Sample records for cardiomyocytes nuclear size

  1. Cold stress effects on cardiomyocytes nuclear size in: light microscopic evaluation Efeitos do estresse pelo frio sobre o tamanho nuclear do cardiomiócito em ratos: avaliação por microscopia de luz

    Directory of Open Access Journals (Sweden)

    Adriano Meneghini


    Full Text Available INTRODUCTION: Total body induced hypothermia and myocardial cooling are effective methods regarding myocardial protection during heart surgery and ischemia. It is described in previous studies that extreme low temperature exposure causes mitochondrial cristae and myofilament disarrangement in cardiomyocytes, however, no investigation has analyzed the effects of cold stress on nuclear size of cardiomyocytes. OBJECTIVES: To evaluate the effects of acute cold stress exposure on the nuclear size of cardiomyocytes in rats. METHODS: The experimental study procedures were performed on 300-310g adult male Wistar rats. Rats (n=20 were divided into two groups: 1 Control (CON and; 2 Induced hypothermic (IH group. Animals of IH group were exposed during 4 hours once at a controlled temperature of - 8ºC. It was performed histological analysis of liver and adrenal gland to examine the stress condition of animals. Cardiomyocytes nucleus size were examined by three independent investigators with the same and standardized criteria and analyzed by Bartko's intra-class correlation coefficient (R>0.75 = positive concordance. Student's t test was applied. The significance level was set at PINTRODUÇÃO: Hipotermia corporal induzida e resfriamento do miocárdio são métodos efetivos em relação à proteção domiocárdio durante cirurgias cardíacas e isquemia. É descrito na literatura que a exposição a temperaturas extremamente baixas causa comprometimentos de miofilamentos e de cristas mitocondriais em cardiomiócitos, entretanto, nenhum estudo analisou os efeitos do estresse pelo frio no tamanho do núcleo dos cardiomiócios. OBJETIVOS: Analisar os efeitos do estresse agudo pelo frio sobre o tamanho do núcleo dos cardiomiócitos. MÉTODOS: O estudo foi realizado em ratos Wistar adultos, pesando 300-310g (n=20. Os ratos foram divididos em dois grupos: 1 Controle (CON e; 2 Hipotermia induzido (IH. Os animais do grupo IH foram expostos a uma temperatura

  2. Three-dimensional direct measurement of cardiomyocyte volume, nuclearity, and ploidy in thick histological sections. (United States)

    Bensley, Jonathan Guy; De Matteo, Robert; Harding, Richard; Black, Mary Jane


    Quantitative assessment of myocardial development and disease requires accurate measurement of cardiomyocyte volume, nuclearity (nuclei per cell), and ploidy (genome copies per cell). Current methods require enzymatically isolating cells, which excludes the use of archived tissue, or serial sectioning. We describe a method of analysis that permits the direct simultaneous measurement of cardiomyocyte volume, nuclearity, and ploidy in thick histological sections. To demonstrate the utility of our technique, heart tissue was obtained from four species (rat, mouse, rabbit, sheep) at up to three life stages: prenatal, weaning and adulthood. Thick (40 μm) paraffin sections were stained with Wheat Germ Agglutinin-Alexa Fluor 488 to visualise cell membranes, and DAPI (4',6-diamidino-2-phenylindole) to visualise nuclei and measure ploidy. Previous methods have been restricted to thin sections (2-10 μm) and offer an incomplete picture of cardiomyocytes. Using confocal microscopy and three-dimensional image analysis software (Imaris Version 8.2, Bitplane AG, Switzerland), cardiomyocyte volume, nuclearity, and ploidy were measured. This method of staining and analysis of cardiomyocytes enables accurate morphometric measurements in thick histological sections, thus unlocking the potential of archived tissue. Our novel time-efficient method permits the entire cardiomyocyte to be visualised directly in 3D, eliminating the need for precise alignment of serial sections.

  3. Three-dimensional direct measurement of cardiomyocyte volume, nuclearity, and ploidy in thick histological sections (United States)

    Bensley, Jonathan Guy; de Matteo, Robert; Harding, Richard; Black, Mary Jane


    Quantitative assessment of myocardial development and disease requires accurate measurement of cardiomyocyte volume, nuclearity (nuclei per cell), and ploidy (genome copies per cell). Current methods require enzymatically isolating cells, which excludes the use of archived tissue, or serial sectioning. We describe a method of analysis that permits the direct simultaneous measurement of cardiomyocyte volume, nuclearity, and ploidy in thick histological sections. To demonstrate the utility of our technique, heart tissue was obtained from four species (rat, mouse, rabbit, sheep) at up to three life stages: prenatal, weaning and adulthood. Thick (40 μm) paraffin sections were stained with Wheat Germ Agglutinin-Alexa Fluor 488 to visualise cell membranes, and DAPI (4‧,6-diamidino-2-phenylindole) to visualise nuclei and measure ploidy. Previous methods have been restricted to thin sections (2–10 μm) and offer an incomplete picture of cardiomyocytes. Using confocal microscopy and three-dimensional image analysis software (Imaris Version 8.2, Bitplane AG, Switzerland), cardiomyocyte volume, nuclearity, and ploidy were measured. This method of staining and analysis of cardiomyocytes enables accurate morphometric measurements in thick histological sections, thus unlocking the potential of archived tissue. Our novel time-efficient method permits the entire cardiomyocyte to be visualised directly in 3D, eliminating the need for precise alignment of serial sections.

  4. Regulation of Insulin-Like Growth Factor Signaling by Yap Governs Cardiomyocyte Proliferation and Embryonic Heart Size (United States)

    Xin, Mei; Kim, Yuri; Sutherland, Lillian B.; Qi, Xiaoxia; McAnally, John; Schwartz, Robert J.; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N.


    The Hippo signaling pathway regulates growth of the heart and other tissues. Hippo pathway kinases influence the activity of various targets, including the transcriptional coactivator Yap, but the specific role of Yap in heart growth has not been investigated. We show that Yap is necessary and sufficient for embryonic cardiac growth in mice. Deletion of Yap in the embryonic mouse heart impeded cardiomyocyte proliferation, causing myocardial hypoplasia and lethality at embryonic stage 10.5. Conversely, forced expression of a constitutively active form of Yap in the embryonic heart increased cardiomyocyte number and heart size. Yap activated the insulin-like growth factor (IGF) signaling pathway in cardiomyocytes, resulting in inactivation of glycogen synthase kinase 3β, which led to increased abundance of β-catenin, a positive regulator of cardiac growth. Our results point to Yap as a critical downstream effector of the Hippo pathway in the control of cardiomyocyte proliferation and a nexus for coupling the IGF, Wnt, and Hippo signaling pathways with the developmental program for heart growth. PMID:22028467

  5. Regression of Copper-Deficient Heart Hypertrophy: Reduction in the Size of Hypertrophic Cardiomyocytes (United States)

    Dietary copper deficiency causes cardiac hypertrophy and its transition to heart failure in a mouse model. Copper repletion results in a rapid regression of cardiac hypertrophy and prevention of heart failure. The present study was undertaken to understand dynamic changes of cardiomyocytes in the hy...

  6. Recent advances in understanding nuclear size and shape. (United States)

    Mukherjee, Richik N; Chen, Pan; Levy, Daniel L


    Size and shape are important aspects of nuclear structure. While normal cells maintain nuclear size within a defined range, altered nuclear size and shape are associated with a variety of diseases. It is unknown if altered nuclear morphology contributes to pathology, and answering this question requires a better understanding of the mechanisms that control nuclear size and shape. In this review, we discuss recent advances in our understanding of the mechanisms that regulate nuclear morphology, focusing on nucleocytoplasmic transport, nuclear lamins, the endoplasmic reticulum, the cell cycle, and potential links between nuclear size and size regulation of other organelles. We then discuss the functional significance of nuclear morphology in the context of early embryonic development. Looking toward the future, we review new experimental approaches that promise to provide new insights into mechanisms of nuclear size control, in particular microfluidic-based technologies, and discuss how altered nuclear morphology might impact chromatin organization and physiology of diseased cells.

  7. Overexpression of glutaredoxin protects cardiomyocytes against nitric oxide-induced apoptosis with suppressing the S-nitrosylation of proteins and nuclear translocation of GAPDH

    Energy Technology Data Exchange (ETDEWEB)

    Inadomi, Chiaki, E-mail: [Department of Anesthesiology, Nagasaki University School of Medicine, Nagasaki 852-8501 (Japan); Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Murata, Hiroaki [Department of Anesthesiology, Nagasaki University School of Medicine, Nagasaki 852-8501 (Japan); Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Ihara, Yoshito [Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Department of Biochemistry, Wakayama Medical University, Wakayama 641-8509 (Japan); Goto, Shinji; Urata, Yoshishige [Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Yodoi, Junji [Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507 (Japan); Kondo, Takahito [Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Sumikawa, Koji [Department of Anesthesiology, Nagasaki University School of Medicine, Nagasaki 852-8501 (Japan)


    Highlights: Black-Right-Pointing-Pointer GRX1 overexpression protects myocardiac H9c2 cells against NO-induced apoptosis. Black-Right-Pointing-Pointer NO-induced nuclear translocation of GAPDH is suppressed in GRX overexpressors. Black-Right-Pointing-Pointer Oxidation of GAPDH by NO is less in GRX overexpressors than in controls. -- Abstract: There is increasing evidence demonstrating that glutaredoxin 1 (GRX1), a cytosolic enzyme responsible for the catalysis of protein deglutathionylation, plays distinct roles in inflammation and apoptosis by inducing changes in the cellular redox system. In this study, we investigated whether and how the overexpression of GRX1 protects cardiomyocytes against nitric oxide (NO)-induced apoptosis. Cardiomyocytes (H9c2 cells) were transfected with the expression vector for mouse GRX1 cDNA, and mock-transfected cells were used as a control. Compared with the mock-transfected cells, the GRX1-transfected cells were more resistant to NO-induced apoptosis. Stimulation with NO significantly increased the nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a pro-apoptotic protein, in the mock-transfected cells, but did not change GAPDH localization in the GRX1-transfected cells. Furthermore, we found that NO stimulation clearly induced the oxidative modification of GAPDH in the mock-transfected cells, whereas less modification of GAPDH was observed in the GRX1-transfected cells. These data suggest that the overexpression of GRX1 could protect cardiomyocytes against NO-induced apoptosis, likely through the inhibition of the oxidative modification and the nuclear translocation of GAPDH.

  8. Identifying panaxynol, a natural activator of nuclear factor erythroid-2 related factor 2 (Nrf2) from American ginseng as a suppressor of inflamed macrophage-induced cardiomyocyte hypertrophy (United States)

    Qu, Chen; Li, Bin; Lai, Yimu; Li, Hechu; Windust, Anthony; Hofseth, Lorne J.; Nagarkatti, Mitzi; Nagarkatti, Prakash; Wang, Xing Li; Tang, Dongqi; Janicki, Joseph S.; Tian, Xingsong; Cui, Taixing


    Ethnopharmacological relevance American ginseng is capable of ameliorating cardiac dysfunction and activating Nrf2, a master regulator of antioxidant defense, in the heart. This study was designed to isolate compounds from American ginseng and to determine those responsible for the Nrf2-mediated resolution of inflamed macrophage-induced cardiomyocyte hypertrophy. Materials and methods A standardized crude extract of American ginseng was supplied by the National Research Council of Canada, Institute for National Measurement Standards. A bioassay-based fractionization of American ginseng was performed to identify the putative substances which could activate Nrf2-mediated suppression of pro-inflammatory cytokine expression in macrophages and macrophage-mediated pro-hypertrophic growth in cardiomyocytes. Results A hexane fraction of an anti-inflammatory crude extract of American ginseng was found to be most effective in suppressing the inflammatory responses in macrophages. Preparative, reverse-phase HPLC and a comparative analysis by analytical scale LC–UV/MS revealed the hexane fraction contains predominantly C17 polyacetylenes and linolenic acid. Panaxynol, one of the major polyacetylenes, was found to be a potent Nrf2 activator. Panaxynol posttranscriptionally activated Nrf2 by inhibiting Kelch-like ECH-associated protein (Keap) 1-mediated degradation without affecting the binding of Keap1 and Nrf2. Moreover, panaxynol suppressed a selected set of cytokine expression via the activation of Nrf2 while minimally regulating nuclear factor-kappa B (NF-κB)-mediated cytokine expression in macrophages. It also dramatically inhibited the inflamed macrophage-mediated cardiomyocyte death and hypertrophy by activating Nrf2 in macrophages. Conclusions These results demonstrate that American ginseng-derived panaxynol is a specific Nrf2 activator and panaxynol-activated Nrf2 signaling is at least partly responsible for American ginseng-induced health benefit in the heart. PMID

  9. Cobalt protoporphyrin pretreatment protects human embryonic stem cell-derived cardiomyocytes from hypoxia/reoxygenation injury in vitro and increases graft size and vascularization in vivo. (United States)

    Luo, Jun; Weaver, Matthew S; Cao, Baohong; Dennis, James E; Van Biber, Benjamin; Laflamme, Michael A; Allen, Margaret D


    Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) can regenerate infarcted myocardium. However, when implanted into acutely infarcted hearts, few cells survive the first week postimplant. To improve early graft survival, hESC-CMs were pretreated with cobalt protoporphyrin (CoPP), a transcriptional activator of cytoprotective heme oxygenase-1 (HO-1). When hESC-CMs were challenged with an in vitro hypoxia/reoxygenation injury, mimicking cell transplantation into an ischemic site, survival was significantly greater among cells pretreated with CoPP versus phosphate-buffered saline (PBS)-pretreated controls. Compared with PBS-pretreated cells, CoPP-pretreated hESC-CM preparations exhibited higher levels of HO-1 expression, Akt phosphorylation, and vascular endothelial growth factor production, with reduced apoptosis, and a 30% decrease in intracellular reactive oxygen species. For in vivo translation, 1 × 10(7) hESC-CMs were pretreated ex vivo with CoPP or PBS and then injected intramyocardially into rat hearts immediately following acute infarction (permanent coronary ligation). At 1 week, hESC-CM content, assessed by quantitative polymerase chain reaction for human Alu sequences, was 17-fold higher in hearts receiving CoPP- than PBS-pretreated cells. On histomorphometry, cardiomyocyte graft size was 2.6-fold larger in hearts receiving CoPP- than PBS-pretreated cells, occupying up to 12% of the ventricular area. Vascular density of host-perfused human-derived capillaries was significantly greater in grafts composed of CoPP- than PBS-pretreated cells. Taken together, these experiments demonstrate that ex vivo pretreatment of hESC-CMs with a single dose of CoPP before intramyocardial implantation more than doubled resulting graft size and improved early graft vascularization in acutely infarcted hearts. These findings open the door for delivery of these, or other, stem cells during acute interventional therapy following myocardial infarction or ischemia.

  10. Cardiomyocyte­-specific expression of the nuclear matrix protein, CIZ1, stimulates production of mono-nucleated cells with an extended window of proliferation in the postnatal mouse heart

    Directory of Open Access Journals (Sweden)

    Sumia A. Bageghni


    Full Text Available Myocardial injury in mammals leads to heart failure through pathological cardiac remodelling that includes hypertrophy, fibrosis and ventricular dilatation. Central to this is inability of the mammalian cardiomyocyte to self-renew due to entering a quiescent state after birth. Modulation of the cardiomyocyte cell-cycle after injury is therefore a target mechanism to limit damage and potentiate repair and regeneration. Here, we show that cardiomyocyte-specific over-expression of the nuclear-matrix­-associated DNA replication protein, CIZ1, extends their window of proliferation during cardiac development, delaying onset of terminal differentiation without compromising function. CIZ1-expressing hearts are enlarged, but the cardiomyocytes are smaller with an overall increase in number, correlating with increased DNA replication after birth and retention of an increased proportion of mono-nucleated cardiomyocytes into adulthood. Furthermore, these CIZ1 induced changes in the heart reduce the impact of myocardial injury, identifying CIZ1 as a putative therapeutic target for cardiac repair.

  11. Evidence for Cardiomyocyte Renewal in Humans

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, O; Bhardwaj, R D; Bernard, S; Zdunek, S; Barnabe-Heider, F; Walsh, S; Zupicich, J; Alkass, K; Buchholz, B A; Druid, H; Jovinge, S; Frisen, J


    It has been difficult to establish whether we are limited to the heart muscle cells we are born with or if cardiomyocytes are generated also later in life. We have taken advantage of the integration of {sup 14}C, generated by nuclear bomb tests during the Cold War, into DNA to establish the age of cardiomyocytes in humans. We report that cardiomyocytes renew, with a gradual decrease from 1% turning over annually at the age of 20 to 0.3% at the age of 75. Less than 50% of cardiomyocytes are exchanged during a normal lifespan. The capacity to generate cardiomyocytes in the adult human heart suggests that it may be rational to work towards the development of therapeutic strategies aiming to stimulate this process in cardiac pathologies.

  12. Finite size effects in Neutron Star and Nuclear matter simulations

    CERN Document Server

    Molinelli, P A Giménez


    In this work we study molecular dynamics simulations of symmetric nuclear matter using a semi-classical nucleon interaction model. We show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the ``nuclear pasta'' phases expected in Neutron Star Matter simulations, but shaped by artificial aspects of the simulations. We explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. We find that different cells may yield different solutions for the same physical conditions (i.e. density and temperature). The particular shape of the solution at a given density can be predicted analytically by energy minimization. We also show that even if this behavior is due to finite size effects, it does not mean that it vanishes for very large systems and it actually is independent of the system size: The system size sets the only characteristic length scale for the inhomogeneitie...

  13. PCBs alter gene expression of nuclear transcription factors and other heart-specific genes in cultures of primary cardiomyocytes: possible implications for cardiotoxicity. (United States)

    Borlak, J; Thum, T


    1. Polychlorinated biphenyls (PCBs) are well-known environmental pollutants that bioaccumulate mainly in the fatty tissue of animals and humans. Although contamination occurs primarily via the food chain, waste combustion leads to airborne PCBs. From epidemiological studies, there is substantial evidence that cardiovascular disease is linked to air pollution, but little is known about the underlying molecular events. 2. We investigated the effects of Aroclor 1254, a complex mixture of >80 PCB isomers and congeners, on the expression of nuclear transcription factors (GATA-4, Nkx-2.5, MEF-2c, OCT-1) and of downstream target genes (atrial and brain natriuretic peptide, alpha- and beta-myosin heavy chain, alpha-cardiac and alpha-skeletal actin), which play an important role in cardiac biology. 3. We treated cultures of primary cardiomyocytes of adult rats with Aroclor 1254 (10.0 micro M) and found significant induction of the transcription factor genes GATA-4 and MEF-2c and of genes regulated by these factors, i.e. atrial natriuretic peptide, brain-type natriuretic peptide, alpha- and beta-myosin heavy chain, and skeletal alpha actin. 4. We have shown PCBs to modulate expression of genes coding for programmes of cellular differentiation and stress (e.g. atrial natriuretic peptide, brain-type natriuretic peptide) and these alterations may be important in the increase of cardiovascular disease in polluted areas.

  14. Finite size effects in neutron star and nuclear matter simulations

    Energy Technology Data Exchange (ETDEWEB)

    Giménez Molinelli, P.A., E-mail:; Dorso, C.O.


    In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called “finite size effects”, unavoidable in this kind of simulations, and to understand what they actually affect. To do so, we explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. For nuclear matter simulations we show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the “nuclear pasta” phases expected in neutron star matter simulations, but only one structure per cell and shaped by specific artificial aspects of the simulations—for the same physical conditions (i.e. number density and temperature) different cells yield different solutions. The particular shape of the solution at low enough temperature and a given density can be predicted analytically by surface minimization. We also show that even if this behavior is due to the imposition of periodic boundary conditions on finite systems, this does not mean that it vanishes for very large systems, and it is actually independent of the system size. We conclude that, for nuclear matter simulations, the cells' size sets the only characteristic length scale for the inhomogeneities, and the geometry of the periodic cell determines the shape of those inhomogeneities. To model neutron star matter we add a screened Coulomb interaction between protons, and perform simulations in the three cell geometries. Our simulations indeed produce the well known nuclear pasta, with (in most cases) several structures per cell. However, we find that for systems not too large results are affected by finite size in different ways depending on the geometry of the cell. In particular, at the same certain physical conditions and system size, the hexagonal prism yields a

  15. Chitosan Nanoparticles for Nuclear Targeting: The Effect of Nanoparticle Size and Nuclear Localization Sequence Density. (United States)

    Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf


    Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High

  16. Sample size considerations for clinical research studies in nuclear cardiology. (United States)

    Chiuzan, Cody; West, Erin A; Duong, Jimmy; Cheung, Ken Y K; Einstein, Andrew J


    Sample size calculation is an important element of research design that investigators need to consider in the planning stage of the study. Funding agencies and research review panels request a power analysis, for example, to determine the minimum number of subjects needed for an experiment to be informative. Calculating the right sample size is crucial to gaining accurate information and ensures that research resources are used efficiently and ethically. The simple question "How many subjects do I need?" does not always have a simple answer. Before calculating the sample size requirements, a researcher must address several aspects, such as purpose of the research (descriptive or comparative), type of samples (one or more groups), and data being collected (continuous or categorical). In this article, we describe some of the most frequent methods for calculating the sample size with examples from nuclear cardiology research, including for t tests, analysis of variance (ANOVA), non-parametric tests, correlation, Chi-squared tests, and survival analysis. For the ease of implementation, several examples are also illustrated via user-friendly free statistical software.

  17. Vesicle Size Distribution as a Novel Nuclear Forensics Tool (United States)

    Simonetti, Antonio


    The first nuclear bomb detonation on Earth involved a plutonium implosion-type device exploded at the Trinity test site (33°40′38.28″N, 106°28′31.44″W), White Sands Proving Grounds, near Alamogordo, New Mexico. Melting and subsequent quenching of the local arkosic sand produced glassy material, designated “Trinitite”. In cross section, Trinitite comprises a thin (1–2 mm), primarily glassy surface above a lower zone (1–2 cm) of mixed melt and mineral fragments from the precursor sand. Multiple hypotheses have been put forward to explain these well-documented but heterogeneous textures. This study reports the first quantitative textural analysis of vesicles in Trinitite to constrain their physical and thermal history. Vesicle morphology and size distributions confirm the upper, glassy surface records a distinct processing history from the lower region, that is useful in determining the original sample surface orientation. Specifically, the glassy layer has lower vesicle density, with larger sizes and more rounded population in cross-section. This vertical stratigraphy is attributed to a two-stage evolution of Trinitite glass from quench cooling of the upper layer followed by prolonged heating of the subsurface. Defining the physical regime of post-melting processes constrains the potential for surface mixing and vesicle formation in a post-detonation environment. PMID:27658210

  18. Economy, Speed and Size Matter: Evolutionary Forces Driving Nuclear Genome Miniaturization and Expansion




    • Background Nuclear genome size varies 300 000-fold, whereas transcriptome size varies merely 17-fold. In the largest genomes nearly all DNA is non-genic secondary DNA, mostly intergenic but also within introns. There is now compelling evidence that secondary DNA is functional, i.e. positively selected by organismal selection, not the purely neutral or ‘selfish’ outcome of mutation pressure. The skeletal DNA theory argued that nuclear volumes are genetically determined primarily by nuclear D...

  19. The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution. (United States)

    Baniaga, Anthony E; Arrigo, Nils; Barker, Michael S


    The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome.

  20. Fractalkine depresses cardiomyocyte contractility.

    Directory of Open Access Journals (Sweden)

    David Taube

    Full Text Available BACKGROUND: Our laboratory reported that male mice with cardiomyocyte-selective knockout of the prostaglandin E2 EP4 receptor sub-type (EP4 KO exhibit reduced cardiac function. Gene array on left ventricles (LV showed increased fractalkine, a chemokine implicated in heart failure. We therefore hypothesized that fractalkine is regulated by PGE2 and contributes to depressed contractility via alterations in intracellular calcium. METHODS: Fractalkine was measured in LV of 28-32 week old male EP4 KO and wild type controls (WT by ELISA and the effect of PGE2 on fractalkine secretion was measured in cultured neonatal cardiomyocytes and fibroblasts. The effect of fractalkine on contractility and intracellular calcium was determined in Fura-2 AM-loaded, electrical field-paced cardiomyocytes. Cardiomyocytes (AVM from male C57Bl/6 mice were treated with fractalkine and responses measured under basal conditions and after isoproterenol (Iso stimulation. RESULTS: LV fractalkine was increased in EP4 KO mice but surprisingly, PGE2 regulated fractalkine secretion only in fibroblasts. Fractalkine treatment of AVM decreased both the speed of contraction and relaxation under basal conditions and after Iso stimulation. Despite reducing contractility after Iso stimulation, fractalkine increased the Ca(2+ transient amplitude but decreased phosphorylation of cardiac troponin I, suggesting direct effects on the contractile machinery. CONCLUSIONS: Fractalkine depresses myocyte contractility by mechanisms downstream of intracellular calcium.

  1. Age-related changes in lamin A/C expression in cardiomyocytes. (United States)

    Afilalo, Jonathan; Sebag, Igal A; Chalifour, Lorraine E; Rivas, Daniel; Akter, Rahima; Sharma, Kamal; Duque, Gustavo


    Lamin A and C (A/C) are type V intermediate filaments that form the nuclear lamina. Lamin A/C mutations lead to reduced expression of lamin A/C and diverse phenotypes such as familial cardiomyopathies and accelerated aging syndromes. Normal aging is associated with reduced expression of lamin A/C in osteoblasts and dermal fibroblasts but has never been assessed in cardiomyocytes. Our objective was to compare the expression of lamin A/C in cardiomyocytes of old (24 mo) versus young (4 mo) C57Bl/6J mice using a well-validated mouse model of aging. Lamin B1 was used as a control. Immunohistochemical and immunofluorescence analyses showed reduced expression of lamin A/C in cardiomyocyte nuclei of old mice (proportion of nuclei expressing lamin A/C, 9% vs. 62%, P < 0.001). Lamin A/C distribution was scattered peripherally and perinuclear in old mice, whereas it was homogeneous throughout the nuclei in young mice. Western blot analyses confirmed reduced expression of lamin A/C in nuclear extracts of old mice (ratio of lamin A/C to B1, 0.6 vs. 1.2, P < 0.01). Echocardiographic studies showed increased left ventricular wall thickness with preserved cavity size (concentric remodeling), increased left ventricular mass, and a slight reduction in fractional shortening in old mice. This is the first study to show that normal aging is associated with reduced expression and altered distribution of lamin A/C in nuclei of cardiomyocytes.

  2. Newborn hypoxia/anoxia inhibits cardiomyocyte proliferation and decreases cardiomyocyte endowment in the developing heart: role of endothelin-1.

    Directory of Open Access Journals (Sweden)

    Alexandra N Paradis

    Full Text Available In the developing heart, cardiomyocytes undergo terminal differentiation during a critical window around birth. Hypoxia is a major stress to preterm infants, yet its effect on the development and maturation of the heart remains unknown. We tested the hypothesis in a rat model that newborn anoxia accelerates cardiomyocyte terminal differentiation and results in reduced cardiomyocyte endowment in the developing heart via an endothelin-1-dependent mechanism. Newborn rats were exposed to anoxia twice daily from postnatal day 1 to 3, and hearts were isolated and studied at postnatal day 4 (P4, 7 (P7, and 14 (P14. Anoxia significantly increased HIF-1α protein expression and pre-proET-1 mRNA abundance in P4 neonatal hearts. Cardiomyocyte proliferation was significantly decreased by anoxia in P4 and P7, resulting in a significant reduction of cardiomyocyte number per heart weight in the P14 neonates. Furthermore, the expression of cyclin D2 was significantly decreased due to anoxia, while p27 expression was increased. Anoxia has no significant effect on cardiomyocyte binucleation or myocyte size. Consistently, prenatal hypoxia significantly decreased cardiomyocyte proliferation but had no effect on binucleation in the fetal heart. Newborn administration of PD156707, an ETA-receptor antagonist, significantly increased cardiomyocyte proliferation at P4 and cell size at P7, resulting in an increase in the heart to body weight ratio in P7 neonates. In addition, PD156707 abrogated the anoxia-mediated effects. The results suggest that hypoxia and anoxia via activation of endothelin-1 at the critical window of heart development inhibits cardiomyocyte proliferation and decreases myocyte endowment in the developing heart, which may negatively impact cardiac function later in life.

  3. Passive permeability and effective pore size of HeLa cell nuclear membranes. (United States)

    Samudram, Arunkarthick; Mangalassery, Bijeesh M; Kowshik, Meenal; Patincharath, Nandakumar; Varier, Geetha K


    Nuclear pore complexes in the nuclear membrane act as the sole gateway of transport of molecules from the cytoplasm to the nucleus and vice versa. Studies on biomolecular transport through nuclear membranes provide vital data on the nuclear pore complexes. In this work, we use fluorescein isothiocyanate-labeled dextran molecules as a model system and study the passive nuclear import of biomolecules through nuclear pore complexes in digitonin-permeabilized HeLa cells. Experiments are carried out under transient conditions in the time lapse imaging scheme using an in-house constructed confocal laser scanning microscope. Transport rates of dextran molecules having molecular weights of 4-70 kDa corresponding to Stokes radius of 1.4-6 nm are determined. Analyzing the permeability of the nuclear membrane for different sizes the effective pore radius of HeLa cell nuclear membrane is determined to be 5.3 nm, much larger than the value reported earlier using proteins as probe molecules. The range of values reported for the nuclear pore radius suggest that they may not be rigid structures and it is quite probable that the effective pore size of nuclear pore complexes is critically dependent on the probe molecules and on the environmental factors.

  4. Nuclear size correction to the Lamb shift of one-electron atoms

    CERN Document Server

    Yerokhin, Vladimir A


    The nuclear size effect on the one-loop self energy and vacuum polarization is evaluated for the 1s, 2s, 3s, 2p_{1/2}, and 2p_{3/2} states of hydrogen-like ions. The calculation is performed to all orders in the binding nuclear strength parameter Z\\alpha. Detailed comparison is made with previous all-order calculations and calculations based on the expansion in the parameter Z\\alpha. Extrapolation of the all-order numerical results obtained towards Z=1 provides results for the radiative nuclear size effect on the hydrogen Lamb shift.

  5. Glyceraldehyde-3-phosphate dehydrogenase interacts with proapoptotic kinase mst1 to promote cardiomyocyte apoptosis.

    Directory of Open Access Journals (Sweden)

    Bei You

    Full Text Available Mammalian sterile 20-like kinase 1 (Mst1 is a critical component of the Hippo signaling pathway, which regulates a variety of biological processes ranging from cell contact inhibition, organ size control, apoptosis and tumor suppression in mammals. Mst1 plays essential roles in the heart disease since its activation causes cardiomyocyte apoptosis and dilated cardiomyopathy. However, the mechanism underlying Mst1 activation in the heart remains unknown. In a yeast two-hybrid screen of a human heart cDNA library with Mst1 as bait, glyceraldehyde-3-phosphate dehydrogenase (GAPDH was identified as an Mst1-interacting protein. The interaction of GAPDH with Mst1 was confirmed by co-immunoprecipitation in both co-transfected HEK293 cells and mouse heart homogenates, in which GAPDH interacted with the kinase domain of Mst1, whereas the C-terminal catalytic domain of GAPDH mediated its interaction with Mst1. Moreover, interaction of Mst1 with GAPDH caused a robust phosphorylation of GAPDH and markedly increased the Mst1 activity in cells. Chelerythrine, a potent inducer of apoptosis, substantially increased the nuclear translocation and interaction of GAPDH and Mst1 in cardiomyocytes. Overexpression of GAPDH significantly augmented the Mst1 mediated apoptosis, whereas knockdown of GAPDH markedly attenuated the Mst1 activation and cardiomyocyte apoptosis in response to either chelerythrine or hypoxia/reoxygenation. These findings reveal a novel function of GAPDH in Mst1 activation and cardiomyocyte apoptosis and suggest that disruption of GAPDH interaction with Mst1 may prevent apoptosis related heart diseases such as heart failure and ischemic heart disease.

  6. Hedge math: Theoretical limits on minimum stockpile size across nuclear hedging strategies

    Energy Technology Data Exchange (ETDEWEB)

    Lafleur, Jarret Marshall [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Roesler, Alexander W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    In June 2013, the Department of Defense published a congressionally mandated, unclassified update on the U.S. Nuclear Employment Strategy. Among the many updates in this document are three key ground rules for guiding the sizing of the non-deployed U.S. nuclear stockpile. Furthermore, these ground rules form an important and objective set of criteria against which potential future stockpile hedging strategies can be evaluated.

  7. Finite nuclear size corrections to the recoil effect in hydrogenlike ions

    CERN Document Server

    Aleksandrov, I A; Glazov, D A; Shabaev, V M


    The finite nuclear size corrections to the relativistic recoil effect in H-like ions are calculated within the Breit approximation. The calculations are performed for the $1s$, $2s$, and $2p_{1/2}$ states in the range $Z =$ 1-110. The obtained results are compared with previous evaluations of this effect. It is found that for heavy ions the previously neglected corrections amount to about 20% of the total nuclear size contribution to the recoil effect calculated within the Breit approximation.

  8. Involvement of PIKE in icariin induced cardiomyocyte differentiation from murine embryonic stem cells. (United States)

    Zhou, Limin; Zheng, Bei; Tang, Leilei; Huang, Yujie; Zhu, Danyan


    Icariin (ICA) has demonstrated to induce cardiomyocyte differentiation from murine embryonic stem (ES) cells in vitro, however, the mechanisms have not been fully elucidated. In the present study, we investigated whether phosphatidylinositol 3-kinase enhancer (PIKE) was involved in ICA induced cardiomyocyte differentiation of ES cells. Small interfering RNA (siRNA) of PIKE was applied to investigate the role of PIKE in ICA induced cardiomyocyte differentiation. The cardiomyocytes derived from ES cells were verified using immunofluorescence. The expressions of Troponin T, PIKE, phosphatidylinositol 3-kinase (PI3K), and nuclear factor-kappaB (NF-kappaB) were detected by western blot. The change of reactive oxygen species (ROS) generation was estimated using the fluorescent dye 2', 7' - dichlorodihydrofluorescein diacetate. The results showed that PIKE expression increased during cardiomyocyte differentiation. ICA markedly enhanced PIKE and PI3K expression in a time-dependent manner. Knockdown of PIKE by siRNAs blocked the differentiation of ES cells into cardiomyocytes expressing alpha-actinin for cardiac sarcomeric structures. Moreover, reduced ROS generation and NF-kappaB nuclear translocation were responsible for the inhibitory effect of si-PIKE. In conclusion, PIKE was involved in ICA induced cardiomyocyte differentiation, and ROS generation and NF-kappaB nuclear translocation were associated with PIKE activation.

  9. The human adult cardiomyocyte phenotype

    NARCIS (Netherlands)

    Bird, SD; Doevendans, PA; van Rooijen, MA; de la Riviere, AB; Hassink, RJ; Passier, R; Mummery, CL


    Aim: Determination of the phenotype of adult human atrial and ventricular myocytes based on gene expression and morphology. Methods: Atrial and ventricular cardiomyocytes were obtained from patients undergoing cardiac surgery using a modified isolation procedure. Myocytes were isolated and cultured

  10. The role of ligand density and size in mediating quantum dot nuclear transport. (United States)

    Tang, Peter S; Sathiamoorthy, Sarmitha; Lustig, Lindsay C; Ponzielli, Romina; Inamoto, Ichiro; Penn, Linda Z; Shin, Jumi A; Chan, Warren C W


    Studying the effects of the physicochemical properties of nanomaterials on cellular uptake, toxicity, and exocytosis can provide the foundation for designing safer and more effective nanoparticles for clinical applications. However, an understanding of the effects of these properties on subcellular transport, accumulation, and distribution remains limited. The present study investigates the effects of surface density and particle size of semiconductor quantum dots on cellular uptake as well as nuclear transport kinetics, retention, and accumulation. The current work illustrates that cellular uptake and nuclear accumulation of nanoparticles depend on surface density of the nuclear localization signal (NLS) peptides with nuclear transport reaching a plateau at 20% surface NLS density in as little as 30 min. These intracellular nanoparticles have no effects on cell viability up to 72 h post treatment. These findings will set a foundation for engineering more sophisticated nanoparticle systems for imaging and manipulating genetic targets in the nucleus.

  11. Nuclear Zemach Moments and Finite-Size Corrections to Allowed Beta Decay

    CERN Document Server

    Wang, X B; Hayes, A C


    The finite-size correction to $\\beta$-decay plays an important role in determining the expected antineutrino spectra from reactors at a level that is important for the reactor-neutrino anomaly. Here we express the leading-order finite-size correction to allowed $\\beta$-decay in terms of Zemach moments. We calculate the Zemach moments within a Hartree-Fock model using a Skyrme-like energy density functional. We find that the Zemach moments are increased relative to predictions based on the simple assumption of identical uniform nuclear-charge and weak-transition densities. However, for allowed ground-state to ground-state transitions in medium and heavy nuclei, the detailed nuclear structure calculations do not change the finite-size corrections significantly from the simple model predictions, and are only 10-15% larger than the latter even though the densities differ significantly.

  12. Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds (United States)

    Panich, A. M.; Sergeev, N. A.; Shames, A. I.; Osipov, V. Yu; Boudou, J.-P.; Goren, S. D.


    Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and 13C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of 13C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.

  13. Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds. (United States)

    Panich, A M; Sergeev, N A; Shames, A I; Osipov, V Yu; Boudou, J-P; Goren, S D


    Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and (13)C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of (13)C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.

  14. Adenosine improves cardiomyocyte respiratory efficiency. (United States)

    Babsky, A M; Doliba, M M; Doliba, N M; Osbakken, M D


    The role of adenosine on the regulation of mitochondrial function has been studied. In order to evaluate this the following experiments were done in isolated rat cardiomyocites and mitochondria using polarographic techniques. Cardiomyocyte oxygen consumption (MVO2) and mitochondrial respiratory function (State 3 and State 4, respiratory control index, and ADP/O ratio) were evaluated after exposure to adenosine. Cardiomyocyte MVO2 was significantly lower in cells previously exposed to adenosine (10 microM, 15 min or 30 min cell incubation) than in cells not exposed to adenosine (control). Addition of dipyridamole (10 microM) or 8-(p-Sulfophenyl) theophylline (50 microM) to cardiomyocytes before adenosine incubation prevented the adenosine-induced changes in MVO2. Mitochondria obtained from isolated perfused beating heart previously perfused with adenosine (10 microM, 30 min heart perfusion) also resulted in significant increases in ADP/O and respiratory control index compared to matching control. Mitochondria isolated from cardiomyocytes previously exposed to adenosine (10 microM, 15 min or 30 min cell incubation) resulted in a significant increase in mitochondrial ADP/O ratio compared to control. Adenosine-induced decrease in cardiomyocyte MVO2 may be related to an increase in efficiency of mitochondrial oxidative phosphorylation, and more economical use of oxygen, which is necessary for survival under ischemic stress.

  15. Cardiomyocytic apoptosis and heart failure

    Institute of Scientific and Technical Information of China (English)

    Quanzhou Feng


    Heart failure is a major disease seriously threatening human health.Once left ventricular dysfunction develops,cardiac function usually deteriorates and progresses to congestive heart failure in several months or years even if no factors which accelerate the deterioration repeatedly exist.Mechanism through which cardiac function continually deteriorates is still unclear.Cardiomyocytic apoptosis can occur in acute stage of ischemic heart diseases and the compensated stage of cardiac dysfunction.In this review,we summarize recent advances in understanding the role of cardiomyocytic apoptosis in heart failure.

  16. The role of mAKAPβ in the process of cardiomyocyte hypertrophy induced by angiotensin II. (United States)

    Guo, Huixin; Liu, Baoxin; Hou, Lei; The, Erlinda; Li, Gang; Wang, Dongzhi; Jie, Qiqiang; Che, Wenliang; Wei, Yidong


    Angiotensin II (AngII) is the central product of the renin-angiotensin system (RAS) and this octapeptide contributes to the pathophysiology of cardiac hypertrophy and remodeling. mAKAPβ is an A-kinase anchoring protein (AKAP) that has the function of binding to the regulatory subunit of protein kinase A (PKA) and confining the holoenzyme to discrete locations within the cell. In this study, we aimed to investigate the role of mAKAPβ in AngII‑induced cardiomyocyte hypertrophy and the possible mechanisms involved. Cultured cardiomyocytes from neonatal rats were treated with AngII. Subsequently, the morphology of the cardiomyocytes was observed and the expression of mAKAPβ and cardiomyocyte hypertrophic markers was measured. mAKAPβ‑shRNA was constructed for RNA interference; the expression of mAKAPβ and hypertrophic markers, the cell surface area and the [3H]Leucine incorporation rate in the AngII‑treated rat cardiomyocytes were detected following RNA interference. Simultaneously, changes in the expression levels of phosphorylated extracellular signal-regulated kinase (p-ERK)2 in the cardiomyocytes were assessed. The cell size of the AngII-treated cardiaomyocytes was significantly larger than that of the untreated cardiomyocytes. The expression of hypertrophic markers and p-ERK2, the cell surface area and the [3H]Leucine incorporation rate were all significantly increased in the AngII‑treated cells. However, the expression of mAKAPβ remained unaltered in this process. RNA interference simultaneously inhibited the protein expression of mAKAPβ and p‑ERK2, and the hypertrophy of the cardiomyocytes induced by AngII was attenuated. These results demonstrate that AngII induces hypertrophy in cardiomyocytes, and mAKAPβ is possibly involved in this process. The effects of mAKAPβ on AngII‑induced cardiomyocyte hypertrophy may be associated with p-ERK2 expression.

  17. Isolation and culture of neonatal mouse cardiomyocytes. (United States)

    Ehler, Elisabeth; Moore-Morris, Thomas; Lange, Stephan


    Cultured neonatal cardiomyocytes have long been used to study myofibrillogenesis and myofibrillar functions. Cultured cardiomyocytes allow for easy investigation and manipulation of biochemical pathways, and their effect on the biomechanical properties of spontaneously beating cardiomyocytes. The following 2-day protocol describes the isolation and culture of neonatal mouse cardiomyocytes. We show how to easily dissect hearts from neonates, dissociate the cardiac tissue and enrich cardiomyocytes from the cardiac cell-population. We discuss the usage of different enzyme mixes for cell-dissociation, and their effects on cell-viability. The isolated cardiomyocytes can be subsequently used for a variety of morphological, electrophysiological, biochemical, cell-biological or biomechanical assays. We optimized the protocol for robustness and reproducibility, by using only commercially available solutions and enzyme mixes that show little lot-to-lot variability. We also address common problems associated with the isolation and culture of cardiomyocytes, and offer a variety of options for the optimization of isolation and culture conditions.

  18. Growth factor PDGF-BB stimulates cultured cardiomyocytes to synthesize the extracellular matrix component hyaluronan.

    Directory of Open Access Journals (Sweden)

    Urban Hellman

    Full Text Available BACKGROUND: Hyaluronan (HA is a glycosaminoglycan located in the interstitial space which is essential for both structural and cell regulatory functions in connective tissue. We have previously shown that HA synthesis is up-regulated in a rat model of experimental cardiac hypertrophy and that cardiac tissue utilizes two different HA synthases in the hypertrophic process. Cardiomyocytes and fibroblasts are two major cell types in heart tissue. The fibroblasts are known to produce HA, but it has been unclear if cardiomyocytes share the same feature, and whether or not the different HA synthases are activated in the different cell types. METHODOLOGY/PRINCIPAL FINDINGS: This study shows, for the first time that cardiomyocytes can produce HA. Cardiomyocytes (HL-1 and fibroblasts (NIH 3T3 were cultivated in absence or presence of the growth factors FGF2, PDGF-BB and TGFB2. HA concentration was quantified by ELISA, and the size of HA was estimated using dynamic light scattering. Cardiomyocytes synthesized HA but only when stimulated by PDGF-BB, whereas fibroblasts synthesized HA without addition of growth factors as well as when stimulated by any of the three growth factors. When fibroblasts were stimulated by the growth factors, reverse dose dependence was observed, where the highest dose induced the least amount of HA. With the exception of TGFB2, a trend of reverse dose dependence of HA size was also observed. CONCLUSIONS/SIGNIFICANCE: Co-cultivation of cardiomyocytes and fibroblasts (80%/20% increased HA concentration far more that can be explained by HA synthesis by the two cell types separately, revealing a crosstalk between cardiomyocytes and fibroblasts that induces HA synthesis. We conclude that dynamic changes of the myocardium, such as in cardiac hypertrophy, do not depend on the cardiomyocyte alone, but are achieved when both cardiomyocytes and fibroblasts are present.

  19. Structural differentiation, proliferation, and association of human embryonic stem cell-derived cardiomyocytes in vitro and in their extracardiac tissues. (United States)

    Cui, Li; Johkura, Kohei; Takei, Shunsuke; Ogiwara, Naoko; Sasaki, Katsunori


    The proliferation, structural differentiation, and capacity of association of human ES cell-derived cardiomyocytes were assessed in culture and in extracardiac graft tissues. Embryoid body (EB) outgrowths having cardiomyocytes, and their transplants in mice retroperitoneum or renal subcapsular region were analyzed mainly by immunochemistry. During the culture of EB outgrowths, colonies of cardiomyocytes grew in size exhibiting synchronized beatings. Subcellular structures of those cardiomyocytes involved in the contraction, hormone production, and intercellular integration differentiated with distinct immunoreactivity for constituent proteins/peptides. Judging from PCNA staining, proliferation potential was maintained in part for more than 70 days. In teratoma tissues on post-transplantation Day 7, cardiomyocytes maintained their integration with connexin 43 and cadherin at their junctions. They partly exhibited strong PCNA reactivity. On Day 28, large part of the cardiomyocytes lost their association, dispersing among non-cardiac cells without discernible cadherin reactivity. Proliferation potential was generally low irrespective of their tissue diversity. From these results, structural differentiation and active proliferation of human ES cell-derived cardiomyocytes occurred in vitro, maintaining their association. When developed in extracardiac tissues, however, the cardiomyocytes showed low proliferation potential and reduced cellular integration. This leads to the proposal that some procedure will be necessary to accelerate or maintain the proliferation of cardiomyocytes in vivo.

  20. Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis. (United States)

    Han, Peidong; Bloomekatz, Joshua; Ren, Jie; Zhang, Ruilin; Grinstein, Jonathan D; Zhao, Long; Burns, C Geoffrey; Burns, Caroline E; Anderson, Ryan M; Chi, Neil C


    Many organs are composed of complex tissue walls that are structurally organized to optimize organ function. In particular, the ventricular myocardial wall of the heart comprises an outer compact layer that concentrically encircles the ridge-like inner trabecular layer. Although disruption in the morphogenesis of this myocardial wall can lead to various forms of congenital heart disease and non-compaction cardiomyopathies, it remains unclear how embryonic cardiomyocytes assemble to form ventricular wall layers of appropriate spatial dimensions and myocardial mass. Here we use advanced genetic and imaging tools in zebrafish to reveal an interplay between myocardial Notch and Erbb2 signalling that directs the spatial allocation of myocardial cells to their proper morphological positions in the ventricular wall. Although previous studies have shown that endocardial Notch signalling non-cell-autonomously promotes myocardial trabeculation through Erbb2 and bone morphogenetic protein (BMP) signalling, we discover that distinct ventricular cardiomyocyte clusters exhibit myocardial Notch activity that cell-autonomously inhibits Erbb2 signalling and prevents cardiomyocyte sprouting and trabeculation. Myocardial-specific Notch inactivation leads to ventricles of reduced size and increased wall thickness because of excessive trabeculae, whereas widespread myocardial Notch activity results in ventricles of increased size with a single-cell-thick wall but no trabeculae. Notably, this myocardial Notch signalling is activated non-cell-autonomously by neighbouring Erbb2-activated cardiomyocytes that sprout and form nascent trabeculae. Thus, these findings support an interactive cellular feedback process that guides the assembly of cardiomyocytes to morphologically create the ventricular myocardial wall and more broadly provide insight into the cellular dynamics of how diverse cell lineages organize to create form.

  1. Large size austenitic stainless steel forgings for nuclear and cryogenic application - development, manufacturing and properties

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Keizo; Suzuki, Komei; Sato, Ikuo; Murai, Etuso (Japan Steel Works Ltd., Muroran Plant, Hokkaido (Japan))


    The high quality one-piece large austenetic stainless steel forgings are required in the several components such as nuclear reactors and run tanks for rocket engine test stand in order to assure the structural integrity and to make it easy to fabricate and inspect the components. When the austenitic stainless steel forgings are increased in size, various problems must be overcome to assure the high quality forgings. The ingot making and hot working play an important role in determining the quality of the products. In such points, the lastest manufacturing techniques such as steel making of large size ingot and hot working to get uniform and fine grains are discussed together with the fundamental data of the material properties. (orig.).


    Institute of Scientific and Technical Information of China (English)

    江立生; 方宁远; 高天; 孟超


    Objective To investigate the effect and significance of cardiomyocyte apoptosis and cardiomyocyte proliferation on cardiac hypertrophy by observing the dynamic changes of them during the development of cardiac hypertrophy in spontaneously hypertensive rats (SHR). Methods Hearts were excised from SHR and Wistar-Kyoto rats(WKY) at different ages. Cardiac hypertrophic index (CHI) was calculated as the radio of heart weight to body weight; Cardiomyocyte apoptosis was identified by in situ TDT-mediated dUTP nick end labeling (TUNEL); Localization and expression of proliferating cell nuclear antigen (PCNA) were examined by immunohistochemistry. Results Compared with age-matched WKY, CHI in SHR was significantly increased at 12 weeks old and 24 weeks old (3. 604 ± 0. 089 vs 2. 997 ± 0. 166, P<0.01; 4. 156 ± 0. 385 vs 3. 119 ± 0. 208, P < 0. 01 ) ,and CHI in SHR was increased little by little with the age increasing and attained plaiform since 20 weeks old. In contrast with age-matched WKY, cardiomyocyte apoptotic index (APOI) in SHR at 12 weeks was not increased significantly (4. 248 ± 1. 592 vs 3. 678 ± 0. 856, P > 0. 05 ), but decreased markedly when their age were 24 weeks (3. 207 ± 1. 794 vs 5. 494 ± 1. 372, P <0. 05); APOI in SHR at 12 weeks old, 16 weeks old, 20 weeks old and 24weeks old were 4. 248 ± 1. 592, 5. 707 ± 1. 322, 7. 436 ± 1. 128, 3. 207 ± 1. 794, respectively. On the other hand,APOI in SHR from 12 weeks old to 20 weeks old increased gradually, and attained peak at 20 weeks old, but decreased markedly after 20 weeks old ( P <0. 01 ). Compared with age-matched WKY, the rate of cardiomyocyte PCNA positive labeling (PCNAR) in SHR at 12 weeks old and 24 weeks old didn' t have obvious difference. Conclusion Imbalance of cardiomyocyte apoptosis and cardiomyocyte proliferation existed during the development of cardiac hypertrophy in spontaneously hypertensive rats.

  3. Size distribution of radioactive particles collected at Tokai, Japan 6 days after the nuclear accident. (United States)

    Miyamoto, Yutaka; Yasuda, Kenichiro; Magara, Masaaki


    Airborne radioactive particles released by the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in 2011 were collected with a cascade low-pressure impactor at the Japan Atomic Energy Agency (JAEA) in Tokai, Japan, 114 km south of the FDNPP. Size-fractionated samples were collected twice, in the periods of March 17-April 1, 2011, and May 9-13, 2011. These size-fractionated samplings were carried out in the earliest days at a short distance from the FDNPP. Radioactivity of short-lived nuclides (several ten days of half-life) was determined as well as (134)Cs and (137)Cs. The elemental composition of size-fractionated samples was also measured. In the first collection, the activity median aerodynamic diameter (AMAD) of (129m)Te, (140)Ba, (134)Cs, (136)Cs and (137)Cs was 1.5-1.6 μm, while the diameter of (131)I was 0.45 μm. The diameters of (134)Cs and (137)Cs in the second collection were expressed as three peaks at fractions was 0.91. A distribution map of (134)Cs/(137)Cs - (136)Cs/(137)Cs ratios was helpful in understanding the change of radioactive Cs composition. The Cs composition of size fractions released from the three reactors at the FDNPP via different processes.

  4. Optimization of gap sizes for the high performance of annular nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Doo; Kwon, Soon Bum; Cho, Hui Jeong; Kim, Seong Su [Kyungpook National University, Daegu (Korea, Republic of)


    Solid-type nuclear fuels have been used for nuclear reactors for a long time. Many countries are currently developing annular fuels to improve the efficiency of nuclear fuels. The thermoelastic-plastic-creep analyses of solid- and annular-type rods were conducted under the same conditions. The temperature and stress of the solid- and annular-type rods were compared on the basis of gap size. In this study, we examined the advantages and disadvantages of annular-type fuel regarding the temperature and stress of the pellet and cladding. The inner and outer gaps between the pellet and cladding play important roles in the temperature and stress distributions of fuel systems. Therefore, the optimization of gaps in fuel systems was conducted for a low temperature under certain stress conditions. hermoelasticplastic-creep analyses were conducted by using an in-house thermoelastic-plastic-creep finite element analysis program in Visual FORTRAN with the effective stress function algorithm. Nonlinear iterative stress analyses were conducted by nonlinear iterative temperature analyses; that is, a quasi-fully coupled algorithm was applied to this procedure. In this study, the thermoelastic-plastic-creep analysis of pressurized water reactor annular fuels was conducted to determine the contacting tendency of the inner-outer gaps between the annular fuel pellets and cladding, as well as to optimize the gap sizes by using the commercial package PIAnO for efficient heat transfer at certain stress levels. Most analyses were conducted until the gaps disappeared. However, certain analyses lasted for 1582 days, after which the fuels were replaced.

  5. Grain size evaluation of structural materials in nuclear power plant using a thickness independent ultrasonic method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiongbing, E-mail: [CAD/CAM Institute, Central South University, Changsha 410075 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Song, Yongfeng [CAD/CAM Institute, Central South University, Changsha 410075 (China); Ni, Peijun [The Ningbo Branch of Ordnance Science Institute of China, Ningbo 315103 (China); Wang, Zi; Liu, Feng [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Du, Hualong [Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States)


    Highlights: •We derive a coefficient of ultrasonic attenuation rate related to the grain size. •The mean grain size of the pipe can be evaluated without measuring its thickness. •Experiments show this method is better suited to square pipe than other methods. -- Abstract: It is important to accurately and nondestructively evaluate the grain size of structural materials used in nuclear power plants. The current ultrasonic non-destructive methods are so dependent on the thickness measurement of a square pipe that it reduces their practicality and reliability. In this paper, a novel method using the coefficient of ultrasonic attenuation rate is developed by using the transmission and reflection coefficients. As a result, the mean grain size of the pipe can be nondestructively evaluated without measuring its thickness. Moreover, the signal preprocessing is studied to improve the stability and accuracy of evaluation results. The experimental results show that the dependence of the attenuation rate on grain sizes is much higher than that of the ultrasonic velocity. The relative error of the attenuation rate method is lower than that of the backscatter method if the thickness of the sample is less than 5 mm. When evaluating a TP304 stainless steel square pipe whose thickness is not convenient to measure, the mean grain sizes are measured 103.5 ± 2.6 μm, 96.9 ± 3.5 μm and 94.0 ± 1.7 μm by the attenuation method, the attenuation rate method and the electron backscattering diffraction method, respectively. The result verifies that the presented method works better than the attenuation method due to the fact that the error of the thickness measurement has no effect on the ultrasonic attenuation rate.

  6. Nuclei size in relation to nuclear status and aneuploidy rate for 13 chromosomes in donated four cells embryos

    DEFF Research Database (Denmark)

    Agerholm, I.E.; Hnida, C.; Cruger, D.G.


    Purpose The aim was to elucidate if the nuclear size and number are indicative of aberrant chromosome content in human blastomeres and embryos. Methods The number of nuclei and the nucleus and blastomere size were measured by a computer controlled system for multilevel analysis. Then the nuclei...

  7. Size distributions of airborne radionuclides from the fukushima nuclear accident at several places in europe. (United States)

    Masson, Olivier; Ringer, Wolfgang; Malá, Helena; Rulik, Petr; Dlugosz-Lisiecka, Magdalena; Eleftheriadis, Konstantinos; Meisenberg, Olivier; De Vismes-Ott, Anne; Gensdarmes, François


    Segregation and radioactive analysis of aerosols according to their aerodynamic size were performed in France, Austria, the Czech Republic, Poland, Germany, and Greece after the arrival of contaminated air masses following the nuclear accident at the Fukushima Dai-ichi nuclear power plant in March 2011. On the whole and regardless of the location, the highest activity levels correspond either to the finest particle fraction or to the upper size class. Regarding anthropogenic radionuclides, the activity median aerodynamic diameter (AMAD) ranged between 0.25 and 0.71 μm for (137)Cs, from 0.17 to 0.69 μm for (134)Cs, and from 0.30 to 0.53 μm for (131)I, thus in the "accumulation mode" of the ambient aerosol (0.1-1 μm). AMAD obtained for the naturally occurring radionuclides (7)Be and (210)Pb ranged from 0.20 to 0.53 μm and 0.29 to 0.52 μm, respectively. Regarding spatial variations, AMADs did not show large differences from place to place compared with what was observed concerning bulk airborne levels registered on the European scale. When air masses arrived in Europe, AMADs for (131)I were about half those for cesium isotopes. Higher AMAD for cesium probably results from higher AMAD observed at the early stage of the accident in Japan. Lower AMAD for (131)I can be explained by the adsorption of gaseous iodine on particles of all sizes met during transport, especially for small particles. Additionally, weathering conditions (rain) encountered during transport and in Europe in March and April contributed to the equilibrium of the gaseous to total (131)I ratio. AMAD slightly increased with time for (131)I whereas a clear decreasing trend was observed with the AMADs for (137)Cs and (134)Cs. On average, the associated geometric standard deviation (GSD) appeared to be higher for iodine than for cesium isotopes. These statements also bear out a gaseous (131)I transfer on ambient particles of a broad size range during transport. Highest weighted activity levels were

  8. Spurious finite-size instabilities in nuclear energy density functionals: Spin channel (United States)

    Pastore, A.; Tarpanov, D.; Davesne, D.; Navarro, J.


    Background: It has been recently shown that some Skyrme functionals can lead to nonconverging results in the calculation of some properties of atomic nuclei. A previous study has pointed out a possible link between these convergence problems and the appearance of finite-size instabilities in symmetric nuclear matter (SNM) around saturation density. Purpose: We show that the finite-size instabilities not only affect the ground-state properties of atomic nuclei, but they can also influence the calculations of vibrational excited states in finite nuclei. Method: We perform systematic fully-self consistent random phase approximation (RPA) calculations in spherical doubly magic nuclei. We employ several Skyrme functionals and vary the isoscalar and isovector coupling constants of the time-odd term s .Δ s . We determine critical values of these coupling constants beyond which the RPA calculations do not converge because the RPA stability matrix becomes nonpositive. Results: By comparing the RPA calculations of atomic nuclei with those performed for SNM we establish a correspondence between the critical densities in the infinite system and the critical coupling constants for which the RPA calculations do not converge. Conclusions: We find a quantitative stability criterion to detect finite-size instabilities related to the spin s .Δ s term of a functional. This criterion could be easily implemented in the standard fitting protocols to fix the coupling constants of the Skyrme functional.

  9. Nuclei size in relation to nuclear status and aneuploidy rate for 13 chromosomes in donated four cells embryos

    DEFF Research Database (Denmark)

    Agerholm, I E; Hnida, C; Crüger, D G;


    PURPOSE: The aim was to elucidate if the nuclear size and number are indicative of aberrant chromosome content in human blastomeres and embryos. METHODS: The number of nuclei and the nucleus and blastomere size were measured by a computer controlled system for multilevel analysis. Then the nuclei...... were enumerated for 13 chromosomes by a combination of PNA and DNA probes. RESULTS: In the mononucleated embryos there was no difference in the mean size of chromosomally normal and abnormal nuclei but a significant difference in the mean nuclei size of nuclei that had gained chromosomes compared...... to nuclei that had lost chromosomes. The nuclei from multinucleated blastomeres had a significant smaller mean size and the frequency of chromosomally aberrant blastomeres was significantly higher. CONCLUSION: The mean nuclear size is not a marker for the chromosome content in mononucleated embryos. However...

  10. Finite nuclear size and Lamb shift of p-wave atomic states

    CERN Document Server

    Milstein, A I; Terekhov, I S


    We consider corrections to the Lamb shift of p-wave atomic states due to the finite nuclear size (FNS). In other words, these are radiative corrections to the atomic isotop shift related to FNS. It is shown that the structure of the corrections is qualitatively different from that for s-wave states. The perturbation theory expansion for the relative correction for a $p_{1/2}$-state starts from $\\alpha\\ln(1/Z\\alpha)$-term, while for $s_{1/2}$-states it starts from $Z\\alpha^2$ term. Here $\\alpha$ is the fine structure constant and $Z$ is the nuclear charge. In the present work we calculate the $\\alpha$-terms for $2p$-states, the result for $2p_{1/2}$-state reads $(8\\alpha/9\\pi)[\\ln(1/(Z\\alpha)^2)+0.710]$. Even more interesting are $p_{3/2}$-states. In this case the ``correction'' is by several orders of magnitude larger than the ``leading'' FNS shift.

  11. Centrality and system size dependence of multiplicity fluctuations in nuclear collisions at 158 AGeV

    CERN Document Server

    Alt, C; Baatar, B; Barna, D; Bartke, J; Betev, L; Bialkowska, H; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Buncic, P; Cerny, V; Christakoglou, P; Chvala, O; Cramer, J G; Csató, P; Dinkelaker, P; Eckardt, V; Flierl, D; Fodor, Z; Foka, P; Friese, V; Gazdzicki, M; Georgopoulos, G; Gladysz-Dziadus, E; Grebieszkow, K; Gál, J; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kliemant, M; Kniege, S; Kolesnikov, V I; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Laszlo, A; Litov, L; Lungwitz, B; Lévai, Peter; Makariev, M; Malakhov, A I; Mateev, M; Melkumov, G L; Mischke, A; Mitrovski, M; Molnár, J; Mrówczynski, S; Nicolic, V; Panagiotou, A D; Panayotov, D; Petridis, A; Pikna, M; Prindle, D; Pálla, G; Pühlhofer, F; Renfordt, R; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Schmitz, N; Schuster, T; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Stefanek, G; Stock, R; Strabel, C; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Szymanski, P; Trubnikov, V; Van Leeuwen, M; Varga, D; Vassiliou, M; Veres, G I; Vesztergombi, G; Vranic, D; Wetzler, A; Wlodarczyk, Z; Yoo, I K; Zimányi, J


    The centrality and system size dependence of multiplicity fluctuations of charged particles produced in nuclear collisions at 158 AGeV was studied by the NA49 collaboration. Centrality selected Pb+Pb collisions, semi-central C+C and Si+Si collisions as well as inelastic p+p interactions were analyzed. The number of projectile participants determined on event-by-event basis was used to characterize the collision centrality. The scaled variance of the multiplicity distribution obtained in the forward rapidity region (1.1 nuclear reactions without the fusion process do not reproduce the rise of fluctuations from central towards peripheral collisions. The measured centrality dependence can be reproduced in superpos...

  12. Bimodal Nuclear Thermal Rocket Sizing and Trade Matrix for Lunar, Near Earth Asteroid and Mars Missions (United States)

    McCurdy, David R.; Krivanek, Thomas M.; Roche, Joseph M.; Zinolabedini, Reza


    The concept of a human rated transport vehicle for various near earth missions is evaluated using a liquid hydrogen fueled Bimodal Nuclear Thermal Propulsion (BNTP) approach. In an effort to determine the preliminary sizing and optimal propulsion system configuration, as well as the key operating design points, an initial investigation into the main system level parameters was conducted. This assessment considered not only the performance variables but also the more subjective reliability, operability, and maintainability attributes. The SIZER preliminary sizing tool was used to facilitate rapid modeling of the trade studies, which included tank materials, propulsive versus an aero-capture trajectory, use of artificial gravity, reactor chamber operating pressure and temperature, fuel element scaling, engine thrust rating, engine thrust augmentation by adding oxygen to the flow in the nozzle for supersonic combustion, and the baseline turbopump configuration to address mission redundancy and safety requirements. A high level system perspective was maintained to avoid focusing solely on individual component optimization at the expense of system level performance, operability, and development cost.

