaperone 4-phenylbutyrate acid antagonizes the induction of FOXO activation, Bim expression and caspase cleavage by rhein, indicating that protein misfolding may be involved in triggering these deleterious effects. We conclude that FOXO3a-mediated up-regulation of Bim is a key mechanism underlying rhein-induced cancer cells apoptosis.

  7. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts

    He, Jing; Chen, Qianquan; Wei, Yuanyuan; Jiang, Feng; Yang, Meiling; Hao, Shuguang; Guo, Xiaojiao; Chen, Dahua; Kang, Le

    2016-01-01

    Developmental synchrony, the basis of uniform swarming, migration, and sexual maturation, is an important strategy for social animals to adapt to variable environments. However, the molecular mechanisms underlying developmental synchrony are largely unexplored. The migratory locust exhibits polyphenism between gregarious and solitarious individuals, with the former displaying more synchronous sexual maturation and migration than the latter. Here, we found that the egg-hatching time of gregarious locusts was more uniform compared with solitarious locusts and that microRNA-276 (miR-276) was expressed significantly higher in both ovaries and eggs of gregarious locusts than in solitarious locusts. Interestingly, inhibiting miR-276 in gregarious females and overexpressing it in solitarious females, respectively, caused more heterochronic and synchronous hatching of progeny eggs. Moreover, miR-276 directly targeted a transcription coactivator gene, brahma (brm), resulting in its up-regulation. Knockdown of brm not only resulted in asynchronous egg hatching in gregarious locusts but also impaired the miR-276–induced synchronous egg hatching in solitarious locusts. Mechanistically, miR-276 mediated brm activation in a manner that depended on the secondary structure of brm, namely, a stem-loop around the binding site of miR-276. Collectively, our results unravel a mechanism by which miR-276 enhances brm expression to promote developmental synchrony and provide insight into regulation of developmental homeostasis and population sustaining that are closely related to biological synchrony. PMID:26729868

  8. Is There an Opportunity for Current Chemotherapeutics to Up-regulate MIC-A/B Ligands?

    Kendel Quirk

    2017-10-01

    Full Text Available Natural killer (NK cells are critical effectors of the immune system. NK cells recognize unhealthy cells by specific ligands [e.g., MHC- class I chain related protein A or B (MIC-A/B] for further elimination by cytotoxicity. Paradoxically, cancer cells down-regulate MIC-A/B and evade NK cell’s anticancer activity. Recent data indicate that cellular-stress induces MIC-A/B, leading to enhanced sensitivity of cancer cells to NK cell-mediated cytotoxicity. In this Perspective article, we hypothesize that current chemotherapeutics at sub-lethal, non-toxic dose may promote cellular-stress and up-regulate the expression of MIC-A/B ligands to augment cancer’s sensitivity to NK cell-mediated cytotoxicity. Preliminary data from two human breast cancer cell lines, MDA-MB-231 and T47D treated with clinically relevant therapeutics such as doxorubicin, paclitaxel and methotrexate support the hypothesis. The goal of this Perspective is to underscore the prospects of current chemotherapeutics in NK cell immunotherapy, and discuss potential challenges and opportunities to improve cancer therapy.

  9. Glucocorticoid up-regulation of high-affinity interleukin 6 receptors on human epithelial cells

    Snyers, L.; De Wit, L.; Content, J.

    1990-01-01

    Interleukin 6 (IL-6) is a potent pleiotropic cytokine, known, among others, to stimulate immunoglobulin production by B cells and to trigger acute-phase protein synthesis by hepatocytes. Similar to IL-1, it is produced by monocytes and macrophages following an inflammatory challenge. Analysis of IL-6 receptor (IL-6R) expression on different human cell lines indicates that dexamethasone could up-regulate the number of IL-6R on one epithelial cell line (UAC) and on two hepatoma cell lines (HepG2 and Hep3B). This effect was confirmed by Scatchard analysis of binding experiments, using [ 35 S]methionine and [ 35 S]cysteine metabolically labeled IL-6. It was confirmed at the level of mRNA expression by Northern blot analysis. These results provide evidence for a link between IL-6 and glucocorticoids. They could represent an example of a system in which one role of glucocorticoids is to define more accurately the target of cytokines, and they could explain, at least partly, the frequently observed synergy between IL-6 and glucocorticoids, notably in the case of hepatocytes

  10. Hypoxia promotes Mycobacterium tuberculosis-specific up-regulation of granulysin in human T cells.

    Zenk, Sebastian F; Vollmer, Michael; Schercher, Esra; Kallert, Stephanie; Kubis, Jan; Stenger, Steffen

    2016-06-01

    Oxygen tension affects local immune responses in inflammation and infection. In tuberculosis mycobacteria avoid hypoxic areas and preferentially persist and reactivate in the oxygen-rich apex of the lung. Oxygen restriction activates antimicrobial effector mechanisms in macrophages and restricts growth of intracellular Mycobacterium tuberculosis (M.Tb). The effect of oxygen restriction on T cell-mediated antimicrobial effector mechanisms is unknown. Therefore we determined the influence of hypoxia on the expression of granulysin, an antimicrobial peptide of lymphocytes. Hypoxia increased the antigen-specific up-regulation of granulysin mRNA and protein in human CD4(+) and CD8(+) T lymphocytes. This observation was functionally relevant, because oxygen restriction supported the growth-limiting effect of antigen-specific T cells against virulent M.Tb residing in primary human macrophages. Our results provide evidence that oxygen restriction promotes the expression of granulysin and suggest that this effect-in conjunction with additional T cell-mediated immune responses-supports protection against mycobacteria. The therapeutic modulation of oxygen availability may offer a new strategy for the host-directed therapy of infectious diseases with intracellular pathogens.

  11. MicroRNA-150 Is up-regulated in extranodal marginal zone lymphoma of MALT type.

    Gebauer, Niklas; Kuba, Johannes; Senft, Andrea; Schillert, Arne; Bernard, Veronica; Thorns, Christoph

    2014-01-01

    The mechanisms promoting malignant transformation from chronic Helicobacter pylori-gastritis to gastric extranodal marginal zone lymphoma (MALT lymphoma) are insufficiently characterized. This follow-up study aimed to validate candidate microRNAs (miRs) in the process of neoplastic transformation. MicroRNA expression signatures (n=20) were generated for a total of 60 cases of gastric lesions ranging from Wotherspoon 0-5 employing a quantitative real-time polymerase chain reaction (PCR) approach. Morphological and immunohistochemical characterization of the cohort was supplemented by PCR-based immunoglobulin heavy chain recombination studies. Quantitative expression of miR-150, miR-142.3p, miR-375 and miR-494 was significantly de-regulated in samples from MALT lymphoma compared to those from gastritis. The previously reported up-regulation of miR-150 in marginal zone lymphoma of MALT type was verified in an independent cohort of lymphoma samples employing a modified methodology. This further substantiates the role of miR-150 as a potential oncomiR in MALT lymphoma.

  12. Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans.

    Al-Amin, Mohammad; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2016-02-01

    Caffeine has both positive and negative effects on physiological functions in a dose-dependent manner. C. elegans has been used as an animal model to investigate the effects of caffeine on development. Caffeine treatment at a high dose (30 mM) showed detrimental effects and caused early larval arrest. We performed a comparative proteomic analysis to investigate the mode of action of high-dose caffeine treatment in C. elegans and found that the stress response proteins, heat shock protein (HSP)-4 (endoplasmic reticulum [ER] chaperone), HSP-6 (mitochondrial chaperone), and HSP-16 (cytosolic chaperone), were induced and their expression was regulated at the transcriptional level. These findings suggest that high-dose caffeine intake causes a strong stress response and activates all three stress-response pathways in the worms, including the ER-, mitochondrial-, and cytosolic pathways. RNA interference of each hsp gene or in triple combination retarded growth. In addition, caffeine treatment stimulated a food-avoidance behavior (aversion phenotype), which was enhanced by RNAi depletion of the hsp-4 gene. Therefore, up-regulation of hsp genes after caffeine treatment appeared to be the major responses to alleviate stress and protect against developmental arrest.

  13. Cyclosporine A administered during reperfusion fails to restore cardioprotection in prediabetic Zucker obese rats in vivo

    Huhn, R.; Heinen, A.; Hollmann, M. W.; Schlack, W.; Preckel, B.; Weber, N. C.

    2010-01-01

    Background and aims: Hyperglycaemia blocks sevoflurane-induced postconditioning, and cardioprotection in hyperglycaemic myocardium can be restored by inhibition of the mitochondrial permeability transition pore (mPTP). We investigated whether sevoflurane-induced postconditioning is also blocked in

  14. IGF-II is up-regulated and myofibres are hypertrophied in regenerating soleus of mice lacking FGF6

    Armand, Anne-Sophie; Lecolle, Sylvie; Launay, Thierry; Pariset, Claude; Fiore, Frederic; Della Gaspera, Bruno; Birnbaum, Daniel; Chanoine, Christophe; Charbonnier, Frederic

    2004-01-01

    Important functions in myogenesis have been proposed for FGF6, a member of the fibroblast growth factor family accumulating almost exclusively in the myogenic lineage. However, the use of FGF6(-/-) mutant mice gave contradictory results and the role of FGF6 during myogenesis remains largely unclear. Using FGF6(-/-) mice, we first analysed the morphology of the regenerated soleus following cardiotoxin injection and showed hypertrophied myofibres in soleus of the mutant mice as compared to wild-type mice. Secondly, to examine the function of the IGF family in the hypertrophy process, we used semiquantitative and real-time RT-PCR assays and Western blots to monitor the expression of the insulin-like growth factors (IGF-I and IGF-II), their receptors [type I IGF receptor (IGF1R) and IGF-II receptor (IGF2R)], and of a binding protein IGFBP-5 in regenerating soleus muscles of FGF6(-/-) knockout mice vs. wild-type mice. In the mutant, both IGF-II and IGF2R, but not IGF-I and IGF1R, were strongly up-regulated, whereas IGFBP5 was down-regulated, strongly suggesting that, in the absence of FGF6, the mechanisms leading to myofibre hypertrophy were mediated specifically by an IGF-II/IGF2R signalling pathway distinct from the classic mechanism involving IGF-I and IGF1R previously described for skeletal muscle hypertrophy. The potential regulating role of IGFBP5 on IGF-II expression is also discussed. This report shows for the first time a specific role for FGF6 in the regulation of myofibre size during a process of in vivo myogenesis

  15. Lipopolysaccharide induces the migration of human dental pulp cells by up-regulating miR-146a.

    Wang, Min-Ching; Hung, Pei-Shih; Tu, Hsi-Feng; Shih, Wen-Yu; Li, Wan-Chun; Chang, Kuo-Wei

    2012-12-01

    MicroRNAs are small noncoding RNAs that play crucial roles in regulating normal and pathologic functions. Bacterial lipopolysaccharide (LPS) is one of the key regulators of pulpal pathogenesis. This study investigated how LPS regulates microRNA expression and affects the phenotype of human dental pulp cells (DPCs). Primary DPCs were established and immortalized to achieve immortalized DPCs (I-DPCs). DPCs and I-DPCs were treated with LPS and examined to identify changes in microRNA expression, cell proliferation, and cell migration. Quantitative reverse-transcriptase polymerase chain reaction was used to detect changes in gene expression. Exogenous miR-146a expression was performed transfection with pre-mir-146a mimic. Knockdown of interleukin receptor-associated kinase (IRAK1) and tumor necrosis factor receptor-associated factor 6 (TRAF6) expression was performed by small interference oligonucleotide transfection. Western blot analysis was used to detect changes in the expression of the IRAK1 and TRAF6 proteins. The differentiation of DPCs was induced by osteogenic medium. I-DPCs had a higher level of human telomerase reverse transcriptase gene than the parental DPCs. Up-regulation of miR-146a expression and an increase in migration was induced by LPS treatment of DPCs and I-DPCs. Exogenous miR-146a expression increased the migration of DPCs and I-DPCs and down-regulated the expression of IRAK1 and TRAF6. Knockdown of IRAK1 and/or TRAF6 increased the migration of DPCs. The results suggested that LPS is able to increase the migration of DPCs by modulating the miR-146a-TRAF6/IRAK1 regulatory cascade. Copyright © 2012 American Association of Endodontists. All rights reserved.

  16. Up-regulated expression of l-caldesmon associated with malignancy of colorectal cancer

    Kim, Kyung-Hee; Kim, Byung Chang; Yoo, Byong Chul; Yeo, Seung-Gu; Kim, Won Ki; Kim, Dae Yong; Yeo, Hyun Yang; Hong, Jun Pyu; Chang, Hee Jin; Park, Ji Won; Kim, Sun Young

    2012-01-01

    Caldesmon (CaD), a major actin-associated protein, is found in smooth muscle and non-muscle cells. Smooth muscle caldesmon, h-CaD, is a multifunctional protein, and non-muscle cell caldesmon, l-CaD, plays a role in cytoskeletal architecture and dynamics. h-CaD is thought to be an useful marker for smooth muscle tumors, but the role(s) of l-CaD has not been examined in tumors. Primary colon cancer and liver metastasis tissues were obtained from colon cancer patients. Prior to chemoradiotherapy (CRT), normal and cancerous tissues were obtained from rectal cancer patients. Whole-tissue protein extracts were analyzed by 2-DE-based proteomics. Expression and phosphorylation level of main cellular signaling proteins were determined by western blot analysis. Cell proliferation after CaD siRNA transfection was monitored by MTT assay. The expression level of l-CaD was significantly increased in primary colon cancer and liver metastasis tissues compared to the level in the corresponding normal tissues. In cancerous tissues obtained from the patients showing poor response to CRT (Dworak grade 4), the expression of l-CaD was increased compared to that of good response group (Dworak grade 1). In line with, l-CaD positive human colon cancer cell lines were more resistant to 5-fluorouracil (5-FU) and radiation treatment compared to l-CaD negative cell lines. Artificial suppression of l-CaD increased susceptibility of colon cancer cells to 5-FU, and caused an increase of p21 and c-PARP, and a decrease of NF-kB and p-mTOR expression. Up-regulated expression of l-CaD may have a role for increasing metastatic property and decreasing CRT susceptibility in colorectal cancer cells

  17. Up-regulation of Hsp72 and keratin16 mediates wound healing in streptozotocin diabetic rats

    Rasha R. Ahmed

    2015-01-01

    Full Text Available BACKGROUND: Impaired wound healing is a complication of diabetes and a serious problem in clinical practice. We previously found that whey protein (WP was able to regulate wound healing normally in streptozotocin (STZ-dia-betic models. This subsequent study was designed to assess the effect of WP on heat shock protein-72 (Hsp72 and keratin16 (Krt16 expression during wound healing in diabetic rats. METHODS: WP at a dosage of 100 mg/kg of body weight was orally administered daily to wounded normal and STZ-diabetic rats for 8 days. RESULTS: At day 4, the WP-treated diabetic wound was significantly reduced compared to that in the corresponding control. Diabetic wounded rats developed severe inflammatory infiltration and moderate capillary dilatation and regeneration. Treated rats had mild necrotic formation, moderate infiltration, moderate to severe capillary dilatation and regeneration, in addition to moderate epidermal formation. Hsp72 and Krt16 densities showed low and dense activity in diabetic wounded and diabetic wounded treated groups, respectively. At day 8, WP-treatment of diabetic wounded animals revealed great amelioration with complete recovery and closure of the wound. Reactivity of Hsp72 and Krt16 was reversed, showing dense and low, or medium and low, activity in the diabetic wounded and diabetic wounded treated groups, respectively. Hsp72 expression in the pancreas was found to show dense reactivity with WP-treated diabetic wound rats. CONCLUSION: This data provides evidence for the potential impact of WP in the up-regulation of Hsp72 and Krt16 in T1D, resulting in an improved wound healing process in diabetic models.

  18. Up-regulation of Toll-like receptors 2, 3 and 4 in allergic rhinitis

    Uddman Rolf

    2005-09-01

    Full Text Available Abstract Background Toll-like receptors enable the host to recognize a large number of pathogen-associated molecular patterns such as bacterial lipopolysaccharide, viral RNA, CpG-containing DNA and flagellin. Toll-like receptors have also been shown to play a pivotal role in both innate and adaptive immune responses. The role of Toll-like receptors as a primary part of our microbe defense system has been shown in several studies, but their possible function as mediators in allergy and asthma remains to be established. The present study was designed to examine the expression of Toll-like receptors 2, 3 and 4 in the nasal mucosa of patients with intermittent allergic rhinitis, focusing on changes induced by exposure to pollen. Methods 27 healthy controls and 42 patients with seasonal allergic rhinitis volunteered for the study. Nasal biopsies were obtained before and during pollen season as well as before and after allergen challenge. The seasonal material was used for mRNA quantification of Toll-like receptors 2, 3 and 4 with real-time polymerase chain reaction, whereas specimens achieved in conjunction with allergen challenge were used for immunohistochemical localization and quantification of corresponding proteins. Results mRNA and protein representing Toll-like receptors 2, 3 and 4 could be demonstrated in all specimens. An increase in protein expression for all three receptors could be seen following allergen challenge, whereas a significant increase of mRNA only could be obtained for Toll-like receptor 3 during pollen season. Conclusion The up-regulation of Toll-like receptors 2, 3 and 4 in the nasal mucosa of patients with symptomatic allergic rhinitis supports the idea of a role for Toll-like receptors in allergic airway inflammation.

  19. Expression of proto-oncogene KIT is up-regulated in subset of human meningiomas

    Saini Masum

    2012-06-01

    Full Text Available Abstract Background KIT is a proto-oncogene involved in diverse neoplastic processes. Aberrant kinase activity of the KIT receptor has been targeted by tyrosine kinase inhibitor (TKI therapy in different neoplasias. In all the earlier studies, KIT expression was reported to be absent in meningiomas. However, we observed KIT mRNA expression in some meningioma cases. This prompted us to undertake its detailed analyses in meningioma tissues resected during 2008–2009. Methods Tumor tissues and matched peripheral blood samples collected from meningioma patients were used for detailed molecular analyses. KIT expression was ascertained immunohistochemically and validated by immunoblotting. KIT and KITLG transcript levels were discerned by reverse transcription quantitative real-time PCR (RT-qPCR. Similarly, KIT amplification and allele loss were assessed by quantitative real-time (qPCR and validated by fluorescence in situ hybridization (FISH on the neoplastic tissues. Possible alterations of the gene at the nucleotide level were analyzed by sequencing. Results Contrary to earlier reports, KIT expression, was detected immunohistochemically in 20.6% meningioma cases (n = 34. Receptor (KIT and ligand (KITLG transcripts monitored by RT-qPCR were found to co-express (p = 0.048 in most of the KIT immunopositive tumors. 1/7 KIT positive meningiomas showed allele loss corroborated by reduced FISH signal in the corresponding neoplastic tissue. Sequence analysis of KIT showed M541L substitution in exon 10, in one of the immunopositive cases. However, its biological consequence remains to be uncovered. Conclusions This study clearly demonstrates KIT over-expression in the human meningiomas. The data suggest that up-regulated KIT transcription (p  0.05, is a likely mechanism responsible for altered KIT expression. Thus, KIT is a potential candidate for detailed investigation in the context of meningioma pathogenesis.

  20. Expression of proto-oncogene KIT is up-regulated in subset of human meningiomas

    Saini, Masum; Jha, Ajaya Nand; Abrari, Andleeb; Ali, Sher

    2012-01-01

    KIT is a proto-oncogene involved in diverse neoplastic processes. Aberrant kinase activity of the KIT receptor has been targeted by tyrosine kinase inhibitor (TKI) therapy in different neoplasias. In all the earlier studies, KIT expression was reported to be absent in meningiomas. However, we observed KIT mRNA expression in some meningioma cases. This prompted us to undertake its detailed analyses in meningioma tissues resected during 2008–2009. Tumor tissues and matched peripheral blood samples collected from meningioma patients were used for detailed molecular analyses. KIT expression was ascertained immunohistochemically and validated by immunoblotting. KIT and KITLG transcript levels were discerned by reverse transcription quantitative real-time PCR (RT-qPCR). Similarly, KIT amplification and allele loss were assessed by quantitative real-time (qPCR) and validated by fluorescence in situ hybridization (FISH) on the neoplastic tissues. Possible alterations of the gene at the nucleotide level were analyzed by sequencing. Contrary to earlier reports, KIT expression, was detected immunohistochemically in 20.6% meningioma cases (n = 34). Receptor (KIT) and ligand (KITLG) transcripts monitored by RT-qPCR were found to co-express (p = 0.048) in most of the KIT immunopositive tumors. 1/7 KIT positive meningiomas showed allele loss corroborated by reduced FISH signal in the corresponding neoplastic tissue. Sequence analysis of KIT showed M541L substitution in exon 10, in one of the immunopositive cases. However, its biological consequence remains to be uncovered. This study clearly demonstrates KIT over-expression in the human meningiomas. The data suggest that up-regulated KIT transcription (p < 0.001), instead of gene amplification (p > 0.05), is a likely mechanism responsible for altered KIT expression. Thus, KIT is a potential candidate for detailed investigation in the context of meningioma pathogenesis

  1. Suspension state increases reattachment of breast cancer cells by up-regulating lamin A/C.

    Zhang, Xiaomei; Lv, Yonggang

    2017-12-01

    Extravasation is a rate-limiting step of tumor metastasis, for which adhesion to endothelium of circulating tumor cells (CTCs) is the prerequisite. The suspension state of CTCs undergoing detachment from primary tumor is a persistent biomechanical cue, which potentially regulates the biophysical characteristics and cellular behaviors of tumor cells. In this study, breast tumor cells MDA-MB-231 in suspension culture condition were used to investigate the effect of suspension state on reattachment of CTCs. Our study demonstrated that suspension state significantly increased the adhesion ability of breast tumor cells. In addition, suspension state markedly promoted the formation of stress fibers and focal adhesions and reduced the motility in reattached breast cancer cells. Moreover, lamin A/C was reversibly accumulated at posttranscriptional level under suspension state, improving the cell stiffness of reattached breast cancer cells. Disruption of actin cytoskeleton by cytochalasin D caused lamin A/C accumulation. Conversely, decreasing actomyosin contraction by ROCK inhibitor Y27632 reduced lamin A/C level. Knocking down lamin A/C weakened the suspension-induced increase of adhesion, and also abolished the suspension-induced decrease of motility and increase of stress fibers and focal adhesion in reattaching tumor cells, suggesting a crucial role of lamin A/C. In conclusion, it was demonstrated that suspension state promoted the reattachment of breast tumor cells by up-regulating lamin A/C via cytoskeleton disruption. These findings highlight the important role of suspension state for tumor cells in tumor metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Intermittent fasting up-regulates Fsp27/Cidec gene expression in white adipose tissue.

    Karbowska, Joanna; Kochan, Zdzislaw

    2012-03-01

    Fat-specific protein of 27 kDa (FSP27) is a novel lipid droplet protein that promotes triacylglycerol storage in white adipose tissue (WAT). The regulation of the Fsp27 gene expression in WAT is largely unknown. We investigated the nutritional regulation of FSP27 in WAT. The effects of intermittent fasting (48 d, eight cycles of 3-d fasting and 3-d refeeding), caloric restriction (48 d), fasting-refeeding (3-d fasting and 3-d refeeding), and fasting (3 d) on mRNA expression of FSP27, peroxisome proliferator-activated receptor γ (PPARγ2), CCAAT/enhancer binding protein α (C/EBPα), and M isoform of carnitine palmitoyltransferase 1 (a positive control for PPARγ activation) in epididymal WAT and on serum triacylglycerol, insulin, and leptin levels were determined in Wistar rats. We also determined the effects of PPARγ activation by rosiglitazone or pioglitazone on FSP27 mRNA levels in primary rat adipocytes. Long-term intermittent fasting, in contrast to other dietary manipulations, significantly up-regulated Fsp27 gene expression in WAT. Moreover, in rats subjected to intermittent fasting, serum insulin levels were elevated; PPARγ2 and C/EBPα mRNA expression in WAT was increased, and there was a positive correlation of Fsp27 gene expression with PPARγ2 and C/EBPα mRNA levels. FSP27 mRNA expression was also increased in adipocytes treated with PPARγ agonists. Our study demonstrates that the transcription of the Fsp27 gene in adipose tissue may be induced in response to nutritional stimuli. Furthermore, PPARγ2, C/EBPα, and insulin may be involved in the nutritional regulation of FSP27. Thus intermittent fasting, despite lower caloric intake, may promote triacylglycerol deposition in WAT by increasing the expression of genes involved in lipid storage, such as Fsp27. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Comparison of cardioprotective effects using salvianolic acid B and benazepril for the treatment of chronic myocardial infarction in rats.

    He, Haibo; Shi, Mengqiong; Yang, Xianzhe; Zeng, Xiaowei; Wu, Limao; Li, Lianda

    2008-09-01

    The aim of this study was to compare the cardioprotective effects of salvianolic acid B (Sal B) and the angiotension-converting enzyme inhibitor, benazepril, in rats with chronic myocardial infarction (MI) that resulted from a coronary artery ligation for 4 weeks. The rats were divided into four groups: those undergoing a sham operation; a MI group; a MI+SalB group (100 mg/kg by a gavage, once a day for 4 weeks); a MI+benazepril group (10 mg/kg by a gavage, once a day for 4 weeks). The following parameters were measured: echocardiographic, hemodynamic and hemorheological changes, angiogenesis, infarct size and cardiac remodeling and the messenger ribonucleic acid (mRNA) of vascular endothelium growth factor (VEGF). Rats treated with SalB or benazepril manifested the following: (1) marked improvements in echocardiographic, hemodynamic and hemorheological parameters; (2) significant reduction of infarct size; (3) significantly attenuated heart, kidney and lung hypertrophies, left ventricular (LV) dilatation and fibrosis. The unique effects of SalB were angiogenesis and augmented VEGF expression in the border and remote noninfarcted left ventricular area. These results suggest that both SalB and benazepril exerted beneficial cardioprotective effects in our experimental system, but that the modality of Sal B was different from that of benazepril. The additional beneficial effects of Sal B relative to benazpril, augmenting VEGF expression and promoting angiogenesis, may result in improved myocardial microcirculation.

  4. Global gene expression in muscle from fasted/refed trout reveals up-regulation of genes promoting myofibre hypertrophy but not myofibre production.

    Rescan, Pierre-Yves; Le Cam, Aurelie; Rallière, Cécile; Montfort, Jérôme

    2017-06-07

    Compensatory growth is a phase of rapid growth, greater than the growth rate of control animals, that occurs after a period of growth-stunting conditions. Fish show a capacity for compensatory growth after alleviation of dietary restriction, but the underlying cellular mechanisms are unknown. To learn more about the contribution of genes regulating hypertrophy (an increase in muscle fibre size) and hyperplasia (the generation of new muscle fibres) in the compensatory muscle growth response in fish, we used high-density microarray analysis to investigate the global gene expression in muscle of trout during a fasting-refeeding schedule and in muscle of control-fed trout displaying normal growth. The compensatory muscle growth signature, as defined by genes up-regulated in muscles of refed trout compared with control-fed trout, showed enrichment in functional categories related to protein biosynthesis and maturation, such as RNA processing, ribonucleoprotein complex biogenesis, ribosome biogenesis, translation and protein folding. This signature was also enriched in chromatin-remodelling factors of the protein arginine N-methyl transferase family. Unexpectedly, functional categories related to cell division and DNA replication were not inferred from the molecular signature of compensatory muscle growth, and this signature contained virtually none of the genes previously reported to be up-regulated in hyperplastic growth zones of the late trout embryo myotome and to potentially be involved in production of new myofibres, notably genes encoding myogenic regulatory factors, transmembrane receptors essential for myoblast fusion or myofibrillar proteins predominant in nascent myofibres. Genes promoting myofibre growth, but not myofibre formation, were up-regulated in muscles of refed trout compared with continually fed trout. This suggests that a compensatory muscle growth response, resulting from the stimulation of hypertrophy but not the stimulation of hyperplasia

  5. Olfactory discrimination training up-regulates and reorganizes expression of microRNAs in adult mouse hippocampus.

    Smalheiser, Neil R; Lugli, Giovanni; Lenon, Angela L; Davis, John M; Torvik, Vetle I; Larson, John

    2010-02-26

    Adult male mice (strain C57Bl/6J) were trained to execute nose-poke responses for water reinforcement; then they were randomly assigned to either of two groups: olfactory discrimination training (exposed to two odours with reward contingent upon correctly responding to one odour) or pseudo-training (exposed to two odours with reward not contingent upon response). These were run in yoked fashion and killed when the discrimination-trained mouse reached a learning criterion of 70% correct responses in 20 trials, occurring after three sessions (a total of approximately 40 min of training). The hippocampus was dissected bilaterally from each mouse (N = 7 in each group) and profiling of 585 miRNAs (microRNAs) was carried out using multiplex RT-PCR (reverse transcription-PCR) plates. A significant global up-regulation of miRNA expression was observed in the discrimination training versus pseudo-training comparison; when tested individually, 29 miRNAs achieved significance at P = 0.05. miR-10a showed a 2.7-fold increase with training, and is predicted to target several learning-related mRNAs including BDNF (brain-derived neurotrophic factor), CAMK2b (calcium/calmodulin-dependent protein kinase IIβ), CREB1 (cAMP-response-element-binding protein 1) and ELAVL2 [ELAV (embryonic lethal, abnormal vision, Drosophila)-like; Hu B]. Analysis of miRNA pairwise correlations revealed the existence of several miRNA co-expression modules that were specific to the training group. These in vivo results indicate that significant, dynamic and co-ordinated changes in miRNA expression accompany early stages of learning.

  6. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus.

    Bukiya, Anna N; Durdagi, Serdar; Noskov, Sergei; Rosenhouse-Dantsker, Avia

    2017-04-14

    Hypercholesterolemia is a well known risk factor for the development of neurodegenerative disease. However, the underlying mechanisms are mostly unknown. In recent years, it has become increasingly evident that cholesterol-driven effects on physiology and pathophysiology derive from its ability to alter the function of a variety of membrane proteins including ion channels. Yet, the effect of cholesterol on G protein-gated inwardly rectifying potassium (GIRK) channels expressed in the brain is unknown. GIRK channels mediate the actions of inhibitory brain neurotransmitters. As a result, loss of GIRK function can enhance neuron excitability, whereas gain of GIRK function can reduce neuronal activity. Here we show that in rats on a high-cholesterol diet, cholesterol levels in hippocampal neurons are increased. We also demonstrate that cholesterol plays a critical role in modulating neuronal GIRK currents. Specifically, cholesterol enrichment of rat hippocampal neurons resulted in enhanced channel activity. In accordance, elevated currents upon cholesterol enrichment were also observed in Xenopus oocytes expressing GIRK2 channels, the primary GIRK subunit expressed in the brain. Furthermore, using planar lipid bilayers, we show that although cholesterol did not affect the unitary conductance of GIRK2, it significantly enhanced the frequency of channel openings. Last, combining computational and functional approaches, we identified two putative cholesterol-binding sites in the transmembrane domain of GIRK2. These findings establish that cholesterol plays a critical role in modulating GIRK activity in the brain. Because up-regulation of GIRK function can reduce neuronal activity, our findings may lead to novel approaches for prevention and therapy of cholesterol-driven neurodegenerative disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Olfactory Discrimination Training Up-Regulates and Reorganizes Expression of MicroRNAs in Adult Mouse Hippocampus

    Neil R Smalheiser

    2010-01-01

    Full Text Available Adult male mice (strain C57Bl/6J were trained to execute nose-poke responses for water reinforcement; then they were randomly assigned to either of two groups: Olfactory discrimination training (exposed to two odours with reward contingent upon correctly responding to one odour or pseudo-training (exposed to two odours with reward not contingent upon response. These were run in yoked fashion and killed when the discrimination-trained mouse reached a learning criterion of 70% correct responses in 20 trials, occurring after three sessions (a total of ~40 min of training. The hippocampus was dissected bilaterally from each mouse (N=7 in each group and profiling of 585 miRNAs (microRNAs was carried out using multiplex RT–PCR (reverse transcription–PCR plates. A significant global up-regulation of miRNA expression was observed in the discrimination training versus pseudo-training comparison; when tested individually, 29 miRNAs achieved significance at P=0.05. miR-10a showed a 2.7-fold increase with training, and is predicted to target several learning-related mRNAs including BDNF (brain-derived neurotrophic factor, CAMK2b (calcium/calmodulin-dependent protein kinase IIβ, CREB1 (cAMP-response-element-binding protein 1 and ELAVL2 [ELAV (embryonic lethal, abnormal vision, Drosophila-like; Hu B]. Analysis of miRNA pairwise correlations revealed the existence of several miRNA co-expression modules that were specific to the training group. These in vivo results indicate that significant, dynamic and co-ordinated changes in miRNA expression accompany early stages of learning.

  8. Six1 induces protein synthesis signaling expression in duck myoblasts mainly via up-regulation of mTOR

    Haohan Wang

    2016-03-01

    Full Text Available Abstract As a critical transcription factor, Six1 plays an important role in the regulation of myogenesis and muscle development. However, little is known about its regulatory mechanism associated with muscular protein synthesis. The objective of this study was to investigate the effects of overexpression ofSix1 on the expression of key protein metabolism-related genes in duck myoblasts. Through an experimental model where duck myoblasts were transfected with a pEGFP-duSix1 construct, we found that overexpression of duckSix1 could enhance cell proliferation activity and increase mRNA expression levels of key genes involved in the PI3K/Akt/mTOR signaling pathway, while the expression of FOXO1, MuRF1and MAFbx was not significantly altered, indicating thatSix1 could promote protein synthesis in myoblasts through up-regulating the expression of several related genes. Additionally, in duck myoblasts treated with LY294002 and rapamycin, the specific inhibitors ofPI3K and mTOR, respectively, the overexpression of Six1 could significantly ameliorate inhibitive effects of these inhibitors on protein synthesis. Especially, the mRNA expression levels of mTOR and S6K1 were observed to undergo a visible change, and a significant increase in protein expression of S6K1 was seen. These data suggested that Six1plays an important role in protein synthesis, which may be mainly due to activation of the mTOR signaling pathway.

  9. Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2.

    Huang, Ming-De; Chen, Wen-Ming; Qi, Fu-Zhen; Sun, Ming; Xu, Tong-Peng; Ma, Pei; Shu, Yong-Qian

    2015-09-04

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, and the biology of this cancer remains poorly understood. Recent evidence indicates that long non-coding RNAs (lncRNAs) are found to be dysregulated in a variety of cancers, including HCC. Taurine Up-regulated Gene 1 (TUG1), a 7.1-kb lncRNA, recruiting and binding to polycomb repressive complex 2 (PRC2), is found to be disregulated in non-small cell lung carcinoma (NSCLC) and esophageal squamous cell carcinoma (ESCC). However, its clinical significance and potential role in HCC remain unclear. In this study, expression of TUG1 was analyzed in 77 HCC tissues and matched normal tissues by using quantitative polymerase chain reaction (qPCR). TUG1 expression was up-regulated in HCC tissues and the higher expression of TUG1 was significantly correlated with tumor size and Barcelona Clinic Liver Cancer (BCLC) stage. Moreover, silencing of TUG1 expression inhibited HCC cell proliferation, colony formation, tumorigenicity and induced apoptosis in HCC cell lines. We also found that TUG1 overexpression was induced by nuclear transcription factor SP1 and TUG1 could epigeneticly repress Kruppel-like factor 2 (KLF2) transcription in HCC cells by binding with PRC2 and recruiting it to KLF2 promoter region. Our results suggest that lncRNA TUG1, as a growth regulator, may serve as a new diagnostic biomarker and therapy target for HCC.

  10. Andrographolide attenuates LPS-stimulated up-regulation of C-C and C-X-C motif chemokines in rodent cortex and primary astrocytes.

    Wong, Siew Ying; Tan, Michelle G K; Banks, William A; Wong, W S Fred; Wong, Peter T-H; Lai, Mitchell K P

    2016-02-09

    Andrographolide is the major bioactive compound isolated from Andrographis paniculata, a native South Asian herb used medicinally for its anti-inflammatory properties. In this study, we aimed to assess andrographolide's potential utility as an anti-neuroinflammatory therapeutic. The effects of andrographolide on lipopolysaccharide (LPS)-induced chemokine up-regulation both in mouse cortex and in cultured primary astrocytes were measured, including cytokine profiling, gene expression, and, in cultured astrocytes, activation of putative signaling regulators. Orally administered andrographolide significantly attenuated mouse cortical chemokine levels from the C-C and C-X-C subfamilies. Similarly, andrographolide abrogated a range of LPS-induced chemokines as well as tumor necrosis factor (TNF)-α in astrocytes. In astrocytes, the inhibitory actions of andrographolide on chemokine and TNF-α up-regulation appeared to be mediated by nuclear factor-κB (NF-κB) or c-Jun N-terminal kinase (JNK) activation. These results suggest that andrographolide may be useful as a therapeutic for neuroinflammatory diseases, especially those characterized by chemokine dysregulation.

  11. Up-Regulation of Claudin-6 in the Distal Lung Impacts Secondhand Smoke-Induced Inflammation

    Joshua B. Lewis

    2016-10-01

    Full Text Available It has long been understood that increased epithelial permeability contributes to inflammation observed in many respiratory diseases. Recently, evidence has revealed that environmental exposure to noxious material such as cigarette smoke reduces tight junction barrier integrity, thus enhancing inflammatory conditions. Claudin-6 (Cldn6 is a tetraspanin transmembrane protein found within the tight junctional complex and is implicated in maintaining lung epithelial barriers. To test the hypothesis that increased Cldn6 ameliorates inflammation at the respiratory barrier, we utilized the Tet-On inducible transgenic system to conditionally over-express Clnd6 in the distal lung. Cldn6 transgenic (TG and control mice were continuously provided doxycycline from postnatal day (PN 30 until euthanasia date at PN90. A subset of Cldn6 TG and control mice were also subjected to daily secondhand tobacco smoke (SHS via a nose only inhalation system from PN30-90 and compared to room air (RA controls. Animals were euthanized on PN90 and lungs were harvested for histological and molecular characterization. Bronchoalveolar lavage fluid (BALF was procured for the assessment of inflammatory cells and molecules. Quantitative RT-PCR and immunoblotting revealed increased Cldn6 expression in TG vs. control animals and SHS decreased Cldn6 expression regardless of genetic up-regulation. Histological evaluations revealed no adverse pulmonary remodeling via Hematoxylin and Eosin (H&E staining or any qualitative alterations in the abundance of type II pneumocytes or proximal non-ciliated epithelial cells via staining for cell specific propeptide of Surfactant Protein-C (proSP-C or Club Cell Secretory Protein (CCSP, respectively. Immunoblotting and qRT-PCR confirmed the differential expression of Cldn6 and the pro-inflammatory cytokines TNF-α and IL-1β. As a general theme, inflammation induced by SHS exposure was influenced by the availability of Cldn6. These data reveal

  12. Cardioprotective effects of cocoa: clinical evidence from randomized clinical intervention trials in humans.

    Arranz, Sara; Valderas-Martinez, Palmira; Chiva-Blanch, Gemma; Casas, Rosa; Urpi-Sarda, Mireia; Lamuela-Raventos, Rosa M; Estruch, Ramon

    2013-06-01

    Cocoa is an important source of polyphenols, which comprise 12-18% of its total dry weight. The major phenolic compounds in cocoa and cocoa products are mainly flavonoids such as epicatechin, catechin, and proanthocyanidins. These products contain higher amounts of flavonoids than other polyphenol-rich foods. However, the bioavailability of these compounds depends on other food constituents and their interactions with the food matrix. Many epidemiological and clinical intervention trials have concluded that the ingestion of flavonoids reduces the risk factors of developing cardiovascular disease. This review summarizes the new findings regarding the effects of cocoa and chocolate consumption on cardiovascular risk factors. The mechanisms involved in the cardioprotective effects of cocoa flavonoids include reduction of oxidative stress, inhibition of low-density lipoproteins oxidation and platelet aggregation, vasodilatation of blood vessels, inhibition of the adherence of monocytes to vascular endothelium, promotion of fibrinolysis, and immunomodulatory and anti-inflammatory activity. Scientific evidence supports a cause and effect relationship between consumption of cocoa flavonoids and the maintenance of normal endothelium-dependent vasodilation, which contributes to normal blood flow. However, larger randomized trials are required to definitively establish the impact of cocoa and cocoa products consumption on hard cardiovascular outcomes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cardioprotective effects of early and late aerobic exercise training in experimental pulmonary arterial hypertension.

    Moreira-Gonçalves, Daniel; Ferreira, Rita; Fonseca, Hélder; Padrão, Ana Isabel; Moreno, Nuno; Silva, Ana Filipa; Vasques-Nóvoa, Francisco; Gonçalves, Nádia; Vieira, Sara; Santos, Mário; Amado, Francisco; Duarte, José Alberto; Leite-Moreira, Adelino F; Henriques-Coelho, Tiago

    2015-11-01

    Clinical studies suggest that aerobic exercise can exert beneficial effects in pulmonary arterial hypertension (PAH), but the underlying mechanisms are largely unknown. We compared the impact of early or late aerobic exercise training on right ventricular function, remodeling and survival in experimental PAH. Male Wistar rats were submitted to normal cage activity (SED), exercise training in early (EarlyEX) and in late stage (LateEX) of PAH induced by monocrotaline (MCT, 60 mg/kg). Both exercise interventions resulted in improved cardiac function despite persistent right pressure-overload, increased exercise tolerance and survival, with greater benefits in EarlyEX+MCT. This was accompanied by improvements in the markers of cardiac remodeling (SERCA2a), neurohumoral activation (lower endothelin-1, brain natriuretic peptide and preserved vascular endothelial growth factor mRNA), metabolism and mitochondrial oxidative stress in both exercise interventions. EarlyEX+MCT provided additional improvements in fibrosis, tumor necrosis factor-alpha/interleukin-10 and brain natriuretic peptide mRNA, and beta/alpha myosin heavy chain protein expression. The present study demonstrates important cardioprotective effects of aerobic exercise in experimental PAH, with greater benefits obtained when exercise training is initiated at an early stage of the disease.

  14. PTX3 is up-regulated in epithelial mammary cells during S. aureus intramammary infection in goat

    Joel Fernando Soares Filipe

    2015-07-01

    PTX3 was up-regulated in epithelial mammary cells and in milk cells after S. aureus infection, demonstrating that it represents a first line of immune defense in goat udder. No modulation was observed in macrophages, in the secretum and in the ductal epithelial cells. Further experiments are needed to elucidate the role of PTX3 in the pathogenesis of S. aureus infection.

  15. Cytisine modulates chronic voluntary ethanol consumption and ethanol-induced striatal up-regulation of ΔFosB in mice.

    Sajja, Ravi Kiran; Rahman, Shafiqur

    2013-06-01

    Chronic administration of ethanol induces persistent accumulation of ΔFosB, an important transcription factor, in the midbrain dopamine system. This process underlies the progression to addiction. Previously, we have shown that cytisine, a neuronal nicotinic acetylcholine receptor (nAChR) partial agonist, reduces various ethanol-drinking behaviors and ethanol-induced striatal dopamine function. However, the effects of cytisine on chronic ethanol drinking and ethanol-induced up-regulation of striatal ΔFosB are not known. Therefore, we examined the effects of cytisine on chronic voluntary ethanol consumption and associated striatal ΔFosB up-regulation in C57BL/6J mice using behavioral and biochemical methods. Following the chronic voluntary consumption of 15% (v/v) ethanol under a 24-h two-bottle choice intermittent access (IA; 3 sessions/week) or continuous access (CA; 24 h/d and 7 d/week) paradigm, mice received repeated intraperitoneal injections of saline or cytisine (0.5 or 3.0 mg/kg). Ethanol and water intake were monitored for 24 h post-treatment. Pretreatment with cytisine (0.5 or 1.5 mg/kg) significantly reduced ethanol consumption and preference in both paradigms at 2 h and 24 h post-treatment. The ΔFosB levels in the ventral and dorsal striatum were determined by Western blotting 18-24 h after the last point of ethanol access. In addition, cytisine (0.5 mg/kg) significantly attenuated up-regulation of ΔFosB in the ventral and dorsal striatum following chronic ethanol consumption in IA and CA paradigms. The results indicate that cytisine modulates chronic voluntary ethanol consumption and reduces ethanol-induced up-regulation of striatal ΔFosB. Further, the data suggest a critical role of nAChRs in chronic ethanol-induced neurochemical adaptations associated with ethanol addiction. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Cardioprotective effect of mumie (shilajit) on experimentally induced myocardial injury.

    Joukar, Siyavash; Najafipour, Hamid; Dabiri, Shahriar; Sheibani, Mohammad; Sharokhi, Nader

    2014-09-01

    This study assessed the effects of mumie (shilajit) pre-treatment, a traditional drug which is well known in the ancient medicine of both east and west, on cardiac performance of rats subjected to myocardial injury. Animals were divided into control, M250, and M500 (received mumie at dosages of 250 and 500 mg/kg/day, orally for 7 days, respectively) main groups each consisting of two subgroups-with and without heart injury. On the 6th and 7th days, isoproterenol (ISO) (85 mg/kg i.p.) was injected (s.c.) to half of the animal subgroups to induce myocardial damage. On the 8th day, after hemodynamic parameter recordings, hearts were removed for further evaluation. Mumie pre-treatment had no significant effects on hemodynamic and cardiac indices of normal animals. When the cardiac injury was induced, mumie maintained the ±dp/dt maximum, attenuated the serum cardiac troponin I, and reduced the severity of cardiac lesions. Despite the mild positive effects of mumie on total antioxidant capacity and lipid proxidation index, no significant difference was observed among animal groups. The findings suggest the prominent cardioprotective effect of mumie against destructive effects of ISO. It seems that other mechanisms than reinforcements of antioxidant system are involved in this beneficial effect.

  17. Removing the cells from adult bone marrow derived stem cell therapy does not eliminate cardioprotection.

    Yasin, Mohammed

    2013-04-01

    .8-fold), tumour necrosis factor receptor-1 associated protein (2.3-fold), ischaemia responsive protein-94 (1.6-fold); (iv) glycolytic protein: glyceraldehyde-3-phosphate dehydrogenase (2.3-fold); (v) mitochondrial respiratory proteins: mitochondrial aconitase (4.7-fold), voltage-dependent anion-selective channel protein-1 (VDAC-1) (2.7-fold). Regional myocardial reperfusion injury can be attenuated by intravenous administration of either BMMNC or BMS at the onset of reperfusion, which suggests adult stem cells mediate non-regenerative cardioprotection.

  18. Down-regulated miR-448 relieves spinal cord ischemia/reperfusion injury by up-regulating SIRT1

    Yun Wang

    2018-03-01

    Full Text Available MicroRNAs play a crucial role in the progression of spinal cord ischemia/reperfusion injury (SCII. The role of miR-448 and SIRT1 in SCII was investigated in this study, to provide further insights into prevention and improvement of this disorder. In this study, expressions of miR-448 and SIRT1 protein were determined by qRT-PCR and western blot, respectively. Flow cytometry was used to analyze cell apoptosis. The endogenous expression of genes was modulated by recombinant plasmids and cell transfection. Dual-luciferase reporter assay was performed to determine the interaction between miR-448 and SIRT1. The Basso, Beattie, and Bresnahan score was used to measure the hind-limb function of rat. The spinal cord ischemia reperfusion injury model of adult rats was developed by abdominal aorta clamping, and the nerve function evaluation was completed by motor deficit index score. In SCII tissues and cells treated with hypoxia, miR-448 was up-regulated while SIRT1 was down-regulated. Hypoxia treatment reduced the expression of SIRT1 through up-regulating miR-448 in nerve cells. Up-regulation of miR-448 induced by hypoxia promoted apoptosis of nerve cells through down-regulating SIRT1. Down-regulated miR-448 improved neurological function and hind-limb motor function of rats with SCII by up-regulating SIRT1. Down-regulated miR-448 inhibited apoptosis of nerve cells and improved neurological function by up-regulating SIRT1, which contributes to relieving SCII.

  19. Trigeminal nerve injury-induced thrombospondin-4 up-regulation contributes to orofacial neuropathic pain states in a rat model.

