WorldWideScience

Sample records for cardiomyocytes nuclear size

  1. Memantine prevents cardiomyocytes nuclear size reduction in the left ventricle of rats exposed to cold stress

    Directory of Open Access Journals (Sweden)

    Adriano Meneghini

    2009-01-01

    Full Text Available OBJECTIVES: Memantine is an N-methyl-d-aspartate (NMDA glutamate receptor antagonist used to treat Alzheimer's disease. Previous studies have suggested that receptor blockers act as neuroprotective agents; however, no study has specifically investigated the impact that these drugs have on the heart. We sought to evaluate the effects of memantine on nuclear size reduction in cardiac cells exposed to cold stress. METHOD: We used male EPM-Wistar rats (n=40 divided into 4 groups: 1 Matched control (CON; 2 Memantine-treated rats (MEM; 3 Rats undergoing induced hypothermia (IH and 4 Rats undergoing induced hypothermia that were also treated with memantine (IHM. Animals in the MEM and IHM groups were treated by oral gavage administration of 20 mg/kg/day memantine over an eight-day period. Animals in the IH and IHM groups were submitted to 4 hours of hypothermia in a controlled environment with a temperature of - 8ºC on the last day of the study. RESULTS: The MEM group had the largest cardiomyocyte nuclear size (151 ± 3.5 μm³ vs. CON: 142 ± 2.3 μm³; p<0.05, while the IH group had the smallest mean value of nuclear size. The nuclear size of the IHM group was preserved (125 ± 2.9 μm³ compared to the IH group (108 ± 1.7 μm³; p<0.05. CONCLUSION: Memantine prevented the nuclear size reduction of cardiomyocytes in rats exposed to cold stress.

  2. Cold stress effects on cardiomyocytes nuclear size in: light microscopic evaluation Efeitos do estresse pelo frio sobre o tamanho nuclear do cardiomiócito em ratos: avaliação por microscopia de luz

    Directory of Open Access Journals (Sweden)

    Adriano Meneghini

    2008-12-01

    Full Text Available INTRODUCTION: Total body induced hypothermia and myocardial cooling are effective methods regarding myocardial protection during heart surgery and ischemia. It is described in previous studies that extreme low temperature exposure causes mitochondrial cristae and myofilament disarrangement in cardiomyocytes, however, no investigation has analyzed the effects of cold stress on nuclear size of cardiomyocytes. OBJECTIVES: To evaluate the effects of acute cold stress exposure on the nuclear size of cardiomyocytes in rats. METHODS: The experimental study procedures were performed on 300-310g adult male Wistar rats. Rats (n=20 were divided into two groups: 1 Control (CON and; 2 Induced hypothermic (IH group. Animals of IH group were exposed during 4 hours once at a controlled temperature of - 8ºC. It was performed histological analysis of liver and adrenal gland to examine the stress condition of animals. Cardiomyocytes nucleus size were examined by three independent investigators with the same and standardized criteria and analyzed by Bartko's intra-class correlation coefficient (R>0.75 = positive concordance. Student's t test was applied. The significance level was set at PINTRODUÇÃO: Hipotermia corporal induzida e resfriamento do miocárdio são métodos efetivos em relação à proteção domiocárdio durante cirurgias cardíacas e isquemia. É descrito na literatura que a exposição a temperaturas extremamente baixas causa comprometimentos de miofilamentos e de cristas mitocondriais em cardiomiócitos, entretanto, nenhum estudo analisou os efeitos do estresse pelo frio no tamanho do núcleo dos cardiomiócios. OBJETIVOS: Analisar os efeitos do estresse agudo pelo frio sobre o tamanho do núcleo dos cardiomiócitos. MÉTODOS: O estudo foi realizado em ratos Wistar adultos, pesando 300-310g (n=20. Os ratos foram divididos em dois grupos: 1 Controle (CON e; 2 Hipotermia induzido (IH. Os animais do grupo IH foram expostos a uma temperatura

  3. Innervating sympathetic neurons regulate heart size and the timing of cardiomyocyte cell cycle withdrawal.

    Science.gov (United States)

    Kreipke, R E; Birren, S J

    2015-12-01

    Sympathetic drive to the heart is a key modulator of cardiac function and interactions between heart tissue and innervating sympathetic fibres are established early in development. Significant innervation takes place during postnatal heart development, a period when cardiomyocytes undergo a rapid transition from proliferative to hypertrophic growth. The question of whether these innervating sympathetic fibres play a role in regulating the modes of cardiomyocyte growth was investigated using 6-hydroxydopamine (6-OHDA) to abolish early sympathetic innervation of the heart. Postnatal chemical sympathectomy resulted in rats with smaller hearts, indicating that heart growth is regulated by innervating sympathetic fibres during the postnatal period. In vitro experiments showed that sympathetic interactions resulted in delays in markers of cardiomyocyte maturation, suggesting that changes in the timing of the transition from hyperplastic to hypertrophic growth of cardiomyocytes could underlie changes in heart size in the sympathectomized animals. There was also an increase in the expression of Meis1, which has been linked to cardiomyocyte cell cycle withdrawal, suggesting that sympathetic signalling suppresses cell cycle withdrawal. This signalling involves β-adrenergic activation, which was necessary for sympathetic regulation of cardiomyocyte proliferation and hypertrophy. The effect of β-adrenergic signalling on cardiomyocyte hypertrophy underwent a developmental transition. While young postnatal cardiomyocytes responded to isoproterenol (isoprenaline) with a decrease in cell size, mature cardiomyocytes showed an increase in cell size in response to the drug. Together, these results suggest that early sympathetic effects on proliferation modulate a key transition between proliferative and hypertrophic growth of the heart and contribute to the sympathetic regulation of adult heart size. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  4. Medium-size nuclear plants

    International Nuclear Information System (INIS)

    Vogelweith, L.; Lavergne, J.C.; Martinot, G.; Weiss, A.

    1977-01-01

    CEA (TECHNICATOME) has developed a range of pressurized water reactors of the type ''CAS compact'' which are adapted to civil ship propulsion, or to electric power production, combined possibly with heat production, up to outputs equivalent to 125 MWe. Nuclear plants equipped with these reactors are suitable to medium-size electric networks. Among the possible realizations, two types of plants are mentioned as examples: 1) Floating electron-nuclear plants; and 2) Combined electric power and desalting plants. The report describes the design characteristics of the different parts of a 125 MWe unit floating electro-nuclear plant: nuclear steam system CAS 3 G, power generating plant, floating platform for the whole plant. The report gives attention to the different possibilities according to site conditions (the plant can be kept floating, in a natural or artificial basin, it can be put aground, ...) and to safety and environment factors. Such unit can be used in places where there is a growing demand in electric power and fresh water. The report describes how the reactor, the power generating plant and multiflash distillation units of an electric power-desalting plant can be combined: choice of the ratio water output/electric power output, thermal cycle combination, choice of the gain ratio, according to economic considerations, and to desired goal of water output. The report analyses also some technical options, such as: choice of the extraction point of steam used as heat supply of the desalting station (bleeding a condensation turbine, or recovering steam at the exhaust of a backpressure turbine), design making the system safe. Lastly, economic considerations are dealt with: combining the production of fresh water and electric power provides usually a much better energy balance and a lower cost for both products. Examples are given of some types of installations which combine medium-size reactors with fresh water stations yielding from 10000 to 120000 m 3 per day

  5. Cardiomyocyte Regeneration

    Directory of Open Access Journals (Sweden)

    Toshio Nakanishi

    2013-01-01

    Full Text Available The heart was initially believed to be a terminally differentiated organ; once the cardiomyocytes died, no recovery could be made to replace the dead cells. However, around a decade ago, the concept of cardiac stem cells (CSCs in adult hearts was proposed. CSCs differentiate into cardiomyocytes, keeping the heart functioning. Studies have proved the existence of stem cells in the heart. These somatic stem cells have been studied for use in cardiac regeneration. Moreover, recently, induced pluripotent stem cells (iPSCs were invented, and methodologies have now been developed to induce stable cardiomyocyte differentiation and purification of mature cardiomyocytes. A reprogramming method has also been applied to direct reprogramming using cardiac fibroblasts into cardiomyocytes. Here, we address cardiomyocyte differentiation of CSCs and iPSCs. Furthermore, we describe the potential of CSCs in regenerative biology and regenerative medicine.

  6. Exposure to rosiglitazone, a PPAR-γ agonist, in late gestation reduces the abundance of factors regulating cardiac metabolism and cardiomyocyte size in the sheep fetus.

    Science.gov (United States)

    Lie, Shervi; Hui, Melisa; McMillen, I Caroline; Muhlhausler, Beverly S; Posterino, Giuseppe S; Dunn, Stacey L; Wang, Kimberley C; Botting, Kimberley J; Morrison, Janna L

    2014-03-15

    It is unknown whether cardiomyocyte hypertrophy and the transition to fatty acid oxidation as the main source of energy after birth is dependent on the maturation of the cardiomyocytes' metabolic system, or on the limitation of substrate availability before birth. This study aimed to investigate whether intrafetal administration of a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, rosiglitazone, during late gestation can stimulate the expression of factors regulating cardiac growth and metabolism in preparation for birth, and the consequences of cardiac contractility in the fetal sheep at ∼140 days gestation. The mRNA expression and protein abundance of key factors regulating growth and metabolism were quantified using quantitative RT-PCR and Western blot analysis, respectively. Cardiac contractility was determined by measuring the Ca(2+) sensitivity and maximum Ca(2+)-activated force of skinned cardiomyocyte bundles. Rosiglitazone-treated fetuses had a lower cardiac abundance of insulin-signaling molecules, including insulin receptor-β, insulin receptor substrate-1 (IRS-1), phospho-IRS-1 (Tyr-895), phosphatidylinositol 3-kinase (PI3K) regulatory subunit p85, PI3K catalytic subunit p110α, phospho-3-phosphoinositide-dependent protein kinase 1 (Ser-241), protein kinase B (Akt-1), phospho-Akt (Ser-273), PKCζ, phospho-PKCζ(Thr-410), Akt substrate 160 kDa (AS160), phospho-AS160 (Thr-642), and glucose transporter type-4. Additionally, cardiac abundance of regulators of fatty acid β-oxidation, including adiponectin receptor 1, AMPKα, phospho-AMPKα (Thr-172), phospho-acetyl CoA carboxylase (Ser-79), carnitine palmitoyltransferase-1, and PGC-1α was lower in the rosiglitazone-treated group. Rosiglitazone administration also resulted in a decrease in cardiomyocyte size. Rosiglitazone administration in the late-gestation sheep fetus resulted in a decreased abundance of factors regulating cardiac glucose uptake, fatty acid β-oxidation, and

  7. Overexpression of glutaredoxin protects cardiomyocytes against nitric oxide-induced apoptosis with suppressing the S-nitrosylation of proteins and nuclear translocation of GAPDH

    Energy Technology Data Exchange (ETDEWEB)

    Inadomi, Chiaki, E-mail: inadomic@nagasaki-u.ac.jp [Department of Anesthesiology, Nagasaki University School of Medicine, Nagasaki 852-8501 (Japan); Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Murata, Hiroaki [Department of Anesthesiology, Nagasaki University School of Medicine, Nagasaki 852-8501 (Japan); Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Ihara, Yoshito [Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Department of Biochemistry, Wakayama Medical University, Wakayama 641-8509 (Japan); Goto, Shinji; Urata, Yoshishige [Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Yodoi, Junji [Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507 (Japan); Kondo, Takahito [Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Sumikawa, Koji [Department of Anesthesiology, Nagasaki University School of Medicine, Nagasaki 852-8501 (Japan)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer GRX1 overexpression protects myocardiac H9c2 cells against NO-induced apoptosis. Black-Right-Pointing-Pointer NO-induced nuclear translocation of GAPDH is suppressed in GRX overexpressors. Black-Right-Pointing-Pointer Oxidation of GAPDH by NO is less in GRX overexpressors than in controls. -- Abstract: There is increasing evidence demonstrating that glutaredoxin 1 (GRX1), a cytosolic enzyme responsible for the catalysis of protein deglutathionylation, plays distinct roles in inflammation and apoptosis by inducing changes in the cellular redox system. In this study, we investigated whether and how the overexpression of GRX1 protects cardiomyocytes against nitric oxide (NO)-induced apoptosis. Cardiomyocytes (H9c2 cells) were transfected with the expression vector for mouse GRX1 cDNA, and mock-transfected cells were used as a control. Compared with the mock-transfected cells, the GRX1-transfected cells were more resistant to NO-induced apoptosis. Stimulation with NO significantly increased the nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a pro-apoptotic protein, in the mock-transfected cells, but did not change GAPDH localization in the GRX1-transfected cells. Furthermore, we found that NO stimulation clearly induced the oxidative modification of GAPDH in the mock-transfected cells, whereas less modification of GAPDH was observed in the GRX1-transfected cells. These data suggest that the overexpression of GRX1 could protect cardiomyocytes against NO-induced apoptosis, likely through the inhibition of the oxidative modification and the nuclear translocation of GAPDH.

  8. Overexpression of glutaredoxin protects cardiomyocytes against nitric oxide-induced apoptosis with suppressing the S-nitrosylation of proteins and nuclear translocation of GAPDH

    International Nuclear Information System (INIS)

    Inadomi, Chiaki; Murata, Hiroaki; Ihara, Yoshito; Goto, Shinji; Urata, Yoshishige; Yodoi, Junji; Kondo, Takahito; Sumikawa, Koji

    2012-01-01

    Highlights: ► GRX1 overexpression protects myocardiac H9c2 cells against NO-induced apoptosis. ► NO-induced nuclear translocation of GAPDH is suppressed in GRX overexpressors. ► Oxidation of GAPDH by NO is less in GRX overexpressors than in controls. -- Abstract: There is increasing evidence demonstrating that glutaredoxin 1 (GRX1), a cytosolic enzyme responsible for the catalysis of protein deglutathionylation, plays distinct roles in inflammation and apoptosis by inducing changes in the cellular redox system. In this study, we investigated whether and how the overexpression of GRX1 protects cardiomyocytes against nitric oxide (NO)-induced apoptosis. Cardiomyocytes (H9c2 cells) were transfected with the expression vector for mouse GRX1 cDNA, and mock-transfected cells were used as a control. Compared with the mock-transfected cells, the GRX1-transfected cells were more resistant to NO-induced apoptosis. Stimulation with NO significantly increased the nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a pro-apoptotic protein, in the mock-transfected cells, but did not change GAPDH localization in the GRX1-transfected cells. Furthermore, we found that NO stimulation clearly induced the oxidative modification of GAPDH in the mock-transfected cells, whereas less modification of GAPDH was observed in the GRX1-transfected cells. These data suggest that the overexpression of GRX1 could protect cardiomyocytes against NO-induced apoptosis, likely through the inhibition of the oxidative modification and the nuclear translocation of GAPDH.

  9. Evidence for Cardiomyocyte Renewal in Humans

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, O; Bhardwaj, R D; Bernard, S; Zdunek, S; Barnabe-Heider, F; Walsh, S; Zupicich, J; Alkass, K; Buchholz, B A; Druid, H; Jovinge, S; Frisen, J

    2008-10-14

    It has been difficult to establish whether we are limited to the heart muscle cells we are born with or if cardiomyocytes are generated also later in life. We have taken advantage of the integration of {sup 14}C, generated by nuclear bomb tests during the Cold War, into DNA to establish the age of cardiomyocytes in humans. We report that cardiomyocytes renew, with a gradual decrease from 1% turning over annually at the age of 20 to 0.3% at the age of 75. Less than 50% of cardiomyocytes are exchanged during a normal lifespan. The capacity to generate cardiomyocytes in the adult human heart suggests that it may be rational to work towards the development of therapeutic strategies aiming to stimulate this process in cardiac pathologies.

  10. CAS medium-size nuclear plants

    International Nuclear Information System (INIS)

    Vogelweith, L.; Weiss, A.

    1977-01-01

    CEA has developed a range of pressurized water reactors of the type CAS Compact, which are adapted to civil ship propulsion, or to electric power production, combined possibly with heat production, up to outputs equivalent to 125MW(e). Nuclear plants equipped with these reactors are suitable for medium-size electric networks, especially in developing countries, because they are easily adaptable, owing to their flexibility; they can be installed and used in a variety of ways (on land, floating installation, combination of electric power and other production, etc.); they can be used as training reactors by countries wishing to limit their investment plans before undertaking a wider nuclear development. Examples of two possible realizations are presented: as a floating plant, and as a combined electric and desalting plant. (author)

  11. Nuclear size and cell division delay

    International Nuclear Information System (INIS)

    Bird, R.P.

    1986-01-01

    Radiation-induced division delay has been linked to damage at the nuclear envelope. Further, cells in G 2 phase are drastically arrested by high LET radiation such that single particles traversing cell nuclei may produce measurable division delay. A modest effort was initiated using two related cell lines of different size, near-diploid cells and near-tetraploid cells of Chinese hamster origin, to compare their sensitivity for radiation-induced division delay. If the nuclear surface is the critical target, then a larger nuclear cross-section presented to an alpha-particle beam should exhibit delay induced by a lesser particle fluence. Preliminary estimates of the extent of delay in asynchronous cultures following low doses of gamma-irradiation or of alpha-irradiation were made by in-situ observation of the time of onset of mitosis and by fixation and staining of cultures to determine the mitotic index as a function of time after irradiation. The basic approach to evaluating division delay will be to use Colecemid to accumulate mitotic cells over a period of time

  12. Dedifferentiation, Proliferation, and Redifferentiation of Adult Mammalian Cardiomyocytes After Ischemic Injury.

    Science.gov (United States)

    Wang, Wei Eric; Li, Liangpeng; Xia, Xuewei; Fu, Wenbin; Liao, Qiao; Lan, Cong; Yang, Dezhong; Chen, Hongmei; Yue, Rongchuan; Zeng, Cindy; Zhou, Lin; Zhou, Bin; Duan, Dayue Darrel; Chen, Xiongwen; Houser, Steven R; Zeng, Chunyu

    2017-08-29

    Adult mammalian hearts have a limited ability to generate new cardiomyocytes. Proliferation of existing adult cardiomyocytes (ACMs) is a potential source of new cardiomyocytes. Understanding the fundamental biology of ACM proliferation could be of great clinical significance for treating myocardial infarction (MI). We aim to understand the process and regulation of ACM proliferation and its role in new cardiomyocyte formation of post-MI mouse hearts. β-Actin-green fluorescent protein transgenic mice and fate-mapping Myh6-MerCreMer-tdTomato/lacZ mice were used to trace the fate of ACMs. In a coculture system with neonatal rat ventricular myocytes, ACM proliferation was documented with clear evidence of cytokinesis observed with time-lapse imaging. Cardiomyocyte proliferation in the adult mouse post-MI heart was detected by cell cycle markers and 5-ethynyl-2-deoxyuridine incorporation analysis. Echocardiography was used to measure cardiac function, and histology was performed to determine infarction size. In vitro, mononucleated and bi/multinucleated ACMs were able to proliferate at a similar rate (7.0%) in the coculture. Dedifferentiation proceeded ACM proliferation, which was followed by redifferentiation. Redifferentiation was essential to endow the daughter cells with cardiomyocyte contractile function. Intercellular propagation of Ca 2+ from contracting neonatal rat ventricular myocytes into ACM daughter cells was required to activate the Ca 2+ -dependent calcineurin-nuclear factor of activated T-cell signaling pathway to induce ACM redifferentiation. The properties of neonatal rat ventricular myocyte Ca 2+ transients influenced the rate of ACM redifferentiation. Hypoxia impaired the function of gap junctions by dephosphorylating its component protein connexin 43, the major mediator of intercellular Ca 2+ propagation between cardiomyocytes, thereby impairing ACM redifferentiation. In vivo, ACM proliferation was found primarily in the MI border zone. An ischemia

  13. Latest 'evaluation of size of economy' for nuclear uses

    International Nuclear Information System (INIS)

    Saito, Shinzo; Kume, Tamikazu; Inoue, Tomio; Takahashi, Shoji

    2008-01-01

    Size of economy for nuclear uses in Japan was evaluated for FY 2005. Nuclear uses are classified into nuclear energy use and radiation utilizations. Nuclear energy use totaled 4.7 trillion yen with nuclear power. Economy size of nuclear power decreased due to disgraceful events and accidents, though 5.5 trillion yen around for FY 2000. Radiation utilizations totaled 4.1 trillion yen mainly with industrial uses (2.3 trillion yen) and nuclear medicine, diagnosis and radiotherapy (1.5 trillion yen). Combined total of uses amounted to 8.9 trillion yen and comparable with 9.5 trillion yen for FY 1997. (T. Tanaka)

  14. Sizing Post-Cold War Nuclear Forces

    National Research Council Canada - National Science Library

    Oelrich, I

    2001-01-01

    This study addresses the utility of, and need for, nuclear weapons a decade after the end of the Cold War with special focus on the numbers and types of nuclear weapons appropriate for particular requirements...

  15. Bioreactor cultivation enhances NTEB formation and differentiation of NTES cells into cardiomyocytes.

    Science.gov (United States)

    Lü, Shuanghong; Liu, Sheng; He, Wenjun; Duan, Cuimi; Li, Yanmin; Liu, Zhiqiang; Zhang, Ye; Hao, Tong; Wang, Yanmeng; Li, Dexue; Wang, Changyong; Gao, Shaorong

    2008-09-01

    Autogenic embryonic stem cells established from somatic cell nuclear transfer (SCNT) embryos have been proposed as unlimited cell sources for cell transplantation-based treatment of many genetic and degenerative diseases, which can eliminate the immune rejection that occurs after transplantation. In the present study, pluripotent nuclear transfer ES (NTES) cell lines were successfully established from different strains of mice. One NTES cell line, NT1, with capacity of germline transmission, was used to investigate in vitro differentiation into cardiomyocytes. To optimize differentiation conditions for mass production of embryoid bodies (NTEBs) from NTES cells, a slow-turning lateral vessel (STLV) rotating bioreactor was used for culturing the NTES cells to produce NTEBs compared with a conventional static cultivation method. Our results demonstrated that the NTEBs formed in STLV bioreactor were more uniform in size, and no large necrotic centers with most of the cells in NTEBs were viable. Differentiation of the NTEBs formed in both the STLV bioreactor and static culture into cardiomyocytes was induced by ascorbic acid, and the results demonstrated that STLV-produced NTEBs differentiated into cardiomyocytes more efficiently. Taken together, our results suggested that STLV bioreactor provided a more ideal culture condition, which can facilitate the formation of better quality NTEBs and differentiation into cardiomyocytes more efficiently in vitro.

  16. Sample size optimization in nuclear material control. 1

    International Nuclear Information System (INIS)

    Gladitz, J.

    1982-01-01

    Equations have been derived and exemplified which allow the determination of the minimum variables sample size for given false alarm and detection probabilities of nuclear material losses and diversions, respectively. (author)

  17. Radioactive Aerosol Size Distribution Measured in Nuclear Workplaces

    International Nuclear Information System (INIS)

    Kravchik, T.; Oved, S.; German, U.

    2002-01-01

    Inhalation is the main route for internal exposure of workers to radioactive aerosols in the nuclear industry.Aerosol's size distribution and in particular its activity median aerodynamic diameter (AMAD)is important for determining the fractional deposition of inhaled particles in the respiratory tract and the resulting doses. Respiratory tract models have been published by the International Commission on radiological Protection (ICRP).The former model has recommended a default AMAD of 1 micron for the calculation of dose coefficients for workers in the nuclear industry [1].The recent model recommends a 5 microns default diameter for occupational exposure which is considered to be more representative of workplace aerosols [2]. Several researches on radioactive aerosol's size distribution in nuclear workplaces has supported this recommendation [3,4].This paper presents the results of radioactive aerosols size distribution measurements taken at several workplaces of the uranium production process

  18. Method and apparatus for sizing nuclear fuel rod cladding tubes

    International Nuclear Information System (INIS)

    Koehler, L.

    1976-01-01

    Nuclear fuel rod cladding tubes are sized internally to diameters precisely fitting nuclear fuel pellets with which the tubes are charged by externally applying hydraulic pressure to short lengths of each tube. The pressure is applied while the tube is stationary. The tube is then moved to bring a new length within the hydraulic pressure zone. The volume of the hydraulic liquid used and the pressure applied to this liquid is such that the liquid is compressed slightly so that the length being sized yields, the expansion of the liquid then completing the sizing. The lengths being sized step-by-step are internally supported by either the fuel pellets or a mandrel having the same diameter as the pellets

  19. Nuclear genome size analysis of Agave tequilana Weber

    Czech Academy of Sciences Publication Activity Database

    Palomino, G.; Doležel, Jaroslav; Méndez, I.; Rubluo, A.

    2003-01-01

    Roč. 56, č. 1 (2003), s. 37-46 ISSN 0008-7114 Grant - others:Itálie(IT) Z5038910 Institutional research plan: CEZ:AV0Z5038910 Keywords : Flow cytometry * nuclear genome size * Agave tequilana Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.337, year: 2003

  20. Small and medium-sized nuclear power plants

    International Nuclear Information System (INIS)

    Schmidt, R.

    1986-01-01

    Small and medium-sized nuclear power plants have long been under discussion as possible applications of nuclear power in countries with small transmission grid systems, in threshold countries and developing countries, and under special local supply conditions. IAEA has condensed and promoted this interest and tried to establish the demand, and possibilities of meeting it, in special events and campaigns. In recent years, considerable interest was registered even in industrialized countries, but here specially for heating and process heat generation applications and for special purposes and, in medium-sized units, also for combined supplies of electricity and heat. This corresponds to special reactor and plant concepts, some of which have already been developed to a stage at which construction work could begin. The analysis presented deals with necessary preconditions on the sides of the users and the vendors, with problems of economy, infrastructure and financing and with the market prospects of small nuclear power plants. (orig./HP) [de

  1. Fractalkine depresses cardiomyocyte contractility.

    Directory of Open Access Journals (Sweden)

    David Taube

    Full Text Available Our laboratory reported that male mice with cardiomyocyte-selective knockout of the prostaglandin E2 EP4 receptor sub-type (EP4 KO exhibit reduced cardiac function. Gene array on left ventricles (LV showed increased fractalkine, a chemokine implicated in heart failure. We therefore hypothesized that fractalkine is regulated by PGE2 and contributes to depressed contractility via alterations in intracellular calcium.Fractalkine was measured in LV of 28-32 week old male EP4 KO and wild type controls (WT by ELISA and the effect of PGE2 on fractalkine secretion was measured in cultured neonatal cardiomyocytes and fibroblasts. The effect of fractalkine on contractility and intracellular calcium was determined in Fura-2 AM-loaded, electrical field-paced cardiomyocytes. Cardiomyocytes (AVM from male C57Bl/6 mice were treated with fractalkine and responses measured under basal conditions and after isoproterenol (Iso stimulation.LV fractalkine was increased in EP4 KO mice but surprisingly, PGE2 regulated fractalkine secretion only in fibroblasts. Fractalkine treatment of AVM decreased both the speed of contraction and relaxation under basal conditions and after Iso stimulation. Despite reducing contractility after Iso stimulation, fractalkine increased the Ca(2+ transient amplitude but decreased phosphorylation of cardiac troponin I, suggesting direct effects on the contractile machinery.Fractalkine depresses myocyte contractility by mechanisms downstream of intracellular calcium.

  2. Finite size effects in neutron star and nuclear matter simulations

    Energy Technology Data Exchange (ETDEWEB)

    Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar; Dorso, C.O.

    2015-01-15

    In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called “finite size effects”, unavoidable in this kind of simulations, and to understand what they actually affect. To do so, we explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. For nuclear matter simulations we show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the “nuclear pasta” phases expected in neutron star matter simulations, but only one structure per cell and shaped by specific artificial aspects of the simulations—for the same physical conditions (i.e. number density and temperature) different cells yield different solutions. The particular shape of the solution at low enough temperature and a given density can be predicted analytically by surface minimization. We also show that even if this behavior is due to the imposition of periodic boundary conditions on finite systems, this does not mean that it vanishes for very large systems, and it is actually independent of the system size. We conclude that, for nuclear matter simulations, the cells' size sets the only characteristic length scale for the inhomogeneities, and the geometry of the periodic cell determines the shape of those inhomogeneities. To model neutron star matter we add a screened Coulomb interaction between protons, and perform simulations in the three cell geometries. Our simulations indeed produce the well known nuclear pasta, with (in most cases) several structures per cell. However, we find that for systems not too large results are affected by finite size in different ways depending on the geometry of the cell. In particular, at the same certain physical conditions and system size, the hexagonal prism yields a

  3. Effect of hepatocyte growth factor and angiotensin II on rat cardiomyocyte hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ai-Lan [Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Ou, Cai-Wen [The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); He, Zhao-Chu [Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Liu, Qi-Cai [Experimental Medical Research Center, Guangzhou Medical University, Guangzhou (China); Dong, Qi [Department of Physiology, Guangzhou Medical University, Guangzhou (China); Chen, Min-Sheng [Guangzhou Key Laboratory of Cardiovascular Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou (China)

    2012-10-15

    Angiotensin II (Ang II) plays an important role in cardiomyocyte hypertrophy. The combined effect of hepatocyte growth factor (HGF) and Ang II on cardiomyocytes is unknown. The present study was designed to determine the effect of HGF on cardiomyocyte hypertrophy and to explore the combined effect of HGF and Ang II on cardiomyocyte hypertrophy. Primary cardiomyocytes were isolated from neonatal rat hearts and cultured in vitro. Cells were treated with Ang II (1 µM) alone, HGF (10 ng/mL) alone, and Ang II (1 µM) plus HGF (10 ng/mL) for 24, 48, and 72 h. The amount of [{sup 3}H]-leucine incorporation was then measured to evaluate protein synthesis. The mRNA levels of β-myosin heavy chain and atrial natriuretic factor were determined by real-time PCR to evaluate the presence of fetal phenotypes of gene expression. The cell size of cardiomyocytes was also studied. Ang II (1 µM) increased cardiomyocyte hypertrophy. Similar to Ang II, treatment with 1 µM HGF promoted cardiomyocyte hypertrophy. Moreover, the combination of 1 µM Ang II and 10 ng/mL HGF clearly induced a combined pro-hypertrophy effect on cardiomyocytes. The present study demonstrates for the first time a novel, combined effect of HGF and Ang II in promoting cardiomyocyte hypertrophy.

  4. Nuclear export of RNA: Different sizes, shapes and functions.

    Science.gov (United States)

    Williams, Tobias; Ngo, Linh H; Wickramasinghe, Vihandha O

    2018-03-01

    Export of protein-coding and non-coding RNA molecules from the nucleus to the cytoplasm is critical for gene expression. This necessitates the continuous transport of RNA species of different size, shape and function through nuclear pore complexes via export receptors and adaptor proteins. Here, we provide an overview of the major RNA export pathways in humans, highlighting the similarities and differences between each. Its importance is underscored by the growing appreciation that deregulation of RNA export pathways is associated with human diseases like cancer. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. Naturally Engineered Maturation of Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Gaetano J. Scuderi

    2017-05-01

    Full Text Available Ischemic heart disease remains one of the most prominent causes of mortalities worldwide with heart transplantation being the gold-standard treatment option. However, due to the major limitations associated with heart transplants, such as an inadequate supply and heart rejection, there remains a significant clinical need for a viable cardiac regenerative therapy to restore native myocardial function. Over the course of the previous several decades, researchers have made prominent advances in the field of cardiac regeneration with the creation of in vitro human pluripotent stem cell-derived cardiomyocyte tissue engineered constructs. However, these engineered constructs exhibit a functionally immature, disorganized, fetal-like phenotype that is not equivalent physiologically to native adult cardiac tissue. Due to this major limitation, many recent studies have investigated approaches to improve pluripotent stem cell-derived cardiomyocyte maturation to close this large functionality gap between engineered and native cardiac tissue. This review integrates the natural developmental mechanisms of cardiomyocyte structural and functional maturation. The variety of ways researchers have attempted to improve cardiomyocyte maturation in vitro by mimicking natural development, known as natural engineering, is readily discussed. The main focus of this review involves the synergistic role of electrical and mechanical stimulation, extracellular matrix interactions, and non-cardiomyocyte interactions in facilitating cardiomyocyte maturation. Overall, even with these current natural engineering approaches, pluripotent stem cell-derived cardiomyocytes within three-dimensional engineered heart tissue still remain mostly within the early to late fetal stages of cardiomyocyte maturity. Therefore, although the end goal is to achieve adult phenotypic maturity, more emphasis must be placed on elucidating how the in vivo fetal microenvironment drives cardiomyocyte

  6. Nuclear size is sensitive to NTF2 protein levels in a manner dependent on Ran binding

    Science.gov (United States)

    Vuković, Lidija D.; Jevtić, Predrag; Zhang, Zhaojie; Stohr, Bradley A.; Levy, Daniel L.

    2016-01-01

    ABSTRACT Altered nuclear size is associated with many cancers, and determining whether cancer-associated changes in nuclear size contribute to carcinogenesis necessitates an understanding of mechanisms of nuclear size regulation. Although nuclear import rates generally positively correlate with nuclear size, NTF2 levels negatively affect nuclear size, despite the role of NTF2 (also known as NUTF2) in nuclear recycling of the import factor Ran. We show that binding of Ran to NTF2 is required for NTF2 to inhibit nuclear expansion and import of large cargo molecules in Xenopus laevis egg and embryo extracts, consistent with our observation that NTF2 reduces the diameter of the nuclear pore complex (NPC) in a Ran-binding-dependent manner. Furthermore, we demonstrate that ectopic NTF2 expression in Xenopus embryos and mammalian tissue culture cells alters nuclear size. Finally, we show that increases in nuclear size during melanoma progression correlate with reduced NTF2 expression, and increasing NTF2 levels in melanoma cells is sufficient to reduce nuclear size. These results show a conserved capacity for NTF2 to impact on nuclear size, and we propose that NTF2 might be a new cancer biomarker. PMID:26823604

  7. AKIP1 expression modulates mitochondrial function in rat neonatal cardiomyocytes

    NARCIS (Netherlands)

    Yu, Hongjuan; Tigchelaar, Wardit; Koonen, Debby P. Y.; Patel, Hemal H.; de Boer, Rudolf A.; van Gilst, Wiek H.; Westenbrink, B. Daan; Sillje, Herman H. W.

    2013-01-01

    A kinase interacting protein 1 (AKIP1) is a molecular regulator of protein kinase A and nuclear factor kappa B signalling. Recent evidence suggests AKIP1 is increased in response to cardiac stress, modulates acute ischemic stress response, and is localized to mitochondria in cardiomyocytes. The

  8. Automatic particle-size analysis of HTGR nuclear fuel microspheres

    International Nuclear Information System (INIS)

    Mack, J.E.

    1977-01-01

    An automatic particle-size analyzer (PSA) has been developed at ORNL for measuring and counting samples of nuclear fuel microspheres in the diameter range of 300 to 1000 μm at rates in excess of 2000 particles per minute, requiring no sample preparation. A light blockage technique is used in conjunction with a particle singularizer. Each particle in the sample is sized, and the information is accumulated by a multi-channel pulse height analyzer. The data are then transferred automatically to a computer for calculation of mean diameter, standard deviation, kurtosis, and skewness of the distribution. Entering the sample weight and pre-coating data permits calculation of particle density and the mean coating thickness and density. Following this nondestructive analysis, the sample is collected and returned to the process line or used for further analysis. The device has potential as an on-line quality control device in processes dealing with spherical or near-spherical particles where rapid analysis is required for process control

  9. Staff size evolution at the Spanish nuclear power plants

    International Nuclear Information System (INIS)

    Ibanez, M.

    2001-01-01

    This paper describes the main characteristics on the Spanish nuclear electricity sector with an installed capacity of 7580 MW from three different generations, commissioned between 1968 and 1988 and with good plant performance. The analysis of the operation and maintenance cost contributors, made in this paper, shows that the cost of the personnel (own staff plus permanent contractors) amount to around the 80% of the total O and M cost. The paper will describe the evolution of the staff size for all the Spanish NPPs during the last years. In more detail the experience of Garona NPP, a single unit BWR 460 MW(e) commissioned in 1971, and Trillo NPP, a single unit PWR 1066 MW(e) commissioned in 1988, will be presented with the evolution of the following parameters: number of utility employees, number of permanent contractors, O and M costs versus kWh produced. The evolution of the staffing size is correlated with internal organization improvements, managerial policies, regulatory requirements, emergent activities, future projects, etc. The paper will include future reactors considerations that will operate in a competitive environment with other sources of energy and with a high level of safety standards. The strong influence of the personnel in the O and M cost will mean that actions related to reduce or optimize the plant staff will be based on design, organizational and regulatory considerations. (author)

  10. [Over-expression of BDNF inhibits angiotensin II-induced apoptosis of cardiomyocytes in SD rats].

    Science.gov (United States)

    Cao, Jingli; Wu, Yingfeng; Liu, Geming; Li, Zhenlong

    2018-03-01

    Objective To investigate the role and molecular mechanism of brain-derived neurotrophic factor (BDNF) against the process of cardiomyocyte hypertrophy and apoptosis. Methods Cardiomyocyte hypertrophy were estabolished by angiotensin II (Ang II) in neonatal cardiomyocytes in vitro and incomplete ligature of abdominal aorta of SD rats in vivo. BDNF over-expressing recombinant vector pcDNA5-BDNF was transfected into cardiomyocytes by liposomes. Immunofluorescence staining was used to detect the effect of BDNF transfection on the surface area of myocardial cells. The effect of BDNF transfection on the apoptosis of cardiomyocytes was assayed by flow cytometry. Real-time fluorescent quantitative PCR was performed to detect the effect of over-expression of BDNF on the expressions of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNAs in cardiomyocytes. Western blot assay was used to observe the changes of BDNF, ANP and BNP, calmodulin kinase 2 (CaMK2) and phosphorylated calmodulin kinase 2 (p-CaMK2), calcineurin (CaN), p-CaN, nuclear factor of activated T cells 3 (NFATC3) and p-NFATC3 protein expressions in the myocardial tissues and cardiomyocytes. Results The expression of BDNF protein increased significantly in cardiac hypertrophy animal and cell models in a time-dependent manner. Compared with the untransfected control cardiomyocytes, the surface area of cardiomyocytes, the rate of apoptosis, the levels of ANP and BNP mRNA and protein expression, the levels of p-CaMK2 and CaN protein in the BDNF over-expressed cardiomyocytes were remarkably reduced, while the level of p-NFATC3 protein rose significantly. Conclusion BDNF inhibits the apoptosis of cardiomyocytes induced by Ang II, and it plays the role by inhibiting CaMK2 and CaN signaling pathways.

  11. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells

    NARCIS (Netherlands)

    Giacomelli, Elisa; Bellin, Milena; Sala, Luca; Van Meer, Berend J.; Tertoolen, Leon G.J.; Orlova, Valeria V.; Mummery, Christine L.

    2017-01-01

    Cardiomyocytes and endothelial cells in the heart are in close proximity and in constant dialogue. Endothelium regulates the size of the heart, supplies oxygen to the myocardium and secretes factors that support cardiomyocyte function. Robust and predictive cardiac disease models that faithfully

  12. The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution.

    Science.gov (United States)

    Baniaga, Anthony E; Arrigo, Nils; Barker, Michael S

    2016-06-03

    The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. The Nuclear Finite–Size Corrections to Energies of n = 1, n = 2 AND ...

    African Journals Online (AJOL)

    Results show that as the energy levels increases, the effects of the finite – size nucleus on the ... This gives us more information on the nuclear charge distribution. ... Hamiltonian; wave function; nucleus; point-size; finite–size; potential energy ...

  14. Small and medium size nuclear power reactors for desalination

    International Nuclear Information System (INIS)

    Raisic, N.; Goodman, E.I.

    1976-01-01

    Taking the water needs, e.g. of some of the world's major towns, as a basis, it is investigated whether nuclear energy can be utilized economically for desalination. When a certain distance for the transport of water from other regions is exceeded it is quite possible that nuclear desalination becomes economical. Taking the example of Honkong, it is shown that this method can find application for other reasons, too, e.g. if the need exceeds the possibilities there are of meeting this need from natural sources. (UA) [de

  15. Effect of Particle Size Distribution on Slurry Rheology: Nuclear Waste Simulant Slurries

    International Nuclear Information System (INIS)

    Chun, Jaehun; Oh, Takkeun; Luna, Maria L.; Schweiger, Michael J.

    2011-01-01

    Controlling the rheological properties of slurries has been of great interest in various industries such as cosmetics, ceramic processing, and nuclear waste treatment. Many physicochemical parameters, such as particle size, pH, ionic strength, and mass/volume fraction of particles, can influence the rheological properties of slurry. Among such parameters, the particle size distribution of slurry would be especially important for nuclear waste treatment because most nuclear waste slurries show a broad particle size distribution. We studied the rheological properties of several different low activity waste nuclear simulant slurries having different particle size distributions under high salt and high pH conditions. Using rheological and particle size analysis, it was found that the percentage of colloid-sized particles in slurry appears to be a key factor for rheological characteristics and the efficiency of rheological modifiers. This behavior was shown to be coupled with an existing electrostatic interaction between particles under a low salt concentration. Our study suggests that one may need to implement the particle size distribution as a critical factor to understand and control rheological properties in nuclear waste treatment plants, such as the U.S. Department of Energy's Hanford and Savannah River sites, because the particle size distributions significantly vary over different types of nuclear waste slurries.

  16. Small size modular fast reactors in large scale nuclear power

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Toshinsky, G.I.; Komlev, O.G.; Dragunov, U.G.; Stepanov, V.S.; Klimov, N.N.; Kopytov, I.I.; Krushelnitsky, V.N.

    2005-01-01

    The report presents an innovative nuclear power technology (NPT) based on usage of modular type fast reactors (FR) (SVBR-75/100) with heavy liquid metal coolant (HLMC) i. e. eutectic lead-bismuth alloy mastered for Russian nuclear submarines' (NS) reactors. Use of this NPT makes it possible to eliminate a conflict between safety and economic requirements peculiar to the traditional reactors. Physical features of FRs, an integral design of the reactor and its small power (100 MWe), as well as natural properties of lead-bismuth coolant assured realization of the inherent safety properties. This made it possible to eliminate a lot of safety systems necessary for the reactor installations (RI) of operating NPPs and to design the modular NPP which technical and economical parameters are competitive not only with those of the NPP based on light water reactors (LWR) but with those of the steam-gas electric power plant. Multipurpose usage of transportable reactor modules SVBR-75/100 of entirely factory manufacture assures their production in large quantities that reduces their fabrication costs. The proposed NPT provides economically expedient change over to the closed nuclear fuel cycle (NFC). When the uranium-plutonium fuel is used, the breeding ratio is over one. Use of proposed NPT makes it possible to considerably increase the investment attractiveness of nuclear power (NP) with fast neutron reactors even today at low costs of natural uranium. (authors)

  17. Nuclear electric capacity expansion in Mexico: system effects of reactor size and cost

    International Nuclear Information System (INIS)

    Thayer, G.R.; Abbey, D.S.; Hardie, R.W.; Enriquez, R.P.; Uria, E.G.

    1984-01-01

    Mexico's electrical generation capacity could more than double over the next ten years - from about 15 GWe currently to as much as 35 GWe in 1990. While new capacity additions will be predominantly oil-fired in the 1980's, nuclear power will become increasingly important in the 1990's. This study investigated the appropriate size of new, nuclear capacity additions by assessing the implications of installing different size reactors into Mexico's electrical grid. Included in the assessments of reactor sizes are estimates of electrical generation costs and comparisons of the effective load-carrying capability of a 10 GWe nuclear capacity expansion

  18. Blueberry polyphenols prevent cardiomyocyte death by preventing calpain activation and oxidative stress.

    Science.gov (United States)

    Louis, Xavier Lieben; Thandapilly, Sijo Joseph; Kalt, Wilhelmina; Vinqvist-Tymchuk, Melinda; Aloud, Basma Milad; Raj, Pema; Yu, Liping; Le, Hoa; Netticadan, Thomas

    2014-08-01

    The purpose of this study was to examine the efficacy of an aqueous wild blueberry extract and five wild blueberry polyphenol fractions on an in vitro model of heart disease. Adult rat cardiomyocytes were pretreated with extract and fractions, and then exposed to norepinephrine (NE). Cardiomyocyte hypertrophy, cell death, oxidative stress, apoptosis and cardiomyocyte contractile function as well as the activities of calpain, superoxide dismutase (SOD) and catalase (CAT) were measured in cardiomyocytes treated with and without NE and blueberry fraction (BF). Four of five blueberry fractions prevented cell death and cardiomyocyte hypertrophy induced by NE. Total phenolic fraction was used for all further analysis. The NE-induced increase in oxidative stress, nuclear condensation, calpain activity and lowering of SOD and CAT activities were prevented upon pretreatment with BF. Reduced contractile function was also significantly improved with BF pretreatment. Blueberry polyphenols prevent NE-induced adult cardiomyocyte hypertrophy and cell death. The protective effects of BF may be in part attributed to a reduction in calpain activity and oxidative stress.

  19. Genetic enrichment of cardiomyocytes derived from mouse ...

    African Journals Online (AJOL)

    Genetic enrichment of cardiomyocytes derived from mouse embryonic stem cells. WJ He, SC Li, LL Ye, H Liu, QW Wang, WD Han, XB Fu, ZL Chen. Abstract. Pluripotent embryonic stem cells (ESC) have the ability to differentiate into a variety of cell lineages in vitro, including cardiomyocytes. Successful applications of ...

  20. Optimum size determination of nuclear dual-purpose desalination plants

    International Nuclear Information System (INIS)

    Gaussens, J.

    1966-01-01

    The economics of dual-purpose desalination plants is presented from a general standpoint. The concept of demand curves for water and electricity is introduced, which leads to a rational sharing of production costs between both commodities within the framework of a market. The purpose of the study, which is based upon the principles of classical economics, is to develop objective criteria for the design of desalination plants and to derive from these a normative method for pricing both joint products, water and electricity, following as much as possible the structure of the demand. Such criteria are in particular either the maximization of benefit for the operator or the maximum welfare for the community. They involve either equality between marginal costs and revenues, or equality between marginal costs and marginal satisfactions (theory of surplus). As the size of the plant is often the predominant factor in selecting the process to be used, it follows from the above considerations that this selection is closely related to: (a) The shape of the demand curve for water; (b) The economic criterion selected and the relevant constraints (public or private ownership, limitation of the investments, etc). This makes market surveys and a rather refined economic analysis indispensable before any decision is taken on the desalination technique to be adopted. (author). Abstract only

  1. Hypoxia changes the expression of the epidermal growth factor (EGF) system in human hearts and cultured cardiomyocytes

    DEFF Research Database (Denmark)

    Munk, Mathias; Memon, Ashfaque Ahmed; Goetze, Jens Peter

    2012-01-01

    by treatment with trastuzumab (20 nM). This resulted in inhibition of cardiomyocyte proliferation, but interestingly only in hypoxic cells. Co-treatment of HL-1 cells with HB-EGF (10 nM) but not with NRG-1 (5 ng/ml) rescued the cardiomyocytes from HER2 inhibition. HL-1 cardiomyocytes exposed to hypoxia...... revealed nuclear translocation of activated MAPK and the activity of this downstream signaling molecule was decreased by HER2 inhibition (20 nM trastuzumab), and re-established by HB-EGF (10 nM). CONCLUSIONS/SIGNIFICANCE: Hypoxia in the human heart alters the expression of the EGF system. Mimicking the HER...

  2. Some regularity of the grain size distribution in nuclear fuel with controllable structure

    International Nuclear Information System (INIS)

    Loktev, Igor

    2008-01-01

    It is known, the fission gas release from ceramic nuclear fuel depends from average size of grains. To increase grain size they use additives which activate sintering of pellets. However, grain size distribution influences on fission gas release also. Fuel with different structures, but with the same average size of grains has different fission gas release. Other structure elements, which influence operational behavior of fuel, are pores and inclusions. Earlier, in Kyoto, questions of distribution of grain size for fuel with 'natural' structure were discussed. Some regularity of grain size distribution of fuel with controllable structure and high average size of grains are considered in the report. Influence of inclusions and pores on an error of the automated definition of parameters of structure is shown. The criterion, which describe of behavior of fuel with specific grain size distribution, is offered

  3. Hedge math: Theoretical limits on minimum stockpile size across nuclear hedging strategies

    Energy Technology Data Exchange (ETDEWEB)

    Lafleur, Jarret Marshall [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Roesler, Alexander W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    In June 2013, the Department of Defense published a congressionally mandated, unclassified update on the U.S. Nuclear Employment Strategy. Among the many updates in this document are three key ground rules for guiding the sizing of the non-deployed U.S. nuclear stockpile. Furthermore, these ground rules form an important and objective set of criteria against which potential future stockpile hedging strategies can be evaluated.

  4. To work in a medium-size enterprise in the nuclear sector

    International Nuclear Information System (INIS)

    Le Ngoc, B.

    2017-01-01

    The French nuclear industry is made up of 2500 enterprises of any size from family businesses to large groups via medium-sized enterprises and start-ups. Most small and medium-sized enterprises have difficulties to recruit qualified people whereas their order books are full. These difficulties originate from the fact that these enterprises are less known than EDF, AREVA and CEA and as a consequence less chosen by job applicants. There is another point, the image of the industry has progressively deteriorated and the idea of working in an industrial sector is no more very exciting. The last point is that nuclear industry's future may appear less clear because of the government's policy of reducing the nuclear share in power production through the early decommissioning of reactors. 3 medium-size enterprises of the nuclear sector: Assystem, REEL and Onet Technologies consider to recruit a total of about 800 people per year and give 4 reasons to join a medium-sized company: 1) a faster professional career, more diverse activities in the job, closer managing executives and a dynamic and stimulating workplace. (A.C.)

  5. Dedifferentiation and proliferation of mammalian cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Yiqiang Zhang

    2010-09-01

    Full Text Available It has long been thought that mammalian cardiomyocytes are terminally-differentiated and unable to proliferate. However, myocytes in more primitive animals such as zebrafish are able to dedifferentiate and proliferate to regenerate amputated cardiac muscle.Here we test the hypothesis that mature mammalian cardiomyocytes retain substantial cellular plasticity, including the ability to dedifferentiate, proliferate, and acquire progenitor cell phenotypes. Two complementary methods were used: 1 cardiomyocyte purification from rat hearts, and 2 genetic fate mapping in cardiac explants from bi-transgenic mice. Cardiomyocytes isolated from rodent hearts were purified by multiple centrifugation and Percoll gradient separation steps, and the purity verified by immunostaining and RT-PCR. Within days in culture, purified cardiomyocytes lost their characteristic electrophysiological properties and striations, flattened and began to divide, as confirmed by proliferation markers and BrdU incorporation. Many dedifferentiated cardiomyocytes went on to express the stem cell antigen c-kit, and the early cardiac transcription factors GATA4 and Nkx2.5. Underlying these changes, inhibitory cell cycle molecules were suppressed in myocyte-derived cells (MDCs, while microRNAs known to orchestrate proliferation and pluripotency increased dramatically. Some, but not all, MDCs self-organized into spheres and re-differentiated into myocytes and endothelial cells in vitro. Cell fate tracking of cardiomyocytes from 4-OH-Tamoxifen-treated double-transgenic MerCreMer/ZEG mouse hearts revealed that green fluorescent protein (GFP continues to be expressed in dedifferentiated cardiomyocytes, two-thirds of which were also c-kit(+.Contradicting the prevailing view that they are terminally-differentiated, postnatal mammalian cardiomyocytes are instead capable of substantial plasticity. Dedifferentiation of myocytes facilitates proliferation and confers a degree of stemness

  6. A simple technique to determine the size distribution of nuclear crater fallback and ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, II, Brooks D [U.S. Army Engineer Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore, CA (United States)

    1970-05-15

    This report describes the results of an investigation to find an economic method for determining the block size distribution of nuclear crater fallback and ejecta. It is shown that the modal analysis method of determining relative proportions can be applied with the use of a special sampling technique, to provide a size distribution curve for clastic materials similar to one obtainable by sieving and weighing the same materials.

  7. A simple technique to determine the size distribution of nuclear crater fallback and ejecta

    International Nuclear Information System (INIS)

    Anderson, Brooks D. II

    1970-01-01

    This report describes the results of an investigation to find an economic method for determining the block size distribution of nuclear crater fallback and ejecta. It is shown that the modal analysis method of determining relative proportions can be applied with the use of a special sampling technique, to provide a size distribution curve for clastic materials similar to one obtainable by sieving and weighing the same materials

  8. Analysis of near optimum design for small and medium size nuclear power plants

    International Nuclear Information System (INIS)

    Ahmed, A.A.

    1977-01-01

    Market surveys in recent years have shown that a significant market would exist among the developing nations of the world for nuclear power plants that would be classified as small to medium sized, provided that these small plants could produce electricity at a unit price comparable to that of equivalent sized fossil fired plants. Nuclear plants in the range of 100 MWe to 500 MWe would fit more effectively into the relatively smaller grids of most developing nations than would the 900 MWe to 1300 MWe units now being constructed in the large industrial nations. Worldwide re-evaluation of the worth of fossil fuels has prompted a re-examination of the competitive position of small to medium sized nuclear generating units compared to comparable fossil fired units, especially in the context of units specifically optimized for the size range of interest, rather than of designs that are simply scaled down versions of the currently available larger units. Since the absolute cost of electricity is more sensitive to external factors such as cost of money, national inflation rate and time required for licensing and construction than to details of design or perhaps even to choice of fuels, and since the cost of electricity generated in small to medium sized fossil fired units is periodically compared to that of scaled down versions of conventional large nuclear units, the point of view taken here is one of comparing the relative generating costs of smaller nuclear units of optimum design with the corresponding costs of scaled down versions of current large nuclear generating units

  9. Regulation of cardiomyocyte autophagy by calcium.

    Science.gov (United States)

    Shaikh, Soni; Troncoso, Rodrigo; Criollo, Alfredo; Bravo-Sagua, Roberto; García, Lorena; Morselli, Eugenia; Cifuentes, Mariana; Quest, Andrew F G; Hill, Joseph A; Lavandero, Sergio

    2016-04-15

    Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy. Copyright © 2016 the American Physiological Society.

  10. Acceptance criteria for determining armed response force size at nuclear power plants

    International Nuclear Information System (INIS)

    1983-02-01

    This guidance document contains acceptance criteria to be used in the NRC license review process. It consists of a scored worksheet and guidelines for interpreting the worksheet score that can be used in determining the adequacy of the armed response force size at a nuclear power reactor facility

  11. Nuclear genome size and genomic distribution of ribosomal DNA in Musa and Ensete (Musaceae): taxonomic implications

    Czech Academy of Sciences Publication Activity Database

    Bartoš, Jan; Alkhimova, Olena; Kubaláková, Marie; De Langhe, E.; Doležel, Jaroslav

    2005-01-01

    Roč. 109, - (2005), s. 50-57 ISSN 1424-8581 R&D Projects: GA AV ČR IAA6038204 Grant - others:IAEA Research Contract 12230/RBF Institutional research plan: CEZ:AV0Z50380511 Keywords : Musa and Ensete * nuclear genome size * FISH Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.076, year: 2005

  12. Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation.

    Science.gov (United States)

    van Zanten, Martijn; Koini, Maria A; Geyer, Regina; Liu, Yongxiu; Brambilla, Vittoria; Bartels, Dorothea; Koornneef, Maarten; Fransz, Paul; Soppe, Wim J J

    2011-12-13

    Most plant species rely on seeds for their dispersal and survival under unfavorable environmental conditions. Seeds are characterized by their low moisture content and significantly reduced metabolic activities. During the maturation phase, seeds accumulate storage reserves and become desiccation-tolerant and dormant. Growth is resumed after release of dormancy and the occurrence of favorable environmental conditions. Here we show that embryonic cotyledon nuclei of Arabidopsis thaliana seeds have a significantly reduced nuclear size, which is established at the beginning of seed maturation. In addition, the chromatin of embryonic cotyledon nuclei from mature seeds is highly condensed. Nuclei regain their size and chromatin condensation level during germination. The reduction in nuclear size is controlled by the seed maturation regulator ABSCISIC ACID-INSENSITIVE 3, and the increase during germination requires two predicted nuclear matrix proteins, LITTLE NUCLEI 1 and LITTLE NUCLEI 2. Our results suggest that the specific properties of nuclei in ripe seeds are an adaptation to desiccation, independent of dormancy. We conclude that the changes in nuclear size and chromatin condensation in seeds are independent, developmentally controlled processes.

  13. HedgeHOGS: A Rapid Nuclear Hedge Sizing and Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Adam F. [United States Military Academy, West Point, NY (United States); Steinfeldt, Bradley Alexander [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Lafleur, Jarret Marshall [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hawley, Marilyn F. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Shannon, Lisa M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-07-01

    The U.S. nuclear stockpile hedge is an inventory of non-deployed nuclear warheads and a force structure capable of deploying those warheads. Current guidance is to retain this hedge to mitigate the risk associated with the technical failure of any single warhead type or adverse geopolitical developments that could require augmentation of the force. The necessary size of the hedge depends on the composition of the nuclear stockpile and assumed constraints. Knowing the theoretical minimum hedge given certain constraints is useful when considering future weapons policy. HedgeHOGS, an Excel-based tool, was developed to enable rapid calculation of the minimum hedge size associated with varying active stockpile composition and hedging strategies.

  14. Genetic enrichment of cardiomyocytes derived from mouse ...

    African Journals Online (AJOL)

    Jane

    2011-06-22

    Jun 22, 2011 ... Pluripotent embryonic stem cells (ESC) have the ability to differentiate into a ... We describe a simple method to generate relatively pure cardiomyocytes from mouse ... In this study, we described the generation of transgenic.

  15. Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds

    Science.gov (United States)

    Panich, A. M.; Sergeev, N. A.; Shames, A. I.; Osipov, V. Yu; Boudou, J.-P.; Goren, S. D.

    2015-02-01

    Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and 13C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of 13C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.

  16. Bridging the energy gap through small and medium sized nuclear reactors in India

    International Nuclear Information System (INIS)

    Srivastava, R.

    1987-01-01

    India is the only country in the world which is employing small sized nuclear reactors for its nuclear power programme. It has now embarked on a programme of augmenting the contribution of the nuclear power by way of employing both medium and small sized nuclear reactors in the next 15 years. This paper discusses the Indian experience and its efforts for industrial mobilisation for rapidly constructing 235/500 MWe nuclear reactor units in a period of about 8 to 9 years. The current energy situation in India and this context the near term role of nuclear power for supplementing the existing sources of commercial energy have been evaluated. Nuclear power has reached such a stage of maturity whereby it has now become a commercially viable source of electricity and it could be utilised on large scale to bridge the energy gap. At present six reactor units of 210/235 MWe capacity are in operation and eight more are in different stages of construction. While we are continuing with the construction of 235 MWe units, a programme of being pursued to construct 550 MWe capacity reactor units from midnineties onwards. This has become possible with the strengthening of regional electricity grids and simultaneous efforts undertaken for augmentation of fuel supply, heavy water production and industrial infrastructure. For a developing country like India, implementation of a sizable nuclear power programme has posed certain special challenges as major inputs are required to be made available with indigeneous efforts. This paper discusses such challenges and presents the ways and means adopted to surmount them. Other developing countries with conditions comparable to those in India could benefit from Indian experience in this regard. This paper also proposes India's willingness to cooperate with other countries for exchange of information and assistance in terms of technical knowhow. (author)

  17. Identification, Selection, and Enrichment of Cardiomyocyte Precursors

    Directory of Open Access Journals (Sweden)

    Bianca Ferrarini Zanetti

    2013-01-01

    Full Text Available The large-scale production of cardiomyocytes is a key step in the development of cell therapy and tissue engineering to treat cardiovascular diseases, particularly those caused by ischemia. The main objective of this study was to establish a procedure for the efficient production of cardiomyocytes by reprogramming mesenchymal stem cells from adipose tissue. First, lentiviral vectors expressing neoR and GFP under the control of promoters expressed specifically during cardiomyogenesis were constructed to monitor cell reprogramming into precardiomyocytes and to select cells for amplification and characterization. Cellular reprogramming was performed using 5′-azacytidine followed by electroporation with plasmid pOKS2a, which expressed Oct4, Sox2, and Klf4. Under these conditions, GFP expression began only after transfection with pOKS2a, and less than 0.015% of cells were GFP+. These GFP+ cells were selected for G418 resistance to find molecular markers of cardiomyocytes by RT-PCR and immunocytochemistry. Both genetic and protein markers of cardiomyocytes were present in the selected cells, with some variations among them. Cell doubling time did not change after selection. Together, these results indicate that enrichment with vectors expressing GFP and neoR under cardiomyocyte-specific promoters can produce large numbers of cardiomyocyte precursors (CMPs, which can then be differentiated terminally for cell therapy and tissue engineering.

  18. Nuclear Criticality Calculation for Determining the Bach Size in a Pyroprocessing Facility

    International Nuclear Information System (INIS)

    Ko, Won Il; Lee, Ho Hee; Chang, Hong Rae; Song, Dae Yong; Kwon, Eun Ha; Jung, Chang Jun; Yoon, Suk Kyun

    2009-01-01

    The criticality analysis in a pyroprocessing facility is very important element for the R and D and the facility design in terms of the determination of batch size of the sub-processes as well as facility safety. Particularly, the determining the batch size is essential at the beginning stage of the R and D. In this report, the criticality analysis was carried out for the subprocesses such as voloxidation, electrolytic reduction, electrorefining and electrowinning process in order to estimate the maximum batch size of each process by using Monte Carlo code (MCNP4/C2). On the whole, the criticality problem could not give a big effect on the batch sizes in the voloxidation, electrolytic reduction and electrorefining. However, it was resulted that permissible amount of nuclear material to prevent the criticality accident in the electrowinning process was about 10kgHM

  19. Nuclear Criticality Calculation for Determining the Bach Size in a Pyroprocessing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Lee, Ho Hee; Chang, Hong Rae; Song, Dae Yong; Kwon, Eun Ha; Jung, Chang Jun; Yoon, Suk Kyun [KAERI, Daejeon (Korea, Republic of)

    2009-01-15

    The criticality analysis in a pyroprocessing facility is very important element for the R and D and the facility design in terms of the determination of batch size of the sub-processes as well as facility safety. Particularly, the determining the batch size is essential at the beginning stage of the R and D. In this report, the criticality analysis was carried out for the subprocesses such as voloxidation, electrolytic reduction, electrorefining and electrowinning process in order to estimate the maximum batch size of each process by using Monte Carlo code (MCNP4/C2). On the whole, the criticality problem could not give a big effect on the batch sizes in the voloxidation, electrolytic reduction and electrorefining. However, it was resulted that permissible amount of nuclear material to prevent the criticality accident in the electrowinning process was about 10kgHM

  20. Sizing of air cleaning systems for access to nuclear plant spaces

    International Nuclear Information System (INIS)

    Estreich, P.J.

    A mathematical basis is developed to provide the practicing engineer with a method for sizing air-cleaning systems for nuclear facilities. In particular, general formulas are provided to relate cleaning and contamination dynamics of an enclosure such that safe conditions are obtained when working crews enter. Included in these considerations is the sizing of an air-cleaning system to provide rapid decontamination of airborne radioactivity. Multiple-nuclide contamination sources, leak rate, direct radiation, contaminant mixing efficiency, filter efficiencies, air-cleaning-system operational modes, and criteria for maximum permissible concentrations are integrated into the procedure. (author)

  1. US market potential for small and medium-sized nuclear reactors

    International Nuclear Information System (INIS)

    Hardie, R.W.; Jackson, S.V.

    1988-01-01

    This paper presents the results of on-site interviews with representatives of 23 investor-owned utilities and 3 publicly-owned utilities. The purpose of the interviews was to obtain information on utilities' attitudes towards small and medium-sized power plants and towards building new nuclear plants in general. Most of the utilities interviewed preferred power plants smaller than the ones currently being offered, as long as the smaller plants did not incur a major economic penalty. However, according to the utilities interviewed, without changes in the current environment it is unlikely that there will be a significant market for new nuclear plants of any size. A trend in the utility industry towards generating companies appears to be a positive step. (orig.)

  2. US market potential for small and medium-sized nuclear reactors

    International Nuclear Information System (INIS)

    Hardie, R.W.; Jackson, S.V.

    1987-01-01

    This paper presents the results of on-site interviews with representatives of 23 investor-owned utilities and 3 publicly-owned utilities. The purpose of the interviews was to obtain information on utilities' attitudes toward small and medium-sized power plants and towards building new nuclear plants in general. Most of the utilities interviewed preferred power plants smaller than the ones currently being offered, as long as the smaller plants did not incur a major economic penalty. However, according to the utilities interviewed, without changes in the current environment it is unlikely that there will be a significant market for new nuclear plants of any size. A trend in the utility industry towards generating companies appears to be a positive step. (author)

  3. Effects of ultraviolet irradiation and postirradiation incubation on heterogeneous nuclear RNA size in murine cells

    International Nuclear Information System (INIS)

    Ali, R.; Sauerbier, W.

    1978-01-01

    We have analyzed the decrease in synthesis of individual size classes of heterogeneous nuclear RNA (hnRNA) in ultraviolet (uv)-irradiated Merwin plasmacytoma (MPC-11) cells at various times of postirradiation incubation. HnRNA from nonirradiated control cells is distributed over a wide range from approximately 60S to 5S, with 42S RNA carrying more label than any other size class. HnRNA from uv-irradiated cells shows a dose-dependent shift in size distribution toward lower molecular weight. The size distribution of hnRNA synthesized after prolonged times of postirradiation incubation is restored toward normal, i.e., synthesis of long RNA molecules increases relative to the synthesis of short ones. Analysis of the total number of hnRNA chains synthesized during a 20-min [ 3 H]uridine pulse shows a considerable eduction in their number with increasing uv dose. Murine cell lines are excision-repair-deficient but capable of post replication repair inhibited by caffeine. HnRNA transcripts of cells incubated in its presence were studied. The caffeine, which has no effect on hnRNA size in control cells, inhibits to a considerable extent the restoration of full-length transcripts during postirradiation incubation. The lack of excision repair in MPC-11 was confirmed by the analysis of pyrimidine dimers in trichloracetic acid-insoluble and soluble fractions within 8 h of postirradiation incubation. The size of parental and daughter strand DNA in uv-irradiated cells was correlated with RNA transcript size. The parental DNA in these experiments does not change its size as a consequence of uv exposure and postirradiation incubation. In contrast, daughter DNA strands are short in uv-irradiated cells and they increase in size during postirradiation incubation to reach the size of parental strands after 8 h

  4. Simultaneous Assessment of Cardiomyocyte DNA Synthesis and Ploidy: A Method to Assist Quantification of Cardiomyocyte Regeneration and Turnover.

    Science.gov (United States)

    Richardson, Gavin D

    2016-05-23

    Although it is accepted that the heart has a limited potential to regenerate cardiomyocytes following injury and that low levels of cardiomyocyte turnover occur during normal ageing, quantification of these events remains challenging. This is in part due to the rarity of the process and the fact that multiple cellular sources contribute to myocardial maintenance. Furthermore, DNA duplication within cardiomyocytes often leads to a polyploid cardiomyocyte and only rarely leads to new cardiomyocytes by cellular division. In order to accurately quantify cardiomyocyte turnover discrimination between these processes is essential. The protocol described here employs long term nucleoside labeling in order to label all nuclei which have arisen as a result of DNA replication and cardiomyocyte nuclei identified by utilizing nuclei isolation and subsequent PCM1 immunolabeling. Together this allows the accurate and sensitive identification of the nucleoside labeling of the cardiomyocyte nuclei population. Furthermore, 4',6-diamidino-2-phenylindole labeling and analysis of nuclei ploidy, enables the discrimination of neo-cardiomyocyte nuclei from nuclei which have incorporated nucleoside during polyploidization. Although this method cannot control for cardiomyocyte binucleation, it allows a rapid and robust quantification of neo-cardiomyocyte nuclei while accounting for polyploidization. This method has a number of downstream applications including assessing the potential therapeutics to enhance cardiomyocyte regeneration or investigating the effects of cardiac disease on cardiomyocyte turnover and ploidy. This technique is also compatible with additional downstream immunohistological techniques, allowing quantification of nucleoside incorporation in all cardiac cell types.

  5. The Adipokine Chemerin Induces Apoptosis in Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Diego Rodríguez-Penas

    2015-08-01

    Full Text Available Background: The adipokine chemerin has been associated with cardiovascular disease. We investigated the effects of chemerin on viability and intracellular signalling in murine cardiomyocytes, and the effects of insulin and TNF-α on cardiomyocyte chemerin production. Methods: Hoechst dye vital staining and cell cycle analysis were used to analyse the viability of murine cardiac cells in culture. Western blot was used to explore the phosphorylation of AKT and caspase-9 activity in neonatal rat cardiomyocytes and HL-1 cells. Finally, RT-qPCR, ELISA and western blot were performed to examine chemerin and CMKLR1 expression after insulin and TNF-α treatment in cardiac cells. Results: Chemerin treatment increased apoptosis, reduced phosphorylation of AKT at Thr308 and increased caspase-9 activity in murine cardiomyocytes. Insulin treatment lowered chemerin and CMKLR1 mRNA and protein levels, and the amount of chemerin in the cell media, while TNF-α treatment increased chemerin mRNA and protein levels but decreased expression of the CMKLR1 gene. Conclusion: Chemerin induces apoptosis, reduces AKT phosphorylation and increases the cleavage of caspase-9 in murine cardiomyocytes. The expression of chemerin is regulated by important metabolic (insulin and inflammatory (TNF-α mediators at cardiac level. Our results suggest that chemerin could play a role in the physiopathology of cardiac diseases.

  6. AKIP1 expression modulates mitochondrial function in rat neonatal cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Hongjuan Yu

    Full Text Available A kinase interacting protein 1 (AKIP1 is a molecular regulator of protein kinase A and nuclear factor kappa B signalling. Recent evidence suggests AKIP1 is increased in response to cardiac stress, modulates acute ischemic stress response, and is localized to mitochondria in cardiomyocytes. The mitochondrial function of AKIP1 is, however, still elusive. Here, we investigated the mitochondrial function of AKIP1 in a neonatal cardiomyocyte model of phenylephrine (PE-induced hypertrophy. Using a seahorse flux analyzer we show that PE stimulated the mitochondrial oxygen consumption rate (OCR in cardiomyocytes. This was partially dependent on PE mediated AKIP1 induction, since silencing of AKIP1 attenuated the increase in OCR. Interestingly, AKIP1 overexpression alone was sufficient to stimulate mitochondrial OCR and in particular ATP-linked OCR. This was also true when pyruvate was used as a substrate, indicating that it was independent of glycolytic flux. The increase in OCR was independent of mitochondrial biogenesis, changes in ETC density or altered mitochondrial membrane potential. In fact, the respiratory flux was elevated per amount of ETC, possibly through enhanced ETC coupling. Furthermore, overexpression of AKIP1 reduced and silencing of AKIP1 increased mitochondrial superoxide production, suggesting that AKIP1 modulates the efficiency of electron flux through the ETC. Together, this suggests that AKIP1 overexpression improves mitochondrial function to enhance respiration without excess superoxide generation, thereby implicating a role for AKIP1 in mitochondrial stress adaptation. Upregulation of AKIP1 during different forms of cardiac stress may therefore be an adaptive mechanism to protect the heart.

  7. Size and series effects on the economics of nuclear power plants

    International Nuclear Information System (INIS)

    Rouyer, J.L.; Marcetteau, P.; Nisan, S.

    2001-01-01

    This paper updates data and models concerning size and series effects on the economics of nuclear power plants. Size effect is the observation that, for a given technology, capital cost of a plant increases less rapidly than its capacity. The overall scaling exponent is derived from specific exponents for different plant items. It varies for industrial LWR and PHWR between 0.4 to 0.7. Series effect comprises two types of effects: a) fabrication in series of equipment, thus reducing unit cost with increased number of units; b) Increased efficiency through the feedback of experience obtained from the on-site realisation of a number of identical plants. Size and series effects are combined in the realisation of a full programme of a same standard model of nuclear power plants, for a given country or for several countries, in the same period of time (typically 10 years). Calculations have been performed to compare size and series effects for a 15000 MWe programme to be installed within 10 years, and reactor sizes varying from 600 MWe to 1500 MWe. The different options regarding the size of PWR standard model have also been compared on the basis of the least leveled electricity cost. The results of the calculations show that a standardised series of 1500 MWe appears presently the best solution in densely industrialized countries. In the long term, reactors of 1000 MWe, or less, (if new concepts sharply decrease unit cost per kW installed), may be preferred because of the associated large series effect. (authors)

  8. Finite size and Coulomb corrections: from nuclei to nuclear liquid vapor phase diagram

    International Nuclear Information System (INIS)

    Moretto, L.G.; Elliott, J.B.; Phair, L.

    2003-01-01

    In this paper we consider the problem of obtaining the infinite symmetric uncharged nuclear matter phase diagram from a thermal nuclear reaction. In the first part we shall consider the Coulomb interaction which, because of its long range makes the definition of phases problematic. This Coulomb effect seems truly devastating since it does not allow one to define nuclear phase transitions much above A ∼ 30. However there may be a solution to this difficulty. If we consider the emission of particles with a sizable charge, we notice that a large Coulomb barrier Bc is present. For T << Bc these channels may be considered effectively closed. Consequently the unbound channels may not play a role on a suitably short time scale. Then a phase transition may still be definable in an approximate way. In the second part of the article we shall deal with the finite size problem by means of a new method, the complement method, which shall permit a straightforward extrapolation to the infinite system. The complement approach consists of evaluating the change in free energy occurring when a particle or cluster is moved from one (finite) phase to another. In the case of a liquid drop in equilibrium with its vapor, this is done by extracting a vapor particle of any given size from the drop and evaluating the energy and entropy changes associated with both the vapor particle and the residual liquid drop (complement)

  9. Right Size Determining the Staff Necessary to Sustain Simulation and Computing Capabilities for Nuclear Security

    Energy Technology Data Exchange (ETDEWEB)

    Nikkel, Daniel J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meisner, Robert [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-09-10

    The Advanced Simulation and Computing Campaign, herein referred to as the ASC Program, is a core element of the science-based Stockpile Stewardship Program (SSP), which enables assessment, certification, and maintenance of the safety, security, and reliability of the U.S. nuclear stockpile without the need to resume nuclear testing. The use of advanced parallel computing has transitioned from proof-of-principle to become a critical element for assessing and certifying the stockpile. As the initiative phase of the ASC Program came to an end in the mid-2000s, the National Nuclear Security Administration redirected resources to other urgent priorities, and resulting staff reductions in ASC occurred without the benefit of analysis of the impact on modern stockpile stewardship that is dependent on these new simulation capabilities. Consequently, in mid-2008 the ASC Program management commissioned a study to estimate the essential size and balance needed to sustain advanced simulation as a core component of stockpile stewardship. The ASC Program requires a minimum base staff size of 930 (which includes the number of staff necessary to maintain critical technical disciplines as well as to execute required programmatic tasks) to sustain its essential ongoing role in stockpile stewardship.