  13. Parametric Sizing of Composite Metal Lined Tanks for Bimodal Nuclear Thermal Propulsion Applications (United States)

    Abumeri, Galib H.; Roche, Joseph M.


    A computational method is described to evaluate the structural performance of composite over-wrapped metal lined LH2 tanks. This work was performed in support of the human space exploration initiative undertaken by NASA. The method is a judicious combination of available computer codes for finite elements, composite mechanics, durability, damage tracking, and damage tolerance. To illustrate the effectiveness of the analytical approach, composite over-wrapped LH2 core tanks of the Bimodal Nuclear Thermal Rocket (BNTR) were sized parametrically using launch loads and burst test requirements. The benefits and debits of inserting advanced composite technology into existing LH2 tank design concepts are evaluated in the paper. Results obtained indicate that LH2 tanks made from tape placement carbon fiber in a toughened epoxy matrix backed by a metallic liner for hermiticity are able to: (1) sustain micro-cracking in the matrix of the composite system prior to liner failure, (2) offer significant weight savings as compared to present technology (up to 31%), and (3) use unified design and weight configuration to support both launch loads and burst test requirements. The structural performance and sizing evaluation was performed for composite tanks varying in length from 10 m to 28 m. Weight calculations for the composite over-wrapped tanks show that the larger the tank length, the larger the weight savings (compared to those of traditional metallic tanks).

  14. Spurious finite-size instabilities in nuclear energy density functionals: spin channel

    CERN Document Server

    Pastore, A; Davesne, D; Navarro, J


    It has been recently shown, that some Skyrme functionals can lead to non-converging results in the calculation of some properties of atomic nuclei. A previous study has pointed out a possible link between these convergence problems and the appearance of finite-size instabilities in symmetric nuclear matter (SNM) around saturation density. We show that the finite-size instabilities not only affect the ground state properties of atomic nuclei, but they can also influence the calculations of vibrational excited states in finite nuclei. We perform systematic fully-self consistent Random Phase Approximation (RPA) calculations in spherical doubly-magic nuclei. We employ several Skyrme functionals and vary the isoscalar and isovector coupling constants of the time-odd term $\\mathbf{s}\\cdot \\Delta \\mathbf{s}$ . We determine critical values of these coupling constants beyond which the RPA calculations do not converge because RPA the stability matrix becomes non-positive.By comparing the RPA calculations of atomic nucl...

  15. Uptake of triiodothyronine and triiodothyroacetic acid in neonatal rat cardiomyocytes: effects of metabolites and analogs

    NARCIS (Netherlands)

    F.A. Verhoeven; H.H. van der Putten; G. Hennemann; J.M.J. Lamers (Jos); T.J. Visser (Theo); M.E. Everts (Maria)


    textabstractCellular and nuclear uptake of [125I]tri-iodothyronine (T3) and [125I]triiodothyroacetic acid (Triac) were compared in cardiomyocytes of 2-3 day old rats, and the effect of thyroid hormone analogs on cellular T(3) uptake was measured. Cells (5-10 x 10(5) per well) were

  16. Regulation of cardiomyocyte autophagy by calcium. (United States)

    Shaikh, Soni; Troncoso, Rodrigo; Criollo, Alfredo; Bravo-Sagua, Roberto; García, Lorena; Morselli, Eugenia; Cifuentes, Mariana; Quest, Andrew F G; Hill, Joseph A; Lavandero, Sergio


    Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy.

  17. Effect of Follicle Size and Follicle Stimulating Hormone Concentration on Nuclear Maturation of Bovine Oocytes In Vitro

    Directory of Open Access Journals (Sweden)

    Uğur Şen


    Full Text Available The aim of the study was to investigate the effect of follicle size and follicle stimulating hormone (FSH concentration on nuclear maturation of bovine oocytes in vitro. Follicles on bovine ovary were classified into 3 groups according to the diameter; small (<3 mm, medium (3–8 mm and large (9–12 mm. Oocytes were aspirated from follicles with different size and matured in tissue culture medium (TCM–199 supplemented with 10% FCS and various concentrations of FSH (0.5, 1.0 or 10 and μg/ml for 22 hours filled with approximately 95% humidified and 5% CO2 in air at 38.5 °C. At the end of culture period, nuclear maturation (at metaphase II; MII of oocytes were determined by Bisbenzimide (Hoechst 33258 DNA staining under fluorescent microscope. In the present study, effect of follicle size on nuclear maturation of bovine oocytes were determined and the percentage of oocytes reached to M II stage was significantly lower in oocytes obtained small follicle than those of medium and large follicles. Supplementation of 10.0 μg/ml FSH into maturation media increased percentage of nuclear maturation compare to 0.5 and 1.0 μg/ml. Additionally, improving effect of high FSH concentration on nuclear maturation were more observed in oocytes obtained small follicles. The results of present study showed that oocytes from follicles with 3–8 mm diameters exhibited a more successful maturation, but oocytes obtained small follicles exhibited more maturation as a ratio under high FSH concentration.

  18. Visualization of Cell Cycle Variations and Determination of Nucleation in Postnatal Cardiomyocytes. (United States)

    Raulf, Alexandra; Voeltz, Nadine; Korzus, Daniel; Fleischmann, Bernd K; Hesse, Michael


    Cardiomyocytes are prone to variations of the cell cycle, such as endoreduplication (continuing rounds of DNA synthesis without karyokinesis and cytokinesis) and acytokinetic mitosis (karyokinesis but no cytokinesis). Such atypical cell cycle variations result in polyploid and multinucleated cells rather than in cell division. Therefore, to determine cardiac turnover and regeneration, it is of crucial importance to correctly identify cardiomyocyte nuclei, the number of nuclei per cell, and their cell cycle status. This is especially true for the use of nuclear markers for identifying cell cycle activity, such as thymidine analogues Ki-67, PCNA, or pHH3. Here, we present methods for recognizing cardiomyocytes and their nuclearity and for determining their cell cycle activity. We use two published transgenic systems: the Myh6-H2B-mCh transgenic mouse line, for the unequivocal identification of cardiomyocyte nuclei, and the CAG-eGFP-anillin mouse line, for distinguishing cell division from cell cycle variations. Combined together, these two systems ease the study of cardiac regeneration and plasticity.

  19. Urotensin II induction of neonatal cardiomyocyte hypertrophy involves the CaMKII/PLN/SERCA 2a signaling pathway. (United States)

    Shi, Hongtao; Han, Qinghua; Xu, Jianrong; Liu, Wenyuan; Chu, Tingting; Zhao, Li


    Although studies have shown that Urotensin II (UII) can induce cardiomyocyte hypertrophy and UII-induced cardiomyocyte hypertrophy model has been widely used for hypertrophy research, but its precise mechanism remains unknown. Recent researches have demonstrated that UII-induced cardiomyocyte hypertrophy has a relationship with the changes of intracellular Ca(2+) concentration. Therefore, the aim of this study was to investigate the mechanisms of cardiomyocyte hypertrophy induced by UII and to explore whether the calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated up-regulating of phospholamban (PLN) Thr17-phosphorylation signaling pathway contributed to UII-induced cardiomyocyte hypertrophy. Primary cultures of neonatal rat cardiomyocytes were stimulated for 48h with UII. Cell size, protein/DNA contents and intracellular Ca(2+) were determined. Phosphorylated and total forms of CaMKII, PLN and the total amount of serco/endo-plasmic reticulum ATPases (SERCA 2a) were quantified by western blot. The responses of cardiomyocytes to UII were also evaluated after pretreatment with the CaMKII inhibitor, KN-93. These results showed that UII increased cell size, protein/DNA ratio and intracellular Ca(2+), consistent with a hypertrophic response. Furthermore, the phosphorylation of CaMKII and its downstream target PLN (Thr17), SERCA 2a levels were up-regulated by UII treatment. Conversely, treatment with KN-93 reversed all those effects of UII. Taken together, the results suggest that UII can induce cardiomyocyte hypertrophy through CaMKII-mediated up-regulating of PLN Thr17-phosphorylation signaling pathway.

  20. The Adipokine Chemerin Induces Apoptosis in Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Diego Rodríguez-Penas


    Full Text Available Background: The adipokine chemerin has been associated with cardiovascular disease. We investigated the effects of chemerin on viability and intracellular signalling in murine cardiomyocytes, and the effects of insulin and TNF-α on cardiomyocyte chemerin production. Methods: Hoechst dye vital staining and cell cycle analysis were used to analyse the viability of murine cardiac cells in culture. Western blot was used to explore the phosphorylation of AKT and caspase-9 activity in neonatal rat cardiomyocytes and HL-1 cells. Finally, RT-qPCR, ELISA and western blot were performed to examine chemerin and CMKLR1 expression after insulin and TNF-α treatment in cardiac cells. Results: Chemerin treatment increased apoptosis, reduced phosphorylation of AKT at Thr308 and increased caspase-9 activity in murine cardiomyocytes. Insulin treatment lowered chemerin and CMKLR1 mRNA and protein levels, and the amount of chemerin in the cell media, while TNF-α treatment increased chemerin mRNA and protein levels but decreased expression of the CMKLR1 gene. Conclusion: Chemerin induces apoptosis, reduces AKT phosphorylation and increases the cleavage of caspase-9 in murine cardiomyocytes. The expression of chemerin is regulated by important metabolic (insulin and inflammatory (TNF-α mediators at cardiac level. Our results suggest that chemerin could play a role in the physiopathology of cardiac diseases.

  1. Nitroxyl (HNO stimulates soluble guanylyl cyclase to suppress cardiomyocyte hypertrophy and superoxide generation.

    Directory of Open Access Journals (Sweden)

    Eliane Q Lin

    Full Text Available BACKGROUND: New therapeutic targets for cardiac hypertrophy, an independent risk factor for heart failure and death, are essential. HNO is a novel redox sibling of NO• attracting considerable attention for the treatment of cardiovascular disorders, eliciting cGMP-dependent vasodilatation yet cGMP-independent positive inotropy. The impact of HNO on cardiac hypertrophy (which is negatively regulated by cGMP however has not been investigated. METHODS: Neonatal rat cardiomyocytes were incubated with angiotensin II (Ang II in the presence and absence of the HNO donor Angeli's salt (sodium trioxodinitrate or B-type natriuretic peptide, BNP (all 1 µmol/L. Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. RESULTS: We now demonstrate that Angeli's salt inhibits Ang II-induced hypertrophic responses in cardiomyocytes, including increases in cardiomyocyte size, de novo protein synthesis and β-myosin heavy chain expression. Angeli's salt also suppresses Ang II induction of key triggers of the cardiomyocyte hypertrophic response, including NADPH oxidase (on both Nox2 expression and superoxide generation, as well as p38 mitogen-activated protein kinase (p38MAPK. The antihypertrophic, superoxide-suppressing and cGMP-elevating effects of Angeli's salt were mimicked by BNP. We also demonstrate that the effects of Angeli's salt are specifically mediated by HNO (with no role for NO• or nitrite, with subsequent activation of cardiomyocyte soluble guanylyl cyclase (sGC and cGMP signaling (on both cGMP-dependent protein kinase, cGK-I and phosphorylation of vasodilator-stimulated phosphoprotein, VASP. CONCLUSIONS: Our results demonstrate that HNO prevents cardiomyocyte hypertrophy, and that cGMP-dependent NADPH oxidase suppression contributes to these antihypertrophic actions. HNO donors may thus represent innovative pharmacotherapy for cardiac hypertrophy.

  2. Cardiomyocyte Marker Expression in Mouse Embryonic Fibroblasts by Cell-Free Cardiomyocyte Extract and Epigenetic Manipulation

    Directory of Open Access Journals (Sweden)

    Tahereh Talaei-Khozani


    Full Text Available Background: The regenerative capacity of the mammalian heart is quite limited. Recent reports have focused on reprogramming mesenchymal stem cells into cardiomyocytes. We investigated whether fibroblasts could transdifferentiate into myocardium. Methods: Mouse embryonic fibroblasts were treated with Trichostatin A (TSA and 5-Aza-2-Deoxycytidine (5-aza-dC. The treated cells were permeabilized with streptolysin O and exposed to the mouse cardiomyocyte extract and cultured for 1, 10, and 21 days. Cardiomyocyte markers were detected by immunohistochemistry. Alkaline phosphatase activity and OCT4 were also detected in cells treated by chromatin-modifying agents. Results: The cells exposed to a combination of 5-aza-dC and TSA and permeabilized in the presence of the cardiomyocyte extract showed morphological changes. The cells were unable to express cardiomyocyte markers after 24 h. Immunocytochemical assays showed a notable degree of myosin heavy chain and α-actinin expressions after 10 days. The expression of the natriuretic factor and troponin T occurred after 21 days in these cells. The cells exposed to chromatin-modifying agents also expressed cardiomyocyte markers; however, the proportion of reprogrammed cells was clearly smaller than that in the cultures exposed to 5-aza-dC , TSA, and extract. Conclusion: It seems that the fibroblasts were able to eliminate the previous epigenetic markers and form new ones according to the factors existing in the extract. Since no beating was observed, at least up to 21 days, the cells may need an appropriate extracellular matrix for their function.

  3. Evolutionary and Taxonomic Implications of Variation in Nuclear Genome Size: Lesson from the Grass Genus Anthoxanthum (Poaceae). (United States)

    Chumová, Zuzana; Krejčíková, Jana; Mandáková, Terezie; Suda, Jan; Trávníček, Pavel


    The genus Anthoxanthum (sweet vernal grass, Poaceae) represents a taxonomically intricate polyploid complex with large phenotypic variation and its evolutionary relationships still poorly resolved. In order to get insight into the geographic distribution of ploidy levels and assess the taxonomic value of genome size data, we determined C- and Cx-values in 628 plants representing all currently recognized European species collected from 197 populations in 29 European countries. The flow cytometric estimates were supplemented by conventional chromosome counts. In addition to diploids, we found two low (rare 3x and common 4x) and one high (~16x-18x) polyploid levels. Mean holoploid genome sizes ranged from 5.52 pg in diploid A. alpinum to 44.75 pg in highly polyploid A. amarum, while the size of monoploid genomes ranged from 2.75 pg in tetraploid A. alpinum to 9.19 pg in diploid A. gracile. In contrast to Central and Northern Europe, which harboured only limited cytological variation, a much more complex pattern of genome sizes was revealed in the Mediterranean, particularly in Corsica. Eight taxonomic groups that partly corresponded to traditionally recognized species were delimited based on genome size values and phenotypic variation. Whereas our data supported the merger of A. aristatum and A. ovatum, eastern Mediterranean populations traditionally referred to as diploid A. odoratum were shown to be cytologically distinct, and may represent a new taxon. Autopolyploid origin was suggested for 4x A. alpinum. In contrast, 4x A. odoratum seems to be an allopolyploid, based on the amounts of nuclear DNA. Intraspecific variation in genome size was observed in all recognized species, the most striking example being the A. aristatum/ovatum complex. Altogether, our study showed that genome size can be a useful taxonomic marker in Anthoxathum to not only guide taxonomic decisions but also help resolve evolutionary relationships in this challenging grass genus.

  4. Evolutionary and Taxonomic Implications of Variation in Nuclear Genome Size: Lesson from the Grass Genus Anthoxanthum (Poaceae.

    Directory of Open Access Journals (Sweden)

    Zuzana Chumová

    Full Text Available The genus Anthoxanthum (sweet vernal grass, Poaceae represents a taxonomically intricate polyploid complex with large phenotypic variation and its evolutionary relationships still poorly resolved. In order to get insight into the geographic distribution of ploidy levels and assess the taxonomic value of genome size data, we determined C- and Cx-values in 628 plants representing all currently recognized European species collected from 197 populations in 29 European countries. The flow cytometric estimates were supplemented by conventional chromosome counts. In addition to diploids, we found two low (rare 3x and common 4x and one high (~16x-18x polyploid levels. Mean holoploid genome sizes ranged from 5.52 pg in diploid A. alpinum to 44.75 pg in highly polyploid A. amarum, while the size of monoploid genomes ranged from 2.75 pg in tetraploid A. alpinum to 9.19 pg in diploid A. gracile. In contrast to Central and Northern Europe, which harboured only limited cytological variation, a much more complex pattern of genome sizes was revealed in the Mediterranean, particularly in Corsica. Eight taxonomic groups that partly corresponded to traditionally recognized species were delimited based on genome size values and phenotypic variation. Whereas our data supported the merger of A. aristatum and A. ovatum, eastern Mediterranean populations traditionally referred to as diploid A. odoratum were shown to be cytologically distinct, and may represent a new taxon. Autopolyploid origin was suggested for 4x A. alpinum. In contrast, 4x A. odoratum seems to be an allopolyploid, based on the amounts of nuclear DNA. Intraspecific variation in genome size was observed in all recognized species, the most striking example being the A. aristatum/ovatum complex. Altogether, our study showed that genome size can be a useful taxonomic marker in Anthoxathum to not only guide taxonomic decisions but also help resolve evolutionary relationships in this challenging grass genus.

  5. Tanshinone IIA Prevents Leu27IGF-II-Induced Cardiomyocyte Hypertrophy Mediated by Estrogen Receptor and Subsequent Akt Activation. (United States)

    Weng, Yueh-Shan; Wang, Hsueh-Fang; Pai, Pei-Ying; Jong, Gwo-Ping; Lai, Chao-Hung; Chung, Li-Chin; Hsieh, Dennis Jine-Yuan; HsuanDay, Cecilia; Kuo, Wei-Wen; Huang, Chih-Yang


    IGF-IIR plays important roles as a key regulator in myocardial pathological hypertrophy and apoptosis, which subsequently lead to heart failure. Salvia miltiorrhiza Bunge (Danshen) is a traditional Chinese medicinal herb used to treat cardiovascular diseases. Tanshinone IIA is an active compound in Danshen and is structurally similar to 17[Formula: see text]-estradiol (E[Formula: see text]. However, whether tanshinone IIA improves cardiomyocyte survival in pathological hypertrophy through estrogen receptor (ER) regulation remains unclear. This study investigates the role of ER signaling in mediating the protective effects of tanshinone IIA on IGF-IIR-induced myocardial hypertrophy. Leu27IGF-II (IGF-II analog) was shown in this study to specifically activate IGF-IIR expression and ICI 182,780 (ICI), an ER antagonist used to investigate tanshinone IIA estrogenic activity. We demonstrated that tanshinone IIA significantly enhanced Akt phosphorylation through ER activation to inhibit Leu27IGF-II-induced calcineurin expression and subsequent NFATc3 nuclear translocation to suppress myocardial hypertrophy. Tanshinone IIA reduced the cell size and suppressed ANP and BNP, inhibiting antihypertrophic effects induced by Leu27IGF-II. The cardioprotective properties of tanshinone IIA that inhibit Leu27IGF-II-induced cell hypertrophy and promote cell survival were reversed by ICI. Furthermore, ICI significantly reduced phospho-Akt, Ly294002 (PI3K inhibitor), and PI3K siRNA significantly reduced the tanshinone IIA-induced protective effect. The above results suggest that tanshinone IIA inhibited cardiomyocyte hypertrophy, which was mediated through ER, by activating the PI3K/Akt pathway and inhibiting Leu27IGF-II-induced calcineurin and NFATC3. Tanshinone IIA exerted strong estrogenic activity and therefore represented a novel selective ER modulator that inhibits IGF-IIR signaling to block cardiac hypertrophy.

  6. Nuclear size effects in rotational spectra: A tale with a twist

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, Stefan, E-mail: [Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark); Saue, Trond, E-mail: [Laboratoire de Physique Quantique (CNRS UMR 5626), IRSAMC, Universite Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse cedex (France)


    Graphical abstract: Molecular field shift: 4-Component relativistic calibration calculations show a coincidence of errors in previous theoretical and experimental studies of nuclear volume effects in the rotational spectra of diatomics. The central quantity for the calculation of corrections to the rotational Dunham coefficient Y{sub 01} is the derivative of the electron density with respect to internuclear distance, here shown for the TlI molecule. Abstract: We report a 4-component relativistic benchmark study of the isotopic field shift in the rotational spectrum of three diatomic molecules: TlI, PbTe and PtSi. A central quantity in the theory is the derivative with respect to internuclear distance of an effective electron density associated with a given nucleus, calculated at the equilibrium distance. The effective density, which is related to the mean electron density within the nuclear volume, is usually replaced with the contact density, that is, the electron density at the origin of the nucleus. Our computational study shows that for the chosen systems this induces errors on the order of 10%, which is not acceptable for high-precision work. On the other hand, the systematic nature of the error suggests that it can be handled by an atom-specific correction factor. Our calibration study reveals that relativistic effects increase the contact density gradient by about an order of magnitude, and that the proper transformation of the associated property operator is mandatory in 1- and 2-component relativistic calculations. Our results show very good agreement with the experimental data presented by Schlembach and Tiemann [Chem. Phys. 68 (1982) 21], but disagree completely with the revised results given by the same group in a later paper [Chem. Phys. 93 (1985) 349]. We have carefully re-derived the relevant formulas and cannot see that the rescaling of results is justified. Curiously previous DFT calculations agree quite well with the revised results for TlI and Pb

  7. Nonaqueous magnetic nanoparticle suspensions with controlled particle size and nuclear magnetic resonance properties. (United States)

    Meledandri, Carla J; Stolarczyk, Jacek K; Ghosh, Swapankumar; Brougham, Dermot F


    We report the preparation of monodisperse maghemite (gamma-Fe2O3) nanoparticle suspensions in heptane, by thermal decomposition of iron(III) acetylacetonate in the presence of oleic acid and oleylamine surfactants. By varying the surfactant/Fe precursor mole ratio during synthesis, control was exerted both over the nanocrystal core size, in the range from 3 to 6 nm, and over the magnetic properties of the resulting nanoparticle dispersions. We report field-cycling 1H NMR relaxation analysis of the superparamagnetic relaxation rate enhancement of nonaqueous suspensions for the first time. This approach permits measurement of the relaxivity and provides information on the saturation magnetization and magnetic anisotropy energy of the suspended particles. The saturation magnetization was found to be in the expected range for maghemite particles of this size. The anisotropy energy was found to increase significantly with decreasing particle size, which we attribute to increased shape anisotropy. This study can be used as a guide for the synthesis of maghemite nanoparticles with selected magnetic properties for a given application.

  8. Analysis of cardiomyocyte movement in the developing murine heart

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hisayuki [Department of Cardiology, Keio University School of Medicine, Tokyo (Japan); Yuasa, Shinsuke, E-mail: [Department of Cardiology, Keio University School of Medicine, Tokyo (Japan); Tabata, Hidenori [Department of Anatomy, Keio University School of Medicine, Tokyo (Japan); Tohyama, Shugo; Seki, Tomohisa; Egashira, Toru; Hayashiji, Nozomi; Hattori, Fumiyuki; Kusumoto, Dai; Kunitomi, Akira; Takei, Makoto; Kashimura, Shin; Yozu, Gakuto; Shimojima, Masaya; Motoda, Chikaaki; Muraoka, Naoto [Department of Cardiology, Keio University School of Medicine, Tokyo (Japan); Nakajima, Kazunori [Department of Anatomy, Keio University School of Medicine, Tokyo (Japan); Sakaue-Sawano, Asako; Miyawaki, Atsushi [Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); Fukuda, Keiichi [Department of Cardiology, Keio University School of Medicine, Tokyo (Japan)


    The precise assemblage of several types of cardiac precursors controls heart organogenesis. The cardiac precursors show dynamic movement during early development and then form the complicated heart structure. However, cardiomyocyte movements inside the newly organized mammalian heart remain unclear. We previously established the method of ex vivo time-lapse imaging of the murine heart to study cardiomyocyte behavior by using the Fucci (fluorescent ubiquitination-based cell cycle indicator) system, which can effectively label individual G1, S/G2/M, and G1/S-transition phase nuclei in living cardiomyocytes as red, green, and yellow, respectively. Global analysis of gene expression in Fucci green positive ventricular cardiomyocytes confirmed that cell cycle regulatory genes expressed in G1/S, S, G2/M, and M phase transitions were upregulated. Interestingly, pathway analysis revealed that many genes related to the cell cycle were significantly upregulated in the Fucci green positive ventricular cardiomyocytes, while only a small number of genes related to cell motility were upregulated. Time-lapse imaging showed that murine proliferating cardiomyocytes did not exhibit dynamic movement inside the heart, but stayed on site after entering the cell cycle. - Highlights: • We directly visualized cardiomyocyte movement inside the developing murine heart. • Cell cycle related genes were upregulated in the proliferating cardiomyocytes. • Time-lapse imaging revealed that proliferating murine cardiomyocytes stayed in place. • Murine ventricular cardiomyocytes proliferate on site during development.

  9. miR-24 regulates intrinsic apoptosis pathway in mouse cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Numerous cardiac diseases, including myocardial infarction (MI and chronic heart failure, have been associated with cardiomyocyte apoptosis. Promoting cell survival by inhibiting apoptosis is one of the effective strategies to attenuate cardiac dysfunction caused by cardiomyocyte loss. miR-24 has been shown as an anti-apoptotic microRNA in various animal models. In vivo delivery of miR-24 into a mouse MI model suppressed cardiac cell death, attenuated infarct size, and rescued cardiac dysfunction. However, the molecular pathway by which miR-24 inhibits cardiomyocyte apoptosis is not known. Here we found that miR-24 negatively regulates mouse primary cadiomyocyte cell death through functioning in the intrinsic apoptotic pathways. In ER-mediated intrinsic pathway, miR-24 genetically interacts with the CEBP homologous gene CHOP as knocking down of CHOP partially attenuated the induced apoptosis by miR-24 inhibition. In mitochondria-involved intrinsic pathway, miR-24 inhibits the initiation of apoptosis through suppression of Cytochrome C release and Bax translocation from cytosol to mitochondria. These results provide mechanistic insights into the miR-24 mediated anti-apoptotic effects in murine cardiomyocytes.

  10. P38 mitogen-activated protein kinase pathways are involved in the hypertrophy and apoptosis of cardiomyocytes induced by Porphyromonas gingivalis conditioned medium. (United States)

    Wu, Hsi-Chin; Yeh, Yu-Lan; Kuo, Wei-Wen; Huang, Shu-Kuei; Kuo, Wu-Hsien; Hsieh, Dennis Jine-Yuan; Wu, Ching-Lin; Tsai, Chang-Hai; Lee, Shin-Da; Huang, Chih-Yang


    The surrounding medium of periodontal pathogen Porphyromonas gingivalis (P. gingivalis) increased cardiomyocyte hypertrophy and apoptosis whereas Actinobaeillus actinomycetemcomitans and Prevotella intermedia had no effects. The purpose of this study is to clarify the role of p38 pathway in P. gingivalis conditioned medium-induced H9c2 myocardial cell hypertrophy and apoptosis. DNA fragmentation, cellular morphology, nuclear condensation, p38 protein products, and mitochondrial-dependent apoptotic related proteins in cultured H9c2 myocardial cell were measured by agarose gel electrophoresis, immunofluorescence, DAPI, and western blotting following P. gingivalis conditioned medium and/or pre-administration of SB203580 (p38 inhibitor). The p38 protein products and associated activities in H9c2 cells were both upregulated by P. gingivalis conditioned medium. P. gingivalis conditioned medium increased cellular sizes, DNA fragmentation, nuclear condensation, mitochondrial Bcl2-associated death promoter (Bad), cytosolic cytochrome c (cyt c), and the activated form of caspase-9 proteins in H9c2 cells. The increased cellular sizes, DNA fragmentation, nuclear condensation, Bad, cyt c, and caspase-9 activities of H9c2 cells treated with P. gingivalis conditioned medium were all significantly reduced after pre-administration of SB203580. Our findings suggest that the activity of p38 signal pathway may be initiated by P. gingivalis conditioned medium and further activate mitochondrial-dependent apoptotic pathways leading to cell death in cultured H9c2 myocardial cells.

  11. Comparison between Gradient Gel Electrophoresis and Nuclear Magnetic Resonance Spectroscopy in Estimating Coronary Heart Disease Risk Associated with LDL and HDL Particle Size

    NARCIS (Netherlands)

    B.J. Arsenault; I. Lemieux; J.P. Després; N.J. Wareham; E.S.G. Stroes; J.J.P. Kastelein; K.T. Khaw; S.M. Boekholdt


    BACKGROUND: Gradient gel electrophoresis (GGE) and nuclear magnetic resonance (NMR) spectroscopy are both widely accepted methods for measuring LDL and HDL particle size. However, whether or not GGE- or NMR-measured LDL or HDL particle size predicts coronary heart disease (CHD) risk to a similar ext


    Directory of Open Access Journals (Sweden)

    Vanessa Gonçalves Coutinho de Oliveira

    Full Text Available ABSTRACT Introduction: Polypeptide hormones (natriuretic peptides, NPs are secreted by the cardiac atria and play an important role in the regulation of blood pressure. Objective: To evaluate the effects of aerobic training on the secretory apparatus of NPs in cardiomyocytes of the right atrium. Methods: Nine-month-old mice were divided in two groups (n=10: control group (CG and trained group (TG. The training protocol was performed on a motor treadmill for 8 weeks. Systolic blood pressure was measured at the beginning of the experiment (9 months of age and at moment of the sacrifice (11 months of age. Electron micrographs were used to quantify the following variables: the quantitative density and area of NP granules, the relative volumes of the mitochondria, endoplasmic reticulum, and Golgi complex and the relative volume of euchromatin in the nucleus and the number of pores per 10 µm of the nuclear membrane. The results were compared by Student's t test (p< 0.05. Results: The cardiomyocytes obtained from TG mice showed increased density and sectional area of secretory granules of NP, higher relative volume of endoplasmic reticulum, mitochondria, and Golgi complex compared with the CG mice. Furthermore, the quantitative density of nuclear pores and the relative volume of euchromatin in the nucleus were significantly higher compared with the CG mice. Conclusion: Aerobic training caused hypertrophy of the secretory apparatus in the cardiomyocytes of right atrium, which could explain the intense synthesis of natriuretic peptides in trained mice with respect to the untrained mice.

  13. Nuclear localization and cytosolic overexpression of LASP-1 correlates with tumor size and nodal-positivity of human breast carcinoma

    Directory of Open Access Journals (Sweden)

    Dietl Johannes


    Full Text Available Abstract Background LIM and SH3 protein 1 (LASP-1, initially identified from human breast cancer, is a specific focal adhesion protein involved in cell proliferation and migration, which was reported to be overexpressed in 8–12 % of human breast cancers and thought to be exclusively located in cytoplasm. Methods In the present work we analyzed the cellular and histological expression pattern of LASP-1 and its involvement in biological behavior of human breast cancer through correlation with standard clinicopathological parameters and expression of c-erbB2 (HER-2/neu, estrogen- (ER and progesterone-receptors (PR. For this purpose immunohistochemical staining intensity and percentage of stained cells were semi-quantitatively rated to define a LASP-1 immunoreactive score (LASP-1-IRS. LASP-1-IRS was determined in 83 cases of invasive ductal breast carcinomas, 25 ductal carcinomas in situ (DCIS and 18 fibroadenomas. Cellular LASP-1 distribution and expression pattern was visualized by immunofluorescence and confocal microscopy and assessed through separate Western blots of nuclear and cytosol preparations of BT-20, MCF-7, MDA-MB231, and ZR-75/1 breast cancer cells. Results Statistical analysis revealed that the resulting LASP-1-IRS was significantly higher in invasive carcinomas compared to fibroadenomas (p = 0.0176. Strong cytoplasmatic expression of LASP-1 was detected in 55.4 % of the invasive carcinomas, which correlated significantly with nuclear LASP-1-positivity (p = 0.0014, increased tumor size (p = 0.0159 and rate of nodal-positivity (p = 0.0066. However, levels of LASP-1 expression did not correlate with average age at time point of diagnosis, histological tumor grading, c-erbB2-, ER- or PR-expression. Increased nuclear localization and cytosolic expression of LASP-1 was found in breast cancer with higher tumor stage as well as in rapidly proliferating epidermal basal cells. Confocal microscopy and separate Western blots of cytosolic and

  14. Elastic interactions synchronize beating in cardiomyocytes. (United States)

    Cohen, Ohad; Safran, Samuel A


    Motivated by recent experimental results, we study theoretically the synchronization of the beating phase and frequency of two nearby cardiomyocyte cells. Each cell is represented as an oscillating force dipole in an infinite, viscoelastic medium and the propagation of the elastic signal within the medium is predicted. We examine the steady-state beating of two nearby cells, and show that elastic interactions result in forces that synchronize the phase and frequency of beating in a manner that depends on their mutual orientation. The theory predicts both in-phase and anti-phase steady-state beating depending on the relative cell orientations, as well as how synchronized beating varies with substrate elasticity and the inter-cell distance. These results suggest how mechanics plays a role in cardiac efficiency, and may be relevant for the design of cardiomyocyte based micro devices and other biomedical applications.

  15. 4-Hydroxynonenal induces Nrf2-mediated UCP3 upregulation in mouse cardiomyocytes. (United States)

    López-Bernardo, Elia; Anedda, Andrea; Sánchez-Pérez, Patricia; Acosta-Iborra, Bárbara; Cadenas, Susana


    4-Hydroxy-2-nonenal (HNE) is a highly cytotoxic product of lipid peroxidation. Nevertheless, at low concentrations, it is able to mediate cell signaling and to activate protective pathways, including that of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). In addition, HNE activates uncoupling proteins (UCPs), mitochondrial inner membrane proteins that mediate uncoupling of oxidative phosphorylation and have been proposed to protect against oxidative stress. It is not known, however, whether HNE might induce UCP expression via Nrf2 to cause mitochondrial uncoupling. We investigated the effects of HNE on UCP3 expression in mouse cardiomyocytes and the involvement of Nrf2. HNE induced the nuclear accumulation of Nrf2 and enhanced UCP3 expression, effects prevented by the antioxidant N-acetylcysteine. ChIP assays indicated that Nrf2 bound to the Ucp3 promoter after HNE treatment, increasing its expression. Cardiomyocytes treated with Nrf2- or UCP3-specific siRNA were less tolerant to HNE as reflected by increased cell death, and Nrf2 siRNA prevented HNE-induced UCP3 upregulation. The treatment with HNE greatly altered cardiomyocyte bioenergetics, increasing the proton leak across the inner mitochondrial membrane and severely decreasing the maximal respiratory capacity and the respiratory reserve capacity. These findings confirm that low HNE doses activate Nrf2 in cardiomyocytes and provide the first evidence of Nrf2 binding to the Ucp3 promoter in response to HNE, leading to increased protein expression. These results suggest that the upregulation of UCP3 mediated by Nrf2 in response to HNE might be important in the protection of the heart under conditions of oxidative stress such as ischemia-reperfusion.

  16. Prevention of export of anoxia/reoxygenation injury from ischemic to nonischemic cardiomyocytes via inhibition of endocytosis. (United States)

    Khaidakov, Magomed; Mercanti, Federico; Wang, Xianwei; Ding, Zufeng; Dai, Yao; Romeo, Francesco; Sawamura, Tatsuya; Mehta, Jawahar L


    Myocardial infarct size is determined by the death of nonischemic border zone cardiomyocytes caused by export of injury signals from the infarct zone. The countermeasures to limit infarct size, therefore, should be aimed at nonselective blockade of most, if not all, injury signals from entering nonischemic cells. To test whether inhibition of endocytosis might limit infarct size, HL-1 cardiomyocytes were subjected to anoxia (6 h) and reoxygenation (1 h). Anoxic and reoxygenated cells showed a multifold increase in mitochondrial ROS production accompanied with upregulation of scavenger receptors lectin-like oxidized low-density lipoprotein receptor-1 and CD36 and stimulation of stress signals, including NADPH oxidase subunit p22(phox), SOD2, and beclin-1. Incubation of healthy cardiomyocytes in media from anoxic and reoxygenated cells (conditioned media) resulted in qualitatively similar responses, including increase in the generation of mitochondrial ROS, p22(phox), SOD2, and beclin-1. Anoxia and reoxygenation caused collapse of clathrin-mediated endocytosis and stimulation of macropinocytosis, whereas in cultures exposed to conditioned media, the activity of endocytosis was uniformly higher. Conditioned media also significantly aggravated cytotoxic effects of TNF-α and angiotensin II, and suppression of endocytosis reversed these trends, resulting in an overall increase of metabolic activity. Moreover, inhibition of endocytosis prevented binding of oxidized cellular fragments with greater efficiency than targeted neutralization of the scavenger receptor lectin-like oxidized low-density lipoprotein receptor-1. Many of the observations in HL-1 cardiomyocytes were confirmed in primary cardiomyocyte cultures. Our data suggest that endocytosis is upregulated in border zone cardiomyocytes, and inhibition of endocytosis may be an effective approach to prevent export of injury signals from the infarct zone.

  17. File list: Oth.CDV.20.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.AllAg.Cardiomyocytes mm9 TFs and others Cardiovascular Cardiomyocytes ...

  18. File list: InP.CDV.20.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.20.AllAg.Cardiomyocytes mm9 Input control Cardiovascular Cardiomyocytes SRX...1121694 ...

  19. File list: NoD.CDV.50.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.50.AllAg.Cardiomyocytes mm9 No description Cardiovascular Cardiomyocytes ...

  20. File list: Pol.CDV.50.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.50.AllAg.Cardiomyocytes mm9 RNA polymerase Cardiovascular Cardiomyocytes ...

  1. File list: InP.CDV.05.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.05.AllAg.Cardiomyocytes mm9 Input control Cardiovascular Cardiomyocytes SRX...1121694 ...

  2. File list: InP.CDV.50.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.50.AllAg.Cardiomyocytes mm9 Input control Cardiovascular Cardiomyocytes SRX...1121694 ...

  3. File list: NoD.CDV.10.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.10.AllAg.Cardiomyocytes mm9 No description Cardiovascular Cardiomyocytes ...

  4. File list: Oth.CDV.05.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.AllAg.Cardiomyocytes mm9 TFs and others Cardiovascular Cardiomyocytes ...

  5. File list: Oth.CDV.10.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.AllAg.Cardiomyocytes mm9 TFs and others Cardiovascular Cardiomyocytes ...

  6. File list: InP.CDV.10.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.10.AllAg.Cardiomyocytes mm9 Input control Cardiovascular Cardiomyocytes SRX...1121694 ...

  7. File list: Pol.CDV.10.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.AllAg.Cardiomyocytes mm9 RNA polymerase Cardiovascular Cardiomyocytes ...

  8. File list: Pol.CDV.05.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.AllAg.Cardiomyocytes mm9 RNA polymerase Cardiovascular Cardiomyocytes ...

  9. File list: NoD.CDV.05.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.05.AllAg.Cardiomyocytes mm9 No description Cardiovascular Cardiomyocytes ...

  10. File list: Oth.CDV.50.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.AllAg.Cardiomyocytes mm9 TFs and others Cardiovascular Cardiomyocytes ...

  11. File list: Pol.CDV.20.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.AllAg.Cardiomyocytes mm9 RNA polymerase Cardiovascular Cardiomyocytes ...

  12. SarcOptiM for ImageJ: high-frequency online sarcomere length computing on stimulated cardiomyocytes. (United States)

    Pasqualin, Côme; Gannier, François; Yu, Angèle; Malécot, Claire O; Bredeloux, Pierre; Maupoil, Véronique


    Accurate measurement of cardiomyocyte contraction is a critical issue for scientists working on cardiac physiology and physiopathology of diseases implying contraction impairment. Cardiomyocytes contraction can be quantified by measuring sarcomere length, but few tools are available for this, and none is freely distributed. We developed a plug-in (SarcOptiM) for the ImageJ/Fiji image analysis platform developed by the National Institutes of Health. SarcOptiM computes sarcomere length via fast Fourier transform analysis of video frames captured or displayed in ImageJ and thus is not tied to a dedicated video camera. It can work in real time or offline, the latter overcoming rotating motion or displacement-related artifacts. SarcOptiM includes a simulator and video generator of cardiomyocyte contraction. Acquisition parameters, such as pixel size and camera frame rate, were tested with both experimental recordings of rat ventricular cardiomyocytes and synthetic videos. It is freely distributed, and its source code is available. It works under Windows, Mac, or Linux operating systems. The camera speed is the limiting factor, since the algorithm can compute online sarcomere shortening at frame rates >10 kHz. In conclusion, SarcOptiM is a free and validated user-friendly tool for studying cardiomyocyte contraction in all species, including human.

  13. Anti-inflammatory effect of erythropoietin pretreatment on cardiomyocytes with hypoxia/reoxygenation injury and the possible mechanism

    Institute of Scientific and Technical Information of China (English)

    QIN Chuan; XIAO Ying-bin; ZHONG Qian-jin; CHEN Lin; WANG Xue-feng


    Objective: To investigate the anti-inflammatory effect of erythropoietin (EPO) pretreatment on cardiomyocytes ex-posed to hypoxia/reoxygenation injury (H/R) and explore the possible mechanism. Methods: The cultured neonatal rats' ventricular cardiomyocytes were divided randomly into 4 groups, con-trol group (C group), EPO pretreatment group (E group), EPO and pyrrolidine dithiocarbamate (PDTC) pretreatment group (EP group) and PDTC pretreatment group (P group). After 24 hours' pretreatment, the cardiomyocytes were exposed to H/R. After pretreatment and H/R, the expression of tumor necrosis factor- α (TNF- α ) gene in all the groups was detected by RT-PCR and Western blot. The nuclear factor- KB (NF- kB) activity was detected by electrophoretic mobility shift assay (EMSA) and the inhibitor-kBα (I- kBα)protein level was detected by Western blot. Results: The decrement of I- K B α protein and the in-creasing NF- kB activity were found in cardiomyocytes pre-treated with EPO before H/R compared to other groups (t=-3.321,4.183, P<0.01). However, after H/R, NF- kB activity and ex-pression of TNF- α gene were significantly reduced, I- k B α protein expression was increased in cardiomyocytes of E group compared to other groups (t=-3.425, 3.687, 3.454, P<0.01). All theses changes caused by EPO pretreatment were eliminated by the intervention of PDTC (an antagonist to NF- kB) dur-ing pretreatment. Conclusions: EPO pretreatment can inhibit the activa-tion of NF- kB and upregulation of TNF- α gene in cardiomyocytes exposed to H/R through a negative feed-back of NF- k B signaling pathway, and thus produces the anti-inflammatory effect. This might be one of the ways EPO produces the anti-inflammatory effect.

  14. Hydrogel-coated microfluidic channels for cardiomyocyte culture (United States)

    Annabi, Nasim; Selimović, Šeila; Cox, Juan Pablo Acevedo; Ribas, João; Bakooshli, Mohsen Afshar; Heintze, Déborah; Weiss, Anthony S.; Cropek, Donald; Khademhosseini, Ali


    The research areas of tissue engineering and drug development have displayed increased interest in organ-on-a-chip studies, in which physiologically or pathologically relevant tissues can be engineered to test pharmaceutical candidates. Microfluidic technologies enable the control of the cellular microenvironment for these applications through the topography, size, and elastic properties of the microscale cell culture environment, while delivering nutrients and chemical cues to the cells through continuous media perfusion. Traditional materials used in the fabrication of microfluidic devices, such as poly(dimethylsiloxane) (PDMS), offer high fidelity and high feature resolution, but do not facilitate cell attachment. To overcome this challenge, we have developed a method for coating microfluidic channels inside a closed PDMS device with a cell-compatible hydrogel layer. We have synthesized photocrosslinkable gelatin and tropoelastin-based hydrogel solutions that were used to coat the surfaces under continuous flow inside 50 μm wide, straight microfluidic channels to generate a hydrogel layer on the channel walls. Our observation of primary cardiomyocytes seeded on these hydrogel layers showed preferred attachment as well as higher spontaneous beating rates on tropoelastin coatings compared to gelatin. In addition, cellular attachment, alignment and beating were stronger on 5 % (w/v) hydrogel-coated devices than on 10 % (w/v) gel-coated channels. Our results demonstrate that cardiomyocytes respond favorably to the elastic, soft tropoelastin culture substrates, indicating that tropoelastin-based hydrogels may be a suitable coating choice for some organ-on-a-chip applications. We anticipate that the proposed hydrogel coating method and tropoelastin as a cell culture substrate may be useful for the generation of elastic tissues, e.g. blood vessels, using microfluidic approaches. PMID:23728018

  15. The effect of nanoparticle size and NLS density on nuclear targeting in cancer and normal cells; impaired nuclear import and aberrant nanoparticle intracellular trafficking in glioma. (United States)

    Tammam, Salma N; Azzazy, Hassan M E; Lamprecht, Alf


    The cell nucleus is an interesting target in many diseases with particular interest in cancer. Previously, nuclear targeted small and large chitosan nanoparticles (S-NPs≈25nm, and L-NPs≈150nm respectively), modified with low, intermediate and high densities of NLS (L-NLS, I-NLS and H-NLS) were developed and assessed in L929 fibroblasts. However, to evade apoptosis and stimulate tumor growth cancer cells are capable of manipulating the nuclear-cytoplasmic transport on many levels, making NPs that are capable of nuclear targeting in normal cells incapable of doing so in cancer. For such reason, here, the nuclear delivery efficiency of S-NPs and L-NPs was assessed as a function of their NLS density in cancer and non-cancer cells. For S-NPs, in all cells tested, NLS was unnecessary for nuclear delivery; unmodified S-NPs showed higher nuclear delivery than NLS-S-NPs due to their ability to gain nuclear entry in a passive manner. For L-NPs, L-NLS-L-NPs showed ≈ 8.5, 33, 1.8 and 7.2 fold higher nuclear deliveries than H-NLS-L-NPs in L929 fibroblasts, primary human fibroblasts, HEK 293 and lung cancer cells, respectively. In glioma however, unmodified L-NPs showed highest nuclear delivery, whereas NLS-L-NPs were retained in the cytoplasm. Experiments conducted in the presence of inhibitors of the classical nuclear import pathway indicated that due to overexpression of importin α, classical nuclear import in glioma is impaired leading to aberrant NP intracellular trafficking and nuclear import.

  16. Striatal medium-sized spiny neurons: identification by nuclear staining and study of neuronal subpopulations in BAC transgenic mice.

    Directory of Open Access Journals (Sweden)

    Miriam Matamales

    Full Text Available Precise identification of neuronal populations is a major challenge in neuroscience. In the striatum, more than 95% of neurons are GABAergic medium-sized spiny neurons (MSNs, which form two intermingled populations distinguished by their projections and protein content. Those expressing dopamine D(1-receptors (D1Rs project preferentially to the substantia nigra pars reticulata (SNr, whereas those expressing dopamine D(2- receptors (D2Rs project preferentially to the lateral part of the globus pallidus (LGP. The degree of segregation of these populations has been a continuous subject of debate, and the recent introduction of bacterial artificial chromosome (BAC transgenic mice expressing fluorescent proteins driven by specific promoters was a major progress to facilitate striatal neuron identification. However, the fraction of MSNs labeled in these mice has been recently called into question, casting doubt on the generality of results obtained with such approaches. Here, we performed an in-depth quantitative analysis of striatal neurons in drd1a-EGFP and drd2-EGFP mice. We first quantified neuronal and non-neuronal populations in the striatum, based on nuclear staining with TO-PRO-3, and immunolabeling for NeuN, DARPP-32 (dopamine- and cAMP-regulated phosphoprotein Mr approximately 32,000, and various markers for interneurons. TO-PRO-3 staining was sufficient to identify MSNs by their typical nuclear morphology and, with a good probability, interneuron populations. In drd1a-EGFP/drd2-EGFP double transgenic mice all MSNs expressed EGFP, which was driven in about half of them by drd1a promoter. Retrograde labeling showed that all MSNs projecting to the SNr expressed D1R and very few D2R (<1%. In contrast, our results were compatible with the existence of some D1R-EGFP-expressing fibers giving off terminals in the LGP. Thus, our study shows that nuclear staining is a simple method for identifying MSNs and other striatal neurons. It also

  17. EPA or DHA supplementation increases triacylglycerol, but not phospholipid, levels in isolated rat cardiomyocytes. (United States)

    Righi, Valeria; Di Nunzio, Mattia; Danesi, Francesca; Schenetti, Luisa; Mucci, Adele; Boschetti, Elisa; Biagi, Pierluigi; Bonora, Sergio; Tugnoli, Vitaliano; Bordoni, Alessandra


    It is well recognized that a high dietary intake of long-chain polyunsaturated fatty acids (LC-PUFA) has profound benefits on health and prevention of chronic diseases. In particular, in recent years there has been a dramatic surge of interest in the health effects of n-3 LC-PUFA derived from fish, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Notwithstanding, the metabolic fate and the effects of these fatty acids once inside the cell has seldom been comprehensively investigated. Using cultured neonatal rat cardiomyocytes as model system we have investigated for the first time, by means of high-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy in combination with gas chromatography (GC), the modification occurring in the cell lipid environment after EPA and DHA supplementation. The most important difference between control and n-3 LC-PUFA-supplemented cardiomyocytes highlighted by HR-MAS NMR spectroscopy is the increase of signals from mobile lipids, identified as triacylglycerols (TAG). The observed increase of mobile TAG is a metabolic response to n-3 LC-PUFA supplementation, which leads to an increased lipid storage. The sequestration of mobile lipids in lipid bodies provides a deposit of stored energy that can be accessed in a regulated fashion according to metabolic need. Interestingly, while n-3 LC-PUFA supplementation to neonatal rat cardiomyocytes causes a huge variation in the cell lipid environment, it does not induce detectable modifications in water-soluble metabolites, suggesting negligible interference with normal metabolic processes.

  18. Integrin Based Isolation Enables Purification of Murine Lineage Committed Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Laura Tarnawski

    Full Text Available In contrast to mature cardiomyocytes which have limited regenerative capacity, pluripotent stem cells represent a promising source for the generation of new cardiomyocytes. The tendency of pluripotent stem cells to form teratomas and the heterogeneity from various differentiation stages and cardiomyocyte cell sub-types, however, are major obstacles to overcome before this type of therapy could be applied in a clinical setting. Thus, the identification of extracellular markers for specific cardiomyocyte progenitors and mature subpopulations is of particular importance. The delineation of cardiomyocyte surface marker patterns not only serves as a means to derive homogeneous cell populations by FACS, but is also an essential tool to understand cardiac development. By using single-cell expression profiling in early mouse embryonic hearts, we found that a combination of integrin alpha-1, alpha-5, alpha-6 and N-cadherin enables isolation of lineage committed murine cardiomyocytes. Additionally, we were able to separate trabecular cardiomyocytes from solid ventricular myocardium and atrial murine cells. These cells exhibit expected subtype specific phenotype confirmed by electrophysiological analysis. We show that integrin expression can be used for the isolation of living, functional and lineage-specific murine cardiomyocytes.

  19. Growth factor stimulation of cardiomyocytes induces changes in the transcriptional contents of secreted exosomes

    Directory of Open Access Journals (Sweden)

    Gunnar Ronquist


    Full Text Available Exosomes are nano-sized extracellular vesicles, released from various cells, which can stimulate or repress responses in targets cells. We recently reported that cultured cardiomyocytes are able to release exosomes and that they, in turn, are involved in facilitating events in target cells by alteration of gene expression. We investigated whether external stimuli of the cardiomyocyte might influence the transcriptional content of the released exosomes.Exosomes were isolated from media collected from cultured cardiomyocytes (HL-1 with or without growth factor treatment (TGF-β2 and PDGF-BB, with a series of differential centrifugations, including preparative ultracentrifugation and separation with a sucrose gradient. The exosomes were characterized with dynamic light scattering (DLS, electron microscopy (EM and Western blot and analyzed with Illumina whole genome microarray gene expression.The exosomes were rounded in shape and had an average size of 50–90 nm in diameter with no difference between treatment groups. Analysis of the mRNA content in repeated experiments conclusively revealed 505 transcripts in the control group, 562 in the TGF-β2-treated group and 300 in the PDGF-BB-treated group. Common transcripts (217 were found in all 3 groups.We show that the mode of stimulation of parental cells affects the characteristics of exosomes released. Hence, there is a difference in mRNA content between exosomes derived from cultured cardiomyocytes stimulated, or not stimulated, with growth factors. We also conclude that all exosomes contain a basic package consisting of ribosomal transcripts and mRNAs coding for proteins with functions within the energy supply system. To access the supplementary material to this article, please see Supplementary files under Article Tools online.

  20. Antibodies against potassium channel interacting protein 2 induce necrosis in isolated rat cardiomyocytes. (United States)

    Choudhury, Sangita; Schnell, Michael; Bühler, Thomas; Reinke, Yvonne; Lüdemann, Jan; Nießner, Felix; Brinkmeier, Heinrich; Herda, Lars R; Staudt, Alexander; Kroemer, Heyo K; Völker, Uwe; Felix, Stephan B; Landsberger, Martin


    Auto-antibodies against cardiac proteins have been described in patients with dilated cardiomyopathy. Antibodies against the C-terminal part of KChIP2 (anti-KChIP2 [C-12]) enhance cell death of rat cardiomyocytes. The underlying mechanisms are not fully understood. Therefore, we wanted to explore the mechanisms responsible for anti-KChIP2-mediated cell death. Rat cardiomyocytes were treated with anti-KChIP2 (C-12). KChIP2 RNA and protein expressions, nuclear NF-κB, mitochondrial membrane potential Δψm, caspase-3 and -9 activities, necrotic and apoptotic cells, total Ca(2+) and K(+) concentrations, and the effects on L-type Ca(2+) channels were quantified. Anti-KChIP2 (C-12) induced nuclear translocation of NF-κB. Anti-KChIP2 (C-12)-treatment for 2 h significantly reduced KChIP2 mRNA and protein expression. Anti-KChIP2 (C-12) induced nuclear translocation of NF-κB after 1 h. After 6 h, Δψm and caspase-3 and -9 activities were not significantly changed. After 24 h, anti-KChIP2 (C-12)-treated cells were 75 ± 3% necrotic, 2 ± 1% apoptotic, and 13 ± 2% viable. Eighty-six ± 1% of experimental buffer-treated cells were viable. Anti-KChIP2 (C-12) induced significant increases in total Ca(2+) (plus 11 ± 2%) and K(+) (plus 18 ± 2%) concentrations after 5 min. Anti-KChIP2 (C-12) resulted in an increased Ca(2+) influx through L-type Ca(2+) channels. In conclusion, our results suggest that anti-KChIP2 (C-12) enhances cell death of rat cardiomyocytes probably due to necrosis.

  1. Analysis of mitochondrial 3D-deformation in cardiomyocytes during active contraction reveals passive structural anisotropy of orthogonal short axes.

    Directory of Open Access Journals (Sweden)

    Yael Yaniv

    Full Text Available The cardiomyocyte cytoskeleton, composed of rigid and elastic elements, maintains the isolated cell in an elongated cylindrical shape with an elliptical cross-section, even during contraction-relaxation cycles. Cardiomyocyte mitochondria are micron-sized, fluid-filled passive spheres distributed throughout the cell in a crystal-like lattice, arranged in pairs sandwiched between the sarcomere contractile machinery, both longitudinally and radially. Their shape represents the extant 3-dimensional (3D force-balance. We developed a novel method to examine mitochondrial 3D-deformation in response to contraction and relaxation to understand how dynamic forces are balanced inside cardiomyocytes. The variation in transmitted light intensity induced by the periodic lattice of myofilaments alternating with mitochondrial rows can be analyzed by Fourier transformation along a given cardiomyocyte axis to measure mitochondrial deformation along that axis. This technique enables precise detection of changes in dimension of ∼1% in ∼1 µm (long-axis structures with 8 ms time-resolution. During active contraction (1 Hz stimulation, mitochondria deform along the length- and width-axes of the cell with similar deformation kinetics in both sarcomere and mitochondrial structures. However, significant deformation anisotropy (without hysteresis was observed between the orthogonal short-axes (i.e., width and depth of mitochondria during electrical stimulation. The same degree of deformation anisotropy was also found between the myocyte orthogonal short-axes during electrical stimulation. Therefore, the deformation of the mitochondria reflects the overall deformation of the cell, and the apparent stiffness and stress/strain characteristics of the cytoskeleton differ appreciably between the two cardiomyocyte orthogonal short-axes. This method may be applied to obtaining a better understanding of the dynamic force-balance inside cardiomyocytes and of changes in the

  2. Size-dependent distribution of radiocesium in riverbed sediments and its relevance to the migration of radiocesium in river systems after the Fukushima Daiichi Nuclear Power Plant accident. (United States)

    Tanaka, Kazuya; Iwatani, Hokuto; Sakaguchi, Aya; Fan, Qiaohui; Takahashi, Yoshio


    We investigated the particle size distribution of radiocesium in riverbed sediments after the Fukushima Daiichi Nuclear Power Plant accident. Riverbed sediments were collected in the Abukuma River system in Fukushima and Miyagi Prefectures. The collected sediments were separated into 11 fractions, ranging from granular size (>2000 μm) to clay size (<2 μm) fractions. Cesium-137 concentrations were higher in the smaller particle size fractions, possibly reflecting specific surface areas and the mineralogy, in particular the clay mineral content. A gap in (137)Cs concentration was observed between the silt size and sand size fractions of riverbed sediments at downstream sites, whereas riverbed sediments at an upstream site did not show such a concentration gap. It is likely that selective transport of small particles in suspended state from upstream areas resulted in an accumulation of radiocesium in downstream areas.

  3. Sildenafil prevents the up-regulation of transient receptor potential canonical channels in the development of cardiomyocyte hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Kiso, Hironori [Department of Internal Medicine, Division of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine (Japan); Ohba, Takayoshi [Department of Cell Physiology, Akita University Graduate School of Medicine (Japan); Iino, Kenji; Sato, Kazuhiro; Terata, Yutaka [Department of Internal Medicine, Division of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine (Japan); Murakami, Manabu [Department of Pharmacology, Hirosaki University Graduate School of Medicine (Japan); Ono, Kyoichi [Department of Cell Physiology, Akita University Graduate School of Medicine (Japan); Watanabe, Hiroyuki, E-mail: [Department of Internal Medicine, Division of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine (Japan); Ito, Hiroshi [Department of Internal Medicine, Division of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine (Japan)


    Highlights: •Transient receptor potential canonical (TRPC1, 3 and 6) are up-regulated by ET-1. •Sildenafil inhibited hypertrophic responses (BNP, Ca entry, NFAT activation). •Sildenafil suppressed TRPC1, 3 and 6 expression. -- Abstract: Background: Transient receptor potential canonical (TRPCs) channels are up-regulated in the development of cardiac hypertrophy. Sildenafil inhibits TRPC6 activation and expression, leading to the prevention of cardiac hypertrophy. However, the effects of sildenafil on the expression of other TRPCs remain unknown. We hypothesized that in addition to its effects of TRPC6, sildenafil blocks the up-regulation of other TRPC channels to suppress cardiomyocyte hypertrophy. Methods and results: In cultured neonatal rat cardiomyocytes, a 48 h treatment with 10 nM endothelin (ET)-1 induced hypertrophic responses characterized by nuclear factor of activated T cells activation and enhancement of brain natriuretic peptide expression and cell surface area. Co-treatment with sildenafil (1 μM, 48 h) inhibited these ET-1-induced hypertrophic responses. Although ET-1 enhanced the gene expression of TRPCs, sildenafil inhibited the enhanced gene expression of TRPC1, C3 and C6. Moreover, co-treatment with sildenafil abolished the augmentation of SOCE in the hypertrophied cardiomyocytes. Conclusions: These results suggest that sildenafil inhibits cardiomyocyte hypertrophy by suppressing the up-regulation of TRPC expression.

  4. Intracellular diffusion restrictions in isolated cardiomyocytes from rainbow trout

    Directory of Open Access Journals (Sweden)

    Birkedal Rikke


    Full Text Available Abstract Background Restriction of intracellular diffusion of adenine nucleotides has been studied intensively on adult rat cardiomyocytes. However, their cause and role in vivo is still uncertain. Intracellular membrane structures have been suggested to play a role. We therefore chose to study cardiomyocytes from rainbow trout (Oncorhynchus mykiss, which are thinner and have fewer intracellular membrane structures than adult rat cardiomyocytes. Previous studies suggest that trout permeabilized cardiac fibers also have diffusion restrictions. However, results from fibers may be affected by incomplete separation of the cells. This is avoided when studying permeabilized, isolated cardiomyocytes. The aim of this study was to verify the existence of diffusion restrictions in trout cardiomyocytes by comparing ADP-kinetics of mitochondrial respiration in permeabilized fibers, permeabilized cardiomyocytes and isolated mitochondria from rainbow trout heart. Experiments were performed at 10, 15 and 20°C in the absence and presence of creatine. Results Trout cardiomyocytes hypercontracted in the solutions used for mammalian cardiomyocytes. We developed a new solution in which they retained their shape and showed stable steady state respiration rates throughout an experiment. The apparent ADP-affinity of permeabilized cardiomyocytes was different from that of fibers. It was higher, independent of temperature and not increased by creatine. However, it was still about ten times lower than in isolated mitochondria. Conclusions The differences between fibers and cardiomyocytes suggest that results from trout heart fibers were affected by incomplete separation of the cells. However, the lower ADP-affinity of cardiomyocytes compared to isolated mitochondria indicate that intracellular diffusion restrictions are still present in trout cardiomyocytes despite their lower density of intracellular membrane structures. The lack of a creatine effect indicates that

  5. Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration. (United States)

    Mahmoud, Ahmed I; O'Meara, Caitlin C; Gemberling, Matthew; Zhao, Long; Bryant, Donald M; Zheng, Ruimao; Gannon, Joseph B; Cai, Lei; Choi, Wen-Yee; Egnaczyk, Gregory F; Burns, Caroline E; Burns, C Geoffrey; MacRae, Calum A; Poss, Kenneth D; Lee, Richard T


    Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration.

  6. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells (United States)

    van Meer, Berend J.; Tertoolen, Leon G. J.


    ABSTRACT Cardiomyocytes and endothelial cells in the heart are in close proximity and in constant dialogue. Endothelium regulates the size of the heart, supplies oxygen to the myocardium and secretes factors that support cardiomyocyte function. Robust and predictive cardiac disease models that faithfully recapitulate native human physiology in vitro would therefore ideally incorporate this cardiomyocyte-endothelium crosstalk. Here, we have generated and characterized human cardiac microtissues in vitro that integrate both cell types in complex 3D structures. We established conditions for simultaneous differentiation of cardiomyocytes and endothelial cells from human pluripotent stem cells following initial cardiac mesoderm induction. The endothelial cells expressed cardiac markers that were also present in primary cardiac microvasculature, suggesting cardiac endothelium identity. These cell populations were further enriched based on surface markers expression, then recombined allowing development of beating 3D structures termed cardiac microtissues. This in vitro model was robustly reproducible in both embryonic and induced pluripotent stem cells. It thus represents an advanced human stem cell-based platform for cardiovascular disease modelling and testing of relevant drugs. PMID:28279973

  7. Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death. (United States)

    Parra, Valentina; Moraga, Francisco; Kuzmicic, Jovan; López-Crisosto, Camila; Troncoso, Rodrigo; Torrealba, Natalia; Criollo, Alfredo; Díaz-Elizondo, Jessica; Rothermel, Beverly A; Quest, Andrew F G; Lavandero, Sergio


    Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulate numerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca(2+) overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca(2+) levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca(2+) influx, mitochondrial network fragmentation and loss of the mitochondrial Ca(2+) buffer capacity. These biochemical events increase cytosolic Ca(2+) levels and trigger cardiomyocyte death via the activation of calpains.

  8. Basal autophagy protects cardiomyocytes from doxorubicin-induced toxicity. (United States)

    Pizarro, Marcela; Troncoso, Rodrigo; Martínez, Gonzalo J; Chiong, Mario; Castro, Pablo F; Lavandero, Sergio


    Doxorubicin (Doxo) is one of the most effective anti-neoplastic agents but its cardiotoxicity has been an important clinical limitation. The major mechanism of Doxo-induced cardiotoxicity is associated to its oxidative capacity. However, other processes are also involved with significant consequences for the cardiomyocyte. In recent years, a number of studies have investigated the role of autophagy on Doxo-induced cardiotoxicity but to date it is not clear how Doxo alters that process and its consequence on cardiomyocytes viability. Here we investigated the effect of Doxo 1uM for 24h of stimulation on cultured neonatal rat cardiomyocytes. We showed that Doxo inhibits basal autophagy. This inhibition is due to both Akt/mTOR signaling pathway activation and Beclin 1 level decrease. To assess the role of autophagy on Doxo-induced cardiomyocyte death, we evaluated the effects 3-methyladenine (3-MA), bafilomycin A1 (BafA), siRNA Beclin 1 (siBeclin 1) and rapamycin (Rapa) on cell viability. Inhibition of autophagy with 3-MA, BafA and siBeclin 1 increased lactate dehydrogenase (LDH) release but, when autophagy was induced by Rapa, Doxo-induced cardiomyocyte death was decreased. These results suggest that Doxo inhibits basal autophagy and contributes to cardiomyocyte death. Activation of autophagy could be used as a strategy to protect the heart against Doxo toxicity.