    Li, K-W; Kim, D-S; Zaucke, F; Luo, Z D

    2014-04-01

    Injury to the trigeminal nerve often results in the development of chronic pain states including tactile allodynia, or hypersensitivity to light touch, in orofacial area, but its underlying mechanisms are poorly understood. Peripheral nerve injury has been shown to cause up-regulation of thrombospondin-4 (TSP4) in dorsal spinal cord that correlates with neuropathic pain development. In this study, we examined whether injury-induced TSP4 is critical in mediating orofacial pain development in a rat model of chronic constriction injury to the infraorbital nerve. Orofacial sensitivity to mechanical stimulation was examined in a unilateral infraorbital nerve ligation rat model. The levels of TSP4 in trigeminal ganglia and associated spinal subnucleus caudalis and C1/C2 spinal cord (Vc/C2) from injured rats were examined at time points correlating with the initiation and peak orofacial hypersensitivity. TSP4 antisense and mismatch oligodeoxynucleotides were intrathecally injected into injured rats to see if antisense oligodeoxynucleotide treatment could reverse injury-induced TSP4 up-regulation and orofacial behavioural hypersensitivity. Our data indicated that trigeminal nerve injury induced TSP4 up-regulation in Vc/C2 at a time point correlated with orofacial tactile allodynia. In addition, intrathecal treatment with TSP4 antisense, but not mismatch, oligodeoxynucleotides blocked both injury-induced TSP4 up-regulation in Vc/C2 and behavioural hypersensitivity. Our data support that infraorbital nerve injury leads to TSP4 up-regulation in trigeminal spinal complex that contributes to orofacial neuropathic pain states. Blocking this pathway may provide an alternative approach in management of orofacial neuropathic pain states. © 2013 European Pain Federation - EFIC®

  20. SN-38 Acts as a Radiosensitizer for Colorectal Cancer by Inhibiting the Radiation-induced Up-regulation of HIF-1α.

    Okuno, Takayuki; Kawai, Kazushige; Hata, Keisuke; Murono, Koji; Emoto, Shigenobu; Kaneko, Manabu; Sasaki, Kazuhito; Nishikawa, Takeshi; Tanaka, Toshiaki; Nozawa, Hiroaki

    2018-06-01

    Hypoxia offers resistance to therapy in human solid tumors. The aim of the study was to investigate whether SN-38, the active metabolite of irinotecan, acts as a radiosensitizer through inhibition of hypoxia-inducible factor (HIF)-1α in the human colorectal cancer (CRC) cells. HT29 and SW480 cells were cultured with SN-38 (0-4 μM) immediately after irradiation (0-8 Gy). HIF-1α expression was assessed using flow-cytometry and western blot analysis. Cell proliferation was evaluated by the calcein assay. Apoptosis and cell cycle were determined by flow-cytometry. Radiation up-regulated HIF-1α, and SN-38 inhibited the radiation-induced HIF-1α. The combination of radiation and SN-38 inhibited cell proliferation more than radiation alone; treatment with SN-38 after radiation exposure did not increase the number of apoptotic cells, whereas, it enhanced the S and G 2 /M cell-cycle arrest and decreased the population of cells in G 1 Conclusion: SN-38 inhibits the radiation-induced up-regulation of HIF-1α and acts as a radiosensitizer by inducing cell-cycle arrest in CRC cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Caspase 1 activation is protective against hepatocyte cell death by up-regulating beclin 1 protein and mitochondrial autophagy in the setting of redox stress.

    Sun, Qian; Gao, Wentao; Loughran, Patricia; Shapiro, Rick; Fan, Jie; Billiar, Timothy R; Scott, Melanie J

    2013-05-31

    Caspase 1 activation can be induced by oxidative stress, which leads to the release of the proinflammatory cytokines IL1β and IL18 in myeloid cells and a potentially damaging inflammatory response. However, little is known about the role of caspase 1 in non-immune cells, such as hepatocytes, that express and activate the inflammasome but do not produce a significant amount of IL1β/IL18. Here we demonstrate that caspase 1 activation protects against cell death after redox stress induced by hypoxia/reoxygenation in hepatocytes. Mechanistically, we show that caspase 1 reduces mitochondrial respiration and reactive oxygen species by increasing mitochondrial autophagy and subsequent clearance of mitochondria in hepatocytes after hypoxia/reoxygenation. Caspase 1 increases autophagic flux through up-regulating autophagy initiator beclin 1 during redox stress and is an important cell survival factor in hepatocytes. We find that during hemorrhagic shock with resuscitation, an in vivo mouse model associated with severe hepatic redox stress, caspase 1 activation is also protective against liver injury and excessive oxidative stress through the up-regulation of beclin 1. Our findings suggest an alternative role for caspase 1 activation in promoting adaptive responses to oxidative stress and, more specifically, in limiting reactive oxygen species production and damage in cells and tissues where IL1β/IL18 are not highly expressed.

  2. Caspase 1 Activation Is Protective against Hepatocyte Cell Death by Up-regulating Beclin 1 Protein and Mitochondrial Autophagy in the Setting of Redox Stress*

    Sun, Qian; Gao, Wentao; Loughran, Patricia; Shapiro, Rick; Fan, Jie; Billiar, Timothy R.; Scott, Melanie J.

    2013-01-01

    Caspase 1 activation can be induced by oxidative stress, which leads to the release of the proinflammatory cytokines IL1β and IL18 in myeloid cells and a potentially damaging inflammatory response. However, little is known about the role of caspase 1 in non-immune cells, such as hepatocytes, that express and activate the inflammasome but do not produce a significant amount of IL1β/IL18. Here we demonstrate that caspase 1 activation protects against cell death after redox stress induced by hypoxia/reoxygenation in hepatocytes. Mechanistically, we show that caspase 1 reduces mitochondrial respiration and reactive oxygen species by increasing mitochondrial autophagy and subsequent clearance of mitochondria in hepatocytes after hypoxia/reoxygenation. Caspase 1 increases autophagic flux through up-regulating autophagy initiator beclin 1 during redox stress and is an important cell survival factor in hepatocytes. We find that during hemorrhagic shock with resuscitation, an in vivo mouse model associated with severe hepatic redox stress, caspase 1 activation is also protective against liver injury and excessive oxidative stress through the up-regulation of beclin 1. Our findings suggest an alternative role for caspase 1 activation in promoting adaptive responses to oxidative stress and, more specifically, in limiting reactive oxygen species production and damage in cells and tissues where IL1β/IL18 are not highly expressed. PMID:23589298

  3. Up-regulation of tumor suppressor genes by exogenous dhC16-Cer contributes to its anti-cancer activity in primary effusion lymphoma.

    Cao, Yueyu; Qiao, Jing; Lin, Zhen; Zabaleta, Jovanny; Dai, Lu; Qin, Zhiqiang

    2017-02-28

    Primary effusion lymphoma (PEL) is a rare and highly aggressive B-cell malignancy with Kaposi's sarcoma-associated herpesvirus (KSHV) infection, while lack of effective therapies. Our recent data indicated that targeting the sphingolipid metabolism by either sphingosine kinase inhibitor or exogenous ceramide species induces PEL cell apoptosis and suppresses tumor progression in vivo. However, the underlying mechanisms for these exogenous ceramides "killing" PEL cells remain largely unknown. Based on the microarray analysis, we found that exogenous dhC16-Cer treatment affected the expression of many cellular genes with important functions within PEL cells such as regulation of cell cycle, cell survival/proliferation, and apoptosis/anti-apoptosis. Interestingly, we found that a subset of tumor suppressor genes (TSGs) was up-regulated from dhC16-Cer treated PEL cells. One of these elevated TSGs, Thrombospondin-1 (THBS1) was required for dhC16-Cer induced PEL cell cycle arrest. Moreover, dhC16-Cer up-regulation of THBS1 was through the suppression of multiple KSHV microRNAs expression. Our data demonstrate that exogenous ceramides display anti-cancer activities for PEL through regulation of both host and oncogenic virus factors.

  4. Platelet rich plasma promotes skeletal muscle cell migration in association with up-regulation of FAK, paxillin, and F-Actin formation.

    Tsai, Wen-Chung; Yu, Tung-Yang; Lin, Li-Ping; Lin, Mioa-Sui; Tsai, Ting-Ta; Pang, Jong-Hwei S

    2017-11-01

    Platelet rich plasma (PRP) contains various cytokines and growth factors which may be beneficial to the healing process of injured muscle. The aim of this study was to investigate the effect and molecular mechanism of PRP on migration of skeletal muscle cells. Skeletal muscle cells intrinsic to Sprague-Dawley rats were treated with PRP. The cell migration was evaluated by transwell filter migration assay and electric cell-substrate impedance sensing. The spreading of cells was evaluated microscopically. The formation of filamentous actin (F-actin) cytoskeleton was assessed by immunofluorescence staining. The protein expressions of paxillin and focal adhesion kinase (FAK) were assessed by Western blot analysis. Transfection of paxillin small-interfering RNA (siRNAs) to muscle cells was performed to validate the role of paxillin in PRP-mediated promotion of cell migration. Dose-dependently PRP promotes migration of and spreading and muscle cells. Protein expressions of paxillin and FAK were up-regulated dose-dependently. F-actin formation was also enhanced by PRP treatment. Furthermore, the knockdown of paxillin expression impaired the effect of PRP to promote cell migration. It was concluded that PRP promoting migration of muscle cells is associated with up-regulation of proteins expression of paxillin and FAK as well as increasing F-actin formation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2506-2512, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Cardioprotective Effects of Quercetin in Cardiomyocyte under Ischemia/Reperfusion Injury

    Yi-Wen Chen

    2013-01-01

    Full Text Available Quercetin, a polyphenolic compound existing in many vegetables, fruits, has antiinflammatory, antiproliferation, and antioxidant effect on mammalian cells. Quercetin was evaluated for protecting cardiomyocytes from ischemia/reperfusion injury, but its protective mechanism remains unclear in the current study. The cardioprotective effects of quercetin are achieved by reducing the activity of Src kinase, signal transducer and activator of transcription 3 (STAT3, caspase 9, Bax, intracellular reactive oxygen species production, and inflammatory factor and inducible MnSOD expression. Fluorescence two-dimensional differential gel electrophoresis (2D-DIGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS can reveal the differentially expressed proteins of H9C2 cells treated with H2O2 or quercetin. Although 17 identified proteins were altered in H2O2-induced cells, these proteins such as alpha-soluble NSF attachment protein (α-SNAP, Ena/VASP-like protein (Evl, and isopentenyl-diphosphate delta-isomerase 1 (Idi-1 were reverted by pretreatment with quercetin, which correlates with kinase activation, DNA repair, lipid, and protein metabolism. Quercetin dephosphorylates Src kinase in H2O2-induced H9C2 cells and likely blocks the H2O2-induced inflammatory response through STAT3 kinase modulation. This probably contributes to prevent ischemia/reperfusion injury in cardiomyocytes.

  6. Dynamic Action of Carotenoids in Cardioprotection and Maintenance of Cardiac Health

    Dipak K. Das

    2012-04-01

    Full Text Available Oxidative stress has been considered universally and undeniably implicated in the pathogenesis of all major diseases, including those of the cardiovascular system. Oxidative stress activate transcriptional messengers, such as nuclear factor—κB, tangibly contributing to endothelial dysfunction, the initiation and progression of atherosclerosis, irreversible damage after ischemic reperfusion, and even arrhythmia, such as atrial fibrillation. Evidence is rapidly accumulating to support the role of reactive oxygen species (ROS and reactive nitrogen species (RNS as intracellular signaling molecules. Despite this connection between oxidative stress and cardiovascular disease (CVD, there are currently no recognized therapeutic interventions to address this important unmet need. Antioxidants that provide a broad, “upstream” approach via ROS/RNS quenching or free radical chain breaking seem an appropriate therapeutic option based on epidemiologic, dietary, and in vivo animal model data. Short-term dietary intervention trials suggest that diets rich in fruit and vegetable intake lead to improvements in coronary risk factors and reduce cardiovascular mortality. Carotenoids are such abundant, plant-derived, fat-soluble pigments that functions as antioxidants. They are stored in the liver or adipose tissue, and are lipid soluble by becoming incorporated into plasma lipoprotein particles during transport. For these reasons, carotenoids may represent one plausible mechanism by which fruits and vegetables reduce the risk of chronic diseases as cardiovascular disease (CVD. This review paper outlines the role of carotenoids in maintaining cardiac health and cardioprotection mediated by several mechanisms including redox signaling.

  7. Cardioprotective Effects of Pomegranate (Punica granatum) Juice in Patients with Ischemic Heart Disease.

    Razani, Zahra; Dastani, Mostafa; Kazerani, Hamid Reza

    2017-11-01

    Ischemic heart disease is the leading cause of mortality worldwide. The purpose of this study was to evaluate the cardioprotective effects of pomegranate juice in patients with ischemic heart disease. One hundred patients, diagnosed with unstable angina or myocardial infarction, were randomly assigned to the test and the control groups (n = 50, each). During 5 days of hospitalization, in addition to the conventional medical therapies, the test groups received 220 mL pomegranate juice, daily. During the hospitalization period, the blood pressure, heart rate, as well as the intensity, occurrence, and duration of the angina were evaluated on a regular basis. At the end of the hospitalization period, the serum levels of malondialdehyde, interleukin-6, and tumor necrosis factor alpha were measured in all patients. The levels of serum troponin and high-sensitive C-reactive protein levels were also assayed in patients diagnosed with myocardial infarction. Pomegranate juice caused significant reductions in the intensity, occurrence, and duration of angina pectoris in patients with unstable angina. Consistently, the test patients had significantly lower levels of serum troponin and malondialdehyde. Other studied parameters did not change significantly. The results of this study suggest protective effects of pomegranate juice against myocardial ischemia and reperfusion injury. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Cardioprotection by controlling hyperamylinemia in a "humanized" diabetic rat model.

    Despa, Sanda; Sharma, Savita; Harris, Todd R; Dong, Hua; Li, Ning; Chiamvimonvat, Nipavan; Taegtmeyer, Heinrich; Margulies, Kenneth B; Hammock, Bruce D; Despa, Florin

    2014-08-21

    Chronic hypersecretion of the pancreatic hormone amylin is common in humans with obesity or prediabetic insulin resistance and induces amylin aggregation and proteotoxicity in the pancreas. We recently showed that hyperamylinemia also affects the cardiovascular system. Here, we investigated whether amylin aggregates interact directly with cardiac myocytes and whether controlling hyperamylinemia protects the heart. By Western blot, we found abundant amylin aggregates in lysates of cardiac myocytes from obese patients, but not in controls. Aggregated amylin was elevated in failing hearts, suggesting a role in myocyte injury. Using rats overexpressing human amylin in the pancreas (HIP rats) and control myocytes incubated with human amylin, we show that amylin aggregation at the sarcolemma induces oxidative stress and Ca(2+) dysregulation. In time, HIP rats developed cardiac hypertrophy and left-ventricular dilation. We then tested whether metabolites with antiaggregation properties, such as eicosanoid acids, limit myocardial amylin deposition. Rats were treated with an inhibitor of soluble epoxide hydrolase, the enzyme that degrades endogenous eicosanoids. Treatment doubled the blood concentration of eicosanoids, which drastically reduced incorporation of aggregated amylin in cardiac myocytes and blood cells, without affecting pancreatic amylin secretion. Animals in the treated group showed reduced cardiac hypertrophy and left-ventricular dilation. The cardioprotective mechanisms included the mitigation of amylin-induced cardiac oxidative stress and Ca(2+) dysregulation. The results suggest blood amylin as a novel therapeutic target in diabetic heart disease and elevating blood levels of antiaggregation metabolites as a pharmacological strategy to reduce amylin aggregation and amylin-mediated cardiotoxicity. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  9. Antihypertensive and cardioprotective effects of pumpkin seed oil.

    El-Mosallamy, Aliaa E M K; Sleem, Amany A; Abdel-Salam, Omar M E; Shaffie, Nermeen; Kenawy, Sanaa A

    2012-02-01

    Pumpkin seed oil is a natural product commonly used in folk medicine for treatment of prostatic hypertrophy. In the present study, the effects of treatment with pumpkin seed oil on hypertension induced by the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME) (50 mg /kg/day) in rats were studied and compared with those of the calcium channel blocker amlodipine. Pumpkin seed oil (40 or 100 mg/kg), amlodipine (0.9 mg/kg), or vehicle (control) was given once daily orally for 6 weeks. Arterial blood pressure (BP), heart rate, electrocardiogram (ECG) changes, levels of serum nitric oxide (NO) (the concentrations of nitrite/nitrate), plasma malondialdehyde (MDA), blood glutathione, and erythrocytic superoxide dismutase activity were measured. Histopathological examination of heart and aorta was conducted as well. L-NAME administration resulted in a significant increase in BP starting from the second week. Pumpkin seed oil or amlodipine treatment significantly reduced the elevation in BP by L-NAME and normalized the L-NAME-induced ECG changes-namely, prolongation of the RR interval, increased P wave duration, and ST elevation. Both treatments significantly decreased the elevated levels of MDA and reversed the decreased levels of NO metabolites to near normal values compared with the L-NAME-treated group. Amlodipine also significantly increased blood glutathione content compared with normal (but not L-NAME-treated) rats. Pumpkin seed oil as well as amlodipine treatment protected against pathological alterations in heart and aorta induced by L-NAME. In conclusion, this study has shown that pumpkin seed oil exhibits an antihypertensive and cardioprotective effects through a mechanism that may involve generation of NO.

  10. Development of Matrix Metalloproteinase-2 Inhibitors for Cardioprotection

    Péter Bencsik

    2018-04-01

    Full Text Available The objective of our present study is to develop novel inhibitors for MMP-2 for acute cardioprotection. In a series of pilot studies, novel substituted carboxylic acid derivatives were synthesized based on imidazole and thiazole scaffolds and then tested in a screeening cascade for MMP inhibition. We found that the MMP-inhibiting effects of imidazole and thiazole carboxylic acid-based compounds are superior in efficacy in comparison to the conventional hydroxamic acid derivatives of the same molecules. Based on these results, a 568-membered focused library of imidazole and thiazole compounds was generated in silico and then the library members were docked to the 3D model of MMP-2 followed by an in vitro medium throughput screening (MTS based on a fluorescent assay employing MMP-2 catalytic domain. Altogether 45 compounds showed a docking score of >70, from which 30 compounds were successfully synthesized. Based on the MMP-2 inhibitory tests using gelatin zymography, 7 compounds were then selected and tested in neonatal rat cardiac myocytes subjected to simulated I/R injury. Six compounds showed significant cardio-cytoprotecion and the most effective compound (MMPI-1154 significantly decreased infarct size when applied at 1 μM in an ex vivo model for acute myocardial infarction. This is the first demonstration that imidazole and thiazole carboxylic acid-based compounds are more efficacious MMP-2 inhibitor than their hydroxamic acid derivatives. MMPI-1154 is a promising novel cardio-cytoprotective imidazole-carboxylic acid MMP-2 inhibitor lead candidate for the treatment of acute myocardial infarction.

  11. Development of Matrix Metalloproteinase-2 Inhibitors for Cardioprotection

    Bencsik, Péter; Kupai, Krisztina; Görbe, Anikó; Kenyeres, Éva; Varga, Zoltán V.; Pálóczi, János; Gáspár, Renáta; Kovács, László; Weber, Lutz; Takács, Ferenc; Hajdú, István; Fabó, Gabriella; Cseh, Sándor; Barna, László; Csont, Tamás; Csonka, Csaba; Dormán, György; Ferdinandy, Péter

    2018-01-01

    The objective of our present study is to develop novel inhibitors for MMP-2 for acute cardioprotection. In a series of pilot studies, novel substituted carboxylic acid derivatives were synthesized based on imidazole and thiazole scaffolds and then tested in a screeening cascade for MMP inhibition. We found that the MMP-inhibiting effects of imidazole and thiazole carboxylic acid-based compounds are superior in efficacy in comparison to the conventional hydroxamic acid derivatives of the same molecules. Based on these results, a 568-membered focused library of imidazole and thiazole compounds was generated in silico and then the library members were docked to the 3D model of MMP-2 followed by an in vitro medium throughput screening (MTS) based on a fluorescent assay employing MMP-2 catalytic domain. Altogether 45 compounds showed a docking score of >70, from which 30 compounds were successfully synthesized. Based on the MMP-2 inhibitory tests using gelatin zymography, 7 compounds were then selected and tested in neonatal rat cardiac myocytes subjected to simulated I/R injury. Six compounds showed significant cardio-cytoprotecion and the most effective compound (MMPI-1154) significantly decreased infarct size when applied at 1 μM in an ex vivo model for acute myocardial infarction. This is the first demonstration that imidazole and thiazole carboxylic acid-based compounds are more efficacious MMP-2 inhibitor than their hydroxamic acid derivatives. MMPI-1154 is a promising novel cardio-cytoprotective imidazole-carboxylic acid MMP-2 inhibitor lead candidate for the treatment of acute myocardial infarction. PMID:29674965

  12. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1.

    Zhang, Lei; Cheng, Hailing; Yue, Yuxia; Li, Shuangzhan; Zhang, Daping; He, Ruili

    Long non-coding RNAs (lncRNAs) have been revealed to participate in the pathological events associated with atherosclerosis. However, the exact role of lncRNA taurine-up-regulated gene 1 (TUG1) and its possible molecular mechanism in atherosclerosis remain unidentified. High-fat diet (HFD)-treated ApoE -/- mice were used as an in vivo model of atherosclerosis. Ox-LDL-induced macrophages and vascular smooth muscle cells (VSMCs) were employed as cell models of atherosclerosis. qRT-PCR was performed to detect the expression of TUG1 and miR-133a. Serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were analyzed by commercially available enzyme kits. Oil red O and hematoxylin and eosin (H&E) staining were conducted to examine atherosclerotic lesion. Luciferase reporter assay combined with RNA immunoprecipitation (RIP) was applied to confirm the interaction between TUG1, miR-133a and FGF1. Cell proliferation ability was determined by Cell Counting Kit-8 (CCK-8) assay and trypan blue dye exclusion test. Cell apoptosis was evaluated with TUNEL assay. Expression and production of inflammatory cytokines was measured with western blot and ELISA analysis. TUG1 expression was up-regulated in HFD-treated ApoE -/- mice, as well as in ox-LDL-induced RAW264.7 and MOVAS cells. TUG1 knockdown inhibited hyperlipidemia, decreased inflammatory response, and attenuated atherosclerotic lesion in HFD-treated ApoE -/- mice. TUG1 could function as a molecular sponge of miR-133a to suppress its expression. TUG1 overexpression accelerated cell growth, improved inflammatory factor expression, and inhibited apoptosis in ox-LDL-stimulated RAW264.7 and MOVAS cells, while this effect was abated after transfection with miR-133 mimic. Moreover, fibroblast growth factor 1 (FGF1) was identified as a direct target of miR-133a. Restored expression of FGF1 overturned the effect of miR-133a on cell

  13. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    Mota, Alba, E-mail: amota@iib.uam.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Jiménez-Garcia, Lidia, E-mail: ljimenez@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Herránz, Sandra, E-mail: sherranz@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Heras, Beatriz de las, E-mail: lasheras@ucm.es [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid (Spain); Hortelano, Sonsoles, E-mail: shortelano@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain)

    2015-08-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  14. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    Mota, Alba; Jiménez-Garcia, Lidia; Herránz, Sandra; Heras, Beatriz de las; Hortelano, Sonsoles

    2015-01-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  15. Topical thermal therapy with hot packs suppresses physical inactivity-induced mechanical hyperalgesia and up-regulation of NGF.

    Nakagawa, Tatsuki; Hiraga, Shin-Ichiro; Mizumura, Kazue; Hori, Kiyomi; Ozaki, Noriyuki; Koeda, Tomoko

    2017-10-12

    We focused on the analgesic effect of hot packs for mechanical hyperalgesia in physically inactive rats. Male Wistar rats were randomly divided into four groups: control, physical inactivity (PI), PI + sham treatment (PI + sham), and PI + hot pack treatment (PI + hot pack) groups. Physical inactivity rats wore casts on both hind limbs in full plantar flexed position for 4 weeks. Hot pack treatment was performed for 20 min a day, 5 days a week. Although mechanical hyperalgesia and the up-regulation of NGF in the plantar skin and gastrocnemius muscle were observed in the PI and the PI + sham groups, these changes were significantly suppressed in the PI + hot pack group. The present results clearly demonstrated that hot pack treatment was effective in reducing physical inactivity-induced mechanical hyperalgesia and up-regulation of NGF in plantar skin and gastrocnemius muscle.

  16. Lopinavir up-regulates expression of the antiviral protein ribonuclease L in human papillomavirus-positive cervical carcinoma cells.

    Batman, Gavin; Oliver, Anthony W; Zehbe, Ingeborg; Richard, Christina; Hampson, Lynne; Hampson, Ian N

    2011-01-01

    We have previously shown that the HIV protease inhibitor lopinavir has selective toxicity against human papillomavirus (HPV)-positive cervical carcinoma cells via an unknown mechanism. SiHa cervical carcinoma cells were stably transfected with the proteasome sensor vector pZsProSensor-1 to confirm lopinavir inhibits the proteasome in these cells. The Panorama Xpress profiler 725 antibody array was then used to analyse specific changes in protein expression in lopinavir-treated versus control untreated SiHa cells followed by PCR and western blotting. Colorimetric growth assays of lopinavir-treated E6/E7 immortalised versus control human keratinocytes were performed. Targeted small interfering RNA gene silencing followed by growth assay comparison of lopinavir-treated/untreated SiHa cells was also used. Lopinavir induced an increase in the fluorescence of pZsProSensor-1 transfected SiHa cells, indicative of proteasomal inhibition. Ribonuclease L (RNASEL) protein was shown to be up-regulated in lopinavir-treated SiHa cells, which was confirmed by PCR and western blot. Targeted silencing of RNASEL reduced the sensitivity of SiHa cells to lopinavir. Selective toxicity against E6/E7 immortalised keratinocytes versus control cells was also seen with lopinavir and was associated with up-regulated RNASEL expression. These data are consistent with the toxicity of lopinavir against HPV-positive cervical carcinoma cells being related to its ability to block viral proteasome activation and induce an up-regulation of the antiviral protein RNASEL. This is supported by the drug's selective toxicity and up-regulation of RNASEL in E6/E7 immortalised keratinocytes combined with the increased resistance to lopinavir observed in SiHa cells following silencing of RNASEL gene expression.

  17. HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure.

    Yolanda Stypula-Cyrus

    Full Text Available Normal cell function is dependent on the proper maintenance of chromatin structure. Regulation of chromatin structure is controlled by histone modifications that directly influence chromatin architecture and genome function. Specifically, the histone deacetylase (HDAC family of proteins modulate chromatin compaction and are commonly dysregulated in many tumors, including colorectal cancer (CRC. However, the role of HDAC proteins in early colorectal carcinogenesis has not been previously reported. We found HDAC1, HDAC2, HDAC3, HDAC5, and HDAC7 all to be up-regulated in the field of human CRC. Furthermore, we observed that HDAC2 up-regulation is one of the earliest events in CRC carcinogenesis and observed this in human field carcinogenesis, the azoxymethane-treated rat model, and in more aggressive colon cancer cell lines. The universality of HDAC2 up-regulation suggests that HDAC2 up-regulation is a novel and important early event in CRC, which may serve as a biomarker. HDAC inhibitors (HDACIs interfere with tumorigenic HDAC activity; however, the precise mechanisms involved in this process remain to be elucidated. We confirmed that HDAC inhibition by valproic acid (VPA targeted the more aggressive cell line. Using nuclease digestion assays and transmission electron microscopy imaging, we observed that VPA treatment induced greater changes in chromatin structure in the more aggressive cell line. Furthermore, we used the novel imaging technique partial wave spectroscopy (PWS to quantify nanoscale alterations in chromatin. We noted that the PWS results are consistent with the biological assays, indicating a greater effect of VPA treatment in the more aggressive cell type. Together, these results demonstrate the importance of HDAC activity in early carcinogenic events and the unique role of higher-order chromatin structure in determining cell tumorigenicity.

  18. Antitumor effects of a sirtuin inhibitor, tenovin-6, against gastric cancer cells via death receptor 5 up-regulation.

    Sachiko Hirai

    Full Text Available Up-regulated sirtuin 1 (SIRT1, an NAD+-dependent class III histone deacetylase, deacetylates p53 and inhibits its transcriptional activity, leading to cell survival. SIRT1 overexpression has been reported to predict poor survival in some malignancies, including gastric cancer. However, the antitumor effect of SIRT1 inhibition remains elusive in gastric cancer. Here, we investigated the antitumor mechanisms of a sirtuin inhibitor, tenovin-6, in seven human gastric cancer cell lines (four cell lines with wild-type TP53, two with mutant-type TP53, and one with null TP53. Interestingly, tenovin-6 induced apoptosis in all cell lines, not only those with wild-type TP53, but also mutant-type and null versions, accompanied by up-regulation of death receptor 5 (DR5. In the KatoIII cell line (TP53-null, DR5 silencing markedly attenuated tenovin-6-induced apoptosis, suggesting that the pivotal mechanism behind its antitumor effects is based on activation of the death receptor signal pathway. Although endoplasmic reticulum stress caused by sirtuin inhibitors was reported to induce DR5 up-regulation in other cancer cell lines, we could not find marked activation of its related molecules, such as ATF6, PERK, and CHOP, in gastric cancer cells treated with tenovin-6. Tenovin-6 in combination with docetaxel or SN-38 exerted a slight to moderate synergistic cytotoxicity against gastric cancer cells. In conclusion, tenovin-6 has potent antitumor activity against human gastric cancer cells via DR5 up-regulation. Our results should be helpful for the future clinical development of sirtuin inhibitors.

  19. Non-Thermal Plasma Treatment Diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance. PMID:24911947

  20. Exercise training attenuated chronic cigarette smoking-induced up-regulation of FIZZ1/RELMα in lung of rats.

    Ma, Wan-li; Cai, Peng-cheng; Xiong, Xian-zhi; Ye, Hong

    2013-02-01

    FIZZ/RELM is a new gene family named "found in inflammatory zone" (FIZZ) or "resistin-like molecule" (RELM). FIZZ1/RELMα is specifically expressed in lung tissue and associated with pulmonary inflammation. Chronic cigarette smoking up-regulates FIZZ1/RELMα expression in rat lung tissues, the mechanism of which is related to cigarette smoking-induced airway hyperresponsiveness. To investigate the effect of exercise training on chronic cigarette smoking-induced airway hyperresponsiveness and up-regulation of FIZZ1/RELMα, rat chronic cigarette smoking model was established. The rats were treated with regular exercise training and their airway responsiveness was measured. Hematoxylin and eosin (HE) staining, immunohistochemistry and in situ hybridization of lung tissues were performed to detect the expression of FIZZ1/RELMα. Results revealed that proper exercise training decreased airway hyperresponsiveness and pulmonary inflammation in rat chronic cigarette smoking model. Cigarette smoking increased the mRNA and protein levels of FIZZ1/RELMα, which were reversed by the proper exercise. It is concluded that proper exercise training prevents up-regulation of FIZZ1/RELMα induced by cigarette smoking, which may be involved in the mechanism of proper exercise training modulating airway hyperresponsiveness.

  1. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells

    Kyoung-jin Min

    2017-08-01

    Full Text Available Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose polymerase (PARP, which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5 expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  2. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells.

    Min, Kyoung-Jin; Nam, Ju-Ock; Kwon, Taeg Kyu

    2017-08-02

    Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk) inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5) expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  3. The juxtamembrane domain in ETV6/FLT3 is critical for PIM-1 up-regulation and cell proliferation

    Vu, Hoang Anh; Xinh, Phan Thi; Kano, Yasuhiko; Tokunaga, Katsushi; Sato, Yuko

    2009-01-01

    We recently reported that the ETV6/FLT3 fusion protein conferred interleukin-3-independent growth on Ba/F3 cells. The present study has been conducted to assess role of the juxtamembrane domain of FLT3 for signal transduction and cell transformation. The wild-type ETV6/FLT3 fusion protein in transfected cells was a constitutively activated tyrosine kinase that led to up-regulation of PIM-1 and activations of STAT5, AKT, and MAPK. Deletion of the juxtamembrane domain abrogated interleukin-3-independent growth of the transfected cells and PIM-1 up-regulation, whereas it retained compatible levels of phosphorylations of STAT5, AKT, and MAPK. Further deletion of N-terminal region of the tyrosine kinase I domain of FLT3 completely abolished these phosphorylations. Our data indicate that the juxtamembrane domain of FLT3 in ETV6/FLT3 fusion protein is critical for cell proliferation and PIM-1 up-regulation that might be independent of a requirement for signaling through STAT5, MAPK, and AKT pathways.

  4. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance.

  5. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.

    Kamonporn Panngom

    Full Text Available Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance.

  6. Colitis up-regulates local glucocorticoid activation and down-regulates inactivation in colonic tissue

    Bryndová, Jana; Žbánková, Šárka; Kment, M.; Pácha, Jiří

    2004-01-01

    Roč. 39, č. 6 (2004), s. 549-553 ISSN 0036-5521 R&D Projects: GA MZd NK6723 Institutional research plan: CEZ:AV0Z5011922 Keywords : colitis * 11beta-hydroxysteroid dehydrogenasa * dextran sulphate Subject RIV: ED - Physiology Impact factor: 1.824, year: 2004

  7. SPARC is up-regulated during skeletal muscle regeneration and inhibits myoblast differentiation

    Petersson, Stine Juhl; Jørgensen, Louise Helskov; Andersen, Ditte C

    2013-01-01

    in muscle disease. SPARC overexpression almost completely abolished myogenic differentiation in these cultures as determined by substantially reduced levels of myogenic factors (Pax7, Myf5, Myod, Mef2B, Myogenin, and Myostatin) and a lack of multinucleated myotubes. These results demonstrate...

  8. Activation of Nrf2 is required for up-regulation of the π class of glutathione S-transferase in rat primary hepatocytes with L-methionine starvation.

    Lin, Ai-Hsuan; Chen, Haw-Wen; Liu, Cheng-Tze; Tsai, Chia-Wen; Lii, Chong-Kuei

    2012-07-04

    Numerous genes expression is regulated in response to amino acid shortage, which helps organisms adapt to amino acid limitation. The expression of the π class of glutathione (GSH) S-transferase (GSTP), a highly inducible phase II detoxification enzyme, is regulated mainly by activates activating protein 1 (AP-1) binding to the enhancer I of GSTP (GPEI). Here we show the critical role of nuclear factor erythroid-2-related factor 2 (Nrf2) in up-regulating GSTP gene transcription. Primary rat hepatocytes were cultured in a methionine-restricted medium, and immunoblotting and RT-PCR analyses showed that methionine restriction time-dependently increased GSTP protein and mRNA expression over a 48 h period. Nrf2 translocation to the nucleus, nuclear proteins binding to GPEI, and antioxidant response element (ARE) luciferase reporter activity were increased by methionine restriction as well as by l-buthionine sulfoximine (BSO), a GSH synthesis inhibitor. Transfection with Nrf2 siRNA knocked down Nrf2 expression and reversed the methionine-induced GSTP expression and GPEI binding activity. Chromatin immunoprecipitation assay confirmed the binding of Nrf2 to the GPEI. Phosphorylation of extracellular signal-regulated kinase 2 (ERK2) was increased in methionine-restricted and BSO-treated cells. ERK2 siRNA abolished methionine restriction-induced Nrf2 nuclear translocation, GPEI binding activity, ARE-luciferase reporter activity, and GSTP expression. Our results suggest that the up-regulation of GSTP gene transcription in response to methionine restriction likely occurs via the ERK-Nrf2-GPEI signaling pathway.

  9. Dexmedetomidine attenuates pancreatic injury and inflammatory response in mice with pancreatitis by possible reduction of NLRP3 activation and up-regulation of NET expression.

    Li, Yong; Pan, Yiyuan; Gao, Lin; Lu, Guotao; Zhang, Jingzhu; Xie, Xiaochun; Tong, Zhihui; Li, Baiqiang; Li, Gang; Li, Weiqin

    2018-01-22

    Previous studies have shown that acute inflammation is associated with increased sympathetic activity, which in turn increases the inflammatory response and leads to organ damage. The present study aimed to investigate whether dexmedetomidine administration during acute pancreatitis (AP) lessens pancreatic pathological and functional injury and the inflammatory response, and to explore the underlying mechanisms. Mild pancreatitis was induced in mice with caerulein, and severe pancreatitis was induced with caerulein plus lipopolysaccharide (LPS). After pancreatitis induction, dexmedetomidine at 10 or 20 μg/kg was injected via the tail vein. Pancreatic pathological and functional injury was assessed by histology and serum levels of amylase and lipase, respectively. The inflammatory response was evaluated by determining serum levels of inflammatory factors. The expression of myeloperoxidase (MPO) was examined by immunohistochemistry. The expression of norepinephrine transporter (NET), NLRP3, pro-IL-1β, and interleukin (IL)-1β in pancreatic tissue was detected by Western blot and real-time PCR. Dexmedetomidine at 20 μg/kg significantly attenuated pancreatic pathological injury, reduced serum levels of amylase, lipase, IL-1β, IL-6, and tumor necrosis factor (TNF)-α, and decreased the expression of MPO in pancreatic tissue in both mouse models of pancreatitis. In addition, dexmedetomidine at 20 μg/kg significantly down-regulated the expression of NLRP3, pro-IL-1β, and IL-1β in pancreatic tissue, but up-regulated the expression of NET in both mouse models. Dexmedetomidine attenuates pancreatic injury and inflammatory response in mice with pancreatitis possibly by reducing NLRP3 activation and up-regulating NET expression. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Histone deacetylase inhibitors suppress IFN(alpha)-induced up-regulation of promyelocytic leukemia protein

    Vlasáková, Jana; Nováková, Zora; Rossmeislová, Lenka; Kahle, Michal; Hozák, Pavel; Hodný, Zdeněk

    2007-01-01

    Roč. 109, č. 4 (2007), s. 1373-1380 ISSN 0006-4971 R&D Projects: GA ČR GA304/03/1210; GA AV ČR IAA500390501; GA ČR GEDYN/04/E002 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50520514 Keywords : Acute promyelocytic leukemia Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.896, year: 2007

  11. Up-regulation of VEGF and its receptor in refractory leukemia cells

    Wang, Lei; Zhang, Wenjun; Ding, Yi; Xiu, Bing; Li, Ping; Dong, Yan; Zhu, Qi; Liang, Aibin

    2015-01-01

    Objective: To analyze the causative mechanisms in refractory leukemia cells. Methods: Vascular endothelial growth factor (VEGF) blood plasma concentrations in 35 de novo, 6 relapse, 20 remission leukemia patients and 10 healthy kids were determined via ELISA analyses. Transcription levels of the VEGF receptors (VEGFR) Fms-like tyrosine kinase-1 (Flt-1) and kinase-domain insert containing receptor (KDR) were determined in participants’ leucocytes with RT-PCR. Apoptosis rates as well as Cyt-C a...

  12. Leptin and insulin up-regulate miR-4443 to suppress NCOA1 and TRAF4, and decrease the invasiveness of human colon cancer cells

    Meerson, Ari; Yehuda, Hila

    2016-01-01

    Obesity is a risk factor for colorectal cancer (CRC). Normal and tumor cells respond to metabolic hormones, such as leptin and insulin. Thus, obesity-associated resistance to these hormones likely leads to changes in gene expression and behavior of tumor cells. However, the mechanisms affected by leptin and insulin signaling in CRC cells remain mostly unknown. We hypothesized that microRNAs (miRNAs) are involved in the regulation of tumorigenesis-related gene expression in CRC cells by leptin and insulin. To test this hypothesis, miRNA levels in the CRC-derived cell lines HCT-116, HT-29 and DLD-1 were profiled, following leptin and insulin treatment. Candidate miRNAs were validated by RT-qPCR. Predicted miRNA targets with known roles in cancer, were validated by immunoblots and reporter assays in HCT-116 cells. Transfection of HCT-116 cells with candidate miRNA mimic was used to test in vitro effects on proliferation and invasion. Of ~800 miRNAs profiled, miR-4443 was consistently up-regulated by leptin and insulin in HCT-116 and HT-29, but not in DLD-1, which lacked normal leptin receptor expression. Dose response experiments showed that leptin at 100 ng/ml consistently up-regulated miR-4443 in HCT-116 cells, concomitantly with a significant decrease in cell invasion ability. Transfection with miR-4443 mimic decreased invasion and proliferation of HCT-116 cells. Moreover, leptin and miR-4443 transfection significantly down-regulated endogenous NCOA1 and TRAF4, both predicted targets of miR-4443 with known roles in cancer metastasis. miR-4443 was found to directly regulate TRAF4 and NCOA1, as validated by a reporter assay. The up-regulation of miR-4443 by leptin or insulin was attenuated by the inhibition of MEK1/2. Our findings suggest that miR-4443 acts in a tumor-suppressive manner by down-regulating TRAF4 and NCOA1 downstream of MEK-C/EBP-mediated leptin and insulin signaling, and that insulin and/or leptin resistance (e.g. in obesity) may suppress this pathway

  13. Up-regulated MicroRNA-181a induces carcinogenesis in Hepatitis B virus-related hepatocellular carcinoma by targeting E2F5

    Zou, Chengcheng; Li, Yongguo; Cao, Yiyi; Zhang, Jinnan; Jiang, Jingrong; Sheng, Yanrui; Wang, Sen; Huang, Ailong; Tang, Hua

    2014-01-01

    Accumulating evidence showed that microRNAs are involved in development and progression of multiple tumors. Recent studies have found that miR-181a were dysregulated in several types of cancers, however, the function of miR-181a in hepatocellular carcinoma (HCC) remains unclear. In this study we assessed the potential association between miR-181a, HBV and HCC. The expression of miR-181a in HBV-expressing cells was determined by using qRT-PCR. Dual-Luciferase reporter Assay, qRT-PCR and western blot were performed to investigate the target genes of miR-181a. The effects of miR-181a on HCC proliferation were analyzed by MTS and colony formation assay. Tumor growth assay was used to analyze the effect of miR-181a on tumor formation. HBV up-regulated miR-181a expression by enhancing its promoter activity. Overexpression of miR-181a in hepatoma cells promoted cell growth in vitro and tumor formation in vivo. Conversely, inhibition of miR-181a suppressed the proliferation of HBV-expressing cells. Mechanism investigation revealed that miR-181a inhibited the expression of transcription factor E2F5 by specifically targeting its mRNA 3′UTR. Moreover, E2F5 inhibition induced cell growth and rescued the suppressive effect of miR-181a inhibitor on the proliferation of SMMC-7721 cells. Interestingly, we also discovered that HBV could down-regulate E2F5 expression. Those results strongly suggested that HBV down-regulated E2F5 expression, in part, by up-regulating the expression of miR-181a. Up-regulation of miR-181a by HBV in hepatoma cells may contribute to the progression of HCC possibly by targeting E2F5, suggesting miR-181a plays important role in HCC development

  14. Dual effects of fructose on ChREBP and FoxO1/3α are responsible for AldoB up-regulation and vascular remodelling.

    Cao, Wei; Chang, Tuanjie; Li, Xiao-Qiang; Wang, Rui; Wu, Lingyun

    2017-02-01

    Increased production of methylglyoxal (MG) in vascular tissues is one of the causative factors for vascular remodelling in different subtypes of metabolic syndrome, including hypertension and insulin resistance. Fructose-induced up-regulation of aldolase B (AldoB) contributes to increased vascular MG production but the underlying mechanisms are unclear. Serum levels of MG and fructose were determined in diabetic patients with hypertension. MG level had significant positive correlations with blood pressure and fructose level respectively. C57BL/6 mice were fed with control or fructose-enriched diet for 3 months and ultrasonographic and histologic analyses were performed to evaluate arterial structural changes. Fructose-fed mice exhibited hypertension and high levels of serum MG with normal glucose level. Fructose intake increased blood vessel wall thickness and vascular smooth muscle cell (VSMC) proliferation. Western blotting and real-time PCR analysis revealed that AldoB level was significantly increased in both the aorta of fructose-fed mice and the fructose-treated VSMCs, whereas aldolase A (AldoA) expression was not changed. The knockdown of AldoB expression prevented fructose-induced MG overproduction and VSMC proliferation. Moreover, fructose significantly increased carbohydrate-responsive element-binding protein (ChREBP), phosphorylated FoxO1/3α and Akt1 levels. Fructose induced translocation of ChREBP from the cytosol to nucleus and activated AldoB gene expression, which was inhibited by the knockdown of ChREBP. Meanwhile, fructose caused FoxO1/3α shuttling from the nucleus to cytosol and inhibited its binding to AldoB promoter region. Fructose-induced AldoB up-regulation was suppressed by Akt1 inhibitor but enhanced by FoxO1/3α siRNA. Collectively, fructose activates ChREBP and inactivates FoxO1/3α pathways to up-regulate AldoB expression and MG production, leading to vascular remodelling. © 2017 The Author(s). published by Portland Press Limited on

  15. Genetic mutations in adipose triglyceride lipase and myocardial up-regulation of peroxisome proliferated activated receptor-γ in patients with triglyceride deposit cardiomyovasculopathy

    Hirano, Ken-ichi; Tanaka, Tatsuya; Ikeda, Yoshihiko; Yamaguchi, Satoshi; Zaima, Nobuhiro; Kobayashi, Kazuhiro; Suzuki, Akira; Sakata, Yasuhiko

    2014-01-01

    Highlights: •Triglyceride deposit cardiomyovasculopathy (TGCV) is a rare severe heart disease. •PPARγ is up-regulated in myocardium in patients with TGCV. •Possible vicious cycle for fatty acid may be involved in pathophysiology of TGCV. -- Abstract: Adipose triglyceride lipase (ATGL, also known as PNPLA2) is an essential molecule for hydrolysis of intracellular triglyceride (TG). Genetic ATGL deficiency is a rare multi-systemic neutral lipid storage disease. Information regarding its clinical profile and pathophysiology, particularly for cardiac involvement, is still very limited. A previous middle-aged ATGL-deficient patient in our institute (Case 1) with severe heart failure required cardiac transplantation (CTx) and exhibited a novel phenotype, “Triglyceride deposit cardiomyovasculopathy (TGCV)”. Here, we tried to elucidate molecular mechanism underlying TGCV. The subjects were two cases with TGCV, including our second case who was a 33-year-old male patient (Case 2) with congestive heart failure requiring CTx. Case 2 was homozygous for a point mutation in the 5′ splice donor site of intron 5 in the ATGL, which results in at least two types of mRNAs due to splicing defects. The myocardium of both patients (Cases 1 and 2) showed up-regulation of peroxisome proliferated activated receptors (PPARs), key transcription factors for metabolism of long chain fatty acids (LCFAs), which was in contrast to these molecules’ lower expression in ATGL-targeted mice. We investigated the intracellular metabolism of LCFAs under human ATGL-deficient conditions using patients’ passaged skin fibroblasts as a model. ATGL-deficient cells showed higher uptake and abnormal intracellular transport of LCFA, resulting in massive TG accumulation. We used these findings from cardiac specimens and cell-biological experiments to construct a hypothetical model to clarify the pathophysiology of the human disorder. In patients with TGCV, even when hydrolysis of intracellular TG

  16. Genetic mutations in adipose triglyceride lipase and myocardial up-regulation of peroxisome proliferated activated receptor-γ in patients with triglyceride deposit cardiomyovasculopathy

    Hirano, Ken-ichi, E-mail: khirano@cnt-osaka.com [Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Graduate School of Medicine, Osaka University, 6-2-3, Furuedai, Suita, Osaka 565-0874 (Japan); Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Tanaka, Tatsuya [Center for Medical Research and Education, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Ikeda, Yoshihiko [Department of Pathology, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita 565-8565 (Japan); Yamaguchi, Satoshi [Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Graduate School of Medicine, Osaka University, 6-2-3, Furuedai, Suita, Osaka 565-0874 (Japan); Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Zaima, Nobuhiro [Department of Applied Biochemistry, Kinki University, 3327-204, Nakamachi, Nara 631-8505 (Japan); Kobayashi, Kazuhiro [Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Suzuki, Akira [Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Graduate School of Medicine, Osaka University, 6-2-3, Furuedai, Suita, Osaka 565-0874 (Japan); Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Sakata, Yasuhiko [Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1, Seiryo-cho, Aoba-ku, Sendai 980-8574 (Japan); and others

    2014-01-10

    Highlights: •Triglyceride deposit cardiomyovasculopathy (TGCV) is a rare severe heart disease. •PPARγ is up-regulated in myocardium in patients with TGCV. •Possible vicious cycle for fatty acid may be involved in pathophysiology of TGCV. -- Abstract: Adipose triglyceride lipase (ATGL, also known as PNPLA2) is an essential molecule for hydrolysis of intracellular triglyceride (TG). Genetic ATGL deficiency is a rare multi-systemic neutral lipid storage disease. Information regarding its clinical profile and pathophysiology, particularly for cardiac involvement, is still very limited. A previous middle-aged ATGL-deficient patient in our institute (Case 1) with severe heart failure required cardiac transplantation (CTx) and exhibited a novel phenotype, “Triglyceride deposit cardiomyovasculopathy (TGCV)”. Here, we tried to elucidate molecular mechanism underlying TGCV. The subjects were two cases with TGCV, including our second case who was a 33-year-old male patient (Case 2) with congestive heart failure requiring CTx. Case 2 was homozygous for a point mutation in the 5′ splice donor site of intron 5 in the ATGL, which results in at least two types of mRNAs due to splicing defects. The myocardium of both patients (Cases 1 and 2) showed up-regulation of peroxisome proliferated activated receptors (PPARs), key transcription factors for metabolism of long chain fatty acids (LCFAs), which was in contrast to these molecules’ lower expression in ATGL-targeted mice. We investigated the intracellular metabolism of LCFAs under human ATGL-deficient conditions using patients’ passaged skin fibroblasts as a model. ATGL-deficient cells showed higher uptake and abnormal intracellular transport of LCFA, resulting in massive TG accumulation. We used these findings from cardiac specimens and cell-biological experiments to construct a hypothetical model to clarify the pathophysiology of the human disorder. In patients with TGCV, even when hydrolysis of intracellular TG

  17. Chitosan oligosaccharide and salicylic acid up-regulate gene expression differently in relation to the biosynthesis of artemisinin in Artemisia annua L

    Yin, Heng; Kjær, Anders; Fretté, Xavier

    2012-01-01

    oligosaccharide (COS) and salicylic acid (SA) on both artemisinin production and gene expression related to the biosynthetic pathway of artemisinin. COS up-regulated the transcriptional levels of the genes ADS and TTG1 2.5 fold and 1.8 fold after 48 h individually, whereas SA only up-regulated ADS 2.0 fold after...