  10. Finite size effects in liquid-gas phase transition of asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Pawlowski, P.

    2001-01-01

    Full text: Since the nuclear equation of state has been studied in astrophysical context as an element of neutron star or super-nova theories - a call for an evidence was produced in experimental nuclear physics. Heavy-ion collisions became a tool of study on thermodynamic properties of nuclear matter. A particular interest has been inspired here by critical behavior of nuclear systems, as a phase transition of liquid-gas type. A lot of efforts was put to obtain an experimental evidence of such a phenomenon in heavy-ion collisions. With the use of radioactive beams and high performance identification systems in a near future it will be possible to extend experimental investigation to asymmetric nuclear systems, where neutron-to-proton ratio is far from the stability line. This experimental development needs a corresponding extension of theoretical studies. To obtain a complete theory of the liquid-gas phase transition in small nuclear systems, produced in violent heavy-ion collisions, one should take into account two facts. First, that the nuclear matter forming nuclei is composed of protons and neutrons; this complicates the formalism of phase transitions because one has to deal with two separate, proton and neutron, densities and chemical potentials. The second and more important is that the surface effects are very strong in a system composed of a few hundreds of nucleons. This point is especially difficult to hold, because surface becomes an additional, independent state parameter, depending strongly on the geometrical configuration of the system, and introducing a non-local term in the equation of state. In this presentation we follow the recent calculation by Lee and Mekjian on the finite-size effects in small (A = 10 2 -10 3 ) asymmetric nuclear systems. A zero-range isospin-dependent Skyrme force is used to obtain a density and isospin dependent potential. The potential is then completed by additional terms giving contributions from surface and Coulomb

  11. IAEA Expands International Cooperation on Small, Medium Sized or Modular Nuclear Reactors

    International Nuclear Information System (INIS)

    2018-01-01

    The International Atomic Energy Agency (IAEA) is launching an effort to expand international cooperation and coordination in the design, development and deployment of small, medium sized or modular reactors (SMRs), among the most promising emerging technologies in nuclear power. Significant advances have been made on SMRs, some of which will use pre-fabricated systems and components to shorten construction schedules and offer greater flexibility and affordability than traditional nuclear power plants. With some 50 SMR concepts at various stages of development around the world, the IAEA is forming a Technical Working Group (TWG) to guide its activities on SMRs and provide a forum for Member States to share information and knowledge, IAEA Deputy Director General Mikhail Chudakov said. “Innovation is crucial for nuclear power to play a key role in decarbonising the energy sector,” Chudakov, who heads the IAEA Department of Nuclear Energy, said at a conference on SMRs in Prague on 15 February. “Many Member States that are operating, expanding, introducing or considering nuclear power are quite keen on the development and deployment of SMRs.” Global interest in SMRs is growing. SMRs have the potential to meet the needs of a wide range of users and to be low carbon replacements for ageing fossil fuel fired power plants. They also display enhanced safety features and are suitable for non-electric applications, such as cooling, heating and water desalination. In addition, SMRs offer options for remote regions with less developed infrastructure and for energy systems that combine nuclear and alternative sources, including renewables.

  12. Relationship between chromosome configurations/associations and nuclear size/shape

    International Nuclear Information System (INIS)

    Ostashevsky, J.Y.

    2003-01-01

    Full text: Chromosome configurations (linear,folded,loop,etc.,which are defined through a pattern of centromere and/or telomere anchoring to the nuclear membrane) and chromosome associations (homologous pairing, number of centromere or telomere clusters per nucleus, number of chromosome arms per cluster, etc.) are critical for the formation of radiation-induced chromosome aberrations and DSB repair. However, the rules of nuclear architecture are poorly understood. A polymer approach for chromosome configurations, associations, and attachments was developed, based on the coil-like behavior of chromosomal fibers and the tight packing of discrete chromatin domains in a nucleus. The model considers chromatin anchoring to nuclear structures and shows that confinement of chromatin diffusion in a nucleus can be related to its anchoring and higher-order chromatin structure. The model was applied to nuclei of budding and fission yeast, Drosophila, worm, newt, mammals (human, Indian and Chinese muntjac, mouse) and plants (Arabidopsis, maize, barley, wheat). Quantitative agreement between results calculated from the model and observed data was obtained in all considered (∼25) cases. This supports the model and means that permitted chromosome configurations and associations can be predicted from the geometrical constraints imposed on chromosomes by nuclear size and shape

  13. Defect sizing of post-irradiated nuclear fuels using grayscale thresholding in their radiographic images

    International Nuclear Information System (INIS)

    Chaudhary, Usman Khurshid; Iqbal, Masood; Ahmad, Munir

    2010-01-01

    Quantification of different types of material defects in a number of reference standard post-irradiated nuclear fuel image samples have been carried out by virtue of developing a computer program that takes radiographic images of the fuel as input. The program is based on user adjustable grayscale thresholding in the regime of image segmentation whereby it selects and counts the pixels having graylevel values less than or equal to the computed threshold. It can size the defects due to chipping in nuclear fuel, cracks, voids, melting, deformation, inclusion of foreign materials, heavy isotope accumulation, non-uniformity, etc. The classes of fuel range from those of research and power reactors to fast breeders and from pellets to annular and vibro-compacted fuel. The program has been validated against ground truth realities of some locally fabricated metallic plates having drilled holes of known sizes simulated as defects in them in which the results indicate that it either correctly selects and quantifies at least 94% of the actual required regions of interest in a given image or it gives less than 8.1% false alarm rate. Also, the developed program is independent of image size.

  14. Defect sizing of post-irradiated nuclear fuels using grayscale thresholding in their radiographic images

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Usman Khurshid, E-mail: ukhurshid@hotmail.co [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650 (Pakistan); Iqbal, Masood, E-mail: masiqbal@hotmail.co [Nuclear Engineering Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad 45650 (Pakistan); Ahmad, Munir [Nondestructive Testing Group, Directorate of Technology, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad 45650 (Pakistan)

    2010-10-15

    Quantification of different types of material defects in a number of reference standard post-irradiated nuclear fuel image samples have been carried out by virtue of developing a computer program that takes radiographic images of the fuel as input. The program is based on user adjustable grayscale thresholding in the regime of image segmentation whereby it selects and counts the pixels having graylevel values less than or equal to the computed threshold. It can size the defects due to chipping in nuclear fuel, cracks, voids, melting, deformation, inclusion of foreign materials, heavy isotope accumulation, non-uniformity, etc. The classes of fuel range from those of research and power reactors to fast breeders and from pellets to annular and vibro-compacted fuel. The program has been validated against ground truth realities of some locally fabricated metallic plates having drilled holes of known sizes simulated as defects in them in which the results indicate that it either correctly selects and quantifies at least 94% of the actual required regions of interest in a given image or it gives less than 8.1% false alarm rate. Also, the developed program is independent of image size.

  15. Trade-offs in size, quantity and reliability of generalized nuclear power plants: a preliminary assessment

    International Nuclear Information System (INIS)

    Hill, D.

    1985-04-01

    An approximate method is used to estimate the effects of system reliability on optimal nuclear plant size, taking into account also scale factors and manufacturing learning curve slopes. The method is used to estimate the additional effective capability gained by adding units of different sizes to an existing electrical system. The number of additional units proves to be sensitive to forced outrage rate, estimated here from trends in US light-water reactors from 1971 to 1980. The relative cost of added units ranging in size from 200 to 800 MW is determined as a function of the parameters: scale factor and learning curve slope. The results generally corrobate the trends found in an earlier study in which the effect of reliability on required installed capacity was not explicitly considered. Optimal plant size decreases with weaker scale effects and stronger learning curve effects. Reliability considerations further reduce the optimal plant size, but the relative reduction is apparently not as great with steeper learning curves. This is a plausible finding inasmuch as the reduction in numbers of additional units due to reliability considerations will affect cost most where the learning curve is steepest. 9 refs., 4 figs., 3 tabs

  16. Detection and sizing of defects in structural components of a nuclear power plant by ECT

    International Nuclear Information System (INIS)

    Chen, Z.; Miya, K.

    2004-01-01

    In this paper, progress of ECT (eddy current testing) technique for inspection of stress corrosion cracks in a structural component of a nuclear power plant is reported. Access and scanning vehicle (robot), advanced probes for steam generator tube inspection, development and evaluation of new probes for welding joint, and ECT based crack sizing technique are described respectively. Based on these new techniques, it is clarified that ECT can play as a supplement of ultrasonic techniques for the welding zone inspection. It is also proved in this work that new ECT sensors are efficient even for a stainless plate as thick as 15 mm. (authors)

  17. Detection and Sizing of Defects in Structural Components of a Nuclear Power Plant by ECT

    International Nuclear Information System (INIS)

    Chen Zhenmao; Miya, Kenzo

    2005-01-01

    In this paper, progress of ECT technique for inspection of stress corrosion cracks in a structural component of a nuclear power plant is reported. Access and scanning vehicle (robot), advanced probes for SG tube inspection, development and evaluation of new probes for welding joint, and ECT based crack sizing technique are described respectively. Based on these new techniques, it is clarified that ECT can play as a supplement of UT for the welding zone inspection. It is also proved in this work that new ECT sensors are efficient even for a stainless plate as thick as 15mm

  18. Experimental studies of computerized procedures and team size in nuclear power plant operations

    International Nuclear Information System (INIS)

    Huang, F.-H.; Hwang, S.-L.

    2009-01-01

    The operation of a nuclear power plant is so complex that it requires teamwork. To support team performance, a system need to provide all team members integrated information displays as well as decision aids (e.g., computerized procedures). Two experiments were conducted to investigate the effects of computerized procedures and team size on operating performance. Forty-five participants were involved in the experiments. Each participant executed decision and action tasks to deal with alarm signals, while detecting occasional system errors in the interface. Results showed that effects of computerized procedures were significant on various performance indicators, such as operation time, operation errors, and learning effect, and that two operators would be a satisfactory size in the teamwork system providing computerized procedures

  19. Measurement of particle size distribution and mass concentration of nuclear fuel aerosols

    International Nuclear Information System (INIS)

    Pickering, S.

    1982-01-01

    The particle size distribution and particle mass concentration of a nuclear fuel aerosol is measured by admitting the aerosol into a vertically-extending container, positioning an alpha particle detector within the container so that its window is horizontal and directed vertically, stopping the admission of aerosol into the container, detecting the alpha-activity of the particles of the aerosol sedimenting onto the detector window (for example in a series of equal time intervals until a constant level is reached), and converting the alpha-activity measurements into particle size distribution and/or particle mass concentration measurements. The detector is attached to a pivotted arm and by raising a counterweight can be lowered from the container for cleaning. (author)

  20. Size of nuclear sources from measurements of proton-proton correlations at small relative momentum

    International Nuclear Information System (INIS)

    Rebreyend, D.; Kox, S.; Merchez, F.; Noren, B.; Perrin, C.; Khelfaoui, B.; Gondrand, J.C.; Bondorf, J.P.

    1990-01-01

    This contribution will present recent measurements performed on light heavy ion reactions at intermediate energies. Nuclear source sizes were determined by measuring the correlation at small relative momentum, between two protons detected in the EMRIC set-up. This technique allows the determination of the extent of the emitting source by constructing a correlation function for the coincident protons and analyzing it in the framework of a final state interaction model. We found the apparent source size to be large compared to the dimension of the studied system and low sensitivity of the extracted radii as a function of the target mass and detection angle. We will show that simulations may be needed to fully estimate the correlation induced by detectors with small angular acceptance

  1. Analysis of cardiomyocyte movement in the developing murine heart

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hisayuki [Department of Cardiology, Keio University School of Medicine, Tokyo (Japan); Yuasa, Shinsuke, E-mail: yuasa@a8.keio.jp [Department of Cardiology, Keio University School of Medicine, Tokyo (Japan); Tabata, Hidenori [Department of Anatomy, Keio University School of Medicine, Tokyo (Japan); Tohyama, Shugo; Seki, Tomohisa; Egashira, Toru; Hayashiji, Nozomi; Hattori, Fumiyuki; Kusumoto, Dai; Kunitomi, Akira; Takei, Makoto; Kashimura, Shin; Yozu, Gakuto; Shimojima, Masaya; Motoda, Chikaaki; Muraoka, Naoto [Department of Cardiology, Keio University School of Medicine, Tokyo (Japan); Nakajima, Kazunori [Department of Anatomy, Keio University School of Medicine, Tokyo (Japan); Sakaue-Sawano, Asako; Miyawaki, Atsushi [Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); Fukuda, Keiichi [Department of Cardiology, Keio University School of Medicine, Tokyo (Japan)

    2015-09-04

    The precise assemblage of several types of cardiac precursors controls heart organogenesis. The cardiac precursors show dynamic movement during early development and then form the complicated heart structure. However, cardiomyocyte movements inside the newly organized mammalian heart remain unclear. We previously established the method of ex vivo time-lapse imaging of the murine heart to study cardiomyocyte behavior by using the Fucci (fluorescent ubiquitination-based cell cycle indicator) system, which can effectively label individual G1, S/G2/M, and G1/S-transition phase nuclei in living cardiomyocytes as red, green, and yellow, respectively. Global analysis of gene expression in Fucci green positive ventricular cardiomyocytes confirmed that cell cycle regulatory genes expressed in G1/S, S, G2/M, and M phase transitions were upregulated. Interestingly, pathway analysis revealed that many genes related to the cell cycle were significantly upregulated in the Fucci green positive ventricular cardiomyocytes, while only a small number of genes related to cell motility were upregulated. Time-lapse imaging showed that murine proliferating cardiomyocytes did not exhibit dynamic movement inside the heart, but stayed on site after entering the cell cycle. - Highlights: • We directly visualized cardiomyocyte movement inside the developing murine heart. • Cell cycle related genes were upregulated in the proliferating cardiomyocytes. • Time-lapse imaging revealed that proliferating murine cardiomyocytes stayed in place. • Murine ventricular cardiomyocytes proliferate on site during development.

  2. Trade-offs in size, quantity and reliability of generalized nuclear power plants

    International Nuclear Information System (INIS)

    Hill, D.; Mubayi, V.

    1987-01-01

    In the 1960's and 1970's, there was rapid growth in the size of newly started nuclear power plants because of the anticipated advantages of increasing scale. Any such advantages were overwhelmed by the complications that arose with long construction times, and attention is now being given to a ''second generation'' of smaller plants of new design. Providing the same production capacity will require larger numbers of plants if they are smaller. Although it seems to have received little attention previously, there should be compensating economies due to ''learning curve'' effects in the manufacture of multiple units of standardized designs (Hill 1983). Moreover, the use of a large number of smaller units increases the overall system reliability. On balance, however, it is not clear how scale, quantity, and reliability considerations interact to determine optimal plant size. The purpose of this paper is to begin examining the size-quantity tradeoff taking into account scale effects, the manufacturing learning curve, plant availability, and system reliability

  3. Nuclei size in relation to nuclear status and aneuploidy rate for 13 chromosomes in donated four cells embryos

    DEFF Research Database (Denmark)

    Agerholm, I.E.; Hnida, C.; Cruger, D.G.

    2008-01-01

    Purpose The aim was to elucidate if the nuclear size and number are indicative of aberrant chromosome content in human blastomeres and embryos. Methods The number of nuclei and the nucleus and blastomere size were measured by a computer controlled system for multilevel analysis. Then the nuclei...... were enumerated for 13 chromosomes by a combination of PNA and DNA probes. Results In the mononucleated embryos there was no difference in the mean size of chromosomally normal and abnormal nuclei but a significant difference in the mean nuclei size of nuclei that had gained chromosomes compared...... to nuclei that had lost chromosomes. The nuclei from multinucleated blastomeres had a significant smaller mean size and the frequency of chromosomally aberrant blastomeres was significantly higher. Conclusion The mean nuclear size is not a marker for the chromosome content in mononucleated embryos. However...

  4. Garlic extracts prevent oxidative stress, hypertrophy and apoptosis in cardiomyocytes: a role for nitric oxide and hydrogen sulfide

    Science.gov (United States)

    2012-01-01

    Background In ancient times, plants were recognized for their medicinal properties. Later, the arrival of synthetic drugs pushed it to the backstage. However, from being merely used for food, plants are now been widely explored for their therapeutic value. The current study explores the potential of skin and flesh extracts from a hard-necked Rocambole variety of purple garlic in preventing cardiomyocyte hypertrophy and cell death. Methods Norepinephrine (NE) was used to induce hypertrophy in adult rat cardiomyocytes pretreated with garlic skin and flesh extracts. Cell death was measured as ratio of rod to round shaped cardiomyocytes. Fluorescent probes were used to measure apoptosis and oxidative stress in cardiomyocytes treated with and without extracts and NE. Pharmacological blockade of nitric oxide (NO) and hydrogen sulfide (H2S) were used to elucidate the mechanism of action of garlic extracts. Garlic extract samples were also tested for alliin and allicin concentrations. Results Exposure of cardiomyocytes to NE induced an increase in cell size and cell death; this increase was significantly prevented upon treatment with garlic skin and flesh extracts. Norepinephrine increased apoptosis and oxidative stress in cardiomyocytes which was prevented upon pretreatment with skin and flesh extracts; NO, and H2S blockers significantly inhibited this beneficial effect. Allicin and alliin concentration were significantly higher in garlic flesh extract when compared to the skin extract. Conclusion These results suggest that both skin and flesh garlic extracts are effective in preventing NE induced cardiomyocyte hypertrophy and cell death. Reduction in oxidative stress may also play an important role in the anti-hypertrophic and anti-apoptotic properties of garlic extracts. These beneficial effects may in part be mediated by NO and H2S. PMID:22931510

  5. Critical defect size assessment in pipelines on a nuclear power plant

    Directory of Open Access Journals (Sweden)

    Dimova Galya

    2018-01-01

    Full Text Available In many energy industry structures, pipeline systems are subject to the impact of mechanical forces, moments of forces and fluid flows of high pressure and temperature. These load factors cause defects in the pipeline metal. As the years of operation increase, defects may occur and grow, which may lead to the destruction of pipeline walls. Special measures have been planned and implemented to ensure the safe operation of high-energy facilities. This study focused on pipelines and nozzles of nuclear power plant equipment with bimetal welded joints on which the size of critical defects was assessed. The base of assessment covers material properties, temperature and stress fields, fracture mechanics calculations. This study involves developing of finite element models and implementing simulations on them in order to obtain temperature fields and determine the stress-strain state of the component.

  6. Finite nuclear size and Lamb shift of p-wave atomic states

    International Nuclear Information System (INIS)

    Milstein, A.I.; Sushkov, O.P.; Terekhov, I.S.

    2003-01-01

    We consider corrections to the Lamb shift of the p-wave atomic states due to the finite nuclear size (FNS). In other words, these are radiative corrections to the atomic isotope shift related to the FNS. It is shown that the structure of the corrections is qualitatively different to that for the s-wave states. The perturbation theory expansion for the relative correction for a p 1/2 state starts with a α ln(1/Zα) term, while for the s 1/2 states it starts with a Zα 2 term. Here, α is the fine-structure constant and Z is the nuclear charge. In the present work, we calculate the α terms for that 2p states, the result for the 2p 1/2 state reads (8α/9π){ln[1/(Zα) 2 ]+0.710}. Even more interesting are the p 3/2 states. In this case the 'correction' is several orders of magnitude larger than the 'leading' FNS shift. However, absolute values of energy shifts related to these corrections are very small

  7. Directed Differentiation of Zebrafish Pluripotent Embryonic Cells to Functional Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yao Xiao

    2016-09-01

    Full Text Available A cardiomyocyte differentiation in vitro system from zebrafish embryos remains to be established. Here, we have determined pluripotency window of zebrafish embryos by analyzing their gene-expression patterns of pluripotency factors together with markers of three germ layers, and have found that zebrafish undergoes a very narrow period of pluripotency maintenance from zygotic genome activation to a brief moment after oblong stage. Based on the pluripotency and a combination of appropriate conditions, we established a rapid and efficient method for cardiomyocyte generation in vitro from primary embryonic cells. The induced cardiomyocytes differentiated into functional and specific cardiomyocyte subtypes. Notably, these in vitro generated cardiomyocytes exhibited typical contractile kinetics and electrophysiological features. The system provides a new paradigm of cardiomyocyte differentiation from primary embryonic cells in zebrafish. The technology provides a new platform for the study of heart development and regeneration, in addition to drug discovery, disease modeling, and assessment of cardiotoxic agents.

  8. File list: Oth.CDV.50.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.AllAg.Cardiomyocytes mm9 TFs and others Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.CDV.50.AllAg.Cardiomyocytes.bed ...

  9. File list: Pol.CDV.05.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.AllAg.Cardiomyocytes mm9 RNA polymerase Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.CDV.05.AllAg.Cardiomyocytes.bed ...

  10. File list: NoD.CDV.10.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.10.AllAg.Cardiomyocytes mm9 No description Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.CDV.10.AllAg.Cardiomyocytes.bed ...

  11. File list: Pol.CDV.20.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.AllAg.Cardiomyocytes mm9 RNA polymerase Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.CDV.20.AllAg.Cardiomyocytes.bed ...

  12. File list: InP.CDV.10.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.10.AllAg.Cardiomyocytes mm9 Input control Cardiovascular Cardiomyocytes SRX...1121694 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.CDV.10.AllAg.Cardiomyocytes.bed ...

  13. File list: Pol.CDV.10.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.AllAg.Cardiomyocytes mm9 RNA polymerase Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.CDV.10.AllAg.Cardiomyocytes.bed ...

  14. File list: Oth.CDV.05.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.AllAg.Cardiomyocytes mm9 TFs and others Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.CDV.05.AllAg.Cardiomyocytes.bed ...

  15. File list: NoD.CDV.05.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.05.AllAg.Cardiomyocytes mm9 No description Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.CDV.05.AllAg.Cardiomyocytes.bed ...

  16. File list: InP.CDV.05.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.05.AllAg.Cardiomyocytes mm9 Input control Cardiovascular Cardiomyocytes SRX...1121694 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.CDV.05.AllAg.Cardiomyocytes.bed ...

  17. File list: InP.CDV.20.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.20.AllAg.Cardiomyocytes mm9 Input control Cardiovascular Cardiomyocytes SRX...1121694 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.CDV.20.AllAg.Cardiomyocytes.bed ...

  18. File list: InP.CDV.50.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.50.AllAg.Cardiomyocytes mm9 Input control Cardiovascular Cardiomyocytes SRX...1121694 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.CDV.50.AllAg.Cardiomyocytes.bed ...

  19. File list: Oth.CDV.20.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.AllAg.Cardiomyocytes mm9 TFs and others Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.CDV.20.AllAg.Cardiomyocytes.bed ...

  20. File list: Pol.CDV.50.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.50.AllAg.Cardiomyocytes mm9 RNA polymerase Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.CDV.50.AllAg.Cardiomyocytes.bed ...

  1. File list: Oth.CDV.10.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.AllAg.Cardiomyocytes mm9 TFs and others Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.CDV.10.AllAg.Cardiomyocytes.bed ...

  2. File list: NoD.CDV.50.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.50.AllAg.Cardiomyocytes mm9 No description Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.CDV.50.AllAg.Cardiomyocytes.bed ...

  3. (Re-)programming of subtype specific cardiomyocytes.

    Science.gov (United States)

    Hausburg, Frauke; Jung, Julia Jeannine; Hoch, Matti; Wolfien, Markus; Yavari, Arash; Rimmbach, Christian; David, Robert

    2017-10-01

    Adult cardiomyocytes (CMs) possess a highly restricted intrinsic regenerative potential - a major barrier to the effective treatment of a range of chronic degenerative cardiac disorders characterized by cellular loss and/or irreversible dysfunction and which underlies the majority of deaths in developed countries. Both stem cell programming and direct cell reprogramming hold promise as novel, potentially curative approaches to address this therapeutic challenge. The advent of induced pluripotent stem cells (iPSCs) has introduced a second pluripotent stem cell source besides embryonic stem cells (ESCs), enabling even autologous cardiomyocyte production. In addition, the recent achievement of directly reprogramming somatic cells into cardiomyocytes is likely to become of great importance. In either case, different clinical scenarios will require the generation of highly pure, specific cardiac cellular-subtypes. In this review, we discuss these themes as related to the cardiovascular stem cell and programming field, including a focus on the emergent topic of pacemaker cell generation for the development of biological pacemakers and in vitro drug testing. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Cardiomyocyte hypertrophy induced by Endonuclease G deficiency requires reactive oxygen radicals accumulation and is inhibitable by the micropeptide humanin.

    Science.gov (United States)

    Blasco, Natividad; Cámara, Yolanda; Núñez, Estefanía; Beà, Aida; Barés, Gisel; Forné, Carles; Ruíz-Meana, Marisol; Girón, Cristina; Barba, Ignasi; García-Arumí, Elena; García-Dorado, David; Vázquez, Jesús; Martí, Ramon; Llovera, Marta; Sanchis, Daniel

    2018-06-01

    The endonuclease G gene (Endog), which codes for a mitochondrial nuclease, was identified as a determinant of cardiac hypertrophy. How ENDOG controls cardiomyocyte growth is still unknown. Thus, we aimed at finding the link between ENDOG activity and cardiomyocyte growth. Endog deficiency induced reactive oxygen species (ROS) accumulation and abnormal growth in neonatal rodent cardiomyocytes, altering the AKT-GSK3β and Class-II histone deacethylases (HDAC) signal transduction pathways. These effects were blocked by ROS scavengers. Lack of ENDOG reduced mitochondrial DNA (mtDNA) replication independently of ROS accumulation. Because mtDNA encodes several subunits of the mitochondrial electron transport chain, whose activity is an important source of cellular ROS, we investigated whether Endog deficiency compromised the expression and activity of the respiratory chain complexes but found no changes in these parameters nor in ATP content. MtDNA also codes for humanin, a micropeptide with possible metabolic functions. Nanomolar concentrations of synthetic humanin restored normal ROS levels and cell size in Endog-deficient cardiomyocytes. These results support the involvement of redox signaling in the control of cardiomyocyte growth by ENDOG and suggest a pathway relating mtDNA content to the regulation of cell growth probably involving humanin, which prevents reactive oxygen radicals accumulation and hypertrophy induced by Endog deficiency. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. EFFECTS OF AEROBIC TRAINING ON THE CARDIOMYOCYTES OF THE RIGHT ATRIUM OF MICE

    Directory of Open Access Journals (Sweden)

    Vanessa Gonçalves Coutinho de Oliveira

    Full Text Available ABSTRACT Introduction: Polypeptide hormones (natriuretic peptides, NPs are secreted by the cardiac atria and play an important role in the regulation of blood pressure. Objective: To evaluate the effects of aerobic training on the secretory apparatus of NPs in cardiomyocytes of the right atrium. Methods: Nine-month-old mice were divided in two groups (n=10: control group (CG and trained group (TG. The training protocol was performed on a motor treadmill for 8 weeks. Systolic blood pressure was measured at the beginning of the experiment (9 months of age and at moment of the sacrifice (11 months of age. Electron micrographs were used to quantify the following variables: the quantitative density and area of NP granules, the relative volumes of the mitochondria, endoplasmic reticulum, and Golgi complex and the relative volume of euchromatin in the nucleus and the number of pores per 10 µm of the nuclear membrane. The results were compared by Student's t test (p< 0.05. Results: The cardiomyocytes obtained from TG mice showed increased density and sectional area of secretory granules of NP, higher relative volume of endoplasmic reticulum, mitochondria, and Golgi complex compared with the CG mice. Furthermore, the quantitative density of nuclear pores and the relative volume of euchromatin in the nucleus were significantly higher compared with the CG mice. Conclusion: Aerobic training caused hypertrophy of the secretory apparatus in the cardiomyocytes of right atrium, which could explain the intense synthesis of natriuretic peptides in trained mice with respect to the untrained mice.

  6. Sizing of lithium-ion stationary batteries for nuclear power plant use

    International Nuclear Information System (INIS)

    Exavier, Zakaria Barie; Chang, Choong-koo

    2017-01-01

    Class 1E power system is very essential in preventing significant release of radioactive materials to the environment. Batteries are designed to provide control power for emergency operation of safety-related equipment or equipment important to safety, including power for automatic operation of the Reactor Protection System (RPS) and Engineered Safety Features (ESF) protection systems during abnormal and accident conditions through associated inverters. Technical challenges that are involved in the life cycle of batteries used in the nuclear power plants (NPP) are significant. The extension of dc battery backup time used in the dc power supply system of the Nuclear Power Plants also remains a challenge. The lead acid battery is the most popular utilized at the present. And it is generally the most popular energy storage device, because of its low cost and wide availability. The lead acid battery is still having some challenges since many phenomenon are occurred inside the battery during its lifecycle. The image of Lithium-ion battery in 1991 is considered as alternative for lead acid battery due to better performance which Lithium-ion has over Lead acid. It has high energy density and advanced gravimetric and volumetric properties. It is known that industrial standards for the stationary Lithium-Ion battery are still under development. The aim of this paper is to investigate the possibility of replacing of lead acid battery with lithium-ion battery. To study the ongoing research activities and ongoing developed industrial standards for Lithium-ion battery and suggest the method for sizing including, capacity, dimensions, operational conditions, aging factor and safety margin for NPP use. (author)

  7. Development of 3D Visualization Technology for Medium-and Large-sized Radioactive Metal Wastes from Decommissioning Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A Rim; Park, Chan Hee; Lee, Jung Min; Kim, Rinah; Moon, Joo Hyun [Dongguk Univ., Gyongju (Korea, Republic of)

    2013-10-15

    The most important point of decommissioning nuclear facilities and nuclear power plants is to spend less money and do this process safely. In order to perform a better decommissioning nuclear facilities and nuclear power plants, a data base of radioactive waste from decontamination and decommissioning of nuclear facilities should be constructed. This data base is described herein, from the radioactive nuclide to the shape of component of nuclear facilities, and representative results of the status and analysis are presented. With the increase in number of nuclear facilities at the end of their useful life, the demand of decommissioning technologies will continue to grow for years to come. This analysis of medium-and large-sized radioactive metal wastes and 3D visualization technology of the radioactive metal wastes using the 3D-SCAN are planned to be used for constructing data bases. The data bases are expected to be used on development of the basic technologies for decommissioning nuclear facilities 4 session.

  8. TRPC4α and TRPC4β Similarly Affect Neonatal Cardiomyocyte Survival during Chronic GPCR Stimulation.

    Directory of Open Access Journals (Sweden)

    Nadine Kirschmer

    Full Text Available The Transient Receptor Potential Channel Subunit 4 (TRPC4 has been considered as a crucial Ca2+ component in cardiomyocytes promoting structural and functional remodeling in the course of pathological cardiac hypertrophy. TRPC4 assembles as homo or hetero-tetramer in the plasma membrane, allowing a non-selective Na+ and Ca2+ influx. Gαq protein-coupled receptor (GPCR stimulation is known to increase TRPC4 channel activity and a TRPC4-mediated Ca2+ influx which has been regarded as ideal Ca2+ source for calcineurin and subsequent nuclear factor of activated T-cells (NFAT activation. Functional properties of TRPC4 are also based on the expression of the TRPC4 splice variants TRPC4α and TRPC4β. Aim of the present study was to analyze cytosolic Ca2+ signals, signaling, hypertrophy and vitality of cardiomyocytes in dependence on the expression level of either TRPC4α or TRPC4β. The analysis of Ca2+ transients in neonatal rat cardiomyocytes (NRCs showed that TRPC4α and TRPC4β affected Ca2+ cycling in beating cardiomyocytes with both splice variants inducing an elevation of the Ca2+ transient amplitude at baseline and TRPC4β increasing the Ca2+ peak during angiotensin II (Ang II stimulation. NRCs infected with TRPC4β (Ad-C4β also responded with a sustained Ca2+ influx when treated with Ang II under non-pacing conditions. Consistent with the Ca2+ data, NRCs infected with TRPC4α (Ad-C4α showed an elevated calcineurin/NFAT activity and a baseline hypertrophic phenotype but did not further develop hypertrophy during chronic Ang II/phenylephrine stimulation. Down-regulation of endogenous TRPC4α reversed these effects, resulting in less hypertrophy of NRCs at baseline but a markedly increased hypertrophic enlargement after chronic agonist stimulation. Ad-C4β NRCs did not exhibit baseline calcineurin/NFAT activity or hypertrophy but responded with an increased calcineurin/NFAT activity after GPCR stimulation. However, this effect was not

  9. Chymase mediates injury and mitochondrial damage in cardiomyocytes during acute ischemia/reperfusion in the dog.

    Science.gov (United States)

    Zheng, Junying; Wei, Chih-Chang; Hase, Naoki; Shi, Ke; Killingsworth, Cheryl R; Litovsky, Silvio H; Powell, Pamela C; Kobayashi, Tsunefumi; Ferrario, Carlos M; Rab, Andras; Aban, Inmaculada; Collawn, James F; Dell'Italia, Louis J

    2014-01-01

    Cardiac ischemia and reperfusion (I/R) injury occurs because the acute increase in oxidative/inflammatory stress during reperfusion culminates in the death of cardiomyocytes. Currently, there is no drug utilized clinically that attenuates I/R injury in patients. Previous studies have demonstrated degranulation of mast cell contents into the interstitium after I/R. Using a dog model of I/R, we tested the role of chymase, a mast cell protease, in cardiomyocyte injury using a specific oral chymase inhibitor (CI). 15 adult mongrel dogs had left anterior descending artery occlusion for 60 min and reperfusion for 100 minutes. 9 dogs received vehicle and 6 were pretreated with a specific CI. In vivo cardiac microdialysis demonstrated a 3-fold increase in interstitial fluid chymase activity in I/R region that was significantly decreased by CI. CI pretreatment significantly attenuated loss of laminin, focal adhesion complex disruption, and release of troponin I into the circulation. Microarray analysis identified an I/R induced 17-fold increase in nuclear receptor subfamily 4A1 (NR4A1) and significantly decreased by CI. NR4A1 normally resides in the nucleus but can induce cell death on migration to the cytoplasm. I/R caused significant increase in NR4A1 protein expression and cytoplasmic translocation, and mitochondrial degradation, which were decreased by CI. Immunohistochemistry also revealed a high concentration of chymase within cardiomyocytes after I/R. In vitro, chymase added to culture HL-1 cardiomyocytes entered the cytoplasm and nucleus in a dynamin-dependent fashion, and promoted cytoplasmic translocation of NR4A1 protein. shRNA knockdown of NR4A1 on pre-treatment of HL-1 cells with CI significantly decreased chymase-induced cell death and mitochondrial damage. These results suggest that the beneficial effects of an orally active CI during I/R are mediated in the cardiac interstitium as well as within the cardiomyocyte due to a heretofore-unrecognized chymase

  10. Chymase mediates injury and mitochondrial damage in cardiomyocytes during acute ischemia/reperfusion in the dog.

    Directory of Open Access Journals (Sweden)

    Junying Zheng

    Full Text Available Cardiac ischemia and reperfusion (I/R injury occurs because the acute increase in oxidative/inflammatory stress during reperfusion culminates in the death of cardiomyocytes. Currently, there is no drug utilized clinically that attenuates I/R injury in patients. Previous studies have demonstrated degranulation of mast cell contents into the interstitium after I/R. Using a dog model of I/R, we tested the role of chymase, a mast cell protease, in cardiomyocyte injury using a specific oral chymase inhibitor (CI. 15 adult mongrel dogs had left anterior descending artery occlusion for 60 min and reperfusion for 100 minutes. 9 dogs received vehicle and 6 were pretreated with a specific CI. In vivo cardiac microdialysis demonstrated a 3-fold increase in interstitial fluid chymase activity in I/R region that was significantly decreased by CI. CI pretreatment significantly attenuated loss of laminin, focal adhesion complex disruption, and release of troponin I into the circulation. Microarray analysis identified an I/R induced 17-fold increase in nuclear receptor subfamily 4A1 (NR4A1 and significantly decreased by CI. NR4A1 normally resides in the nucleus but can induce cell death on migration to the cytoplasm. I/R caused significant increase in NR4A1 protein expression and cytoplasmic translocation, and mitochondrial degradation, which were decreased by CI. Immunohistochemistry also revealed a high concentration of chymase within cardiomyocytes after I/R. In vitro, chymase added to culture HL-1 cardiomyocytes entered the cytoplasm and nucleus in a dynamin-dependent fashion, and promoted cytoplasmic translocation of NR4A1 protein. shRNA knockdown of NR4A1 on pre-treatment of HL-1 cells with CI significantly decreased chymase-induced cell death and mitochondrial damage. These results suggest that the beneficial effects of an orally active CI during I/R are mediated in the cardiac interstitium as well as within the cardiomyocyte due to a heretofore

  11. Acoustical sensing of cardiomyocyte cluster beating

    Energy Technology Data Exchange (ETDEWEB)

    Tymchenko, Nina; Kunze, Angelika [Dept. of Applied Physics, Chalmers University of Technology, 412 96 Göteborg (Sweden); Dahlenborg, Kerstin [Cellectis, 413 46 Göteborg (Sweden); Svedhem, Sofia, E-mail: sofia.svedhem@chalmers.se [Dept. of Applied Physics, Chalmers University of Technology, 412 96 Göteborg (Sweden); Steel, Daniella [Cellectis, 413 46 Göteborg (Sweden)

    2013-06-14

    Highlights: •An example of the application of QCM-D to live cell studies. •Detection of human pluripotent stem cell-derived cardiomyocyte cluster beating. •Clusters were studied in a thin liquid film and in a large liquid volume. •The QCM-D beating profile provides an individual fingerprint of the hPS-CMCs. -- Abstract: Spontaneously beating human pluripotent stem cell-derived cardiomyocytes clusters (CMCs) represent an excellent in vitro tool for studies of human cardiomyocyte function and for pharmacological cardiac safety assessment. Such testing typically requires highly trained operators, precision plating, or large cell quantities, and there is a demand for real-time, label-free monitoring of small cell quantities, especially rare cells and tissue-like structures. Array formats based on sensing of electrical or optical properties of cells are being developed and in use by the pharmaceutical industry. A potential alternative to these techniques is represented by the quartz crystal microbalance with dissipation monitoring (QCM-D) technique, which is an acoustic surface sensitive technique that measures changes in mass and viscoelastic properties close to the sensor surface (from nm to μm). There is an increasing number of studies where QCM-D has successfully been applied to monitor properties of cells and cellular processes. In the present study, we show that spontaneous beating of CMCs on QCM-D sensors can be clearly detected, both in the frequency and the dissipation signals. Beating rates in the range of 66–168 bpm for CMCs were detected and confirmed by simultaneous light microscopy. The QCM-D beating profile was found to provide individual fingerprints of the hPS-CMCs. The presented results point towards acoustical assays for evaluation cardiotoxicity.

  12. Polycystin-2-dependent control of cardiomyocyte autophagy.

    Science.gov (United States)

    Criollo, Alfredo; Altamirano, Francisco; Pedrozo, Zully; Schiattarella, Gabriele G; Li, Dan L; Rivera-Mejías, Pablo; Sotomayor-Flores, Cristian; Parra, Valentina; Villalobos, Elisa; Battiprolu, Pavan K; Jiang, Nan; May, Herman I; Morselli, Eugenia; Somlo, Stefan; de Smedt, Humbert; Gillette, Thomas G; Lavandero, Sergio; Hill, Joseph A

    2018-05-01

    Considerable evidence points to critical roles of intracellular Ca 2+ homeostasis in the modulation and control of autophagic activity. Yet, underlying molecular mechanisms remain unknown. Mutations in the gene (pkd2) encoding polycystin-2 (PC2) are associated with autosomal dominant polycystic kidney disease (ADPKD), the most common inherited nephropathy. PC2 has been associated with impaired Ca 2+ handling in cardiomyocytes and indirect evidence suggests that this protein may be involved in autophagic control. Here, we investigated the role for PC2 as an essential regulator of Ca 2+ homeostasis and autophagy. Activation of autophagic flux triggered by mTOR inhibition either pharmacologically (rapamycin) or by means of nutrient depletion was suppressed in cells depleted of PC2. Moreover, cardiomyocyte-specific PC2 knockout mice (αMhc-cre;Pkd2 F/F mice) manifested impaired autophagic flux in the setting of nutrient deprivation. Stress-induced autophagy was blunted by intracellular Ca 2+ chelation using BAPTA-AM, whereas removal of extracellular Ca 2+ had no effect, pointing to a role of intracellular Ca 2+ homeostasis in stress-induced cardiomyocyte autophagy. To determine the link between stress-induced autophagy and PC2-induced Ca 2+ mobilization, we over-expressed either wild-type PC2 (WT) or a Ca 2+ -channel deficient PC2 mutant (PC2-D509V). PC2 over-expression increased autophagic flux, whereas PC2-D509V expression did not. Importantly, autophagy induction triggered by PC2 over-expression was attenuated by BAPTA-AM, supporting a model of PC2-dependent control of autophagy through intracellular Ca 2+ . Furthermore, PC2 ablation was associated with impaired Ca 2+ handling in cardiomyocytes marked by partial depletion of sarcoplasmic reticulum Ca 2+ stores. Finally, we provide evidence that Ca 2+ -mediated autophagy elicited by PC2 is a mechanism conserved across multiple cell types. Together, this study unveils PC2 as a novel regulator of autophagy acting

  13. Generation of Cardiomyocytes from Pluripotent Stem Cells.

    Science.gov (United States)

    Nakahama, Hiroko; Di Pasquale, Elisa

    2016-01-01

    The advent of pluripotent stem cells (PSCs) enabled a multitude of studies for modeling the development of diseases and testing pharmaceutical therapeutic potential in vitro. These PSCs have been differentiated to multiple cell types to demonstrate its pluripotent potential, including cardiomyocytes (CMs). However, the efficiency and efficacy of differentiation vary greatly between different cell lines and methods. Here, we describe two different methods for acquiring CMs from human pluripotent lines. One method involves the generation of embryoid bodies, which emulates the natural developmental process, while the other method chemically activates the canonical Wnt signaling pathway to induce a monolayer of cardiac differentiation.

  14. Innovations in PHWR design, integration of nuclear power stations into power systems and role of small size nuclear power plants in a developing country

    International Nuclear Information System (INIS)

    Mehta, S.K.; Kakodkar, A.; Balakrishnan, M.R.; Ray, R.N.; Murthy, L.G.K.; Chamany, B.F.; Kati, S.L.

    1977-01-01

    PHWR concept of thermal reactors has been considered with a view to exploiting the limited resources of natural uranium and keeping in mind the projected nuclear power programme covering fast breeder reactors. Experience in engineering of current PHWR units in India, gradual build up of necessary infrastructure and operational experience with one unit, have helped in building up design and technological capability in the country. The R and D facilities have been so planned that additional data required for the design of bigger reactor units (i.e.500/600 MWe) could be generated with minimal augmentation. Satisfactory operation of a nuclear power station demands certain prerequisites from the connected power system. The grid should have load patterns suitable for base load operation of these stations, should be stiff so far as voltage and frequency fluctuations are concerned and should have high reliability. A typical power grid in this country is characterised by heavy loads during peak hours and very light loads during night. Regional grids are of small size and the few interconnections existing between the regional grids consist of weak tie lines. Amongst all types of the power stations, it is the nuclear system which undergoes maximum strain and economic penalty while operating when connected to such a power system. Consistent with the above, phase installation of small-size power reactor units of about 200 MWe capacity may facilitate setting up of larger unit sizes at a later date. The effect of any possible reduction in the capital cost of a larger unit power station will enable the power station to partially meet the demand of the more productive types of loads. This paper deals with some of the major design changes that are being incorporated in the PHWR type power reactors currently being set up and the research and development back-up required for the purpose. Since the unit sizes of the power reactors presently contemplated are small compared to nuclear

  15. Ca2+-regulatory proteins in cardiomyocytes from the right ventricle in children with congenital heart disease

    Directory of Open Access Journals (Sweden)

    Wu Yihe

    2012-04-01

    Full Text Available Abstract Background Hypoxia and hypertrophy are the most frequent pathophysiological consequence of congenital heart disease (CHD which can induce the alteration of Ca2+-regulatory proteins and inhibit cardiac contractility. Few studies have been performed to examine Ca2+-regulatory proteins in human cardiomyocytes from the hypertrophic right ventricle with or without hypoxia. Methods Right ventricle tissues were collected from children with tetralogy of Fallot [n = 25, hypoxia and hypertrophy group (HH group], pulmonary stenosis [n = 25, hypertrophy group (H group], or small isolated ventricular septal defect [n = 25, control group (C group] during open-heart surgery. Paraffin sections of tissues were stained with 3,3′-dioctadecyloxacarbocyanine perchlorate to measure cardiomyocyte size. Expression levels of Ca2+-regulatory proteins [sarcoplasmic reticulum Ca2+-ATPase (SERCA2a, ryanodine receptor (RyR2, sodiumcalcium exchanger (NCX, sarcolipin (SLN and phospholamban (PLN] were analysed by means of real-time PCR, western blot, or immunofluorescence. Additionally, phosphorylation level of RyR and PLN and activity of protein phosphatase (PP1 were evaluated using western blot. Results Mild cardiomyocyte hypertrophy of the right ventricle in H and HH groups was confirmed by comparing cardiomyocyte size. A significant reduction of SERCA2a in mRNA (P16-phosphorylated PLN was down-regulated (PP Conclusions The decreased SERCA2a mRNA may be a biomarker of the pathological process in the early stage of cyanotic CHD with the hypertrophic right ventricle. A combination of hypoxia and hypertrophy can induce the adverse effect of PLN-Ser16 dephosphorylation. Increased PP1 could result in the decreased PLN-Ser16 and inhibition of PP1 is a potential therapeutic target for heart dysfunction in pediatrics.

  16. Analysis of mitochondrial 3D-deformation in cardiomyocytes during active contraction reveals passive structural anisotropy of orthogonal short axes.

    Directory of Open Access Journals (Sweden)

    Yael Yaniv

    Full Text Available The cardiomyocyte cytoskeleton, composed of rigid and elastic elements, maintains the isolated cell in an elongated cylindrical shape with an elliptical cross-section, even during contraction-relaxation cycles. Cardiomyocyte mitochondria are micron-sized, fluid-filled passive spheres distributed throughout the cell in a crystal-like lattice, arranged in pairs sandwiched between the sarcomere contractile machinery, both longitudinally and radially. Their shape represents the extant 3-dimensional (3D force-balance. We developed a novel method to examine mitochondrial 3D-deformation in response to contraction and relaxation to understand how dynamic forces are balanced inside cardiomyocytes. The variation in transmitted light intensity induced by the periodic lattice of myofilaments alternating with mitochondrial rows can be analyzed by Fourier transformation along a given cardiomyocyte axis to measure mitochondrial deformation along that axis. This technique enables precise detection of changes in dimension of ∼1% in ∼1 µm (long-axis structures with 8 ms time-resolution. During active contraction (1 Hz stimulation, mitochondria deform along the length- and width-axes of the cell with similar deformation kinetics in both sarcomere and mitochondrial structures. However, significant deformation anisotropy (without hysteresis was observed between the orthogonal short-axes (i.e., width and depth of mitochondria during electrical stimulation. The same degree of deformation anisotropy was also found between the myocyte orthogonal short-axes during electrical stimulation. Therefore, the deformation of the mitochondria reflects the overall deformation of the cell, and the apparent stiffness and stress/strain characteristics of the cytoskeleton differ appreciably between the two cardiomyocyte orthogonal short-axes. This method may be applied to obtaining a better understanding of the dynamic force-balance inside cardiomyocytes and of changes in the

  17. 17β-Estradiol-induced interaction of ERα with NPPA regulates gene expression in cardiomyocytes.

    Science.gov (United States)

    Mahmoodzadeh, Shokoufeh; Pham, Thi Hang; Kuehne, Arne; Fielitz, Britta; Dworatzek, Elke; Kararigas, Georgios; Petrov, George; Davidson, Mercy M; Regitz-Zagrosek, Vera

    2012-12-01

    17β-Oestradiol (E2) and its receptors (ERα and ERβ) are important regulators of physiological and pathological processes in the cardiovascular system. ER act in concert with other regulatory factors mediating oestrogenic effects. However, the underlying mechanisms modulating ER transcriptional activity are not fully elucidated. To gain better understanding of E2-induced ERα action in the human heart, we aimed to identify and functionally analyse interaction partners of ERα. Using yeast two-hybrid assays with a human heart cDNA library, we identified atrial natriuretic peptide precursor A (NPPA), a well-known cardiac hypertrophy marker, as a novel ERα interaction partner interacting in an E2-dependent manner. Mutation analyses and immunofluorescence data indicated that the LXXLL motif within NPPA is necessary for its E2-induced interaction with ERα, its action as a co-repressor of ERα, and its translocation into the nucleus of human and rat cardiomyocytes. Expression analysis and chromatin immunoprecipitation assays in a human left ventricular cardiomyocyte cell line, AC16, showed that NPPA interacts with E2/ERα, suppressing the transcriptional activity of ERα on E2-target genes, such as NPPA, connexin43, αactinin-2, nuclear factor of activated T-cells, and collagens I and III. We characterize for the first time an E2-regulated interaction of NPPA with ERα in cardiomyocytes, that may be crucial in physiological and/or pathological cardiac processes, thereby representing a potential therapeutic target.

  18. Relationship between particle size and radiocesium in fluvial suspended sediment related to the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Kazuya Tanaka

    2014-01-01

    We collected fluvial suspended sediments in Fukushima after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident and analyzed the 137 Cs concentration in bulk and size-fractioned samples to investigate the particle-size-dependent distribution of radiocesium. The 137 Cs concentration in bulk suspended sediments decreased from August to December 2011, possibly reflecting a decrease of radiocesium concentration in its source materials. Smaller particles had higher radiocesium concentrations, reflecting larger specific surface areas. Silt- and sand-size fractions occupied more than 95 % of the total 137 Cs in the suspended sediments. The contribution of clay-size fractions, which had the highest 137 Cs concentration, was quite small because of their low frequency. A line of the data showed that the particle size distribution of radiocesium was essential to evaluate the migration and distribution of radiocesium in river systems where radiocesium is mainly present as particulate form after the FDNPP accident. (author)

  19. The experience of CDTN/CNEN, Centro de Desenvolvimento da Tecnologia Nuclear: A medium size nuclear research centre in Brazil

    International Nuclear Information System (INIS)

    Sobrinho, P.

    2001-01-01

    At first a university research centre, then a captive research centre of the state owned company in charge of establishing a nuclear industry in Brazil, then a research centre of CNEN (the Brazilian Nuclear Energy Authority), nearing its 50 th anniversary, CDTN has a rich experience. even keeping the project portfolio around a number of traditional nuclear energy areas such as nuclear reactors, materials, environment, process engineering, waste management, radiological protection, the institution experienced an evolution in the substance of the proposed projects. This evolution represents the different institutional insertions, but the major changes occurred at a time when, due to a lesser demand from the nuclear sector and other factors, the explicit idea of producing outputs for the benefit of society received a large acceptance from the employees. The challenges to the institution at this time are commented upon. Retirements, coupled to the lack of job openings, work together for the decrease in the staff number, one major challenge. Up to a certain point, private companies have been hired to fill some of the organisational needs, but it is felt that a limit to this policy is being reached. It is argued that, even in the absence of a strong demand from the energy generation sector, a number of opportunities are still available to a NRC in a developing country. Maturity of nuclear energy and applications of radiation tend to transfer the focus of the activities from the fundamentals of nuclear science and technology to quality related issues, a requirement of the modern times. quality systems cannot substitute for the in depth knowledge of the fundamentals. (author)

  20. Intracellular diffusion restrictions in isolated cardiomyocytes from rainbow trout

    Directory of Open Access Journals (Sweden)

    Birkedal Rikke

    2009-12-01

    Full Text Available Abstract Background Restriction of intracellular diffusion of adenine nucleotides has been studied intensively on adult rat cardiomyocytes. However, their cause and role in vivo is still uncertain. Intracellular membrane structures have been suggested to play a role. We therefore chose to study cardiomyocytes from rainbow trout (Oncorhynchus mykiss, which are thinner and have fewer intracellular membrane structures than adult rat cardiomyocytes. Previous studies suggest that trout permeabilized cardiac fibers also have diffusion restrictions. However, results from fibers may be affected by incomplete separation of the cells. This is avoided when studying permeabilized, isolated cardiomyocytes. The aim of this study was to verify the existence of diffusion restrictions in trout cardiomyocytes by comparing ADP-kinetics of mitochondrial respiration in permeabilized fibers, permeabilized cardiomyocytes and isolated mitochondria from rainbow trout heart. Experiments were performed at 10, 15 and 20°C in the absence and presence of creatine. Results Trout cardiomyocytes hypercontracted in the solutions used for mammalian cardiomyocytes. We developed a new solution in which they retained their shape and showed stable steady state respiration rates throughout an experiment. The apparent ADP-affinity of permeabilized cardiomyocytes was different from that of fibers. It was higher, independent of temperature and not increased by creatine. However, it was still about ten times lower than in isolated mitochondria. Conclusions The differences between fibers and cardiomyocytes suggest that results from trout heart fibers were affected by incomplete separation of the cells. However, the lower ADP-affinity of cardiomyocytes compared to isolated mitochondria indicate that intracellular diffusion restrictions are still present in trout cardiomyocytes despite their lower density of intracellular membrane structures. The lack of a creatine effect indicates that

  1. Adrenaline in pro-oxidant conditions elicits intracellular survival pathways in isolated rat cardiomyocytes

    International Nuclear Information System (INIS)

    Costa, Vera Marisa; Silva, Renata; Ferreira, Rita; Amado, Francisco; Carvalho, Felix; Bastos, Maria Lourdes de; Albuquerque Carvalho, Rui; Carvalho, Marcia; Remiao, Fernando

    2009-01-01

    In several pathologic conditions, like cardiac ischemia/reperfusion, the sustained elevation of plasma and interstitial catecholamine levels, namely adrenaline (ADR), and the generation of reactive oxygen species (ROS) are hallmarks. The present work aimed to investigate in cardiomyocytes which intracellular signalling pathways are altered by ADR redox ability. To mimic pathologic conditions, freshly isolated calcium tolerant cardiomyocytes from adult rat were incubated with ADR alone or in the presence of a system capable of generating ROS [(xanthine with xanthine oxidase) (X/XO)]. ADR elicited a pro-oxidant signal with generation of reactive species, which was largely magnified by the ROS generating system. However, no change in cardiomyocytes viability was observed. The pro-oxidant signal promoted the translocation to the nucleus of the transcription factors, Heat shock factor-1 (HSF-1) and Nuclear factor-κB (NF-κB). In addition, proteasome activity was compromised in the experimental groups where the generation of reactive species occurred. The decrease in the proteasome activity of the ADR group resulted from its redox sensitivity, since the activity was recovered by adding the ROS scavenger, tiron. Proteasome inhibition seemed to elicit an increase in HSP70 levels. Furthermore, retention of mitochondrial cytochrome c and inhibition of caspase 3 activity were observed by X/XO incubation in presence or absence of ADR. In conclusion, in spite of all the insults inflicted to the cardiomyocytes, they were capable to activate intracellular responses that enabled their survival. These mechanisms, namely the pathways altered by catecholamine proteasome inhibition, should be further characterized, as they could be of relevance in the ischemia preconditioning and the reperfusion injury

  2. The Perspective of Small and Medium Size Nuclear Power Reactors in the Brazilian Isolated Electricity Grids

    International Nuclear Information System (INIS)

    Moutinho dos Santos, E.

    1998-01-01

    As a consequence of the international crisis that has shaken the nuclear industry almost all over the world during the late 1980s, new academic contributions, which could settle a new basis for the nuclear energy in Brazil, have been scarce. This paper aims to partially fulfill this gap. We discuss some perspectives for the nuclear option to regain some prominence in the Brazilian energy matrix. Recent developments in the nuclear industry, including advances in plant design, have been opening interesting markets for small and medium nuclear power reactors (SMNPRs). We access the suitability and feasibility of such new technology in the Brazilian isolated electricity grids. We conclude by saying that, although the difficulties are still huge, SMNPRs may be a good strategy for Brazil to revitalize its nuclear policy. (author)

  3. Assessment of two small-sized innovative nuclear reactors for electricity generation in Brazil using INPRO methodology

    International Nuclear Information System (INIS)

    Goncalves Filho, Orlando Joao Agostinho; Sefidvash, Farhang

    2009-01-01

    This paper presents the main results of the assessment study of two small-sized innovative reactors for electricity generation in Brazil using the methodology developed under the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), co-ordinated by the International Atomic Energy Agency (IAEA). INPRO was initiated in 2001 and has the main objective of helping to ensure that nuclear energy is available to contribute in a sustainable manner to the energy needs of the 21st century. Brazil joined the INPRO project since its beginning and in 2005 submitted a proposal for the assessment using INPRO methodology of two small-sized reactors (IRIS - International Reactor Innovative and Secure, and FBNR - Fixed Bed Nuclear Reactor) as potential components of an innovative nuclear energy system (INS) completed by a conventional open nuclear fuel cycle based on enriched uranium. The scope of this assessment study was restricted to the reactor component of the INS and to the methodology areas of economics and safety for IRIS, and proliferation resistance and safety for FBNR. The results indicate that both IRIS and FBNR innovative designs comply mostly with the basic principles of the areas assessed and have potential to comply with the remaining ones. (author)

  4. Sildenafil prevents the up-regulation of transient receptor potential canonical channels in the development of cardiomyocyte hypertrophy

    International Nuclear Information System (INIS)

    Kiso, Hironori; Ohba, Takayoshi; Iino, Kenji; Sato, Kazuhiro; Terata, Yutaka; Murakami, Manabu; Ono, Kyoichi; Watanabe, Hiroyuki; Ito, Hiroshi

    2013-01-01

    Highlights: •Transient receptor potential canonical (TRPC1, 3 and 6) are up-regulated by ET-1. •Sildenafil inhibited hypertrophic responses (BNP, Ca entry, NFAT activation). •Sildenafil suppressed TRPC1, 3 and 6 expression. -- Abstract: Background: Transient receptor potential canonical (TRPCs) channels are up-regulated in the development of cardiac hypertrophy. Sildenafil inhibits TRPC6 activation and expression, leading to the prevention of cardiac hypertrophy. However, the effects of sildenafil on the expression of other TRPCs remain unknown. We hypothesized that in addition to its effects of TRPC6, sildenafil blocks the up-regulation of other TRPC channels to suppress cardiomyocyte hypertrophy. Methods and results: In cultured neonatal rat cardiomyocytes, a 48 h treatment with 10 nM endothelin (ET)-1 induced hypertrophic responses characterized by nuclear factor of activated T cells activation and enhancement of brain natriuretic peptide expression and cell surface area. Co-treatment with sildenafil (1 μM, 48 h) inhibited these ET-1-induced hypertrophic responses. Although ET-1 enhanced the gene expression of TRPCs, sildenafil inhibited the enhanced gene expression of TRPC1, C3 and C6. Moreover, co-treatment with sildenafil abolished the augmentation of SOCE in the hypertrophied cardiomyocytes. Conclusions: These results suggest that sildenafil inhibits cardiomyocyte hypertrophy by suppressing the up-regulation of TRPC expression

  5. Effects of specimen size on the flexural strength and Weibull modulus of nuclear graphite IG-110, NBG-18, and PCEA

    International Nuclear Information System (INIS)

    Chi, Se-Hwan

    2015-01-01

    Changes in flexural strength and Weibull modulus due to specimen size were investigated for three nuclear graphite grades, IG-110, NBG-18, and PCEA, using four-point-1/3 point (4-1/3) loading with specimens of three different sizes: 3.18 (Thickness) × 6.35 (Width) × 50.8 (Length), 6.50 (T) × 12.0 (W) × 52.0 (L), 18.0 (T) × 16.0 (W) × 64 (L) (mm) (total: 210 specimens). Results showed some specimen size effects were grade dependent: While NBG-18 (a) showed rather significant specimen size effects (37% difference between the 3 T and 18 T), the differences in IG-110 and PCEA were 7.6–15%. The maximum differences in flexural strength due to specimen size were larger in the PCEA and NBG-18 having larger sized coke particles (medium grain size: >300 μm) than the IG-110 with super fine coke particle size (25 μm). The Weibull modulus showed a data population dependency, in that it decreased with increasing numbers of data used for modulus determination. A good correlation between the fracture surface roughness and the flexural strength was confirmed

  6. The role of skeletal scintigraphy in nuclear oncology at a medium-sized hospital in South Korea

    International Nuclear Information System (INIS)

    Choe, W.

    2004-01-01

    Full text: Skeletal scintigraphy (SS) has been a workhorse in nuclear medicine departments, whether the department is in a developed country or in a developing country. It also plays an essential role in nuclear oncology in staging or diagnosing cancers or monitoring management of cancer patients. With the availability of improved imaging modalities like positron emission tomography, the role of skeletal scintigraphy is changing accordingly. This study was performed to evaluate the role of SS in nuclear oncology at a medium-sized (900-bed) university hospital in South Korea, by reviewing hospital cases along with the statistics of recently published papers in the journal of Clinical Nuclear Medicine. The hospital does not have a PET. The study period was three years (from 2000 to 2002). The SS is requested from many specialties for various reasons. Only cancer-related cases were selected. Using PubMed database, relevant articles in the Clinical Nuclear Medicine were assessed. To retrieve the articles, the keywords 'skeletal scintigraphy' and 'bone scan' were combined by using Boolean operation. There were a total of 9707 SS out of 16429 nuclear medicine imaging cases at the hospital during the study period. The hospital had 49% of SS contributed to cancer patients, while 52% percent of the SS in the CNM dealt with cancers. During the same period, articles regarding PET were 273 of which 171 were cancer-related PET studies (62%, more often than SS). 59% of the total nuclear medicine studies performed at the hospital were SS, whereas only 9% of the total articles were SS and 5% dealt with cancer-related cases. The cases of SS and cancer-related SS at the hospital increased during the period, whereas the articles in the CNM decreased. Analytic statistics were not considered necessary. In conclusion, there is an increasing demand of SS in nuclear oncology at a medium-sized hospital with non-availability of PET and the proportions of SS and cancer-related SS to the

  7. Measuring Fast Calcium Fluxes in Cardiomyocytes

    Science.gov (United States)

    Golebiewska, Urszula; Scarlata, Suzanne

    2011-01-01

    Cardiomyocytes have multiple Ca2+ fluxes of varying duration that work together to optimize function 1,2. Changes in Ca2+ activity in response to extracellular agents is predominantly regulated by the phospholipase Cβ- Gαq pathway localized on the plasma membrane which is stimulated by agents such as acetylcholine 3,4. We have recently found that plasma membrane protein domains called caveolae5,6 can entrap activated Gαq7. This entrapment has the effect of stabilizing the activated state of Gαq and resulting in prolonged Ca2+ signals in cardiomyocytes and other cell types8. We uncovered this surprising result by measuring dynamic calcium responses on a fast scale in living cardiomyocytes. Briefly, cells are loaded with a fluorescent Ca2+ indicator. In our studies, we used Ca2+ Green (Invitrogen, Inc.) which exhibits an increase in fluorescence emission intensity upon binding of calcium ions. The fluorescence intensity is then recorded for using a line-scan mode of a laser scanning confocal microscope. This method allows rapid acquisition of the time course of fluorescence intensity in pixels along a selected line, producing several hundreds of time traces on the microsecond time scale. These very fast traces are transferred into excel and then into Sigmaplot for analysis, and are compared to traces obtained for electronic noise, free dye, and other controls. To dissect Ca2+ responses of different flux rates, we performed a histogram analysis that binned pixel intensities with time. Binning allows us to group over 500 traces of scans and visualize the compiled results spatially and temporally on a single plot. Thus, the slow Ca2+ waves that are difficult to discern when the scans are overlaid due to different peak placement and noise, can be readily seen in the binned histograms. Very fast fluxes in the time scale of the measurement show a narrow distribution of intensities in the very short time bins whereas longer Ca2+ waves show binned data with a broad

  8. Distribution of artificial radionuclides in particle-size fractions of soil on fallout plumes of nuclear explosions.

    Science.gov (United States)

    Kabdyrakova, A M; Lukashenko, S N; Mendubaev, A T; Kunduzbayeva, A Ye; Panitskiy, A V; Larionova, N V

    2018-06-01

    In this paper are analyzed the artificial radionuclide distributions ( 137 Cs, 90 Sr, 241 Am, 239+240 Pu) in particle-size fractions of soils from two radioactive fallout plumes at the Semipalatinsk Test Site. These plumes were generated by a low-yield surface nuclear test and a surface non-nuclear experiment with insignificant nuclear energy release, respectively, and their lengths are approximately 3 and 0,65 km. In contrast with the great majority of similar studies performed in areas affected mainly by global fallout where adsorbing radionuclides such as Pu are mainly associated with the finest soil fractions, in this study it was observed that along both analyzed plumes the highest activity concentrations are concentrated in the coarse soil fractions. At the plume generated by the surface nuclear test, the radionuclides are concentrated mainly in the 1000-500 μm soil fraction (enrichment factor values ranging from 1.2 to 3.8), while at the plume corresponding to the surface non-nuclear test is the 500-250 μm soil fraction the enriched one by technogenic radionuclides (enrichment factor values ranging from 1.1 to 5.1). In addition, the activity concentration distributions among the different soil size fractions are similar for all radionuclides in both plumes. All the obtained data are in agreement with the hypothesis indicating that enrichment observed in the coarse fractions is caused by the presence of radioactive particles resulted from the indicated nuclear tests. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration.

    Science.gov (United States)

    Mahmoud, Ahmed I; O'Meara, Caitlin C; Gemberling, Matthew; Zhao, Long; Bryant, Donald M; Zheng, Ruimao; Gannon, Joseph B; Cai, Lei; Choi, Wen-Yee; Egnaczyk, Gregory F; Burns, Caroline E; Burns, C Geoffrey; MacRae, Calum A; Poss, Kenneth D; Lee, Richard T

    2015-08-24

    Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Engineered Biomaterials Control Differentiation and Proliferation of Human-Embryonic-Stem-Cell-Derived Cardiomyocytes via Timed Notch Activation

    Directory of Open Access Journals (Sweden)

    Jason C. Tung

    2014-03-01

    Full Text Available For cell-based treatments of myocardial infarction, a better understanding of key developmental signaling pathways and more robust techniques for producing cardiomyocytes are required. Manipulation of Notch signaling has promise as it plays an important role during cardiovascular development, but previous studies presented conflicting results that Notch activation both positively and negatively regulates cardiogenesis. We developed surface- and microparticle-based Notch-signaling biomaterials that function in a time-specific activation-tunable manner, enabling precise investigation of Notch activation at specific developmental stages. Using our technologies, a biphasic effect of Notch activation on cardiac differentiation was found: early activation in undifferentiated human embryonic stem cells (hESCs promotes ectodermal differentiation, activation in specified cardiovascular progenitor cells increases cardiac differentiation. Signaling also induces cardiomyocyte proliferation, and repeated doses of Notch-signaling microparticles further enhance cardiomyocyte population size. These results highlight the diverse effects of Notch activation during cardiac development and provide approaches for generating large quantities of cardiomyocytes.

  11. Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death.

    Science.gov (United States)

    Parra, Valentina; Moraga, Francisco; Kuzmicic, Jovan; López-Crisosto, Camila; Troncoso, Rodrigo; Torrealba, Natalia; Criollo, Alfredo; Díaz-Elizondo, Jessica; Rothermel, Beverly A; Quest, Andrew F G; Lavandero, Sergio

    2013-08-01

    Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulate numerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca(2+) overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca(2+) levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca(2+) influx, mitochondrial network fragmentation and loss of the mitochondrial Ca(2+) buffer capacity. These biochemical events increase cytosolic Ca(2+) levels and trigger cardiomyocyte death via the activation of calpains. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Generation and purification of human stem cell-derived cardiomyocytes

    NARCIS (Netherlands)

    Schwach, Verena; Passier, Robert

    2016-01-01

    © 2016 International Society of Differentiation Efficient and reproducible generation and purification of human stem cell-derived cardiomyocytes (CMs) is crucial for regenerative medicine, disease modeling, drug screening and study of developmental events during cardiac specification. Established

  13. The role of small and medium size reactors in the future US nuclear market

    International Nuclear Information System (INIS)

    Twilley, R.C.

    2002-01-01

    This paper addresses the various aspects of siting and sizing new generating facilities in the USA. Environmental and licensing issues are discussed. The economic considerations and assumptions for new plants are presented. Also, the electric transmission and distribution system characteristics and constraints are described with the potential role for several small and medium size designs summarized. (authors)

  14. Radiocesium distribution in aggregate-size fractions of cropland and forest soils affected by the Fukushima nuclear accident.

    Science.gov (United States)

    Koarashi, Jun; Nishimura, Syusaku; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sato, Tsutomu; Nagao, Seiya

    2018-08-01

    The Fukushima Daiichi nuclear power plant accident caused serious radiocesium ( 137 Cs) contamination in soils in a range of terrestrial ecosystems. It is well documented that the interaction of 137 Cs with soil constituents, particularly clay minerals, in surface soil layers exerts strong control on the behavior of this radionuclide in the environment; however, there is little understanding of how soil aggregation-the binding of soil particles together into aggregates-can affect the mobility and bioavailability of 137 Cs in soils. To explore this, soil samples were collected at seven sites under different land-use conditions in Fukushima and were separated into four aggregate-size fractions: clay-sized (fractions were then analyzed for 137 Cs content and extractability and mineral composition. In forest soils, aggregate formation was significant, and 69%-83% of 137 Cs was associated with macroaggregates and sand-sized aggregates. In contrast, there was less aggregation in agricultural field soils, and approximately 80% of 137 Cs was in the clay- and silt-sized fractions. Across all sites, the 137 Cs extractability was higher in the sand-sized aggregate fractions than in the clay-sized fractions. Mineralogical analysis showed that, in most soils, clay minerals (vermiculite and kaolinite) were present even in the larger-sized aggregate fractions. These results demonstrate that larger-sized aggregates are a significant reservoir of potentially mobile and bioavailable 137 Cs in organic-rich (forest and orchard) soils. Our study suggests that soil aggregation reduces the mobility of particle-associated 137 Cs through erosion and resuspension and also enhances the bioavailability of 137 Cs in soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Economic and strategic assessment of using nuclear power plants for the district heating. An investigation on the size role

    International Nuclear Information System (INIS)

    Locatelli, Giorgio; Mancini, Mauro

    2011-01-01

    Small Medium Reactors (SMR) can play an important role in the global nuclear renaissance coupling the production of Electrical Energy (EE) with by-products useful to increase their economic attractiveness and enhance the public acceptability. Light Water Reactors (LWR) have an average thermal efficiency of about 33%-35%, therefore two third of the thermal energy produced by the nuclear reaction is most of the time wasted. However this heat can be used to warm the buildings in a town representing a cheap and greenhouse free solution for the heating during the winter time. Moreover if the heat is provided free of charge or at low cost to the consumers it can increase the public acceptability of the nuclear power plants. This paper analyses the economic and strategic implications of using SMR instead of LR (Large Reactor) for the nuclear district heating (DH) in the north of Italy. The paper at first assesses the technical requirements of a nuclear DH then its economics versus other traditional forms of warming. Assuming the nuclear options as viable solution a first sizing of the system is proposed, then four cases are presented: the first considers a LR providing 350 MWt, the second a LR providing 1400 MWt, the third 4 SMR providing 350 MWt and the fourth 4 SMR providing 1400 MWt. The four scenarios have been evaluated integrating INCAS (Integrated model for the Competitiveness Assessment of SMRs) with the specific cost elements of the DH. The results point out as the modularity of SMR provides a great advantage in terms of flexibility and backup capacity since each SMR can act as a back-up units respect to the other reactors in case of planned or unplanned outage. Moreover the cost of set-up the DH infrastructure can range from 1% to 9% of the total capital cost of the nuclear plants depending on the size (in terms of power delivered and length of the branches) and the backup capacity. Therefore even if the details of the results are specific for the North Italian

  16. Method for rapid particle size analysis by hydrosizing and nuclear sensing

    International Nuclear Information System (INIS)

    Daellenbach, C.B.; Mahan, W.M.

    1977-01-01

    A method and apparatus to practice the method for rapidly determining the size and mass distribution of a sample of randomly sized particles of a known total mass are described. A series of substantially identical hydrocyclones are connected by conduits to each other and to a temperature controlled water feed. By restricting the cross-sectional areas of these conduits to progressively smaller values, the slurry containing the sample particles is caused to increase its velocity as it moves from hydrocyclone to hydrocyclone. As described by the Stokesian theory which relates particle diameter and settling velocity, the largest sized particles are suspended in the closed apex of the first hydrocyclone with smaller sized particles, in given size ranges, being suspended in the next succeeding hydrocyclone's apexes. In this manner, the particles are separated into discrete fractional sizes with a residual slurry of the very smallest particles being discharged. Before the discrete fractions of particles are suspended in their hydrocyclone apexes, a combined photon source, like a gamma ray source, and detector are calibrated with the water temperature kept constant. When the suspension of particles takes place, an attenuation of the radiation from the source is observed at the detector. This attenuation can be related to the mass or weight of the discrete fractions of suspended particles. Electronic circuitry is used to indicate what this fractional mass or weight is as it relates to the total weight of the sample. 6 claims, 4 figs

  17. Market potential of small and medium-size nuclear reactors as combined heat and power plants in Europe

    International Nuclear Information System (INIS)

    Candeli, R.; Leuchs, D.; Garribba, S.F.; Hansen, U.; Lefevre, J.C.; Schoen, R.; Vivante, C.