  9. Rcan1-1L overexpression induces mitochondrial autophagy and improves cell survival in angiotensin II-exposed cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hongyan; Li, Yongqiang; Yan, Lijie; Yang, Haitao; Wu, Jintao; Qian, Peng; Li, Bing; Wang, Shanling, E-mail:


    Mitochondrial autophagy is an important adaptive stress response and can be modulated by various key molecules. A previous study found that the regulator of calcineurin 1-1L (Rcan1-1L) may regulate mitochondrial autophagy and cause mitochondria degradation in neurocytes. However, the effect of Rcan1-1L on cardiomyocytes has not been determined. In the present study, we aimed to investigate the role of Rcan1-1L in angiotensin II (Ang II)-exposed human cardiomyocytes. Above all, Human adult cardiac myocytes (HACMs) were exposed to 200 nmol/L Ang II for 4 days. Enhanced H{sub 2}O{sub 2} production, cytochrome C release and mitochondrial permeability were observed in these cells, which were blocked by valsartan. Consistently, Ang II exposure significantly reduced cardiomyocyte viability. However, transfection of Rcan1-1L vector promoted cell viability and ameliorated the apoptosis caused by Ang II. Rcan1-1L clearly promoted mitochondrial autophagy in HACMs, with elevated autophagy protein (ATG) 5 and light chain 3 (LC3) expression. Transient mitochondrial biogenesis and reduced cytochrome C release was also induced by Rcan1-1L. Additionally, Rcan1-1L significantly inhibited calcineurin/nuclear factor of activated T cells (NFAT) signaling. We thus conclude that Rcan1-1L may play a protective role in Ang II-treated cardiomyocytes through the induction of mitochondrial autophagy, and may be an alternative method of cardiac protection. - Highlights: • Transfection of Rcan1-1L into HACMs promoted cell viability and reduced apoptosis. • Transfection of Rcan1-1L promoted mitochondrial autophagy in HACMs. • Rcan1-1L inhibited the calcineurin/nuclear factor of activated T cells signaling.

  10. Human Stem Cell Derived Cardiomyocytes: An Alternative ... (United States)

    Chemical spills and associated deaths in the US has increased 2.6-fold and 16-fold from 1983 to 2012, respectfully. In addition, the number of chemicals to which humans are exposed to in the environment has increased almost 10-fold from 2001 to 2013 within the US. Internationally, a WHO report on the global composite impact of chemicals on health reported that 16% of the total burden of cardiovascular disease was attributed to environmental chemical exposure with 2.5 million deaths per year. Clearly, the cardiovascular system, at all its various developmental and life stages, represents a critical target organ system that can be adversely affected by existing and emerging chemicals (e.g., engineered nanomaterials) in a variety of environmental media. The ability to assess chemical cardiac risk and safety is critically needed but extremely challenging due to the number and categories of chemicals in commerce, as indicated. This presentation\\session will evaluate the use of adult human stem cell derived cardiomyocytes, and existing platforms, as an alternative model to evaluate environmental chemical cardiac toxicity as well as provide key information for the development of predictive adverse outcomes pathways associated with environmental chemical exposures. (This abstract does not represent EPA policy) Rapid and translatable chemical safety screening models for cardiotoxicity current status for informing regulatory decisions, a workshop sponsored by the Society

  11. Icariin promotes expression of PGC-1α, PPARα, and NRF-1 during cardiomyocyte differentiation of murine embryonic stem cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Ling DING; Xing-guang LIANG; Dan-yan ZHU; Yi-jia LOU


    Aim: To investigate the effect of icariin on the expression of peroxisome proliferator-activated receptor γ coactivator- 1 alpha (PGC- 1 α), peroxisome proliferator-activated receptor alpha (PPARα), and nuclear respiratory factor 1 (NRF-1) on cardiomyocyte differentiation of murine embryonic stem (ES) cells in vitro.Methods: The cardiomyocytes derived from murine ES cells were verified by immunocytochemistry using confocal laser scanning microscopy. Cardiacspecific sarcomeric proteins (ie α-actinin, troponin T) were evaluated when embryoid bodies (EB) were treated with icariin or retinoid acid. The expression of PGC-1α, PPARα, and NRF-1 were analyzed using both semiquantitative RT-PCR and Western blotting in cardiomyocyte differentiation. The phosphorylation of the p38 mitogen-activated protein kinase (MAPK) was studied in the differentiation process, and its specific inhibitor SB203580 was employed to confirm the function of the p38 MAPK on icariin-induced cardiac differentiation. Results:The application of icariin significantly induced the cardiomyocyte differentiation of EB as indicated by the promoted expression of α-actinin and troponin T. The expression of PGC-1α, PPARα and NRF-1 increased coincidently in early differentiation and the increase was dose-dependently upregulated by icariin treatment.The phosphorylation of the p38 MAPK peaked on d 6 and decreased after d 8, andthe activation was further enhanced and prolonged when the EB were subjected to icariin, which was concurrent with the elevation of PGC-1α, PPARα, and NRF-1. Moreover, the inhibition of the p38 MAPK pathway by SB203580 efficiently abolished icariin-stimulated cardiomyocyte differentiation and resulted in the capture of the upregulation of PGC-lα, PPARα, and NRF-1. Conclusion: Taken together, icariin promoted the expression of PGC-1 α, PPARα, and NRF-1 during cardiomyocyte differentiation ofmurine ES cells in vitro and the effect was partly responsible for the activation of

  12. AMPK and substrate availability regulate creatine transport in cultured cardiomyocytes. (United States)

    Darrabie, Marcus D; Arciniegas, Antonio Jose Luis; Mishra, Rajashree; Bowles, Dawn E; Jacobs, Danny O; Santacruz, Lucia


    Profound alterations in myocellular creatine and phosphocreatine levels are observed during human heart failure. To maintain its intracellular creatine stores, cardiomyocytes depend upon a cell membrane creatine transporter whose regulation is not clearly understood. Creatine transport capacity in the intact heart is modulated by substrate availability, and it is reduced in the failing myocardium, likely adding to the energy imbalance that characterizes heart failure. AMPK, a key regulator of cellular energy homeostasis, acts by switching off energy-consuming pathways in favor of processes that generate energy. Our objective was to determine the effects of substrate availability and AMPK activation on creatine transport in cardiomyocytes. We studied creatine transport in rat neonatal cardiomyocytes and HL-1 cardiac cells expressing the human creatine transporter cultured in the presence of varying creatine concentrations and the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribonucleoside (AICAR). Transport was enhanced in cardiomyocytes following incubation in creatine-depleted medium or AICAR. The changes in transport were due to alterations in V(max) that correlated with changes in total and cell surface creatine transporter protein content. Our results suggest a positive role for AMPK in creatine transport modulation for cardiomyocytes in culture.

  13. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, David; Strom, Joshua; Chen, Qin M., E-mail:


    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA.

  14. Dynamic Alterations to α-Actinin Accompanying Sarcomere Disassembly and Reassembly during Cardiomyocyte Mitosis. (United States)

    Fan, Xiaohu; Hughes, Bryan G; Ali, Mohammad A M; Cho, Woo Jung; Lopez, Waleska; Schulz, Richard


    Although mammals are thought to lose their capacity to regenerate heart muscle shortly after birth, embryonic and neonatal cardiomyocytes in mammals are hyperplastic. During proliferation these cells need to selectively disassemble their myofibrils for successful cytokinesis. The mechanism of sarcomere disassembly is, however, not understood. To study this, we performed a series of immunofluorescence studies of multiple sarcomeric proteins in proliferating neonatal rat ventricular myocytes and correlated these observations with biochemical changes at different cell cycle stages. During myocyte mitosis, α-actinin and titin were disassembled as early as prometaphase. α-actinin (representing the sarcomeric Z-disk) disassembly precedes that of titin (M-line), suggesting that titin disassembly occurs secondary to the collapse of the Z-disk. Sarcomere disassembly was concurrent with the dissolution of the nuclear envelope. Inhibitors of several intracellular proteases could not block the disassembly of α-actinin or titin. There was a dramatic increase in both cytosolic (soluble) and sarcomeric α-actinin during mitosis, and cytosolic α-actinin exhibited decreased phosphorylation compared to sarcomeric α-actinin. Inhibition of cyclin-dependent kinase 1 (CDK1) induced the quick reassembly of the sarcomere. Sarcomere dis- and re-assembly in cardiomyocyte mitosis is CDK1-dependent and features dynamic differential post-translational modifications of sarcomeric and cytosolic α-actinin.

  15. Radiative nonrecoil nuclear finite size corrections of order α(Zα)5 to the hyperfine splitting of S-states in muonic hydrogen (United States)

    Faustov, R. N.; Martynenko, A. P.; Martynenko, G. A.; Sorokin, V. V.


    On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα)5 to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried-Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.

  16. Radiative nonrecoil nuclear finite size corrections of order $\\alpha(Z\\alpha)^5$ to the hyperfine splitting of S-states in muonic hydrogen

    CERN Document Server

    Faustov, R N; Martynenko, G A; Sorokin, V V


    On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order $\\alpha(Z\\alpha)^5$ to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried-Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.

  17. Cyclic stretch of Embryonic Cardiomyocytes Increases Proliferation, Growth, and Expression While Repressing Tgf-β Signaling (United States)

    Banerjee, Indroneal; Carrion, Katrina; Serrano, Ricardo; Dyo, Jeffrey; Sasik, Roman; Lund, Sean; Willems, Erik; Aceves, Seema; Meili, Rudolph; Mercola, Mark; Chen, Ju; Zambon, Alexander; Hardiman, Gary; Doherty, Taylor A; Lange, Stephan; del Álamo, Juan C.; Nigam, Vishal


    Perturbed biomechanical stimuli are thought to be critical for the pathogenesis of a number of congenital heart defects, including Hypoplastic Left Heart Syndrome (HLHS). While embryonic cardiomyocytes experience biomechanical stretch every heart beat, their molecular responses to biomechanical stimuli during heart development are poorly understood. We hypothesized that biomechanical stimuli activate specific signaling pathways that impact proliferation, gene expression and myocyte contraction. The objective of this study was to expose embryonic mouse cardiomyocytes (EMCM) to cyclic stretch and examine key molecular and phenotypic responses. Analysis of RNA-Sequencing data demonstrated that gene ontology groups associated with myofibril and cardiac development were significantly modulated. Stretch increased EMCM proliferation, size, cardiac gene expression, and myofibril protein levels. Stretch also repressed several components belonging to the Transforming Growth Factor-β (Tgf-β) signaling pathway. EMCMs undergoing cyclic stretch had decreased Tgf-β expression, protein levels, and signaling. Furthermore, treatment of EMCMs with a Tgf-β inhibitor resulted in increased EMCM size. Functionally, Tgf-β signaling repressed EMCM proliferation and contractile function, as assayed via dynamic monolayer force microscopy (DMFM). Taken together, these data support the hypothesis that biomechanical stimuli play a vital role in normal cardiac development and for cardiac pathology, including HLHS. PMID:25446186

  18. Dietary levels of acrylamide affect rat cardiomyocyte properties. (United States)

    Walters, Brandan; Hariharan, Venkatesh; Huang, Hayden


    The toxic effects of acrylamide on cytoskeletal integrity and ion channel balance is well-established in many cell types, but there has been little examination regarding the effects of acrylamide on primary cardiomyocytes, despite the importance of such components in their function. Furthermore, acrylamide toxicity is generally examined using concentrations higher than those found in vivo under starch-rich diets. Accordingly, we sought to characterize the dose-dependent effects of acrylamide on various properties, including cell morphology, contraction patterns, and junctional connexin 43 staining, in primary cardiomyocytes. We show that several days exposure to 1-100 μM acrylamide resulted in altered morphology, irregular contraction patterns, and an increase in the amount of immunoreactive signal for connexin 43 at cell junctions. We conclude that dietary levels of acrylamide may alter cellular function with prolonged exposure, in primary cardiomyocytes.

  19. File list: His.CDV.05.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.05.AllAg.Cardiomyocytes mm9 Histone Cardiovascular Cardiomyocytes SRX305918...,SRX305920,SRX1121699,SRX305919 ...

  20. File list: ALL.CDV.50.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.50.AllAg.Cardiomyocytes mm9 All antigens Cardiovascular Cardiomyocytes SRX3...05918,SRX305920,SRX305919,SRX1121699,SRX1121694 ...

  1. File list: His.CDV.10.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.AllAg.Cardiomyocytes mm9 Histone Cardiovascular Cardiomyocytes SRX112169...9,SRX305919,SRX305918,SRX305920 ...

  2. File list: His.CDV.50.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.AllAg.Cardiomyocytes mm9 Histone Cardiovascular Cardiomyocytes SRX305918...,SRX305920,SRX305919,SRX1121699 ...

  3. File list: His.CDV.20.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.AllAg.Cardiomyocytes mm9 Histone Cardiovascular Cardiomyocytes SRX112169...9,SRX305918,SRX305920,SRX305919 ...

  4. File list: ALL.CDV.20.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.20.AllAg.Cardiomyocytes mm9 All antigens Cardiovascular Cardiomyocytes SRX1...121699,SRX305918,SRX305920,SRX305919,SRX1121694 ...

  5. File list: ALL.CDV.05.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.05.AllAg.Cardiomyocytes mm9 All antigens Cardiovascular Cardiomyocytes SRX3...05918,SRX305920,SRX1121699,SRX305919,SRX1121694 ...

  6. Antioxidant treatment attenuates hyperglycemia-induced cardiomyocyte death in rats. (United States)

    Fiordaliso, Fabio; Bianchi, Roberto; Staszewsky, Lidia; Cuccovillo, Ivan; Doni, Mirko; Laragione, Teresa; Salio, Monica; Savino, Costanza; Melucci, Silvia; Santangelo, Francesco; Scanziani, Eugenio; Masson, Serge; Ghezzi, Pietro; Latini, Roberto


    Diabetes and oxidative stress concur to cardiac myocyte death in various experimental settings. We assessed whether N-acetyl-L-cysteine (NAC), an antioxidant and glutathione precursor, has a protective role in a rat model of streptozotocin (STZ)-induced diabetes and in isolated myocytes exposed to high glucose (HG). Diabetic rats were treated with NAC (0.5 g/kg per day) or vehicle for 3 months. At sacrifice left ventricle (LV) myocyte number and size, collagen deposition and reactive oxygen species (ROS) were measured by quantitative histological methods. Diabetes reduced LV myocyte number by 29% and increased myocyte volume by 20% compared to non-diabetic controls. NAC protected from myocyte loss (+25% vs. untreated diabetics, P < 0.05) and reduced reactive hypertrophy (-16% vs. untreated diabetics, P < 0.05). Perivascular fibrosis was high in diabetic rats (+88% vs. control, P < 0.001) but prevented by NAC. ROS production and fraction of ROS-positive cardiomyocyte nuclei were drastically raised in diabetic rats (2.4- and 5.1-fold vs. control, P < 0.001) and normalized by NAC. In separate experiments, isolated adult rat ventricular myocytes were incubated in a medium containing high concentrations of glucose (HG, 25 mM) +/- 0.01 mM NAC; myocyte survival (Trypan blue exclusion and apoptosis by TUNEL) and glutathione content were evaluated. The number of dead and apoptotic myocytes increased five and 6.7-fold in HG and glutathione decreased by 48% (P < 0.05). NAC normalized cell death and apoptosis and prevented glutathione loss. NAC effectively protects from hyperglycemia-induced myocyte cell death and compensatory hypertrophy through direct scavenging of ROS and replenishment of the intracellular glutathione content.

  7. Effect of the size of experimental channels of the lead slowing-down spectrometer SVZ-100 (Institute for Nuclear Research, Moscow) on the moderation constant

    Energy Technology Data Exchange (ETDEWEB)

    Latysheva, L. N.; Bergman, A. A.; Sobolevsky, N. M., E-mail: [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Ilic, R. D. [Vinca Institute of Nuclear Sciences (Serbia)


    Lead slowing-down (LSD) spectrometers have a low energy resolution (about 30%), but their luminosity is 10{sup 3} to 10{sup 4} times higher than that of time-of-flight (TOF) spectrometers. A high luminosity of LSD spectrometers makes it possible to use them to measure neutron cross section for samples of mass about several micrograms. These features specify a niche for the application of LSD spectrometers in measuring neutron cross sections for elements hardly available in macroscopic amounts-in particular, for actinides. A mathematical simulation of the parameters of SVZ-100 LSD spectrometer of the Institute for Nuclear Research (INR, Moscow) is performed in the present study on the basis of the MCNPX code. It is found that the moderation constant, which is the main parameter of LSD spectrometers, is highly sensitive to the size and shape of detecting volumes in calculations and, hence, to the real size of experimental channels of the LSD spectrometer.

  8. Exogenous spermine contributes to prevent apoptosis in the rat hearts and cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    WEI Can; WANG Yue-hong; LI Mei-xiu; LI Hong-zhu; SHAO Hong-jiang; XU Chang-qing


    AIM:To investigate the relationship between polyamine metabolism and hypoxia /ischemia ( H/I)-induced cell apoptosis and to determine the mechanisms by which exogenous spermine protects cell apoptosis against AMI in rats .METHOD:The left anterior de-scending coronary artery ( LAD) of the Wistar rats were ligated , and neonatal rat cardiomyocytes were placed under hypoxic conditions for 24 h to establish the model of AMI (or H/I).Exogenous spermine was administered by intraperitoneal injection (2.5 mg/kg daily for 7 days) in vitro and subjected to the cell medium at 5μmol/L as a pre-treatment therapy.RESULTS:AMI (or H/I) induced an increase in polyamine catabolized enzyme SSAT and a decrease in polyamine biosynthesis enzyme ODC , which result in endogenous spermine and spermidine decrease and putrescine increase .At the same time, AMI ( or H/I) lowered cardiac function , increased cTnI and CK-MB concentrations , aggravated myocardial infarct size , cardiomyocyte damage and apoptosis , raised ROS generation , increased the expression of cleaved caspase-3, cleaved caspase-9 and endoplasmic reticulum stress (ERS)-related proteins, promoted the release of cytochrome C and mPTP opening , down-regulated Bcl-2 expression and the phosphorylation of ERK 1/2, PI3K, Akt and GSK-3β, and activated PERK and eIF 2αphosphorylation .Spermine pre-treatment reversed the above-motioned changes .CONCLUSION:AMI ( or H/I ) could induce cardiomyocyte apoptosis and polyamine metabolism disorder .Exogenous spermine attenuates cardiac injury through scavenging the ROS and inhibiting mPTP opening and ERS injury .These findings provide a novel target for the prevention of apoptosis in the setting of AMI .

  9. Testosterone induces cardiomyocyte hypertrophy through mammalian target of rapamycin complex 1 pathway. (United States)

    Altamirano, Francisco; Oyarce, César; Silva, Patricio; Toyos, Marcela; Wilson, Carlos; Lavandero, Sergio; Uhlén, Per; Estrada, Manuel


    Elevated testosterone concentrations induce cardiac hypertrophy but the molecular mechanisms are poorly understood. Anabolic properties of testosterone involve an increase in protein synthesis. The mammalian target of rapamycin complex 1 (mTORC1) pathway is a major regulator of cell growth, but the relationship between testosterone action and mTORC1 in cardiac cells remains unknown. Here, we investigated whether the hypertrophic effects of testosterone are mediated by mTORC1 signaling in cultured cardiomyocytes. Testosterone increases the phosphorylation of mTOR and its downstream targets 40S ribosomal protein S6 kinase 1 (S6K1; also known as RPS6KB1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). The S6K1 phosphorylation induced by testosterone was blocked by rapamycin and small interfering RNA to mTOR. Moreover, the hormone increased both extracellular-regulated kinase (ERK1/2) and protein kinase B (Akt) phosphorylation. ERK1/2 inhibitor PD98059 blocked the testosterone-induced S6K1 phosphorylation, whereas Akt inhibition (Akt-inhibitor-X) had no effect. Testosterone-induced ERK1/2 and S6K1 phosphorylation increases were blocked by either 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid-acetoxymethylester or by inhibitors of inositol 1,4,5-trisphosphate (IP(3)) pathway: U-73122 and 2-aminoethyl diphenylborate. Finally, cardiomyocyte hypertrophy was evaluated by, the expression of beta-myosin heavy chain, alpha-skeletal actin, cell size, and amino acid incorporation. Testosterone increased all four parameters and the increase being blocked by mTOR inhibition. Our findings suggest that testosterone activates the mTORC1/S6K1 axis through IP(3)/Ca(2+) and MEK/ERK1/2 to induce cardiomyocyte hypertrophy.

  10. Role of heterotrimeric G protein and calcium in cardiomyocyte hypertrophy induced by IGF-1. (United States)

    Carrasco, Loreto; Cea, Paola; Rocco, Paola; Peña-Oyarzún, Daniel; Rivera-Mejias, Pablo; Sotomayor-Flores, Cristian; Quiroga, Clara; Criollo, Alfredo; Ibarra, Cristian; Chiong, Mario; Lavandero, Sergio


    In the heart, insulin-like growth factor-1 (IGF-1) is a peptide with pro-hypertrophic and anti-apoptotic actions. The pro-hypertrophic properties of IGF-1 have been attributed to the extracellular regulated kinase (ERK) pathway. Recently, we reported that IGF-1 also increases intracellular Ca(2+) levels through a pertussis toxin (PTX)-sensitive G protein. Here we investigate whether this Ca(2+) signal is involved in IGF-1-induced cardiomyocyte hypertrophy. Our results show that the IGF-1-induced increase in Ca(2+) level is abolished by the IGF-1 receptor tyrosine kinase inhibitor AG538, PTX and the peptide inhibitor of Gβγ signaling, βARKct. Increases in the activities of Ca(2+) -dependent enzymes calcineurin, calmodulin kinase II (CaMKII), and protein kinase Cα (PKCα) were observed at 5 min after IGF-1 exposure. AG538, PTX, βARKct, and the dominant negative PKCα prevented the IGF-1-dependent phosphorylation of ERK1/2. Participation of calcineurin and CaMKII in ERK phosphorylation was discounted. IGF-1-induced cardiomyocyte hypertrophy, determined by cell size and β-myosin heavy chain (β-MHC), was prevented by AG538, PTX, βARKct, dominant negative PKCα, and the MEK1/2 inhibitor PD98059. Inhibition of calcineurin with CAIN did not abolish IGF-1-induced cardiac hypertrophy. We conclude that IGF-1 induces hypertrophy in cultured cardiomyocytes by activation of the receptor tyrosine kinase activity/βγ-subunits of a PTX-sensitive G protein/Ca(2+) /PKCα/ERK pathway without the participation of calcineurin.

  11. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model (United States)

    Hamaya, S.; Maeda, H.; Funaki, M.; Fukui, H.


    The relativistic calculation of nuclear magnetic shielding tensors in hydrogen halides is performed using the second-order regular approximation to the normalized elimination of the small component (SORA-NESC) method with the inclusion of the perturbation terms from the metric operator. This computational scheme is denoted as SORA-Met. The SORA-Met calculation yields anisotropies, Δσ =σ∥-σ⊥, for the halogen nuclei in hydrogen halides that are too small. In the NESC theory, the small component of the spinor is combined to the large component via the operator σ⃗ṡπ⃗U/2c, in which π⃗=p⃗+A⃗, U is a nonunitary transformation operator, and c ≅137.036 a.u. is the velocity of light. The operator U depends on the vector potential A⃗ (i.e., the magnetic perturbations in the system) with the leading order c-2 and the magnetic perturbation terms of U contribute to the Hamiltonian and metric operators of the system in the leading order c-4. It is shown that the small Δσ for halogen nuclei found in our previous studies is related to the neglect of the U(0,1) perturbation operator of U, which is independent of the external magnetic field and of the first order with respect to the nuclear magnetic dipole moment. Introduction of gauge-including atomic orbitals and a finite-size nuclear model is also discussed.

  12. C/EBPβ knockdown protects cardiomyocytes from hypertrophy via inhibition of p65-NFκB. (United States)

    Zou, Jian; Li, Hong; Chen, Xi; Zeng, Siyu; Ye, Jiantao; Zhou, Changhua; Liu, Min; Zhang, Luankun; Yu, Na; Gan, Xiaohong; Zhou, Houfeng; Xian, Zhiwei; Chen, Shaorui; Liu, Peiqing


    C/EBPβ, a member of the bHLH gene family of DNA-binding transcription factors, has been indicated as a central signal in physiologic hypertrophy. However, the role of C/EBPβ in pathological cardiac hypertrophy remains to be elucidated. In this study, we revealed that C/EBPβ is involved in cardiac hypertrophy, the expression of C/EBPβ were significantly increased in response to hypertrophic stimulation in vitro and in vivo. C/EBPβ knockdown inhibited PE-induced cardiac hypertrophy, and diminished the nuclear translocation and DNA binding activity of p65-NFκB. These results suggested that C/EBPβ knockdown protected cardiomyocytes from hypertrophy, which may be attributed to inhibition of NFκB-dependent transcriptional activity. These findings shed new light on the understanding of C/EBPβ-related cardiomyopathy, and suggest the potential application of C/EBPβ inhibitors in cardiac hypertrophy.

  13. Reduced function and disassembled microtubules of cultured cardiomyocytes in spaceflight

    Institute of Scientific and Technical Information of China (English)

    YANG Fen; DAI ZhongQuan; TAN YingJun; WAN YuMin; LI YingHui; DING Bai; NIE JieLin; WANG HongHui; ZHANG XiaoYou; WANG ChunYan; LING ShuKuan; NI ChengZhi


    Lack of gravity during spaceflight has profound effects on cardiovascular system, but little is known about how the cardiomyocytes respond to microgravity. In the present study, the effects of spaceflight on the structure and function of cultured cardiomyocytes were reported. The primary cultures of neo-natal rat cardiomyocytes were carried on Shenzhou-6 spacecraft and activated at 4 h in orbit. 8 samples were fixed respectively at 4, 48 and 96 h after launching for immunofluorescence of cytoskeleton, and 2 samples remained unfixed to analyze contractile and secretory functions of the cultures. Ground sam-ples were treated in our laboratory in parallel. After 115 h spaceflight, video recordings displayed that the number of spontaneous beating sites in flown samples decreased significantly, and the cells in the beating aggregate contracted in fast frequency without synchrony. Radioimmunoassay of the medium showed that the atrial natriuretic peptide secreted from flown cells reduced by 59.6%. Confocal images demonstrated the time-dependant disassembly of mirotubules versus unchanged distribution and or-ganization of microfilaments. In conclusion, above results indicate reduced function and disorganized cytoskeleton of cardiomyocytes in spaceflight, which might provide some cellular basis for further investigations to probe into the mechanisms underlying space cardiovascular dysfunction.

  14. Combinatorial MicroRNAs Suppress Hypoxia-Induced Cardiomyocytes Apoptosis

    Directory of Open Access Journals (Sweden)

    Yingqi Xu


    Full Text Available Background/Aims: Our previous in silico analysis revealed potential synergy in the activities of micro(miRNAs in myocardial infarction. The present study investigated whether miR-1 and -21 act synergistically to protect against cardiomyocytes apoptosis. Methods: Cell survival was analyzed with cell viability assay; apoptosis was detected by flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labeling, and the caspase-3 activity assay; and protein expression level was determined by western blotting. Results: MiR-1:miR-21 and several other miRNA pairs were evaluated for their potentially synergistic effects against myocardial hypoxia in neonatal rat ventricular cardiomyocytes. Lower combination indices suggested that miRNA pairs acted synergistically to inhibit apoptosis; miR-1 and -21 jointly blocked hypoxia-induced cardiomyocytes apoptosis. Moreover, combined application of miR-1 and -21 activated Akt and blocked hypoxia-induced upregulation of p53 in these cells. Conclusion: MiR-1 and -21 exert synergistic effects against hypoxia-induced cardiomyocytes apoptosis. These results provide a basis for the development of combined miRNA-based therapeutics to treat cardiovascular diseases.

  15. Excitation model of pacemaker cardiomyocytes of cardiac conduction system (United States)

    Grigoriev, M.; Babich, L.


    Myocardium includes typical and atypical cardiomyocytes - pacemakers, which form the cardiac conduction system. Excitation from the atrioventricular node in normal conditions is possible only in one direction. Retrograde direction of pulses is impossible. The most important prerequisite for the work of cardiomyocytes is the anatomical integrity of the conduction system. Changes in contractile force of the cardiomyocytes, which appear periodically, are due to two mechanisms of self-regulation - heterometric and homeometric. Graphic course of the excitation pulse propagation along the heart muscle more accurately reveals the understanding of the arrhythmia mechanism. These models have the ability to visualize the essence of excitation dynamics. However, they do not have the proper forecasting function for result estimation. Integrative mathematical model enables further investigation of general laws of the myocardium active behavior, allows for determination of the violation mechanism of electrical and contractile function of cardiomyocytes. Currently, there is no full understanding of the topography of pacemakers and ionic mechanisms. There is a need for the development of direction of mathematical modeling and comparative studies of the electrophysiological arrangement of cells of atrioventricular connection and ventricular conduction system.

  16. Alendronate affects calcium dynamics in cardiomyocytes in vitro. (United States)

    Kemeny-Suss, Naomi; Kasneci, Amanda; Rivas, Daniel; Afilalo, Jonathan; Komarova, Svetlana V; Chalifour, Lorraine E; Duque, Gustavo


    Therapy with bisphosphonates, including alendronate (ALN), is considered a safe and effective treatment for osteoporosis. However, recent studies have reported an unexpected increase in serious atrial fibrillation (AF) in patients treated with bisphosphonates. The mechanism that explains this side effect remains unknown. Since AF is associated with an altered sarcoendoplasmic reticulum calcium load, we studied how ALN affects cardiomyocyte calcium homeostasis and protein isoprenylation in vitro. Acute and long-term (48h) treatment of atrial and ventricular cardiomyocytes with ALN (10(-8)-10(-6)M) was performed. Changes in calcium dynamics were determined by both fluorescence measurement of cytosolic free Ca(2+) concentration and western blot analysis of calcium-regulating proteins. Finally, effect of ALN on protein farnesylation was also identified. In both atrial and ventricular cardiomyocytes, ALN treatment delayed and diminished calcium responses to caffeine. Only in atrial cells, long-term exposure to ALN-induced transitory calcium oscillations and led to the development of oscillatory component in calcium responses to caffeine. Changes in calcium dynamics were accompanied by changes in expression of proteins controlling sarcoendoplasmic reticulum calcium. In contrast, ALN minimally affected protein isoprenylation in these cells. In summary, treatment of atrial cardiomyocytes with ALN-induced abnormalities in calcium dynamics consistent with induction of a self-stimulatory, pacemaker-like behavior, which may contribute to the development of cardiac side effects associated with these drugs.

  17. Enhancement of cardiomyocyte differentiation from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)


    Several approaches have been used to encourage the differentiation of cardiomyocytes from human embryonic stem cells.However,the differentiation efficiency is low,and appropriate culture protocols are needed to produce adequate numbers of cardiomyocytes for therapeutic cell transplantation.This study investigated the effects of serum on cardiomyocyte differentiation in suspension culture medium during embryoid body(EB) formation by human embryonic stem cells.The addition of ascorbic acid,dimethylsulfoxide and 5-aza-2’-deoxycytidine during days 5-7 at the EB-forming stage resulted in an increase in the numbers of rhythmically contracting clusters of derived cardiomyocytes.Treatment with 0.1 mmol L-1 ascorbic acid alone,or more notably in combination with 10 μmol L-1 5-aza-2’-deoxycytidine,induced the formation of beating cells within EBs.Most of the beating clusters had spontaneous contraction rates similar to those found in human adults,and their contractile ac-tivity lasted for up to 194 days.

  18. Spermine inhibits Endoplasmic Reticulum Stress - induced Apoptosis: a New Strategy to Prevent Cardiomyocyte Apoptosis

    Directory of Open Access Journals (Sweden)

    Can Wei


    Full Text Available Background/Aims: Endoplasmic reticulum stress (ERS plays an important role in the progression of acute myocardial infarction (AMI, in part by mediating apoptosis. Polyamines, including putrescine, spermidine, and spermine, are polycations with anti-oxidative, anti-aging, and cell growth-promoting activities. This study aimed to determine the mechanisms by which spermine protects against ERS-induced apoptosis in rats following AMI. Methods and Results: AMI was established by ligation of the left anterior descending coronary artery (LAD in rats, and exogenous spermine was administered by intraperitoneal injection (2.5 mg/ml daily for 7 days pre-AMI. Spermine treatment limited infarct size, attenuated cardiac troponin I and creatinine kinase-MB release, improved cardiac function, and decreased ERS and apoptosis related protein expression. Isolated cardiomyocytes subjected to hypoxia showed significant increase in reactive oxygen species (ROS and the expression of apoptosis and ERS related proteins; these effects occurred through PERK and eIF2α phosphorylation. The addition of spermine attenuated cardiomyocyte apoptosis, suppressed the production of ROS, and inhibited ERS related pathways. Conclusions: Spermine was an effective pre-treatment strategy to attenuate cardiac ERS injury in rats, and the cardioprotective mechanism occurring through inhibition of ROS production and down regulation of the PERK-eIF2α pathway. These findings provide a novel target for the prevention of apoptosis in the setting of AMI.

  19. Sensitivity of depositions to the size and hygroscopicity of Cs-bearing aerosols released from the Fukushima nuclear accident (United States)

    Kajino, Mizuo; Adachi, Kouji; Sekiyama, Tsuyoshi; Zaizen, Yuji; Igarashi, Yasuhito


    We recently revealed that the microphysical properties of aerosols carrying the radioactive Cs released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) at an early stage (March 14-15, 2011) of the accident could be very different from what we assumed previously: super-micron and non-hygroscopic at the early stage, whereas sub-micron and hygroscopic afterwards (at least later than March 20-22). In the study, two sensitivity simulations with the two different aerosol microphysical properties were conducted using a regional scale meteorology- chemical transport model (NHM-Chem). The impact of the difference was quite significant. 17% (0.001%) of the radioactive Cs fell onto the ground by dry (wet) deposition processes, and the rest was deposited into the ocean or was transported out of the model domain, which is central and northern part of the main land of Japan, under the assumption that Cs-bearing aerosols are non-hygroscopic and super-micron. On the other hand, 5.7% (11.3%) fell onto the ground by dry (wet) deposition, for the cases under the assumption that the Cs-bearing aerosols are hygroscopic and sub-micron. For the accurate simulation of the deposition of radionuclides, knowledge of the aerosol microphysical properties is essential as well as the accuracy of the simulated wind fields and precipitation patterns.

  20. Focal Adhesion Kinase-mediated Phosphorylation of Beclin1 Protein Suppresses Cardiomyocyte Autophagy and Initiates Hypertrophic Growth*♦ (United States)

    Cheng, Zhaokang; Zhu, Qiang; Dee, Rachel; Opheim, Zachary; Mack, Christopher P.; Cyr, Douglas M.; Taylor, Joan M.


    Autophagy is an evolutionarily conserved intracellular degradation/recycling system that is essential for cellular homeostasis but is dysregulated in a number of diseases, including myocardial hypertrophy. Although it is clear that limiting or accelerating autophagic flux can result in pathological cardiac remodeling, the physiological signaling pathways that fine-tune cardiac autophagy are poorly understood. Herein, we demonstrated that stimulation of cardiomyocytes with phenylephrine (PE), a well known hypertrophic agonist, suppresses autophagy and that activation of focal adhesion kinase (FAK) is necessary for PE-stimulated autophagy suppression and subsequent initiation of hypertrophic growth. Mechanistically, we showed that FAK phosphorylates Beclin1, a core autophagy protein, on Tyr-233 and that this post-translational modification limits Beclin1 association with Atg14L and reduces Beclin1-dependent autophagosome formation. Remarkably, although ectopic expression of wild-type Beclin1 promoted cardiomyocyte atrophy, expression of a Y233E phosphomimetic variant of Beclin1 failed to affect cardiomyocyte size. Moreover, genetic depletion of Beclin1 attenuated PE-mediated/FAK-dependent initiation of myocyte hypertrophy in vivo. Collectively, these findings identify FAK as a novel negative regulator of Beclin1-mediated autophagy and indicate that this pathway can facilitate the promotion of compensatory hypertrophic growth. This novel mechanism to limit Beclin1 activity has important implications for treating a variety of pathologies associated with altered autophagic flux. PMID:27994061

  1. Cucurbitacin I Attenuates Cardiomyocyte Hypertrophy via Inhibition of Connective Tissue Growth Factor (CCN2 and TGF- β/Smads Signalings.

    Directory of Open Access Journals (Sweden)

    Moon Hee Jeong

    Full Text Available Cucurbitacin I is a naturally occurring triterpenoid derived from Cucurbitaceae family plants that exhibits a number of potentially useful pharmacological and biological activities. However, the therapeutic impact of cucurbitacin I on the heart has not heretofore been reported. To evaluate the functional role of cucurbitacin I in an in vitro model of cardiac hypertrophy, phenylephrine (PE-stimulated cardiomyocytes were treated with a sub-cytotoxic concentration of the compound, and the effects on cell size and mRNA expression levels of ANF and β-MHC were investigated. Consequently, PE-induced cell enlargement and upregulation of ANF and β-MHC were significantly suppressed by pretreatment of the cardiomyocytes with cucurbitacin I. Notably, cucurbitacin I also impaired connective tissue growth factor (CTGF and MAPK signaling, pro-hypertrophic factors, as well as TGF-β/Smad signaling, the important contributing factors to fibrosis. The protective impact of cucurbitacin I was significantly blunted in CTGF-silenced or TGF-β1-silenced hypertrophic cardiomyocytes, indicating that the compound exerts its beneficial actions through CTGF. Taken together, these findings signify that cucurbitacin I protects the heart against cardiac hypertrophy via inhibition of CTGF/MAPK, and TGF- β/Smad-facilitated events. Accordingly, the present study provides new insights into the defensive capacity of cucurbitacin I against cardiac hypertrophy, and further suggesting cucurbitacin I's utility as a novel therapeutic agent for the management of heart diseases.

  2. Hypoxia reoxygenation induces premature senescence in neonatal SD rat cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Feng-xiang ZHANG; Ming-long CHEN; Qi-jun SHAN; Jian-gang ZOU; Chun CHEN; Bing YANG; Dong-jie XU; Yu JIN; Ke-jiang CAO


    Aim: To investigate whether hypoxia reoxygenation induces premature senes-cence in neonatal Sprague-Dawley (SD) rat cardiomyocytes. Methods: Cardio-myocytes were isolated from neonatal SD rat heart and identified by immunohisto-chemistry. The control cultures were incubated at 37 ℃ in a humidified atmo-sphere of 5% CO and 95% air. The hypoxic cultures were incubated in a modular incubator chamber filled with 1% O2, 5% CO2, and balance N2 for 6 h. The reoxygen-ated cultures were subjected to 1% O2 and 5% CO2 for 6 h, then 21% oxygen for 4,8, 12, 24, and 48 h, respectively. Cell proliferation was determined using bromo-deoxyuridine labeling. The ultrastructure of cardiomyocytes was observed by using an electron microscope. Β-Galactosidase activity was determined by using a senescence β-galactosidase Staining Kit. P16INK4a and telomerase reverse tran-scriptase (TERT) mRNA levels were measured by real time quantitative PCR. TERT protein expression was determined by immunohistochemistry. Telomerase activi-ties were assayed by using the Telo TAGGG Telomerase PCR ELISApplus kit. Results:The initial cultures consisted of pure cardiomyocytes identified by immunohisto-chemistry. The proportion of BrdU positive cells was reduced significantly in the hypoxia reoxygenation-treated group (P<0.01). Under the condition of hypoxia reoxygenation, mitochondrial dehydration appeared; p16'INK4a and TERT mRNA levels, β-galactosidase activity, TERT protein expression and telomerase activi-ties were all significantly increased (P<0.01 or P<0.05). Conclusion: These data indicate that premature senescence could be induced in neonatal SD rat cardiomyo-cytes exposed to hypoxia reoxygenation. Although TERT significantly increased,it could not block senescence.

  3. Atrial natriuretic peptide regulates Ca channel in early developmental cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Lin Miao

    Full Text Available BACKGROUND: Cardiomyocytes derived from murine embryonic stem (ES cells possess various membrane currents and signaling cascades link to that of embryonic hearts. The role of atrial natriuretic peptide (ANP in regulation of membrane potentials and Ca(2+ currents has not been investigated in developmental cardiomyocytes. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the role of ANP in regulating L-type Ca(2+ channel current (I(CaL in different developmental stages of cardiomyocytes derived from ES cells. ANP decreased the frequency of action potentials (APs in early developmental stage (EDS cardiomyocytes, embryonic bodies (EB as well as whole embryo hearts. ANP exerted an inhibitory effect on basal I(CaL in about 70% EDS cardiomyocytes tested but only in about 30% late developmental stage (LDS cells. However, after stimulation of I(CaL by isoproterenol (ISO in LDS cells, ANP inhibited the response in about 70% cells. The depression of I(CaL induced by ANP was not affected by either Nomega, Nitro-L-Arginine methyl ester (L-NAME, a nitric oxide synthetase (NOS inhibitor, or KT5823, a cGMP-dependent protein kinase (PKG selective inhibitor, in either EDS and LDS cells; whereas depression of I(CaL by ANP was entirely abolished by erythro-9-(2-Hydroxy-3-nonyl adenine (EHNA, a selective inhibitor of type 2 phosphodiesterase(PDE2 in most cells tested. CONCLUSION/SIGNIFICANCES: Taken together, these results indicate that ANP induced depression of action potentials and I(CaL is due to activation of particulate guanylyl cyclase (GC, cGMP production and cGMP-activation of PDE2 mediated depression of adenosine 3', 5'-cyclic monophophate (cAMP-cAMP-dependent protein kinase (PKA in early cardiomyogenesis.

  4. Geometry-dependent functional changes in iPSC-derived cardiomyocytes probed by functional imaging and RNA sequencing (United States)

    Gaublomme, Jellert; Shekhar, Karthik; Butty, Vincent; Yi, B. Alexander; Kralj, Joel M.; Bloxham, William; Boyer, Laurie A.; Regev, Aviv


    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising platform for cardiac studies in vitro, and possibly for tissue repair in humans. However, hiPSC-CM cells tend to retain morphology, metabolism, patterns of gene expression, and electrophysiology similar to that of embryonic cardiomyocytes. We grew hiPSC-CM in patterned islands of different sizes and shapes, and measured the effect of island geometry on action potential waveform and calcium dynamics using optical recordings of voltage and calcium from 970 islands of different sizes. hiPSC-CM in larger islands showed electrical and calcium dynamics indicative of greater functional maturity. We then compared transcriptional signatures of the small and large islands against a developmental time course of cardiac differentiation. Although island size had little effect on expression of most genes whose levels differed between hiPSC-CM and adult primary CM, we identified a subset of genes for which island size drove the majority (58%) of the changes associated with functional maturation. Finally, we patterned hiPSC-CM on islands with a variety of shapes to probe the relative contributions of soluble factors, electrical coupling, and direct cell-cell contacts to the functional maturation. Collectively, our data show that optical electrophysiology is a powerful tool for assaying hiPSC-CM maturation, and that island size powerfully drives activation of a subset of genes involved in cardiac maturation. PMID:28333933

  5. Nitrogen nuclear spin flips in nitroxide spin probes of different sizes in glassy o-terphenyl: Possible relation with α- and β-relaxations (United States)

    Isaev, N. P.; Dzuba, S. A.


    The pulsed electron-electron double resonance (ELDOR) technique was employed to study nitroxide spin probes of three different sizes dissolved in glassy o-terphenyl. A microwave pulse applied to the central hyperfine structure (hfs) component of the nitroxide electron paramagnetic resonance spectrum was followed by two echo-detecting pulses of different microwave frequency to probe the magnetization transfer (MT) to the low-field hfs component. The MT between hfs components is readily related to flips in the nitrogen nuclear spin, which in turn are induced by molecular motion. The MT on the time scale of tens of microseconds was observed over a wide temperature range, including temperatures near and well below the glass transition. For a bulky nitroxide, it was found that MT rates approach dielectric α (primary) relaxation frequencies reported for o-terphenyl in the literature. For small nitroxides, MT rates were found to match the frequencies of dielectric β (secondary) Johari-Goldstein relaxation. The most probable motional mechanism inducing the nitrogen nuclear spin flips is large-angle angular jumps, between some orientations of unequal occupation probabilities. The pulsed ELDOR of nitroxide spin probes may provide additional insight into the nature of Johari-Goldstein relaxation in glassy media and may serve as a tool for studying this relaxation in substances consisting of non-rigid molecules (such as branched polymers) and in heterogeneous and non-polar systems (such as a core of biological membranes).

  6. Variation of the interphase heterochromatin in Artemia (Crustacea, Anostraca of the Americas is related to changes in nuclear size and ionic composition of hipersaline habitats

    Directory of Open Access Journals (Sweden)

    M. Parraguez

    Full Text Available Abstract The populations of Artemia (or brine shrimp from the Americas exhibit a wide variation in the amount of interphase heterochromatin. There is interest in understanding how this variation affects different parameters, from the cellular to the organismal levels. This should help to clarify the ability of this organism to tolerate brine habitats regularly subject to strong abiotic changes. In this study, we assessed the amount of interphase heterochromatin per nucleus based on chromocenter number (N-CHR and relative area of chromocenter (R-CHR in two species of Artemia, A. franciscana (Kellog, 1906 (n=9 populations and A. persimilis (Piccinelli and Prosdocimi, 1968 (n=3 populations, to investigate the effect on nuclear size (S-NUC. The relationship of the R-CHR parameter with the ionic composition (IC of brine habitats was also analysed. Our results indicate a significant variation in the amount of heterochromatin both within and between species (ANOVA, p0.05. The R-CHR and IC parameters were associated significantly for the magnesium ion (r= 0.496, p<0.05 and also for the chloride, sodium and calcium ions (r = from -0.705 to -0.478, p<0.05. At species level, a significant association between both parameters was also found in A. franciscana populations, for the sulphate and calcium ions, in contrast to A. persimilis. These findings suggest that the amount of interphase heterochromatin modifies the nuclear size in Artemia. Our data also indicate that change in the amount of interphase heterochromatin is in line with the ionic composition of brines. This would be a species-specific phenomenon, whose occurrence may be involved in the ability of this organism to survive in these environments.

  7. 5-, 12- and 15-Hydroxyeicosatetraenoic acids induce cellular hypertrophy in the human ventricular cardiomyocyte, RL-14 cell line, through MAPK- and NF-κB-dependent mechanism. (United States)

    Maayah, Zaid H; El-Kadi, Ayman O S


    Recent studies have established the role of mid-chain hydroxyeicosatetraenoic acids (HETEs) in the development of cardiovascular disease. Mid-chain HETEs have been reported to have vasoconstrictive and pro-inflammatory effects. However, whether mid-chain HETEs can induce cardiac hypertrophy remains unclear. Therefore, the overall objective of the present study was to elucidate the potential hypertrophic effect of mid-chain HETEs in the human ventricular cardiomyocytes, RL-14 cells, and to explore the mechanisms involved. For this purpose, RL-14 cells were treated with increasing concentrations of mid-chain HETEs (2.5, 5, 10 and 20 µM). Thereafter, the cardiac hypertrophy markers and cell size were determined using real-time polymerase chain reaction and phase contrast imaging, respectively. Phosphorylated mitogen-activated protein kinase (MAPK) level and nuclear factor kappa B (NF-κB) binding activity were determined. Our results showed that mid-chain HETEs induced cellular hypertrophy in RL-14 cells as evidenced by the induction of cardiac hypertrophy markers, α- and β-myocin heavy chain and atrial and brain natriuretic peptide as well as the increase in cell size. Mechanistically, all mid-chain HETEs were able to induce the binding activity of NF-κB to its responsive element in a HETE-dependent manner, and they significantly induced the phosphorylation of ERK 1/2. The induction of cellular hypertrophy was associated with proportional increase in the formation of dihydroxyeicosatrienoic acids parallel to the increase of soluble epoxide hydrolase enzyme activity. In conclusion, our study provides the first evidence that mid-chain HETEs induce cellular hypertrophy in RL-14 cells through MAPK- and NF-κB-dependent mechanism.

  8. Mitochondrial translocation of Nur77 induced by ROS contributed to cardiomyocyte apoptosis in metabolic syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Aibin; Liu, Jingyi [Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an (China); Institute of Cardiovascular Disease, General Hospital of Beijing Command, PLA, Beijing (China); Liu, Peilin; Jia, Min; Wang, Han [Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an (China); Tao, Ling, E-mail: [Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an (China)


    Highlights: • Metabolic syndrome exacerbated MI/R induced injury accompanied by decreased Nur77. • ROS led to Nur77 translocation in metabolic syndrome. • Inhibiting relocation of Nur77 to mitochondria reduced ROS-induced cardiomyocyte injury in metabolic syndrome. - Abstract: Metabolic syndrome is a major risk factor for cardiovascular diseases, and increased cardiomyocyte apoptosis which contributes to cardiac dysfunction after myocardial ischemia/reperfusion (MI/R) injury. Nur77, a nuclear orphan receptor, is involved in such various cellular events as apoptosis, proliferation, and glucose and lipid metabolism in several cell types. Apoptosis is positively correlated with mitochondrial translocation of Nur77 in the cancer cells. However, the roles of Nur77 on cardiac myocytes in patients with metabolic syndrome remain unclear. The objective of this study was to determine whether Nur77 may contribute to cardiac apoptosis in patients with metabolic syndrome after I/R injury, and, if so, to identify the underlying molecular mechanisms responsible. We used leptin-deficient (ob/ob) mice to make metabolic syndrome models. In this report, we observed that, accompanied by the substantial decline in apoptosis inducer Nur77, MI/R induced cardiac dysfunction was manifested as cardiomyopathy and increased ROS. Using the neonatal rat cardiac myocytes cultured in a high-glucose and high-fat medium, we found that excessive H{sub 2}O{sub 2} led to the significant alteration in mitochondrial membrane potential and translocation of Nur77 from the nucleus to the mitochondria. However, inhibition of the relocation of Nur77 to mitochondria via Cyclosporin A reversed the changes in membrane potential mediated by H{sub 2}O{sub 2} and reduced myocardial cell injury. Therefore, these data provide a potential underlying mechanism for cardiac dysfunction in metabolic syndrome and the suppression of Nur77 translocation may provide an effective approach to reduce cardiac injury in the

  9. Simple non-invasive analysis of embryonic stem cell-derived cardiomyocytes beating in vitro (United States)

    Radaszkiewicz, Katarzyna Anna; Sýkorová, Dominika; Karas, Pavel; Kudová, Jana; Kohút, Lukáš; Binó, Lucia; Večeřa, Josef; Víteček, Jan; Kubala, Lukáš; Pacherník, Jiří


    The analysis of digital video output enables the non-invasive screening of various active biological processes. For the monitoring and computing of the beating parameters of cardiomyocytes in vitro, CB Analyser (cardiomyocyte beating analyser) software was developed. This software is based on image analysis of the video recording of beating cardiomyocytes. CB Analyser was tested using cardiomyocytes derived from mouse embryonic stem cells at different stages of cardiomyogenesis. We observed that during differentiation (from day 18), the beat peak width decreased, which corresponded to the increased speed of an individual pulse. However, the beating frequency did not change. Further, the effects of epinephrine modulating mature cardiomyocyte functions were tested to validate the CB Analyser analysis. In conclusion, data show that CB Analyser is a useful tool for evaluating the functions of both developing and mature cardiomyocytes under various conditions in vitro.

  10. Ghrelin promotes differentiation of human embryonic stem cells into cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Jin YANG; Guo-qiang LIU; Rui WEI; Wen-fang HOU; Mei-juan GAO; Ming-xia ZHU; Hai-ning WANG; Gui-an CHEN; Tian-pei HONG


    Aim:Ghrelin is involved in regulating the differentiation of mesoderm-derived precursor cells.The aim of this study was to investigate whether ghrelin modulated the differentiation of human embryonic stem (hES) cells into cardiomyocytes and,if so,whether the effect was mediated by growth hormone secretagogue receptor 1α (GHS-R1α).Methods:Cardiomyocyte differentiation from hES cells was performed according to an embryoid body (EB)-based protocol.The cumulative percentage of beating EBs was calculated.The expression of cardiac-specific markers including cardiac troponin Ⅰ (cTnl) and α-myosin heavy chain (α-MHC) was detected using RT-PCR,real-time PCR and Western blot.The dispersed beating EBs were examined using immunofluorescent staining.Results:The percentage of beating EBs and the expression of cTnl were significantly increased after ghrelin (0.1 and 1 nmol/L) added into the differentiation medium.From 6 to 18 d of differentiation,the increased expression of cTnl and α-MHC by ghrelin (1 nmol/L)was time-dependent,and in line with the alteration of the percentages of beating EBs.Furthermore,the dispersed beating EBs were double-positively immunostained with antibodies against cTnl and α-actinin.However,blockage of GHS-R1α with its specific antagonist D-[lys3]-GHRP-6 (1 μmol/L) did not alter the effects of ghrelin on cardiomyocyte differentiation.Conclusion:Our data show that ghrelin enhances the generation of cardiomyocytes from hES cells,which is not mediated via GHS-R1α.

  11. Modeling Fatty Acid Transfer from Artery to Cardiomyocyte. (United States)

    Arts, Theo; Reneman, Robert S; Bassingthwaighte, James B; van der Vusse, Ger J


    Despite the importance of oxidation of blood-borne long-chain fatty acids (Fa) in the cardiomyocytes for contractile energy of the heart, the mechanisms underlying the transfer of Fa from the coronary plasma to the cardiomyocyte is still incompletely understood. To obtain detailed insight into this transfer process, we designed a novel model of Fa transfer dynamics from coronary plasma through the endothelial cells and interstitium to the cardiomyocyte, applying standard physicochemical principles on diffusion and on the chemical equilibrium of Fa binding to carrier proteins Cp, like albumin in plasma and interstitium and Fatty Acid-Binding Proteins within endothelium and cardiomyocytes. Applying these principles, the present model strongly suggests that in the heart, binding and release of Fa to and from Cp in the aqueous border zones on both sides of the cell membranes form the major hindrance to Fa transfer. Although often considered, the membrane itself appears not to be a significant hindrance to diffusion of Fa. Proteins, residing in the cellular membrane, may facilitate transfer of Fa between Cp and membrane. The model is suited to simulate multiple tracer dilution experiments performed on isolated rabbit hearts administrating albumin and Fa as tracer substances into the coronary arterial perfusion line. Using parameter values on myocardial ultrastructure and physicochemical properties of Fa and Cp as reported in literature, simulated washout curves appear to be similar to the experimentally determined ones. We conclude therefore that the model is realistic and, hence, can be considered as a useful tool to better understand Fa transfer by evaluation of experimentally determined tracer washout curves.

  12. Modeling Fatty Acid Transfer from Artery to Cardiomyocyte.

    Directory of Open Access Journals (Sweden)

    Theo Arts


    Full Text Available Despite the importance of oxidation of blood-borne long-chain fatty acids (Fa in the cardiomyocytes for contractile energy of the heart, the mechanisms underlying the transfer of Fa from the coronary plasma to the cardiomyocyte is still incompletely understood. To obtain detailed insight into this transfer process, we designed a novel model of Fa transfer dynamics from coronary plasma through the endothelial cells and interstitium to the cardiomyocyte, applying standard physicochemical principles on diffusion and on the chemical equilibrium of Fa binding to carrier proteins Cp, like albumin in plasma and interstitium and Fatty Acid-Binding Proteins within endothelium and cardiomyocytes. Applying these principles, the present model strongly suggests that in the heart, binding and release of Fa to and from Cp in the aqueous border zones on both sides of the cell membranes form the major hindrance to Fa transfer. Although often considered, the membrane itself appears not to be a significant hindrance to diffusion of Fa. Proteins, residing in the cellular membrane, may facilitate transfer of Fa between Cp and membrane. The model is suited to simulate multiple tracer dilution experiments performed on isolated rabbit hearts administrating albumin and Fa as tracer substances into the coronary arterial perfusion line. Using parameter values on myocardial ultrastructure and physicochemical properties of Fa and Cp as reported in literature, simulated washout curves appear to be similar to the experimentally determined ones. We conclude therefore that the model is realistic and, hence, can be considered as a useful tool to better understand Fa transfer by evaluation of experimentally determined tracer washout curves.

  13. Impact of mitochondria on nitrite metabolism in HL-1 cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Peter eDungel


    Full Text Available Apart from ATP synthesis mitochondria have many other functions, one being nitrite reductase activity. NO released from nitrite has been shown to protect the heart from ischemia/reperfusion injury in a cGMP-dependent manner. However, the exact impact of mitochondria on the release of NO from nitrite in cardiomyocytes is not completely understood. Besides mitochondria, a number of non-mitochondrial metalloproteins have been suggested to facilitate this process. The aim of this study was to investigate the impact of mitochondria on the bioactivation of nitrite in HL-1 cardiomyocytes.The levels of nitrosyl complexes of hemoglobin (NO-Hb and cGMP levels were measured by electron spin resonance spectroscopy and enzyme immunoassay. In addition the formation of free NO was determined by confocal microscopy as well as intracellular nitrite and S-nitrosothiols by chemoluminescence analysis. NO was released from nitrite in cell culture in an oxygen dependent manner. Application of specific inhibitors of the respiratory chain, p450, NO synthases and xanthine oxidoreductase showed that all four enzymatic systems are involved in the release of NO, but more than 50% of NO is released via the mitochondrial pathway. Only NO released by mitochondria activated cGMP synthesis. Cardiomyocytes co-cultured with red blood cells (RBC competed with RBC for nitrite, but free NO was detected only in HL-1 cells suggesting that RBC are not a source of NO in this model. Apart from activation of cGMP synthesis, NO formed in HL-1 cells diffused out of the cells and formed NO-Hb complexes. In addition nitrite was converted by HL-1 cells to S-nitrosyl complexes. In HL-1 cardiomyocytes, several enzymatic systems are involved in nitrite reduction to NO but only the mitochondrial pathway of NO release activates cGMP synthesis. Our data suggest that this pathway may be a key regulator of myocardial contractility especially under hypoxic conditions.

  14. Rac1 modulates cardiomyocyte adhesion during mouse embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Issa, Radwan, E-mail:


    Highlights: • Conditional knockout of Rac1 using Nkx2.5 Cre line is lethal at E13.5. • The myocardium of the mutant is thin and disorganized. • The phenotype is not due to cardiomyocyte low proliferation or apoptosis. • The phenotype is due to specific defect in cardiomyocyte adhesion. - Abstract: Rac1, a member of the Rho subfamily of small GTPases, is involved in morphogenesis and differentiation of many cell types. Here we define a role of Rac1 in cardiac development by specifically deleting Rac1 in the pre-cardiac mesoderm using the Nkx2.5-Cre transgenic driver line. Rac1-conditional knockout embryos initiate heart development normally until embryonic day 11.5 (E11.5); their cardiac mesoderm is specified, and the heart tube is formed and looped. However, by E12.5-E13.5 the mutant hearts start failing and embryos develop edema and hemorrhage which is probably the cause for the lethality observed soon after. The hearts of Rac1-cKO embryos exhibit disorganized and thin myocardial walls and defects in outflow tract alignment. No significant differences of cardiomyocyte death or proliferation were found between developing control and mutant embryos. To uncover the role of Rac1 in the heart, E11.5 primary heart cells were cultured and analyzed in vitro. Rac1-deficient cardiomyocytes were less spread, round and loosely attached to the substrate and to each other implying that Rac1-mediated signaling is required for appropriate cell–cell and/or cellmatrix adhesion during cardiac development.

  15. Role of Histone Demethylases in Cardiomyocytes Induced to Hypertrophy

    Directory of Open Access Journals (Sweden)

    Wendy Rosales


    Full Text Available Epigenetic changes induced by histone demethylases play an important role in differentiation and pathological changes in cardiac cells. However, the role of the jumonji family of demethylases in the development of cardiac hypertrophy remains elusive. In this study, the presence of different histone demethylases in cardiac cells was evaluated after hypertrophy was induced with neurohormones. A cell line from rat cardiomyocytes was used as a biological model. The phenotypic profiles of the cells, as well as the expression of histone demethylases, were studied through immunofluorescence, transient transfection, western blot, and qRT-PCR analysis after inducing hypertrophy by angiotensin II and endothelin-1. An increase in fetal gene expression (ANP, BNP, and β-MHC was observed in cardiomyocytes after treatment with angiotensin II and endothelin-1. A significant increase in JMJD2A expression, but not in UTX or JMJD2C expression, was observed. When JMJD2A was overexpressed in cardiomyocytes through transient transfection, the effect of neurohormones on fetal cardiac gene expression was increased. We conclude that JMJD2A plays a principal role in the regulation of fetal cardiac genes, which increase in expression during the pathological hypertrophic process.

  16. Effect of biophysical cues on reprogramming to cardiomyocytes. (United States)

    Sia, Junren; Yu, Pengzhi; Srivastava, Deepak; Li, Song


    Reprogramming of fibroblasts to cardiomyocytes offers exciting potential in cell therapy and regenerative medicine, but has low efficiency. We hypothesize that physical cues may positively affect the reprogramming process, and studied the effects of periodic mechanical stretch, substrate stiffness and microgrooved substrate on reprogramming yield. Subjecting reprogramming fibroblasts to periodic mechanical stretch and different substrate stiffness did not improve reprogramming yield. On the other hand, culturing the cells on microgrooved substrate enhanced the expression of cardiomyocyte genes by day 2 and improved the yield of partially reprogrammed cells at day 10. By combining microgrooved substrate with an existing optimized culture protocol, yield of reprogrammed cardiomyocytes with striated cardiac troponin T staining and spontaneous contractile activity was increased. We identified the regulation of Mkl1 activity as a new mechanism by which microgroove can affect reprogramming. Biochemical approach could only partially recapitulate the effect of microgroove. Microgroove demonstrated an additional effect of enhancing organization of sarcomeric structure, which could not be recapitulated by biochemical approach. This study provides insights into new mechanisms by which topographical cues can affect cellular reprogramming.

  17. Atrial Fibrillation and Fibrosis: Beyond the Cardiomyocyte Centric View (United States)

    Miragoli, Michele; Glukhov, Alexey V.


    Atrial fibrillation (AF) associated with fibrosis is characterized by the appearance of interstitial myofibroblasts. These cells are responsible for the uncontrolled deposition of the extracellular matrix, which pathologically separate cardiomyocyte bundles. The enhanced fibrosis is thought to contribute to arrhythmias “indirectly” because a collagenous septum is a passive substrate for propagation, resulting in impulse conduction block and/or zigzag conduction. However, the emerging results demonstrate that myofibroblasts in vitro also promote arrhythmogenesis due to direct implications upon cardiomyocyte electrophysiology. This electrical interference may be considered beneficial as it resolves any conduction blocks; however, the passive properties of myofibroblasts might cause a delay in impulse propagation, thus promoting AF due to discontinuous slow conduction. Moreover, low-polarized myofibroblasts reduce, via cell-density dependence, the fast driving inward current for cardiac impulse conduction, therefore resulting in arrhythmogenic uniformly slow propagation. Critically, the subsequent reduction in cardiomyocytes resting membrane potential in vitro significantly increases the likelihood of ectopic activity. Myofibroblast densities and the degree of coupling at cellular border zones also impact upon this likelihood. By considering future in vivo studies, which identify myofibroblasts “per se” as a novel targets for cardiac arrhythmias, this review aims to describe the implications of noncardiomyocyte view in the context of AF. PMID:26229964

  18. Cation dyshomeostasis and cardiomyocyte necrosis: the Fleckenstein hypothesis revisited (United States)

    Borkowski, Brian J.; Cheema, Yaser; Shahbaz, Atta U.; Bhattacharya, Syamal K.; Weber, Karl T.