  18. Methamphetamine and 3,4-methylenedioxymethamphetamine interact with central nicotinic receptors and induce their up-regulation

    Garcia-Rates, Sara; Camarasa, Jordi; Escubedo, Elena; Pubill, David

    2007-01-01

    Previous work from our group indicated that α7 nicotinic acetylcholine receptors (α7 nAChR) potentially play a role in methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA) neurotoxicity. The aims of the present study were two-fold: (1) to demonstrate the interaction of METH and MDMA with homomeric α7 nAChR ([ 3 H]methyllycaconitine binding) and other heteromeric subtypes ([ 3 H]epibatidine binding); and (2) to show the effects of amphetamine derivative pretreatment on the density of binding sites. METH and MDMA displaced [ 3 H]methyllycaconitine and [ 3 H]epibatidine binding in membranes from NGF-differentiated PC 12 cells and mouse brain, with K i values in the micromolar range, MDMA revealing a greater affinity than METH. In addition, METH and MDMA induced a time- and concentration-dependent increase in [ 3 H]methyllycaconitine and [ 3 H]epibatidine binding; which had already been apparent after 6 h of pretreatment, and which peaked in differentiated PC 12 cells after 48 h. The highest increases were found in [ 3 H]epibatidine binding, with MDMA inducing higher increases than METH. Treatment with METH and MDMA increased B max of high-affinity sites for both radioligands without affecting K d . The heightened binding was inhibited by pretreatment with cycloheximide, suggesting the participation of newly synthesised proteins while inhibition of protein trafficking to plasma membrane did not block up-regulation. The effects of protein kinase and cyclophilin inhibitors on such up-regulation were explored, revealing a rapid, differential and complex regulation, similar to that described for nicotinic ligands. All of these results demonstrate that METH and MDMA have affinity for, and can interact with, nAChR, inducing their up-regulation, specially when higher doses are used. Such effects may have a role in METH- and MDMA-induced neurotoxicity, cholinergic neurotransmission, and in processes related to addiction and dependence

  19. Up-regulation of Kir2.1 by ER stress facilitates cell death of brain capillary endothelial cells

    Kito, Hiroaki; Yamazaki, Daiju; Ohya, Susumu; Yamamura, Hisao; Asai, Kiyofumi; Imaizumi, Yuji

    2011-01-01

    Highlights: → We found that application of endoplasmic reticulum (ER) stress with tunicamycin to brain capillary endothelial cells (BCECs) induced cell death. → The ER stress facilitated the expression of inward rectifier K + channel (K ir 2.1) and induced sustained membrane hyperpolarization. → The membrane hyperpolarization induced sustained Ca 2+ entry through voltage-independent nonspecific cation channels and consequently facilitated cell death. → The K ir 2.1 up-regulation by ER stress is, at least in part, responsible for cell death of BCECs under pathological conditions. -- Abstract: Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cell turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K + channel (K ir 2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of K ir channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca 2+ concentration due to Ca 2+ influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of K ir 2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.

  20. RNA interference of three up-regulated transcripts associated with insecticide resistance in an imidacloprid resistant population of Leptinotarsa decemlineata.

    Clements, Justin; Schoville, Sean; Peterson, Nathan; Huseth, Anders S; Lan, Que; Groves, Russell L

    2017-01-01

    The Colorado potato beetle, Leptinotarsa decemlineata (Say), is a major agricultural pest of potatoes in the Central Sands production region of Wisconsin. Previous studies have shown that populations of L. decemlineata have become resistant to many classes of insecticides, including the neonicotinoid insecticide, imidacloprid. Furthermore, L. decemlineata has multiple mechanisms of resistance to deal with a pesticide insult, including enhanced metabolic detoxification by cytochrome p450s and glutathione S-transferases. With recent advances in the transcriptomic analysis of imidacloprid susceptible and resistant L. decemlineata populations, it is possible to investigate the role of candidate genes involved in imidacloprid resistance. A recently annotated transcriptome analysis of L. decemlineata was obtained from select populations of L. decemlineata collected in the Central Sands potato production region, which revealed a subset of mRNA transcripts constitutively up-regulated in resistant populations. We hypothesize that a portion of the up-regulated transcripts encoding for genes within the resistant populations also encode for pesticide resistance and can be suppressed to re-establish a susceptible phenotype. In this study, a discrete set of three up-regulated targets were selected for RNA interference experiments using a resistant L. decemlineata population. Following the successful suppression of transcripts encoding for a cytochrome p450, a cuticular protein, and a glutathione synthetase protein in a select L. decemlineata population, we observed reductions in measured resistance to imidacloprid that strongly suggest these genes control essential steps in imidacloprid metabolism in these field populations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. IL-8 signaling is up-regulated in alcoholic hepatitis and DDC fed mice with Mallory Denk Bodies (MDBs) present.

    Liu, Hui; French, Barbara A; Nelson, Tyler J; Li, Jun; Tillman, Brittany; French, Samuel W

    2015-10-01

    Chemokines and their receptors are involved in oncogenesis and in tumor progression, invasion, and metastasis. Various chemokines also promote cell proliferation and resistance to apoptosis of stressed cells. The chemokine CXCL8, also known as interleukin-8 (IL-8), is a proinflammatory molecule that has functions within the tumor microenvironment. Deregulation of IL-8 signaling is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of IL-8 signaling by RNA sequencing (RNA-Seq) analyses. Real-time PCR analysis of CXCR2 further shows a 6-fold up-regulation in AH livers and a 26-fold up-regulation in the livers of DDC re-fed mice. IL-8 mRNA was also significantly up-regulated in AH livers and DDC re-fed mice livers. This indicates that CXCR2 and IL-8 may be crucial for liver MDB formation. MDB containing balloon hepatocytes in AH livers had increased intensity of staining of the cytoplasm for both CXCR2 and IL-8. Overexpression of IL-8 leads to an increase of the mitogen activated protein kinase (MAPK) cascade and exacerbates the inflammatory cycle. These observations constitute a demonstration of the altered regulation of IL-8 signaling in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by IL-8 signaling in AH. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Fruit extracts of Momordica charantia potentiate glucose uptake and up-regulate Glut-4, PPAR gamma and PI3K.

    Kumar, Ramadhar; Balaji, S; Uma, T S; Sehgal, P K

    2009-12-10

    Momordica charantia fruit is a widely used traditional medicinal herb as, anti-diabetic, anti-HIV, anti-ulcer, anti-inflammatory, anti-leukemic, anti-microbial, and anti-tumor. The present study is undertaken to investigate the possible mode of action of fruit extracts derived from Momordica charantia (MC) and study its pharmacological effects for controlling diabetic mellitus. Effects of aqueous and chloroform extracts of Momordica charantia fruit on glucose uptake and up-regulation of glucose transporter (Glut-4), peroxisome proliferator activator receptor gamma (PPAR gamma) and phosphatidylinositol-3 kinase (PI3K), were investigated to show its efficacy as a hypoglycaemic agent. Dose dependent glucose uptake assay was performed on L6 myotubes using 2-deoxy-D-[1-(3)H] glucose. Up-regulatory effects of the extracts on the mRNA expression level of Glut-4, PPAR gamma and PI3K have been studied. The association of Momordica charantia with the aqueous and chloroform extracts of Momordica charantia fruit at 6 microg/ml has shown significant up-regulatory effect, respectively, by 3.6-, 2.8- and 3.8-fold on the battery of targets Glut-4, PPAR gamma and PI3K involved in glucose transport. The up-regulation of glucose uptake was comparable with insulin and rosiglitazone which was approximately 2-fold over the control. Moreover, the inhibitory effect of the cyclohexamide on Momordica charantia fruit extract mediated glucose uptake suggested the requirement of new protein synthesis for the enhanced glucose uptake. This study demonstrated the significance of Glut-4, PPAR gamma and PI3K up-regulation by Momordica charantia in augmenting the glucose uptake and homeostasis.

  3. Expression of a serine protease gene prC is up-regulated by oxidative stress in the fungus Clonostachys rosea: implications for fungal survival.

    Cheng-Gang Zou

    Full Text Available BACKGROUND: Soil fungi face a variety of environmental stresses such as UV light, high temperature, and heavy metals. Adaptation of gene expression through transcriptional regulation is a key mechanism in fungal response to environmental stress. In Saccharomyces cerevisiae, the transcription factors Msn2/4 induce stress-mediated gene expression by binding to the stress response element. Previous studies have demonstrated that the expression of extracellular proteases is up-regulated in response to heat shock in fungi. However, the physiological significance of regulation of these extracellular proteases by heat shock remains unclear. The nematophagous fungus Clonostachys rosea can secret an extracellular serine protease PrC during the infection of nematodes. Since the promoter of prC has three copies of the stress response element, we investigated the effect of environmental stress on the expression of prC. METHODOLOGY/PRINCIPAL FINDINGS: Our results demonstrated that the expression of prC was up-regulated by oxidants (H(2O(2 or menadione and heat shock, most likely through the stress response element. After oxidant treatment or heat shock, the germination of conidia in the wild type strain was significantly higher than that in the prC mutant strain in the presence of nematode cuticle. Interestingly, the addition of nematode cuticle significantly attenuated the production of reactive oxygen species (ROS induced by oxidants and heat shock in the wild type strain, but not in prC mutant strain. Moreover, low molecule weight (<3 kD degradation products of nematode cuticle suppressed the inhibitory effect of conidial germination induced by oxidants and heat shock. CONCLUSIONS/SIGNIFICANCE: These results indicate that PrC plays a protective role in oxidative stress in C. rosea. PrC degrades the nematode cuticle to produce degradation products, which in turn offer a protective effect against oxidative stress by scavenging ROS. Our study reveals a novel

  4. Photothermal stress triggered by near-infrared-irradiated carbon nanotubes up-regulates osteogenesis and mineral deposition in tooth-extracted sockets.

    Kajiya, Hiroshi; Katsumata, Yuri; Sasaki, Mina; Tsutsumi, Takashi; Kawaguchi, Minoru; Fukushima, Tadao

    2015-01-01

    The bone regenerative healing process is often prolonged, with a high risk of infection particularly in elderly and diseased patients. A reduction in healing process time usually requires mechanical stress devices, chemical cues, or laser/thermal therapies. Although these approaches have been used extensively for the reduction of bone healing time, the exact mechanisms involved in thermal stress-induced bone regeneration remain unclear. Photothermal stress (PTS) stimulation was carried out using a novel photothermal device, composed of an alginate gel (AG) including carbon nanotubes (CNT-AGs) and their irradiator with near-infrared (NIR) light. We investigated the effects of optimal hyperthermia on osteogenesis, its signalling pathway in vitro and mineral deposition in tooth-extracted sockets in vivo. The PTS (10 min at 42 °C, every day), triggered by NIR-induced CNT, increased the activity of alkaline phosphatase (ALP) in mouse osteoblast MC3T3-E1 cells in a time-dependent manner compared with the non-thermal stress control. PTS significantly induced the expression of osteogenic-related molecules such as ALP, RUNX2 and Osterix in a time-dependent manner with phosphorylated mitogen-activated protein kinases (MAPK). PTS increased the expression of heat shock factor (HSF) 2, but not HSF1, resulting in activation of heat shock protein 27. PTS significantly up-regulated mineral deposition in tooth-extracted sockets in normal and ovariectomised osteoporotic model mice in vivo. Our novel CNT-based PTS up-regulated osteogenesis via activation of heat shock-related molecules, resulting in promotion of mineral deposition in enhanced tooth-extracted sockets.

  5. Up-Regulation of MicroRNA-190b Plays a Role for Decreased IGF-1 That Induces Insulin Resistance in Human Hepatocellular Carcinoma

    Hung, Tzu-Min; Ho, Cheng-Maw; Liu, Yen-Chun; Lee, Jia-Ling; Liao, Yow-Rong; Wu, Yao-Ming; Ho, Ming-Chih; Chen, Chien-Hung; Lai, Hong-Shiee; Lee, Po-Huang

    2014-01-01

    Background & Aims Insulin-like growth factor, (IGF)-1, is produced mainly by the liver and plays important roles in promoting growth and regulating metabolism. Previous study reported that development of hepatocellular carcinoma (HCC) was accompanied by a significant reduction in serum IGF-1 levels. Here, we hypothesized that dysregulation of microRNAs (miRNA) in HCC can modulate IGF-1 expression post-transcriptionally. Methods The miRNAs expression profiles in a dataset of 29 HCC patients were examined using illumina BeadArray. Specific miRNA (miR)-190b, which was significantly up-regulated in HCC tumor tissues when compared with paired non-tumor tissues, was among those predicted to interact with 3′-untranslated region (UTR) of IGF-1. In order to explore the regulatory effects of miR-190b on IGF-1 expression, luciferase reporter assay, quantitative real-time PCR, western blotting and immunofluorecence analysis were performed in HCC cells. Results Overexpression of miR-190b in Huh7 cells attenuated the expression of IGF-1, whereas inhibition of miR-190b resulted in up-regulation of IGF-1. Restoration of IGF-1 expression reversed miR-190b-mediated impaired insulin signaling in Huh7 cells, supporting that IGF-1 was a direct and functional target of miR-190b. Additionally, low serum IGF-1 level was associated with insulin resistance and poor overall survival in HCC patients. Conclusions Increased expression of miR-190 may cause decreased IGF-1 in HCC development. Insulin resistance appears to be a part of the physiopathologic significance of decreased IGF-1 levels in HCC progression. This study provides a novel miRNA-mediated regulatory mechanism for controlling IGF-1 expression in HCC and elucidates the biological relevance of this interaction in HCC. PMID:24586785

  6. Investigation of Endogenous Retrovirus Sequences in the Neighborhood of Genes Up-regulated in a Neuroblastoma Model after Treatment with Hypoxia-Mimetic Cobalt Chloride.

    Brütting, Christine; Narasimhan, Harini; Hoffmann, Frank; Kornhuber, Malte E; Staege, Martin S; Emmer, Alexander

    2018-01-01

    Human endogenous retroviruses (ERVs) have been found to be associated with different diseases, e.g., multiple sclerosis (MS). Most human ERVs integrated in our genome are not competent to replicate and these sequences are presumably silent. However, transcription of human ERVs can be reactivated, e.g., by hypoxia. Interestingly, MS has been linked to hypoxia since decades. As some patterns of demyelination are similar to white matter ischemia, hypoxic damage is discussed. Therefore, we are interested in the association between hypoxia and ERVs. As a model, we used human SH-SY5Y neuroblastoma cells after treatment with the hypoxia-mimetic cobalt chloride and analyzed differences in the gene expression profiles in comparison to untreated cells. The vicinity of up-regulated genes was scanned for endogenous retrovirus-derived sequences. Five genes were found to be strongly up-regulated in SH-SY5Y cells after treatment with cobalt chloride: clusterin, glutathione peroxidase 3, insulin-like growth factor 2, solute carrier family 7 member 11, and neural precursor cell expressed developmentally down-regulated protein 9. In the vicinity of these genes we identified large (>1,000 bp) open reading frames (ORFs). Most of these ORFs showed only low similarities to proteins from retro-transcribing viruses. However, we found very high similarity between retrovirus envelope sequences and a sequence in the vicinity of neural precursor cell expressed developmentally down-regulated protein 9. This sequence encodes the human endogenous retrovirus group FRD member 1, the encoded protein product is called syncytin 2. Transfection of syncytin 2 into the well-characterized Ewing sarcoma cell line A673 was not able to modulate the low immunostimulatory activity of this cell line. Future research is needed to determine whether the identified genes and the human endogenous retrovirus group FRD member 1 might play a role in the etiology of MS.

  7. Galectin-3 facilitates cell motility in gastric cancer by up-regulating protease-activated receptor-1 (PAR-1 and matrix metalloproteinase-1 (MMP-1.

    Seok-Jun Kim

    Full Text Available BACKGROUND: Galectin-3 is known to regulate cancer metastasis. However, the underlying mechanism has not been defined. Through the DNA microarray studies after galectin-3 silencing, we demonstrated here that galectin-3 plays a key role in up-regulating the expressions of protease-activated receptor-1 (PAR-1 and matrix metalloproteinase-1 (MMP-1 PAR-1 thereby promoting gastric cancer metastasis. METHODOLOGY/PRINCIPAL FINDINGS: We examined the expression levels of Galectin-3, PAR-1, and MMP-1 in gastric cancer patient tissues and also the effects of silencing these proteins with specific siRNAs and of over-expressing them using specific lenti-viral constructs. We also employed zebrafish embryo model for analysis of in vivo gastric cancer cell invasion. These studies demonstrated that: a galectin-3 silencing decreases the expression of PAR-1. b galectin-3 over-expression increases cell migration and invasion and this increase can be reversed by PAR-1 silencing, indicating that galectin-3 increases cell migration and invasion via PAR-1 up-regulation. c galectin-3 directly interacts with AP-1 transcriptional factor, and this complex binds to PAR-1 promoter and drives PAR-1 transcription. d galectin-3 also amplifies phospho-paxillin, a PAR-1 downstream target, by increasing MMP-1 expression. MMP-1 silencing blocks phospho-paxillin amplification and cell invasion caused by galectin-3 over-expression. e Silencing of either galectin-3, PAR-1 or MMP-1 significantly reduced cell migration into the vessels in zebrafish embryo model. f Galectin-3, PAR-1, and MMP-1 are highly expressed and co-localized in malignant tissues from gastric cancer patients. CONCLUSIONS/SIGNIFICANCE: Galectin-3 plays the key role of activating cell surface receptor through production of protease and boosts gastric cancer metastasis. Galectin-3 has the potential to serve as a useful pharmacological target for prevention of gastric cancer metastasis.

  8. Amitriptyline up-regulates connexin43-gap junction in rat cultured cortical astrocytes via activation of the p38 and c-Fos/AP-1 signalling pathway.

    Morioka, N; Suekama, K; Zhang, F F; Kajitani, N; Hisaoka-Nakashima, K; Takebayashi, M; Nakata, Y

    2014-06-01

    Intercellular communication via gap junctions, comprised of connexin (Cx) proteins, allow for communication between astrocytes, which in turn is crucial for maintaining CNS homeostasis. The expression of Cx43 is decreased in post-mortem brains from patients with major depression. A potentially novel mechanism of tricyclic antidepressants is to increase the expression and functioning of gap junctions in astrocytes. The effect of amitriptyline on the expression of Cx43 and gap junction intercellular communication (GJIC) in rat primary cultured cortical astrocytes was investigated. We also investigated the role of p38 MAPK intracellular signalling pathway in the amitriptyline-induced expression of Cx43 and GJIC. Treatment with amitriptyline for 48 h significantly up-regulated Cx43 mRNA, protein and GJIC. The up-regulation of Cx43 was not monoamine-related since noradrenaline, 5-HT and dopamine did not induce Cx43 expression and pretreatment with α- and β-adrenoceptor antagonists had no effect. Intracellular signalling involved p38 MAPK, as amitriptyline significantly increased p38 MAPK phosphorylation and Cx43 expression and GJIC were significantly blocked by the p38 inhibitor SB 202190. Furthermore, amitriptyline-induced Cx43 expression and GJIC were markedly reduced by transcription factor AP-1 inhibitors (curcumin and tanshinone IIA). The translocation of c-Fos from the cytosol and the nucleus of cortical astrocytes was increased by amitriptyline, and this response was dependent on p38 activity. These findings indicate a novel mechanism of action of amitriptyline through cortical astrocytes, and further suggest that targeting this mechanism could lead to the development of a new class of antidepressants. © 2014 The British Pharmacological Society.

  9. Inflammatory response and cardioprotection during open-heart surgery: the importance of anaesthetics.

    Suleiman, M-S; Zacharowski, K; Angelini, G D

    2008-01-01

    Open-heart surgery triggers an inflammatory response that is largely the result of surgical trauma, cardiopulmonary bypass, and organ reperfusion injury (e.g. heart). The heart sustains injury triggered by ischaemia and reperfusion and also as a result of the effects of systemic inflammatory mediators. In addition, the heart itself is a source of inflammatory mediators and reactive oxygen species that are likely to contribute to the impairment of cardiac pump function. Formulating strategies to protect the heart during open heart surgery by attenuating reperfusion injury and systemic inflammatory response is essential to reduce morbidity. Although many anaesthetic drugs have cardioprotective actions, the diversity of the proposed mechanisms for protection (e.g. attenuating Ca(2+) overload, anti-inflammatory and antioxidant effects, pre- and post-conditioning-like protection) may have contributed to the slow adoption of anaesthetics as cardioprotective agents during open heart surgery. Clinical trials have suggested at least some cardioprotective effects of volatile anaesthetics. Whether these benefits are relevant in terms of morbidity and mortality is unclear and needs further investigation. This review describes the main mediators of myocardial injury during open heart surgery, explores available evidence of anaesthetics induced cardioprotection and addresses the efforts made to translate bench work into clinical practice.

  10. Development of fluorescence imaging-based assay for screening cardioprotective compounds from medicinal plants.

    Wang, Yi; Zhao, Xiaoping; Gao, Xiumei; Nie, Xiaojing; Yang, Yingxin; Fan, Xiaohui

    2011-09-19

    Medicinal plants have been widely recognized as a renewable resource for the discovery of novel leads and drug. In this study, an approach for screening and identification compounds with cardioprotective activity from medicinal plant extracts by cellular-fluorescence imaging technique was developed. It is a cell-based assay for measuring mitochondrial membrane potential changes in H9c2 cardiac muscle cells exposed to H(2)O(2) by using a fluorescence automatic microscopy screening platform. Rhodamine 123 was used as the fluorescent dye to indicate the change of mitochondrial membrane potential. The sensitivity and linear range of the proposed approach were evaluated and validated using vitamin C, an antioxidative compound. The method was applied to screen active components with potent cardioprotective effects from a traditional Chinese formula. The potential cardioprotective components were identified by liquid chromatography coupled with mass spectrometry (LC/MS). Moreover, the utility of the proposed approach was further validated by three compounds (salvianolic acid B, protocatechuic aldehyde, and tanshinone II A) identified from the formula which showed cardioprotective effects in a dose-dependent manner. These applications suggested that the proposed rapid and sensitive screening approach offers an efficient way to discover active components or compounds from medicinal plants. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Targets Involved in Cardioprotection by the Non-Anesthetic Noble Gas Helium

    Weber, Nina C.; Smit, Kirsten F.; Hollmann, Markus W.; Preckel, Benedikt

    2015-01-01

    Research data from the past decade indicate that noble gases like xenon and helium exert profound cardioprotection when applied before, during or after organ ischemia. Of all noble gases, especially helium, has gained interest in the past years because it does not have an anesthetic "side effect"

  12. Temperature shift and host cell contact up-regulate sporozoite expression of Plasmodium falciparum genes involved in hepatocyte infection.

    Anthony Siau

    Full Text Available Plasmodium sporozoites are deposited in the skin by Anopheles mosquitoes. They then find their way to the liver, where they specifically invade hepatocytes in which they develop to yield merozoites infective to red blood cells. Relatively little is known of the molecular interactions during these initial obligatory phases of the infection. Recent data suggested that many of the inoculated sporozoites invade hepatocytes an hour or more after the infective bite. We hypothesised that this pre-invasive period in the mammalian host prepares sporozoites for successful hepatocyte infection. Therefore, the genes whose expression becomes modified prior to hepatocyte invasion would be those likely to code for proteins implicated in the subsequent events of invasion and development. We have used P. falciparum sporozoites and their natural host cells, primary human hepatocytes, in in vitro co-culture system as a model for the pre-invasive period. We first established that under co-culture conditions, sporozoites maintain infectivity for an hour or more, in contrast to a drastic loss in infectivity when hepatocytes were not included. Thus, a differential transcriptome of salivary gland sporozoites versus sporozoites co-cultured with hepatocytes was established using a pan-genomic P. falciparum microarray. The expression of 532 genes was found to have been up-regulated following co-culture. A fifth of these genes had no orthologues in the genomes of Plasmodium species used in rodent models of malaria. Quantitative RT-PCR analysis of a selection of 21 genes confirmed the reliability of the microarray data. Time-course analysis further indicated two patterns of up-regulation following sporozoite co-culture, one transient and the other sustained, suggesting roles in hepatocyte invasion and liver stage development, respectively. This was supported by functional studies of four hitherto uncharacterized proteins of which two were shown to be sporozoite surface

  13. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Imaizumi, Yuji, E-mail: yimaizum@phar.nagoya-cu.ac.jp [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan)

    2016-08-05

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4–5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba{sup 2+}-sensitive inward rectifier K{sup +} current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level but not at mRNA level after the hypoxic culture. Ca{sup 2+} imaging study revealed that the hypoxic stress enhanced store-operated Ca{sup 2+} (SOC) entry, which was significantly reduced in the presence of 100 μM Ba{sup 2+}. On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba{sup 2+}. We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca{sup 2+} entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. -- Highlights: •Hypoxic culture of brain endothelial cells (BEC) caused membrane hyperpolarization. •This hyperpolarization was due to the increased expression of Kir2.1 channels. •Hypoxia enhanced store-operated Ca{sup 2+} (SOC) entry via Kir2.1 up-regulation. •Expression levels of putative SOC

  14. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao; Asai, Kiyofumi; Imaizumi, Yuji

    2016-01-01

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4–5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba 2+ -sensitive inward rectifier K + current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level but not at mRNA level after the hypoxic culture. Ca 2+ imaging study revealed that the hypoxic stress enhanced store-operated Ca 2+ (SOC) entry, which was significantly reduced in the presence of 100 μM Ba 2+ . On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba 2+ . We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca 2+ entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. -- Highlights: •Hypoxic culture of brain endothelial cells (BEC) caused membrane hyperpolarization. •This hyperpolarization was due to the increased expression of Kir2.1 channels. •Hypoxia enhanced store-operated Ca 2+ (SOC) entry via Kir2.1 up-regulation. •Expression levels of putative SOC channels were not affected by hypoxia.

  15. Sp1 transcriptional activity is up-regulated by phosphatase 2A in dividing T lymphocytes.

    Lacroix, Isabelle; Lipcey, Carol; Imbert, Jean; Kahn-Perlès, Brigitte

    2002-03-15

    We have followed Sp1 expression in primary human T lymphocytes induced, via CD2 plus CD28 costimulation, to sustained proliferation and subsequent return to quiescence. Binding of Sp1 to wheat germ agglutinin lectin was not modified following activation, indicating that the overall glycosylation of the protein was unchanged. Sp1 underwent, instead, a major dephosphorylation that correlated with cyclin A expression and, thus, with cell cycle progression. A similar change was observed in T cells that re-entered cell cycle following secondary interleukin-2 stimulation, as well as in serum-induced proliferating NIH/3T3 fibroblasts. Phosphatase 2A (PP2A) appears involved because 1) treatment of dividing cells with okadaic acid or cantharidin inhibited Sp1 dephosphorylation and 2) PP2A dephosphorylated Sp1 in vitro and strongly interacted with Sp1 in vivo. Sp1 dephosphorylation is likely to increase its transcriptional activity because PP2A overexpression potentiated Sp1 site-driven chloramphenicol acetyltransferase expression in dividing Kit225 T cells and okadaic acid reversed this effect. This increase might be mediated by a stronger affinity of dephosphorylated Sp1 for DNA, as illustrated by the reduced DNA occupancy by hyperphosphorylated Sp factors from cantharidin- or nocodazole-treated cells. Finally, Sp1 dephosphorylation appears to occur throughout cell cycle except for mitosis, a likely common feature to all cycling cells.

  16. BDNF Up-Regulates α7 Nicotinic Acetylcholine Receptor Levels on Subpopulations of Hippocampal Interneurons

    Massey, Kerri A.; Zago, Wagner M.; Berg, Darwin K.

    2006-01-01

    In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of α7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the effect. Blocking transmission through NMDA receptors with APV blocked the BDNF effect; increasing spontaneous excitatory activity with the GABAA receptor antagonist bicuculline replicated the BDNF effect. BDNF antibodies blocked the BDNF-mediated increase but not the bicuculline one, consistent with enhanced glutamatergic activity acting downstream from BDNF. Increased α7-nAChR clusters were most prominent on interneuron subtypes known to innervate directly excitatory neurons. The results suggest that BDNF, acting through glutamatergic transmission, can modulate hippocampal output in part by controlling α7-nAChR levels. PMID:17029981

  17. Twist-1 Up-Regulation in Carcinoma Correlates to Poor Survival

    Alimujiang Wushou

    2014-11-01

    Full Text Available Epithelial-to-mesenchymal transition (EMT facilitates tumor metastasis. Twist is a basic helix-loop-helix protein that modulates many target genes through E-box-responsive elements. There are two twist-like proteins, Twist-1 and Twist-2, sharing high structural homology in mammals. Twist-1 was found to be a key factor in the promotion of metastasis of cancer cells, and is known to induce EMT. Twist-1 participation in carcinoma progression and metastasis has been reported in a variety of tumors. However, controversy exists concerning the correlation between Twist-1 and prognostic value with respect to carcinoma. A systematic review and meta-analysis were performed to determine whether the expression of Twist-1 was associated with the prognosis of carcinoma patients. This analysis included 17 studies: four studies evaluated lung cancer, three evaluated head and neck cancer, two evaluated breast cancer, two evaluated esophageal cancer, two evaluated liver cancer and one each evaluated osteosarcoma, bladder, cervical and ovarian cancer. A total of 2006 patients were enrolled in these studies, and the median trial sample size was 118 patients. Twist-1 expression was associated with worse overall survival (OS at both 3 years (hazard ratio “HR” for death = 2.13, 95% CI = 1.86 to 2.45, p < 0.001 and 5 years (HR for death = 2.01, 95% CI = 1.76 to 2.29, p < 0.001. Expression of Twist-1 is associated with worse survival in carcinoma.

  18. Cathepsin B is up-regulated and mediates extracellular matrix degradation in trabecular meshwork cells following phagocytic challenge.

    Kristine Porter

    Full Text Available Cells in the trabecular meshwork (TM, a tissue responsible for draining aqueous humor out of the eye, are known to be highly phagocytic. Phagocytic activity in TM cells is thought to play an important role in outflow pathway physiology. However, the molecular mechanisms triggered by phagocytosis in TM cells are unknown. Here we investigated the effects of chronic phagocytic stress on lysosomal function using different phagocytic ligands (E. coli, carboxylated beads, collagen I-coated beads, and pigment. Lysotracker red co-localization and electron micrographs showed the maturation of E. coli- and collagen I-coated beads-containing phagosomes into phagolysosomes. Maturation of phagosomes into phagolysosomes was not observed with carboxylated beads or pigment particles. In addition, phagocytosis of E. coli and collagen I-coated beads led to increased lysosomal mass, and the specific up-regulation and activity of cathepsin B (CTSB. Higher levels of membrane-bound and secreted CTSB were also detected. Moreover, in vivo zymography showed the intralysosomal degradation of ECM components associated with active CTSB, as well as an overall increased gelatinolytic activity in phagocytically challenged TM cells. This increased gelatinolytic activity with phagocytosis was partially blocked with an intracellular CTSB inhibitor. Altogether, these results suggest a potential role of phagocytosis in outflow pathway tissue homeostasis through the up-regulation and/or proteolytic activation of extracellular matrix remodeling genes.

  19. Up-Regulation of Antioxidant Proteins in the Plasma Proteome during Saturation Diving: Unique Coincidence under Hypobaric Hypoxia.

    Domoto, Hideharu; Iwaya, Keiichi; Ikomi, Fumitaka; Matsuo, Hirotaka; Tadano, Yutaka; Fujii, Shigenori; Tachi, Kazuyoshi; Itoh, Yoshiyuki; Sato, Michiya; Inoue, Kimitoshi; Shinomiya, Nariyoshi

    2016-01-01

    Saturation diving (SD) is one of the safest techniques for tolerating hyperbaric conditions for long durations. However, the changes in the human plasma protein profile that occur during SD are unknown. To identify differential protein expression during or after SD, 65 blood samples from 15 healthy Japanese men trained in SD were analyzed by two-dimensional fluorescence difference gel electrophoresis. The expression of two proteins, one 32.4 kDa with an isoelectric point (pI) of 5.8 and the other 44.8 kDa with pI 4.0, were elevated during SD to 60, 100, and 200 meters sea water (msw). The expression of these proteins returned to pre-diving level when the SD training was completed. The two proteins were identified using in-gel digestion and mass spectrometric analysis; the 32.4 kDa protein was transthyretin and the 44.8 kDa protein was alpha-1-acid glycoprotein 1. Oxidation was detected at methionine 13 of transthyretin and at methionine 129 of alpha-1-acid glycoprotein 1 by tandem mass spectrometry. Moreover, haptoglobin was up-regulated during the decompression phase of 200 msw. These plasma proteins up-regulated during SD have a common function as anti-oxidants. This suggests that by coordinating their biological effects, these proteins activate a defense mechanism to counteract the effects of hyperbaric-hyperoxic conditions during SD.

  20. Up-Regulation of Antioxidant Proteins in the Plasma Proteome during Saturation Diving: Unique Coincidence under Hypobaric Hypoxia.

    Hideharu Domoto

    Full Text Available Saturation diving (SD is one of the safest techniques for tolerating hyperbaric conditions for long durations. However, the changes in the human plasma protein profile that occur during SD are unknown. To identify differential protein expression during or after SD, 65 blood samples from 15 healthy Japanese men trained in SD were analyzed by two-dimensional fluorescence difference gel electrophoresis. The expression of two proteins, one 32.4 kDa with an isoelectric point (pI of 5.8 and the other 44.8 kDa with pI 4.0, were elevated during SD to 60, 100, and 200 meters sea water (msw. The expression of these proteins returned to pre-diving level when the SD training was completed. The two proteins were identified using in-gel digestion and mass spectrometric analysis; the 32.4 kDa protein was transthyretin and the 44.8 kDa protein was alpha-1-acid glycoprotein 1. Oxidation was detected at methionine 13 of transthyretin and at methionine 129 of alpha-1-acid glycoprotein 1 by tandem mass spectrometry. Moreover, haptoglobin was up-regulated during the decompression phase of 200 msw. These plasma proteins up-regulated during SD have a common function as anti-oxidants. This suggests that by coordinating their biological effects, these proteins activate a defense mechanism to counteract the effects of hyperbaric-hyperoxic conditions during SD.

  1. Aspirin-triggered lipoxin A4 and lipoxin A4 up-regulate transcriptional corepressor NAB1 in human neutrophils.

    Qiu, F H; Devchand, P R; Wada, K; Serhan, C N

    2001-12-01

    Aspirin-triggered 15-epi-lipoxin A4 (ATL) is an endogenous lipid mediator that mimics the actions of native lipoxin A4, a putative "stop signal" involved in regulating resolution of inflammation. A metabolically more stable analog of ATL, 15-epi-16-(para-fluoro)-phenoxy-lipoxin A4 analog (ATLa), inhibits neutrophil recruitment in vitro and in vivo and displays potent anti-inflammatory actions. ATLa binds with high affinity to the lipoxin A4 receptor, a G protein-coupled receptor on the surface of leukocytes. In this study, we used freshly isolated human neutrophils to examine ATLa's potential for initiating rapid nuclear responses. Using differential display reverse transcription polymerase chain reaction, we identified a subset of genes that was selectively up-regulated upon short exposure of polymorphonuclear leukocytes to ATLa but not to the chemoattractant leukotriene B4 or vehicle alone. We further investigated ATLa regulation of one of the genes, NAB1, a transcriptional corepressor identified previously as a glucocorticoid-responsive gene in hamster smooth muscle cells. Treatment of human neutrophils with pertussis toxin blocked ATLa up-regulation of NAB1. In addition, ATLa stimulated NAB1 gene expression in murine lung vascular smooth muscle in vivo. These findings provide evidence for rapid transcriptional induction of a cassette of genes via an ATLa-stimulated G protein-coupled receptor pathway that is potentially protective and overlaps with the anti-inflammatory glucocorticoid regulatory circuit.

  2. Transcutaneous electrical nerve stimulation (TENS) improves the diabetic cytopathy (DCP) via up-regulation of CGRP and cAMP.

    Ding, Liucheng; Song, Tao; Yi, Chaoran; Huang, Yi; Yu, Wen; Ling, Lin; Dai, Yutian; Wei, Zhongqing

    2013-01-01

    The objective of this study was to investigate the effects and mechanism of Transcutaneous Electrical Nerve Stimulation (TENS) on the diabetic cytopathy (DCP) in the diabetic bladder. A total of 45 rats were randomly divided into diabetes mellitus (DM)/TENS group (n=15), DM group (n=15) and control group (n=15). The rats in the DM/TENS and TENS groups were electronically stimulated (stimulating parameters: intensity-31 V, frequency-31 Hz, and duration of stimulation of 15 min) for three weeks. Bladder histology, urodynamics and contractile responses to field stimulation and carbachol were determined. The expression of calcitonin gene-related peptide (CGRP) was analyzed by RT-PCR and Western blotting. The results showed that contractile responses of the DM rats were ameliorated after 3 weeks of TENS. Furthermore, TENS significantly increased bladder wet weight, volume threshold for micturition and reduced PVR, V% and cAMP content of the bladder. The mRNA and protein levels of CGRP in dorsal root ganglion (DRG) in the DM/TENS group were higher than those in the DM group. TENS also significantly up-regulated the cAMP content in the bladder body and base compared with diabetic rats. We conclude that TENS can significantly improve the urine contractility and ameliorate the feeling of bladder fullness in DM rats possibly via up-regulation of cAMP and CGRP in DRG.

  3. Up-regulation of P-glycoprotein expression by catalase via JNK activation in HepG2 cells.

    Li, Lin; Xu, Jianfeng; Min, Taishan; Huang, Weida

    2006-01-01

    Overexpression of the MDR1 gene is one of the reasons for multidrug resistance (MDR). Some studies suggested that antioxidants could down-regulate MDR1 expression as a possible cancer treatment. In this report, we try to determine the effects of antioxidants (catalase or N-acetylcysteine [NAC]) on the regulation of intrinsic MDR1 overexpression in HepG2 cells. Adding catalase or N-acetylcysteine to the HepG2 culture led to a significant increase of MDR1 mRNA and P-glycoprotein drug transporter activity. After catalase or NAC treatment, a reduced intracellular reactive oxygen species (ROS) was observed. The JNK inhibitor SP600125 abolished the positive effects of catalase on drug transporter activity in a dose-dependent manner. Furthermore, the up-regulation of P-glycoprotein functions by catalase was only observed in HepG2 cells but not in other cell lines tested (MCF-7, A549, A431). These data suggested that catalase can up-regulate P-glycoprotein expression in HepG2 cells via reducing intracellular ROS, and JNK may mediate this process.

  4. Demethoxycurcumin inhibited human epithelia ovarian cancer cells' growth via up-regulating miR-551a.

    Du, Zhenhua; Sha, Xianqun

    2017-03-01

    Curcumin is a natural agent that has ability to dampen tumor cells' growth. However, the natural form of curcumin is prone to degrade and unstable in vitro. Here, we demonstrated that demethoxycurcumin (a curcumin-related demethoxy compound) could inhibit cell proliferation and induce apoptosis of ovarian cancer cells. Moreover, IRS2/PI3K/Akt axis was inactivated in cells treated with demethoxycurcumin. Quantitative real-time reverse transcription polymerase chain reaction demonstrated that miR-551a was down-regulated in ovarian cancer tissues and ovarian cancer cell lines. Over-expression of miR-551a inhibited cell proliferation and induced apoptosis of ovarian cancer cells, whereas down-regulation of miR-551a exerted the opposite function. Luciferase assays confirmed that there was a binding site of miR-551a in IRS2, and we found that miR-551a exerted tumor-suppressive function by targeting IRS2 in ovarian cancer cells. Remarkably, miR-551a was up-regulated in the cells treated with demethoxycurcumin, and demethoxycurcumin suppressed IRS2 by restoration of miR-551a. In conclusion, demethoxycurcumin hindered ovarian cancer cells' malignant progress via up-regulating miR-551a.

  5. Putative midkine family protein up-regulation in Patella caerulea (Mollusca, Gastropoda) exposed to sublethal concentrations of cadmium

    Vanucci, Silvana; Minerdi, Daniela; Kadomatsu, Kenji; Mengoni, Alessio; Bazzicalupo, Marco

    2005-01-01

    A cDNA sequence of a putative midkine (MK) family protein was identified and characterised in the mollusc Patella caerulea. The midkine family consists of two members, midkine and pleiotrophin (PTN), and it is one of the recently discovered cytokines. Our results show that this putative midkine protein is up-regulated in specimens of P. caerulea exposed to sublethal cadmium concentrations (i.e. 0.5 and 1 mg l -1 Cd) over a 10-day exposure period. Semiquantitative RT-PCR and quantitative Real time RT-PCR estimations indicate elevated expression of midkine mRNA in exposed specimens compared to controls. Moreover, RT-PCR Real time values were higher in the viscera (here defined as the part of the soft tissue including digestive gland plus gills) than in the foot (i.e. foot plus head plus heart) of the limpets. At present, information on the functional signalling significance of the midkine family proteins suggests that the up-regulation of P. caerulea putative midkine family protein is a distress signal likely with informative value on health status of the organism and with potential prognostic capability

  6. Lactate up-regulates the expression of lactate oxidation complex-related genes in left ventricular cardiac tissue of rats.

    Daniele Gabriel-Costa

    Full Text Available Besides its role as a fuel source in intermediary metabolism, lactate has been considered a signaling molecule modulating lactate-sensitive genes involved in the regulation of skeletal muscle metabolism. Even though the flux of lactate is significantly high in the heart, its role on regulation of cardiac genes regulating lactate oxidation has not been clarified yet. We tested the hypothesis that lactate would increase cardiac levels of reactive oxygen species and up-regulate the expression of genes related to lactate oxidation complex.Isolated hearts from male adult Wistar rats were perfused with control, lactate or acetate (20mM added Krebs-Henseleit solution during 120 min in modified Langendorff apparatus. Reactive oxygen species (O2●-/H2O2 levels, and NADH and NADPH oxidase activities (in enriched microsomal or plasmatic membranes, respectively were evaluated by fluorimetry while SOD and catalase activities were evaluated by spectrophotometry. mRNA levels of lactate oxidation complex and energetic enzymes MCT1, MCT4, HK, LDH, PDH, CS, PGC1α and COXIV were quantified by real time RT-PCR. Mitochondrial DNA levels were also evaluated. Hemodynamic parameters were acquired during the experiment. The key findings of this work were that lactate elevated cardiac NADH oxidase activity but not NADPH activity. This response was associated with increased cardiac O2●-/H2O2 levels and up-regulation of MCT1, MCT4, LDH and PGC1α with no changes in HK, PDH, CS, COXIV mRNA levels and mitochondrial DNA levels. Lactate increased NRF-2 nuclear expression and SOD activity probably as counter-regulatory responses to increased O2●-/H2O2.Our results provide evidence for lactate-induced up-regulation of lactate oxidation complex associated with increased NADH oxidase activity and cardiac O2●-/H2O2 driving to an anti-oxidant response. These results unveil lactate as an important signaling molecule regulating components of the lactate oxidation complex in

  7. BAY61-3606 potentiates the anti-tumor effects of TRAIL against colon cancer through up-regulating DR4 and down-regulating NF-κB.

    Du, Jipei; Wang, Yufang; Chen, Degao; Ji, Guangyu; Ma, Qizhao; Liao, Shiping; Zheng, Yanjiang; Zhang, Ji; Hou, Yiping

    2016-12-28

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is well known for its ability to preferentially induce apoptosis in malignant cells without causing damage to most normal cells. However, inherent and acquired resistance of tumor to TRAIL-induced apoptosis limits its therapeutic applicability. Here we show that the orally available tyrosine kinase inhibitor, BAY61-3606, enhances the sensitivity of human colon cancer cells, especially those harboring active mutations in Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) gene, to TRAIL-induced apoptosis in vitro and in vivo. The sensitization was achieved by up-regulating death receptor 4 (DR4) and the tumor suppressor p53. BAY61-3606-induced the up-regulation of DR4 is p53-dependent. Knockout of p53 decreased BAY61-3606-induced DR4 expression and inhibited the effect of BAY61-3606 on TRAIL-induced apoptosis. In addition, BAY61-3606 suppressed activity of NF-κB and regulated its gene products, which might also contribute to TRAIL-induced apoptosis. In conclusion, our results showed that BAY61-3606 sensitizes colon cancer cells to TRAIL-induced apoptosis via up-regulating DR4 expression in p53-dependent manner and inhibiting NF-κB activity, suggesting that the combination of TRAIL and BAY61-3606 may be a promising therapeutic approach in the treatment of colon cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Deleted in Malignant Brain Tumors 1 is up-regulated in bacterial endocarditis and binds to components of vegetations

    Müller, Hanna; Renner, Marcus; Helmke, Burkhard M

    2009-01-01

    OBJECTIVE: Bacterial endocarditis is a frequent infectious cardiac disease, especially in patients with congenital or acquired heart defects. It is characterized by bacterial colonization of the heart valves and the appearance of vegetations consisting of fibrin, blood cells, and bacteria....... The glycoprotein Deleted in Malignant Brain Tumors 1 is a scavenger receptor cysteine-rich protein with functions in innate immunity and epithelial differentiation. Because of the aggregating capacity of Deleted in Malignant Brain Tumors 1, we hypothesized that an up-regulation in bacterial endocarditis may...... be linked to the development of vegetations. METHODS: Heart tissue of 19 patients with bacterial endocarditis and 10 controls without bacterial endocarditis was analyzed by immunohistochemistry. The effect of human recombinant Deleted in Malignant Brain Tumors 1 on erythrocyte aggregation was measured using...