    1988-01-01

    The preliminary results are presented concerning a study launched by the Commission of the European Communities to assess the potential market of small and medium-size nuclear reactors through EC member countries. The study was aimed at identifying those factors that may have a role in shaping the eventual deployment and diffusion of this class of nuclear reactors. In a first phase, attention focused on modular high-temperature gas-cooled reactors that would be installed to produce low-temperature heat and power. Federal Republic of Germany, Italy and France are the countries for which the investigation has been completed. The time span of interest is up to the year 2020. Referring to this horizon, an appraisal has been made of the number of nuclear units which could come on line to cope with energy demand and their timing. Through the study a distinction is made between technical potential, economic potential, and effective market potential. It is understood indeed that both economic competitiveness towards other energy sources and also institutional or organizational factors may restrict the market which could become accessible and would be covered by the new nuclear plants. (orig.)

  18. New Approach to Enhance an Effect of Condition Monitoring of Mid/Small Size Rotating Equipment in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Shin You Soo; Chang, Hee Seung [KHNP, Daejeon (Korea, Republic of)

    2016-05-15

    Condition monitoring for small and medium-size rotating equipment is mainly done by a patrol inspection and a vibration measurement. These methods are useful to recognize a significant change in a sound, temperature and vibration amplitude on the bearing housing. However, such a significant change shows an abnormal condition just before failure so that there is not much time to take a right action to recover. In other words, there is a severe damage when someone detects the phenomenon. These methods are good way to detect a flaw but too late to fix. It can't detect early recognition of defect To enhance the effect of condition monitoring and recognize a defect earlier, an integrated measurement including high band frequency analysis is required. It will be implemented at one of nuclear power plants in Korea as a pilot to verify an effect and applicability at nuclear power plants.

  19. Data processing system for small and medium sized clinical chemistry and nuclear medical units

    Energy Technology Data Exchange (ETDEWEB)

    Mariss, P; Haubold, E; Porth, A J

    1987-06-01

    A computer system, in clinical use for over 5 years, with a group practice specializing in laboratory-nuclear medicine is described for its hardware and software configuration. In addition to the conventional tasks of a computer system (patient data acquisition, issuance of worklists, result input, plausibility control, quality assurance, findings documentation), an integrated word processing system was developed for nuclear medicine in-vitro and in-vivo diagnosis. In addition, the computer system masters major administrative tasks, such as private and panel accounts, account reminders payments to suppliers, etc. the hardware and data bank are designed in a manner which permits direct data access over a period of 18 to 21 months.

  20. Economic potential of smaller-sized nuclear plants in today's economy

    International Nuclear Information System (INIS)

    Behrens, C.E.

    1984-01-01

    In this study, the cost of producing power was modelled for a utility with specified financial and production parameters. Two reference cases were considered: in one, it was assumed that the utility would build 400-megawatt nuclear units as necessary to meet its growth in load; in the second, that it would meet its load growth by building 1200-MW units. The smaller plants were assumed to cost 12 percent more per kilowatt than the larger units. The object was to see if the lower financing costs of the 400-megawatt units were enough to overcome the larger plants' economies of scale. In addition to the reference cases, the sensitivity of the cost measurement to changes in various parameters was modelled. The parameters tested included interest rates, fuel mix, cost differential between the 400-megawatt and 1200-megawatt plants, and the rate of growth in load. The results of these cases indicate strongly that small nuclear power plants could have a market

  1. Development of small size wall decontamination robot systems in nuclear power plants

    International Nuclear Information System (INIS)

    Fujita, Tsuneaki; Takahashi, Tsuyosi

    2004-01-01

    This paper describes the development of wall decontamination robot systems for nuclear power plants. In nuclear power plants, it is required to reduce maintenance costs, including annual inspection, repairs and so on. Most of such maintenance activities are actually performed after decontamination processes are completed. In particular, the decontamination process of reactor wells is very important for reducing the radiation exposure of human workers. In the past, decontamination of reactor wells used to be done by extra large machine and tools, which caused long working hours and tiresome works. It was one of the reasons maintenance costs couldn't have been easily reduced. There are narrow spaces in the reactor wells that have to be decontaminated by human workers. In order to minimize the radiation exposure to humans, wall decontamination robot systems have been developed. The decontamination robots have rolled brushes and suction mechanisms and are capable of removing contaminants attached to the wall surface of the reactor wells. By making the robots smaller, it is possible to work in narrower spaces. In this paper, the effectiveness of decontamination by the developed robots is shown through experiments in the actual nuclear power plants. (author)

  2. Radiative nonrecoil nuclear finite size corrections of order α(Zα)5 to the Lamb shift in light muonic atoms

    Science.gov (United States)

    Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.

    2017-12-01

    On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα) 5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude with spanning photon are obtained. We present also numerical results for these contributions using modern experimental data on the electromagnetic form factors of light nuclei.

  3. DLNA: a simple one-dimensional dynamical model as a possible interpretation of fragment size distribution in nuclear multifragmentation

    International Nuclear Information System (INIS)

    Lacroix, D.; Dayras, R.

    1996-08-01

    The possibility of interpreting multifragmentation data obtained from heavy-ion collisions at intermediate energies, by a new type of model: the DLNA (Dynamical Limited Nuclear Aggregation) is discussed. This model is connected to a more general class of models presenting Self-Organization Criticality (SOC). It is shown that the fragment size distributions exhibit a power-law dependence comparable to those obtained in second-order phase transition or percolation models. Fluctuations in term of scaled-factorial moments and cumulants are also studied: no signal of intermittency is seen. (K.A.)

  4. Human Stem Cell Derived Cardiomyocytes: An Alternative ...

    Science.gov (United States)

    Chemical spills and associated deaths in the US has increased 2.6-fold and 16-fold from 1983 to 2012, respectfully. In addition, the number of chemicals to which humans are exposed to in the environment has increased almost 10-fold from 2001 to 2013 within the US. Internationally, a WHO report on the global composite impact of chemicals on health reported that 16% of the total burden of cardiovascular disease was attributed to environmental chemical exposure with 2.5 million deaths per year. Clearly, the cardiovascular system, at all its various developmental and life stages, represents a critical target organ system that can be adversely affected by existing and emerging chemicals (e.g., engineered nanomaterials) in a variety of environmental media. The ability to assess chemical cardiac risk and safety is critically needed but extremely challenging due to the number and categories of chemicals in commerce, as indicated. This presentation\\session will evaluate the use of adult human stem cell derived cardiomyocytes, and existing platforms, as an alternative model to evaluate environmental chemical cardiac toxicity as well as provide key information for the development of predictive adverse outcomes pathways associated with environmental chemical exposures. (This abstract does not represent EPA policy) Rapid and translatable chemical safety screening models for cardiotoxicity current status for informing regulatory decisions, a workshop sponsored by the Society

  5. Nuclear sizes and intranuclear matter distribution -- from hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.

    1999-01-01

    The method of intranuclear matter studies by hadronic projectiles is found and worked out. It is tested on the pion-xenon nucleus collision events. Target-nucleus size and nucleon density distributions in it were estimated and described by formulas prompted experimentally

  6. Rcan1-1L overexpression induces mitochondrial autophagy and improves cell survival in angiotensin II-exposed cardiomyocytes

    International Nuclear Information System (INIS)

    Duan, Hongyan; Li, Yongqiang; Yan, Lijie; Yang, Haitao; Wu, Jintao; Qian, Peng; Li, Bing; Wang, Shanling

    2015-01-01

    Mitochondrial autophagy is an important adaptive stress response and can be modulated by various key molecules. A previous study found that the regulator of calcineurin 1-1L (Rcan1-1L) may regulate mitochondrial autophagy and cause mitochondria degradation in neurocytes. However, the effect of Rcan1-1L on cardiomyocytes has not been determined. In the present study, we aimed to investigate the role of Rcan1-1L in angiotensin II (Ang II)-exposed human cardiomyocytes. Above all, Human adult cardiac myocytes (HACMs) were exposed to 200 nmol/L Ang II for 4 days. Enhanced H 2 O 2 production, cytochrome C release and mitochondrial permeability were observed in these cells, which were blocked by valsartan. Consistently, Ang II exposure significantly reduced cardiomyocyte viability. However, transfection of Rcan1-1L vector promoted cell viability and ameliorated the apoptosis caused by Ang II. Rcan1-1L clearly promoted mitochondrial autophagy in HACMs, with elevated autophagy protein (ATG) 5 and light chain 3 (LC3) expression. Transient mitochondrial biogenesis and reduced cytochrome C release was also induced by Rcan1-1L. Additionally, Rcan1-1L significantly inhibited calcineurin/nuclear factor of activated T cells (NFAT) signaling. We thus conclude that Rcan1-1L may play a protective role in Ang II-treated cardiomyocytes through the induction of mitochondrial autophagy, and may be an alternative method of cardiac protection. - Highlights: • Transfection of Rcan1-1L into HACMs promoted cell viability and reduced apoptosis. • Transfection of Rcan1-1L promoted mitochondrial autophagy in HACMs. • Rcan1-1L inhibited the calcineurin/nuclear factor of activated T cells signaling

  7. Rcan1-1L overexpression induces mitochondrial autophagy and improves cell survival in angiotensin II-exposed cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hongyan; Li, Yongqiang; Yan, Lijie; Yang, Haitao; Wu, Jintao; Qian, Peng; Li, Bing; Wang, Shanling, E-mail: shanglingwang@126.com

    2015-07-01

    Mitochondrial autophagy is an important adaptive stress response and can be modulated by various key molecules. A previous study found that the regulator of calcineurin 1-1L (Rcan1-1L) may regulate mitochondrial autophagy and cause mitochondria degradation in neurocytes. However, the effect of Rcan1-1L on cardiomyocytes has not been determined. In the present study, we aimed to investigate the role of Rcan1-1L in angiotensin II (Ang II)-exposed human cardiomyocytes. Above all, Human adult cardiac myocytes (HACMs) were exposed to 200 nmol/L Ang II for 4 days. Enhanced H{sub 2}O{sub 2} production, cytochrome C release and mitochondrial permeability were observed in these cells, which were blocked by valsartan. Consistently, Ang II exposure significantly reduced cardiomyocyte viability. However, transfection of Rcan1-1L vector promoted cell viability and ameliorated the apoptosis caused by Ang II. Rcan1-1L clearly promoted mitochondrial autophagy in HACMs, with elevated autophagy protein (ATG) 5 and light chain 3 (LC3) expression. Transient mitochondrial biogenesis and reduced cytochrome C release was also induced by Rcan1-1L. Additionally, Rcan1-1L significantly inhibited calcineurin/nuclear factor of activated T cells (NFAT) signaling. We thus conclude that Rcan1-1L may play a protective role in Ang II-treated cardiomyocytes through the induction of mitochondrial autophagy, and may be an alternative method of cardiac protection. - Highlights: • Transfection of Rcan1-1L into HACMs promoted cell viability and reduced apoptosis. • Transfection of Rcan1-1L promoted mitochondrial autophagy in HACMs. • Rcan1-1L inhibited the calcineurin/nuclear factor of activated T cells signaling.

  8. Nuclear size comparison of even titanium isotopes using 140-MeV α-particle scattering

    International Nuclear Information System (INIS)

    Roberson, P.L.; Goldberg, D.A.; Wall, N.S.; Woo, L.W.; Chen, H.L.

    1979-01-01

    Systematic variations in nuclear-matter distributions have been determined by analyzing the measured elastic scattering of 140-MeV alpha particles from /sup 46,48,50/Ti. The ''unique'' optical potentials obtained (J/sub R//4A approx. = 300 MeV fm 3 , J/sub I//4A approx. = 100 MeV fm 3 ) indicate that isotopic differences occur primarily in the strength of the imaginary potential. The rms matter radii increase with A, in contrast to those of the charge distributions. The matter-radius results are in agreement with Hartree-Fock calculations

  9. Ionic cluster size distributions of swollen nafion/sulfated beta-cyclodextrin membranes characterized by nuclear magnetic resonance cryoporometry.

    Science.gov (United States)

    Jeon, Jae-Deok; Kwak, Seung-Yeop

    2007-08-16

    Nafion/sb-CD membranes were prepared by mixing 5 wt% Nafion solution with H+-form sulfated beta-cyclodextrin (sb-CD), and their water uptakes, ion exchange capacities (IECs), and ionic cluster size distributions were measured. Gravimetric and thermogravimetric measurements showed that the water uptake of the membranes increased with increases in their sb-CD content. The IECs of the membrane were measured with acid-base titration and found to increase with increases in the sb-CD content, reaching 0.96 mequiv/g for NC5 ("NCx" denotes a Nafion/sb-CD composite membrane containing x wt% of sb-CD). The cluster-correlation peaks and ionic cluster size distributions of the water-swollen membranes were determined using small-angle X-ray scattering (SAXS) and 1H nuclear magnetic resonance (NMR) cryoporometry, respectively. The SAXS experiments confirmed that increases in the sb-CD content of the membranes shifted the maximum SAXS peaks to lower angles, indicating an increase in the cluster correlation peak. NMR cryoporometry is based on the theory of the melting point depression, Delta Tm, of a liquid confined within a pore, which is dependent on the pore diameter. The melting point depression was determined by analyzing the variation of the NMR signal intensity with temperature. Our analysis of the intensity-temperature (IT) curves showed that the ionic cluster size distribution gradually became broader with increases in the membrane sb-CD content due to the increased water content, indicating an increase in the ionic cluster size. This result indicates that the presence of sb-CD with its many sulfonic acid sites in the Nafion membranes results in increases in the ionic cluster size as well as in the water uptake and the IEC. We conclude that NMR cryoporometry provides a method for determining the ionic cluster size on the nanometer scale in an aqueous environment, which cannot be obtained using other methods.

  10. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    International Nuclear Information System (INIS)

    Aguilar, David; Strom, Joshua; Chen, Qin M.

    2014-01-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA

  11. Effect of fuel particles' size variations on multiplication factor in pebble-bed nuclear reactor

    International Nuclear Information System (INIS)

    Snoj, L.; Ravnik, M.

    2005-01-01

    The pebble-bed reactor (Pbr) spherical fuel element consists of two radial zones: the inner zone, in which the fissile material in form of the so-called TRISO particles is uniformly dispersed in graphite matrix and the outer zone, a shell of pure graphite. A TRISO particle is composed of a fissile kernel (UO 2 ) and several layers of carbon composites. The effect of TRISO particles' size variations and distance between them on PBR multiplication factor is studied using MCNP code. Fuel element is modelled in approximation of a cubical unit cell with periodic boundary condition. The multiplication factor of the fuel element depends on the size of the TRISO particles due to resonance self-shielding effect and on the inter-particle distance due to inter-kernel shadowing. (author)

  12. Market potential of small and medium-size nuclear reactors as combined heat and power plants in Europe

    International Nuclear Information System (INIS)

    Schoen, R.; Hansen, U.; Candeli, R.; Leuchs, D.; Garribba, S.F.; Lefevre, J.C.; Vivante, C.

    1987-01-01

    A Study has been launched and supported by the Commission of the European Communities to assess the potential market of small and medium size nuclear reactors through EC Countries and to identify those factors which may play a dominant role in this respect. In its first phase, the Study addresses to modular high-temperature gas-cooled reactors that would be installed to produce low-temperature heat and power. Federal Republic of Germany, Italy and France are the countries for which the investigation has been either completed or is under way. The time span of interest is up to the year 2020. Referring to this horizon an appraisal has been made of the number of nuclear units which could come on line to cope with energy demand and their timing. Through the Study a distinction is made between technical potential, economic potential, and effective market potential. It is understood indeed that both economic competitiveness towards other energy sources and institutional or organizational factors may restrict the market which could be covered by this class of nuclear reactors. (author)

  13. Nuclear size effects in rotational spectra: A tale with a twist

    International Nuclear Information System (INIS)

    Knecht, Stefan; Saue, Trond

    2012-01-01

    Graphical abstract: Molecular field shift: 4-Component relativistic calibration calculations show a coincidence of errors in previous theoretical and experimental studies of nuclear volume effects in the rotational spectra of diatomics. The central quantity for the calculation of corrections to the rotational Dunham coefficient Y 01 is the derivative of the electron density with respect to internuclear distance, here shown for the TlI molecule. Abstract: We report a 4-component relativistic benchmark study of the isotopic field shift in the rotational spectrum of three diatomic molecules: TlI, PbTe and PtSi. A central quantity in the theory is the derivative with respect to internuclear distance of an effective electron density associated with a given nucleus, calculated at the equilibrium distance. The effective density, which is related to the mean electron density within the nuclear volume, is usually replaced with the contact density, that is, the electron density at the origin of the nucleus. Our computational study shows that for the chosen systems this induces errors on the order of 10%, which is not acceptable for high-precision work. On the other hand, the systematic nature of the error suggests that it can be handled by an atom-specific correction factor. Our calibration study reveals that relativistic effects increase the contact density gradient by about an order of magnitude, and that the proper transformation of the associated property operator is mandatory in 1- and 2-component relativistic calculations. Our results show very good agreement with the experimental data presented by Schlembach and Tiemann [Chem. Phys. 68 (1982) 21], but disagree completely with the revised results given by the same group in a later paper [Chem. Phys. 93 (1985) 349]. We have carefully re-derived the relevant formulas and cannot see that the rescaling of results is justified. Curiously previous DFT calculations agree quite well with the revised results for TlI and Pb

  14. Nuclear size effects in rotational spectra: A tale with a twist

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, Stefan, E-mail: knecht@ifk.sdu.dk [Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark); Saue, Trond, E-mail: trond.saue@irsamc.ups-tlse.fr [Laboratoire de Physique Quantique (CNRS UMR 5626), IRSAMC, Universite Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse cedex (France)

    2012-06-05

    Graphical abstract: Molecular field shift: 4-Component relativistic calibration calculations show a coincidence of errors in previous theoretical and experimental studies of nuclear volume effects in the rotational spectra of diatomics. The central quantity for the calculation of corrections to the rotational Dunham coefficient Y{sub 01} is the derivative of the electron density with respect to internuclear distance, here shown for the TlI molecule. Abstract: We report a 4-component relativistic benchmark study of the isotopic field shift in the rotational spectrum of three diatomic molecules: TlI, PbTe and PtSi. A central quantity in the theory is the derivative with respect to internuclear distance of an effective electron density associated with a given nucleus, calculated at the equilibrium distance. The effective density, which is related to the mean electron density within the nuclear volume, is usually replaced with the contact density, that is, the electron density at the origin of the nucleus. Our computational study shows that for the chosen systems this induces errors on the order of 10%, which is not acceptable for high-precision work. On the other hand, the systematic nature of the error suggests that it can be handled by an atom-specific correction factor. Our calibration study reveals that relativistic effects increase the contact density gradient by about an order of magnitude, and that the proper transformation of the associated property operator is mandatory in 1- and 2-component relativistic calculations. Our results show very good agreement with the experimental data presented by Schlembach and Tiemann [Chem. Phys. 68 (1982) 21], but disagree completely with the revised results given by the same group in a later paper [Chem. Phys. 93 (1985) 349]. We have carefully re-derived the relevant formulas and cannot see that the rescaling of results is justified. Curiously previous DFT calculations agree quite well with the revised results for TlI and Pb

  15. Functional Differences in Engineered Myocardium from Embryonic Stem Cell-Derived versus Neonatal Cardiomyocytes

    NARCIS (Netherlands)

    Feinberg, Adam W.; Ripplinger, Crystal M.; van der Meer, Peter; Sheehy, Sean P.; Domian, Ibrahim; Chien, Kenneth R.; Parker, Kevin Kit

    2013-01-01

    Stem cell-derived cardiomyocytes represent unique tools for cell-and tissue-based regenerative therapies, drug discovery and safety, and studies of fundamental heart-failure mechanisms. However, the degree to which stem cell-derived cardiomyocytes compare to mature cardiomyocytes is often debated.

  16. File list: ALL.CDV.20.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.20.AllAg.Cardiomyocytes mm9 All antigens Cardiovascular Cardiomyocytes SRX1...121699,SRX305918,SRX305920,SRX305919,SRX1121694 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.CDV.20.AllAg.Cardiomyocytes.bed ...

  17. File list: His.CDV.05.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.05.AllAg.Cardiomyocytes mm9 Histone Cardiovascular Cardiomyocytes SRX305918...,SRX305920,SRX1121699,SRX305919 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.CDV.05.AllAg.Cardiomyocytes.bed ...

  18. File list: ALL.CDV.50.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.50.AllAg.Cardiomyocytes mm9 All antigens Cardiovascular Cardiomyocytes SRX3...05918,SRX305920,SRX305919,SRX1121699,SRX1121694 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.CDV.50.AllAg.Cardiomyocytes.bed ...

  19. File list: ALL.CDV.05.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.05.AllAg.Cardiomyocytes mm9 All antigens Cardiovascular Cardiomyocytes SRX3...05918,SRX305920,SRX1121699,SRX305919,SRX1121694 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.CDV.05.AllAg.Cardiomyocytes.bed ...

  20. File list: His.CDV.20.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.AllAg.Cardiomyocytes mm9 Histone Cardiovascular Cardiomyocytes SRX112169...9,SRX305918,SRX305920,SRX305919 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.CDV.20.AllAg.Cardiomyocytes.bed ...

  1. File list: His.CDV.50.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.AllAg.Cardiomyocytes mm9 Histone Cardiovascular Cardiomyocytes SRX305918...,SRX305920,SRX305919,SRX1121699 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.CDV.50.AllAg.Cardiomyocytes.bed ...

  2. File list: His.CDV.10.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.AllAg.Cardiomyocytes mm9 Histone Cardiovascular Cardiomyocytes SRX112169...9,SRX305919,SRX305918,SRX305920 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.CDV.10.AllAg.Cardiomyocytes.bed ...

  3. Estimation of the sizes of hot nuclear systems from particle-particle large angle kinematical correlations

    International Nuclear Information System (INIS)

    La Ville, J.L.; Bizard, G.; Durand, D.; Jin, G.M.; Rosato, E.

    1990-06-01

    Light fragment emission, when triggered by large transverse momentum protons shows specific kinematical correlations due to recoil effects of the excited emitting source. Such effects have been observed in azimuthal angular distributions of He-particles produced in collisions induced by 94 MeV/u 16 0 ions on Al, Ni and Au targets. A model calculation assuming a two-stage mechanism (formation and sequential decay of a hot source) gives a good description of these whole data. From this succesfull confrontation, it is possible to estimate the size of the emitting system

  4. Adrenaline and reactive oxygen species elicit proteome and energetic metabolism modifications in freshly isolated rat cardiomyocytes

    International Nuclear Information System (INIS)

    Costa, Vera Marisa; Silva, Renata; Tavares, Ludgero Canario; Vitorino, Rui; Amado, Francisco; Carvalho, Felix; Bastos, Maria de Lourdes; Carvalho, Marcia; Carvalho, Rui Albuquerque; Remiao, Fernando

    2009-01-01

    The sustained elevation of plasma and interstitial catecholamine levels, namely adrenaline (ADR), and the generation of reactive oxygen species (ROS) are well recognized hallmarks of several cardiopathologic conditions, like cardiac ischemia/reperfusion (I/R) and heart failure (HF). The present work aimed to investigate the proteomics and energetic metabolism of cardiomyocytes incubated with ADR and/or ROS. To mimic pathologic conditions, freshly isolated calcium-tolerant cardiomyocytes from adult rat were incubated with ADR alone or in the presence of a system capable of generating ROS [(xanthine with xanthine oxidase) (XXO)]. Two-dimensional electrophoresis with matrix-assisted laser desorption/ionization and time-of-flight mass spectrometer analysis were used to define protein spot alterations in the cardiomyocytes incubated with ADR and/or ROS. Moreover, the energetic metabolism and the activity of mitochondrial complexes were evaluated by nuclear magnetic resonance and spectrophotometric determinations, respectively. The protein extract was mainly constituted by cardiac mitochondrial proteins and the alterations found were included in five functional classes: (i) structural proteins, notably myosin light chain-2; (ii) redox regulation proteins, in particular superoxide dismutase (SOD); (iii) energetic metabolism proteins, encompassing ATP synthase alpha chain and dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex; (iv) stress response proteins, like the heat shock proteins; and (v) regulatory proteins, like cytochrome c and voltage-dependent anion channel 1. The XXO system elicited alterations in cardiac contractile proteins, as they showed high levels of cleavage, and also altered energetic metabolism, through increased lactate and alanine levels. The cardiomyocytes incubation with ADR resulted in an accentuated increase in mitochondrial complexes activity and the decrease in alanine/lactate ratio, thus reflecting a high

  5. Role of heterotrimeric G protein and calcium in cardiomyocyte hypertrophy induced by IGF-1.

    Science.gov (United States)

    Carrasco, Loreto; Cea, Paola; Rocco, Paola; Peña-Oyarzún, Daniel; Rivera-Mejias, Pablo; Sotomayor-Flores, Cristian; Quiroga, Clara; Criollo, Alfredo; Ibarra, Cristian; Chiong, Mario; Lavandero, Sergio

    2014-04-01

    In the heart, insulin-like growth factor-1 (IGF-1) is a peptide with pro-hypertrophic and anti-apoptotic actions. The pro-hypertrophic properties of IGF-1 have been attributed to the extracellular regulated kinase (ERK) pathway. Recently, we reported that IGF-1 also increases intracellular Ca(2+) levels through a pertussis toxin (PTX)-sensitive G protein. Here we investigate whether this Ca(2+) signal is involved in IGF-1-induced cardiomyocyte hypertrophy. Our results show that the IGF-1-induced increase in Ca(2+) level is abolished by the IGF-1 receptor tyrosine kinase inhibitor AG538, PTX and the peptide inhibitor of Gβγ signaling, βARKct. Increases in the activities of Ca(2+) -dependent enzymes calcineurin, calmodulin kinase II (CaMKII), and protein kinase Cα (PKCα) were observed at 5 min after IGF-1 exposure. AG538, PTX, βARKct, and the dominant negative PKCα prevented the IGF-1-dependent phosphorylation of ERK1/2. Participation of calcineurin and CaMKII in ERK phosphorylation was discounted. IGF-1-induced cardiomyocyte hypertrophy, determined by cell size and β-myosin heavy chain (β-MHC), was prevented by AG538, PTX, βARKct, dominant negative PKCα, and the MEK1/2 inhibitor PD98059. Inhibition of calcineurin with CAIN did not abolish IGF-1-induced cardiac hypertrophy. We conclude that IGF-1 induces hypertrophy in cultured cardiomyocytes by activation of the receptor tyrosine kinase activity/βγ-subunits of a PTX-sensitive G protein/Ca(2+) /PKCα/ERK pathway without the participation of calcineurin. © 2013 Wiley Periodicals, Inc.

  6. Structural phenotyping of stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Pasqualini, Francesco Silvio; Sheehy, Sean Paul; Agarwal, Ashutosh; Aratyn-Schaus, Yvonne; Parker, Kevin Kit

    2015-03-10

    Structural phenotyping based on classical image feature detection has been adopted to elucidate the molecular mechanisms behind genetically or pharmacologically induced changes in cell morphology. Here, we developed a set of 11 metrics to capture the increasing sarcomere organization that occurs intracellularly during striated muscle cell development. To test our metrics, we analyzed the localization of the contractile protein α-actinin in a variety of primary and stem-cell derived cardiomyocytes. Further, we combined these metrics with data mining algorithms to unbiasedly score the phenotypic maturity of human-induced pluripotent stem cell-derived cardiomyocytes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Size dependent diffusive parameters and tensorial diffusion equations in neutronic models for optically small nuclear systems

    International Nuclear Information System (INIS)

    Premuda, F.

    1983-01-01

    Two lines in improved neutron diffusion theory extending the efficiency of finite-difference diffusion codes to the field of optically small systems, are here reviewed. The firs involves the nodal solution for tensorial diffusion equation in slab geometry and tensorial formulation in parallelepiped and cylindrical gemometry; the dependence of critical eigenvalue from small slab thicknesses is also analitically investigated and finally a regularized tensorial diffusion equation is derived for slab. The other line refer to diffusion models formally unchanged with respect to the classical one, but where new size-dependent RTGB definitions for diffusion parameters are adopted, requiring that they allow to reproduce, in diffusion approach, the terms of neutron transport global balance; the trascendental equation for the buckling, arising in slab, sphere and parallelepiped geometry from the above requirement, are reported and the sizedependence of the new diffusion coefficient and extrapolated end point is investigated

  8. Estimating the size of the cavity and surrounding failed region for underground nuclear explosions from scaling rules

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Leo A [El Paso Natural Gas Company (United States)

    1970-05-01

    The fundamental physical principles involved in the formation of an underground cavity by a nuclear explosion and breakage of the rock surrounding the cavity are examined from the point of view of making preliminary estimates of their sizes where there is a limited understanding of the rock characteristics. Scaling equations for cavity formation based on adiabatic expansion are reviewed and further developed to include the strength of the material surrounding the shot point as well as the overburden above the shot point. The region of rock breakage or permanent distortion surround ing the explosion generated cavity is estimated using both the Von Mises and Coulomb-Mohr failure criteria. It is found that the ratio of the rock failure radius to the cavity radius for these two criteria becomes independent of yield and dependent only on the failure mechanics of the rock. The analytical solutions developed for the Coulomb-Mohr and Von Mises criteria are presented in graphical form. (author)

  9. Objectives, Extent and Organization of Radiological and Environmental Protection in Relation to the Nature and Size of Nuclear Facilities

    International Nuclear Information System (INIS)

    Kathren, R.L.

    1979-01-01

    Radiological and environmental protection programs for nuclear facilities have similar goals and objectives, which are basically to protect people and the environment from adverse effects. To be effective, the programs must have organizational independence and a strong commitment from management. In return, the programs should ensure that the facility is operating in full compliance with law and good practice. The scope and elements of radiological environmental protection programs will vary according to facility type and size, with the larger and more complex facilities having a diversity of staff and functions. Examples of good and poor organization charts are given and discussed from the standpoint of program effectiveness along with a discussion of the role of the radiation protection committee. (author)

  10. System size and beam energy effects on probing the high-density behavior of nuclear symmetry energy with pion ratio

    International Nuclear Information System (INIS)

    Zhang Ming; Xiao Zhigang; Li Baoan; Chen Liewen; Yong Gaochan; Zhu Shengjiang

    2010-01-01

    Based on the isospin-and momentum-dependent hadronic transport model IBUU04, we have investigated the π - /π + ratio in the following three reactions: 48 Ca+ 48 Ca, 124 Sn + 124 Sn and 197 Au + 197 Au with nearly the same isospin asymmetry but different masses, at the bombarding energies from 0.25 to 0.6 AGeV. It is shown that the sensitivity of probing the E sym (ρ) with π - /π + increases with increasing the system size or decreasing the beam energy, showing a correlation to the degree of isospin fractionation. Therefore, with a given isospin asymmetry, heavier system at energies near the pion threshold is preferential to study the behavior of nuclear symmetry energy at supra-saturation densities.

  11. Identification and quantification of polycarboxylates in detergent products using off-line size exclusion chromatography-nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Ilona, E-mail: ilona.visser@unilever.com [Unilever Research and Development Vlaardingen, Olivier van Noortlaan 120, PO box 114, 3130 AC Vlaardingen (Netherlands); Klinkenberg, Monique; Hoos, Peter; Janssen, Hans-Gerd; Duynhoven, John van [Unilever Research and Development Vlaardingen, Olivier van Noortlaan 120, PO box 114, 3130 AC Vlaardingen (Netherlands)

    2009-11-03

    The performance of many contemporary detergent products critically depends on polymers. Water-soluble polycarboxylates represent an important class of detergent polymers, and their quantitative assessment in detergent matrices stands as a considerable challenge. The presence of high levels of surfactants is a major complication, due to the strong tendency of surfactants to form micelles and to interact with the polymers. First, we addressed critical steps in the subsequent combined use of liquid extraction and off-line size exclusion chromatography-nuclear magnetic resonance (SEC-NMR) for identification and quantification of polycarboxylates in detergent products. Next, the different steps in the off-line SEC-NMR procedure were optimized with respect to precision and accuracy. This resulted in recoveries of more than 80% for maleic acid/acrylic acid copolymers; in detergent products a proportional bias of 30% is achieved. The method showed good precision with a relative standard deviation of within-laboratory reproducibility between 5% and 14%.

  12. Identification and quantification of polycarboxylates in detergent products using off-line size exclusion chromatography-nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Visser, Ilona; Klinkenberg, Monique; Hoos, Peter; Janssen, Hans-Gerd; Duynhoven, John van

    2009-01-01

    The performance of many contemporary detergent products critically depends on polymers. Water-soluble polycarboxylates represent an important class of detergent polymers, and their quantitative assessment in detergent matrices stands as a considerable challenge. The presence of high levels of surfactants is a major complication, due to the strong tendency of surfactants to form micelles and to interact with the polymers. First, we addressed critical steps in the subsequent combined use of liquid extraction and off-line size exclusion chromatography-nuclear magnetic resonance (SEC-NMR) for identification and quantification of polycarboxylates in detergent products. Next, the different steps in the off-line SEC-NMR procedure were optimized with respect to precision and accuracy. This resulted in recoveries of more than 80% for maleic acid/acrylic acid copolymers; in detergent products a proportional bias of 30% is achieved. The method showed good precision with a relative standard deviation of within-laboratory reproducibility between 5% and 14%.

  13. Excitation model of pacemaker cardiomyocytes of cardiac conduction system

    Science.gov (United States)

    Grigoriev, M.; Babich, L.

    2015-11-01

    Myocardium includes typical and atypical cardiomyocytes - pacemakers, which form the cardiac conduction system. Excitation from the atrioventricular node in normal conditions is possible only in one direction. Retrograde direction of pulses is impossible. The most important prerequisite for the work of cardiomyocytes is the anatomical integrity of the conduction system. Changes in contractile force of the cardiomyocytes, which appear periodically, are due to two mechanisms of self-regulation - heterometric and homeometric. Graphic course of the excitation pulse propagation along the heart muscle more accurately reveals the understanding of the arrhythmia mechanism. These models have the ability to visualize the essence of excitation dynamics. However, they do not have the proper forecasting function for result estimation. Integrative mathematical model enables further investigation of general laws of the myocardium active behavior, allows for determination of the violation mechanism of electrical and contractile function of cardiomyocytes. Currently, there is no full understanding of the topography of pacemakers and ionic mechanisms. There is a need for the development of direction of mathematical modeling and comparative studies of the electrophysiological arrangement of cells of atrioventricular connection and ventricular conduction system.

  14. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification.

    Science.gov (United States)

    Li, Dan L; Wang, Zhao V; Ding, Guanqiao; Tan, Wei; Luo, Xiang; Criollo, Alfredo; Xie, Min; Jiang, Nan; May, Herman; Kyrychenko, Viktoriia; Schneider, Jay W; Gillette, Thomas G; Hill, Joseph A

    2016-04-26

    The clinical use of doxorubicin is limited by cardiotoxicity. Histopathological changes include interstitial myocardial fibrosis and the appearance of vacuolated cardiomyocytes. Whereas dysregulation of autophagy in the myocardium has been implicated in a variety of cardiovascular diseases, the role of autophagy in doxorubicin cardiomyopathy remains poorly defined. Most models of doxorubicin cardiotoxicity involve intraperitoneal injection of high-dose drug, which elicits lethargy, anorexia, weight loss, and peritoneal fibrosis, all of which confound the interpretation of autophagy. Given this, we first established a model that provokes modest and progressive cardiotoxicity without constitutional symptoms, reminiscent of the effects seen in patients. We report that doxorubicin blocks cardiomyocyte autophagic flux in vivo and in cardiomyocytes in culture. This block was accompanied by robust accumulation of undegraded autolysosomes. We go on to localize the site of block as a defect in lysosome acidification. To test the functional relevance of doxorubicin-triggered autolysosome accumulation, we studied animals with diminished autophagic activity resulting from haploinsufficiency for Beclin 1. Beclin 1(+/-) mice exposed to doxorubicin were protected in terms of structural and functional changes within the myocardium. Conversely, animals overexpressing Beclin 1 manifested an amplified cardiotoxic response. Doxorubicin blocks autophagic flux in cardiomyocytes by impairing lysosome acidification and lysosomal function. Reducing autophagy initiation protects against doxorubicin cardiotoxicity. © 2016 American Heart Association, Inc.

  15. Common marmoset embryonic stem cell can differentiate into cardiomyocytes

    International Nuclear Information System (INIS)

    Chen Hao; Hattori, Fumiyuki; Murata, Mitsushige; Li Weizhen; Yuasa, Shinsuke; Onizuka, Takeshi; Shimoji, Kenichiro; Ohno, Yohei; Sasaki, Erika; Kimura, Kensuke; Hakuno, Daihiko

    2008-01-01

    Common marmoset monkeys have recently attracted much attention as a primate research model, and are preferred to rhesus and cynomolgus monkeys due to their small bodies, easy handling and efficient breeding. We recently reported the establishment of common marmoset embryonic stem cell (CMESC) lines that could differentiate into three germ layers. Here, we report that our CMESC can also differentiate into cardiomyocytes and investigated their characteristics. After induction, FOG-2 was expressed, followed by GATA4 and Tbx20, then Nkx2.5 and Tbx5. Spontaneous beating could be detected at days 12-15. Immunofluorescent staining and ultrastructural analyses revealed that they possessed characteristics typical of functional cardiomyocytes. They showed sinus node-like action potentials, and the beating rate was augmented by isoproterenol stimulation. The BrdU incorporation assay revealed that CMESC-derived cardiomyocytes retained a high proliferative potential for up to 24 weeks. We believe that CMESC-derived cardiomyocytes will advance preclinical studies in cardiovascular regenerative medicine

  16. Effects of Mechanical Coupling Between Cardiomyocytes and Cardiac Fibroblasts on Myocardium

    Science.gov (United States)

    Zorlutuna, Pinar; Nguyen, Trung Dung; Nagarajan, Neerajha

    Cardiomyocytes show excitatory responses to stimulation solely by mechanical forces through their stretch-activated ion channels, and can fire action potentials upon mechanical stimulation through a pathway known as mechano-electric feedback. Furthermore, cardiomyocyte (CM) - cardiac fibroblasts (CF) can couple mechanically through cell-cell junctions. Here we investigated the effects of CM and CF mechanical coupling on myocardial physiology and pathology using a bio-nanoindentered coupled with fast calcium imaging and microelectrode arrays. In order to study mechanical signal transmission, we measured the contractile forces generated by CMs, as well as by CFs that were coupled to the CMs. We observed that CFs were beating with the same frequency but at smaller magnitude compared to CMs, and their contractility was dependent on the substrate stiffness. Our results showed that beating CMs actively stretched neighbouring CFs through the deformation of the substrate the cells were seeded on, which promoted the myocardial contractility through mechanical coupling. The results also revealed that CM contractility was propagated greater on soft substrates than stiff ones. Results of this study could help identify the role of the infarcted tissue stiffness and size on heart failure. This study is supported by NSF Grant No: 1530884.

  17. Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells.

    Science.gov (United States)

    Yang, Xiulan; Rodriguez, Marita; Pabon, Lil; Fischer, Karin A; Reinecke, Hans; Regnier, Michael; Sniadecki, Nathan J; Ruohola-Baker, Hannele; Murry, Charles E

    2014-07-01

    Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) have great potential as a cell source for therapeutic applications such as regenerative medicine, disease modeling, drug screening, and toxicity testing. This potential is limited, however, by the immature state of the cardiomyocytes acquired using current protocols. Tri-iodo-l-thyronine (T3) is a growth hormone that is essential for optimal heart growth. In this study, we investigated the effect of T3 on hiPSC-CM maturation. A one-week treatment with T3 increased cardiomyocyte size, anisotropy, and sarcomere length. T3 treatment was associated with reduced cell cycle activity, manifest as reduced DNA synthesis and increased expression of the cyclin-dependent kinase inhibitor p21. Contractile force analyses were performed on individual cardiomyocytes using arrays of microposts, revealing an almost two-fold higher force per-beat after T3 treatment and also an enhancement in contractile kinetics. This improvement in force generation was accompanied by an increase in rates of calcium release and reuptake, along with a significant increase in sarcoendoplasmic reticulum ATPase expression. Finally, although mitochondrial genomes were not numerically increased, extracellular flux analysis showed a significant increase in maximal mitochondrial respiratory capacity and respiratory reserve capability after T3 treatment. Using a broad spectrum of morphological, molecular, and functional parameters, we conclude that T3 is a driver for hiPSC-CM maturation. T3 treatment may enhance the utility of hiPSC-CMs for therapy, disease modeling, or drug/toxicity screens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Atrial natriuretic peptide regulates Ca channel in early developmental cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Lin Miao

    Full Text Available BACKGROUND: Cardiomyocytes derived from murine embryonic stem (ES cells possess various membrane currents and signaling cascades link to that of embryonic hearts. The role of atrial natriuretic peptide (ANP in regulation of membrane potentials and Ca(2+ currents has not been investigated in developmental cardiomyocytes. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the role of ANP in regulating L-type Ca(2+ channel current (I(CaL in different developmental stages of cardiomyocytes derived from ES cells. ANP decreased the frequency of action potentials (APs in early developmental stage (EDS cardiomyocytes, embryonic bodies (EB as well as whole embryo hearts. ANP exerted an inhibitory effect on basal I(CaL in about 70% EDS cardiomyocytes tested but only in about 30% late developmental stage (LDS cells. However, after stimulation of I(CaL by isoproterenol (ISO in LDS cells, ANP inhibited the response in about 70% cells. The depression of I(CaL induced by ANP was not affected by either Nomega, Nitro-L-Arginine methyl ester (L-NAME, a nitric oxide synthetase (NOS inhibitor, or KT5823, a cGMP-dependent protein kinase (PKG selective inhibitor, in either EDS and LDS cells; whereas depression of I(CaL by ANP was entirely abolished by erythro-9-(2-Hydroxy-3-nonyl adenine (EHNA, a selective inhibitor of type 2 phosphodiesterase(PDE2 in most cells tested. CONCLUSION/SIGNIFICANCES: Taken together, these results indicate that ANP induced depression of action potentials and I(CaL is due to activation of particulate guanylyl cyclase (GC, cGMP production and cGMP-activation of PDE2 mediated depression of adenosine 3', 5'-cyclic monophophate (cAMP-cAMP-dependent protein kinase (PKA in early cardiomyogenesis.

  19. Creating a Structurally Realistic Finite Element Geometric Model of a Cardiomyocyte to Study the Role of Cellular Architecture in Cardiomyocyte Systems Biology.

    Science.gov (United States)

    Rajagopal, Vijay; Bass, Gregory; Ghosh, Shouryadipta; Hunt, Hilary; Walker, Cameron; Hanssen, Eric; Crampin, Edmund; Soeller, Christian

    2018-04-18

    With the advent of three-dimensional (3D) imaging technologies such as electron tomography, serial-block-face scanning electron microscopy and confocal microscopy, the scientific community has unprecedented access to large datasets at sub-micrometer resolution that characterize the architectural remodeling that accompanies changes in cardiomyocyte function in health and disease. However, these datasets have been under-utilized for investigating the role of cellular architecture remodeling in cardiomyocyte function. The purpose of this protocol is to outline how to create an accurate finite element model of a cardiomyocyte using high resolution electron microscopy and confocal microscopy images. A detailed and accurate model of cellular architecture has significant potential to provide new insights into cardiomyocyte biology, more than experiments alone can garner. The power of this method lies in its ability to computationally fuse information from two disparate imaging modalities of cardiomyocyte ultrastructure to develop one unified and detailed model of the cardiomyocyte. This protocol outlines steps to integrate electron tomography and confocal microscopy images of adult male Wistar (name for a specific breed of albino rat) rat cardiomyocytes to develop a half-sarcomere finite element model of the cardiomyocyte. The procedure generates a 3D finite element model that contains an accurate, high-resolution depiction (on the order of ~35 nm) of the distribution of mitochondria, myofibrils and ryanodine receptor clusters that release the necessary calcium for cardiomyocyte contraction from the sarcoplasmic reticular network (SR) into the myofibril and cytosolic compartment. The model generated here as an illustration does not incorporate details of the transverse-tubule architecture or the sarcoplasmic reticular network and is therefore a minimal model of the cardiomyocyte. Nevertheless, the model can already be applied in simulation-based investigations into the

  20. The ESCRT-III pathway facilitates cardiomyocyte release of cBIN1-containing microparticles.

    Directory of Open Access Journals (Sweden)

    Bing Xu

    2017-08-01

    Full Text Available Microparticles (MPs are cell-cell communication vesicles derived from the cell surface plasma membrane, although they are not known to originate from cardiac ventricular muscle. In ventricular cardiomyocytes, the membrane deformation protein cardiac bridging integrator 1 (cBIN1 or BIN1+13+17 creates transverse-tubule (t-tubule membrane microfolds, which facilitate ion channel trafficking and modulate local ionic concentrations. The microfold-generated microdomains continuously reorganize, adapting in response to stress to modulate the calcium signaling apparatus. We explored the possibility that cBIN1-microfolds are externally released from cardiomyocytes. Using electron microscopy imaging with immunogold labeling, we found in mouse plasma that cBIN1 exists in membrane vesicles about 200 nm in size, which is consistent with the size of MPs. In mice with cardiac-specific heterozygous Bin1 deletion, flow cytometry identified 47% less cBIN1-MPs in plasma, supporting cardiac origin. Cardiac release was also evidenced by the detection of cBIN1-MPs in medium bathing a pure population of isolated adult mouse cardiomyocytes. In human plasma, osmotic shock increased cBIN1 detection by enzyme-linked immunosorbent assay (ELISA, and cBIN1 level decreased in humans with heart failure, a condition with reduced cardiac muscle cBIN1, both of which support cBIN1 release in MPs from human hearts. Exploring putative mechanisms of MP release, we found that the membrane fission complex endosomal sorting complexes required for transport (ESCRT-III subunit charged multivesicular body protein 4B (CHMP4B colocalizes and coimmunoprecipitates with cBIN1, an interaction enhanced by actin stabilization. In HeLa cells with cBIN1 overexpression, knockdown of CHMP4B reduced the release of cBIN1-MPs. Using truncation mutants, we identified that the N-terminal BAR (N-BAR domain in cBIN1 is required for CHMP4B binding and MP release. This study links the BAR protein superfamily

  1. The ESCRT-III pathway facilitates cardiomyocyte release of cBIN1-containing microparticles.

    Science.gov (United States)

    Xu, Bing; Fu, Ying; Liu, Yan; Agvanian, Sosse; Wirka, Robert C; Baum, Rachel; Zhou, Kang; Shaw, Robin M; Hong, TingTing

    2017-08-01

    Microparticles (MPs) are cell-cell communication vesicles derived from the cell surface plasma membrane, although they are not known to originate from cardiac ventricular muscle. In ventricular cardiomyocytes, the membrane deformation protein cardiac bridging integrator 1 (cBIN1 or BIN1+13+17) creates transverse-tubule (t-tubule) membrane microfolds, which facilitate ion channel trafficking and modulate local ionic concentrations. The microfold-generated microdomains continuously reorganize, adapting in response to stress to modulate the calcium signaling apparatus. We explored the possibility that cBIN1-microfolds are externally released from cardiomyocytes. Using electron microscopy imaging with immunogold labeling, we found in mouse plasma that cBIN1 exists in membrane vesicles about 200 nm in size, which is consistent with the size of MPs. In mice with cardiac-specific heterozygous Bin1 deletion, flow cytometry identified 47% less cBIN1-MPs in plasma, supporting cardiac origin. Cardiac release was also evidenced by the detection of cBIN1-MPs in medium bathing a pure population of isolated adult mouse cardiomyocytes. In human plasma, osmotic shock increased cBIN1 detection by enzyme-linked immunosorbent assay (ELISA), and cBIN1 level decreased in humans with heart failure, a condition with reduced cardiac muscle cBIN1, both of which support cBIN1 release in MPs from human hearts. Exploring putative mechanisms of MP release, we found that the membrane fission complex endosomal sorting complexes required for transport (ESCRT)-III subunit charged multivesicular body protein 4B (CHMP4B) colocalizes and coimmunoprecipitates with cBIN1, an interaction enhanced by actin stabilization. In HeLa cells with cBIN1 overexpression, knockdown of CHMP4B reduced the release of cBIN1-MPs. Using truncation mutants, we identified that the N-terminal BAR (N-BAR) domain in cBIN1 is required for CHMP4B binding and MP release. This study links the BAR protein superfamily to the ESCRT

  2. Cardiac injury of the newborn mammalian heart accelerates cardiomyocyte terminal differentiation

    DEFF Research Database (Denmark)

    Zebrowski, David C.; Jensen, Charlotte H.; Becker, Robert

    2017-01-01

    exhibited midbody formation consistent with successful abscission, whereas those from 3 day-old cardiomyocytes after apical resection exhibited midbody formation consistent with abscission failure. Lastly, injured hearts failed to fully regenerate as evidenced by persistent scarring and reduced wall motion......After birth cardiomyocytes undergo terminal differentiation, characterized by binucleation and centrosome disassembly, rendering the heart unable to regenerate. Yet, it has been suggested that newborn mammals regenerate their hearts after apical resection by cardiomyocyte proliferation. Thus, we...... increased rate of binucleation there was a nearly 2-fold increase in the number of cardiomyocytes in mitosis indicating that the majority of injury-induced cardiomyocyte cell cycle activity results in binucleation, not proliferation. Concurrently, cardiomyocytes undergoing cytokinesis from embryonic hearts...

  3. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration.

    Science.gov (United States)

    Patterson, Michaela; Barske, Lindsey; Van Handel, Ben; Rau, Christoph D; Gan, Peiheng; Sharma, Avneesh; Parikh, Shan; Denholtz, Matt; Huang, Ying; Yamaguchi, Yukiko; Shen, Hua; Allayee, Hooman; Crump, J Gage; Force, Thomas I; Lien, Ching-Ling; Makita, Takako; Lusis, Aldons J; Kumar, S Ram; Sucov, Henry M

    2017-09-01

    Adult mammalian cardiomyocyte regeneration after injury is thought to be minimal. Mononuclear diploid cardiomyocytes (MNDCMs), a relatively small subpopulation in the adult heart, may account for the observed degree of regeneration, but this has not been tested. We surveyed 120 inbred mouse strains and found that the frequency of adult mononuclear cardiomyocytes was surprisingly variable (>7-fold). Cardiomyocyte proliferation and heart functional recovery after coronary artery ligation both correlated with pre-injury MNDCM content. Using genome-wide association, we identified Tnni3k as one gene that influences variation in this composition and demonstrated that Tnni3k knockout resulted in elevated MNDCM content and increased cardiomyocyte proliferation after injury. Reciprocally, overexpression of Tnni3k in zebrafish promoted cardiomyocyte polyploidization and compromised heart regeneration. Our results corroborate the relevance of MNDCMs in heart regeneration. Moreover, they imply that intrinsic heart regeneration is not limited nor uniform in all individuals, but rather is a variable trait influenced by multiple genes.

  4. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    Science.gov (United States)

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  5. Rac1 modulates cardiomyocyte adhesion during mouse embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Issa, Radwan, E-mail: rabuissa@umich.edu

    2015-01-24

    Highlights: • Conditional knockout of Rac1 using Nkx2.5 Cre line is lethal at E13.5. • The myocardium of the mutant is thin and disorganized. • The phenotype is not due to cardiomyocyte low proliferation or apoptosis. • The phenotype is due to specific defect in cardiomyocyte adhesion. - Abstract: Rac1, a member of the Rho subfamily of small GTPases, is involved in morphogenesis and differentiation of many cell types. Here we define a role of Rac1 in cardiac development by specifically deleting Rac1 in the pre-cardiac mesoderm using the Nkx2.5-Cre transgenic driver line. Rac1-conditional knockout embryos initiate heart development normally until embryonic day 11.5 (E11.5); their cardiac mesoderm is specified, and the heart tube is formed and looped. However, by E12.5-E13.5 the mutant hearts start failing and embryos develop edema and hemorrhage which is probably the cause for the lethality observed soon after. The hearts of Rac1-cKO embryos exhibit disorganized and thin myocardial walls and defects in outflow tract alignment. No significant differences of cardiomyocyte death or proliferation were found between developing control and mutant embryos. To uncover the role of Rac1 in the heart, E11.5 primary heart cells were cultured and analyzed in vitro. Rac1-deficient cardiomyocytes were less spread, round and loosely attached to the substrate and to each other implying that Rac1-mediated signaling is required for appropriate cell–cell and/or cellmatrix adhesion during cardiac development.

  6. Apoptosis of rats’ cardiomyocytes after chronic energy drinks consumption

    Directory of Open Access Journals (Sweden)

    Slawinski Miroslaw Aleksander

    2018-03-01

    Full Text Available Energy drinks (ED are beverages containing caffeine, taurine, vitamins, herbal extracts, and sugar or sweeteners. They are marketed as capable of improving stamina, athletic performance and concentration, moreover, as serving as a source of energy. Still, there are very few papers describing the impact of ED on cell biology – including cell apoptosis within tissues. Therefore, in our study, we assessed the symptoms of rat cardiomyocytes apoptosis after 8 weeks consumption of ED.

  7. Rac1 modulates cardiomyocyte adhesion during mouse embryonic development

    International Nuclear Information System (INIS)

    Abu-Issa, Radwan

    2015-01-01

    Highlights: • Conditional knockout of Rac1 using Nkx2.5 Cre line is lethal at E13.5. • The myocardium of the mutant is thin and disorganized. • The phenotype is not due to cardiomyocyte low proliferation or apoptosis. • The phenotype is due to specific defect in cardiomyocyte adhesion. - Abstract: Rac1, a member of the Rho subfamily of small GTPases, is involved in morphogenesis and differentiation of many cell types. Here we define a role of Rac1 in cardiac development by specifically deleting Rac1 in the pre-cardiac mesoderm using the Nkx2.5-Cre transgenic driver line. Rac1-conditional knockout embryos initiate heart development normally until embryonic day 11.5 (E11.5); their cardiac mesoderm is specified, and the heart tube is formed and looped. However, by E12.5-E13.5 the mutant hearts start failing and embryos develop edema and hemorrhage which is probably the cause for the lethality observed soon after. The hearts of Rac1-cKO embryos exhibit disorganized and thin myocardial walls and defects in outflow tract alignment. No significant differences of cardiomyocyte death or proliferation were found between developing control and mutant embryos. To uncover the role of Rac1 in the heart, E11.5 primary heart cells were cultured and analyzed in vitro. Rac1-deficient cardiomyocytes were less spread, round and loosely attached to the substrate and to each other implying that Rac1-mediated signaling is required for appropriate cell–cell and/or cellmatrix adhesion during cardiac development

  8. Shock Wave Therapy Promotes Cardiomyocyte Autophagy and Survival during Hypoxia

    Directory of Open Access Journals (Sweden)

    Ling Du

    2017-06-01

    Full Text Available Background: Autophagy plays an important role in cardiovascular disease. Controversy still exists regarding the effect of autophagy on ischemic/hypoxic myocardium. Cardiac shock wave therapy (CSWT is an effective alternative treatment for refractory ischemic heart disease. Whether CSWT can regulate cardiomyocyte autophagy under hypoxic conditions is not clear. We established a myocardial hypoxia model using the H9c2 cell line and performed shock waves (SWs treatment to evaluate the effect of SW on autophagy. Methods: The H9c2 cells were incubated under hypoxic conditions, and SW treatment was then performed at energies of 0.02, 0.05, or 0.10 mJ/mm2. The cell viability and intracellular ATP level were examined. Western blot analysis was used to assess the expression of LC3B, AMPK, mTOR, Beclin-1, Sirt1, and HIF-1α. Autophagic vacuoles were visualized by monodansylcadaverine staining. Results: After the 24-hour hypoxic period, cardiomyocyte viability and ATP levels were decreased and autophagy was significantly increased in H9c2 cells. SW treatment with an energy of 0.05 mJ/mm2 significantly increased the cellular viability, ATP level, LC3B-II/I, and number of autophagic vacuoles. In addition, phosphorylated AMPK and Sirt1 were increased and phosphorylated mTOR and HIF-1α were decreased after SW treatment. Conclusion: SW treatment can potentially promote cardiomyocyte autophagy during hypoxia and protect cardiomyocyte function by regulating the AMPK/mTOR pathway.

  9. Mutations in Alström Protein Impair Terminal Differentiation of Cardiomyocytes

    OpenAIRE

    Shenje, Lincoln T.; Andersen, Peter; Halushka, Marc K.; Lui, Cecillia; Fernandez, Laviel; Collin, Gayle B.; Amat-Alarcon, Nuria; Meschino, Wendy; Cutz, Ernest; Chang, Kenneth; Yonescu, Raluca; Batista, Denise A. S.; Chen, Yan; Chelko, Stephen; Crosson, Jane E.

    2014-01-01

    Cardiomyocyte cell division and replication in mammals proceed through embryonic development and abruptly decline soon after birth. The process governing cardiomyocyte cell cycle arrest is poorly understood. Here we carry out whole exome sequencing in an infant with evidence of persistent postnatal cardiomyocyte replication to determine the genetic risk factors. We identify compound heterozygous ALMS1 mutations in the proband, and confirm their presence in her affected sibling, one copy inher...

  10. Cation dyshomeostasis and cardiomyocyte necrosis: the Fleckenstein hypothesis revisited

    Science.gov (United States)

    Borkowski, Brian J.; Cheema, Yaser; Shahbaz, Atta U.; Bhattacharya, Syamal K.; Weber, Karl T.

    2011-01-01

    An ongoing loss of cardiomyocytes to apoptotic and necrotic cell death pathways contributes to the progressive nature of heart failure. The pathophysiological origins of necrotic cell loss relate to the neurohormonal activation that accompanies acute and chronic stressor states and which includes effector hormones of the adrenergic nervous system. Fifty years ago, Albrecht Fleckenstein and coworkers hypothesized the hyperadrenergic state, which accompanies such stressors, causes cardiomyocyte necrosis based on catecholamine-initiated excessive intracellular Ca2+ accumulation (EICA), and mitochondrial Ca2+ overloading in particular, in which the ensuing dysfunction and structural degeneration of these organelles leads to necrosis. In recent years, two downstream factors have been identified which, together with EICA, constitute a signal–transducer–effector pathway: (i) mitochondria-based induction of oxidative stress, in which the rate of reactive oxygen metabolite generation exceeds their rate of detoxification by endogenous antioxidant defences; and (ii) the opening of the mitochondrial inner membrane permeability transition pore (mPTP) followed by organellar swelling and degeneration. The pathogenesis of stress-related cardiomyopathy syndromes is likely related to this pathway. Other factors which can account for cytotoxicity in stressor states include: hypokalaemia; ionized hypocalcaemia and hypomagnesaemia with resultant elevations in parathyroid hormone serving as a potent mediator of EICA; and hypozincaemia with hyposelenaemia, which compromise antioxidant defences. Herein, we revisit the Fleckenstein hypothesis of EICA in leading to cardiomyocyte necrosis and the central role played by mitochondria. PMID:21398641

  11. Mutations in Alström protein impair terminal differentiation of cardiomyocytes.

    Science.gov (United States)

    Shenje, Lincoln T; Andersen, Peter; Halushka, Marc K; Lui, Cecillia; Fernandez, Laviel; Collin, Gayle B; Amat-Alarcon, Nuria; Meschino, Wendy; Cutz, Ernest; Chang, Kenneth; Yonescu, Raluca; Batista, Denise A S; Chen, Yan; Chelko, Stephen; Crosson, Jane E; Scheel, Janet; Vricella, Luca; Craig, Brian D; Marosy, Beth A; Mohr, David W; Hetrick, Kurt N; Romm, Jane M; Scott, Alan F; Valle, David; Naggert, Jürgen K; Kwon, Chulan; Doheny, Kimberly F; Judge, Daniel P

    2014-03-04

    Cardiomyocyte cell division and replication in mammals proceed through embryonic development and abruptly decline soon after birth. The process governing cardiomyocyte cell cycle arrest is poorly understood. Here we carry out whole-exome sequencing in an infant with evidence of persistent postnatal cardiomyocyte replication to determine the genetic risk factors. We identify compound heterozygous ALMS1 mutations in the proband, and confirm their presence in her affected sibling, one copy inherited from each heterozygous parent. Next, we recognize homozygous or compound heterozygous truncating mutations in ALMS1 in four other children with high levels of postnatal cardiomyocyte proliferation. Alms1 mRNA knockdown increases multiple markers of proliferation in cardiomyocytes, the percentage of cardiomyocytes in G2/M phases, and the number of cardiomyocytes by 10% in cultured cells. Homozygous Alms1-mutant mice have increased cardiomyocyte proliferation at 2 weeks postnatal compared with wild-type littermates. We conclude that deficiency of Alström protein impairs postnatal cardiomyocyte cell cycle arrest.

  12. Solving the puzzle of pluripotent stem cell-derived cardiomyocyte maturation: piece by piece.

    Science.gov (United States)

    Lundy, David J; Lee, Desy S; Hsieh, Patrick C H

    2017-03-01

    There is a growing need for in vitro models which can serve as platforms for drug screening and basic research. Human adult cardiomyocytes cannot be readily obtained or cultured, and so pluripotent stem cell-derived cardiomyocytes appear to be an attractive option. Unfortunately, these cells are structurally and functionally immature-more comparable to foetal cardiomyocytes than adult. A recent study by Ruan et al ., provides new insights into accelerating the maturation process and takes us a step closer to solving the puzzle of pluripotent stem cell-derived cardiomyocyte maturation.

  13. Mitochondrial translocation of Nur77 induced by ROS contributed to cardiomyocyte apoptosis in metabolic syndrome

    International Nuclear Information System (INIS)

    Xu, Aibin; Liu, Jingyi; Liu, Peilin; Jia, Min; Wang, Han; Tao, Ling

    2014-01-01

    Highlights: • Metabolic syndrome exacerbated MI/R induced injury accompanied by decreased Nur77. • ROS led to Nur77 translocation in metabolic syndrome. • Inhibiting relocation of Nur77 to mitochondria reduced ROS-induced cardiomyocyte injury in metabolic syndrome. - Abstract: Metabolic syndrome is a major risk factor for cardiovascular diseases, and increased cardiomyocyte apoptosis which contributes to cardiac dysfunction after myocardial ischemia/reperfusion (MI/R) injury. Nur77, a nuclear orphan receptor, is involved in such various cellular events as apoptosis, proliferation, and glucose and lipid metabolism in several cell types. Apoptosis is positively correlated with mitochondrial translocation of Nur77 in the cancer cells. However, the roles of Nur77 on cardiac myocytes in patients with metabolic syndrome remain unclear. The objective of this study was to determine whether Nur77 may contribute to cardiac apoptosis in patients with metabolic syndrome after I/R injury, and, if so, to identify the underlying molecular mechanisms responsible. We used leptin-deficient (ob/ob) mice to make metabolic syndrome models. In this report, we observed that, accompanied by the substantial decline in apoptosis inducer Nur77, MI/R induced cardiac dysfunction was manifested as cardiomyopathy and increased ROS. Using the neonatal rat cardiac myocytes cultured in a high-glucose and high-fat medium, we found that excessive H 2 O 2 led to the significant alteration in mitochondrial membrane potential and translocation of Nur77 from the nucleus to the mitochondria. However, inhibition of the relocation of Nur77 to mitochondria via Cyclosporin A reversed the changes in membrane potential mediated by H 2 O 2 and reduced myocardial cell injury. Therefore, these data provide a potential underlying mechanism for cardiac dysfunction in metabolic syndrome and the suppression of Nur77 translocation may provide an effective approach to reduce cardiac injury in the process

  14. Mitochondrial translocation of Nur77 induced by ROS contributed to cardiomyocyte apoptosis in metabolic syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Aibin; Liu, Jingyi [Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an (China); Institute of Cardiovascular Disease, General Hospital of Beijing Command, PLA, Beijing (China); Liu, Peilin; Jia, Min; Wang, Han [Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an (China); Tao, Ling, E-mail: lingtao2006@gmail.com [Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an (China)

    2014-04-18

    Highlights: • Metabolic syndrome exacerbated MI/R induced injury accompanied by decreased Nur77. • ROS led to Nur77 translocation in metabolic syndrome. • Inhibiting relocation of Nur77 to mitochondria reduced ROS-induced cardiomyocyte injury in metabolic syndrome. - Abstract: Metabolic syndrome is a major risk factor for cardiovascular diseases, and increased cardiomyocyte apoptosis which contributes to cardiac dysfunction after myocardial ischemia/reperfusion (MI/R) injury. Nur77, a nuclear orphan receptor, is involved in such various cellular events as apoptosis, proliferation, and glucose and lipid metabolism in several cell types. Apoptosis is positively correlated with mitochondrial translocation of Nur77 in the cancer cells. However, the roles of Nur77 on cardiac myocytes in patients with metabolic syndrome remain unclear. The objective of this study was to determine whether Nur77 may contribute to cardiac apoptosis in patients with metabolic syndrome after I/R injury, and, if so, to identify the underlying molecular mechanisms responsible. We used leptin-deficient (ob/ob) mice to make metabolic syndrome models. In this report, we observed that, accompanied by the substantial decline in apoptosis inducer Nur77, MI/R induced cardiac dysfunction was manifested as cardiomyopathy and increased ROS. Using the neonatal rat cardiac myocytes cultured in a high-glucose and high-fat medium, we found that excessive H{sub 2}O{sub 2} led to the significant alteration in mitochondrial membrane potential and translocation of Nur77 from the nucleus to the mitochondria. However, inhibition of the relocation of Nur77 to mitochondria via Cyclosporin A reversed the changes in membrane potential mediated by H{sub 2}O{sub 2} and reduced myocardial cell injury. Therefore, these data provide a potential underlying mechanism for cardiac dysfunction in metabolic syndrome and the suppression of Nur77 translocation may provide an effective approach to reduce cardiac injury in the

  15. Inward rectifier potassium channels in the HL-1 cardiomyocyte-derived cell line.

    Science.gov (United States)

    Goldoni, Dana; Zhao, YouYou; Green, Brian D; McDermott, Barbara J; Collins, Anthony

    2010-11-01

    HL-1 is a line of immortalized cells of cardiomyocyte origin that are a useful complement to native cardiomyocytes in studies of cardiac gene regulation. Several types of ion channel have been identified in these cells, but not the physiologically important inward rectifier K(+) channels. Our aim was to identify and characterize inward rectifier K(+) channels in HL-1 cells. External Ba(2+) (100 µM) inhibited 44 ± 0.05% (mean ± s.e.m., n = 11) of inward current in whole-cell patch-clamp recordings. The reversal potential of the Ba(2+)-sensitive current shifted with external [K(+)] as expected for K(+)-selective channels. The slope conductance of the inward Ba(2+)-sensitive current increased with external [K(+)]. The apparent Kd for Ba(2+) was voltage dependent, ranging from 15 µM at -150  mV to 148 µM at -75  mV in 120  mM external K(+). This current was insensitive to 10 µM glybenclamide. A component of whole-cell current was sensitive to 150 µM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), although it did not correspond to the Ba(2+)-sensitive component. The effect of external 1 mM Cs(+) was similar to that of Ba(2+). Polymerase chain reaction using HL-1 cDNA as template and primers specific for the cardiac inward rectifier K(ir)2.1 produced a fragment of the expected size that was confirmed to be K(ir)2.1 by DNA sequencing. In conclusion, HL-1 cells express a current that is characteristic of cardiac inward rectifier K(+) channels, and express K(ir)2.1 mRNA. This cell line may have use as a system for studying inward rectifier gene regulation in a cardiomyocyte phenotype. © 2010 Wiley-Liss, Inc.

  16. Exercise training prior to myocardial infarction attenuates cardiac deterioration and cardiomyocyte dysfunction in rats

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Marchesi Bozi

    2013-04-01

    Full Text Available OBJECTIVES: The present study was performed to investigate 1 whether aerobic exercise training prior to myocardial infarction would prevent cardiac dysfunction and structural deterioration and 2 whether the potential cardiac benefits of aerobic exercise training would be associated with preserved morphological and contractile properties of cardiomyocytes in post-infarct remodeled myocardium. METHODS: Male Wistar rats underwent an aerobic exercise training protocol for eight weeks. The rats were then assigned to sham surgery (SHAM, sedentary lifestyle and myocardial infarction or exercise training and myocardial infarction groups and were evaluated 15 days after the surgery. Left ventricular tissue was analyzed histologically, and the contractile function of isolated myocytes was measured. Student's t-test was used to analyze infarct size and ventricular wall thickness, and the other parameters were analyzed by the Kruskal-Wallis test followed by Dunn's test or a one-way analysis of variance followed by Tukey's test (p<0.05. RESULTS: Myocardial infarctions in exercise-trained animals resulted in a smaller myocardial infarction extension, a thicker infarcted wall and less collagen accumulation as compared to myocardial infarctions in sedentary animals. Myocardial infarction-induced left ventricular dilation and cardiac dysfunction, as evaluated by +dP/dt and -dP/dt, were both prevented by previous aerobic exercise training. Moreover, aerobic exercise training preserved cardiac myocyte shortening, improved the maximum shortening and relengthening velocities in infarcted hearts and enhanced responsiveness to calcium. CONCLUSION: Previous aerobic exercise training attenuated the cardiac dysfunction and structural deterioration promoted by myocardial infarction, and such benefits were associated with preserved cardiomyocyte morphological and contractile properties.

  17. Optimal sizes and siting of nuclear fuel reprocessing plants; Tailles et localisations optimales des usines de retraitement des combustibles nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Thiriet, L; Deledicq, A [Commissariat a l' Energie Atomique, Siege (France). Centre d' Etudes Nucleaires

    1967-07-01

    The expansion of a nuclear economy entails the development of fuel process and reprocessing plant programmes. The model proposed makes it possible to select the size, the site and the start-up schedule of the plants in such a way as to minimize the total freight and reprocessing costs. As an illustration, we have approached the problem of burnt natural uranium processing plants related to natural uranium-graphite as nuclear power stations. The sites and annual output of the reactors, the possible plant sites and cost functions (freight and reprocessing) are supposed to be known. The method consists in first approaching the process plant problem as a Dynamic Programming problem, increasing programme slices (total reactor output) being explored sequentially. When the quantities of burnt natural uranium to be reprocessed are fixed, the minimization of the transport cost is then also carried out as a dynamic programming problem. The neighbourhood of the optimum process cost is explored in order to find the minimum summation of a suboptimal processing cost and corresponding optimal transport cost. As the reprocessing problem can be represented on a sequential graph, in order to compute the sub-optima, we developed and used a 'reflexion algorithm'. The method can be interpreted as a general mechanism for determining the optimum when to a sequential dynamic problem (for example an equipment programme) is added a complementary problem (transport, for instance). It also makes it possible to estimate the economic losses which result from the choice of a non optimal policy for other than economic reasons. (author) [French] L'expansion de l'economie nucleaire se traduit par un developpement des programmes d'usines d'elaboration et de retraitement des combustibles. Le modele propose permet de choisir la taille, la localisation et la cadence de mise en service des usines de maniere a minimiser le total des frais de transport et de retraitement. A titre d'exemple nous avons

  18. Immaturity of human stem-cell-derived cardiomyocytes in culture: fatal flaw or soluble problem?

    NARCIS (Netherlands)

    Veerman, Christiaan C.; Kosmidis, Georgios; Mummery, Christine L.; Casini, Simona; Verkerk, Arie O.; Bellin, Milena

    2015-01-01

    Cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are increasingly used to model cardiac disease, test drug efficacy and for safety pharmacology. Nevertheless, a major hurdle to more extensive use is their immaturity and similarity to fetal rather than adult cardiomyocytes. Here, we

  19. Microscale Generation of Cardiospheres Promotes Robust Enrichment of Cardiomyocytes Derived from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Doan C. Nguyen

    2014-08-01

    Full Text Available Cardiomyocytes derived from human pluripotent stem cells (hPSCs are a promising cell source for regenerative medicine, disease modeling, and drug discovery, all of which require enriched cardiomyocytes, ideally ones with mature phenotypes. However, current methods are typically performed in 2D environments that produce immature cardiomyocytes within heterogeneous populations. Here, we generated 3D aggregates of cardiomyocytes (cardiospheres from 2D differentiation cultures of hPSCs using microscale technology and rotary orbital suspension culture. Nearly 100% of the cardiospheres showed spontaneous contractility and synchronous intracellular calcium transients. Strikingly, from starting heterogeneous populations containing ∼10%–40% cardiomyocytes, the cell population within the generated cardiospheres featured ∼80%–100% cardiomyocytes, corresponding to an enrichment factor of up to 7-fold. Furthermore, cardiomyocytes from cardiospheres exhibited enhanced structural maturation in comparison with those from a parallel 2D culture. Thus, generation of cardiospheres represents a simple and robust method for enrichment of cardiomyocytes in microtissues that have the potential use in regenerative medicine as well as other applications.