    An ongoing loss of cardiomyocytes to apoptotic and necrotic cell death pathways contributes to the progressive nature of heart failure. The pathophysiological origins of necrotic cell loss relate to the neurohormonal activation that accompanies acute and chronic stressor states and which includes effector hormones of the adrenergic nervous system. Fifty years ago, Albrecht Fleckenstein and coworkers hypothesized the hyperadrenergic state, which accompanies such stressors, causes cardiomyocyte necrosis based on catecholamine-initiated excessive intracellular Ca2+ accumulation (EICA), and mitochondrial Ca2+ overloading in particular, in which the ensuing dysfunction and structural degeneration of these organelles leads to necrosis. In recent years, two downstream factors have been identified which, together with EICA, constitute a signal–transducer–effector pathway: (i) mitochondria-based induction of oxidative stress, in which the rate of reactive oxygen metabolite generation exceeds their rate of detoxification by endogenous antioxidant defences; and (ii) the opening of the mitochondrial inner membrane permeability transition pore (mPTP) followed by organellar swelling and degeneration. The pathogenesis of stress-related cardiomyopathy syndromes is likely related to this pathway. Other factors which can account for cytotoxicity in stressor states include: hypokalaemia; ionized hypocalcaemia and hypomagnesaemia with resultant elevations in parathyroid hormone serving as a potent mediator of EICA; and hypozincaemia with hyposelenaemia, which compromise antioxidant defences. Herein, we revisit the Fleckenstein hypothesis of EICA in leading to cardiomyocyte necrosis and the central role played by mitochondria. PMID:21398641

  19. Cardiac protein kinases: the cardiomyocyte kinome and differential kinase expression in human failing hearts


    Fuller, Stephen J.; Osborne, Sally A.; Leonard, Sam J.; Hardyman, Michelle A.; Vaniotis, George; Allen, Bruce G.; Sugden, Peter H.; Clerk, Angela


    Aims. Protein kinases are potential therapeutic targets for heart failure, but most studies of cardiac protein kinases derive from other systems, an approach that fails to account for specific kinases expressed in the heart and the contractile cardiomyocytes. We aimed to define the cardiomyocyte kinome (i.e. the protein kinases expressed in cardiomyocytes) and identify kinases with altered expression in human failing hearts. Methods and Results. Expression profiling (Affymetrix microarrays) d...

  20. Production of De Novo Cardiomyocytes: Human Pluripotent Stem Cell Differentiation and Direct Reprogramming


    Burridge, Paul W.; Keller, Gordon; Gold, Joseph D.; Wu, Joseph C


    Cardiovascular disease is a leading cause of death worldwide. The limited capability of heart tissue to regenerate has prompted method developments for creating de novo cardiomyocytes, both in vitro and in vivo. Beyond uses in cell replacement therapy, patient-specific cardiomyocytes may find applications in drug testing, drug discovery, and disease modeling. Recently, approaches for generating cardiomyocytes have expanded to encompass three major sources of starting cells: human pluripotent ...

  1. Apoptosis-modulating interaction of the neuregulin/erbB pathway with anthracyclines in regulating Bcl-xS and Bcl-xL in cardiomyocytes. (United States)

    Rohrbach, Susanne; Muller-Werdan, Ursula; Werdan, Karl; Koch, Susanne; Gellerich, Norbert F; Holtz, Juergen


    During chemotherapy with anthracyclines, attenuated neuregulin signaling by the erbB2 receptor inactivating antibody Trastuzumab enhances the heart failure risk. We compared the effects of attenuated neuregulin/erbB signaling and of daunorubicin on splicing of the Bcl-x gene and on mitochondrial activation of apoptosis in cardiomyocytes. Attenuating erbB signals in cultured neonatal rat cardiomyocytes by the erbB2 antagonist tyrphostin AG825, by the erbB1/4 antagonist AG1478 or by antisense-induced lowering of erbB2 receptors resulted in an augmented Bcl-xS/Bcl-xL ratio, mitochondrial release of cytochrome c, activation of caspase 9 and caspase 3, and nucleosome-sized DNA fragmentation. A similar DNA fragmentation and caspase 3 activation was induced by TNF-alpha, but without Bcl-xS/Bcl-xL increase, cytochrome c release or caspase 9 activation. A BH4-domain containing HIV TAT fusion protein added to cardiomyocytes under attenuated erbB signaling lowered the enhanced Bcl-xS/Bcl-xL ratio, the cytochrome c release, the caspase 3 activation and the DNA fragmentation, while apoptosis was not modified by the fusion protein in TNF-alpha treated cardiomyocytes. Enhancement of Bcl-xS/Bcl-xL by reducing Bcl-xL via siRNA transfection mimicked the mitochondrial apoptotic activation due to erbB signal attenuation. Daunorubicin also caused Bcl-xS/Bcl-xL enhancement and mitochondrial apoptotic activation in cultured cardiomyocytes; this was attenuated by BH4-fusion protein or by neuregulin-1 and augmented by siRNA-mediated Bcl-xL lowering. We conclude that activation of mitochondrial apoptosis due to altered Bcl-x splicing contributes as a common mechanism of anthracyclines and erbB signal attenuation to the enhanced heart failure risk under this combination.

  2. Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats. (United States)

    Jumabay, Medet; Matsumoto, Taro; Yokoyama, Shin-ichiro; Kano, Koichiro; Kusumi, Yoshiaki; Masuko, Takayuki; Mitsumata, Masako; Saito, Satoshi; Hirayama, Atsushi; Mugishima, Hideo; Fukuda, Noboru


    Adipose tissue-derived stem cells have been demonstrated to differentiate into cardiomyocytes and vascular endothelial cells. Here we investigate whether mature adipocyte-derived dedifferentiated fat (DFAT) cells can differentiate to cardiomyocytes in vitro and in vivo by establishing DFAT cell lines via ceiling culture of mature adipocytes. DFAT cells were obtained by dedifferentiation of mature adipocytes from GFP-transgenic rats. We evaluated the differentiating ability of DFAT cells into cardiomyocytes by detection of the cardiac phenotype markers in immunocytochemical and RT-PCR analyses in vitro. We also examined effects of the transplantation of DFAT cells into the infarcted heart of rats on cardiomyocytes regeneration and angiogenesis. DFAT cells expressed cardiac phenotype markers when cocultured with cardiomyocytes and also when grown in MethoCult medium in the absence of cardiomyocytes, indicating that DFAT cells have the potential to differentiate to cardiomyocyte lineage. In a rat acute myocardial infarction model, transplanted DFAT cells were efficiently accumulated in infarcted myocardium and expressed cardiac sarcomeric actin at 8 weeks after the cell transplantation. The transplantation of DFAT cells significantly (pDFAT cells have the ability to differentiate to cardiomyocyte-like cells in vitro and in vivo. In addition, transplantation of DFAT cells led to neovascuralization in rats with myocardial infarction. We propose that DFAT cells represent a promising candidate cell source for cardiomyocyte regeneration in severe ischemic heart disease.

  3. EGCG inhibits cardiomyocyte apoptosis in pressure overload-induced cardiac hypertrophy and protects cardiomyocytes from oxidative stress in rats

    Institute of Scientific and Technical Information of China (English)

    Rui SHENG; Zhen-lun GU; Mei-lin XIE; Wen-xuan ZHOU; Ci-yi GUO


    Aim: To investigate the effects of epigallocatechin gallate (EGCG) on pressure overload and hydrogen peroxide (H2O2) induced cardiac myocyte apoptosis. Methods: Cardiac hypertrophy was established in rats by abdominal aortic constriction. EGCG 25, 50 and 100 mg/kg were administered intragastrically (ig). Cultured newborn rat cardiomyocytes were preincubated with EGCG, and oxidative stress injury was induced by H2O2. Results: In cardiac hypertrophy induced by AC in rats, relative to the model group, EGCG 25, 50 and 100 mg/kg ig for 6weeks dose-dependently reduced systolic blood pressure (SBP) and heart weight indices, decreased malondialdehyde (MDA) content, and increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity, both in serum and in the myocardium. Also, treatment with EGCG 50 and 100 mg/kg markedly improved cardiac structure and inhibited fibrosis in HE and van Gieson (VG) stain, and reduced apoptotic myocytes in the hypertrophic myocardium detected by terminal transferase-mediated dUTP-biotin nick end-labeling (TUNEL) assay. Inthe Western blot analysis, EGCG significantly inhibited pressure overload-inducedp53 increase and bcl-2 decrease. In H2O2-induced cardiomyocyte injury, when preincubated with myocytes for 6-48 h, EGCG 12.5-200 mg/L increased cell viability determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay. EGCG also attenuated H2O2-induced lactate dehydrogenase (LDH) release and MDA formation. Meanwhile, EGCG 50 and 100 mg/L significantly inhibited the cardiomyocyte apoptotic rate in flow cytometry. Conclusion: EGCG inhibits cardiac myocyte apoptosis and oxidative stress in pressure overload in-duced cardiac hypertrophy. Also, EGCG prevented cardiomyocyte apoptosis from oxidative stress in vitro. The mechanism might be related to the inhibitory effects of EGCG on p53 induction and bcl-2 decrease.

  4. Reconversion of nuclear weapons

    CERN Document Server

    Kapitza, Sergei P


    The nuclear predicament or nuclear option. Synopsis of three lectures : 1- The physical basis of nuclear technology. Physics of fission. Chain reaction in reactors and weapons. Fission fragments. Separration of isotopes. Radiochemistry.2- Nuclear reactors with slow and fast neutrons. Power, size, fuel and waste. Plutonium production. Dose rate, shielding and health hazard. The lessons of Chernobyl3- Nuclear weapons. Types, energy, blast and fallout. Fusion and hydrogen bombs. What to do with nuclear weapons when you cannot use them? Testing. Nonmilittary use. Can we get rid of the nuclear weapon? Nuclear proliferation. Is there a nuclear future?

  5. Cardiomyocyte death: mechanisms and translational implications. (United States)

    Chiong, M; Wang, Z V; Pedrozo, Z; Cao, D J; Troncoso, R; Ibacache, M; Criollo, A; Nemchenko, A; Hill, J A; Lavandero, S


    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Although treatments have improved, development of novel therapies for patients with CVD remains a major research goal. Apoptosis, necrosis, and autophagy occur in cardiac myocytes, and both gradual and acute cell death are hallmarks of cardiac pathology, including heart failure, myocardial infarction, and ischemia/reperfusion. Pharmacological and genetic inhibition of autophagy, apoptosis, or necrosis diminishes infarct size and improves cardiac function in these disorders. Here, we review recent progress in the fields of autophagy, apoptosis, and necrosis. In addition, we highlight the involvement of these mechanisms in cardiac pathology and discuss potential translational implications.

  6. Preparing and Digesting Megabase-size Nuclear DNA of Glycine soja Genome%野生大豆核基因组Mb级DNA的制备与酶切

    Institute of Scientific and Technical Information of China (English)

    李晓玲; 李克秀; 赵洪锟; 董英山


    Nuclear DNA was extracted from etiolated seedlings of Glycine soja. Generally, the nuclei were embeded in lowmelting-point agarose pulgs, digested with proteinase K and depurated with pulsed field gel electrophoresis to yield about two Megabase-size DNA. The concentration of DNA solution could be up to 10 ng · μL-1 after partial digestion by Hind Ⅲ, elution by pulsed field gel electrophoresis, concentration and dialysis. The result of examination by ligation and eletroporation showed that the DNA obtained by the method was suitable for consequent construction of genomic library of Glycine soja.%以野生大豆黄化幼苗为材料提取其细胞核DNA,经LMP包埋并用蛋白酶K裂解其中的核蛋白后,采用脉冲电泳回收2 Mb左右细胞核DNA.用HindⅢ对回收细胞核DNA进行部分酶切并用脉冲电泳回收酶切后的DNA片段,经电洗脱、浓缩和透析后DNA溶液浓度可达10 ng·μL.连接转化检测结果表明:该DNA可用于后续野生大豆基因组可转化人工染色体(TAC)文库的构建和基因组分析.

  7. Compensatory function of bradykinin B1 receptor in the inhibitory effect of captopril on cardiomyocyte hypertrophy and cardiac fibroblast proliferation in neonatal rats

    Institute of Scientific and Technical Information of China (English)

    ZOU Jun; REN Jiang-hua; FENG Dan; WANG Hong; XU Jiang


    Background Bradykinin(BK)acts mainly on two receptor subtypes:B1 and B2,and activation of B2 receptor mediates the most well-known cardioprotective effects of angiotensin converting enzyme inhibitors(ACEi),however,the role that B1 receptor plays in ACEi has not been fully defined.We examined the role of B1 receptor in the inhibitory effect of ACE inhibitor captopril on rat cardiomyocyte hypertrophy and cardiac fibroblast proliferation induced by angiotensin Ⅱ(Ang Ⅱ) and explored its possible mechanism.Methods Neonatal cardiomyocytes and cardiac fibroblasts(CFs)were randomly treated with Ang Ⅱ,captopril,B2 receptor antagonist(HOE-140)and B1 receptor antagonist(des-Arg10,Leu9-kallidin)alone or in combination.Flow cytometry was used to evaluate cell cycle,size and protein content.Nitric oxide(NO)and intracellular cyclic guanosine monophosphate(cGMP)level were measured by colorimetry and radioimmunoassay.Results After the CFs and cardiomyocytes were incubated with 0.1 μmol/L Ang Ⅱ for 48 hours.the percentage of CFs in the S stage,cardiomyocytes size and protein content significantly increased(both P<0.01 vs control),and these increases were inhibited by 10 μmol/L captopril.However,NO and cGMP levels were significantly higher than that with Ang Ⅱ alone(both P<0.01).1 μmol/L HOE-140 or 0.1 μmol/L des-Arg10,Leu9-kallidin attenuated the effects of captopril,which was blunted further by blockade of both B1 and B2 receptors.Conclusions Acting via B2 receptor,BK contributes to the antihypertrophic and antiproliferative effects of captopril on cardiomyocytes and CFs.In the absence of B2 receptor,B1 receptor may act a compensatory mechanism for the B2 receptor and contribute to the inhibition of cardiomyocyte hypertrophy and CFs proliferation by captopril.NO and cGMP play an important role in the effect of B1 receptor.

  8. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA{sub 2} activity

    Energy Technology Data Exchange (ETDEWEB)

    Takatani-Nakase, Tomoka, E-mail:; Takahashi, Koichi, E-mail:


    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA{sub 2}, which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death. - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA{sub 2} activity, leading to avoidance of non-apoptotic cell death.

  9. KCNQ channels are involved in the regulatory volume decrease response in primary neonatal rat cardiomyocytes

    DEFF Research Database (Denmark)

    Calloe, Kirstine; Nielsen, Morten Schak; Grunnet, Morten;


    Cardiomyocytes may experience significant cell swelling during ischemia and reperfusion. Such changes in cardiomyocyte volume have been shown to affect the electrical properties of the heart, possibly leading to cardiac arrhythmia. In the present study the regulatory volume decrease (RVD) response...

  10. Dystrophin-deficient cardiomyocytes derived from human urine: New biologic reagents for drug discovery

    Directory of Open Access Journals (Sweden)

    Xuan Guan


    Full Text Available The ability to extract somatic cells from a patient and reprogram them to pluripotency opens up new possibilities for personalized medicine. Induced pluripotent stem cells (iPSCs have been employed to generate beating cardiomyocytes from a patient's skin or blood cells. Here, iPSC methods were used to generate cardiomyocytes starting from the urine of a patient with Duchenne muscular dystrophy (DMD. Urine was chosen as a starting material because it contains adult stem cells called urine-derived stem cells (USCs. USCs express the canonical reprogramming factors c-myc and klf4, and possess high telomerase activity. Pluripotency of urine-derived iPSC clones was confirmed by immunocytochemistry, RT-PCR and teratoma formation. Urine-derived iPSC clones generated from healthy volunteers and a DMD patient were differentiated into beating cardiomyocytes using a series of small molecules in monolayer culture. Results indicate that cardiomyocytes retain the DMD patient's dystrophin mutation. Physiological assays suggest that dystrophin-deficient cardiomyocytes possess phenotypic differences from normal cardiomyocytes. These results demonstrate the feasibility of generating cardiomyocytes from a urine sample and that urine-derived cardiomyocytes retain characteristic features that might be further exploited for mechanistic studies and drug discovery.

  11. The characteristics of action potential and nonselective cation current of cardiomyocytes in rabbit superior vena cava

    Institute of Scientific and Technical Information of China (English)

    WANG Pan; YANG XinChun; LIU XiuLan; BAO RongFeng; LIU TaiFeng


    As s special focus in initiating and maintaining atrial fibrillation (AF), cardiomyocytes in superior vena cavs (SVC) have distinctive electrophysiological characters. In this study, we found that comparing with the right atrial (RA) cardiomyoctyes, the SVC cardiomyoctyes had longer APD90 at the different basic cycle lengths; the conduction block could be observed on both RA and SVC cardiomyoctyes. A few of SVC cardiomyoctyes showed slow response action potentials with automatic activity and some others showed early afterdepolarization (EAD) spontaneously. Further more, we found that there are nonselective cation current (INs) in both SVC and RA cardiomyocytes. The peak density of INs in SVC cardiomyocytes was smaller than that in RA cardiomyocytes. Removal of extracellular divalent cation and glucose could increase INs in SVC cardiomyocytes. The agonist or the antagonist of INs may increase or decrease APD. To sum up, some SVC cardiomyocytes possess the ability of spontaneous activity; the difference of transmembrane action potentials between SVC and RA cardiomyocytes is partly because of the different density of INs between them; the agonist or the antagonist of INs can increase or decrease APD leading to the enhancement or reduction of EAD genesis in SVC cardiomyocytes. INs in rabbit myocytes is fairly similar to TRPC3 current in electrophysiological property, which might play an important role in the mechanisms of AF.

  12. From fetus towards adult : maturation and functional analysis of pluripotent stem cell-derived cardiomyocytes

    NARCIS (Netherlands)

    Catarino, Ribeiro M.


    This thesis describes research about the differentiation of human stem cells into cardiomyocytes (heart cells). During the differentiation process the stem cells become contractile myocytes that resemble the native heart cells. Nevertheless, the phenotype of these cardiomyocytes is comparable to a s

  13. Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid. (United States)

    Zhao, Mingyue; Lu, Lihui; Lei, Song; Chai, Hua; Wu, Siyuan; Tang, Xiaoju; Bao, Qinxue; Chen, Li; Wu, Wenchao; Liu, Xiaojing


    Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardiac myocytes (NCMs) or H9c2 cells to study lipotoxicity. Our results demonstrated that cardiomyocyte hypertrophy was induced by PA treatment, determined by upregulation of hypertrophic marker genes and cell surface area enlargement. Upon PA treatment, the expression of RIPK1 and RIPK3 was increased. Pretreatment with the RIPK1 inhibitor necrostatin-1 (Nec-1), the PA-induced cardiomyocyte hypertrophy, was attenuated. Knockdown of RIPK1 or RIPK3 by siRNA suppressed the PA-induced myocardial hypertrophy. Moreover, a crosstalk between necroptosis and endoplasmic reticulum (ER) stress was observed in PA-treated cardiomyocytes. Inhibition of RIPK1 with Nec-1, phosphorylation level of AKT (Ser473), and mTOR (Ser2481) was significantly reduced in PA-treated cardiomyocytes. In conclusion, RIPKs-dependent necroptosis might be crucial in PA-induced myocardial hypertrophy. Activation of mTOR may mediate the effect of necroptosis in cardiomyocyte hypertrophy induced by PA.

  14. Rat Cardiomyocytes Express a Classical Epithelial Beta-Defensin

    Directory of Open Access Journals (Sweden)

    Annika Linde


    Full Text Available Beta-defensins (BDs are classical epithelial antimicrobial peptides of immediate importance in innate host defense. Since recent studies have suggested that certain BDs are also expressed in non-traditional tissues, including whole heart homogenate and because effector molecules of innate immunity and inflammation can influence the development of certain cardiovascular disease processes, we hypothesized that BDs are produced by cardiomyocytes as a local measure of cardioprotection against danger signals. Here we report that at least one rat beta-defensin, rBD1, is expressed constitutively in cardiomyocytes specifically isolated using position-ablation-laser-microdissection (P.A.L.M. Microlaser Technologies. RT-PCR analysis showed expression of a single 318 bp transcript in adult rat heart (laser-excised cardiomyocytes and H9c2 cells (neonatal rat heart myoblasts. Moreover, the full length cDNA of rBD1 was established and translated into a putative peptide with 69 amino acid residues. The predicted amino acid sequence of the adult rat cardiac BD-1 peptide displayed 99% identity with the previously reported renal rBD1 and 88, 53, 53 and 50% identity with mouse, human, gorilla and rhesus monkey BD1 respectively. Furthermore, structural analysis of the cardiac rBD1 showed the classical six-cysteine conserved motif of the BD family with an alpha-helix and three beta-sheets. Additionally, rBD1 displayed a significantly greater number of amphoteric residues than any of the human analogs, indicating a strong pH functional dependence in the rat. We suggest that rBD1, which was initially believed to be a specific epithelium-derived peptide, may be also involved in local cardiac innate immune defense mechanisms.

  15. Myeloperoxidase impairs the contractile function in isolated human cardiomyocytes. (United States)

    Kalász, Judit; Pásztor, Enikő T; Fagyas, Miklós; Balogh, Ágnes; Tóth, Attila; Csató, Viktória; Édes, István; Papp, Zoltán; Borbély, Attila


    We set out to characterize the mechanical effects of myeloperoxidase (MPO) in isolated left-ventricular human cardiomyocytes. Oxidative myofilament protein modifications (sulfhydryl (SH)-group oxidation and carbonylation) induced by the peroxidase and chlorinating activities of MPO were additionally identified. The specificity of the MPO-evoked functional alterations was tested with an MPO inhibitor (MPO-I) and the antioxidant amino acid Met. The combined application of MPO and its substrate, hydrogen peroxide (H2O2), largely reduced the active force (Factive), increased the passive force (Fpassive), and decreased the Ca(2+) sensitivity of force production (pCa50) in permeabilized cardiomyocytes. H2O2 alone had significantly smaller effects on Factive and Fpassive and did not alter pCa50. The MPO-I blocked both the peroxidase and the chlorinating activities, whereas Met selectively inhibited the chlorinating activity of MPO. All of the MPO-induced functional effects could be prevented by the MPO-I and Met. Both H2O2 alone and MPO + H2O2 reduced the SH content of actin and increased the carbonylation of actin and myosin-binding protein C to the same extent. Neither the SH oxidation nor the carbonylation of the giant sarcomeric protein titin was affected by these treatments. MPO activation induces a cardiomyocyte dysfunction by affecting Ca(2+)-regulated active and Ca(2+)-independent passive force production and myofilament Ca(2+) sensitivity, independent of protein SH oxidation and carbonylation. The MPO-induced deleterious functional alterations can be prevented by the MPO-I and Met. Inhibition of MPO may be a promising therapeutic target to limit myocardial contractile dysfunction during inflammation.

  16. Generation and characterization of functional cardiomyocytes derived from human T cell-derived induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Tomohisa Seki

    Full Text Available Induced pluripotent stem cells (iPSCs have been proposed as novel cell sources for genetic disease models and revolutionary clinical therapies. Accordingly, human iPSC-derived cardiomyocytes are potential cell sources for cardiomyocyte transplantation therapy. We previously developed a novel generation method for human peripheral T cell-derived iPSCs (TiPSCs that uses a minimally invasive approach to obtain patient cells. However, it remained unknown whether TiPSCs with genomic rearrangements in the T cell receptor (TCR gene could differentiate into functional cardiomyocyte in vitro. To address this issue, we investigated the morphology, gene expression pattern, and electrophysiological properties of TiPSC-derived cardiomyocytes differentiated by floating culture. RT-PCR analysis and immunohistochemistry showed that the TiPSC-derived cardiomyocytes properly express cardiomyocyte markers and ion channels, and show the typical cardiomyocyte morphology. Multiple electrode arrays with application of ion channel inhibitors also revealed normal electrophysiological responses in the TiPSC-derived cardiomyocytes in terms of beating rate and the field potential waveform. In this report, we showed that TiPSCs successfully differentiated into cardiomyocytes with morphology, gene expression patterns, and electrophysiological features typical of native cardiomyocytes. TiPSCs-derived cardiomyocytes obtained from patients by a minimally invasive technique could therefore become disease models for understanding the mechanisms of cardiac disease and cell sources for revolutionary cardiomyocyte therapies.

  17. Imaging alterations of cardiomyocyte cAMP microdomains in disease

    Directory of Open Access Journals (Sweden)

    Alexander eFroese


    Full Text Available 3’,5’-cyclic adenosine monophosphate (cAMP is an important second messenger which regulates heart function by acting in distinct subcellular microdomains. Recent years have provided deeper mechanistic insights into compartmentalized cAMP signaling and its link to cardiac disease. In this mini review, we summarize newest developments in this field achieved by cutting-edge biochemical and biophysical techniques. We further compile the data from different studies into a bigger picture of so far uncovered alterations in cardiomyocyte cAMP microdomains which occur in compensated cardiac hypertrophy and chronic heart failure. Finally, future research directions and translational perspectives are briefly discussed.

  18. Cell Competition Promotes Phenotypically Silent Cardiomyocyte Replacement in the Mammalian Heart

    Directory of Open Access Journals (Sweden)

    Cristina Villa del Campo


    Full Text Available Heterogeneous anabolic capacity in cell populations can trigger a phenomenon known as cell competition, through which less active cells are eliminated. Cell competition has been induced experimentally in stem/precursor cell populations in insects and mammals and takes place endogenously in early mouse embryonic cells. Here, we show that cell competition can be efficiently induced in mouse cardiomyocytes by mosaic overexpression of Myc during both gestation and adult life. The expansion of the Myc-overexpressing cardiomyocyte population is driven by the elimination of wild-type cardiomyocytes. Importantly, this cardiomyocyte replacement is phenotypically silent and does not affect heart anatomy or function. These results show that the capacity for cell competition in mammals is not restricted to stem cell populations and suggest that stimulated cell competition has potential as a cardiomyocyte-replacement strategy.

  19. Global expression profile of highly enriched cardiomyocytes derived from human embryonic stem cells. (United States)

    Xu, Xiu Qin; Soo, Set Yen; Sun, William; Zweigerdt, Robert


    Human embryonic stem cells (hESC), with their ability to differentiate into cardiomyocytes in culture, hold great potential for cell replacement therapies and provide an in vitro model of human heart development. A genomewide characterization of the molecular phenotype of hESC-derived cardiomyocytes is important for their envisioned applications. We have employed a lineage selection strategy to generate a pure population of cardiomyocytes (>99%) from transgenic hESC lines. Global gene expression profiling showed that these cardiomyocytes are distinct from pluripotent and differentiated hESC cultures. Pure cardiomyocytes displayed similarities with heart tissue, but in many aspects presented an individual transcriptome pattern. A subset of 1,311 cardiac-enriched transcripts was identified, which were significantly overpresented (p human heart development.

  20. Increased expression of 78 kD glucose-regulated protein promotes cardiomyocyte apoptosis in a rat model of liver cirrhosis (United States)

    Zhang, Lili; Zhang, Huiying; Lv, Minli; Jia, Jiantao; Fan, Yimin; Tian, Xiaoxia; Li, Xujiong; Li, Baohong; Ji, Jingquan; Wang, Limin; Zhao, Zhongfu; Han, Dewu; Ji, Cheng


    Aims: This study was to investigate the role and underlying mechanism of 78 kD glucose-regulated protein (GRP78) in cardiomyocyte apoptosis in a rat model of liver cirrhosis. Methods: A rat model of liver cirrhosis was established with multiple pathogenic factors. A total of 42 male SD rats were randomly divided into the liver cirrhosis group and control group. Cardiac structure analysis was performed to assess alterations in cardiac structure. Cardiomyocytes apoptosis was detected by TdT-mediated dUTP nick end labeling method. Expression of GRP78, CCAAT/enhancer-binding protein homologous protein (CHOP), caspase-12, nuclear factor kappa-light-chain-enhancer of activated B cells p65 subunit (NF-κB p65) and B cell lymphoma-2 (Bcl-2) was detected by immunohistochemical staining. Results: The ratios of left ventricular wall thickness to heart weight and heart weight to body weight were significantly increased with the progression of liver cirrhosis (P < 0.05). Apoptosis index of cardiomyocytes was significantly increased with the progression of liver cirrhosis (P < 0.05). The expression levels of GRP78, CHOP and caspase-12 were significantly increased in the progression of liver cirrhosis (P < 0.05). The expression levels of NF-κB p65 and Bcl-2 were highest in the 4-wk liver cirrhosis, and they were decreased in the 6-wk and 8-wk in the progression of liver cirrhosis. GRP78 expression levels were positively correlated with apoptosis index, CHOP and caspase-12 expression levels (P < 0.05). CHOP expression levels were negatively correlated with NF-κB p65 and Bcl-2 expression levels (P < 0.05). Conclusion: Increased expression of GRP78 promotes cardiomyocyte apoptosis in rats with cirrhotic cardiomyopathy. PMID:26464674

  1. Calcineurin B homologous protein 3 negatively regulates cardiomyocyte hypertrophy via inhibition of glycogen synthase kinase 3 phosphorylation. (United States)

    Kobayashi, Soushi; Nakamura, Tomoe Y; Wakabayashi, Shigeo


    Cardiac hypertrophy is a leading cause of serious heart diseases. Although many signaling molecules are involved in hypertrophy, the functions of some proteins in this process are still unknown. Calcineurin B homologous protein 3 (CHP3)/tescalcin is an EF-hand Ca(2+)-binding protein that is abundantly expressed in the heart; however, the function of CHP3 is unclear. Here, we aimed to identify the cardiac functions of CHP3. CHP3 was expressed in hearts at a wide range of developmental stages and was specifically detected in neonatal rat ventricular myocytes (NRVMs) but not in cardiac fibroblasts in culture. Moreover, knockdown of CHP3 expression using adenoviral-based RNA interference in NRVMs resulted in enlargement of cardiomyocyte size, concomitant with increased expression of a pathological hypertrophy marker ANP. This same treatment elevated glycogen synthase kinase (GSK3α/β) phosphorylation, which is known to inhibit GSK3 function. In contrast, CHP3 overexpression blocked the insulin-induced phosphorylation of GSK3α/β without affecting the phosphorylation of Akt, which is an upstream kinase of GSK3α/β, in HEK293 cells, and it inhibited both IGF-1-induced phosphorylation of GSK3β and cardiomyocyte hypertrophy in NRVMs. Co-immunoprecipitation experiments revealed that GSK3β interacted with CHP3. However, a Ca(2+)-binding-defective mutation of CHP3 (CHP3-D123A) also interacted with GSK3β and had the same inhibitory effect on GSK3α/β phosphorylation, suggesting that the action of CHP3 was independent of Ca(2+). These findings suggest that CHP3 functions as a novel negative regulator of cardiomyocyte hypertrophy via inhibition of GSK3α/β phosphorylation and subsequent enzymatic activation of GSK3α/β.

  2. Calreticulin Translocation Aggravates Endoplasmic Reticulum Stress-associated Apoptosis during Cardiomyocyte Hypoxia/Reoxygenation

    Institute of Scientific and Technical Information of China (English)

    Fei-Fei Xu; Xiu-Hua Liu


    Background:Calreticulin (CRT) is major Ca2+-binding chaperone mainly resident in the endoplasmic reticulum (ER) lumen.Recently,it has been shown that non-ER CRT regulates a wide array of cellular responses.We previously found that CRT was up-regulated during hypoxia/reoxygenation (H/R) and this study was aimed to investigate whether CRT nuclear translocation aggravates ER stress (ERS)-associated apoptosis during H/R injury in neonatal rat cardiomyocytes.Methods:Apoptosis rate and lactate dehydrogenase (LDH) leakage in culture medium were measured as indices of cell injury.Immunofluorescence staining showed the morphological changes of ER and intracellular translocation of CRT.Western blotting or reverse transcription polymerase chain reaction was used to detect the expression of target molecules.Results:Compared with control,H/R increased apoptosis rate and LDH activity.The ER became condensed and bubbled,and CRT translocated to the nucleus.Western blotting showed up-regulation of CRT,Nrf2,activating transcription factor 4 (ATF4),CHOP and caspase-12 expression after H/R.Exogenous CRT overexpression induced by plasmid transfection before H/R increased cell apoptosis,LDH leakage,ER disorder,CRT nuclear translocation and the expression of ERS-associated molecules.However,administration of the ERS inhibitor,taurine,or CRT siRNA alleviated cell injury,ER disorder,and inhibited ERS-associated apoptosis.Conclusions:Our results indicated that during H/R stress,CRT translocation increases cell apoptosis and LDH leakage,aggravates ER disorder,up-regulates expression of nuclear transcription factors,Nrf2 and ATF4,and activates ERS-associated apoptosis.

  3. Understanding greater cardiomyocyte functions on aligned compared to random carbon nanofibers in PLGA

    Directory of Open Access Journals (Sweden)

    Asiri AM


    Full Text Available Abdullah M Asiri,1 Hadi M Marwani,1 Sher Bahadar Khan,1 Thomas J Webster1,2 1Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA Abstract: Previous studies have demonstrated greater cardiomyocyte density on carbon nanofibers (CNFs aligned (compared to randomly oriented in poly(lactic-co-glycolic acid (PLGA composites. Although such studies demonstrated a closer mimicking of anisotropic electrical and mechanical properties for such aligned (compared to randomly oriented CNFs in PLGA composites, the objective of the present in vitro study was to elucidate a deeper mechanistic understanding of how cardiomyocyte densities recognize such materials to respond more favorably. Results showed lower wettability (greater hydrophobicity of CNFs embedded in PLGA compared to pure PLGA, thus providing evidence of selectively lower wettability in aligned CNF regions. Furthermore, the results correlated these changes in hydrophobicity with increased adsorption of fibronectin, laminin, and vitronectin (all proteins known to increase cardiomyocyte adhesion and functions on CNFs in PLGA compared to pure PLGA, thus providing evidence of selective initial protein adsorption cues on such CNF regions to promote cardiomyocyte adhesion and growth. Lastly, results of the present in vitro study further confirmed increased cardiomyocyte functions by demonstrating greater expression of important cardiomyocyte biomarkers (such as Troponin-T, Connexin-43, and α-sarcomeric actin when CNFs were aligned compared to randomly oriented in PLGA. In summary, this study provided evidence that cardiomyocyte functions are improved on CNFs aligned in PLGA compared to randomly oriented in PLGA since CNFs are more hydrophobic than PLGA and attract the adsorption of key proteins (fibronectin, laminin, and vironectin that are known to promote cardiomyocyte adhesion

  4. Negative elongation factor controls energy homeostasis in cardiomyocytes. (United States)

    Pan, Haihui; Qin, Kunhua; Guo, Zhanyong; Ma, Yonggang; April, Craig; Gao, Xiaoli; Andrews, Thomas G; Bokov, Alex; Zhang, Jianhua; Chen, Yidong; Weintraub, Susan T; Fan, Jian-Bing; Wang, Degeng; Hu, Yanfen; Aune, Gregory J; Lindsey, Merry L; Li, Rong


    Negative elongation factor (NELF) is known to enforce promoter-proximal pausing of RNA polymerase II (Pol II), a pervasive phenomenon observed across multicellular genomes. However, the physiological impact of NELF on tissue homeostasis remains unclear. Here, we show that whole-body conditional deletion of the B subunit of NELF (NELF-B) in adult mice results in cardiomyopathy and impaired response to cardiac stress. Tissue-specific knockout of NELF-B confirms its cell-autonomous function in cardiomyocytes. NELF directly supports transcription of those genes encoding rate-limiting enzymes in fatty acid oxidation (FAO) and the tricarboxylic acid (TCA) cycle. NELF also shares extensively transcriptional target genes with peroxisome proliferator-activated receptor α (PPARα), a master regulator of energy metabolism in the myocardium. Mechanistically, NELF helps stabilize the transcription initiation complex at the metabolism-related genes. Our findings strongly indicate that NELF is part of the PPARα-mediated transcription regulatory network that maintains metabolic homeostasis in cardiomyocytes.

  5. KLF15 and PPARα Cooperate to Regulate Cardiomyocyte Lipid Gene Expression and Oxidation

    Directory of Open Access Journals (Sweden)

    Domenick A. Prosdocimo


    Full Text Available The metabolic myocardium is an omnivore and utilizes various carbon substrates to meet its energetic demand. While the adult heart preferentially consumes fatty acids (FAs over carbohydrates, myocardial fuel plasticity is essential for organismal survival. This metabolic plasticity governing fuel utilization is under robust transcriptional control and studies over the past decade have illuminated members of the nuclear receptor family of factors (e.g., PPARα as important regulators of myocardial lipid metabolism. However, given the complexity of myocardial metabolism in health and disease, it is likely that other molecular pathways are likely operative and elucidation of such pathways may provide the foundation for novel therapeutic approaches. We previously demonstrated that Kruppel-like factor 15 (KLF15 is an independent regulator of cardiac lipid metabolism thus raising the possibility that KLF15 and PPARα operate in a coordinated fashion to regulate myocardial gene expression requisite for lipid oxidation. In the current study, we show that KLF15 binds to, cooperates with, and is required for the induction of canonical PPARα-mediated gene expression and lipid oxidation in cardiomyocytes. As such, this study establishes a molecular module involving KLF15 and PPARα and provides fundamental insights into the molecular regulation of cardiac lipid metabolism.

  6. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Hidalgo, Cecilia [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Lavandero, Sergio, E-mail: [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile)


    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  7. Peroxisome Proliferator-Activated Receptor γ Activity is Required for Appropriate Cardiomyocyte Differentiation

    Directory of Open Access Journals (Sweden)

    Maryam Peymani


    Full Text Available Objective Peroxisome proliferator-activated receptor γ (PPARγ is a member of the PPAR nuclear receptor superfamily. Although PPARγ acts as a master transcription factor in adipocyte differentiation, it is also associated with a variety of cell functions including carbohydrate and lipid metabolism, glucose homeostasis, cell proliferation and cell differentiation. This study aimed to assess the expression level of PPARγ in order to address its role in cardiac cell differentiation of mouse embryonic stem cells (mESCs. Materials and Methods In this an intervening study, mESCs were subjected to cardiac differentiation. Total RNA was extracted from the cells and quantitative real time polymerase chain reaction (qPCR was carried out to estimate level of gene expression. Furthermore, the requirement of PPARγ in cardiac differentiation of mESCs, during cardiac progenitor cells (CPCs formation, was examined by applying the respective agonist and antagonist. Results The obtained data revealed an elevation in the expression level of PPARγ during spontaneous formation of CPCs and cardiomyocytes. Our results indicated that during CPC formation, PPARγ inactivation via treatment with GW9662 (GW reduced expression of CPC and cardiac markers. Conclusion We conclude that PPARγ modulation has an effective role on cardiac differentiation of mESCs at the early stage of cardiomyogenesis.

  8. Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes. (United States)

    Huang, Zhouqing; Han, Zhihua; Ye, Bozhi; Dai, Zhenyu; Shan, Peiren; Lu, Zhongqiu; Dai, Kezhi; Wang, Changqian; Huang, Weijian


    Ischemia/reperfusion (I/R)-induced autophagy increases the severity of cardiomyocyte injury. The aim of this study was to investigate the effects of berberine, a natural extract from Rhizoma coptidis, on the I/R-induced excessive autophagy in in vitro and in vivo models. Autophagy was increased both in H9c2 myocytes during hypoxia/reoxygenation (H/R) injury and in mouse hearts exposed to I/R. And the expression level of p-AMPK and p-mTORC2 (Ser2481) were increased during H/R period. In addition, the increased autophagy level was correlated with reduced cell survival in H9c2 myocytes and increased infarct size in mouse hearts. However, berberine treatment significantly enhanced the H/R-induced cell viability and reduced I/R-induced myocardial infarct size, which was accompanied by improved cardiac function. The beneficial effect of berberine is associated with inhibiting the cellular autophagy level, due to decreasing the expression level of autophagy-related proteins such as SIRT1, BNIP3, and Beclin-1. Furthermore, both the level of p-AMPK and p-mTORC2 (Ser2481) in H9c2 myocytes exposed to H/R were decreased by berberine. In summary, berberine protects myocytes during I/R injury through suppressing autophagy activation. Therefore, berberine may be a promising agent for treating I/R-induced cardiac myocyte injury.

  9. Event-by-Event Analysis of Proton-Induced Nuclear Multifragmentation Determination of Phase Transition Universality-Class in System with Extreme Finite-Size Constraints

    CERN Document Server

    Berkenbusch, M K; Dillman, K; Pratt, S; Beaulieu, L; Kwiatkowski, K K; Lefort, T; Hsi, W C; Viola, V E; Yennello, S J; Korteling, R G; Breuer, H


    A percolation model of nuclear fragmentation is used to interpret 10.2 GeV/c p+197Au multi-fragmentation data. Emphasis is put on finding signatures of a continuous nuclear matter phase transition in finite nuclear systems. Based on model calculations, corrections accounting for physical constraints of the fragment detection and sequential decay processes are derived. Strong circumstantial evidence for a continuous phase transition is found, and the values of two critical exponents, sigma = 0.5+-0.1 and tau = 2.35+-0.05, are extracted from the data. A critical temperature of T_c = 8.3+-0.2 MeV is found.

  10. Expression of Foxm1 transcription factor in cardiomyocytes is required for myocardial development.

    Directory of Open Access Journals (Sweden)

    Craig Bolte

    Full Text Available Forkhead Box M1 (Foxm1 is a transcription factor essential for organ morphogenesis and development of various cancers. Although complete deletion of Foxm1 in Foxm1(-/- mice caused embryonic lethality due to severe abnormalities in multiple organ systems, requirements for Foxm1 in cardiomyocytes remain to be determined. This study was designed to elucidate the cardiomyocyte-autonomous role of Foxm1 signaling in heart development. We generated a new mouse model in which Foxm1 was specifically deleted from cardiomyocytes (Nkx2.5-Cre/Foxm1(fl/f mice. Deletion of Foxm1 from cardiomyocytes was sufficient to disrupt heart morphogenesis and induce embryonic lethality in late gestation. Nkx2.5-Cre/Foxm1(fl/fl hearts were dilated with thinning of the ventricular walls and interventricular septum, as well as disorganization of the myocardium which culminated in cardiac fibrosis and decreased capillary density. Cardiomyocyte proliferation was diminished in Nkx2.5-Cre/Foxm1(fl/fl hearts owing to altered expression of multiple cell cycle regulatory genes, such as Cdc25B, Cyclin B(1, Plk-1, nMyc and p21(cip1. In addition, Foxm1 deficient hearts displayed reduced expression of CaMKIIδ, Hey2 and myocardin, which are critical mediators of cardiac function and myocardial growth. Our results indicate that Foxm1 expression in cardiomyocytes is critical for proper heart development and required for cardiomyocyte proliferation and myocardial growth.

  11. Effects of Substrate Mechanics on Contractility of Cardiomyocytes Generated from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Laurie B. Hazeltine


    Full Text Available Human pluripotent stem cell (hPSC- derived cardiomyocytes have potential applications in drug discovery, toxicity testing, developmental studies, and regenerative medicine. Before these cells can be reliably utilized, characterization of their functionality is required to establish their similarity to native cardiomyocytes. We tracked fluorescent beads embedded in 4.4–99.7 kPa polyacrylamide hydrogels beneath contracting neonatal rat cardiomyocytes and cardiomyocytes generated from hPSCs via growth-factor-induced directed differentiation to measure contractile output in response to changes in substrate mechanics. Contraction stress was determined using traction force microscopy, and morphology was characterized by immunocytochemistry for α-actinin and subsequent image analysis. We found that contraction stress of all types of cardiomyocytes increased with substrate stiffness. This effect was not linked to beating rate or morphology. We demonstrated that hPSC-derived cardiomyocyte contractility responded appropriately to isoprenaline and remained stable in culture over a period of 2 months. This study demonstrates that hPSC-derived cardiomyocytes have appropriate functional responses to substrate stiffness and to a pharmaceutical agent, which motivates their use in further applications such as drug evaluation and cardiac therapies.

  12. [In vitro experimental study of rat cardiomyocyte injury with targeting of perfluorocarbon lipid particles]. (United States)

    He, Baiyong; Li, Zhaohuan; Tang, Hong; Li, Guohua; Chen, Song; Wang, Lian; Song, Haibo; Fang, Hua; Zeng, Jun


    The present study was to investigate in vitro the rat cardiomyocyte injury with targeting of home-made perfluorocarbon lipid particles with avidin-biotin interaction. Neonatal rat cardiomyocytes were cultured in vitro and divided into two groups: TNF-alpha activated group and non-activated group. Those in the TNF-alpha activated group were exposed to 200 ng/ml TNF-alpha solution for 6 hours and then cardiomyocytes in both groups were pretargeted with biotinylated ICAM-1 monoclonal antibodies, and were exposed to streptavidin, and then to homemade green fluorescently-labeled biotinylated perfluorocarbon lipid particles. Cardiomyocytes nucleus stained with Hoechst. The results were detected with fluorescence microscope. As a result, in TNF-alpha activated group, around blue fluorescent cardiomyocytes nucleus, a great amount of green fluorescent particles were found, while there were few green fluorescent particles in non-TNF activated group. It has been shown that ICAM-1 is expressed in the surface of cardiomyocytes when they are stimulated by TNF-alpha. Perfluorocarbon lipid particles associated with ICAM-1 monoclonal antibodies can be targeted to injured cardiomyocytes by avidin-biotin interaction.

  13. Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations. (United States)

    Leone, Marina; Magadum, Ajit; Engel, Felix B


    The newt and the zebrafish have the ability to regenerate many of their tissues and organs including the heart. Thus, a major goal in experimental medicine is to elucidate the molecular mechanisms underlying the regenerative capacity of these species. A wide variety of experiments have demonstrated that naturally occurring heart regeneration relies on cardiomyocyte proliferation. Thus, major efforts have been invested to induce proliferation of mammalian cardiomyocytes in order to improve cardiac function after injury or to protect the heart from further functional deterioration. In this review, we describe and analyze methods currently used to evaluate cardiomyocyte proliferation. In addition, we summarize the literature on naturally occurring heart regeneration. Our analysis highlights that newt and zebrafish heart regeneration relies on factors that are also utilized in cardiomyocyte proliferation during mammalian fetal development. Most of these factors have, however, failed to induce adult mammalian cardiomyocyte proliferation. Finally, our analysis of mammalian neonatal heart regeneration indicates experiments that could resolve conflicting results in the literature, such as binucleation assays and clonal analysis. Collectively, cardiac regeneration based on cardiomyocyte proliferation is a promising approach for improving adult human cardiac function after injury, but it is important to elucidate the mechanisms arresting mammalian cardiomyocyte proliferation after birth and to utilize better assays to determine formation of new muscle mass.

  14. Attenuated mitochondrial NADP+-dependent isocitrate dehydrogenase activity induces apoptosis and hypertrophy of H9c2 cardiomyocytes. (United States)

    Lee, Jun Ho; Park, Jeen-Woo


    Oxidative stress, characterized by the accumulation of reactive oxygen species (ROS), is known to have numerous detrimental effects on the myocardium such as the induction of apoptotic cell death, hypertrophy, fibrosis, dysfunction, and dilatation. Over the past several years, we have shown that mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDPm) functions as an antioxidant and anti-apoptotic protein by supplying NADPH to antioxidant systems. Here, we showed that transfection of H9c2 clonal myoblastic cells with small interfering RNA (siRNA) specific for IDPm markedly attenuated IDPm expression and substantially induced apoptosis, senescence, and hypertrophy as indicated by increased atrial natriuretic peptide (ANP) gene expression, a marker of cardiomyocyte hypertrophy, and a larger cell size. Knockdown of IDPm expression resulted in the modulation of cellular and mitochondrial redox status, mitochondrial function, and cellular oxidative damage. Taken together, our results suggest that the suppression of IDPm expression by siRNA induces apoptosis and hypertrophy of cultured cardiomyocytes through the disruption of cellular redox balance.

  15. Effect of hawthorn (Crataegus oxycantha) crude extract and chromatographic fractions on multiple activities in a cultured cardiomyocyte assay. (United States)

    Long, S R; Carey, R A; Crofoot, K M; Proteau, P J; Filtz, T M


    Extracts of hawthorn (Crataegus oxycantha) have become popular herbal supplements for their well-recognized cardiotonic effects. Many commercial preparations have been used successfully in the treatment of congestive heart failure, although the active principles within these extracts have yet to be conclusively identified. Several hawthorn preparations were studied and found to have negative chronotropic effects in a cultured neonatal murine cardiomyocyte assay using unpaced cells. As compared to conventional cardiac drugs (i.e., epinephrine, milrinone, ouabain, or propranolol), hawthorn extract has a unique activity profile. Hawthorn extract appears to be anti-arrhythmic and capable of inducing rhythmicity in quiescent cardiomyocytes. Hawthorn extract does not cause beta-adrenergic receptor blockade at concentrations which cause negative chronotropic effects. Commercial hawthorn preparations, extracts prepared from dried leaves and those made from dried berries have similar chronotropic activities. When crude extracts are separated using size-exclusion chromatography, several fractions retain multiple cardiac activities. Assays with chromatographic fractions reveal that multiple dissimilar cardioactive components may exist within the extract, making the identification of individual active constituents more challenging.

  16. Stable, covalent attachment of laminin to microposts improves the contractility of mouse neonatal cardiomyocytes. (United States)

    Ribeiro, Alexandre J S; Zaleta-Rivera, Kathia; Ashley, Euan A; Pruitt, Beth L


    The mechanical output of contracting cardiomyocytes, the muscle cells of the heart, relates to healthy and disease states of the heart. Culturing cardiomyocytes on arrays of elastomeric microposts can enable inexpensive and high-throughput studies of heart disease at the single-cell level. However, cardiomyocytes weakly adhere to these microposts, which limits the possibility of using biomechanical assays of single cardiomyocytes to study heart disease. We hypothesized that a stable covalent attachment of laminin to the surface of microposts improves cardiomyocyte contractility. We cultured cells on polydimethylsiloxane microposts with laminin covalently bonded with the organosilanes 3-glycidoxypropyltrimethoxysilane and 3-aminopropyltriethoxysilane with glutaraldehyde. We measured displacement of microposts induced by the contractility of mouse neonatal cardiomyocytes, which attach better than mature cardiomyocytes to substrates. We observed time-dependent changes in contractile parameters such as micropost deformation, contractility rates, contraction and relaxation speeds, and the times of contractions. These parameters were affected by the density of laminin on microposts and by the stability of laminin binding to micropost surfaces. Organosilane-mediated binding resulted in higher laminin surface density and laminin binding stability. 3-glycidoxypropyltrimethoxysilane provided the highest laminin density but did not provide stable protein binding with time. Higher surface protein binding stability and strength were observed with 3-aminopropyltriethoxysilane with glutaraldehyde. In cultured cardiomyocytes, contractility rate, contraction speeds, and contraction time increased with higher laminin stability. Given these variations in contractile function, we conclude that binding of laminin to microposts via 3-aminopropyltriethoxysilane with glutaraldehyde improves contractility observed by an increase in beating rate and contraction speed as it occurs during the

  17. CstF-64 is necessary for endoderm differentiation resulting in cardiomyocyte defects

    Directory of Open Access Journals (Sweden)

    Bradford A. Youngblood


    Full Text Available Although adult cardiomyocytes have the capacity for cellular regeneration, they are unable to fully repair severely injured hearts. The use of embryonic stem cell (ESC-derived cardiomyocytes as transplantable heart muscle cells has been proposed as a solution, but is limited by the lack of understanding of the developmental pathways leading to specification of cardiac progenitors. Identification of these pathways will enhance the ability to differentiate cardiomyocytes into a clinical source of transplantable cells. Here, we show that the mRNA 3′ end processing protein, CstF-64, is essential for cardiomyocyte differentiation in mouse ESCs. Loss of CstF-64 in mouse ESCs results in loss of differentiation potential toward the endodermal lineage. However, CstF-64 knockout (Cstf2E6 cells were able to differentiate into neuronal progenitors, demonstrating that some differentiation pathways were still intact. Markers for mesodermal differentiation were also present, although Cstf2E6 cells were defective in forming beating cardiomyocytes and expressing cardiac specific markers. Since the extraembryonic endoderm is needed for cardiomyocyte differentiation and endodermal markers were decreased, we hypothesized that endodermal factors were required for efficient cardiomyocyte formation in the Cstf2E6 cells. Using conditioned medium from the extraembryonic endodermal (XEN stem cell line we were able to restore cardiomyocyte differentiation in Cstf2E6 cells, suggesting that CstF-64 has a role in regulating endoderm differentiation that is necessary for cardiac specification and that extraembryonic endoderm signaling is essential for cardiomyocyte development.

  18. Assessment of contractility in intact ventricular cardiomyocytes using the dimensionless 'Frank-Starling Gain' index. (United States)

    Bollensdorff, Christian; Lookin, Oleg; Kohl, Peter


    This paper briefly recapitulates the Frank-Starling law of the heart, reviews approaches to establishing diastolic and systolic force-length behaviour in intact isolated cardiomyocytes, and introduces a dimensionless index called 'Frank-Starling Gain', calculated as the ratio of slopes of end-systolic and end-diastolic force-length relations. The benefits and limitations of this index are illustrated on the example of regional differences in Guinea pig intact ventricular cardiomyocyte mechanics. Potential applicability of the Frank-Starling Gain for the comparison of cell contractility changes upon stretch will be discussed in the context of intra- and inter-individual variability of cardiomyocyte properties.

  19. Bile acid-induced arrhythmia is mediated by muscarinic M2 receptors in neonatal rat cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Siti H Sheikh Abdul Kadir

    Full Text Available BACKGROUND: Intrahepatic cholestasis of pregnancy (ICP is a common disease affecting up to 5% of pregnancies and which can cause fetal arrhythmia and sudden intrauterine death. We previously demonstrated that bile acid taurocholate (TC, which is raised in the bloodstream of ICP, can acutely alter the rate and rhythm of contraction and induce abnormal calcium destabilization in cultured neonatal rat cardiomyocytes (NRCM. Apart from their hepatic functions bile acids are ubiquitous signalling molecules with diverse systemic effects mediated by either the nuclear receptor FXR or by a recently discovered G-protein coupled receptor TGR5. We aim to investigate the mechanism of bile-acid induced arrhythmogenic effects in an in-vitro model of the fetal heart. METHODS AND RESULTS: Levels of bile acid transporters and nuclear receptor FXR were studied by quantitative real time PCR, western blot and immunostaining, which showed low levels of expression. We did not observe functional involvement of the canonical receptors FXR and TGR5. Instead, we found that TC binds to the muscarinic M(2 receptor in NRCM and serves as a partial agonist of this receptor in terms of inhibitory effect on intracellular cAMP and negative chronotropic response. Pharmacological inhibition and siRNA-knockdown of the M(2 receptor completely abolished the negative effect of TC on contraction, calcium transient amplitude and synchronisation in NRCM clusters. CONCLUSION: We conclude that in NRCM the TC-induced arrhythmia is mediated by the partial agonism at the M(2 receptor. This mechanism might serve as a promising new therapeutic target for fetal arrhythmia.

  20. The antiapoptotic effect of insulin against anoxia/reoxygenation injury in cultured cardiomyocyte of neonatal rat

    Institute of Scientific and Technical Information of China (English)


    Objective: To study protective effect of insulin against cardiomyocyte apoptosis in anoxia/reoxygenation (A/R)injury of neonatal rat. Methods: The model of A/R injury was finished through receiving anoxia for 2 h and reoxygenation for 4 h in cultured cardiomyocytes of neonatal rat. The cardiomyocytes were divided randomly into 3 groups: control group (CON), anoxia/reoxygenation group (A/R) and insulin-treated group (INS). At the end of reoxygenation of 4 hours, activities of lactate dehydrogenase (LDH),contents of malondialdehyde (MDA) were assessed through spectrophotometric procedures, myocyte apoptosis were detected through TUNEL and DNA Ladder. Results: MDA, LDH, and Apoptosis Index were significantly decreased in INS group compared with A/R group (P<0.01). Conclusion: Insulin has a protective effect against A/R injury in cultured cardiomyocyte of neonatal rat; the protective mechanism may contribute to antiapoptosis of insulin.

  1. Modeling Cardiovascular Diseases with Patient-Specific Human Pluripotent Stem Cell-Derived Cardiomyocytes (United States)

    Burridge, Paul W.; Diecke, Sebastian; Matsa, Elena; Sharma, Arun; Wu, Haodi; Wu, Joseph C.


    The generation of cardiomyocytes from human induced pluripotent stem cells (hiPSCs) provides a source of cells that accurately recapitulate the human cardiac pathophysiology. The application of these cells allows for modeling of cardiovascular diseases, providing a novel understanding of human disease mechanisms and assessment of therapies. Here, we describe a stepwise protocol developed in our laboratory for the generation of hiPSCs from patients with a specific disease phenotype, long-term hiPSC culture and cryopreservation, differentiation of hiPSCs to cardiomyocytes, and assessment of disease phenotypes. Our protocol combines a number of innovative tools that include a codon-optimized mini intronic plasmid (CoMiP), chemically defined culture conditions to achieve high efficiencies of reprogramming and differentiation, and calcium imaging for assessment of cardiomyocyte phenotypes. Thus, this protocol provides a complete guide to use a patient cohort on a testable cardiomyocyte platform for pharmacological drug assessment. PMID:25690476

  2. Electrophysiological properties and calcium handling of embryonic stem cell-derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jae Boum Youm


    Full Text Available Embryonic stem cell-derived cardiomyocytes (ESC-CMs hold great interest in many fields of research including clinical applications such as stem cell and gene therapy for cardiac repair or regeneration. ESC-CMs are also used as a platform tool for pharmacological tests or for investigations of cardiac remodeling. ESC-CMs have many different aspects of morphology, electrophysiology, calcium handling, and bioenergetics compared with adult cardiomyocytes. They are immature in morphology, similar to sinus nodal-like in the electrophysiology, higher contribution of trans-sarcolemmal Ca2+ influx to Ca2+ handling, and higher dependence on anaerobic glycolysis. Here, I review a detailed electrophysiology and Ca2+ handling features of ESC-CMs during differentiation into adult cardiomyocytes to gain insights into how all the developmental changes are related to each other to display cardinal features of developing cardiomyocytes.

  3. Mapping of redox state of mitochondrial cytochromes in live cardiomyocytes using Raman microspectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A; Treiman, Marek; Brazhe, Alexey R;


    This paper presents a nonivasive approach to study redox state of reduced cytochromes [Formula: see text], [Formula: see text] and [Formula: see text] of complexes II and III in mitochondria of live cardiomyocytes by means of Raman microspectroscopy. For the first time with the proposed approach we......-shaped cardiomyocytes possess uneven distribution of reduced cytochromes [Formula: see text], [Formula: see text] and [Formula: see text] in cell center and periphery. Moreover, by means of Raman spectroscopy we demonstrated the decrease in the relative amounts of reduced cytochromes [Formula: see text], [Formula: see...... perform studies of rod- and round-shaped cardiomyocytes, representing different morphological and functional states. Raman mapping and cluster analysis reveal that these cardiomyocytes differ in the amounts of reduced cytochromes [Formula: see text], [Formula: see text] and [Formula: see text]. The rod...

  4. In vitro simulation of spiral waves in cardiomyocyte networks using multi-electrode array technology


    Jacquir, Sabir; Laurent, Gabriel; Vandroux, David; Binczak, Stéphane; Bilbault, Jean-Marie; Athias, Pierre


    International audience; We aimed thus to provide new insights into the cellular origin of the fibrillation phenomenon by exploring the impulse propagation between cardiac myocytes in confluent monolayers of cultured cardiomyocytes (CM),

  5. Dexamethasone Treatment of Newborn Rats Decreases Cardiomyocyte Endowment in the Developing Heart through Epigenetic Modifications.

    Directory of Open Access Journals (Sweden)

    Maresha S Gay

    Full Text Available The potential adverse effect of synthetic glucocorticoid, dexamethasone therapy on the developing heart remains unknown. The present study investigated the effects of dexamethasone on cardiomyocyte proliferation and binucleation in the developing heart of newborn rats and evaluated DNA methylation as a potential mechanism. Dexamethasone was administered intraperitoneally in a three day tapered dose on postnatal day 1 (P1, 2 and 3 to rat pups in the absence or presence of a glucocorticoid receptor antagonist Ru486, given 30 minutes prior to dexamethasone. Cardiomyocytes from P4, P7 or P14 animals were analyzed for proliferation, binucleation and cell number. Dexamethasone treatment significantly increased the percentage of binucleated cardiomyocytes in the hearts of P4 pups, decreased myocyte proliferation in P4 and P7 pups, reduced cardiomyocyte number and increased the heart to body weight ratio in P14 pups. Ru486 abrogated the effects of dexamethasone. In addition, 5-aza-2'-deoxycytidine (5-AZA blocked the effects of dexamethasone on binucleation in P4 animals and proliferation at P7, leading to recovered cardiomyocyte number in P14 hearts. 5-AZA alone promoted cardiomyocyte proliferation at P7 and resulted in a higher number of cardiomyocytes in P14 hearts. Dexamethasone significantly decreased cyclin D2, but not p27 expression in P4 hearts. 5-AZA inhibited global DNA methylation and blocked dexamethasone-mediated down-regulation of cyclin D2 in the heart of P4 pups. The findings suggest that dexamethasone acting on glucocorticoid receptors inhibits proliferation and stimulates premature terminal differentiation of cardiomyocytes in the developing heart via increased DNA methylation in a gene specific manner.

  6. Cardiomyocyte Regulation of Systemic Lipid Metabolism by the Apolipoprotein B-Containing Lipoproteins in Drosophila (United States)

    Ishikawa, Zachary


    The heart has emerged as an important organ in the regulation of systemic lipid homeostasis; however, the underlying mechanism remains poorly understood. Here, we show that Drosophila cardiomyocytes regulate systemic lipid metabolism by producing apolipoprotein B-containing lipoproteins (apoB-lipoproteins), essential lipid carriers that are so far known to be generated only in the fat body. In a Drosophila genetic screen, we discovered that when haplo-insufficient, microsomal triglyceride transfer protein (mtp), required for the biosynthesis of apoB-lipoproteins, suppressed the development of diet-induced obesity. Tissue-specific inhibition of Mtp revealed that whereas knockdown of mtp only in the fat body decreases systemic triglyceride (TG) content on normal food diet (NFD) as expected, knockdown of mtp only in the cardiomyocytes also equally decreases systemic TG content on NFD, suggesting that the cardiomyocyte- and fat body-derived apoB-lipoproteins serve similarly important roles in regulating whole-body lipid metabolism. Unexpectedly, on high fat diet (HFD), knockdown of mtp in the cardiomyocytes, but not in fat body, protects against the gain in systemic TG levels. We further showed that inhibition of the Drosophila apoB homologue, apolipophorin or apoLpp, another gene essential for apoB-lipoprotein biosynthesis, affects systemic TG levels similarly to that of Mtp inhibition in the cardiomyocytes on NFD or HFD. Finally, we determined that HFD differentially alters Mtp and apoLpp expression in the cardiomyocytes versus the fat body, culminating in higher Mtp and apoLpp levels in the cardiomyocytes than in fat body and possibly underlying the predominant role of cardiomyocyte-derived apoB-lipoproteins in lipid metabolic regulation. Our findings reveal a novel and significant function of heart-mediated apoB-lipoproteins in controlling lipid homeostasis. PMID:28095410

  7. Group B streptococcal beta-hemolysin/cytolysin directly impairs cardiomyocyte viability and function.

    Directory of Open Access Journals (Sweden)

    Mary E Hensler

    Full Text Available BACKGROUND: Group B Streptococcus (GBS is a leading cause of neonatal sepsis where myocardial dysfunction is an important contributor to poor outcome. Here we study the effects of the GBS pore-forming beta-hemolysin/cytolysin (Bh/c exotoxin on cardiomyocyte viability, contractility, and calcium transients. METHODOLOGY/PRINCIPAL FINDINGS: HL-1 cardiomyocytes exposed to intact wild-type (WT or isogenic Deltabeta h/c mutant GBS, or to cell-free extracts from either strain, were assessed for viability by trypan blue exclusion and for apoptosis by TUNEL staining. Functionality of exposed cardiomyocytes was analyzed by visual quantitation of the rate and extent of contractility. Mitochondrial membrane polarization was measured in TMRE-loaded cells exposed to GBS beta h/c. Effects of GBS beta h/c on calcium transients were studied in fura-2AM-loaded primary rat ventricular cardiomyocytes. Exposure of HL-1 cardiomyocytes to either WT GBS or beta h/c extracts significantly reduced both rate and extent of contractility and later induced necrotic and apoptotic cell death. No effects on cardiomyocyte viability or function were observed after treatment with Deltabeta h/c mutant bacteria or extracts. The beta h/c toxin was associated with complete and rapid loss of detectable calcium transients in primary neonatal rat ventricular cardiomyocytes and induced a loss of mitochondrial membrane polarization. These effects on viability and function were abrogated by the beta h/c inhibitor, dipalmitoyl phosphatidylcholine (DPPC. CONCLUSIONS/SIGNIFICANCE: Our data show a rapid loss of cardiomyocyte viability and function induced by GBS beta h/c, and these deleterious effects are inhibited by DPPC, a normal constituent of human pulmonary surfactant.. These findings have clinical implications for the cardiac dysfunction observed in neonatal GBS infections.