  9. End-Binding Protein 1 (EB1) Up-regulation is an Early Event in Colorectal Carcinogenesis

    Stypula-Cyrus, Yolanda; Mutyal, Nikhil N.; Cruz, Mart Angelo Dela; Kunte, Dhananjay P.; Radosevich, Andrew J.; Wali, Ramesh; Roy, Hemant K.; Backman, Vadim

    2014-01-01

    End-binding protein (EB1) is a microtubule protein that binds to the tumor suppressor adenomatous polyposis coli (APC). While EB1 is implicated as a potential oncogene, its role in cancer progression is unknown. Therefore, we analyzed EB1/APC expression at the earliest stages of colorectal carcinogenesis and in the uninvolved mucosa ("field effect") of human and animal tissue. We also performed siRNA-knockdown in colon cancer cell lines. EB1 is up-regulated in early and field carcinogenesis in the colon, and the cellular/nano-architectural effect of EB1 knockdown depended on the genetic context. Thus, dysregulation of EB1 is an important early event in colon carcinogenesis. PMID:24492008

  10. Differences in the time course of haloperidol-induced up-regulation of rat striatal and mesolimbic dopamine receptors

    Prosser, E.S.; Csernansky, J.G.; Hollister, L.E.

    1988-01-01

    Regional differences in the onset and persistence of increased dopamine D2 receptor density in rat brain were studied following daily injections of haloperidol for 3, 7, 14, or 28 days. Striatal [ 3 H]-spiroperidol Bmax values were significantly increased following 3 - 28 days of haloperidol treatment, as compared to saline controls. Olfactory tubercle Bmax values were significantly increased only after 14 or 28 days of haloperidol treatment. Nucleus accumbens Bmax values were significantly increased only in the 14-day drug treatment group, suggesting that dopamine D2 receptor up-regulation in nucleus accumbens may reverse during ongoing neuroleptic treatment. These findings suggest that important differences in adaptive responses to chronic dopamine blockade may exist between dopaminergic synapses located in various rat brain regions

  11. Cobalt-chromium-molybdenum alloy causes metal accumulation and metallothionein up-regulation in rat liver and kidney

    Jakobsen, Stig Storgaard; Danscher, Gorm; Stoltenberg, Meredin

    2007-01-01

    in liver and kidney. We found that metal ions are liberated from CoCrMo alloys and suggest that they are released by dissolucytosis, a process where macrophages causes the metallic surface to release metal ions. Animals with intramuscular implants accumulated metal in liver and kidney and metallohionein I....../II were elevated in liver tissue. The present data do not tell whether kidney and liver are the primary target organs or what possible toxicological effect the different metal ions might have, but they show that metal ions are liberated from CoCrMo alloys that are not subjected to mechanical wear...... and that they accumulate in liver and kidney tissue. That the liberated metal ions affect the tissues is supported by an up-regulation of the detoxifying/pacifying metalloprotein I/II in the liver. Udgivelsesdato: 2007-Dec...

  12. Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4.

    Schuette, Verena; Embgenbroich, Maria; Ulas, Thomas; Welz, Meike; Schulte-Schrepping, Jonas; Draffehn, Astrid M; Quast, Thomas; Koch, Katharina; Nehring, Melanie; König, Jessica; Zweynert, Annegret; Harms, Frederike L; Steiner, Nancy; Limmer, Andreas; Förster, Irmgard; Berberich-Siebelt, Friederike; Knolle, Percy A; Wohlleber, Dirk; Kolanus, Waldemar; Beyer, Marc; Schultze, Joachim L; Burgdorf, Sven

    2016-09-20

    The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8(+) T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality.

  13. Neutral endopeptidase up-regulation in isolated human umbilical artery: involvement in desensitization of bradykinin-induced vasoconstrictor effects.

    Pelorosso, Facundo Germán; Halperin, Ana Verónica; Palma, Alejandro Martín; Nowak, Wanda; Errasti, Andrea Emilse; Rothlin, Rodolfo Pedro

    2007-02-01

    Previous reports show that bradykinin B(2) receptors mediate contractile responses induced by bradykinin (BK) in human umbilical artery (HUA). However, although it has been reported that BK-induced responses can desensitize in several inflammatory models, the effects of prolonged in vitro incubation on BK-induced vasoconstriction in HUA have not been studied. In isolated HUA rings, BK-induced responses after a 5-h in vitro incubation showed a marked desensitization compared with responses at 2 h. Inhibition of either angiotensin-converting enzyme (ACE) or neutral endopeptidase (NEP), both BK-inactivating enzymes, failed to modify responses to BK at 2 h. After 5 h, ACE inhibition produced only a slight potentiation of BK-induced responses. In contrast, BK-induced vasoconstriction at 5 h was markedly potentiated by NEP inhibition. Moreover, NEP activity, measured by hydrolysis of its synthetic substrate (Z-Ala-Ala-Leu-p-nitroanilide), showed a 2.4-fold increase in 5-h incubated versus 2-h incubated tissues, which was completely reversed by cycloheximide (CHX) treatment. Furthermore, CHX significantly potentiated BK-induced responses, suggesting that NEP-mediated kininase activity increase at 5 h depends on de novo protein synthesis. In addition, under NEP inhibition, CHX treatment failed to produce an additional potentiation of BK-induced vasoconstriction. Still, NEP up-regulation was confirmed by Western blot, showing a 2.1-fold increase in immunoreactive NEP in 5-h incubated versus 2-h incubated HUA. In summary, the present study provides strong pharmacological evidence that NEP is up-regulated and plays a key role in desensitization of BK-induced vasoconstriction after prolonged in vitro incubation in HUA. Our results provide new insights into the possible mechanisms involved in BK-induced response desensitization during sustained inflammatory conditions.

  14. Beta- Lactam Antibiotics Stimulate Biofilm Formation in Non-Typeable Haemophilus influenzae by Up-Regulating Carbohydrate Metabolism

    Wu, Siva; Li, Xiaojin; Gunawardana, Manjula; Maguire, Kathleen; Guerrero-Given, Debbie; Schaudinn, Christoph; Wang, Charles; Baum, Marc M.; Webster, Paul

    2014-01-01

    Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended. PMID:25007395

  15. Expression of GIMAP1, a GTPase of the immunity-associated protein family, is not up-regulated in malaria

    Carter Christine

    2009-04-01

    Full Text Available Abstract Background GIMAP (GTPase of the immunity-associated protein family proteins are a family of putative GTPases believed to be regulators of cell death in lymphomyeloid cells. GIMAP1 was the first reported member of this gene family, identified as a gene up-regulated at the RNA level in the spleens of mice infected with the malarial parasite, Plasmodium chabaudi. Methods A monoclonal antibody against mouse GIMAP1 was developed and was used to analyse the expression of the endogenous protein in tissues of normal mice and in defined sub-populations of cells prepared from lymphoid tissues using flow cytometry. It was also used to assess the expression of GIMAP1 protein after infection and/or immunization of mice with P. chabaudi. Real-time PCR analysis was employed to measure the expression of GIMAP1 for comparison with the protein level analysis. Results GIMAP1 protein expression was detected in all lineages of lymphocytes (T, B, NK, in F4/80+ splenic macrophages and in some lymphoid cell lines. Additional evidence is presented suggesting that the strong expression by mature B cells of GIMAP1 and other GIMAP genes and proteins seen in mice may be a species-dependent characteristic. Unexpectedly, no increase was found in the expression of GIMAP1 in P. chabaudi infected mice at either the mRNA or protein level, and this remained so despite applying a number of variations to the protocol. Conclusion The model of up-regulation of GIMAP1 in response to infection/immunization with P. chabaudi is not a robustly reproducible experimental system. The GIMAP1 protein is widely expressed in lymphoid cells, with an interesting increase in expression in the later stages of B cell development. Alternative approaches will be required to define the functional role of this GTPase in immune cells.

  16. Atorvastatin and fenofibrate increase apolipoprotein AV and decrease triglycerides by up-regulating peroxisome proliferator-activated receptor-α

    Huang, Xian-sheng; Zhao, Shui-ping; Bai, Lin; Hu, Min; Zhao, Wang; Zhang, Qian

    2009-01-01

    Background and purpose: Combining statin and fibrate in clinical practice provides a greater reduction of triglycerides than either drug given alone, but the mechanism for this effect is poorly understood. Apolipoprotein AV (apoAV) has been implicated in triglyceride metabolism. This study was designed to investigate the effect of the combination of statin and fibrate on apoAV and the underlying mechanism(s). Experimental approach: Hypertriglyceridaemia was induced in rats by giving them 10% fructose in drinking water for 2 weeks. They were then treated with atorvastatin, fenofibrate or the two agents combined for 4 weeks, and plasma triglyceride and apoAV measured. We also tested the effects of these two agents on triglycerides and apoAV in HepG2 cells in culture. Western blot and reverse transcription polymerase chain reaction was used to measure apoAV and peroxisome proliferator-activated receptor-α (PPARα) expression. Key results: The combination of atorvastatin and fenofibrate resulted in a greater decrease in plasma triglycerides and a greater increase in plasma and hepatic apoAV than either agent given alone. Hepatic expression of the PPARα was also more extensively up-regulated in rats treated with the combination. A similar, greater increase in apoAV and a greater decrease in triglycerides were observed following treatment of HepG2 cells pre-exposed to fructose), with the combination. Adding an inhibitor of PPARα (MK886) abolished the effects of atorvastatin on HepG2 cells. Conclusions and implications: A combination of atorvastatin and fenofibrate increased apoAV and decreased triglycerides through up-regulation of PPARα. PMID:19694729

  17. Up-regulation of hepatic Acyl CoA: Diacylglycerol acyltransferase-1 (DGAT-1) expression in nephrotic syndrome.

    Vaziri, Nosratola D; Kim, Choong H; Phan, Dennis; Kim, Sara; Liang, Kaihui

    2004-07-01

    Nephrotic syndrome is associated with hypercholesterolemia, hypertriglyceridemia, and marked elevations of plasma low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL). Hypertriglyceridemia in nephrotic syndrome is accompanied by increased hepatic fatty acid synthesis, elevated triglyceride secretion, as well as lipoprotein lipase, VLDL-receptor, and hepatic triglyceride lipase deficiencies, which lead to impaired clearance of triglyceride-rich lipoproteins. Acyl CoA: diacylglycerol acyltransferase (DGAT) is a microsomal enzyme that joins acyl CoA to 1, 2-diacylglycerol to form triglyceride. Two distinct DGATs (DGAT-1 and DGAT2) have recently been identified in the liver and other tissues. The present study tested the hypothesis that the reported increase in hepatic triglyceride secretion in nephrotic syndrome may be caused by up-regulation of DGAT. Male Sprague-Dawley rats were rendered nephrotic by two sequential injections of puromycin aminonucleoside (130 mg/kg on day 1 and 60 mg/kg on day 14) and studied on day 30. Placebo-treated rats served as controls. Hepatic DGAT-1 and DGAT-2 mRNA abundance and enzymatic activity were measured. The nephrotic group exhibited heavy proteinuria, hypoalbuminemia, hypercholesterolemia, hypertriglyceridemia, and marked elevation of VLDL concentration. Hepatic DGAT-1 mRNA, DGAT-1, and total DGAT activity were significantly increased, whereas DGAT-2 mRNA abundance and activity were unchanged in the nephrotic rats compared to the control animals. The functional significance of elevation of DGAT activity was illustrated by the reduction in microsomal free fatty acid concentration in the liver of nephrotic animals. Nephrotic syndrome results in up-regulation of hepatic DGAT-1 expression and activity, which can potentially contribute to the associated hypertriglyceridemia by enhancing triglyceride synthesis. Thus, it appears that both depressed catabolism and increased synthetic capacity contribute to

  18. Curcumin attenuates morphine antinociceptive tolerance through suppressing up-regulation of spinal Toll-like receptor 4 in rats

    Fei GAO

    2017-12-01

    Full Text Available Objective To investigate the effects of curcumin (Cur on activation of spinal Toll-like receptor 4 (TLR4 and on the chronic antinociceptive tolerance of morphine. Methods Sixty male Sprague-Dawley rats with successful intrathecal catheterization were randomly divided into four groups (n=15: saline (NS group; morphine (MOR group; curcumin (Cur group and morphine plus curcumin (MOR+Cur group. A morphine tolerance model of rats was induced by intrathecal injection of morphine 15μg, once a day for 7 consecutive days in MOR and MOR+Cur group; 100μg curcumin was administered intrathecally once a day for 7 consecutive days in Cur and MOR+Cur group, 10μl saline was administered intrathecally once a day for 7 consecutive days in NS group. The effect of curcumin intrathecal catheterization on morphine antinociceptive tolerance was explored by the tail flick latency (TFL method and mechanical withdrawal threshold (MWT, and then the maximum possible potential effect (MPE was calculated. The immunofluorescence staining method was applied to detect the effect of curcumin on the activation of lumbar spinal microglia. Real-time PCR and Western blotting were used to evaluate the effect of curcumin on the expression of mRNA and protein of spinal TLR4. Results The %MPE TFL and %MPE MWT increased significantly in MOR+Cur group than in MOR group (P0.05. The lumbar spinal microglia increased markedly and the expressions of polyclonal antibody IBA-1 and TLR4 were significantly up-regulated in MOR group than in NS group (P0.05. Conclusion Curcumin may attenuate chronic morphine antinociceptive tolerance through inhibiting spinal TLR4 up-regulation. DOI: 10.11855/j.issn.0577-7402.2017.12.06

  19. Selective up-regulation of NMDA-NR1 receptor expression in myenteric plexus after TNBS induced colitis in rats

    Price Donald D

    2006-01-01

    Full Text Available Abstract Background N-methyl-D-aspartic acid (NMDA spinal cord receptors play an important role in the development of hyperalgesia following inflammation. It is unclear, however, if changes in NMDA subunit receptor gene expression in the colonic myenteric plexus are associated with colonic inflammation. We investigated regulation of NMDA-NR1 receptor gene expression in TNBS induced colitis in rats. Male Sprague-Dawley rats (150 g–250 g were treated with 20 mg trinitrobenzene sulfonic acid (TNBS diluted in 50% ethanol. The agents were delivered with a 24 gauge catheter inserted into the lumen of the colon. The animals were sacrificed at 2, 7, 14, 21, and 28 days after induction of the colitis, their descending colon was retrieved for reverse transcription-polymerase chain reaction; a subset of animals' distal colon was used for two-dimensional (2-D western analysis and immunocytochemistry. Results NR1-exon 5 (N1 and NR1-exon 21 (C1 appeared 14, 21 and 28 days after TNBS treatment. NR1 pan mRNA was up-regulated at 14, 21, and 28 days. The NR1-exon 22 (C2 mRNA did not show significant changes. Using 2-D western analysis, untreated control rats were found to express only NR1001 whereas TNBS treated rats expressed NR1001, NR1011, and NR1111. Immunocytochemistry demonstrated NR1-N1 and NR1-C1 to be present in the myenteric plexus of TNBS treated rats. Conclusion These results suggest a role for colonic myenteric plexus NMDA receptors in the development of neuronal plasticity and visceral hypersensitivity in the colon. Up-regulation of NMDA receptor subunits may reflect part of the basis for chronic visceral hypersensitivity in conditions such as post-infectious irritable bowel syndrome.

  20. Beta- lactam antibiotics stimulate biofilm formation in non-typeable haemophilus influenzae by up-regulating carbohydrate metabolism.

    Siva Wu

    Full Text Available Non-typeable Haemophilus influenzae (NTHi is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended.

  1. Transcriptional up-regulation of restin by all-trans retinoic acid through STAT1 in cancer cell differentiation process

    Fu Haiyan; Yang Guodong; Lu Fan; Wang Ruihua; Yao Libo; Lu Zifan

    2006-01-01

    RESTIN, a member of the melanoma-associated antigen superfamily, is a nuclear protein induced by atRA (all-trans retinoic acid) in HL60 cells. HeLa cells stably transfected with restin results in G1 cell cycle arrest. How this gene is regulated by atRA in the cell differentiation process is still unclear. In this study, we observed that up-regulation of restin was present during the atRA-induced HL60 cell differentiation process, suggesting the functional relevance between RESTIN and atRA-induced cellular effects. In order to further define the transcriptional regulation of restin by atRA, we analyzed the promoter region of restin. About 2.1 kb 5' flanking sequence of this gene was cloned into vector pGL3 and its core promoter region was identified through systemic deletions. Interestingly, restin promoter containing several potential consensus-binding sites of STAT-1α was activated by atRA in ER + MCF-7 cells but not in ER - MDA-MB-231 cells, over-expression of STAT-1α in latter rescued the activation effect of restin promoter in response to atRA and IFNγ. Our evidence supported that STAT-1α plays an important role in the atRA-induced transcriptional up-regulation of restin, which was associated with the atRA-induced HL60 cell differentiation and potentially mediated the downstream effects of atRA signal pathway via STAT-1α in some cancer cells

  2. Direct interaction of CaVβ with actin up-regulates L-type calcium currents in HL-1 cardiomyocytes.

    Stölting, Gabriel; de Oliveira, Regina Campos; Guzman, Raul E; Miranda-Laferte, Erick; Conrad, Rachel; Jordan, Nadine; Schmidt, Silke; Hendriks, Johnny; Gensch, Thomas; Hidalgo, Patricia

    2015-02-20

    Expression of the β-subunit (CaVβ) is required for normal function of cardiac L-type calcium channels, and its up-regulation is associated with heart failure. CaVβ binds to the α1 pore-forming subunit of L-type channels and augments calcium current density by facilitating channel opening and increasing the number of channels in the plasma membrane, by a poorly understood mechanism. Actin, a key component of the intracellular trafficking machinery, interacts with Src homology 3 domains in different proteins. Although CaVβ encompasses a highly conserved Src homology 3 domain, association with actin has not yet been explored. Here, using co-sedimentation assays and FRET experiments, we uncover a direct interaction between CaVβ and actin filaments. Consistently, single-molecule localization analysis reveals streaklike structures composed by CaVβ2 that distribute over several micrometers along actin filaments in HL-1 cardiomyocytes. Overexpression of CaVβ2-N3 in HL-1 cells induces an increase in L-type current without altering voltage-dependent activation, thus reflecting an increased number of channels in the plasma membrane. CaVβ mediated L-type up-regulation, and CaVβ-actin association is prevented by disruption of the actin cytoskeleton with cytochalasin D. Our study reveals for the first time an interacting partner of CaVβ that is directly involved in vesicular trafficking. We propose a model in which CaVβ promotes anterograde trafficking of the L-type channels by anchoring them to actin filaments in their itinerary to the plasma membrane. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Direct Interaction of CaVβ with Actin Up-regulates L-type Calcium Currents in HL-1 Cardiomyocytes*

    Stölting, Gabriel; de Oliveira, Regina Campos; Guzman, Raul E.; Miranda-Laferte, Erick; Conrad, Rachel; Jordan, Nadine; Schmidt, Silke; Hendriks, Johnny; Gensch, Thomas; Hidalgo, Patricia

    2015-01-01

    Expression of the β-subunit (CaVβ) is required for normal function of cardiac L-type calcium channels, and its up-regulation is associated with heart failure. CaVβ binds to the α1 pore-forming subunit of L-type channels and augments calcium current density by facilitating channel opening and increasing the number of channels in the plasma membrane, by a poorly understood mechanism. Actin, a key component of the intracellular trafficking machinery, interacts with Src homology 3 domains in different proteins. Although CaVβ encompasses a highly conserved Src homology 3 domain, association with actin has not yet been explored. Here, using co-sedimentation assays and FRET experiments, we uncover a direct interaction between CaVβ and actin filaments. Consistently, single-molecule localization analysis reveals streaklike structures composed by CaVβ2 that distribute over several micrometers along actin filaments in HL-1 cardiomyocytes. Overexpression of CaVβ2-N3 in HL-1 cells induces an increase in L-type current without altering voltage-dependent activation, thus reflecting an increased number of channels in the plasma membrane. CaVβ mediated L-type up-regulation, and CaVβ-actin association is prevented by disruption of the actin cytoskeleton with cytochalasin D. Our study reveals for the first time an interacting partner of CaVβ that is directly involved in vesicular trafficking. We propose a model in which CaVβ promotes anterograde trafficking of the L-type channels by anchoring them to actin filaments in their itinerary to the plasma membrane. PMID:25533460

  4. Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica.

    Zhu, Fang; Li, Ting; Zhang, Lee; Liu, Nannan

    2008-09-25

    Insects may use various biochemical pathways to enable them to tolerate the lethal action of insecticides. For example, increased cytochrome P450 detoxification is known to play an important role in many insect species. Both constitutively increased expression (overexpression) and induction of P450s are thought to be responsible for increased levels of detoxification of insecticides. However, unlike constitutively overexpressed P450 genes, whose expression association with insecticide resistance has been extensively studied, the induction of P450s is less well characterized in insecticide resistance. The current study focuses on the characterization of individual P450 genes that are induced in response to permethrin treatment in permethrin resistant house flies. The expression of 3 P450 genes, CYP4D4v2, CYP4G2, and CYP6A38, was co-up-regulated by permethrin treatment in permethrin resistant ALHF house flies in a time and dose-dependent manner. Comparison of the deduced protein sequences of these three P450s from resistant ALHF and susceptible aabys and CS house flies revealed identical protein sequences. Genetic linkage analysis located CYP4D4v2 and CYP6A38 on autosome 5, corresponding to the linkage of P450-mediated resistance in ALHF, whereas CYP4G2 was located on autosome 3, where the major insecticide resistance factor(s) for ALHF had been mapped but no P450 genes reported prior to this study. Our study provides the first direct evidence that multiple P450 genes are co-up-regulated in permethrin resistant house flies through the induction mechanism, which increases overall expression levels of P450 genes in resistant house flies. Taken together with the significant induction of CYP4D4v2, CYP4G2, and CYP6A38 expression by permethrin only in permethrin resistant house flies and the correlation of the linkage of the genes with resistance and/or P450-mediated resistance in resistant ALHF house flies, this study sheds new light on the functional importance of P450

  5. Increased F3-Isoprostanes in the Canadian Inuit Population Could Be Cardioprotective by Limiting F2-Isoprostane Production.

    Alkazemi, Dalal; Jackson, Robert L; Chan, Hing Man; Kubow, Stan

    2016-09-01

    F3-isoprostanes (F3-IsoPs), derived from peroxidation of eicosapentaenoic acid (C20:5n-3), could be cardioprotective by limiting production of F2-isoprostanes (F2-IsoPs), a cardiovascular disease risk factor. The objective of the study was to determine whether the n-3-polyunsaturated (PUFA)-rich Inuit diet is associated with a lower plasma ratio of F2-IsoPs to F3-IsoPs. This was a cross-sectional observational study. The study was conducted in 36 Canadian Arctic Inuit communities. Participants included a random subset (n = 233) of Inuit adults taken from a population-based survey. Plasma F2-IsoPs and F3-IsoPs, cardiometabolic risk factors (blood lipids, C-reactive protein, blood pressure, fasting glucose) and markers of dietary exposure (erythrocyte n-3 and n-6 PUFA, blood levels of Se, mercury, polychlorinated biphenyls) were measured. Inuit aged 40 years old and older vs younger Inuit showed higher concentrations of plasma F3-IsoPs and erythrocyte n-3 PUFA and lower plasma F2-IsoPs concentrations despite having higher blood lipids, fasting glucose, systolic blood pressure, and percentage body fat. Plasma F3-IsoPs were not associated with any cardiometabolic measures. When subjects were categorized into tertiles according to total n-3 PUFA erythrocyte concentrations, F3-IsoPs increased with increasing tertiles, whereas the F2-IsoP to F3-IsoP ratio was lowest at the highest n-3 tertile. The F2-IsoP to F3-IsoP ratio was significantly predicted by C20:5n-3 (β= -.365, P = .002); C20:4n-6:C20:5n-3 (β = .056, P = .006), blood mercury (β = -.812, P =.015), blood Se (β = -1.95, P = .015), and smoking (β = .745, P = .025). Plasma F3-IsoPs were not associated with cardiometabolic risk factors previously seen with F2-IsoPs. Higher n-3 fatty acid status was associated with lower plasma F2-IsoPs and higher plasma F3-IsoPs, which provides partial explanation to the cardioprotective effects of the n-3 PUFA-rich Inuit diet.

  6. Cardioprotective effect of Erythrina stricta leaves on isoproterenol-induced myocardial infarction in rat

    Asokkumar Kuppusamy

    2010-03-01

    Full Text Available The cardioprotective activity of Erythrina stricta leaves against isoproterenol- induced myocardial infarction was studied. Wistar albino rats were pretreated with leaf extract (200 mg/kg daily for 28 days. After treatment, isoproterenol (8.5 mg/kg body weight, orally was injected to rats at an interval of 24 hours for two days to induce myocardial injury. Cardioprotection was investigated by estimating the activities of serum aminotransferase, lactate dehydrogenase and creatinine kinase. Antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione and thiobarbituric acid reactive substances were determined. The activities of serum marker enzymes were increased significantly (p<0.05 in isoproterenol-induced rats. E. stricta leaf extract showed a decrease in serum enzyme levels and increase of antioxidant status. The results were confirmed by histopathological evidences. The present study concludes that E. stricta leaf extract has a prophylactic value in myocardial infarction.

  7. Cardioprotective effect of Erythrina stricta leaves on isoproterenol-induced myocardial infarction in rat

    Divia Chirakkan

    2010-06-01

    Full Text Available The cardioprotective activity of Erythrina stricta leaves against isoproterenol- induced myocardial infarction was studied. Wistar albino rats were pretreated with leaf extract (200 mg/kg daily for 28 days. After treatment, isoproterenol (8.5 mg/kg body weight, orally was injected to rats at an interval of 24 hours for two days to induce myocardial injury. Cardioprotection was investigated by estimating the activities of serum aminotransferase, lactate dehydrogenase and creatinine kinase. Antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione and thiobarbituric acid reactive substances were determined. The activities of serum marker enzymes were increased significantly (p<0.05 in isoproterenol-induced rats. E. stricta leaf extract showed a decrease in serum enzyme levels and increase of antioxidant status. The results were confirmed by histopathological evidences. The present study concludes that E. stricta leaf extract has a prophylactic value in myocardial infarction.

  8. Cardioprotective effect of L-glutamate in obese type 2 diabetic Zucker fatty rats

    Povlsen, Jonas Agerlund; Løfgren, Bo; Rasmussen, Lars Ege

    2009-01-01

    (Wistar-Kyoto) and diabetic (Zucker diabetic fatty (ZDF)) rats, studied at 16 weeks of age. The infarct size (IS)/area-at-risk (AAR) ratio was the primary end-point. Expression of L-glutamate excitatory amino acid transporter (EAAT) 1 (mitochondrial) and EAAT3 (sarcolemmal) was determined by quantitative...... was downregulated in hearts from ZDF rats at both the mRNA and protein levels (P diabetic hearts (P obese diabetic rats have......1. Because diabetic hearts have an increased threshold for cardioprotection by ischaemic preconditioning (IPC), we hypothesized that protection by L-glutamate during reperfusion is restricted in Type 2 diabetic hearts. Previously, we found that L-glutamate-mediated postischaemic cardioprotection...

  9. Cardioprotective effect of L-glutamate in obese type 2 diabetic Zucker fatty rats

    Povlsen, Jonas Agerlund; Løfgren, Bo; Rasmussen, Lars Ege

    2009-01-01

    (Wistar-Kyoto) and diabetic (Zucker diabetic fatty (ZDF)) rats, studied at 16 weeks of age. The infarct size (IS)/area-at-risk (AAR) ratio was the primary end-point. Expression of L-glutamate excitatory amino acid transporter (EAAT) 1 (mitochondrial) and EAAT3 (sarcolemmal) was determined by quantitative......1. Because diabetic hearts have an increased threshold for cardioprotection by ischaemic preconditioning (IPC), we hypothesized that protection by L-glutamate during reperfusion is restricted in Type 2 diabetic hearts. Previously, we found that L-glutamate-mediated postischaemic cardioprotection...... mimics IPC. 2. Rat hearts were studied in a Langendorff preparation perfused with Krebs'-Henseleit solution and subjected to 40 min global no-flow ischaemia, followed by 120 min reperfusion. L-Glutamate (0, 15 and 30 mmol/L) was added to the perfusate during reperfusion of hearts from non-diabetic...

  10. Sarcolemmal cholesterol and caveolin-3 dependence of cardiac function, ischemic tolerance, and opioidergic cardioprotection

    See Hoe, Louise E.; Schilling, Jan M.; Tarbit, Emiri; Kiessling, Can J.; Busija, Anna R.; Niesman, Ingrid R.; Du Toit, Eugene; Ashton, Kevin J.; Roth, David M.; Headrick, John P.; Patel, Hemal H.

    2014-01-01

    Cholesterol-rich caveolar microdomains and associated caveolins influence sarcolemmal ion channel and receptor function and protective stress signaling. However, the importance of membrane cholesterol content to cardiovascular function and myocardial responses to ischemia-reperfusion (I/R) and cardioprotective stimuli are unclear. We assessed the effects of graded cholesterol depletion with methyl-β-cyclodextrin (MβCD) and lifelong knockout (KO) or overexpression (OE) of caveolin-3 (Cav-3) on cardiac function, I/R tolerance, and opioid receptor (OR)-mediated protection. Langendorff-perfused hearts from young male C57Bl/6 mice were untreated or treated with 0.02–1.0 mM MβCD for 25 min to deplete membrane cholesterol and disrupt caveolae. Hearts were subjected to 25-min ischemia/45-min reperfusion, and the cardioprotective effects of morphine applied either acutely or chronically [sustained ligand-activated preconditioning (SLP)] were assessed. MβCD concentration dependently reduced normoxic contractile function and postischemic outcomes in association with graded (10–30%) reductions in sarcolemmal cholesterol. Cardioprotection with acute morphine was abolished with ≥20 μM MβCD, whereas SLP was more robust and only inhibited with ≥200 μM MβCD. Deletion of Cav-3 also reduced, whereas Cav-3 OE improved, myocardial I/R tolerance. Protection via SLP remained equally effective in Cav-3 KO mice and was additive with innate protection arising with Cav-3 OE. These data reveal the membrane cholesterol dependence of normoxic myocardial and coronary function, I/R tolerance, and OR-mediated cardioprotection in murine hearts (all declining with cholesterol depletion). In contrast, baseline function appears insensitive to Cav-3, whereas cardiac I/R tolerance parallels Cav-3 expression. Novel SLP appears unique, being less sensitive to cholesterol depletion than acute OR protection and arising independently of Cav-3 expression. PMID:25063791

  11. Lowering the alcohol content of red wine does not alter its cardioprotective properties

    Lamont, Kim; Blackhurst, Dee; Albertyn, Zulfah; Marais, David; Lecour, Sandrine

    2012-01-01

    BACKGROUND: Many epidemiological, clinical and laboratory studies suggest that chronic and moderate consumption of red wine benefits cardiovascular health, because of the alcoholic content or the polyphenols/flavonoids. Aims. The antioxidant and cardioprotective properties of a French red wine (cabernet sauvignon, 12% alcohol by volume) were compared with those of the same wine subjected to reverse osmosis for partial removal of alcohol (6% alcohol by volume). METHODS: Antioxidant capacity wa...

  12. Cardioprotective Effects of Tualang Honey: Amelioration of Cholesterol and Cardiac Enzymes Levels

    Khalil, Md. Ibrahim; Tanvir, E. M.; Afroz, Rizwana; Sulaiman, Siti Amrah; Gan, Siew Hua

    2015-01-01

    The present study was designed to investigate the cardioprotective effects of Malaysian Tualang honey against isoproterenol- (ISO-) induced myocardial infarction (MI) in rats by investigating changes in the levels of cardiac marker enzymes, cardiac troponin I (cTnI), triglycerides (TG), total cholesterol (TC), lipid peroxidation (LPO) products, and antioxidant defense system combined with histopathological examination. Male albino Wistar rats (n = 40) were pretreated orally with Tualang honey...

  13. Metabolites derived from omega-3 polyunsaturated fatty acids are important for cardioprotection.

    Gilbert, Kim; Malick, Mandy; Madingou, Ness; Touchette, Charles; Bourque-Riel, Valérie; Tomaro, Leandro; Rousseau, Guy

    2015-12-15

    Although controversial, some data suggest that omega-3 polyunsaturated fatty acids (PUFA) are beneficial to cardiovascular diseases, and could reduce infarct size. In parallel, we have reported that the administration of Resolvin D1 (RvD1), a metabolite of docosahexaenoic acid, an omega-3 PUFA, can reduce infarct size. The present study was designed to determine if the inhibition of two important enzymes involved in the formation of RvD1 from omega-3 PUFA could reduce the cardioprotective effect of omega-3 PUFA. Sprague-Dawley rats were fed with a diet rich in omega-3 PUFA during 10 days before myocardial infarction (MI). Two days before MI, rats received a daily dose of Meloxicam, an inhibitor of cyclooxygenase-2, PD146176, an inhibitor of 15-lipoxygenase, both inhibitors or vehicle. MI was induced by the occlusion of the left coronary artery for 40min followed by reperfusion. Infarct size and neutrophil accumulation were evaluated after 24h of reperfusion while caspase-3, -8 and Akt activities were assessed at 30min of reperfusion. Rats receiving inhibitors, alone or in combination, showed a larger infarct size than those receiving omega-3 PUFA alone. Caspase-3 and -8 activities are higher in ischemic areas with inhibitors while Akt activity is diminished in groups treated with inhibitors. Moreover, the study showed that RvD1 restores cardioprotection when added to the inhibitors. Results from this study indicate that the inhibition of the metabolism of Omega-3 PUFA attenuate their cardioprotective properties. Then, resolvins seem to be an important mediator in the cardioprotection conferred by omega-3 PUFA in our experimental model of MI. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Two new phenolic constituents from the root bark of Morus alba L. and their cardioprotective activity.

    Cao, Yan-Gang; Zheng, Xiao-Ke; Yang, Fang-Fang; Li, Fang; Qi, Man; Zhang, Yan-Li; Zhao, Xuan; Kuang, Hai-Xue; Feng, Wei-Sheng

    2018-02-01

    A new biphenyl-furocoumarin, named morescoumarin A (1), and a new prenylated flavanone, named morflavanone A (2) were isolated from the root bark of Morus alba L., together with four known compounds (3-6). Their structures were determined by extensive spectroscopic analyses and comparison with literature data. The cardioprotective effects of these compounds against doxorubicin-induced cell death were evaluated by MTT method.

  15. Lowering the alcohol content of red wine does not alter its cardioprotective properties.

    Lamont, Kim; Blackhurst, Dee; Albertyn, Zulfah; Marais, David; Lecour, Sandrine

    2012-05-23

    Many epidemiological, clinical and laboratory studies suggest that chronic and moderate consumption of red wine benefits cardiovascular health, because of the alcoholic content or the polyphenols/flavonoids. The antioxidant and cardioprotective properties of a French red wine (cabernet sauvignon, 12% alcohol by volume) were compared with those of the same wine subjected to reverse osmosis for partial removal of alcohol (6% alcohol by volume). Antioxidant capacity was assessed in vitro using the oxygen radical absorbance capacity (ORAC) assay. To test the cardioprotective effect of 12% v. 6% wine, the drinking water of rats used for controls was supplemented with red wine (12% or 6%). After 10 days, hearts were isolated on a Langendorff system and subjected to 30 minutes of global ischaemia plus 30 minutes of reperfusion (I/R). No differences in antioxidant capacity were observed between wine of 12% and 6% alcohol content (n=8 per group). Control hearts subjected to I/R presented a rate pressure product (heart rate x left ventricular developed pressure, expressed as a percentage of baseline value) of 16±4% (mean±standard error). Pretreatment with wine 12% or 6% improved the rate pressure product to 40±6% and 43±6%, respectively (pwine did not alter its antioxidant and cardioprotective properties. Moderate and regular consumption of lower alcohol content wines may confer beneficial effects without the risks associated with traditional wines of higher alcohol content.

  16. Cardioprotective and Metabolomic Profiling of Selected Medicinal Plants against Oxidative Stress

    Nadia Afsheen

    2018-01-01

    Full Text Available In this research work, the antioxidant and metabolomic profiling of seven selected medicinally important herbs including Rauvolfia serpentina, Terminalia arjuna, Coriandrum sativum, Elettaria cardamom, Piper nigrum, Allium sativum, and Crataegus oxyacantha was performed. The in vivo cardioprotective potential of these medicinal plants was evaluated against surgically induced oxidative stress through left anterior descending coronary artery ligation (LADCA in dogs. The antioxidant profiling of these plants was done through DPPH and DNA protection assay. The C. oxyacantha and T. arjuna showed maximum antioxidant potential, while the E. cardamom showed poor antioxidative strength even at its high concentration. Different concentrations of extracts of the said plants exhibited the protection of plasmid DNA against H2O2 damage as compared to the plasmid DNA merely treated with H2O2. The metabolomic profiling through LC-MS analysis of these antioxidants revealed the presence of active secondary metabolites responsible for their antioxidant potential. During in vivo analysis, blood samples of all treatment groups were drawn at different time intervals to analyze the cardiac and hemodynamic parameters. The results depicted that the group pretreated with HC4 significantly sustained the level of CK-MB, SGOT, and LDH as well as hemodynamic parameters near to normal. The histopathological examination also confirmed the cardioprotective potential of HC4. Thus, the HC4 being safe and inexpensive cardioprotective herbal combination could be considered as an alternate of synthetic drugs.

  17. Cardioprotective and Metabolomic Profiling of Selected Medicinal Plants against Oxidative Stress

    Afsheen, Nadia; Jahan, Nazish; Ijaz, Misbah; Manzoor, Asad; Khan, Khalid Mahmood; Hina, Saman

    2018-01-01

    In this research work, the antioxidant and metabolomic profiling of seven selected medicinally important herbs including Rauvolfia serpentina, Terminalia arjuna, Coriandrum sativum, Elettaria cardamom, Piper nigrum, Allium sativum, and Crataegus oxyacantha was performed. The in vivo cardioprotective potential of these medicinal plants was evaluated against surgically induced oxidative stress through left anterior descending coronary artery ligation (LADCA) in dogs. The antioxidant profiling of these plants was done through DPPH and DNA protection assay. The C. oxyacantha and T. arjuna showed maximum antioxidant potential, while the E. cardamom showed poor antioxidative strength even at its high concentration. Different concentrations of extracts of the said plants exhibited the protection of plasmid DNA against H2O2 damage as compared to the plasmid DNA merely treated with H2O2. The metabolomic profiling through LC-MS analysis of these antioxidants revealed the presence of active secondary metabolites responsible for their antioxidant potential. During in vivo analysis, blood samples of all treatment groups were drawn at different time intervals to analyze the cardiac and hemodynamic parameters. The results depicted that the group pretreated with HC4 significantly sustained the level of CK-MB, SGOT, and LDH as well as hemodynamic parameters near to normal. The histopathological examination also confirmed the cardioprotective potential of HC4. Thus, the HC4 being safe and inexpensive cardioprotective herbal combination could be considered as an alternate of synthetic drugs. PMID:29576858

  18. A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel

    Andrew P. Wojtovich

    2013-03-01

    Full Text Available Opening of BK-type Ca2+ activated K+ channels protects the heart against ischemia-reperfusion (IR injury. However, the location of BK channels responsible for cardioprotection is debated. Herein we confirmed that openers of the SLO1 BK channel, NS1619 and NS11021, were protective in a mouse perfused heart model of IR injury. As anticipated, deletion of the Slo1 gene blocked this protection. However, in an isolated cardiomyocyte model of IR injury, protection by NS1619 and NS11021 was insensitive to Slo1 deletion. These data suggest that protection in intact hearts occurs by a non-cardiomyocyte autonomous, SLO1-dependent, mechanism. In this regard, an in-situ assay of intrinsic cardiac neuronal function (tachycardic response to nicotine revealed that NS1619 preserved cardiac neurons following IR injury. Furthermore, blockade of synaptic transmission by hexamethonium suppressed cardioprotection by NS1619 in intact hearts. These results suggest that opening SLO1 protects the heart during IR injury, via a mechanism that involves intrinsic cardiac neurons. Cardiac neuronal ion channels may be useful therapeutic targets for eliciting cardioprotection.

  19. High plasma concentrations of asymmetric dimethylarginine inhibit ischemic cardioprotection in hypercholesterolemic rats

    Landim, M.B.P.; Dourado, P.M.M.; Casella-Filho, A.; Chagas, A.C.P.; Luz, P.L. da

    2013-01-01

    A low concentration of nitric oxide associated with a high concentration of asymmetric dimethylarginine (ADMA) can explain the lack of ischemic cardioprotection observed in the presence of hypercholesterolemia. The objective of the present study was to evaluate the effect of hypercholesterolemia on ischemic pre- and postconditioning and its correlation with plasma concentrations of ADMA. Male Wistar rats (6-8 weeks old) fed a 2% cholesterol diet (n = 21) for 8 weeks were compared to controls (n = 25) and were subjected to experimental myocardial infarction and reperfusion, with ischemic pre- and postconditioning. Total cholesterol and ADMA were measured in plasma before the experimental infarct and the infarct area was quantified. Weight, total cholesterol and plasma ADMA (means ± SE; 1.20 ± 0.06, 1.27 ± 0.08 and 1.20 ± 0.08 vs 0.97 ± 0.04, 0.93 ± 0.05 and 0.97 ± 0.04 µM) were higher in animals on the hypercholesterolemic diet than in controls, respectively. Cardioprotection did not reduce infarct size in the hypercholesterolemic animals (pre: 13.55% and post: 8% compared to 7.95% observed in the group subjected only to ischemia and reperfusion), whereas infarct size was reduced in the animals on a normocholesterolemic diet (pre: 8.25% and post: 6.10% compared to 12.31%). Hypercholesterolemia elevated ADMA and eliminated the cardioprotective effects of ischemic pre- and postconditioning in rats

  20. High plasma concentrations of asymmetric dimethylarginine inhibit ischemic cardioprotection in hypercholesterolemic rats

    Landim, M.B.P.; Dourado, P.M.M.; Casella-Filho, A.; Chagas, A.C.P.; Luz, P.L. da [Unidade de Aterosclerose, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2013-05-10

    A low concentration of nitric oxide associated with a high concentration of asymmetric dimethylarginine (ADMA) can explain the lack of ischemic cardioprotection observed in the presence of hypercholesterolemia. The objective of the present study was to evaluate the effect of hypercholesterolemia on ischemic pre- and postconditioning and its correlation with plasma concentrations of ADMA. Male Wistar rats (6-8 weeks old) fed a 2% cholesterol diet (n = 21) for 8 weeks were compared to controls (n = 25) and were subjected to experimental myocardial infarction and reperfusion, with ischemic pre- and postconditioning. Total cholesterol and ADMA were measured in plasma before the experimental infarct and the infarct area was quantified. Weight, total cholesterol and plasma ADMA (means ± SE; 1.20 ± 0.06, 1.27 ± 0.08 and 1.20 ± 0.08 vs 0.97 ± 0.04, 0.93 ± 0.05 and 0.97 ± 0.04 µM) were higher in animals on the hypercholesterolemic diet than in controls, respectively. Cardioprotection did not reduce infarct size in the hypercholesterolemic animals (pre: 13.55% and post: 8% compared to 7.95% observed in the group subjected only to ischemia and reperfusion), whereas infarct size was reduced in the animals on a normocholesterolemic diet (pre: 8.25% and post: 6.10% compared to 12.31%). Hypercholesterolemia elevated ADMA and eliminated the cardioprotective effects of ischemic pre- and postconditioning in rats.

  1. Cyclosporine A administered during reperfusion fails to restore cardioprotection in prediabetic Zucker obese rats in vivo.

    Huhn, R; Heinen, A; Hollmann, M W; Schlack, W; Preckel, B; Weber, N C

    2010-12-01

    Hyperglycaemia blocks sevoflurane-induced postconditioning, and cardioprotection in hyperglycaemic myocardium can be restored by inhibition of the mitochondrial permeability transition pore (mPTP). We investigated whether sevoflurane-induced postconditioning is also blocked in the prediabetic heart and if so, whether cardioprotection could be restored by inhibiting mPTP. Zucker lean (ZL) and Zucker obese (ZO) rats were assigned to one of seven groups. Animals underwent 25 min of ischaemia and 120 min of reperfusion. Control (ZL-/ZO Con) animals were not further treated. postconditioning groups (ZL-/ZO Sevo-post) received sevoflurane for 5 min starting 1min prior to the onset of reperfusion. The mPTP inhibitor cyclosporine A (CsA) was administered intravenously in a concentration of 5 (ZO CsA and ZO CsA+Sevo-post) or 10 mg/kg (ZO CsA10+Sevo-post) 5 min before the onset of reperfusion. At the end of reperfusion, infarct sizes were measured by TTC staining. Blood samples were collected to measure plasma levels of insulin, cholesterol and triglycerides. Sevoflurane postconditioning reduced infarct size in ZL rats to 35±12% (pfailed to restore cardioprotection in the prediabetic but normoglycaemic heart of Zucker obese rats in vivo. Copyright © 2009 Elsevier B.V. All rights reserved.

  2. Fenofibrate plus Metformin Produces Cardioprotection in a Type 2 Diabetes and Acute Myocardial Infarction Model

    Víctor Hugo Oidor-Chan

    2016-01-01

    Full Text Available We investigated whether fenofibrate, metformin, and their combination generate cardioprotection in a rat model of type 2 diabetes (T2D and acute myocardial infarction (AMI. Streptozotocin-induced diabetic- (DB- rats received 14 days of either vehicle, fenofibrate, metformin, or their combination and immediately after underwent myocardial ischemia/reperfusion (I/R. Fenofibrate plus metformin generated cardioprotection in a DBI/R model, reported as decreased coronary vascular resistance, compared to DBI/R-Vehicle, smaller infarct size, and increased cardiac work. The subchronic treatment with fenofibrate plus metformin increased, compared with DBI/R-Vehicle, total antioxidant capacity, manganese-dependent superoxide dismutase activity (MnSOD, guanosine triphosphate cyclohydrolase I (GTPCH-I expression, tetrahydrobiopterin : dihydrobiopterin (BH4 : BH2 ratio, endothelial nitric oxide synthase (eNOS activity, nitric oxide (NO bioavailability, and decreased inducible NOS (iNOS activity. These findings suggest that PPARα activation by fenofibrate + metformin, at low doses, generates cardioprotection in a rat model of T2D and AMI and may represent a novel treatment strategy to limit I/R injury in patients with T2D.