  20. Dystrophin-deficient cardiomyocytes derived from human urine: New biologic reagents for drug discovery

    Directory of Open Access Journals (Sweden)

    Xuan Guan

    2014-03-01

    Full Text Available The ability to extract somatic cells from a patient and reprogram them to pluripotency opens up new possibilities for personalized medicine. Induced pluripotent stem cells (iPSCs have been employed to generate beating cardiomyocytes from a patient's skin or blood cells. Here, iPSC methods were used to generate cardiomyocytes starting from the urine of a patient with Duchenne muscular dystrophy (DMD. Urine was chosen as a starting material because it contains adult stem cells called urine-derived stem cells (USCs. USCs express the canonical reprogramming factors c-myc and klf4, and possess high telomerase activity. Pluripotency of urine-derived iPSC clones was confirmed by immunocytochemistry, RT-PCR and teratoma formation. Urine-derived iPSC clones generated from healthy volunteers and a DMD patient were differentiated into beating cardiomyocytes using a series of small molecules in monolayer culture. Results indicate that cardiomyocytes retain the DMD patient's dystrophin mutation. Physiological assays suggest that dystrophin-deficient cardiomyocytes possess phenotypic differences from normal cardiomyocytes. These results demonstrate the feasibility of generating cardiomyocytes from a urine sample and that urine-derived cardiomyocytes retain characteristic features that might be further exploited for mechanistic studies and drug discovery.

  1. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure

    NARCIS (Netherlands)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C.; van Meer, Berend; Ward-van Oostwaard, Dorien; Passier, Robert; Tertoolen, Leon G. J.; Mummery, Christine L.; Casini, Simona

    2015-01-01

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes

  2. Radiative nonrecoil nuclear finite size corrections of order $\\alpha(Z \\alpha)^5$ to the Lamb shift in light muonic atoms

    OpenAIRE

    Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.

    2017-01-01

    On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα)5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude...

  3. Imaging alterations of cardiomyocyte cAMP microdomains in disease

    Directory of Open Access Journals (Sweden)

    Alexander eFroese

    2015-08-01

    Full Text Available 3’,5’-cyclic adenosine monophosphate (cAMP is an important second messenger which regulates heart function by acting in distinct subcellular microdomains. Recent years have provided deeper mechanistic insights into compartmentalized cAMP signaling and its link to cardiac disease. In this mini review, we summarize newest developments in this field achieved by cutting-edge biochemical and biophysical techniques. We further compile the data from different studies into a bigger picture of so far uncovered alterations in cardiomyocyte cAMP microdomains which occur in compensated cardiac hypertrophy and chronic heart failure. Finally, future research directions and translational perspectives are briefly discussed.

  4. Calcineurin B homologous protein 3 negatively regulates cardiomyocyte hypertrophy via inhibition of glycogen synthase kinase 3 phosphorylation.

    Science.gov (United States)

    Kobayashi, Soushi; Nakamura, Tomoe Y; Wakabayashi, Shigeo

    2015-07-01

    Cardiac hypertrophy is a leading cause of serious heart diseases. Although many signaling molecules are involved in hypertrophy, the functions of some proteins in this process are still unknown. Calcineurin B homologous protein 3 (CHP3)/tescalcin is an EF-hand Ca(2+)-binding protein that is abundantly expressed in the heart; however, the function of CHP3 is unclear. Here, we aimed to identify the cardiac functions of CHP3. CHP3 was expressed in hearts at a wide range of developmental stages and was specifically detected in neonatal rat ventricular myocytes (NRVMs) but not in cardiac fibroblasts in culture. Moreover, knockdown of CHP3 expression using adenoviral-based RNA interference in NRVMs resulted in enlargement of cardiomyocyte size, concomitant with increased expression of a pathological hypertrophy marker ANP. This same treatment elevated glycogen synthase kinase (GSK3α/β) phosphorylation, which is known to inhibit GSK3 function. In contrast, CHP3 overexpression blocked the insulin-induced phosphorylation of GSK3α/β without affecting the phosphorylation of Akt, which is an upstream kinase of GSK3α/β, in HEK293 cells, and it inhibited both IGF-1-induced phosphorylation of GSK3β and cardiomyocyte hypertrophy in NRVMs. Co-immunoprecipitation experiments revealed that GSK3β interacted with CHP3. However, a Ca(2+)-binding-defective mutation of CHP3 (CHP3-D123A) also interacted with GSK3β and had the same inhibitory effect on GSK3α/β phosphorylation, suggesting that the action of CHP3 was independent of Ca(2+). These findings suggest that CHP3 functions as a novel negative regulator of cardiomyocyte hypertrophy via inhibition of GSK3α/β phosphorylation and subsequent enzymatic activation of GSK3α/β. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA{sub 2} activity

    Energy Technology Data Exchange (ETDEWEB)

    Takatani-Nakase, Tomoka, E-mail: nakase@mukogawa-u.ac.jp; Takahashi, Koichi, E-mail: koichi@mukogawa-u.ac.jp

    2015-07-17

    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA{sub 2}, which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death. - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA{sub 2} activity, leading to avoidance of non-apoptotic cell death.

  6. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA2 activity

    International Nuclear Information System (INIS)

    Takatani-Nakase, Tomoka; Takahashi, Koichi

    2015-01-01

    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA 2 , which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death. - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA 2 activity, leading to avoidance of non-apoptotic cell death

  7. Differentiation of mouse embryonic stem cells into cardiomyocytes via the hanging-drop and mass culture methods.

    Science.gov (United States)

    Fuegemann, Christopher J; Samraj, Ajoy K; Walsh, Stuart; Fleischmann, Bernd K; Jovinge, Stefan; Breitbach, Martin

    2010-12-01

    Herein, we describe two protocols for the in vitro differentiation of mouse embryonic stem cells (mESCs) into cardiomyocytes. mESCs are pluripotent and can be differentiated into cells of all three germ layers, including cardiomyocytes. The methods described here facilitate the differentiation of mESCs into the different cardiac subtypes (atrial-, ventricular-, nodal-like cells). The duration of cell culture determines whether preferentially early- or late-developmental stage cardiomyocytes can be obtained preferentially. This approach allows the investigation of cardiomyocyte development and differentiation in vitro, and also allows for the enrichment and isolation of physiologically intact cardiomyocytes for transplantation purposes. © 2010 by John Wiley & Sons, Inc.

  8. Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival.

    Science.gov (United States)

    Lin, Zhiqiang; Zhou, Pingzhu; von Gise, Alexander; Gu, Fei; Ma, Qing; Chen, Jinghai; Guo, Haidong; van Gorp, Pim R R; Wang, Da-Zhi; Pu, William T

    2015-01-02

    Yes-associated protein (YAP), the nuclear effector of Hippo signaling, regulates cellular growth and survival in multiple organs, including the heart, by interacting with TEA (transcriptional enhancer activator)-domain sequence-specific DNA-binding proteins. Recent studies showed that YAP stimulates cardiomyocyte proliferation and survival. However, the direct transcriptional targets through which YAP exerts its effects are poorly defined. To identify direct YAP targets that mediate its mitogenic and antiapoptotic effects in the heart. We identified direct YAP targets by combining differential gene expression analysis in YAP gain- and loss-of-function with genome-wide identification of YAP-bound loci using chromatin immunoprecipitation and high throughput sequencing. This screen identified Pik3cb, encoding p110β, a catalytic subunit of phosphoinositol-3-kinase, as a candidate YAP effector that promotes cardiomyocyte proliferation and survival. YAP and TEA-domain occupied a conserved enhancer within the first intron of Pik3cb, and this enhancer drove YAP-dependent reporter gene expression. Yap gain- and loss-of-function studies indicated that YAP is necessary and sufficient to activate the phosphoinositol-3-kinase-Akt pathway. Like Yap, Pik3cb gain-of-function stimulated cardiomyocyte proliferation, and Pik3cb knockdown dampened YAP mitogenic activity. Reciprocally, impaired heart function in Yap loss-of-function was significantly rescued by adeno-associated virus-mediated Pik3cb expression. Pik3cb is a crucial direct target of YAP, through which the YAP activates phosphoinositol-3-kinase-AKT pathway and regulates cardiomyocyte proliferation and survival. © 2014 American Heart Association, Inc.

  9. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Helen P McWilliams-Koeppen

    Full Text Available Light chain (AL amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(PH-dependent oxidoreductase, without causing significant cell death. The presence of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. These data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.

  10. Nuclear

    International Nuclear Information System (INIS)

    2014-01-01

    This document proposes a presentation and discussion of the main notions, issues, principles, or characteristics related to nuclear energy: radioactivity (presence in the environment, explanation, measurement, periods and activities, low doses, applications), fuel cycle (front end, mining and ore concentration, refining and conversion, fuel fabrication, in the reactor, back end with reprocessing and recycling, transport), the future of the thorium-based fuel cycle (motivations, benefits and drawbacks), nuclear reactors (principles of fission reactors, reactor types, PWR reactors, BWR, heavy-water reactor, high temperature reactor of HTR, future reactors), nuclear wastes (classification, packaging and storage, legal aspects, vitrification, choice of a deep storage option, quantities and costs, foreign practices), radioactive releases of nuclear installations (main released radio-elements, radioactive releases by nuclear reactors and by La Hague plant, gaseous and liquid effluents, impact of releases, regulation), the OSPAR Convention, management and safety of nuclear activities (from control to quality insurance, to quality management and to sustainable development), national safety bodies (mission, means, organisation and activities of ASN, IRSN, HCTISN), international bodies, nuclear and medicine (applications of radioactivity, medical imagery, radiotherapy, doses in nuclear medicine, implementation, the accident in Epinal), nuclear and R and D (past R and D programmes and expenses, main actors in France and present funding, main R and D axis, international cooperation)

  11. Defects of mtDNA Replication Impaired Mitochondrial Biogenesis During Trypanosoma cruzi Infection in Human Cardiomyocytes and Chagasic Patients: The Role of Nrf1/2 and Antioxidant Response

    Science.gov (United States)

    Wan, Xianxiu; Gupta, Shivali; Zago, Maria P.; Davidson, Mercy M.; Dousset, Pierre; Amoroso, Alejandro; Garg, Nisha Jain

    2012-01-01

    Background Mitochondrial dysfunction is a key determinant in chagasic cardiomyopathy development in mice; however, its relevance in human Chagas disease is not known. We determined if defects in mitochondrial biogenesis and dysregulation of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1)–regulated transcriptional pathways constitute a mechanism or mechanisms underlying mitochondrial oxidative-phosphorylation (OXPHOS) deficiency in human Chagas disease. Methods and Results We utilized human cardiomyocytes and left-ventricular tissue from chagasic and other cardiomyopathy patients and healthy donors (n>6/group). We noted no change in citrate synthase activity, yet mRNA and/or protein levels of subunits of the respiratory complexes were significantly decreased in Trypanosoma cruzi–infected cardiomyocytes (0 to 24 hours) and chagasic hearts. We observed increased mRNA and decreased nuclear localization of PGC-1-coactivated transcription factors, yet the expression of genes for PPARγ-regulated fatty acid oxidation and nuclear respiratory factor (NRF1/2)–regulated mtDNA replication and transcription machinery was enhanced in infected cardiomyocytes and chagasic hearts. The D-loop formation was normal or higher, but mtDNA replication and mtDNA content were decreased by 83% and 40% to 65%, respectively. Subsequently, we noted that reactive oxygen species (ROS), oxidative stress, and mtDNA oxidation were significantly increased, yet NRF1/2-regulated antioxidant gene expression remained compromised in infected cardiomyocytes and chagasic hearts. Conclusions The replication of mtDNA was severely compromised, resulting in a significant loss of mtDNA and expression of OXPHOS genes in T cruzi–infected cardiomyocytes and chagasic hearts. Our data suggest increased ROS generation and selective functional incapacity of NRF2-mediated antioxidant gene expression played a role in the defects in mtDNA replication and unfitness of mtDNA for

  12. ''Safety rules of fatigue damage for nuclear facilities pressurized equipment at the sizing and the operation stage''

    International Nuclear Information System (INIS)

    Grandemange, J.M.; Faidy, C.

    2001-01-01

    This paper presents the method applied in the nuclear industry in the domain of the fatigue risk safety. It recalls the fatigue curves origins and presents the technical requirements implemented during the design and the construction. It also presents the follow-up of transients in service and the periodical examinations. (A.L.B.)

  13. c-kitpos GATA-4 high rat cardiac stem cells foster adult cardiomyocyte survival through IGF-1 paracrine signalling.

    Directory of Open Access Journals (Sweden)

    Nanako Kawaguchi

    2010-12-01

    Full Text Available Resident c-kit positive (c-kitpos cardiac stem cells (CSCs could be considered the most appropriate cell type for myocardial regeneration therapies. However, much is still unknown regarding their biological properties and potential.We produced clones of high and low expressing GATA-4 CSCs from long-term bulk-cultured c-kitpos CSCs isolated from adult rat hearts. When c-kitpos GATA-4 high expressing clonal CSCs (cCSCs were co-cultured with adult rat ventricular cardiomyocytes, we observed increased survival and contractility of the cardiomyocytes, compared to cardiomyocytes cultured alone, co-cultured with fibroblasts or c-kitpos GATA-4 low expressing cCSCs. When analysed by ELISA, the concentration of IGF-1 was significantly increased in the c-kitpos GATA-4 high cCSC/cardiomyocyte co-cultures and there was a significant correlation between IGF-1 concentration and cardiomyocyte survival. We showed the activation of the IGF-1 receptor and its downstream molecular targets in cardiomyocytes co-cultured with c-kitpos GATA-4 high cCSCs but not in cardiomyocytes that were cultured alone, co-cultured with fibroblasts or c-kitpos GATA-4 low cCSCs. Addition of a blocking antibody specific to the IGF-1 receptor inhibited the survival of cardiomyocytes and prevented the activation of its signalling in cardiomyocytes in the c-kitpos GATA-4 high cCSC/cardiomyocyte co-culture system. IGF-1 supplementation or IGF-1 high conditioned medium taken from the co-culture of c-kitpos GATA-4 high cCSCs plus cardiomyocytes did extend the survival and contractility of cardiomyocytes cultured alone and cardiomyocytes co-cultured with c-kitpos GATA-4 low cCSCs.c-kitpos GATA-4 high cCSCs exert a paracrine survival effect on cardiomyocytes through induction of the IGF-1R and signalling pathway.

  14. Effects of gamma-ray radiation on activity and apoptosis of rat cardiomyocytes in vitro

    International Nuclear Information System (INIS)

    Hu Shunying; Jiang Changsheng; Chen Guowei; Duan Haifeng; Wang Rongliang; Wu Bin; Guo Zikuan; Wang Lisheng

    2007-01-01

    Objective: It is reported that radiation-induced myocardial degeneration in the rat is preceded by changes in capillary structure and function. The aim of the present study is to investigate direct effect of gamma ray radiation on activity and apoptosis of cultured rat cardiomyocytes in vitro. Methods: The study was performed using primary cell cultures of cardiomyocytes isolated from hearts of now-born rats. After being cultured for 72h in vitro, cardiomyocytes were irradiated with single dose of 5 Gy, 10 Gy, 20 Gy of gamma ray respectively. At 48h post-irradiation, the concentration of LDH in the supernatant of cell culture was tested using methods introduced by International Federation of clinical chemistry (IFCC), and apoptosis was determined with flow cytometry. The viability of myocytes was determined with crystal violet test and MTT test at 48h and 120h post-irradiation respectively. Results: LDH concentration in the supernatant of cell culture of cardiomyocytes were increased significantly with the irradiation dose augment. Flow cytometry confirmed the induction of apoptosis in response to different gamma ray doses irradiation at 48h after irradiation. The viable cardiomyocytes irradiated by gamma ray were significantly declined at 120h after irradiation compared to un-irradiated cells, however there were no significant difference between two groups at 48h post-irradiation. Dose-effect relationship was demonstrated between cardiomyocyte apoptosis, viability and irradiation dose in the study. Conclusion: The study demonstrates gamma ray radiation can cause direct damage to cultured cardiomyocytes, including inhibiting activity and inducing apoptosis of cardiomyocytes in vitro, which shows dose effect relationship. The mechanism of gamma ray irradiation induced injury to cardiomyocytes should be investigated further. (authors)

  15. Cardiomyocyte architectural plasticity in fetal, neonatal, and adult pig hearts delineated with diffusion tensor MRI.

    Science.gov (United States)

    Zhang, Lei; Allen, John; Hu, Lingzhi; Caruthers, Shelton D; Wickline, Samuel A; Chen, Junjie

    2013-01-15

    Cardiomyocyte organization is a critical determinant of coordinated cardiac contractile function. Because of the acute opening of the pulmonary circulation, the relative workload of the left ventricle (LV) and right ventricle (RV) changes substantially immediately after birth. We hypothesized that three-dimensional cardiomyocyte architecture might be required to adapt rapidly to accommodate programmed perinatal changes of cardiac function. Isolated fixed hearts from pig fetuses or pigs at midgestation, preborn, postnatal day 1 (P1), postnatal day 5, postnatal day 14 (P14), and adulthood (n = 5 for each group) were acquired for diffusion-weighted magnetic resonance imaging. Cardiomyocyte architecture was visualized by three-dimensional fiber tracking and was quantitatively evaluated by the measured helix angle (α(h)). Upon the completion of MRI, hearts were sectioned and stained with hematoxylin/eosin (H&E) to evaluate cardiomyocyte alignment, with picrosirius red to evaluate collagen content, and with anti-Ki67 to evaluate postnatal cell proliferation. The helical architecture of cardiomyocyte was observed as early as the midgestational period. Postnatal changes of cardiomyocyte architecture were observed from P1 to P14, which primary occurred in the septum and RV free wall (RVFW). In the septum, the volume ratio of LV- vs. RV-associated cardiomyocytes rapidly changed from RV-LV balanced pattern at birth to LV dominant pattern by P14. In the RVFW, subendocardial α(h) decreased by ~30° from P1 to P14. These findings indicate that the helical architecture of cardiomyocyte is developed as early as the midgestation period. Substantial and rapid adaptive changes in cardiac microarchitecture suggested considerable developmental plasticity of cardiomyocyte form and function in the postnatal period in response to altered cardiac mechanical function.

  16. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Hidalgo, Cecilia [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Lavandero, Sergio, E-mail: slavander@uchile.cl [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile)

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  17. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    International Nuclear Information System (INIS)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo; Hidalgo, Cecilia; Lavandero, Sergio

    2009-01-01

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal α-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  18. Radiative nonrecoil nuclear finite size corrections of order α(Zα){sup 5} to the hyperfine splitting of S-states in muonic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Faustov, R.N. [Dorodnicyn Computing Centre, Russian Academy of Science, Vavilov Str. 40, 119991 Moscow (Russian Federation); Martynenko, A.P. [Samara State University, Pavlov Str. 1, 443011 Samara (Russian Federation); Samara State Aerospace University named after S.P. Korolyov, Moskovskoye Shosse 34, 443086 Samara (Russian Federation); Martynenko, G.A.; Sorokin, V.V. [Samara State University, Pavlov Str. 1, 443011 Samara (Russian Federation)

    2014-06-02

    On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα){sup 5} to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried–Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.

  19. Radiative nonrecoil nuclear finite size corrections of order α(Zα)5 to the hyperfine splitting of S-states in muonic hydrogen

    International Nuclear Information System (INIS)

    Faustov, R.N.; Martynenko, A.P.; Martynenko, G.A.; Sorokin, V.V.

    2014-01-01

    On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα) 5 to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried–Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.

  20. Earthquake resistance of cracked concrete embedded with large size rebars (D43 and D57) in nuclear containment

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Y-C. [Chaoyang Univ. of Tech., Taichung, Taiwan (China); Pei, K-C. [Inst. of Nuclear Energy Research, Taiwan (China)

    2014-07-01

    The bond behavior of varying size re-bar (D19, D32, D43 and D57) embedded in concrete, under cyclic load in a pullout test, were investigated through a series of experiments and monitored in real-time by acoustic emission (AE) herein. Parallel tests of specimens with an existing crack were also conducted to observe the behavior of cracked concrete subject to cyclic load. The detailed acoustics information can be used for analyzing and comparing the effects of concrete with varying size re-bar. The results provide useful in formation in evaluating the safety of NPP RC structure subjected to cyclic load. (author)

  1. Targeting Cardiomyocyte Ca2+ Homeostasis in Heart Failure

    Science.gov (United States)

    Røe, Åsmund T.; Frisk, Michael; Louch, William E.

    2015-01-01

    Improved treatments for heart failure patients will require the development of novel therapeutic strategies that target basal disease mechanisms. Disrupted cardiomyocyte Ca2+ homeostasis is recognized as a major contributor to the heart failure phenotype, as it plays a key role in systolic and diastolic dysfunction, arrhythmogenesis, and hypertrophy and apoptosis signaling. In this review, we outline existing knowledge of the involvement of Ca2+ homeostasis in these deficits, and identify four promising targets for therapeutic intervention: the sarcoplasmic reticulum Ca2+ ATPase, the Na+-Ca2+ exchanger, the ryanodine receptor, and t-tubule structure. We discuss experimental data indicating the applicability of these targets that has led to recent and ongoing clinical trials, and suggest future therapeutic approaches. PMID:25483944

  2. Effect of the size of experimental channels of the lead slowing-down spectrometer SVZ-100 (Institute for Nuclear Research, Moscow) on the moderation constant

    Energy Technology Data Exchange (ETDEWEB)

    Latysheva, L. N.; Bergman, A. A.; Sobolevsky, N. M., E-mail: sobolevs@inr.ru [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Ilic, R. D. [Vinca Institute of Nuclear Sciences (Serbia)

    2013-04-15

    Lead slowing-down (LSD) spectrometers have a low energy resolution (about 30%), but their luminosity is 10{sup 3} to 10{sup 4} times higher than that of time-of-flight (TOF) spectrometers. A high luminosity of LSD spectrometers makes it possible to use them to measure neutron cross section for samples of mass about several micrograms. These features specify a niche for the application of LSD spectrometers in measuring neutron cross sections for elements hardly available in macroscopic amounts-in particular, for actinides. A mathematical simulation of the parameters of SVZ-100 LSD spectrometer of the Institute for Nuclear Research (INR, Moscow) is performed in the present study on the basis of the MCNPX code. It is found that the moderation constant, which is the main parameter of LSD spectrometers, is highly sensitive to the size and shape of detecting volumes in calculations and, hence, to the real size of experimental channels of the LSD spectrometer.

  3. Effect of the size of experimental channels of the lead slowing-down spectrometer SVZ-100 (Institute for Nuclear Research, Moscow) on the moderation constant

    International Nuclear Information System (INIS)

    Latysheva, L. N.; Bergman, A. A.; Sobolevsky, N. M.; Ilić, R. D.

    2013-01-01

    Lead slowing-down (LSD) spectrometers have a low energy resolution (about 30%), but their luminosity is 10 3 to 10 4 times higher than that of time-of-flight (TOF) spectrometers. A high luminosity of LSD spectrometers makes it possible to use them to measure neutron cross section for samples of mass about several micrograms. These features specify a niche for the application of LSD spectrometers in measuring neutron cross sections for elements hardly available in macroscopic amounts—in particular, for actinides. A mathematical simulation of the parameters of SVZ-100 LSD spectrometer of the Institute for Nuclear Research (INR, Moscow) is performed in the present study on the basis of the MCNPX code. It is found that the moderation constant, which is the main parameter of LSD spectrometers, is highly sensitive to the size and shape of detecting volumes in calculations and, hence, to the real size of experimental channels of the LSD spectrometer.

  4. The location of energetic compartments affects energetic communication in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Rikke eBirkedal

    2014-09-01

    Full Text Available The heart relies on accurate regulation of mitochondrial energy supply to match energy demand. The main regulators are Ca2+ and feedback of ADP and Pi. Regulation via feedback has intrigued for decades. First, the heart exhibits a remarkable metabolic stability. Second, diffusion of ADP and other molecules is restricted specifically in heart and red muscle, where a fast feedback is needed the most. To explain the regulation by feedback, compartmentalization must be taken into account. Experiments and theoretical approaches suggest that cardiomyocyte energetic compartmentalization is elaborate with barriers obstructing diffusion in the cytosol and at the level of the mitochondrial outer membrane (MOM. A recent study suggests the barriers are organized in a lattice with dimensions in agreement with those of intracellular structures. Here, we discuss the possible location of these barriers. The more plausible scenario includes a barrier at the level of MOM. Much research has focused on how the permeability of MOM itself is regulated, and the importance of the creatine kinase system to facilitate energetic communication. We hypothesize that at least part of the diffusion restriction at the MOM level is not by MOM itself, but due to the close physical association between the sarcoplasmic reticulum (SR and mitochondria. This will explain why animals with a disabled creatine kinase system exhibit rather mild phenotype modifications. Mitochondria are hubs of energetics, but also ROS production and signaling. The close association between SR and mitochondria may form a diffusion barrier to ADP added outside a permeabilised cardiomyocyte. But in vivo, it is the structural basis for the mitochondrial-SR coupling that is crucial for the regulation of mitochondrial Ca2+-transients to regulate energetics, and for avoiding Ca2+-overload and irreversible opening of the mitochondrial permeability transition pore.

  5. Particle size dependence of the Young's modulus of filled polymers: 2. Annealing and solid-state nuclear magnetic resonance experiments

    NARCIS (Netherlands)

    Vollenberg, P.H.T.; Haan, de J.W.; Ven, van de L.J.M.; Heikens, D.

    1989-01-01

    Experimental results are reported from which it appears that in the case of polymer filled with silane-treated glass beads the Young's modulus is, in accordance with present theory, independent of the particle size of the filler. However, if pure glass beads are used as filler, the Young's modulus

  6. Evaluation of the effect of media velocity on filter efficiency and most penetrating particle size of nuclear grade high-efficiency particulate air filters.

    Science.gov (United States)

    Alderman, Steven L; Parsons, Michael S; Hogancamp, Kristina U; Waggoner, Charles A

    2008-11-01

    High-efficiency particulate air (HEPA) filters are widely used to control particulate matter emissions from processes that involve management or treatment of radioactive materials. Section FC of the American Society of Mechanical Engineers AG-1 Code on Nuclear Air and Gas Treatment currently restricts media velocity to a maximum of 2.5 cm/sec in any application where this standard is invoked. There is some desire to eliminate or increase this media velocity limit. A concern is that increasing media velocity will result in higher emissions of ultrafine particles; thus, it is unlikely that higher media velocities will be allowed without data to demonstrate the effect of media velocity on removal of ultrafine particles. In this study, the performance of nuclear grade HEPA filters, with respect to filter efficiency and most penetrating particle size, was evaluated as a function of media velocity. Deep-pleat nuclear grade HEPA filters (31 cm x 31 cm x 29 cm) were evaluated at media velocities ranging from 2.0 to 4.5 cm/sec using a potassium chloride aerosol challenge having a particle size distribution centered near the HEPA filter most penetrating particle size. Filters were challenged under two distinct mass loading rate regimes through the use of or exclusion of a 3 microm aerodynamic diameter cut point cyclone. Filter efficiency and most penetrating particle size measurements were made throughout the duration of filter testing. Filter efficiency measured at the onset of aerosol challenge was noted to decrease with increasing media velocity, with values ranging from 99.999 to 99.977%. The filter most penetrating particle size recorded at the onset of testing was noted to decrease slightly as media velocity was increased and was typically in the range of 110-130 nm. Although additional testing is needed, these findings indicate that filters operating at media velocities up to 4.5 cm/sec will meet or exceed current filter efficiency requirements. Additionally

  7. Importance of Thickness in Human Cardiomyocyte Network for Effective Electrophysiological Stimulation Using On-Chip Extracellular Microelectrodes

    Science.gov (United States)

    Hamada, Tomoyo; Nomura, Fumimasa; Kaneko, Tomoyuki; Yasuda, Kenji

    2012-06-01

    We have developed a three-dimensionally controlled in vitro human cardiomyocyte network assay for the measurements of drug-induced conductivity changes and the appearance of fatal arrhythmia such as ventricular tachycardia/fibrillation for more precise in vitro predictive cardiotoxicity. To construct an artificial conductance propagation model of a human cardiomyocyte network, first, we examined the cell concentration dependence of the cell network heights and found the existence of a height limit of cell networks, which was double-layer height, whereas the cardiomyocytes were effectively and homogeneously cultivated within the microchamber maintaining their spatial distribution constant and their electrophysiological conductance and propagation were successfully recorded using a microelectrode array set on the bottom of the microchamber. The pacing ability of a cardiomyocyte's electrophysiological response has been evaluated using microelectrode extracellular stimulation, and the stimulation for pacing also successfully regulated the beating frequencies of two-layered cardiomyocyte networks, whereas monolayered cardiomyocyte networks were hardly stimulated by the external electrodes using the two-layered cardiomyocyte stimulation condition. The stability of the lined-up shape of human cardiomyocytes within the rectangularly arranged agarose microchambers was limited for a two-layered cardiomyocyte network because their stronger force generation shrunk those cells after peeling off the substrate. The results indicate the importance of fabrication technology of thickness control of cellular networks for effective extracellular stimulation and the potential concerning thick cardiomyocyte networks for long-term cultivation.

  8. Electrophysiological properties and calcium handling of embryonic stem cell-derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jae Boum Youm

    2016-03-01

    Full Text Available Embryonic stem cell-derived cardiomyocytes (ESC-CMs hold great interest in many fields of research including clinical applications such as stem cell and gene therapy for cardiac repair or regeneration. ESC-CMs are also used as a platform tool for pharmacological tests or for investigations of cardiac remodeling. ESC-CMs have many different aspects of morphology, electrophysiology, calcium handling, and bioenergetics compared with adult cardiomyocytes. They are immature in morphology, similar to sinus nodal-like in the electrophysiology, higher contribution of trans-sarcolemmal Ca2+ influx to Ca2+ handling, and higher dependence on anaerobic glycolysis. Here, I review a detailed electrophysiology and Ca2+ handling features of ESC-CMs during differentiation into adult cardiomyocytes to gain insights into how all the developmental changes are related to each other to display cardinal features of developing cardiomyocytes.

  9. Oxidative stress and cardiomyocyte necrosis with elevated serum troponins: pathophysiologic mechanisms.

    Science.gov (United States)

    Robinson, Antwon D; Ramanathan, Kodangudi B; McGee, Jesse E; Newman, Kevin P; Weber, Karl T

    2011-08-01

    The progressive nature of heart failure is linked to multiple factors, including an ongoing loss of cardiomyocytes and necrosis. Necrotic cardiomyocytes leave behind several footprints: the spillage of their contents leading to elevations in serum troponins; and morphologic evidence of tissue repair with scarring. The pathophysiologic origins of cardiomyocyte necrosis relates to neurohormonal activation, including the adrenergic nervous system. Catecholamine-initiated excessive intracellular Ca accumulation and mitochondria Ca overloading in particular initiate a mitochondriocentric signal-transducer-effector pathway to necrosis and which includes the induction of oxidative stress and opening of their inner membrane permeability transition pore. Hypokalemia, ionized hypocalcemia and hypomagnesemia, where consequent elevations in parathyroid hormone further account for excessive intracellular Ca accumulation, hypozincemia and hyposelenemia each compromise metalloenzyme-based antioxidant defenses. The necrotic loss of cardiomyocytes and adverse structural remodeling of myocardium is related to the central role played by a mitochondriocentric pathway initiated by neurohormonal activation.

  10. A novel type of self-beating cardiomyocytes in adult mouse ventricles

    International Nuclear Information System (INIS)

    Omatsu-Kanbe, Mariko; Matsuura, Hiroshi

    2009-01-01

    This study was designed to investigate the presence of resident heart cells that are distinct from terminally-differentiated cardiomyocytes. Adult mouse heart was coronary perfused with collagenase, and ventricles were excised and further digested. After spinning cardiomyocyte-containing fractions down, the supernatant fraction was collected and cultured without adding any chemicals. Two to five days after plating, some of rounded cells adhered to the culture dish, gradually changed their shape and then started self-beating. These self-beating cells did not appreciably proliferate but underwent a further morphological maturation process to form highly branched shapes with many projections. These cells were mostly multinucleated, well sarcomeric-organized and expressed cardiac marker proteins, defined as atypically-shaped cardiomyocytes (ACMs). Patch-clamp experiments revealed that ACMs exhibited spontaneous action potentials arising from the preceding slow diastolic depolarization. We thus found a novel type of resident heart cells in adult cardiac ventricles that spontaneously develop into self-beating cardiomyocytes.

  11. CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart

    NARCIS (Netherlands)

    M. Gomez-Velazquez (Melisa); C. Badia-Careaga (Claudio); Lechuga-Vieco, A.V. (Ana Victoria); Nieto-Arellano, R. (Rocio); Tena, J.J. (Juan J.); Rollan, I. (Isabel); Alvarez, A. (Alba); Torroja, C. (Carlos); Caceres, E.F. (Eva F.); Roy, A. (Anna); N.J. Galjart (Niels); Delgado-Olguin, P. (Paul); F. Sánchez-Cabo (Fátima); Enriquez, J.A. (Jose Antonio); Gomez-Skarmeta, J.L. (Jose Luis); M. Manzanares (Miguel)

    2017-01-01

    textabstractCardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such

  12. Role of microRNA-195 in cardiomyocyte apoptosis induced by ...

    Indian Academy of Sciences (India)

    drinking water and sterilized standard diet. The mice were ... was performed with the in situ cell death detection kit ... facturer's protocol to detect apoptotic cardiomyocytes. The ..... ulate the leakage of Cyt-c and initiate apoptosis through the.

  13. High Uric Acid Induces Insulin Resistance in Cardiomyocytes In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Li Zhi

    Full Text Available Clinical studies have shown hyperuricemia strongly associated with insulin resistance as well as cardiovascular disease. Direct evidence of how high uric acid (HUA affects insulin resistance in cardiomyocytes, but the pathological mechanism of HUA associated with cardiovascular disease remains to be clarified. We aimed to examine the effect of HUA on insulin sensitivity in cardiomyocytes and on insulin resistance in hyperuricemic mouse model. We exposed primary cardiomyocytes and a rat cardiomyocyte cell line, H9c2 cardiomyocytes, to HUA, then quantified glucose uptake with a fluorescent glucose analog, 2-NBDG, after insulin challenge and detected reactive oxygen species (ROS production. Western blot analysis was used to examine the levels of insulin receptor (IR, phosphorylated insulin receptor substrate 1 (IRS1, Ser307 and phospho-Akt (Ser473. We monitored the impact of HUA on insulin resistance, insulin signaling and IR, phospho-IRS1 (Ser307 and phospho-Akt levels in myocardial tissue of an acute hyperuricemia mouse model established by potassium oxonate treatment. HUA inhibited insulin-induced glucose uptake in H9c2 and primary cardiomyocytes. It increased ROS production; pretreatment with N-acetyl-L-cysteine (NAC, a ROS scavenger, reversed HUA-inhibited glucose uptake induced by insulin. HUA exposure directly increased the phospho-IRS1 (Ser307 response to insulin and inhibited that of phospho-Akt in H9C2 cardiomyocytes, which was blocked by NAC. Furthermore, the acute hyperuricemic mice model showed impaired glucose tolerance and insulin tolerance accompanied by increased phospho-IRS1 (Ser307 and inhibited phospho-Akt response to insulin in myocardial tissues. HUA inhibited insulin signaling and induced insulin resistance in cardiomyocytes in vitro and in vivo, which is a novel potential mechanism of hyperuricemic-related cardiovascular disease.

  14. Hypertrophic stimulation increases beta-actin dynamics in adult feline cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sundaravadivel Balasubramanian

    2010-07-01

    Full Text Available The myocardium responds to hemodynamic stress through cellular growth and organ hypertrophy. The impact of cytoskeletal elements on this process, however, is not fully understood. While alpha-actin in cardiomyocytes governs muscle contraction in combination with the myosin motor, the exact role of beta-actin has not been established. We hypothesized that in adult cardiomyocytes, as in non-myocytes, beta-actin can facilitate cytoskeletal rearrangement within cytoskeletal structures such as Z-discs. Using a feline right ventricular pressure overload (RVPO model, we measured the level and distribution of beta-actin in normal and pressure overloaded myocardium. Resulting data demonstrated enriched levels of beta-actin and enhanced translocation to the Triton-insoluble cytoskeletal and membrane skeletal complexes. In addition, RVPO in vivo and in vitro hypertrophic stimulation with endothelin (ET or insulin in isolated adult cardiomyocytes enhanced the content of polymerized fraction (F-actin of beta-actin. To determine the localization and dynamics of beta-actin, we adenovirally expressed GFP-tagged beta-actin in isolated adult cardiomyocytes. The ectopically expressed beta-actin-GFP localized to the Z-discs, costameres, and cell termini. Fluorescence recovery after photobleaching (FRAP measurements of beta-actin dynamics revealed that beta-actin at the Z-discs is constantly being exchanged with beta-actin from cytoplasmic pools and that this exchange is faster upon hypertrophic stimulation with ET or insulin. In addition, in electrically stimulated isolated adult cardiomyocytes, while beta-actin overexpression improved cardiomyocyte contractility, immunoneutralization of beta-actin resulted in a reduced contractility suggesting that beta-actin could be important for the contractile function of adult cardiomyocytes. These studies demonstrate the presence and dynamics of beta-actin in the adult cardiomyocyte and reinforce its usefulness in measuring

  15. Group B streptococcal beta-hemolysin/cytolysin directly impairs cardiomyocyte viability and function.

    Directory of Open Access Journals (Sweden)

    Mary E Hensler

    Full Text Available BACKGROUND: Group B Streptococcus (GBS is a leading cause of neonatal sepsis where myocardial dysfunction is an important contributor to poor outcome. Here we study the effects of the GBS pore-forming beta-hemolysin/cytolysin (Bh/c exotoxin on cardiomyocyte viability, contractility, and calcium transients. METHODOLOGY/PRINCIPAL FINDINGS: HL-1 cardiomyocytes exposed to intact wild-type (WT or isogenic Deltabeta h/c mutant GBS, or to cell-free extracts from either strain, were assessed for viability by trypan blue exclusion and for apoptosis by TUNEL staining. Functionality of exposed cardiomyocytes was analyzed by visual quantitation of the rate and extent of contractility. Mitochondrial membrane polarization was measured in TMRE-loaded cells exposed to GBS beta h/c. Effects of GBS beta h/c on calcium transients were studied in fura-2AM-loaded primary rat ventricular cardiomyocytes. Exposure of HL-1 cardiomyocytes to either WT GBS or beta h/c extracts significantly reduced both rate and extent of contractility and later induced necrotic and apoptotic cell death. No effects on cardiomyocyte viability or function were observed after treatment with Deltabeta h/c mutant bacteria or extracts. The beta h/c toxin was associated with complete and rapid loss of detectable calcium transients in primary neonatal rat ventricular cardiomyocytes and induced a loss of mitochondrial membrane polarization. These effects on viability and function were abrogated by the beta h/c inhibitor, dipalmitoyl phosphatidylcholine (DPPC. CONCLUSIONS/SIGNIFICANCE: Our data show a rapid loss of cardiomyocyte viability and function induced by GBS beta h/c, and these deleterious effects are inhibited by DPPC, a normal constituent of human pulmonary surfactant.. These findings have clinical implications for the cardiac dysfunction observed in neonatal GBS infections.

  16. Restructuring of microparticles in nuclear ceramic materials. Part II. Analytical derivation of the steady-state size distribution

    International Nuclear Information System (INIS)

    Lameiras, F.S.

    1991-01-01

    Two fundamental principles were assumed to govern the restructuring of microparticles: minimization and uniformization in space of the interface energy. Five fundamental ways, independent of each other and acting simultaneously, were identified, through which a microparticle set can be restructured according to the fundamental principles: a) decrease of the number of microparticles; b) modification of the microparticle size distribution; c) modification of the microparticles from tending to an equiaxial one; d) tendency to the distribution of microparticles uniform in space; e) tendency to the distribution of the interface energy uniform per microparticle. This presents an analytical derivation of the steady-state microparticle size distribution due to the simultaneous action of the fundamental ways b) and e). (author)

  17. The effects of correlation, relativity, quantum electrodynamics, nuclear size and parity non-conservation in alkali atoms and alkali-like ions

    International Nuclear Information System (INIS)

    Tiwary, S.N.

    1995-01-01

    The present review briefly presents the growing experimental as well as theoretical interests in recent years in the effects of (1) correlation, (2) relativity, (3) quantum electrodynamic (QED), (4) finite nuclear size (FNS) and (5) parity non-conservation (PNC) on the high precision electronic structure of alkali atoms and alkali-like ions. Many high precision experiments have been performed which need very high accurate theoretical prediction for correct interpretation and identification of different physical effects involved. Some experiments separate these effects and some do not. Several sophisticated theoretical techniques have been developed for corrections of these effects which play an extremely important role in order to obtain results of high accuracy to well below 1% level and to understand experimental observations of high precision. Correlation, relativity and finite nuclear size effects have been treated on an equal footing in some theoretical methods but QED and PNC have been calculated separately. At present, there is no theory which accounts all five effects in a coherent and unified manner. Future challenges and directions, in reliable structure calculations in atoms and ions, have been discussed and suggested. (author). 83 refs, 3 figs, 9 tabs

  18. The origin, evolution and proposed stabilization of the terms "genome size' and 'C-value' to describe nuclear DNA contents

    Czech Academy of Sciences Publication Activity Database

    Greilhuber, J.; Doležel, Jaroslav; Lysák, Martin; Bennett, M. D.

    2005-01-01

    Roč. 95, č. 1 (2005), s. 255-260 ISSN 0305-7364 R&D Pro jects: GA ČR GA522/03/0354 Grant - others:Austrian Science Fund(AT) P14607-B03 Institutional research plan: CEZ:AV0Z50380511 Keywords : genome size * C- value * Cx- value Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.665, year: 2005

  19. Choice of optimum size of installations for dual-purpose production of desalted water and electricity, using nuclear power

    International Nuclear Information System (INIS)

    Gaussens, J.

    1966-01-01

    The author used a method starting with water and power demand curves; this leads to the rational allocation of production costs to water and power within a given market. The power demand curve is needed as it seems improbable to sell at a constant price the enormous quantity of electricity produced by a dual purpose plant. Criteria based on principles of classical economics, help to select objectively desalination methods and plant sizes. On these criteria, normative methods for tariffing action of water and power can be based, while adhering as closely as possible to structure of demand. Examples of such criteria are the maximum profit of the supplier or the maximum satisfaction of the consumers taken collectively. In the first case marginal costs must be equated to marginal revenue, in the second one marginal cost to marginal satisfaction (theory of surpluses). The plant size often determines the choice of desalination process. Therefore the shape of the water demand curve and the economic criterion adopted (public or private ownership, capital restrictions etc.) often determine in this way both size and type of plant. Before deciding on the desalination technique, market surveys and rather subtle economic analyses are therefore necessary. (author) [fr

  20. Quantification of Cardiomyocyte Alignment from Three-Dimensional (3D) Confocal Microscopy of Engineered Tissue.

    Science.gov (United States)

    Kowalski, William J; Yuan, Fangping; Nakane, Takeichiro; Masumoto, Hidetoshi; Dwenger, Marc; Ye, Fei; Tinney, Joseph P; Keller, Bradley B

    2017-08-01

    Biological tissues have complex, three-dimensional (3D) organizations of cells and matrix factors that provide the architecture necessary to meet morphogenic and functional demands. Disordered cell alignment is associated with congenital heart disease, cardiomyopathy, and neurodegenerative diseases and repairing or replacing these tissues using engineered constructs may improve regenerative capacity. However, optimizing cell alignment within engineered tissues requires quantitative 3D data on cell orientations and both efficient and validated processing algorithms. We developed an automated method to measure local 3D orientations based on structure tensor analysis and incorporated an adaptive subregion size to account for multiple scales. Our method calculates the statistical concentration parameter, κ, to quantify alignment, as well as the traditional orientational order parameter. We validated our method using synthetic images and accurately measured principal axis and concentration. We then applied our method to confocal stacks of cleared, whole-mount engineered cardiac tissues generated from human-induced pluripotent stem cells or embryonic chick cardiac cells and quantified cardiomyocyte alignment. We found significant differences in alignment based on cellular composition and tissue geometry. These results from our synthetic images and confocal data demonstrate the efficiency and accuracy of our method to measure alignment in 3D tissues.

  1. Investigation of size-fractionated urban aerosol and trace gases in Budapest by nuclear-related and other analytical techniques

    International Nuclear Information System (INIS)

    Salma, I.; Maenhaut, W.; Zemplen-Papp, E.; Bobvos, J.

    1998-01-01

    An air pollution study was conducted at two urban residential sites in Budapest (one representing the downtown, the other representing a wooded suburb) from 9 April till 17 May 1996. Size-fractionated aerosol samples were simultaneously collected on a daily basis, and meteorological conditions were recorded at both sampling sites. Stacked filter units (SFUs) with an upper size inlet cut-off were used as sampling device separating the urban aerosol into a coarse (about 10-2 μm equivalent aerodynamic diameter, EAD) and a fine ( 2 , SO 2 , CO and the total mass of the suspended particulate matter were measured every half hour at one of the sampling sites by commercial equipment. The SFU filters were analyzed by gravimetry for the total particle mass, by a light reflectance technique for black carbon, by particle-induced X-ray emission analysis and instrumental neutron activation analysis for elemental composition (in combination for up to 40-45 elements). The analytical results were used for characterizing the levels and the multi-elemental composition of the urban aerosol at both sampling sites and for both size fractions, for investigating the atmospheric concentrations and diurnal variation of some criteria pollutants, and for comparing the time-trends of aerosols and trace gases. Identification of the major source types of the aerosol fractions and trace gases, and assessment of the relative contribution from these sources are to be accomplished by multivariate receptor modeling. The present paper reports on the status of the air pollution study, and gives a discussion of the results

  2. An essential role of Nrf2 in American ginseng-mediated anti-oxidative actions in cardiomyocytes.

    Science.gov (United States)

    Li, Jinqing; Ichikawa, Tomonaga; Jin, Yu; Hofseth, Lorne J; Nagarkatti, Prakash; Nagarkatti, Mitzi; Windust, Anthony; Cui, Taixing

    2010-07-20

    Ginseng has been used as a folk medicine for thousands of years in Asia, and has become a popular herbal medicine world-wide. Recent studies have revealed that ginseng, including American ginseng, exerts antioxidant effects in the cardiovascular system; however, the underlying mechanisms are not fully understood. Thus, we investigated role of Nrf2, a master transcription factor of endogenous anti-oxidative defense systems, in the regulation of American ginseng-mediated anti-oxidative actions in cardiomyocytes. A standardized crude extract of American ginseng was supplied by the National Research Council of Canada, Institute for National Measurement Standards. H9C2 cells, a rat cardiomyocyte cell line, were exposed to angiotensin II (Ang II) or tumor necrosis factor alpha (TNFalpha) to induce oxidative stress that was examined by measuring formation of reactive oxygen and nitrogen species. Oxidative stress-induced cell death was induced by exogenous addition of hydrogen peroxide (H(2)O(2)). Proteins were measured by Western blot and mRNA expression was determined by quantitative real time PCR. Nrf2-driven transcriptional activity was assessed by antioxidant response element (ARE)-luciferase reporter assay. Direct Nrf2 binding to its target gene promoters was determined by chromatin immunoprecipitation assay. Adenoviral over-expression of Nrf2 shRNA was utilized to knock down Nrf2 in H9C2 cells. Immunochemical staining was applied for Nrf2 expression in the heart. American ginseng induced dramatic increases in Nrf2 protein expression, Nrf2 nuclear translocation, Nrf2 transcriptional activity, direct Nrf2 binding to its target gene promoters, and expression of a group of anti-oxidative genes driven by Nrf2 in H9C2 cells. In addition, American ginseng inhibited Ang II- or TNFalpha-induced free radical formation and H(2)O(2)-induced cell death in H9C2 cells over-expressed with control shRNA but not in the cells over-expressed with Nrf2 shRNA. Finally, oral

  3. A piezoelectric electrospun platform for in situ cardiomyocyte contraction analysis

    Science.gov (United States)

    Beringer, Laura Toth

    hyperpolarized state, proving their potential use as contractile analysis microdevices. The third and final aim of this dissertation was to be able to measure contraction events from both cultured cardiomyocytes and whole tissues in situ. Rat neonatal cardiomyocytes grew on the prepared collagen/PVDF-TrFe nanogenerators and yielded a distinct signal after 8 days of growth. These contractions were verified with live cell imaging and video recording. In addition, cardiomyocyte exposure to the drug isoproterenol increased contraction strength and frequency, which was reflected in the nanogenerator recordings. Frog whole heart and heart tissue slices also were interfaced with the fabricated nanogenerators and signals were recorded. The same held true for heart slices from male Sprague-Dawley rats. These signals were determined to be statistically different compared to the control baseline nanogenerator recordings in media in the absence of cell culture. Overall the fabricated nanogenerators have demonstrated their potential to be used as in situ analysis tools for contractile events and have potential in the field of personalized medicine and drug diagnostic assays. The facile fabrication and ease of setup to obtain the electrical voltage signal corresponding to the contractile events are what sets the nanogenerator apart from any polymer based sensor available today.

  4. Sensitivity of depositions to the size and hygroscopicity of Cs-bearing aerosols released by the Fukushima Nuclear Accident

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, Mizuo [Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052 (Japan); RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Adachi, Kouji; Sekiyama, Tsuyoshi T.; Zaizen, Yuji; Igarashi, Yasuhito [Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052 (Japan)

    2014-07-01

    We recently revealed that the micro-physical properties of aerosols carrying the radioactive Cs released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) at an early stage (March 14-15, 2011) of the accident could be very different from what we assumed previously: super-micron and non-hygroscopic at the early stage, whereas sub-micron and hygroscopic afterwards (at least later than March 20-22). In the study, two sensitivity simulations with the two different aerosol micro-physical properties were conducted using a regional scale meteorology- chemical transport model (NHM-Chem). The impact of the difference was quite significant. 17% (10-3%) of the radioactive Cs fell onto the ground by dry (wet) deposition processes, and the rest was deposited into the ocean or was transported out of the model domain, which is central and northern part of the main land of Japan under the assumption that Cs-bearing aerosols are non-hygroscopic and super-micron. On the other hand, 5.7% (11.3%) fell onto the ground by dry (wet) deposition, for the cases under the assumption that the Cs-bearing aerosols are hygroscopic and sub-micron. For the accurate simulation of the deposition of radionuclides, knowledge of the aerosol micro-physical properties is essential as well as the accuracy of the simulated wind fields and precipitation patterns. (authors)

  5. Development of settling tube method to measure the particle size distribution for the steam explosion accident in the nuclear power plant

    International Nuclear Information System (INIS)

    Lee, Jae Young; Ahan, Kyung Mo; Ahan, Hyung Guyn; Kim, Man Woong

    2004-01-01

    The possibility of steam explosion due to energetic and prompt interaction between the molten corium and the water in the nuclear power plant has been widely concerned to quantify its magnitude and to find the way to mitigate the phenomena. Due to the complication and rapid nature of the phenomena, experimental works still need more accurate measurement methods. Especially, the real time observation of the corium-water interaction, instability, steam generation, powdering corium debris needs advanced Tomography methods. As Song et al. pointed based on their experimental observation, the explosive phenomena highly depend on the production of the fine size debris of the molten corium. Instability and local generation of shock waves may be the major causes of the production of the fine debris, which increase the interaction surface area dramatically and the reaction time maybe depend on the penetration time proportional to square root of the particle size. The resultant debris from the explosive reaction can be the most solid fact in the experiment, their size distribution and amount need to be figured by the theoretical model. Pressure and Temperature change can be treated by the global mass and energy balance. Also, the fast propagation of the pressure information through the medium may be reasonably predicted. But to make to more solid understanding the steam explosion phenomena, the transport equation for debris interfacial area concentration need to be developed which should consider the various time scale form the rapid shock attacking, intermediate scale of instability, slow buoyancy rising. Therefore, the measurement of the size distribution of the fine debris is of importance. However, it is not easy process to classify the particle size and measure their surface area. The present work is mainly focused to develop a convenient way to measure the particle size and its distribution. We employ the force balance between the gravity force and Drag force acting on

  6. Nuclear

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The first text deals with a new circular concerning the collect of the medicine radioactive wastes, containing radium. This campaign wants to incite people to let go their radioactive wastes (needles, tubes) in order to suppress any danger. The second text presents a decree of the 31 december 1999, relative to the limitations of noise and external risks resulting from the nuclear facilities exploitation: noise, atmospheric pollution, water pollution, wastes management and fire prevention. (A.L.B.)

  7. Dihydro-CDDO-trifluoroethyl amide (dh404, a novel Nrf2 activator, suppresses oxidative stress in cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Tomonaga Ichikawa

    Full Text Available Targeting Nrf2 signaling appears to be an attractive approach for the treatment of maladaptive cardiac remodeling and dysfunction; however, pharmacological modulation of the Nrf2 pathway in the cardiovascular system remains to be established. Herein, we report that a novel synthetic triterpenoid derivative, dihydro-CDDO-trifluoroethyl amide (dh404, activates Nrf2 and suppresses oxidative stress in cardiomyocytes. Dh404 interrupted the Keap1-Cul3-Rbx1 E3 ligase complex-mediated Nrf2 ubiquitination and subsequent degradation saturating the binding capacity of Keap1 to Nrf2, thereby rendering more Nrf2 to be translocated into the nuclei to activate Nrf2-driven gene transcription. A mutant Keap1 protein containing a single cysteine-to-serine substitution at residue 151 within the BTB domain of Keap1 was resistant to dh404-induced stabilization of Nrf2 protein. In addition, dh404 did not dissociate the interaction of Nrf2 with the Keap1-Cul3-Rbx1 E3 ligase complex. Thus, it is likely that dh404 inhibits the ability of Keap1-Cul3-Rbx1 E3 ligase complex to target Nrf2 for ubiquitination and degradation via modifying Cys-151 of Keap1 to change the conformation of the complex. Moreover, dh404 was able to stabilize Nrf2 protein, to enhance Nrf2 nuclear translocation, to activate Nrf2-driven transcription, and to suppress angiotensin II (Ang II-induced oxidative stress in cardiomyocytes. Knockdown of Nrf2 almost blocked the anti-oxidative effect of dh404. Dh404 activated Nrf2 signaling in the heart. Taken together, dh404 appears to be a novel Nrf2 activator with a therapeutic potential for cardiac diseases via suppressing oxidative stress.

  8. MicroRNA-1 overexpression blunts cardiomyocyte hypertrophy elicited by thyroid hormone.

    Science.gov (United States)

    Diniz, Gabriela Placoná; Lino, Caroline Antunes; Moreno, Camila Rodrigues; Senger, Nathalia; Barreto-Chaves, Maria Luiza Morais

    2017-12-01

    It is well-known that increased thyroid hormone (TH) levels induce cardiomyocyte growth. MicroRNAs (miRNAs) have been identified as key players in cardiomyocyte hypertrophy, which is associated with increased risk of heart failure. In this study, we evaluated the miR-1 expression in TH-induced cardiac hypertrophy, as well as the potential involvement of miR-1 in cardiomyocyte hypertrophy elicited by TH in vitro. The possible role of type 1 angiotensin II receptor (AT1R) in the effect promoted by TH in miR-1 expression was also evaluated. Neonatal rat cardiac myocytes (NRCMs) were treated with T 3 for 24 hr and Wistar rats were subjected to hyperthyroidism for 14 days combined or not with AT1R blocker. Real Time RT-PCR analysis indicated that miR-1 expression was decreased in cardiac hypertrophy in response to TH in vitro and in vivo, and this effect was unchanged by AT1R blocker. In addition, HDAC4, which is target of miR-1, was increased in NRCMs after T 3 treatment. A gain-of-function study revealed that overexpression of miR-1 prevented T 3 -induced cardiomyocyte hypertrophy and reduced HADC4 mRNA levels in NRCMs. In vivo experiments confirmed the downregulation of miR-1 in cardiac tissue from hyperthyroid animals, which was accompanied by increased HDAC4 mRNA levels. In addition, HDAC inhibitor prevented T 3 -induced cardiomyocyte hypertrophy. Our data reveal a new mechanistic insight into cardiomyocyte growth in response to TH, suggesting that miR-1 plays a role in cardiomyocyte hypertrophy induced by TH potentially via targeting HADC4. © 2017 Wiley Periodicals, Inc.

  9. Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues.

    Directory of Open Access Journals (Sweden)

    Nicolas Christoforou

    Full Text Available The mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potentially reverse this process by replacing the damaged myocardium with functional tissue. However, it is unclear whether cardiac progenitor cell-derived cardiomyocytes are capable of attaining levels of structural and functional maturity comparable to that of terminally-fated cardiomyocytes. Here, we first describe the derivation of mouse induced pluripotent stem (iPS cells, which once differentiated allow for the enrichment of Nkx2-5(+ cardiac progenitors, and the cardiomyocyte-specific expression of the red fluorescent protein. We show that the cardiac progenitors are multipotent and capable of differentiating into endothelial cells, smooth muscle cells and cardiomyocytes. Moreover, cardiac progenitor selection corresponds to cKit(+ cell enrichment, while cardiomyocyte cell-lineage commitment is concomitant with dual expression of either cKit/Flk1 or cKit/Sca-1. We proceed to show that the cardiac progenitor-derived cardiomyocytes are capable of forming electrically and mechanically coupled large-scale 2D cell cultures with mature electrophysiological properties. Finally, we examine the cell progenitors' ability to form electromechanically coherent macroscopic tissues, using a physiologically relevant 3D culture model and demonstrate that following long-term culture the cardiomyocytes align, and form robust electromechanical connections throughout the volume of the biosynthetic tissue construct. We conclude that the iPS cell-derived cardiac progenitors are a robust cell source for tissue engineering applications and a 3D culture platform for pharmacological

  10. Taurine ameliorated homocysteine-induced H9C2 cardiomyocyte apoptosis by modulating endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Zhimin; Zhao, Lianyou; Zhou, Yanfen; Lu, Xuanhao; Wang, Zhengqiang; Wang, Jipeng; Li, Wei

    2017-05-01

    Homocysteine (Hcy)-triggered endoplasmic reticulum (ER) stress-mediated endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury. However, whether ER stress is the molecular mechanism linking Hcy and cardiomyocytes death is unclear. Taurine has been reported to exert cardioprotective effects via various mechanisms. However, whether taurine protects against Hcy-induced cardiomyocyte death by attenuating ER stress is unknown. This study aimed to evaluate the opposite effects of taurine on Hcy-induced cardiomyocyte apoptosis and their underlying mechanisms. Our results demonstrated that low-dose or short-term Hcy treatment increased the expression of glucose-regulated protein 78 (GRP78) and activated protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6), which in turn prevented apoptotic cell death. High-dose Hcy or prolonged Hcy treatment duration significantly up-regulated levels of C/EBP homologous protein (CHOP), cleaved caspase-12, p-c-Jun N-terminal kinase (JNK), and then triggered apoptotic events. High-dose Hcy also resulted in a decrease in mitochondrial membrane potential (Δψm) and an increase in cytoplasmic cytochrome C and the expression of cleaved caspase-9. Pretreatment of cardiomyocytes with sodium 4-phenylbutyric acid (an ER stress inhibitor) significantly inhibited Hcy-induced apoptosis. Furthermore, blocking the PERK pathway partly alleviated Hcy-induced ER stress-modulated cardiomyocyte apoptosis, and down-regulated the levels of Bax and cleaved caspase-3. Experimental taurine pretreatment inhibited the expression of ER stress-related proteins, and protected against apoptotic events triggered by Hcy-induced ER stress. Taken together, our results suggest that Hcy triggered ER stress in cardiomyocytes, which was the crucial molecular mechanism mediating Hcy-induced cardiomyocyte apoptosis, and the adverse effect of Hcy could be prevented by taurine.

  11. Impacts of the use of spent nuclear fuel burnup credit on DOE advanced technology legal weight truck cask GA-4 fleet size

    International Nuclear Information System (INIS)

    Mobasheran, A.S.; Boshoven, J.; Lake, B.

    1995-01-01

    The object of this paper is to study the impact of full and partial spent fuel burnup credit on the capacity of the Legal Weight Truck Spent Fuel Shipping Cask (GA-4) and to determine the numbers of additional spent fuel assemblies which could be accommodated as a result. The scope of the study comprised performing nuclear criticality safety scoping calculations using the SCALE-PC software package and the 1993 spent fuel database to determine logistics for number of spent fuel assemblies to be shipped. The results of the study indicate that more capacity than 2 or 3 pressurized water reactor assemblies could be gained for GA-4 casks when burnup credit is considered. Reduction in GA-4 fleet size and number of shipments are expected to result from the acceptance of spent fuel burnup credit

  12. Radiative nonrecoil nuclear finite size corrections of order α(Zα5 to the Lamb shift in light muonic atoms

    Directory of Open Access Journals (Sweden)

    R.N. Faustov

    2017-12-01

    Full Text Available On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude with spanning photon are obtained. We present also numerical results for these contributions using modern experimental data on the electromagnetic form factors of light nuclei. Keywords: Lamb shift, Muonic atoms, Quantum electrodynamics

  13. Small-medium sized nuclear coal and gas power plant: A probabilistic analysis of their financial performances and influence of CO2 cost

    International Nuclear Information System (INIS)

    Locatelli, Giorgio; Mancini, Mauro

    2010-01-01

    Nations or regions with limited electrical grid and restricted financial resources are a suitable market for small medium power plants with a size of 300-400 MWe. The literature presents several comparisons about the economics of large power plants (of about 1000 MWe); however there are not probabilistic analysis regarding the economics of small medium power plants. This paper fills this gap comparing, with a Monte Carlo evaluation, the economical and financial performances of a nuclear reactor, a coal fired power plant and a combined cycle gas turbine (CCGT) of 335 MWe. The paper aims also to investigate the effect of the carbon tax and electrical energy price on the economics of these plants. The analysis show as, without any carbon tax, the coal plant has the lowest levelised unit electricity cost (LUEC) and the highest net present value (NPV). Introducing the carbon tax the rank changes: depending on its amount the first and the nuclear after becomes the plant with lower LUEC and highest NPV. Therefore, the uncertainty in the carbon tax cost increases the risk of investing in a coal plant above the level of the new small medium reactor.

  14. Mitochondrial translocation of Nur77 induced by ROS contributed to cardiomyocyte apoptosis in metabolic syndrome.

    Science.gov (United States)

    Xu, Aibin; Liu, Jingyi; Liu, Peilin; Jia, Min; Wang, Han; Tao, Ling

    2014-04-18

    Metabolic syndrome is a major risk factor for cardiovascular diseases, and increased cardiomyocyte apoptosis which contributes to cardiac dysfunction after myocardial ischemia/reperfusion (MI/R) injury. Nur77, a nuclear orphan receptor, is involved in such various cellular events as apoptosis, proliferation, and glucose and lipid metabolism in several cell types. Apoptosis is positively correlated with mitochondrial translocation of Nur77 in the cancer cells. However, the roles of Nur77 on cardiac myocytes in patients with metabolic syndrome remain unclear. The objective of this study was to determine whether Nur77 may contribute to cardiac apoptosis in patients with metabolic syndrome after I/R injury, and, if so, to identify the underlying molecular mechanisms responsible. We used leptin-deficient (ob/ob) mice to make metabolic syndrome models. In this report, we observed that, accompanied by the substantial decline in apoptosis inducer Nur77, MI/R induced cardiac dysfunction was manifested as cardiomyopathy and increased ROS. Using the neonatal rat cardiac myocytes cultured in a high-glucose and high-fat medium, we found that excessive H2O2 led to the significant alteration in mitochondrial membrane potential and translocation of Nur77 from the nucleus to the mitochondria. However, inhibition of the relocation of Nur77 to mitochondria via Cyclosporin A reversed the changes in membrane potential mediated by H2O2 and reduced myocardial cell injury. Therefore, these data provide a potential underlying mechanism for cardiac dysfunction in metabolic syndrome and the suppression of Nur77 translocation may provide an effective approach to reduce cardiac injury in the process. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart.

    Directory of Open Access Journals (Sweden)

    Melisa Gomez-Velazquez

    2017-08-01

    Full Text Available Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development.

  16. Passage-restricted differentiation potential of mesenchymal stem cells into cardiomyocyte-like cells

    International Nuclear Information System (INIS)

    Zhang Fabao; Li Li; Fang Bo; Zhu Dingliang; Yang Huangtian; Gao Pingjin

    2005-01-01

    Mesenchymal stem cells (MSCs) have limited ability to differentiate into cardiomyocytes and the factors affect this process are not fully understood. In this study, we investigated the passage (P)-related transdifferentiation potential of MSCs into cardiomyocyte-like cells and its relationship to the proliferation ability. After 5-azacytidine treatment, only P4 but not P1 and P8 rat bone marrow MSCs (rMSCs) showed formation of myotube and expressed cardiomyocyte-associated markers. The growth property analysis showed P4 rMSCs had a growth-arrest appearance, while P1 and P8 rMSCs displayed an exponential growth pattern. When the rapid proliferation of P1 and P8 rMSCs was inhibited by 5-bromo-2-deoxyuridine, a mitosis inhibitor, only P1, not P8 rMSCs, differentiated into cardiomyocyte-like cells after 5-azacytidine treatment. These results demonstrate that the differentiation ability of rMSCs into cardiomyocytes is in proliferation ability-dependent and passage-restricted patterns. These findings reveal a novel regulation on the transdifferentiation of MSCs and provide useful information for exploiting the clinical therapeutic potential of MSCs

  17. Cardiomyocytes undergo apoptosis in human immunodeficiency virus cardiomyopathy through mitochondrion- and death receptor-controlled pathways.

    Science.gov (United States)

    Twu, Cheryl; Liu, Nancy Q; Popik, Waldemar; Bukrinsky, Michael; Sayre, James; Roberts, Jaclyn; Rania, Shammas; Bramhandam, Vishnu; Roos, Kenneth P; MacLellan, W Robb; Fiala, Milan

    2002-10-29

    We investigated 18 AIDS hearts (5 with and 13 without cardiomyopathy) by using immunocytochemistry and computerized image analysis regarding the roles of HIV-1 proteins and tumor necrosis factor ligands in HIV cardiomyopathy (HIVCM). HIVCM and cardiomyocyte apoptosis were significantly related to each other and to the expression by inflammatory cells of gp120 and tumor necrosis factor-alpha. In HIVCM heart, active caspase 9, a component of the mitochondrion-controlled apoptotic pathway, and the elements of the death receptor-mediated pathway, tumor necrosis factor-alpha and Fas ligand, were expressed strongly on macrophages and weakly on cardiomyocytes. HIVCM showed significantly greater macrophage infiltration and cardiomyocyte apoptosis rate compared with non-HIVCM. HIV-1 entered cultured neonatal rat ventricular myocytes by macropinocytosis but did not replicate. HIV-1- or gp120-induced apoptosis of rat myocytes through a mitochondrion-controlled pathway, which was inhibited by heparin, AOP-RANTES, or pertussis toxin, suggesting that cardiomyocyte apoptosis is induced by signaling through chemokine receptors. In conclusion, in patients with HIVCM, cardiomyocytes die through both mitochondrion- and death receptor-controlled apoptotic pathways.

  18. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Yang, Xiulan; Pabon, Lil; Murry, Charles E

    2014-01-31

    The discovery of human pluripotent stem cells (hPSCs), including both human embryonic stem cells and human-induced pluripotent stem cells, has opened up novel paths for a wide range of scientific studies. The capability to direct the differentiation of hPSCs into functional cardiomyocytes has provided a platform for regenerative medicine, development, tissue engineering, disease modeling, and drug toxicity testing. Despite exciting progress, achieving the optimal benefits has been hampered by the immature nature of these cardiomyocytes. Cardiac maturation has long been studied in vivo using animal models; however, finding ways to mature hPSC cardiomyocytes is only in its initial stages. In this review, we discuss progress in promoting the maturation of the hPSC cardiomyocytes, in the context of our current knowledge of developmental cardiac maturation and in relation to in vitro model systems such as rodent ventricular myocytes. Promising approaches that have begun to be examined in hPSC cardiomyocytes include long-term culturing, 3-dimensional tissue engineering, mechanical loading, electric stimulation, modulation of substrate stiffness, and treatment with neurohormonal factors. Future studies will benefit from the combinatorial use of different approaches that more closely mimic nature's diverse cues, which may result in broader changes in structure, function, and therapeutic applicability.

  19. Graphene Sheet-Induced Global Maturation of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Wang, Jiaxian; Cui, Chang; Nan, Haiyan; Yu, Yuanfang; Xiao, Yini; Poon, Ellen; Yang, Gang; Wang, Xijie; Wang, Chenchen; Li, Lingsong; Boheler, Kenneth Richard; Ma, Xu; Cheng, Xin; Ni, Zhenhua; Chen, Minglong

    2017-08-09

    Human induced pluripotent stem cells (hiPSCs) can proliferate infinitely. Their ability to differentiate into cardiomyocytes provides abundant sources for disease modeling, drug screening and regenerative medicine. However, hiPSC-derived cardiomyocytes (hiPSC-CMs) display a low degree of maturation and fetal-like properties. Current in vitro differentiation methods do not mimic the structural, mechanical, or physiological properties of the cardiogenesis niche. Recently, we present an efficient cardiac maturation platform that combines hiPSCs monolayer cardiac differentiation with graphene substrate, which is a biocompatible and superconductive material. The hiPSCs lines were successfully maintained on the graphene sheets and were able to differentiate into functional cardiomyocytes. This strategy markedly increased the myofibril ultrastructural organization, elevated the conduction velocity, and enhanced both the Ca 2+ handling and electrophysiological properties in the absence of electrical stimulation. On the graphene substrate, the expression of connexin 43 increased along with the conduction velocity. Interestingly, the bone morphogenetic proteins signaling was also significantly activated during early cardiogenesis, confirmed by RNA sequencing analysis. Here, we reasoned that graphene substrate as a conductive biomimetic surface could facilitate the intrinsic electrical propagation, mimicking the microenvironment of the native heart, to further promote the global maturation of hiPSC-CMs. Our findings highlight the capability of electrically active substrates to influence cardiomyocyte development. We believe that application of graphene sheets will be useful for simple, fast, and scalable maturation of regenerated cardiomyocytes.

  20. Early Administration of Glutamine Protects Cardiomyocytes from Post-Cardiac Arrest Acidosis

    Directory of Open Access Journals (Sweden)

    Yan-Ren Lin

    2016-01-01

    Full Text Available Postcardiac arrest acidosis can decrease survival. Effective medications without adverse side effects are still not well characterized. We aimed to analyze whether early administration of glutamine could improve survival and protect cardiomyocytes from postcardiac arrest acidosis using animal and cell models. Forty Wistar rats with postcardiac arrest acidosis (blood pH < 7.2 were included. They were divided into study (500 mg/kg L-alanyl-L-glutamine, n=20 and control (normal saline, n=20 groups. Each of the rats received resuscitation. The outcomes were compared between the two groups. In addition, cardiomyocytes derived from human induced pluripotent stem cells were exposed to HBSS with different pH levels (7.3 or 6.5 or to culture medium (control. Apoptosis-related markers and beating function were analyzed. We found that the duration of survival was significantly longer in the study group (p<0.05. In addition, in pH 6.5 or pH 7.3 HBSS buffer, the expression levels of cell stress (p53 and apoptosis (caspase-3, Bcl-xL markers were significantly lower in cardiomyocytes treated with 50 mM L-glutamine than those without L-glutamine (RT-PCR. L-glutamine also increased the beating function of cardiomyocytes, especially at the lower pH level (6.5. More importantly, glutamine decreased cardiomyocyte apoptosis and increased these cells’ beating function at a low pH level.

  1. CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart

    Science.gov (United States)

    Gomez-Velazquez, Melisa; Badia-Careaga, Claudio; Lechuga-Vieco, Ana Victoria; Nieto-Arellano, Rocio; Rollan, Isabel; Alvarez, Alba; Torroja, Carlos; Caceres, Eva F.; Roy, Anna R.; Galjart, Niels; Sanchez-Cabo, Fatima; Enriquez, Jose Antonio; Gomez-Skarmeta, Jose Luis

    2017-01-01

    Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development. PMID:28846746

  2. Neonatal Transplantation Confers Maturation of PSC-Derived Cardiomyocytes Conducive to Modeling Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Gun-Sik Cho

    2017-01-01

    Full Text Available Summary: Pluripotent stem cells (PSCs offer unprecedented opportunities for disease modeling and personalized medicine. However, PSC-derived cells exhibit fetal-like characteristics and remain immature in a dish. This has emerged as a major obstacle for their application for late-onset diseases. We previously showed that there is a neonatal arrest of long-term cultured PSC-derived cardiomyocytes (PSC-CMs. Here, we demonstrate that PSC-CMs mature into adult CMs when transplanted into neonatal hearts. PSC-CMs became similar to adult CMs in morphology, structure, and function within a month of transplantation into rats. The similarity was further supported by single-cell RNA-sequencing analysis. Moreover, this in vivo maturation allowed patient-derived PSC-CMs to reveal the disease phenotype of arrhythmogenic right ventricular cardiomyopathy, which manifests predominantly in adults. This study lays a foundation for understanding human CM maturation and pathogenesis and can be instrumental in PSC-based modeling of adult heart diseases. : Pluripotent stem cell (PSC-derived cells remain fetal like, and this has become a major impediment to modeling adult diseases. Cho et al. find that PSC-derived cardiomyocytes mature into adult cardiomyocytes when transplanted into neonatal rat hearts. This method can serve as a tool to understand maturation and pathogenesis in human cardiomyocytes. Keywords: cardiomyocyte, maturation, iPS, cardiac progenitor, neonatal, disease modeling, cardiomyopathy, ARVC, T-tubule, calcium transient, sarcomere shortening

  3. CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart.

    Science.gov (United States)

    Gomez-Velazquez, Melisa; Badia-Careaga, Claudio; Lechuga-Vieco, Ana Victoria; Nieto-Arellano, Rocio; Tena, Juan J; Rollan, Isabel; Alvarez, Alba; Torroja, Carlos; Caceres, Eva F; Roy, Anna R; Galjart, Niels; Delgado-Olguin, Paul; Sanchez-Cabo, Fatima; Enriquez, Jose Antonio; Gomez-Skarmeta, Jose Luis; Manzanares, Miguel

    2017-08-01

    Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development.