  8. Muscle-on-chip: An in vitro model for donor–host cardiomyocyte coupling (United States)

    Dierickx, Pieterjan


    A key aspect of cardiac cell–based therapy is the proper integration of newly formed cardiomyocytes into the remnant myocardium after injury. In this issue, Aratyn-Schaus et al. (2016. J. Cell Biol. describe an in vitro model for heterogeneous cardiomyocyte coupling in which force transmission between cells can be measured. PMID:26858264

  9. An essential role of Nrf2 in American ginseng-mediated anti-oxidative actions in cardiomyocytes (United States)

    Li, Jinqing; Ichikawa, Tomonaga; Jin, Yu; Hofseth, Lorne J.; Nagarkatti, Prakash; Nagarkatti, Mitzi; Windust, Anthony; Cui, Taixing


    Aim of the study Ginseng has been used as a folk medicine for thousands of years in Asia, and has become a popular herbal medicine world-wide. Recent studies have revealed that ginseng, including American ginseng, exerts antioxidant effects in the cardiovascular system; however, the underlying mechanisms are not fully understood. Thus, we investigated role of Nrf2, a master transcription factor of endogenous anti-oxidative defense systems, in the regulation of American ginseng-mediated anti-oxidative actions in cardiomyocytes. Materials and methods A standardized crude extract of American ginseng was supplied by the National Research Council of Canada, Institute for National Measurement Standards. H9C2 cells, a rat cardiomyocyte cell line, were exposed to angiotensin II (Ang II) or tumor necrosis factor alpha (TNFα) to induce oxidative stress that was examined by measuring formation of reactive oxygen and nitrogen species. Oxidative stress-induced cell death was induced by exogenous addition of hydrogen peroxide (H2O2). Proteins were measured by Western blot and mRNA expression was determined by quantitative real time PCR. Nrf2-driven transcriptional activity was assessed by antioxidant response element (ARE)-luciferase reporter assay. Direct Nrf2 binding to its target gene promoters was determined by chromatin immunoprecipitation assay. Adenoviral overexpression of Nrf2 shRNA was utilized to knock down Nrf2 in H9C2 cells. Immunochemical staining was applied for Nrf2 expression in the heart. Results American ginseng induced dramatic increases in Nrf2 protein expression, Nrf2 nuclear translocation, Nrf2 transcriptional activity, direct Nrf2 binding to its target gene promoters, and expression of a group of anti-oxidative genes driven by Nrf2 in H9C2 cells. In addition, American ginseng inhibited Ang II- or TNFα-induced free radical formation and H2O2-induced cell death in H9C2 cells over-expressed with control shRNA but not in the cells over-expressed with Nrf2 sh

  10. Antioxidant Effect of Selenium-containing Glutathione S-Transferase in Rat Cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    YIN Li; HAN Xiao; YU Yang; GUO Xiao; REN Li-qun; FANG Jing-qi; LIU Zhi-yi; YAN Gang-lin; WEI Jing-yan


    As one of the most important antioxidant enzymes,glutathione peroxidase(GPX) protects cells and tissues from oxidative damage,and plays an important role in cardiovascular and cerebrovascular injuries induced by oxidative stress.The antioxidant effect of selenium-containing glutathione S-transferase(Se-GST),a mimic of GPX was investigated on rat cardiomyocytes.To explore the protection function of Se-GST in hydrogen peroxide(H2O2) challenged rat cardiomyocytes,we examined malondialdehyde(MDA),lactate dehydrogenase(LDH),superoxide dismutase(SOD) and cell apoptosis.The results demonstrate exposure of rat cardiomyocytes to H2O2 for 6 and 12 h induced the significant increases of MDA,LDH and apoptosis rate of cardiomyocytes,but pretreatment of rat cardiomyocytes with Se-GST at 0.0005 or 0.001 unit/mL prevents oxidative stress induced by H2O2 with the decreases of cell apoptosis.All the results him Se-GST has antioxidant activity for oxidative stress challenged rat cardiomyocytes.

  11. Autophagy protects cardiomyocytes from the myocardial ischaemia-reperfusion injury through the clearance of CLP36 (United States)

    Li, Shiguo; Liu, Chao; Gu, Lei; Wang, Lina; Shang, Yongliang; Liu, Qiong; Wan, Junyi; Shi, Jian; Wang, Fang; Xu, Zhiliang; Ji, Guangju


    Cardiovascular disease (CVD) is the leading cause of the death worldwide. An increasing number of studies have found that autophagy is involved in the progression or prevention of CVD. However, the precise mechanism of autophagy in CVD, especially the myocardial ischaemia-reperfusion injury (MI/R injury), is unclear and controversial. Here, we show that the cardiomyocyte-specific disruption of autophagy by conditional knockout of Atg7 leads to severe contractile dysfunction, myofibrillar disarray and vacuolar cardiomyocytes. A negative cytoskeleton organization regulator, CLP36, was found to be accumulated in Atg7-deficient cardiomyocytes. The cardiomyocyte-specific knockout of Atg7 aggravates the MI/R injury with cardiac hypertrophy, contractile dysfunction, myofibrillar disarray and severe cardiac fibrosis, most probably due to CLP36 accumulation in cardiomyocytes. Altogether, this work reveals autophagy may protect cardiomyocytes from the MI/R injury through the clearance of CLP36, and these findings define a novel relationship between autophagy and the regulation of stress fibre in heart. PMID:27512143

  12. MicroRNA-1 and-16 inhibit cardiomyocyte hypertrophy by targeting cyclins/Rb pathway

    Institute of Scientific and Technical Information of China (English)

    SHAN Zhi-xin; ZHU Jie-ning; TANG Chun-mei; ZHU Wen-si; LIN Qiu-xiong; HU Zhi-qin; FU Yong-heng; ZHANG Meng-zhen


    AIM:MicroRNAs ( miRNAs) were recognized to play significant roles in cardiac hypertrophy .But, it remains unknown whether cyclin/Rb pathway is modulated by miRNAs during cardiac hypertrophy .This study investigates the potential roles of microRNA-1 (miR-1) and microRNA-16 (miR-16) in modulating cyclin/Rb pathway during cardiomyocyte hypertrophy .METHODS:An animal model of hypertrophy was established in a rat with abdominal aortic constriction (AAC).In addition, a cell model of hypertrophy was also achieved based on PE-promoted neonatal rat ventricular cardiomyocyte .RESULTS:miR-1 and-16 expression were markedly de-creased in hypertrophic myocardium and hypertrophic cardiomyocytes in rats .Overexpression of miR-1 and -16 suppressed rat cardiac hypertrophy and hypertrophic phenotype of cultured cardiomyocytes .Expression of cyclins D1, D2 and E1, CDK6 and phosphorylated pRb was increased in hypertrophic myocardium and hypertrophic cardiomyocytes , but could be reversed by enforced expression of miR-1 and -16.CDK6 was validated to be modulated post-transcriptionally by miR-1, and cyclins D1, D2 and E1 were further validated to be modulated post-transcriptionally by miR-16.CONCLUSION: Attenuations of miR-1 and -16 provoke cardiomyocyte hypertrophy via derepressing the cyclins D1, D2, E1 and CDK6, and activating cyclin/Rb pathway.

  13. Role of Nodal-PITX2C signaling pathway in glucose-induced cardiomyocyte hypertrophy. (United States)

    Su, Dongmei; Jing, Sun; Guan, Lina; Li, Qian; Zhang, Huiling; Gao, Xiaobo; Ma, Xu


    Pathological cardiac hypertrophy is a major cause of morbidity and mortality in cardiovascular disease. Recent studies have shown that cardiomyocytes, in response to high glucose (HG) stimuli, undergo hypertrophic growth. While much work still needs to be done to elucidate this important mechanism of hypertrophy, previous works have showed that some pathways or genes play important roles in hypertrophy. In this study, we showed that sublethal concentrations of glucose (25 mmol/L) could induce cardiomyocyte hypertrophy with an increase in the cellular surface area and the upregulation of the atrial natriuretic peptide (ANP) gene, a hypertrophic marker. High glucose (HG) treatments resulted in the upregulation of the Nodal gene, which is under-expressed in cardiomyocytes. We also determined that the knockdown of the Nodal gene resisted HG-induced cardiomyocyte hypertrophy. The overexpression of Nodal was able to induce hypertrophy in cardiomyocytes, which was associated with the upregulation of the PITX2C gene. We also showed that increases in the PITX2C expression, in response to Nodal, were mediated by the Smad4 signaling pathway. This study is highly relevant to the understanding of the effects of the Nodal-PITX2C pathway on HG-induced cardiomyocyte hypertrophy, as well as the related molecular mechanisms.

  14. MiR-25 protects cardiomyocytes against oxidative damage by targeting the mitochondrial calcium uniporter. (United States)

    Pan, Lei; Huang, Bi-Jun; Ma, Xiu-E; Wang, Shi-Yi; Feng, Jing; Lv, Fei; Liu, Yuan; Liu, Yi; Li, Chang-Ming; Liang, Dan-Dan; Li, Jun; Xu, Liang; Chen, Yi-Han


    MicroRNAs (miRNAs) are a class of small non-coding RNAs, whose expression levels vary in different cell types and tissues. Emerging evidence indicates that tissue-specific and -enriched miRNAs are closely associated with cellular development and stress responses in their tissues. MiR-25 has been documented to be abundant in cardiomyocytes, but its function in the heart remains unknown. Here, we report that miR-25 can protect cardiomyocytes against oxidative damage by down-regulating mitochondrial calcium uniporter (MCU). MiR-25 was markedly elevated in response to oxidative stimulation in cardiomyocytes. Further overexpression of miR-25 protected cardiomyocytes against oxidative damage by inactivating the mitochondrial apoptosis pathway. MCU was identified as a potential target of miR-25 by bioinformatical analysis. MCU mRNA level was reversely correlated with miR-25 under the exposure of H2O2, and MCU protein level was largely decreased by miR-25 overexpression. The luciferase reporter assay confirmed that miR-25 bound directly to the 3' untranslated region (UTR) of MCU mRNA. MiR-25 significantly decreased H2O2-induced elevation of mitochondrial Ca2+ concentration, which is likely to be the result of decreased activity of MCU. We conclude that miR-25 targets MCU to protect cardiomyocytes against oxidative damages. This finding provides novel insights into the involvement of miRNAs in oxidative stress in cardiomyocytes.

  15. Hawthorn (Crataegus monogyna Jacq.) extract exhibits atropine-sensitive activity in a cultured cardiomyocyte assay. (United States)

    Salehi, Satin; Long, Shannon R; Proteau, Philip J; Filtz, Theresa M


    Hawthorn (Crataegus spp.) plant extract is used as a herbal alternative medicine for the prevention and treatment of various cardiovascular diseases. Recently, it was shown that hawthorn extract preparations caused negative chronotropic effects in a cultured neonatal murine cardiomyocyte assay, independent of beta-adrenergic receptor blockade. The aim of this study was to further characterize the effect of hawthorn extract to decrease the contraction rate of cultured cardiomyocytes. To test the hypothesis that hawthorn is acting via muscarinic receptors, the effect of hawthorn extract on atrial versus ventricular cardiomyocytes in culture was evaluated. As would be expected for activation of muscarinic receptors, hawthorn extract had a greater effect in atrial cells. Atrial and/or ventricular cardiomyocytes were then treated with hawthorn extract in the presence of atropine or himbacine. Changes in the contraction rate of cultured cardiomyocytes revealed that both muscarinic antagonists significantly attenuated the negative chronotropic activity of hawthorn extract. Using quinuclidinyl benzilate, L-[benzylic-4,4'-(3)H] ([(3)H]-QNB) as a radioligand antagonist, the effect of a partially purified hawthorn extract fraction to inhibit muscarinic receptor binding was quantified. Hawthorn extract fraction 3 dose-dependently inhibited [(3)H]-QNB binding to mouse heart membranes. Taken together, these findings suggest that decreased contraction frequency by hawthorn extracts in neonatal murine cardiomyocytes may be mediated via muscarinic receptor activation.

  16. Cardiomyocytes display low mitochondrial priming and are highly resistant toward cytotoxic T‐cell killing (United States)

    Zheng, Xiang; Halle, Stephan; Yu, Kai; Mishra, Pooja; Scherr, Michaela; Pietzsch, Stefan; Willenzon, Stefanie; Janssen, Anika; Boelter, Jasmin; Hilfiker‐Kleiner, Denise; Eder, Matthias


    Following heart transplantation, alloimmune responses can cause graft rejection by damaging donor vascular and parenchymal cells. However, it remains unclear whether cardiomyocytes are also directly killed by immune cells. Here, we used two‐photon microscopy to investigate how graft‐specific effector CD8+ T cells interact with cardiomyocytes in a mouse heart transplantation model. Surprisingly, we observed that CD8+ T cells are completely impaired in killing cardiomyocytes. Even after virus‐mediated preactivation, antigen‐specific CD8+ T cells largely fail to lyse these cells although both cell types engage in dynamic interactions. Furthermore, we established a two‐photon microscopy‐based assay using intact myocardium to determine the susceptibility of cardiomyocytes to undergo apoptosis. This feature, also known as mitochondrial priming reveals an unexpected weak predisposition of cardiomyocytes to undergo apoptosis in situ. These observations together with the early exhaustion phenotype of graft‐infiltrating specific T cells provide an explanation why cardiomyocytes are largely protected from direct CD8+ T‐cell‐mediated killing. PMID:26970349

  17. Inhibition of aldehyde dehydrogenase 2 activity enhances antimycin-induced rat cardiomyocytes apoptosis through activation of MAPK signaling pathway. (United States)

    Zhang, Peng; Xu, Danling; Wang, Shijun; Fu, Han; Wang, Keqiang; Zou, Yunzeng; Sun, Aijun; Ge, Junbo


    Aldehyde dehydrogenase 2 (ALDH2), a mitochondrial-specific enzyme, has been proved to be involved in oxidative stress-induced cell apoptosis, while little is known in cardiomyocytes. This study was aimed at investigating the role of ALDH2 in antimycin A-induced cardiomyocytes apoptosis by suppressing ALDH2 activity with a specific ALDH2 inhibitor Daidzin. Antimycin A (40μg/ml) was used to induce neonatal cardiomyocytes apoptosis. Daidzin (60μM) effectively inhibited ALDH2 activity by 50% without own effect on cell apoptosis, and significantly enhanced antimycin A-induced cardiomyocytes apoptosis from 33.5±4.4 to 56.5±6.4% (Hochest method, pdaidzin treated cardiomyocytes compared to the cells treated with antimycin A alone. These findings indicated that modifying mitochondrial ALDH2 activity/expression might be a potential therapeutic option on reducing oxidative insults induced cardiomyocytes apoptosis.

  18. A piezoelectric electrospun platform for in situ cardiomyocyte contraction analysis (United States)

    Beringer, Laura Toth

    hyperpolarized state, proving their potential use as contractile analysis microdevices. The third and final aim of this dissertation was to be able to measure contraction events from both cultured cardiomyocytes and whole tissues in situ. Rat neonatal cardiomyocytes grew on the prepared collagen/PVDF-TrFe nanogenerators and yielded a distinct signal after 8 days of growth. These contractions were verified with live cell imaging and video recording. In addition, cardiomyocyte exposure to the drug isoproterenol increased contraction strength and frequency, which was reflected in the nanogenerator recordings. Frog whole heart and heart tissue slices also were interfaced with the fabricated nanogenerators and signals were recorded. The same held true for heart slices from male Sprague-Dawley rats. These signals were determined to be statistically different compared to the control baseline nanogenerator recordings in media in the absence of cell culture. Overall the fabricated nanogenerators have demonstrated their potential to be used as in situ analysis tools for contractile events and have potential in the field of personalized medicine and drug diagnostic assays. The facile fabrication and ease of setup to obtain the electrical voltage signal corresponding to the contractile events are what sets the nanogenerator apart from any polymer based sensor available today.

  19. Generation of highly purified human cardiomyocytes from peripheral blood mononuclear cell-derived induced pluripotent stem cells. (United States)

    Fuerstenau-Sharp, Maya; Zimmermann, Martina E; Stark, Klaus; Jentsch, Nico; Klingenstein, Melanie; Drzymalski, Marzena; Wagner, Stefan; Maier, Lars S; Hehr, Ute; Baessler, Andrea; Fischer, Marcus; Hengstenberg, Christian


    Induced pluripotent stem (iPS) cells have an enormous potential for physiological studies. A novel protocol was developed combining the derivation of iPS from peripheral blood with an optimized directed differentiation to cardiomyocytes and a subsequent metabolic selection. The human iPS cells were retrovirally dedifferentiated from activated T cells. The subsequent optimized directed differentiation protocol yielded 30-45% cardiomyocytes at day 16 of differentiation. The derived cardiomyocytes expressed appropriate structural markers like cardiac troponin T, α-actinin and myosin light chain 2 (MLC2V). In a subsequent metabolic selection with lactate, the cardiomyocytes content could be increased to more than 90%. Loss of cardiomyocytes during metabolic selection were less than 50%, whereas alternative surface antibody-based selection procedures resulted in loss of up to 80% of cardiomyocytes. Electrophysiological characterization confirmed the typical cardiac features and the presence of ventricular, atrial and nodal-like action potentials within the derived cardiomyocyte population. Our combined and optimized protocol is highly robust and applicable for scalable cardiac differentiation. It provides a simple and cost-efficient method without expensive equipment for generating large numbers of highly purified, functional cardiomyocytes. It will further enhance the applicability of iPS cell-derived cardiomyocytes for disease modeling, drug discovery, and regenerative medicine.

  20. Generation of highly purified human cardiomyocytes from peripheral blood mononuclear cell-derived induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Maya Fuerstenau-Sharp

    Full Text Available Induced pluripotent stem (iPS cells have an enormous potential for physiological studies. A novel protocol was developed combining the derivation of iPS from peripheral blood with an optimized directed differentiation to cardiomyocytes and a subsequent metabolic selection. The human iPS cells were retrovirally dedifferentiated from activated T cells. The subsequent optimized directed differentiation protocol yielded 30-45% cardiomyocytes at day 16 of differentiation. The derived cardiomyocytes expressed appropriate structural markers like cardiac troponin T, α-actinin and myosin light chain 2 (MLC2V. In a subsequent metabolic selection with lactate, the cardiomyocytes content could be increased to more than 90%. Loss of cardiomyocytes during metabolic selection were less than 50%, whereas alternative surface antibody-based selection procedures resulted in loss of up to 80% of cardiomyocytes. Electrophysiological characterization confirmed the typical cardiac features and the presence of ventricular, atrial and nodal-like action potentials within the derived cardiomyocyte population. Our combined and optimized protocol is highly robust and applicable for scalable cardiac differentiation. It provides a simple and cost-efficient method without expensive equipment for generating large numbers of highly purified, functional cardiomyocytes. It will further enhance the applicability of iPS cell-derived cardiomyocytes for disease modeling, drug discovery, and regenerative medicine.

  1. Differential Expression Levels of Integrin α6 Enable the Selective Identification and Isolation of Atrial and Ventricular Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Anne Maria Wiencierz

    Full Text Available Central questions such as cardiomyocyte subtype emergence during cardiogenesis or the availability of cardiomyocyte subtypes for cell replacement therapy require selective identification and purification of atrial and ventricular cardiomyocytes. However, current methodologies do not allow for a transgene-free selective isolation of atrial or ventricular cardiomyocytes due to the lack of subtype specific cell surface markers.In order to develop cell surface marker-based isolation procedures for cardiomyocyte subtypes, we performed an antibody-based screening on embryonic mouse hearts. Our data indicate that atrial and ventricular cardiomyocytes are characterized by differential expression of integrin α6 (ITGA6 throughout development and in the adult heart. We discovered that the expression level of this surface marker correlates with the intracellular subtype-specific expression of MLC-2a and MLC-2v on the single cell level and thereby enables the discrimination of cardiomyocyte subtypes by flow cytometry. Based on the differential expression of ITGA6 in atria and ventricles during cardiogenesis, we developed purification protocols for atrial and ventricular cardiomyocytes from mouse hearts. Atrial and ventricular identities of sorted cells were confirmed by expression profiling and patch clamp analysis.Here, we introduce a non-genetic, antibody-based approach to specifically isolate highly pure and viable atrial and ventricular cardiomyocytes from mouse hearts of various developmental stages. This will facilitate in-depth characterization of the individual cellular subsets and support translational research applications.

  2. Vanadate induces necrotic death in neonatal rat cardiomyocytes through mitochondrial membrane depolarization. (United States)

    Soares, Sandra Sofia; Henao, Fernando; Aureliano, Manuel; Gutiérrez-Merino, Carlos


    Besides the well-known inotropic effects of vanadium in cardiac muscle, previous studies have shown that vanadate can stimulate cell growth or induce cell death. In this work, we studied the toxicity to neonatal rat ventricular myocytes (cardiomyocytes) of two vanadate solutions containing different oligovanadates distribution, decavanadate (containing decameric vanadate, V 10) and metavanadate (containing monomeric vanadate and also di-, tetra-, and pentavanadate). Incubation for 24 h with decavanadate or metavanadate induced necrotic cell death of cardiomyocytes, without significant caspase-3 activation. Only 10 microM total vanadium of either decavanadate (1 microM V 10) or metavanadate (10 microM total vanadium) was needed to produce 50% loss of cell viability after 24 h (assessed with MTT and propidium iodide assays). Atomic absorption spectroscopy showed that vanadium accumulation in cardiomyocytes after 24 h was the same when incubation was done with decavanadate or metavanadate. A decrease of 75% of the rate of mitochondrial superoxide anion generation, monitored with dihydroethidium, and a sustained rise of cytosolic calcium (monitored with Fura-2-loaded cardiomyocytes) was observed after 24 h of incubation of cardiomyocytes with decavanadate or metavanadate concentrations close to those inducing 50% loss of cell viability produced. In addition, mitochondrial membrane depolarization within cardiomyocytes, monitored with tetramethylrhodamine ethyl esther or with 3,3',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide, were observed after only 6 h of incubation with decavanadate or metavanadate. The concentration needed for 50% mitochondrial depolarization was 6.5 +/- 1 microM total vanadium for both decavanadate (0.65 microM V 10) and metavanadate. In conclusion, mitochondrial membrane depolarization was an early event in decavanadate- and monovanadate-induced necrotic cell death of cardiomyocytes.

  3. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. (United States)

    Lyu, Linmao; Wang, Hui; Li, Bin; Qin, Qingyun; Qi, Lei; Nagarkatti, Mitzi; Nagarkatti, Prakash; Janicki, Joseph S; Wang, Xing Li; Cui, Taixing


    Chronic activation of the myocardial renin angiotensin system (RAS) elevates the local level of angiotensin II (Ang II) thereby inducing pathological cardiac hypertrophy, which contributes to heart failure. However, the precise underlying mechanisms have not been fully delineated. Herein we report a novel paracrine mechanism between cardiac fibroblasts (CF)s and cardiomyocytes whereby Ang II induces pathological cardiac hypertrophy. In cultured CFs, Ang II treatment enhanced exosome release via the activation of Ang II receptor types 1 (AT1R) and 2 (AT2R), whereas lipopolysaccharide, insulin, endothelin (ET)-1, transforming growth factor beta (TGFβ)1 or hydrogen peroxide did not. The CF-derived exosomes upregulated the expression of renin, angiotensinogen, AT1R, and AT2R, downregulated angiotensin-converting enzyme 2, and enhanced Ang II production in cultured cardiomyocytes. In addition, the CF exosome-induced cardiomyocyte hypertrophy was blocked by both AT1R and AT2R antagonists. Exosome inhibitors, GW4869 and dimethyl amiloride (DMA), inhibited CF-induced cardiomyocyte hypertrophy with little effect on Ang II-induced cardiomyocyte hypertrophy. Mechanistically, CF exosomes upregulated RAS in cardiomyocytes via the activation of mitogen-activated protein kinases (MAPKs) and Akt. Finally, Ang II-induced exosome release from cardiac fibroblasts and pathological cardiac hypertrophy were dramatically inhibited by GW4869 and DMA in mice. These findings demonstrate that Ang II stimulates CFs to release exosomes, which in turn increase Ang II production and its receptor expression in cardiomyocytes, thereby intensifying Ang II-induced pathological cardiac hypertrophy. Accordingly, specific targeting of Ang II-induced exosome release from CFs may serve as a novel therapeutic approach to treat cardiac pathological hypertrophy and heart failure.

  4. Safflor yellow A protects neonatal rat cardiomyocytes against anoxia/reoxygenation injury in vitro

    Institute of Scientific and Technical Information of China (English)

    Jia-lin DUAN; Jing-wen WANG; Yue GUAN; Ying YIN; Guo WEI; Jia CUI; Dan ZHOU


    Aim:To investigate the effects of safflor yellow A (SYA),a flavonoid extracted from Carthamus tinctorius L,on cultured rat cardiomyocytes exposed to anoxia/reoxygenation (A/R).Methods:Primary cultured neonatal rat cardiomyocytes were exposed to anoxia for 3 h followed by reoxygenation for 6 h.The cell viability was measured using MTT assay.The releases of lactate dehydrogenase (LDH) and creatine kinase (CK),level of malondialdehyde (MDA),and activities of glutathione (GSH),superoxide dismutase (SOD),catalase (CAT) and glutathione peroxidase (GSH-Px) were analyzed.Hoechst 33258 staining and changes in Bcl-2/Bax ratio and caspase 3 activity were used to examine A/R-induced apoptosis.Results:The A/R exposure markedly decreased the viability of cardiomyocytes,suppressed the activities of SOD,GSH,CAT and GSH-Px,and Bcl-2 protein expression.Meanwhile,the A/R exposure markedly increased the release of LDH and CK,and MDA production in the cardiomyocytes,and increased the rate of apoptosis,caspase 3 activity,Bax protein expression.Pretreatment with SYA (40,60 and 80 nmol/L) concentration-dependently blocked the A/R-induced changes in the cardiomyocytes.Pretreatment of the cardiomyocytes with the antioxidant N-acetylcysteine (NAC,200 μmol/L) produced protective effects that were comparable to those caused by SYA (80nmol/L).Conclusion:SYA protects cultured rat cardiomyocytes against A/R injury,maybe via inhibiting cellular oxidative stress and apoptosis.

  5. Unique metabolic features of stem cells, cardiomyocytes, and their progenitors. (United States)

    Gaspar, John Antonydas; Doss, Michael Xavier; Hengstler, Jan Georg; Cadenas, Cristina; Hescheler, Jürgen; Sachinidis, Agapios


    Recently, growing attention has been directed toward stem cell metabolism, with the key observation that the plasticity of stem cells also reflects the plasticity of their energy substrate metabolism. There seems to be a clear link between the self-renewal state of stem cells, in which cells proliferate without differentiation, and the activity of specific metabolic pathways. Differentiation is accompanied by a shift from anaerobic glycolysis to mitochondrial respiration. This metabolic switch of differentiating stem cells is required to cover the energy demands of the different organ-specific cell types. Among other metabolic signatures, amino acid and carbohydrate metabolism is most prominent in undifferentiated embryonic stem cells, whereas the fatty acid metabolic signature is unique in cardiomyocytes derived from embryonic stem cells. Identifying the specific metabolic pathways involved in pluripotency and differentiation is critical for further progress in the field of developmental biology and regenerative medicine. The recently generated knowledge on metabolic key processes may help to generate mature stem cell-derived somatic cells for therapeutic applications without the requirement of genetic manipulation. In the present review, the literature about metabolic features of stem cells and their cardiovascular cell derivatives as well as the specific metabolic gene signatures differentiating between stem and differentiated cells are summarized and discussed.

  6. Research on the improvement of nuclear safety - Development of a technique for simultaneous measurement of particle size and velocity for direct containment heating accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yong; Song, Si Hong; Koh, Kwang Woong; Kim, Joo Yeon; Kim, Jong Moon; Choi, Chul Jin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)


    The main objective is to develop a high performance software routine to process the output signals from the phase/Doppler device for simultaneous measurement of drop sizes and two-dimensional velocities of spray drops/particles. The present work has been carried out as an extension work of the first year`s research, where the principles and the limitation of this measuring technique have been thoroughly reviewed. In order to verify the performance and reliability of this software for simultaneous measurement of sizes and velocities of spray drops with two-dimensional motions, the results were compared with those from commercial signal processor DSA by Aerometrics, and concluded to be satisfactory. The routine developed throughout this project is applicable not only to the DCH model experiments but also to the measurements of sizes and velocities of drops/particles in combustors, dryers, humidifiers, and in various two-phase equipments. 20 refs., 5 tabs., 21 figs. (author)

  7. Objective malignancy grading of squamous cell carcinoma of the lung. Stereologic estimates of mean nuclear size are of prognostic value, independent of clinical stage of disease

    DEFF Research Database (Denmark)

    Ladekarl, M; Bæk-Hansen, T; Henrik-Nielsen, R


    BACKGROUND: The prognostic value of quantitative histopathologic parameters was evaluated in 55 consecutively treated patients with operable lung carcinoma of squamous (N = 39) and mixed, adenosquamous (N = 16) cell type. Patients alive were followed for at least 12 years. METHODS: Using a projec......BACKGROUND: The prognostic value of quantitative histopathologic parameters was evaluated in 55 consecutively treated patients with operable lung carcinoma of squamous (N = 39) and mixed, adenosquamous (N = 16) cell type. Patients alive were followed for at least 12 years. METHODS: Using...... of nuclei to tissue, and the number of mitotic profiles per 10(3) nuclear profiles. For each patient, information was recorded regarding sex, age at diagnosis, and clinical stage of disease. RESULTS: Single-factor analyses showed that a favorable prognosis was associated with early clinical stages (Stages I...... volume were found to be parameters of significant, independent prognostic value. CONCLUSIONS: The present feasibility study indicates that estimates of the mean nuclear volume are of prognostic value, independent of the clinical stage of disease. This quantitative histopathologic variable is highly...

  8. HMGB1 mediates hyperglycaemia-induced cardiomyocyte apoptosis via ERK/Ets-1 signalling pathway. (United States)

    Wang, Wen-Ke; Lu, Qing-Hua; Zhang, Jia-Ning; Wang, Ben; Liu, Xiang-Juan; An, Feng-Shuang; Qin, Wei-Dong; Chen, Xue-Ying; Dong, Wen-Qian; Zhang, Cheng; Zhang, Yun; Zhang, Ming-Xiang


    Apoptosis is a key event involved in diabetic cardiomyopathy. The expression of high mobility group box 1 protein (HMGB1) is up-regulated in diabetic mice. However, the molecular mechanism of high glucose (HG)-induced cardiomyocyte apoptosis remains obscure. We aimed to determine the role of HMGB1 in HG-induced apoptosis of cardiomyocytes. Treating neonatal primary cardiomyocytes with HG increased cell apoptosis, which was accompanied by elevated levels of HMGB1. Inhibition of HMGB1 by short-hairpin RNA significantly decreased HG-induced cell apoptosis by reducing caspase-3 activation and ratio of Bcl2-associated X protein to B-cell lymphoma/leukemia-2 (bax/bcl-2). Furthermore, HG activated E26 transformation-specific sequence-1 (Ets-1), and HMGB1 inhibition attenuated HG-induced activation of Ets-1 via extracellular signal-regulated kinase 1/2 (ERK1/2) signalling. In addition, inhibition of Ets-1 significantly decreased HG-induced cardiomyocyte apoptosis. Similar results were observed in streptozotocin-treated diabetic mice. Inhibition of HMGB1 by short-hairpin RNA markedly decreased myocardial cell apoptosis and activation of ERK and Ets-1 in diabetic mice. In conclusion, inhibition of HMGB1 may protect against hyperglycaemia-induced cardiomyocyte apoptosis by down-regulating ERK-dependent activation of Ets-1.

  9. Simvastatin inhibits leptin-induced hypertrophy in cultured neonatal rat cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Tai-ping HU; Fang-ping XU; Yuan-jian LI; Jian-dong LUO


    Aim:To test the hypothesis that statins inhibit leptin-induced hypertrophy in cultured neonatal rat cardiomyocytes.Methods:Cultured neonatal rat cardiomyocytes were used to evaluate the effects of simvastatin on leptininduced hypertrophy.Intracellular reactive oxygen species (ROS) levels were determined by using 2',7'-dichlorofluorescein diacetate (DCF-DA) fluorescence.Total intracellular RNA and cell protein content,which serve as cell proliferative markers,were assayed by using propidium iodide (PI) fluorescence and the Bio-Rad DC protein assay.respectively.The cell surface area,an indicator of cell hypertrophy,was quantified by using Leica image analysis software.Results:After 72 h treatment,1eptin markedly increased RNA 1evels,cell surface area,and total cell protein levels in cardiomyocytes,which were significantly inhibited by simvastatin or catalase treatment.ROS levels were significantly elevated in cardiomyocytes treated with leptin for 4 h compared with those cells without leptin treatment.The increase in ROS levels in cardiomyocytes induced by leptin was reversed by treatment with simvastatin and catalase.Conclusion:Simvastatin inhibits leptin-induced ROS-mediated hyperophy in cultured neonatal rat cardiac myocytes.Statin therapy may provide an effective means of improving cardiac dysfunction in obese humans.

  10. MEF2C mediates the effect of microRNA-214 on inhibiting cardiomyocyte hypertrophy

    Institute of Scientific and Technical Information of China (English)

    TANG Chun-mei; ZHU Jie-ning; ZHU Wen-si; LIN Qiu-xiong; HU Zhi-qin; FU Yong-heng; ZHANG Meng-zhen; SHAN Zhi-xin


    AIM:To investigate the effect of miR-214 on cardiomyocyte hypertrophy and the expression of the potential target genes . METHODS:A cell model of hypertrophy was established based on angiotensin-Ⅱ( Ang-Ⅱ)-induced neonatal mouse ventricular car-diomyocytes (NMVCs).Dual luciferase reporter assay was performed to verify the interaction between miR-214 and the 3’ UTR of MEF2C.The expression of MEF2C and hypertrophy-related genes at mRNA and protein levels was determined by RT-qPCR and Wes-tern blotting, respectively.RESULTS:The expression of ANP, ACTA1,β-MHC and miR-214 was markedly increased in Ang-Ⅱ-in-duced hypertrophic cardiomyocytes .Dual luciferase reporter assay revealed that miR-214 interacted with the 3’ UTR of MEF2C, and miR-214 was verified to inhibit MEF2C expression at the transcriptional level .The protein expression of MEF2C was markedly in-creased in the hypertrophic cardiomyocytes .Moreover, miR-214 mimic, in parallel to MEF2C siRNA, inhibited the expression of hy-pertrophy-related genes in Ang-Ⅱ-induced NMVCs.CONCLUSION:MEF2C is a target gene of miR-214, which mediates the effect of miR-214 on attenuating cardiomyocyte hypertrophy .

  11. Caffeine induces cardiomyocyte hypertrophy via p300 and CaMKII pathways. (United States)

    Shi, Liang; Xu, Hao; Wei, Jinhong; Ma, Xingfeng; Zhang, Jianbao


    Caffeine is commonly utilized to trigger intracellular calcium in cardiomyocyte. It is well accepted that caffeine could induce cardiac arrhythmia, but it is not clear with regard of its impacts on the cardiac function. This article presents a recent study concerning the effects of caffeine on the cardiomyocyte hypertrophy and the associated signal pathway. The experimental results showed that the total protein contents, the surface area of cardiomyocyte and β-myosin heavy chain (β-MHC) expression increased in ventricular myocytes of neonatal Sprague-Dawley (SD) rats after 24h caffeine incubation. It is also observed that the basal intracellular calcium (Ca(2+)) level has increased, while the amplitude of Ca(2+) oscillation and Ca(2+) content have decreased in sarcoplasmic reticulum (SR). The caffeine-induced myocyte enhancer factor-2 (MEF2) expression and hypertrophy can be completely abolished by the inhibition of cardiac ryanodine receptor (RyR2), as well as KN93 and curcumin treatments. Meanwhile, the amplitude of Ca(2+) oscillation and the Ca(2+) content of SR in the completely-inhibited group have reached the physiological level. These results suggest that the caffeine-induced cardiomyocyte hypertrophy established the connection between Ca(2+) release from SR and cytosol that activates CaMKII and p300, which in turn enhances the expression of MEF2 that promotes cardiomyocyte hypertrophy.

  12. Early Administration of Glutamine Protects Cardiomyocytes from Post-Cardiac Arrest Acidosis

    Directory of Open Access Journals (Sweden)

    Yan-Ren Lin


    Full Text Available Postcardiac arrest acidosis can decrease survival. Effective medications without adverse side effects are still not well characterized. We aimed to analyze whether early administration of glutamine could improve survival and protect cardiomyocytes from postcardiac arrest acidosis using animal and cell models. Forty Wistar rats with postcardiac arrest acidosis (blood pH < 7.2 were included. They were divided into study (500 mg/kg L-alanyl-L-glutamine, n=20 and control (normal saline, n=20 groups. Each of the rats received resuscitation. The outcomes were compared between the two groups. In addition, cardiomyocytes derived from human induced pluripotent stem cells were exposed to HBSS with different pH levels (7.3 or 6.5 or to culture medium (control. Apoptosis-related markers and beating function were analyzed. We found that the duration of survival was significantly longer in the study group (p<0.05. In addition, in pH 6.5 or pH 7.3 HBSS buffer, the expression levels of cell stress (p53 and apoptosis (caspase-3, Bcl-xL markers were significantly lower in cardiomyocytes treated with 50 mM L-glutamine than those without L-glutamine (RT-PCR. L-glutamine also increased the beating function of cardiomyocytes, especially at the lower pH level (6.5. More importantly, glutamine decreased cardiomyocyte apoptosis and increased these cells’ beating function at a low pH level.

  13. Autoantibody against Cardiac β1-Adrenoceptor Induces Apoptosis in Cultured Neonatal Rat Cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Yan GAO; Hui-Rong LIU; Rong-Rui ZHAO; Jian-Ming ZHI


    To clarify whether apoptosis is involved in the injury processes induced by autoantibody against cardiac β1-adrenoceptor, we investigated the biological and apoptotic effects of antibodies on cultured neonatal rat cardiomyocytes. Wistar rats were immunized with peptides corresponding to the second extracellular loop of the β1-adrenoceptor to induce the production of anti-β1-adrenoceptor antibodies in the sera.Immunoglobulin (Ig) G in the sera was detected using synthetic antigen enzyme-linked immunosorbent assay and purified using the diethylaminoethyl cellulose ion exchange technique. Apoptosis of cardiomyocytes was evaluated using agarose gel electrophoresis and flow cytometry. Our results showed that the positive serum IgG greatly increased the beating rates of cardiomyocytes and showed an "agonist-like" activity. Furthermore, positive serum IgG induced cardiomyocyte apoptosis after treatment with β1adrenoceptor overstimulation for 48 h. The effects of monoclonal antibody against β1-adrenoceptor were also found to be similar to those of positive serum IgG. It was suggested that the autoantibody could induce cardiomyocyte apoptosis by excessive stimulation of β1-adrenoceptor.

  14. Excitation-contraction coupling of human induced pluripotent stem cell-derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Christopher eKane


    Full Text Available Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs hold enormous potential in many fields of cardiovascular research. Overcoming many of the limitations of their embryonic counterparts, the application of iPSC-CMs ranges from facilitating investigation of familial cardiac disease and pharmacological toxicity screening to personalized medicine and autologous cardiac cell therapies. The main factor preventing the full realization of this potential is the limited maturity of iPSC-CMs, which display a number of substantial differences in comparison to adult cardiomyocytes. Excitation-contraction coupling, a fundamental property of cardiomyocytes, is often described in iPSC-CMs as being more analogous to neonatal than adult cardiomyocytes. With calcium handling linked, directly or indirectly, to almost all other properties of cardiomyocytes, a solid understanding of this process will be crucial to fully realizing the potential of this technology.Here we discuss the implications of differences in excitation-contraction coupling when considering the potential applications of iPSC-CMs in a number of areas as well as detailing the current understanding of this fundamental process in these cells.

  15. Role of inositol 1,4,5-trisphosphate receptors in α1-adrenergic receptor-induced cardiomyocyte hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Da-li LUO; Jian GAO; Xiao-mei LAN; Gang WANG; Sheng WEI; Rui-ping XIAO; Qi-de HAN


    Aim: Intracellular Ca2+ plays pivotal roles in diverse cellular functions, including gene transcription that underlies cardiac remodeling during stress responses. However, the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) in the mediation of cardiac intracellular Ca2+ and hypertrophic growth remains elusive. Prior work with neonatal rat ventricular myocytes suggests that activation of IP3Rs may be linked to α1 adrenergic receptor (α1AR) increased stereotyped Ca2+ spark occurrence and global Ca2+ oscillations. Thus, we hypothesized that Ca2+ release through IP3Rs was necessary for α1AR-stimulated cardiac hypertrophy. Methods: We used myoinositol 1,4,5-trisphosphate hexakis (butyryloxymethyl) ester (IP3BM), a membrane-permeant ester of IP3, to activate IP3Rs directly, and Fluo 4/AM to measure intracellular Ca2+ signaling. Results: IP3BM (10μmol·L-1) mimicked the effects of phenylephrine, a selective agonist of α1AR, in increments in local Ca2+ spark release (especially in the perinuclear area) and global Ca2+ transient frequencies. More importantly, IP3R inhibitors, 2-aminoethoxydiphenyl borate and Xestospongin C, abolished the IP3BM-induced Ca2+ responses, and significantly suppressed α1AR-induced cardiomyocyte hypertrophy assayed by cell size, [3H] leucine incorporation and atrial natriuretic factor gene expression, during sustained (48 h) phenylephrine stimulation. Conclusion: These results, therefore, provide cellular mechanisms that link IP3R signaling to α1AR-stimulated gene expression and cardiomyocyte hypertrophy.

  16. Determination of the human cardiomyocyte mRNA and miRNA differentiation network by fine-scale profiling. (United States)

    Babiarz, Joshua E; Ravon, Morgane; Sridhar, Sriram; Ravindran, Palanikumar; Swanson, Brad; Bitter, Hans; Weiser, Thomas; Chiao, Eric; Certa, Ulrich; Kolaja, Kyle L


    To gain insight into the molecular regulation of human heart development, a detailed comparison of the mRNA and miRNA transcriptomes across differentiating human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and biopsies from fetal, adult, and hypertensive human hearts was performed. Gene ontology analysis of the mRNA expression levels of the hiPSCs differentiating into cardiomyocytes revealed 3 distinct groups of genes: pluripotent specific, transitional cardiac specification, and mature cardiomyocyte specific. Hierarchical clustering of the mRNA data revealed that the transcriptome of hiPSC cardiomyocytes largely stabilizes 20 days after initiation of differentiation. Nevertheless, analysis of cells continuously cultured for 120 days indicated that the cardiomyocytes continued to mature toward a more adult-like gene expression pattern. Analysis of cardiomyocyte-specific miRNAs (miR-1, miR-133a/b, and miR-208a/b) revealed an miRNA pattern indicative of stem cell to cardiomyocyte specification. A biostatistitical approach integrated the miRNA and mRNA expression profiles revealing a cardiomyocyte differentiation miRNA network and identified putative mRNAs targeted by multiple miRNAs. Together, these data reveal the miRNA network in human heart development and support the notion that overlapping miRNA networks re-enforce transcriptional control during developmental specification.

  17. The characteristics of action potential and nonselec-tive cation current of cardiomyocytes in rabbit superior vena cava

    Institute of Scientific and Technical Information of China (English)


    As a special focus in initiating and maintaining atrial fibrillation (AF), cardiomyocytes in superior vena cava (SVC) have distinctive electrophysiological characters. In this study, we found that comparing with the right atrial (RA) cardiomyoctyes, the SVC cardiomyoctyes had longer APD90 at the different basic cycle lengths; the conduction block could be observed on both RA and SVC cardiomyoctyes. A few of SVC cardiomyoctyes showed slow response action potentials with automatic activity and some others showed early afterdepolarization (EAD) spontaneously. Further more, we found that there are nonselective cation current (INs) in both SVC and RA cardiomyocytes. The peak density of INs in SVC cardiomyocytes was smaller than that in RA cardiomyocytes. Removal of extracellular divalent cation and glucose could increase INs in SVC cardiomyocytes. The agonist or the antagonist of INs may in-crease or decrease APD. To sum up, some SVC cardiomyocytes possess the ability of spontaneous activity; the difference of transmembrane action potentials between SVC and RA cardiomyocytes is partly because of the different density of INs between them; the agonist or the antagonist of INs can in-crease or decrease APD leading to the enhancement or reduction of EAD genesis in SVC cardiomyo-cytes. INs in rabbit myocytes is fairly similar to TRPC3 current in electrophysiological property, which might play an important role in the mechanisms of AF.

  18. Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes

    NARCIS (Netherlands)

    Kijlstra, Jan David; Hu, Dongjian; Mittal, Nikhil; Kausel, Eduardo; van der Meer, Peter; Garakani, Arman; Domian, Ibrahim J.


    The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) th

  19. Clinical Potentials of Cardiomyocytes Derived from Patient-Specific Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Kwong-Man Ng


    Full Text Available The lack of appropriate human cardiomyocyte-based experimental platform has largely hindered the study of cardiac diseases and the development of therapeutic strategies. To date, somatic cells isolated from human subjects can be reprogramed into induced pluripotent stem cells (iPSCs and subsequently differentiated into functional cardiomyocytes. This powerful reprogramming technology provides a novel in vitro human cell-based platform for the study of human hereditary cardiac disorders. The clinical potential of using iPSCs derived from patients with inherited cardiac disorders for therapeutic studies have been increasingly highlighted. In this review, the standard procedures for generating patient-specific iPSCs and the latest commonly used cardiac differentiation protocols will be outlined. Furthermore, the progress and limitations of current applications of iPSCs and iPSCs-derived cardiomyocytes in cell replacement therapy, disease modeling, drug-testing and toxicology studies will be discussed in detail.

  20. Herpesvirus-Mediated Delivery of a Genetically Encoded Fluorescent Ca2+ Sensor to Canine Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    János Prorok


    Full Text Available We report the development and application of a pseudorabies virus-based system for delivery of troponeon, a fluorescent Ca2+ sensor to adult canine cardiomyocytes. The efficacy of transduction was assessed by calculating the ratio of fluorescently labelled and nonlabelled cells in cell culture. Interaction of the virus vector with electrophysiological properties of cardiomyocytes was evaluated by the analysis of transient outward current (Ito, kinetics of the intracellular Ca2+ transients, and cell shortening. Functionality of transferred troponeon was verified by FRET analysis. We demonstrated that the transfer efficiency of troponeon to cultured adult cardiac myocytes was virtually 100%. We showed that even after four days neither the amplitude nor the kinetics of the Ito current was significantly changed and no major shifts occurred in parameters of [Ca2+]i transients. Furthermore, we demonstrated that infection of cardiomyocytes with the virus did not affect the morphology, viability, and physiological attributes of cells.

  1. Dataset of integrin-linked kinase protein: Protein interactions in cardiomyocytes identified by mass spectrometry

    Directory of Open Access Journals (Sweden)

    Alexandra Traister


    Full Text Available Using hearts from mice overexpressing integrin linked kinase (ILK behind the cardiac specific promoter αMHC, we have performed immunoprecipitation and mass spectrometry to identify novel ILK protein:protein interactions that regulate cardiomyocyte activity and calcium flux. Integrin linked kinase complexes were captured from mouse heart lysates using a commercial antibody, with subsequent liquid chromatography tandem mass spectral analysis. Interacting partners were identified using the MASCOT server, and important interactions verified using reverse immunoprecipitation and mass spectrometry. All ILK interacting proteins were identified in a non-biased manner, and are stored in the ProteomeXchange Consortium via the PRIDE partner repository (reference ID PRIDE: The functional role of identified ILK interactions in cardiomyocyte function and arrhythmia were subsequently confirmed in human iPSC-cardiomyocytes.

  2. Prostaglandin E₂ promotes post-infarction cardiomyocyte replenishment by endogenous stem cells. (United States)

    Hsueh, Ying-Chang; Wu, Jasmine M F; Yu, Chun-Keung; Wu, Kenneth K; Hsieh, Patrick C H


    Although self-renewal ability of adult mammalian heart has been reported, few pharmacological treatments are known to promote cardiomyocyte regeneration after injury. In this study, we demonstrate that the critical period of stem/progenitor cell-mediated cardiomyocyte replenishment is initiated within 7 days and saturates on day 10 post-infarction. Moreover, blocking the inflammatory reaction with COX-2 inhibitors may also reduce the capability of endogenous stem/progenitor cells to repopulate lost cells. Injection of the COX-2 product PGE2 enhances cardiomyocyte replenishment in young mice and recovers cell renewal through attenuating TGF-β1 signaling in aged mice. Further analyses suggest that cardiac stem cells are PGE2-responsive and that PGE2 may regulate stem cell activity directly through the EP2 receptor or indirectly by modulating its micro-environment in vivo. Our findings provide evidence that PGE2 holds great potential for cardiac regeneration.

  3. Hsp60 and p70S6K form a complex in human cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Kroupskaya I. V.


    Full Text Available Molecular chaperon Hsp60 and protein kinase p70S6K play an important functional role in the regulation of cardiomyocytes vital function or apoptosis. Aim. To study a possibility of in vivo complex formation between Hsp60 and p70S6K in cardiomyocytes. Methods. Co-immunoprecipitation, Western-blot analysis. Results. We have identified in vivo interaction between molecular chaperone Hsp60 and two isoforms of proteinkinase p70S6K in human myocardium, normal and affected by cardiomyopathy. Conclusions. The results obtained suggest a possible participation of molecular chaperon Hsp60 in regulation of p70S6K activity in stressinduced apoptotic signaling pathway in cardiomyocytes.

  4. Protection of Astragaloside Derivate on Oxidative Stress and Hypertrophy in Cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    HAO Chun-hua; WANG Wei-ting; ZHAO Zhuan-you; TANG Li-da


    Objective The astragaloside Ⅳ(ASI)has been proved to play an important role in protecting against cell death on cardiovascular diseases.This study aims to investigate the effect of the astragaloside derivate.(ASId)on confronting oxidative stress and hypertrophy in myocardial cells.Methods Following exposure embryonic rat cardiac H9c2 cells to hydrogen peroxide(H2O2)and angiotensin Ⅱ for developing oxidative stress and hypertrophy,ASId at final concentrations(0.1,1,and 10 μmol/L)was added to study its role in protecting cardiomyocytes by biochemical detection and cell size measurement In addition,the mitochondrial permeability transition pore(mPTP)opener atractyloside(20 μmol/L)and inhibitor cyclosporin A(CSA)(1 μmol/L)were employed to investigate the possible mechanisms for anti-oxidation.Results ASId at 1 and 10 μmol/L in cultures suppressed oxidative stress at different degrees,which induced the decrease in LDH activity and MDA content,and also the increase in SOD activity in comparable with the model group; The mPTP opener atractyloside and inhibitor CSA weakened and strengthened the role of ASId,respectively.ASId at 10 μmol/L inhibited cell hypertrophy,and the cell diameter,surface area,and protein content were all decreased in comparable of those cells in model group.Conclusion ASId is involved in the cytoprotective effects on oxidative stress through a pathway mediated by mPTP,and also has a protective effect against hypertrophy.

  5. RAGE modulates hypoxia/reoxygenation injury in adult murine cardiomyocytes via JNK and GSK-3beta signaling pathways.

    Directory of Open Access Journals (Sweden)

    Linshan Shang

    Full Text Available BACKGROUND: Advanced glycation end-products (AGEs have been implicated in diverse pathological settings including diabetes, inflammation and acute ischemia/reperfusion injury in the heart. AGEs interact with the receptor for AGEs (RAGE and transduce signals through activation of MAPKs and proapoptotic pathways. In the current study, adult cardiomyocytes were studied in an in vitro ischemia/reperfusion (I/R injury model to delineate the molecular mechanisms underlying RAGE-mediated injury due to hypoxia/reoxygenation (H/R. METHODOLOGY/PRINCIPAL FINDINGS: Cardiomyocytes isolated from adult wild-type (WT, homozygous RAGE-null (RKO, and WT mice treated with soluble RAGE (sRAGE were subjected to hypoxia for 30 minutes alone or followed by reoxygenation for 1 hour. In specific experiments, RAGE ligand carboxymethyllysine (CML-AGE (termed "CML" in this manuscript was evaluated in vitro. LDH, a marker of cellular injury, was assayed in the supernatant in the presence or absence of signaling inhibitor-treated cardiomyocytes. Cardiomyocyte levels of heterogeneous AGEs were measured using ELISA. A pronounced increase in RAGE expression along with AGEs was observed in H/R vs. normoxia in WT cardiomyocytes. WT cardiomyocytes after H/R displayed increased LDH release compared to RKO or sRAGE-treated cardiomyocytes. Our results revealed significant increases in phospho-JNK in WT cardiomyocytes after H/R. In contrast, neither RKO nor sRAGE-treated cardiomyocytes exhibited increased phosphorylation of JNK after H/R stress. The impact of RAGE deletion on GSK-3beta phosphorylation in the cardiomyocytes subjected to H/R revealed significantly higher levels of phospho-GSK-3beta/total GSK-3beta in RKO, as well as in sRAGE-treated cardiomyocytes versus WT cardiomyocytes after H/R. Further investigation established a key role for Akt, which functions upstream of GSK-3beta, in modulating H/R injury in adult cardiomyocytes. CONCLUSIONS/SIGNIFICANCE: These data illustrate

  6. Fructose modulates cardiomyocyte excitation-contraction coupling and Ca²⁺ handling in vitro.

    Directory of Open Access Journals (Sweden)

    Kimberley M Mellor

    Full Text Available BACKGROUND: High dietary fructose has structural and metabolic cardiac impact, but the potential for fructose to exert direct myocardial action is uncertain. Cardiomyocyte functional responsiveness to fructose, and capacity to transport fructose has not been previously demonstrated. OBJECTIVE: The aim of the present study was to seek evidence of fructose-induced modulation of cardiomyocyte excitation-contraction coupling in an acute, in vitro setting. METHODS AND RESULTS: The functional effects of fructose on isolated adult rat cardiomyocyte contractility and Ca²⁺ handling were evaluated under physiological conditions (37°C, 2 mM Ca²⁺, HEPES buffer, 4 Hz stimulation using video edge detection and microfluorimetry (Fura2 methods. Compared with control glucose (11 mM superfusate, 2-deoxyglucose (2 DG, 11 mM substitution prolonged both the contraction and relaxation phases of the twitch (by 16 and 36% respectively, p<0.05 and this effect was completely abrogated with fructose supplementation (11 mM. Similarly, fructose prevented the Ca²⁺ transient delay induced by exposure to 2 DG (time to peak Ca²⁺ transient: 2 DG: 29.0±2.1 ms vs. glucose: 23.6±1.1 ms vs. fructose +2 DG: 23.7±1.0 ms; p<0.05. The presence of the fructose transporter, GLUT5 (Slc2a5 was demonstrated in ventricular cardiomyocytes using real time RT-PCR and this was confirmed by conventional RT-PCR. CONCLUSION: This is the first demonstration of an acute influence of fructose on cardiomyocyte excitation-contraction coupling. The findings indicate cardiomyocyte capacity to transport and functionally utilize exogenously supplied fructose. This study provides the impetus for future research directed towards characterizing myocardial fructose metabolism and understanding how long term high fructose intake may contribute to modulating cardiac function.

  7. Iron overload and apoptosis of HL-1 cardiomyocytes: effects of calcium channel blockade.

    Directory of Open Access Journals (Sweden)

    Mei-pian Chen

    Full Text Available Iron overload cardiomyopathy that prevails in some forms of hemosiderosis is caused by excessive deposition of iron into the heart tissue and ensuing damage caused by a raise in labile cell iron. The underlying mechanisms of iron uptake into cardiomyocytes in iron overload condition are still under investigation. Both L-type calcium channels (LTCC and T-type calcium channels (TTCC have been proposed to be the main portals of non-transferrinic iron into heart cells, but controversies remain. Here, we investigated the roles of LTCC and TTCC as mediators of cardiac iron overload and cellular damage by using specific Calcium channel blockers as potential suppressors of labile Fe(II and Fe(III ingress in cultured cardiomyocytes and ensuing apoptosis.Fe(II and Fe(III uptake was assessed by exposing HL-1 cardiomyocytes to iron sources and quantitative real-time fluorescence imaging of cytosolic labile iron with the fluorescent iron sensor calcein while iron-induced apoptosis was quantitatively measured by flow cytometry analysis with Annexin V. The role of calcium channels as routes of iron uptake was assessed by cell pretreatment with specific blockers of LTCC and TTCC.Iron entered HL-1 cardiomyocytes in a time- and dose-dependent manner and induced cardiac apoptosis via mitochondria-mediated caspase-3 dependent pathways. Blockade of LTCC but not of TTCC demonstrably inhibited the uptake of ferric but not of ferrous iron. However, neither channel blocker conferred cardiomyocytes with protection from iron-induced apoptosis.Our study implicates LTCC as major mediators of Fe(III uptake into cardiomyocytes exposed to ferric salts but not necessarily as contributors to ensuing apoptosis. Thus, to the extent that apoptosis can be considered a biological indicator of damage, the etiopathology of cardiosiderotic damage that accompanies some forms of hemosiderosis would seem to be unrelated to LTCC or TTCC, but rather to other routes of iron ingress present in

  8. Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating. (United States)

    Liu, Yaowen; Lu, Jinfu; Xu, Guisen; Wei, Jiaojun; Zhang, Zhibin; Li, Xiaohong


    The key to addressing the challenges facing cardiac tissue engineering is the integration of physical, chemical, and electrical cues into scaffolds. Aligned and conductive scaffolds have been fabricated as synthetic microenvironments to improve the function of cardiomyocytes. However, up to now, the influence of conductive capability and inner structure of fibrous scaffolds have not been determined on the cardiomyocyte morphologies and beating patterns. In the current study, highly aligned fibers were fabricated with loaded up to 6% of carbon nanotubes (CNTs) to modulate the electrical conductivity, while blend and coaxial electrospinning were utilized to create a bulk distribution of CNTs in fiber matrices and a spatial embedment in fiber cores, respectively. Conductive networks were formed in the fibrous scaffolds after the inoculation of over 3% CNTs, and the increase in the conductivity could maintain the cell viabilities, induce the cell elongation, enhance the production of sarcomeric α-actinin and troponin I, and promote the synchronous beating of cardiomyocytes. Although the conductivity of blend fibers is slightly higher than that of coaxial fibers with the same CNT loadings, the lower exposures to CNTs resulted in higher cell viability, elongation, extracellular matrix secretion and beating rates for cardiomyocytes on coaxial fibers. Taken altogether, core-sheath fibers with loaded 5% of CNTs in the fiber cores facilitated the cardiomyocyte growth with a production of organized contractile proteins and a pulsation frequency close to that of the atrium. It is suggested that electrospun scaffolds that couple conductivity and fibrous structure considerations may provide optimal stimuli to foster cell morphology and functions for myocardial regeneration or establishment of in vitro cardiomyocyte culture platform for drug screening.

  9. Effect of thermal acclimation on action potentials and sarcolemmal K+ channels from Pacific bluefin tuna cardiomyocytes. (United States)

    Galli, G L J; Lipnick, M S; Block, B A


    To sustain cardiac muscle contractility relatively independent of temperature, some fish species are capable of temporarily altering excitation-contraction coupling processes to meet the demands of their environment. The Pacific bluefin tuna, Thunnus orientalis, is a partially endothermic fish that inhabits a wide range of thermal niches. The present study examined the effects of temperature and thermal acclimation on sarcolemmal K(+) currents and their role in action potential (AP) generation in bluefin tuna cardiomyocytes. Atrial and ventricular myocytes were enzymatically isolated from cold (14 degrees C)- and warm (24 degrees C)-acclimated bluefin tuna. APs and current-voltage relations of K(+) channels were measured using the whole cell current and voltage clamp techniques, respectively. Data were collected either at the cardiomyocytes' respective acclimation temperature of 14 or 24 degrees C or at a common test temperature of 19 degrees C (to reveal the effects of acclimation). AP duration (APD) was prolonged in cold-acclimated (CA) cardiomyocytes tested at 14 degrees C compared with 19 degrees C and in warm-acclimated (WA) cardiomyocytes tested at 19 degrees C compared with 24 degrees C. This effect was mirrored by a decrease in the density of the delayed-rectifier current (I(Kr)), whereas the density of the background inward-rectifier current (I(K1)) was unchanged. When CA and WA cardiomyocytes were tested at a common temperature of 19 degrees C, no significant effects of temperature acclimation on AP shape or duration were observed, whereas I(Kr) density was markedly increased in CA cardiomyocytes. I(K1) density was unaffected in CA ventricular myocytes but was significantly reduced in CA atrial myocytes, resulting in a depolarization of atrial resting membrane potential. Our results indicate the bluefin AP is relatively short compared with other teleosts, which may allow the bluefin heart to function at cold temperatures without the necessity for thermal

  10. Impact of stirred suspension bioreactor culture on the differentiation of murine embryonic stem cells into cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Shafa Mehdi


    Full Text Available Abstract Background Embryonic stem cells (ESCs can proliferate endlessly and are able to differentiate into all cell lineages that make up the adult organism. Under particular in vitro culture conditions, ESCs can be expanded and induced to differentiate into cardiomyocytes in stirred suspension bioreactors (SSBs. However, in using these systems we must be cognizant of the mechanical forces acting upon the cells. The effect of mechanical forces and shear stress on ESC pluripotency and differentiation has yet to be clarified. The purpose of this study was to investigate the impact of the suspension culture environment on ESC pluripotency during cardiomyocyte differentiation. Results Murine D3-MHC-neor ESCs formed embyroid bodies (EBs and differentiated into cardiomyocytes over 25 days in static culture and suspension bioreactors. G418 (Geneticin was used in both systems from day 10 to enrich for cardiomyocytes by eliminating non-resistant, undifferentiated cells. Treatment of EBs with 1 mM ascorbic acid and 0.5% dimethyl sulfoxide from day 3 markedly increased the number of beating EBs, which displayed spontaneous and cadenced contractile beating on day 11 in the bioreactor. Our results showed that the bioreactor differentiated cells displayed the characteristics of fully functional cardiomyocytes. Remarkably, however, our results demonstrated that the bioreactor differentiated ESCs retained their ability to express pluripotency markers, to form ESC-like colonies, and to generate teratomas upon transplantation, whereas the cells differentiated in adherent culture lost these characteristics. Conclusions This study demonstrates that although cardiomyocyte differentiation can be achieved in stirred suspension bioreactors, the addition of medium enhancers is not adequate to force complete differentiation as fluid shear forces appear to maintain a subpopulation of cells in a transient pluripotent state. The development of successful ESC

  11. Pharmacological and molecular characterization of functional P2 receptors in rat embryonic cardiomyocytes. (United States)

    Cheung, Kwok-Kuen; Marques-da-Silva, Camila; Vairo, Leandro; dos Santos, Danúbia Silva; Goldenberg, Regina; Coutinho-Silva, Robson; Burnstock, Geoffrey


    Purinergic receptors activated by extracellular nucleotides (adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP)) are well known to exert physiological effects on the cardiovascular system, whether nucleotides participate functionally in embryonic heart development is not clear. The responsiveness of embryonic cardiomyocytes (E) 12 to P2 receptor agonists by measuring Ca(2+) influx did not present response to ATP, but responses to P2 agonists were detected in cardiomyocytes taken from E14 and E18 rats. Photometry revealed that the responses to ATP were concentration-dependent with an EC50 of 1.32 μM and 0.18 μM for E14 and E18 cardiomyocytes, respectively. In addition, other P2 agonists were also able to induce Ca(2+) mobilization. RT-PCR showed the presence of P2X2 and P2X4 receptor transcripts on E14 cardiomyocytes with a lower expression of P2X3 and P2X7 receptors. P2X1 and a low level of P2X5 receptor messenger RNA (mRNA) were also expressed at E18. Immunofluorescence data indicated that only P2X2 and P2X4 receptor proteins were expressed in E14 cardiomyocytes while protein for all the P2X receptor subtypes was expressed in E18, except for P2X3 and P2X6. Responses mediated by agonists specific for P2Y receptors subtypes showed that P2Y receptors (P2Y1, P2Y2, P2Y4 and P2Y6) were also present in both E14 and E18 cardiomyocytes. Dye transfer experiments showed that ATP induces coupling of cells at E12, but this response is decreased at E14 and lost at E18. Conversely, UTP induced coupling with five or more cells in most cells from E12 to E18. Our results show that specific P2 receptor subtypes are present in embryonic rat cardiomyocytes, including P2X7 and P2Y4 receptors that have not been identified in adult rat cardiomyocytes. The responsiveness to ATP stimulation even before birth, suggests that ATP may be an important messenger in embryonic as well as in adult hearts.