  3. Voluntary exercise prevents colonic inflammation in high-fat diet-induced obese mice by up-regulating PPAR-γ activity

    Liu, Wei-Xin; Wang, Ting; Zhou, Feng; Wang, Ying; Xing, Jun-Wei; Zhang, Shen; Gu, Shou-Zhi; Sang, Li-Xuan; Dai, Cong; Wang, Hai-Lan

    2015-01-01

    Obesity is associated with increased colonic inflammation, which elevates the risk of colon cancer. Although exercise exerts anti-inflammatory actions in multiple chronic diseases associated with inflammation, it is unknown whether this strategy prevents colonic inflammation in obesity. We hypothesized that voluntary exercise would suppress colonic inflammation in high-fat diet (HFD)-induced obesity by modulation of peroxisome proliferator-activated receptor (PPAR)-γ. Male C57Bl/6J mice fed either a control diet (6.5% fat, CON) or a high-fat diet (24% fat, HFD) were divided into sedentary, voluntary exercise or voluntary exercise with PPAR-γ antagonist GW9662 (10 mg/kg/day). All interventions took place for 12 weeks. Compared with CON-sedentary group, HFD-sedentary mice gained significantly more body weight and exhibited metabolic disorders. Molecular studies revealed that HFD-sedentary mice had increased expression of inflammatory mediators and activation of nuclear factor (NF)-κB in the colons, which were associated with decreased expression and activity of PPAR-γ. Voluntary exercise markedly attenuated body weight gain, improved metabolic disorders, and normalized the expression of inflammatory mediators and activation of NF-κB in the colons in HFD-mice while having no effects in CON-animals. Moreover, voluntary exercise significantly increased expression and activity of PPAR-γ in the colons in both HFD- and CON-animals. However, all of these beneficial effects induced by voluntary exercise were abolished by GW9662, which inhibited expression and activity of PPAR-γ. The results suggest that decreased PPAR-γ activity in the colon of HFD-induced obesity may facilitate the inflammatory response and colon carcinogenesis. Voluntary exercise prevents colonic inflammation in HFD-induced obesity by up-regulating PPAR-γ activity. - Highlights: • Obesity down-regulates PPAR-γ in the colon. • Down-regulated colonic PPAR-γ may facilitate inflammatory

  4. Voluntary exercise prevents colonic inflammation in high-fat diet-induced obese mice by up-regulating PPAR-γ activity

    Liu, Wei-Xin, E-mail: weixinliu@yahoo.com [Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Wang, Ting; Zhou, Feng; Wang, Ying; Xing, Jun-Wei; Zhang, Shen [Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Gu, Shou-Zhi [Department of Anatomy, Seirei Christopher College, Hamamatsu 433-8558 (Japan); Sang, Li-Xuan [Department of Cadre Ward II, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Dai, Cong [Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Wang, Hai-Lan [Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, Guangdong (China)

    2015-04-10

    Obesity is associated with increased colonic inflammation, which elevates the risk of colon cancer. Although exercise exerts anti-inflammatory actions in multiple chronic diseases associated with inflammation, it is unknown whether this strategy prevents colonic inflammation in obesity. We hypothesized that voluntary exercise would suppress colonic inflammation in high-fat diet (HFD)-induced obesity by modulation of peroxisome proliferator-activated receptor (PPAR)-γ. Male C57Bl/6J mice fed either a control diet (6.5% fat, CON) or a high-fat diet (24% fat, HFD) were divided into sedentary, voluntary exercise or voluntary exercise with PPAR-γ antagonist GW9662 (10 mg/kg/day). All interventions took place for 12 weeks. Compared with CON-sedentary group, HFD-sedentary mice gained significantly more body weight and exhibited metabolic disorders. Molecular studies revealed that HFD-sedentary mice had increased expression of inflammatory mediators and activation of nuclear factor (NF)-κB in the colons, which were associated with decreased expression and activity of PPAR-γ. Voluntary exercise markedly attenuated body weight gain, improved metabolic disorders, and normalized the expression of inflammatory mediators and activation of NF-κB in the colons in HFD-mice while having no effects in CON-animals. Moreover, voluntary exercise significantly increased expression and activity of PPAR-γ in the colons in both HFD- and CON-animals. However, all of these beneficial effects induced by voluntary exercise were abolished by GW9662, which inhibited expression and activity of PPAR-γ. The results suggest that decreased PPAR-γ activity in the colon of HFD-induced obesity may facilitate the inflammatory response and colon carcinogenesis. Voluntary exercise prevents colonic inflammation in HFD-induced obesity by up-regulating PPAR-γ activity. - Highlights: • Obesity down-regulates PPAR-γ in the colon. • Down-regulated colonic PPAR-γ may facilitate inflammatory

  5. Cyproterone acetate enhances TRAIL-induced androgen-independent prostate cancer cell apoptosis via up-regulation of death receptor 5.

    Chen, Linjie; Wolff, Dennis W; Xie, Yan; Lin, Ming-Fong; Tu, Yaping

    2017-03-07

    cyproterone acetate-induced CHOP and DR5 up-regulation. More importantly, siRNA silencing of CHOP significantly reduced cyproterone acetate-induced DR5 up-regulation and TRAIL sensitivity in prostate cancer cells. Our study shows a novel effect of cyproterone acetate on apoptosis pathways in prostate cancer cells and raises the possibility that a combination of TRAIL with cyproterone acetate could be a promising strategy for treating castration-resistant prostate cancer.

  6. Translational up-regulation and high-level protein expression from plasmid vectors by mTOR activation via different pathways in PC3 and 293T cells.

    Prashanthi Karyala

    Full Text Available BACKGROUND: Though 293T cells are widely used for expression of proteins from transfected plasmid vectors, the molecular basis for the high-level expression is yet to be understood. We recently identified the prostate carcinoma cell line PC3 to be as efficient as 293T in protein expression. This study was undertaken to decipher the molecular basis of high-level expression in these two cell lines. METHODOLOGY/PRINCIPAL FINDINGS: In a survey of different cell lines for efficient expression of platelet-derived growth factor-B (PDGF-B, β-galactosidase (β-gal and green fluorescent protein (GFP from plasmid vectors, PC3 was found to express at 5-50-fold higher levels compared to the bone metastatic prostate carcinoma cell line PC3BM and many other cell lines. Further, the efficiency of transfection and level of expression of the reporters in PC3 were comparable to that in 293T. Comparative analyses revealed that the high level expression of the reporters in the two cell lines was due to increased translational efficiency. While phosphatidic acid (PA-mediated activation of mTOR, as revealed by drastic reduction in reporter expression by n-butanol, primarily contributed to the high level expression in PC3, multiple pathways involving PA, PI3K/Akt and ERK1/2 appear to contribute to the abundant reporter expression in 293T. Thus the extent of translational up-regulation attained through the concerted activation of mTOR by multiple pathways in 293T could be achieved through its activation primarily by the PA pathway in PC3. CONCLUSIONS/SIGNIFICANCE: Our studies reveal that the high-level expression of proteins from plasmid vectors is effected by translational up-regulation through mTOR activation via different signaling pathways in the two cell lines and that PC3 is as efficient as 293T for recombinant protein expression. Further, PC3 offers an advantage in that the level of expression of the protein can be regulated by simple addition of n-butanol to

  7. Human endogenous retrovirus expression is inversely related with the up-regulation of interferon-inducible genes in the skin of patients with lichen planus.

    Nogueira, Marcelle Almeida de Sousa; Gavioli, Camila Fátima Biancardi; Pereira, Nátalli Zanete; de Carvalho, Gabriel Costa; Domingues, Rosana; Aoki, Valéria; Sato, Maria Notomi

    2015-04-01

    Lichen planus (LP) is a common inflammatory skin disease of unknown etiology. Reports of a common transactivation of quiescent human endogenous retroviruses (HERVs) support the connection of viruses to the disease. HERVs are ancient retroviral sequences in the human genome and their transcription is often deregulated in cancer and autoimmune diseases. We explored the transcriptional activity of HERV sequences as well as the antiviral restriction factor and interferon-inducible genes in the skin from LP patients and healthy control (HC) donors. The study included 13 skin biopsies from patients with LP and 12 controls. Real-time PCR assay identified significant decrease in the HERV-K gag and env mRNA expression levels in LP subjects, when compared to control group. The expressions of HERV-K18 and HERV-W env were also inhibited in the skin of LP patients. We observed a strong correlation between HERV-K gag with other HERV sequences, regardless the down-modulation of transcripts levels in LP group. In contrast, a significant up-regulation of the cytidine deaminase APOBEC 3G (apolipoprotein B mRNA-editing), and the GTPase MxA (Myxovirus resistance A) mRNA expression level was identified in the LP skin specimens. Other transcript expressions, such as the master regulator of type I interferon-dependent immune responses, STING (stimulator of interferon genes) and IRF-7 (interferon regulatory factor 7), IFN-β and the inflammassome NALP3, had increased levels in LP, when compared to HC group. Our study suggests that interferon-inducible factors, in addition to their role in innate immunity against exogenous pathogens, contribute to the immune control of HERVs. Evaluation of the balance between HERV and interferon-inducible factor expression could possibly contribute to surveillance of inflammatory/malignant status of skin diseases.

  8. A Modified Chinese Herbal Decoction (Kai-Xin-San Promotes NGF-Induced Neuronal Differentiation in PC12 Cells via Up-Regulating Trk A Signaling

    Lu Yan

    2017-12-01

    Full Text Available Kai-Xin-San (KXS, a Chinese herbal decoction, has been applied to medical care of depression for thousands of years. It is composed of two functional paired-herbs: Ginseng Radix et Rhizoma (GR-Polygalae Radix (PR and Acori Tatarinowii Rhizoma (ATR-Poria (PO. The compatibility of the paired-herbs has been frequently changed to meet the criteria of syndrome differentiation and treatment variation. Currently, a modified KXS (namely KXS2012 was prepared by optimizing the combinations of GR-PR and ATR-PO: the new herbal formula was shown to be very effective in animal studies. However, the cellular mechanism of KXS2012 against depression has not been fully investigated. Here, the study on KXS2012-induced neuronal differentiation in cultured PC12 cells was analyzed. In PC12 cultures, single application of KXS2012 showed no effect on the neuronal differentiation, but which showed robust effects in potentiating nerve growth factor (NGF-induced neurite outgrowth and neurofilament expression. The potentiating effect of KXS2012 was mediated through NGF receptor, tropomyosin receptor kinase (Trk A: because the receptor expression and activity was markedly up-regulated in the presence of KXS2012, and the potentiating effect was blocked by k252a, an inhibitor of Trk A. Our current results in cell cultures fully support the therapeutic efficacy of KXS2012 against depression.

  9. Essential oil of Pinus koraiensis leaves exerts antihyperlipidemic effects via up-regulation of low-density lipoprotein receptor and inhibition of acyl-coenzyme A: cholesterol acyltransferase.

    Kim, Ji-Hyun; Lee, Hyo-Jung; Jeong, Soo-Jin; Lee, Min-Ho; Kim, Sung-Hoon

    2012-09-01

    Hyperlipidemia is an important factor to induce metabolic syndrome such as obesity, diabetes and cardiovascular diseases. Recently, some antihyperlipidemic agents from herbal medicines have been in the spotlight in the medical science field. Thus, the present study evaluated the antihyperlipidemic activities of the essential oil from the leaves of Pinus koraiensis SIEB (EOPK) that has been used as a folk remedy for heart disease. The reverse transcription polymerase chain reaction (RT-PCR) revealed that EOPK up-regulated low density lipoprotein receptor (LDLR) at the mRNA level as well as negatively suppressed the expression of sterol regulatory element-binding protein (SREBP)-1c, SREBP-2, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), fatty acid synthase (FAS) and glycerol-3-phosphate acyltransferase (GPAT) involved in lipid metabolism in HepG2 cells. Also, western blotting showed that EOPK activated LDLR and attenuated the expression of FAS at the protein level in the cells. Consistently, EOPK significantly inhibited the level of human acylcoenzyme A: cholesterol acyltransferase (hACAT)1 and 2 and reduced the low-density lipoprotein (LDL) oxidation activity. Furthermore, chromatography-mass spectrometry (GC-MS) analysis showed that EOPK, an essential oil mixture, contained camphene (21.11%), d-limonene (21.01%), α-pinene (16.74%) and borneol (11.52%). Overall, the findings suggest that EOPK can be a potent pharmaceutical agent for the prevention and treatment of hyperlipidemia. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Model-based investigation of the circadian clock and cell cycle coupling in mouse embryonic fibroblasts: Prediction of RevErb-α up-regulation during mitosis.

    Traynard, Pauline; Feillet, Céline; Soliman, Sylvain; Delaunay, Franck; Fages, François

    2016-11-01

    Experimental observations have put in evidence autonomous self-sustained circadian oscillators in most mammalian cells, and proved the existence of molecular links between the circadian clock and the cell cycle. Some mathematical models have also been built to assess conditions of control of the cell cycle by the circadian clock. However, recent studies in individual NIH3T3 fibroblasts have shown an unexpected acceleration of the circadian clock together with the cell cycle when the culture medium is enriched with growth factors, and the absence of such acceleration in confluent cells. In order to explain these observations, we study a possible entrainment of the circadian clock by the cell cycle through a regulation of clock genes around the mitosis phase. We develop a computational model and a formal specification of the observed behavior to investigate the conditions of entrainment in period and phase. We show that either the selective activation of RevErb-α or the selective inhibition of Bmal1 transcription during the mitosis phase, allow us to fit the experimental data on both period and phase, while a uniform inhibition of transcription during mitosis seems incompatible with the phase data. We conclude on the arguments favoring the RevErb-α up-regulation hypothesis and on some further predictions of the model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. The potential impact of low dose ionizing γ-radiation on immune response activity up-regulated by Ikaros in IM-9 B lymphocytes

    Kim Sung Jn; Jang, Seon A; Yang, Kwang Hee; Kim, Ji Young; Kim, Cha Soon; Nam, Seon Young; Jeong, Mee Seon; Jin, Young Woo

    2011-01-01

    The biological effects of low dose ionizing radiation (LDIR) remain insufficiently understood. We examined for the scientific evidence to show the biological effects of LDIR using radiation-sensitive immune cells. We found that Ikaros protein was responded to low dose-dependent effects of gamma radiation in IM-9 B lymphocytes. Ikaros encodes zinc finger transcription factors that is important regulators of a hematopoietic stem cells (HSCs) progression to the B lymphoid lineage development, differentiation and proliferation. In this study, we observed that cell proliferation was enhanced from 10% to 20% by LDIR (0.05 Gy) in IM-9 B lymphocytes. The Ikaros protein was phosphorylated in its serine/threonine (S/T) region and decreased its DNA binding activity in the cells exposed to LDIR. We found that Ikaros phosphorylation was up-regulated by CK2/AKT pathway and the residues of ser-304 and ser-306 in Ikaros was phosphorylated by LDIR. We also observed that Ikaros protein was localized from the nucleus to the cytoplasm after LDIR and bound with Autotaxin (ENPP2, ATX) protein, stimulating proliferation, migration and survival of immune cells. In addition, we found that the lysoPLD activity of ATX was dependent on Ikaros-ATX binding activity. These results indicate that the Ikaros is an important regulator of immune activation. Therefore, we suggest that low dose ionizing radiation can be considered as a beneficial effects, stimulating the activation of immune cells.

  12. Fruitflow®: the first European Food Safety Authority-approved natural cardio-protective functional ingredient.

    O'Kennedy, Niamh; Raederstorff, Daniel; Duttaroy, Asim K

    2017-03-01

    Hyperactive platelets, in addition to their roles in thrombosis, are also important mediators of atherogenesis. Antiplatelet drugs are not suitable for use where risk of a cardiovascular event is relatively low. It is therefore important to find alternative safe antiplatelet inhibitors for the vulnerable population who has hyperactive platelets in order to reduce the risk of cardiovascular disease. Potent antiplatelet factors were identified in water-soluble tomato extract (Fruitflow ® ), which significantly inhibited platelet aggregation. Human volunteer studies demonstrated the potency and bioavailability of active compounds in Fruitflow ® . Fruitflow ® became the first product in Europe to obtain an approved, proprietary health claim under Article 13(5) of the European Health Claims Regulation 1924/2006 on nutrition and health claims made on foods. Fruitflow ® is now commercially available in different countries worldwide. In addition to its reduction in platelet reactivity, Fruitflow ® contains anti-angiotensin-converting enzyme and anti-inflammatory factors, making it an effective and natural cardio-protective functional food.

  13. The CYP2E1 inhibitor DDC up-regulates MMP-1 expression in hepatic stellate cells via an ERK1/2- and Akt-dependent mechanism.

    Liu, Tianhui; Wang, Ping; Cong, Min; Xu, Youqing; Jia, Jidong; You, Hong

    2013-06-05

    DDC (diethyldithiocarbamate) could block collagen synthesis in HSC (hepatic stellate cells) through the inhibition of ROS (reactive oxygen species) derived from hepatocyte CYP2E1 (cytochrome P450 2E1). However, the effect of DDC on MMP-1 (matrix metalloproteinase-1), which is the main collagen degrading matrix metalloproteinase, has not been reported. In co-culture experiments, we found that DDC significantly enhanced MMP-1 expression in human HSC (LX-2) that were cultured with hepatocyte C3A cells either expressing or not expressing CYP2E1. The levels of both proenzyme and active MMP-1 enzyme were up-regulated in LX-2 cells, accompanied by elevated enzyme activity of MMP-1 and decreased collagen I, in both LX-2 cells and the culture medium. H2O2 treatment abrogated DDC-induced MMP-1 up-regulation and collagen I decrease, while catalase treatment slightly up-regulated MMP-1 expression. These data suggested that the decrease in ROS by DDC was partially responsible for the MMP-1 up-regulation. ERK1/2 (extracellular signal-regulated kinase 1/2), Akt (protein kinase B) and p38 were significantly activated by DDC. The ERK1/2 inhibitor (U0126) and Akt inhibitor (T3830) abrogated the DDC-induced MMP-1 up-regulation. In addition, a p38 inhibitor (SB203580) improved MMP-1 up-regulation through the stimulation of ERK1/2. Our data indicate that DDC significantly up-regulates the expression of MMP-1 in LX-2 cells which results in greater MMP-1 enzyme activity and decreased collagen I. The enhancement of MMP-1 expression by DDC was associated with H2O2 inhibition and coordinated regulation by the ERK1/2 and Akt pathways. These data provide some new insights into treatment strategies for hepatic fibrosis.

  14. Taurine up-regulated gene 1 functions as a master regulator to coordinate glycolysis and metastasis in hepatocellular carcinoma.

    Lin, Yang-Hsiang; Wu, Meng-Han; Huang, Ya-Hui; Yeh, Chau-Ting; Cheng, Mei-Ling; Chi, Hsiang-Cheng; Tsai, Chung-Ying; Chung, I-Hsiao; Chen, Ching-Ying; Lin, Kwang-Huei

    2018-01-01

    Cancer cells display altered glucose metabolism characterized by a preference for aerobic glycolysis. The aerobic glycolytic phenotype of hepatocellular carcinoma (HCC) is often correlated with tumor progression and poorer clinical outcomes. However, the issue of whether glycolytic metabolism influences metastasis in HCC remains unclear. In the current study, we showed that knockdown of taurine up-regulated gene 1 (TUG1) induces marked inhibition of cell migration, invasion, and glycolysis through suppression of microRNA (miR)-455-3p. MiR-455-3p, which is transcriptionally repressed by p21, directly targets the 3' untranslated region of adenosine monophosphate-activated protein kinase subunit beta 2 (AMPKβ2). The TUG1/miR-455-3p/AMPKβ2 axis regulates cell growth, metastasis, and glycolysis through regulation of hexokinase 2 (HK2). TUG1 is clearly associated with HK2 overexpression and unfavorable prognosis in HCC patients. Our data collectively highlight that novel regulatory associations among TUG1, miR-455-3p, AMPKβ2, and HK2 are an important determinant of glycolytic metabolism and metastasis in HCC cells and support the potential utility of targeting TUG1/HK2 as a therapeutic strategy for HCC. (Hepatology 2018;67:188-203). © 2017 by the American Association for the Study of Liver Diseases.

  15. Zirconium ions up-regulate the BMP/SMAD signaling pathway and promote the proliferation and differentiation of human osteoblasts.

    Yongjuan Chen

    Full Text Available Zirconium (Zr is an element commonly used in dental and orthopedic implants either as zirconia (ZrO2 or in metal alloys. It can also be incorporated into calcium silicate-based ceramics. However, the effects of in vitro culture of human osteoblasts (HOBs with soluble ionic forms of Zr have not been determined. In this study, primary culture of human osteoblasts was conducted in the presence of medium containing either ZrCl4 or Zirconium (IV oxynitrate (ZrO(NO32 at concentrations of 0, 5, 50 and 500 µM, and osteoblast proliferation, differentiation and calcium deposition were assessed. Incubation of human osteoblast cultures with Zr ions increased the proliferation of human osteoblasts and also gene expression of genetic markers of osteoblast differentiation. In 21 and 28 day cultures, Zr ions at concentrations of 50 and 500 µM increased the deposition of calcium phosphate. In addition, the gene expression of BMP2 and BMP receptors was increased in response to culture with Zr ions and this was associated with increased phosphorylation of SMAD1/5. Moreover, Noggin suppressed osteogenic gene expression in HOBs co-treated with Zr ions. In conclusion, Zr ions appear able to induce both the proliferation and the differentiation of primary human osteoblasts. This is associated with up-regulation of BMP2 expression and activation of BMP signaling suggesting this action is, at least in part, mediated by BMP signaling.

  16. Zirconium Ions Up-Regulate the BMP/SMAD Signaling Pathway and Promote the Proliferation and Differentiation of Human Osteoblasts

    Chen, Yongjuan; Roohani-Esfahani, Seyed-Iman; Lu, ZuFu; Zreiqat, Hala; Dunstan, Colin R.

    2015-01-01

    Zirconium (Zr) is an element commonly used in dental and orthopedic implants either as zirconia (ZrO2) or in metal alloys. It can also be incorporated into calcium silicate-based ceramics. However, the effects of in vitro culture of human osteoblasts (HOBs) with soluble ionic forms of Zr have not been determined. In this study, primary culture of human osteoblasts was conducted in the presence of medium containing either ZrCl4 or Zirconium (IV) oxynitrate (ZrO(NO3)2) at concentrations of 0, 5, 50 and 500 µM, and osteoblast proliferation, differentiation and calcium deposition were assessed. Incubation of human osteoblast cultures with Zr ions increased the proliferation of human osteoblasts and also gene expression of genetic markers of osteoblast differentiation. In 21 and 28 day cultures, Zr ions at concentrations of 50 and 500 µM increased the deposition of calcium phosphate. In addition, the gene expression of BMP2 and BMP receptors was increased in response to culture with Zr ions and this was associated with increased phosphorylation of SMAD1/5. Moreover, Noggin suppressed osteogenic gene expression in HOBs co-treated with Zr ions. In conclusion, Zr ions appear able to induce both the proliferation and the differentiation of primary human osteoblasts. This is associated with up-regulation of BMP2 expression and activation of BMP signaling suggesting this action is, at least in part, mediated by BMP signaling. PMID:25602473

  17. Vanillylacetone up-regulates anthocyanin accumulation and expression of anthocyanin biosynthetic genes by inducing endogenous abscisic acid in grapevine tissues.

    Enoki, Shinichi; Hattori, Tomoki; Ishiai, Shiho; Tanaka, Sayumi; Mikami, Masachika; Arita, Kayo; Nagasaka, Shu; Suzuki, Shunji

    2017-12-01

    We investigated the effect of vanillylacetone (VA) on anthocyanin accumulation with aim of improving grape berry coloration. Spraying Vitis vinifera cv. Muscat Bailey A berries with VA at veraison increased sugar/acid ratio, an indicator of maturation and total anthocyanin accumulation. To elucidate the molecular mechanism underlying the effect of VA on anthocyanin accumulation, in vitro VA treatment of a grapevine cell culture was carried out. Endogenous abscisic acid (ABA) content was higher in the VA-treated cell cultures than in control at 3h after treatment. Consistent with this, the relative expression levels of anthocyanin-synthesis-related genes, including DFR, LDOX, MybA1 and UFGT, in VA-treated cell cultures were much higher than those in control, and high total anthocyanin accumulation was noted in the VA-treated cell cultures as well. These results suggest that VA up-regulates the expression of genes leading to anthocyanin accumulation by inducing endogenous ABA. In addition, VA increased total anthocyanin content in a dose-dependent manner. Although VA treatment in combination with exogenous ABA did not exhibit any synergistic effect, treatment with VA alone showed an equivalent effect to that with exogenous ABA alone on total anthocyanin accumulation. These findings point to the possibility of using VA for improving grape berry coloration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser

    Wang, Xinlong; Tian, Fenghua; Soni, Sagar S.; Gonzalez-Lima, F.; Liu, Hanli

    2016-08-01

    Photobiomodulation, also known as low-level laser/light therapy (LLLT), refers to the use of red-to-near-infrared light to stimulate cellular functions for physiological or clinical benefits. The mechanism of LLLT is assumed to rely on photon absorption by cytochrome c oxidase (CCO), the terminal enzyme in the mitochondrial respiratory chain that catalyzes the reduction of oxygen for energy metabolism. In this study, we used broadband near-infrared spectroscopy (NIRS) to measure the LLLT-induced changes in CCO and hemoglobin concentrations in human forearms in vivo. Eleven healthy participants were administered with 1064-nm laser and placebo treatments on their right forearms. The spectroscopic data were analyzed and fitted with wavelength-dependent, modified Beer-Lambert Law. We found that LLLT induced significant increases of CCO concentration (Δ[CCO]) and oxygenated hemoglobin concentration (Δ[HbO]) on the treated site as the laser energy dose accumulated over time. A strong linear interplay between Δ[CCO] and Δ[HbO] was observed for the first time during LLLT, indicating a hemodynamic response of oxygen supply and blood volume closely coupled to the up-regulation of CCO induced by photobiomodulation. These results demonstrate the tremendous potential of broadband NIRS as a non-invasive, in vivo means to study mechanisms of photobiomodulation and perform treatment evaluations of LLLT.

  19. Up-regulation of DNA-dependent protein kinase correlates with radiation resistance in oral squamous cell carcinoma

    Shintani, Satoru; Mihara, Mariko; Li, Chunnan; Nakahara Yuuji; Hino, Satoshi; Nakashiro, Koh-ichi; Hamakawa, Hiroyuki

    2003-01-01

    DNA-PK is a nuclear protein with serine/threonine kinase activity and forms a complex consisting of the DNA-PKcs and a heterodimer of Ku70 and Ku80 proteins. Recent laboratory experiments have demonstrated that the DNA-PK complex formation is one of the major pathways by which mammalian cells respond to DNA double-strand breaks induced by ionizing radiation. In this study, we evaluated the relationship between expression levels of DNA-PKcs, Ku70 and Ku80 proteins and radiation sensitivity in oral squamous cell carcinoma (OSCC) cell lines and in OSCC patients treated with preoperative radiation therapy. The OSCC cell lines greatly differed in their response to irradiation, as assessed by a standard colony formation assay. However, the expression levels of the DNA-PK complex proteins were all similar, and there was no association between the magnitude of their expression and the tumor radiation sensitivity. Expression of DNA-PK complex proteins increased after radiation treatment, and the increased values correlated with the tumor radiation resistance. Expression of DNA-PKcs and Ku70 after irradiation was increased in the surviving cells of OSCC tissues irradiated preoperatively. These results suggest that up-regulation of DNA-PK complex protein, especially DNA-PKcs, after radiation treatment correlates to radiation resistance. DNA-PKcs might be a molecular target for a novel radiation sensitization therapy of OSCC. (author)

  20. Selective up-regulation of 5-HT(1B/1D) receptors during organ culture of cerebral arteries

    Hoel, N L; Hansen-Schwartz, J; Edvinsson, L

    2001-01-01

    5-Hydroxytryptamine (5-HT) is thought to be involved in migraine headache and the pathophysiology of cerebrovascular diseases. Previous data show that organ culture induces a phenotypic change in cerebral vessels. Therefore we investigated if these changes also applied for the vasoconstrictive 5-HT......(cultured) 6.8+/-0.4). The response was inhibited by the 5-HT(1B/1D) selective antagonist GR55562 (pEC50(fresh) 5.1+/-0.2 and pEC50(cultured) 6.0+/-0.3). The organ model might mimic the phenotypic changes during cerebrovascular diseases....... receptors. Rat cerebral arteries express 5-HT2 receptors. Using organ culture we observed a phenotypic change with a selective up-regulation of 5-HT(1B/1D) receptors. This was revealed by an increased sensitivity to the selective 5-HT(1B/1D) agonist 5-CT after organ culture (pEC50(fresh) 5.6+/-0.2 and pEC50...

  1. Low concentrations of salicylic acid delay methyl jasmonate-induced leaf senescence by up-regulating nitric oxide synthase activity.

    Ji, Yingbin; Liu, Jian; Xing, Da

    2016-09-01

    In plants, extensive efforts have been devoted to understanding the crosstalk between salicylic acid (SA) and jasmonic acid (JA) signaling in pathogen defenses, but this crosstalk has scarcely been addressed during senescence. In this study, the effect of SA application on methyl jasmonate (MeJA)-induced leaf senescence was assessed. We found that low concentrations of SA (1-50 μM) played a delayed role against the senescence promoted by MeJA. Furthermore, low concentrations of SA enhanced plant antioxidant defenses and restricted reactive oxygen species (ROS) accumulation in MeJA-treated leaves. When applied simultaneously with MeJA, low concentrations of SA triggered a nitric oxide (NO) burst, and the elevated NO levels were linked to the nitric oxide associated 1 (NOA1)-dependent pathway via nitric oxide synthase (NOS) activity. The ability of SA to up-regulate plant antioxidant defenses, reduce ROS accumulation, and suppress leaf senescence was lost in NO-deficient Atnoa1 plants. In a converse manner, exogenous addition of NO donors increased the plant antioxidant capacity and lowered the ROS levels in MeJA-treated leaves. Taken together, the results indicate that SA at low concentrations counteracts MeJA-induced leaf senescence through NOA1-dependent NO signaling and strengthening of the antioxidant defense. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1.

    Scarlatti, Francesca; Bauvy, Chantal; Ventruti, Annamaria; Sala, Giusy; Cluzeaud, Françoise; Vandewalle, Alain; Ghidoni, Riccardo; Codogno, Patrice

    2004-04-30

    The sphingolipid ceramide is involved in the cellular stress response. Here we demonstrate that ceramide controls macroautophagy, a major lysosomal catabolic pathway. Exogenous C(2)-ceramide stimulates macroautophagy (proteolysis and accumulation of autophagic vacuoles) in the human colon cancer HT-29 cells by increasing the endogenous pool of long chain ceramides as demonstrated by the use of the ceramide synthase inhibitor fumonisin B(1). Ceramide reverted the interleukin 13-dependent inhibition of macroautophagy by interfering with the activation of protein kinase B. In addition, C(2)-ceramide stimulated the expression of the autophagy gene product beclin 1. Ceramide is also the mediator of the tamoxifen-dependent accumulation of autophagic vacuoles in the human breast cancer MCF-7 cells. Monodansylcadaverine staining and electron microscopy showed that this accumulation was abrogated by myriocin, an inhibitor of de novo synthesis ceramide. The tamoxifen-dependent accumulation of vacuoles was mimicked by 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, an inhibitor of glucosylceramide synthase. 1-Phenyl-2-decanoylamino-3-morpholino-1-propanol, tamoxifen, and C(2)-ceramide stimulated the expression of beclin 1, whereas myriocin antagonized the tamoxifen-dependent up-regulation. Tamoxifen and C(2)-ceramide interfere with the activation of protein kinase B, whereas myriocin relieved the inhibitory effect of tamoxifen. In conclusion, the control of macroautophagy by ceramide provides a novel function for this lipid mediator in a cell process with major biological outcomes.

  3. EMMPRIN promotes melanoma cells malignant properties through a HIF-2alpha mediated up-regulation of VEGF-receptor-2.

    Faten Bougatef

    Full Text Available EMMPRIN's expression in melanoma tissue was reported to be predictive of poor prognosis. Here we demonstrate that EMMPRIN up-regulated VEGF receptor-2 (VEGFR-2 in two different primary melanoma cell lines and consequently increased migration and proliferation of these cells while inhibiting their apoptosis. SiRNA inhibition of VEGFR-2 expression abrogated these EMMPRIN effects. EMMPRIN regulation of VEGFR-2 was mediated through the over-expression of HIF-2alpha and its translocation to the nucleus where it forms heterodimers with HIF-1beta. These results were supported by an in vivo correlation between the expression of EMMPRIN with that of VEGFR-2 in human melanoma tissues as well as with the extent of HIF-2alpha localization in the nucleus. They demonstrate a novel mechanism by which EMMPRIN promotes tumor progression through HIF-2alpha/VEGFR-2 mediated mechanism, with an autocrine role in melanoma cell malignancy. The inhibition of EMMPRIN in cancer may thus simultaneously target both the VEGFR-2/VEGF system and the matrix degrading proteases to block tumor cell growth and invasion.

  4. Up-regulation of TLR2 and TLR4 in high mobility group Box1-stimulated macrophages in pulpitis patients

    Mahmoudi, Javad; Sabermarouf, Babak; Baradaran, Behzad; Sadat-Hatamnezhad, Leila; Shotorbani, Siamak Sandoghchian

    2017-01-01

    Objective(s): High Mobility Group Box1 (HMGB1) is a nonhistone, DNA-binding protein that serves a crucial role in regulating gene transcription and is involved in a variety of proinflammatory, extracellular activities. The aim of this study was to explore whether HMGB1 stimulation can up-regulate the expression of Toll-like Receptor 2 (TLR2) and Toll-like Receptor 4 (TLR4) on macrophages from pulpitis and to clarify the subsequent events involving Th17 cells and Th17 cell-associated cytokine changes. Materials and Methods: Having prepared dental pulp tissues of pulpitis and healthy controls, macrophage were isolated and cultured. Macrophages were thereafter stimulated by HMGB1 time course. RT-QPCR, flowcytometer, immunofluorescence, Western blotting, and ELISA techniques were used in the present research. Results: Our results showed that the expression of TLR2 and TLR4 on macrophages stimulated with HMGB1 increased in pulpitis compared with controls (macrophages without HMGB1 stimulation) with a statistical significance (Ppulpitis increased, and NF-kB, the downstream target of TLR2 and TLR4, also showed a marked elevation after macrophages’ stimulation by HMGB1. Conclusion: The evidence from the present study suggests that the enhanced TLR2 and TLR4 pathways and Th17 cell polarization may be due to HMGB1 stimulation in pulpitis. PMID:28293399

  5. Ferrous Iron Up-regulation in Fibroblasts of Patients with Beta Propeller Protein-Associated Neurodegeneration (BPAN).

    Ingrassia, Rosaria; Memo, Maurizio; Garavaglia, Barbara

    2017-01-01

    Mutations in WDR45 gene, coding for a beta-propeller protein, have been found in patients affected by Neurodegeneration with Brain Iron Accumulation, NBIA5 (also known as BPAN). BPAN is a movement disorder with Non Transferrin Bound Iron (NTBI) accumulation in the basal ganglia as common hallmark between NBIA classes (Hayflick et al., 2013). WDR45 has been predicted to have a role in autophagy, while the impairment of iron metabolism in the different NBIA subclasses has not currently been clarified. We found the up-regulation of the ferrous iron transporter (-)IRE/Divalent Metal Transporter1 and down-regulation of Transferrin receptor in the fibroblasts of two BPAN affected patients with splicing mutations 235+1G>A (BPAN1) and 517_519ΔVal 173 (BPAN2). The BPAN patients showed a concomitant increase of intracellular ferrous iron after starvation. An altered pattern of iron transporters with iron overload is highlighted in BPAN human fibroblasts, supporting for a role of DMT1 in NBIA. We here present a novel element, about iron accumulation, to the existing knowledge in field of NBIA. Attention is focused to a starvation-dependent iron overload, possibly accounting for iron accumulation in the basal ganglia. Further investigation could clarify iron regulation in BPAN.

  6. Endurance exercise and conjugated linoleic acid (CLA supplementation up-regulate CYP17A1 and stimulate testosterone biosynthesis.

    Rosario Barone

    Full Text Available A new role for fat supplements, in particular conjugated linoleic acid (CLA, has been delineated in steroidogenesis, although the underlying molecular mechanisms have not yet been elucidated. The aims of the present study were to identify the pathway stimulated by CLA supplementation using a cell culture model and to determine whether this same pathway is also stimulated in vivo by CLA supplementation associated with exercise. In vitro, Leydig tumour rat cells (R2C supplemented with different concentrations of CLA exhibited increasing testosterone biosynthesis accompanied by increasing levels of CYP17A1 mRNA and protein. In vivo, trained mice showed an increase in free plasma testosterone and an up-regulation of CYP17A1 mRNA and protein. The effect of training on CYP17A1 expression and testosterone biosynthesis was significantly higher in the trained mice supplemented with CLA compared to the placebo. The results of the present study demonstrated that CLA stimulates testosterone biosynthesis via CYP17A1, and endurance training led to the synthesis of testosterone in vivo by inducing the overexpression of CYP17A1 mRNA and protein in the Leydig cells of the testis. This effect was enhanced by CLA supplementation. Therefore, CLA-associated physical activity may be used for its steroidogenic property in different fields, such as alimentary industry, human reproductive medicine, sport science, and anti-muscle wasting.

  7. Characterization of a RacGTPase up-regulated in the large yellow croaker Pseudosciaena crocea immunity.

    Han, Fang; Wang, Xiaoqing; Yang, Qilian; Cai, Mingyi; Wang, Zhi Yong

    2011-02-01

    The Rac proteins are members of the Rho family of small G proteins and are implicated in the regulation of several pathways, including those leading to cytoskeleton reorganization, gene expression, cell proliferation, cell adhesion and cell migration and survival. In this investigation, a Rac gene (named as LycRac gene) was obtained from the large yellow croaker and it was expressed in Escherichia coli and purified. Subsequently the specific antibody was raised using the purified fusion protein (GST-LycRac). Moreover, the GTP-binding assay showed that the LycRac protein had GTP-binding activity. The LycRac gene was ubiquitously transcribed and expressed in 9 tissues. Quantitative real-time RT-PCR and Western blot analysis revealed the highest expression in gill and the weakest expression in spleen. Time-course analysis revealed that LycRac expression was obviously up-regulated in blood, spleen and liver after immunization with polyinosinic polycytidynic acid (poly I:C), formalin-inactive Gram-negative bacterium Vibrio parahemolyticus and bacterial lipopolysaccharides (LPS). These results suggested that LycRac protein might play an important role in the immune response against microorganisms in large yellow croaker. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  8. Up-Regulation of the Excitatory Amino Acid Transporters EAAT1 and EAAT2 by Mammalian Target of Rapamycin

    Abeer Abousaab

    2016-11-01

    Full Text Available Background: The excitatory amino-acid transporters EAAT1 and EAAT2 clear glutamate from the synaptic cleft and thus terminate neuronal excitation. The carriers are subject to regulation by various kinases. The EAAT3 isoform is regulated by mammalian target of rapamycin (mTOR. The present study thus explored whether mTOR influences transport by EAAT1 and/or EAAT2. Methods: cRNA encoding wild type EAAT1 (SLC1A3 or EAAT2 (SLC1A2 was injected into Xenopus oocytes without or with additional injection of cRNA encoding mTOR. Dual electrode voltage clamp was performed in order to determine electrogenic glutamate transport (IEAAT. EAAT2 protein abundance was determined utilizing chemiluminescence. Results: Appreciable IEAAT was observed in EAAT1 or EAAT2 expressing but not in water injected oocytes. IEAAT was significantly increased by coexpression of mTOR. Coexpression of mTOR increased significantly the maximal IEAAT in EAAT1 or EAAT2 expressing oocytes, without significantly modifying affinity of the carriers. Moreover, coexpression of mTOR increased significantly EAAT2 protein abundance in the cell membrane. Conclusions: The kinase mTOR up-regulates the excitatory amino acid transporters EAAT1 and EAAT2.

  9. Characterization of PUD-1 and PUD-2, two proteins up-regulated in a long-lived daf-2 mutant.

    Ding, Yue-He; Du, Yun-Guang; Luo, Shukun; Li, Yu-Xin; Li, Tie-Mei; Yoshina, Sawako; Wang, Xing; Klage, Karsten; Mitani, Shohei; Ye, Keqiong; Dong, Meng-Qiu

    2013-01-01

    C. elegans PUD-1 and PUD-2, two proteins up-regulated in daf-2(loss-of-function) (PUD), are homologous 17-kD proteins with a large abundance increase in long-lived daf-2 mutant animals of reduced insulin signaling. In this study, we show that both PUD-1 and PUD-2 are abundantly expressed in the intestine and hypodermis, and form a heterodimer. We have solved their crystal structure to 1.9-Å resolution and found that both proteins adopt similar β-sandwich folds in the V-shaped dimer. In contrast, their homologs PUD-3, PUD-4, PUDL-1 and PUDL-2 are all monomeric proteins with distinct expression patterns in C. elegans. Thus, the PUD-1/PUD-2 heterodimer probably has a function distinct from their family members. Neither overexpression nor deletion of pud-1 and pud-2 affected the lifespan of WT or daf-2 mutant animals, suggesting that their induction in daf-2 worms does not contribute to longevity. Curiously, deletion of pud-1 and pud-2 was associated with a protective effect against paralysis induced by the amyloid β-peptide (1-42), which further enhanced the protection conferred by daf-2(RNAi) against Aβ.

  10. Up-regulation of Na + expression in the area postrema of total sleep deprived rats by TOF-SIMS analysis

    Mai, Fu-Der; Chen, Bo-Jung; Ling, Yong-Chien; Wu, Un-In; Huang, Yi-Lun; Chang, Hung-Ming

    2008-12-01

    Area postrema (AP) is a circumventricular organ plays an important role in sodium homeostasis and cardiovascular regulation. Since sleep deficiency will cause cardiovascular dysfunction, the present study aims to determine whether sodium level would significantly alter in AP following total sleep deprivation (TSD). Sodium level was investigated in vivo by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Clinical manifestation of cardiovascular function was demonstrated by mean arterial pressure (MAP) values. Results indicated that in normal rats, TOF-SIMS spectrum revealed a major peak of sodium ion counting as 5.61 × 10 5 at m/ z 23. The sodium ions were homogeneous distributed in AP without specific localization. However, following TSD, the sodium intensity was relatively increased (6.73 × 10 5) and the signal for sodium image was strongly expressed throughout AP with definite spatial distribution. MAP of TSD rats is 138 ± 5 mmHg, which is significantly higher than that of normal ones (121 ± 3 mmHg). Regarding AP is an important area for sodium sensation and development of hypernatremic related sympatho-excitation; up-regulation of sodium expression following TSD suggests that high sodium level might over-activate AP, through complex neuronal networks involving in sympathetic regulation, which could lead to the formation of TSD relevant cardiovascular diseases.

  11. Farnesoid X receptor up-regulates expression of Lipid transfer inhibitor protein in liver cells and mice

    Li, Liangpeng [Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University, Chongqing 400038 (China); Liu, Hong [Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Peng, Jiahe; Wang, Yongchao; Zhang, Yan; Dong, Jinyu; Liu, Xiaohua; Guo, Dongmei [Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University, Chongqing 400038 (China); Jiang, Yu, E-mail: yujiang61@gmail.com [Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University, Chongqing 400038 (China)

    2013-11-29

    Highlights: •FXR up-regulates apoF. •It binds to ER1 element. •It activates apoF gene promoter. -- Abstract: Apolipoprotein F is a component protein mainly secreted by liver and resides on several lipoprotein classes. It can inhibit lipids transfer between different lipoproteins. FXR is a member of the nuclear receptor superfamily which is also highly expressed in the liver. It modulates bile acids synthesis and lipids metabolism by transcriptional regulation. We aimed to determine whether apoF can be regulated by FXR. The FXR agonist Chenodeoxycholic acid (CDCA) and GW4064 both can activate the expression of apoF in liver cell lines and in C57/BL6 mouse liver. This is dependent on the binding of FXR to the FXR element ER1 (−2904 to −2892 bp) in the apoF gene promoter. Taken together, we have identified apoF as likely another target gene of FXR.

  12. Mitochondrial reactive oxygen species: which ROS signals cardioprotection?

    Garlid, A. O.; Jabůrek, Martin; Jacobs, J. P.; Garlid, K. D.

    2013-01-01

    Roč. 305, č. 7 (2013), H960-H968 ISSN 0363-6135 R&D Projects: GA MŠk(CZ) ME09018; GA ČR(CZ) GAP301/11/0662 Institutional support: RVO:67985823 Keywords : KATP channels * ROS signaling * cardiac ischemia * cardioportection * mitochondria Subject RIV: ED - Physiology Impact factor: 4.012, year: 2013

  13. Andrographolide exerts anti-hepatitis C virus activity by up-regulating haeme oxygenase-1 via the p38 MAPK/Nrf2 pathway in human hepatoma cells.

    Lee, Jin-Ching; Tseng, Chin-Kai; Young, Kung-Chia; Sun, Hung-Yu; Wang, Shainn-Wei; Chen, Wei-Chun; Lin, Chun-Kuang; Wu, Yu-Hsuan

    2014-01-01

    This study aimed to evaluate the anti-hepatitis C virus (HCV) activity of andrographolide, a diterpenoid lactone extracted from Andrographis paniculata, and to identify the signalling pathway involved in its antiviral action. Using HCV replicon and HCVcc infectious systems, we identified anti-HCV activity of andrographolide by measuring protein and RNA levels. A reporter activity assay was used to determine transcriptional regulation of anti-HCV agents. A specific inhibitor and short hairpin RNAs were used to investigate the mechanism responsible for the effect of andrographolide on HCV replication. In HCV replicon and HCVcc infectious systems, andrographolide time- and dose-dependently suppressed HCV replication. When combined with IFN-α, an inhibitor targeting HCV NS3/4A protease (telaprevir), or NS5B polymerase (PSI-7977), andrographolide exhibited a significant synergistic effect. Andrographolide up-regulated the expression of haeme oxygenase-1 (HO-1), leading to increased amounts of its metabolite biliverdin, which was found to suppress HCV replication by promoting the antiviral IFN responses and inhibiting NS3/4A protease activity. Significantly, these antiviral effects were attenuated by an HO-1-specific inhibitor or HO-1 gene knockdown, indicating that HO-1 contributed to the anti-HCV activity of andrographolide. Andrographolide activated p38 MAPK phosphorylation, which stimulated nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated HO-1 expression, and this was found to be associated with its anti-HCV activity. Our results demonstrate that andrographolide has the potential to control HCV replication and suggest that targeting the Nrf2-HO-1 signalling pathway might be a promising strategy for drug development. © 2013 The British Pharmacological Society.

  14. Histone deacetylase inhibition enhances self renewal and cardioprotection by human cord blood-derived CD34 cells.

    Ilaria Burba

    Full Text Available BACKGROUND: Use of peripheral blood- or bone marrow-derived progenitors for ischemic heart repair is a feasible option to induce neo-vascularization in ischemic tissues. These cells, named Endothelial Progenitors Cells (EPCs, have been extensively characterized phenotypically and functionally. The clinical efficacy of cardiac repair by EPCs cells remains, however, limited, due to cell autonomous defects as a consequence of risk factors. The devise of "enhancement" strategies has been therefore sought to improve repair ability of these cells and increase the clinical benefit. PRINCIPAL FINDINGS: Pharmacologic inhibition of histone deacetylases (HDACs is known to enhance hematopoietic stem cells engraftment by improvement of self renewal and inhibition of differentiation in the presence of mitogenic stimuli in vitro. In the present study cord blood-derived CD34(+ were pre-conditioned with the HDAC inhibitor Valproic Acid. This treatment affected stem cell growth and gene expression, and improved ischemic myocardium protection in an immunodeficient mouse model of myocardial infarction. CONCLUSIONS: Our results show that HDAC blockade leads to phenotype changes in CD34(+ cells with enhanced self renewal and cardioprotection.

  15. Multiple cis-acting elements involved in up-regulation of a cytochrome P450 gene conferring resistance to deltamethrin in smal brown planthopper, Laodelphax striatellus (Fallén).

    Pu, Jian; Sun, Haina; Wang, Jinda; Wu, Min; Wang, Kangxu; Denholm, Ian; Han, Zhaojun

    2016-11-01

    As well as arising from single point mutations in binding sites or detoxifying enzymes, it is likely that insecticide resistance mechanisms are frequently controlled by multiple genetic factors, resulting in resistance being inherited as a quantitative trait. However, empirical evidence for this is still rare. Here we analyse the causes of up-regulation of CYP6FU1, a monoxygenase implicated in resistance to deltamethrin in the rice pest Laodelphax striatellus. The 5'-flanking region of this gene was cloned and sequenced from individuals of a susceptible and a resistant strain. A luminescent reporter assay was used to evaluate different 5'-flanking regions and their fragments for promoter activity. Mutations enhancing promoter activity in various fragments were characterized, singly and in combination, by site mutation recovery. Nucleotide diversity in flanking sequences was greatly reduced in deltamethrin-resistant insects compared to susceptible ones. Phylogenetic sequence analysis found that CYP6FU1 had five different types of 5'-flanking region. All five types were present in a susceptible strain but only a single type showing the highest promoter activity was present in a resistant strain. Four cis-acting elements were identified whose influence on up-regulation was much more pronounced in combination than when present singly. Of these, two were new transcription factor (TF) binding sites produced by mutations, another one was also a new TF binding site alternated from an existing one, and the fourth was a unique transcription start site. These results demonstrate that multiple cis-acting elements are involved in up-regulating CYP6FU1 to generate a resistance phenotype. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    2010-01-01

    dehydrogenase encoding region of the bacterium, or is inserted into a phosphotransacetylase encoding region of the bacterium, or is inserted into an acetate kinase encoding region of the bacterium. It is operably linked to an inducible, a regulated or a constitutive promoter. The up-regulated glycerol......TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...