  4. Role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes via TLR4/ROS/NF-κB pathway.

    Science.gov (United States)

    Yu, Jiangkun; Lu, Yanyu; Li, Yapeng; Xiao, Lili; Xing, Yu; Li, Yanshen; Wu, Leiming

    2015-09-01

    S100A1 plays a crucial role in hypoxia-induced inflammatory response in cardiomyocytes. However, the role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes is still unknown. enzyme-linked immunosorbent assay (ELISA) was performed for the determination of inflammatory cytokines. Immunocytochemistry and immunofluorescence, Western blot analysis and Real-time polymerase chain reaction (RT-PCR) were conducted to assess protein or mRNA expressions. Fluorogenic probe dihydroethidium (DHE) was used to evaluate the generation of reactive oxygen species (ROS) while Hoechst 33342 staining for apoptosis. Small interfering RNA (siRNA) for S100A1 was used to evaluate the role of S100A1. The levels of ROS and inflammatory cytokine including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-8 in H9c2 cells were increased remarkably by hypoxia. However, IL-37 protein or mRNA levels were decreased significantly. Both Toll-like receptor 4 (TLR4) inhibitor Ethyl (6R)-6-[N-(2-Chloro-4fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242) treatment or siRNA S100A1 downregulated TLR4 expression and inflammatory cytokine level and mRNA in H9c2 cells, as well as weakening ROS and phospho-p65 Nuclear factor (NF)-κB levels. Further, S100A1 treatment significantly reduced TNF-α protein or mRNA level whereas enhanced IL-37 protein or mRNA level, and could attenuate ROS and phospho-p65 NF-κB levels. Our results demonstrate that S100A1 can regulate the inflammatory response and oxidative stress in H9C2 cells via TLR4/ROS/NF-κB pathway. These findings provide an interesting strategy for protecting cardiomyocytes from hypoxia-induced inflammatory response. © 2015 Royal Pharmaceutical Society.

  5. Damage of guinea pig heart and arteries by a trioleate-enriched diet and of cultured cardiomyocytes by oleic acid.

    Directory of Open Access Journals (Sweden)

    Josef Krieglstein

    2010-03-01

    Full Text Available Mono-unsaturated fatty acids (MUFAs like oleic acid have been shown to cause apoptosis of cultured endothelial cells by activating protein phosphatase type 2C alpha and beta (PP2C. The question arises whether damage of endothelial or other cells could be observed in intact animals fed with a trioleate-enriched diet.Dunkin-Hartley guinea pigs were fed with a trioleate-enriched diet for 5 months. Advanced atherosclerotic changes of the aorta and the coronary arteries could not be seen but the arteries appeared in a pre-atherosclerotic stage of vascular remodelling. However, the weight and size of the hearts were lower than in controls and the number of apoptotic myocytes increased in the hearts of trioleate-fed animals. To confirm the idea that oleic acid may have caused this apoptosis by activation of PP2C, cultured cardiomyocytes from guinea pigs and mice were treated with various lipids. It was demonstrable that oleic acid dose-dependently caused apoptosis of cardiomyocytes from both species, yet, similar to previous experiments with cultured neurons and endothelial cells, stearic acid, elaidic acid and oleic acid methylester did not. The apoptotic effect caused by oleic acid was diminished when PP2C alpha and beta were downregulated by siRNA showing that PP2C was causally involved in apoptosis caused by oleic acid.The glycerol trioleate diet given to guinea pigs for 5 months did not cause marked atherosclerosis but clearly damaged the hearts by activating PP2C alpha and beta. The diet used with 24% (wt/wt glycerol trioleate is not comparable to human diets. The detrimental role of MUFAs for guinea pig heart tissue in vivo is shown for the first time. Whether it is true for humans remains to be shown.

  6. Electrophysiological analysis of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) using multi-electrode arrays (MEAs)

    NARCIS (Netherlands)

    Sala, Luca; Ward-van Oostwaard, Dorien; Tertoolen, Leon G.J.; Mummery, Christine L.; Bellin, Milena

    2017-01-01

    Cardiomyocytes can now be derived with high efficiency from both human embryonic and human induced-Pluripotent Stem Cells (hPSC). hPSC-derived cardiomyocytes (hPSC-CMs) are increasingly recognized as having great value for modeling cardiovascular diseases in humans, especially arrhythmia syndromes.

  7. Inhibition of Rho - ROCK signaling induces apoptotic and non-apoptotic PS exposure in cardiomyocytes via inhibition of flippase

    NARCIS (Netherlands)

    Krijnen, Paul A. J.; Sipkens, Jessica A.; Molling, Johan W.; Rauwerda, Jan A.; Stehouwer, Coen D. A.; Muller, Alice; Paulus, Walter J.; van Nieuw Amerongen, Geerten P.; Hack, C. Erik; Verhoeven, Arthur J.; van Hinsbergh, Victor W. M.; Niessen, Hans W. M.

    2010-01-01

    Subsequent to myocardial infarction, cardiomyocytes within the infarcted areas and border zones expose phosphatidylserine (PS) in the outer plasma membrane leaflet (flip-flop). We showed earlier that in addition to apoptosis, this flip-flop can be reversible in cardiomyocytes. We now investigated a

  8. Formation of Cell-To-Cell Connection between Bone Marrow Cells and Isolated Rat Cardiomyocytes in a Cocultivation Model

    Czech Academy of Sciences Publication Activity Database

    Skopalík, J.; Pásek, Michal; Rychtárik, M.; Koristek, Z.; Gabrielová, E.; Sheer, P.; Matejovič, P.; Modrianský, M.; Klabusay, M.

    2014-01-01

    Roč. 5, č. 5 (2014), s. 1000185 ISSN 2157-7013 Institutional support: RVO:61388998 Keywords : bone marrow * mononuclear cells * isolated cardiomyocytes * cocultivation Subject RIV: BO - Biophysics http://omicsonline.org/ open - access /formation-of-celltocell-connection-between-bone-marrow-cells- and -isolated-rat-cardiomyocytes-2157-7013.1000185.php?aid=33364

  9. Cardiotoxicity evaluation using human embryonic stem cells and induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Zhao, Qi; Wang, Xijie; Wang, Shuyan; Song, Zheng; Wang, Jiaxian; Ma, Jing

    2017-03-09

    Cardiotoxicity remains an important concern in drug discovery. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have become an attractive platform to evaluate cardiotoxicity. However, the consistency between human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in prediction of cardiotoxicity has yet to be elucidated. Here we screened the toxicities of four representative drugs (E-4031, isoprenaline, quinidine, and haloperidol) using both hESC-CMs and hiPSC-CMs, combined with an impedance-based bioanalytical method. It showed that both hESC-CMs and hiPSC-CMs can recapitulate cardiotoxicity and identify the effects of well-characterized compounds. The combined platform of hPSC-CMs and an impedance-based bioanalytical method could improve preclinical cardiotoxicity screening, holding great potential for increasing drug development accuracy.

  10. Hsp60 and p70S6K form a complex in human cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Kroupskaya I. V.

    2011-02-01

    Full Text Available Molecular chaperon Hsp60 and protein kinase p70S6K play an important functional role in the regulation of cardiomyocytes vital function or apoptosis. Aim. To study a possibility of in vivo complex formation between Hsp60 and p70S6K in cardiomyocytes. Methods. Co-immunoprecipitation, Western-blot analysis. Results. We have identified in vivo interaction between molecular chaperone Hsp60 and two isoforms of proteinkinase p70S6K in human myocardium, normal and affected by cardiomyopathy. Conclusions. The results obtained suggest a possible participation of molecular chaperon Hsp60 in regulation of p70S6K activity in stressinduced apoptotic signaling pathway in cardiomyocytes.

  11. [Octanol preconditioning alleviates mouse cardiomyocyte swelling induced by simulated ischemia/reperfusion challenge in vitro].

    Science.gov (United States)

    Luo, Yukun; Fang, Jun; Fan, Lin; Lin, Chaogui; Chen, Zhaoyang; Chen, Lianglong

    2012-10-01

    To investigate the role of connexin 43-formed hemichannels in cell volume regulation induced by simulated ischemia/reperfusion (SI/R). Mouse cardiomyocytes isolated on a Langendorff apparatus with enzyme solution were aliquoted into control, SI/R and SI/R +octanol groups. Calcein-AM was used to stain the cells and the cell volume was measured with confocal microscope by stack scanning. Trypan blue was used to measure the cell viability after the treatments. Calcein-AM staining and cofocal microscopy yielded stable and reproducible results for cell volume measurement. Mouse cardiomyocytes subjected to simulated SI/R showed obvious cell swelling as compared with the control cells [(126∓6)% vs 100%, Poctanol preconditioning significantly attenuated the cell swelling [(113∓6)%, Poctanol preconditioning obviously reduced the viability of the cells with SI/R challenge [(31∓2)%, Poctanol can alleviate the cell swelling to enhance the viability of the cardiomyocytes following SI/R.

  12. Decreased inward rectifier potassium current IK1 in dystrophin-deficient ventricular cardiomyocytes.

    Science.gov (United States)

    Rubi, Lena; Koenig, Xaver; Kubista, Helmut; Todt, Hannes; Hilber, Karlheinz

    2017-03-04

    Kir2.x channels in ventricular cardiomyocytes (most prominently Kir2.1) account for the inward rectifier potassium current I K1 , which controls the resting membrane potential and the final phase of action potential repolarization. Recently it was hypothesized that the dystrophin-associated protein complex (DAPC) is important in the regulation of Kir2.x channels. To test this hypothesis, we investigated potential I K1 abnormalities in dystrophin-deficient ventricular cardiomyocytes derived from the hearts of Duchenne muscular dystrophy mouse models. We found that I K1 was substantially diminished in dystrophin-deficient cardiomyocytes when compared to wild type myocytes. This finding represents the first functional evidence for a significant role of the DAPC in the regulation of Kir2.x channels.

  13. Herpesvirus-Mediated Delivery of a Genetically Encoded Fluorescent Ca2+ Sensor to Canine Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    János Prorok

    2009-01-01

    Full Text Available We report the development and application of a pseudorabies virus-based system for delivery of troponeon, a fluorescent Ca2+ sensor to adult canine cardiomyocytes. The efficacy of transduction was assessed by calculating the ratio of fluorescently labelled and nonlabelled cells in cell culture. Interaction of the virus vector with electrophysiological properties of cardiomyocytes was evaluated by the analysis of transient outward current (Ito, kinetics of the intracellular Ca2+ transients, and cell shortening. Functionality of transferred troponeon was verified by FRET analysis. We demonstrated that the transfer efficiency of troponeon to cultured adult cardiac myocytes was virtually 100%. We showed that even after four days neither the amplitude nor the kinetics of the Ito current was significantly changed and no major shifts occurred in parameters of [Ca2+]i transients. Furthermore, we demonstrated that infection of cardiomyocytes with the virus did not affect the morphology, viability, and physiological attributes of cells.

  14. Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating.

    Science.gov (United States)

    Liu, Yaowen; Lu, Jinfu; Xu, Guisen; Wei, Jiaojun; Zhang, Zhibin; Li, Xiaohong

    2016-12-01

    The key to addressing the challenges facing cardiac tissue engineering is the integration of physical, chemical, and electrical cues into scaffolds. Aligned and conductive scaffolds have been fabricated as synthetic microenvironments to improve the function of cardiomyocytes. However, up to now, the influence of conductive capability and inner structure of fibrous scaffolds have not been determined on the cardiomyocyte morphologies and beating patterns. In the current study, highly aligned fibers were fabricated with loaded up to 6% of carbon nanotubes (CNTs) to modulate the electrical conductivity, while blend and coaxial electrospinning were utilized to create a bulk distribution of CNTs in fiber matrices and a spatial embedment in fiber cores, respectively. Conductive networks were formed in the fibrous scaffolds after the inoculation of over 3% CNTs, and the increase in the conductivity could maintain the cell viabilities, induce the cell elongation, enhance the production of sarcomeric α-actinin and troponin I, and promote the synchronous beating of cardiomyocytes. Although the conductivity of blend fibers is slightly higher than that of coaxial fibers with the same CNT loadings, the lower exposures to CNTs resulted in higher cell viability, elongation, extracellular matrix secretion and beating rates for cardiomyocytes on coaxial fibers. Taken altogether, core-sheath fibers with loaded 5% of CNTs in the fiber cores facilitated the cardiomyocyte growth with a production of organized contractile proteins and a pulsation frequency close to that of the atrium. It is suggested that electrospun scaffolds that couple conductivity and fibrous structure considerations may provide optimal stimuli to foster cell morphology and functions for myocardial regeneration or establishment of in vitro cardiomyocyte culture platform for drug screening. Copyright © 2016. Published by Elsevier B.V.

  15. Differential Structural Development of Adult-Born Septal Hippocampal Granule Cells in the Thy1-GFP Mouse, Nuclear Size as a New Index of Maturation.

    Directory of Open Access Journals (Sweden)

    Tijana Radic

    Full Text Available Adult neurogenesis is frequently studied in the mouse hippocampus. We examined the morphological development of adult-born, immature granule cells in the suprapyramidal blade of the septal dentate gyrus over the period of 7-77 days after mitosis with BrdU-labeling in 6-weeks-old male Thy1-GFP mice. As Thy1-GFP expression was restricted to maturated granule cells, it was combined with doublecortin-immunolabeling of immature granule cells. We developed a novel classification system that is easily applicable and enables objective and direct categorization of newborn granule cells based on the degree of dendritic development in relation to the layer specificity of the dentate gyrus. The structural development of adult-generated granule cells was correlated with age, albeit with notable differences in the time course of development between individual cells. In addition, the size of the nucleus, immunolabeled with the granule cell specific marker Prospero-related homeobox 1 gene, was a stable indicator of the degree of a cell's structural maturation and could be used as a straightforward parameter of granule cell development. Therefore, further studies could employ our doublecortin-staging system and nuclear size measurement to perform investigations of morphological development in combination with functional studies of adult-born granule cells. Furthermore, the Thy1-GFP transgenic mouse model can be used as an additional investigation tool because the reporter gene labels granule cells that are 4 weeks or older, while very young cells could be visualized through the immature marker doublecortin. This will enable comparison studies regarding the structure and function between young immature and older matured granule cells.

  16. Overexpression of KCNJ2 in induced pluripotent stem cell-derived cardiomyocytes for the assessment of QT-prolonging drugs

    Directory of Open Access Journals (Sweden)

    Min Li

    2017-06-01

    Full Text Available Human induced pluripotent stem cell (hiPSC-derived cardiomyocytes hold great potentials to predict pro-arrhythmic risks in preclinical cardiac safety screening, although the hiPSC cardiomyocytes exhibit rather immature functional and structural characteristics, including spontaneous activity. Our physiological characterization and mathematical simulation showed that low expression of the inward-rectifier potassium (IK1 channel is a determinant of spontaneous activity. To understand impact of the low IK1 expression on the pharmacological properties, we tested if transduction of hiPSC-derived cardiomyocytes with KCNJ2, which encodes the IK1 channel, alters pharmacological response to cardiac repolarization processes. The transduction of KCNJ2 resulted in quiescent hiPSC-derived cardiomyocytes, which need pacing to elicit action potentials. Significant prolongation of paced action potential duration in KCNJ2-transduced hiPSC-derived cardiomyocytes was stably measured at 0.1 μM E-4031, although the same concentration of E-4031 ablated firing of non-treated hiPSC-derived cardiomyocytes. These results in single cells were confirmed by mathematical simulations. Using the hiPSC-derived cardiac sheets with KCNJ2-transduction, we also investigated effects of a range of drugs on field potential duration recorded at 1 Hz. The KCNJ2 overexpression in hiPSC-derived cardiomyocytes may contribute to evaluate a part of QT-prolonging drugs at toxicological concentrations with high accuracy.

  17. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Ji Zhang

    Full Text Available Fatty acid binding protein 4 (FABP4 is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG mice using α myosin-heavy chain (α-MHC promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway.

  18. Mapping of redox state of mitochondrial cytochromes in live cardiomyocytes using Raman microspectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A; Treiman, Marek; Brazhe, Alexey R

    2012-01-01

    This paper presents a nonivasive approach to study redox state of reduced cytochromes [Formula: see text], [Formula: see text] and [Formula: see text] of complexes II and III in mitochondria of live cardiomyocytes by means of Raman microspectroscopy. For the first time with the proposed approach ...

  19. Delayed Cardiomyocyte Response to Total Body Particle Radiation Exposure - Identification of Regulatory Gene Network [proton

    Data.gov (United States)

    National Aeronautics and Space Administration — We examined molecular responses using transcriptome profiling in isolated left ventricular murine cardiomyocytes to 90 cGy 1 GeV proton (1H) and 15 cGy 1 GeV/nucleon...

  20. Delayed Cardiomyocyte Response to Total Body Particle Radiation Exposure - Identification of Regulatory Gene Network [iron

    Data.gov (United States)

    National Aeronautics and Space Administration — We examined molecular responses using transcriptome profiling in isolated left ventricular murine cardiomyocytes to 90 cGy 1 GeV proton (1H) and 15 cGy 1 GeV/nucleon...

  1. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, Yasaman [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Li, Qian [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Quabius, Elgar Susanne [Dept. of Otorhinolaryngology, Head and Neck Surgery, University of Kiel, Arnold-Heller-Str. 3, Building 27, D-24105 Kiel (Germany); Institute of Immunology, University of Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel (Germany); Böttner, Martina [Department of Anatomy, University of Kiel, Otto-Hahn-Platz 8, 24118 Kiel (Germany); Selhuber-Unkel, Christine, E-mail: cse@tf.uni-kiel.de [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Kasra, Mehran [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of)

    2016-02-01

    Following a myocardial infarction (MI), cardiomyocytes are replaced by scar tissue, which decreases ventricular contractile function. Tissue engineering is a promising approach to regenerate such damaged cardiomyocyte tissue. Engineered cardiac patches can be fabricated by seeding a high density of cardiac cells onto a synthetic or natural porous polymer. In this study, nanocomposite scaffolds made of gold nanotubes/nanowires incorporated into biodegradable castor oil-based polyurethane were employed to make micro-porous scaffolds. H9C2 cardiomyocyte cells were cultured on the scaffolds for one day, and electrical stimulation was applied to improve cell communication and interaction in neighboring pores. Cells on scaffolds were examined by fluorescence microscopy and scanning electron microscopy, revealing that the combination of scaffold design and electrical stimulation significantly increased cell confluency of H9C2 cells on the scaffolds. Furthermore, we showed that the gene expression levels of Nkx2.5, atrial natriuretic peptide (ANF) and natriuretic peptide precursor B (NPPB), which are functional genes of the myocardium, were up-regulated by the incorporation of gold nanotubes/nanowires into the polyurethane scaffolds, in particular after electrical stimulation. - Highlights: • Biodegradable polyurethane/gold nanocomposites for cardiomyocyte adhesion are proposed. • The nanocomposite scaffolds are porous and electrical stimulation enhances cell adhesion. • Expression levels of functional myocardium genes were upregulated after electrical stimulation.

  2. Inflammatory and mitochondrial gene expression data in GPER-deficient cardiomyocytes from male and female mice

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2017-02-01

    Full Text Available We previously showed that cardiomyocyte-specific G protein-coupled estrogen receptor (GPER gene deletion leads to sex-specific adverse effects on cardiac structure and function; alterations which may be due to distinct differences in mitochondrial and inflammatory processes between sexes. Here, we provide the results of Gene Set Enrichment Analysis (GSEA based on the DNA microarray data from GPER-knockout versus GPER-intact (intact cardiomyocytes. This article contains complete data on the mitochondrial and inflammatory response-related gene expression changes that were significant in GPER knockout versus intact cardiomyocytes from adult male and female mice. The data are supplemental to our original research article “Cardiomyocyte-specific deletion of the G protein-coupled estrogen receptor (GPER leads to left ventricular dysfunction and adverse remodeling: a sex-specific gene profiling” (Wang et al., 2016 [1]. Data have been deposited to the Gene Expression Omnibus (GEO database repository with the dataset identifier GSE86843.

  3. Impaired ALDH2 activity decreases the mitochondrial respiration in H9C2 cardiomyocytes.

    Science.gov (United States)

    Mali, Vishal R; Deshpande, Mandar; Pan, Guodong; Thandavarayan, Rajarajan A; Palaniyandi, Suresh S

    2016-02-01

    Reactive oxygen species (ROS)-mediated reactive aldehydes induce cellular stress. In cardiovascular diseases such as ischemia-reperfusion injury, lipid-peroxidation derived reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are known to contribute to the pathogenesis. 4HNE is involved in ROS formation, abnormal calcium handling and more importantly defective mitochondrial respiration. Aldehyde dehydrogenase (ALDH) superfamily contains NAD(P)(+)-dependent isozymes which can detoxify endogenous and exogenous aldehydes into non-toxic carboxylic acids. Therefore we hypothesize that 4HNE afflicts mitochondrial respiration and leads to cell death by impairing ALDH2 activity in cultured H9C2 cardiomyocyte cell lines. H9C2 cardiomyocytes were treated with 25, 50 and 75 μM 4HNE and its vehicle, ethanol as well as 25, 50 and 75 μM disulfiram (DSF), an inhibitor of ALDH2 and its vehicle (DMSO) for 4 h. 4HNE significantly decreased ALDH2 activity, ALDH2 protein levels, mitochondrial respiration and mitochondrial respiratory reserve capacity, and increased 4HNE adduct formation and cell death in cultured H9C2 cardiomyocytes. ALDH2 inhibition by DSF and ALDH2 siRNA attenuated ALDH2 activity besides reducing ALDH2 levels, mitochondrial respiration and mitochondrial respiratory reserve capacity and increased cell death. Our results indicate that ALDH2 impairment can lead to poor mitochondrial respiration and increased cell death in cultured H9C2 cardiomyocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. PGC-1α and Reactive Oxygen Species Regulate Human Embryonic Stem Cell-Derived Cardiomyocyte Function

    NARCIS (Netherlands)

    Birket, Matthew J.; Casini, Simona; Kosmidis, Georgios; Elliott, David A.; Gerencser, Akos A.; Baartscheer, Antonius; Schumacher, Cees; Mastroberardino, Pier G.; Elefanty, Andrew G.; Stanley, Ed G.; Mummery, Christine L.

    2013-01-01

    Diminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on cardiomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inactivated. Repression of PGC-1α, which is

  5. Human heart disease : lessons from human pluripotent stem cell-derived cardiomyocytes

    NARCIS (Netherlands)

    Giacomelli, E.; Mummery, C.L.; Bellin, M.

    2017-01-01

    Technical advances in generating and phenotyping cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are now driving their wider acceptance as in vitro models to understand human heart disease and discover therapeutic targets that may lead to new compounds for clinical use. Current

  6. Identification and functionality of proteomes secreted by rat cardiac stem cells and neonatal cardiomyocytes

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Chimenti, I.; Marban, E.; Van Eyk, J.E.

    2010-01-01

    Roč. 10, č. 2 (2010), s. 245-253 ISSN 1615-9853 Institutional research plan: CEZ:AV0Z40310501 Keywords : animal proteomics * cardiac stem cells * neonatal cardiomyocytes Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.815, year: 2010

  7. Cardiomyocyte apoptosis vs autophagy with prolonged doxorubicin treatment: comparison with osteosarcoma cells.

    Science.gov (United States)

    Tacar, Oktay; Indumathy, Sivanjah; Tan, Mei Lin; Baindur-Hudson, Swati; Friedhuber, Anna M; Dass, Crispin R

    2015-02-01

    Doxorubicin (Dox) is a frontline chemotherapeutic against osteosarcoma (OS) that is plagued by side effects, particularly in the heart. The specific objective of this article is to investigate whether low-dose Dox treatment had pro-autophagic effects in cardiomyocytes as well as osteosarcoma cells. This study characterises apoptotic (Bax) and autophagic (Beclin-1) biomarker levels in human OS and cardiomyocyte cell lines as well as in various tissues when mice are exposed to low (1 mg/kg, thrice weekly) and high (3 mg/kg thrice weekly) dose Dox for a month. There was a decrease in Bax and increase in Beclin-1 in cardiac tissue in the high-dose group. Dox decreased Beclin-1 in the skin and liver, with no clear indication in the stomach, small intestine and testis. At low Dox doses of 10 and 100 nm in cardiomyocytes and OS cells, there is a pro-apoptotic effect, with a quicker response in the 100-nm condition, and a slower but steady increase of a pro-apoptotic response at the lower 10-nm dose. However, electron microscopy images revealed changes to human OS cells that resembled autophagy. Human prostate, breast and colorectal cells treated with 10-nm Dox showed ∼ 40% reduction in cell viability after 24 h. In culture, cells of both cardiomyocytes and OS revealed a predominant pro-apoptotic response at the expense of autophagy, although both seemed to be occurring in vivo. © 2014 Royal Pharmaceutical Society.

  8. Single-Cell Functional Analysis of Stem-Cell Derived Cardiomyocytes on Micropatterned Flexible Substrates

    NARCIS (Netherlands)

    Kijlstra, Jan David; Hu, Dongjian; van der Meer, Peter; Domian, Ibrahim J

    2017-01-01

    Human pluripotent stem-cell derived cardiomyocytes (hPSC-CMs) hold great promise for applications in human disease modeling, drug discovery, cardiotoxicity screening, and, ultimately, regenerative medicine. The ability to study multiple parameters of hPSC-CM function, such as contractile and

  9. Dehydrosilybin attenuates the production of ROS in rat cardiomyocyte mitochondria with an uncoupler-like mechanism

    Czech Academy of Sciences Publication Activity Database

    Gabrielová, E.; Jabůrek, Martin; Gažák, Radek; Vostálová, J.; Ježek, Jan; Křen, Vladimír; Modrianský, M.

    2010-01-01

    Roč. 42, č. 6 (2010), s. 499-509 ISSN 0145-479X R&D Projects: GA ČR(CZ) GA303/08/0658 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50200510 Keywords : Reactive oxygen species * Cardiomyocytes * Dehydrosilybin Subject RIV: CE - Biochemistry Impact factor: 3.637, year: 2010

  10. Functional interaction between bicarbonate transporters and carbonic anhydrase modulates lactate uptake into mouse cardiomyocytes.

    Science.gov (United States)

    Peetz, Jan; Barros, L Felipe; San Martín, Alejandro; Becker, Holger M

    2015-07-01

    Blood-derived lactate is a precious energy substrate for the heart muscle. Lactate is transported into cardiomyocytes via monocarboxylate transporters (MCTs) together with H(+), which couples lactate uptake to cellular pH regulation. In this study, we have investigated how the interplay between different acid/base transporters and carbonic anhydrases (CA), which catalyze the reversible hydration of CO2, modulates the uptake of lactate into isolated mouse cardiomyocytes. Lactate transport was estimated both as lactate-induced acidification and as changes in intracellular lactate levels measured with a newly developed Förster resonance energy transfer (FRET) nanosensor. Recordings of intracellular pH showed an increase in the rate of lactate-induced acidification when CA was inhibited by 6-ethoxy-2-benzothiazolesulfonamide (EZA), while direct measurements of lactate flux demonstrated a decrease in MCT transport activity, when CA was inhibited. The data indicate that catalytic activity of extracellular CA increases lactate uptake and counteracts intracellular lactate-induced acidification. We propose a hypothetical model, in which HCO3 (-), formed from cell-derived CO2 at the outer surface of the cardiomyocyte plasma membrane by membrane-anchored, extracellular CA, is transported into the cell via Na(+)/HCO3 (-) cotransport to counteract intracellular acidification, while the remaining H(+) stabilizes extracellular pH at the surface of the plasma membrane during MCT activity to enhance lactate influx into cardiomyocytes.

  11. Distinctive Roles of Canonical and Noncanonical Wnt Signaling in Human Embryonic Cardiomyocyte Development

    Directory of Open Access Journals (Sweden)

    Silvia Mazzotta

    2016-10-01

    Full Text Available Wnt signaling is a key regulator of vertebrate heart development; however, specific roles for human cardiomyocyte development remain uncertain. Here we use human embryonic stem cells (hESCs to analyze systematically in human cardiomyocyte development the expression of endogenous Wnt signaling components, monitor pathway activity, and dissect stage-specific requirements for canonical and noncanonical Wnt signaling mechanisms using small-molecule inhibitors. Our analysis suggests that WNT3 and WNT8A, via FZD7 and canonical signaling, regulate BRACHYURY expression and mesoderm induction; that WNT5A/5B, via ROR2 and noncanonical signaling, regulate MESP1 expression and cardiovascular development; and that later in development WNT2, WNT5A/5B, and WNT11, via FZD4 and FZD6, regulate functional cardiomyocyte differentiation via noncanonical Wnt signaling. Our findings confirm in human development previously proposed roles for canonical Wnt signaling in sequential stages of vertebrate cardiomyogenesis, and identify more precise roles for noncanonical signaling and for individual Wnt signal and Wnt receptor genes in human cardiomyocyte development.

  12. Evaluation of electrical propagation delay with cardiomyocytes by photosensitization reaction in vitro

    Science.gov (United States)

    Doi, Marika; Ogawa, Emiyu; Arai, Tsunenori

    2017-02-01

    In order to study cardiomyocyte electrical conduction damage by a photosensitization reaction (PR) mostly comes from outside of the cells in a few minutes after the PR, we studied propagation delay of contact action potential with cardiomyocyte by the PR. To determine appropriate PR condition for tachyarrhythmia ablation, a precise electrophysiological experiment in vitro has been preferable. We measured the contact action potential using a microelectrode array system of which information may be correct than conventional Ca2+ measurement. We investigated the propagation delays of an evoked potential to evaluate the electrical conduction damage by the PR. Rat cardiomyocytes were cultivated for 5-7 days on a dish with which 64 electrodes were patterned, in an incubator controlled to 37°C, 5% CO2. The following conditions were used for the PR: 40 μg/ml talapordfin sodium and 290 mW/cm2, 40-78 J/cm2 for an irradiation. A 2D map was obtained to visualize the propagation delays of the evoked potential. The propagation speed, which was calculated based on the measured propagation delays, was decreased by about 30-50% on average of all electrodes after the PR. Therefore, we think 2D propagation delays measurement of the evoked potential with contact action potential measuring system might be available to evaluate the acute electrical conduction damage of cardiomyocyte by the PR.

  13. Cardiomyocyte Hypocontractility and Reduced Myofibril Density in End-Stage Pediatric Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ilse A. E. Bollen

    2017-12-01

    Full Text Available Dilated cardiomyopathy amongst children (pediatric cardiomyopathy, pediatric CM is associated with a high morbidity and mortality. Because little is known about the pathophysiology of pediatric CM, treatment is largely based on adult heart failure therapy. The reason for high morbidity and mortality is largely unknown as well as data on cellular pathomechanisms is limited. Here, we assessed cardiomyocyte contractility and protein expression to define cellular pathomechanisms in pediatric CM. Explanted heart tissue of 11 pediatric CM patients and 18 controls was studied. Contractility was measured in single membrane-permeabilized cardiomyocytes and protein expression was assessed with gel electrophoresis and western blot analysis. We observed increased Ca2+-sensitivity of myofilaments which was due to hypophosphorylation of cardiac troponin I, a feature commonly observed in adult DCM. We also found a significantly reduced maximal force generating capacity of pediatric CM cardiomyocytes, as well as a reduced passive force development over a range of sarcomere lengths. Myofibril density was reduced in pediatric CM compared to controls. Correction of maximal force and passive force for myofibril density normalized forces in pediatric CM cardiomyocytes to control values. This implies that the hypocontractility was caused by the reduction in myofibril density. Unlike in adult DCM we did not find an increase in compliant titin isoform expression in end-stage pediatric CM. The limited ability of pediatric CM patients to maintain myofibril density might have contributed to their early disease onset and severity.

  14. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS mediated cardiomyocyte hypertrophy

    NARCIS (Netherlands)

    Tigchelaar, Wardit; Yu, Hongjuan; De Jong, Anne Margreet; van Gilst, Wiek H; van der Harst, Pim; Westenbrink, B Daan; de Boer, Rudolf A; Sillje, Herman H W

    2015-01-01

    Recently, a genetic variant in the mitochondrial exo/endo nuclease EXOG, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and

  15. Mitochondria Play a Central Role in Nonischemic Cardiomyocyte Necrosis: Common to Acute and Chronic Stressor States

    Science.gov (United States)

    Khan, M. Usman; Cheema, Yaser; Shahbaz, Atta U.; Ahokas, Robert A.; Sun, Yao; Gerling, Ivan C.; Bhattacharya, Syamal K.; Weber, Karl T.

    2012-01-01

    The survival of cardiomyocytes must be ensured as the myocardium adjusts to a myriad of competing physiologic and pathophysiologic demands. A significant loss of these contractile cells, together with their replacement by stiff fibrillar collagen in the form of fibrous tissue accounts for a transition from a usually efficient muscular pump into one that is failing. Cellular and subcellular mechanisms involved in the pathogenic origins of cardiomyocyte cell death have long been of interest. This includes programmed molecular pathways to either necrosis or apoptosis which are initiated from ischemic or nonischemic origins. Herein we focus on the central role played by a mitochondriocentric signal-transducer-effector pathway to nonischemic cardiomyocyte necrosis which is common to acute and chronic stressor states. We begin by building upon the hypothesis advanced by Albrecht Fleckenstein and coworkers some 40 years ago based on the importance of calcitropic hormone- mediated intracellular Ca2+ overloading which predominantly involves subsarcolemmal mitochondria and is the signal to pathway activation. Other pathway components, which came to be recognized in subsequent years, include the induction of oxidative stress and opening of the mitochondrial inner membrane permeability transition pore. The ensuing loss of cardiomyocytes and consequent replacement fibrosis, or scarring, represents a disease of adaptation and a classic example of when homeostasis begets dyshomeostasis. PMID:22328074

  16. HALT & REVERSE: Hsf1 activators lower cardiomyocyt damage; towards a novel approach to REVERSE atrial fibrillation

    NARCIS (Netherlands)

    E. Lanters (Eva); D.M.S. Marion (Denise M. S.); C. Kik (Charles); H. Steen (Herman); A.J.J.C. Bogers (Ad); M.A. Allessie (Maurits); B.J.J.M. Brundel (Bianca); N.M.S. de Groot (Natasja)

    2015-01-01

    textabstractBackground: Atrial fibrillation is a progressive arrhythmia, the exact mechanism underlying the progressive nature of recurrent AF episodes is still unknown. Recently, it was found that key players of the protein quality control system of the cardiomyocyte, i.e. Heat Shock Proteins,

  17. NanoSIMS Analysis of Intravascular Lipolysis and Lipid Movement across Capillaries and into Cardiomyocytes

    DEFF Research Database (Denmark)

    He, Cuiwen; Weston, Thomas A; Jung, Rachel S

    2018-01-01

    , mice were given an injection of [2H]triglyceride-enriched TRLs, and the movement of 2H-labeled lipids across capillaries and into cardiomyocytes was examined by NanoSIMS. TRL processing and lipid movement in tissues were extremely rapid. Within 30 s, TRL-derived lipids appeared in the subendothelial...

  18. Cardiomyocyte Hypocontractility and Reduced Myofibril Density in End-Stage Pediatric Cardiomyopathy.

    Science.gov (United States)

    Bollen, Ilse A E; van der Meulen, Marijke; de Goede, Kyra; Kuster, Diederik W D; Dalinghaus, Michiel; van der Velden, Jolanda

    2017-01-01

    Dilated cardiomyopathy amongst children (pediatric cardiomyopathy, pediatric CM) is associated with a high morbidity and mortality. Because little is known about the pathophysiology of pediatric CM, treatment is largely based on adult heart failure therapy. The reason for high morbidity and mortality is largely unknown as well as data on cellular pathomechanisms is limited. Here, we assessed cardiomyocyte contractility and protein expression to define cellular pathomechanisms in pediatric CM. Explanted heart tissue of 11 pediatric CM patients and 18 controls was studied. Contractility was measured in single membrane-permeabilized cardiomyocytes and protein expression was assessed with gel electrophoresis and western blot analysis. We observed increased Ca 2+ -sensitivity of myofilaments which was due to hypophosphorylation of cardiac troponin I, a feature commonly observed in adult DCM. We also found a significantly reduced maximal force generating capacity of pediatric CM cardiomyocytes, as well as a reduced passive force development over a range of sarcomere lengths. Myofibril density was reduced in pediatric CM compared to controls. Correction of maximal force and passive force for myofibril density normalized forces in pediatric CM cardiomyocytes to control values. This implies that the hypocontractility was caused by the reduction in myofibril density. Unlike in adult DCM we did not find an increase in compliant titin isoform expression in end-stage pediatric CM. The limited ability of pediatric CM patients to maintain myofibril density might have contributed to their early disease onset and severity.

  19. Complete restoration of multiple dystrophin isoforms in genetically corrected Duchenne muscular dystrophy patient–derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Susi Zatti

    2014-01-01

    Full Text Available Duchenne muscular dystrophy (DMD–associated cardiac diseases are emerging as a major cause of morbidity and mortality in DMD patients, and many therapies for treatment of skeletal muscle failed to improve cardiac function. The reprogramming of patients' somatic cells into pluripotent stem cells, combined with technologies for correcting the genetic defect, possesses great potential for the development of new treatments for genetic diseases. In this study, we obtained human cardiomyocytes from DMD patient–derived, induced pluripotent stem cells genetically corrected with a human artificial chromosome carrying the whole dystrophin genomic sequence. Stimulation by cytokines was combined with cell culturing on hydrogel with physiological stiffness, allowing an adhesion-dependent maturation and a proper dystrophin expression. The obtained cardiomyocytes showed remarkable sarcomeric organization of cardiac troponin T and α-actinin, expressed cardiac-specific markers, and displayed electrically induced calcium transients lasting less than 1 second. We demonstrated that the human artificial chromosome carrying the whole dystrophin genomic sequence is stably maintained throughout the cardiac differentiation process and that multiple promoters of the dystrophin gene are properly activated, driving expression of different isoforms. These dystrophic cardiomyocytes can be a valuable source for in vitro modeling of DMD-associated cardiac disease. Furthermore, the derivation of genetically corrected, patient-specific cardiomyocytes represents a step toward the development of innovative cell and gene therapy approaches for DMD.

  20. Engineered Microenvironments for the Maturation and Observation of Human Embryonic Stem Cell Derived Cardiomyocytes

    Science.gov (United States)

    Salick, Max R.

    The human heart is a dynamic system that undergoes substantial changes as it develops and adapts to the body's growing needs. To better understand the physiology of the heart, researchers have begun to produce immature heart muscle cells, or cardiomyocytes, from pluripotent stem cell sources with remarkable efficiency. These stem cell-derived cardiomyocytes hold great potential in the understanding and treatment of heart disease; however, even after prolonged culture, these cells continue to exhibit an immature phenotype, as indicated by poor sarcomere organization and calcium handling, among other features. The lack of maturation that is observed in these cardiomyocytes greatly limits their applicability towards drug screening, disease modeling, and cell therapy applications. The mechanical environment surrounding a cell has been repeatedly shown to have a large impact on that cell's behavior. For this reason, we have implemented micropatterning methods to mimic the level of alignment that occurs in the heart in vivo in order to study how this alignment may help the cells to produce a more mature sarcomere phenotype. It was discovered that the level of sarcomere organization of a cardiomyocyte can be strongly influenced by the micropattern lane geometry on which it adheres. Steps were taken to optimize this micropattern platform, and studies of protein organization, gene expression, and myofibrillogenesis were conducted. Additionally, a set of programs was developed to provide quantitative analysis of the level of sarcomere organization, as well as to assist with several other tissue engineering applications.

  1. Protective effects of novel single compound, Hirsutine on hypoxic neonatal rat cardiomyocytes.

    Science.gov (United States)

    Wu, Li Xin; Gu, Xian Feng; Zhu, Yi Chun; Zhu, Yi Zhun

    2011-01-10

    Uncaria rhynchophylla is a traditional Chinese herb that has been applied in China for treatment of ailments of the cardiovascular system, but little is known about its active constituents and effect in cardiomyocytes. In present study, we investigated the cardioprotective effect of 0.1μΜ, 1μΜ and 10μΜ Hirsutine isolated from the methanolic extracts of Uncaria rhynchophylla by high performance liquid chromatography (HPLC) on neonatal rat cardiomyocytes treated with hypoxia to determine the mechanism underlying the protective effect with regard to cardiac anti-oxidant enzymes and apoptosis genes. Hirsutine significantly increased the viability of cardiomyocytes injured by hypoxia. Gene expression levels of proapoptotic genes (Bax, Fas and caspase-3) were significantly downregulated compared with the hypoxic control group (P<0.05), whereas the expression level of Bcl-2 was upregulated following Hirsutine treatment (P<0.05). Correspondingly, Hirsutine treatment increased Bcl-2 protein level and decreased Bax protein level. Assay investigating cardiac anti-oxidant enzymes provided further evidence for the protective effect of Hirsutine, as indicated by the induction of the anti-oxidant enzymes superoxide dismutase. The results of present study suggest that the mechanism of action of Hirsutine in hypoxic neonatal rat cardiomyocytes may be related to its anti-oxidant and anti-apoptotic properties. This may open an avenue for developing novel candidate compounds with cardioprotectiveeffect from unique Chinese plant. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease

    Directory of Open Access Journals (Sweden)

    Yalin Liao

    2016-08-01

    Full Text Available RNA functions through the dynamic formation of complexes with RNA-binding proteins (RBPs in all clades of life. We determined the RBP repertoire of beating cardiomyocytic HL-1 cells by jointly employing two in vivo proteomic methods, mRNA interactome capture and RBDmap. Together, these yielded 1,148 RBPs, 391 of which are shared with all other available mammalian RBP repertoires, while 393 are thus far unique to cardiomyocytes. RBDmap further identified 568 regions of RNA contact within 368 RBPs. The cardiomyocyte mRNA interactome composition reflects their unique biology. Proteins with roles in cardiovascular physiology or disease, mitochondrial function, and intermediary metabolism are all highly represented. Notably, we identified 73 metabolic enzymes as RBPs. RNA-enzyme contacts frequently involve Rossmann fold domains with examples in evidence of both, mutual exclusivity of, or compatibility between RNA binding and enzymatic function. Our findings raise the prospect of previously hidden RNA-mediated regulatory interactions among cardiomyocyte gene expression, physiology, and metabolism.

  3. Mena associates with Rac1 and modulates connexin 43 remodeling in cardiomyocytes.

    Science.gov (United States)

    Ram, Rashmi; Wescott, Andrew P; Varandas, Katherine; Dirksen, Robert T; Blaxall, Burns C

    2014-01-01

    Mena, a member of the Ena/VASP family of actin regulatory proteins, modulates microfilaments and interacts with cytoskeletal proteins associated with heart failure. Mena is localized at the intercalated disc (ICD) of adult cardiac myocytes, colocalizing with numerous cytoskeletal proteins. Mena's role in the maintainence of mechanical myocardial stability at the cardiomyocyte ICD remains unknown. We hypothesized that Mena may modulate signals from the sarcolemma to the actin cytoskeleton at the ICD to regulate the expression and localization of connexin 43 (Cx43). The small GTPase Rac1 plays a pivotal role in the regulation of actin cytoskeletal reorganization and mediating morphological and transcriptional changes in cardiomyocytes. We found that Mena is associated with active Rac1 in cardiomyocytes and that RNAi knockdown of Mena increased Rac1 activity significantly. Furthermore, Mena knockdown increased Cx43 expression and altered Cx43 localization and trafficking at the ICD, concomitant with faster intercellular communication, as assessed by dye transfer between cardiomyocyte pairs. In mice overexpressing constitutively active Rac1, left ventricular Mena expression was increased significantly, concomitant with lateral redistribution of Cx43. These results suggest that Mena is a critical regulator of the ICD and is required for normal localization of Cx43 in part via regulation of Rac1.

  4. Objective malignancy grading of squamous cell carcinoma of the lung. Stereologic estimates of mean nuclear size are of prognostic value, independent of clinical stage of disease

    DEFF Research Database (Denmark)

    Ladekarl, M; Bæk-Hansen, T; Henrik-Nielsen, R

    1995-01-01

    a projection microscope and a simple test system in fields of vision systematically selected from the whole tumor area of one routine section, five quantitative histopathologic variables were estimated: the mean nuclear volume, the mean nuclear profile area, the density of nuclear profiles, the volume fraction...... of nuclei to tissue, and the number of mitotic profiles per 10(3) nuclear profiles. For each patient, information was recorded regarding sex, age at diagnosis, and clinical stage of disease.RESULTS: Single-factor analyses showed that a favorable prognosis was associated with early clinical stages (Stages I...... and II) and young age (P stage, age, and mean nuclear...

  5. Objective malignancy grading of squamous cell carcinoma of the lung. Stereologic estimates of mean nuclear size are of prognostic value, independent of clinical stage of disease

    DEFF Research Database (Denmark)

    Ladekarl, M; Bæk-Hansen, T; Henrik-Nielsen, R

    1995-01-01

    a projection microscope and a simple test system in fields of vision systematically selected from the whole tumor area of one routine section, five quantitative histopathologic variables were estimated: the mean nuclear volume, the mean nuclear profile area, the density of nuclear profiles, the volume fraction...... of nuclei to tissue, and the number of mitotic profiles per 10(3) nuclear profiles. For each patient, information was recorded regarding sex, age at diagnosis, and clinical stage of disease. RESULTS: Single-factor analyses showed that a favorable prognosis was associated with early clinical stages (Stages I...... and II) and young age (P stage, age, and mean nuclear...

  6. In vitro reestablishment of cell-cell contacts in adult rat cardiomyocytes. Functional role of transmembrane components in the formation of new intercalated disk-like cell contacts.

    Science.gov (United States)

    Eppenberger, H M; Zuppinger, C

    1999-01-01

    Primary adult rat cardiomyocytes (ARC)in culture are shown to be a model system for cardiac cell hypertrophy in vitro. ARC undergo a process of morphological transformation and grow only by increase in cell size, however, without loss of the cardiac phenotype. The isolated cells spread and establish new cell-cell contacts, eventually forming a two-dimensional heart tissue-like synchronously beating cell sheet. The reformation of specific cell contacts (intercalated disks) is shown also between ventricular and atrial cardiomyocytes by using antibodies against the gap junction protein connexin-43 and after microinjection into ARC of N-cadherin cDNA fused to reporter green fluorescent protein (GFP) cDNA. The expressed fusion protein allowed the study of live cell cultures and of the dynamics of the adherens junction protein N-cadherin during the formation of new cell-cell contacts. The possible use of the formed ARC cell-sheet cells under microgravity conditions as a test system for the reformation of the cytoskeleton of heart muscle cells is proposed.

  7. Preparation of a recombinant adenoviral encoding human NIS gene and its specific expression in cardiomyocytes

    International Nuclear Information System (INIS)

    Wang Lihua; Zhang Miao; Guo Rui; Shi Shuo; Li Biao

    2012-01-01

    Objective: To construct a recombinant adenovirus vector containing the human NIS gene with the myosin light chain-2(MLC-2v) gene as the promoter and evaluate its specific expression and feasibility as a reporter gene in cardiomyocytes. Methods: MLC-2v promoter and NIS were subcloned into an adenovirus shuttle vector, and forwarded by homologous recombination in the bacteria BJ5183 containing AdEasy-1 plasmid. Positive recombinant adenovirus vector was selected, packaged and amplified in the HEK293 cells to obtain recombinant adenovirus Ad-MLC-NIS. Ad-cytomegalovirus (CMV)-NIS with cytomegalovirus as the promoter, Ad-MLC without NIS and Ad-NIS without promoter were constructed as the controls. Cardiomyocytes and non-cardiomyocytes were then infected by the adenovirus. The protein expression was tested by Western blot analysis. The function and features of NIS protein were evaluated by dynamic iodide uptake and NaClO 4 iodine uptake inhibition test in vitro. The viability and proliferation of cardiomyocytes after adenovirus transfection and radioiodine incubation were checked by trypan blue staining. Results: Recombinant NIS adenovirus was successfully constructed. Western blot analysis showed that the NIS protein was highly expressed in cardiomyocytes transfected with Ad-MLC-NIS, and all cells transfected with Ad-CMV-NIS. However, in non-cardiomyocytes transfected with Ad-MLC-NIS, little NIS protein was detected. Dynamic iodine uptake tests showed that the peaks of iodide uptake of the three different cell lines (H9C2, A549, U87 cell) transfected with Ad-MLC-NIS were 5844.0, 833.6 and 846.0 counts · min -1 , respectively. The iodide uptake function of H9C2 was inhibited by NaClO 4 . There was almost no change in cell viability and proliferation when the MOI was 100. Conclusions: Ad-MLC-NIS allows myocardial specific expression of an external gene, and the cardiomyocytes with NIS expression are capable of iodine uptake. Further research of NIS as a reporter gene in

  8. Evaluation of Optogenetic Electrophysiology Tools in Human Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Susann Björk

    2017-11-01

    Full Text Available Current cardiac drug safety assessments focus on hERG channel block and QT prolongation for evaluating arrhythmic risks, whereas the optogenetic approach focuses on the action potential (AP waveform generated by a monolayer of human cardiomyocytes beating synchronously, thus assessing the contribution of several ion channels on the overall drug effect. This novel tool provides arrhythmogenic sensitizing by light-induced pacing in combination with non-invasive, all-optical measurements of cardiomyocyte APs and will improve assessment of drug-induced electrophysiological aberrancies. With the help of patch clamp electrophysiology measurements, we aimed to investigate whether the optogenetic modifications alter human cardiomyocytes' electrophysiology and how well the optogenetic analyses perform against this gold standard. Patch clamp electrophysiology measurements of non-transduced stem cell-derived cardiomyocytes compared to cells expressing the commercially available optogenetic constructs Optopatch and CaViar revealed no significant changes in action potential duration (APD parameters. Thus, inserting the optogenetic constructs into cardiomyocytes does not significantly affect the cardiomyocyte's electrophysiological properties. When comparing the two methods against each other (patch clamp vs. optogenetic imaging we found no significant differences in APD parameters for the Optopatch transduced cells, whereas the CaViar transduced cells exhibited modest increases in APD-values measured with optogenetic imaging. Thus, to broaden the screen, we combined optogenetic measurements of membrane potential and calcium transients with contractile motion measured by video motion tracking. Furthermore, to assess how optogenetic measurements can predict changes in membrane potential, or early afterdepolarizations (EADs, cells were exposed to cumulating doses of E-4031, a hERG potassium channel blocker, and drug effects were measured at both spontaneous and

  9. The soluble guanylyl cyclase activator bay 58-2667 selectively limits cardiomyocyte hypertrophy.

    Directory of Open Access Journals (Sweden)

    Jennifer C Irvine

    Full Text Available Although evidence now suggests cGMP is a negative regulator of cardiac hypertrophy, the direct consequences of the soluble guanylyl cyclase (sGC activator BAY 58-2667 on cardiac remodeling, independent of changes in hemodynamic load, has not been investigated. In the present study, we tested the hypothesis that the NO(•-independent sGC activator BAY 58-2667 inhibits cardiomyocyte hypertrophy in vitro. Concomitant impact of BAY 58-2667 on cardiac fibroblast proliferation, and insights into potential mechanisms of action, were also sought. Results were compared to the sGC stimulator BAY 41-2272.Neonatal rat cardiomyocytes were incubated with endothelin-1 (ET(1, 60nmol/L in the presence and absence of BAY 41-2272 and BAY 58-2667 (0.01-0.3 µmol/L. Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. The impact of both sGC ligands on basal and stimulated cardiac fibroblast proliferation in vitro was also determined.We now demonstrate that BAY 58-2667 (0.01-0.3 µmol/L elicited concentration-dependent antihypertrophic actions, inhibiting ET(1-mediated increases in cardiomyocyte 2D area and de novo protein synthesis, as well as suppressing ET(1-induced cardiomyocyte superoxide generation. This was accompanied by potent increases in cardiomyocyte cGMP accumulation and activity of its downstream signal, vasodilator-stimulated phosphoprotein (VASP, without elevating cardiomyocyte cAMP. In contrast, submicromolar concentrations of BAY 58-2667 had no effect on basal or stimulated cardiac fibroblast proliferation. Indeed, only at concentrations ≥10 µmol/L was inhibition of cardiac fibrosis seen in vitro. The effects of BAY 58-2667 in both cell types were mimicked by BAY 41-2272.Our results demonstrate that BAY 58-2667 elicits protective, cardiomyocyte-selective effects in vitro. These actions are associated with sGC activation and are evident in the absence of confounding hemodynamic factors, at low (submicromolar

  10. Sphingosine-1-phosphate promotes the differentiation of human umbilical cord mesenchymal stem cells into cardiomyocytes under the designated culturing conditions

    Directory of Open Access Journals (Sweden)

    Zhang Henggui

    2011-06-01

    Full Text Available Abstract Background It is of growing interest to develop novel approaches to initiate differentiation of mesenchymal stem cells (MSCs into cardiomyocytes. The purpose of this investigation was to determine if Sphingosine-1-phosphate (S1P, a native circulating bioactive lipid metabolite, plays a role in differentiation of human umbilical cord mesenchymal stem cells (HUMSCs into cardiomyocytes. We also developed an engineered cell sheet from these HUMSCs derived cardiomyocytes by using a temperature-responsive polymer, poly(N-isopropylacrylamide (PIPAAm cell sheet technology. Methods Cardiomyogenic differentiation of HUMSCs was performed by culturing these cells with either designated cardiomyocytes conditioned medium (CMCM alone, or with 1 μM S1P; or DMEM with 10% FBS + 1 μM S1P. Cardiomyogenic differentiation was determined by immunocytochemical analysis of expression of cardiomyocyte markers and patch clamping recording of the action potential. Results A cardiomyocyte-like morphology and the expression of α-actinin and myosin heavy chain (MHC proteins can be observed in both CMCM culturing or CMCM+S1P culturing groups after 5 days' culturing, however, only the cells in CMCM+S1P culture condition present cardiomyocyte-like action potential and voltage gated currents. A new approach was used to form PIPAAm based temperature-responsive culture surfaces and this successfully produced cell sheets from HUMSCs derived cardiomyocytes. Conclusions This study for the first time demonstrates that S1P potentiates differentiation of HUMSCs towards functional cardiomyocytes under the designated culture conditions. Our engineered cell sheets may provide a potential for clinically applicable myocardial tissues should promote cardiac tissue engineering research.

  11. Coculturing with endothelial cells promotes in vitro maturation and electrical coupling of human embryonic stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Pasquier, Jennifer; Gupta, Renuka; Rioult, Damien; Hoarau-Véchot, Jessica; Courjaret, Raphael; Machaca, Khaled; Al Suwaidi, Jassim; Stanley, Edouard G; Rafii, Shahin; Elliott, David A; Abi Khalil, Charbel; Rafii, Arash

    2017-06-01

    Pluripotent human embryonic stem cells (hESC) are a promising source of repopulating cardiomyocytes. We hypothesized that we could improve maturation of cardiomyocytes and facilitate electrical interconnections by creating a model that more closely resembles heart tissue; that is, containing both endothelial cells (ECs) and cardiomyocytes. We induced cardiomyocyte differentiation in the coculture of an hESC line expressing the cardiac reporter NKX2.5-green fluorescent protein (GFP), and an Akt-activated EC line (E4 + ECs). We quantified spontaneous beating rates, synchrony, and coordination between different cardiomyocyte clusters using confocal imaging of Fura Red-detected calcium transients and computer-assisted image analysis. After 8 days in culture, 94% ± 6% of the NKX2-5GFP + cells were beating when hESCs embryonic bodies were plated on E4 + ECs compared with 34% ± 12.9% for controls consisting of hESCs cultured on BD Matrigel (BD Biosciences) without ECs at Day 11 in culture. The spatial organization of beating areas in cocultures was different. The GFP + cardiomyocytes were close to the E4 + ECs. The average beats/min of the cardiomyocytes in coculture was faster and closer to physiologic heart rates compared with controls (50 ± 14 [n = 13] vs 25 ± 9 [n = 8]; p < 0.05). The coculture with ECs led to synchronized beating relying on the endothelial network, as illustrated by the loss of synchronization upon the disruption of endothelial bridges. The coculturing of differentiating cardiomyocytes with Akt-activated ECs but not EC-conditioned media results in (1) improved efficiency of the cardiomyocyte differentiation protocol and (2) increased maturity leading to better intercellular coupling with improved chronotropy and synchrony. Copyright © 2017. Published by Elsevier Inc.

  12. Nuclear reaction of 10 B (n, α) 7 Li and grain size effects on the production of free radicals in alanine

    International Nuclear Information System (INIS)

    Zurita Petatan, S.L.

    1993-01-01

    In general, it is important to know the physical and chemical properties of any material that is exposed to ionizing radiation. In particular, in dosimetric work, the amount of the absorbed doses by these materials is of much interest, in such a way that several methods have been developed in the past. An important and quantitatively accessible radiation effect in organic substances is the production of free radicals that can be easily measured by 'ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY (EPR)'. Numerous studies have been now been made on pure D L-Alanine irradiated with different radiation sources. Examination of the irradiated samples reveals the production of a stable free radical (CH 3 - CH. -COOH). In particular, gamma and electron irradiated D L-Alanine has received wide attention in the high doses interval (10 - 10 5 Gy). In contrast, there are very few EPR studies on thermal neutron radiation induced free radicals in pure D L-alanine. This may be due to the weak EPR signals observed in the irradiated samples. The objective of this work is to study for the first time the increase of the radical yield produced in neutron irradiated borated alanine by the EPR technique. For this purpose alanine has been mixed with borax in different stoichiometric proportions and grain sizes. When the mixture is neutron irradiated, the boron of the borax may experience a neutron capture reaction, 10 B (n, α) 7 Li. With this nuclear reaction it is supposed that the α particles will may impinge on the alanine molecules, producing in this way extra free radicals. Samples were irradiated in the thermal column of a Triga Mark III nuclear reactor with a thermal neutron flux of 5 x 10 7 n/Cm 2 -s. A signal enhancement of up to 1260 % is observed when samples of alanine-borax were intimately mixed in a stoichiometric ratio of 1:1. We also studied dosimetric characteristics of the mixed samples such as: a) Sensibility. b) Accuracy. c) Traceability. d) Stability. e)Fading. f

  13. Cardioprotective effect of breviscapine: inhibition of apoptosis in H9c2 cardiomyocytes via the PI3K/Akt/eNOS pathway following simulated ischemia/reperfusion injury.

    Science.gov (United States)

    Wang, Jun; Ji, Shu-Yun; Liu, Si-Zhu; Jing, Rui; Lou, Wei-Juan

    2015-09-01

    Breviscapine (BE) is a standardized Chinese herbal medicine extracted from Erigeron breviscapus (Vant.) Hand.-Mazz. It has been widely used to treat cardiovascular and cerebrovascular diseases. However, there are no reports on the protective effects and underlying molecular mechanisms of BE action on myocardial ischemia/reperfusion (MI/R)-induced cardiomyocyte apoptosis. In the present study, we aimed to confirm the cardioprotective effect of BE from MI/R injury in vivo, and investigate the potential molecular mechanisms against simulated ischemia/reperfusion (SI/R)-induced cardiomyocyte apoptosis in vitro. The rat model of MI/R injury was induced by 30 min of transient vessel occlusion followed by 3 h of reperfusion. BE significantly reduced the myocardium infarct size and production of cardiac troponin (cTnl) in serum. In an in vitro experiment, H9c2 cardiomyocytes were incubated with vehicle or ischemic buffer during hypoxia; then, they were reoxygenated with or without BE. BE markedly improved the cell viability and decreased lactate dehydrogenase (LDH) release. We confirmed the anti-apoptotic effect of BE with the Hoechst 33258 staining assay, and this effect was associated with an increase in Bcl-2 and a decrease in active caspase-3 expression. Western blot analysis also showed that BE increased the phosphorylation of Akt and eNOS in H9c2 cells, and the protective effects of BE were partially inhibited by the phosphatidylinositol 3'-kinase (PI3K) specific inhibitor LY294002. Our results suggested that BE could provide significant cardioprotection against MI/R injury, and the potential mechanisms might involve suppression of cardiomyocyte apoptosis through activating the PI3K/Akt/eNOS signaling pathway.

  14. [Rat cardiomyocyte remodeling after neonatal cryptosporidiosis. II. Elongation, excessive polyploidization and HIF-1alpha overexpression].

    Science.gov (United States)

    Anatskaia, O V; Sidorenko, N V; Matveev, I V; Kropotov, A V; Vinogradov, A E

    2012-01-01

    Retrospective epidemyological studies evidence that infant diseases leave survivors with an increased susceptibility to cardiovascular diseases in later life. At the same time, the mechanisms of this link remain poorly understood. Based on medical statistics reporting that infectious gastroenteritis is the most common cause of maladies in babies, infants and children, we analysed the effects of moderate cryptosporidial gastroenteritis on the heart and ventricular cardiomyocyte remodelling in rats of the first month of life. The disease was challenged by a worldwide human protozoic pathogen Cryptosporidium parvum (Apicomplexa, Sporozoa). The main symptoms manifested in the growth retardation moderate diarrhea. Using real-time PCR, cytophotometry, confocal microscopy and image analysis, we indicated that cryptosporidiosis was associated, with the atrophy heart and the elongation, narrowing, protein content decrease and hyperpolyploidization of cardiomyocytes and the moderate overexpression of hypoxia inducible factor 1alpha (HIF-1alpha) mRNA. Cardiomyocyte shape remodeling and heart atrophy presented in all age groups. The severity of these changes, hovewer, declined gradually from younger to older groups. In contrast, hyperpolyploidization and HIF-1alpha mRNA overexpression were registered mainly among animals aged between 6 and 13 days, and were barely detected and non-significant in older age groups. In the rat the time period covering 6-13 days after birth is known to coincide with the intensive cardiomyocyte polyploidization and the switch from proliferation to hypertrophy. Thus, our data indicate that neonatal cryptosporidiosis may be potential cardiovascular diseases risk factor and that one of the critical time windows for the growing heart covers the time period when cardiomyocyte undergo polyploidization.

  15. Heme Oxygenase-1/Carbon Monoxide System and Embryonic Stem Cell Differentiation and Maturation into Cardiomyocytes

    Science.gov (United States)

    Suliman, Hagir B.; Zobi, Fabio

    2016-01-01

    Abstract Aims: The differentiation of embryonic stem (ES) cells into energetically efficient cardiomyocytes contributes to functional cardiac repair and is envisioned to ameliorate progressive degenerative cardiac diseases. Advanced cell maturation strategies are therefore needed to create abundant mature cardiomyocytes. In this study, we tested whether the redox-sensitive heme oxygenase-1/carbon monoxide (HO-1/CO) system, operating through mitochondrial biogenesis, acts as a mechanism for ES cell differentiation and cardiomyocyte maturation. Results: Manipulation of HO-1/CO to enhance mitochondrial biogenesis demonstrates a direct pathway to ES cell differentiation and maturation into beating cardiomyocytes that express adult structural markers. Targeted HO-1/CO interventions up- and downregulate specific cardiogenic transcription factors, transcription factor Gata4, homeobox protein Nkx-2.5, heart- and neural crest derivatives-expressed protein 1, and MEF2C. HO-1/CO overexpression increases cardiac gene expression for myosin regulatory light chain 2, atrial isoform, MLC2v, ANP, MHC-β, and sarcomere α-actinin and the major mitochondrial fusion regulators, mitofusin 2 and MICOS complex subunit Mic60. This promotes structural mitochondrial network expansion and maturation, thereby supporting energy provision for beating embryoid bodies. These effects are prevented by silencing HO-1 and by mitochondrial reactive oxygen species scavenging, while disruption of mitochondrial biogenesis and mitochondrial DNA depletion by loss of mitochondrial transcription factor A compromise infrastructure. This leads to failure of cardiomyocyte differentiation and maturation and contractile dysfunction. Innovation: The capacity to augment cardiomyogenesis via a defined mitochondrial pathway has unique therapeutic potential for targeting ES cell maturation in cardiac disease. Conclusion: Our findings establish the HO-1/CO system and redox regulation of mitochondrial biogenesis as

  16. Overexpression of BAG3 Attenuates Hypoxia-Induced Cardiomyocyte Apoptosis by Inducing Autophagy.

    Science.gov (United States)

    Zhang, Jiankai; He, Zhangyou; Xiao, Wenjian; Na, Qingqing; Wu, Tianxiu; Su, Kaixin; Cui, Xiaojun

    2016-01-01

    Hypoxia is a well-known factor in the promotion of apoptosis, which contributes to the development of numerous cardiac diseases, such as heart failure and myocardial infarction. Inhibiting apoptosis is an important therapeutic strategy for the treatment of related heart diseases caused by ischemia/hypoxic injury. Previous studies have demonstrated that BAG3 plays an important role in cardiomyocyte apoptosis and survival. However, the role of BAG3 in hypoxia-induced cardiomyocyte apoptosis remains to be clarified. Here, we demonstrate that BAG3 is induced by hypoxia stimuli in cultured cardiomyocytes. BAG3 expression level was measured in H9c2 cells treated with hypoxia for 48 h. Cell proliferation and apoptosis were tested using MTT assay and Annexin V FITC-PI staining assay, respectively. The mRNA or protein expression level of BAG3, LC3-I, LC3-II, Atg5, NF-x03BA;B p65 and phosphorylated NF-x03BA;B p65 were assessed by qRT-PCR and western blot assay, respectively. Resluts: Overexpression of BAG3 inhibited cell apoptosis and promoted proliferation in hypoxia-injured H9c2 cells. Furthermore, autophagy and NF-x03BA;B were activated by BAG3 overexpression, and the NF-x03BA;B inhibitor PDTC could inhibit the activation of autophagy induced by BAG3 overexpression. In addition, the autophagy inhibitor 3-MA partly impeded the inhibitory effect of BAG3 on hypoxia-induced cardiomyocyte apoptosis. these results suggested that overexpression of BAG3 promoted cell proliferation and inhibited apoptosis by activating autophagy though the NF-x03BA;B signaling pathway in hypoxia-injured cardiomyocytes. © 2016 The Author(s) Published by S. Karger AG, Basel.

  17. Overexpression of BAG3 Attenuates Hypoxia-Induced Cardiomyocyte Apoptosis by Inducing Autophagy

    Directory of Open Access Journals (Sweden)

    Jiankai Zhang

    2016-07-01

    Full Text Available Background: Hypoxia is a well-known factor in the promotion of apoptosis, which contributes to the development of numerous cardiac diseases, such as heart failure and myocardial infarction. Inhibiting apoptosis is an important therapeutic strategy for the treatment of related heart diseases caused by ischemia/hypoxic injury. Previous studies have demonstrated that BAG3 plays an important role in cardiomyocyte apoptosis and survival. However, the role of BAG3 in hypoxia-induced cardiomyocyte apoptosis remains to be clarified. Here, we demonstrate that BAG3 is induced by hypoxia stimuli in cultured cardiomyocytes. Methods: BAG3 expression level was measured in H9c2 cells treated with hypoxia for 48 h. Cell proliferation and apoptosis were tested using MTT assay and Annexin V FITC-PI staining assay, respectively. The mRNA or protein expression level of BAG3, LC3-I, LC3-II, Atg5, NF-κB p65 and phosphorylated NF-κB p65 were assessed by qRT-PCR and western blot assay, respectively. Resluts: Overexpression of BAG3 inhibited cell apoptosis and promoted proliferation in hypoxia-injured H9c2 cells. Furthermore, autophagy and NF-κB were activated by BAG3 overexpression, and the NF-κB inhibitor PDTC could inhibit the activation of autophagy induced by BAG3 overexpression. In addition, the autophagy inhibitor 3-MA partly impeded the inhibitory effect of BAG3 on hypoxia-induced cardiomyocyte apoptosis. Conclusion: these results suggested that overexpression of BAG3 promoted cell proliferation and inhibited apoptosis by activating autophagy though the NF-κB signaling pathway in hypoxia-injured cardiomyocytes.

  18. Human-induced pluripotent stem cell-derived cardiomyocytes from cardiac progenitor cells: effects of selective ion channel blockade.

    Science.gov (United States)

    Altomare, Claudia; Pianezzi, Enea; Cervio, Elisabetta; Bolis, Sara; Biemmi, Vanessa; Benzoni, Patrizia; Camici, Giovanni G; Moccetti, Tiziano; Barile, Lucio; Vassalli, Giuseppe

    2016-12-01

    Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are likely to revolutionize electrophysiological approaches to arrhythmias. Recent evidence suggests the somatic cell origin of hiPSCs may influence their differentiation potential. Owing to their cardiomyogenic potential, cardiac-stromal progenitor cells (CPCs) are an interesting cellular source for generation of hiPSC-derived cardiomyocytes. The effect of ionic current blockade in hiPSC-derived cardiomyocytes generated from CPCs has not been characterized yet. Human-induced pluripotent stem cell-derived cardiomyocytes were generated from adult CPCs and skin fibroblasts from the same individuals. The effect of selective ionic current blockade on spontaneously beating hiPSC-derived cardiomyocytes was assessed using multi-electrode arrays. Cardiac-stromal progenitor cells could be reprogrammed into hiPSCs, then differentiated into hiPSC-derived cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin showed higher upregulation of cardiac-specific genes compared with those of fibroblastic origin. Human-induced pluripotent stem cell-derived cardiomyocytes of both somatic cell origins exhibited sensitivity to tetrodotoxin, a blocker of Na +  current (I Na ), nifedipine, a blocker of L-type Ca 2+  current (I CaL ), and E4031, a blocker of the rapid component of delayed rectifier K +  current (I Kr ). Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin exhibited sensitivity to JNJ303, a blocker of the slow component of delayed rectifier K +  current (I Ks ). In hiPSC-derived cardiomyocytes of cardiac origin, I Na , I CaL , I Kr , and I Ks were present as tetrodotoxin-, nifedipine-, E4031-, and JNJ303-sensitive currents, respectively. Although cardiac differentiation efficiency was improved in hiPSCs of cardiac vs. non-cardiac origin, no major functional differences were observed between hiPSC-derived cardiomyocytes of different somatic

  19. Modelling the pathogenesis of Myotonic Dystrophy type 1 cardiac phenotype through human iPSC-derived cardiomyocytes.

    Science.gov (United States)

    Spitalieri, Paola; Talarico, Rosa V; Caioli, Silvia; Murdocca, Michela; Serafino, Annalucia; Girasole, Marco; Dinarelli, Simone; Longo, Giovanni; Pucci, Sabina; Botta, Annalisa; Novelli, Giuseppe; Zona, Cristina; Mango, Ruggiero; Sangiuolo, Federica

    2018-03-15

    Myotonic Dystrophy type 1 (DM1) is a multisystemic disease, autosomal dominant, caused by a CTG repeat expansion in DMPK gene. We assessed the appropriateness of patient-specific induced pluripotent stem cell-derived cardiomyocytes (CMs) as a model to recapitulate some aspects of the pathogenetic mechanism involving cardiac manifestations in DM1 patients. Once obtained in vitro, CMs have been characterized for their morphology and their functionality. CMs DM1 show intranuclear foci and transcript markers abnormally spliced respect to WT ones, as well as several irregularities in nuclear morphology, probably caused by an unbalanced lamin A/C ratio. Electrophysiological characterization evidences an abnormal profile only in CMs DM1 such that the administration of antiarrythmic drugs to these cells highlights even more the functional defect linked to the disease. Finally, Atomic Force Measurements reveal differences in the biomechanical behaviour of CMs DM1, in terms of frequencies and synchronicity of the beats. Altogether the complex phenotype described in this work, strongly reproduces some aspects of the human DM1 cardiac phenotype. Therefore, the present study provides an in vitro model suggesting novel insights into the mechanisms leading to the development of arrhythmogenesis and dilatative cardiomyopathy to consider when approaching to DM1 patients, especially for the risk assessment of sudden cardiac death (SCD). These data could be also useful in identifying novel biomarkers effective in clinical settings and patient-tailored therapies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Effect of bionic electrical stimulation on the differentiation of embryonic stem cells into cardiomyocytes in the presence myocardial cells in vitro

    Directory of Open Access Journals (Sweden)

    Li-na ZHENG

    2011-08-01

    Full Text Available Objective To investigate the effects of electrical stimulation on the differentiation of embryonic stem cells(ESCs into cardiomyocytes in the presence of myocardial cells in vitro.Methods ESCs and neonate rat cardiomyocytes were isolated and cultured.These cells of primary culture were divided into 5 groups according to whether or not electric stimulation was given and the presence of cardiomyocytes: control group,stimulation group,cardiomyocytes group,stimulation+ cardiomyocyte conditioned medium group,and stimulation+cardiomyocytes group.Expression of troponin T(cTnT in the differentiated cells from ESCs was examined by immunofluoresence on the 5th,7th and 14th day.Results In the group co-cultured with myocardial cell and electrical stimulation,the differentiating ratio of cardiomyocytes derived from ESCs and expressing cTnT was 40.00%±2.39%,and it was higher than that in control group(2.00%±1.60%,stimulation group(3.00%±2.00%,cardiomyocytes group(28.70%±4.06%,stimulation+cardiomyocyte conditioned medium group(17.10%±2.23%,P < 0.05.Conclusion Bionic electric stimulation promotes the differentiation of ESCs into cardiomyocyte in a microenvironment consisting of myocardial cells.

  1. Lentiviral vectors and protocols for creation of stable hESC lines for fluorescent tracking and drug resistance selection of cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Hiroko Kita-Matsuo

    Full Text Available Developmental, physiological and tissue engineering studies critical to the development of successful myocardial regeneration therapies require new ways to effectively visualize and isolate large numbers of fluorescently labeled, functional cardiomyocytes.Here we describe methods for the clonal expansion of engineered hESCs and make available a suite of lentiviral vectors for that combine Blasticidin, Neomycin and Puromycin resistance based drug selection of pure populations of stem cells and cardiomyocytes with ubiquitous or lineage-specific promoters that direct expression of fluorescent proteins to visualize and track cardiomyocytes and their progenitors. The phospho-glycerate kinase (PGK promoter was used to ubiquitously direct expression of histone-2B fused eGFP and mCherry proteins to the nucleus to monitor DNA content and enable tracking of cell migration and lineage. Vectors with T/Brachyury and alpha-myosin heavy chain (alphaMHC promoters targeted fluorescent or drug-resistance proteins to early mesoderm and cardiomyocytes. The drug selection protocol yielded 96% pure cardiomyocytes that could be cultured for over 4 months. Puromycin-selected cardiomyocytes exhibited a gene expression profile similar to that of adult human cardiomyocytes and generated force and action potentials consistent with normal fetal cardiomyocytes, documenting these parameters in hESC-derived cardiomyocytes and validating that the selected cells retained normal differentiation and function.The protocols, vectors and gene expression data comprise tools to enhance cardiomyocyte production for large-scale applications.