  12. In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: comparison with cord blood and adipose tissue-derived mesenchymal stem cells. (United States)

    Fang, Cheng-Hu; Jin, Jiyong; Joe, Jun-Ho; Song, Yi-Sun; So, Byung-Im; Lim, Sang Moo; Cheon, Gi Jeong; Woo, Sang-Keun; Ra, Jeong-Chan; Lee, Young-Yiul; Kim, Kyung-Soo


    Human amniotic epithelial cells (h-AECs), which have various merits as a cell source for cell therapy, are known to differentiate into cardiomyocytes in vitro. However, the ability of h-AECs to differentiate into cardiomyocytes in vivo and their cell transplantation effects on myocardial infarction are still unknown. In this study, we assessed whether h-AECs could differentiate into cardiomyocytes in vivo and whether h-AECs transplantation can decrease infarct size and improve cardiac function, in comparison to transplantation of cord blood-derived mesenchymal stem cells (MSCs) or adipose tissue-derived MSCs. For our study, we injected h-AECs, cord blood-derived MSCs, adipose tissue-derived MSCs, and saline into areas of myocardial infarction in athymic nude rats. After 4 weeks, 3% of the surviving h-AECs expressed myosin heavy chain, a marker specific to the myocardium. Compared with the saline group, all cell-implanted groups showed a higher ejection fraction, lower infarct area by positron emission tomography and histology, and more abundant myocardial gene and protein expression in the infarct area. We showed that h-AECs can differentiate into cardiomyocyte-like cells, decrease infarct size, and improve cardiac function in vivo. The beneficial effects of h-AECs were comparable to those of cord blood and adipose tissue-derived MSCs. These results support the need for further studies of h-AECs as a cell source for myocardial regeneration due to their plentiful availability, low immunity, and lack of ethical issues related to their use.

  13. Investigations of active interrogation techniques to detect special nuclear material in maritime environments: Standoff interrogation of small- and medium-sized cargo ships

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas M., E-mail:; Patton, Bruce W.; Grogan, Brandon R.; Henkel, James J.; Murphy, Brian D.; Johnson, Jeffrey O.; Mihalczo, John T.


    In this work, several active interrogation (AI) sources are evaluated to determine their usefulness in detecting the presence of special nuclear material (SNM) in fishing trawlers, small cargo transport ships, and luxury yachts at large standoff distances from the AI source and detector. This evaluation is performed via computational analysis applying Monte Carlo methods with advanced variance reduction techniques. The goal is to determine the AI source strength required to detect the presence of SNM. The general conclusion of this study is that AI is not reliable when SNM is heavily shielded and not tightly coupled geometrically with the source and detector, to the point that AI should not be considered a via interrogation option in these scenarios. More specifically, when SNM is shielded by hydrogenous material large AI source strengths are required if detection is based on neutrons, which is not surprising. However, if the SNM is shielded by high-Z material the required AI source strengths are not significantly different if detection is based on neutrons or photons, which is somewhat surprising. Furthermore, some of the required AI source strengths that were calculated are very large. These results coupled with the realities of two ships moving independently at sea and other assumptions made during this analysis make the use of standoff AI in the maritime environment impractical.

  14. Nuclear charge and neutron radii and nuclear matter: trend analysis

    CERN Document Server

    Reinhard, P -G


    Radii of charge and neutron distributions are fundamental nuclear properties. They depend on both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal shell effects, which are strongly impacted by the presence of nuclear surface. In this work, by studying the dependence of charge and neutron radii, and neutron skin, on nuclear matter parameters, we assess different mechanisms that drive nuclear sizes. We apply nuclear density functional theory using a family of Skyrme functionals obtained by means of different optimization protocols targeting specific nuclear properties. By performing the Monte-Carlo sampling of reasonable functionals around the optimal parametrization, we study correlations between nuclear matter paramaters and observables characterizing charge and neutron distributions. We demonstrate the existence of the strong converse relation between the nuclear charge radii and the saturation density of symmetric nuclear matter and also between the n...

  15. Inactivation of the cardiomyocyte glucagon-like peptide-1 receptor (GLP-1R) unmasks cardiomyocyte-independent GLP-1R-mediated cardioprotection a b


    Ussher, John R.; Baggio, Laurie L.; Jonathan E. Campbell; Mulvihill, Erin E.; Kim, Minsuk; Kabir, M. Golam; Cao, Xiemin; Baranek, Benjamin M.; Stoffers, Doris A.; Seeley, Randy J; Drucker, Daniel J.


    GLP-1R agonists improve outcomes in ischemic heart disease. Here we studied GLP-1R-dependent adaptive and cardioprotective responses to ventricular injury. Glp1r −/− hearts exhibited chamber-specific differences in gene expression, but normal mortality and left ventricular (LV) remodeling after myocardial infarction (MI) or experimental doxorubicin-induced cardiomyopathy. Selective disruption of the cardiomyocyte GLP-1R in Glp1r CM−/− mice produced no differences in survival or LV remodeling ...

  16. Lithium carbonate teratogenic effects in chick cardiomyocyte micromass system and mouse embryonic stem cell derived cardiomyocyte--possible protective role of myo-inositol. (United States)

    Qureshi, W M Shaikh; Latif, M L; Parker, T L; Pratten, M K


    The drug lithium carbonate (Li2CO3) use during pregnancy increases the possibility of cardiovascular anomalies. The earlier studies confirm its phosphatidylinositol cycle (PI) inhibition and Wnt pathways mimicking properties, which might contribute to its teratogenic effects. In this study the toxic effects of Li2CO3 in chick embryonic cardiomyocyte micromass system (MM) and embryonic stem cell derived cardiomyocyte (ESDC) were evaluated, with possible protective role of myo-inositol. In MM system the Li2CO3 did not alter the toxicity estimation endpoints, whereas in ESDC system the cardiomyocytes contractile activity stopped at 1500 μM and above with significant increase in total cellular protein contents. In ESDC system when myo-inositol was added along with Li2CO3 to continue PI cycle, the contractile activity was recovered with decreased protein content. The lithium toxic effects depend on the role of PI cycle at particular stage of cardiogenesis, while relation between myo-inositol and reduced cellular protein contents remains unknown.

  17. Nuclear translocation of the cardiac L-type calcium channel C-terminus is regulated by sex and 17β-estradiol. (United States)

    Mahmoodzadeh, S; Haase, H; Sporbert, A; Rharass, T; Panáková, D; Morano, I


    The cardiac voltage gated l-type Ca(2+) channel (Cav1.2) constitutes the main entrance gate for Ca(2+) that triggers cardiac contraction. Several studies showed that the distal C-terminus fragment of Cav1.2 α1C subunit (α1C-dCT) is proteolytically cleaved and shuttles between the plasma membrane and the nucleus, which is regulated both developmentally and by Ca(2+). However, the effects of sex and sex hormone 17β-estradiol (E2, estrogen) on α1C-dCT nuclear translocation are still unexplored. To investigate the sexual disparity in the α1C-dCT nuclear translocation, we first generated an antibody directed against a synthetic peptide (GRRASFHLE) located in α1C-dCT, and used it to probe ventricular myocytes from adult female and male mice. Immunocytochemistry of isolated mouse primary adult ventricular myocytes revealed both nuclear staining and cytosolic punctuate staining around the T-tubules. The ratio of nuclear to cytosolic intensity (Inuc/Icyt) was significantly higher in isolated female cardiomyocytes (1.42±0.05) compared to male cardiomyocytes (1.05±0.02). Western blot analysis of nuclear fraction confirmed these data. Furthermore, we found a significant decrease in nuclear staining intensity of α1C-dCT in both female and male cardiomyocytes upon serum withdrawal for 18h (Inuc/Icyt 1.05±0.02 and 0.89±0.02, respectively). Interestingly, subsequent E2 treatment (10(-8)M) for 8h normalized the intracellular distribution of α1C-dCT in male cardiomyocytes (Inuc/Icyt 1.04±0.02), but not in female cardiomyocytes. Acute treatment of male cardiomyocytes with E2 for 45min revealed a similar effect. This effect of E2 was revised by ICI indicating the involvement of ER in this signaling pathway. Taken together, our results showed that the shuttling of α1C-CT in cardiomyocytes is regulated in a sex-dependent manner, and E2-activated ER may play a role in the nuclear shuttling of α1C-dCT in male cardiomyocytes. This may explain, at least partly, the observed

  18. Solution composition and particle size effects on the dissolution and solubility of a ThO{sub 2} microstructural analogue for UO{sub 2} matrix of nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Myllykylae, Emmi; Lavonen, Tiina; Ollila, Kaija [VTT Technical Research Centre of Finland, Espoo (Finland); Stennett, Martin; Corkhill, Claire; Hyatt, Neil [Univ. Sheffield (United Kingdom). Immobilisation Science Lab.


    The objective of this study was to investigate the dissolution rate of ThO{sub 2} which was synthesised to approximate, as closely as possible, the microstructure of UO{sub 2} in a nuclear fuel matrix. The optimal sintering temperature for ThO{sub 2} pellets was found to be 1750 C, which produced pellets with a microstructure similar to UO{sub 2} nuclear fuel pellets, with randomly oriented grains ranging in size from 10 to 30 μm. Dissolution was conducted using ThO{sub 2} particles of different size fractions (80 to 160 μm and 2 to 4 mm) in the presence and absence of carbonate, in solutions with pH from 2 to 8 and at 80 C. Dissolution rates were calculated from Th released from the solid phase to solution. Particles of ThO{sub 2} were also leached with 1 M HNO{sub 3} at 80 C in order to investigate the morphological changes at the particle surfaces. The concentration of Th was found to be ≥ 10{sup -9} mol/L at pH ≤ 4, lower than the theoretical solubility of crystalline ThO{sub 2}. At higher pH values, from 4 to 8, the measured concentrations (10{sup -10} to 10{sup -12} mol/L) were between the theoretical solubility of ThO{sub 2} and Th(OH){sub 4}. Grain boundaries were shown to exert an influence on the dissolution of ThO{sub 2} particles. Using high resolution aqueous solution analysis, these data presented here extend the current understanding of Th solubility in solution.

  19. The relationship between sirtuin 1 (SIRT1 expression and tumor size, Proliferating Cell Nuclear Antigen (PCNA expression and histological grading in rat breast carcinoma induced by dimethylbenz(anthracene (DMBA

    Directory of Open Access Journals (Sweden)

    Novrita Padauleng Dewajani Purnomosari, Sri Herwiyanti Harjadi, Irianiwati, Sitarina Widyarini


    Full Text Available Controversy regarding the role of SIRT1 in pathology of cancers exists and is still under debate.SIRT1 could act as either a tumor supressor or tumor promotor. This study was conducted toevaluate the relationship between SIRT1 expression and tumor size, Proliferating Cell NuclearAntigen (PCNA expression and histological grading in rat breast carcinoma induced bydimethylbenz(áanthracene (DMBA. Thirty female Sprague Dawley rats were randomly allocatedinto three groups with 10 rats in each group. Group 1 as negative control was just fed thestandard food. Group 2 as vehicle control was fed the standard food and corn oil. Group 3 asinduction group was fed the standard food and induced with DMBA at dose of 20 mg/kg bodyweight (BW in corn oil twice a week for five weeks. All rats were palpated weekly to determinethe appearance, size and location of tumors. Sixteen weeks after DMBA induction rats weresacrified and histological preparations of the breast carcinoma tissue were then processed forSIRT1 and PCNA expression examination as well as histological grading. The result showed thatSIRT1 expression was significantly higher in breast carcinoma tissue compared to normal gland(26.12 vs 0.05; p = 0.004. SIRT1-positive was observed mostly in poor histological gradecarcinomas (56.2%, and it was not observed in good histological grade carcinomas. However,there was no significantly difference between SIRT1 and histological grading (p = 0.097; r =0.285. A significant correlation between SIRT1 expression and the tumor size (p =0.009; r=0.877, as well as PCNA expression (p =0.000; r =0.790 was observed. In conclusion, thereis relationship between SIRT1 expression and tumor size as well as PCNA expression in rat breastcarcinoma induced by DMBA.

  20. Gui-ling-gao, a traditional Chinese functional food, prevents oxidative stress-induced apoptosis in H9c2 cardiomyocytes. (United States)

    Li, Fan; Wu, Jian-Hong; Wang, Qing-Hua; Shu, Yuan-Lan; Wan, Chun-Wai; Chan, Chi-On; Kam-Wah Mok, Daniel; Chan, Shun-Wan


    Functional foods have become an increasingly popular alternative to prevent diseases and maintain body health status. Gui-ling-gao (GLG, also known as turtle jelly) is a well-known traditional functional food popular in Southern China and Hong Kong. This study aimed to investigate the antioxidative and anti-apoptotic effects of GLG, a traditional Chinese functional food, on preventing oxidative stress-induced injury in H9c2 cardiomyocytes. In this study, the antioxidative capacities of GLG were measured by using both a cell-free assay [2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl assay] and biological methods [2,2'-azobis(2-amidinopropane)-induced haemolysis assay and H(2)O(2)-induced cell damage on H9c2 cardiomyocytes]. Additionally, the total phenolic content was measured using the Folin-Ciocalteu method. Furthermore, the anti-apoptotic effect of GLG was evaluated by nuclear staining and a DNA fragmentation assay. GLG was found to have good antioxidant activities and high total phenolic content. In H(2)O(2)-induced cell damage on H9c2 cells, GLG was demonstrated to ameliorate the apoptotic effects, such as nuclear condensations, increased intracellular caspase-3 activity and inter-nucleosomal DNA cleavage, induced by H(2)O(2). The present study demonstrated for the first time that GLG possesses anti-apoptotic potential in vitro and this effect may be mediated, in part, by its antioxidative function. Additionally, the antioxidative capacities of GLG were proved both chemically and biologically. This study provides scientific evidence to prove the anecdotal health-beneficial claim that the consumption of GLG could help the body to handle endogenous toxicants such as free radicals.

  1. The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease

    Directory of Open Access Journals (Sweden)

    Yalin Liao


    Full Text Available RNA functions through the dynamic formation of complexes with RNA-binding proteins (RBPs in all clades of life. We determined the RBP repertoire of beating cardiomyocytic HL-1 cells by jointly employing two in vivo proteomic methods, mRNA interactome capture and RBDmap. Together, these yielded 1,148 RBPs, 391 of which are shared with all other available mammalian RBP repertoires, while 393 are thus far unique to cardiomyocytes. RBDmap further identified 568 regions of RNA contact within 368 RBPs. The cardiomyocyte mRNA interactome composition reflects their unique biology. Proteins with roles in cardiovascular physiology or disease, mitochondrial function, and intermediary metabolism are all highly represented. Notably, we identified 73 metabolic enzymes as RBPs. RNA-enzyme contacts frequently involve Rossmann fold domains with examples in evidence of both, mutual exclusivity of, or compatibility between RNA binding and enzymatic function. Our findings raise the prospect of previously hidden RNA-mediated regulatory interactions among cardiomyocyte gene expression, physiology, and metabolism.

  2. Inhibitory effects of calcium channel blockers on thyroid hormone uptake in neonatal rat cardiomyocytes

    NARCIS (Netherlands)

    F.A. Verhoeven; E.P.C.M. Moerings (Ellis); J.M.J. Lamers (Jos); G. Hennemann; T.J. Visser (Theo); M.E. Everts (Maria)


    textabstractThe effects of the Ca2+ channel blockers verapamil, nifedipine, and diltiazem on triiodothyronine (T3) and thyroxine (T4) uptake were tested in cultured cardiomyocytes from 2-day-old rats. Experiments were performed at 37 degrees C in medium with 0.5% BSA for [125I]T3 (

  3. Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature

    Institute of Scientific and Technical Information of China (English)

    Huansheng Xu; Ibrahim J Domian; Erding Hu; Robert Willette; John Lepore; Alexander Meissner; Zhong Wang; Kenneth R Chien; B Alexander Yi; Hao Wu; Christoph Bock; Hongcang Gu; Kathy O Lui; Joo-Hye C Park; Ying Shao; Alyssa K Riley


    Cardiomyocytes derived from pluripotent stem cells can be applied in drug testing,disease modeling and cellbased therapy.However,without procardiogenic growth factors,the efficiency of cardiomyogenesis from pluripotent stem cells is usually low and the resulting cardiomyocyte population is heterogeneous.Here,we demonstrate that induced pluripotent stem cells (iPSCs) can be derived from murine ventricular myocytes (VMs),and consistent with other reports of iPSCs derived from various somatic cell types,VM-derived iPSCs (ViPSCs) exhibit a markedly higher propensity to spontaneously differentiate into beating cardiomyocytes as compared to genetically matched embryonic stem cells (ESCs) or iPSCs derived from tail-tip fibroblasts.Strikingly,the majority of ViPSC-derived cardiomyocytes display a ventricular phenotype.The enhanced ventricular myogenesis in ViPSCs is mediated via increased numbers of cardiovascular progenitors at early stages of differentiation.In order to investigate the mechanism of enhanced ventricular myogenesis from ViPSCs,we performed global gene expression and DNA methylation analysis,which revealed a distinct epigenetic signature that may be involved in specifying the VM fate in pluripotent stem cells.

  4. Beneficial effects of metformin on primary cardiomyocytes via activation of adenosine monophosphate-activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-fang; ZHANG Jin-ying; LI Ling; ZHAO Xiao-yan


    Background Metformin has become a cornerstone in the treatment of patients with type-2 diabetes. Accumulated evidence suggests that metformin supports direct cardiovascular effects. The present study aimed to investigate if metformin has beneficial effects on primary cardiomyocytes damaged by H2O2, and reveal the potential mechanism of action of metformin.Methods Cardiomyocytes were incubated in the presence of 100 umol/L. H2O2 for 12 hours. Cardiomyocytes were pretreated with metformin at different concentrations and time and with aminoimidazole carboxamide ribonucleotide (AICAR) (500 umol/L), an adenosine monophophate (AMP)-activated protein kinase (AMPK) agonist for 60 minutes before the addition of H2O2. Other cells were preincubated with compound C (an AMPK antagonist, 20 umol/L) for 4 hours. The viability and apoptosis of cells were analyzed. AMPK, endothelial nitric oxide synthase (eNOS), and transforming growth factor (TGF)-β1 were analyzed using immunblotting.Results Metformin had antagonistic effects on the influences of H2O2 on cell viability and attenuated oxidative stress-induced apoptosis. Metformin also increased phosphorylation of AMPK and eNOS, and reduced the expression of TGF-β1, basic fibroblast growth factor (bFGF), and tumor necrosis factor (TNF)-α.Conclusions Metformin has beneficial effects on cardiomyocytes, and this effect involves activation of the AMPK-eNOS pathway. Metformin may be potentially beneficial for the treatment of heart disease.

  5. Engineered Microenvironments for the Maturation and Observation of Human Embryonic Stem Cell Derived Cardiomyocytes (United States)

    Salick, Max R.

    The human heart is a dynamic system that undergoes substantial changes as it develops and adapts to the body's growing needs. To better understand the physiology of the heart, researchers have begun to produce immature heart muscle cells, or cardiomyocytes, from pluripotent stem cell sources with remarkable efficiency. These stem cell-derived cardiomyocytes hold great potential in the understanding and treatment of heart disease; however, even after prolonged culture, these cells continue to exhibit an immature phenotype, as indicated by poor sarcomere organization and calcium handling, among other features. The lack of maturation that is observed in these cardiomyocytes greatly limits their applicability towards drug screening, disease modeling, and cell therapy applications. The mechanical environment surrounding a cell has been repeatedly shown to have a large impact on that cell's behavior. For this reason, we have implemented micropatterning methods to mimic the level of alignment that occurs in the heart in vivo in order to study how this alignment may help the cells to produce a more mature sarcomere phenotype. It was discovered that the level of sarcomere organization of a cardiomyocyte can be strongly influenced by the micropattern lane geometry on which it adheres. Steps were taken to optimize this micropattern platform, and studies of protein organization, gene expression, and myofibrillogenesis were conducted. Additionally, a set of programs was developed to provide quantitative analysis of the level of sarcomere organization, as well as to assist with several other tissue engineering applications.

  6. Alpha-lipoic acid protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xueming; Chen, Aihua, E-mail:; Yang, Pingzhen; Song, Xudong; Liu, Yingfeng; Li, Zhiliang; Wang, Xianbao; Wang, Lizi; Li, Yunpeng


    Highlights: •We observed the cell viability and death subjected to H/R in H9c2 cardiomyocytes. •We observed the degree of autophagy subjected to H/R in H9c2 cardiomyocytes. •LA inhibited the degree of autophagy in parallel to the enhanced cell survival. •LA inhibited the autophagy in parallel to the decreased total cell death. •We concluded that LA protected cardiomyocytes against H/R by inhibiting autophagy. -- Abstract: Hypoxia/reoxygenation (H/R) is an important in vitro model for exploring the molecular mechanisms and functions of autophagy during myocardial ischemia/reperfusion (I/R). Alpha-lipoic acid (LA) plays an important role in the etiology of cardiovascular disease. Autophagy is widely implicated in myocardial I/R injury. We assessed the degree of autophagy by pretreatment with LA exposed to H/R in H9c2 cell based on the expression levels of Beclin-1, LC3II/LC3I, and green fluorescent protein-labeled LC3 fusion proteins. Autophagic vacuoles were confirmed in H9c2 cells exposed to H/R using transmission electron microscopy. Our findings indicated that pretreatment with LA inhibited the degree of autophagy in parallel to the enhanced cell survival and decreased total cell death in H9c2 cells exposed to H/R. We conclude that LA protects cardiomyocytes against H/R injury by inhibiting autophagy.

  7. Abnormal Calcium "Sparks" in Cardiomyocytes of Post-myocardial Infarction Heart

    Institute of Scientific and Technical Information of China (English)

    Kai HUANG; Dan HUANG; Shengquan FU; Chongzhe YANG; Yuhua LIAO


    In ischemic hypertrophic myocardium, contractile dysfunction can be attributed to the decreased calcium induced calcium release (CICR) in cytoplasm. This study aimed to investigate the electrophysiological properties and the expression of L calcium channel subunits in post-MI myocardium. The ischemic heart remodeling model was established in SD rats. The expressions of calcium channel subunits were determined by realtime RT-PCR. Whole cell patch clamp was used to record the electrophysiological properties of L calcium channel. The results showed that the L calcium channel agonist Bayk 8644 induced the significantly decreased CICR in the rat cardiomyocyte 6weeks after myocardial infarction (MI). In the post-MI cardiomyocytes, the amplitude of ICaL decreased dramatically and the inactivation curve of the current shifted to more negative potential. At mRNA level, the expression of the calcium channel alphalc, beta2c subunits decreased dramatically in the ventricle of post-MI rats. The expression of alpha2/delta subunit, however, remained constant.It is concluded that the abnormal expression of the L calcium channel subunits in post-MI cardiomyocytes contributes to the ICaL decrease at early stage of the ischemic remodeling in cardiomyocytes,which leads to the decreased CICR in the cell and contractile dysfunction of myocardium.

  8. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS mediated cardiomyocyte hypertrophy

    NARCIS (Netherlands)

    Tigchelaar, Wardit; Yu, Hongjuan; De Jong, Anne Margreet; van Gilst, Wiek H; van der Harst, Pim; Westenbrink, B Daan; de Boer, Rudolf A; Sillje, Herman H W


    Recently, a genetic variant in the mitochondrial exo/endo nuclease EXOG, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and hypertrop

  9. Spermine ameliorates ischemia/reperfusion injury in cardiomyocytes via regulation of autophagy (United States)

    Duan, Qunjun; Yang, Weijun; Jiang, Daming; Tao, Kaiyu; Dong, Aiqiang; Cheng, Haifeng


    Myocardial infarction could result in high morbidity and mortality and heart diseases of children have becoming prevalent. Functions of spermine administration on cardiomyocytes remain unknown. The present study was designed to investigate the role of spermine pretreatment on myocardial ischemia/reperfusion injury (IRI). A cell model of simulated ischemia/reperfusion injury was established by incubating neonatal Sprague-Dawley rat cardiomyocytes in ischemia medium and re-cultured in normal medium. Of note, spermine pretreatment significantly reduced apoptosis and increased viability of immature cardiomyocytes. Spermine pretreatment enhanced autophagic flux as determined by confocal microscopy and transmission electron microscopy. Furthermore, proteins of mammalian target of rapamycin (mTOR) pathway were significantly reduced in response to spermine pretreatment during IRI, while proteins related to autophagy were up-regulated. The cell viability was enhanced and apoptosis decreased by rapamycin after spermine pretreatment, while these were reversed by 3-methyladenine. However, when immature cardiomyocytes were pretreated with rapamycin or 3-methyladenine, followed by IRI and spermine administration, no significant changes of viability and apoptosis were observed. In conclusion, this study suggests that spermine is a potential novel approach for preventing IRI, especially in children. PMID:27725878

  10. Smooth muscle cell-extrinsic vascular spasm arises from cardiomyocyte degeneration in sarcoglycan-deficient cardiomyopathy. (United States)

    Wheeler, Matthew T; Allikian, Michael J; Heydemann, Ahlke; Hadhazy, Michele; Zarnegar, Sara; McNally, Elizabeth M


    Vascular spasm is a poorly understood but critical biomedical process because it can acutely reduce blood supply and tissue oxygenation. Cardiomyopathy in mice lacking gamma-sarcoglycan or delta-sarcoglycan is characterized by focal damage. In the heart, sarcoglycan gene mutations produce regional defects in membrane permeability and focal degeneration, and it was hypothesized that vascular spasm was responsible for this focal necrosis. Supporting this notion, vascular spasm was noted in coronary arteries, and disruption of the sarcoglycan complex was observed in vascular smooth muscle providing a molecular mechanism for spasm. Using a transgene rescue strategy in the background of sarcoglycan-null mice, we replaced cardiomyocyte sarcoglycan expression. Cardiomyocyte-specific sarcoglycan expression was sufficient to correct cardiac focal degeneration. Intriguingly, successful restoration of the cardiomyocyte sarcoglycan complex also eliminated coronary artery vascular spasm, while restoration of smooth muscle sarcoglycan in the background of sarcoglycan-null alleles did not. This mechanism, whereby tissue damage leads to vascular spasm, can be partially corrected by NO synthase inhibitors. Therefore, we propose that cytokine release from damaged cardiomyocytes can feed back to produce vascular spasm. Moreover, vascular spasm feeds forward to produce additional cardiac damage.

  11. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, Yasaman [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Li, Qian [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Quabius, Elgar Susanne [Dept. of Otorhinolaryngology, Head and Neck Surgery, University of Kiel, Arnold-Heller-Str. 3, Building 27, D-24105 Kiel (Germany); Institute of Immunology, University of Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel (Germany); Böttner, Martina [Department of Anatomy, University of Kiel, Otto-Hahn-Platz 8, 24118 Kiel (Germany); Selhuber-Unkel, Christine, E-mail: [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Kasra, Mehran [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of)


    Following a myocardial infarction (MI), cardiomyocytes are replaced by scar tissue, which decreases ventricular contractile function. Tissue engineering is a promising approach to regenerate such damaged cardiomyocyte tissue. Engineered cardiac patches can be fabricated by seeding a high density of cardiac cells onto a synthetic or natural porous polymer. In this study, nanocomposite scaffolds made of gold nanotubes/nanowires incorporated into biodegradable castor oil-based polyurethane were employed to make micro-porous scaffolds. H9C2 cardiomyocyte cells were cultured on the scaffolds for one day, and electrical stimulation was applied to improve cell communication and interaction in neighboring pores. Cells on scaffolds were examined by fluorescence microscopy and scanning electron microscopy, revealing that the combination of scaffold design and electrical stimulation significantly increased cell confluency of H9C2 cells on the scaffolds. Furthermore, we showed that the gene expression levels of Nkx2.5, atrial natriuretic peptide (ANF) and natriuretic peptide precursor B (NPPB), which are functional genes of the myocardium, were up-regulated by the incorporation of gold nanotubes/nanowires into the polyurethane scaffolds, in particular after electrical stimulation. - Highlights: • Biodegradable polyurethane/gold nanocomposites for cardiomyocyte adhesion are proposed. • The nanocomposite scaffolds are porous and electrical stimulation enhances cell adhesion. • Expression levels of functional myocardium genes were upregulated after electrical stimulation.

  12. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Ji Zhang

    Full Text Available Fatty acid binding protein 4 (FABP4 is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG mice using α myosin-heavy chain (α-MHC promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway.

  13. PGC-1α and reactive oxygen species regulate human embryonic stem cell-derived cardiomyocyte function

    NARCIS (Netherlands)

    M.J. Birket (Matthew); S. Casini (Simona); G. Kosmidis (Georgios); D.J. Elliott (David); A.A. Gerencser (Akos); A. Baartscheer (Antonius); C. Schumacher (Cees); P.G. Mastroberardino (Pier); A.G. Elefanty (Andrew); E.G. Stanley (Ed); C.L. Mummery (Christine)


    textabstractDiminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on cardiomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inactivated. Repression of PGC-1α, wh

  14. Cytoprotective Effect of Silymarin against Diabetes-Induced Cardiomyocyte Apoptosis in Diabetic Rats

    Institute of Scientific and Technical Information of China (English)

    Muobarak J Tuorkey; Nabila I El-Desouki; Rabab A Kamel


    Objective The beneficial effects of silymarin have been extensively studied in the context of inflammation and cancer treatment, yet much less is known about its therapeutic effect on diabetes. The present study was aimed to investigate the cytoprotective activity of silymarin against diabetes-induced cardiomyocyte apoptosis. Methods Rats were randomly divided into: control group, untreated diabetes group and diabetes group treated with silymarin (120 mg/kg·d) for 10 d. Rats were sacrificed, and the cardiac muscle specimens and blood samples were collected. The immunoreactivity of caspase-3 and Bcl-2 in the cardiomyocytes was measured. Total proteins, glucose, insulin, creatinine, AST, ALT, cholesterol, and triglycerides levels were estimated. Results Unlike the treated diabetes group, cardiomyocyte apoptosis increased in the untreated rats, as evidenced by enhanced caspase-3 and declined Bcl-2 activities. The levels of glucose, creatinine, AST, ALT, cholesterol, and triglycerides declined in the treated rats. The declined levels of insulin were enhanced again after treatment of diabetic rats with silymarin, reflecting a restoration of the pancreaticβ-cells activity. Conclusion The findings of this study are of great importance, which confirmed for the first time that treatment of diabetic subjects with silymarin may protect cardiomyocytes against apoptosis and promote survival-restoration of the pancreaticβ-cells.

  15. Physiological Testosterone Retards Cardiomyocyte Aging in Tfm Mice via Androgen Receptor-independent Pathway

    Institute of Scientific and Technical Information of China (English)

    Li Zhang; Da Lei; Gui-ping Zhu; Lei Hong; Sai-zhu Wu


    Objective To determine whether testosterone modulates markers of cardiomyocytes aging via itsclassic androgen receptor (AR)-dependent pathway or conversion to estradiol.Methods Male littermates and testicular feminized (Tfm) mice were randomly separated into 4experimental groups: littermate controls (n=8), Tfm mice (n=7), testosterone-treated Tfm mice (n=8), and Tfm mice treated with testosterone in combination with the aromatase inhibitor anastrazole (n=7).Cardiomyocytes were isolated from mouse left ventricles, the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and the amount of malondialdehyde (MDA) were measuredus-ing colorimetry method, and expression ofp16INK4α and retinoblastoma (Rb) proteins were detected by Western blotting.Results The SOD and GSH-Px enzyme activities of cardiomyocytes were decreased, andthe MDA levels and the expression of p16INK4α and Rbproteinswereincreased in Tfm micecomparedwith control mice.Anincrease was observed in theactivities of SOD andGSH-Px enzymeaswellasa decrease in MDA levels and the expressionofp16INK4α and Rb proteins inthe testosterone-treated Tfm mice. After co-treatment with anastrazole inTfm mice, these improvement were partly inhib-ited.Conclusion Physiological testosterone replacement can delay cardiomyocyte aging in Tfm mice, an effect that is independent of theAR pathway and in part conversion to estradiol.

  16. Paeoniflorin inhibits doxorubicin-induced cardiomyocyte apoptosis by downregulating microRNA-1 expression (United States)



    Doxorubicin (DOX) is an effective anthracycline anti-tumor antibiotic. Because of its cardiotoxicity, the clinical application of DOX is limited. Paeoniflorin (PEF), a monoterpene glucoside extracted from the dry root of Paeonia, is reported to exert multiple beneficial effects on the cardiovascular system. The present study was designed to explore the protective effect of PEF against DOX-induced cardiomyocyte apoptosis and the underlying mechanism. In cultured H9c2 cells, PEF (100 µmol/l) was added for 2 h prior to exposure to DOX (5 µmol/l) for 24 h. Cell viability, creatine kinase activity, cardiomyocyte apoptosis, intracellular reactive oxygen species (ROS) levels, and the expression of microRNA-1 (miR-1) and B-cell lymphoma 2 (Bcl-2) were measured following treatment with PEF and/or DOX. The results showed that treatment with DOX notably induced cardiomyocyte apoptosis, concomitantly with enhanced ROS generation, upregulated miR-1 expression and downregulated Bcl-2 expression. These effects of DOX were significantly inhibited by pretreatment of the cells with PEF. These results suggest that the inhibitory effect of PEF on DOX-induced cardiomyocyte apoptosis may be associated with downregulation of miR-1 expression via a reduction in ROS generation. PMID:27284328

  17. Antifungal miconazole induces cardiotoxicity via inhibition of APE/Ref-1-related pathway in rat neonatal cardiomyocytes. (United States)

    Won, Kyung-Jong; Lin, Hai Yue; Jung, Soohyun; Cho, Soo Min; Shin, Ho-Chul; Bae, Young Min; Lee, Seung Hyun; Kim, Hyun-Jung; Jeon, Byeong Hwa; Kim, Bokyung


    Effects of miconazole, an azole antifungal, have not been fully determined in cardiomyocytes. We therefore identified the transcriptome in neonatal rat cardiomyocytes responding to miconazole using DNA microarray analysis and selected a gene and investigated its role in cardiomyocytes. Miconazole dose-dependently increased the levels of superoxide (O(2)(-)) and apoptosis in cardiomyocytes; these increases were inhibited by treatment with antioxidants. The DNA microarray revealed that 4163 genes were upregulated and 4829 genes downregulated by more than threefold in miconazole-treated cardiomyocytes compared with the vehicle-treated control. Moreover, redox homeostasis-, oxidative stress-, and reactive oxygen species (ROS)-related categories of genes were strongly affected by miconazole treatment. Among genes overlapped in all these categories, apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1), a redox-related gene, was prominent and was diminished in the miconazole-treated group. Changes in the O(2)(-) production and apoptosis induction in response to miconazole were inhibited in cardiomyocytes transfected with adenoviral APE/Ref-1. Overexpression of APE/Ref-1 reversed the reduction in beating frequency induced by miconazole. Our results demonstrate that miconazole may induce rat cardiotoxicity via a ROS-mediated pathway, which is initiated by the inhibition of APE/Ref-1 expression. This possible new adverse event in cardiomyocyte function caused by miconazole may provide a basis for the development of novel antifungal agents.

  18. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. (United States)

    Malliaras, Konstantinos; Zhang, Yiqiang; Seinfeld, Jeffrey; Galang, Giselle; Tseliou, Eleni; Cheng, Ke; Sun, Baiming; Aminzadeh, Mohammad; Marbán, Eduardo


    Cardiosphere-derived cells (CDCs) have been shown to regenerate infarcted myocardium in patients after myocardial infarction (MI). However, whether the cells of the newly formed myocardium originate from the proliferation of adult cardiomyocytes or from the differentiation of endogenous stem cells remains unknown. Using genetic fate mapping to mark resident myocytes in combination with long-term BrdU pulsing, we investigated the origins of postnatal cardiomyogenesis in the normal, infarcted and cell-treated adult mammalian heart. In the normal mouse heart, cardiomyocyte turnover occurs predominantly through proliferation of resident cardiomyocytes at a rate of ∼1.3-4%/year. After MI, new cardiomyocytes arise from both progenitors as well as pre-existing cardiomyocytes. Transplantation of CDCs upregulates host cardiomyocyte cycling and recruitment of endogenous progenitors, while boosting heart function and increasing viable myocardium. The observed phenomena cannot be explained by cardiomyocyte polyploidization, bi/multinucleation, cell fusion or DNA repair. Thus, CDCs induce myocardial regeneration by differentially upregulating two mechanisms of endogenous cell proliferation.

  19. Three Huntington's Disease Specific Mutation-Carrying Human Embryonic Stem Cell Lines Have Stable Number of CAG Repeats upon In Vitro Differentiation into Cardiomyocytes. (United States)

    Jacquet, Laureen; Neueder, Andreas; Földes, Gabor; Karagiannis, Panagiotis; Hobbs, Carl; Jolinon, Nelly; Mioulane, Maxime; Sakai, Takao; Harding, Sian E; Ilic, Dusko


    Huntington disease (HD; OMIM 143100), a progressive neurodegenerative disorder, is caused by an expanded trinucleotide CAG (polyQ) motif in the HTT gene. Cardiovascular symptoms, often present in early stage HD patients, are, in general, ascribed to dysautonomia. However, cardio-specific expression of polyQ peptides caused pathological response in murine models, suggesting the presence of a nervous system-independent heart phenotype in HD patients. A positive correlation between the CAG repeat size and severity of symptoms observed in HD patients has also been observed in in vitro HD cellular models. Here, we test the suitability of human embryonic stem cell (hESC) lines carrying HD-specific mutation as in vitro models for understanding molecular mechanisms of cardiac pathology seen in HD patients. We have differentiated three HD-hESC lines into cardiomyocytes and investigated CAG stability up to 60 days after starting differentiation. To assess CAG stability in other tissues, the lines were also subjected to in vivo differentiation into teratomas for 10 weeks. Neither directed differentiation into cardiomyocytes in vitro nor in vivo differentiation into teratomas, rich in immature neuronal tissue, led to an increase in the number of CAG repeats. Although the CAG stability might be cell line-dependent, induced pluripotent stem cells generated from patients with larger numbers of CAG repeats could have an advantage as a research tool for understanding cardiac symptoms of HD patients.

  20. Three Huntington's Disease Specific Mutation-Carrying Human Embryonic Stem Cell Lines Have Stable Number of CAG Repeats upon In Vitro Differentiation into Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Laureen Jacquet

    Full Text Available Huntington disease (HD; OMIM 143100, a progressive neurodegenerative disorder, is caused by an expanded trinucleotide CAG (polyQ motif in the HTT gene. Cardiovascular symptoms, often present in early stage HD patients, are, in general, ascribed to dysautonomia. However, cardio-specific expression of polyQ peptides caused pathological response in murine models, suggesting the presence of a nervous system-independent heart phenotype in HD patients. A positive correlation between the CAG repeat size and severity of symptoms observed in HD patients has also been observed in in vitro HD cellular models. Here, we test the suitability of human embryonic stem cell (hESC lines carrying HD-specific mutation as in vitro models for understanding molecular mechanisms of cardiac pathology seen in HD patients. We have differentiated three HD-hESC lines into cardiomyocytes and investigated CAG stability up to 60 days after starting differentiation. To assess CAG stability in other tissues, the lines were also subjected to in vivo differentiation into teratomas for 10 weeks. Neither directed differentiation into cardiomyocytes in vitro nor in vivo differentiation into teratomas, rich in immature neuronal tissue, led to an increase in the number of CAG repeats. Although the CAG stability might be cell line-dependent, induced pluripotent stem cells generated from patients with larger numbers of CAG repeats could have an advantage as a research tool for understanding cardiac symptoms of HD patients.

  1. Nuclear Confidence

    Institute of Scientific and Technical Information of China (English)


    The Fukushima nuclear accident provides valuable lessons for China national nuclear it continues to expand its operations AS Japan’s Fukushima nuclear crisis sparks a global debate over nuclear safety,China National Nuclear Corp. (CNNC),the country’s largest nuclear plant operator, comes under the spotlight.

  2. The soluble guanylyl cyclase activator bay 58-2667 selectively limits cardiomyocyte hypertrophy.

    Directory of Open Access Journals (Sweden)

    Jennifer C Irvine

    Full Text Available BACKGROUND: Although evidence now suggests cGMP is a negative regulator of cardiac hypertrophy, the direct consequences of the soluble guanylyl cyclase (sGC activator BAY 58-2667 on cardiac remodeling, independent of changes in hemodynamic load, has not been investigated. In the present study, we tested the hypothesis that the NO(•-independent sGC activator BAY 58-2667 inhibits cardiomyocyte hypertrophy in vitro. Concomitant impact of BAY 58-2667 on cardiac fibroblast proliferation, and insights into potential mechanisms of action, were also sought. Results were compared to the sGC stimulator BAY 41-2272. METHODS: Neonatal rat cardiomyocytes were incubated with endothelin-1 (ET(1, 60nmol/L in the presence and absence of BAY 41-2272 and BAY 58-2667 (0.01-0.3 µmol/L. Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. The impact of both sGC ligands on basal and stimulated cardiac fibroblast proliferation in vitro was also determined. RESULTS: We now demonstrate that BAY 58-2667 (0.01-0.3 µmol/L elicited concentration-dependent antihypertrophic actions, inhibiting ET(1-mediated increases in cardiomyocyte 2D area and de novo protein synthesis, as well as suppressing ET(1-induced cardiomyocyte superoxide generation. This was accompanied by potent increases in cardiomyocyte cGMP accumulation and activity of its downstream signal, vasodilator-stimulated phosphoprotein (VASP, without elevating cardiomyocyte cAMP. In contrast, submicromolar concentrations of BAY 58-2667 had no effect on basal or stimulated cardiac fibroblast proliferation. Indeed, only at concentrations ≥10 µmol/L was inhibition of cardiac fibrosis seen in vitro. The effects of BAY 58-2667 in both cell types were mimicked by BAY 41-2272. CONCLUSIONS: Our results demonstrate that BAY 58-2667 elicits protective, cardiomyocyte-selective effects in vitro. These actions are associated with sGC activation and are evident in the absence of confounding

  3. Role of microRNA-195 in cardiomyocyte apoptosis induced by myocardial ischaemia–reperfusion injury

    Indian Academy of Sciences (India)

    Chang-Kui Gao; Hui Liu; Cheng-Ji Cui; Zhao-Guang Liang; Hong Yao; Ye Tian


    This study aims to investigate microRNA-195 (miR-195) expression in myocardial ischaemia–reperfusion (I/R) injury and the roles of miR-195 in cardiomyocyte apoptosis though targeting Bcl-2. A mouse model of I/R injury was established. MiR-195 expression levels were detected by real-time quantitative PCR (qPCR), and the cardiomyocyte apoptosis was detected by TUNEL assay. After cardiomyocytes isolated from neonatal rats and transfected with miR-195 mimic or inhibitor, the hypoxia/reoxygenation (H/R) injury model was established. Cardiomyocyte apoptosis and mitochondrial membrane potential were evaluated using flow cytometry. Bcl-2 and Bax mRNA expressions were detected by RT-PCR. Bcl-2, Bax and cytochrome c (Cyt-c) protein levels were determined by Western blot. Caspase-3 and caspase-9 activities were assessed by luciferase assay. Compared with the sham group, miR-195 expression levels and rate of cardiomyocyte apoptosis increased significantly in I/R group (both < 0.05). Compared to H/R + negative control (NC) group, rate of cardiomyocyte apoptosis increased in H/R + miR-195 mimic group while decreased in H/R + miR-195 inhibitor group (both < 0.05). MiR-195 knockdown alleviated the loss of mitochondrial membrane potential ( < 0.05). MiR-195 overexpression decreased Bcl-2 mRNA and protein expression, increased BaxmRNA and protein expression, Cyt-c protein expression and caspase-3 and caspase-9 activities (all < 0.05). While, downregulated MiR-195 increased Bcl-2 mRNA and protein expression, decreased Bax mRNA and protein expression, Cyt-c protein expression and caspase-3 and caspase-9 activities (all < 0.05). Our study identified that miR-195 expression was upregulated in myocardial I/R injury, and miR-195 overexpression may promote cardiomyocyte apoptosis by targeting Bcl-2 and inducing mitochondrial apoptotic pathway.

  4. mTORC1 and mTORC2 play different roles in regulating cardiomyocyte differentiation from embryonic stem cells. (United States)

    Zheng, Bei; Wang, Jiadan; Tang, Leilei; Shi, Jiana; Zhu, Danyan


    Mammalian target of rapamycin (mTOR) is a serine/threonine kinase and functions through two distinct complexes, mTOR complex 1 (mTORC1) and complex 2 (mTORC2), with their key components Raptor and Rictor, to play crucial roles in cellular survival and growth. However, the roles of mTORC1 and mTORC2 in regulating cardiomyocyte differentiation from mouse embryonic stem (mES) cells are not clear. In this study, we performed Raptor or Rictor knockdown experiments to investigate the roles of mTORC1 and mTORC2 in cardiomyocyte differentiation. Ablation of Raptor markedly increased the number of cardiomyocytes derived from mES cells with well-organized myofilaments. Expression levels of brachyury (mesoderm protein), Nkx2.5 (cardiac progenitor cell protein), and α-Actinin (cardiomyocyte marker) were increased in Raptor knockdown cells. In contrast, loss of Rictor prevented cardiomyocyte differentiation. The dual ablation of Raptor and Rictor also decreased the number of cardiomyocytes. The two complexes exerted a regulatory mechanism in such a manner that knockdown of Raptor/mTORC1 resulted in a decreased phosphorylation of Rictor (Thr1135), which subsequently activated Rictor/mTORC2 in the differentiation of mES cells into cardiomyocytes. In conclusion, mTORC1 and mTORC2 played different roles in cardiomyocyte differentiation from mES cells in vitro. The activation of Rictor/mTORC2 was critical for facilitating cardiomyocyte differentiation from mES cells. Thus, this complex may be a promising target for regulating myocardial differentiation from embryonic stem cells or induced pluripotent stem cells.

  5. Exposure to phthalates affects calcium handling and intercellular connectivity of human stem cell-derived cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Nikki Gillum Posnack

    Full Text Available The pervasive nature of plastics has raised concerns about the impact of continuous exposure to plastic additives on human health. Of particular concern is the use of phthalates in the production of flexible polyvinyl chloride (PVC products. Di-2-ethylhexyl-phthalate (DEHP is a commonly used phthalate ester plasticizer that imparts flexibility and elasticity to PVC products. Recent epidemiological studies have reported correlations between urinary phthalate concentrations and cardiovascular disease, including an increased risk of high blood pressure and coronary risk. Yet, there is little direct evidence linking phthalate exposure to adverse effects in human cells, including cardiomyocytes.The effect of DEHP on calcium handling was examined using monolayers of gCAMP3 human embryonic stem cell-derived cardiomyocytes, which contain an endogenous calcium sensor. Cardiomyocytes were exposed to DEHP (5 - 50 μg/mL, and calcium transients were recorded using a Zeiss confocal imaging system. DEHP exposure (24 - 72 hr had a negative chronotropic and inotropic effect on cardiomyocytes, increased the minimum threshold voltage required for external pacing, and modified connexin-43 expression. Application of Wy-14,643 (100 μM, an agonist for the peroxisome proliferator-activated receptor alpha, did not replicate DEHP's effects on calcium transient morphology or spontaneous beating rate.Phthalates can affect the normal physiology of human cardiomyocytes, including DEHP elicited perturbations in cardiac calcium handling and intercellular connectivity. Our findings call for additional studies to clarify the extent by which phthalate exposure can alter cardiac function, particularly in vulnerable patient populations who are at risk for high phthalate exposure.

  6. Identification and characterization of calcium sparks in cardiomyocytes derived from human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Guang Qin Zhang

    Full Text Available INTRODUCTION: Ca2+ spark constitutes the elementary units of cardiac excitation-contraction (E-C coupling in mature cardiomyocytes. Human induced pluripotent stem cell (hiPSC-derived cardiomyocytes are known to have electrophysiological properties similar to mature adult cardiomyocytes. However, it is unclear if they share similar calcium handling property. We hypothesized that Ca2+ sparks in human induced pluripotent stem cell (hiPSCs-derived cardiomyocytes (hiPSC-CMs may display unique structural and functional properties than mature adult cardiomyocytes. METHODS AND RESULTS: Ca2+ sparks in hiPSC-CMs were recorded with Ca2+ imaging assay with confocal laser scanning microscopy. Those sparks were stochastic with a tendency of repetitive occurrence at the same site. Nevertheless, the spatial-temporal properties of Ca2+ spark were analogous to that of adult CMs. Inhibition of L-type Ca2+ channels by nifedipine caused a 61% reduction in calcium spark frequency without affecting amplitude of those sparks and magnitude of caffeine releasable sarcoplasmic reticulum (SR Ca2+ content. In contrast, high extracellular Ca2+ and ryanodine increased the frequency, full width at half maximum (FWHM and full duration at half maximum (FDHM of spontaneous Ca2+ sparks. CONCLUSIONS: For the first time, spontaneous Ca2+ sparks were detected in hiPSC-CMs. The Ca2+ sparks are predominately triggered by L-type Ca2+ channels mediated Ca2+ influx, which is comparable to sparks detected in adult ventricular myocytes in which cardiac E-C coupling was governed by a Ca2+-induced Ca2+ release (CICR mechanism. However, focal repetitive sparks originated from the same intracellular organelle could reflect an immature status of the hiPSC-CMs.

  7. Exogenous Nitric Oxide Protects Human Embryonic Stem Cell-Derived Cardiomyocytes against Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    János Pálóczi


    Full Text Available Background and Aims. Human embryonic stem cell- (hESC- derived cardiomyocytes are one of the useful screening platforms of potential cardiocytoprotective molecules. However, little is known about the behavior of these cardiomyocytes in simulated ischemia/reperfusion conditions. In this study, we have tested the cytoprotective effect of an NO donor and the brain type natriuretic peptide (BNP in a screening platform based first on differentiated embryonic bodies (EBs, 6 + 4 days and then on more differentiated cardiomyocytes (6 + 24 days, both derived from hESCs. Methods. Both types of hESC-derived cells were exposed to 150 min simulated ischemia, followed by 120 min reperfusion. Cell viability was assessed by propidium iodide staining. The following treatments were applied during simulated ischemia in differentiated EBs: the NO-donor S-nitroso-N-acetylpenicillamine (SNAP (10−7, 10−6, and 10−5 M, BNP (10−9, 10−8, and 10−7 M, and the nonspecific NO synthase inhibitor Nω-nitro-L-arginine (L-NNA, 10−5 M. Results. SNAP (10−6, 10−5 M significantly attenuated cell death in differentiated EBs. However, simulated ischemia/reperfusion-induced cell death was not affected by BNP or by L-NNA. In separate experiments, SNAP (10−6 M also protected hESC-derived cardiomyocytes. Conclusions. We conclude that SNAP, but not BNP, protects differentiated EBs or cardiomyocytes derived from hESCs against simulated ischemia/reperfusion injury. The present screening platform is a useful tool for discovery of cardiocytoprotective molecules and their cellular mechanisms.

  8. Reciprocal regulation of transcription factors and PLC isozyme gene expression in adult cardiomyocytes. (United States)

    Singal, Tushi; Dhalla, Naranjan S; Tappia, Paramjit S


    By employing a pharmacological approach, we have shown that phospholipase C (PLC) activity is involved in the regulation of gene expression of transcription factors such as c-Fos and c-Jun in cardiomyocytes in response to norepinephrine (NE). However, there is no information available regarding the identity of specific PLC isozymes involved in the regulation of c-Fos and c-Jun or on the involvement of these transcription factors in PLC isozyme gene expression in adult cardiomyocytes. In this study, transfection of cardiomyocytes with PLC isozyme specific siRNA was found to prevent the NE-mediated increases in the corresponding PLC isozyme gene expression, protein content and activity. Unlike PLC gamma(1) gene, silencing of PLC beta(1), beta(3) and delta(1) genes with si RNA prevented the increases in c-Fos and c-Jun gene expression in response to NE. On the other hand, transfection with c-Jun si RNA suppressed the NE-induced increase in c-Jun as well as PLC beta(1), beta(3) and delta(1) gene expression, but had no effect on PLC gamma(1) gene expression. Although transfection of cardiomyocytes with c-Fos si RNA prevented NE-induced expression of c-Fos, PLC beta(1) and PLC beta(3) genes, it did not affect the increases in PLC delta(1) and PLC gamma(1) gene expression. Silencing of either c-Fos or c-Jun also depressed the NE-mediated increases in PLC beta(1), beta(3) and gamma(1) protein content and activity in an isozyme specific manner. Furthermore, silencing of all PLC isozymes as well as of c-Fos and c-Jun resulted in prevention of the NE-mediated increase in atrial natriuretic factor gene expression. These findings, by employing gene silencing techniques, demonstrate that there occurs a reciprocal regulation of transcription factors and specific PLC isozyme gene expression in cardiomyocytes.

  9. NF-κB (p65) negatively regulates myocardin-induced cardiomyocyte hypertrophy through multiple mechanisms. (United States)

    Liao, Xing-Hua; Wang, Nan; Zhao, Dong-Wei; Zheng, De-Liang; Zheng, Li; Xing, Wen-Jing; Zhou, Hao; Cao, Dong-Sun; Zhang, Tong-Cun


    Myocardin is well known to play a key role in the development of cardiomyocyte hypertrophy. But the exact molecular mechanism regulating myocardin stability and transactivity to affect cardiomyocyte hypertrophy has not been studied clearly. We now report that NF-κB (p65) can inhibit myocardin-induced cardiomyocyte hypertrophy. Then we explore the molecular mechanism of this response. First, we show that p65 can functionally repress myocardin transcriptional activity and also reduce the protein expression of myocardin. Second, the function of myocardin can be regulated by epigenetic modifications. Myocardin sumoylation is known to transactivate cardiac genes, but whether p65 can inhibit SUMO modification of myocardin is still not clear. Our data show that p65 weakens myocardin transcriptional activity through attenuating SUMO modification of myocardin by SUMO1/PIAS1, thereby impairing myocardin-mediated cardiomyocyte hypertrophy. Furthermore, the expression of myocardin can be regulated by several microRNAs, which play important roles in the development and function of the heart and muscle. We next investigated potential role of miR-1 in cardiac hypotrophy. Our results show that p65 can upregulate the level of miR-1 and miR-1 can decrease protein expression of myocardin in cardiac myocytes. Notably, miR-1 expression is also controlled by myocardin, leading to a feedback loop. These data thus provide important and novel insights into the function that p65 inhibits myocardin-mediated cardiomyocyte hypertrophy by downregulating the expression and SUMO modification of myocardin and enhancing the expression of miR-1.

  10. Temporal changes in integrin-mediated cardiomyocyte adhesion secondary to chronic cardiac volume overload in rats (United States)

    Stewart, James A.; Gardner, Jason D.; Brower, Gregory L.


    Previous studies have established integrins as cell surface receptors that mediate cardiomyocyte-extracellular matrix (ECM) attachments. This study sought to determine the contributions of the myocardial β1- and β3-integrin subunits to ventricular dilatation and coronary flow regulation using a blood-perfused isolated heart preparation. Furthermore, cardiomyocyte adhesion to collagen types I and IV, fibronectin, and laminin with and without a β1-integrin subunit neutralizing antibody was assessed during the course of remodeling secondary to a sustained cardiac volume overload, including the onset of heart failure. Isolated cardiomyocytes were obtained during the initial, compensated, and decompensated phases of remodeling resulting from an aortocaval fistula created in 8-wk-old male Sprague-Dawley rats. Blocking the β1-integrin subunit in isolated normal hearts produced ventricular dilatation, whereas this was not the case when the β3-subunit was blocked. Substantial reductions in cardiomyocyte adhesion coincided with the previously documented development of ventricular dilatation and decreased contractility postfistula, with the β1-integrin contribution to adhesion ranging from 28% to 73% over the course of remodeling being essentially substrate independent. In contrast, both integrin subunits were found to be involved in regulating coronary vascular resistance. It is concluded that marked reductions in integrin-mediated cardiomyocyte adhesion to the ECM play a significant role in the progression of adverse myocardial remodeling that leads to heart failure. Furthermore, although both the β1- and β3-integrin subunits were involved in regulating coronary vascular resistance, only inhibition of β1-integrin-mediated adhesion resulted in ventricular dilatation of the normal heart. PMID:24163072

  11. Beat Rate Variability in Murine Embryonic Stem Cell-Derived Cardiomyocytes: Effect of Antiarrhythmic Drugs

    Directory of Open Access Journals (Sweden)

    Julius Niehoff


    Full Text Available Background/Aims: Heart rate variability (HRV refers to the fluctuation of the time interval between consecutive heartbeats in humans. It has recently been discovered that cardiomyocytes derived from human embryonic and induced pluripotent stem cells show beat rate variability (BRV that is similar to the HRV in humans. In the present study, clinical aspects of HRV were transferred to an in vitro model. The aims of the study were to explore the BRV in murine embryonic stem cell (mESC-derived cardiomyocytes and to demonstrate the influence of antiarrhythmic drugs on BRV as has been shown in clinical trials previously. Methods: The Microelectrode Array (MEA technique was used to perform short-term recordings of extracellular field potentials (FPs of spontaneously beating cardiomyocytes derived from mESCs (D3 cell line, αPig-44. Offline analysis was focused on time domain and nonlinear methods. Results: The Poincaré-Plot analysis of measurements without pharmacological intervention revealed that three different shapes of scatter plots occurred most frequently. Comparable shapes have been described in clinical studies before. The antiarrhythmic drugs Ivabradine, Verapamil and Sotalol augmented BRV, whereas Flecainide decreased BRV parameters at low concentrations (SDSD 79.0 ± 8.7% of control at 10-9 M, p -5 M, p Conclusions: Spontaneously beating cardiomyocytes derived from mESCs showed BRV that appears to be similar to the HRV known from humans. Antiarrhythmic drugs affected BRV parameters similar to clinical observations. Therefore, our study demonstrates that this in vitro model can contribute to a better understanding of electrophysiological properties of mESC-derived cardiomyocytes and might serve as a valuable tool for drug safety screening.

  12. Nuclear Factor of Activated T cells (NFAT): key regulator of cardiac hypertrophy and skeletal muscle adaptation

    NARCIS (Netherlands)

    Bourajjaj, M.


    Despite significant progress in the prevention and treatment of cardiovascular diseases, heart failure is still a leading cause of morbidity and mortality in industrial countries. Sustained cardiac hypertrophy, which is defined as an increase in heart size resulting from an increase in cardiomyocyte

  13. Nuclear moments

    CERN Document Server

    Kopferman, H; Massey, H S W


    Nuclear Moments focuses on the processes, methodologies, reactions, and transformations of molecules and atoms, including magnetic resonance and nuclear moments. The book first offers information on nuclear moments in free atoms and molecules, including theoretical foundations of hyperfine structure, isotope shift, spectra of diatomic molecules, and vector model of molecules. The manuscript then takes a look at nuclear moments in liquids and crystals. Discussions focus on nuclear paramagnetic and magnetic resonance and nuclear quadrupole resonance. The text discusses nuclear moments and nucl

  14. Nuclear safeguards; Salvaguardias nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Zurron, O.


    Safeguards control at the Juzbado Plant is implemented through the joint IAEA/EURATOM partnership approach in force within the European Union for all nuclear facilities. this verification agreement is designed to minimize burden on the operators whilst ensuring that both inspectorate achieve the objectives related to their respective safeguards regimes. This paper outlines the safeguards approaches followed by the inspectorate and the particularities of the Juzbado Plants nuclear material accountancy and control system. (Authors)

  15. Assessment of the cellular and electrophysiological response of cardiomyocytes to radiation (United States)

    Helm, Alexander; Ritter, Sylvia; Durante, Marco; Friess, Johannes; Thielemann, Christiane; Mr; Frank, Simon

    Cardiac disease is considered as a late effect resulting from an exposure during long-term space missions. Yet, the underlying mechanisms and the impact of radiation quality and dose are not well understood. To address this topic, we used cardiomyocytes derived from mouse embryonic stem cells (mESC) as a model system. This model has already been successfully used for cardiotoxicity screening of new drugs. Both, the cellular and electrophysiological response to X-ray irradiation were examined. Cellular endpoints such as the induction of micronuclei, apoptosis, number of binucleated cells and expression of connexin43 (Cx 43) were analyzed by standard techniques. For electrophysiological studies a microelectrode array (MEA) was used allowing non-invasive recordings of electrical signals such as signal amplitude and shape, beat rate and conduction velocity. Data analysis was performed using the MATLAB based software DrCell. As a first approach, cardiomyocytes were generated by differentiation of mESC via the formation of embryoid bodies. However, the system proved to be unsuitable due to large intra- and inter-sample variations. In consecutive experiments we used commercially available Cor.At cells, i.e. a pure culture of mESC derived cardiomyocytes. For the analysis of cellular and electrophysiological endpoints Cor.At cells were seeded onto chamber slides or MEA chips, respectively. Irradiation with 0.5 and 2 Gy X-rays (250 kV, 16 mA) was performed two days after seeding. At that time cardiomyocytes are electrically coupled through gap junctions and form a spontaneously beating network. Samples were examined up to four days after exposure. Analysis of the electrophysiological data revealed only minor differences between controls and X-irradiated samples indicating the functionality of cardiomyocytes is not within the dose range examined. Currently, further experiments are performed to statistically verify this finding. Additionally, the expression of Cx 43, a major

  16. Differential gene expressions in atrial and ventricular myocytes: insights into the road of applying embryonic stem cell-derived cardiomyocytes for future therapies. (United States)

    Ng, Sze Ying; Wong, Chun Kit; Tsang, Suk Ying


    Myocardial infarction has been the leading cause of morbidity and mortality in developed countries over the past few decades. The transplantation of cardiomyocytes offers a potential method of treatment. However, cardiomyocytes are in high demand and their supply is extremely limited. Embryonic stem cells (ESCs), which have been isolated from the inner cell mass of blastocysts, can self-renew and are pluripotent, meaning they have the ability to develop into any type of cell, including cardiomyocytes. This suggests that ESCs could be a good source of genuine cardiomyocytes for future therapeutic purposes. However, problems with the yield and purity of ESC-derived cardiomyocytes, among other hurdles for the therapeutic application of ESC-derived cardiomyocytes (e.g., potential immunorejection and tumor formation problems), need to be overcome before these cells can be used effectively for cell replacement therapy. ESC-derived cardiomyocytes consist of nodal, atrial, and ventricular cardiomyocytes. Specifically, for treatment of myocardial infarction, transplantation of a sufficient quantity of ventricular cardiomyocytes, rather than nodal or atrial cardiomyocytes, is preferred. Hence, it is important to find ways of increasing the yield and purity of specific types of cardiomyocytes. Atrial and ventricular cardiomyocytes have differential expression of genes (transcription factors, structural proteins, ion channels, etc.) and are functionally distinct. This paper presents a thorough review of differential gene expression in atrial and ventricular myocytes, their expression throughout development, and their regulation. An understanding of the molecular and functional differences between atrial and ventricular myocytes allows discussion of potential strategies for preferentially directing ESCs to differentiate into chamber-specific cells, or for fine tuning the ESC-derived cardiomyocytes into specific electrical and contractile phenotypes resembling chamber

  17. Identification and purification of human induced pluripotent stem cell-derived atrial-like cardiomyocytes based on sarcolipin expression.

    Directory of Open Access Journals (Sweden)

    Rebecca Josowitz

    Full Text Available The use of human stem cell-derived cardiomyocytes to study atrial biology and disease has been restricted by the lack of a reliable method for stem cell-derived atrial cell labeling and purification. The goal of this study was to generate an atrial-specific reporter construct to identify and purify human stem cell-derived atrial-like cardiomyocytes. We have created a bacterial artificial chromosome (BAC reporter construct in which fluorescence is driven by expression of the atrial-specific gene sarcolipin (SLN. When purified using flow cytometry, cells with high fluorescence specifically express atrial genes and display functional calcium handling and electrophysiological properties consistent with atrial cardiomyocytes. Our data indicate that SLN can be used as a marker to successfully monitor and isolate hiPSC-derived atrial-like cardiomyocytes. These purified cells may find many applications, including in the study of atrial-specific pathologies and chamber-specific lineage development.