  17. Ethanol up-regulates nucleus accumbens neuronal activity dependent pentraxin (Narp): implications for alcohol-induced behavioral plasticity.

    Ary, Alexis W; Cozzoli, Debra K; Finn, Deborah A; Crabbe, John C; Dehoff, Marlin H; Worley, Paul F; Szumlinski, Karen K

    2012-06-01

    Neuronal activity dependent pentraxin (Narp) interacts with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors to facilitate excitatory synapse formation by aggregating them at established synapses. Alcohol is well-characterized to influence central glutamatergic transmission, including AMPA receptor function. Herein, we examined the influence of injected and ingested alcohol upon Narp protein expression, as well as basal Narp expression in mouse lines selectively bred for high blood alcohol concentrations under limited access conditions. Alcohol up-regulated accumbens Narp levels, concomitant with increases in levels of the GluR1 AMPA receptor subunit. However, accumbens Narp or GluR1 levels did not vary as a function of selectively bred genotype. We next employed a Narp knock-out (KO) strategy to begin to understand the behavioral relevance of alcohol-induced changes in protein expression in several assays of alcohol reward. Compared to wild-type mice, Narp KO animals: fail to escalate daily intake of high alcohol concentrations under free-access conditions; shift their preference away from high alcohol concentrations with repeated alcohol experience; exhibit a conditioned place-aversion in response to the repeated pairing of 3 g/kg alcohol with a distinct environment and fail to exhibit alcohol-induced locomotor hyperactivity following repeated alcohol treatment. Narp deletion did not influence the daily intake of either food or water, nor did it alter any aspect of spontaneous or alcohol-induced motor activity, including the development of tolerance to its motor-impairing effects with repeated treatment. Taken together, these data indicate that Narp induction, and presumably subsequent aggregation of AMPA receptors, may be important for neuroplasticity within limbic subcircuits mediating or maintaining the rewarding properties of alcohol. Published by Elsevier Inc.

  18. Differential up-regulation of striatal dopamine transporter and α-synuclein by the pyrethroid insecticide permethrin

    Gillette, Jeffrey S.; Bloomquist, Jeffrey R.

    2003-01-01

    The effects of permethrin on striatal dopaminergic biomarkers were assessed in this study. Retired breeder male C57 B1/6 mice were given an ip dose of permethrin (0.1-200 mg/kg) at 7-day intervals, over a 2-week period (Days 0, 7, and 14). Animals were then sacrificed 1 day (t = 1), 14 days (t 14), or 28 days after the last treatment (t = 28). Dopamine transporter (DAT) protein as assayed by Western blotting was increased to 115% in the 0.8 mg/kg group over that of control mice at t = 1 (P 3 H]GBR 12935, used to assay DAT binding, followed the same trend as that for the Western blotting data for 0.8 and 1.5 mg/kg doses of permethrin over the 4 weeks posttreatment. At 200 mg/kg permethrin, DAT protein was unchanged vs controls (t = 1), but had significantly increased by t = 14 and continued to increase at t = 28, suggesting that the reduced dopamine transport at this dose was due to nerve terminal stress and that recovery had occurred. The protein α-synuclein was also significantly induced at the 1.5 mg/kg dose at t = 1; however, unlike DAT up-regulation, this effect had declined to control values by t 14. Maximal induction of α-synuclein protein occurred at a dose of 50 mg/kg permethrin. These data provide evidence that the pyrethroid class of insecticides can modulate the dopaminergic system at low doses, in a persistent manner, which may render neurons more vulnerable to toxicant injury

  19. Up-Regulation of Excitatory Amino Acid Transporters EAAT1 and EAAT2 by ß-Klotho

    Jamshed Warsi

    2015-12-01

    Full Text Available Background/Aims: Klotho, a transmembrane protein expressed in chorioid plexus of the brain, kidney, and several other tissues, is required for inhibition of 1,25(OH2D3 formation by FGF23. The extracellular domain of Klotho protein could be cleaved off, thus being released into blood or cerebrospinal fluid. At least in part by exerting β-glucuronidase activity, soluble klotho regulates several ion channels and carriers. Klotho protein deficiency accelerates the appearance of age related disorders including neurodegeneration and muscle wasting and eventually leads to premature death. The present study explored the effect of Klotho protein on the excitatory glutamate transporters EAAT1 (SLC1A3 and EAAT2 (SLC1A2, Na+ coupled carriers clearing excitatory amino acids from the synaptic cleft and thus participating in the regulation of neuronal excitability. Methods: cRNA encoding EAAT1 or EAAT2 was injected into Xenopus laevis oocytes and glutamate (2 mM-induced inward current (IGlu taken as measure of glutamate transport. Measurements were made without or with prior 24 h treatment with soluble ß-Klotho protein (30 ng/ml in the absence and presence of β-glucuronidase inhibitor D-saccharic acid 1,4-lactone monohydrate (DSAL,10 µM. Results: IGlu was observed in EAAT1 and in EAAT2 expressing oocytes but not in water injected oocytes. In both, EAAT1 and EAAT2 expressing oocytes IGlu was significantly increased by treatment with soluble ß-Klotho protein, an effect reversed by DSAL. Treatment with ß-klotho protein increased significantly the maximal transport rate without significantly modifying the affinity of the carriers. Conclusion: ß-Klotho up-regulates the excitatory glutamate transporters EAAT1 and EAAT2 and thus participates in the regulation of neuronal excitation.

  20. Up-regulation of leucocytes genes implicated in telomere dysfunction and cellular senescence correlates with depression and anxiety severity scores.

    Jean-Raymond Teyssier

    Full Text Available BACKGROUND: Major depressive disorder (MDD is frequently associated with chronic medical illness responsible of increased disability and mortality. Inflammation and oxidative stress are considered to be the major mediators of the allostatic load, and has been shown to correlate with telomere erosion in the leucocytes of MDD patients, leading to the model of accelerated aging. However, the significance of telomere length as an exclusive biomarker of aging has been questioned on both methodological and biological grounds. Furthermore, telomeres significantly shorten only in patients with long lasting MDD. Sensitive and dynamic functional biomarkers of aging would be clinically useful to evaluate the somatic impact of MDD. METHODOLOGY: To address this issue we have measured in the blood leucocytes of MDD patients (N=17 and controls (N=16 the expression of two genes identified as robust biomarkers of human aging and telomere dysfunction: p16(INK4a and STMN1. We have also quantified the transcripts of genes involved in the repair of oxidative DNA damage at telomeres (OGG1, telomere regulation and elongation (TERT, and in the response to biopsychological stress (FOS and DUSP1. RESULTS: The OGG1, p16(INK4a, and STMN1 gene were significantly up-regulated (25 to 100% in the leucocytes of MDD patients. Expression of p16(INK4a and STMN1 was directly correlated with anxiety scores in the depression group, and that of p16(INK4a, STMN and TERT with the depression and anxiety scores in the combined sample (MDD plus controls. Furthermore, we identified a unique correlative pattern of gene expression in the leucocytes of MDD subjects. CONCLUSIONS: Expression of p16(INK4 and STMN1 is a promising biomarker for future epidemiological assessment of the somatic impact of depressive and anxious symptoms, at both clinical and subclinical level in both depressive patients and general population.

  1. Axin1 up-regulated 1 accelerates stress-induced cardiomyocytes apoptosis through activating Wnt/β-catenin signaling.

    Ye, Xing; Lin, Junyi; Lin, Zebin; Xue, Aimin; Li, Liliang; Zhao, Ziqin; Liu, Li; Shen, Yiwen; Cong, Bin

    2017-10-15

    Stress-induced cardiomyocyte apoptosis contributes to the pathogenesis of a variety of cardiovascular diseases, but how stress induces cardiomyocyte apoptosis remains largely unclear. The present study aims to investigate the effects of Axin1 up-regulated 1 (Axud1), a novel pro-apoptotic protein, on the cardiomyocyte survival and the underlying mechanisms. To this end, a rat model under restraint stress (RS) was established and in vitro stress-induced cardiomyocytes culture was achieved. Our data showed that Axud1 was upregulated in the rat myocardia after exposure to RS. Anti-apoptotic Bcl-2 was decreased, whereas pro-apoptotic Bax and Cleaved caspase-3 (Cc3) were increased in a time-dependent manner. The Wnt/β-catenin signaling was observed to be interestingly activated in heart undergoing RS. In addition, the treatment of norepinephrine (NE) to in vitro cardiomyocytes increased Axud1 level and induced cell apoptosis. Wnt/β-catenin signaling was consistently activated. Knockdown of Axud1 using specific siRNA blunted NE-induced cardiomyocytes apoptosis and also inactivated the Wnt/β-catenin signaling. XAV-939, an inhibitor of Wnt/β-catenin signaling, partially reversed the pro-apoptotic effect of NE. In conclusion, Axud1 accelerated stress-induced cardiomyocytes apoptosis through activation of Wnt/β-catenin signaling pathway. Our data provided novel evidence that therapeutic strategies against Axud1 or Wnt/β-catenin signaling might be promising in relation to RS-induced myocardial injury. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. EXPANSINA17 up-regulated by LBD18/ASL20 promotes lateral root formation during the auxin response.

    Lee, Han Woo; Kim, Jungmook

    2013-10-01

    Expansins are non-hydrolytic cell wall-loosening proteins involved in a variety of plant developmental processes during which cell wall modification occurs. Cell wall remodeling proteins including expansins have been suggested to be involved in cell separation to facilitate the emergence of lateral roots (LRs) through the overlaying tissues of the primary root. LBD18/ASL20 activates EXPANSINA14 (EXPA14) expression by directly binding to the EXPA14 promoter to enhance LR emergence in Arabidopsis thaliana. Here we show that EXPA17 is another target gene regulated by LBD18 to promote LR formation in Arabidopsis. We showed that nuclear translocation of the LBD18:GR fusion protein expressed under the Cauliflower mosaic virus (CaMV) 35S promoter or under the LBD18 promoter by dexamethasone treatment results in an increase in EXPA17 transcript levels. β-Glucuronidase (GUS) expression under the EXPA17 promoter, which is detected only in the roots of the wild type, was reduced in the LR primordium and overlaying tissues in an lbd18 mutant background. The number of emerged LRs of the EXPA17 RNAi (RNA interference) Arabidopsis lines was significantly lower than that of the wild type. Overexpression of EXPA17 in Arabidopsis increased the density of emerged LRs in the presence of auxin compared with the wild type. LR induction experiments with a gravitropic stimulus showed that LR emergence is delayed in the EXPA17 RNAi plants compared with the wild type. In addition, EXPA4 expression was also detected in overlaying tissues of the LR primordium and was inducible by LBD18. Taken together, these results support the notion that LBD18 up-regulates a subset of EXP genes to enhance cell separation to promote LR emergence in Arabidopsis.

  3. Caffeine mediates sustained inactivation of breast cancer-associated myofibroblasts via up-regulation of tumor suppressor genes.

    Mysoon M Al-Ansari

    Full Text Available BACKGROUND: Active cancer-associated fibroblasts (CAFs or myofibroblasts play important roles not only in the development and progression of breast carcinomas, but also in their prognosis and treatment. Therefore, targeting these cells through suppressing their supportive procarcinogenic paracrine effects is mandatory for improving the current therapies that are mainly targeting tumor cells. To this end, we investigated the effect of the natural and pharmacologically safe molecule, caffeine, on CAF cells and their various procarcinogenic effects. METHODOLOGY/PRINCIPAL FINDINGS: We have shown here that caffeine up-regulates the tumor suppressor proteins p16, p21, p53 and Cav-1, and reduces the expression/secretion of various cytokines (IL-6, TGF-β, SDF-1 and MMP-2, and down-regulates α-SMA. Furthermore, caffeine suppressed the migratory/invasiveness abilities of CAF cells through PTEN-dependent Akt/Erk1/2 inactivation. Moreover, caffeine reduced the paracrine pro-invasion/-migration effects of CAF cells on breast cancer cells. These results indicate that caffeine can inactivate breast stromal myofibroblasts. This has been confirmed by showing that caffeine also suppresses the paracrine pro-angiogenic effect of CAF cells through down-regulating HIF-1αand its downstream effector VEGF-A. Interestingly, these effects were sustained in absence of caffeine. CONCLUSION/SIGNIFICANCE: The present findings provide a proof of principle that breast cancer myofibroblasts can be inactivated, and thereby caffeine may provide a safe and effective prevention against breast tumor growth/recurrence through inhibition of the procarcinogenic effects of active stromal fibroblasts.

  4. Unsaturated compounds induce up-regulation of CD86 on dendritic cells in the in vitro sensitization assay LCSA.

    Frohwein, Thomas Armin; Sonnenburg, Anna; Zuberbier, Torsten; Stahlmann, Ralf; Schreiner, Maximilian

    2016-04-01

    Unsaturated compounds are known to cause false-positive reactions in the local lymph node assay (LLNA) but not in the guinea pig maximization test. We have tested a panel of substances (succinic acid, undecylenic acid, 1-octyn-3-ol, fumaric acid, maleic acid, linoleic acid, oleic acid, alpha-linolenic acid, squalene, and arachidonic acid) in the loose-fit coculture-based sensitization assay (LCSA) to evaluate whether unspecific activation of dendritic cells is a confounder for sensitization testing in vitro. Eight out of 10 tested substances caused significant up-regulation of CD86 on dendritic cells cocultured with keratinocytes and would have been classified as sensitizers; only succinic acid was tested negative, and squalene had to be excluded from data analysis due to poor solubility in cell culture medium. Based on human data, only undecylenic acid can be considered a true sensitizer. The true sensitizing potential of 1-octyn-3-ol is uncertain. Fumaric acid and its isomer maleic acid are not known as sensitizers, but their esters are contact allergens. A group of 18- to 20-carbon chain unsaturated fatty acids (linoleic acid, oleic acid, alpha-linolenic acid, and arachidonic acid) elicited the strongest reaction in vitro. This is possibly due to the formation of pro-inflammatory lipid mediators in the cell culture causing nonspecific activation of dendritic cells. In conclusion, both the LLNA and the LCSA seem to provide false-positive results for unsaturated fatty acids. The inclusion of T cells in dendritic cell-based in vitro sensitization assays may help to eliminate false-positive results due to nonspecific dendritic cell activation. This would lead to more accurate prediction of sensitizers, which is paramount for consumer health protection and occupational safety.

  5. Long-term dietary restriction up-regulates activity and expression of renal arginase II in aging mice.

    Majaw, T; Sharma, R

    2017-06-01

    Arginase II is a mitochondrial enzyme that catalyses the hydrolysis of L-arginine into urea and ornithine. It is present in other extra-hepatic tissues that lack urea cycle. Therefore, it is plausible that arginase II has a physiological role other than urea cycle which includes polyamine, proline, glutamate synthesis and regulation of nitric oxide production. The high expression of arginase II in kidney, among extrahepatic tissues, might have an important role associated with kidney functions. The present study is aimed to determine the age-associated alteration in the activity and expression of arginase II in the kidney of mice of different ages. The effect of dietary restriction to modulate the agedependent changes of arginase II was also studied. Results showed that renal arginase II activity declines significantly with the progression of age (p less than 0.01 and p less than 0.001 in 6- and 18-month-old mice, respectively as compared to 2-month old mice) and is due to the reduction in its protein as well as the mRNA level (p less than 0.001 in both 6- and 18-month-old mice as compared to 2-month-old mice). Long-term dietary restriction for three months has significantly up-regulated arginase II activity and expression level in both 2- and 18-month-old mice (p less than 0.01 and p less than 0.001, respectively as compared to AL group). These findings clearly indicate that the reducing level of arginase II during aging might have an impact on the declining renal functions. This age-dependent down-regulation of arginase II in the kidney can be attenuated by dietary restriction which may help in the maintenance of such functions.

  6. Protein expression profiling of the drosophila fragile X mutant brain reveals up-regulation of monoamine synthesis.

    Zhang, Yong Q; Friedman, David B; Wang, Zhe; Woodruff, Elvin; Pan, Luyuan; O'donnell, Janis; Broadie, Kendal

    2005-03-01

    Fragile X syndrome is the most common form of inherited mental retardation, associated with both cognitive and behavioral anomalies. The disease is caused by silencing of the fragile X mental retardation 1 (fmr1) gene, which encodes the mRNA-binding, translational regulator FMRP. Previously we established a disease model through mutation of Drosophila fmr1 (dfmr1) and showed that loss of dFMRP causes defects in neuronal structure, function, and behavioral output similar to the human disease state. To uncover molecular targets of dFMRP in the brain, we use here a proteomic approach involving two-dimensional difference gel electrophoresis analyses followed by mass spectrometry identification of proteins with significantly altered expression in dfmr1 null mutants. We then focus on two misregulated enzymes, phenylalanine hydroxylase (Henna) and GTP cyclohydrolase (Punch), both of which mediate in concert the synthetic pathways of two key monoamine neuromodulators, dopamine and serotonin. Brain enzymatic assays show a nearly 2-fold elevation of Punch activity in dfmr1 null mutants. Consistently brain neurochemical assays show that both dopamine and serotonin are significantly increased in dfmr1 null mutants. At a cellular level, dfmr1 null mutant neurons display a highly significant elevation of the dense core vesicles that package these monoamine neuromodulators for secretion. Taken together, these data indicate that dFMRP normally down-regulates the monoamine pathway, which is consequently up-regulated in the mutant condition. Elevated brain levels of dopamine and serotonin provide a plausible mechanistic explanation for aspects of cognitive and behavioral deficits in human patients.

  7. Neurodegeneration in Autoimmune Optic Neuritis Is Associated with Altered APP Cleavage in Neurons and Up-Regulation of p53.

    Sabine Herold

    Full Text Available Multiple Sclerosis (MS is a chronic autoimmune inflammatory disease of the central nervous system (CNS. Histopathological and radiological analysis revealed that neurodegeneration occurs early in the disease course. However, the pathological mechanisms involved in neurodegeneration are poorly understood. Myelin oligodendrocyte glycoprotein (MOG-induced experimental autoimmune encephalomyelitis (EAE in Brown Norway rats (BN-rats is a well-established animal model, especially of the neurodegenerative aspects of MS. Previous studies in this animal model indicated that loss of retinal ganglion cells (RGCs, the neurons that form the axons of the optic nerve, occurs in the preclinical phase of the disease and is in part independent of overt histopathological changes of the optic nerve. Therefore, the aim of this study was to identify genes which are involved in neuronal cell loss at different disease stages of EAE. Furthermore, genes that are highly specific for autoimmune-driven neurodegeneration were compared to those regulated in RGCs after optic nerve axotomy at corresponding time points. Using laser capture micro dissection we isolated RNA from unfixed RGCs and performed global transcriptome analysis of retinal neurons. In total, we detected 582 genes sequentially expressed in the preclinical phase and 1150 genes in the clinical manifest EAE (P 1.5. Furthermore, using ingenuity pathway analysis (IPA, we identified amyloid precursor protein (APP as a potential upstream regulator of changes in gene expression in the preclinical EAE but neither in clinical EAE, nor at any time point after optic nerve transection. Therefore, the gene pathway analysis lead to the hypothesis that altered cleavage of APP in neurons in the preclinical phase of EAE leads to the enhanced production of APP intracellular domain (AICD, which in turn acts as a transcriptional regulator and thereby initiates an apoptotic signaling cascade via up-regulation of the target gene p

  8. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand.

    Saralamma, Venu Venkatarame Gowda; Nagappan, Arulkumar; Hong, Gyeong Eun; Lee, Ho Jeong; Yumnam, Silvia; Raha, Suchismita; Heo, Jeong Doo; Lee, Sang Joon; Lee, Won Sup; Kim, Eun Hee; Kim, Gon Sup

    2015-09-18

    Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma). The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL) protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose) polymerase (PARP). Inhibitor studies' results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm), pro-apoptotic proteins (Bax and Bak) and anti-apoptotic protein (Bcl-xL) in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer.

  9. Transgenic up-regulation of alpha-CaMKII in forebrain leads to increased anxiety-like behaviors and aggression

    Hasegawa Shunsuke

    2009-03-01

    Full Text Available Abstract Background Previous studies have demonstrated essential roles for alpha-calcium/calmodulin-dependent protein kinase II (alpha-CaMKII in learning, memory and long-term potentiation (LTP. However, previous studies have also shown that alpha-CaMKII (+/- heterozygous knockout mice display a dramatic decrease in anxiety-like and fearful behaviors, and an increase in defensive aggression. These findings indicated that alpha-CaMKII is important not only for learning and memory but also for emotional behaviors. In this study, to understand the roles of alpha-CaMKII in emotional behavior, we generated transgenic mice overexpressing alpha-CaMKII in the forebrain and analyzed their behavioral phenotypes. Results We generated transgenic mice overexpressing alpha-CaMKII in the forebrain under the control of the alpha-CaMKII promoter. In contrast to alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in anxiety-like behaviors in open field, elevated zero maze, light-dark transition and social interaction tests, and a decrease in locomotor activity in their home cages and novel environments; these phenotypes were the opposite to those observed in alpha-CaMKII (+/- heterozygous knockout mice. In addition, similarly with alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in aggression. However, in contrast to the increase in defensive aggression observed in alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in offensive aggression. Conclusion Up-regulation of alpha-CaMKII expression in the forebrain leads to an increase in anxiety-like behaviors and offensive aggression. From the comparisons with previous findings, we suggest that the expression levels of alpha-CaMKII are associated with the state of emotion; the expression level of alpha-CaMKII positively correlates with the anxiety state and strongly affects

  10. The antidiabetic drug ciglitazone induces high grade bladder cancer cells apoptosis through the up-regulation of TRAIL.

    Marie-Laure Plissonnier

    Full Text Available Ciglitazone belongs to the thiazolidinediones class of antidiabetic drug family and is a high-affinity ligand for the Peroxisome Proliferator-Activated Receptor γ (PPARγ. Apart from its antidiabetic activity, this molecule shows antineoplastic effectiveness in numerous cancer cell lines.Using RT4 (derived from a well differentiated grade I papillary tumor and T24 (derived from an undifferentiated grade III carcinoma bladder cancer cells, we investigated the potential of ciglitazone to induce apoptotic cell death and characterized the molecular mechanisms involved. In RT4 cells, the drug induced G2/M cell cycle arrest characterized by an overexpression of p53, p21(waf1/CIP1 and p27(Kip1 in concomitance with a decrease of cyclin B1. On the contrary, in T24 cells, it triggered apoptosis via extrinsic and intrinsic pathways. Cell cycle arrest and induction of apoptosis occurred at high concentrations through PPARγ activation-independent pathways. We show that in vivo treatment of nude mice by ciglitazone inhibits high grade bladder cancer xenograft development. We identified a novel mechanism by which ciglitazone kills cancer cells. Ciglitazone up-regulated soluble and membrane-bound TRAIL and let TRAIL-resistant T24 cells to respond to TRAIL through caspase activation, death receptor signalling pathway and Bid cleavage. We provided evidence that TRAIL-induced apoptosis is partially driven by ciglitazone-mediated down-regulation of c-FLIP and survivin protein levels through a proteasome-dependent degradation mechanism.Therefore, ciglitazone could be clinically relevant as chemopreventive or therapeutic agent for the treatment of TRAIL-refractory high grade urothelial cancers.

  11. Tofacitinib improves atherosclerosis despite up-regulating serum cholesterol in patients with active rheumatoid arthritis: a cohort study.

    Kume, Kensuke; Amano, Kanzo; Yamada, Susumu; Kanazawa, Toshikatsu; Ohta, Hiroyuki; Hatta, Kazuhiko; Amano, Kuniki; Kuwaba, Noriko

    2017-12-01

    Patients with rheumatoid arthritis (RA) have an increased cardiovascular (CV) risk. This study aimed to analyze the effects of Tofacitinib treatment, a Janus kinase inhibitor, on atherosclerosis in patients with RA. Patients with an active RA (28-joint disease activity score-erythrocyte sedimentation rate > 3.2) despite methotrexate (MTX) treatment 12 mg/week were included in this open-label prospective study and started on Tofacitinib (10 mg/day, 5 mg twice/day). Japanese guideline does not allow high dose of MTX. All patients used a stable dosage of MTX, steroids, and statins or lipid-lowering drugs. The primary endpoint was the comparison of the carotid intima-media thickness (CIMT) at the baseline and 54 weeks after Tofa treatment. Clinical data were collected at regular visits. Forty-six patients completed this study. CIMT did not significantly change from baseline to 54 weeks (1.09 ± 0.69 and 1.08 ± 0.78 mm, p = 0.82). In 12 patients who had atherosclerosis at baseline (carotid intima-media thickness > 1.10 mm), there was a significant decrease in CIMT (0.05± 0.026 mm; p < 0.05). However, the decrease in CIMT was of limited clinical significance. Tofacitinib increased fasting total cholesterol levels from baseline to 54 weeks (216 ± 25.3 and 234 ± 28.8 mg/dL, p < 0.01). Tofacitinib affects atherosclerosis in patients with active RA The CIMT in RA patients was stable. Tofacitinib decreased the CIMT of patients who had increased CIMT at baseline. Tofacitinib reduced RA disease activity and limited vascular damage despite up-regulating cholesterol in patients with an active RA.

  12. C-reactive protein expression is up-regulated in apical lesions of endodontic origin in association with interleukin-6.

    Garrido, Mauricio; Dezerega, Andrea; Bordagaray, María José; Reyes, Montserrat; Vernal, Rolando; Melgar-Rodríguez, Samantha; Ciuchi, Pía; Paredes, Rodolfo; García-Sesnich, Jocelyn; Ahumada-Montalva, Pablo; Hernández, Marcela

    2015-04-01

    C-reactive protein (CRP) is the prototype component of acute-phase proteins induced ultimately by interleukin (IL)-6 in the liver, but it is unknown whether periradicular tissues locally express CRP. The present study aimed to identify whether CRP messenger RNA synthesis occurs in situ within apical lesions of endodontic origin (ALEOs) and healthy periodontal ligament and its association with IL-6 and to determine their protein levels and tissue localization. Patients with asymptomatic apical periodontitis and healthy volunteers presenting at the School of Dentistry, University of Chile, Santiago, Chile, were enrolled. ALEOs and healthy teeth were obtained and processed for either immunohistochemistry and double immunofluorescence to assess IL-6 and CRP tissue localization, whereas healthy periodontal ligaments were processed as controls for real-time reverse-transcription polymerase chain reaction for their RNA expression levels and multiplex assay to determine their protein levels. Statistic analysis was performed using the unpaired t test or Mann-Whitney test according to data distribution and Pearson correlation. IL-6 and CRP were synthesized in ALEOs, whereas their RNA expression and protein levels were significantly higher when compared with healthy periodontal ligament. IL-6 and CRP immunolocalized to the inflammatory cells, vascular endothelial cells, and mesenchymal cells. Both, IL-6 and CRP colocalized in ALEOs, and a positive correlation was found between their expression levels (P periodontal ligament and up-regulated in ALEOs along with higher protein levels. Given their pleiotropic effects, IL-6 and CRP protein levels in apical tissues might partially explain the development and progression of ALEOs as well as potentially asymptomatic apical periodontitis-associated systemic low-grade inflammation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Up-regulation of phosphoinositide metabolism in tobacco cells constitutively expressing the human type I inositol polyphosphate 5-phosphatase

    Perera, Imara Y.; Love, John; Heilmann, Ingo; Thompson, William F.; Boss, Wendy F.; Brown, C. S. (Principal Investigator)

    2002-01-01

    To evaluate the impact of suppressing inositol 1,4,5-trisphosphate (InsP(3)) in plants, tobacco (Nicotiana tabacum) cells were transformed with the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), an enzyme which specifically hydrolyzes InsP(3). The transgenic cell lines showed a 12- to 25-fold increase in InsP 5-ptase activity in vitro and a 60% to 80% reduction in basal InsP(3) compared with wild-type cells. Stimulation with Mas-7, a synthetic analog of the wasp venom peptide mastoparan, resulted in an approximately 2-fold increase in InsP(3) in both wild-type and transgenic cells. However, even with stimulation, InsP(3) levels in the transgenic cells did not reach wild-type basal values, suggesting that InsP(3) signaling is compromised. Analysis of whole-cell lipids indicated that phosphatidylinositol 4,5-bisphosphate (PtdInsP(2)), the lipid precursor of InsP(3), was greatly reduced in the transgenic cells. In vitro assays of enzymes involved in PtdInsP(2) metabolism showed that the activity of the PtdInsP(2)-hydrolyzing enzyme phospholipase C was not significantly altered in the transgenic cells. In contrast, the activity of the plasma membrane PtdInsP 5 kinase was increased by approximately 3-fold in the transgenic cells. In vivo labeling studies revealed a greater incorporation of (32)P into PtdInsP(2) in the transgenic cells compared with the wild type, indicating that the rate of PtdInsP(2) synthesis was increased. These studies show that the constitutive expression of the human type I InsP 5-ptase in tobacco cells leads to an up-regulation of the phosphoinositide pathway and highlight the importance of PtdInsP(2) synthesis as a regulatory step in this system.

  14. Up-regulated proteins in the fluid bathing the tumour cell microenvironment as potential serological markers for early detection of cancer of the breast

    Gromov, Pavel; Gromova, Irina; Bunkenborg, Jakob

    2010-01-01

    -based proteomics in combination with mass spectrometry and immunohistochemistry (IHC) of the tumour interstitial fluids (TIF) and normal interstitial fluids (NIF) collected from 69 prospective breast cancer patients. The goal of this study was to identify abundant cancer up-regulated proteins that are externalised...... in the TIF, some of which were confirmed by IHC. In the second phase, we carried out a systematic computer assisted analysis of the 2D gels of the remaining 68 TIF samples in order to identify TIF 46 up-regulated proteins that were deregulated in 90% or more of all the available TIFs, thus representing...

  15. The cardioprotective efficacy of TVP1022 in a rat model of ischaemia/reperfusion.

    Ertracht, Offir; Liani, Esti; Bachner-Hinenzon, Noa; Bar-Am, Orit; Frolov, Luba; Ovcharenko, Elena; Awad, Huda; Blum, Shany; Barac, Yaron; Amit, Tamar; Adam, Dan; Youdim, Moussa; Binah, Ofer

    2011-06-01

    Because myocardial infarction is a major cause of morbidity and mortality worldwide, protecting the heart from the ischaemia and reperfusion (I/R) damage is the focus of intense research. Based on our in vitro findings showing that TVP1022 (the S-enantiomer of rasagiline, an anti-Parkinsonian drug) possesses cardioprotective effects, in the present study we investigated the hypothesis that TVP1022 can attenuate myocardial damage in an I/R model in rats. The model consisted of 30-min occlusion of the left anterior descending artery followed by 4 or 24 h reperfusion. In addition, we investigated the possible mechanisms of cardioprotection in H9c2 cells and neonatal rat ventricular myocytes (NRVM) exposed to oxidative stress induced by H(2) O(2) . TVP1022 (20 and 40 mg·kg(-1) ) administered 5 min before reperfusion followed by an additional dose 4 h after reperfusion reduced the infarct size and attenuated the decline in ventricular function. TVP1022 also attenuated I/R-induced deterioration in cardiac mitochondrial integrity evaluated by mitochondrial swelling capacity. In vitro, using H9c2 cells and NRVM, TVP1022 attenuated both serum free- and H(2) O(2) -induced damage, preserved mitochondrial membrane potential and Bcl-2 levels, inhibited mitochondrial cytochrome c release and the increase in cleaved caspase 9 and 3 levels, and enhanced the phosphorylation of protein kinase C and glycogen synthase kinase-3β. TVP1022 provided cardioprotection in a model of myocardial infarction, and therefore should be considered as a novel adjunctive therapy for attenuating myocardial damage resulting from I/R injuries. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  16. Cnidoscolus chayamansa Mc Vaugh, an important antioxidant, anti-inflammatory and cardioprotective plant used in Mexico.

    García-Rodríguez, Rosa Virginia; Gutiérrez-Rebolledo, Gabriel Alfonso; Méndez-Bolaina, Enrique; Sánchez-Medina, Alberto; Maldonado-Saavedra, Octavio; Domínguez-Ortiz, Miguel Ángel; Vázquez-Hernández, Maribel; Muñoz-Muñiz, Omar David; Cruz-Sánchez, Jesús Samuel

    2014-02-03

    Cnidoscolus chayamansa Mc Vaugh (Euphorbiaceae) is commonly known as 'chaya' in Central America. In South East Mexico, because of its high nutritional values, is an important part of the diet of many indigenous communities. Chaya is also used as a traditional remedy for the treatment of diabetes, rheumatism, gastrointestinal disorders and inflammation-related diseases. Although Cnidoscolus chayamansa is one of most used and valued medicinal plants, only few studies on documenting its pharmacological properties can be found. Dried leaves of Cnidoscolus chayamansa were subjected to a successive maceration using Hex, EtOAc and EtOH. The antioxidant activities of the extracts were tested using the DPPH radical scavenging, Ferric reducing/antioxidant power and total phenolic content assays. To determine the anti-inflammatory activity, the TPA-induced mouse ear edema and the carrageenan-induced mouse paw edema assays were used. The cardioprotective effects of the EtOH extract was determined using the ischemia/reperfusion (I/R) rat model. Finally, the acute toxicity was determined using Lorke's method. The results showed a similar anti-inflammatory activity (≈30%) for all extracts but only the EtOAc extract showed relevant activity when applied intraperitoneally. When tested for their antioxidant activity none of the extracts showed a significant activity suggesting that the antinflammatory activity is not related to a direct free radical scavenging of the extracts. Additionally, the EtOH extract showed a strong cardioprotective effect at 500mg/kg when given orally. Both the EtOAc and the EtOH extract have a LD50 >5g/kg, confirming their safety in acute oral administration. All these results are relevant for a better understanding of the therapeutic used of Cnidoscolus chayamansa in the Mexican traditional medicine and highlights its cardioprotective potential. © 2013 Published by Elsevier Ireland Ltd.

  17. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice.

    Radford, N B; Fina, M; Benjamin, I J; Moreadith, R W; Graves, K H; Zhao, P; Gavva, S; Wiethoff, A; Sherry, A D; Malloy, C R; Williams, R S

    1996-03-19

    Heat shock proteins are proposed to limit injury resulting from diverse environmental stresses, but direct metabolic evidence for such a cytoprotective function in vertebrates has been largely limited to studies of cultured cells. We generated lines of transgenic mice to express human 70-kDa heat shock protein constitutively in the myocardium. Hearts isolated from these animals demonstrated enhanced recovery of high energy phosphate stores and correction of metabolic acidosis following brief periods of global ischemia sufficient to induce sustained abnormalities of these variables in hearts from nontransgenic littermates. These data demonstrate a direct cardioprotective effect of 70-kDa heat shock protein to enhance postischemic recovery of the intact heart.

  18. Cardioprotective effect of amlodipine in oxidative stress induced by experimental myocardial infarction in rats

    Sudhira Begum

    2007-12-01

    Full Text Available The present study investigated whether the administration of amlodipine ameliorates oxidative stress induced by experimental myocardial infarction in rats. Adrenaline was administered and myocardial damage was evaluated biochemically [significantly increased serum aspertate aminotransferase (AST, lactate dehydrogenase (LDH and malondialdehyde (MDA levels of myocardial tissue] and histologically (morphological changes of myocardium. Amlodipine was administered as pretreatment for 14 days in adrenaline treated rats. Statistically significant amelioration in all the biochemical parameters supported by significantly improved myocardial morphology was observed in amlodipine pretreatment. It was concluded that amlodipine afforded cardioprotection by reducing oxidative stress induced in experimental myocardial infarction of catecholamine assault.

  19. EVALUATION OF CARDIOPROTECTIVE ACTIVITY OF MEDOHAR VATI BY ISOPROTERENOL INDUCED MYOCARDIAL DAMAGE IN RATS

    Patel Jignasa S; Setty Seema K; Chakraborty Manodeep; Kamath Jagadish V

    2012-01-01

    This study was designed to investigate the cardioprotective activity of poly herbal formulation Medohar vati in isoproterenol (ISO)- induced myocardial necrosis in rats. Animals were treated with Medohar vati (150 and 300 mg/kg for 21 days) and Carvedilol (10mg/kg for 7 days) to the rats treated with ISO (85 mg/kg, sc) on the 22th and 23rd days. The group only treated with ISO demonstrated elevated level of Lactate dehydrogenasa (LDH), Creatine kinase (CK-MB) and CK- NAC in serum which was r...

  20. Fluoxetine up-regulates expression of cellular FLICE-inhibitory protein and inhibits LPS-induced apoptosis in hippocampus-derived neural stem cell

    Chiou, S.-H.; Chen, S.-J.; Peng, C-H.; Chang, Y.-L.; Ku, H.-H.; Hsu, W.-M.; Ho, Larry L.-T.; Lee, C.-H.

    2006-01-01

    Fluoxetine is a widely used antidepressant compound which inhibits the reuptake of serotonin in the central nervous system. Recent studies have shown that fluoxetine can promote neurogenesis and improve the survival rate of neurons. However, whether fluoxetine modulates the proliferation or neuroprotection effects of neural stem cells (NSCs) needs to be elucidated. In this study, we demonstrated that 20 μM fluoxetine can increase the cell proliferation of NSCs derived from the hippocampus of adult rats by MTT test. The up-regulated expression of Bcl-2, Bcl-xL and the cellular FLICE-inhibitory protein (c-FLIP) in fluoxetine-treated NSCs was detected by real-time RT-PCR. Our results further showed that fluoxetine protects the lipopolysaccharide-induced apoptosis in NSCs, in part, by activating the expression of c-FLIP. Moreover, c-FLIP induction by fluoxetine requires the activation of the c-FLIP promoter region spanning nucleotides -414 to -133, including CREB and SP1 sites. This effect appeared to involve the phosphatidylinositol-3-kinase-dependent pathway. Furthermore, fluoxetine treatment significantly inhibited the induction of proinflammatory factor IL-1β, IL-6, and TNF-α in the culture medium of LPS-treated NSCs (p < 0.01). The results of high performance liquid chromatography coupled to electrochemical detection further confirmed that fluoxentine increased the functional production of serotonin in NSCs. Together, these data demonstrate the specific activation of c-FLIP by fluoxetine and indicate the novel role of fluoxetine for neuroprotection in the treatment of depression

  1. Naringin promotes osteogenic differentiation of bone marrow stromal cells by up-regulating Foxc2 expression via the IHH signaling pathway.

    Lin, Fei-Xiang; Du, Shi-Xin; Liu, De-Zhong; Hu, Qin-Xiao; Yu, Guo-Yong; Wu, Chu-Cheng; Zheng, Gui-Zhou; Xie, Da; Li, Xue-Dong; Chang, Bo

    2016-01-01

    Naringin is an active compound extracted from Rhizoma Drynariae, and studies have revealed that naringin can promote proliferation and osteogenic differentiation of bone marrow stromal cells (BMSCs). In this study, we explored whether naringin could promote osteogenic differentiation of BMSCs by upregulating Foxc2 expression via the Indian hedgehog (IHH) signaling pathway. BMSCs were cultured in basal medium, basal medium with naringin, osteogenic induction medium, osteogenic induction medium with naringin and osteogenic induction medium with naringin in the presence of the IHH inhibitor cyclopamine (CPE). We examined cell proliferation by using a WST-8 assay, and differentiation by Alizarin Red S staining (for mineralization) and alkaline phosphatase (ALP) activity. In addition, we detected core-binding factor α1 (Cbfα1), osteocalcin (OCN), bone sialoprotein (BSP), peroxisome proliferation-activated receptor gamma 2 (PPARγ2) and Foxc2 expression by using RT-PCR. We also determined Foxc2 and IHH protein levels by western blotting. Naringin increased the mineralization of BMSCs, as shown by Alizarin red S assays, and induced ALP activity. In addition, naringin significantly increased the mRNA levels of Foxc2, Cbfα1, OCN, and BSP, while decreasing PPARγ2 mRNA levels. Furthermore, the IHH inhibitor CPE inhibited the osteogenesis-potentiating effects of naringin. Naringin increased Foxc2 and stimulated the activation of IHH, as evidenced by increased expression of proteins that were inhibited by CPE. Our findings indicate that naringin promotes osteogenic differentiation of BMSCs by up-regulating Foxc2 expression via the IHH signaling pathway.

  2. Identification of up-regulated genes from the metal-hyperaccumulator aquatic fern Salvinia minima Baker, in response to lead exposure.

    Leal-Alvarado, Daniel A; Martínez-Hernández, A; Calderón-Vázquez, C L; Uh-Ramos, D; Fuentes, G; Ramírez-Prado, J H; Sáenz-Carbonell, L; Santamaría, J M

    2017-12-01

    Lead (Pb) is one of the most serious environmental pollutants. The aquatic fern Salvinia minima Baker is capable to hyper-accumulate Pb in their tissues. However, the molecular mechanisms involved in its Pb accumulation and tolerance capacity are not fully understood. In order to investigate the molecular mechanisms that are activated by S. minima in response to Pb, we constructed a suppression subtractive hybridization library (SSH) in response to an exposure to 40μM of Pb(NO 3 ) 2 for 12h. 365 lead-related differentially expressed sequences tags (ESTs) were isolated and sequenced. Among these ESTs, 143 unique cDNA (97 were registered at the GenBank and 46 ESTs were not registered, because they did not meet the GenBank conditions). Those ESTs were identified and classified into 3 groups according to Blast2GO. In terms of metabolic pathways, they were grouped into 29 KEGG pathways. Among the ESTs, we identified some that might be part of the mechanism that this fern may have to deal with this metal, including abiotic-stress-related transcription factors, some that might be involved in tolerance mechanisms such as ROS scavenging, membrane protection, and those of cell homeostasis recovery. To validate the SSH library, 4 genes were randomly selected from the library and analyzed by qRT-PCR. These 4 genes were transcriptionally up-regulated in response to lead in at least one of the two tested tissues (roots and leaves). The present library is one of the few genomics approaches to study the response to metal stress in an aquatic fern, representing novel molecular information and tools to understand the molecular physiology of its Pb tolerance and hyperaccumulation capacity. Further research is required to elucidate the functions of the lead-induced genes that remain classified as unknown, to perhaps reveal novel molecular mechanisms of Pb tolerance and accumulation capacity in aquatic plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Anti-hypertensive and cardioprotective effects of a novel apitherapy formulation via upregulation of peroxisome proliferator-activated receptor-α and -γ in spontaneous hypertensive rats.

    Sun, Yanru; Han, Mingfeng; Shen, Zhenhuang; Huang, Haibo; Miao, Xiaoqing

    2018-02-01

    Ventricular remodeling is associated with many heart diseases, and ventricular remodeling induced by hypertension can be fatal independent of hypertension. In this study, we prepared a novel apitherapy formulation, designated Bao-Yuan-Ling (BYL), which contained propolis, royal jelly, and bee venom, to treat spontaneous hypertensive rats (SHRs). We then evaluated the pharmacology of BYL and the potential mechanisms through which BYL affects hypertension and ventricular remodeling. We found that BYL treatment could reduce blood pressure in SHRs. Thereafter, we found that BYL treatment reduced serum levels of angiotensin II, endothelin 1, and transforming growth factor-β and improved the myocardial structure. Moreover, the results of quantitative real-time polymerase chain reaction indicated that BYL treatment could upregulate the mRNA expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ. Thus, we could conclude that BYL had hypotensive and cardioprotective effects in SHRs, potentially through improvement of myocardial energy metabolism.

  4. Anti-hypertensive and cardioprotective effects of a novel apitherapy formulation via upregulation of peroxisome proliferator-activated receptor-α and -γ in spontaneous hypertensive rats

    Yanru Sun

    2018-02-01

    Full Text Available Ventricular remodeling is associated with many heart diseases, and ventricular remodeling induced by hypertension can be fatal independent of hypertension. In this study, we prepared a novel apitherapy formulation, designated Bao-Yuan-Ling (BYL, which contained propolis, royal jelly, and bee venom, to treat spontaneous hypertensive rats (SHRs. We then evaluated the pharmacology of BYL and the potential mechanisms through which BYL affects hypertension and ventricular remodeling. We found that BYL treatment could reduce blood pressure in SHRs. Thereafter, we found that BYL treatment reduced serum levels of angiotensin II, endothelin 1, and transforming growth factor-β and improved the myocardial structure. Moreover, the results of quantitative real-time polymerase chain reaction indicated that BYL treatment could upregulate the mRNA expression of peroxisome proliferator-activated receptor (PPAR-α and PPAR-γ. Thus, we could conclude that BYL had hypotensive and cardioprotective effects in SHRs, potentially through improvement of myocardial energy metabolism.

  5. Up-regulation and subcellular localization of hnRNP A2/B1 in the development of hepatocellular carcinoma

    Cui, Huaqing; Wu, Feng; Sun, Yanling; Fan, Guocai; Wang, Qingming

    2010-01-01

    Hepatocellular carcinoma (HCC) is one of the world's leading causes of death among cancer patients. It is important to find a new biomarker that diagnoses HCC and monitors its treatment. In our previous work, we screened a single-chain antibody (scFv) N14, which could specifically recognize human HepG2 HCC cells but not human non-cancerous liver LO2 cells. However, the antigen it recognized in the cells remained unknown. Recombinant scFv N14 antibody was expressed as an active antibody. Using this antibody with a combination of immunological and proteomic approaches, we identified the antigen of scFv N14 antibody as the heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1). The expression of hnRNP A2/B1 in HCC cells was then investigated by semi-quantitative RT-PCR and immunohistochemistry. We found that the up-regulation of hnRNP A2/B1 was measured at both transcriptional and translational levels in rat HCC cells but not in rat hepatic cells. We also found that in various human hepatic tissues, hnRNP A2/B1 was highly expressed in both human hepatitis virus positive liver tissues and human HCC tissues but not in normal liver tissues. Interestingly, we observed that the localization of hnRNP A2/B1 in HCC cells was altered during the development of HCC. In human hepatitis virus infected tissues hnRNP A2/B1 resides exclusively in the nuclei of hepatocytes. However, when the HCC progressed from a well differentiated to a poorly differentiated stage, hnRNP A2/B1 was increasingly localized in the cytoplasm. In contrast, the HCC tissues with hnRNP A2/B1 highly expressed in the nucleus decreased. This work is the first to show that hnRNP A2/B1 is the antigen specifically recognized by the scFv N14 antibody in HCC cells. The over-expression of hnRNP A2/B1 was confirmed in cultured human and rat HCC cell lines, human virus related hepatitis liver tissues and human HCC tissues. The increased localization of hnRNP A2/B1 in the cytoplasm of HCC cells was revealed

  6. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress.

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-02-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  7. Tamoxifen up-regulates catalase production, inhibits vessel wall neutrophil infiltration, and attenuates development of experimental abdominal aortic aneurysms.

    Grigoryants, Vladimir; Hannawa, Kevin K; Pearce, Charles G; Sinha, Indranil; Roelofs, Karen J; Ailawadi, Gorav; Deatrick, Kristopher B; Woodrum, Derek T; Cho, Brenda S; Henke, Peter K; Stanley, James C; Eagleton, Matthew J; Upchurch, Gilbert R

    2005-01-01

    controls on day 7 (P = .05). Administration of the direct catalase inhibitor AT to tamoxifen-treated rats partially reversed the aneurysm inhibitory effect of tamoxifen by nearly 30% (P = .02). In contrast, catalase administration inhibited AAA formation by 44% (P = .002). The selective estrogen receptor modulator tamoxifen inhibits the development of AAAs in male rats in association with an up-regulation of catalase and inhibition of aortic wall neutrophil infiltration.