  2. Neomysin inhibits Ca2+-stimulated phosphatidylinositol hydrolysis and protects cultured rat cardiomyocytes from Ca2+-dependent cell injury

    International Nuclear Information System (INIS)

    Babson, J.R.; Dougherty, J.M.

    1991-01-01

    Exposure of cultured rat cardiomyocytes to ionomycin and extracellular Ca 2+ leads to a rapid, sustained increase in intracellular free Ca 2+ as monitored by Ca 2+ -dependent phosphorylase a activation and to a subsequent loss of cardiomyocyte viability as determined by lactate dehydrogenase (LDH) leakage. The intracellular free Ca 2+ increase coincided with a rapid hydrolysis of phosphatidylinositol that preceded cell death. Phosphatidylinositol hydrolysis was monitored by the release of radiolabeled phosphoinositides from cardiomyocytes prelabeled with [2- 3 H]-myo-inositol. Neomycin, a known inhibitor of phospholipase C, inhibited the phosphatidylinositol hydrolysis and markedly reduced the extent of cell injury. Inhibitors of other Ca 2+ -activated processes, including intracellular proteases and phospholipase A 2 , had no effect on ionomycin-mediated cell injury. These data suggest that ionomycin-induced Ca 2+ -dependent cell injury in cultured cardiomyocytes may be due in part to the stimulation of phosphatidylinositol hydrolysis, presumably catalyzed by a Ca 2+ -dependent phospholipase C

  3. Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor

    Directory of Open Access Journals (Sweden)

    Jordan S. Leyton-Mange

    2014-02-01

    Full Text Available In addition to their promise in regenerative medicine, pluripotent stem cells have proved to be faithful models of many human diseases. In particular, patient-specific stem cell-derived cardiomyocytes recapitulate key features of several life-threatening cardiac arrhythmia syndromes. For both modeling and regenerative approaches, phenotyping of stem cell-derived tissues is critical. Cellular phenotyping has largely relied upon expression of lineage markers rather than physiologic attributes. This is especially true for cardiomyocytes, in part because electrophysiological recordings are labor intensive. Likewise, most optical voltage indicators suffer from phototoxicity, which damages cells and degrades signal quality. Here we present the use of a genetically encoded fluorescent voltage indicator, ArcLight, which we demonstrate can faithfully report transmembrane potentials in human stem cell-derived cardiomyocytes. We demonstrate the application of this fluorescent sensor in high-throughput, serial phenotyping of differentiating cardiomyocyte populations and in screening for drug-induced cardiotoxicity.

  4. Identification and purification of human induced pluripotent stem cell-derived atrial-like cardiomyocytes based on sarcolipin expression.

    Directory of Open Access Journals (Sweden)

    Rebecca Josowitz

    Full Text Available The use of human stem cell-derived cardiomyocytes to study atrial biology and disease has been restricted by the lack of a reliable method for stem cell-derived atrial cell labeling and purification. The goal of this study was to generate an atrial-specific reporter construct to identify and purify human stem cell-derived atrial-like cardiomyocytes. We have created a bacterial artificial chromosome (BAC reporter construct in which fluorescence is driven by expression of the atrial-specific gene sarcolipin (SLN. When purified using flow cytometry, cells with high fluorescence specifically express atrial genes and display functional calcium handling and electrophysiological properties consistent with atrial cardiomyocytes. Our data indicate that SLN can be used as a marker to successfully monitor and isolate hiPSC-derived atrial-like cardiomyocytes. These purified cells may find many applications, including in the study of atrial-specific pathologies and chamber-specific lineage development.

  5. In EXOG-depleted cardiomyocytes cell death is marked by a decreased mitochondrial reserve capacity of the electron transport chain

    NARCIS (Netherlands)

    Tigchelaar, Wardit; De Jong, Anne Margreet; van Gilst, Wiek H.; De Boer, Rudolf A.; Sillje, Herman H. W.

    Depletion ofmitochondrial endo/exonuclease G-like (EXOG) in cultured neonatal cardiomyocytes stimulates mitochondrial oxygen consumption rate (OCR) and induces hypertrophy via reactive oxygen species (ROS). Here, we show that neurohormonal stress triggers cell death in endo/exonuclease

  6. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shan-Li [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Sun, Ming-Rui [Department of Pharmacology, Qiqihaer Medical College, Qiqihaer 160001 (China); Li, Ting-Ting; Yin, Xin [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Xu, Chang-Qing [Department of Pathophysiology, Harbin Medical University, Harbin 150086 (China); Sun, Yi-Hua, E-mail: syh200415@126.com [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China)

    2011-03-11

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, GdCl{sub 3

  7. Thymosin beta 4 protects cardiomyocytes from oxidative stress by targeting anti-oxidative enzymes and anti-apoptotic genes.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available Thymosin beta-4 (Tβ4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. The mechanism by which Tβ4 modulates cardiac protection under oxidative stress is not known. The purpose of this study is to dissect the cardioprotective mechanism of Tβ4 on H(2O(2 induced cardiac damage.Rat neonatal cardiomyocytes with or without Tβ4 pretreatment were exposed to H(2O(2 and expression of antioxidant, apoptotic, and anti-inflammatory genes was evaluated by quantitative real-time PCR and western blotting. ROS levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant, anti-inflammatory and antiapoptotic genes were silenced by siRNA transfections in neonatal cardiomyocytes and effect of Tβ4 on H(2O(2-induced cardiac damage was evaluated.Pre-treatment of Tβ4 resulted in reduction of the intracellular ROS levels induced by H(2O(2 in cardiomyocytes. Tβ4 pretreatment also resulted in an increase in the expression of antiapoptotic proteins and reduction of Bax/BCl(2 ratio in the cardiomyocytes. Pretreatment with Tβ4 resulted in stimulating the expression of antioxidant enzymes copper/zinc SOD and catalase in cardiomyocytes at both transcription and translation levels. Tβ4 treatment resulted in the increased expression of anti-apoptotic and anti-inflammatory genes. Silencing of Cu/Zn SOD and catalase gene resulted in apoptotic cell death in the cardiomyocytes which was prevented by treatment with Tβ4.This is the first report that demonstrates the effect of Tβ4 on cardiomyocytes and its capability to selectively upregulate anti-oxidative enzymes, anti-inflammatory genes, and antiapoptotic enzymes in the neonatal cardiomyocytes thus preventing cell death thereby protecting the myocardium. Tβ4 treatment resulted in decreased oxidative stress and inflammation in the myocardium under oxidative stress.

  8. Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment.

    Science.gov (United States)

    Yoon, Byung Sun; Yoo, Seung Jun; Lee, Jeoung Eun; You, Seungkwon; Lee, Hoon Taek; Yoon, Hyun Soo

    2006-04-01

    Cell replacement therapy is a promising approach for the treatment of cardiac diseases. It is, however, challenged by a limited supply of appropriate cells. Therefore, we have investigated whether functional cardiomyocytes can be efficiently generated from human embryonic stem cells (hESCs). In this study, we developed an efficient protocol for the generation of functional cardiomyocytes from hESCs by combining hanging drop culture and 5-azacytidine, a well-known demethylating agent, and then evaluated the expression of cardiac-specific markers. hESCs were cultured both in the medium without or with 0.1, 1, or 10 microM of 5-azacytidine under a hanging drop culture. The expression of several cardiac-specific markers was determined by real-time PCR, RT-PCR, immunofluorescence, and confocal microscopy. To verify the structural and functional properties of hESC-derived cardiomyocytes, we performed electron microscopy and electrophysiological recording. The efficiency of beating cell generation was significantly improved in the hanging drop culture compared with that in suspension culture. Treatment of hESCs with 0.1 microM of 5-azacytidine for 1-3 days significantly increased the number of beating cells and simultaneously enhanced the expression of cardiac-specific markers. Transmission electron microscopy and electrophysiological recording showed that hESC-derived cardiomyocytes acquired structural and functional properties of cardiomyocytes. In conclusion, these results suggest that differentiation of hESCs into cardiomyocytes can be enhanced by the combination of hanging drop culture and 5-azacytidine treatment. Also the methylation status of genes related to cardiomyocyte development may play an important role in the differentiation of hESCs into cardiomyocytes.

  9. Ca2+-currents in human induced pluripotent stem cell-derived cardiomyocytes - effects of two different culture conditions

    Directory of Open Access Journals (Sweden)

    Ahmet Umur Uzun

    2016-09-01

    Full Text Available Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM provide a unique opportunity to study human heart physiology and pharmacology and repair injured hearts. The suitability of hiPSC-CM critically depends on how closely they share physiological properties of human adult cardiomyocytes (CM. Here we investigated whether a 3D engineered heart tissue (EHT culture format favors maturation and addressed the L-type Ca2+-current (ICa,L as a readout. The results were compared with hiPSC-CM cultured in conventional monolayer (ML and to our previous data from human adult atrial and ventricular CM obtained when identical patch-clamp protocols were used. HiPSC-CM were 2-3 fold smaller than adult CM, independently of culture format (capacitance ML 45±1 pF (n=289, EHT 45±1 pF (n=460, atrial CM 87±3 pF (n=196, ventricular CM 126±8 pF (n=50. Only 88% of ML cells showed ICa, but all EHT. Basal ICa density was 10±1 pA/pF (n=207 for ML and 12±1 pA/pF (n=361 for EHT and was larger than in adult CM (7±1 pA/pF (p<0.05, n=196 for atrial CM and 6±1 pA/pF (p<0.05, n=47 for ventricular CM. However, ML and EHT showed robust T-type Ca2+-currents (ICa,T. While (--Bay K 8644, that activates ICa,L directly, increased ICa,L to the same extent in ML and EHT, β1- and β2-adrenoceptor effects were marginal in ML, but of same size as (--Bay K 8644 in EHT. The opposite was true for serotonin receptors. Sensitivity to β1 and β2-adrenoceptor stimulation was the same in EHT as in adult CM (-logEC50: 5.9 and 6.1 for norepinephrine (NE and epinephrine (Epi, respectively, but very low concentrations of Rp-8-Br-cAMPS were sufficient to suppress effects (-logEC50: 5.3 and 5.3 respectively for NE and Epi. Taken together, hiPSC-CM express ICa,L at the same density as human adult CM, but, in contrast, possess robust ICa,T. Increased effects of catecholamines in EHT suggest more efficient maturation.

  10. Manipulation-free cultures of human iPSC-derived cardiomyocytes offer a novel screening method for cardiotoxicity.

    Science.gov (United States)

    Rajasingh, Sheeja; Isai, Dona Greta; Samanta, Saheli; Zhou, Zhi-Gang; Dawn, Buddhadeb; Kinsey, William H; Czirok, Andras; Rajasingh, Johnson

    2018-04-05

    Induced pluripotent stem cell (iPSC)-based cardiac regenerative medicine requires the efficient generation, structural soundness and proper functioning of mature cardiomyocytes, derived from the patient's somatic cells. The most important functional property of cardiomyocytes is the ability to contract. Currently available methods routinely used to test and quantify cardiomyocyte function involve techniques that are labor-intensive, invasive, require sophisticated instruments or can adversely affect cell vitality. We recently developed optical flow imaging method analyses and quantified cardiomyocyte contractile kinetics from video microscopic recordings without compromising cell quality. Specifically, our automated particle image velocimetry (PIV) analysis of phase-contrast video images captured at a high frame rate yields statistical measures characterizing the beating frequency, amplitude, average waveform and beat-to-beat variations. Thus, it can be a powerful assessment tool to monitor cardiomyocyte quality and maturity. Here we demonstrate the ability of our analysis to characterize the chronotropic responses of human iPSC-derived cardiomyocytes to a panel of ion channel modulators and also to doxorubicin, a chemotherapy agent with known cardiotoxic side effects. We conclude that the PIV-derived beat patterns can identify the elongation or shortening of specific phases in the contractility cycle, and the obtained chronotropic responses are in accord with known clinical outcomes. Hence, this system can serve as a powerful tool to screen the new and currently available pharmacological compounds for cardiotoxic effects.

  11. Insulin protects apoptotic cardiomyocytes from hypoxia/reoxygenation injury through the sphingosine kinase/sphingosine 1-phosphate axis.

    Directory of Open Access Journals (Sweden)

    Huan Yu

    Full Text Available OBJECTIVE: Experimental and clinical studies have shown that administration of insulin during reperfusion is cardioprotective, but the mechanisms underlying this effect are still unknown. In this study, the ability of insulin to protect apoptotic cardiomyocytes from hypoxia/reoxygenation injury using the sphingosine kinase/sphingosine 1-phosphate axis was investigated. METHODS AND RESULTS: Rat cardiomyocytes were isolated and subjected to hypoxia and reoxygenation. [γ-32P] ATP was used to assess sphingosine kinase activity. Insulin was found to increase sphingosine kinase activity. Immunocytochemistry and Western blot analysis showed changes in the subcellular location of sphingosine kinase 1 from cytosol to the membrane in cardiomyocytes. Insulin caused cardiomyocytes to accumulate of S1P in a dose-dependent manner. FRET efficiency showed that insulin also transactivates the S1P1 receptor. TUNEL staining showed that administration of insulin during reoxygenation could to reduce the rate of reoxygenation-induced apoptosis, which is a requirement for SphK 1 activity. It also reduced the rate of activation of the S1P receptor and inhibited hypoxia/reoxygenation-induced cell death in cardiomyocytes. CONCLUSION: The sphingosine kinase 1/sphingosine 1-phosphate/S1P receptor axis is one pathway through which insulin protects rat cardiomyocytes from apoptosis induced by hypoxia/reoxygenation injury.

  12. Size control synthesis and characterization of ZnO nanoparticles and its application as ZnO-water based nanofluid in heat transfer enhancement in light water nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Deepak; Pandey, Krishna Murari [National Institute of Technology Silchar, Assam (India). Dept. of Mechanical Engineering

    2017-03-15

    A novel and facile approach for size-tunable synthesis of ZnO nanoparticle (NPs) is reported. Size-tuning was attained by using PEG (polyethylene glycol) of molecular weights 400 and 4000. ZnO NPs was synthesized using homogeneous chemical precipitation followed by hydrothermal. Here triethylamine (TEA) was used as a hydroxylating agent. As-synthesized ZnO NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and Energy Dispersive Spectroscopy (EDS) analysis. Synthesized ZnO nanoparticle was used for the preparation of ZnO-water based nanofluid and its application in heat transfer enhancement in light water nuclear reactor. In this work, ZnO-water based nanofluid of different volume concentration (1%, 2% and 3%) and particle size of 10 nm and 20 nm is used for enhancement in heat transfer in annular channel by using two phase approach. The particle size of 10 nm gives better result for enhancing the heat transfer rate in comparison to 20 nm particle size in nuclear reactor.

  13. In vitro model to study the effects of matrix stiffening on Ca2+ handling and myofilament function in isolated adult rat cardiomyocytes.

    Science.gov (United States)

    van Deel, Elza D; Najafi, Aref; Fontoura, Dulce; Valent, Erik; Goebel, Max; Kardux, Kim; Falcão-Pires, Inês; van der Velden, Jolanda

    2017-07-15

    This paper describes a novel model that allows exploration of matrix-induced cardiomyocyte adaptations independent of the passive effect of matrix rigidity on cardiomyocyte function. Detachment of adult cardiomyocytes from the matrix enables the study of matrix effects on cell shortening, Ca 2+ handling and myofilament function. Cell shortening and Ca 2+ handling are altered in cardiomyocytes cultured for 24 h on a stiff matrix. Matrix stiffness-impaired cardiomyocyte contractility is reversed upon normalization of extracellular stiffness. Matrix stiffness-induced reduction in unloaded shortening is more pronounced in cardiomyocytes isolated from obese ZSF1 rats with heart failure with preserved ejection fraction compared to lean ZSF1 rats. Extracellular matrix (ECM) stiffening is a key element of cardiac disease. Increased rigidity of the ECM passively inhibits cardiac contraction, but if and how matrix stiffening also actively alters cardiomyocyte contractility is incompletely understood. In vitro models designed to study cardiomyocyte-matrix interaction lack the possibility to separate passive inhibition by a stiff matrix from active matrix-induced alterations of cardiomyocyte properties. Here we introduce a novel experimental model that allows exploration of cardiomyocyte functional alterations in response to matrix stiffening. Adult rat cardiomyocytes were cultured for 24 h on matrices of tuneable stiffness representing the healthy and the diseased heart and detached from their matrix before functional measurements. We demonstrate that matrix stiffening, independent of passive inhibition, reduces cell shortening and Ca 2+ handling but does not alter myofilament-generated force. Additionally, detachment of adult cultured cardiomyocytes allowed the transfer of cells from one matrix to another. This revealed that stiffness-induced cardiomyocyte changes are reversed when matrix stiffness is normalized. These matrix stiffness-induced changes in cardiomyocyte

  14. Towards on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes

    Directory of Open Access Journals (Sweden)

    Anna eFendyur

    2012-08-01

    Full Text Available Cardiological research greatly rely on the use of cultured primary cardiomyocytes (CM. The prime methodology to assess CM network electrophysiology is based on the use of extracellular recordings by substrate-integrated planar Micro-Electrode Arrays (MEAs. Whereas this methodology permits simultaneous, long-term monitoring of the CM electrical activity, it limits the information to extracellular field potentials (FP. The alternative method of intracellular action potentials (AP recordings by sharp- or patch-microelectrodes is limited to a single cell at a time. Here, we began to merge the advantages of planar MEA and intracellular microelectrodes. To that end we cultured rat CM on micrometer size protruding gold mushroom-shaped microelectrode (gMµE arrays. Cultured CMs engulf the gMµE permitting FPs recordings from individual cells. Local electroporation of a CM converts the extracellular recording configuration to attenuated intracellular APs with shape and duration similar to those recorded intracellularly. The procedure enables to simultaneously record APs from an unlimited number of CMs. The electroporated membrane spontaneously recovers. This allows for repeated recordings from the same CM a number of times (>8 for over 10 days. The further development of CM-gMµE configuration opens up new venues for basic and applied biomedical research.

  15. Differentiation and characterization of rhesus monkey atrial and ventricular cardiomyocytes from induced pluripotent stem cells.

    Science.gov (United States)

    Zhang, Xiaoqian; Cao, Henghua; Bai, Shuyun; Huo, Weibang; Ma, Yue

    2017-04-01

    The combination of non-human primate animals and their induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) provides not only transplantation models for cell-based therapy of heart diseases, but also opportunities for heart-related drug research on both cellular and animal levels. However, the subtypes and electrophysiology properties of non-human primate iPSC-CMs hadn't been detailed characterized. In this study, we generated rhesus monkey induced pluripotent stem cells (riPSCs), and efficiently differentiated them into ventricular or atrial cardiomyocytes by modulating retinoic acid (RA) pathways. Our results revealed that the electrophysiological characteristics and response to canonical drugs of riPSC-CMs were similar with those of human pluripotent stem cell derived CMs. Therefore, rhesus monkeys and their iPSC-CMs provide a powerful and practicable system for heart related biomedical research. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular applications

    Directory of Open Access Journals (Sweden)

    Stout DA

    2012-11-01

    Full Text Available David A Stout,1,2 Jennie Yoo,2 Adriana Noemi Santiago-Miranda,3 Thomas J Webster1,41School of Engineering, 2Division of Biology and Medicine, Brown University, Providence, RI, 3Department of Chemical Engineering, University of Puerto Rico, Mayagües, PR, 4Department of Orthopedics, Brown University, Providence, RI, USABackground: Recent advances in nanotechnology (materials with at least one dimension between 1 nm and 100 nm have led to the use of nanomaterials in numerous medical device applications. Recently, nanomaterials have been used to create innovative biomaterials for cardiovascular applications. Specifically, carbon nanofibers (CNF embedded in poly(lactic-co-glycolic-acid (PLGA have been shown to promote cardiomyocyte growth compared with conventional polymer substrates, but the mechanisms involved in such events remain unknown. The aim of this study was to determine the basic mechanism of cell growth on these novel nanocomposites.Methods: CNF were added to biodegradable PLGA (50:50 PGA:PLA weight ratio to increase the conductivity, mechanical and cytocompatibility properties of pure PLGA. For this reason, different PLGA to CNF ratios (100:0, 75:25, 50:50, 25:75, and 0:100 wt% with different PLGA densities (0.1, 0.05, 0.025, and 0.0125 g/mL were used, and their compatibility with cardiomyocytes was assessed.Results: Throughout all the cytocompatibility experiments, cardiomyocytes were viable and expressed important biomarkers, including cardiac troponin T, connexin-43, and alpha-sarcomeric actin (α-SCA. Adhesion and proliferation experiments indicated that a PLGA density of 0.025 g/mL with a PLGA to CNF ratio of 75:25 and 50:50 (wt% promoted the best overall cell growth, ie, a 55% increase in cardiomyocyte density after 120 hours compared with pure PLGA and a 75% increase compared with the control at the same time point for 50:50 (wt%. The PLGA:CNF materials were conductive, and their conductivity increased as greater amounts of CNF

  17. Human Pluripotent Stem Cell-Derived Cardiomyocytes as Research and Therapeutic Tools

    Directory of Open Access Journals (Sweden)

    Ivana Acimovic

    2014-01-01

    Full Text Available Human pluripotent stem cells (hPSCs, namely, embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs, with their ability of indefinite self-renewal and capability to differentiate into cell types derivatives of all three germ layers, represent a powerful research tool in developmental biology, for drug screening, disease modelling, and potentially cell replacement therapy. Efficient differentiation protocols that would result in the cell type of our interest are needed for maximal exploitation of these cells. In the present work, we aim at focusing on the protocols for differentiation of hPSCs into functional cardiomyocytes in vitro as well as achievements in the heart disease modelling and drug testing on the patient-specific iPSC-derived cardiomyocytes (iPSC-CMs.

  18. KCNQ channels are involved in the regulatory volume decrease response in primary neonatal rat cardiomyocytes

    DEFF Research Database (Denmark)

    Calloe, Kirstine; Nielsen, Morten Schak; Grunnet, Morten

    2007-01-01

    of neonatal rat cardiomyocytes was studied in intact single cells attached to coverslips, i.e. with an intact cytoskeleton. The potential contribution of KCNQ (Kv7) channels to the RVD response and the possible involvement of the F-actin cytoskeleton were investigated. The rate of RVD was significantly...... changes the structure of the F-actin cytoskeleton, leading to a more rounded cell shape, less pronounced F-actin stress fibers and patches of actin. In the presence of cytochalasin D (1 microM), a potent inhibitor of actin polymerization, the RVD response was strongly reduced, confirming a possible role...... for an intact F-actin cytoskeleton in linking cell swelling to activation of ion transport in neonatal rat cardiomyocytes. Udgivelsesdato: 2007-Jun...

  19. Atomic force microscopy observation of lipopolysaccharide-induced cardiomyocyte cytoskeleton reorganization.

    Science.gov (United States)

    Wang, Liqun; Chen, Tangting; Zhou, Xiang; Huang, Qiaobing; Jin, Chunhua

    2013-08-01

    We applied atomic force microscopy (AFM) to observe lipopolysaccharide (LPS)-induced intracellular cytoskeleton reorganization in primary cardiomyocytes from neonatal mouse. The nonionic detergent Triton X-100 was used to remove the membrane, soluble proteins, and organelles from the cell. The remaining cytoskeleton can then be directly visualized by AFM. Using three-dimensional technique of AFM, we were able to quantify the changes of cytoskeleton by the "density" and total "volume" of the cytoskeleton fibers. Compared to the control group, the density of cytoskeleton was remarkably decreased and the volume of cytoskeleton was significantly increased after LPS treatment, which suggests that LPS may induce the cytoskeleton reorganization and change the cardiomyocyte morphology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. ISL1 protein transduction promotes cardiomyocyte differentiation from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Hananeh Fonoudi

    Full Text Available BACKGROUND: Human embryonic stem cells (hESCs have the potential to provide an unlimited source of cardiomyocytes, which are invaluable resources for drug or toxicology screening, medical research, and cell therapy. Currently a number of obstacles exist such as the insufficient efficiency of differentiation protocols, which should be overcome before hESC-derived cardiomyocytes can be used for clinical applications. Although the differentiation efficiency can be improved by the genetic manipulation of hESCs to over-express cardiac-specific transcription factors, these differentiated cells are not safe enough to be applied in cell therapy. Protein transduction has been demonstrated as an alternative approach for increasing the efficiency of hESCs differentiation toward cardiomyocytes. METHODS: We present an efficient protocol for the differentiation of hESCs in suspension by direct introduction of a LIM homeodomain transcription factor, Islet1 (ISL1 recombinant protein into the cells. RESULTS: We found that the highest beating clusters were derived by continuous treatment of hESCs with 40 µg/ml recombinant ISL1 protein during days 1-8 after the initiation of differentiation. The treatment resulted in up to a 3-fold increase in the number of beating areas. In addition, the number of cells that expressed cardiac specific markers (cTnT, CONNEXIN 43, ACTININ, and GATA4 doubled. This protocol was also reproducible for another hESC line. CONCLUSIONS: This study has presented a new, efficient, and reproducible procedure for cardiomyocytes differentiation. Our results will pave the way for scaled up and controlled differentiation of hESCs to be used for biomedical applications in a bioreactor culture system.

  1. Pharmacological activation of mitochondrial BKCa channels protects isolated cardiomyocytes against simulated reperfusion-induced injury

    Czech Academy of Sciences Publication Activity Database

    Borchert, Gudrun H.; Hlaváčková, Markéta; Kolář, František

    2013-01-01

    Roč. 238, č. 2 (2013), s. 233-241 ISSN 1535-3702 R&D Projects: GA AV ČR(CZ) IAA500110804; GA ČR(CZ) GAP303/12/1162 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : potassium channels * cardiomyocytes * mitochondria * ischemia/reperfusion * cytoprotection * reactive oxygen species Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.226, year: 2013

  2. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells.

    Directory of Open Access Journals (Sweden)

    Anders Waldenström

    Full Text Available BACKGROUND: Shedding microvesicles are membrane released vesicles derived directly from the plasma membrane. Exosomes are released membrane vesicles of late endosomal origin that share structural and biochemical characteristics with prostasomes. Microvesicles/exosomes can mediate messages between cells and affect various cell-related processes in their target cells. We describe newly detected microvesicles/exosomes from cardiomyocytes and depict some of their biological functions. METHODOLOGY/PRINCIPAL FINDINGS: Microvesicles/exosomes from media of cultured cardiomyocytes derived from adult mouse heart were isolated by differential centrifugation including preparative ultracentrifugation and identified by transmission electron microscopy and flow cytometry. They were surrounded by a bilayered membrane and flow cytometry revealed presence of both caveolin-3 and flotillin-1 while clathrin and annexin-2 were not detected. Microvesicle/exosome mRNA was identified and out of 1520 detected mRNA, 423 could be directly connected in a biological network. Furthermore, by a specific technique involving TDT polymerase, 343 different chromosomal DNA sequences were identified in the microvesicles/exosomes. Microvesicle/exosomal DNA transfer was possible into target fibroblasts, where exosomes stained for DNA were seen in the fibroblast cytosol and even in the nuclei. The gene expression was affected in fibroblasts transfected by microvesicles/exosomes and among 333 gene expression changes there were 175 upregulations and 158 downregulations compared with controls. CONCLUSIONS/SIGNIFICANCE: Our study suggests that microvesicles/exosomes released from cardiomyocytes, where we propose that exosomes derived from cardiomyocytes could be denoted "cardiosomes", can be involved in a metabolic course of events in target cells by facilitating an array of metabolism-related processes including gene expression changes.

  3. In Vitro Differentiation of Human Mesenchymal Stem Cells into Functional Cardiomyocyte-like Cells.

    Science.gov (United States)

    Szaraz, Peter; Gratch, Yarden S; Iqbal, Farwah; Librach, Clifford L

    2017-08-09

    Myocardial infarction and the subsequent ischemic cascade result in the extensive loss of cardiomyocytes, leading to congestive heart failure, the leading cause of mortality worldwide. Mesenchymal stem cells (MSCs) are a promising option for cell-based therapies to replace current, invasive techniques. MSCs can differentiate into mesenchymal lineages, including cardiac cell types, but complete differentiation into functional cells has not yet been achieved. Previous methods of differentiation were based on pharmacological agents or growth factors. However, more physiologically relevant strategies can also enable MSCs to undergo cardiomyogenic transformation. Here, we present a differentiation method using MSC aggregates on cardiomyocyte feeder layers to produce cardiomyocyte-like contracting cells. Human umbilical cord perivascular cells (HUCPVCs) have been shown to have a greater differentiation potential than commonly investigated MSC types, such as bone marrow MSCs (BMSCs). As an ontogenetically younger source, we investigated the cardiomyogenic potential of first-trimester (FTM) HUCPVCs compared to older sources. FTM HUCPVCs are a novel, rich source of MSCs that retain their in utero immunoprivileged properties when cultured in vitro. Using this differentiation protocol, FTM and term HUCPVCs achieved significantly increased cardiomyogenic differentiation compared to BMSCs, as indicated by the increased expression of cardiomyocyte markers (i.e., myocyte enhancer factor 2C, cardiac troponin T, heavy chain cardiac myosin, signal regulatory protein α, and connexin 43). They also maintained significantly lower immunogenicity, as demonstrated by their lower HLA-A expression and higher HLA-G expression. Applying aggregate-based differentiation, FTM HUCPVCs showed increased aggregate formation potential and generated contracting cells clusters within 1 week of co-culture on cardiac feeder layers, becoming the first MSC type to do so. Our results demonstrate that this

  4. Endocytosis‒Mediated Invasion and Pathogenicity of Streptococcus agalactiae in Rat Cardiomyocyte (H9C2)

    OpenAIRE

    Pooja, Sharma; Pushpanathan, Muthuirulan; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2015-01-01

    Streptococcus agalactiae infection causes high mortality in cardiovascular disease (CVD) patients, especially in case of setting prosthetic valve during cardiac surgery. However, the pathogenesis mechanism of S. agalactiae associate with CVD has not been well studied. Here, we have demonstrated the pathogenicity of S. agalactiae in rat cardiomyocytes (H9C2). Interestingly, both live and dead cells of S. agalactiae were uptaken by H9C2 cells. To further dissect the process of S. agalactiae int...

  5. Both cardiomyocyte and endothelial cell Nox4 mediate protection against hemodynamic overload-induced remodelling.

    Science.gov (United States)

    Zhang, Min; Mongue-Din, Heloise; Martin, Daniel; Catibog, Norman; Smyrnias, Ioannis; Zhang, Xiaohong; Yu, Bin; Wang, Minshu; Brandes, Ralf P; Schröder, Katrin; Shah, Ajay M

    2018-03-01

    NADPH oxidase-4 (Nox4) is an important reactive oxygen species (ROS) source that is upregulated in the haemodynamically overloaded heart. Our previous studies using global Nox4 knockout (Nox4KO) mice demonstrated a protective role of Nox4 during chronic abdominal aortic banding, involving a paracrine enhancement of myocardial capillary density. However, other authors who studied cardiac-specific Nox4KO mice reported detrimental effects of Nox4 in response to transverse aortic constriction (TAC). It has been speculated that these divergent results are due to cell-specific actions of Nox4 (i.e. cardiomyocyte Nox4 detrimental but endothelial Nox4 beneficial) and/or differences in the model of pressure overload (i.e. abdominal banding vs. TAC). This study aimed to (i) investigate whether the effects of Nox4 on pressure overload-induced cardiac remodelling vary according to the pressure overload model and (ii) compare the roles of cardiomyocyte vs. endothelial cell Nox4. Global Nox4KO mice subjected to TAC developed worse cardiac remodelling and contractile dysfunction than wild-type littermates, consistent with our previous results with abdominal aortic banding. Next, we generated inducible cardiomyocyte-specific Nox4 KO mice (Cardio-Nox4KO) and endothelial-specific Nox4 KO mice (Endo-Nox4KO) and studied their responses to pressure overload. Both Cardio-Nox4KO and Endo-Nox4KO developed worse pressure overload-induced cardiac remodelling and dysfunction than wild-type littermates, associated with significant decrease in protein levels of HIF1α and VEGF and impairment of myocardial capillarization. Cardiomyocyte as well as endothelial cell Nox4 contributes to protection against chronic hemodynamic overload-induced cardiac remodelling, at least in part through common effects on myocardial capillary density. © The Author 2017 Published by Oxford University Press on behalf of the European Society of Cardiology.

  6. High Fibroblast Growth Factor 23 concentrations in experimental renal failure impair calcium handling in cardiomyocytes.

    Science.gov (United States)

    Verkaik, Melissa; Oranje, Maarten; Abdurrachim, Desiree; Goebel, Max; Gam, Zeineb; Prompers, Jeanine J; Helmes, Michiel; Ter Wee, Pieter M; van der Velden, Jolanda; Kuster, Diederik W; Vervloet, Marc G; Eringa, Etto C

    2018-04-01

    The overwhelming majority of patients with chronic kidney disease (CKD) die prematurely before reaching end-stage renal disease, mainly due to cardiovascular causes, of which heart failure is the predominant clinical presentation. We hypothesized that CKD-induced increases of plasma FGF23 impair cardiac diastolic and systolic function. To test this, mice were subjected to 5/6 nephrectomy (5/6Nx) or were injected with FGF23 for seven consecutive days. Six weeks after surgery, plasma FGF23 was higher in 5/6Nx mice compared to sham mice (720 ± 31 vs. 256 ± 3 pg/mL, respectively, P = 0.034). In cardiomyocytes isolated from both 5/6Nx and FGF23 injected animals the rise of cytosolic calcium during systole was slowed (-13% and -19%, respectively) as was the decay of cytosolic calcium during diastole (-15% and -21%, respectively) compared to controls. Furthermore, both groups had similarly decreased peak cytosolic calcium content during systole. Despite lower cytosolic calcium contents in CKD or FGF23 pretreated animals, no changes were observed in contractile parameters of cardiomyocytes between the groups. Expression of calcium handling proteins and cardiac troponin I phosphorylation were similar between groups. Blood pressure, the heart weight:tibia length ratio, α-MHC/β-MHC ratio and ANF mRNA expression, and systolic and diastolic function as measured by MRI did not differ between groups. In conclusion, the rapid, CKD-induced rise in plasma FGF23 and the similar decrease in cardiomyocyte calcium transients in modeled kidney disease and following 1-week treatment with FGF23 indicate that FGF23 partly mediates cardiomyocyte dysfunction in CKD. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  7. Electrospun Gelatin–Chondroitin Sulfate Scaffolds Loaded with Platelet Lysate Promote Immature Cardiomyocyte Proliferation

    Directory of Open Access Journals (Sweden)

    Francesca Saporito

    2018-02-01

    Full Text Available The aim of the present work was the development of heart patches based on gelatin (G and chondroitin sulfate (CS to be used as implants to improve heart recovery after corrective surgery for critical congenital heart defects (CHD. Patches were prepared by means of electrospinning to obtain nanofibrous scaffolds and they were loaded with platelet lysate (PL as a source of growth factors to further enhance the repair process. Scaffolds were characterized for morphology and mechanical properties and for the capability to support in vitro adhesion and proliferation of dermal fibroblasts in order to assess the system’s general biocompatibility. Adhesion and proliferation of endothelial cells and cardiac cells (cardiomyocytes and cardiac fibroblasts from rat fetuses onto PL-loaded patches was evaluated. Patches presented good elasticity and high stiffness suitable for in vivo adaptation to heart contraction. CS improved adhesion and proliferation of dermal fibroblasts, as proof of their biocompatibility. Moreover, they enhanced the adhesion and proliferation of endothelial cells, a crucial mediator of cardiac repair. Cell adhesion and proliferation could be related to elastic properties, which could favor cell motility. The presence of platelet lysate and CS was crucial for the adhesion and proliferation of cardiac cells and, in particular, of cardiomyocytes: G/CS scaffold embedded with PL appeared to selectively promote proliferation in cardiomyocytes but not cardiac fibroblasts. In conclusion, G/CS scaffold seems to be a promising system to assist myocardial-repair processes in young patient, preserving cardiomyocyte viability and preventing cardiac fibroblast proliferation, likely reducing subsequent uncontrolled collagen deposition by fibroblasts following repair.

  8. Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening

    OpenAIRE

    Sharma, Arun; Wu, Joseph C; Wu, Sean M

    2013-01-01

    Human induced pluripotent stem cells (hiPSCs) have emerged as a novel tool for drug discovery and therapy in cardiovascular medicine. hiPSCs are functionally similar to human embryonic stem cells (hESCs) and can be derived autologously without the ethical challenges associated with hESCs. Given the limited regenerative capacity of the human heart following myocardial injury, cardiomyocytes derived from hiPSCs (hiPSC-CMs) have garnered significant attention from basic and translational scienti...

  9. Sympathetic neurons modulate the beat rate of pluripotent cell-derived cardiomyocytes in vitro.

    Science.gov (United States)

    Takeuchi, Akimasa; Shimba, Kenta; Mori, Masahide; Takayama, Yuzo; Moriguchi, Hiroyuki; Kotani, Kiyoshi; Lee, Jong-Kook; Noshiro, Makoto; Jimbo, Yasuhiko

    2012-12-01

    Although stem cell-derived cardiomyocytes have great potential for the therapy of heart failure, it is unclear whether their function after grafting can be controlled by the host sympathetic nervous system, a component of the autonomic nervous system (ANS). Here we demonstrate the formation of functional connections between rat sympathetic superior cervical ganglion (SCG) neurons and pluripotent (P19.CL6) cell-derived cardiomyocytes (P19CMs) in compartmentalized co-culture, achieved using photolithographic microfabrication techniques. Formation of synapses between sympathetic neurons and P19CMs was confirmed by immunostaining with antibodies against β-3 tubulin, synapsin I and cardiac troponin-I. Changes in the beat rate of P19CMs were triggered after electrical stimulation of the co-cultured SCG neurons, and were affected by the pulse frequency of the electrical stimulation. Such changes in the beat rate were prevented when propranolol, a β-adrenoreceptor antagonist, was added to the culture medium. These results suggest that the beat rate of differentiated cardiomyocytes can be modulated by electrical stimulation of connected sympathetic neurons.

  10. Succinate modulates Ca(2+) transient and cardiomyocyte viability through PKA-dependent pathway.

    Science.gov (United States)

    Aguiar, Carla J; Andrade, Vanessa L; Gomes, Enéas R M; Alves, Márcia N M; Ladeira, Marina S; Pinheiro, Ana Cristina N; Gomes, Dawidson A; Almeida, Alvair P; Goes, Alfredo M; Resende, Rodrigo R; Guatimosim, Silvia; Leite, M Fatima

    2010-01-01

    GPR91 is an orphan G-protein-coupled receptor (GPCR) that has been characterized as a receptor for succinate, a citric acid cycle intermediate, in several tissues. In the heart, the role of succinate is unknown. We now report that rat ventricular cardiomyocytes express GPR91. We found that succinate, through GPR91, increases the amplitude and the rate of decline of global Ca(2+) transient, by increasing the phosphorylation levels of ryanodine receptor and phospholamban, two well known Ca(2+) handling proteins. The effects of succinate on Ca(2+) transient were abolished by pre-treatment with adenylyl cyclase and cAMP-dependent protein kinase (PKA) inhibitors. Direct PKA activation by succinate was further confirmed using a FRET-based A-kinase activity reporter. Additionally, succinate decreases cardiomyocyte viability through a caspase-3 activation pathway, effect also prevented by PKA inhibition. Taken together, these observations show that succinate acts as a signaling molecule in cardiomyocytes, modulating global Ca(2+) transient and cell viability through a PKA-dependent pathway. 2009 Elsevier Ltd. All rights reserved.

  11. Automated grouping of action potentials of human embryonic stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Gorospe, Giann; Zhu, Renjun; Millrod, Michal A; Zambidis, Elias T; Tung, Leslie; Vidal, Rene

    2014-09-01

    Methods for obtaining cardiomyocytes from human embryonic stem cells (hESCs) are improving at a significant rate. However, the characterization of these cardiomyocytes (CMs) is evolving at a relatively slower rate. In particular, there is still uncertainty in classifying the phenotype (ventricular-like, atrial-like, nodal-like, etc.) of an hESC-derived cardiomyocyte (hESC-CM). While previous studies identified the phenotype of a CM based on electrophysiological features of its action potential, the criteria for classification were typically subjective and differed across studies. In this paper, we use techniques from signal processing and machine learning to develop an automated approach to discriminate the electrophysiological differences between hESC-CMs. Specifically, we propose a spectral grouping-based algorithm to separate a population of CMs into distinct groups based on the similarity of their action potential shapes. We applied this method to a dataset of optical maps of cardiac cell clusters dissected from human embryoid bodies. While some of the nine cell clusters in the dataset are presented with just one phenotype, the majority of the cell clusters are presented with multiple phenotypes. The proposed algorithm is generally applicable to other action potential datasets and could prove useful in investigating the purification of specific types of CMs from an electrophysiological perspective.

  12. Mast cell stabilization decreases cardiomyocyte and LV function in dogs with isolated mitral regurgitation.

    Science.gov (United States)

    Pat, Betty; Killingsworth, Cheryl; Chen, Yuanwen; Gladden, James D; Walcott, Greg; Powell, Pamela C; Denney, Thomas; Gupta, Himanshu; Desai, Ravi; Tillson, Michael; Dillon, A Ray; Dell'italia, Louis J

    2010-09-01

    Mast cells are increased in isolated mitral regurgitation (MR) in the dog and may mediate extracellular matrix loss and left ventricular (LV) dilatation. We tested the hypothesis that mast cell stabilization would attenuate LV remodeling and improve function in the MR dog. MR was induced in adult dogs randomized to no treatment (MR, n = 5) or to the mast cell stabilizer, ketotifen (MR + MCS, n = 4) for 4 months. LV hemodynamics were obtained at baseline and after 4 months of MR and magnetic resonance imaging (MRI) was performed at sacrifice. MRI-derived, serial, short-axis LV end-diastolic (ED) and end-systolic (ES) volumes, LVED volume/mass ratio, and LV 3-dimensional radius/wall thickness were increased in MR and MR + MCS dogs compared with normal dogs (n = 6) (P < .05). Interstitial collagen was decreased by 30% in both MR and MR + MCS versus normal dogs (P < .05). LV contractility by LV maximum time-varying elastance was significantly depressed in MR and MR + MCS dogs. Furthermore, cardiomyocyte fractional shortening was decreased in MR versus normal dogs and further depressed in MR + MCS dogs (P < .05). In vitro administration of ketotifen to normal cardiomyocytes also significantly decreased fractional shortening and calcium transients. Chronic mast cell stabilization did not attenuate eccentric LV remodeling or collagen loss in MR. However, MCS therapy had a detrimental effect on LV function because of a direct negative inotropic effect on cardiomyocyte function. Published by Elsevier Inc.

  13. Adult Murine Skeletal Muscle Contains Cells That Can Differentiate into Beating Cardiomyocytes In Vitro

    Directory of Open Access Journals (Sweden)

    Winitsky Steve O

    2005-01-01

    Full Text Available It has long been held as scientific fact that soon after birth, cardiomyocytes cease dividing, thus explaining the limited restoration of cardiac function after a heart attack. Recent demonstrations of cardiac myocyte differentiation observed in vitro or after in vivo transplantation of adult stem cells from blood, fat, skeletal muscle, or heart have challenged this view. Analysis of these studies has been complicated by the large disparity in the magnitude of effects seen by different groups and obscured by the recently appreciated process of in vivo stem-cell fusion. We now show a novel population of nonsatellite cells in adult murine skeletal muscle that progress under standard primary cell-culture conditions to autonomously beating cardiomyocytes. Their differentiation into beating cardiomyocytes is characterized here by video microscopy, confocal-detected calcium transients, electron microscopy, immunofluorescent cardiac-specific markers, and single-cell patch recordings of cardiac action potentials. Within 2 d after tail-vein injection of these marked cells into a mouse model of acute infarction, the marked cells are visible in the heart. By 6 d they begin to differentiate without fusing to recipient cardiac cells. Three months later, the tagged cells are visible as striated heart muscle restricted to the region of the cardiac infarct.

  14. Adult murine skeletal muscle contains cells that can differentiate into beating cardiomyocytes in vitro.

    Directory of Open Access Journals (Sweden)

    Steve O Winitsky

    2005-04-01

    Full Text Available It has long been held as scientific fact that soon after birth, cardiomyocytes cease dividing, thus explaining the limited restoration of cardiac function after a heart attack. Recent demonstrations of cardiac myocyte differentiation observed in vitro or after in vivo transplantation of adult stem cells from blood, fat, skeletal muscle, or heart have challenged this view. Analysis of these studies has been complicated by the large disparity in the magnitude of effects seen by different groups and obscured by the recently appreciated process of in vivo stem-cell fusion. We now show a novel population of nonsatellite cells in adult murine skeletal muscle that progress under standard primary cell-culture conditions to autonomously beating cardiomyocytes. Their differentiation into beating cardiomyocytes is characterized here by video microscopy, confocal-detected calcium transients, electron microscopy, immunofluorescent cardiac-specific markers, and single-cell patch recordings of cardiac action potentials. Within 2 d after tail-vein injection of these marked cells into a mouse model of acute infarction, the marked cells are visible in the heart. By 6 d they begin to differentiate without fusing to recipient cardiac cells. Three months later, the tagged cells are visible as striated heart muscle restricted to the region of the cardiac infarct.

  15. Effects of Multivitamins and Known Teratogens on Chick Cardiomyocytes Micromass Culture Assay

    Directory of Open Access Journals (Sweden)

    Samreen Memon

    2013-09-01

    Full Text Available   Objective(s: This study aimed to find out whether the chick cardiomyocyte micromass (MM system could be employed to predict the teratogenecity of common environmental factors. Different multivitamins and over the counter drugs were used in this study.   Materials and Methods: White Leghorn 5-day-old embryo hearts were dissected and trypsinized to produce a cardiomyocyte cell suspension in Dulbecco's Modified Eagle's Medium. The cultures were incubated at 370C in 5% CO2 in air, and observations were made at 24, 48 and 144 hr, for the detection of cell beating. Cellular viability was assessed using the resazurin assay and cell protein content was assessed by the kenacid blue assay. It was observed that while not affecting total cell number folic acid, vitamin C, sodium fluoride and ginseng did not significantly reduced cell activity and beating. However cadmium chloride significantly reduced the beating, cell viability and cell protein content in micromass cultures. Results: The results demonstrate the potential of the chick cardiomyocyte MM culture assay to identify teratogens/embryotoxins that alter morphology and function, which may result in either teratogenic outcome or cytotoxicity. Conclusion: This could form part of a screen for developmental toxicity related to cardiac function

  16. N-n-butyl haloperidol iodide protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy.

    Science.gov (United States)

    Wang, Bin; Zhong, Shuping; Zheng, Fuchun; Zhang, Yanmei; Gao, Fenfei; Chen, Yicun; Lu, Binger; Xu, Han; Shi, Ganggang

    2015-09-22

    N-n-butyl haloperidol iodide (F2), a novel compound derived from haloperidol, protects against the damaging effects of ischemia/reperfusion (I/R) injury in vitro and in vivo. In this study, we hypothesized the myocardial protection of F2 on cardiomyocyte hypoxia/reoxygenation (H/R) injury is mediated by inhibiting autophagy in H9c2 cells. The degree of autophagy by treatment with F2 exposed to H/R in H9c2 cell was characterized by monodansylcadaverine, transmission electron microscopy, and expression of autophagy marker protein LC3. Our results indicated that treatment with F2 inhibited autophagy in H9c2 cells exposed to H/R. 3-methyladenine, an inhibitor of autophagy, suppressed H/R-induced autophagy, and decreased apoptosis, whereas rapamycin, a classical autophagy sensitizer, increased autophagy and apoptosis. Mechanistically, macrophage migration inhibitory factor (MIF) was inhibited by F2 treatment after H/R. Accordingly, small interfering RNA (siRNA)-mediated MIF knockdown decreased H/R-induced autophagy. In summary, F2 protects cardiomyocytes during H/R injury through suppressing autophagy activation. Our results provide a new mechanistic insight into a functional role of F2 against H/R-induced cardiomyocyte injury and death.

  17. Automated patch clamp on mESC-derived cardiomyocytes for cardiotoxicity prediction.

    Science.gov (United States)

    Stoelzle, Sonja; Haythornthwaite, Alison; Kettenhofen, Ralf; Kolossov, Eugen; Bohlen, Heribert; George, Michael; Brüggemann, Andrea; Fertig, Niels

    2011-09-01

    Cardiovascular side effects are critical in drug development and have frequently led to late-stage project terminations or even drug withdrawal from the market. Physiologically relevant and predictive assays for cardiotoxicity are hence strongly demanded by the pharmaceutical industry. To identify a potential impact of test compounds on ventricular repolarization, typically a variety of ion channels in diverse heterologously expressing cells have to be investigated. Similar to primary cells, in vitro-generated stem cell-derived cardiomyocytes simultaneously express cardiac ion channels. Thus, they more accurately represent the native situation compared with cell lines overexpressing only a single type of ion channel. The aim of this study was to determine if stem cell-derived cardiomyocytes are suited for use in an automated patch clamp system. The authors show recordings of cardiac ion currents as well as action potential recordings in readily available stem cell-derived cardiomyocytes. Besides monitoring inhibitory effects of reference compounds on typical cardiac ion currents, the authors revealed for the first time drug-induced modulation of cardiac action potentials in an automated patch clamp system. The combination of an in vitro cardiac cell model with higher throughput patch clamp screening technology allows for a cost-effective cardiotoxicity prediction in a physiologically relevant cell system.

  18. Renal hypertension prevents run training modification of cardiomyocyte diastolic Ca2+ regulation in male rats.

    Science.gov (United States)

    Palmer, B M; Lynch, J M; Snyder, S M; Moore, R L

    2001-06-01

    The combined effects of endurance run training and renal hypertension on cytosolic Ca2+ concentration ([Ca2+]c) dynamics and Na+-dependent Ca2+ regulation in rat left ventricular cardiomyocytes were examined. Male Fischer 344 rats underwent stenosis of the left renal artery [hypertensive (Ht), n = 18] or a sham operation [normotensive (Nt), n = 20]. One-half of the rats from each group were treadmill trained for >16 wk. Cardiomyocyte fura 2 fluorescence ratio transients were recorded for 7 min during electrical pacing at 0.5 Hz, 2 mM extracellular Ca2+ concentration, and 29 degrees C. The rate of [Ca2+]c decline was not changed by run training in the Nt group but was reduced in the Ht group. At 7 min, cardiomyocytes were exposed to 10 mM caffeine in the absence of Na+ and Ca2+, which triggered sarcoplasmic reticular Ca2+ release and suppressed Ca2+ efflux via Na+/Ca2+ exchanger. External Na+ was then added, and Na+-dependent Ca2+ efflux rate was recorded. Treadmill training significantly enhanced Na+-dependent Ca2+ efflux rate under these conditions in the Nt group but not in the Ht group. These data provide evidence that renal hypertension prevents the normal run training-induced modifications in diastolic [Ca2+]c regulation mechanisms, including Na+/Ca2+ exchanger.

  19. Hypoxia decreases creatine uptake in cardiomyocytes, while creatine supplementation enhances HIF activation.

    Science.gov (United States)

    Santacruz, Lucia; Arciniegas, Antonio Jose Luis; Darrabie, Marcus; Mantilla, Jose G; Baron, Rebecca M; Bowles, Dawn E; Mishra, Rajashree; Jacobs, Danny O

    2017-08-01

    Creatine (Cr), phosphocreatine (PCr), and creatine kinases (CK) comprise an energy shuttle linking ATP production in mitochondria with cellular consumption sites. Myocytes cannot synthesize Cr: these cells depend on uptake across the cell membrane by a specialized creatine transporter (CrT) to maintain intracellular Cr levels. Hypoxia interferes with energy metabolism, including the activity of the creatine energy shuttle, and therefore affects intracellular ATP and PCr levels. Here, we report that exposing cultured cardiomyocytes to low oxygen levels rapidly diminishes Cr transport by decreasing V max and K m Pharmacological activation of AMP-activated kinase (AMPK) abrogated the reduction in Cr transport caused by hypoxia. Cr supplementation increases ATP and PCr content in cardiomyocytes subjected to hypoxia, while also significantly augmenting the cellular adaptive response to hypoxia mediated by HIF-1 activation. Our results indicate that: (1) hypoxia reduces Cr transport in cardiomyocytes in culture, (2) the cytoprotective effects of Cr supplementation are related to enhanced adaptive physiological responses to hypoxia mediated by HIF-1, and (3) Cr supplementation increases the cellular ATP and PCr content in RNCMs exposed to hypoxia. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  20. Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Mehdi Bihamta

    2017-01-01

    Full Text Available Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2-induced damage in H9c2 cardiomyocytes.Materials and Methods: The cells were pretreated 24 hr with PSO 1 hr before exposure to 200 µM H2O2. Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium (MTT assay. The level of reactive oxygen species (ROS and lipid peroxidation were measured by fluorimetric methods.Results: H2O2 significantly decreased cell viability which was accompanied by an increase in ROS production and lipid peroxidation and a decline in superoxide dismutase activity. Pretreatment with PSO increased viability of cardiomyocytes and decrease the elevated ROS production and lipid peroxidation. Also, PSO was able to restore superoxide dismutase activity.Conclusion: PSO has protective effect against oxidative stress-induced damage in cardiomyocytes and can be considered as a natural cardioprotective agent to prevent cardiovascular diseases.

  1. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Christophe M Raynaud

    Full Text Available Mesenchymal progenitors or stromal cells have shown promise as a therapeutic strategy for a range of diseases including heart failure. In this context, we explored the growth and differentiation potential of mesenchymal progenitors (MPs derived in vitro from human embryonic stem cells (hESCs. Similar to MPs isolated from bone marrow, hESC derived MPs (hESC-MPs efficiently differentiated into archetypical mesenchymal derivatives such as chondrocytes and adipocytes. Upon treatment with 5-Azacytidine or TGF-β1, hESC-MPs modified their morphology and up-regulated expression of key cardiac transcription factors such as NKX2-5, MEF2C, HAND2 and MYOCD. Nevertheless, NKX2-5+ hESC-MP derivatives did not form contractile cardiomyocytes, raising questions concerning the suitability of these cells as a platform for cardiomyocyte replacement therapy. Gene profiling experiments revealed that, although hESC-MP derived cells expressed a suite of cardiac related genes, they lacked the complete repertoire of genes associated with bona fide cardiomyocytes. Our results suggest that whilst agents such as TGF-β1 and 5-Azacytidine can induce expression of cardiac related genes, but treated cells retain a mesenchymal like phenotype.

  2. Regenerative responses after mild heart injuries for cardiomyocyte proliferation in zebrafish

    Science.gov (United States)

    Itou, Junji; Akiyama, Ryutaro; Pehoski, Steve; Yu, Xiaodan; Kawakami, Hiroko; Kawakami, Yasuhiko

    2014-01-01

    Background The zebrafish heart regenerates after various severe injuries. Common processes of heart regeneration are cardiomyocyte proliferation, activation of epicardial tissue and neovascularization. In order to further characterize heart regeneration processes, we introduced milder injuries and compared responses to those induced by ventricular apex resection, a widely used injury method. We used scratching of the ventricular surface and puncturing of the ventricle with a fine tungsten needle as injury inducing techniques. Results Scratching the ventricular surface induced subtle cardiomyocyte proliferation and responses of the epicardium. Endothelial cell accumulation was limited to the surface of the heart. Ventricular puncture induced cardiomyocyte proliferation, endocardial and epicardial activation and neo-vascularization, similar to the resection method. However, the degree of the responses was milder, correlating with milder injury. Sham operation induced epicardial aldh1a2 expression but not tbx18 and WT1. Conclusions Puncturing the ventricle induces responses equivalent to resection at milder degrees in a shorter time frame and would be used as simple injury model. Scratching the ventricle did not induce heart regeneration and would be used for studying wound responses to epicardium. PMID:25074230

  3. SurR9C84A protects and recovers human cardiomyocytes from hypoxia induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Ashok, Ajay [Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Faculty of Health, Centre for Molecular and Medical Research - C-MMR, Deakin University, Waurn Ponds, Victoria 3216 (Australia); Department of Pathology, Case Western Reserve University, 2103 Cornell Rd. WRB 5128, Cleveland, OH 44106-7288 (United States); Kanwar, Jagat Rakesh [Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Faculty of Health, Centre for Molecular and Medical Research - C-MMR, Deakin University, Waurn Ponds, Victoria 3216 (Australia); Krishnan, Uma Maheswari [Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical & Biotechnology (SCBT), SASTRA University, Thanjavur 613401 (India); Kanwar, Rupinder Kaur, E-mail: rupinder.kanwar@deakin.edu.au [Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Faculty of Health, Centre for Molecular and Medical Research - C-MMR, Deakin University, Waurn Ponds, Victoria 3216 (Australia)

    2017-01-01

    Survivin, as an anti-apoptotic protein and a cell cycle regulator, is recently gaining importance for its regenerative potential in salvaging injured hypoxic cells of vital organs such as heart. Different strategies are being employed to upregulate survivin expression in dying hypoxic cardiomyocytes. We investigated the cardioprotective potential of a cell permeable survivin mutant protein SurR9C84A, for the management of hypoxia mediated cardiomyocyte apoptosis, in a novel and clinically relevant model employing primary human cardiomyocytes (HCM). The aim of this research work was to study the efficacy and mechanism of SurR9C84A facilitated cardioprotection and regeneration in hypoxic HCM. To mimic hypoxic microenvironment in vitro, well characterized HCM were treated with 100 µm (48 h) cobalt chloride to induce hypoxia. Hypoxia induced (HI) HCM were further treated with SurR9C84A (1 µg/mL) in order to analyse its cardioprotective efficacy. Confocal microscopy showed rapid internalization of SurR9C84A and scanning electron microscopy revealed the reinstatement of cytoskeleton projections in HI HCM. SurR9C84A treatment increased cell viability, reduced cell death via, apoptosis (Annexin-V assay), and downregulated free cardiac troponin T and MMP-9 expression. SurR9C84A also upregulated the expression of proliferation markers (PCNA and Ki-67) and downregulated mitochondrial depolarization and ROS levels thereby, impeding cell death. Human Apoptosis Array further revealed that SurR9C84A downregulated expression of pro-apoptotic markers and augmented expression of HSPs and HTRA2/Omi. SurR9C84A treatment led to enhanced levels of survivin, VEGF, PI3K and pAkt. SurR9C84A proved non-toxic to normoxic HCM, as validated through unaltered cell proliferation and other marker levels. Its pre-treatment exhibited lesser susceptibility to hypoxia/damage. SurR9C84A holds a promising clinical potential for human cardiomyocyte survival and proliferation following hypoxic injury

  4. Rapamycin and CHIR99021 Coordinate Robust Cardiomyocyte Differentiation From Human Pluripotent Stem Cells Via Reducing p53-Dependent Apoptosis.

    Science.gov (United States)

    Qiu, Xiao-Xu; Liu, Yang; Zhang, Yi-Fan; Guan, Ya-Na; Jia, Qian-Qian; Wang, Chen; Liang, He; Li, Yong-Qin; Yang, Huang-Tian; Qin, Yong-Wen; Huang, Shuang; Zhao, Xian-Xian; Jing, Qing

    2017-10-02

    Cardiomyocytes differentiated from human pluripotent stem cells can serve as an unexhausted source for a cellular cardiac disease model. Although small molecule-mediated cardiomyocyte differentiation methods have been established, the differentiation efficiency is relatively unsatisfactory in multiple lines due to line-to-line variation. Additionally, hurdles including line-specific low expression of endogenous growth factors and the high apoptotic tendency of human pluripotent stem cells also need to be overcome to establish robust and efficient cardiomyocyte differentiation. We used the H9-human cardiac troponin T-eGFP reporter cell line to screen for small molecules that promote cardiac differentiation in a monolayer-based and growth factor-free differentiation model. We found that collaterally treating human pluripotent stem cells with rapamycin and CHIR99021 during the initial stage was essential for efficient and reliable cardiomyocyte differentiation. Moreover, this method maintained consistency in efficiency across different human embryonic stem cell and human induced pluripotent stem cell lines without specifically optimizing multiple parameters (the efficiency in H7, H9, and UQ1 human induced pluripotent stem cells is 98.3%, 93.3%, and 90.6%, respectively). This combination also increased the yield of cardiomyocytes (1:24) and at the same time reduced medium consumption by about 50% when compared with the previous protocols. Further analysis indicated that inhibition of the mammalian target of rapamycin allows efficient cardiomyocyte differentiation through overcoming p53-dependent apoptosis of human pluripotent stem cells during high-density monolayer culture via blunting p53 translation and mitochondrial reactive oxygen species production. We have demonstrated that mammalian target of rapamycin exerts a stage-specific and multifaceted regulation over cardiac differentiation and provides an optimized approach for generating large numbers of functional

  5. Axin1 up-regulated 1 accelerates stress-induced cardiomyocytes apoptosis through activating Wnt/β-catenin signaling.

    Science.gov (United States)

    Ye, Xing; Lin, Junyi; Lin, Zebin; Xue, Aimin; Li, Liliang; Zhao, Ziqin; Liu, Li; Shen, Yiwen; Cong, Bin

    2017-10-15

    Stress-induced cardiomyocyte apoptosis contributes to the pathogenesis of a variety of cardiovascular diseases, but how stress induces cardiomyocyte apoptosis remains largely unclear. The present study aims to investigate the effects of Axin1 up-regulated 1 (Axud1), a novel pro-apoptotic protein, on the cardiomyocyte survival and the underlying mechanisms. To this end, a rat model under restraint stress (RS) was established and in vitro stress-induced cardiomyocytes culture was achieved. Our data showed that Axud1 was upregulated in the rat myocardia after exposure to RS. Anti-apoptotic Bcl-2 was decreased, whereas pro-apoptotic Bax and Cleaved caspase-3 (Cc3) were increased in a time-dependent manner. The Wnt/β-catenin signaling was observed to be interestingly activated in heart undergoing RS. In addition, the treatment of norepinephrine (NE) to in vitro cardiomyocytes increased Axud1 level and induced cell apoptosis. Wnt/β-catenin signaling was consistently activated. Knockdown of Axud1 using specific siRNA blunted NE-induced cardiomyocytes apoptosis and also inactivated the Wnt/β-catenin signaling. XAV-939, an inhibitor of Wnt/β-catenin signaling, partially reversed the pro-apoptotic effect of NE. In conclusion, Axud1 accelerated stress-induced cardiomyocytes apoptosis through activation of Wnt/β-catenin signaling pathway. Our data provided novel evidence that therapeutic strategies against Axud1 or Wnt/β-catenin signaling might be promising in relation to RS-induced myocardial injury. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression.

    Directory of Open Access Journals (Sweden)

    Hideki Uosaki

    Full Text Available RATIONALE: Human embryonic and induced pluripotent stem cells (hESCs/hiPSCs are promising cell sources for cardiac regenerative medicine. To realize hESC/hiPSC-based cardiac cell therapy, efficient induction, purification, and transplantation methods for cardiomyocytes are required. Though marker gene transduction or fluorescent-based purification methods have been reported, fast, efficient and scalable purification methods with no genetic modification are essential for clinical purpose but have not yet been established. In this study, we attempted to identify cell surface markers for cardiomyocytes derived from hESC/hiPSCs. METHOD AND RESULT: We adopted a previously reported differentiation protocol for hESCs based on high density monolayer culture to hiPSCs with some modification. Cardiac troponin-T (TNNT2-positive cardiomyocytes appeared robustly with 30-70% efficiency. Using this differentiation method, we screened 242 antibodies for human cell surface molecules to isolate cardiomyocytes derived from hiPSCs and identified anti-VCAM1 (Vascular cell adhesion molecule 1 antibody specifically marked cardiomyocytes. TNNT2-positive cells were detected at day 7-8 after induction and 80% of them became VCAM1-positive by day 11. Approximately 95-98% of VCAM1-positive cells at day 11 were positive for TNNT2. VCAM1 was exclusive with CD144 (endothelium, CD140b (pericytes and TRA-1-60 (undifferentiated hESCs/hiPSCs. 95% of MACS-purified cells were positive for TNNT2. MACS purification yielded 5-10×10(5 VCAM1-positive cells from a single well of a six-well culture plate. Purified VCAM1-positive cells displayed molecular and functional features of cardiomyocytes. VCAM1 also specifically marked cardiomyocytes derived from other hESC or hiPSC lines. CONCLUSION: We succeeded in efficiently inducing cardiomyocytes from hESCs/hiPSCs and identifying VCAM1 as a potent cell surface marker for robust, efficient and scalable purification of cardiomyocytes from h

  7. Distinct effects of methamphetamine on autophagy–lysosome and ubiquitin–proteasome systems in HL-1 cultured mouse atrial cardiomyocytes

    International Nuclear Information System (INIS)

    Funakoshi-Hirose, Izumi; Aki, Toshihiko; Unuma, Kana; Funakoshi, Takeshi; Noritake, Kanako; Uemura, Koichi

    2013-01-01

    Highlights: • The psychostimulant drug methamphetamine is also known to cause cardiovascular injuries. • Methamphetamine cardiotoxicity was examined using HL-1 mouse atrial cardiomyocytes. • Methamphetamine impairs the autophagy–lysosome protein degradation system. • Methamphetamine causes myosin heavy chain degradation by the ubiquitin–proteasome system. - Abstract: The aim of this study is to investigate the molecular mechanism underling the cardiotoxicity of methamphetamine, a psychostimulant drug that is currently abused in the world. A mouse atrial cardiac cell line, HL-1, which retains phenotypes of cardiac cells and serves as a useful model for examining cardiac pathophysiology, was used for this purpose. During treatment with 1 mM methamphetamine (MAP) for 3–48 h, massive but transient cytoplasmic vacuolization (3–12 h) followed by an intracellular accumulation of granules (24–48 h) was observed under light microscopy. The vacuoles were surrounded by the lysosome membrane marker LAMP1, while the granules colocalized with the autophagy markers LC3 and p62 as well as ubiquitinated proteins. Western blot analysis showed that LC3 was activated during MAP administration, although p62 was not degraded but rather accumulated. Concordant with p62 accumulation, the nuclear translocation of an anti-oxidative transcription factor, Nrf2, and the subsequent induction of its target gene, HO-1, was observed, suggesting an impairment of autophagic protein degradation and the subsequent activation of the p62/Nrf2/HO-1 pathway. In addition, proteomic analysis revealed a reduction in myosin heavy chain (MHC) protein levels during MAP administration. The ubiquitination of MHC and the induction of the muscle sarcomere protein-specific E3 ubiquitin ligases MuRF1 and atrogin-1 were proved by immunoprecipitation and quantitative real-time PCR, respectively. Taken together, the vacuolization of lysosomes and the subsequent accumulation of autophagosomes indicate

  8. Melatonin attenuates angiotensin II-induced cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway.

    Science.gov (United States)

    Su, Hongyan; Li, Jingyuan; Chen, Tongshuai; Li, Na; Xiao, Jie; Wang, Shujian; Guo, Xiaobin; Yang, Yi; Bu, Peili

    2016-11-01

    Melatonin is well known for its cardioprotective effects; however, whether melatonin exerts therapeutic effects on cardiomyocyte hypertrophy remains to be investigated, as do the mechanisms underlying these effects, if they exist. Cyclophilin A (CyPA) and its corresponding receptor, CD147, which exists in a variety of cells, play crucial roles in modulating reactive oxygen species (ROS) production. In this study, we explored the role of the CyPA/CD147 signaling pathway in angiotensin II (Ang II)-induced cardiomyocyte hypertrophy and the protective effects exerted by melatonin against Ang II-induced injury in cultured H9C2 cells. Cyclosporine A, a specific CyPA/CD147 signaling pathway inhibitor, was used to manipulate CyPA/CD147 activity. H9C2 cells were then subjected to Ang II or CyPA treatment in either the absence or presence of melatonin. Our results indicate that Ang II induces cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway and promotes ROS production, which can be blocked by melatonin pretreatment in a concentration-dependent manner, in cultured H9C2 cells and that CyPA/CD147 signaling pathway inhibition protects against Ang II-induced cardiomyocyte hypertrophy. The protective effects of melatonin against Ang II-induced cardiomyocyte hypertrophy depend at least partially on CyPA/CD147 inhibition.

  9. Selenium deficiency aggravates T-2 toxin-induced injury of primary neonatal rat cardiomyocytes through ER stress.

    Science.gov (United States)

    Xu, Jing; Pan, Shengchi; Gan, Fang; Hao, Shu; Liu, Dandan; Xu, Haibin; Huang, Kehe

    2018-04-01

    Keshan disease is a potentially fatal cardiomyopathy in humans. Selenium deficiency, T-2 toxin, and myocarditis virus are thought to be the major factors contributing to Keshan disease. But the relationship among these three factors is poorly described. This study aims to explore whether selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury and its underlying mechanism. Cardiomyocytes were isolated from neonatal rat and cultured at the physiological (2.0 μM) or lower concentrations of selenium with different concentrations of T-2 toxin. Our results showed that selenium deficiencies aggravated T-2 toxin-induced cardiomyocyte injury in a concentration-dependent manner as demonstrated by MTT bioassay, LDH activity, reactive oxygen species levels and caspase 3 protein expressions. T-2 toxin treatment significantly increased mRNA expressions for stress proteins GRP78 and CHOP in cardiomyocytes compared with the control. Selenium deficiencies further promoted GRP78, CHOP and p-eIF2α expressions. Knockdown of CHOP by the specific small interfering RNA eliminated the effect of selenium deficiencies on T-2 toxin-induced injury. It could be concluded that selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury through initiating more aggressive endoplasmic reticulum stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Scalable Electrophysiological Investigation of iPS Cell-Derived Cardiomyocytes Obtained by a Lentiviral Purification Strategy

    Directory of Open Access Journals (Sweden)

    Stephanie Friedrichs

    2015-01-01

    Full Text Available Disease-specific induced pluripotent stem (iPS cells can be generated from patients and differentiated into functional cardiomyocytes for characterization of the disease and for drug screening. In order to obtain pure cardiomyocytes for automated electrophysiological investigation, we here report a novel non-clonal purification strategy by using lentiviral gene transfer of a puromycin resistance gene under the control of a cardiac-specific promoter. We have applied this method to our previous reported wild-type and long QT syndrome 3 (LQTS 3-specific mouse iPS cells and obtained a pure cardiomyocyte population. These cells were investigated by action potential analysis with manual and automatic planar patch clamp technologies, as well as by recording extracellular field potentials using a microelectrode array system. Action potentials and field potentials showed the characteristic prolongation at low heart rates in LQTS 3-specific, but not in wild-type iPS cell-derived cardiomyocytes. Hence, LQTS 3-specific cardiomyocytes can be purified from iPS cells with a lentiviral strategy, maintain the hallmarks of the LQTS 3 disease and can be used for automated electrophysiological characterization and drug screening.

  11. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition.

    Science.gov (United States)

    Jia, Zhuqing; Wang, Jiaji; Shi, Qiong; Liu, Siyu; Wang, Weiping; Tian, Yuyao; Lu, Qin; Chen, Ping; Ma, Kangtao; Zhou, Chunyan

    2016-02-01

    Sepsis-induced cardiac apoptosis is one of the major pathogenic factors in myocardial dysfunction. As it enhances numerous proinflammatory factors, lipopolysaccharide (LPS) is considered the principal mediator in this pathological process. However, the detailed mechanisms involved are unclear. In this study, we attempted to explore the mechanisms involved in LPS-induced cardiomyocyte apoptosis. We found that LPS stimulation inhibited microRNA (miR)-499 expression and thereby upregulated the expression of SOX6 and PDCD4 in neonatal rat cardiomyocytes. We demonstrate that SOX6 and PDCD4 are target genes of miR-499, and they enhance LPS-induced cardiomyocyte apoptosis by activating the BCL-2 family pathway. The apoptosis process enhanced by overexpression of SOX6 or PDCD4, was rescued by the cardiac-abundant miR-499. Overexpression of miR-499 protected the cardiomyocytes against LPS-induced apoptosis. In brief, our results demonstrate the existence of a miR-499-SOX6/PDCD4-BCL-2 family pathway in cardiomyocytes in response to LPS stimulation.

  12. Inhibition of MMP-2 Expression with siRNA Increases Baseline Cardiomyocyte Contractility and Protects against Simulated Ischemic Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Han-Bin Lin

    2014-01-01

    Full Text Available Matrix metalloproteinases (MMPs significantly contribute to ischemia reperfusion (I/R injury, namely, by the degradation of contractile proteins. However, due to the experimental models adopted and lack of isoform specificity of MMP inhibitors, the cellular source and identity of the MMP(s involved in I/R injury remain to be elucidated. Using isolated adult rat cardiomyocytes, subjected to chemically induced I/R-like injury, we show that specific inhibition of MMP-2 expression and activity using MMP-2 siRNA significantly protected cardiomyocyte contractility from I/R-like injury. This was also associated with increased expression of myosin light chains 1 and 2 (MLC1/2 in comparison to scramble siRNA transfection. Moreover, the positive effect of MMP-2 siRNA transfection on cardiomyocyte contractility and MLC1/2 expression levels was also observed under control conditions, suggesting an important additional role for MMP-2 in physiological sarcomeric protein turnover. This study clearly demonstrates that intracellular expression of MMP-2 plays a significant role in sarcomeric protein turnover, such as MLC1 and MLC2, under aerobic (physiological conditions. In addition, this study identifies intracellular/autocrine, cardiomyocyte-produced MMP-2, rather than paracrine/extracellular, as responsible for the degradation of MLC1/2 and consequent contractile dysfunction in cardiomyocytes subjected to I/R injury.