  18. Spatially Resolved Genome-wide Transcriptional Profiling Identifies BMP Signaling as Essential Regulator of Zebrafish Cardiomyocyte Regeneration. (United States)

    Wu, Chi-Chung; Kruse, Fabian; Vasudevarao, Mohankrishna Dalvoy; Junker, Jan Philipp; Zebrowski, David C; Fischer, Kristin; Noël, Emily S; Grün, Dominic; Berezikov, Eugene; Engel, Felix B; van Oudenaarden, Alexander; Weidinger, Gilbert; Bakkers, Jeroen


    In contrast to mammals, zebrafish regenerate heart injuries via proliferation of cardiomyocytes located near the wound border. To identify regulators of cardiomyocyte proliferation, we used spatially resolved RNA sequencing (tomo-seq) and generated a high-resolution genome-wide atlas of gene expression in the regenerating zebrafish heart. Interestingly, we identified two wound border zones with distinct expression profiles, including the re-expression of embryonic cardiac genes and targets of bone morphogenetic protein (BMP) signaling. Endogenous BMP signaling has been reported to be detrimental to mammalian cardiac repair. In contrast, we find that genetic or chemical inhibition of BMP signaling in zebrafish reduces cardiomyocyte dedifferentiation and proliferation, ultimately compromising myocardial regeneration, while bmp2b overexpression is sufficient to enhance it. Our results provide a resource for further studies on the molecular regulation of cardiac regeneration and reveal intriguing differential cellular responses of cardiomyocytes to a conserved signaling pathway in regenerative versus non-regenerative hearts.

  19. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shan-Li [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Sun, Ming-Rui [Department of Pharmacology, Qiqihaer Medical College, Qiqihaer 160001 (China); Li, Ting-Ting; Yin, Xin [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Xu, Chang-Qing [Department of Pathophysiology, Harbin Medical University, Harbin 150086 (China); Sun, Yi-Hua, E-mail: [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China)


    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, GdCl{sub 3

  20. A role for Gcn5 in cardiomyocyte differentiation of rat mesenchymal stem cells. (United States)

    Li, Li; Zhu, Jing; Tian, Jie; Liu, Xiaoyan; Feng, Chuan


    MSCs possess the capacity of self-renewal and potential of differentiation into various kinds of specialized tissue cells including myocardiocytes. From self-renewing to oriented differentiation, chromatin is remodeled into heritable states that allow activation or maintain the repression of regulatory genes, which means specific genes in self-renewing switched off and specific genes in oriented differentiation activated (Bernstein et al. Cell 125:315-326, 2006). These epigenetic states are established and controlled largely by specific patterns of histone posttranslational modifications, in particular, histone acetylation (Li Nat Rev Genet 3:662-673, 2002). In cardiomyocyte differentiation of rat MSCs, we focused on Gcn5, which linked a known transcriptional coactivator with catalytic histone acetyltransferase activity (Brownell et al. Cell 84:843-851, 1996). To clarify participatory in vivo role of Gcn5, using an RNA interference (RNAi) strategy employing shRNA to specifically knockdown Gcn5 expression in MSCs, we found that HAT activity altered dynamically depended on the inhibition of Gcn5 during MSCs differentiation. Chromatin immunoprecipitation (ChIP) assay showed the increased binding of acetyl histone H3 to the early cardiomyocyte-specific genes GATA4 and NKx2.5 promoters in cardiomyocyte differentiation of MSCs by 5-azacytidine inducing, whereas the decreased binding with lower Gcn5 expression. Cell ultrastructure analysis revealed that MSCs induced by 5-azacytidine possess morphological characteristics of cardiomyocyte cells. The shape of MSCs transfected by Gcn5 RNAi was similar to normal MSCs, but the chromatin showed heavy electron-density and a hard-packed structure. This intermediate state of chromatin may be an inactive part of MSCs differentiation. These results demonstrate that Gcn5, possessing acetyltransferase activity, is involved in regulating chromatin configuration around GATA4 and NKx2.5 in cardiomyocyte differentiation of rat MSCs by

  1. Ultrastructure of Cardiomyocytes and Blood Capillary Endotheliocytes in the Myocardium under Conditions of Experimental Mechanical Injury to the Heart. (United States)

    Novoselov, V P; Savchenko, S V; Porvin, A N; Koshlyak, D A; Nadev, A P; Ageeva, T A; Chikinev, Yu V; Polyakevich, A S


    We studied ultrastructural changes in cardiomyocytes and blood capillary endotheliocytes in the ventricular myocardium in response to mechanical injury of the heart of varying severity in Wistar rats. Acute alterative changes in cardiomyocyte and endotheliocyte ultrastructure indicate impairment of the energy-producing, contractile, and protein-synthesizing functions of the cells after mechanical injury. These disorders play the key role in the development of acute contractile insufficiency of the myocardium in mechanical injury to the heart.

  2. Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes


    Jan David Kijlstra; Dongjian Hu; Nikhil Mittal; Eduardo Kausel; Peter van der Meer; Arman Garakani; Ibrahim J. Domian


    Summary The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can b...

  3. Thymosin beta 4 protects cardiomyocytes from oxidative stress by targeting anti-oxidative enzymes and anti-apoptotic genes.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available BACKGROUND: Thymosin beta-4 (Tβ4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. The mechanism by which Tβ4 modulates cardiac protection under oxidative stress is not known. The purpose of this study is to dissect the cardioprotective mechanism of Tβ4 on H(2O(2 induced cardiac damage. METHODS: Rat neonatal cardiomyocytes with or without Tβ4 pretreatment were exposed to H(2O(2 and expression of antioxidant, apoptotic, and anti-inflammatory genes was evaluated by quantitative real-time PCR and western blotting. ROS levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant, anti-inflammatory and antiapoptotic genes were silenced by siRNA transfections in neonatal cardiomyocytes and effect of Tβ4 on H(2O(2-induced cardiac damage was evaluated. RESULTS: Pre-treatment of Tβ4 resulted in reduction of the intracellular ROS levels induced by H(2O(2 in cardiomyocytes. Tβ4 pretreatment also resulted in an increase in the expression of antiapoptotic proteins and reduction of Bax/BCl(2 ratio in the cardiomyocytes. Pretreatment with Tβ4 resulted in stimulating the expression of antioxidant enzymes copper/zinc SOD and catalase in cardiomyocytes at both transcription and translation levels. Tβ4 treatment resulted in the increased expression of anti-apoptotic and anti-inflammatory genes. Silencing of Cu/Zn SOD and catalase gene resulted in apoptotic cell death in the cardiomyocytes which was prevented by treatment with Tβ4. CONCLUSION: This is the first report that demonstrates the effect of Tβ4 on cardiomyocytes and its capability to selectively upregulate anti-oxidative enzymes, anti-inflammatory genes, and antiapoptotic enzymes in the neonatal cardiomyocytes thus preventing cell death thereby protecting the myocardium. Tβ4 treatment resulted in decreased oxidative stress and inflammation in the

  4. Ca2+-currents in human induced pluripotent stem cell-derived cardiomyocytes - effects of two different culture conditions

    Directory of Open Access Journals (Sweden)

    Ahmet Umur Uzun


    Full Text Available Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM provide a unique opportunity to study human heart physiology and pharmacology and repair injured hearts. The suitability of hiPSC-CM critically depends on how closely they share physiological properties of human adult cardiomyocytes (CM. Here we investigated whether a 3D engineered heart tissue (EHT culture format favors maturation and addressed the L-type Ca2+-current (ICa,L as a readout. The results were compared with hiPSC-CM cultured in conventional monolayer (ML and to our previous data from human adult atrial and ventricular CM obtained when identical patch-clamp protocols were used. HiPSC-CM were 2-3 fold smaller than adult CM, independently of culture format (capacitance ML 45±1 pF (n=289, EHT 45±1 pF (n=460, atrial CM 87±3 pF (n=196, ventricular CM 126±8 pF (n=50. Only 88% of ML cells showed ICa, but all EHT. Basal ICa density was 10±1 pA/pF (n=207 for ML and 12±1 pA/pF (n=361 for EHT and was larger than in adult CM (7±1 pA/pF (p<0.05, n=196 for atrial CM and 6±1 pA/pF (p<0.05, n=47 for ventricular CM. However, ML and EHT showed robust T-type Ca2+-currents (ICa,T. While (--Bay K 8644, that activates ICa,L directly, increased ICa,L to the same extent in ML and EHT, β1- and β2-adrenoceptor effects were marginal in ML, but of same size as (--Bay K 8644 in EHT. The opposite was true for serotonin receptors. Sensitivity to β1 and β2-adrenoceptor stimulation was the same in EHT as in adult CM (-logEC50: 5.9 and 6.1 for norepinephrine (NE and epinephrine (Epi, respectively, but very low concentrations of Rp-8-Br-cAMPS were sufficient to suppress effects (-logEC50: 5.3 and 5.3 respectively for NE and Epi. Taken together, hiPSC-CM express ICa,L at the same density as human adult CM, but, in contrast, possess robust ICa,T. Increased effects of catecholamines in EHT suggest more efficient maturation.

  5. Enhanced currents through L-type calcium channels in cardiomyocytes disturb the electrophysiology of the dystrophic heart. (United States)

    Koenig, Xaver; Rubi, Lena; Obermair, Gerald J; Cervenka, Rene; Dang, Xuan B; Lukacs, Peter; Kummer, Stefan; Bittner, Reginald E; Kubista, Helmut; Todt, Hannes; Hilber, Karlheinz


    Duchenne muscular dystrophy (DMD), induced by mutations in the gene encoding for the cytoskeletal protein dystrophin, is an inherited disease characterized by progressive muscle weakness. Besides the relatively well characterized skeletal muscle degenerative processes, DMD is also associated with cardiac complications. These include cardiomyopathy development and cardiac arrhythmias. The current understanding of the pathomechanisms in the heart is very limited, but recent research indicates that dysfunctional ion channels in dystrophic cardiomyocytes play a role. The aim of the present study was to characterize abnormalities in L-type calcium channel function in adult dystrophic ventricular cardiomyocytes. By using the whole cell patch-clamp technique, the properties of currents through calcium channels in ventricular cardiomyocytes isolated from the hearts of normal and dystrophic adult mice were compared. Besides the commonly used dystrophin-deficient mdx mouse model for human DMD, we also used mdx-utr mice, which are both dystrophin- and utrophin-deficient. We found that calcium channel currents were significantly increased, and channel inactivation was reduced in dystrophic cardiomyocytes. Both effects enhance the calcium influx during an action potential (AP). Whereas the AP in dystrophic mouse cardiomyocytes was nearly normal, implementation of the enhanced dystrophic calcium conductance in a computer model of a human ventricular cardiomyocyte considerably prolonged the AP. Finally, the described dystrophic calcium channel abnormalities entailed alterations in the electrocardiograms of dystrophic mice. We conclude that gain of function in cardiac L-type calcium channels may disturb the electrophysiology of the dystrophic heart and thereby cause arrhythmias.

  6. Robust Generation of Cardiomyocytes from Human iPS Cells Requires Precise Modulation of BMP and WNT Signaling. (United States)

    Kadari, Asifiqbal; Mekala, SubbaRao; Wagner, Nicole; Malan, Daniela; Köth, Jessica; Doll, Katharina; Stappert, Laura; Eckert, Daniela; Peitz, Michael; Matthes, Jan; Sasse, Philipp; Herzig, Stefan; Brüstle, Oliver; Ergün, Süleyman; Edenhofer, Frank


    Various strategies have been published enabling cardiomyocyte differentiation of human induced pluripotent stem (iPS) cells. However the complex nature of signaling pathways involved as well as line-to-line variability compromises the application of a particular protocol to robustly obtain cardiomyocytes from multiple iPS lines. Hence it is necessary to identify optimized protocols with alternative combinations of specific growth factors and small molecules to enhance the robustness of cardiac differentiation. Here we focus on systematic modulation of BMP and WNT signaling to enhance cardiac differentiation. Moreover, we improve the efficacy of cardiac differentiation by enrichment via lactate. Using our protocol we show efficient derivation of cardiomyocytes from multiple human iPS lines. In particular we demonstrate cardiomyocyte differentiation within 15 days with an efficiency of up to 95 % as judged by flow cytometry staining against cardiac troponin T. Cardiomyocytes derived were functionally validated by alpha-actinin staining, transmission electron microscopy as well as electrophysiological analysis. We expect our protocol to provide a robust basis for scale-up production of functional iPS cell-derived cardiomyocytes that can be used for cell replacement therapy and disease modeling.

  7. FGF1-mediated cardiomyocyte cell cycle reentry depends on the interaction of FGFR-1 and Fn14. (United States)

    Novoyatleva, Tatyana; Sajjad, Amna; Pogoryelov, Denys; Patra, Chinmoy; Schermuly, Ralph T; Engel, Felix B


    Fibroblast growth factors (FGFs) signal through FGF receptors (FGFRs) mediating a broad range of cellular functions during embryonic development, as well as disease and regeneration during adulthood. Thus, it is important to understand the underlying molecular mechanisms that modulate this system. Here, we show that FGFR-1 can interact with the TNF receptor superfamily member fibroblast growth factor-inducible molecule 14 (Fn14) resulting in cardiomyocyte cell cycle reentry. FGF1-induced cell cycle reentry in neonatal cardiomyocytes could be blocked by Fn14 inhibition, while TWEAK-induced cell cycle activation was inhibited by blocking FGFR-1 signaling. In addition, costimulation experiments revealed a synergistic effect of FGF1 and TWEAK in regard to cardiomyocyte cell cycle induction via PI3K/Akt signaling. Overexpression of Fn14 with either FGFR-1 long [FGFR-1(L)] or FGFR-1 short [FGFR-1(S)] isoforms resulted after FGF1/TWEAK stimulation in cell cycle reentry of >40% adult cardiomyocytes. Finally, coimmunoprecipitation and proximity ligation assays indicated that endogenous FGFR-1 and Fn14 interact with each other in cardiomyocytes. This interaction was strongly enhanced in the presence of their corresponding ligands, FGF1 and TWEAK. Taken together, our data suggest that FGFR-1/Fn14 interaction may represent a novel endogenous mechanism to modulate the action of these receptors and their ligands and to control cardiomyocyte cell cycle reentry.

  8. In vitro detection of cardiotoxins or neurotoxins affecting ion channels or pumps using beating cardiomyocytes as alternative for animal testing. (United States)

    Nicolas, Jonathan; Hendriksen, Peter J M; de Haan, Laura H J; Koning, Rosella; Rietjens, Ivonne M C M; Bovee, Toine F H


    The present study investigated if and to what extent murine stem cell-derived beating cardiomyocytes within embryoid bodies can be used as a broad screening in vitro assay for neurotoxicity testing, replacing for example in vivo tests for marine neurotoxins. Effect of nine model compounds, acting on either the Na(+), K(+), or Ca(2+) channels or the Na(+)/K(+) ATP-ase pump, on the beating was assessed. Diphenhydramine, veratridine, isradipine, verapamil and ouabain induced specific beating arrests that were reversible and none of the concentrations tested induced cytotoxicity. Three K(+) channel blockers, amiodarone, clofilium and sematilide, and the Na(+)/K(+) ATPase pump inhibitor digoxin had no specific effect on the beating. In addition, two marine neurotoxins i.e. saxitoxin and tetrodotoxin elicited specific beating arrests in cardiomyocytes. Comparison of the results obtained with cardiomyocytes to those obtained with the neuroblastoma neuro-2a assay revealed that the cardiomyocytes were generally somewhat more sensitive for the model compounds affecting Na(+) and Ca(2+) channels, but less sensitive for the compounds affecting K(+) channels. The stem cell-derived cardiomyocytes were not as sensitive as the neuroblastoma neuro-2a assay for saxitoxin and tetrodotoxin. It is concluded that the murine stem cell-derived beating cardiomyocytes provide a sensitive model for detection of specific neurotoxins and that the neuroblastoma neuro-2a assay may be a more promising cell-based assay for the screening of marine biotoxins.

  9. Nuclear ventriculography (United States)

    ... ventriculography (RNV); Multiple gate acquisition scan (MUGA); Nuclear cardiology; Cardiomyopathy - nuclear ventriculography ... 56. Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. In: Bonow RO, Mann DL, Zipes DP, Libby ...

  10. Nuclear Medicine. (United States)

    Badawi, Ramsey D.


    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  11. Peptidomic Analysis of Cultured Cardiomyocytes Exposed to Acute Ischemic-Hypoxia

    Directory of Open Access Journals (Sweden)

    Lijie Wu


    Full Text Available Background: Acute Myocardial Infarction (AMI is a life-threatening cardiovascular disease involving disruption of blood flow to the heart, consequent tissue damage, and sometimes death. Peptidomics, an emerging branch of proteomics, has attracted wide attention. Methods: A comparative peptidomic profiling was used to explore changes induced by acute ischemic-hypoxia in primary cultured neonatal rat myocardial cells. Analysis of six-plex tandem mass tag (TMT labelled peptides was performed using nanoflow liquid chromatography coupled online with an LTQ-Orbitrap Velos mass spectrometer. Results: A total of 220 differentially expressed peptides originating from 119 proteins were identified, of which 37 were upregulated and 183 were downregulated in cardiomyocytes exposed to hypoxia/ischemia conditions. Many of the identified peptides were derived from functional domains of proteins closely associated with cardiomyocyte structure or AMI. Conclusion: Numerous peptides may be involved in process of AMI. These results pave the way for future functional studies of the identified peptides.

  12. Functional state of rat cardiomyocytes and blood antioxidant system under psycho-emotional stress

    Institute of Scientific and Technical Information of China (English)

    Zurab Kuchukashvili; Ketevan Menabde; Matrona Chachua; George Burjanadze; Manana Chipashvili; Nana Koshoridze


    We studied the functionality of the antioxidant system in laboratory rat cardiomyocytes and blood under psychoemotional stress.It was found that 40-day isolation and violation of diurnal cycle among the animals were accompanied by the intensification of lipid peroxidation process and marked with a reduced activity of antioxidant system enzymes, such as catalase and superoxide dismutase activity.The results suggested that psycho-emotional stress was accompanied by oxidative stress, causing a reduction in the intensity of energy metabolism in cardiomyocytes, which was further strengthened by the fact that the activity of the enzymes involved in ATP synthesis in mitochondria was reduced.Based on the results, we proposed that psychological stress is one of the factors contributing to the development of various cardiac diseases.

  13. Thymic derived iPs cells can be differentiated into cardiomyocytes. (United States)

    Li, Jian; Cao, Yin-yin; Ma, Xiao-jing; Liu, Fang; Li, Shuo-lin; Zhang, Jing; Gao, Yan; Wang, Hui-jun; Yuan, Yuan; Ma, Duan; Huang, Guo-ying


    Ventricular septal defect (VSD) is one of the common congenital heart malformations. Several factors lead to the development of VSD, including familial causes, exposure to certain drugs, infectious agents, and maternal metabolic disturbances. We considered that induced pluripotent stem (iPS) cells derived from VSD patients can be used to study the origin and pathogenesis of the VSD. Here, we show generation and cardiomyocyte differentiation potential of iPS cells from thymic epithelial cells of a patient with VSD (TECs-VSD) by overexpressing the four factors: OCT4, SOX2, NANOG, and LIN28 with lentiviral vectors. The self-renewal and pluripotency of the VSD-iPS cells was verified in iPS cells by in vitro expression of pluripotency markers and formation of teratoma in vivo. iPS cell lines from VSD patients differentiated into functional cardiomyocytes can serve as a model system for studying the pathophysiology and identifying etiology of VSD.


    Institute of Scientific and Technical Information of China (English)

    周文华; 肖殿模; 郑超强; 王小鲁; 张俊保


    Cardiomyocytes isolated from neonatal rats were treated with phorbol-12-myristate-13-acetate(PMA) ranging from 10-11 to 10-7mol/L for 20 min,causing cytosol protein kinase A (PKA) activity to decrease while particulate PKA activity increase in a concentration-dependent manner.The change of PKA activity induced by PMA was abolished completely by pretreatment of polymyxin B or depletion of protein kinase C (PKC).Type Ⅱ PKA activity in particulate fraction was enhanced remarkably,while that of type I PKA was not altered when the cells were treated with 100 nmol/L PMA.The results suggested that subcellular distribution and activity of PKA in cardiomyocytes may be regulated by PKC.

  15. The primary cilium coordinates early cardiogenesis and hedgehog signaling in cardiomyocyte differentiation

    DEFF Research Database (Denmark)

    Clement, Christian A; Kristensen, Stine G; Møllgård, Kjeld


    Defects in the assembly or function of primary cilia, which are sensory organelles, are tightly coupled to developmental defects and diseases in mammals. Here, we investigated the function of the primary cilium in regulating hedgehog signaling and early cardiogenesis. We report that the pluripotent...... P19.CL6 mouse stem cell line, which can differentiate into beating cardiomyocytes, forms primary cilia that contain essential components of the hedgehog pathway, including Smoothened, Patched-1 and Gli2. Knockdown of the primary cilium by Ift88 and Ift20 siRNA or treatment with cyclopamine......, an inhibitor of Smoothened, blocks hedgehog signaling in P19.CL6 cells, as well as differentiation of the cells into beating cardiomyocytes. E11.5 embryos of the Ift88(tm1Rpw) (Ift88-null) mice, which form no cilia, have ventricular dilation, decreased myocardial trabeculation and abnormal outflow tract...

  16. Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular applications

    Directory of Open Access Journals (Sweden)

    Stout DA


    Full Text Available David A Stout,1,2 Jennie Yoo,2 Adriana Noemi Santiago-Miranda,3 Thomas J Webster1,41School of Engineering, 2Division of Biology and Medicine, Brown University, Providence, RI, 3Department of Chemical Engineering, University of Puerto Rico, Mayagües, PR, 4Department of Orthopedics, Brown University, Providence, RI, USABackground: Recent advances in nanotechnology (materials with at least one dimension between 1 nm and 100 nm have led to the use of nanomaterials in numerous medical device applications. Recently, nanomaterials have been used to create innovative biomaterials for cardiovascular applications. Specifically, carbon nanofibers (CNF embedded in poly(lactic-co-glycolic-acid (PLGA have been shown to promote cardiomyocyte growth compared with conventional polymer substrates, but the mechanisms involved in such events remain unknown. The aim of this study was to determine the basic mechanism of cell growth on these novel nanocomposites.Methods: CNF were added to biodegradable PLGA (50:50 PGA:PLA weight ratio to increase the conductivity, mechanical and cytocompatibility properties of pure PLGA. For this reason, different PLGA to CNF ratios (100:0, 75:25, 50:50, 25:75, and 0:100 wt% with different PLGA densities (0.1, 0.05, 0.025, and 0.0125 g/mL were used, and their compatibility with cardiomyocytes was assessed.Results: Throughout all the cytocompatibility experiments, cardiomyocytes were viable and expressed important biomarkers, including cardiac troponin T, connexin-43, and alpha-sarcomeric actin (α-SCA. Adhesion and proliferation experiments indicated that a PLGA density of 0.025 g/mL with a PLGA to CNF ratio of 75:25 and 50:50 (wt% promoted the best overall cell growth, ie, a 55% increase in cardiomyocyte density after 120 hours compared with pure PLGA and a 75% increase compared with the control at the same time point for 50:50 (wt%. The PLGA:CNF materials were conductive, and their conductivity increased as greater amounts of CNF

  17. Regulatory volume decrease in cardiomyocytes is modulated by calcium influx and reactive oxygen species. (United States)

    Rojas-Rivera, Diego; Díaz-Elizondo, Jessica; Parra, Valentina; Salas, Daniela; Contreras, Ariel; Toro, Barbra; Chiong, Mario; Olea-Azar, Claudio; Lavandero, Sergio


    We investigated the role of Ca(2+) in generating reactive oxygen species (ROS) induced by hyposmotic stress (Hypo) and its relationship to regulatory volume decrease (RVD) in cardiomyocytes. Hypo-induced increases in cytoplasmic and mitochondrial Ca(2+). Nifedipine (Nife) inhibited both Hypo-induced Ca(2+) and ROS increases. Overexpression of catalase (CAT) induced RVD and a decrease in Hypo-induced blebs. Nife prevented CAT-dependent RVD activation. These results show a dual role of Hypo-induced Ca(2+) influx in the control of cardiomyocyte viability. Hypo-induced an intracellular Ca(2+) increase which activated RVD and inhibited necrotic blebbing thus favoring cell survival, while simultaneously increasing ROS generation, which in turn inhibited RVD and induced necrosis.

  18. Human Pluripotent Stem Cell-Derived Cardiomyocytes as Research and Therapeutic Tools

    Directory of Open Access Journals (Sweden)

    Ivana Acimovic


    Full Text Available Human pluripotent stem cells (hPSCs, namely, embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs, with their ability of indefinite self-renewal and capability to differentiate into cell types derivatives of all three germ layers, represent a powerful research tool in developmental biology, for drug screening, disease modelling, and potentially cell replacement therapy. Efficient differentiation protocols that would result in the cell type of our interest are needed for maximal exploitation of these cells. In the present work, we aim at focusing on the protocols for differentiation of hPSCs into functional cardiomyocytes in vitro as well as achievements in the heart disease modelling and drug testing on the patient-specific iPSC-derived cardiomyocytes (iPSC-CMs.

  19. Stimulation of human embryonic stem cell-derived cardiomyocytes on thin-film microelectrodes. (United States)

    Viitanen, Jouko; Heimala, Päivi; Hokkanen, Ari; Iljin, Kristiina; Kerkelä, Erja; Kolari, Kai; Kattelus, Hannu


    We describe successful long-term stimulation of human embryonic stem cell-derived cardiomyocyte clusters on thin-film microelectrode structures in vitro. Interdigitated electrode structures were constructed using plain titanium on glass as the electrode material. Titanium rapidly oxidizes in atmospheric conditions to produce an insulating TiO(χ) layer with high relative permittivity. Capacitive coupling to the incubation medium and to the cells adherent to the electrodes was still efficient, and the dielectric layer prevented electrolysis, allowing a wider window of possible stimulation amplitudes to be used, relative to conducting surfaces. A common hypothesis suggests that to achieve proper differentiation of electroactive cells from the stem cells electrical stimuli are also needed. Spontaneously beating cardiomyocyte clusters were seeded on the glass-electrode surfaces, and we successfully altered and resynchronized a clearly different beat interval. The new pace was reliably maintained for extended periods of several tens of minutes.

  20. Angiotensin II stimulates hyperplasia but not hypertrophy in immature ovine cardiomyocytes. (United States)

    Sundgren, N C; Giraud, G D; Stork, P J S; Maylie, J G; Thornburg, K L


    Rat and sheep cardiac myocytes become binucleate as they complete the 'terminal differentiation' process soon after birth and are not able to divide thereafter. Angiotensin II (Ang II) is known to stimulate hypertrophic changes in rodent cardiomyocytes under both in vivo and in vitro conditions via the AT1 receptor and intracellular extracellular regulated kinase (ERK) signalling cascade. We sought to develop culture methods for immature sheep cardiomyocytes in order to test the hypothesis that Ang II is a hypertrophic agent in the immature myocardium of the sheep. We isolated fetal sheep cardiomyocytes and cultured them for 96 h, added Ang II and phenylephrine (PE) for 48 h, and measured footprint area and proliferation (5-bromo-2'-deoxyuridine (BrdU) uptake) separately in mono- vs. binucleate myocytes. We found that neither Ang II nor PE changed the footprint area of mononucleated cells. PE stimulated an increase in footprint area of binucleate cells but Ang II did not. Ang II increased myocyte BrdU uptake compared to serum free conditions, but PE did not affect BrdU uptake. The MAP kinase kinase (MEK) inhibitor UO126 prevented BrdU uptake in Ang II-stimulated cells and prevented cell hypertrophy in PE-stimulated cells. This paper establishes culture methods for immature sheep cardiomyocytes and reports that: (1) Ang II is not a hypertrophic agent; (2) Ang II stimulates hyperplastic growth among mononucleate myocytes; (3) PE is a hypertrophic agent in binucleate myocytes; and (4) the ERK cascade is required for the proliferation effect of Ang II and the hypertrophic effect of PE.

  1. Exenatide Reduces Tumor Necrosis Factor-α-induced Apoptosis in Cardiomyocytes by Alleviating Mitochondrial Dysfunction

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yuan Cao; Zhang-Wei Chen; Yan-Hua Gao; Xing-Xu Wang; Jian-Ying Ma; Shu-Fu Chang; Ju-Ying Qian


    Background: Tumor necrosis factor-α (TNF-α) plays an important role in progressive contractile dysfunction in several cardiac diseases.The cytotoxic effects of TNF-α are suggested to be partly mediated by reactive oxygen species (ROS)-and mitochondria-dependent apoptosis.Glucagon-like peptide-1 (GLP-1) or its analogue exhibits protective effects on the cardiovascular system.The objective of the study was to assess the effects of exenatide, a GLP-1 analogue, on oxidative stress, and apoptosis in TNF-c-treated cardiomyocytes in vitro.Methods: Isolated neonatal rat cardiomyocytes were divided into three groups: Control group, with cells cultured in normal conditions without intervention;TNF-α group, with cells incubated with TNF-c (40 ng/ml) for 6, 12, or 24 h without pretreatment with exenatide;and exenatide group, with cells pretreated with exenatide (100 nmol/L) 30 mins before TNF-α (40 ng/ml) stimulation.We evaluated apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and flow cytometry, measured ROS production and mitochondrial membrane potential (MMP) by specific the fluorescent probes, and assessed the levels of proteins by Western blotting for all the groups.Results: Exenatide pretreatment significantly reduced cardiomyocyte apoptosis as measured by flow cytometry and TUNEL assay at 12 h and 24 h.Also, exenatide inhibited excessive ROS production and maintained MMP.Furthermore, declined cytochrome-c release and cleaved caspase-3 expression and increased bcl-2 expression with concomitantly decreased Bax activation were observed in exenatide-pretreated cultures.Conclusion: These results suggested that exenatide exerts a protective effect on cardiomyocytes, preventing TNF-α-induced apoptosis;the anti-apoptotic effects may be associated with protection of mitochondrial function.

  2. Uniform Action Potential Repolarization within the Sarcolemma of In Situ Ventricular Cardiomyocytes


    Bu, Guixue; Adams, Heather; Berbari, Edward J.; Rubart, Michael


    Previous studies have speculated, based on indirect evidence, that the action potential at the transverse (t)-tubules is longer than at the surface membrane in mammalian ventricular cardiomyocytes. To date, no technique has enabled recording of electrical activity selectively at the t-tubules to directly examine this hypothesis. We used confocal line-scan imaging in conjunction with the fast response voltage-sensitive dyes ANNINE-6 and ANNINE-6plus to resolve action potential-related changes ...

  3. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells.

    Directory of Open Access Journals (Sweden)

    Anders Waldenström

    Full Text Available BACKGROUND: Shedding microvesicles are membrane released vesicles derived directly from the plasma membrane. Exosomes are released membrane vesicles of late endosomal origin that share structural and biochemical characteristics with prostasomes. Microvesicles/exosomes can mediate messages between cells and affect various cell-related processes in their target cells. We describe newly detected microvesicles/exosomes from cardiomyocytes and depict some of their biological functions. METHODOLOGY/PRINCIPAL FINDINGS: Microvesicles/exosomes from media of cultured cardiomyocytes derived from adult mouse heart were isolated by differential centrifugation including preparative ultracentrifugation and identified by transmission electron microscopy and flow cytometry. They were surrounded by a bilayered membrane and flow cytometry revealed presence of both caveolin-3 and flotillin-1 while clathrin and annexin-2 were not detected. Microvesicle/exosome mRNA was identified and out of 1520 detected mRNA, 423 could be directly connected in a biological network. Furthermore, by a specific technique involving TDT polymerase, 343 different chromosomal DNA sequences were identified in the microvesicles/exosomes. Microvesicle/exosomal DNA transfer was possible into target fibroblasts, where exosomes stained for DNA were seen in the fibroblast cytosol and even in the nuclei. The gene expression was affected in fibroblasts transfected by microvesicles/exosomes and among 333 gene expression changes there were 175 upregulations and 158 downregulations compared with controls. CONCLUSIONS/SIGNIFICANCE: Our study suggests that microvesicles/exosomes released from cardiomyocytes, where we propose that exosomes derived from cardiomyocytes could be denoted "cardiosomes", can be involved in a metabolic course of events in target cells by facilitating an array of metabolism-related processes including gene expression changes.

  4. Regulation of myoglobin in hypertrophied rat cardiomyocytes in experimental pulmonary hypertension. (United States)

    Peters, E L; Offringa, C; Kos, D; Van der Laarse, W J; Jaspers, R T


    A major problem in chronic heart failure is the inability of hypertrophied cardiomyocytes to maintain the required power output. A Hill-type oxygen diffusion model predicts that oxygen supply is limiting in hypertrophied cardiomyocytes at maximal rates of oxygen consumption and that this limitation can be reduced by increasing the myoglobin (Mb) concentration. We explored how cardiac hypertrophy, oxidative capacity, and Mb expression in right ventricular cardiomyocytes are regulated at the transcriptional and translational levels in an early stage of experimental pulmonary hypertension, in order to identify targets to improve the oxygen supply/demand ratio. Male Wistar rats were injected with monocrotaline to induce pulmonary hypertension (PH) and right ventricular heart failure. The messenger RNA (mRNA) expression levels per nucleus of growth factors insulin-like growth factor-1Ea (IGF-1Ea) and mechano growth factor (MGF) were higher in PH than in healthy controls, consistent with a doubling in cardiomyocyte cross-sectional area (CSA). Succinate dehydrogenase (SDH) activity was unaltered, indicating that oxidative capacity per cell increased. Although the Mb protein concentration was unchanged, Mb mRNA concentration was reduced. However, total RNA per nucleus was about threefold higher in PH rats versus controls, and Mb mRNA content expressed per nucleus was similar in the two groups. The increase in oxidative capacity without an increase in oxygen supply via Mb-facilitated diffusion caused a doubling of the critical extracellular oxygen tension required to prevent hypoxia (PO2crit). We conclude that Mb mRNA expression is not increased during pressure overload-induced right ventricular hypertrophy and that the increase in myoglobin content per myocyte is likely due to increased translation. We conclude that increasing Mb mRNA expression may be beneficial in the treatment of experimental PH.

  5. Disturbances in calcium metabolism and cardiomyocyte necrosis: the role of calcitropic hormones. (United States)

    Yusuf, Jawwad; Khan, M Usman; Cheema, Yaser; Bhattacharya, Syamal K; Weber, Karl T


    A synchronized dyshomeostasis of extra- and intracellular Ca(2+), expressed as plasma ionized hypocalcemia and excessive intracellular Ca(2+) accumulation, respectively, represents a common pathophysiologic scenario that accompanies several diverse disorders. These include low-renin and salt-sensitive hypertension, primary aldosteronism and hyperparathyroidism, congestive heart failure, acute and chronic hyperadrenergic stressor states, high dietary Na(+), and low dietary Ca(2+) with hypovitaminosis D. Homeostatic responses are invoked to restore normal extracellular [Ca(2+)](o), including increased plasma levels of parathyroid hormone and 1,25(OH)(2)D(3). However, in cardiomyocytes these calcitropic hormones concurrently promote cytosolic free [Ca(2+)](i) and mitochondrial [Ca(2+)](m) overloading. The latter sets into motion organellar-based oxidative stress, in which the rate of reactive oxygen species generation overwhelms their detoxification by endogenous antioxidant defenses, including those related to intrinsically coupled increments in intracellular Zn(2+). In turn, the opening potential of the mitochondrial permeability transition pore increases, allowing for osmotic swelling and ensuing organellar degeneration. Collectively, these pathophysiologic events represent the major components to a mitochondriocentric signal-transducer-effector pathway to cardiomyocyte necrosis. From necrotic cells, there follows a spillage of intracellular contents, including troponins, and a subsequent wound healing response with reparative fibrosis or scarring. Taken together, the loss of terminally differentiated cardiomyocytes from this postmitotic organ and the ensuing replacement fibrosis each contribute to the adverse structural remodeling of myocardium and progressive nature of heart failure. In conclusion, hormone-induced ionized hypocalcemia and intracellular Ca(2+) overloading comprise a pathophysiologic cascade common to diverse disorders and that initiates a

  6. Hybrid mathematical model of cardiomyocyte turnover in the adult human heart.

    Directory of Open Access Journals (Sweden)

    Jeremy A Elser

    Full Text Available RATIONALE: The capacity for cardiomyocyte regeneration in the healthy adult human heart is fundamentally relevant for both myocardial homeostasis and cardiomyopathy therapeutics. However, estimates of cardiomyocyte turnover rates conflict greatly, with a study employing C14 pulse-chase methodology concluding 1% annual turnover in youth declining to 0.5% with aging and another using cell population dynamics indicating substantial, age-increasing turnover (4% increasing to 20%. OBJECTIVE: Create a hybrid mathematical model to critically examine rates of cardiomyocyte turnover derived from alternative methodologies. METHODS AND RESULTS: Examined in isolation, the cell population analysis exhibited severe sensitivity to a stem cell expansion exponent (20% variation causing 2-fold turnover change and apoptosis rate. Similarly, the pulse-chase model was acutely sensitive to assumptions of instantaneous incorporation of atmospheric C14 into the body (4-fold impact on turnover in young subjects while numerical restrictions precluded otherwise viable solutions. Incorporating considerations of primary variable sensitivity and controversial model assumptions, an unbiased numerical solver identified a scenario of significant, age-increasing turnover (4-6% increasing to 15-22% with age that was compatible with data from both studies, provided that successive generations of cardiomyocytes experienced higher attrition rates than predecessors. CONCLUSIONS: Assignment of histologically-observed stem/progenitor cells into discrete regenerative phenotypes in the cell population model strongly influenced turnover dynamics without being directly testable. Alternatively, C14 trafficking assumptions and restrictive models in the pulse-chase model artificially eliminated high-turnover solutions. Nevertheless, discrepancies among recent cell turnover estimates can be explained and reconciled. The hybrid mathematical model provided herein permits further examination of

  7. In vitro differentiation of rat embryonic stem cells into functional cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Nan Cao; Jing Liao; Zumei Liu; Wen min Zhu; Jia Wang; Lijun Liu; Lili Yu


    The recent breakthrough in the generation of rat embryonic stem cells (rESCs) opens the door to application of gene targeting to create models for the study of human diseases.In addition,the in vitro differentiation system from rESCs into derivatives of three germ layers will serve as a powerful tool and resource for the investigation of mammalian development,cell function,tissue repair,and drug discovery.However,these uses have been limited by the difficulty of in vitro differentiation.The aims of this study were to establish an in vitro differentiation system from rESCs and to investigate whether rESCs are capable of forming terminal-differentiated cardiomyocytes.Using newly established rESCs,we found that embryoid body (EB)-based method used in mouse ESC (mESC) differentiation failed to work for the serum-free cultivated rESCs.We then developed a protocol by combination of three chemical inhibitors and feeder-conditioned medium.Under this condition,rESCs formed EBs,propagated and differentiated into three embryonic germ layers.Moreover,rESC-formed EBs could differentiate into spontaneously beating cardiomyocytes after plating.Analyses of molecular,structural,and functional properties revealed that rESC-derived cardiomyocytes were similar to those derived from fetal rat hearts and mESCs.In conclusion,we successfully developed an in vitro differentiation system for rESCs through which functional myocytes were generated and displayed phenotypes of rat fetal cardiomyocytes.This unique cellular system will provide a new approach to study the early development and cardiac function,and serve as an important tool in pharmacological testing and cell therapy.

  8. Pulse splitter-based nonlinear microscopy for live-cardiomyocyte imaging


    Wang, Zhonghai; Qin, Wan; Shao, Yonghong; Ma, Siyu; Borg, Thomas K.; GAO, BRUCE Z.


    Second harmonic generation (SHG) microscopy is a new imaging technique used in sarcomeric-addition studies. However, during the early stage of cell culture in which sarcomeric additions occur, the neonatal cardiomyocytes that we have been working with are very sensitive to photodamage, the resulting high rate of cell death prevents systematic study of sarcomeric addition using a conventional SHG system. To address this challenge, we introduced use of the pulse-splitter system developed by Na ...

  9. ISL1 protein transduction promotes cardiomyocyte differentiation from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Hananeh Fonoudi

    Full Text Available BACKGROUND: Human embryonic stem cells (hESCs have the potential to provide an unlimited source of cardiomyocytes, which are invaluable resources for drug or toxicology screening, medical research, and cell therapy. Currently a number of obstacles exist such as the insufficient efficiency of differentiation protocols, which should be overcome before hESC-derived cardiomyocytes can be used for clinical applications. Although the differentiation efficiency can be improved by the genetic manipulation of hESCs to over-express cardiac-specific transcription factors, these differentiated cells are not safe enough to be applied in cell therapy. Protein transduction has been demonstrated as an alternative approach for increasing the efficiency of hESCs differentiation toward cardiomyocytes. METHODS: We present an efficient protocol for the differentiation of hESCs in suspension by direct introduction of a LIM homeodomain transcription factor, Islet1 (ISL1 recombinant protein into the cells. RESULTS: We found that the highest beating clusters were derived by continuous treatment of hESCs with 40 µg/ml recombinant ISL1 protein during days 1-8 after the initiation of differentiation. The treatment resulted in up to a 3-fold increase in the number of beating areas. In addition, the number of cells that expressed cardiac specific markers (cTnT, CONNEXIN 43, ACTININ, and GATA4 doubled. This protocol was also reproducible for another hESC line. CONCLUSIONS: This study has presented a new, efficient, and reproducible procedure for cardiomyocytes differentiation. Our results will pave the way for scaled up and controlled differentiation of hESCs to be used for biomedical applications in a bioreactor culture system.

  10. Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling. (United States)

    Jian, Zhong; Han, Huilan; Zhang, Tieqiao; Puglisi, Jose; Izu, Leighton T; Shaw, John A; Onofiok, Ekama; Erickson, Jeffery R; Chen, Yi-Je; Horvath, Balazs; Shimkunas, Rafael; Xiao, Wenwu; Li, Yuanpei; Pan, Tingrui; Chan, James; Banyasz, Tamas; Tardiff, Jil C; Chiamvimonvat, Nipavan; Bers, Donald M; Lam, Kit S; Chen-Izu, Ye


    Cardiomyocytes contract against a mechanical load during each heartbeat, and excessive mechanical stress leads to heart diseases. Using a cell-in-gel system that imposes an afterload during cardiomyocyte contraction, we found that nitric oxide synthase (NOS) was involved in transducing mechanical load to alter Ca(2+) dynamics. In mouse ventricular myocytes, afterload increased the systolic Ca(2+) transient, which enhanced contractility to counter mechanical load but also caused spontaneous Ca(2+) sparks during diastole that could be arrhythmogenic. The increases in the Ca(2+) transient and sparks were attributable to increased ryanodine receptor (RyR) sensitivity because the amount of Ca2(+) in the sarcoplasmic reticulum load was unchanged. Either pharmacological inhibition or genetic deletion of nNOS (or NOS1), but not of eNOS (or NOS3), prevented afterload-induced Ca2(+) sparks. This differential effect may arise from localized NO signaling, arising from the proximity of nNOS to RyR, as determined by super-resolution imaging. Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) also contributed to afterload-induced Ca(2+) sparks. Cardiomyocytes from a mouse model of familial hypertrophic cardiomyopathy exhibited enhanced mechanotransduction and frequent arrhythmogenic Ca(2+) sparks. Inhibiting nNOS and CaMKII, but not NOX2, in cardiomyocytes from this model eliminated the Ca2(+) sparks, suggesting mechanotransduction activated nNOS and CaMKII independently from NOX2. Thus, our data identify nNOS, CaMKII, and NOX2 as key mediators in mechanochemotransduction during cardiac contraction, which provides new therapeutic targets for treating mechanical stress-induced Ca(2+) dysregulation, arrhythmias, and cardiomyopathy.

  11. 'Working' cardiomyocytes exhibiting plateau action potentials from human placenta-derived extraembryonic mesodermal cells. (United States)

    Okamoto, Kazuma; Miyoshi, Shunichiro; Toyoda, Masashi; Hida, Naoko; Ikegami, Yukinori; Makino, Hatsune; Nishiyama, Nobuhiro; Tsuji, Hiroko; Cui, Chang-Hao; Segawa, Kaoru; Uyama, Taro; Kami, Daisuke; Miyado, Kenji; Asada, Hironori; Matsumoto, Kenji; Saito, Hirohisa; Yoshimura, Yasunori; Ogawa, Satoshi; Aeba, Ryo; Yozu, Ryohei; Umezawa, Akihiro


    The clinical application of cell transplantation for severe heart failure is a promising strategy to improve impaired cardiac function. Recently, an array of cell types, including bone marrow cells, endothelial progenitors, mesenchymal stem cells, resident cardiac stem cells, and embryonic stem cells, have become important candidates for cell sources for cardiac repair. In the present study, we focused on the placenta as a cell source. Cells from the chorionic plate in the fetal portion of the human placenta were obtained after delivery by the primary culture method, and the cells generated in this study had the Y sex chromosome, indicating that the cells were derived from the fetus. The cells potentially expressed 'working' cardiomyocyte-specific genes such as cardiac myosin heavy chain 7beta, atrial myosin light chain, cardiac alpha-actin by gene chip analysis, and Csx/Nkx2.5, GATA4 by RT-PCR, cardiac troponin-I and connexin 43 by immunohistochemistry. These cells were able to differentiate into cardiomyocytes. Cardiac troponin-I and connexin 43 displayed a discontinuous pattern of localization at intercellular contact sites after cardiomyogenic differentiation, suggesting that the chorionic mesoderm contained a large number of cells with cardiomyogenic potential. The cells began spontaneously beating 3 days after co-cultivation with murine fetal cardiomyocytes and the frequency of beating cells reached a maximum on day 10. The contraction of the cardiomyocytes was rhythmical and synchronous, suggesting the presence of electrical communication between the cells. Placenta-derived human fetal cells may be useful for patients who cannot supply bone marrow cells but want to receive stem cell-based cardiac therapy.

  12. Cardiomyocyte-specific expression of lamin a improves cardiac function in Lmna-/- mice.

    Directory of Open Access Journals (Sweden)

    Richard L Frock

    Full Text Available Lmna(-/- mice display multiple tissue defects and die by 6-8 weeks of age reportedly from dilated cardiomyopathy with associated conduction defects. We sought to determine whether restoration of lamin A in cardiomyocytes improves cardiac function and extends the survival of Lmna(-/- mice. We observed increased total desmin protein levels and disorganization of the cytoplasmic desmin network in ~20% of Lmna(-/- ventricular myocytes, rescued in a cell-autonomous manner in Lmna(-/- mice expressing a cardiac-specific lamin A transgene (Lmna(-/-; Tg. Lmna(-/-; Tg mice displayed significantly increased contractility and preservation of myocardial performance compared to Lmna(-/- mice. Lmna(-/-; Tg mice attenuated ERK1/2 phosphorylation relative to Lmna(-/- mice, potentially underlying the improved localization of connexin43 to the intercalated disc. Electrocardiographic recordings from Lmna(-/- mice revealed arrhythmic events and increased frequency of PR interval prolongation, which is partially rescued in Lmna(-/-; Tg mice. These findings support our observation that Lmna(-/-; Tg mice have a 12% median extension in lifespan compared to Lmna(-/- mice. While significant, Lmna(-/-; Tg mice only have modest improvement in cardiac function and survival likely stemming from the observation that only 40% of Lmna(-/-; Tg cardiomyocytes have detectable lamin A expression. Cardiomyocyte-specific restoration of lamin A in Lmna(-/- mice improves heart-specific pathology and extends lifespan, demonstrating that the cardiac pathology of Lmna(-/- mice limits survival. The expression of lamin A is sufficient to rescue certain cellular defects associated with loss of A-type lamins in cardiomyocytes in a cell-autonomous fashion.

  13. The cardiomyocyte molecular clock, regulation of Scn5a, and arrhythmia susceptibility. (United States)

    Schroder, Elizabeth A; Lefta, Mellani; Zhang, Xiping; Bartos, Daniel C; Feng, Han-Zhong; Zhao, Yihua; Patwardhan, Abhijit; Jin, Jian-Ping; Esser, Karyn A; Delisle, Brian P


    The molecular clock mechanism underlies circadian rhythms and is defined by a transcription-translation feedback loop. Bmal1 encodes a core molecular clock transcription factor. Germline Bmal1 knockout mice show a loss of circadian variation in heart rate and blood pressure, and they develop dilated cardiomyopathy. We tested the role of the molecular clock in adult cardiomyocytes by generating mice that allow for the inducible cardiomyocyte-specific deletion of Bmal1 (iCSΔBmal1). ECG telemetry showed that cardiomyocyte-specific deletion of Bmal1 (iCSΔBmal1(-/-)) in adult mice slowed heart rate, prolonged RR and QRS intervals, and increased episodes of arrhythmia. Moreover, isolated iCSΔBmal1(-/-) hearts were more susceptible to arrhythmia during electromechanical stimulation. Examination of candidate cardiac ion channel genes showed that Scn5a, which encodes the principle cardiac voltage-gated Na(+) channel (Na(V)1.5), was circadianly expressed in control mouse and rat hearts but not in iCSΔBmal1(-/-) hearts. In vitro studies confirmed circadian expression of a human Scn5a promoter-luciferase reporter construct and determined that overexpression of clock factors transactivated the Scn5a promoter. Loss of Scn5a circadian expression in iCSΔBmal1(-/-) hearts was associated with decreased levels of Na(V)1.5 and Na(+) current in ventricular myocytes. We conclude that disruption of the molecular clock in the adult heart slows heart rate, increases arrhythmias, and decreases the functional expression of Scn5a. These findings suggest a potential link between environmental factors that alter the cardiomyocyte molecular clock and factors that influence arrhythmia susceptibility in humans.

  14. Myocardial regeneration strategies using human embryonic stem cell-derived cardiomyocytes. (United States)

    Capi, Oren; Gepstein, Lior


    Regenerative medicine is a new biomedicine discipline that takes advantage of the recent advancements in the fields of stem cell biology, molecular biology, and tissue engineering to derive tissue substitutes, in an attempt to replace or modify the function of diseased organs. The heart represents an attractive candidate for these emerging technologies since adult cardiac tissue has limited regenerative capacity. Consequentially, myocardial cell replacement therapy has emerged as a novel therapeutic paradigm for restoration of the myocardial electromechanical function. This innovative strategy has been significantly hampered, however, by the paucity of cell sources for human cardiomyocytes. The recent establishment of the human embryonic stem cell (hESC) lines may provide a possible solution for this cell-sourcing problem. These unique pluripotent cell lines can be propagated in the undifferentiated state in culture and coaxed to differentiate into cell derivatives of all three germ layers, including cardiomyocytes. This review will describe the hESC system, their differentiation into cardiomyocytes, and the structural and functional characterization of these cardiac lineage derivatives. The potential applications of this unique differentiating system in several research areas will be discussed with special emphasis on the steps required to fully harness their unique potential in the emerging field of cardiovascular regenerative medicine.

  15. Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes (United States)

    Bihamta, Mehdi; Hosseini, Azar; Ghorbani, Ahmad; Boroushaki, Mohammad Taher


    Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO) has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2)-induced damage in H9c2 cardiomyocytes. Materials and Methods: The cells were pretreated 24 hr with PSO 1 hr before exposure to 200 µM H2O2. Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay. The level of reactive oxygen species (ROS) and lipid peroxidation were measured by fluorimetric methods. Results: H2O2 significantly decreased cell viability which was accompanied by an increase in ROS production and lipid peroxidation and a decline in superoxide dismutase activity. Pretreatment with PSO increased viability of cardiomyocytes and decrease the elevated ROS production and lipid peroxidation. Also, PSO was able to restore superoxide dismutase activity. Conclusion: PSO has protective effect against oxidative stress-induced damage in cardiomyocytes and can be considered as a natural cardioprotective agent to prevent cardiovascular diseases. PMID:28265546

  16. Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Mehdi Bihamta


    Full Text Available Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2-induced damage in H9c2 cardiomyocytes.Materials and Methods: The cells were pretreated 24 hr with PSO 1 hr before exposure to 200 µM H2O2. Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium (MTT assay. The level of reactive oxygen species (ROS and lipid peroxidation were measured by fluorimetric methods.Results: H2O2 significantly decreased cell viability which was accompanied by an increase in ROS production and lipid peroxidation and a decline in superoxide dismutase activity. Pretreatment with PSO increased viability of cardiomyocytes and decrease the elevated ROS production and lipid peroxidation. Also, PSO was able to restore superoxide dismutase activity.Conclusion: PSO has protective effect against oxidative stress-induced damage in cardiomyocytes and can be considered as a natural cardioprotective agent to prevent cardiovascular diseases.

  17. Effects of Multivitamins and Known Teratogens on Chick Cardiomyocytes Micromass Culture Assay

    Directory of Open Access Journals (Sweden)

    Samreen Memon


    Full Text Available   Objective(s: This study aimed to find out whether the chick cardiomyocyte micromass (MM system could be employed to predict the teratogenecity of common environmental factors. Different multivitamins and over the counter drugs were used in this study.   Materials and Methods: White Leghorn 5-day-old embryo hearts were dissected and trypsinized to produce a cardiomyocyte cell suspension in Dulbecco's Modified Eagle's Medium. The cultures were incubated at 370C in 5% CO2 in air, and observations were made at 24, 48 and 144 hr, for the detection of cell beating. Cellular viability was assessed using the resazurin assay and cell protein content was assessed by the kenacid blue assay. It was observed that while not affecting total cell number folic acid, vitamin C, sodium fluoride and ginseng did not significantly reduced cell activity and beating. However cadmium chloride significantly reduced the beating, cell viability and cell protein content in micromass cultures. Results: The results demonstrate the potential of the chick cardiomyocyte MM culture assay to identify teratogens/embryotoxins that alter morphology and function, which may result in either teratogenic outcome or cytotoxicity. Conclusion: This could form part of a screen for developmental toxicity related to cardiac function

  18. Exogenous taurine attenuates mitochondrial oxidative stress and endoplasmic reticulum stress in rat cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Yujie Yang; Yue Zhang; Xiaoyu Liu; Ji Zuo; Keqiang Wang; Wen Liu; Junbo Ge


    Taurine,a conditionally essential amino acid,plays a critical role in cardiovascular function.Here we examined the effect of taurine on mitochondria and endoplasmic reticulum in rat cardiomyocytes during glucose deprivation (GD).Data showed that cell viability,intracellular taurine contents,and taurine transporter expression were decreased during GD.In contrast,an increase in reactive oxygen species and intracellular Ca2+ contents was observed.GD also caused disrupted mitochondrial membrane potential,apoptotic cell death,and dissociation of unfolded protein response (UPR)-relative proteins in cardiomyocytes.Signal transduction analysis showed that Bcl-2 family protein balance was disturbed,caspase-12 was activated and UPR-relative protein levels were up-regulated.Moreover,pre-treatment with 80 mM exogenous taurine attenuated GD effect in cardiomyocytes.Our results suggest that taurine have beneficial effects on inhibiting mitochondria-dependent cell apoptosis and UPR-associated cell apoptosis and might have clinical impfications on acute myocardial infarction in future.

  19. Role of cytoskeleton in the mechanisms of stretch-induced cardiomyocytical hypertrophy in vitro

    Institute of Scientific and Technical Information of China (English)

    FENG Bing; QIN Jun; HE Zuo-yun; WANG De-wen


    To study in vitro the role of cytoskeleton in the mechanisms of stretch-induced cardiomyocyte hypertrophy. Methods: After cultured on a deformable membrane, the myocardial cells were incorporated with 3H-leucine (3H-leu) to determine the hypertrophic rate. The contents of angiotensin Ⅱ and endothelin in the supernatant of the culture medium were measured with radioimmunoassay. Results: Colchicine at 4 μmol/L partially inhibited 3H-leu incorporation rate of the stretch-induced cardiomyocytes but cytochalasin B showed no such effect. The radioactivity of 3H-leu incorporation in the supernatant of the culture medium was significantly lower in the cardiomyocyte culture treated with colchicines (4 μmol/L) or cytochalasin (0.4 μmol/L) than in simple myocardial cell culture. In addition, the 2 agents markedly inhibited the myocardial cells from secreting angiotensin Ⅱ and endothin. Conclusion: The cytoskeleton plays a role in the stretch-induced mycardiocyte hypertrophy by mediating the secretion of the cell growth factors by the cells themselves.

  20. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Christophe M Raynaud

    Full Text Available Mesenchymal progenitors or stromal cells have shown promise as a therapeutic strategy for a range of diseases including heart failure. In this context, we explored the growth and differentiation potential of mesenchymal progenitors (MPs derived in vitro from human embryonic stem cells (hESCs. Similar to MPs isolated from bone marrow, hESC derived MPs (hESC-MPs efficiently differentiated into archetypical mesenchymal derivatives such as chondrocytes and adipocytes. Upon treatment with 5-Azacytidine or TGF-β1, hESC-MPs modified their morphology and up-regulated expression of key cardiac transcription factors such as NKX2-5, MEF2C, HAND2 and MYOCD. Nevertheless, NKX2-5+ hESC-MP derivatives did not form contractile cardiomyocytes, raising questions concerning the suitability of these cells as a platform for cardiomyocyte replacement therapy. Gene profiling experiments revealed that, although hESC-MP derived cells expressed a suite of cardiac related genes, they lacked the complete repertoire of genes associated with bona fide cardiomyocytes. Our results suggest that whilst agents such as TGF-β1 and 5-Azacytidine can induce expression of cardiac related genes, but treated cells retain a mesenchymal like phenotype.

  1. Effect of Three Statins on Glucose Uptake of Cardiomyocytes and its Mechanism. (United States)

    Jiang, Zhenhuan; Yu, Bo; Li, Yang


    BACKGROUND The aim of this study was to investigate the effects of different statins on glucose uptake and to confirm its mechanism in primary cultured rat cardiomyocytes after administration of atorvastatin, pravastatin, and rosuvastatin. MATERIAL AND METHODS Primary cultured rat cardiomyocytes were randomly assigned to 5 groups: normal control group (OB), insulin group (S1), statin 1-μM (S2), 5-μM (S3), and 10-μM (S4) groups for 3 different statins. The 2-[3H]-DG uptake of each group was determined and the mRNA and protein expression levels of glucose transporter type 4 (GLUT4), insulin receptor substrate (IRs), and RhoA were assessed. RESULTS After treatment with different concentrations of statins and insulin, the 2-[3H]-DG uptake showed a significant negative correlation with the concentration of atorvastatin (Pstatins. CONCLUSIONS These results confirm that atorvastatin can inhibit insulin-induced glucose uptake in primary cultured rat cardiomyocytes by regulating the PI3K/Akt insulin signal transduction pathway.

  2. [Generation of superoxide radicals by the mitochondrial respiratory chain of isolated cardiomyocytes]. (United States)

    Kashkarov, K P; Vasil'eva, E V; Ruuge, E K


    Generation of superoxide radicals by the mitochondrial respiratory chain of cardiomyocites isolated from rat heart and treated with saponin was studied. The rate of O2- production was measured by electron paramagnetic resonance (EPR) spectroscopy using hydroxylamine TEMPONE-H as spin trap. A device has been constructed which provided permanent stirring of cardiomyocyte samples directly in the cavity and prevented cell aggregation. When substrates and antimycin A and/or rotenone are added, the radical production rate increased and reached its maximum in the presence of the both inhibitors. Superoxide dismutase as well as KCN suppressed the radical production, thus being suggestive of the generation of superoxide radicals in the bc1 complex, while the mechanism of O2- production is the same as was suggested for isolated mitochondria. The ratio between rates of O2- generation by isolated cardiomyocytes under various experimental conditions is in a good accord with corresponding parameter of isolated mitochondria. However, in the case of cardiomyocytes the absolute values of the O2- production rate are approximately twice as high as those in isolated mitochondria, presumably due to the partial damage of the mitochondrial respiratory chain during the isolation procedure.

  3. Coupling calcium dynamics and mitochondrial bioenergetic: an in silico study to simulate cardiomyocyte dysfunction. (United States)

    Das, Phonindra Nath; Pedruzzi, Gabriele; Bairagi, Nandadulal; Chatterjee, Samrat


    The coupling of intracellular Ca(2+) dynamics with mitochondrial bioenergetic is crucial for the functioning of cardiomyocytes both in healthy and disease conditions. The pathophysiological signature of the Cardiomyocyte Dysfunction (CD) is commonly related to decreased ATP production due to mitochondrial functional impairment and to an increased mitochondrial calcium content ([Ca(2+)]m). These features advanced the therapeutic approaches which aim to reduce [Ca(2+)]m. But whether [Ca(2+)]m overload is the pathological trigger for CD or a physiological consequence, remained controversial. We addressed this issue in silico and showed that [Ca(2+)]m might not directly cause CD. Through model parameter recalibration, we demonstrated how mitochondria cope up with functionally impaired processes and consequently accumulate calcium. A strong coupling of the [Ca(2+)]m oscillations with the ATP synthesis rate ensures robust calcium cycling and avoids CD. We suggested a cardioprotective role of the mitochondrial calcium uniporter and predicted that a mitochondrial sodium calcium exchanger could be a potential therapeutic target to restore the normal functioning of the cardiomyocyte.

  4. High Throughput Screening Identifies a Novel Compound Protecting Cardiomyocytes from Doxorubicin-Induced Damage

    Directory of Open Access Journals (Sweden)

    Szabolcs Gergely


    Full Text Available Antracyclines are effective antitumor agents. One of the most commonly used antracyclines is doxorubicin, which can be successfully used to treat a diverse spectrum of tumors. Application of these drugs is limited by their cardiotoxic effect, which is determined by a lifetime cumulative dose. We set out to identify by high throughput screening cardioprotective compounds protecting cardiomyocytes from doxorubicin-induced injury. Ten thousand compounds of ChemBridge’s DIVERSet compound library were screened to identify compounds that can protect H9C2 rat cardiomyocytes against doxorubicin-induced cell death. The most effective compound proved protective in doxorubicin-treated primary rat cardiomyocytes and was further characterized to demonstrate that it significantly decreased doxorubicin-induced apoptotic and necrotic cell death and inhibited doxorubicin-induced activation of JNK MAP kinase without having considerable radical scavenging effect or interfering with the antitumor effect of doxorubicin. In fact the compound identified as 3-[2-(4-ethylphenyl-2-oxoethyl]-1,2-dimethyl-1H-3,1-benzimidazol-3-ium bromide was toxic to all tumor cell lines tested even without doxorubicine treatment. This benzimidazole compound may lead, through further optimalization, to the development of a drug candidate protecting the heart from doxorubicin-induced injury.

  5. High throughput physiological screening of iPSC-derived cardiomyocytes for drug development. (United States)

    Del Álamo, Juan C; Lemons, Derek; Serrano, Ricardo; Savchenko, Alex; Cerignoli, Fabio; Bodmer, Rolf; Mercola, Mark


    Cardiac drug discovery is hampered by the reliance on non-human animal and cellular models with inadequate throughput and physiological fidelity to accurately identify new targets and test novel therapeutic strategies. Similarly, adverse drug effects on the heart are challenging to model, contributing to costly failure of drugs during development and even after market launch. Human induced pluripotent stem cell derived cardiac tissue represents a potentially powerful means to model aspects of heart physiology relevant to disease and adverse drug effects, providing both the human context and throughput needed to improve the efficiency of drug development. Here we review emerging technologies for high throughput measurements of cardiomyocyte physiology, and comment on the promises and challenges of using iPSC-derived cardiomyocytes to model disease and introduce the human context into early stages of drug discovery. This article is part of a Special Issue entitled: Cardiomyocyte biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  6. Nuclear Theory - Nuclear Power (United States)

    Svenne, J. P.; Canton, L.; Kozier, K. S.


    The results from modern nuclear theory are accurate and reliable enough to be used for practical applications, in particular for scattering that involves few-nucleon systems of importance to nuclear power. Using well-established nucleon-nucleon (NN) interactions that fit well the NN scattering data, and the AGS form of the three-body theory, we have performed precise calculations of low-energy neutron-deuteron (n+d) scattering. We show that three-nucleon force effects that have impact on the low-energy vector analyzing powers have no practical effects on the angular distribution of the n+d cross-section. There appear to be problems for this scattering in the evaluated nuclear data file (ENDF) libraries, at the incident neutron energies less than 3.2 MeV. Supporting experimental data in this energy region are rather old (>25 years), sparse and often inconsistent. Our three-body results at low energies, 50 keV to 10.0 MeV, are compared to the ENDF/B-VII.0 and JENDL (Japanese Evaluated Nuclear Data Library) -3.3 evaluated angular distributions. The impact of these results on the calculated reactivity for various critical systems involving heavy water is shown.