  8. Toll-like receptor 3 signalling up-regulates expression of the HIV co-receptor G-protein coupled receptor 15 on human CD4+ T cells.

    Miriam Kiene

    Full Text Available BACKGROUND: Many HIV-2 and SIV isolates, as well as some HIV-1 strains, can use the orphan 7-transmembrane receptor GPR15 as co-receptor for efficient entry into host cells. GPR15 is expressed on central memory and effector memory CD4(+ T cells in healthy individuals and a subset of these cells is susceptible to HIV-1 and SIV infection. However, it has not been determined whether GPR15 expression is altered in the context of HIV-1 infection. RESULTS: Here, we show that GPR15 expression in CD4(+ T cells is markedly up-regulated in some HIV-1 infected individuals compared to the rest of the infected patients and to healthy controls. Infection of the PM1 T cell line with primary HIV-1 isolates was found to up-regulate GPR15 expression on the infected cells, indicating that viral components can induce GPR15 expression. Up-regulation of GPR15 expression on CD4(+ T cells was induced by activation of Toll-like receptor 3 signalling via TIR-domain-containing adapter-inducing interferon-β (TRIF and was more prominent on gut-homing compared to lymph node-homing CD4(+ T cells. CONCLUSION: These results suggest that infection-induced up-regulation of GPR15 expression could increase susceptibility of CD4(+ T cells to HIV infection and target cell availability in the gut in some infected individuals.

  9. Type I and II positive allosteric modulators differentially modulate agonist-induced up-regulation of α7 nicotinic acetylcholine receptors

    Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2012-01-01

    Long-term treatment with nicotine or selective α7 nicotinic acetylcholine receptor (nAChR) agonists increases the number of α7 nAChRs and this up-regulation may be involved in the mechanism underlying the sustained procognitive effect of these compounds. Here, we investigate the influence of type I...... expressing human α7 nAChR, whereas the type I PAMs AVL-3288 or NS1738 do not. Contrarily, neither type I nor II PAMs affect 10 μM nicotine-induced receptor up-regulation, suggesting that nicotine and A-582941 induce up-regulation through different mechanisms. We further show in vivo that 3 mg/kg PNU-120596...... is involved in A-582941-induced up-regulation. Our results are the first to show an in vivo difference between type I and II α7 nAChR PAMs, and demonstrate an agonist-dependent effect of type II PAMs occurring on a much longer time scale than previously appreciated. Furthermore, our data suggest that nicotine...

  10. INFLUENZA-INDUCED UP-REGULATION OF TLR3 IN RESPIRATORY EPITHELIAL CELLS MAY OCCUR THROUGH A POSITIVE FEEDBACK LOOP INVOLVING TYPE I INTERFERON

    Toll-like receptor 3 (TLR3) plays an important role in the host defense responses against viral infections, including Influenza virus infections. Based on our previous observations showing that Influenza infection of respiratory epithelial cells results in an up-regulation of Tol...

  11. Neurons efficiently repair glutamate-induced oxidative DNA damage by a process involving CREB-mediated up-regulation of apurinic endonuclease 1

    Yang, Jenq-Lin; Tadokoro, Takashi; Keijzers, Guido

    2010-01-01

    inhibitor (KN-93) blocked the ability of glutamate to induce CREB phosphorylation and APE1 expression. Selective depletion of CREB using RNA interference prevented glutamate-induced up-regulation of APE1. Thus, glutamate receptor stimulation triggers Ca(2+)- and mitochondrial reactive oxygen species...

  12. Asymmetric dimethylarginine (ADMA) elevation and arginase up-regulation contribute to endothelial dysfunction related to insulin resistance in rats and morbidly obese humans.

    El Assar, Mariam; Angulo, Javier; Santos-Ruiz, Marta; Ruiz de Adana, Juan Carlos; Pindado, María Luz; Sánchez-Ferrer, Alberto; Hernández, Alberto; Rodríguez-Mañas, Leocadio

    2016-06-01

    The presence of insulin resistance (IR) is determinant for endothelial dysfunction associated with obesity. Although recent studies have implicated the involvement of mitochondrial superoxide and inflammation in the defective nitric oxide (NO)-mediated responses and subsequent endothelial dysfunction in IR, other mechanisms could compromise this pathway. In the present study, we assessed the role of asymmetric dimethylarginine (ADMA) and arginase with respect to IR-induced impairment of endothelium-dependent vasodilatation in human morbid obesity and in a non-obese rat model of IR. We show that both increased ADMA and up-regulated arginase are determinant factors in the alteration of the l-arginine/NO pathway associated with IR in both models and also that acute treatment of arteries with arginase inhibitor or with l-arginine significantly alleviate endothelial dysfunction. These results help to expand our knowledge regarding the mechanisms of endothelial dysfunction that are related to obesity and IR and establish potential therapeutic targets for intervention. Insulin resistance (IR) is determinant for endothelial dysfunction in human obesity. Although we have previously reported the involvement of mitochondrial superoxide and inflammation, other mechanisms could compromise NO-mediated responses in IR. We evaluated the role of the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA) and arginase with respect to IR-induced impairment of l-arginine/NO-mediated vasodilatation in human morbid obesity and in a non-obese rat model of IR. Bradykinin-induced vasodilatation was evaluated in microarteries derived from insulin-resistant morbidly obese (IR-MO) and non-insulin-resistant MO (NIR-MO) subjects. Defective endothelial vasodilatation in IR-MO was improved by l-arginine supplementation. Increased levels of ADMA were detected in serum and adipose tissue from IR-MO. Serum ADMA positively correlated with IR score and negatively with pD2 for bradykinin. Gene

  13. Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function

    Jiang, Xin; Bai, Yang; Zhang, Zhiguo [The First Hospital of Jilin University, Changchun 130021 (China); KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202 (United States); Xin, Ying, E-mail: xiny@jlu.edu.cn [KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202 (United States); Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021 (China); Cai, Lu, E-mail: l0cai001@louisville.edu [The First Hospital of Jilin University, Changchun 130021 (China); KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202 (United States)

    2014-09-01

    Diabetes-induced testicular apoptosis is predominantly due to increased oxidative stress. The nuclear factor-erythroid 2-related factor 2 (Nrf2), as a master transcription factor in controlling anti-oxidative systems, is able to be induced by sulforaphane (SFN). To examine whether SFN prevents testicular apoptosis, type 1 diabetic mouse model was induced with multiple low-dose streptozotocin. Diabetic and age-matched control mice were treated with and without SFN at 0.5 mg/kg daily in five days of each week for 3 months and then kept until 6 months. Diabetes significantly increased testicular apoptosis that was associated with endoplasmic reticulum stress and mitochondrial cell death pathways, shown by the increased expression of C/EBP homologous protein (CHOP), cleaved caspase-12, Bax to Bcl2 expression ratio, and cleaved caspase-3. Diabetes also significantly increased testicular oxidative damage, inflammation and fibrosis, and decreased germ cell proliferation. All these diabetic effects were significantly prevented by SFN treatment for the first 3 months, and the protective effect could be sustained at 3 months after SFN treatment. SFN was able to up-regulate Nrf2 expression and function. The latter was reflected by the increased phosphorylation of Nrf2 at Ser40 and expression of Nrf2 downstream antioxidants at mRNA and protein levels. These results suggest that type 1 diabetes significantly induced testicular apoptosis and damage along with increasing oxidative stress and cell death and suppressing Nrf2 expression and function. SFN is able to prevent testicular oxidative damage and apoptosis in type 1 diabetes mice, which may be associated with the preservation of testicular Nrf2 expression and function under diabetic condition. - Highlights: • Sulforaphane (SFN) could attenuate diabetes-induced germ cell apoptosis. • SFN could preserve germ cell proliferation under diabetic conditions. • SFN testicular protection was sustained until 3 months after

  14. Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function

    Jiang, Xin; Bai, Yang; Zhang, Zhiguo; Xin, Ying; Cai, Lu

    2014-01-01

    Diabetes-induced testicular apoptosis is predominantly due to increased oxidative stress. The nuclear factor-erythroid 2-related factor 2 (Nrf2), as a master transcription factor in controlling anti-oxidative systems, is able to be induced by sulforaphane (SFN). To examine whether SFN prevents testicular apoptosis, type 1 diabetic mouse model was induced with multiple low-dose streptozotocin. Diabetic and age-matched control mice were treated with and without SFN at 0.5 mg/kg daily in five days of each week for 3 months and then kept until 6 months. Diabetes significantly increased testicular apoptosis that was associated with endoplasmic reticulum stress and mitochondrial cell death pathways, shown by the increased expression of C/EBP homologous protein (CHOP), cleaved caspase-12, Bax to Bcl2 expression ratio, and cleaved caspase-3. Diabetes also significantly increased testicular oxidative damage, inflammation and fibrosis, and decreased germ cell proliferation. All these diabetic effects were significantly prevented by SFN treatment for the first 3 months, and the protective effect could be sustained at 3 months after SFN treatment. SFN was able to up-regulate Nrf2 expression and function. The latter was reflected by the increased phosphorylation of Nrf2 at Ser40 and expression of Nrf2 downstream antioxidants at mRNA and protein levels. These results suggest that type 1 diabetes significantly induced testicular apoptosis and damage along with increasing oxidative stress and cell death and suppressing Nrf2 expression and function. SFN is able to prevent testicular oxidative damage and apoptosis in type 1 diabetes mice, which may be associated with the preservation of testicular Nrf2 expression and function under diabetic condition. - Highlights: • Sulforaphane (SFN) could attenuate diabetes-induced germ cell apoptosis. • SFN could preserve germ cell proliferation under diabetic conditions. • SFN testicular protection was sustained until 3 months after

  15. Up-regulated expression of cartilage intermediate-layer protein and ANK in articular hyaline cartilage from patients with calcium pyrophosphate dihydrate crystal deposition disease.

    Hirose, Jun; Ryan, Lawrence M; Masuda, Ikuko

    2002-12-01

    or cartilage extracts. Both CILP and ANK mRNA expression and ePPi elaboration were stimulated by TGFbeta1 and inhibited by IGF-1 in chondrocytes from all sources. CILP and ANK mRNA expression correlates with chondrocyte ePPi accumulation around CPPD and OA chondrocytes, and all respond similarly to growth factor stimulation. These findings suggest that up-regulated CILP and ANK expression contributes to higher ePPi accumulation from CPPD crystal-forming cartilage.

  16. Cyanide-induced death of dopaminergic cells is mediated by uncoupling protein-2 up-regulation and reduced Bcl-2 expression

    Zhang, X.; Li, L.; Zhang, L.; Borowitz, J.L.; Isom, G.E.

    2009-01-01

    Cyanide is a potent inhibitor of mitochondrial oxidative metabolism and produces mitochondria-mediated death of dopaminergic neurons and sublethal intoxications that are associated with a Parkinson-like syndrome. Cyanide toxicity is enhanced when mitochondrial uncoupling is stimulated following up-regulation of uncoupling protein-2 (UCP-2). In this study, the role of a pro-survival protein, Bcl-2, in cyanide-mediated cell death was determined in a rat dopaminergic immortalized mesencephalic cell line (N27 cells). Following pharmacological up-regulation of UCP-2 by treatment with Wy14,643, cyanide reduced cellular Bcl-2 expression by increasing proteasomal degradation of the protein. The increased turnover of Bcl-2 was mediated by an increase of oxidative stress following UCP-2 up-regulation. The oxidative stress involved depletion of mitochondrial glutathione (mtGSH) and increased H 2 O 2 generation. Repletion of mtGSH by loading cells with glutathione ethyl ester reduced H 2 O 2 generation and in turn blocked the cyanide-induced decrease of Bcl-2. To determine if UCP-2 mediated the response, RNAi knock down was conducted. The RNAi decreased cyanide-induced depletion of mtGSH, reduced H 2 O 2 accumulation, and inhibited down-regulation of Bcl-2, thus blocking cell death. To confirm the role of Bcl-2 down-regulation in the cell death, it was shown that over-expression of Bcl-2 by cDNA transfection attenuated the enhancement of cyanide toxicity after UCP-2 up-regulation. It was concluded that UCP-2 up-regulation sensitizes cells to cyanide by increasing cellular oxidative stress, leading to an increase of Bcl-2 degradation. Then the reduced Bcl-2 levels sensitize the cells to cyanide-mediated cell death.

  17. Synergistic effect of interleukin 1 alpha on nontypeable Haemophilus influenzae-induced up-regulation of human beta-defensin 2 in middle ear epithelial cells

    Park Raekil

    2006-01-01

    Full Text Available Abstract Background We recently showed that beta-defensins have antimicrobial activity against nontypeable Haemophilus influenzae (NTHi and that interleukin 1 alpha (IL-1 alpha up-regulates the transcription of beta-defensin 2 (DEFB4 according to new nomenclature of the Human Genome Organization in human middle ear epithelial cells via a Src-dependent Raf-MEK1/2-ERK signaling pathway. Based on these observations, we investigated if human middle ear epithelial cells could release IL-1 alpha upon exposure to a lysate of NTHi and if this cytokine could have a synergistic effect on beta-defensin 2 up-regulation by the bacterial components. Methods The studies described herein were carried out using epithelial cell lines as well as a murine model of acute otitis media (OM. Human cytokine macroarray analysis was performed to detect the released cytokines in response to NTHi exposure. Real time quantitative PCR was done to compare the induction of IL-1 alpha or beta-defensin 2 mRNAs and to identify the signaling pathways involved. Direct activation of the beta-defensin 2 promoter was monitored using a beta-defensin 2 promoter-Luciferase construct. An IL-1 alpha blocking antibody was used to demonstrate the direct involvement of this cytokine on DEFB4 induction. Results Middle ear epithelial cells released IL-1 alpha when stimulated by NTHi components and this cytokine acted in an autocrine/paracrine synergistic manner with NTHi to up-regulate beta-defensin 2. This synergistic effect of IL-1 alpha on NTHi-induced beta-defensin 2 up-regulation appeared to be mediated by the p38 MAP kinase pathway. Conclusion We demonstrate that IL-1 alpha is secreted by middle ear epithelial cells upon exposure to NTHi components and that it can synergistically act with certain of these molecules to up-regulate beta-defensin 2 via the p38 MAP kinase pathway.

  18. Cardioprotective effect of Sida rhomboidea. Roxb extract against isoproterenol induced myocardial necrosis in rats.

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Ansarullah; Karn, Sanjay S; Shah, Jigar D; Patel, Dipak K; Salunke, Sunita P; Padate, Geeta S; Devkar, Ranjitsinh V; Ramachandran, A V

    2011-05-01

    The present study investigates cardioprotective effect of Sida rhomboidea. Roxb (SR) extract on heart weight, plasma lipid profile, plasma marker enzymes, lipid peroxidation, endogenous enzymatic and non-enzymatic antioxidants and membrane bound ATPases against isoproterenol (IP) induced myocardial necrosis (MN) in rats. Rats treated with IP (85 mg/kg, s.c.) recorded significant (p<0.05) increment in heart weight, plasma lipid profile, plasma marker enzymes of cardiac damage, cardiac lipid peroxidation (LPO) and activity levels of Ca(+2) ATPase whereas there was significant (p<0.05) decrease in plasma HDL, cardiac endogenous enzymatic and non-enzymatic antioxidants, Na(+)-K(+) ATPase and Mg(+2) ATPase. Pre-treatment with SR extract (400 mg/kg per day, p.o.) for 30 consecutive days followed by IP injections on days 29th and 30th, showed significant (p<0.05) decrease in heart weight, plasma lipid profile, plasma marker enzymes of cardiac damage, cardiac lipid peroxidation, Ca(+2) ATPase and significant increase in plasma HDL, cardiac endogenous enzymatic and non-enzymatic antioxidants, Na(+)-K(+) ATPase and Mg(+2) ATPase compared to IP treated group. Hence, this study is the first scientific report on cardioprotective effect of SR against IP induced MN in rats. Copyright © 2010 Elsevier GmbH. All rights reserved.

  19. Roles of Endoplasmic Reticulum Stress in NECA-Induced Cardioprotection against Ischemia/Reperfusion Injury

    Fengmei Xing

    2017-01-01

    Full Text Available Objective. This study aimed to investigate whether the nonselective A2 adenosine receptor agonist NECA induces cardioprotection against myocardial ischemia/reperfusion (I/R injury via glycogen synthase kinase 3β (GSK-3β and the mitochondrial permeability transition pore (mPTP through inhibition of endoplasmic reticulum stress (ERS. Methods and Results. H9c2 cells were exposed to H2O2 for 20 minutes. NECA significantly prevented H2O2-induced TMRE fluorescence reduction, indicating that NECA inhibited the mPTP opening. NECA blocked H2O2-induced GSK-3β phosphorylation and GRP94 expression. NECA increased GSK-3β phosphorylation and decreased GRP94 expression, which were prevented by both ERS inductor 2-DG and PKG inhibitor KT5823, suggesting that NECA may induce cardioprotection through GSK-3β and cGMP/PKG via ERS. In isolated rat hearts, both NECA and the ERS inhibitor TUDCA decreased myocardial infarction, increased GSK-3β phosphorylation, and reversed GRP94 expression at reperfusion, suggesting that NECA protected the heart by inhibiting GSK-3β and ERS. Transmission electron microscopy showed that NECA and TUDCA reduced mitochondrial swelling and endoplasmic reticulum expansion, further supporting that NECA protected the heart by preventing the mPTP opening and ERS. Conclusion. These data suggest that NECA prevents the mPTP opening through inactivation of GSK-3β via ERS inhibition. The cGMP/PKG signaling pathway is responsible for GSK-3β inactivation by NECA.

  20. Screening of cardioprotective activity of leaves of Andrographis paniculata against isoproterenol induced myocardial infarction in rats

    Dipendra Kumar Sah

    2016-01-01

    Full Text Available Objective: The objective of the present study was to investigate the cardioprotective effects of methanolic extract of leaves of Andrographis paniculata against Isoproterenol-induced myocardial infarction (MI in rats.Method: The rats were divided into five experimental groups viz., Normal control, ISO-treated (Disease control, Propranolol (10 mg/kg + ISO, Andrographis paniculata (100 mg/kg +ISO and Andrographis paniculata (200 mg/kg + ISO. Myocardial infarction in rats was induced by the administration of isoproterenol at a dose of 85mg/kg i.p., the rats in group IV and group V were pretreated with methanolic extract of Andrographis paniculata in the dose of 100mg/kg b.w. and 200mg/kg b.w. through oral route. Cardiac marker enzymes, lipid profile and antioxidant enzymes as biomarker of cardiotoxicity were determined in experimental animals.Result: Animals treated with flavonoid of leaves of Andrographis paniculata showed significant decrease in LDL-Cholesterol, total cholesterol, Triglycerides, AST, ALT, ALP, antioxidant enzymes viz., superoxide dismutase, catalase LPO and increase in HDL-Cholesterol and further was confirmed by histopathological study.Conclusion: The results of the study demonstrate that Andrographis paniculata strongly protected the myocardium against isoproterenol-induced infarction and suggest that the cardioprotective effects could be related to antioxidant activities.

  1. Cardioprotective Effects of Tualang Honey: Amelioration of Cholesterol and Cardiac Enzymes Levels.

    Khalil, Md Ibrahim; Tanvir, E M; Afroz, Rizwana; Sulaiman, Siti Amrah; Gan, Siew Hua

    2015-01-01

    The present study was designed to investigate the cardioprotective effects of Malaysian Tualang honey against isoproterenol- (ISO-) induced myocardial infarction (MI) in rats by investigating changes in the levels of cardiac marker enzymes, cardiac troponin I (cTnI), triglycerides (TG), total cholesterol (TC), lipid peroxidation (LPO) products, and antioxidant defense system combined with histopathological examination. Male albino Wistar rats (n = 40) were pretreated orally with Tualang honey (3 g/kg/day) for 45 days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes (creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and aspartate transaminase (AST)), cTnI, serum TC, and TG levels. In addition, ISO-induced myocardial injury was confirmed by a significant increase in heart lipid peroxidation (LPO) products (TBARS) and a significant decrease in antioxidant enzymes (SOD, GPx, GRx, and GST). Pretreatment of ischemic rats with Tualang honey conferred significant protective effects on all of the investigated biochemical parameters. The biochemical findings were further confirmed by histopathological examination in both Tualang-honey-pretreated and ISO-treated hearts. The present study demonstrates that Tualang honey confers cardioprotective effects on ISO-induced oxidative stress by contributing to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.

  2. Cardioprotective Effects of Tualang Honey: Amelioration of Cholesterol and Cardiac Enzymes Levels

    Md. Ibrahim Khalil

    2015-01-01

    Full Text Available The present study was designed to investigate the cardioprotective effects of Malaysian Tualang honey against isoproterenol- (ISO- induced myocardial infarction (MI in rats by investigating changes in the levels of cardiac marker enzymes, cardiac troponin I (cTnI, triglycerides (TG, total cholesterol (TC, lipid peroxidation (LPO products, and antioxidant defense system combined with histopathological examination. Male albino Wistar rats (n = 40 were pretreated orally with Tualang honey (3 g/kg/day for 45 days. Subcutaneous injection of ISO (85 mg/kg in saline for two consecutive days caused a significant increase in serum cardiac marker enzymes (creatine kinase-MB (CK-MB, lactate dehydrogenase (LDH, and aspartate transaminase (AST, cTnI, serum TC, and TG levels. In addition, ISO-induced myocardial injury was confirmed by a significant increase in heart lipid peroxidation (LPO products (TBARS and a significant decrease in antioxidant enzymes (SOD, GPx, GRx, and GST. Pretreatment of ischemic rats with Tualang honey conferred significant protective effects on all of the investigated biochemical parameters. The biochemical findings were further confirmed by histopathological examination in both Tualang-honey-pretreated and ISO-treated hearts. The present study demonstrates that Tualang honey confers cardioprotective effects on ISO-induced oxidative stress by contributing to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.

  3. Characterization and cardioprotective activity of anthocyanins from Nitraria tangutorum Bobr. by-products.

    Zhang, Ming; Ma, Jianbin; Bi, Hongtao; Song, Jiayin; Yang, Hongxia; Xia, Zhenghua; Du, Yuzhi; Gao, Tingting; Wei, Lixin

    2017-08-01

    The Nitraria tangutorum Bobr. fruit is an indigenous berry of the shrub belonging to the Zygophyllaceae family which grows at an altitude of over 3000 m in the Tibetan Plateau, and has been used as a native medicinal food for treating weakness of the spleen, stomach syndrome, dyspepsia, neurasthenia, dizziness, etc. for thousands of years. Nowadays, N. tangutorum industrial juice by-products generated from health food production can be a potential low cost source of some unique bioactive ingredients. In a prior study, we established a simultaneous microwave/ultrasonic assisted enzymatic extraction method for extracting antioxidant ingredients from the industrial by-products of N. tangutorum juice. In this study, these ingredients were selectively fractionated by cation-exchange resin chromatography to obtain an anthocyanin fraction namely NJBAE. NJBAE was found to be composed of 16 anthocyanins derived from six anthocyanidins by HPLC-ESI-MS, and has an appreciable cardioprotective effect on doxorubicin-induced injured H9c2 cardiomyocytes. The cardioprotective mechanism research showed that NJBAE could directly scavenge ROS, restrict further generation of ROS, promote the activity of key antioxidase, enhance glutathione redox cycling, then affect the apoptotic signaling changes in a positive way, and finally mediate caspase-dependent cell death pathways. Therefore, NJBAE has great potential to be used for preventing and treating cardiovascular disease in the food, pharmaceutical and other emerging industries.

  4. The Lipid Lowering and Cardioprotective Effects of Vernonia calvoana Ethanol Extract in Acetaminophen-Treated Rats

    Godwin Eneji Egbung

    2017-12-01

    Full Text Available Background: Paracetamol overdose/abuse as a result of self-medication is a common occurrence amongst people living in low/middle income countries. The present study was designed to investigate the hypolipidemic and cardioprotective potentials of Vernonia calvoana (VC ethanol extract in acetaminophen (paracetamol-treated rats. Methods: Thirty-five Wistar rats weighing 100–150 g were randomly assigned into five groups of seven rats each. Groups 2–5 received high doses of paracetamol to induce liver damage, while group 1 was used as normal control. Afterwards, they were allowed to receive varying doses of VC (group 3 and 4 or vitamin E (group 5, whilst groups 1 and 2 were left untreated. The treatment period lasted for twenty one days after which sera were harvested and assayed for serum lipid indices using standard methods. Results: Groups 3 to 5 treated animals indicated significant decrease (p < 0.001 in low density lipoprotein cholesterol (LDL-c, total cholesterol (TC and triacylglycerol (TG levels relative to the normal and acetaminophen-treated controls, the atherogenic index showed a significant decrease (p < 0.001 in all treated groups compared with normal and acetaminophen-treated controls. However, the VC- and vitamin E-treated groups showed significant (p < 0.001 increase in high density lipoprotein cholesterol (HDL-C relative to the controls. Conclusions: Data from our study suggest that ethanol leaf extract of VC possesses probable hypolipidemic and cardioprotective effects.

  5. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I.

    Chouchani, Edward T; Methner, Carmen; Nadtochiy, Sergiy M; Logan, Angela; Pell, Victoria R; Ding, Shujing; James, Andrew M; Cochemé, Helena M; Reinhold, Johannes; Lilley, Kathryn S; Partridge, Linda; Fearnley, Ian M; Robinson, Alan J; Hartley, Richard C; Smith, Robin A J; Krieg, Thomas; Brookes, Paul S; Murphy, Michael P

    2013-06-01

    Oxidative damage from elevated production of reactive oxygen species (ROS) contributes to ischemia-reperfusion injury in myocardial infarction and stroke. The mechanism by which the increase in ROS occurs is not known, and it is unclear how this increase can be prevented. A wide variety of nitric oxide donors and S-nitrosating agents protect the ischemic myocardium from infarction, but the responsible mechanisms are unclear. Here we used a mitochondria-selective S-nitrosating agent, MitoSNO, to determine how mitochondrial S-nitrosation at the reperfusion phase of myocardial infarction is cardioprotective in vivo in mice. We found that protection is due to the S-nitrosation of mitochondrial complex I, which is the entry point for electrons from NADH into the respiratory chain. Reversible S-nitrosation of complex I slows the reactivation of mitochondria during the crucial first minutes of the reperfusion of ischemic tissue, thereby decreasing ROS production, oxidative damage and tissue necrosis. Inhibition of complex I is afforded by the selective S-nitrosation of Cys39 on the ND3 subunit, which becomes susceptible to modification only after ischemia. Our results identify rapid complex I reactivation as a central pathological feature of ischemia-reperfusion injury and show that preventing this reactivation by modification of a cysteine switch is a robust cardioprotective mechanism and hence a rational therapeutic strategy.

  6. Molecular mechanisms of the antiglycative and cardioprotective activities of Psidium guajava leaves in the rat diabetic myocardium.

    Soman, Sowmya; Rajamanickam, Chellam; Rauf, Arun A; Madambath, Indira

    2016-12-01

    Antiglycative potential of Psidium guajava L. (Myrtaceae) leaves has been established. However, the molecular basis of its antiglycative potential remains unknown. The ethyl acetate fraction of P. guajava leaves (PGEt) was evaluated to determine the cardioprotective effect and its mechanism of action compared to quercetin. After the induction of diabetes by streptozotocin (55 mg/kg body weight), PGEt and quercetin (50 mg/kg body weight) was administered for 60 days. Rats were grouped as follows: Group C: Control, Group D: Diabetic, Group D + E: Diabetic rats treated with PGEt, Group D + Q: Diabetic rats treated with quercetin. The antiglycative potential was evaluated by assaying glycosylated haemoglobin, serum fructosamine and advanced glycation end product levels. The differential receptor for advanced glycation end products and nuclear factor kappa B (NFκB) protein levels was determined by western blot and the transcript level changes of connective tissue growth factor (CTGF), brain natriuretic peptide (BNP) and TGF-β1 in heart tissue were assessed by RT-PCR analysis. Glycated haemoglobin and serum fructosamine levels were found to be enhanced in diabetic rats when compared with control. Administration of PGEt significantly reduced the glycated haemoglobin and fructosamine levels to a larger extent than quercetin treated diabetic rats. PGEt reduced the translocation of NFκB from cytosol to nucleus when compared with diabetic rats. Expression of TGF-β1, CTGF and BNP was downregulated in PGEt treated groups compared with diabetic controls. Administration of PGEt ameliorated diabetes associated changes in the myocardium to a greater extent than quercetin.

  7. Zinc Is Indispensable in Exercise-Induced Cardioprotection against Intermittent Hypoxia-Induced Left Ventricular Function Impairment in Rats.

    Tsung-I Chen

    Full Text Available In obstructive sleep apnea (OSA, recurrent obstruction of the upper airway leads to intermittent hypoxia (IH during sleep, which can result in impairment of cardiac function. Although exercise can have beneficial effects against IH-induced cardiac dysfunction, the mechanism remains unclear. This study aimed to investigate the interactions of zinc and exercise on IH-triggered left ventricular dysfunction in a rat model that mimics IH in OSA patients. Nine-week-old male Sprague-Dawley rats were randomly assigned to either a control group (CON or to a group receiving 10 weeks of exercise training (EXE. During weeks 9 and 10, half the rats in each group were subjected to IH for 8 h per day for 14 days (IHCON, IHEXE, whereas the remainder continued to breathe room air. Rats within each of the CON, IHCON, EXE, and IHEXE groups were further randomly assigned to receive intraperitoneal injections of either zinc chloride, the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl ethylenediamine (TPEN, or injection vehicle only. IH induced a lower left ventricular fractional shortening, reduced ejection fraction, higher myocardial levels of inflammatory factors, increased levels oxidative stress, and lower levels of antioxidative capacity, all of which were abolished by zinc treatment. IHEXE rats exhibited higher levels of cardiac function and antioxidant capacity and lower levels of inflammatory factors and oxidative stress than IHCON rats; however, IHEXE rats receiving TPEN did not exhibit these better outcomes. In conclusion, zinc is required for protecting against IH-induced LV functional impairment and likely plays a critical role in exercise-induced cardioprotection by exerting a dual antioxidant and anti-inflammatory effect.

  8. Zinc Is Indispensable in Exercise-Induced Cardioprotection against Intermittent Hypoxia-Induced Left Ventricular Function Impairment in Rats

    Chen, Michael Yu-Chih

    2016-01-01

    In obstructive sleep apnea (OSA), recurrent obstruction of the upper airway leads to intermittent hypoxia (IH) during sleep, which can result in impairment of cardiac function. Although exercise can have beneficial effects against IH-induced cardiac dysfunction, the mechanism remains unclear. This study aimed to investigate the interactions of zinc and exercise on IH-triggered left ventricular dysfunction in a rat model that mimics IH in OSA patients. Nine-week-old male Sprague-Dawley rats were randomly assigned to either a control group (CON) or to a group receiving 10 weeks of exercise training (EXE). During weeks 9 and 10, half the rats in each group were subjected to IH for 8 h per day for 14 days (IHCON, IHEXE), whereas the remainder continued to breathe room air. Rats within each of the CON, IHCON, EXE, and IHEXE groups were further randomly assigned to receive intraperitoneal injections of either zinc chloride, the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN), or injection vehicle only. IH induced a lower left ventricular fractional shortening, reduced ejection fraction, higher myocardial levels of inflammatory factors, increased levels oxidative stress, and lower levels of antioxidative capacity, all of which were abolished by zinc treatment. IHEXE rats exhibited higher levels of cardiac function and antioxidant capacity and lower levels of inflammatory factors and oxidative stress than IHCON rats; however, IHEXE rats receiving TPEN did not exhibit these better outcomes. In conclusion, zinc is required for protecting against IH-induced LV functional impairment and likely plays a critical role in exercise-induced cardioprotection by exerting a dual antioxidant and anti-inflammatory effect. PMID:27977796

  9. miR-139 is up-regulated in osteoarthritis and inhibits chondrocyte proliferation and migration possibly via suppressing EIF4G2 and IGF1R

    Hu, Weihua; Zhang, Weikai; Li, Feng; Guo, Fengjing; Chen, Anmin, E-mail: chenanmin6072@126.com

    2016-05-27

    Osteoarthritis (OA) is one of the most progressive articular cartilage erosions. microRNAs (miRNAs) play pivotal roles in OA modulation, but the role of miR-139 in OA remains elusive. This study aims to reveal the effects and possible mechanism of miR-139 in OA and chondrocytes. The levels of miR-139 and its possible targets eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) and insulin-like growth factor 1 receptor (IGF1R) were detected by qRT-PCR in the articular cartilages of 20 OA patients and 20 non-OA patients. Human chondrocyte CHON-001 cells were transfected with miR-139 mimic or inhibitor, as well as the siRNAs of EIF4G2 and IGF1R. Cell viability by MTT assay, proliferation by colony formation assay and migration by Transwell assay were performed. Results showed that miR-139 was up-regulated, while EIF4G2 and IGF1R mRNAs down-regulated in OA cartilages (P < 0.001), and negative correlations existed between the level of miR-139 and EIF4G2 or IGF1R. Overexpression of miR-139 in CHON-001 cells suppressed both mRNA and protein levels of EIF4G2 and IGF1R, and inhibited cell viability, colony formation number and cell migration, while miR-139 inhibitor induced the opposite effects. Knockdown of EIF4G2 or IGF1R in CHON-001 cells reversed the effects of miR-139 inhibitor on cell viability, colony formation and cell migration. These results indicate that miR-139 is capable of inhibiting chondrocyte proliferation and migration, thus being a possible therapeutic target for OA. The mechanism of miR-139 in chondrocytes may be related to its regulation on EIF4G2 and IGF1R.

  10. PHO-ERK1/2 interaction with mitochondria regulates the permeability transition pore in cardioprotective signaling.

    Hernández-Reséndiz, Sauri; Zazueta, Cecilia

    2014-07-11

    The molecular mechanism(s) by which extracellular signal-regulated kinase 1/2 (ERK1/2) and other kinases communicate with downstream targets have not been fully determined. Multiprotein signaling complexes undergoing spatiotemporal redistribution may enhance their interaction with effector proteins promoting cardioprotective response. Particularly, it has been proposed that some active kinases in association with caveolae may converge into mitochondria. Therefore, in this study we investigate if PHO-ERK1/2 interaction with mitochondria may provide a mechanistic link in the regulation of these organelles in cardioprotective signaling. Using a model of dilated cardiomyopathy followed by ischemia-reperfusion injury, we determined ERK1/2 signaling at the level of mitochondria and evaluated its effect on the permeability transition pore. The most important finding of the present study is that, under cardioprotective conditions, a subpopulation of activated ERK1/2 was directed to the mitochondrial membranes through vesicular trafficking, concurring with increased phosphorylation of mitochondrial proteins and inhibition of the mitochondrial permeability transition pore opening. In addition, our results suggest that vesicles enriched with caveolin-3 could form structures that may drive ERK1/2, GSK3β and Akt to mitochondria. Signaling complexes including PHO-ERK, PHO-Akt, PHO-eNOS and caveolin-3 contribute to cardioprotection by directly targeting the mitochondrial proteome and regulating the opening of the permeability transition pore in this model. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Irradiation-induced up-regulation of HLA-E on macrovascular endothelial cells confers protection against killing by activated natural killer cells.

    Isabelle Riederer

    -induced, transient up-regulation of HLA-E on macrovascular ECs might confer protection against NK cell-mediated vascular injury.

  12. Extravirgin olive oil up-regulates CB₁ tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms.

    Di Francesco, Andrea; Falconi, Anastasia; Di Germanio, Clara; Micioni Di Bonaventura, Maria Vittoria; Costa, Antonio; Caramuta, Stefano; Del Carlo, Michele; Compagnone, Dario; Dainese, Enrico; Cifani, Carlo; Maccarrone, Mauro; D'Addario, Claudio

    2015-03-01

    Extravirgin olive oil (EVOO) represents the typical lipid source of the Mediterranean diet, an eating habit pattern that has been associated with a significant reduction of cancer risk. Diet is the more studied environmental factor in epigenetics, and many evidences suggest dysregulation of epigenetic pathways in cancer. The aim of our study was to investigate the effects of EVOO and its phenolic compounds on endocannabinoid system (ECS) gene expression via epigenetic regulation in both human colon cancer cells (Caco-2) and rats exposed to short- and long-term dietary EVOO. We observed a selective and transient up-regulation of CNR1 gene - encoding for type 1 cannabinoid receptor (CB₁) - that was evoked by exposure of Caco-2 cells to EVOO (100 ppm), its phenolic extracts (OPE, 50 μM) or authentic hydroxytyrosol (HT, 50 μM) for 24 h. None of the other major elements of the ECS (i.e., CB₂; GPR55 and TRPV1 receptors; and NAPE-PLD, DAGL, FAAH and MAGL enzymes) was affected at any time point. The stimulatory effect of OPE and HT on CB₁ expression was inversely correlated to DNA methylation at CNR1 promoter and was associated with reduced proliferation of Caco-2 cells. Interestingly, CNR1 gene was less expressed in Caco-2 cells when compared to normal colon mucosa cells, and again this effect was associated with higher level of DNA methylation at CNR1. Moreover, in agreement with the in vitro studies, we also observed a remarkable (~4-fold) and selective increase in CB₁ expression in the colon of rats receiving dietary EVOO supplementation for 10 days. Consistently, CpG methylation of rat Cnr1 promoter, miR23a and miR-301a, previously shown to be involved in the pathogenesis of colorectal cancer and predicted to target CB₁ mRNA, was reduced after EVOO administration down to ~50% of controls. Taken together, our findings demonstrating CB₁ gene expression modulation by EVOO or its phenolic compounds via epigenetic mechanism, both in vitro and in vivo, may

  13. Up-regulation of p55 TNF alpha-receptor in dorsal root ganglia neurons following lumbar facet joint injury in rats.

    Sakuma, Yoshihiro; Ohtori, Seiji; Miyagi, Masayuki; Ishikawa, Tetsu; Inoue, Gen; Doya, Hideo; Koshi, Takana; Ito, Toshinori; Yamashita, Masaomi; Yamauchi, Kazuyo; Suzuki, Munetaka; Moriya, Hideshige; Takahashi, Kazuhisa

    2007-08-01

    The rat L5/6 facet joint is multisegmentally innervated from the L1 to L6 dorsal root ganglia (DRG). Tumor necrosis factor (TNF) is a known mediator of inflammation. It has been reported that satellite cells are activated, produce TNF and surround DRG neurons innervating L5/6 facet joints after facet injury. In the current study, changes in TNF receptor (p55) expression in DRG neurons innervating the L5/6 facet joint following facet joint injury were investigated in rats using a retrograde neurotransport method followed by immunohistochemistry. Twenty rats were used for this study. Two crystals of Fluorogold (FG; neurotracer) were applied into the L5/6 facet joint. Seven days after surgery, the dorsal portion of the capsule was cut in the injured group (injured group n = 10). No injury was performed in the non-injured group (n = 10). Fourteen days after the first application of FG, bilateral DRGs from T13 to L6 levels were resected and sectioned. They were subsequently processed for p55 immunohistochemistry. The number of FG labeled neurons and number of FG labeled p55-immunoreactive (IR) neurons were counted. FG labeled DRG neurons innervating the L5/6 facet joint were distributed from ipsilateral L1 to L6 levels. Of FG labeled neurons, the ratio of DRG neurons immunoreactive for p55 in the injured group (50%) was significantly higher than that in the non-injured group (13%). The ratio of p55-IR neurons of FG labeled DRG neurons was significantly higher in total L1 and L2 DRGs than that in total L3, 4, 5 and 6 DRGs in the injured group (L1 and 2 DRG, 67%; L3, 4, 5 and 6 DRG, 37%, percentages of the total number of p55-IR neurons at L1 and L2 level or L3-6 level/the total number of FG-labeled neurons at L1 and L2 level or L3-6 level). These data suggest that up-regulation of p55 in DRG neurons may be involved in the sensory transmission from facet joint injury. Regulation of p55 in DRG neurons innervating the facet joint was different between upper DRG innervated

  14. Inhibitory effects of ginseng total saponin on up-regulation of cAMP pathway induced by repeated administration of morphine.

    Seo, Jeong-Ju; Lee, Jae-Woong; Lee, Wan-Kyu; Hong, Jin-Tae; Lee, Chong-Kil; Lee, Myung-Koo; Oh, Ki-Wan

    2008-02-01

    We have reported that ginseng total saponin (GTS) inhibited the development of physical and psychological dependence on morphine. However, the possible molecular mechanisms of GTS are unclear. Therefore, this study was undertaken to understand the possible molecular mechanism of GTS on the inhibitory effects of morphine-induced dependence. It has been reported that the up-regulated cAMP pathway in the LC of the mouse brain after repeated administration of morphine contributes to the feature of withdrawals. GTS inhibited up-regulation of cAMP pathway in the LC after repeated administration of morphine in this experiment. GTS inhibited cAMP levels and protein expression of protein kinase A (PKA). In addition, GTS inhibited the increase of cAMP response element binding protein (CREB) phosphorylation. Therefore, we conclude that the inhibitory effects of GTS on morphine-induced dependence might be mediated by the inhibition of cAMP pathway.

  15. Ketamine up-regulates a cluster of intronic miRNAs within the serotonin receptor 2C gene by inhibiting glycogen synthase kinase-3.

    Grieco, Steven F; Velmeshev, Dmitry; Magistri, Marco; Eldar-Finkelman, Hagit; Faghihi, Mohammad A; Jope, Richard S; Beurel, Eleonore

    2017-09-01

    We examined mechanisms that contribute to the rapid antidepressant effect of ketamine in mice that is dependent on glycogen synthase kinase-3 (GSK3) inhibition. We measured serotonergic (5HT)-2C-receptor (5HTR2C) cluster microRNA (miRNA) levels in mouse hippocampus after administering an antidepressant dose of ketamine (10 mg/kg) in wild-type and GSK3 knockin mice, after GSK3 inhibition with L803-mts, and in learned helpless mice. Ketamine up-regulated cluster miRNAs 448-3p, 764-5p, 1264-3p, 1298-5p and 1912-3p (2- to 11-fold). This up-regulation was abolished in GSK3 knockin mice that express mutant constitutively active GSK3. The GSK3 specific inhibitor L803-mts was antidepressant in the learned helplessness and novelty suppressed feeding depression-like behaviours and up-regulated the 5HTR2C miRNA cluster in mouse hippocampus. After administration of the learned helplessness paradigm mice were divided into cohorts that were resilient (non-depressed) or were susceptible (depressed) to learned helplessness. The resilient, but not depressed, mice displayed increased hippocampal levels of miRNAs 448-3p and 1264-3p. Administration of an antagonist to miRNA 448-3p diminished the antidepressant effect of ketamine in the learned helplessness paradigm, indicating that up-regulation of miRNA 448-3p provides an antidepressant action. These findings identify a new outcome of GSK3 inhibition by ketamine that may contribute to antidepressant effects.

  16. Human p38δ MAP kinase mediates UV irradiation induced up-regulation of the gene expression of chemokine BRAK/CXCL14

    Ozawa, Shigeyuki; Ito, Shin; Kato, Yasumasa; Kubota, Eiro; Hata, Ryu-Ichiro

    2010-01-01

    The mitogen-activated protein kinase (MAPK) family comprises ERK, JNK, p38 and ERK5 (big-MAPK, BMK1). UV irradiation of squamous cell carcinoma cells induced up-regulation of gene expression of chemokine BRAK/CXCL14, stimulated p38 phosphorylation, and down-regulated the phosphorylation of ERK. Human p38 MAPKs exist in 4 isoforms: p38α, β, γ and δ. The UV stimulation of p38 phosphorylation was not inhibited by the presence of SB203580 or PD169316, inhibitors of p38α and β, suggesting p38 phosphorylation was not dependent on these 2 isoforms and that p38γ and/or δ was responsible for the phosphorylation. In fact, inhibition of each of these 4 p38 isoforms by the introduction of short hairpin (sh) RNAs for respective isoforms revealed that only shRNA for p38δ attenuated the UV-induced up-regulation of BRAK/CXCL14 gene expression. In addition, over-expression of p38 isoforms in the cells showed the association of p38δ with ERK1 and 2, concomitant with down-regulation of ERK phosphorylation. The usage of p38δ isoform by UV irradiation is not merely due to the abundance of this p38 isoform in the cells. Because serum deprivation of the cells also induced an increase in BRAK/CXCL14 gene expression, and in this case p38α and/or β isoform is responsible for up-regulation of BRAK/CXCL14 gene expression. Taken together, the data indicate that the respective stress-dependent action of p38 isoforms is responsible for the up-regulation of the gene expression of the chemokine BRAK/CXCL14.

  17. Acute morphine activates satellite glial cells and up-regulates IL-1β in dorsal root ganglia in mice via matrix metalloprotease-9

    Berta Temugin

    2012-03-01

    Full Text Available Abstract Background Activation of spinal cord glial cells such as microglia and astrocytes has been shown to regulate chronic opioid-induced antinociceptive tolerance and hyperalgesia, due to spinal up-regulation of the proinflammatory cytokines such as interleukin-1 beta (IL-1β. Matrix metalloprotease-9 (MMP-9 has been implicated in IL-1β activation in neuropathic pain. However, it is unclear whether acute opioid treatment can activate glial cells in the peripheral nervous system. We examined acute morphine-induced activation of satellite glial cells (SGCs and up-regulation of IL-1β in dorsal root ganglia (DRGs, and further investigated the involvement of MMP-9 in these opioid-induced peripheral changes. Results Subcutaneous morphine injection (10 mg/kg induced robust peripheral glial responses, as evidenced by increased GFAP expression in DRGs but not in spinal cords. The acute morphine-induced GFAP expression is transient, peaking at 2 h and declining after 3 h. Acute morphine treatment also increased IL-1β immunoreactivity in SGCs and IL-1β activation in DRGs. MMP-9 and GFAP are expressed in DRG neurons and SGCs, respectively. Confocal analysis revealed a close proximity of MMP-9 and GFAP immunostaining. Importantly, morphine-induced DRG up-regulation of GFAP expression and IL-1β activation was abolished after Mmp9 deletion or naloxone pre-treatment. Finally, intrathecal injections of IL-1β-selective siRNA not only reduced DRG IL-1β expression but also prolonged acute morphine-induced analgesia. Conclusions Acute morphine induces opioid receptors- and MMP-9-dependent up-regulation of GFAP expression and IL-1β activation in SGCs of DRGs. MMP-9 could mask and shorten morphine analgesia via peripheral neuron-glial interactions. Targeting peripheral glial activation might prolong acute opioid analgesia.

  18. 6-Shogaol-Rich Extract from Ginger Up-Regulates the Antioxidant Defense Systems in Cells and Mice

    Bak, Min-Ji; Ok, Seon; Jun, Mira; Jeong, Woo-Sik

    2012-01-01

    The rhizome of ginger (Zingiber officinale Roscoe) is known to have several bioactive compounds including gingerols and shogaols which possess beneficial health properties such as anti-inflammatory and chemopreventive effects. Based on recent observations that 6-shogaol may have more potent bioactivity than 6-gingerol, we obtained a 6-shogaol-rich extract from ginger and examined its effects on the nuclear factor E2-related factor2 (Nrf2)/antioxidant response element (ARE...

  19. Mechanism of sphingosine 1-phosphate- and lysophosphatidic Acid-induced up-regulation of adhesion molecules and eosinophil chemoattractant in nerve cells.

    Costello, Richard W

    2012-02-01

    The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) act via G-protein coupled receptors S1P(1-5) and LPA(1-3) respectively, and are implicated in allergy. Eosinophils accumulate at innervating cholinergic nerves in asthma and adhere to nerve cells via intercellular adhesion molecule-1 (ICAM-1). IMR-32 neuroblastoma cells were used as an in vitro cholinergic nerve cell model. The G(i) coupled receptors S1P(1), S1P(3), LPA(1), LPA(2) and LPA(3) were expressed on IMR-32 cells. Both S1P and LPA induced ERK phosphorylation and ERK- and G(i)-dependent up-regulation of ICAM-1 expression, with differing time courses. LPA also induced ERK- and G(i)-dependent up-regulation of the eosinophil chemoattractant, CCL-26. The eosinophil granule protein eosinophil peroxidase (EPO) induced ERK-dependent up-regulation of transcription of S1P(1), LPA(1), LPA(2) and LPA(3), providing the situation whereby eosinophil granule proteins may enhance S1P- and\\/or LPA- induced eosinophil accumulation at nerve cells in allergic conditions.