  13. MicroRNA-1 Regulates the Differentiation of Adipose-Derived Stem Cells into Cardiomyocyte-Like Cells

    Directory of Open Access Journals (Sweden)

    Can Chen

    2018-01-01

    Full Text Available Stem cell transplantation is one of most valuable methods in the treatment of myocardial infarction, and adipose-derived stem cells (ASCs are becoming a hot topic in medical research. Previous studies have shown that ASCs can be differentiated into cardiomyocyte-like cells, but the efficiency and survival rates are low. We investigated the role and mechanism of microRNA-1 (miR-1 in the differentiation of ASCs into cardiomyocyte-like cells. ASCs and cardiomyocytes were isolated from neonatal rats. We constructed lentivirus for overexpressing miR-1 and used DAPT, an antagonist of the Notch1 pathway, for in vitro analyses. We performed cocultures with ASCs and cardiomyocytes. The differentiation efficiency of ASCs was detected by cell-specific surface antigens. Our results showed that miR-1 can promote the expression of Notch1 and reduce the expression of Hes1, a Notch pathway factor, and overexpression of miR-1 can promote the differentiation of ASCs into cardiomyocyte-like cells, which may occur by regulating Notch1 and Hes1.

  14. SIRT1 Functions as an Important Regulator of Estrogen-Mediated Cardiomyocyte Protection in Angiotensin II-Induced Heart Hypertrophy

    Directory of Open Access Journals (Sweden)

    Tao Shen

    2014-01-01

    Full Text Available Background. Sirtuin 1 (SIRT1 is a member of the sirtuin family, which could activate cell survival machinery and has been shown to be protective in regulation of heart function. Here, we determined the mechanism by which SIRT1 regulates Angiotensin II- (AngII- induced cardiac hypertrophy and injury in vivo and in vitro. Methods. We analyzed SIRT1 expression in the hearts of control and AngII-induced mouse hypertrophy. Female C57BL/6 mice were ovariectomized and pretreated with 17β-estradiol to measure SIRT1 expression. Protein synthesis, cardiomyocyte surface area analysis, qRT-PCR, TUNEL staining, and Western blot were performed on AngII-induced mouse heart hypertrophy samples and cultured neonatal rat ventricular myocytes (NRVMs to investigate the function of SIRT1. Results. SIRT1 expression was slightly upregulated in AngII-induced mouse heart hypertrophy in vivo and in vitro, accompanied by elevated cardiomyocyte apoptosis. SIRT1 overexpression relieves AngII-induced cardiomyocyte hypertrophy and apoptosis. 17β-Estradiol was able to protect cardiomyocytes from AngII-induced injury with a profound upregulation of SIRT1 and activation of AMPK. Moreover, estrogen receptor inhibitor ICI 182,780 and SIRT1 inhibitor niacinamide could block SIRT1’s protective effect. Conclusions. These results indicate that SIRT1 functions as an important regulator of estrogen-mediated cardiomyocyte protection during AngII-induced heart hypertrophy and injury.

  15. Imaging cardiomyocytes in intact tissue with a remote focusing microscope

    Science.gov (United States)

    Corbett, A. D.; Burton, R. A. B.; Bub, G.; Wilson, T.

    2015-03-01

    In cardiac imaging, the spacing between sub-cellular sarcomere structures is of great importance to physiologists in understanding muscle design and performance. Making accurate measurements of the sarcomere length (SL) presents a significant imaging challenge owing to the size of the SL (~2μm) and its naturally low variability (pathological models of chronic hypertension. As well as improving measurement precision, the distribution of α across the field of view provides additional structural information which can be related to disease morphology. To validate this new imaging protocol, the value ofα calculated from the oblique planes provided the input to a rigid model cell which was used to predict the appearance of the cell in the conventional focal plane. The comparison of the model to the image data provided a confidence metric for our measurements. Finally, by considering the optical transfer function, the range of cell orientations for which the method is valid could be calculated.

  16. Reconversion of nuclear weapons

    CERN Document Server

    Kapitza, Sergei P

    1992-01-01

    The nuclear predicament or nuclear option. Synopsis of three lectures : 1- The physical basis of nuclear technology. Physics of fission. Chain reaction in reactors and weapons. Fission fragments. Separration of isotopes. Radiochemistry.2- Nuclear reactors with slow and fast neutrons. Power, size, fuel and waste. Plutonium production. Dose rate, shielding and health hazard. The lessons of Chernobyl3- Nuclear weapons. Types, energy, blast and fallout. Fusion and hydrogen bombs. What to do with nuclear weapons when you cannot use them? Testing. Nonmilittary use. Can we get rid of the nuclear weapon? Nuclear proliferation. Is there a nuclear future?

  17. Nuclear physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Explains the concepts in detail and in depth. Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook explains the experimental basics, effects and theory of nuclear physics. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams help to better understand the explanations. A better feeling to the subject of the book is given with sketches about the historical development of nuclear physics. The main topics of this book include the phenomena associated with passage of charged particles and radiation through matter which are related to nuclear resonance fluorescence and the Moessbauer effect., Gamov's theory of alpha decay, Fermi theory of beta decay, electron capture and gamma decay. The discussion of general properties of nuclei covers nuclear sizes and nuclear force, nuclear spin, magnetic dipole moment and electric quadrupole moment. Nuclear instability against various modes of decay and Yukawa theory are explained. Nuclear models such as Fermi Gas Model, Shell Model, Liquid Drop Model, Collective Model and Optical Model are outlined to explain various experimental facts related to nuclear structure. Heavy ion reactions, including nuclear fusion, are explained. Nuclear fission and fusion power production is treated elaborately.

  18. Some problems raised by the operation of large nuclear turbo-generator sets. Solutions proposed for the protection of large size generators

    International Nuclear Information System (INIS)

    Chaumienne, J.-P.

    1976-01-01

    The operating requirements of nuclear power stations call for relays with ever increasing performances. This urges the development of new electronic systems while giving high importance to their reliability. So as to provide for easy application and minitoring of the relays, even when the turbo-generator unit is operating, a new cubicle design is considered which offers maximum safety and flexibility in use [fr

  19. 129Xe nuclear magnetic resonance study of pitch-based activated carbon modified by air oxidation/pyrolysis cycles: a new approach to probe the micropore size.

    Science.gov (United States)

    Romanenko, Konstantin V; Py, Xavier; d'Espinose de Lacaillerie, Jean-Baptiste; Lapina, Olga B; Fraissard, Jacques

    2006-02-23

    (129)Xe NMR has been used to study a series of homologous activated carbons obtained from a KOH-activated pitch-based carbon molecular sieve modified by air oxidation/pyrolysis cycles. A clear correlation between the pore size of microporous carbons and the (129)Xe NMR of adsorbed xenon is proposed for the first time. The virial coefficient delta(Xe)(-)(Xe) arising from binary xenon collisions varied linearly with the micropore size and appeared to be a better probe of the microporosity than the chemical shift extrapolated to zero pressure. This correlation was explained by the fact that the xenon collision frequency increases with increasing micropore size. The chemical shift has been shown to vary very little with temperature (less than 9 ppm) for xenon trapped inside narrow and wide micropores. This is indicative of a smooth xenon-surface interaction potential.

  20. Research on the improvement of nuclear safety - Development of a technique for simultaneous measurement of particle size and velocity for direct containment heating accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yong; Song, Si Hong; Koh, Kwang Woong; Kim, Joo Yeon; Kim, Jong Moon; Choi, Chul Jin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-08-01

    The main objective is to develop a high performance software routine to process the output signals from the phase/Doppler device for simultaneous measurement of drop sizes and two-dimensional velocities of spray drops/particles. The present work has been carried out as an extension work of the first year`s research, where the principles and the limitation of this measuring technique have been thoroughly reviewed. In order to verify the performance and reliability of this software for simultaneous measurement of sizes and velocities of spray drops with two-dimensional motions, the results were compared with those from commercial signal processor DSA by Aerometrics, and concluded to be satisfactory. The routine developed throughout this project is applicable not only to the DCH model experiments but also to the measurements of sizes and velocities of drops/particles in combustors, dryers, humidifiers, and in various two-phase equipments. 20 refs., 5 tabs., 21 figs. (author)

  1. A Non-Destructive Culturing and Cell Sorting Method for Cardiomyocytes and Neurons Using a Double Alginate Layer

    Science.gov (United States)

    Terazono, Hideyuki; Kim, Hyonchol; Hayashi, Masahito; Hattori, Akihiro; Nomura, Fumimasa; Kaneko, Tomoyuki; Yasuda, Kenji

    2012-01-01

    A non-destructive method of collecting cultured cells after identifying their in situ functional characteristics is proposed. In this method, cells are cultivated on an alginate layer in a culture dish and released by spot application of a calcium chelate buffer that locally melts the alginate layer and enables the collection of cultured cells at the single-cell level. Primary hippocampal neurons, beating human embryonic stem (hES) cell-derived cardiomyocytes, and beating hES cell-derived cardiomyocyte clusters cultivated on an alginate layer were successfully released and collected with a micropipette. The collected cells were recultured while maintaining their physiological function, including beating, and elongated neurites. These results suggest that the proposed method may eventually facilitate the transplantation of ES- or iPS-derived cardiomyocytes and neurons differentiated in culture. PMID:22870332

  2. A non-destructive culturing and cell sorting method for cardiomyocytes and neurons using a double alginate layer.

    Directory of Open Access Journals (Sweden)

    Hideyuki Terazono

    Full Text Available A non-destructive method of collecting cultured cells after identifying their in situ functional characteristics is proposed. In this method, cells are cultivated on an alginate layer in a culture dish and released by spot application of a calcium chelate buffer that locally melts the alginate layer and enables the collection of cultured cells at the single-cell level. Primary hippocampal neurons, beating human embryonic stem (hES cell-derived cardiomyocytes, and beating hES cell-derived cardiomyocyte clusters cultivated on an alginate layer were successfully released and collected with a micropipette. The collected cells were recultured while maintaining their physiological function, including beating, and elongated neurites. These results suggest that the proposed method may eventually facilitate the transplantation of ES- or iPS-derived cardiomyocytes and neurons differentiated in culture.

  3. Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jan David Kijlstra

    2015-12-01

    Full Text Available The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can be used to quantify changes in cellular morphology over time and compute contractile kinetics. Using a biomechanical model that incorporates substrate stiffness, we calculate cardiomyocyte force generation at single-cell resolution and validate this approach with conventional traction force microscopy. The addition of fluorescent calcium indicators or membrane potential dyes allows the simultaneous analysis of contractility and calcium handling or action potential morphology. Accordingly, our approach has the potential for broad application in the study of cardiac disease, drug discovery, and cardiotoxicity screening.

  4. High-speed digital imaging of cytosolic Ca2+ and contraction in single cardiomyocytes.

    Science.gov (United States)

    O'Rourke, B; Reibel, D K; Thomas, A P

    1990-07-01

    A charge-coupled device (CCD) camera, with the capacity for simultaneous spatially resolved photon counting and rapid frame transfer, was utilized for high-speed digital image collection from an inverted epifluorescence microscope. The unique properties of the CCD detector were applied to an analysis of cell shortening and the Ca2+ transient from fluorescence images of fura-2-loaded [corrected] cardiomyocytes. On electrical stimulation of the cell, a series of sequential subimages was collected and used to create images of Ca2+ within the cell during contraction. The high photosensitivity of the camera, combined with a detector-based frame storage technique, permitted collection of fluorescence images 10 ms apart. This rate of image collection was sufficient to resolve the rapid events of contraction, e.g., the upstroke of the Ca2+ transient (less than 40 ms) and the time to peak shortening (less than 80 ms). The technique was used to examine the effects of beta-adrenoceptor activation, fura-2 load, and stimulus frequency on cytosolic Ca2+ transients and contractions of single cardiomyocytes. beta-Adrenoceptor stimulation resulted in pronounced increases in peak Ca2+, maximal rates of rise and decay of Ca2+, extent of shortening, and maximal velocities of shortening and relaxation. Raising the intracellular load of fura-2 had little effect on the rising phase of Ca2+ or the extent of shortening but extended the duration of the Ca2+ transient and contraction. In related experiments utilizing differential-interference contrast microscopy, the same technique was applied to visualize sarcomere dynamics in contracting cells. This newly developed technique is a versatile tool for analyzing the Ca2+ transient and mechanical events in studies of excitation-contraction coupling in cardiomyocytes.

  5. Alterations in cardiomyocyte function after pulmonary treatment with stainless steel welding fume in rats.

    Science.gov (United States)

    Popstojanov, Risto; Antonini, James M; Salmen, Rebecca; Ye, Morgan; Zheng, Wen; Castranova, Vincent; Fekedulegn, Desta B; Kan, Hong

    2014-01-01

    Welding fume is composed of a complex of different metal particulates. Pulmonary exposure to different welding fumes may exert a negative impact on cardiac function, although the underlying mechanisms remain unclear. To explore the effect of welding fumes on cardiac function, Sprague-Dawley rats were exposed by intratracheal instillation to 2 mg/rat of manual metal arc hard surfacing welding fume (MMA-HS) once per week for 7 wk. Control rats received saline. Cardiomyocytes were isolated enzymatically at d 1 and 7 postexposure. Intracellular calcium ([Ca(2+)]i) transients (fluorescence ratio) were measured on the stage of an inverted phase-contrast microscope using a myocyte calcium imaging/cell length system. Phosphorylation levels of cardiac troponin I (cTnI) were determined by Western blot. The levels of nonspecific inflammatory marker C-reactive protein (CRP) and proinflammatory cytokine interleukin-6 (IL-6) in serum were measured by enzyme-linked immunosorbent assay (ELISA). Contraction of isolated cardiomyocytes was significantly reduced at d 1 and d 7 postexposure. Intracellular calcium levels were decreased in response to extracellular calcium stimulation at d 7 postexposure. Changes of intracellular calcium levels after isoprenaline hydrochloride (ISO) stimulation were not markedly different between groups at either time point. Phosphorylation levels of cTnI in the left ventricle were significantly lower at d 1 postexposure. The serum levels of CRP were not markedly different between groups at either time point. Serum levels of IL-6 were not detectable in both groups. Cardiomyocyte alterations observed after welding fume treatment were mainly due to alterations in intracellular calcium handling and phosphorylation levels of cTnI.

  6. Anti-aging effects of vitamin C on human pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Kim, Yoon Young; Ku, Seung-Yup; Huh, Yul; Liu, Hung-Ching; Kim, Seok Hyun; Choi, Young Min; Moon, Shin Yong

    2013-10-01

    Human pluripotent stem cells (hPSCs) have arisen as a source of cells for biomedical research due to their developmental potential. Stem cells possess the promise of providing clinicians with novel treatments for disease as well as allowing researchers to generate human-specific cellular metabolism models. Aging is a natural process of living organisms, yet aging in human heart cells is difficult to study due to the ethical considerations regarding human experimentation as well as a current lack of alternative experimental models. hPSC-derived cardiomyocytes (CMs) bear a resemblance to human cardiac cells and thus hPSC-derived CMs are considered to be a viable alternative model to study human heart cell aging. In this study, we used hPSC-derived CMs as an in vitro aging model. We generated cardiomyocytes from hPSCs and demonstrated the process of aging in both human embryonic stem cell (hESC)- and induced pluripotent stem cell (hiPSC)-derived CMs. Aging in hESC-derived CMs correlated with reduced membrane potential in mitochondria, the accumulation of lipofuscin, a slower beating pattern, and the downregulation of human telomerase RNA (hTR) and cell cycle regulating genes. Interestingly, the expression of hTR in hiPSC-derived CMs was not significantly downregulated, unlike in hESC-derived CMs. In order to delay aging, vitamin C was added to the cultured CMs. When cells were treated with 100 μM of vitamin C for 48 h, anti-aging effects, specifically on the expression of telomere-related genes and their functionality in aging cells, were observed. Taken together, these results suggest that hPSC-derived CMs can be used as a unique human cardiomyocyte aging model in vitro and that vitamin C shows anti-aging effects in this model.

  7. Slow conduction in mixed cultured strands of primary ventricular cells and stem cell-derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jan Pavel Kucera

    2015-09-01

    Full Text Available Modern concepts for the treatment of myocardial diseases focus on novel cell therapeutic strategies involving stem cell-derived cardiomyocytes (SCMs. However, functional integration of SCMs requires similar electrophysiological properties as primary cardiomyocytes (PCMs and the ability to establish intercellular connections with host myocytes in order to contribute to the electrical and mechanical activity of the heart. The aim of this project was to investigate the properties of cardiac conduction in a co-culture approach using SCMs and PCMs in cultured cell strands. Murine embryonic SCMs were pooled with fetal ventricular cells and seeded in predefined proportions on microelectrode arrays to form patterned strands of mixed cells. Conduction velocity (CV was measured during steady state pacing. SCM excitability was estimated from action potentials measured in single cells using the patch clamp technique. Experiments were complemented with computer simulations of conduction using a detailed model of cellular architecture in mixed cell strands.CV was significantly lower in strands composed purely of SCMs (5.5±1.5 cm/s, n=11 as compared to PCMs (34.9±2.9 cm/s, n=21 at similar refractoriness (100% SCMs: 122±25 ms, n=9; 100% PCMs: 139±67 ms, n=14. In mixed strands combining both cell types, CV was higher than in pure SCMs strands, but always lower than in 100% PCM strands. Computer simulations demonstrated that both intercellular coupling and electrical excitability limit CV.These data provide evidence that in cultures of murine ventricular cardiomyocytes, SCMs cannot restore CV to control levels resulting in slow conduction, which may lead to reentry circuits and arrhythmias.

  8. Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca2+ Channel Protein Stability.

    Science.gov (United States)

    Pedrozo, Zully; Criollo, Alfredo; Battiprolu, Pavan K; Morales, Cyndi R; Contreras-Ferrat, Ariel; Fernández, Carolina; Jiang, Nan; Luo, Xiang; Caplan, Michael J; Somlo, Stefan; Rothermel, Beverly A; Gillette, Thomas G; Lavandero, Sergio; Hill, Joseph A

    2015-06-16

    L-type calcium channel activity is critical to afterload-induced hypertrophic growth of the heart. However, the mechanisms governing mechanical stress-induced activation of L-type calcium channel activity are obscure. Polycystin-1 (PC-1) is a G protein-coupled receptor-like protein that functions as a mechanosensor in a variety of cell types and is present in cardiomyocytes. We subjected neonatal rat ventricular myocytes to mechanical stretch by exposing them to hypo-osmotic medium or cyclic mechanical stretch, triggering cell growth in a manner dependent on L-type calcium channel activity. RNAi-dependent knockdown of PC-1 blocked this hypertrophy. Overexpression of a C-terminal fragment of PC-1 was sufficient to trigger neonatal rat ventricular myocyte hypertrophy. Exposing neonatal rat ventricular myocytes to hypo-osmotic medium resulted in an increase in α1C protein levels, a response that was prevented by PC-1 knockdown. MG132, a proteasomal inhibitor, rescued PC-1 knockdown-dependent declines in α1C protein. To test this in vivo, we engineered mice harboring conditional silencing of PC-1 selectively in cardiomyocytes (PC-1 knockout) and subjected them to mechanical stress in vivo (transverse aortic constriction). At baseline, PC-1 knockout mice manifested decreased cardiac function relative to littermate controls, and α1C L-type calcium channel protein levels were significantly lower in PC-1 knockout hearts. Whereas control mice manifested robust transverse aortic constriction-induced increases in cardiac mass, PC-1 knockout mice showed no significant growth. Likewise, transverse aortic constriction-elicited increases in hypertrophic markers and interstitial fibrosis were blunted in the knockout animals PC-1 is a cardiomyocyte mechanosensor that is required for cardiac hypertrophy through a mechanism that involves stabilization of α1C protein. © 2015 American Heart Association, Inc.

  9. Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis.

    Science.gov (United States)

    Parra, Valentina; Eisner, Veronica; Chiong, Mario; Criollo, Alfredo; Moraga, Francisco; Garcia, Alejandra; Härtel, Steffen; Jaimovich, Enrique; Zorzano, Antonio; Hidalgo, Cecilia; Lavandero, Sergio

    2008-01-15

    In cells, mitochondria are organized as a network of interconnected organelles that fluctuate between fission and fusion events (mitochondrial dynamics). This process is associated with cell death. We investigated whether activation of apoptosis with ceramides affects mitochondrial dynamics and promotes mitochondrial fission in cardiomyocytes. Neonatal rat cardiomyocytes were incubated with C(2)-ceramide or the inactive analog dihydro-C(2)-ceramide for up to 6 h. Three-dimensional images of cells loaded with mitotracker green were obtained by confocal microscopy. Dynamin-related protein-1 (Drp-1) and mitochondrial fission protein 1 (Fis1) distribution and levels were studied by immunofluorescence and western blot. Mitochondrial membrane potential (DeltaPsi(m)) and cytochrome c (cyt c) distribution were used as indexes of early activation of apoptosis. Cell viability and DNA fragmentation were determined by propidium iodide staining/flow cytometry, whereas cytotoxicity was evaluated by lactic dehydrogenase activity. To decrease the levels of the mitochondrial fusion protein mitofusin 2, we used an antisense adenovirus (AsMfn2). C(2)-ceramide, but not dihydro-C(2)-ceramide, promoted rapid fragmentation of the mitochondrial network in a concentration- and time-dependent manner. C(2)-ceramide also increased mitochondrial Drp-1 and Fis1 content, Drp-1 colocalization with Fis1, and caused early activation of apoptosis. AsMfn2 accentuated the decrease in DeltaPsi(m) and cyt c redistribution induced by C(2)-ceramide. Doxorubicin, which induces cardiomyopathy and apoptosis through ceramide generation, also stimulated mitochondrial fragmentation. Ceramides stimulate mitochondrial fission and this event is associated with early activation of cardiomyocyte apoptosis.

  10. Generation of electrophysiologically functional cardiomyocytes from mouse induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Hongran Wang

    2016-03-01

    Full Text Available Induced pluripotent stem (iPS cells can efficiently differentiate into the three germ layers similar to those formed by differentiated embryonic stem (ES cells. This provides a new source of cells in which to establish preclinical allogeneic transplantation models. Our iPS cells were generated from mouse embryonic fibroblasts (MEFs transfected with the Yamanaka factors, the four transcription factors (Oct4, Sox2, Klf4 and c-Myc, without antibiotic selection or MEF feeders. After the formation of embryoid bodies (EBs, iPS cells spontaneously differentiated into Flk1-positive cardiac progenitors and cardiomyocytes expressing cardiac-specific markers such as alpha sarcomeric actinin (α-actinin, cardiac alpha myosin heavy chain (α-MHC, cardiac troponin T (cTnT, and connexin 43 (CX43, as well as cardiac transcription factors Nk2 homebox 5 (Nkx2.5 and gata binding protein 4 (gata4. The electrophysiological activity of iPS cell-derived cardiomyocytes (iPS-CMs was detected in beating cell clusters with optical mapping and RH237 a voltage-sensitive dye, and in single contracting cells with patch-clamp technology. Incompletely differentiated iPS cells formed teratomas when transplanted into a severe combined immunodeficiency (SCID mouse model of myocardial infarction. Our results show that somatic cells can be reprogrammed into pluripotent stem cells, which in turn spontaneously differentiate into electrophysiologically functional mature cardiomyocytes expressing cardiac-specific makers, and that these cells can potentially be used to repair myocardial infarction (MI in the future.

  11. Experimental research on recombinant human endostatin-induced cardiomyocyte apoptosis in rats

    Directory of Open Access Journals (Sweden)

    Jing QIN

    2014-03-01

    Full Text Available Objective To explore the recombinant human endostatin (rh-ES-induced cardiotoxicity in rats and its mechanism. Methods Twenty four female Wistar rats were randomly divided into four groups (6 each. Rats in low, moderate and high dose group received rh-ES with a dosage of 3, 6 and 12mg/(kg·d, respectively, by intraperitoneal injection, and rats in control group received the same amount of normal saline alone. Half of rats in each group were sacrificed by spinal dislocation after 4 weeks and 8 weeks of the treatment. Pathomorphologic and ultrastructural changes in rat's myocardial tissue were evaluated by light microscopy and transmission electron microscopy. Cardiomyocyte apoptosis was detected with TdT-mediated dUTP nick end labeling (TUNEL assay. Microvessel density (MVD in myocardial tissue was measured by immunohistochemically marking endothelial cell with CD34. Results No pathomorphologic and ultrastrucural changes were found under light microscope and transmission electron microscope in the low dose and moderate dose groups, but cardiomyocyte damage were found in the high dose group. TUNEL assay revealed more apoptotic cells in high and moderate (only 8 weeks dose groups than in control group (P=0.033, P=0.000, and the apoptosis index was highest in the high dose group at 8 weeks. In addition, compared with the control group, MVD significantly increased in high dose groups at 4 weeks and 8 weeks (P<0.05. Conclusions rh-ES induces the cardiotoxicity in rats, and cardiomyocyte apoptosis is involved in the pathological course of cardiac toxicity. DOI: 10.11855/j.issn.0577-7402.2014.01.02

  12. Diclofenac induces proteasome and mitochondrial dysfunction in murine cardiomyocytes and hearts.

    Science.gov (United States)

    Ghosh, Rajeshwary; Goswami, Sumanta K; Feitoza, Luis Felipe B B; Hammock, Bruce; Gomes, Aldrin V

    2016-11-15

    One of the most common nonsteroidal anti-inflammatory drugs (NSAIDs) used worldwide, diclofenac (DIC), has been linked to increased risk of cardiovascular disease (CVD). The molecular mechanism(s) by which DIC causes CVD is unknown. Proteasome activities were studied in hearts, livers, and kidneys from male Swiss Webster mice treated with either 100mg/kg DIC for 18h (acute treatment) or 10mg/kg DIC for 28days (chronic treatment). Cultured H9c2 cells and neonatal cardiomyocytes were also treated with different concentrations of DIC and proteasome function, cell death and ROS generation studied. Isolated mouse heart mitochondria were utilized to determine the effect of DIC on various electron transport chain complex activities. DIC significantly inhibited the chymotrypsin-like proteasome activity in rat cardiac H9c2 cells, murine neonatal cardiomyocytes, and mouse hearts, but did not affect proteasome subunit expression levels. Proteasome activity was also affected in liver and kidney tissues from DIC treated animals. The levels of polyubiquitinated proteins increased in hearts from DIC treated mice. Importantly, the levels of oxidized proteins increased while the β5i immunoproteasome activity decreased in hearts from DIC treated mice. DIC increased ROS production and cell death in H9c2 cells and neonatal cardiomyocytes while the cardioprotective NSAID, aspirin, had no effect on ROS levels or cell viability. DIC inhibited mitochondrial Complex III, a major source of ROS, and impaired mitochondrial membrane potential suggesting that mitochondria are the major sites of ROS generation. These results suggest that DIC induces cardiotoxicity by a ROS dependent mechanism involving mitochondrial and proteasome dysfunction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Troglitazone stimulates β-arrestin-dependent cardiomyocyte contractility via the angiotensin II type 1A receptor

    International Nuclear Information System (INIS)

    Tilley, Douglas G.; Nguyen, Anny D.; Rockman, Howard A.

    2010-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) agonists are commonly used to treat cardiovascular diseases, and are reported to have several effects on cardiovascular function that may be due to PPARγ-independent signaling events. Select angiotensin receptor blockers (ARBs) interact with and modulate PPARγ activity, thus we hypothesized that a PPARγ agonist may exert physiologic effects via the angiotensin II type 1 A receptor (AT1 A R). In AT1 A R-overexpressing HEK 293 cells, both angiotensin II (Ang II) and the PPARγ agonist troglitazone (Trog) enhanced AT1 A R internalization and recruitment of endogenous β-arrestin1/2 (βarr1/2) to the AT1 A R. A fluorescence assay to measure diacylglycerol (DAG) accumulation showed that although Ang II induced AT1 A R-G q protein-mediated DAG accumulation, Trog had no impact on DAG generation. Trog-mediated recruitment of βarr1/2 was selective to AT1 A R as the response was prevented by an ARB- and Trog-mediated βarr1/2 recruitment to β1-adrenergic receptor (β1AR) was not observed. In isolated mouse cardiomyocytes, Trog increased both % and rate of cell shortening to a similar extent as Ang II, effects which were blocked with an ARB. Additionally, these effects were found to be βarr2-dependent, as cardiomyocytes isolated from βarr2-KO mice showed blunted contractile responses to Trog. These findings show for the first time that the PPARγ agonist Trog acts at the AT1 A R to simultaneously block G q protein activation and induce the recruitment of βarr1/2, which leads to an increase in cardiomyocyte contractility.

  14. Propofol ameliorates doxorubicin-induced oxidative stress and cellular apoptosis in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lai, H.C. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Yeh, Y.C. [Graduate Institute of Natural Healing Sciences, Nanhua University, Chiayi, Taiwan (China); Wang, L.C. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Ting, C.T.; Lee, W.L. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Lee, H.W. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, K.Y. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine, Chung-Shan Medical University, Taichung, Taiwan (China); Wu, A. [College of Biological Science, University of California, Davis (United States); Su, C.S. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Liu, T.J., E-mail: trliu@vghtc.gov.tw [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China)

    2011-12-15

    Background: Propofol is an anesthetic with pluripotent cytoprotective properties against various extrinsic insults. This study was designed to examine whether this agent could also ameliorate the infamous toxicity of doxorubicin, a widely-used chemotherapeutic agent against a variety of cancer diseases, on myocardial cells. Methods: Cultured neonatal rat cardiomyocytes were administrated with vehicle, doxorubicin (1 {mu}M), propofol (1 {mu}M), or propofol plus doxorubicin (given 1 h post propofol). After 24 h, cells were harvested and specific analyses regarding oxidative/nitrative stress and cellular apoptosis were conducted. Results: Trypan blue exclusion and MTT assays disclosed that viability of cardiomyocytes was significantly reduced by doxorubicin. Contents of reactive oxygen and nitrogen species were increased and antioxidant enzymes SOD1, SOD2, and GPx were decreased in these doxorubicin-treated cells. Mitochondrial dehydrogenase activity and membrane potential were also depressed, along with activation of key effectors downstream of mitochondrion-dependent apoptotic signaling. Besides, abundance of p53 was elevated and cleavage of PKC-{delta} was induced in these myocardial cells. In contrast, all of the above oxidative, nitrative and pro-apoptotic events could be suppressed by propofol pretreatment. Conclusions: Propofol could extensively counteract oxidative/nitrative and multiple apoptotic effects of doxorubicin in the heart; hence, this anesthetic may serve as an adjuvant agent to assuage the untoward cardiac effects of doxorubicin in clinical application. -- Highlights: Black-Right-Pointing-Pointer We evaluate how propofol prevents doxorubicin-induced toxicity in cardiomyocytes. Black-Right-Pointing-Pointer Propofol reduces doxorubicin-imposed nitrative and oxidative stress. Black-Right-Pointing-Pointer Propofol suppresses mitochondrion-, p53- and PKC-related apoptotic signaling. Black-Right-Pointing-Pointer Propofol ameliorates apoptosis and

  15. Mitochondrial p38β and manganese superoxide dismutase interaction mediated by estrogen in cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Han Liu

    Full Text Available While etiology behind the observed acceleration of ischemic heart disease in postmenopausal women is poorly understood, collective scientific data suggest cardioprotective effects of the endogenous female sex hormone, estrogen. We have previously shown that 17β-estradiol (E2 protects cardiomyocytes exposed to hypoxia-reoxygenation (H/R by inhibiting p38α - p53 signaling in apoptosis and activating pro-survival p38β mitogen activated protein kinase (p38β MAPK, leading to suppression of reactive oxygen species (ROS post H/R. However, little is known about the mechanism behind the antioxidant actions of E2-dependent p38β. The aim of this study is to determine whether the cytoprotection by estrogen involves regulation of manganese superoxide dismutase (MnSOD, a major mitochondrial ROS scavenging enzyme, via cardiac p38β.We identified mitochondrial p38β by immunocytochemistry and by immunoblotting in mitochondria isolated from neonatal cardiomyocytes of Sprague-Dawley rats. E2 facilitated the mitochondrial localization of the active form of the kinase, phosphorylated p38β (p-p38β. E2 also reduced the H/R-induced mitochondrial membrane potential decline, augmented the MnSOD activity and suppressed anion superoxide generation, while the dismutase protein expression remained unaltered. Co-immunoprecipitation studies showed physical association between MnSOD and p38β. p38β phosphorylated MnSOD in an E2-dependent manner in in-vitro kinase assays.This work demonstrates for the first time a mitochondrial pool of active p38β and E2-mediated phosphorylation of MnSOD by the kinase. The results shed light on the mechanism behind the cytoprotective actions of E2 in cardiomyocytes under oxidative stress.

  16. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice

    International Nuclear Information System (INIS)

    Zhang, Pengpeng; Shan, Tizhong; Liang, Xinrong; Deng, Changyan; Kuang, Shihuan

    2014-01-01

    Highlights: • mTOR is a critical regulator of many biological processes yet its function in heart is not well understood. • MCK-Cre/Mtor flox/flox mice were established to delete Mtor in cardiomyocytes. • The mTOR-mKO mice developed normally but die prematurely within 5 weeks after birth due to heart disease. • The mTOR-mKO mice had dilated myocardium and increased cell death. • mTOR-mKO hearts had reduced expression of metabolic genes and activation of mTOR target proteins. - Abstract: Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leads to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor flox/flox mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function

  17. Neonatal Transplantation Confers Maturation of PSC-Derived Cardiomyocytes Conducive to Modeling Cardiomyopathy

    OpenAIRE

    Cho, Gun-Sik; Lee, Dong I.; Tampakakis, Emmanouil; Murphy, Sean; Andersen, Peter; Uosaki, Hideki; Chelko, Stephen; Chakir, Khalid; Hong, Ingie; Seo, Kinya; Vincent Chen, Huei-Sheng; Chen, Xiongwen; Basso, Cristina; Houser, Steven R.; Tomaselli, Gordon F.

    2017-01-01

    Summary: Pluripotent stem cells (PSCs) offer unprecedented opportunities for disease modeling and personalized medicine. However, PSC-derived cells exhibit fetal-like characteristics and remain immature in a dish. This has emerged as a major obstacle for their application for late-onset diseases. We previously showed that there is a neonatal arrest of long-term cultured PSC-derived cardiomyocytes (PSC-CMs). Here, we demonstrate that PSC-CMs mature into adult CMs when transplanted into neonata...

  18. β-Adrenergic receptor stimulation inhibits proarrhythmic alternans in postinfarction border zone cardiomyocytes: a computational analysis.

    Science.gov (United States)

    Tomek, Jakub; Rodriguez, Blanca; Bub, Gil; Heijman, Jordi

    2017-08-01

    The border zone (BZ) of the viable myocardium adjacent to an infarct undergoes extensive autonomic and electrical remodeling and is prone to repolarization alternans-induced cardiac arrhythmias. BZ remodeling processes may promote or inhibit Ca 2+ and/or repolarization alternans and may differentially affect ventricular arrhythmogenesis. Here, we used a detailed computational model of the canine ventricular cardiomyocyte to study the determinants of alternans in the BZ and their regulation by β-adrenergic receptor (β-AR) stimulation. The BZ model developed Ca 2+ transient alternans at slower pacing cycle lengths than the control model, suggesting that the BZ may promote spatially heterogeneous alternans formation in an infarcted heart. β-AR stimulation abolished alternans. By evaluating all combinations of downstream β-AR stimulation targets, we identified both direct (via ryanodine receptor channels) and indirect [via sarcoplasmic reticulum (SR) Ca 2+ load] modulation of SR Ca 2+ release as critical determinants of Ca 2+ transient alternans. These findings were confirmed in a human ventricular cardiomyocyte model. Cell-to-cell coupling indirectly modulated the likelihood of alternans by affecting the action potential upstroke, reducing the trigger for SR Ca 2+ release in one-dimensional strand simulations. However, β-AR stimulation inhibited alternans in both single and multicellular simulations. Taken together, these data highlight a potential antiarrhythmic role of sympathetic hyperinnervation in the BZ by reducing the likelihood of alternans and provide new insights into the underlying mechanisms controlling Ca 2+ transient and repolarization alternans. NEW & NOTEWORTHY We integrated, for the first time, postmyocardial infarction electrical and autonomic remodeling in a detailed, validated computer model of β-adrenergic stimulation in ventricular cardiomyocytes. Here, we show that β-adrenergic stimulation inhibits alternans and provide novel insights

  19. Zinc-induced cardiomyocyte relaxation in a rat model of hyperglycemia is independent of myosin isoform

    Directory of Open Access Journals (Sweden)

    Yi Ting

    2012-11-01

    Full Text Available Abstract It has been reported previously that diabetic cardiomyopathy can be inhibited or reverted with chronic zinc supplementation. In the current study, we hypothesized that total cardiac calcium and zinc content is altered in early onset diabetes mellitus characterized in part as hyperglycemia (HG and that exposure of zinc ion (Zn2+ to isolated cardiomyocytes would enhance contraction-relaxation function in HG more so than in nonHG controls. To better control for differential cardiac myosin isoform expression as occurs in rodents after β-islet cell necrosis, hypothyroidism was induced in 16 rats resulting in 100% β-myosin heavy chain expression in the heart. β-Islet cell necrosis was induced in half of the rats by streptozocin administration. After 6 wks of HG, both HG and nonHG controls rats demonstrated similar myofilament performance measured as thin filament calcium sensitivity, native thin filament velocity in the myosin motility assay and contractile velocity and power. Extracellular Zn2+ reduced cardiomyocyte contractile function in both groups, but enhanced relaxation function significantly in the HG group compared to controls. Most notably, a reduction in diastolic sarcomere length with increasing pacing frequencies, i.e., incomplete relaxation, was more pronounced in the HG compared to controls, but was normalized with extracellular Zn2+ application. This is a novel finding implicating that the detrimental effect of HG on cardiomyocyte Ca2+ regulation can be amelioration by Zn2+. Among the many post-translational modifications examined, only phosphorylation of ryanodine receptor (RyR at S-2808 was significantly higher in HG compared to nonHG. We did not find in our hypothyroid rats any differentiating effects of HG on myofibrillar protein phosphorylation, lysine acetylation, O-linked N-acetylglucosamine and advanced glycated end-products, which are often implicated as complicating factors in cardiac performance due to HG. Our

  20. Gene transfer of heterologous G protein-coupled receptors to cardiomyocytes: differential effects on contractility.

    Science.gov (United States)

    Laugwitz, K L; Weig, H J; Moretti, A; Hoffmann, E; Ueblacker, P; Pragst, I; Rosport, K; Schömig, A; Ungerer, M

    2001-04-13

    In heart failure, reduced cardiac contractility is accompanied by blunted cAMP responses to beta-adrenergic stimulation. Parathyroid hormone (PTH)-related peptide and arginine vasopressin are released from the myocardium in response to increased wall stress but do not stimulate contractility or adenylyl cyclase at physiological concentrations. To bypass the defective beta-adrenergic signaling cascade, recombinant P1 PTH/PTH-related peptide receptors (rPTH1-Rs) and V(2) vasopressin receptors (rV(2)-Rs), which are normally not expressed in the myocardium and which are both strongly coupled to adenylyl cyclase, and recombinant beta(2)-adrenergic receptors (rbeta(2)-ARs) were overexpressed in cardiomyocytes by viral gene transfer. The capacity of endogenous hormones to increase contractility via the heterologous, recombinant receptors was compared. Whereas V(2)-Rs are uniquely coupled to Gs, PTH1-Rs and beta(2)-ARs are also coupled to other G proteins. Gene transfer of rPTH1-Rs or rbeta(2)-ARs to adult cardiomyocytes resulted in maximally increased basal contractility, which could not be further stimulated by adding receptor agonists. Agonists at rPTH1-Rs induced increased cAMP formation and phospholipase C activity. In contrast, healthy or failing rV(2)-R-expressing cardiomyocytes showed unaltered basal contractility. Their contractility and cAMP formation increased only at agonist exposure, which did not activate phospholipase C. In summary, we found that gene transfer of PTH1-Rs to cardiomyocytes results in constitutive activity of the transgene, as does that of beta(2)-ARS: In the absence of receptor agonists, rPTH1-Rs and rbeta(2)-ARs increase basal contractility, coupling to 2 G proteins simultaneously. In contrast, rV(2)-Rs are uniquely coupled to Gs and are not constitutively active, retaining their property to be activated exclusively on agonist stimulation. Therefore, gene transfer of V(2)-Rs might be more suited to test the effects of c

  1. Particulate matter exposure exacerbates high glucose-induced cardiomyocyte dysfunction through ROS generation.

    Directory of Open Access Journals (Sweden)

    Li Zuo

    Full Text Available Diabetes mellitus and fine particulate matter from diesel exhaust (DEP are both important contributors to the development of cardiovascular disease (CVD. Diabetes mellitus is a progressive disease with a high mortality rate in patients suffering from CVD, resulting in diabetic cardiomyopathy. Elevated DEP levels in the air are attributed to the development of various CVDs, presumably since fine DEP (<2.5 µm in diameter can be inhaled and gain access to the circulatory system. However, mechanisms defining how DEP affects diabetic or control cardiomyocyte function remain poorly understood. The purpose of the present study was to evaluate cardiomyocyte function and reactive oxygen species (ROS generation in isolated rat ventricular myocytes exposed overnight to fine DEP (0.1 µg/ml, and/or high glucose (HG, 25.5 mM. Our hypothesis was that DEP exposure exacerbates contractile dysfunction via ROS generation in cardiomyocytes exposed to HG. Ventricular myocytes were isolated from male adult Sprague-Dawley rats cultured overnight and sarcomeric contractile properties were evaluated, including: peak shortening normalized to baseline (PS, time-to-90% shortening (TPS(90, time-to-90% relengthening (TR(90 and maximal velocities of shortening/relengthening (±dL/dt, using an IonOptix field-stimulator system. ROS generation was determined using hydroethidine/ethidium confocal microscopy. We found that DEP exposure significantly increased TR(90, decreased PS and ±dL/dt, and enhanced intracellular ROS generation in myocytes exposed to HG. Further studies indicated that co-culture with antioxidants (0.25 mM Tiron and 0.5 mM N-Acetyl-L-cysteine completely restored contractile function in DEP, HG and HG+DEP-treated myocytes. ROS generation was blocked in HG-treated cells with mitochondrial inhibition, while ROS generation was blocked in DEP-treated cells with NADPH oxidase inhibition. Our results suggest that DEP exacerbates myocardial dysfunction in isolated

  2. Role of alpha- and beta-adrenergic receptors in cardiomyocyte differentiation from murine-induced pluripotent stem cells.

    Science.gov (United States)

    Li, Xiao-Li; Zeng, Di; Chen, Yan; Ding, Lu; Li, Wen-Ju; Wei, Ting; Ou, Dong-Bo; Yan, Song; Wang, Bin; Zheng, Qiang-Sun

    2017-02-01

    Induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a promising source of cells for regenerative heart disease therapies, but progress towards their use has been limited by their low differentiation efficiency and high cellular heterogeneity. Previous studies have demonstrated expression of adrenergic receptors (ARs) in stem cells after differentiation; however, roles of ARs in fate specification of stem cells, particularly in cardiomyocyte differentiation and development, have not been characterized. Murine-induced pluripotent stem cells (miPSCs) were cultured in hanging drops to form embryoid bodies, cells of which were then differentiated into cardiomyocytes. To determine whether ARs regulated miPSC differentiation into cardiac lineages, effects of the AR agonist, epinephrine (EPI), on miPSC differentiation and underlying signalling mechanisms, were evaluated. Treatment with EPI, robustly enhanced miPSC cardiac differentiation, as indicated by increased expression levels of cardiac-specific markers, GATA4, Nkx2.5 and Tnnt2. Although β-AR signalling is the foremost signalling pathway in cardiomyocytes, EPI-enhanced cardiac differentiation depended more on α-AR signalling than β-AR signalling. In addition, selective activation of α 1 -AR signalling with specific agonists induced vigorous cardiomyocyte differentiation, whereas selective activation of α 2 - or β-AR signalling induced no or less differentiation, respectively. EPI- and α 1 -AR-dependent cardiomyocyte differentiation from miPSCs occurred through specific promotion of CPC proliferation via the MEK-ERK1/2 pathway and regulation of miPS cell-cycle progression. These results demonstrate that activation of ARs, particularly of α 1 -ARs, promoted miPSC differentiation into cardiac lineages via MEK-ERK1/2 signalling. © 2016 John Wiley & Sons Ltd.

  3. Evaluation of MYBPC3 trans-Splicing and Gene Replacement as Therapeutic Options in Human iPSC-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Maksymilian Prondzynski

    2017-06-01

    Full Text Available Gene therapy is a promising option for severe forms of genetic diseases. We previously provided evidence for the feasibility of trans-splicing, exon skipping, and gene replacement in a mouse model of hypertrophic cardiomyopathy (HCM carrying a mutation in MYBPC3, encoding cardiac myosin-binding protein C (cMyBP-C. Here we used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs from an HCM patient carrying a heterozygous c.1358-1359insC MYBPC3 mutation and from a healthy donor. HCM hiPSC-CMs exhibited ∼50% lower MYBPC3 mRNA and cMyBP-C protein levels than control, no truncated cMyBP-C, larger cell size, and altered gene expression, thus reproducing human HCM features. We evaluated RNA trans-splicing and gene replacement after transducing hiPSC-CMs with adeno-associated virus. trans-splicing with 5′ or 3′ pre-trans-splicing molecules represented ∼1% of total MYBPC3 transcripts in healthy hiPSC-CMs. In contrast, gene replacement with the full-length MYBPC3 cDNA resulted in ∼2.5-fold higher MYBPC3 mRNA levels in HCM and control hiPSC-CMs. This restored the cMyBP-C level to 81% of the control level, suppressed hypertrophy, and partially restored gene expression to control level in HCM cells. This study provides evidence for (1 the feasibility of trans-splicing, although with low efficiency, and (2 efficient gene replacement in hiPSC-CMs with a MYBPC3 mutation.

  4. HIV-1 subtype C unproductively infects human cardiomyocytes in vitro and induces apoptosis mitigated by an anti-Gp120 aptamer.

    Science.gov (United States)

    Lopes de Campos, Walter R; Chirwa, Nthato; London, Grace; Rotherham, Lia S; Morris, Lynn; Mayosi, Bongani M; Khati, Makobetsa

    2014-01-01

    HIV-associated cardiomyopathy (HIVCM) is of clinical concern in developing countries because of a high HIV-1 prevalence, especially subtype C, and limited access to highly active antiretroviral therapy (HAART). For these reasons, we investigated the direct and indirect effects of HIV-1 subtype C infection of cultured human cardiomyocytes and the mechanisms leading to cardiomyocytes damage; as well as a way to mitigate the damage. We evaluated a novel approach to mitigate HIVCM using a previously reported gp120 binding and HIV-1 neutralizing aptamer called UCLA1. We established a cell-based model of HIVCM by infecting human cardiomyocytes with cell-free HIV-1 or co-culturing human cardiomyocytes with HIV-infected monocyte derived macrophages (MDM). We discovered that HIV-1 subtype C unproductively (i.e. its life cycle is arrested after reverse transcription) infects cardiomyocytes. Furthermore, we found that HIV-1 initiates apoptosis of cardiomyocytes through caspase-9 activation, preferentially via the intrinsic or mitochondrial initiated pathway. CXCR4 receptor-using viruses were stronger inducers of apoptosis than CCR5 utilizing variants. Importantly, we discovered that HIV-1 induced apoptosis of cardiomyocytes was mitigated by UCLA1. However, UCLA1 had no protective effective on cardiomyocytes when apoptosis was triggered by HIV-infected MDM. When HIV-1 was treated with UCLA1 prior to infection of MDM, it failed to induce apoptosis of cardiomyocytes. These data suggest that HIV-1 causes a mitochondrial initiated apoptotic cascade, which signal through caspase-9, whereas HIV-1 infected MDM causes apoptosis predominantly via the death-receptor pathway, mediated by caspase-8. Furthermore the data suggest that UCLA1 protects cardiomyocytes from caspase-mediated apoptosis, directly by binding to HIV-1 and indirectly by preventing infection of MDM.

  5. Establishment and optimization of NMR-based cell metabonomics study protocols for neonatal Sprague-Dawley rat cardiomyocytes.

    Science.gov (United States)

    Zhang, Ming; Sun, Bo; Zhang, Qi; Gao, Rong; Liu, Qiao; Dong, Fangting; Fang, Haiqin; Peng, Shuangqing; Li, Famei; Yan, Xianzhong

    2017-01-15

    A quenching, harvesting, and extraction protocol was optimized for cardiomyocytes NMR metabonomics analysis in this study. Trypsin treatment and direct scraping cells in acetonitrile were compared for sample harvesting. The results showed trypsin treatment cause normalized concentration increasing of phosphocholine and metabolites leakage, since the trypsin-induced membrane broken and long term harvesting procedures. Then the intracellular metabolite extraction efficiency of methanol and acetonitrile were compared. As a result, washing twice with phosphate buffer, direct scraping cells and extracting with acetonitrile were chosen to prepare cardiomyocytes extracts samples for metabonomics studies. This optimized protocol is rapid, effective, and exhibits greater metabolite retention. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. DPP4 deficiency exerts protective effect against H2O2 induced oxidative stress in isolated cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Hui-Chun Ku

    Full Text Available Apart from the antihyperglycemic effects, DPP4 inhibitors and GLP-1 molecules are involved in the preservation of cardiac functions. We have demonstrated that DPP4-deficient rats possess resistance to endotoxemia and ischemia/reperfusion stress. However, whether the decrease of DPP4 activity simply augmented the GLP-1 signaling or that such decrease resulted in a change of cellular function remain unclear. Accordingly, we investigated the responses of H(2O(2-induced oxidative stress in adult wild-type and DPP4-deficient rats isolated cardiomyocytes. The coadministration of GLP-1 or DPP4 inhibitor was also performed to define the mechanisms. Cell viability, ROS concentration, catalase activity, glucose uptake, prosurvival, proapoptotic signaling, and contractile function were examined after cells exposed to H(2O(2. DPP4-deficient cardiomyocytes were found to be resistant to H(2O(2-induced cell death via activating AKT signaling, enhancing glucose uptake, preserving catalase activity, diminishing ROS level and proapoptotic signaling. GLP-1 concentration-dependently improved cell viability in wild-type cardiomyocyte against ROS stress, and the ceiling response concentration (200 nM was chosen for studies. GLP-1 was shown to decrease H(2O(2-induced cell death by its receptor-dependent AKT pathway in wild-type cardiomyocytes, but failed to cause further activation of AKT in DPP4-deficient cardiomyocytes. Acute treatment of DPP4 inhibitor only augmented the protective effect of low dose GLP-1, but failed to alter fuel utilization or ameliorate cell viability in wild-type cardiomyocytes after H(2O(2 exposure. The improvement of cell viability after H(2O(2 exposure was correlated with the alleviation of cellular contractile dysfunction in both DPP4-deficient and GLP-1 treated wild-type cardiomyocytes. These findings demonstrated that GLP-1 receptor-dependent pathway is important and exert protective effect in wild-type cardiomyocyte. Long term loss of

  7. Reconstruction of the size of nuclear fuel particle aerosol by the investigation of a radionuclide behaviour in body of the Chernobyl accident witnesses

    International Nuclear Information System (INIS)

    Kutkov, V.A.

    1996-01-01

    As a result of the Chernobyl NPP (ChNPP) accident aerosol particles of dispersed nuclear fuel were released to the atmosphere. Inhalation of those aerosol became the source of internal exposure for witnesses of the Chernobyl accident. To assess correctly internal doses from a mixture of radionuclides present in air in the form of aerosol particles one mast assign each radionuclide to a certain inhalation class by its chemical speciation in aerosol and define the airborne characteristics (the activity median aerodynamic diameter, AMAD and the standard geometric deviation, fig) of that particular aerosol. Moreover, information on any particular radionuclide is useless for other components since, in such a mixture, the radionuclides are generally independent and may belong to different particles. On the contrary, all nuclear fuel particle (NFP) radionuclides belong to the same particle, being matrix-bound. The collective behaviour of the matrix-bound radionuclides in the environment and in the human barrier organs makes it possible to spread to the aerosol of NFP any estimates of AMAD and β g obtained for any particular NFP radionuclide. This is principal feature of NFP aerosol as distinguished from a mere mixture of aerosol particles carry different radionuclides. (author)

  8. Do ploidy level and nuclear genome size and latitude of origin modify the expression of Phragmites australis traits and interaction with herbivores?

    Czech Academy of Sciences Publication Activity Database

    Meyerson, L. A.; Cronin, J. T.; Bhattarai, G. P.; Brix, H.; Lambertini, C.; Lučanová, Magdalena; Rinehart, S.; Suda, Jan; Pyšek, Petr

    2016-01-01

    Roč. 18, č. 9 (2016), s. 2531-2549 ISSN 1387-3547 R&D Projects: GA ČR(CZ) GA14-15414S Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : traits * genome size * plant invasions Subject RIV: EH - Ecology, Behaviour Impact factor: 2.473, year: 2016

  9. ALDH2 Inhibition Potentiates High Glucose Stress-Induced Injury in Cultured Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Guodong Pan

    2016-01-01

    Full Text Available Aldehyde dehydrogenase (ALDH gene superfamily consists of 19 isozymes. They are present in various organs and involved in metabolizing aldehydes that are biologically generated. For instance, ALDH2, a cardiac mitochondrial ALDH isozyme, is known to detoxify 4-hydroxy-2-nonenal, a reactive aldehyde produced upon lipid peroxidation in diabetic conditions. We hypothesized that inhibition of ALDH leads to the accumulation of unmetabolized 4HNE and consequently exacerbates injury in cells subjected to high glucose stress. H9C2 cardiomyocyte cell lines were pretreated with 10 μM disulfiram (DSF, an inhibitor of ALDH2 or vehicle (DMSO for 2 hours, and then subjected to high glucose stress {33 mM D-glucose (HG or 33 mM D-mannitol as an osmotic control (Ctrl} for 24 hrs. The decrease in ALDH2 activity with DSF pretreatment was higher in HG group when compared to Ctrl group. Increased 4HNE adduct formation with DSF pretreatment was higher in HG group compared to Ctrl group. Pretreatment with DSF leads to potentiated HG-induced cell death in cultured H9C2 cardiomyocytes by lowering mitochondrial membrane potential. Our results indicate that ALDH2 activity is important in preventing high glucose induced cellular dysfunction.

  10. Rapid Induction of Aldosterone Synthesis in Cultured Neonatal Rat Cardiomyocytes under High Glucose Conditions

    Directory of Open Access Journals (Sweden)

    Masami Fujisaki

    2013-01-01

    Full Text Available In addition to classical adrenal cortical biosynthetic pathway, there is increasing evidence that aldosterone is produced in extra-adrenal tissues. Although we previously reported aldosterone production in the heart, the concept of cardiac aldosterone synthesis remains controversial. This is partly due to lack of established experimental models representing aldosterone synthase (CYP11B2 expression in robustly reproducible fashion. We herein investigated suitable conditions in neonatal rat cardiomyocytes (NRCMs culture system producing CYP11B2 with considerable efficacy. NRCMs were cultured with various glucose doses for 2–24 hours. CYP11B2 mRNA expression and aldosterone concentrations secreted from NRCMs were determined using real-time PCR and enzyme immunoassay, respectively. We found that suitable conditions for CYP11B2 induction included four-hour incubation with high glucose conditions. Under these particular conditions, CYP11B2 expression, in accordance with aldosterone secretion, was significantly increased compared to those observed in the cells cultured under standard-glucose condition. Angiotensin II receptor blocker partially inhibited this CYP11B2 induction, suggesting that there is local renin-angiotensin-aldosterone system activation under high glucose conditions. The suitable conditions for CYP11B2 induction in NRCMs culture system are now clarified: high-glucose conditions with relatively brief period of culture promote CYP11B2 expression in cardiomyocytes. The current system will help to accelerate further progress in research on cardiac tissue aldosterone synthesis.

  11. Generation of Cardiomyocytes in Pipe-Based Microbioreactor Under Segmented Flow

    Directory of Open Access Journals (Sweden)

    Dimitry Spitkovsky

    2016-05-01

    Full Text Available Background/Aims: Embryonic stem (ES cells have got a broad range differentiation potential. The differentiation is initiated via aggregation of non-differentiated ES cells into embryoid body (EB capable of multi-lineage development. However experimental variables present in standard differentiation techniques lead to high EB heterogeneity, affecting development into the cells of desired lineage, and do not support the process automatization and scalability. Methods: Here we present a novel pipe based microbioreactor (PBM setup based on segmented flow, designed for spatial maintenance of temperature, nutrition supply, gas supply and sterility. Results: We verified PBM feasibility for continuous process generating cardiac cells starting from single ES cell suspension followed by EB formation for up to 10 days. The ES cells used in the study were genetically modified for cardiac-specific EGFP expression allowing optical monitoring of cardiomyocytes while EBs remained within PBM for up to 10 days. Efficiency of cardiac cells formation within PBM was similar compared to a standard hanging drop based protocol. Conclusion: Our findings ensure further development of microfluidic bioreactor technology to enable robust cardiomyocytes production for needs of drug screening, tissue engineering and other applications.

  12. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform.

    Science.gov (United States)

    Denning, Chris; Borgdorff, Viola; Crutchley, James; Firth, Karl S A; George, Vinoj; Kalra, Spandan; Kondrashov, Alexander; Hoang, Minh Duc; Mosqueira, Diogo; Patel, Asha; Prodanov, Ljupcho; Rajamohan, Divya; Skarnes, William C; Smith, James G W; Young, Lorraine E

    2016-07-01

    Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas9/CRISPR genome engineering and hPSC-CM differentiation have improved patient care, progressed drugs to clinic and opened a new era in safety pharmacology. Nevertheless, predictive cardiotoxicity using hPSC-CMs contrasts from failure to almost total success. Since this likely relates to cell immaturity, efforts are underway to use biochemical and biophysical cues to improve many of the ~30 structural and functional properties of hPSC-CMs towards those seen in adult CMs. Other developments needed for widespread hPSC-CM utility include subtype specification, cost reduction of large scale differentiation and elimination of the phenotyping bottleneck. This review will consider these factors in the evolution of hPSC-CM technologies, as well as their integration into high content industrial platforms that assess structure, mitochondrial function, electrophysiology, calcium transients and contractility. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Exogenous cathepsin V protein protects human cardiomyocytes HCM from angiotensin Ⅱ-Induced hypertrophy.

    Science.gov (United States)

    Huang, Kun; Gao, Lu; Yang, Ming; Wang, Jiliang; Wang, Zheng; Wang, Lin; Wang, Guobin; Li, Huili

    2017-08-01

    Angiotensin (Ang) Ⅱ-induced cardiac hypertrophy can deteriorate to heart failure, a leading cause of mortality. Endogenous Cathepsin V (CTSV) has been reported to be cardioprotective against hypertrophy. However, little is known about the effect of exogenous CTSV on cardiac hypertrophy. We used the human cardiomyocytes HCM as a cell model to investigate the effects of exogenous CTSV on Ang Ⅱ-induced cardiac cell hypertrophy. Cell surface area and expression of classical markers of hypertrophy were analyzed. We further explored the mechanism of CTSV cardioprotective by assessing the levels and activities of PI3K/Akt/mTOR and MAPK signaling pathway proteins. We found that pre-treating cardiomyocytes with CTSV could significantly inhibit Ang Ⅱ-induced hypertrophy. The mRNA expression of hypertrophy markers ANP, BNP and β-MHC was obviously elevated in Ang Ⅱ-treated cardiac cells. Whereas, exogenous CTSV effectively halted this elevation. Further study revealed that the protective effects of exogenous CTSV might be mediated by repressing the phosphorylation of proteins in the PI3K/Akt/mTOR and MAPK pathways. Based on our results, we concluded that exogenous CTSV inhibited Ang Ⅱ-induced hypertrophy in HCM cells by inhibiting PI3K/Akt/mTOR. This study provides experimental evidence for the application of CTSV protein for the treatment of cardiac hypertrophy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel

    Directory of Open Access Journals (Sweden)

    Andrew P. Wojtovich

    2013-03-01

    Full Text Available Opening of BK-type Ca2+ activated K+ channels protects the heart against ischemia-reperfusion (IR injury. However, the location of BK channels responsible for cardioprotection is debated. Herein we confirmed that openers of the SLO1 BK channel, NS1619 and NS11021, were protective in a mouse perfused heart model of IR injury. As anticipated, deletion of the Slo1 gene blocked this protection. However, in an isolated cardiomyocyte model of IR injury, protection by NS1619 and NS11021 was insensitive to Slo1 deletion. These data suggest that protection in intact hearts occurs by a non-cardiomyocyte autonomous, SLO1-dependent, mechanism. In this regard, an in-situ assay of intrinsic cardiac neuronal function (tachycardic response to nicotine revealed that NS1619 preserved cardiac neurons following IR injury. Furthermore, blockade of synaptic transmission by hexamethonium suppressed cardioprotection by NS1619 in intact hearts. These results suggest that opening SLO1 protects the heart during IR injury, via a mechanism that involves intrinsic cardiac neurons. Cardiac neuronal ion channels may be useful therapeutic targets for eliciting cardioprotection.

  15. Cardioprotective Effects of Quercetin in Cardiomyocyte under Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Yi-Wen Chen

    2013-01-01

    Full Text Available Quercetin, a polyphenolic compound existing in many vegetables, fruits, has antiinflammatory, antiproliferation, and antioxidant effect on mammalian cells. Quercetin was evaluated for protecting cardiomyocytes from ischemia/reperfusion injury, but its protective mechanism remains unclear in the current study. The cardioprotective effects of quercetin are achieved by reducing the activity of Src kinase, signal transducer and activator of transcription 3 (STAT3, caspase 9, Bax, intracellular reactive oxygen species production, and inflammatory factor and inducible MnSOD expression. Fluorescence two-dimensional differential gel electrophoresis (2D-DIGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS can reveal the differentially expressed proteins of H9C2 cells treated with H2O2 or quercetin. Although 17 identified proteins were altered in H2O2-induced cells, these proteins such as alpha-soluble NSF attachment protein (α-SNAP, Ena/VASP-like protein (Evl, and isopentenyl-diphosphate delta-isomerase 1 (Idi-1 were reverted by pretreatment with quercetin, which correlates with kinase activation, DNA repair, lipid, and protein metabolism. Quercetin dephosphorylates Src kinase in H2O2-induced H9C2 cells and likely blocks the H2O2-induced inflammatory response through STAT3 kinase modulation. This probably contributes to prevent ischemia/reperfusion injury in cardiomyocytes.

  16. Coupling of SK channels, L-type Ca2+ channels, and ryanodine receptors in cardiomyocytes.

    Science.gov (United States)

    Zhang, Xiao-Dong; Coulibaly, Zana A; Chen, Wei Chun; Ledford, Hannah A; Lee, Jeong Han; Sirish, Padmini; Dai, Gu; Jian, Zhong; Chuang, Frank; Brust-Mascher, Ingrid; Yamoah, Ebenezer N; Chen-Izu, Ye; Izu, Leighton T; Chiamvimonvat, Nipavan

    2018-03-16

    Small-conductance Ca 2+ -activated K + (SK) channels regulate the excitability of cardiomyocytes by integrating intracellular Ca 2+ and membrane potentials on a beat-to-beat basis. The inextricable interplay between activation of SK channels and Ca 2+ dynamics suggests the pathology of one begets another. Yet, the exact mechanistic underpinning for the activation of cardiac SK channels remains unaddressed. Here, we investigated the intracellular Ca 2+ microdomains necessary for SK channel activation. SK currents coupled with Ca 2+ influx via L-type Ca 2+ channels (LTCCs) continued to be elicited after application of caffeine, ryanodine or thapsigargin to deplete SR Ca 2+ store, suggesting that LTCCs provide the immediate Ca 2+ microdomain for the activation of SK channels in cardiomyocytes. Super-resolution imaging of SK2, Ca v 1.2 Ca 2+ channel, and ryanodine receptor 2 (RyR2) was performed to quantify the nearest neighbor distances (NND) and localized the three molecules within hundreds of nanometers. The distribution of NND between SK2 and RyR2 as well as SK2 and Ca v 1.2 was bimodal, suggesting a spatial relationship between the channels. The activation mechanism revealed by our study paved the way for the understanding of the roles of SK channels on the feedback mechanism to regulate the activities of LTCCs and RyR2 to influence local and global Ca 2+ signaling.

  17. Spatiotemporal stability of neonatal rat cardiomyocyte monolayers spontaneous activity is dependent on the culture substrate.

    Directory of Open Access Journals (Sweden)

    Jonathan Boudreau-Béland

    Full Text Available In native conditions, cardiac cells must continuously comply with diverse stimuli necessitating a perpetual adaptation. Polydimethylsiloxane (PDMS is commonly used in cell culture to study cellular response to changes in the mechanical environment. The aim of this study was to evaluate the impact of using PDMS substrates on the properties of spontaneous activity of cardiomyocyte monolayer cultures. We compared PDMS to the gold standard normally used in culture: a glass substrate. Although mean frequency of spontaneous activity remained unaltered, incidence of reentrant activity was significantly higher in samples cultured on glass compared to PDMS substrates. Higher spatial and temporal instability of the spontaneous rate activation was found when cardiomyocytes were cultured on PDMS, and correlated with decreased connexin-43 and increased CaV3.1 and HCN2 mRNA levels. Compared to cultures on glass, cultures on PDMS were associated with the strongest response to isoproterenol and acetylcholine. These results reveal the importance of carefully selecting the culture substrate for studies involving mechanical stimulation, especially for tissue engineering or pharmacological high-throughput screening of cardiac tissue analog.

  18. Krp1 (Sarcosin) promotes lateral fusion of myofibril assembly intermediates in cultured mouse cardiomyocytes

    International Nuclear Information System (INIS)

    Greenberg, Cynthia C.; Connelly, Patricia S.; Daniels, Mathew P.; Horowits, Robert

    2008-01-01

    Krp1, also called sarcosin, is a cardiac and skeletal muscle kelch repeat protein hypothesized to promote the assembly of myofibrils, the contractile organelles of striated muscles, through interaction with N-RAP and actin. To elucidate its role, endogenous Krp1 was studied in primary embryonic mouse cardiomyocytes. While immunofluorescence showed punctate Krp1 distribution throughout the cell, detergent extraction revealed a significant pool of Krp1 associated with cytoskeletal elements. Reduction of Krp1 expression with siRNA resulted in specific inhibition of myofibril accumulation with no effect on cell spreading. Immunostaining analysis and electron microscopy revealed that cardiomyocytes lacking Krp1 contained sarcomeric proteins with longitudinal periodicities similar to mature myofibrils, but fibrils remained thin and separated. These thin myofibrils were degraded by a scission mechanism distinct from the myofibril disassembly pathway observed during cell division in the developing heart. The data are consistent with a model in which Krp1 promotes lateral fusion of adjacent thin fibrils into mature, wide myofibrils and contribute insight into mechanisms of myofibrillogenesis and disassembly

  19. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sheyda R Frolova

    Full Text Available The ability of azobenzene trimethylammonium bromide (azoTAB to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav, calcium (ICav, and potassium (IKv currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+ and calcium (Ca2+ currents and potentiation of net potassium (K+ currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential.

  20. Tampering with springs: phosphorylation of titin affecting the mechanical function of cardiomyocytes.

    Science.gov (United States)

    Hamdani, Nazha; Herwig, Melissa; Linke, Wolfgang A

    2017-06-01

    Reversible post-translational modifications of various cardiac proteins regulate the mechanical properties of the cardiomyocytes and thus modulate the contractile performance of the heart. The giant protein titin forms a continuous filament network in the sarcomeres of striated muscle cells, where it determines passive tension development and modulates active contraction. These mechanical properties of titin are altered through post-translational modifications, particularly phosphorylation. Titin contains hundreds of potential phosphorylation sites, the functional relevance of which is only beginning to emerge. Here, we provide a state-of-the-art summary of the phosphorylation sites in titin, with a particular focus on the elastic titin spring segment. We discuss how phosphorylation at specific amino acids can reduce or increase the stretch-induced spring force of titin, depending on where the spring region is phosphorylated. We also review which protein kinases phosphorylate titin and how this phosphorylation affects titin-based passive tension in cardiomyocytes. A comprehensive overview is provided of studies that have measured altered titin phosphorylation and titin-based passive tension in myocardial samples from human heart failure patients and animal models of heart disease. As our understanding of the broader implications of phosphorylation in titin progresses, this knowledge could be used to design targeted interventions aimed at reducing pathologically increased titin stiffness in patients with stiff hearts.

  1. Prostanoid Receptors Involved in Regulation of the Beating Rate of Neonatal Rat Cardiomyocytes

    Science.gov (United States)

    Mechiche, Hakima; Grassin-Delyle, Stanislas; Robinet, Arnaud; Nazeyrollas, Pierre; Devillier, Philippe

    2012-01-01

    Although prostanoids are known to be involved in regulation of the spontaneous beating rate of cultured neonatal rat cardiomyocytes, the various subtypes of prostanoid receptors have not been investigated in detail. In our experiments, prostaglandin (PG)F2α and prostanoid FP receptor agonists (fluprostenol, latanoprost and cloprostenol) produced a decrease in the beating rate. Two prostanoid IP receptor agonists (iloprost and beraprost) induced first a marked drop in the beating rate and then definitive abrogation of beating. In contrast, the prostanoid DP receptor agonists (PGD2 and BW245C) and TP receptor agonists (U-46619) produced increases in the beating rate. Sulprostone (a prostanoid EP1 and EP3 receptor agonist) induced marked increases in the beating rate, which were suppressed by SC-19220 (a selective prostanoid EP1 antagonist). Butaprost (a selective prostanoid EP2 receptor agonist), misoprostol (a prostanoid EP2 and EP3 receptor agonist), 11-deoxy-PGE1 (a prostanoid EP2, EP3 and EP4 receptor agonist) did not alter the beating rate. Our results strongly suggest that prostanoid EP1 receptors are involved in positive regulation of the beating rate. Prostanoid EP1 receptor expression was confirmed by western blotting with a selective antibody. Hence, neonatal rat cardiomyocytes express both prostanoid IP and FP receptors (which negatively regulate the spontaneous beating rate) and prostanoid TP, DP1 and EP1 receptors (which positively regulate the spontaneous beating rate). PMID:22984630

  2. A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress.

    Science.gov (United States)

    Judge, Luke M; Perez-Bermejo, Juan A; Truong, Annie; Ribeiro, Alexandre Js; Yoo, Jennie C; Jensen, Christina L; Mandegar, Mohammad A; Huebsch, Nathaniel; Kaake, Robyn M; So, Po-Lin; Srivastava, Deepak; Pruitt, Beth L; Krogan, Nevan J; Conklin, Bruce R

    2017-07-20

    Molecular chaperones regulate quality control in the human proteome, pathways that have been implicated in many diseases, including heart failure. Mutations in the BAG3 gene, which encodes a co-chaperone protein, have been associated with heart failure due to both inherited and sporadic dilated cardiomyopathy. Familial BAG3 mutations are autosomal dominant and frequently cause truncation of the coding sequence, suggesting a heterozygous loss-of-function mechanism. However, heterozygous knockout of the murine BAG3 gene did not cause a detectable phenotype. To model BAG3 cardiomyopathy in a human system, we generated an isogenic series of human induced pluripotent stem cells (iPSCs) with loss-of-function mutations in BAG3. Heterozygous BAG3 mutations reduced protein expression, disrupted myofibril structure, and compromised contractile function in iPSC-derived cardiomyocytes (iPS-CMs). BAG3-deficient iPS-CMs were particularly sensitive to further myofibril disruption and contractile dysfunction upon exposure to proteasome inhibitors known to cause cardiotoxicity. We performed affinity tagging of the endogenous BAG3 protein and mass spectrometry proteomics to further define the cardioprotective chaperone complex that BAG3 coordinates in the human heart. Our results establish a model for evaluating protein quality control pathways in human cardiomyocytes and their potential as therapeutic targets and susceptibility factors for cardiac drug toxicity.