  20. Mechanism of sphingosine 1-phosphate- and lysophosphatidic Acid-induced up-regulation of adhesion molecules and eosinophil chemoattractant in nerve cells.

    Costello, Richard W

    2011-05-01

    The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) act via G-protein coupled receptors S1P(1-5) and LPA(1-3) respectively, and are implicated in allergy. Eosinophils accumulate at innervating cholinergic nerves in asthma and adhere to nerve cells via intercellular adhesion molecule-1 (ICAM-1). IMR-32 neuroblastoma cells were used as an in vitro cholinergic nerve cell model. The G(i) coupled receptors S1P(1), S1P(3), LPA(1), LPA(2) and LPA(3) were expressed on IMR-32 cells. Both S1P and LPA induced ERK phosphorylation and ERK- and G(i)-dependent up-regulation of ICAM-1 expression, with differing time courses. LPA also induced ERK- and G(i)-dependent up-regulation of the eosinophil chemoattractant, CCL-26. The eosinophil granule protein eosinophil peroxidase (EPO) induced ERK-dependent up-regulation of transcription of S1P(1), LPA(1), LPA(2) and LPA(3), providing the situation whereby eosinophil granule proteins may enhance S1P- and\\/or LPA- induced eosinophil accumulation at nerve cells in allergic conditions.

  1. Up-regulation of DRP-3 long isoform during the induction of neural progenitor cells by glutamate treatment in the ex vivo rat retina

    Tokuda, Kazuhiro, E-mail: r502um@yamaguchi-u.ac.jp [Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi (Japan); Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi (Japan); Kuramitsu, Yasuhiro; Byron, Baron; Kitagawa, Takao [Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi (Japan); Tokuda, Nobuko [Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, Ube (Japan); Kobayashi, Daiki; Nagayama, Megumi; Araki, Norie [Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Sonoda, Koh-Hei [Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi (Japan); Nakamura, Kazuyuki [Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi (Japan)

    2015-08-07

    Glutamate has been shown to induce neural progenitor cells in the adult vertebrate retina. However, protein dynamics during progenitor cell induction by glutamate are not fully understood. To identify specific proteins involved in the process, we employed two-dimensional electrophoresis-based proteomics on glutamate untreated and treated retinal ex vivo sections. Rat retinal tissues were incubated with 1 mM glutamate for 1 h, followed by incubation in glutamate-free media for a total of 24 h. Consistent with prior reports, it was found that mitotic cells appeared in the outer nuclear layer without any histological damage. Immunohistological evaluations and immunoblotting confirmed the emergence of neuronal progenitor cells in the mature retina treated with glutamate. Proteomic analysis revealed the up-regulation of dihydropyrimidinase-related protein 3 (DRP-3), DRP-2 and stress-induced-phosphoprotein 1 (STIP1) during neural progenitor cell induction by glutamate. Moreover, mRNA expression of DRP-3, especially, its long isoform, robustly increased in the treated retina compared to that in the untreated retina. These results may indicate that glutamate induces neural progenitor cells in the mature rat retina by up-regulating the proteins which mediate cell mitosis and neurite growth. - Highlights: • Glutamate induced neuronal progenitor cells in the mature rat retina. • Proteomic analysis revealed the up-regulation of DRP-3, DRP-2 and STIP1. • mRNA expression of DRP-3, especially, its long isoform, robustly increased.

  2. Transcriptomic Analysis Reveals Wound Healing of Morus alba Root Extract by Up-Regulating Keratin Filament and CXCL12/CXCR4 Signaling.

    Kim, Kang-Hoon; Chung, Won-Seok; Kim, Yoomi; Kim, Ki-Suk; Lee, In-Seung; Park, Ji Young; Jeong, Hyeon-Soo; Na, Yun-Cheol; Lee, Chang-Hun; Jang, Hyeung-Jin

    2015-08-01

    Facilitation of the wound healing process is important because a prolonged wound site increases pain and the risk of infection. In oriental medicine, an extract of Morus alba root (MA) has usually been prescribed as traditional treatment for accelerating wound healing, and it has been proven to be safe for centuries. To study the molecular mechanism of MA-mediated skin wound healing, we performed a primary cell culture and a skin explant culture and observed significant difference between the groups with and without MA extract. In the cellular system, a real-time cell analysis and real-time quantitative PCR were performed. It was found that MA extract enhanced proliferation in a dose-dependent manner on Kera-308 cell line, and up-regulated keratin expression including wound-induced Krt6a. In skin explant culture, the mRNA level derived from cell outgrowth displayed a tendency toward more up-regulated mRNA associated keratin filaments and toward a more up-regulated mRNA level of C-X-C motif chemokine 12 (CXCL12) and a chemokine receptor 4 (CXCR4) axis signaling pathway downstream. In this process, we concluded that MA extract had a scientific possibility of wound repair by increasing intracellular and extracellular supports and by inducing a CXCL12/CXCR4 signaling pathway. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Ionizing radiation and nitric oxide donor sensitize Fas-induced apoptosis via up-regulation of Fas in human cervical cancer cells

    Park, In Chul; Woo, Sang Hyeok; Park, Myung Jin; Lee, Hyung Chahn; Lee Su Jae; Hong, Young Joon; Lee, Seung Hoon; Hong, Seok II; Rhee, Chang Hun

    2004-01-01

    Fas/CD95/Apo1 is a transmembrane receptor known to trigger apoptotic cell death in several cell types. In the present study, we showed that ionizing radiation (IR) and NO donor, S-nitroso-N-acetyl-penicillamine (SNAP), sensitized Fas-induced apoptotic cell death of HeLa human cervical cancers. Suboptimal dose of IR and SNAP up-regulated cell-surface Fas antigen, detected by FACScan using FITC-anti-Fas antibody. When combined with IR or SNAP, agonistic anti-Fas antibody CH-11 resulted in marked enhancement of apoptosis. This sensitization was completely abrogated by anti-Fas neutralizing antibody ZB4. During the IR and SNAP sensitized Fas-induced apoptosis, mitochondria permeabilization, cytochrome c release, and DNA fragmentation were detected. Furthermore, combined treatment of IR and SNAP additively up-regulated the surface Fas protein expression and sensitized Fas-induced apoptosis. Our finding demonstrate that sensitization of HeLa cervical cells to Fas-mediated apoptosis by IR and NO donor is most likely due to the up-regulation of Fas expression and also provides a means with which to sensitize tumors to the killing effects of cancer therapy via the Fas receptor

  4. NR4A orphan nuclear receptors influence retinoic acid and docosahexaenoic acid signaling via up-regulation of fatty acid binding protein 5

    Volakakis, Nikolaos; Joodmardi, Eliza; Perlmann, Thomas

    2009-01-01

    The orphan nuclear receptor (NR) Nurr1 is expressed in the developing and adult nervous system and is also induced as an immediate early gene in a variety of cell types. In silico analysis of human promoters identified fatty acid binding protein 5 (FABP5), a protein shown to enhance retinoic acid-mediated PPARβ/δ signaling, as a potential Nurr1 target gene. Nurr1 has previously been implicated in retinoid signaling via its heterodimerization partner RXR. Since NRs are commonly involved in cross-regulatory control we decided to further investigate the regulatory relationship between Nurr1 and FABP5. FABP5 expression was up-regulated by Nurr1 and other NR4A NRs in HEK293 cells, and Nurr1 was shown to activate and bind to the FABP5 promoter, supporting that FABP5 is a direct downstream target of NR4A NRs. We also show that the RXR ligand docosahexaenoic acid (DHA) can induce nuclear translocation of FABP5. Moreover, via up-regulation of FABP5 Nurr1 can enhance retinoic acid-induced signaling of PPARβ/δ and DHA-induced activation of RXR. We also found that other members of the NR4A orphan NRs can up-regulate FABP5. Thus, our findings suggest that NR4A orphan NRs can influence signaling events of other NRs via control of FABP5 expression levels.

  5. NR4A orphan nuclear receptors influence retinoic acid and docosahexaenoic acid signaling via up-regulation of fatty acid binding protein 5

    Volakakis, Nikolaos; Joodmardi, Eliza [Ludwig Institute for Cancer Research Ltd., Box 240, S-17177 Stockholm (Sweden); Perlmann, Thomas, E-mail: thomas.perlmann@licr.ki.se [Ludwig Institute for Cancer Research Ltd., Box 240, S-17177 Stockholm (Sweden); The Department of Cell and Molecular Biology, Karolinska Institute, S-17177 Stockholm (Sweden)

    2009-12-25

    The orphan nuclear receptor (NR) Nurr1 is expressed in the developing and adult nervous system and is also induced as an immediate early gene in a variety of cell types. In silico analysis of human promoters identified fatty acid binding protein 5 (FABP5), a protein shown to enhance retinoic acid-mediated PPAR{beta}/{delta} signaling, as a potential Nurr1 target gene. Nurr1 has previously been implicated in retinoid signaling via its heterodimerization partner RXR. Since NRs are commonly involved in cross-regulatory control we decided to further investigate the regulatory relationship between Nurr1 and FABP5. FABP5 expression was up-regulated by Nurr1 and other NR4A NRs in HEK293 cells, and Nurr1 was shown to activate and bind to the FABP5 promoter, supporting that FABP5 is a direct downstream target of NR4A NRs. We also show that the RXR ligand docosahexaenoic acid (DHA) can induce nuclear translocation of FABP5. Moreover, via up-regulation of FABP5 Nurr1 can enhance retinoic acid-induced signaling of PPAR{beta}/{delta} and DHA-induced activation of RXR. We also found that other members of the NR4A orphan NRs can up-regulate FABP5. Thus, our findings suggest that NR4A orphan NRs can influence signaling events of other NRs via control of FABP5 expression levels.

  6. Up-regulation of Pim-3 in Chronic Obstructive Pulmonary Disease (COPD) patients and its potential therapeutic role in COPD rat modeling.

    Yang, Cheng; Li, Li; Guo, Junhua; Zhang, Weiqiang; Zhu, Wenbiao; Rao, Xinhui; Huang, Wenjie

    2017-04-01

    Pim-3 belongs to the PIM kinase family and plays an important role in promoting inflammation, which is essential in the pathogenesis of Chronic Obstructive Pulmonary Disease (COPD). Immunohistochemistry (IHC), western blot, and RT-PCR analyses were performed to assess the expression of Pim-3 in both COPD and healthy lung tissue samples. SMA (Smooth Muscle Actin) and Cyclin D1 expression were detected by IHC. We also constructed animal models for the control, COPD, and Pim-3 inhibition groups, in order to analyze the effects of Pim-3 inhibition on COPD, and the role of Pim-3 in the p38 pathway. Compared with normal lung tissue, Pim-3 mRNA and protein were up-regulated in COPD tissue. Expression of Cyclin D1 and SMA were also up-regulated in the COPD group. In the animal model experiment, we found that suppression of Pim-3 decreased Pim-3, Cyclin D1, and SMA expression, as well as ameliorated lung damage in COPD patients. The inhibition of Pim-3 also resulted in the suppression of the p38 pathway. Our study suggests that up-regulation of Pim-3 successfully accelerated COPD development, and aggravated lung damage. The molecular mechanism of Pim-3 in COPD might be related to the p38 pathway, and is correlated with Cyclin D1 and SMA expression. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Biotransformation of Dioscorea nipponica by Rat Intestinal Microflora and Cardioprotective Effects of Diosgenin

    Jia-Fu Feng

    2017-01-01

    Full Text Available Studying the biotransformation of natural products by intestinal microflora is an important approach to understanding how and why some medicines—particularly natural medicines—work. In many cases, the active components are generated by metabolic activation. This is critical for drug research and development. As a means to explore the therapeutic mechanism of Dioscorea nipponica (DN, a medicinal plant used to treat myocardial ischemia (MI, metabolites generated by intestinal microflora from DN were identified, and the cardioprotective efficacy of these metabolites was evaluated. Our results demonstrate that diosgenin is the main metabolite produced by rat intestinal microflora from DN. Further, our results show that diosgenin protects the myocardium against ischemic insult through increasing enzymatic and nonenzymatic antioxidant levels in vivo and by decreasing oxidative stress damage. These mechanisms explain the clinical efficacy of DN as an anti-MI drug.

  8. Cardioprotection against Heart Failure by Shenfu Injection via TGF-β/Smads Signaling Pathway

    Jingyu Ni

    2017-01-01

    Full Text Available Objective. To explore the potential cardioprotective mechanism of Shenfu injection (SFI against heart failure (HF by attenuating myocardial fibrosis and cardiac remodeling. Methods and Results. Four weeks after myocardial infarction (MI, adult male Sprague Dawley rats were randomized for 4-week treatment with Valsartan, SFI, or vehicle. Echocardiography and hemodynamics were applied to evaluate cardiac functions. Myocardia of coronary artery ligated (CAD rats were observed to investigate changes in cardiac structure and function. Our findings suggest that treatment with SFI could inhibit progression of myocardial fibrosis and attenuate cardiac remodeling. In addition, SFI decreased expression of Smad2 and Smad3, while increasing the expression of Smad7 through regulation of TGF-β/Smads signaling pathway. Conclusion. Treatment with SFI in Sprague Dawley rats improves ventricular structure and function and reduces cardiac fibrosis by ameliorating TGF-β/Smads signaling pathway after ventricular remodeling.

  9. Mitochondria as key targets of cardioprotection in cardiac ischemic disease: role of thyroid hormone triiodothyronine.

    Forini, Francesca; Nicolini, Giuseppina; Iervasi, Giorgio

    2015-03-19

    Ischemic heart disease is the major cause of mortality and morbidity worldwide. Early reperfusion after acute myocardial ischemia has reduced short-term mortality, but it is also responsible for additional myocardial damage, which in the long run favors adverse cardiac remodeling and heart failure evolution. A growing body of experimental and clinical evidence show that the mitochondrion is an essential end effector of ischemia/ reperfusion injury and a major trigger of cell death in the acute ischemic phase (up to 48-72 h after the insult), the subacute phase (from 72 h to 7-10 days) and chronic stage (from 10-14 days to one month after the insult). As such, in recent years scientific efforts have focused on mitochondria as a target for cardioprotective strategies in ischemic heart disease and cardiomyopathy. The present review discusses recent advances in this field, with special emphasis on the emerging role of the biologically active thyroid hormone triiodothyronine (T3).

  10. The cardioprotective efficacy of TVP1022 against ischemia/reperfusion injury and cardiac remodeling in rats.

    Malka, Assaf; Ertracht, Offir; Bachner-Hinenzon, Noa; Reiter, Irina; Binah, Ofer

    2016-12-01

    Following acute myocardial infarction (MI), early and successful reperfusion is the most effective strategy for reducing infarct size and improving the clinical outcome. However, immediate restoration of blood flow to the ischemic zone results in myocardial damage, defined as "reperfusion-injury". Whereas we previously reported that TVP1022 (the S-isomer of rasagiline, FDA-approved anti-Parkinson drug) decreased infarct size 24 h post ischemia reperfusion (I/R) in rats, in this study we investigated the chronic cardioprotective efficacy of TVP1022 14 days post-I/R. To simulate the clinical settings of acute MI followed by reperfusion therapy, we employed a rat model of left anterior descending artery occlusion for 30 min followed by reperfusion and a follow-up for 14 days. TVP1022 was initially administered postocclusion-prereperfusion, followed by chronic daily administrations. Cardiac performance and remodeling were evaluated using customary and advanced echocardiographic methods, hemodynamic measurements by Millar Mikro-Tip ® catheter, and histopathological techniques. TVP1022 administration markedly decreased the remodeling process as illustrated by attenuation of left ventricular enlargement and cardiac hypertrophy (both at the whole heart and the cellular level). Furthermore, TVP1022 inhibited cardiac fibrosis and reduced ventricular BNP levels. Functionally, TVP1022 treatment preserved cardiac wall motion. Specifically, the echocardiographic and most of the direct hemodynamic measures were pronouncedly improved by TVP1022. Collectively, these findings indicate that TVP1022 provides prominent cardioprotection against I/R injury and post-MI remodeling in this I/R model.

  11. Cardioprotection after acute exposure to simulated high altitude in rats. Role of nitric oxide.

    La Padula, Pablo H; Etchegoyen, Melisa; Czerniczyniec, Analia; Piotrkowski, Barbara; Arnaiz, Silvia Lores; Milei, Jose; Costa, Lidia E

    2018-02-28

    In previous studies, upregulation of NOS during acclimatization of rats to sustained hypobaric hypoxia was associated to cardioprotection, evaluated as an increased tolerance of myocardium to hypoxia/reoxygenation. The objective of the present work was to investigate the effect of acute hypobaric hypoxia and the role of endogenous NO concerning cardiac tolerance to hypoxia/reoxygenation under β-adrenergic stimulation. Rats were submitted to 58.7 kPa in a hypopressure chamber for 48 h whereas their normoxic controls remained at 101.3 kPa. By adding NOS substrate L-arg, or blocker L-NNA, isometric mechanical activity of papillary muscles isolated from left ventricle was evaluated at maximal or minimal production of NO, respectively, under β-adrenergic stimulation by isoproterenol, followed by 60/30 min of hypoxia/reoxygenation. Activities of NOS and cytochrome oxidase were evaluated by spectrophotometric methods and expression of HIF1-α and NOS isoforms by western blot. Eosin and hematoxiline staining were used for histological studies. Cytosolic expression of HIF1-α, nNOS and eNOS, and NO production were higher in left ventricle of hypoxic rats. Mitochondrial cytochrome oxidase activity was decreased by hypobaric hypoxia and this effect was reversed by L-NNA. After H/R, recovery of developed tension in papillary muscles from normoxic rats was 51-60% (regardless NO modulation) while in hypobaric hypoxia was 70% ± 3 (L-arg) and 54% ± 1 (L-NNA). Other mechanical parameters showed similar results. Preserved histological architecture was observed only in L-arg papillary muscles of hypoxic rats. Exposure of rats to hypobaric hypoxia for only 2 days increased NO synthesis leading to cardioprotection. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Is ADH1C genotype relevant for the cardioprotective effect of alcohol?

    Høiseth, Gudrun; Magnus, Per; Knudsen, Gun Peggy; Jansen, Mona Dverdal; Næss, Oyvind; Tambs, Kristian; Mørland, Jørg

    2013-03-01

    The cardioprotective effect of ethanol has been suggested to be linked to one of the ethanol metabolizing enzymes (ADH1C), which constitutes a high V(max) and a low V(max) variant. This has been demonstrated in some studies, while others have not been able to replicate the findings. The aim of the present study was to investigate the relation between the different ADH1C genotypes, death from coronary heart disease (CHD) and alcohol in a material larger than the previously published studies. Eight hundred CHD deaths as well as 1303 controls were genotyped for the high V(max) (γ1) and the low V(max) (γ2) ADH1C variant. Information of alcohol use was available for all subjects. Multiple logistic regression analyses was used to study if the decreased risk of death from CHD in alcohol consuming subjects was more pronounced in subjects homozygous for the γ2 allele (γ2γ2 subjects) compared to γ1γ1 and γ1γ2 subjects. The odds ratio (OR) for death from CHD in alcohol consumers compared to abstainers was similar in the genotype groups, i.e., 0.62 (95% CI: 0.43-0.88) in γ1γ1 subjects and 0.62 (95% CI: 0.42-0.91) in γ2γ2 subjects. Also when stratifying the results by gender and when dividing alcohol consumers into different alcohol consumption groups, there was no difference in the OR between the different genotype groups. This study, which included the largest study group published so far, failed to find any link between the ADH1C genotype and the cardioprotective effects of alcohol. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Mitochondrial events responsible for morphine's cardioprotection against ischemia/reperfusion injury

    He, Haiyan; Huh, Jin; Wang, Huihua; Kang, Yi; Lou, Jianshi; Xu, Zhelong

    2016-01-01

    Morphine may induce cardioprotection by targeting mitochondria, but little is known about the exact mitochondrial events that mediate morphine's protection. We aimed to address the role of the mitochondrial Src tyrosine kinase in morphine's protection. Isolated rat hearts were subjected to 30 min ischemia and 2 h of reperfusion. Morphine was given before the onset of ischemia. Infarct size and troponin I release were measured to evaluate cardiac injury. Oxidative stress was evaluated by measuring mitochondrial protein carbonylation and mitochondrial ROS generation. HL-1 cells were subjected to simulated ischemia/reperfusion and LDH release and mitochondrial membrane potential (ΔΨm) were measured. Morphine reduced infarct size as well as cardiac troponin I release which were aborted by the selective Src tyrosine kinase inhibitors PP2 and Src-I1. Morphine also attenuated LDH release and prevented a loss of ΔΨm at reperfusion in a Src tyrosine kinase dependent manner in HL-1 cells. However, morphine failed to reduce LDH release in HL-1 cells transfected with Src siRNA. Morphine increased mitochondrial Src phosphorylation at reperfusion and this was abrogated by PP2. Morphine attenuated mitochondrial protein carbonylation and mitochondrial superoxide generation at reperfusion through Src tyrosine kinase. The inhibitory effect of morphine on the mitochondrial complex I activity was reversed by PP2. These data suggest that morphine induces cardioprotection by preventing mitochondrial oxidative stress through mitochondrial Src tyrosine kinase. Inhibition of mitochondrial complex I at reperfusion by Src tyrosine kinase may account for the prevention of mitochondrial oxidative stress by morphine. - Highlights: • Morphine induced mito-Src phosphorylation and reduced infarct size in rat hearts. • Morphine failed to reduce I/R-induced LDH release in Src-silencing HL-1 cells. • Morphine prevented mitochondria damage caused by I/R through Src. • Morphine reduced

  14. Nitric oxide fails to confer endogenous antiarrhythmic cardioprotection in the primate heart in vitro.

    Pabla, R; Curtis, M J

    2007-04-01

    The role of nitric oxide (NO) in cardiac pathophysiology remains controversial. According to data from several studies using rat and rabbit isolated hearts, NO is an endogenous cardioprotectant against reperfusion-induced ventricular fibrillation (VF). Thus, if cardiac NO production is abolished by perfusion with L-N(G)-nitro-L-arginine methylester (L-NAME) (100 microM) there is a concomittant increase in the incidence of reperfusion-induced VF, with L-NAME's effects on NO and VF prevented by L- (but not D-) arginine co-perfusion. To make a better estimate of the clinical relevance of these findings, 100 microM L-NAME was tested in primate hearts under similar conditions. Marmoset (Callithrix jaccus) hearts, isolated and perfused, were subjected to 60 min left regional ischaemia followed by 10 min reperfusion in vitro. The ECG was recorded and NO in coronary effluent measured by chemiluminescence. L-NAME (100 micro M) decreased NO in coronary effluent throughout ischaemia and reperfusion (e.g. from 3720+/-777 pmol min(-1) g(-1) in controls to 699+/-98 pmol min(-1) g(-1) after 5 min of ischaemia) and, during ischaemia, lowered coronary flow and reduced heart rate, actions identical to those seen in rat and rabbit hearts. However, the incidence of reperfusion-induced VF was unchanged (20%, with or without L-NAME). A species difference exists in the effectiveness of endogenous NO to protect hearts against reperfusion-induced VF. The present primate data, which presumably take precedence over rat and rabbit data, cast doubt on the clinical relevance of NO as an endogenous, antiarrhythmic, cardioprotectant.

  15. Cardioprotective role of tadalafil against cisplatin-induced cardiovascular damage in rats.

    Saleh, Rasha M; Awadin, Walaa F; El-Shafei, Reham A; Elseady, Yousef Y; Wehaish, Faheim E; Elshal, Mohamed F

    2015-10-15

    The present study investigated the possible cardioprotective effect of tadalafil (Tad) on cisplatin (CDDP)-induced cardiac and vascular damages in rats. A total number of seventy two healthy male albino rats initially weighting between 200 and 220 g were used and randomly divided into four groups,18 rats in each. The control group received no treatment; CDDP group received a single dose of CDDP (4 mg/kg) intraperitoneal (i.p.) per week for 4 weeks the duration of the experiment; Tad group received 0.4 mg/kg BW Tad i.p. daily and Tad +CDDP group received 0.4 mg/kg BW Tad i.p. +4 mg/kg BW CDDP i.p. The results showed that Tad was able to decrease blood pressure, heart rate, levels of serum cardiac troponin (cTn-I), malondialdehyde (MDA) and increased levels of reduced glutathione (GSH) and nitric oxide (NO) in the heart homogenate sample from CDDP treated rats. Semi-quantitative analysis showed that Tad was able to decrease the histopathological scores of cardiac muscular hyalinzation and fibrosis in three sacrifices in CDDP treated rats. CDDP treated rats showed significantly increased thickening in wall of aorta with an irregular luminal layer of endothelial cell linings in three sacrifices when it was compared to other groups. Moreover, immunohistochemical labeling of α- smooth muscle actin (α-SMA) in aorta revealed significant lower scores in Tad +CDDP group when they were compared to CDDP group. In conclusion, Tad alone did not induce any harmful effects on blood pressure, selective antioxidant, peroxidation markers or cardiac histology, in addition, Tad has a cardio-protective role against CDDP. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Glucoseinsulin Mixture as a Cardioprotective Agent in Cardiology and Cardiac Surgery (Review

    I. A. Kozlov

    2017-01-01

    Full Text Available The literature review presents an analysis of publications describing the use of a glucose%insulin mixture as a cardioprotective agent in acute myocardial infarction and in cardiac surgeries with extracorporeal circulation (ECC. It summarizes historical aspects of implementation of the glucose%insulin therapy in cardiology and car%diac surgery. Possible mechanisms of action of the glucose-insulin-potassium mixture in acute ischemia and myocardial infarction were analyzed (normalization of electrical processes on the cardiomyocyte membrane, replenishment of metabolic substrates and increased production rate of adenosine triphosphoric acid due to glycolysis, decreased intensity of non%esterified fatty acid oxidation, decreased apoptosis, etc.. It discusses results of clinical studies evaluating prescription of the mixture for acute myocardial infarction, including data from metaanalyses. It demonstrated that the role and the clinical efficacy of the preventive and therapeutic measure under consideration in acute myocardial infarction are still the subject of discussion and require further research. It also analyzed modern concepts explaining the cardioprotective effects of insulin and glucose during surgeries with ECC (decreased insulin resistance, activation of anaplerosis, stimulation of intracellular signaling pathways maintaining the viability of cells, reduction of the severity of systemic inflammatory response, immunomodulatingeffect, etc.. Review discusses results of clinical studies including data from randomized clinical trials and metaanalyses performed over the last 5 years that demonstrated the absence of the effect of the glucose%insulin therapy on the hospital mortality. Various studies demonstrated its positive effects including decreased incidence of peri%operative myocardial infarctions and intensity of inotropic support, increased values of postoperative cardiac index, decreased duration of postoperative mechanical ventilation

  17. Mitochondrial events responsible for morphine's cardioprotection against ischemia/reperfusion injury

    He, Haiyan [Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin 300070 (China); Department of Pharmacology, Tianjin Medical University, Tianjin 300070 (China); Huh, Jin [Department of Anesthesia and Pain Medicine, Medical College, Kangwon National University, Chuncheon City (Korea, Republic of); Wang, Huihua [Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province (China); Kang, Yi; Lou, Jianshi [Department of Pharmacology, Tianjin Medical University, Tianjin 300070 (China); Xu, Zhelong, E-mail: zxu@tmu.edu.cn [Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin 300070 (China)

    2016-01-01

    Morphine may induce cardioprotection by targeting mitochondria, but little is known about the exact mitochondrial events that mediate morphine's protection. We aimed to address the role of the mitochondrial Src tyrosine kinase in morphine's protection. Isolated rat hearts were subjected to 30 min ischemia and 2 h of reperfusion. Morphine was given before the onset of ischemia. Infarct size and troponin I release were measured to evaluate cardiac injury. Oxidative stress was evaluated by measuring mitochondrial protein carbonylation and mitochondrial ROS generation. HL-1 cells were subjected to simulated ischemia/reperfusion and LDH release and mitochondrial membrane potential (ΔΨm) were measured. Morphine reduced infarct size as well as cardiac troponin I release which were aborted by the selective Src tyrosine kinase inhibitors PP2 and Src-I1. Morphine also attenuated LDH release and prevented a loss of ΔΨm at reperfusion in a Src tyrosine kinase dependent manner in HL-1 cells. However, morphine failed to reduce LDH release in HL-1 cells transfected with Src siRNA. Morphine increased mitochondrial Src phosphorylation at reperfusion and this was abrogated by PP2. Morphine attenuated mitochondrial protein carbonylation and mitochondrial superoxide generation at reperfusion through Src tyrosine kinase. The inhibitory effect of morphine on the mitochondrial complex I activity was reversed by PP2. These data suggest that morphine induces cardioprotection by preventing mitochondrial oxidative stress through mitochondrial Src tyrosine kinase. Inhibition of mitochondrial complex I at reperfusion by Src tyrosine kinase may account for the prevention of mitochondrial oxidative stress by morphine. - Highlights: • Morphine induced mito-Src phosphorylation and reduced infarct size in rat hearts. • Morphine failed to reduce I/R-induced LDH release in Src-silencing HL-1 cells. • Morphine prevented mitochondria damage caused by I/R through Src. • Morphine

  18. Up-regulation of thromboxane A2 receptor expression by lipid soluble smoking particles through post-transcriptional mechanisms

    Zhang, Wei; Zhang, Yaping; Edvinsson, Lars

    2008-01-01

    Atherosclerosis is a key factor in vascular disease, and cigarette smoking is a well-known risk factor that may induce an inflammatory response and enhance plaque formation in arteries. Thromboxane (Tx) is one key inflammatory mediator involved in the pathogenesis of cardiovascular disease....... The present study was designed to test if lipid soluble smoking particles (DSP) enhance TxA(2) receptor (TP) expression in rat mesenteric arteries, and if intracellular mitogen-activated protein kinase (MAPK) pathways play a role. Organ culture of rat mesenteric arteries in the presence of DSP (0.2 microl...

  19. Salivary agglutinin/DMBT1SAG expression is up-regulated in the presence of salivary gland tumors

    Bikker, F J; van der Wal, J E; Ligtenberg, A J M

    2004-01-01

    Salivary agglutinin (SAG) is encoded by the gene Deleted in Malignant Brain Tumors 1 (DMBT1) and represents the salivary variant of DMBT1 (DMBT1(SAG)). While SAG is a bona fide anti-caries factor, DMBT1 was proposed as a candidate tumor-suppressor for brain, digestive tract, and lung cancer. Thou...

  20. Up-regulation of Rho/ROCK signaling in sarcoma cells drives invasion and increased generation of protrusive forces

    Rosel, D.; Brabek, J.; Tolde, O.; Mierke, C.T.; Zitterbart, D.P.; Raupach, C.; Bicanova, K.; Kollmannsberger, P.; Pánková, D.; Veselý, Pavel; Folk, P.; Fabry, B.

    2008-01-01

    Roč. 6, č. 9 (2008), s. 1410-1420 ISSN 1541-7786 Institutional research plan: CEZ:AV0Z50520514 Keywords : Rho kinase ROCK * traction force microscopy * ameboid invasion Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.533, year: 2008

  1. Interleukin-6 counteracts therapy-induced cellular oxidative stress in multiple myeloma by up-regulating manganese superoxide dismutase

    Brown, Charles O.; Salem, Kelley; Wagner, Brett A.; Bera, Soumen; Singh, Neeraj; Tiwari, Ajit; Choudhury, Amit; Buettner, Garry R.; Goel, Apollina

    2012-01-01

    IL (interleukin)-6, an established growth factor for multiple myeloma cells, induces myeloma therapy resistance, but the resistance mechanisms remain unclear. The present study determines the role of IL-6 in re-establishing intracellular redox homoeostasis in the context of myeloma therapy. IL-6 treatment increased myeloma cell resistance to agents that induce oxidative stress, including IR (ionizing radiation) and Dex (dexamethasone). Relative to IR alone, myeloma cells treated with IL-6 plu...

  2. Cardiac Sirt1 mediates the cardioprotective effect of caloric restriction by suppressing local complement system activation after ischemia-reperfusion.

    Yamamoto, Tsunehisa; Tamaki, Kayoko; Shirakawa, Kohsuke; Ito, Kentaro; Yan, Xiaoxiang; Katsumata, Yoshinori; Anzai, Atsushi; Matsuhashi, Tomohiro; Endo, Jin; Inaba, Takaaki; Tsubota, Kazuo; Sano, Motoaki; Fukuda, Keiichi; Shinmura, Ken

    2016-04-15

    Caloric restriction (CR) confers cardioprotection against ischemia-reperfusion (I/R) injury. We previously found the essential roles of endothelial nitric oxide synthase in the development of CR-induced cardioprotection and Sirt1 activation during CR (Shinmura K, Tamaki K, Ito K, Yan X, Yamamoto T, Katsumata Y, Matsuhashi T, Sano M, Fukuda K, Suematsu M, Ishii I. Indispensable role of endothelial nitric oxide synthase in caloric restriction-induced cardioprotection against ischemia-reperfusion injury.Am J Physiol Heart Circ Physiol 308: H894-H903, 2015). However, the exact mechanism by which Sirt1 in cardiomyocytes mediates the cardioprotective effect of CR remains undetermined. We subjected cardiomyocyte-specific Sirt1 knockout (CM-Sirt1(-/-)) mice and the corresponding control mice to either 3-mo ad libitum feeding or CR (-40%). Isolated perfused hearts were subjected to 25-min global ischemia, followed by 60-min reperfusion. The recovery of left ventricle function after I/R was improved, and total lactate dehydrogenase release into the perfusate during reperfusion was attenuated in the control mice treated with CR, but a similar cardioprotective effect of CR was not observed in the CM-Sirt1(-/-)mice. The expression levels of cardiac complement component 3 (C3) at baseline and the accumulation of C3 and its fragments in the ischemia-reperfused myocardium were attenuated by CR in the control mice, but not in the CM-Sirt1(-/-)mice. Resveratrol treatment also attenuated the expression levels of C3 protein in cultured neonatal rat ventricular cardiomyocytes. Moreover, the degree of myocardial I/R injury in conventional C3 knockout (C3(-/-)) mice treated with CR was similar to that in the ad libitum-fed C3(-/-)mice, although the expression levels of Sirt1 were enhanced by CR. These results demonstrate that cardiac Sirt1 plays an essential role in CR-induced cardioprotection against I/R injury by suppressing cardiac C3 expression. This is the first report suggesting

  3. Cardioprotection by minocycline in a rabbit model of ischemia/reperfusion injury : Detection of cell death by in vivo (111)In-GSAO SPECT

    Yamaki, Takayoshi; de Haas, Hans J; Tahara, Nobuhiro; Petrov, Artiom; Mohar, Dilbahar; Haider, Nezam; Zhou, Jun; Tahara, Atsuko; Takeishi, Yasuchika; Boersma, Hendrikus H; Scarabelli, Tiziano; Kini, Annapoorna; Strauss, H William; Narula, Jagat

    BACKGROUND: Preclinical studies indicate that minocycline protects against myocardial ischemia/reperfusion injury. In these studies, minocycline was administered before ischemia, which can rarely occur in clinical practice. The current study aimed to evaluate cardioprotection by minocycline

  4. Pathophysiological role of prostaglandin E2-induced up-regulation of the EP2 receptor in motor neuron-like NSC-34 cells and lumbar motor neurons in ALS model mice.

    Kosuge, Yasuhiro; Miyagishi, Hiroko; Yoneoka, Yuki; Yoneda, Keiko; Nango, Hiroshi; Ishige, Kumiko; Ito, Yoshihisa

    2017-07-04

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective degeneration of motor neurons. The primary triggers for motor neuronal death are still unknown, but inflammation is considered to be an important factor contributing to the pathophysiology of ALS both clinically and in ALS models. Prostaglandin E2 (PGE2) and its corresponding four E-prostanoid receptors play a pivotal role in the degeneration of motor neurons in human and transgenic models of ALS. It has also been shown that PGE2-EP2 signaling in glial cells (astrocytes or microglia) promotes motor neuronal death in G93A mice. The present study was designed to investigate the levels of expression of EP receptors in the spinal motor neurons of ALS model mice and to examine whether PGE2 alters the expression of EP receptors in differentiated NSC-34 cells, a motor neuron-like cell line. Immunohistochemical staining demonstrated that EP2 and EP3 immunoreactivity was localized in NeuN-positive large cells showing the typical morphology of motor neurons in mice. Semi-quantitative analysis showed that the immunoreactivity of EP2 in motor neurons was significantly increased in the early symptomatic stage in ALS model mice. In contrast, the level of EP3 expression remained constant, irrespective of age. In differentiated NSC-34 cells, bath application of PGE2 resulted in a concentration-dependent decrease of MTT reduction. Although PGE2 had no effect on cell survival at concentrations of less than 10 μM, pretreatment with 10 μM PGE2 significantly up-regulated EP2 and concomitantly potentiated cell death induced by 30 μM PGE2. These results suggest that PGE2 is an important effector for induction of the EP2 subtype in differentiated NSC-34 cells, and that not only EP2 up-regulation in glial cells but also EP2 up-regulation in motor neurons plays a pivotal role in the vulnerability of motor neurons in ALS model mice. Copyright © 2017 Elsevier Ltd. All rights

  5. Interleukin-6 counteracts therapy-induced cellular oxidative stress in multiple myeloma by up-regulating manganese superoxide dismutase.

    Brown, Charles O; Salem, Kelley; Wagner, Brett A; Bera, Soumen; Singh, Neeraj; Tiwari, Ajit; Choudhury, Amit; Buettner, Garry R; Goel, Apollina

    2012-06-15

    IL (interleukin)-6, an established growth factor for multiple myeloma cells, induces myeloma therapy resistance, but the resistance mechanisms remain unclear. The present study determines the role of IL-6 in re-establishing intracellular redox homoeostasis in the context of myeloma therapy. IL-6 treatment increased myeloma cell resistance to agents that induce oxidative stress, including IR (ionizing radiation) and Dex (dexamethasone). Relative to IR alone, myeloma cells treated with IL-6 plus IR demonstrated reduced annexin/propidium iodide staining, caspase 3 activation, PARP [poly(ADP-ribose) polymerase] cleavage and mitochondrial membrane depolarization with increased clonogenic survival. IL-6 combined with IR or Dex increased early intracellular pro-oxidant levels that were causally related to activation of NF-κB (nuclear factor κB) as determined by the ability of N-acetylcysteine to suppress both pro-oxidant levels and NF-κB activation. In myeloma cells, upon combination with hydrogen peroxide treatment, relative to TNF (tumour necrosis factor)-α, IL-6 induced an early perturbation in reduced glutathione level and increased NF-κB-dependent MnSOD (manganese superoxide dismutase) expression. Furthermore, knockdown of MnSOD suppressed the IL-6-induced myeloma cell resistance to radiation. MitoSOX Red staining showed that IL-6 treatment attenuated late mitochondrial oxidant production in irradiated myeloma cells. The present study provides evidence that increases in MnSOD expression mediate IL-6-induced resistance to Dex and radiation in myeloma cells. The results of the present study indicate that inhibition of antioxidant pathways could enhance myeloma cell responses to radiotherapy and/or chemotherapy.

  6. Inhibition of cornifins and up-regulation of protease inhibitors in cervicovaginal lavage imparts resistance to heterosexual HIV transmission

    Sushama Rokade

    2017-12-01

    Full Text Available HIV-exposed seronegative individuals (HESNs are persons who remain seronegative despite repeated exposure to HIV, suggesting an in vivo resistance mechanism to HIV. Elucidation of endogenous factors responsible for this phenomenon may aid in the development of new classes of microbicides and therapeutics. The genital mucosal secretions of both men and women are known to contain a spectrum of antimicrobials and immune mediators that may contribute to resistance against HIV-1. Existence of HIV serodiscordant couples is a testimony to mucosal factors in the genital tract that prevent sexual transmission of the virus. We attempted to map such mucosal factors in female genital secretions of the serodiscordant couples in comparison with HIV infected and healthy participants using quantitative proteomics. The cervico vaginal lavage (CVL samples were collected from three groups of study participants (HIV infected, n=30; Un-infected Controls, n=10; Serodiscordant, n=24. Abundant proteins, albumin and globulins were removed from the pooled samples using multiple affinity removal spin cartridge (Agilent to enhance the sensitivity of iTRAQ proteomics analysis. Initial analysis identified a total of 135 proteins and associated 497 peptide matches. Serodiscordant females showed significantly down regulated levels of Cornifin A, B and C, Neutrophil gelatinase, myeloperoxidase and eosinophil peroxidase. Cornifins are cross-linked envelope protein of keratinocytes and are upregulated during inflammation. Downregulation of oxidative stress inducing enzymes and cornifins suggests immune-quiescence in serodiscordant females. CVL of these women showed significantly upregulated levels of Mucin 5B, S100A7, Alpha-2-macroglobulin, Cystatin A (protease inhibitor, Lacto-transferrin, SLPI (anti-leukoproteinase inhibitor and SERPIN G1 (protease inhibitor.  Significantly elevated levels of Cystatin B and Elafin in the CVL of serodiscordant females were confirmed by ELISA

  7. Triphlorethol-A from Ecklonia cava Up-Regulates the Oxidant Sensitive 8-Oxoguanine DNA Glycosylase 1

    Ki Cheon Kim

    2014-10-01

    Full Text Available This study investigated the protective mechanisms of triphlorethol-A, isolated from Ecklonia cava, against oxidative stress-induced DNA base damage, especially 8-oxoguanine (8-oxoG, in Chinese hamster lung fibroblast V79-4 cells. 8-Oxoguanine DNA glycosylase-1 (OGG1 plays an important role in the removal of 8-oxoG during the cellular response to DNA base damage. Triphlorethol-A significantly decreased the levels of 8-oxoG induced by H2O2, and this correlated with increases in OGG1 mRNA and OGG1 protein levels. Furthermore, siOGG1-transfected cell attenuated the protective effect of triphlorethol-A against H2O2 treatment. Nuclear factor erythroid 2–related factor 2 (Nrf2 is a transcription factor for OGG1, and Nrf2 combines with small Maf proteins in the nucleus to bind to antioxidant response elements (ARE in the upstream promoter region of the OGG1 gene. Triphlorethol-A restored the expression of nuclear Nrf2, small Maf protein, and the Nrf2-Maf complex, all of which were reduced by oxidative stress. Furthermore, triphlorethol-A increased Nrf2 binding to ARE sequences and the resulting OGG1 promoter activity, both of which were also reduced by oxidative stress. The levels of the phosphorylated forms of Akt kinase, downstream of phosphatidylinositol 3-kinase (PI3K, and Erk, which are regulators of OGG1, were sharply decreased by oxidative stress, but these decreases were prevented by triphlorethol-A. Specific PI3K, Akt, and Erk inhibitors abolished the cytoprotective effects of triphlorethol-A, suggesting that OGG1 induction by triphlorethol-A involves the PI3K/Akt and Erk pathways. Taken together, these data indicate that by activating the DNA repair system, triphlorethol-A exerts protective effects against DNA base damage induced by oxidative stress.

  8. Suppressors of cytokine signaling 1 and 3 are up-regulated in brain resident cells in response to virus induced inflammation of the CNS via at least two distinctive pathways

    Steffensen, Maria Abildgaard; Fenger, Christina; Christensen, Jeanette Erbo

    2014-01-01

    underlie a virus induced up-regulation of SOCS in the CNS. We found that i.c. infection with either lymphocytic choriomeningitis virus (LCMV) or yellow fever virus (YF) results in gradual up-regulation of SOCS1/3 mRNA expression peaking at day 7 post infection (p.i.). In the LCMV model, SOCS m...

  9. Resveratrol-induced transcriptional up-regulation of ASMase (SMPD1) of human leukemia and cancer cells

    Mizutani, Naoki [Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya (Japan); College of Life and Health Sciences, Chubu University, Kasugai (Japan); Omori, Yukari [Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya (Japan); Kawamoto, Yoshiyuki; Sobue, Sayaka; Ichihara, Masatoshi [College of Life and Health Sciences, Chubu University, Kasugai (Japan); Suzuki, Motoshi [Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya (Japan); Kyogashima, Mamoru [Department of Microbiology and Molecular Biology, Nihon Pharmaceutical University, Saitama (Japan); Nakamura, Mitsuhiro [Department of Drug Information, Gifu Pharmaceutical University, Gifu (Japan); Tamiya-Koizumi, Keiko [College of Life and Health Sciences, Chubu University, Kasugai (Japan); Nozawa, Yoshinori [Tokai Gakuin University, Kakamigahara (Japan); Murate, Takashi, E-mail: murate@isc.chubu.ac.jp [College of Life and Health Sciences, Chubu University, Kasugai (Japan)

    2016-02-19

    Resveratrol (RSV) is a plant-derived phytoalexin present in plants, whose pleiotropic effects for health benefits have been previously reported. Its anti-cancer activity is among the current topics for novel cancer treatment. Here, effects of RSV on cell proliferation and the sphingolipid metabolism of K562, a human leukemia cell line, were analyzed. Some experiments were also performed in HCT116, a human colon cancer cell line. RSV inhibited cell proliferation of both cell lines. Increased cellular ceramide and decreased sphingomyelin and S1P by RSV were observed in RSV-treated K562 cells. Further analysis revealed that acid sphingomyelinase mRNA and enzyme activity levels were increased by RSV. Desipramine, a functional ASMase inhibitor, prevented RSV-induced ceramide increase. RSV increased ATF3, EGR1, EGR3 proteins and phosphorylated c-Jun and FOXO3. However, co-transfection using these transcription factor expression vectors and ASMase promoter reporter vector revealed positive effects of EGR1 and EGR3 but not others. Electrophoresis mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) assay demonstrated the direct binding of EGR1/3 transcription factors with ASMase 5′-promoter. These results indicate that increased EGR1/3 and ASMase expression play an important role in cellular ceramide increase by RSV treatment. - Highlights: • Resveratrol inhibited cell proliferation of K562 and HCT116 cells. • Resveratrol increased cellular ceramide and decreased sphingomyelin and S1P. • ASMase mRNA and activity were increased with resveratrol. • ASMase inhibition suppressed RSV-induced ceramide accumulation. • Increased ASMase transcription was at least partially due to EGR family proteins.

  10. 6-shogaol-rich extract from ginger up-regulates the antioxidant defense systems in cells and mice.

    Bak, Min-Ji; Ok, Seon; Jun, Mira; Jeong, Woo-Sik

    2012-07-04

    The rhizome of ginger (Zingiber officinale Roscoe) is known to have several bioactive compounds including gingerols and shogaols which possess beneficial health properties such as anti-inflammatory and chemopreventive effects. Based on recent observations that 6-shogaol may have more potent bioactivity than 6-gingerol, we obtained a 6-shogaol-rich extract from ginger and examined its effects on the nuclear factor E2-related factor2 (Nrf2)/antioxidant response element (ARE) pathway in vitro and in vivo. 6-Shogaol-rich extract was produced by extracting ginger powder with 95% ethanol at 80 °C after drying at 80 °C (GEE8080). GEE8080 contained over 6-fold more 6-shogaol compared to the room temperature extract (GEE80RT). In HepG2 cells, GEE8080 displayed much stronger inductions of ARE-reporter gene activity and Nrf2 expression than GEE80RT. GEE8080 stimulated phosphorylations of mitogen-activated protein kinases (MAPKs) such as ERK, JNK, and p38. Moreover, the GEE8080-induced expressions of Nrf2 and HO-1 were attenuated by treatments of SB202190 (a p38 specific inhibitor) and LY294002 (an Akt specific inhibitor). In a mouse model, the GEE8080 decreased the diethylnitrosamine (DEN)-mediated elevations of serum aspartate transaminase and alanine transaminase as well as the DEN-induced hepatic lipid peroxidation. Inductions of Nrf2 and HO-1 by GEE8080 were also confirmed in the mice. In addition, the administration of GEE8080 to the mice also restored the DEN-reduced activity and protein expression of hepatic anti