  3. Evidence for the Role of BAG3 in Mitochondrial Quality Control in Cardiomyocytes.

    Science.gov (United States)

    Tahrir, Farzaneh G; Knezevic, Tijana; Gupta, Manish K; Gordon, Jennifer; Cheung, Joseph Y; Feldman, Arthur M; Khalili, Kamel

    2017-04-01

    Mitochondrial abnormalities impact the development of myofibrillar myopathies. Therefore, understanding the mechanisms underlying the removal of dysfunctional mitochondria from cells is of great importance toward understanding the molecular events involved in the genesis of cardiomyopathy. Earlier studies have ascribed a role for BAG3 in the development of cardiomyopathy in experimental animals leading to the identification of BAG3 mutations in patients with heart failure which may play a part in the onset of disease development and progression. BAG3 is co-chaperone of heat shock protein 70 (HSP70), which has been shown to modulate apoptosis and autophagy, in several cell models. In this study, we explore the potential role of BAG3 in mitochondrial quality control. We demonstrate that siRNA mediated suppression of BAG3 production in neonatal rat ventricular cardiomyocytes (NRVCs) significantly elevates the level of Parkin, a key component of mitophagy. We found that both BAG3 and Parkin are recruited to depolarized mitochondria and promote mitophagy. Suppression of BAG3 in NRVCs significantly reduces autophagy flux and eliminates clearance of Tom20, an essential import receptor for mitochondria proteins, after induction of mitophagy. These observations suggest that BAG3 is critical for the maintenance of mitochondrial homeostasis under stress conditions, and disruptions in BAG3 expression impact cardiomyocyte function. J. Cell. Physiol. 232: 797-805, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Alignment of human cardiomyocytes on laser patterned biphasic core/shell nanowire assemblies

    International Nuclear Information System (INIS)

    Kiefer, Karin; Haidar, Ayman; Abdul-Khaliq, Hashim; Lee, Juseok; Martinez Miró, Marina; Kaan Akkan, Cagri; Cenk Aktas, Oral; Veith, Michael

    2014-01-01

    The management of end stage heart failure patients is only possible by heart transplantation or by the implantation of artificial hearts as a bridge for later transplantation. However, these therapeutic strategies are limited by a lack of donor hearts and by the associated complications, such as coagulation and infection, due to the used artificial mechanical circulatory assist devices. Therefore, new strategies for myocardial regenerative approaches are under extensive research to produce contractile myocardial tissue in the future to replace non-contractile myocardial ischemic and scarred tissue. Different approaches, such as cell transplantation, have been studied intensively. Although successful approaches have been observed, there are still limitations to the application. It is envisaged that myocardial tissue engineering can be used to help replace infarcted non-contractile tissue. The developed tissue should later mimic the aligned fibrillar structure of the extracellular matrix and provide important guidance cues for the survival, function and the needed orientation of cardiomyocytes. Nanostructured surfaces have been tested to provide a guided direction that cells can follow. In the present study, the cellular adhesion/alignment of human cardiomyocytes and the biocompatibility have been investigated after cultivation on different laser-patterned nanowires compared with unmodified nanowires. As a result, the nanostructured surfaces possessed good biocompatibility before and after laser modification. The laser-induced scalability of the pattern enabled the growth and orientation of the adhered myocardial tissue. Such approaches may be used to modify the surface of potential scaffolds to develop myocardial contractile tissue in the future. (paper)

  5. Disturbance of cardiac gene expression and cardiomyocyte structure predisposes Mecp2-null mice to arrhythmias

    Science.gov (United States)

    Hara, Munetsugu; Takahashi, Tomoyuki; Mitsumasu, Chiaki; Igata, Sachiyo; Takano, Makoto; Minami, Tomoko; Yasukawa, Hideo; Okayama, Satoko; Nakamura, Keiichiro; Okabe, Yasunori; Tanaka, Eiichiro; Takemura, Genzou; Kosai, Ken-ichiro; Yamashita, Yushiro; Matsuishi, Toyojiro

    2015-01-01

    Methyl-CpG-binding protein 2 (MeCP2) is an epigenetic regulator of gene expression that is essential for normal brain development. Mutations in MeCP2 lead to disrupted neuronal function and can cause Rett syndrome (RTT), a neurodevelopmental disorder. Previous studies reported cardiac dysfunction, including arrhythmias in both RTT patients and animal models of RTT. In addition, recent studies indicate that MeCP2 may be involved in cardiac development and dysfunction, but its role in the developing and adult heart remains unknown. In this study, we found that Mecp2-null ESCs could differentiate into cardiomyocytes, but the development and further differentiation of cardiovascular progenitors were significantly affected in MeCP2 deficiency. In addition, we revealed that loss of MeCP2 led to dysregulation of endogenous cardiac genes and myocardial structural alterations, although Mecp2-null mice did not exhibit obvious cardiac functional abnormalities. Furthermore, we detected methylation of the CpG islands in the Tbx5 locus, and showed that MeCP2 could target these sequences. Taken together, these results suggest that MeCP2 is an important regulator of the gene-expression program responsible for maintaining normal cardiac development and cardiomyocyte structure. PMID:26073556

  6. Basic Equations Interrelate Atomic and Nuclear Properties to Patterns at the Size Scales of the Cosmos, Extended Clusters of Galaxies, Galaxies, and Nebulae

    Science.gov (United States)

    Allen, Rob

    2016-09-01

    Structures within molecules and nuclei have relationships to astronomical patterns. The COBE cosmic scale plots, and large scale surveys of galaxy clusters have patterns also repeating and well known at atomic scales. The Induction, Strong Force, and Nuclear Binding Energy Periods within the Big Bang are revealed to have played roles in the formation of these large scale distributions. Equations related to the enormous patterns also model chemical bonds and likely nucleus and nucleon substructures. ratios of the forces that include gravity are accurately calculated from the distributions and shapes. In addition, particle masses and a great many physical constants can be derived with precision and accuracy from astrophysical shapes. A few very basic numbers can do modelling from nucleon internals to molecules to super novae, and up to the Visible Universe. Equations are also provided along with possible structural configurations for some Cold Dark Matter and Dark Energy.

  7. Embryonic template-based generation and purification of pluripotent stem cell-derived cardiomyocytes for heart repair

    NARCIS (Netherlands)

    Dierickx, P.; Doevendans, P.A.; Geijsen, N.; van Laake, L.W.

    2012-01-01

    Cardiovascular disease remains a leading cause of death in Western countries. Many types of cardiovascular diseases are due to a loss of functional cardiomyocytes, which can result in irreversible cardiac failure. Since the adult human heart has limited regenerative potential, cardiac

  8. Curcumin and its demethoxy derivatives possess p300 HAT inhibitory activity and suppress hypertrophic responses in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yoichi Sunagawa

    2018-04-01

    Full Text Available The natural compound, curcumin (CUR, possesses several pharmacological properties, including p300-specific histone acetyltransferase (HAT inhibitory activity. In our previous study, we demonstrated that CUR could prevent the development of cardiac hypertrophy by inhibiting p300-HAT activity. Other major curcuminoids isolated from Curcuma longa including demethoxycurcumin (DMC and bisdemethoxycurcumin (BDMC are structural analogs of CUR. In present study, we first confirmed the effect of these three curcuminoid analogs on p300-HAT activity and cardiomyocyte hypertrophy.Our results showed that DMC and BDMC inhibited p300-HAT activity and cardiomyocyte hypertrophy to almost the same extent as CUR. As the three compounds have structural differences in methoxy groups at the 3-position of their phenol rings, our results suggest that these methoxy groups are not involved in the inhibitory effects on p300-HAT activity and cardiac hypertrophy. These findings provide useful insights into the structure–activity relationship and biological activity of curcuminoids for p300-HAT activity and cardiomyocyte hypertrophy. Keywords: Curcumin, Demethoxycurcumin, Bisdemethoxycurcumin, p300, Cardiomyocyte hypertrophy

  9. In vitro detection of cardiotoxins or neurotoxins affecting ion channels or pumps using beating cardiomyocytes as alternative for animal testing

    NARCIS (Netherlands)

    Nicolas, J.A.Y.; Hendriksen, P.J.M.; Haan, de L.H.J.; Koning, R.; Rietjens, I.M.C.M.; Bovee, T.F.H.

    2015-01-01

    The present study investigated if and to what extent murine stem cell-derived beating cardiomyocytes within embryoid bodies can be used as a broad screening in vitro assay for neurotoxicity testing, replacing for example in vivo tests for marine neurotoxins. Effect of nine model compounds, acting on

  10. Defined MicroRNAs Induce Aspects of Maturation in Mouse and Human Embryonic-Stem-Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Desy S. Lee

    2015-09-01

    Full Text Available Pluripotent-cell-derived cardiomyocytes have great potential for use in research and medicine, but limitations in their maturity currently constrain their usefulness. Here, we report a method for improving features of maturation in murine and human embryonic-stem-cell-derived cardiomyocytes (m/hESC-CMs. We found that coculturing m/hESC-CMs with endothelial cells improves their maturity and upregulates several microRNAs. Delivering four of these microRNAs, miR-125b-5p, miR-199a-5p, miR-221, and miR-222 (miR-combo, to m/hESC-CMs resulted in improved sarcomere alignment and calcium handling, a more negative resting membrane potential, and increased expression of cardiomyocyte maturation markers. Although this could not fully phenocopy all adult cardiomyocyte characteristics, these effects persisted for two months following delivery of miR-combo. A luciferase assay demonstrated that all four miRNAs target ErbB4, and siRNA knockdown of ErbB4 partially recapitulated the effects of miR-combo. In summary, a combination of miRNAs induced via endothelial coculture improved ESC-CM maturity, in part through suppression of ErbB4 signaling.

  11. High Glucose-Induced Cardiomyocyte Death May Be Linked to Unbalanced Branched-Chain Amino Acids and Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2018-04-01

    Full Text Available High glucose-induced cardiomyocyte death is a common symptom in advanced-stage diabetic patients, while its metabolic mechanism is still poorly understood. The aim of this study was to explore metabolic changes in high glucose-induced cardiomyocytes and the heart of streptozotocin-induced diabetic rats by 1H-NMR-based metabolomics. We found that high glucose can promote cardiomyocyte death both in vitro and in vivo studies. Metabolomic results show that several metabolites exhibited inconsistent variations in vitro and in vivo. However, we also identified a series of common metabolic changes, including increases in branched-chain amino acids (BCAAs: leucine, isoleucine and valine as well as decreases in aspartate and creatine under high glucose condition. Moreover, a reduced energy metabolism could also be a common metabolic characteristic, as indicated by decreases in ATP in vitro as well as AMP, fumarate and succinate in vivo. Therefore, this study reveals that a decrease in energy metabolism and an increase in BCAAs metabolism could be implicated in high glucose-induced cardiomyocyte death.

  12. Matrix production and remodeling capacity of cardiomyocyte progenitor cells produce and remodel matrix during in vitro differentiation

    NARCIS (Netherlands)

    Bax, N.A.M.; Marion, van M.H.; Shah, B.; Goumans, M.J.T.H; Bouten, C.V.C.; Schaft, van der D.W.J.

    2012-01-01

    Cell-based therapy has emerged as a treatment modality for myocardial repair. Especially cardiac resident stem cells are considered a potential cell source since they are able to differentiate into cardiomyocytes and have improved heart function after injury in a preclinical model for myocardial

  13. Bioinspired onion epithelium-like structure promotes the maturation of cardiomyocytes derived from human pluripotent stem cells.

    Science.gov (United States)

    Xu, Cong; Wang, Li; Yu, Yue; Yin, Fangchao; Zhang, Xiaoqing; Jiang, Lei; Qin, Jianhua

    2017-08-22

    Organized cardiomyocyte alignment is critical to maintain the mechanical properties of the heart. In this study, we present a new and simple strategy to fabricate a biomimetic microchip designed with an onion epithelium-like structure and investigate the guided behavior of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) on the substrate. The hiPSC-CMs were observed to be confined by the three dimensional surficial features morphologically, analogous to the in vivo microenvironment, and exhibited an organized anisotropic alignment on the onion epithelium-like structure with good beating function. The calcium imaging of hiPSC-CMs demonstrated a more mature Ca 2+ spark pattern as well. Furthermore, the expression of sarcomere genes (TNNI3, MYH6 and MYH7), potassium channel genes (KCNE1 and KCNH2), and calcium channel genes (RYR2) was significantly up-regulated on the substrate with an onion epithelium-like structure instead of the surface without the structure, indicating a more matured status of cardiomyocytes induced by this structure. It appears that the biomimetic micropatterned structure, analogous to in vivo cellular organization, is an important factor that might promote the maturation of hiPSC-CMs, providing new biological insights to guide hiPSC-CM maturation by biophysical factors. The established approach may offer an effective in vitro model for investigating cardiomyocyte differentiation, maturation and tissue engineering applications.

  14. miR-31a-5p promotes postnatal cardiomyocyte proliferation by targeting RhoBTB1

    NARCIS (Netherlands)

    Xiao, Junjie; Liu, Hui; Cretoiu, Dragos; Toader, Daniela Oana; Suciu, Nicolae; Shi, Jing; Shen, Shutong; Bei, Yihua; Sluijter, Joost Pg; Das, Saumya; Kong, Xiangqing; Li, Xinli

    2017-01-01

    A limited number of microRNAs (miRNAs, miRs) have been reported to control postnatal cardiomyocyte proliferation, but their strong regulatory effects suggest a possible therapeutic approach to stimulate regenerative capacity in the diseased myocardium. This study aimed to investigate the miRNAs

  15. Silymarin Component 2,3-dehydrosilybin Attenuates Cardiomyocyte Damage Following Hypoxia/Reoxygenation by Limiting Oxidative Stress

    Czech Academy of Sciences Publication Activity Database

    Gabrielová, E.; Křen, Vladimír; Jabůrek, Martin; Modriansky, M.

    2015-01-01

    Roč. 64, č. 1 (2015), s. 79-91 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP301/11/0662 Institutional support: RVO:61388971 ; RVO:67985823 Keywords : Silymarin * Dehydrosilybin * Neonatal rat cardiomyocytes Subject RIV: ED - Physiology Impact factor: 1.643, year: 2015

  16. MUSCLEMOTION : A Versatile Open Software Tool to Quantify Cardiomyocyte and Cardiac Muscle Contraction In Vitro and In Vivo

    NARCIS (Netherlands)

    Sala, Luca; van Meer, Berend J; Tertoolen, Leon T; Bakkers, Jeroen; Bellin, Milena; Davis, Richard P; Denning, Chris N; Dieben, Michel A; Eschenhagen, Thomas; Giacomelli, Elisa; Grandela, Catarina; Hansen, Arne; Holman, Eduard; Jongbloed, Monique R; Kamel, Sarah M; Koopman, Charlotte D; Lachaud, Quentin; Mannhardt, Ingra; Mol, Mervyn P; Mosqueira, Diogo; Orlova, Valeria V; Passier, Robert; Ribeiro, Marcelo C; Saleem, Umber; Smith, Godfrey; Burton, Francis L L; Mummery, Christine L

    2017-01-01

    Rationale: There are several methods to measure cardiomyocyte (CM) and muscle contraction but these require customized hardware, expensive apparatus and advanced informatics or can only be used in single experimental models. Consequently, data and techniques have been difficult to reproduce across

  17. Contractile Defect Caused by Mutation in MYBPC3 Revealed under Conditions Optimized for Human PSC-Cardiomyocyte Function

    NARCIS (Netherlands)

    M.J. Birket (Matthew J.); M.C. Ribeiro (Marcelo C.); G. Kosmidis (Georgios); D. Ward (Dorien); A.R. Leitoguinho (Ana Rita); V. van de Pol (Vera); C. Dambrot (Cheryl); H.D. Devalla (Harsha D.); R.P. Davis (Richard P.); P.G. Mastroberardino (Pier); D.E. Atsma (Douwe); R. Passier (Robert); C.L. Mummery (Christine)

    2015-01-01

    textabstractMaximizing baseline function of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is essential for their effective application in models of cardiac toxicity and disease. Here, we aimed to identify factors that would promote an adequate level of function to permit robust

  18. Sequestration of fatty acids in triglycerides prevents endoplasmic reticulum stress in an in vitro model of cardiomyocyte lipotoxicity

    NARCIS (Netherlands)

    Bosma, M.; Dapito, D.H.; Drosatos-Tampakaki, Z.; Huiping-Son, N.; Huang, L.S.; Kersten, A.H.; Drosatos, K.; Goldberg, I.J.

    2014-01-01

    We used human cardiomyocyte-derived cells to create an in vitro model to study lipid metabolism and explored the effects of PPAR gamma, ACSL1 and ATGL on fatty acid-induced ER stress. Compared to oleate, palmitate treatment resulted in less intracellular accumulation of lipid droplets and more ER

  19. β3-adrenergic receptor activation induces TGFβ1 expression in cardiomyocytes via the PKG/JNK/c-Jun pathway.

    Science.gov (United States)

    Xu, Zhongcheng; Wu, Jimin; Xin, Junzhou; Feng, Yenan; Hu, Guomin; Shen, Jing; Li, Mingzhe; Zhang, Youyi; Xiao, Han; Wang, Li

    2018-06-05

    In heart failure, the expression of cardiac β 3 -adrenergic receptors (β 3 -ARs) increases. However, the precise role of β 3 -AR signaling within cardiomyocytes remains unclear. Transforming growth factor β1 (TGFβ1) is a crucial cytokine mediating the cardiac remodeling that plays a causal role in the progression of heart failure. Here, we set out to determine the effect of β 3 -AR activation on TGFβ1 expression in rat cardiomyocytes and examine the underlying mechanism. The selective β 3 -AR agonist BRL37344 induced an increase in TGFβ1 expression and the phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun in β 3 -AR-overexpressing cardiomyocytes. Those effects of BRL37344 were suppressed by a β 3 -AR antagonist. Moreover, the inhibition of JNK and c-Jun activity by a JNK inhibitor and c-Jun siRNA blocked the increase in TGFβ1 expression upon β 3 -AR activation. A protein kinase G (PKG) inhibitor also attenuated β 3 -AR-agonist-induced TGFβ1 expression and the phosphorylation of JNK and c-Jun. In conclusion, the β 3 -AR activation in cardiomyocytes increases the expression of TGFβ1 via the PKG/JNK/c-Jun pathway. These results help us further understand the role of β 3 -AR signaling in heart failure. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Portion size

    Science.gov (United States)

    ... of cards One 3-ounce (84 grams) serving of fish is a checkbook One-half cup (40 grams) ... for the smallest size. By eating a small hamburger instead of a large, you will save about 150 calories. ...

  1. Nanofiber-structured hydrogel yarns with pH-response capacity and cardiomyocyte-drivability for bio-microactuator application.

    Science.gov (United States)

    Wu, Shaohua; Duan, Bin; Qin, Xiaohong; Butcher, Jonathan T

    2017-09-15

    Polymeric hydrogels have great potential in soft biological micro-actuator applications. However, inappropriate micro-architecture, non-anisotropy, weak biomechanics, and inferior response behaviors limit their development. In this study, we designed and manufactured novel polyacrylonitrile (PAN)-based hydrogel yarns composed with uniaxially aligned nanofibers. The nanofibrous hydrogel yarns possessed anisotropic architecture and robust mechanical properties with flexibility, and could be assembled into defined scaffold structures by subsequent processes. The as-prepared hydrogel yarns showed excellent pH response behaviors, with around 100% maximum length and 900% maximum diameter changes, and the pH response was completed within several seconds. Moreover, the hydrogel yarns displayed unique cell-responsive abilities to promote the cell adhesion, proliferation, and smooth muscle differentiation of human adipose derived mesenchymal stem cells (HADMSC). Chicken cardiomyocytes were further seeded onto our nanofibrous hydrogel yarns to engineer living cell-based microactuators. Our results demonstrated that the uniaxially aligned nanofibrous networks within the hydrogel yarns were the key characteristics leading to the anisotropic organization of cardiac cells, and improved sarcomere organization, mimicking the cardiomyocyte bundles in the native myocardium. The construct is capable of sustaining spontaneous cardiomyocyte pumping behaviors for 7days. Our PAN-based nanofibrous hydrogel yarns are attractive for creating linear microactuators with pH-response capacity and biological microactuators with cardiomyocyte-drivability. A mechanically robust polyacrylonitrile-based nanofibrous hydrogel yarn is fabricated by using a modified electrospinning setup in combination with chemical modification processes. The as-prepared hydrogel yarn possesses a uniaxially aligned nanofiber microarchitecture and supports a rapid, pH-dependent expansion/contraction response within a few

  2. Investigations of active interrogation techniques to detect special nuclear material in maritime environments: Standoff interrogation of small- and medium-sized cargo ships

    International Nuclear Information System (INIS)

    Miller, Thomas M.; Patton, Bruce W.; Grogan, Brandon R.; Henkel, James J.; Murphy, Brian D.; Johnson, Jeffrey O.; Mihalczo, John T.

    2013-01-01

    In this work, several active interrogation (AI) sources are evaluated to determine their usefulness in detecting the presence of special nuclear material (SNM) in fishing trawlers, small cargo transport ships, and luxury yachts at large standoff distances from the AI source and detector. This evaluation is performed via computational analysis applying Monte Carlo methods with advanced variance reduction techniques. The goal is to determine the AI source strength required to detect the presence of SNM. The general conclusion of this study is that AI is not reliable when SNM is heavily shielded and not tightly coupled geometrically with the source and detector, to the point that AI should not be considered a via interrogation option in these scenarios. More specifically, when SNM is shielded by hydrogenous material large AI source strengths are required if detection is based on neutrons, which is not surprising. However, if the SNM is shielded by high-Z material the required AI source strengths are not significantly different if detection is based on neutrons or photons, which is somewhat surprising. Furthermore, some of the required AI source strengths that were calculated are very large. These results coupled with the realities of two ships moving independently at sea and other assumptions made during this analysis make the use of standoff AI in the maritime environment impractical

  3. Investigations of active interrogation techniques to detect special nuclear material in maritime environments: Standoff interrogation of small- and medium-sized cargo ships

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas M., E-mail: millertm@ornl.gov; Patton, Bruce W.; Grogan, Brandon R.; Henkel, James J.; Murphy, Brian D.; Johnson, Jeffrey O.; Mihalczo, John T.

    2013-12-01

    In this work, several active interrogation (AI) sources are evaluated to determine their usefulness in detecting the presence of special nuclear material (SNM) in fishing trawlers, small cargo transport ships, and luxury yachts at large standoff distances from the AI source and detector. This evaluation is performed via computational analysis applying Monte Carlo methods with advanced variance reduction techniques. The goal is to determine the AI source strength required to detect the presence of SNM. The general conclusion of this study is that AI is not reliable when SNM is heavily shielded and not tightly coupled geometrically with the source and detector, to the point that AI should not be considered a via interrogation option in these scenarios. More specifically, when SNM is shielded by hydrogenous material large AI source strengths are required if detection is based on neutrons, which is not surprising. However, if the SNM is shielded by high-Z material the required AI source strengths are not significantly different if detection is based on neutrons or photons, which is somewhat surprising. Furthermore, some of the required AI source strengths that were calculated are very large. These results coupled with the realities of two ships moving independently at sea and other assumptions made during this analysis make the use of standoff AI in the maritime environment impractical.

  4. Effect of Berberine on PPARα/NO Activation in High Glucose- and Insulin-Induced Cardiomyocyte Hypertrophy

    Directory of Open Access Journals (Sweden)

    Mingfeng Wang

    2013-01-01

    Full Text Available Rhizoma coptidis, the root of Coptis chinensis Franch, has been used in China as a folk medicine in the treatment of diabetes for thousands of years. Berberine, one of the active ingredients of Rhizoma coptidis, has been reported to improve symptoms of diabetes and to treat experimental cardiac hypertrophy, respectively. The objective of this study was to evaluate the potential effect of berberine on cardiomyocyte hypertrophy in diabetes and its possible influence on peroxisome proliferator-activated receptor-α (PPARα/nitric oxide (NO signaling pathway. The cardiomyocyte hypertrophy induced by high glucose (25.5 mmol/L and insulin (0.1 μmol/L (HGI was characterized in rat primary cardiomyocyte by measuring the cell surface area, protein content, and atrial natriuretic factor mRNA expression level. Protein and mRNA expression were measured by western blot and real-time RT-PCR, respectively. The enzymatic activity of NO synthase (NOS was measured using a spectrophotometric assay, and NO concentration was measured using the Griess assay. HGI significantly induced cardiomyocyte hypertrophy and decreased the expression of PPARα and endothelial NOS at the mRNA and protein levels, which occurred in parallel with declining NOS activity and NO concentration. The effect of HGI was inhibited by berberine (0.1 to 100 μmol/L, fenofibrate (0.3 μmol/L, or L-arginine (100 μmol/L. MK886 (0.3 μmol/L, a selective PPARα antagonist, could abolish the effects of berberine and fenofibrate. NG-nitro-L-arginine-methyl ester (100 μmol/L, a NOS inhibitor, could block the effects of L-arginine, but only partially blocked the effects of berberine. These results suggest that berberine can blunt HGI-induced cardiomyocyte hypertrophy in vitro, through the activation of the PPARα/NO signaling pathway.

  5. Alamandine acts via MrgD to induce AMPK/NO activation against Ang II hypertrophy in cardiomyocytes.

    Science.gov (United States)

    de Jesus, Itamar Couto Guedes; Scalzo, Sergio; Alves, Fabiana; Marques, Kariny; Rocha-Resende, Cibele; Bader, Michael; Santos, Robson A Souza; Guatimosim, Silvia

    2018-02-14

    The renin-angiotensin system (RAS) plays a pivotal role in the pathogenesis of cardiovascular diseases. New members of this system have been characterized and shown to have biologically relevant actions. Alamandine and its receptor MrgD are recently identified components of RAS. In the cardiovascular system alamandine actions included vasodilation, antihypertensive and anti-fibrosis effects. Currently, the actions of alamandine on cardiomyocytes are unknown. Here our goal was twofold: (1) to unravel the signaling molecules activated by the alamandine/MrgD axis in cardiomyocytes; (2) to evaluate the ability of this axis to prevent against Angiotensin II (Ang II)-induced hypertrophy. In cardiomyocytes from C57BL/6 mice, alamandine treatment induced an increase in nitric oxide (NO) production, which was blocked by D-Pro 7 -Ang-(1-7), a MrgD antagonist. This NO rise correlated with increased phosphorylation of AMPK. Alamandine induced NO production was preserved in Mas -/- myocytes, and lost in MrgD -/- cells. Binding of fluorescent-labeled alamandine was observed in wild-type cells, but it was dramatically reduced in MrgD -/- myocytes. We also assessed the consequences of prolonged alamandine exposure to cultured neonatal rat cardiomyocytes (NRCMs) treated with Ang II. Treatment of NRCMs with alamandine prevented Ang II-induced hypertrophy. Moreover, antihypertrophic actions of alamandine were mediated via MrgD and NO, since they could be prevented by D-Pro 7 -Ang-(1-7) or inhibitors of NO synthase or AMPK. β-alanine, a MrgD agonist, recapitulated alamandine's cardioprotective effects in cardiomyocytes. Our data show that alamandine via MrgD induces AMPK/NO signaling to counterregulate Ang II induced hypertrophy. These findings highlight the therapeutic potential of the alamandine/MrgD axis in the heart.

  6. Positron emission tomography imaging of cardiomyocyte apoptosis with a novel molecule probe [18F]FP-DPAZn2

    Science.gov (United States)

    Sun, Ting; Tang, Ganghua; Tian, Hua; Hu, Kongzhen; Yao, Shaobo; Su, Yifan; Wang, Changqian

    2015-01-01

    Cardiomyocyte apoptosis plays a causal role in the development and progression of heart failure. Currently, there is no effective imaging agent that can be used to detect cardiomyocyte apoptosis in vivo. To target phosphatidylserine (PS) on the surface of the dying cell, we synthesized a novel 18F-labeled Zn2+-dipicolylamine (DPA) analog, [18F]FP-DPAZn2, and evaluated it for noninvasive imaging of cardiomyocyte apoptosis. In vitro, the fluorescence imaging of dansyl-DPAZn2 was suitable for detecting cardiomyocyte apoptosis, which was confirmed by confocal immunofluorescence imaging, terminal dUTP nick-end labeling (TUNEL) assay, and western blot assay. The in vivo biodistribution showed that the uptake ratios of [18F]FP-DPAZn2 in the heart were 4.41±0.29% ID/g at 5 min, 2.40 ± 0.43% ID/g at 30 min, 1.63 ± 0.26% ID/g at 60 min, and 1.43% ± 0.07 ID/g at 120 min post-injection. In vivo, the [18F]FP-DPAZn2 PET images showed more cardiac accumulation of radioactivity 60 min post-injection in acute myocardial infarction (AMI) rats than in normal rats, which was consistent with the findings of a histological analysis of the rat cardiac tissues in vitro. [18F]FP-DPAZn2 PET imaging has the capability for myocardial apoptosis detection, but the method will require improved myocardial uptake for the noninvasive evaluation of cardiomyocyte apoptosis in clinical settings. PMID:26416423

  7. Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes

    Science.gov (United States)

    Xu, Jiqian; Hu, Houxiang; Chen, Bin; Yue, Rongchuan; Zhou, Zhou; Liu, Yin; Zhang, Shuang; Xu, Lei; Wang, Huan; Yu, Zhengping

    2015-01-01

    Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes. PMID:26291709

  8. The Role of Reactive Oxygen Species in β-Adrenergic Signaling in Cardiomyocytes from Mice with the Metabolic Syndrome.

    Directory of Open Access Journals (Sweden)

    Monica Llano-Diez

    Full Text Available The metabolic syndrome is associated with prolonged stress and hyperactivity of the sympathetic nervous system and afflicted subjects are prone to develop cardiovascular disease. Under normal conditions, the cardiomyocyte response to acute β-adrenergic stimulation partly depends on increased production of reactive oxygen species (ROS. Here we investigated the interplay between beta-adrenergic signaling, ROS and cardiac contractility using freshly isolated cardiomyocytes and whole hearts from two mouse models with the metabolic syndrome (high-fat diet and ob/ob mice. We hypothesized that cardiomyocytes of mice with the metabolic syndrome would experience excessive ROS levels that trigger cellular dysfunctions. Fluorescent dyes and confocal microscopy were used to assess mitochondrial ROS production, cellular Ca2+ handling and contractile function in freshly isolated adult cardiomyocytes. Immunofluorescence, western blot and enzyme assay were used to study protein biochemistry. Unexpectedly, our results point towards decreased cardiac ROS signaling in a stable, chronic phase of the metabolic syndrome because: β-adrenergic-induced increases in the amplitude of intracellular Ca2+ signals were insensitive to antioxidant treatment; mitochondrial ROS production showed decreased basal rate and smaller response to β-adrenergic stimulation. Moreover, control hearts and hearts with the metabolic syndrome showed similar basal levels of ROS-mediated protein modification, but only control hearts showed increases after β-adrenergic stimulation. In conclusion, in contrast to the situation in control hearts, the cardiomyocyte response to acute β-adrenergic stimulation does not involve increased mitochondrial ROS production in a stable, chronic phase of the metabolic syndrome. This can be seen as a beneficial adaptation to prevent excessive ROS levels.

  9. Altering CO2 during reperfusion of ischemic cardiomyocytes modifies mitochondrial oxidant injury.

    Science.gov (United States)

    Lavani, Romeen; Chang, Wei-Tien; Anderson, Travis; Shao, Zuo-Hui; Wojcik, Kimberly R; Li, Chang-Qing; Pietrowski, Robert; Beiser, David G; Idris, Ahamed H; Hamann, Kimm J; Becker, Lance B; Vanden Hoek, Terry L

    2007-07-01

    Acute changes in tissue CO2 and pH during reperfusion of the ischemic heart may affect ischemia/reperfusion injury. We tested whether gradual vs. acute decreases in CO2 after cardiomyocyte ischemia affect reperfusion oxidants and injury. Comparative laboratory investigation. Institutional laboratory. Embryonic chick cardiomyocytes. Microscope fields of approximately 500 chick cardiomyocytes were monitored throughout 1 hr of simulated ischemia (PO2 of 3-5 torr, PCO2 of 144 torr, pH 6.8), followed by 3 hrs of reperfusion (PO2 of 149 torr, PCO2 of 36 torr, pH 7.4), and compared with cells reperfused with relative hypercarbia (PCO2 of 71 torr, pH 6.8) or hypocarbia (PCO2 of 7 torr, pH 7.9). The measured outcomes included cell viability (via propidium iodide) and oxidant generation (reactive oxygen species via 2',7'-dichlorofluorescin oxidation and nitric oxide [NO] via 4,5-diaminofluorescein diacetate oxidation). Compared with normocarbic reperfusion, hypercarbia significantly reduced cell death from 54.8% +/- 4.0% to 26.3% +/- 2.8% (p < .001), significantly decreased reperfusion reactive oxygen species (p < .05), and increased NO at a later phase of reperfusion (p < .01). The NO synthase inhibitor N-nitro-L-arginine methyl ester (200 microM) reversed this oxidant attenuation (p < .05), NO increase (p < .05), and the cardioprotection conferred by hypercarbic reperfusion (increasing death to 54.3% +/- 6.0% [p < .05]). Conversely, hypocarbic reperfusion increased cell death to 80.4% +/- 4.5% (p < .01). It also increased reactive oxygen species by almost two-fold (p = .052), without affecting the NO level thereafter. Increased reactive oxygen species was attenuated by the mitochondrial complex III inhibitor stigmatellin (20 nM) when given at reperfusion (p < .05). Cell death also decreased from 85.9% +/- 4.5% to 52.2% +/- 6.5% (p < .01). The nicotinamide adenine dinucleotide phosphate oxidase inhibitor apocynin (300 microM) had no effect on reperfusion reactive oxygen

  10. FOG-2 mediated recruitment of the NuRD complex regulates cardiomyocyte proliferation during heart development.

    Science.gov (United States)

    Garnatz, Audrey S; Gao, Zhiguang; Broman, Michael; Martens, Spencer; Earley, Judy U; Svensson, Eric C

    2014-11-01

    FOG-2 is a multi-zinc finger protein that binds the transcriptional activator GATA4 and modulates GATA4-mediated regulation of target genes during heart development. Our previous work has demonstrated that the Nucleosome Remodeling and Deacetylase (NuRD) complex physically interacts with FOG-2 and is necessary for FOG-2 mediated repression of GATA4 activity in vitro. However, the relevance of this interaction for FOG-2 function in vivo has remained unclear. In this report, we demonstrate the importance of FOG-2/NuRD interaction through the generation and characterization of mice homozygous for a mutation in FOG-2 that disrupts NuRD binding (FOG-2(R3K5A)). These mice exhibit a perinatal lethality and have multiple cardiac malformations, including ventricular and atrial septal defects and a thin ventricular myocardium. To investigate the etiology of the thin myocardium, we measured the rate of cardiomyocyte proliferation in wild-type and FOG-2(R3K5A) developing hearts. We found cardiomyocyte proliferation was reduced by 31±8% in FOG-2(R3K5A) mice. Gene expression analysis indicated that the cell cycle inhibitor Cdkn1a (p21(cip1)) is up-regulated 2.0±0.2-fold in FOG-2(R3K5A) hearts. In addition, we demonstrate that FOG-2 can directly repress the activity of the Cdkn1a gene promoter, suggesting a model by which FOG-2/NuRD promotes ventricular wall thickening by repression of this cell cycle inhibitor. Consistent with this notion, the genetic ablation of Cdkn1a in FOG-2(R3K5A) mice leads to an improvement in left ventricular function and a partial rescue of left ventricular wall thickness. Taken together, our results define a novel mechanism in which FOG-2/NuRD interaction is required for cardiomyocyte proliferation by directly down-regulating the cell cycle inhibitor Cdkn1a during heart development. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengpeng [Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); Shan, Tizhong; Liang, Xinrong [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); Deng, Changyan [Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Kuang, Shihuan, E-mail: skuang@purdue.edu [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2014-09-12

    Highlights: • mTOR is a critical regulator of many biological processes yet its function in heart is not well understood. • MCK-Cre/Mtor{sup flox/flox} mice were established to delete Mtor in cardiomyocytes. • The mTOR-mKO mice developed normally but die prematurely within 5 weeks after birth due to heart disease. • The mTOR-mKO mice had dilated myocardium and increased cell death. • mTOR-mKO hearts had reduced expression of metabolic genes and activation of mTOR target proteins. - Abstract: Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leads to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor{sup flox/flox} mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function.

  12. Autoantibodies in dilated cardiomyopathy induce vascular endothelial growth factor expression in cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Saygili, Erol, E-mail: erol.saygili@med.uni-duesseldorf.de [Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf (Germany); Noor-Ebad, Fawad; Schröder, Jörg W.; Mischke, Karl [Department of Cardiology, University RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen (Germany); Saygili, Esra [Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf (Germany); Rackauskas, Gediminas [Department of Cardiovascular Medicine, Vilnius University Hospital Santariskiu Klinikos, Vilnius University (Lithuania); Marx, Nikolaus [Department of Cardiology, University RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen (Germany); Kelm, Malte; Rana, Obaida R. [Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf (Germany)

    2015-09-11

    Background: Autoantibodies have been identified as major predisposing factors for dilated cardiomyopathy (DCM). Patients with DCM show elevated serum levels of vascular endothelial growth factor (VEGF) whose source is unknown. Besides its well-investigated effects on angiogenesis, evidence is present that VEGF signaling is additionally involved in fibroblast proliferation and cardiomyocyte hypertrophy, hence in cardiac remodeling. Whether autoimmune effects in DCM impact cardiac VEGF signaling needs to be elucidated. Methods: Five DCM patients were treated by the immunoadsorption (IA) therapy on five consecutive days. The eluents from the IA columns were collected and prepared for cell culture. Cardiomyocytes from neonatal rats (NRCM) were incubated with increasing DCM-immunoglobulin-G (IgG) concentrations for 48 h. Polyclonal IgG (Venimmun N), which was used to restore IgG plasma levels in DCM patients after the IA therapy was additionally used for control cell culture purposes. Results: Elevated serum levels of VEGF decreased significantly after IA (Serum VEGF (ng/ml); DCM pre-IA: 45 ± 9.1 vs. DCM post–IA: 29 ± 6.7; P < 0.05). In cell culture, pretreatment of NRCM by DCM-IgG induced VEGF expression in a time and dose dependent manner. Biologically active VEGF that was secreted by NRCM significantly increased BNP mRNA levels in control cardiomyocytes and induced cell-proliferation of cultured cardiac fibroblast (Fibroblast proliferation; NRCM medium/HC-IgG: 1 ± 0.0 vs. NRCM medium/DCM-IgG 100 ng/ml: 5.6 ± 0.9; P < 0.05). Conclusion: The present study extends the knowledge about the possible link between autoimmune signaling in DCM and VEGF induction. Whether this observation plays a considerable role in cardiac remodeling during DCM development needs to be further elucidated. - Highlights: • Mechanisms of remodeling in dilated cardiomyopathy (DCM) are not fully understood. • Autoantibodies have been identified as major predisposing factors

  13. Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes

    International Nuclear Information System (INIS)

    Doherty, Kimberly R.; Wappel, Robert L.; Talbert, Dominique R.; Trusk, Patricia B.; Moran, Diarmuid M.; Kramer, James W.; Brown, Arthur M.; Shell, Scott A.; Bacus, Sarah

    2013-01-01

    Tyrosine kinase inhibitors (TKi) have greatly improved the treatment and prognosis of multiple cancer types. However, unexpected cardiotoxicity has arisen in a subset of patients treated with these agents that was not wholly predicted by pre-clinical testing, which centers around animal toxicity studies and inhibition of the human Ether-à-go-go-Related Gene (hERG) channel. Therefore, we sought to determine whether a multi-parameter test panel assessing the effect of drug treatment on cellular, molecular, and electrophysiological endpoints could accurately predict cardiotoxicity. We examined how 4 FDA-approved TKi agents impacted cell viability, apoptosis, reactive oxygen species (ROS) generation, metabolic status, impedance, and ion channel function in human cardiomyocytes. The 3 drugs clinically associated with severe cardiac adverse events (crizotinib, sunitinib, nilotinib) all proved to be cardiotoxic in our in vitro tests while the relatively cardiac-safe drug erlotinib showed only minor changes in cardiac cell health. Crizotinib, an ALK/MET inhibitor, led to increased ROS production, caspase activation, cholesterol accumulation, disruption in cardiac cell beat rate, and blockage of ion channels. The multi-targeted TKi sunitinib showed decreased cardiomyocyte viability, AMPK inhibition, increased lipid accumulation, disrupted beat pattern, and hERG block. Nilotinib, a second generation Bcr-Abl inhibitor, led to increased ROS generation, caspase activation, hERG block, and an arrhythmic beat pattern. Thus, each drug showed a unique toxicity profile that may reflect the multiple mechanisms leading to cardiotoxicity. This study demonstrates that a multi-parameter approach can provide a robust characterization of drug-induced cardiomyocyte damage that can be leveraged to improve drug safety during early phase development. - Highlights: • TKi with known adverse effects show unique cardiotoxicity profiles in this panel. • Crizotinib increases ROS, apoptosis, and

  14. Pyrogenic organic matter accumulation after density and particle size fractionation of burnt Cambisol using solid-state nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    López-Martín, María; Knicker, Heike

    2017-04-01

    Fires lead to formation of the pyrogenic organic matter (PyOM) which is quickly incorporated into the soil. The charring process involves chemical alterations of the litter material, where biologically available structures are transferred into aromatic polymers, such as black carbon (BC) and black nitrogen (BN). In order to reveal the medium term fate of BC and BN in soils, the top 5 cm of A horizons from unburnt, single and double burnt Cambisols of the Sierra de Aznalcóllar (Southern Spain) were collected 7 year after an intense fire and separated according to their density and their size (Golchin et al., 1994; Sohi et al., 2001). The density fractionation yielded in the free (fPOM), occluded particulate organic matter (oPOM) and the mineral-association organic fraction (MAF) and was performed using a sodium polytungstate solution with a density of 1.8 g cm-3. The MAF was further separated into the sand (2 mm to 63 μm) and coarse silt (63 to 20 μm) and fine fraction (solid-state 13C and 15N NMR spectroscopy. The 13C and 15N NMR spectra of all fPOM and oPOM fractions are dominated by signals assignable to O-alkyl C followed by resonance lines of alkyl C. The spectra indicate that fPOM is mainly composed of undecomposed plant debris whereas oPOM is rich in unsubstituted-aliphatic material. The lack of intensity in the chemical shift region from 160 to140 ppm in the spectra of the small size fractions reveals the absence of lignin residues. This, their low C/N ratios and the clear 13C-signal attributed to carboxylic C allows the conclusion that this fraction mainly composed of microbial residues. Former studies evidenced that aromaticity of the burnt bulk soil decreased with elapsing time after the fire. The present investigation revealed that most of the remaining aromatic C accumulated in the POM fractions, which is in contrast to other studies showing a preferential recovery of BC in the fine particle size fractions. Possibly, the poor interaction between Py

  15. Nuclear generation cost and nuclear research development fund

    International Nuclear Information System (INIS)

    Kim, S. S.; Song, G. D.

    2000-01-01

    The main objective of this study is to analyze the effects of nuclear R and D fund to nuclear generation cost and to assess the adaptability of fund size through the comparison with the nuclear research fund in Japan. It was estimated that nuclear R and D fund increased the average annual unit cost of nuclear power generation by 1.14 won/kWh. When the size of nuclear R and D fund is compared with that in Japan, this study suggests that the current nuclear R and D fund should be largely increased taking into consideration the ratio of R and D fund to nuclear generation

  16. Sustainable Sizing.

    Science.gov (United States)

    Robinette, Kathleen M; Veitch, Daisy

    2016-08-01

    To provide a review of sustainable sizing practices that reduce waste, increase sales, and simultaneously produce safer, better fitting, accommodating products. Sustainable sizing involves a set of methods good for both the environment (sustainable environment) and business (sustainable business). Sustainable sizing methods reduce (1) materials used, (2) the number of sizes or adjustments, and (3) the amount of product unsold or marked down for sale. This reduces waste and cost. The methods can also increase sales by fitting more people in the target market and produce happier, loyal customers with better fitting products. This is a mini-review of methods that result in more sustainable sizing practices. It also reviews and contrasts current statistical and modeling practices that lead to poor fit and sizing. Fit-mapping and the use of cases are two excellent methods suited for creating sustainable sizing, when real people (vs. virtual people) are used. These methods are described and reviewed. Evidence presented supports the view that virtual fitting with simulated people and products is not yet effective. Fit-mapping and cases with real people and actual products result in good design and products that are fit for person, fit for purpose, with good accommodation and comfortable, optimized sizing. While virtual models have been shown to be ineffective for predicting or representing fit, there is an opportunity to improve them by adding fit-mapping data to the models. This will require saving fit data, product data, anthropometry, and demographics in a standardized manner. For this success to extend to the wider design community, the development of a standardized method of data collection for fit-mapping with a globally shared fit-map database is needed. It will enable the world community to build knowledge of fit and accommodation and generate effective virtual fitting for the future. A standardized method of data collection that tests products' fit methodically

  17. Size matter!

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg; Jespersen, Andreas Maaløe; Skov, Laurits Rhoden

    2015-01-01

    trash bags according to size of plates and weighed in bulk. Results Those eating from smaller plates (n=145) left significantly less food to waste (aver. 14,8g) than participants eating from standard plates (n=75) (aver. 20g) amounting to a reduction of 25,8%. Conclusions Our field experiment tests...... the hypothesis that a decrease in the size of food plates may lead to significant reductions in food waste from buffets. It supports and extends the set of circumstances in which a recent experiment found that reduced dinner plates in a hotel chain lead to reduced quantities of leftovers....

  18. Target size dependence of relativistic hadron emission from S-32 nuclear collisions at 3.7-A-GeV and 200-A-GeV

    CERN Document Server

    Abdelsalam, A; Hafiz, M E

    2012-01-01

    The behavior of the relativistic hadron (shower particle) multiplicity for (32)S-nucleus interactions is investigated. The experiment is carried out at 3.7A GeV (Dubna energy) and 200A GeV (SPS energy) to search for the incident energy effect on the interactions inside the different emulsion target nuclei. Data are presented in terms of the number of emitted relativistic hadrons in both forward and backward angular zones. The dependence on the target size is presented. For this purpose the statistical events are separated into groups according to the interactions with H, CNO, Em, and AgBr target nuclei. The separation of events, into these groups, is executed based on predictions of Glauber's multiple scattering theory. Features suggestive of a decay mechanism seem to be a characteristic of the backward emission of relativistic hadrons. The results strongly support the assumption that the relativistic hadrons may already be emitted during the de-excitation of the excited target nucleus, in a behavior like tha...

  19. Reverse engineering life: physical and chemical mimetics for controlled stem cell differentiation into cardiomyocytes.

    Science.gov (United States)

    Skuse, Gary R; Lamkin-Kennard, Kathleen A

    2013-01-01

    Our ability to manipulate stem cells in order to induce differentiation along a desired developmental pathway has improved immeasurably in recent years. That is in part because we have a better understanding of the intracellular and extracellular signals that regulate differentiation. However, there has also been a realization that stem cell differentiation is not regulated only by chemical signals but also by the physical milieu in which a particular stem cell exists. In this regard we are challenged to mimic both chemical and physical environments. Herein we describe a method to induce stem cell differentiation into cardiomyocytes using a combination of chemical and physical cues. This method can be applied to produce differentiated cells for research and potentially for cell-based therapy of cardiomyopathies.

  20. Relaxation of Isolated Ventricular Cardiomyocytes by a Voltage-Dependent Process

    Science.gov (United States)

    Bridge, John H. B.; Spitzer, Kenneth W.; Ershler, Philip R.

    1988-08-01

    Cell contraction and relaxation were measured in single voltage-clamped guinea pig cardiomyocytes to investigate the contribution of sarcolemmal Na+-Ca2+ exchange to mechanical relaxation. Cells clamped from -80 to 0 millivolts displayed initial phasic and subsequent tonic contractions; caffeine reduced or abolished the phasic and enlarged the tonic contraction. The rate of relaxation from tonic contractions was steeply voltage-dependent and was significantly slowed in the absence of a sarcolemmal Na+ gradient. Tonic contractions elicited in the absence of a Na+ gradient promptly relaxed when external Na+ was applied, reflecting activation of Na+-Ca2+ exchange. It appears that a voltage-dependent Na+-Ca2+ exchange can rapidly mechanically relax mammalian heart muscle.

  1. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Afford New Opportunities in Inherited Cardiovascular Disease Modeling

    Directory of Open Access Journals (Sweden)

    Daniel R. Bayzigitov

    2016-01-01

    Full Text Available Fundamental studies of molecular and cellular mechanisms of cardiovascular disease pathogenesis are required to create more effective and safer methods of their therapy. The studies can be carried out only when model systems that fully recapitulate pathological phenotype seen in patients are used. Application of laboratory animals for cardiovascular disease modeling is limited because of physiological differences with humans. Since discovery of induced pluripotency generating induced pluripotent stem cells has become a breakthrough technology in human disease modeling. In this review, we discuss a progress that has been made in modeling inherited arrhythmias and cardiomyopathies, studying molecular mechanisms of the diseases, and searching for and testing drug compounds using patient-specific induced pluripotent stem cell-derived cardiomyocytes.

  2. The primary cilium coordinates early cardiogenesis and hedgehog signaling in cardiomyocyte differentiation

    DEFF Research Database (Denmark)

    Clement, Christian A; Kristensen, Stine G; Møllgård, Kjeld

    2009-01-01

    Defects in the assembly or function of primary cilia, which are sensory organelles, are tightly coupled to developmental defects and diseases in mammals. Here, we investigated the function of the primary cilium in regulating hedgehog signaling and early cardiogenesis. We report that the pluripotent...... P19.CL6 mouse stem cell line, which can differentiate into beating cardiomyocytes, forms primary cilia that contain essential components of the hedgehog pathway, including Smoothened, Patched-1 and Gli2. Knockdown of the primary cilium by Ift88 and Ift20 siRNA or treatment with cyclopamine...... development. These data support the conclusion that cardiac primary cilia are crucial in early heart development, where they partly coordinate hedgehog signaling....

  3. Numerical investigation of perforated polymer microcantilever sensor for contractile behavior of cardiomyocytes

    Science.gov (United States)

    Khoa Nguyen, Trieu; Lee, Dong-Weon; Lee, Bong-Kee

    2017-06-01

    In this study, a numerical investigation of microcantilever sensors for detecting the contractile behavior of cardiomyocytes (CMs) was performed. Recently, a novel surface-patterned perforated SU-8 microcantilever sensor has been developed for the preliminary screening of cardiac toxicity. From the contractile motion of the CMs cultured on the microcantilever surface, a macroscopic bending of the microcantilever was obtained, which is considered to reflect a physiological change. As a continuation of the previous research, a novel numerical method based on a surface traction model was proposed and verified to further understand the bending behavior of the microcantilevers. Effects of various factors, including surface traction magnitude, focal area of CMs, and stiffness of microcantilever, on the bending displacement were investigated. From static and transient analyses, the focal area was found to be the most crucial factor. In addition, the current result can provide a design guideline for various micromechanical devices based on the same principle.

  4. Cardiomyocyte specific deletion of Crif1 causes mitochondrial cardiomyopathy in mice.

    Directory of Open Access Journals (Sweden)

    Juhee Shin

    Full Text Available Mitochondria are key organelles dedicated to energy production. Crif1, which interacts with the large subunit of the mitochondrial ribosome, is indispensable for the mitochondrial translation and membrane insertion of respiratory subunits. To explore the physiological function of Crif1 in the heart, Crif1(f/f mice were crossed with Myh6-cre/Esr1 transgenic mice, which harbor cardiomyocyte-specific Cre activity in a tamoxifen-dependent manner. The tamoxifen injections were given at six weeks postnatal, and the mutant mice survived only five months due to hypertrophic heart failure. In the mutant cardiac muscles, mitochondrial mass dramatically increased, while the inner structure was altered with lack of cristae. Mutant cardiac muscles showed decreased rates of oxygen consumption and ATP production, suggesting that Crif1 plays a critical role in the maintenance of both mitochondrial structure and respiration in cardiac muscles.

  5. 1,5-Disubstituted benzimidazoles that direct cardiomyocyte differentiation from mouse embryonic stem cells.

    Science.gov (United States)

    Okolotowicz, Karl J; Bushway, Paul; Lanier, Marion; Gilley, Cynthia; Mercola, Mark; Cashman, John R

    2015-09-01

    Cardiomyopathy is the leading cause of death worldwide. Despite progress in medical treatments, heart transplantation is one of the only current options for those with infarcted heart muscle. Stem cell differentiation technology may afford cell-based therapeutics that may lead to the generation of new, healthy heart muscle cells from undifferentiated stem cells. Our approach is to use small molecules to stimulate stem cell differentiation. Herein, we describe a novel class of 1,5-disubstituted benzimidazoles that induce differentiation of stem cells into cardiac cells. We report on the evaluation in vitro for cardiomyocyte differentiation and describe structure-activity relationship results that led to molecules with drug-like properties. The results of this study show the promise of small molecules to direct stem cell lineage commitment, to probe signaling pathways and to develop compounds for the stimulation of stem cells to repair damaged heart tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Exploring Size.

    Science.gov (United States)

    Brand, Judith, Ed.

    1995-01-01

    "Exploring" is a magazine of science, art, and human perception that communicates ideas museum exhibits cannot demonstrate easily by using experiments and activities for the classroom. This issue concentrates on size, examining it from a variety of viewpoints. The focus allows students to investigate and discuss interconnections among…

  7. Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias

    Directory of Open Access Journals (Sweden)

    Maaike eHoekstra

    2012-08-01

    Full Text Available Cardiac arrhythmias are a major cause of morbidity and mortality. In younger patients, the majority of sudden cardiac deaths have an underlying Mendelian genetic cause. Over the last 15 years, enormous progress has been made in identifying the distinct clinical phenotypes and in studying the basic cellular and genetic mechanisms associated with the primary Mendelian (monogenic arrhythmia syndromes. Investigation of the electrophysiological consequences of an ion channel mutation is ideally done in the native cardiomyocyte environment. However, the majority of such studies so far have relied on heterologous expression systems in which single ion channel genes are expressed in non-cardiac cells. In some cases, transgenic mouse models haven been generated, but these also have significant shortcomings, primarily related to species differences.The discovery that somatic cells can be reprogrammed to pluripotency as induced pluripotent stem cells (iPSC has generated much interest since it presents an opportunity to generate patient- and disease-specific cell lines from which normal and diseased human cardiomyocytes can be obtained These genetically diverse human model systems can be studied in vitro and used to decipher mechanisms of disease and identify strategies and reagents for new therapies. Here we review the present state of the art with respect to cardiac disease models already generated using IPSC technology and which have been (partially characterized.Human iPSC (hiPSC models have been described for the cardiac arrhythmia syndromes, including LQT1, LQT2, LQT3-Brugada Syndrome, LQT8/Timothy syndrome and catecholaminergic polymorphic ventricular tachycardia. In most cases, the hiPSC-derived cardiomyoctes recapitulate the disease phenotype and have already provided opportunities for novel insight into cardiac pathophysiology. It is expected that the lines will be useful in the development of pharmacological agents for the management of these

  8. Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Haffar, T. [Université de Montreal (Canada); Montreal Heart Institute (Canada); Bérubé-Simard, F. [Montreal Heart Institute (Canada); Bousette, N., E-mail: nicolas.bousette@umontreal.ca [Université de Montreal (Canada); Montreal Heart Institute (Canada)

    2015-12-04

    A major cause for diabetic cardiomyopathy is excess lipid accumulation. To elucidate mechanisms of lipotoxicity mediated diabetic heart disease we need to further our understanding of how lipid metabolism is altered in the diabetic heart. Here we investigated the role of lipid clearance by oxidation as a regulator of lipid-mediated toxicity (lipotoxicity). We evaluated the effect of pre-treating rat neonatal cardiomyocytes (NCMs) with either oleate (mono-unsaturated fatty acid) or palmitate (saturated fatty acid) on fatty acid oxidation (FAO) by measuring {sup 14}C–CO{sub 2} production. We evaluated carnitine palmitoyltransferase (Cpt1b) expression by western blotting and mitochondrial membrane potential by quantitative and qualitative fluorescence analyses using the JC-1 dye. We inhibited the Cpt1b pharmacologically using etomoxir and genetically by knocking down its expression using LentiVector mediated transduction of siRNAs targeting the Cpt1b gene. We found that palmitate had a slower clearance rate from NCMs than oleate, and this was associated with a significant decrease in FAO. This impairment in FAO was not the result of either loss of Cpt1b protein or mitochondrial integrity. Enhancing FAO with either oleate or carnitine was associated with a significant attenuation of palmitate mediated lipotoxicity. In contrast impairing FAO in oleate treated NCMs caused lipotoxicity. Here we demonstrate that a major difference between non-toxic unsaturated fatty acids and toxic saturated fatty acids is there ability to stimulate or inhibit fatty acid oxidation, respectively. This has important implications for diabetic cardiomyopathy since diabetic hearts consistently exhibit elevated lipid accumulation. - Highlights: • Palmitate had a slower clearance rate from NCMs than oleate. • Palmitate caused a significant decrease in fatty acid oxidation in cardiomyocytes. • Impaired FAO was not due to loss of Cpt1b protein or mitochondrial integrity. • Enhancing FAO

  9. Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes

    International Nuclear Information System (INIS)

    Haffar, T.; Bérubé-Simard, F.; Bousette, N.

    2015-01-01

    A major cause for diabetic cardiomyopathy is excess lipid accumulation. To elucidate mechanisms of lipotoxicity mediated diabetic heart disease we need to further our understanding of how lipid metabolism is altered in the diabetic heart. Here we investigated the role of lipid clearance by oxidation as a regulator of lipid-mediated toxicity (lipotoxicity). We evaluated the effect of pre-treating rat neonatal cardiomyocytes (NCMs) with either oleate (mono-unsaturated fatty acid) or palmitate (saturated fatty acid) on fatty acid oxidation (FAO) by measuring "1"4C–CO_2 production. We evaluated carnitine palmitoyltransferase (Cpt1b) expression by western blotting and mitochondrial membrane potential by quantitative and qualitative fluorescence analyses using the JC-1 dye. We inhibited the Cpt1b pharmacologically using etomoxir and genetically by knocking down its expression using LentiVector mediated transduction of siRNAs targeting the Cpt1b gene. We found that palmitate had a slower clearance rate from NCMs than oleate, and this was associated with a significant decrease in FAO. This impairment in FAO was not the result of either loss of Cpt1b protein or mitochondrial integrity. Enhancing FAO with either oleate or carnitine was associated with a significant attenuation of palmitate mediated lipotoxicity. In contrast impairing FAO in oleate treated NCMs caused lipotoxicity. Here we demonstrate that a major difference between non-toxic unsaturated fatty acids and toxic saturated fatty acids is there ability to stimulate or inhibit fatty acid oxidation, respectively. This has important implications for diabetic cardiomyopathy since diabetic hearts consistently exhibit elevated lipid accumulation. - Highlights: • Palmitate had a slower clearance rate from NCMs than oleate. • Palmitate caused a significant decrease in fatty acid oxidation in cardiomyocytes. • Impaired FAO was not due to loss of Cpt1b protein or mitochondrial integrity. • Enhancing FAO attenuated

  10. Electrophysiological Characteristics of Embryonic Stem Cell-Derived Cardiomyocytes are Cell Line-Dependent

    Directory of Open Access Journals (Sweden)

    Tobias Hannes

    2015-01-01

    Full Text Available Background: Modelling of cardiac development, physiology and pharmacology by differentiation of embryonic stem cells (ESCs requires comparability of cardiac differentiation between different ESC lines. To investigate whether the outcome of cardiac differentiation is consistent between different ESC lines, we compared electrophysiological properties of ESC-derived cardiomyocytes (ESC-CMs of different murine ESC lines. Methods: Two wild-type (D3 and R1 and two transgenic ESC lines (D3/aPIG44 and CGR8/AMPIGX-7 were differentiated under identical culture conditions. The transgenic cell lines expressed enhanced green fluorescent protein (eGFP and puromycin-N-acetyltransferase under control of the cardiac specific α-myosin heavy chain (αMHC promoter. Action potentials (APs were recorded using sharp electrodes and multielectrode arrays in beating clusters of ESC-CMs. Results: Spontaneous AP frequency and AP duration (APD as well as maximal upstroke velocity differed markedly between unpurified CMs of the four ESC lines. APD heterogeneity was negligible in D3/aPIG44, moderate in D3 and R1 and extensive in CGR8/AMPIGX-7. Interspike intervals calculated from long-term recordings showed a high degree of variability within and between recordings in CGR8/AMPIGX-7, but not in D3/aPIG44. Purification of the αMHC+ population by puromycin treatment posed only minor changes to APD in D3/aPIG44, but significantly shortened APD in CGR8/AMPIGX-7. Conclusion: Electrophysiological properties of ESC-CMs are strongly cell line-dependent and can be influenced by purification of cardiomyocytes by antibiotic selection. Thus, conclusions on cardiac development, physiology and pharmacology derived from single stem cell lines have to be interpreted carefully.

  11. Developmental changes in electrophysiological characteristics of human induced Pluripotent Stem Cell-derived cardiomyocytes

    Science.gov (United States)

    Ben-Ari, Meital; Naor, Shulamit; Zeevi-Levin, Naama; Schick, Revital; Ben Jehuda, Ronen; Reiter, Irina; Raveh, Amit; Grijnevitch, Inna; Barak, Omri; Rosen, Michael R.; Weissman, Amir; Binah, Ofer

    2016-01-01

    Background Previous studies proposed that throughout differentiation of human induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs) only 3 types of action potentials (AP) exist: nodal, atrial and ventricular-like. Objective To investigate whether there are precisely 3 phenotypes or a continuum exists among them, we tested 2 hypotheses: (1) during culture development a cardiac precursor cell is present that - depending on age - can evolve into the 3 phenotypes. (2) The predominant pattern is early prevalence of nodal phenotype, transient appearance of atrial phenotype, evolution to ventricular phenotype, and persistence of transitional phenotypes. Methods To test these hypotheses we: (1) performed FACS analysis of nodal, atrial and ventricular markers; (2) recorded AP from 280 7-to-95 day old iPSC-CMs; (3) analyzed AP characteristics. Results The major findings were: (1) FACS analysis of 30 and 60-day old cultures showed that an iPSC-CMs population shifts from nodal into atrial/ventricular phenotype, while including significant transitional populations.(2) The AP population did not consist of 3 distinct phenotypes; (3) Culture aging was associated with a shift from nodal to ventricular dominance, with a transient (57–70 days) appearance of atrial phenotype; (4) Beat Rate Variability was more prominent in nodal than ventricular cardiomyocytes while If density increased in older cultures. Conclusions From the onset of development the iPSC-CMs population includes nodal, atrial and ventricular AP and a broad spectrum of transitional phenotypes. The most readily distinguishable phenotype is atrial which appears only transiently, yet dominates at 57–70 days of evolution. PMID:27639456

  12. Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Ben-Ari, Meital; Naor, Shulamit; Zeevi-Levin, Naama; Schick, Revital; Ben Jehuda, Ronen; Reiter, Irina; Raveh, Amit; Grijnevitch, Inna; Barak, Omri; Rosen, Michael R; Weissman, Amir; Binah, Ofer

    2016-12-01

    Previous studies proposed that throughout differentiation of human induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs), only 3 types of action potentials (APs) exist: nodal-, atrial-, and ventricular-like. To investigate whether there are precisely 3 phenotypes or a continuum exists among them, we tested 2 hypotheses: (1) During culture development a cardiac precursor cell is present that-depending on age-can evolve into the 3 phenotypes. (2) The predominant pattern is early prevalence of a nodal phenotype, transient appearance of an atrial phenotype, evolution to a ventricular phenotype, and persistence of transitional phenotypes. To test these hypotheses, we (1) performed fluorescence-activated cell sorting analysis of nodal, atrial, and ventricular markers; (2) recorded APs from 280 7- to 95-day-old iPSC-CMs; and (3) analyzed AP characteristics. The major findings were as follows: (1) fluorescence-activated cell sorting analysis of 30- and 60-day-old cultures showed that an iPSC-CMs population shifts from the nodal to the atrial/ventricular phenotype while including significant transitional populations; (2) the AP population did not consist of 3 phenotypes; (3) culture aging was associated with a shift from nodal to ventricular dominance, with a transient (57-70 days) appearance of the atrial phenotype; and (4) beat rate variability was more prominent in nodal than in ventricular cardiomyocytes, while pacemaker current density increased in older cultures. From the onset of development in culture, the iPSC-CMs population includes nodal, atrial, and ventricular APs and a broad spectrum of transitional phenotypes. The most readily distinguishable phenotype is atrial, which appears only transiently yet dominates at 57-70 days of evolution. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  13. L-Type Calcium Channel Inhibition Contributes to the Proarrhythmic Effects of Aconitine in Human Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Jianjun Wu

    Full Text Available Aconitine (ACO is well-known for causing lethal ventricular tachyarrhythmias. While cardiac Na+ channel opening during repolarization has long been documented in animal cardiac myocytes, the cellular effects and mechanism of ACO in human remain unexplored. This study aimed to assess the proarrhythmic effects of ACO in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs. ACO concentration-dependently (0.3 ~ 3.0 μM shortened the action potentials (AP durations (APD in ventricular-like hiPSC-CMs by > 40% and induced delayed after-depolarization. Laser-scanning confocal calcium imaging analysis showed that ACO decreased the duration and amplitude of [Ca2+]i transients and increased in the beating frequencies by over 60%. Moreover, ACO was found to markedly reduce the L-type calcium channel (LTCC currents (ICa,L in hiPSC-CMs associated with a positive-shift of activation and a negative shift of inactivation. ACO failed to alter the peak and late Na+ currents (INa in hiPSC-CMs while it drastically increased the late INa in Guinea-pig ventricular myocytes associated with enhanced activation/delayed inactivation of INa at -55 mV~ -85 mV. Further, the effects of ACO on ICa,L, INa and the rapid delayed rectifier potassium current (Ikr were validated in heterologous expression systems by automated voltage-clamping assays and a moderate suppression of Ikr was observed in addition to concentration-dependent ICa,L inhibition. Lastly, increased beating frequency, decreased Ca2+ wave and shortened field potential duration were recorded from hiPSC-CMs by microelectrode arrays assay. In summary, our data demonstrated that LTCC inhibition could play a main role in the proarrhythmic action of ACO in human cardiomyocytes.

  14. Aldosterone down-regulates the slowly activated delayed rectifier potassium current in adult guinea pig cardiomyocytes.

    Science.gov (United States)

    Lv, Yankun; Bai, Song; Zhang, Hua; Zhang, Hongxue; Meng, Jing; Li, Li; Xu, Yanfang

    2015-12-01

    There is emerging evidence that the mineralocorticoid hormone aldosterone is associated with arrhythmias in cardiovascular disease. However, the effect of aldosterone on the slowly activated delayed rectifier potassium current (IK s ) remains poorly understood. The present study was designed to investigate the modulation of IK s by aldosterone. Adult guinea pigs were treated with aldosterone for 28 days via osmotic pumps. Standard glass microelectrode recordings and whole-cell patch-clamp techniques were used to record action potentials in papillary muscles and IK s in ventricular cardiomyocytes. The aldosterone-treated animals exhibited a prolongation of the QT interval and action potential duration with a higher incidence of early afterdepolarizations. Patch-clamp recordings showed a significant down-regulation of IK s density in the ventricular myocytes of these treated animals. These aldosterone-induced electrophysiological changes were fully prevented by a combined treatment with spironolactone, a mineralocorticoid receptor (MR) antagonist. In addition, in in vitro cultured ventricular cardiomyocytes, treatment with aldosterone (sustained exposure for 24 h) decreased the IK s density in a concentration-dependent manner. Furthermore, a significant corresponding reduction in the mRNA/protein expression of IKs channel pore and auxiliary subunits, KCNQ1 and KCNE1 was detected in ventricular tissue from the aldosterone-treated animals. Aldosterone down-regulates IK s by inhibiting the expression of KCNQ1 and KCNE1, thus delaying the ventricular repolarization. These results provide new insights into the mechanism underlying K(+) channel remodelling in heart disease and may explain the highly beneficial effects of MR antagonists in HF. © 2015 The British Pharmacological Society.

  15. The Chinese Herb Yi-Qi-Huo-Xue Protects Cardiomyocyte Function in Diabetic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Xiangsheng Wang

    2018-01-01

    Full Text Available Aims. To study the effect of the Chinese herb Yi-qi-huo-xue on cardiomyopathy in diabetic rats. Methods. Rats were fed a high fat and high glucose diet and injected with 50 ml/kg streptozotocin (STZ to induce diabetic cardiomyopathy (DCM, followed by treatment with Yi-qi-huo-xue for 4 weeks. We measured the rats’ heart weight index, observed the myocardial morphology using hematoxylin eosin (HE staining, and determined the content of collagen types I and III in the myocardium using enzyme-linked immunosorbent assay (ELISA. We determined Bcl-2, Bax, and P53 protein expression by Western blot analysis and the cardiomyocyte apoptosis rate via a flow cytometry assay. Results. Compared with the rats in the control group, the diabetic rats gained weight and had increased blood sugar levels, an enhanced heart weight index, and increased myocardial pathophysiological damage. There was a decrease in their Bcl-2 expression, and their Bax and P53 expression increased. The Bcl-2/Bax ratio was enhanced, and there was an increase in the content of collagen types I and III in the myocardium. After treatment with Yi-qi-huo-xue, all levels listed above returned to normal. Conclusion. The Chinese herb Yi-qi-huo-xue degraded the myocardial interstitial collagen types I and III to protect the myocardium of the diabetic rats, thus delaying the role of myocardial fibrosis. Yi-qi-huo-xue could play an important role in protecting the myocardium of DCM rats by enhancing the expression of the Bcl-2 protein, inhibiting the expression of the Bax and P53 proteins, increasing the ratio of Bcl-2/Bax, and inhibiting the apoptosis of cardiomyocytes.

  16. High-dose benfotiamine rescues cardiomyocyte contractile dysfunction in streptozotocin-induced diabetes mellitus.

    Science.gov (United States)

    Ceylan-Isik, Asli F; Wu, Shan; Li, Qun; Li, Shi-Yan; Ren, Jun

    2006-01-01

    Diabetic cardiomyopathy is characterized by cardiac dysfunction. This study was designed to examine the effect of benfotiamine, a lipophilic derivative of thiamine, on streptozotocin (STZ)-induced cardiac contractile dysfunction in mouse cardiomyocytes. Adult male FVB mice were made diabetic with a single injection of STZ (200 mg/kg ip). Fourteen days later, control and diabetic (fasting plasma glucose > 13.9 mM) mice were put on benfotiamine therapy (100 mg.kg(-1).day(-1) ip) for another 14 days. Mechanical and intracellular Ca2+ properties were evaluated in left ventricular myocytes using an IonOptix MyoCam system. The following indexes were evaluated: peak shortening (PS), time to PS (TPS), time to 90% relengthening (TR90), maximal velocity of shortening/relengthening, resting and rise of intracellular Ca2+ in response to electrical stimulus, sarcoplasmic reticulum (SR) Ca2+ load, and intracellular Ca2+ decay rate (tau). Two- or four-week STZ treatment led to hyperglycemia, prolonged TPS and TR90, reduced SR Ca2+ load, elevated resting intracellular Ca2+ level and prolonged tau associated with normal PS, maximal velocity of shortening/relengthening, and intracellular Ca2+ rise in response to electrical stimulus. Benfotiamine treatment abolished prolongation in TPS, TR90, and tau, as well as reduction in SR Ca2+ load without affecting hyperglycemia and elevated resting intracellular Ca2+. Diabetes triggered oxidative stress, measured by GSH-to-GSSG ratio and formation of advanced glycation end product (AGE) in the hearts. Benfotiamine treatment alleviated oxidative stress without affecting AGE or protein carbonyl formation. Collectively, our results indicated that benfotiamine may rescue STZ-induced cardiomyocyte dysfunction but not AGE formation in short-term diabetes.

  17. Functional cardiotoxicity assessment of cosmetic compounds using human-induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Chaudhari, Umesh; Nemade, Harshal; Sureshkumar, Poornima; Vinken, Mathieu; Ates, Gamze; Rogiers, Vera; Hescheler, Jürgen; Hengstler, Jan Georg; Sachinidis, Agapios

    2018-01-01

    There is a large demand of a human relevant in vitro test system suitable for assessing the cardiotoxic potential of cosmetic ingredients and other chemicals. Using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we have already established an in vitro cardiotoxicity assay and identified genomic biomarkers of anthracycline-induced cardiotoxicity in our previous work. Here, five cosmetic ingredients were studied by the new hiPSC-CMs test; kojic acid (KJA), triclosan (TS), triclocarban (TCC), 2,7-naphthalenediol (NPT), and basic red 51 (BR51) based on cytotoxicity as well as ATP assays, beating rate, and genomic biomarkers to determine the lowest observed effect concentration (LOEC) and no observed effect concentration (NOEC). The LOEC for beating rate were 400, 10, 3, >400, and 3 µM for KJA, TS, TCC, NPT, and BR51, respectively. The corresponding concentrations for cytotoxicity or ATP depletion were similar, with the exception of TS and TCC, where the cardiomyocyte-beating assay showed positive results at non-cytotoxic concentrations. Functional analysis also showed that the individual compounds caused different effects on hiPSC-CMs. While exposure to KJA, TS, TCC, and BR51 induced significant arrhythmic beating, NPT slightly decreased cell viability, but did not influence beating. Gene expression studies showed that TS and NPT caused down-regulation of cytoskeletal and cardiac ion homeostasis genes. Moreover, TS and NPT deregulated genomic biomarkers known to be affected also by anthracyclines. The present study demonstrates that hiPSC-CMs can be used to determine LOECs and NOECs in vitro, which can be compared to human blood concentrations to determine margins of exposure. Our in vitro assay, which so far has been tested with several anthracyclines and cosmetics, still requires validation by larger numbers of positive and negative controls, before it can be recommended for routine analysis.

  18. High LET radiation shows no major cellular and functional effects on primary cardiomyocytes in vitro

    Science.gov (United States)

    Heselich, Anja; Frieß, Johannes L.; Ritter, Sylvia; Benz, Naja P.; Layer, Paul G.; Thielemann, Christiane

    2018-02-01

    It is well known that ionizing radiation causes adverse effects on various mammalian tissues. However, there is little information on the biological effects of heavy ion radiation on the heart. In order to fill this gap, we systematically examined DNA-damage induction and repair, as well as proliferation and apoptosis in avian cardiomyocyte cultures irradiated with heavy ions such as titanium and iron, relevant for manned space-flight, and carbon ions, as used for radiotherapy. Further, and to our knowledge for the first time, we analyzed the effect of heavy ion radiation on the electrophysiology of primary cardiomyocytes derived from chicken embryos using the non-invasive microelectrode array (MEA) technology. As electrophysiological endpoints beat rate and field action potential duration were analyzed. The cultures clearly exhibited the capacity to repair induced DNA damage almost completely within 24 h, even at doses of 7 Gy, and almost completely recovered from radiation-induced changes in proliferative behavior. Interestingly, no significant effects on apoptosis could be detected. Especially the functionality of primary cardiac cells exhibited a surprisingly high robustness against heavy ion radiation, even at doses of up to 7 Gy. In contrast to our previous study with X-rays the beat rate remained more or less unaffected after heavy ion radiation, independently of beam quality. The only change we could observe was an increase of the field action potential duration of up to 30% after titanium irradiation, diminishin