  7. Hydrogel-coated microfluidic channels for cardiomyocyte culture


    Annabi, Nasim; Selimović, Šeila; Cox, Juan Pablo Acevedo; Ribas, João; Bakooshli, Mohsen Afshar; Heintze, Déborah; Weiss, Anthony S.; Cropek, Donald; Khademhosseini, Ali


    The research areas of tissue engineering and drug development have displayed increased interest in organ-on-a-chip studies, in which physiologically or pathologically relevant tissues can be engineered to test pharmaceutical candidates. Microfluidic technologies enable the control of the cellular microenvironment for these applications through the topography, size, and elastic properties of the microscale cell culture environment, while delivering nutrients and chemical cues to the cells thro...

  8. Nuclear "waffles" (United States)

    Schneider, A. S.; Berry, D. K.; Briggs, C. M.; Caplan, M. E.; Horowitz, C. J.


    Background: The dense neutron-rich matter found in supernovae and inside neutron stars is expected to form complex nonuniform phases, often referred to as nuclear pasta. The pasta shapes depend on density, temperature and proton fraction and determine many transport properties in supernovae and neutron star crusts. Purpose: To characterize the topology and compute two observables, the radial distribution function (RDF) g (r ) and the structure factor S (q ) , for systems with proton fractions Yp=0.10 ,0.20 ,0.30 , and 0.40 at about one-third of nuclear saturation density, n =0.050 fm-3 , and temperatures near k T =1 MeV . Methods: We use two recently developed hybrid CPU/GPU codes to perform large scale molecular dynamics (MD) simulations with 51 200 and 409 600 nucleons. From the output of the MD simulations we obtain the two desired observables. Results: We compute and discuss the differences in topology and observables for each simulation. We observe that the two lowest proton fraction systems simulated, Yp=0.10 and 0.20 , equilibrate quickly and form liquidlike structures. Meanwhile, the two higher proton fraction systems, Yp=0.30 and 0.40 , take a longer time to equilibrate and organize themselves in solidlike periodic structures. Furthermore, the Yp=0.40 system is made up of slabs, lasagna phase, interconnected by defects while the Yp=0.30 systems consist of a stack of perforated plates, the nuclear waffle phase. Conclusions: The periodic configurations observed in our MD simulations for proton fractions Yp≥0.30 have important consequences for the structure factors S (q ) of protons and neutrons, which relate to many transport properties of supernovae and neutron star crust. A detailed study of the waffle phase and how its structure depends on temperature, size of the simulation, and the screening length showed that finite-size effects appear to be under control and, also, that the plates in the waffle phase merge at temperatures slightly above 1.0 MeV and

  9. Involvement of Rictor/mTORC2 in cardiomyocyte differentiation of mouse embryonic stem cells in vitro (United States)

    Zheng, Bei; Wang, Jiadan; Tang, Leilei; Tan, Chao; Zhao, Zhe; Xiao, Yi; Ge, Renshan; Zhu, Danyan


    Rictor is a key regulatory/structural subunit of the mammalian target of rapamycin complex 2 (mTORC2) and is required for phosphorylation of Akt at serine 473. It plays an important role in cell survival, actin cytoskeleton organization and other processes in embryogenesis. However, the role of Rictor/mTORC2 in the embryonic cardiac differentiation has been uncovered. In the present study, we examined a possible link between Rictor expression and cardiomyocyte differentiation of the mouse embryonic stem (mES) cells. Knockdown of Rictor by shRNA significantly reduced the phosphorylation of Akt at serine 473 followed by a decrease in cardiomyocyte differentiation detected by beating embryoid bodies. The protein levels of brachyury (mesoderm protein), Nkx2.5 (cardiac progenitor cell protein) and α-Actinin (cardiomyocyte biomarker) decreased in Rictor knockdown group during cardiogenesis. Furthermore, knockdown of Rictor specifically inhibited the ventricular-like cells differentiation of mES cells with reduced level of ventricular-specific protein, MLC-2v. Meanwhile, patch-clamp analysis revealed that shRNA-Rictor significantly increased the number of cardiomyocytes with abnormal electrophysiology. In addition, the expressions and distribution patterns of cell-cell junction proteins (Cx43/Desmoplakin/N-cadherin) were also affected in shRNA-Rictor cardiomyocytes. Taken together, the results demonstrated that Rictor/mTORC2 might play an important role in the cardiomyocyte differentiation of mES cells. Knockdown of Rictor resulted in inhibiting ventricular-like myocytes differentiation and induced arrhythmias symptom, which was accompanied by interfering the expression and distribution patterns of cell-cell junction proteins. Rictor/mTORC2 might become a new target for regulating cardiomyocyte differentiation and a useful reference for application of the induced pluripotent stem cells. PMID:28123351

  10. An introduction to nuclear physics

    CERN Document Server

    Jana, Yatramohan


    AN INTRODUCTION TO NUCLEAR PHYSICS explores the nucleus - its size, shape and structure, its static and dynamic properties, its interaction with external system (particles and radiation), and above all the nuclear interaction in the two-nucleon and many-nucleon systems. It covers all aspects of the nucleus, divided into five Parts and nineteen Chapters. Part-1 introduces nuclear binding energy, separation energy and nuclear stability. Part-2 explores the two-nucleon potential through the study of the deuteron problem, nucleon-nucleon scattering, and also presents a meson theoretical description of the nuclear potential. Part-3 deals with the nuclear structure through different models, e.g., liquid-drop model, Fermi gas model, nuclear shell model, collective model. Part-4 develops different theoretical models for nuclear reactions, e.g., compound nucleus, statistical model, continuum model, optical model, direct reaction mechanism.

  11. Nuclear control

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Wan Kee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    International cooperation in nuclear industries requires nuclear control as prerequisites. The concept of nuclear control is based on the Treaty on the Non-proliferation of Nuclear Weapon (NPT). The International Atomic Energy Agency (IAEA) plays central role in implementing nuclear control. Nuclear control consists of nuclear safeguards, physical protection, and export/import control. Each member state of NPT is subject to the IAEA`s safeguards by concluding safeguards agreements with the IAEA. IAEA recommends member states to implement physical protection on nuclear materials by `The Physical Protection of Nuclear Material` and `The Convention on the Physical Protection of Nuclear Material` of IAEA. Export/Import Control is to deter development of nuclear weapons by controlling international trade on nuclear materials, nuclear equipments and technology. Current status of domestic and foreign nuclear control implementation including recent induction of national inspection system in Korea is described and functions of recently set-up Technology Center for Nuclear Control (TCNC) under the Korea Atomic Energy Research Institute (KAERI) are also explained. 6 tabs., 11 refs. (Author).

  12. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression.

    Directory of Open Access Journals (Sweden)

    Hideki Uosaki

    Full Text Available RATIONALE: Human embryonic and induced pluripotent stem cells (hESCs/hiPSCs are promising cell sources for cardiac regenerative medicine. To realize hESC/hiPSC-based cardiac cell therapy, efficient induction, purification, and transplantation methods for cardiomyocytes are required. Though marker gene transduction or fluorescent-based purification methods have been reported, fast, efficient and scalable purification methods with no genetic modification are essential for clinical purpose but have not yet been established. In this study, we attempted to identify cell surface markers for cardiomyocytes derived from hESC/hiPSCs. METHOD AND RESULT: We adopted a previously reported differentiation protocol for hESCs based on high density monolayer culture to hiPSCs with some modification. Cardiac troponin-T (TNNT2-positive cardiomyocytes appeared robustly with 30-70% efficiency. Using this differentiation method, we screened 242 antibodies for human cell surface molecules to isolate cardiomyocytes derived from hiPSCs and identified anti-VCAM1 (Vascular cell adhesion molecule 1 antibody specifically marked cardiomyocytes. TNNT2-positive cells were detected at day 7-8 after induction and 80% of them became VCAM1-positive by day 11. Approximately 95-98% of VCAM1-positive cells at day 11 were positive for TNNT2. VCAM1 was exclusive with CD144 (endothelium, CD140b (pericytes and TRA-1-60 (undifferentiated hESCs/hiPSCs. 95% of MACS-purified cells were positive for TNNT2. MACS purification yielded 5-10×10(5 VCAM1-positive cells from a single well of a six-well culture plate. Purified VCAM1-positive cells displayed molecular and functional features of cardiomyocytes. VCAM1 also specifically marked cardiomyocytes derived from other hESC or hiPSC lines. CONCLUSION: We succeeded in efficiently inducing cardiomyocytes from hESCs/hiPSCs and identifying VCAM1 as a potent cell surface marker for robust, efficient and scalable purification of cardiomyocytes from h

  13. Inhibition of MMP-2 Expression with siRNA Increases Baseline Cardiomyocyte Contractility and Protects against Simulated Ischemic Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Han-Bin Lin


    Full Text Available Matrix metalloproteinases (MMPs significantly contribute to ischemia reperfusion (I/R injury, namely, by the degradation of contractile proteins. However, due to the experimental models adopted and lack of isoform specificity of MMP inhibitors, the cellular source and identity of the MMP(s involved in I/R injury remain to be elucidated. Using isolated adult rat cardiomyocytes, subjected to chemically induced I/R-like injury, we show that specific inhibition of MMP-2 expression and activity using MMP-2 siRNA significantly protected cardiomyocyte contractility from I/R-like injury. This was also associated with increased expression of myosin light chains 1 and 2 (MLC1/2 in comparison to scramble siRNA transfection. Moreover, the positive effect of MMP-2 siRNA transfection on cardiomyocyte contractility and MLC1/2 expression levels was also observed under control conditions, suggesting an important additional role for MMP-2 in physiological sarcomeric protein turnover. This study clearly demonstrates that intracellular expression of MMP-2 plays a significant role in sarcomeric protein turnover, such as MLC1 and MLC2, under aerobic (physiological conditions. In addition, this study identifies intracellular/autocrine, cardiomyocyte-produced MMP-2, rather than paracrine/extracellular, as responsible for the degradation of MLC1/2 and consequent contractile dysfunction in cardiomyocytes subjected to I/R injury.

  14. Scalable Electrophysiological Investigation of iPS Cell-Derived Cardiomyocytes Obtained by a Lentiviral Purification Strategy

    Directory of Open Access Journals (Sweden)

    Stephanie Friedrichs


    Full Text Available Disease-specific induced pluripotent stem (iPS cells can be generated from patients and differentiated into functional cardiomyocytes for characterization of the disease and for drug screening. In order to obtain pure cardiomyocytes for automated electrophysiological investigation, we here report a novel non-clonal purification strategy by using lentiviral gene transfer of a puromycin resistance gene under the control of a cardiac-specific promoter. We have applied this method to our previous reported wild-type and long QT syndrome 3 (LQTS 3-specific mouse iPS cells and obtained a pure cardiomyocyte population. These cells were investigated by action potential analysis with manual and automatic planar patch clamp technologies, as well as by recording extracellular field potentials using a microelectrode array system. Action potentials and field potentials showed the characteristic prolongation at low heart rates in LQTS 3-specific, but not in wild-type iPS cell-derived cardiomyocytes. Hence, LQTS 3-specific cardiomyocytes can be purified from iPS cells with a lentiviral strategy, maintain the hallmarks of the LQTS 3 disease and can be used for automated electrophysiological characterization and drug screening.

  15. Melatonin attenuates angiotensin II-induced cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway. (United States)

    Su, Hongyan; Li, Jingyuan; Chen, Tongshuai; Li, Na; Xiao, Jie; Wang, Shujian; Guo, Xiaobin; Yang, Yi; Bu, Peili


    Melatonin is well known for its cardioprotective effects; however, whether melatonin exerts therapeutic effects on cardiomyocyte hypertrophy remains to be investigated, as do the mechanisms underlying these effects, if they exist. Cyclophilin A (CyPA) and its corresponding receptor, CD147, which exists in a variety of cells, play crucial roles in modulating reactive oxygen species (ROS) production. In this study, we explored the role of the CyPA/CD147 signaling pathway in angiotensin II (Ang II)-induced cardiomyocyte hypertrophy and the protective effects exerted by melatonin against Ang II-induced injury in cultured H9C2 cells. Cyclosporine A, a specific CyPA/CD147 signaling pathway inhibitor, was used to manipulate CyPA/CD147 activity. H9C2 cells were then subjected to Ang II or CyPA treatment in either the absence or presence of melatonin. Our results indicate that Ang II induces cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway and promotes ROS production, which can be blocked by melatonin pretreatment in a concentration-dependent manner, in cultured H9C2 cells and that CyPA/CD147 signaling pathway inhibition protects against Ang II-induced cardiomyocyte hypertrophy. The protective effects of melatonin against Ang II-induced cardiomyocyte hypertrophy depend at least partially on CyPA/CD147 inhibition.

  16. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS-mediated cardiomyocyte hypertrophy. (United States)

    Tigchelaar, Wardit; Yu, Hongjuan; de Jong, Anne Margreet; van Gilst, Wiek H; van der Harst, Pim; Westenbrink, B Daan; de Boer, Rudolf A; Silljé, Herman H W


    Recently, a locus at the mitochondrial exo/endonuclease EXOG gene, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and hypertrophy in cardiomyocytes. Depletion of EXOG in primary neonatal rat ventricular cardiomyocytes (NRVCs) induced a marked increase in cardiomyocyte hypertrophy. Depletion of EXOG, however, did not result in loss of mitochondrial DNA integrity. Although EXOG depletion did not induce fetal gene expression and common hypertrophy pathways were not activated, a clear increase in ribosomal S6 phosphorylation was observed, which readily explains increased protein synthesis. With the use of a Seahorse flux analyzer, it was shown that the mitochondrial oxidative consumption rate (OCR) was increased 2.4-fold in EXOG-depleted NRVCs. Moreover, ATP-linked OCR was 5.2-fold higher. This increase was not explained by mitochondrial biogenesis or alterations in mitochondrial membrane potential. Western blotting confirmed normal levels of the oxidative phosphorylation (OXPHOS) complexes. The increased OCR was accompanied by a 5.4-fold increase in mitochondrial ROS levels. These increased ROS levels could be normalized with specific mitochondrial ROS scavengers (MitoTEMPO, mnSOD). Remarkably, scavenging of excess ROS strongly attenuated the hypertrophic response. In conclusion, loss of EXOG affects normal mitochondrial function resulting in increased mitochondrial respiration, excess ROS production, and cardiomyocyte hypertrophy.

  17. lncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy (United States)

    Li, Xiangquan; Wang, Hao; Yao, Biao; Xu, Weiting; Chen, Jianchang; Zhou, Xiang


    We previously established a rat model of diabetic cardiomyopathy (DCM) and found that the expression of lncRNA H19 was significantly downregulated. The present study was designed to investigate the pathogenic role of H19 in the development of DCM. Overexpression of H19 in diabetic rats attenuated oxidative stress, inflammation and apoptosis, and consequently improved left ventricular function. High glucose was associated with reduced H19 expression and increased cardiomyocyte apoptosis. To explore the molecular mechanisms involved, we performed in vitro experiments using cultured neonatal rat cardiomyocytes. Our results showed that miR-675 expression was decreased in cardiomyocytes transfected with H19 siRNA. The 3′UTR of VDAC1 was cloned downstream of a luciferase reporter construct and cotransfected into HEK293 cells with miR-675 mimic. The results of luciferase assay indicated that VDAC1 might be a direct target of miR-675. The expression of VDAC1 was upregulated in cardiomyocytes transfected with miR-675 antagomir, which consequently promotes cellular apoptosis. Moreover, enforced expression of H19 was found to reduce VDAC1 expression and inhibit apoptosis in cardiomyocytes exposed to high glucose. In conclusion, our study demonstrates that H19/miR-675 axis is involved in the regulation of high glucose-induced apoptosis by targeting VDAC1, which may provide a novel therapeutic strategy for the treatment of DCM. PMID:27796346

  18. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition. (United States)

    Jia, Zhuqing; Wang, Jiaji; Shi, Qiong; Liu, Siyu; Wang, Weiping; Tian, Yuyao; Lu, Qin; Chen, Ping; Ma, Kangtao; Zhou, Chunyan


    Sepsis-induced cardiac apoptosis is one of the major pathogenic factors in myocardial dysfunction. As it enhances numerous proinflammatory factors, lipopolysaccharide (LPS) is considered the principal mediator in this pathological process. However, the detailed mechanisms involved are unclear. In this study, we attempted to explore the mechanisms involved in LPS-induced cardiomyocyte apoptosis. We found that LPS stimulation inhibited microRNA (miR)-499 expression and thereby upregulated the expression of SOX6 and PDCD4 in neonatal rat cardiomyocytes. We demonstrate that SOX6 and PDCD4 are target genes of miR-499, and they enhance LPS-induced cardiomyocyte apoptosis by activating the BCL-2 family pathway. The apoptosis process enhanced by overexpression of SOX6 or PDCD4, was rescued by the cardiac-abundant miR-499. Overexpression of miR-499 protected the cardiomyocytes against LPS-induced apoptosis. In brief, our results demonstrate the existence of a miR-499-SOX6/PDCD4-BCL-2 family pathway in cardiomyocytes in response to LPS stimulation.

  19. Segregation of Central Ventricular Conduction System Lineages in Early SMA+ Cardiomyocytes Occurs Prior to Heart Tube Formation

    Directory of Open Access Journals (Sweden)

    Caroline Choquet


    Full Text Available The cardiac conduction system (CCS transmits electrical activity from the atria to the ventricles to coordinate heartbeats. Atrioventricular conduction diseases are often associated with defects in the central ventricular conduction system comprising the atrioventricular bundle (AVB and right and left branches (BBs. Conducting and contractile working myocytes share common cardiomyogenic progenitors, however the time at which the CCS lineage becomes specified is unclear. In order to study the fate and the contribution to the CCS of cardiomyocytes during early heart tube formation, we performed a genetic lineage analysis using a Sma-CreERT2 mouse line. Lineage tracing experiments reveal a sequential contribution of early Sma expressing cardiomyocytes to different cardiac compartments, labeling at embryonic day (E 7.5 giving rise to the interventricular septum and apical left ventricular myocardium. Early Sma expressing cardiomyocytes contribute to the AVB, BBs and left ventricular Purkinje fibers. Clonal analysis using the R26-confetti reporter mouse crossed with Sma-CreERT2 demonstrates that early Sma expressing cardiomyocytes include cells exclusively fated to give rise to the AVB. In contrast, lineage segregation is still ongoing for the BBs at E7.5. Overall this study highlights the early segregation of the central ventricular conduction system lineage within cardiomyocytes at the onset of heart tube formation.

  20. Late Sodium Current in Human Atrial Cardiomyocytes from Patients in Sinus Rhythm and Atrial Fibrillation.

    Directory of Open Access Journals (Sweden)

    Claire Poulet

    Full Text Available Slowly inactivating Na+ channels conducting "late" Na+ current (INa,late contribute to ventricular arrhythmogenesis under pathological conditions. INa,late was also reported to play a role in chronic atrial fibrillation (AF. The objective of this study was to investigate INa,late in human right atrial cardiomyocytes as a putative drug target for treatment of AF. To activate Na+ channels, cardiomyocytes from transgenic mice which exhibit INa,late (ΔKPQ, and right atrial cardiomyocytes from patients in sinus rhythm (SR and AF were voltage clamped at room temperature by 250-ms long test pulses to -30 mV from a holding potential of -80 mV with a 100-ms pre-pulse to -110 mV (protocol I. INa,late at -30 mV was not discernible as deviation from the extrapolated straight line IV-curve between -110 mV and -80 mV in human atrial cells. Therefore, tetrodotoxin (TTX, 10 μM was used to define persistent inward current after 250 ms at -30 mV as INa,late. TTX-sensitive current was 0.27±0.06 pA/pF in ventricular cardiomyocytes from ΔKPQ mice, and amounted to 0.04±0.01 pA/pF and 0.09±0.02 pA/pF in SR and AF human atrial cardiomyocytes, respectively. With protocol II (holding potential -120 mV, pre-pulse to -80 mV TTX-sensitive INa,late was always larger than with protocol I. Ranolazine (30 μM reduced INa,late by 0.02±0.02 pA/pF in SR and 0.09±0.02 pA/pF in AF cells. At physiological temperature (37°C, however, INa,late became insignificant. Plateau phase and upstroke velocity of action potentials (APs recorded with sharp microelectrodes in intact human trabeculae were more sensitive to ranolazine in AF than in SR preparations. Sodium channel subunits expression measured with qPCR was high for SCN5A with no difference between SR and AF. Expression of SCN8A and SCN10A was low in general, and lower in AF than in SR. In conclusion, We confirm for the first time a TTX-sensitive current (INa,late in right atrial cardiomyocytes from SR and AF patients at room

  1. Late Sodium Current in Human Atrial Cardiomyocytes from Patients in Sinus Rhythm and Atrial Fibrillation. (United States)

    Poulet, Claire; Wettwer, Erich; Grunnet, Morten; Jespersen, Thomas; Fabritz, Larissa; Matschke, Klaus; Knaut, Michael; Ravens, Ursula


    Slowly inactivating Na+ channels conducting "late" Na+ current (INa,late) contribute to ventricular arrhythmogenesis under pathological conditions. INa,late was also reported to play a role in chronic atrial fibrillation (AF). The objective of this study was to investigate INa,late in human right atrial cardiomyocytes as a putative drug target for treatment of AF. To activate Na+ channels, cardiomyocytes from transgenic mice which exhibit INa,late (ΔKPQ), and right atrial cardiomyocytes from patients in sinus rhythm (SR) and AF were voltage clamped at room temperature by 250-ms long test pulses to -30 mV from a holding potential of -80 mV with a 100-ms pre-pulse to -110 mV (protocol I). INa,late at -30 mV was not discernible as deviation from the extrapolated straight line IV-curve between -110 mV and -80 mV in human atrial cells. Therefore, tetrodotoxin (TTX, 10 μM) was used to define persistent inward current after 250 ms at -30 mV as INa,late. TTX-sensitive current was 0.27±0.06 pA/pF in ventricular cardiomyocytes from ΔKPQ mice, and amounted to 0.04±0.01 pA/pF and 0.09±0.02 pA/pF in SR and AF human atrial cardiomyocytes, respectively. With protocol II (holding potential -120 mV, pre-pulse to -80 mV) TTX-sensitive INa,late was always larger than with protocol I. Ranolazine (30 μM) reduced INa,late by 0.02±0.02 pA/pF in SR and 0.09±0.02 pA/pF in AF cells. At physiological temperature (37°C), however, INa,late became insignificant. Plateau phase and upstroke velocity of action potentials (APs) recorded with sharp microelectrodes in intact human trabeculae were more sensitive to ranolazine in AF than in SR preparations. Sodium channel subunits expression measured with qPCR was high for SCN5A with no difference between SR and AF. Expression of SCN8A and SCN10A was low in general, and lower in AF than in SR. In conclusion, We confirm for the first time a TTX-sensitive current (INa,late) in right atrial cardiomyocytes from SR and AF patients at room

  2. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction

    NARCIS (Netherlands)

    van Laake, Linda W.; Passier, Robert; Monshouwer-Kloots, Jantine; Verkleij, Arie J.; Lips, Daniel J.; Freund, Christian; den Ouden, Krista; Ward-van Oostwaard, Dorien; Korving, Jeroen; Tertoolen, Leon G.; van Echteld, Cees J.; Doevendans, Pieter A.; Mummery, Christine L.


    Regeneration of the myocardium by transplantation of cardiomyocytes is an emerging therapeutic strategy. Human embryonic stem cells (HESC) form cardiomyocytes readily but until recently at low efficiency, so that preclinical studies on transplantation in animals are only just beginning. Here, we sho

  3. Nuclear Chemistry. (United States)

    Chemical and Engineering News, 1979


    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  4. Nuclear Scans (United States)

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  5. Glucolipotoxicity diminishes cardiomyocyte TFEB and inhibits lysosomal autophagy during obesity and diabetes. (United States)

    Trivedi, Purvi C; Bartlett, Jordan J; Perez, Lester J; Brunt, Keith R; Legare, Jean Francois; Hassan, Ansar; Kienesberger, Petra C; Pulinilkunnil, Thomas


    Impaired cardiac metabolism in the obese and diabetic heart leads to glucolipotoxicity and ensuing cardiomyopathy. Glucolipotoxicity causes cardiomyocyte injury by increasing energy insufficiency, impairing proteasomal-mediated protein degradation and inducing apoptosis. Proteasome-evading proteins are degraded by autophagy in the lysosome, whose metabolism and function are regulated by master regulator transcription factor EB (TFEB). Limited studies have examined the impact of glucolipotoxicity on intra-lysosomal signaling proteins and their regulators. By utilizing a mouse model of diet-induced obesity, type-1 diabetes (Akita) and ex-vivo model of glucolipotoxicity (H9C2 cells and NRCM, neonatal rat cardiomyocyte), we examined whether glucolipotoxicity negatively targets TFEB and lysosomal proteins to dysregulate autophagy and cause cardiac injury. Despite differential effects of obesity and diabetes on LC3B-II, expression of proteins facilitating autophagosomal clearance such as TFEB, LAMP-2A, Hsc70 and Hsp90 were decreased in the obese and diabetic heart. In-vivo data was recapitulated in H9C2 and NRCM cells, which exhibited impaired autophagic flux and reduced TFEB content when exposed to a glucolipotoxic milieu. Notably, overloading myocytes with a saturated fatty acid (palmitate) but not an unsaturated fatty acid (oleate) depleted cellular TFEB and suppressed autophagy, suggesting a fatty acid specific regulation of TFEB and autophagy in the cardiomyocyte. The effect of glucolipotoxicity to reduce TFEB content was also confirmed in heart tissue from patients with Class-I obesity. Therefore, during glucolipotoxicity, suppression of lysosomal autophagy was associated with reduced lysosomal content, decreased cathepsin-B activity and diminished cellular TFEB content likely rendering myocytes susceptible to cardiac injury.

  6. Polyamine Depletion Attenuates Isoproterenol-Induced Hypertrophy and Endoplasmic Reticulum Stress in Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yan Lin


    Full Text Available Background/Aim: Polyamines (putrescine, spermidine and spermine play an essential role in cell growth, differentiation and apoptosis. Hypertrophy is accompanied by an increase in polyamine synthesis and endoplasmic reticulum stress (ERS in cardiomyocytes. The present study was undertaken to elucidate the molecular interactions between polyamines, ERS and cardiac hypertrophy. Methods: Myocardial hypertrophy was simulated by incubating cultured neonatal rat cardiomyocytes in 100 nM isoproterenol (ISO. Polyamine deletion was achieved using 0.5 mM difluoromethylornithine (DFMO. Hypertrophy was estimated using cell surface area measurements, total protein concentrations and atrial natriuretic peptide (ANP gene expression. Apoptosis was measured using flow cytometry and transmission electron microscopy. Expression of ornithine decarboxylase (ODC and spermidine/spermine N1-acetyltransferase (SSAT were analyzed via real-time PCR and Western blotting. Protein expression of ERS and apoptosis factors were analyzed using Western blotting. Results: DFMO (0.5 mM and 2 mM treatments significantly attenuated hypertrophy and apoptosis induced by ISO in cardiomyocytes. DFMO also decreased lactate dehydrogenase (LDH and malondialdehyde (MDA level in the culture medium. In addition, DFMO (0.5 mM down regulated the expression of ODC, glucose-regulated protein 78 (GRP78, C/EBP homologous protein (CHOP, cleaved caspase-12, and Bax and up regulated the expression of SSAT and Bcl-2. Finally, these changes were partly reversed by the addition of exogenous putrescine (0.5 mM. Conclusion: The data presented here suggest that polyamine depletion could inhibit cardiac hypertrophy and apoptosis, which is closely related to the ERS pathway.

  7. Experimental research on recombinant human endostatin-induced cardiomyocyte apoptosis in rats

    Directory of Open Access Journals (Sweden)

    Jing QIN


    Full Text Available Objective To explore the recombinant human endostatin (rh-ES-induced cardiotoxicity in rats and its mechanism. Methods Twenty four female Wistar rats were randomly divided into four groups (6 each. Rats in low, moderate and high dose group received rh-ES with a dosage of 3, 6 and 12mg/(kg·d, respectively, by intraperitoneal injection, and rats in control group received the same amount of normal saline alone. Half of rats in each group were sacrificed by spinal dislocation after 4 weeks and 8 weeks of the treatment. Pathomorphologic and ultrastructural changes in rat's myocardial tissue were evaluated by light microscopy and transmission electron microscopy. Cardiomyocyte apoptosis was detected with TdT-mediated dUTP nick end labeling (TUNEL assay. Microvessel density (MVD in myocardial tissue was measured by immunohistochemically marking endothelial cell with CD34. Results No pathomorphologic and ultrastrucural changes were found under light microscope and transmission electron microscope in the low dose and moderate dose groups, but cardiomyocyte damage were found in the high dose group. TUNEL assay revealed more apoptotic cells in high and moderate (only 8 weeks dose groups than in control group (P=0.033, P=0.000, and the apoptosis index was highest in the high dose group at 8 weeks. In addition, compared with the control group, MVD significantly increased in high dose groups at 4 weeks and 8 weeks (P<0.05. Conclusions rh-ES induces the cardiotoxicity in rats, and cardiomyocyte apoptosis is involved in the pathological course of cardiac toxicity. DOI: 10.11855/j.issn.0577-7402.2014.01.02

  8. Propofol ameliorates doxorubicin-induced oxidative stress and cellular apoptosis in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lai, H.C. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Yeh, Y.C. [Graduate Institute of Natural Healing Sciences, Nanhua University, Chiayi, Taiwan (China); Wang, L.C. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Ting, C.T.; Lee, W.L. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Lee, H.W. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, K.Y. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine, Chung-Shan Medical University, Taichung, Taiwan (China); Wu, A. [College of Biological Science, University of California, Davis (United States); Su, C.S. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Liu, T.J., E-mail: [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China)


    Background: Propofol is an anesthetic with pluripotent cytoprotective properties against various extrinsic insults. This study was designed to examine whether this agent could also ameliorate the infamous toxicity of doxorubicin, a widely-used chemotherapeutic agent against a variety of cancer diseases, on myocardial cells. Methods: Cultured neonatal rat cardiomyocytes were administrated with vehicle, doxorubicin (1 {mu}M), propofol (1 {mu}M), or propofol plus doxorubicin (given 1 h post propofol). After 24 h, cells were harvested and specific analyses regarding oxidative/nitrative stress and cellular apoptosis were conducted. Results: Trypan blue exclusion and MTT assays disclosed that viability of cardiomyocytes was significantly reduced by doxorubicin. Contents of reactive oxygen and nitrogen species were increased and antioxidant enzymes SOD1, SOD2, and GPx were decreased in these doxorubicin-treated cells. Mitochondrial dehydrogenase activity and membrane potential were also depressed, along with activation of key effectors downstream of mitochondrion-dependent apoptotic signaling. Besides, abundance of p53 was elevated and cleavage of PKC-{delta} was induced in these myocardial cells. In contrast, all of the above oxidative, nitrative and pro-apoptotic events could be suppressed by propofol pretreatment. Conclusions: Propofol could extensively counteract oxidative/nitrative and multiple apoptotic effects of doxorubicin in the heart; hence, this anesthetic may serve as an adjuvant agent to assuage the untoward cardiac effects of doxorubicin in clinical application. -- Highlights: Black-Right-Pointing-Pointer We evaluate how propofol prevents doxorubicin-induced toxicity in cardiomyocytes. Black-Right-Pointing-Pointer Propofol reduces doxorubicin-imposed nitrative and oxidative stress. Black-Right-Pointing-Pointer Propofol suppresses mitochondrion-, p53- and PKC-related apoptotic signaling. Black-Right-Pointing-Pointer Propofol ameliorates apoptosis and

  9. PTRF/Cavin-1 Deficiency Causes Cardiac Dysfunction Accompanied by Cardiomyocyte Hypertrophy and Cardiac Fibrosis (United States)

    Ogata, Takehiro; Kasahara, Takeru; Nakanishi, Naohiko; Miyagawa, Kotaro; Naito, Daisuke; Hamaoka, Tetsuro; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi


    Mutations in the PTRF/Cavin-1 gene cause congenital generalized lipodystrophy type 4 (CGL4) associated with myopathy. Additionally, long-QT syndrome and fatal cardiac arrhythmia are observed in patients with CGL4 who have homozygous PTRF/Cavin-1 mutations. PTRF/Cavin-1 deficiency shows reductions of caveolae and caveolin-3 (Cav3) protein expression in skeletal muscle, and Cav3 deficiency in the heart causes cardiac hypertrophy with loss of caveolae. However, it remains unknown how loss of PTRF/Cavin-1 affects cardiac morphology and function. Here, we present a characterization of the hearts of PTRF/Cavin-1-null (PTRF−/−) mice. Electron microscopy revealed the reduction of caveolae in cardiomyocytes of PTRF−/− mice. PTRF−/− mice at 16 weeks of age developed a progressive cardiomyopathic phenotype with wall thickening of left ventricles and reduced fractional shortening evaluated by echocardiography. Electrocardiography revealed that PTRF−/− mice at 24 weeks of age had low voltages and wide QRS complexes in limb leads. Histological analysis showed cardiomyocyte hypertrophy accompanied by progressive interstitial/perivascular fibrosis. Hypertrophy-related fetal gene expression was also induced in PTRF−/− hearts. Western blotting analysis and quantitative RT-PCR revealed that Cav3 expression was suppressed in PTRF−/− hearts compared with that in wild-type (WT) ones. ERK1/2 was activated in PTRF−/− hearts compared with that in WT ones. These results suggest that loss of PTRF/Cavin-1 protein expression is sufficient to induce a molecular program leading to cardiomyocyte hypertrophy and cardiomyopathy, which is partly attributable to Cav3 reduction in the heart. PMID:27612189

  10. Anti-aging effects of vitamin C on human pluripotent stem cell-derived cardiomyocytes. (United States)

    Kim, Yoon Young; Ku, Seung-Yup; Huh, Yul; Liu, Hung-Ching; Kim, Seok Hyun; Choi, Young Min; Moon, Shin Yong


    Human pluripotent stem cells (hPSCs) have arisen as a source of cells for biomedical research due to their developmental potential. Stem cells possess the promise of providing clinicians with novel treatments for disease as well as allowing researchers to generate human-specific cellular metabolism models. Aging is a natural process of living organisms, yet aging in human heart cells is difficult to study due to the ethical considerations regarding human experimentation as well as a current lack of alternative experimental models. hPSC-derived cardiomyocytes (CMs) bear a resemblance to human cardiac cells and thus hPSC-derived CMs are considered to be a viable alternative model to study human heart cell aging. In this study, we used hPSC-derived CMs as an in vitro aging model. We generated cardiomyocytes from hPSCs and demonstrated the process of aging in both human embryonic stem cell (hESC)- and induced pluripotent stem cell (hiPSC)-derived CMs. Aging in hESC-derived CMs correlated with reduced membrane potential in mitochondria, the accumulation of lipofuscin, a slower beating pattern, and the downregulation of human telomerase RNA (hTR) and cell cycle regulating genes. Interestingly, the expression of hTR in hiPSC-derived CMs was not significantly downregulated, unlike in hESC-derived CMs. In order to delay aging, vitamin C was added to the cultured CMs. When cells were treated with 100 μM of vitamin C for 48 h, anti-aging effects, specifically on the expression of telomere-related genes and their functionality in aging cells, were observed. Taken together, these results suggest that hPSC-derived CMs can be used as a unique human cardiomyocyte aging model in vitro and that vitamin C shows anti-aging effects in this model.

  11. Generation of electrophysiologically functional cardiomyocytes from mouse induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Hongran Wang


    Full Text Available Induced pluripotent stem (iPS cells can efficiently differentiate into the three germ layers similar to those formed by differentiated embryonic stem (ES cells. This provides a new source of cells in which to establish preclinical allogeneic transplantation models. Our iPS cells were generated from mouse embryonic fibroblasts (MEFs transfected with the Yamanaka factors, the four transcription factors (Oct4, Sox2, Klf4 and c-Myc, without antibiotic selection or MEF feeders. After the formation of embryoid bodies (EBs, iPS cells spontaneously differentiated into Flk1-positive cardiac progenitors and cardiomyocytes expressing cardiac-specific markers such as alpha sarcomeric actinin (α-actinin, cardiac alpha myosin heavy chain (α-MHC, cardiac troponin T (cTnT, and connexin 43 (CX43, as well as cardiac transcription factors Nk2 homebox 5 (Nkx2.5 and gata binding protein 4 (gata4. The electrophysiological activity of iPS cell-derived cardiomyocytes (iPS-CMs was detected in beating cell clusters with optical mapping and RH237 a voltage-sensitive dye, and in single contracting cells with patch-clamp technology. Incompletely differentiated iPS cells formed teratomas when transplanted into a severe combined immunodeficiency (SCID mouse model of myocardial infarction. Our results show that somatic cells can be reprogrammed into pluripotent stem cells, which in turn spontaneously differentiate into electrophysiologically functional mature cardiomyocytes expressing cardiac-specific makers, and that these cells can potentially be used to repair myocardial infarction (MI in the future.

  12. Thrombopoietin Protects Cardiomyocytes from Iron-Overload Induced Oxidative Stress and Mitochondrial Injury

    Directory of Open Access Journals (Sweden)

    Shing Chan


    Full Text Available Background/Aims: Thalassaemia accompanied with iron-overload is common in Hong Kong. Iron-overload induced cardiomyopathy is the commonest cause of morbidity and mortality in patients with β-thalassaemia. Chronic iron-overload due to blood transfusion can cause cardiac failure. Decreased antioxidant defence and increased ROS production may lead to oxidative stress and cell injury. Iron-overload may lead to heart tissue damage through lipid peroxidation in response to oxidative stress, and a great diversity of toxic aldehydes are formed when lipid hydroperoxides break down in heart and plasma. Methods: Iron entry into embryonic heart H9C2 cells was determined by calcein assay using a fluorometer. Reactive oxygen species (ROS production in cells treated with FeCl3 or thrombopoietin (TPO was monitored by using the fluorescent probe H2DCFDA. Changes in mitochondrial membrane potential of H9C2 cells were quantified by using flow cytometry. Results: We demonstrated that iron induced oxidative stress and apoptosis in cardiomyocytes, and that iron increased ROS production and reduced cell viability in a dose-dependent manner. Iron treatment increased the proportion of cells with JC-1 monomers, indicating a trend of drop in the mitochondrial membrane potential. TPO exerted a cardio-protective effect on iron-induced apoptosis. Conclusions: These findings suggest that iron-overload leads to the generation of ROS and further induces apoptosis in cardiomyocytes via mitochondrial pathways. TPO might exert a protective effect on iron-overload induced apoptosis via inhibiting oxidative stress and suppressing the mitochondrial pathways in cardiomyocytes.

  13. Slow conduction in mixed cultured strands of primary ventricular cells and stem cell-derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jan Pavel Kucera


    Full Text Available Modern concepts for the treatment of myocardial diseases focus on novel cell therapeutic strategies involving stem cell-derived cardiomyocytes (SCMs. However, functional integration of SCMs requires similar electrophysiological properties as primary cardiomyocytes (PCMs and the ability to establish intercellular connections with host myocytes in order to contribute to the electrical and mechanical activity of the heart. The aim of this project was to investigate the properties of cardiac conduction in a co-culture approach using SCMs and PCMs in cultured cell strands. Murine embryonic SCMs were pooled with fetal ventricular cells and seeded in predefined proportions on microelectrode arrays to form patterned strands of mixed cells. Conduction velocity (CV was measured during steady state pacing. SCM excitability was estimated from action potentials measured in single cells using the patch clamp technique. Experiments were complemented with computer simulations of conduction using a detailed model of cellular architecture in mixed cell strands.CV was significantly lower in strands composed purely of SCMs (5.5±1.5 cm/s, n=11 as compared to PCMs (34.9±2.9 cm/s, n=21 at similar refractoriness (100% SCMs: 122±25 ms, n=9; 100% PCMs: 139±67 ms, n=14. In mixed strands combining both cell types, CV was higher than in pure SCMs strands, but always lower than in 100% PCM strands. Computer simulations demonstrated that both intercellular coupling and electrical excitability limit CV.These data provide evidence that in cultures of murine ventricular cardiomyocytes, SCMs cannot restore CV to control levels resulting in slow conduction, which may lead to reentry circuits and arrhythmias.

  14. Mesenchymal stem cells from rat olfactory bulbs can differentiate into cells with cardiomyocyte characteristics. (United States)

    Huang, Yuahn-Sieh; Li, I-Hsun; Chueh, Sheau-Huei; Hueng, Dueng-Yuan; Tai, Ming-Cheng; Liang, Chang-Min; Lien, Shiu-Bii; Sytwu, Huey-Kang; Ma, Kuo-Hsing


    Mesenchymal stromal/stem cells (MSCs) are widely distributed in different tissues such as bone marrow, adipose tissues, peripheral blood, umbilical cord and amnionic fluid. Recently, MSC-like cells were also found to exist in rat olfactory bulb and are capable of inducing differentiation into mesenchymal lineages - osteocytes, chondrocytes and adipocytes. However, whether these cells can differentiate into myocardial cells is not known. In this study, we examined whether olfactory bulb-derived MSCs could differentiate into myocardial cells in vitro. Fibroblast-like cells isolated from the olfactory bulb of neonatal rats were grown under four conditions: no treatment; in the presence of growth factors (neuregulin-1, bFGF and forskolin); co-cultured with cardiomyocytes; and co-cultured with cardiomyocytes plus neuregulin-1, bFGF and forskolin. Cell differentiation into myocardial cells was monitored by RT-PCR, light microscopy immunofluorescence, western blot analysis and contractile response to pharmacological treatments. The isolated olfactory bulb-derived fibroblast-like cells expressed CD29, CD44, CD90, CD105, CD166 but not CD34 and CD45, consistent with the characteristics of MSCs. Long cylindical cells that spontaneously contracted were only observed following 7 days of co-culture of MSCs with rat cardiomyocytes plus neuregulin-1, bFGF and forskolin. RT-PCR and western blot analysis indicated that the cylindrical cells expressed myocardial markers, such as Nkx2.5, GATA4, sarcomeric α-actinin, cardiac troponin I, cardiac myosin heavy chain, atrial natriuretic peptide and connexin 43. They also contained sarcomeres and gap junction and were sensitive to pharmacological treatments (adrenal and cholinergic agonists and antagonists). These findings indicate that rat olfactory bulb-derived fibroblast-like cells with MSC characteristics can differentiate into myocardial-like cells.

  15. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure. (United States)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C; van Meer, Berend; Ward-van Oostwaard, Dorien; Passier, Robert; Tertoolen, Leon G J; Mummery, Christine L; Casini, Simona


    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation.

  16. A non-destructive culturing and cell sorting method for cardiomyocytes and neurons using a double alginate layer.

    Directory of Open Access Journals (Sweden)

    Hideyuki Terazono

    Full Text Available A non-destructive method of collecting cultured cells after identifying their in situ functional characteristics is proposed. In this method, cells are cultivated on an alginate layer in a culture dish and released by spot application of a calcium chelate buffer that locally melts the alginate layer and enables the collection of cultured cells at the single-cell level. Primary hippocampal neurons, beating human embryonic stem (hES cell-derived cardiomyocytes, and beating hES cell-derived cardiomyocyte clusters cultivated on an alginate layer were successfully released and collected with a micropipette. The collected cells were recultured while maintaining their physiological function, including beating, and elongated neurites. These results suggest that the proposed method may eventually facilitate the transplantation of ES- or iPS-derived cardiomyocytes and neurons differentiated in culture.

  17. Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jan David Kijlstra


    Full Text Available The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can be used to quantify changes in cellular morphology over time and compute contractile kinetics. Using a biomechanical model that incorporates substrate stiffness, we calculate cardiomyocyte force generation at single-cell resolution and validate this approach with conventional traction force microscopy. The addition of fluorescent calcium indicators or membrane potential dyes allows the simultaneous analysis of contractility and calcium handling or action potential morphology. Accordingly, our approach has the potential for broad application in the study of cardiac disease, drug discovery, and cardiotoxicity screening.

  18. Nuclear weapons, nuclear effects, nuclear war

    Energy Technology Data Exchange (ETDEWEB)

    Bing, G.F.


    This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

  19. Nuclear structure

    CERN Document Server

    Nazarewicz, W


    Current developments in nuclear structure are discussed from a theoretical perspective. The studies of the nuclear many-body system provide us with invaluable information about the nature of the nuclear interaction, nucleonic correlations at various energy-distance scales, and the modes of the nucleonic matter.

  20. Nuclear Ambitions

    Institute of Scientific and Technical Information of China (English)


    China will begin to build the world’s first third-generation nuclear power plant at the Sanmen Nuclear Power Project in Sanmen City, coastal Zhejiang Province, in March 2009, accord-ing to the State Nuclear Power Technology Corp.

  1. Functional protein expression of multiple sodium channel alpha- and beta-subunit isoforms in neonatal cardiomyocytes. (United States)

    Kaufmann, Susann G; Westenbroek, Ruth E; Zechner, Christoph; Maass, Alexander H; Bischoff, Sebastian; Muck, Jenny; Wischmeyer, Erhard; Scheuer, Todd; Maier, Sebastian K G


    Voltage-gated sodium channels are composed of pore-forming alpha- and auxiliary beta-subunits and are responsible for the rapid depolarization of cardiac action potentials. Recent evidence indicates that neuronal tetrodotoxin (TTX) sensitive sodium channel alpha-subunits are expressed in the heart in addition to the predominant cardiac TTX-resistant Na(v)1.5 sodium channel alpha-subunit. These TTX-sensitive isoforms are preferentially localized in the transverse tubules of rodents. Since neonatal cardiomyocytes have yet to develop transverse tubules, we determined the complement of sodium channel subunits expressed in these cells. Neonatal rat ventricular cardiomyocytes were stained with antibodies specific for individual isoforms of sodium channel alpha- and beta-subunits. alpha-actinin, a component of the z-line, was used as an intracellular marker of sarcomere boundaries. TTX-sensitive sodium channel alpha-subunit isoforms Na(v)1.1, Na(v)1.2, Na(v)1.3, Na(v)1.4 and Na(v)1.6 were detected in neonatal rat heart but at levels reduced compared to the predominant cardiac alpha-subunit isoform, Na(v)1.5. Each of the beta-subunit isoforms (beta1-beta4) was also expressed in neonatal cardiac cells. In contrast to adult cardiomyocytes, the alpha-subunits are distributed in punctate clusters across the membrane surface of neonatal cardiomyocytes; no isoform-specific subcellular localization is observed. Voltage clamp recordings in the absence and presence of 20 nM TTX provided functional evidence for the presence of TTX-sensitive sodium current in neonatal ventricular myocardium which represents between 20 and 30% of the current, depending on membrane potential and experimental conditions. Thus, as in the adult heart, a range of sodium channel alpha-subunits are expressed in neonatal myocytes in addition to the predominant TTX-resistant Na(v)1.5 alpha-subunit and they contribute to the total sodium current.

  2. Zinc-induced cardiomyocyte relaxation in a rat model of hyperglycemia is independent of myosin isoform

    Directory of Open Access Journals (Sweden)

    Yi Ting


    Full Text Available Abstract It has been reported previously that diabetic cardiomyopathy can be inhibited or reverted with chronic zinc supplementation. In the current study, we hypothesized that total cardiac calcium and zinc content is altered in early onset diabetes mellitus characterized in part as hyperglycemia (HG and that exposure of zinc ion (Zn2+ to isolated cardiomyocytes would enhance contraction-relaxation function in HG more so than in nonHG controls. To better control for differential cardiac myosin isoform expression as occurs in rodents after β-islet cell necrosis, hypothyroidism was induced in 16 rats resulting in 100% β-myosin heavy chain expression in the heart. β-Islet cell necrosis was induced in half of the rats by streptozocin administration. After 6 wks of HG, both HG and nonHG controls rats demonstrated similar myofilament performance measured as thin filament calcium sensitivity, native thin filament velocity in the myosin motility assay and contractile velocity and power. Extracellular Zn2+ reduced cardiomyocyte contractile function in both groups, but enhanced relaxation function significantly in the HG group compared to controls. Most notably, a reduction in diastolic sarcomere length with increasing pacing frequencies, i.e., incomplete relaxation, was more pronounced in the HG compared to controls, but was normalized with extracellular Zn2+ application. This is a novel finding implicating that the detrimental effect of HG on cardiomyocyte Ca2+ regulation can be amelioration by Zn2+. Among the many post-translational modifications examined, only phosphorylation of ryanodine receptor (RyR at S-2808 was significantly higher in HG compared to nonHG. We did not find in our hypothyroid rats any differentiating effects of HG on myofibrillar protein phosphorylation, lysine acetylation, O-linked N-acetylglucosamine and advanced glycated end-products, which are often implicated as complicating factors in cardiac performance due to HG. Our

  3. Zinc-induced cardiomyocyte relaxation in a rat model of hyperglycemia is independent of myosin isoform. (United States)

    Yi, Ting; Cheema, Yaser; Tremble, Sarah M; Bell, Stephen P; Chen, Zengyi; Subramanian, Meenakumari; LeWinter, Martin M; VanBuren, Peter; Palmer, Bradley M


    It has been reported previously that diabetic cardiomyopathy can be inhibited or reverted with chronic zinc supplementation. In the current study, we hypothesized that total cardiac calcium and zinc content is altered in early onset diabetes mellitus characterized in part as hyperglycemia (HG) and that exposure of zinc ion (Zn2+) to isolated cardiomyocytes would enhance contraction-relaxation function in HG more so than in nonHG controls. To better control for differential cardiac myosin isoform expression as occurs in rodents after β-islet cell necrosis, hypothyroidism was induced in 16 rats resulting in 100% β-myosin heavy chain expression in the heart. β-Islet cell necrosis was induced in half of the rats by streptozocin administration. After 6 wks of HG, both HG and nonHG controls rats demonstrated similar myofilament performance measured as thin filament calcium sensitivity, native thin filament velocity in the myosin motility assay and contractile velocity and power. Extracellular Zn2+ reduced cardiomyocyte contractile function in both groups, but enhanced relaxation function significantly in the HG group compared to controls. Most notably, a reduction in diastolic sarcomere length with increasing pacing frequencies, i.e., incomplete relaxation, was more pronounced in the HG compared to controls, but was normalized with extracellular Zn2+ application. This is a novel finding implicating that the detrimental effect of HG on cardiomyocyte Ca2+ regulation can be amelioration by Zn2+. Among the many post-translational modifications examined, only phosphorylation of ryanodine receptor (RyR) at S-2808 was significantly higher in HG compared to nonHG. We did not find in our hypothyroid rats any differentiating effects of HG on myofibrillar protein phosphorylation, lysine acetylation, O-linked N-acetylglucosamine and advanced glycated end-products, which are often implicated as complicating factors in cardiac performance due to HG. Our results suggest that the

  4. Electrical Properties of Isolated Cardiomyocytes in a Rat Model of Thiamine Deficiency

    Directory of Open Access Journals (Sweden)

    Artur Santos-Miranda


    Full Text Available In modern society, thiamine deficiency (TD remains an important medical condition linked to altered cardiac function. There have been contradictory reports about the impact of TD on heart physiology, especially in the context of cardiac excitability. In order to address this particular question, we used a TD rat model and patch-clamp technique to investigate the electrical properties of isolated cardiomyocytes from epicardium and endocardium. Neither cell type showed substantial differences on the action potential waveform and transient outward potassium current. Based on our results we can conclude that TD does not induce major electrical remodeling in isolated cardiac myocytes in either endocardium or epicardium cells.

  5. Bradykinin inhibits oxidative stress-induced cardiomyocytes senescence via regulating redox state.

    Directory of Open Access Journals (Sweden)

    Ruolan Dong

    Full Text Available BACKGROUND: Cell senescence is central to a large body of age related pathology, and accordingly, cardiomyocytes senescence is involved in many age related cardiovascular diseases. In consideration of that, delaying cardiomyocytes senescence is of great importance to control clinical cardiovascular diseases. Previous study indicated that bradykinin (BK protected endothelial cells from senescence induced by oxidative stress. However, the effects of bradykinin on cardiomyocytes senescence remain to be elucidated. In this study, we investigated the effect of bradykinin on H2O2-induced H9C2 cells senescence. METHODS AND RESULTS: Bradykinin pretreatment decreased the senescence induced by H2O2 in cultured H9C2 cells in a dose dependent manner. Interestingly, 1 nmol/L of BK almost completely inhibited the increase in senescent cell number and p21 expression induced by H2O2. Since H2O2 induces senescence through superoxide-induced DNA damage, we also observed the DNA damage by comet assay, and BK markedly reduced DNA damage induced by H2O2, and moreover, BK treatment significantly prevented reactive oxygen species (ROS production in H9C2 cells treated with H2O2. Importantly, when co-incubated with bradykinin B2 receptor antagonist HOE-140 or eNOS inhibitor N-methyl-L-arginine acetate salt (L-NAME, the protective effects of bradykinin on H9C2 senescence were totally blocked. Furthermore, BK administration significantly prevented the increase in nicotinamide adenine dinucleotide phosphate (NADPH oxidase activity characterized by increased ROS generation and gp91 expression and increased translocation of p47 and p67 to the membrane and the decrease in superoxide dismutase (SOD activity and expression induced by H2O2 in H9C2 cells, which was dependent on BK B2 receptor mediated nitric oxide (NO release. CONCLUSIONS: Bradykinin, acting through BK B2 receptor induced NO release, upregulated antioxidant Cu/Zn-SOD and Mn-SOD activity and expression while

  6. Nemopilema nomurai Jellyfish venom treatment leads to alterations in rat cardiomyocytes proteome

    Directory of Open Access Journals (Sweden)

    Indu Choudhary


    Full Text Available This data article restrains data associated to the Choudhary et al. [1]. Nemopilema nomurai Jellyfish venom (NnV can lead to cardiac toxicity. Here we analyzed the effect of NnV on rat cardiomyocytes cell line H9c2 at the proteome level using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS. This analysis resulted in 34 proteins with differential expression. Here we provide the dataset for the proteins with amplified or reduced level as compare to control.

  7. Cardiomyocyte differentiation induced in cardiac progenitor cells by cardiac fibroblast-conditioned medium. (United States)

    Zhang, Xi; Shen, Man-Ru; Xu, Zhen-Dong; Hu, Zhe; Chen, Chao; Chi, Ya-Li; Kong, Zhen-Dong; Li, Zi-Fu; Li, Xiao-Tong; Guo, Shi-Lei; Xiong, Shao-Hu; Zhang, Chuan-Sen


    Our previous study showed that after being treated with 5-azacytidine, Nkx2.5(+) human cardiac progenitor cells (CPCs) derived from embryonic heart tubes could differentiate into cardiomyocytes. Although 5-azacytidine is a classical agent that induces myogenic differentiation in various types of cells, the drug is toxic and unspecific for myogenic differentiation. To investigate the possibility of inducing CPCs to differentiate into cardiomyocytes by a specific and non-toxic method, CPCs of passage 15 and mesenchymal stem cells (MSCs) were treated with cardiac ventricular fibroblast-conditioned medium (CVF-conditioned medium). Following this treatment, the Nkx2.5(+) CPCs underwent cardiomyogenic differentiation. Phase-contrast microscopy showed that the morphology of the treated CPCs gradually changed. Ultrastructural observation confirmed that the cells contained typical sarcomeres. The expression of cardiomyocyte-associated genes, such as alpha-cardiac actin, cardiac troponin T, and beta-myosin heavy chain (MHC), was increased in the CPCs that had undergone cardiomyogenic differentiation compared with untreated cells. In contrast, the MSCs did not exhibit changes in morphology or molecular expression after being treated with CVF-conditioned medium. The results indicated that Nkx2.5(+) CPCs treated with CVF-conditioned medium were capable of differentiating into a cardiac phenotype, whereas treated MSCs did not appear to undergo cardiomyogenic differentiation. Subsequently, following the addition of Dkk1 and the blocking of Wnt signaling pathway, CVF-conditioned medium-induced morphological changes and expression of cardiomyocyte-associated genes of Nkx2.5(+) CPCs were inhibited, which indicates that CVF-conditioned medium-induced cardiomyogenic differentiation of Nkx2.5(+) CPCs is associated with Wnt signaling pathway. In addition, we also found that the activation of Wnt signaling pathway was accompanied by higher expression of GATA-4 and the blocking of the

  8. Barnidipine block of L-type Ca2+ channel currents in rat ventricular cardiomyocytes


    Wegener, Jörg W.; Meyrer, Hans; Rupp, Johanna; Nawrath, Hermann


    The effects of barnidipine and nifedipine on L-type Ca2+ current (ICa(L)) were investigated in ventricular cardiomyocytes from rats.Both barnidipine and nifedipine reduced ICa(L) in a concentration and voltage dependent manner; the EC50 were 80 and 130 nM at a holding potential of −80 mV, respectively, and 18 and 6 nM at −40 mV, respectively.Both drugs induced a leftward shift of the steady-state inactivation curve of ICa(L).Using a twin pulse protocol, the relationships between the amount of...

  9. The nuclear melatonin receptor RORα is a novel endogenous defender against myocardial ischemia/reperfusion injury. (United States)

    He, Ben; Zhao, Yichao; Xu, Longwei; Gao, Lingchen; Su, Yuanyuan; Lin, Nan; Pu, Jun


    Circadian rhythm disruption or decrease in levels of circadian hormones such as melatonin increases ischemic heart disease risk. The nuclear melatonin receptors RORs are pivotally involved in circadian rhythm regulation and melatonin effects mediation. However, the functional roles of RORs in the heart have never been investigated and were therefore the subject of this study on myocardial ischemia/reperfusion (MI/R) injury pathogenesis. RORα and RORγ subtypes were detected in the adult mouse heart, and RORα but not RORγ was downregulated after MI/R. To determine the pathological consequence of MI/R-induced reduction of RORα, we subjected RORα-deficient staggerer mice and wild-type (WT) littermates to MI/R injury, resulting in significantly increased myocardial infarct size, myocardial apoptosis and exacerbated contractile dysfunction in the former. Mechanistically, RORα deficiency promoted MI/R-induced endoplasmic reticulum stress, mitochondrial impairments, and autophagy dysfunction. Moreover, RORα deficiency augmented MI/R-induced oxidative/nitrative stress. Given the emerging evidence of RORα as an essential melatonin effects mediator, we further investigated the RORα roles in melatonin-exerted cardioprotection, in particular against MI/R injury, which was significantly attenuated in RORα-deficient mice, but negligibly affected by cardiac-specific silencing of RORγ. Finally, to determine cell type-specific effects of RORα, we generated mice with cardiomyocyte-specific RORα overexpression and they were less vulnerable to MI/R injury. In summary, our study provides the first direct evidence that the nuclear melatonin receptor RORα is a novel endogenous protective receptor against MI/R injury and an important mediator of melatonin-exerted cardioprotection; melatonin-RORα axis signaling thus appears important in protection against ischemic heart injury.

  10. Fibroblast growth factor 23 dysregulates late sodium current and calcium homeostasis with enhanced arrhythmogenesis in pulmonary vein cardiomyocytes. (United States)

    Huang, Shih-Yu; Chen, Yao-Chang; Kao, Yu-Hsun; Hsieh, Ming-Hsiung; Lin, Yung-Kuo; Chung, Cheng-Chih; Lee, Ting-I; Tsai, Wen-Chin; Chen, Shih-Ann; Chen, Yi-Jen


    Fibroblast growth factor 23 (FGF23), elevated in chronic renal failure, increases atrial arrhythmogenesis and dysregulates calcium homeostasis. Late sodium currents (INa-Late) critically induces ectopic activity of pulmoanry vein (the most important atrial fibrillation trigger). This study was to investigate whether FGF23 activates the INa-Late leading to calcium dysregulation and increases PV arrhythmogenesis. Patch clamp, western blot, and confocal microscopy were used to evaluate the electrical activities, calcium homeostasis, and mitochondrial reactive oxygen species (ROS) in PV cardiomyocytes with or without FGF23 (0.1 or 1 ng/mL) incubation for 4~6 h. Compared to the control, FGF23 (1 ng/mL, but not 0.1 ng/mL)-treated PV cardiomyocytes had a faster beating rate. FGF23 (1 ng/mL)-treated PV cardiomyocytes had larger INa-Late, calcium transients, and mitochondrial ROS than controls. However, ranolazine (an inhibitor of INa-Late) attenuated FGF23 (1 ng/mL)-increased beating rates, calcium transients and mitochondrial ROS. FGF23 (1 ng/mL)-treated PV cardiomyocytes exhibited larger phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII). Chelerythrine chloride (an inhibitor of protein kinase C) decreased INa-Late in FGF23 (1 ng/mL)-treated PV cardiomyocytes. However, KN93 (a selective CaMKII blocker) decreased INa-Late in control and FGF23 (1 ng/mL)-treated PV cardiomyocytes to a similar extent. In conclusion, FGF23 increased PV arrhythmogenesis through sodium and calcium dysregulation by acting protein kinase C signaling.

  11. Mechanical stretch induces mitochondria-dependent apoptosis in neonatal rat cardiomyocytes and G2/M accumulation in cardiac fibroblasts

    Institute of Scientific and Technical Information of China (English)

    Xu Dong LIAO; Xiao Hui WANG; Hai Jing JIN; Lan Ying CHEN; Quan CHEN


    Heart remodeling is associated with the loss of cardiomyocytes and increase of fibrous tissue owing to abnormal mechanical load in a number of heart disease conditions. In present study,a well-described in vitro sustained stretch model was employed to study mechanical stretch-induced responses in both neonatal cardiomyocytes and cardiac fibroblasts. Cardiomyocytes,but not cardiac fibroblasts,underwent mitochondria-dependent apoptosis as evidenced by cytochrome c (cyto c) and Smac/DIABLO release from mitochondria into cytosol accompanied by mitochondrial membrane potential (△ψm) reduction,indicative of mitochondrial permeability transition pore (PTP)opening. Cyclosporin A,an inhibitor of PTP,inhibited stretch-induced cyto c release,△ψm reduction and apoptosis,suggesting an important role of mitochondrial PTP in stretch-induced apoptosis. The stretch also resulted in increased expression of the pro-apoptotic Bcl-2 family proteins,including Bax and Bad,in cardiomyocytes,but not in fibroblasts. Bax was accumulated in mitochondria following stretch. Cell permeable Bid-BH3 peptide could induce and facilitate stretch-induced apoptosis and △ψm reduction in cardiomyocytes. These results suggest that Bcl-2 family proteins play an important role in coupling stretch signaling to mitochondrial death machinery,probably by targeting to PTP. Interestingly,the levels of p53 were increased at 12 h after stretch although we observed that Bax upregulation and apoptosis occurred as early as 1 h. Adenovirus delivered dominant negative p53 blocked Bax upregulation in cardiomyocytes but showed partial effect on preventing stretch-induced apoptosis,suggesting that p53 was only partially involved in mediating stretch-induced apoptosis. Furthermore,we showed that p21 was upregulated and cyclin B l was downregulated only in cardiac fibroblasts,which may be associated with G2/M accumulation in response to mechanical stretch.

  12. Local IGF-1 isoform protects cardiomyocytes from hypertrophic and oxidative stresses via SirT1 activity. (United States)

    Vinciguerra, Manlio; Santini, Maria Paola; Claycomb, William C; Ladurner, Andreas G; Rosenthal, Nadia


    Oxidative and hypertrophic stresses contribute to the pathogenesis of heart failure. Insulin-like growth factor-1 (IGF-1) is a peptide hormone with a complex post-transcriptional regulation, generating distinct isoforms. Locally acting IGF-1 isoform (mIGF-1) helps the heart to recover from toxic injury and from infarct. In the murine heart, moderate overexpression of the NAD(+)-dependent deacetylase SirT1 was reported to mitigate oxidative stress. SirT1 is known to promote lifespan extension and to protect from metabolic challenges. Circulating IGF-1 and SirT1 play antagonizing biological roles and share molecular targets in the heart, in turn affecting cardiomyocyte physiology. However, how different IGF-1 isoforms may impact SirT1 and affect cardiomyocyte function is unknown. Here we show that locally acting mIGF-1 increases SirT1 expression/activity, whereas circulating IGF-1 isoform does not affect it, in cultured HL-1 and neonatal cardiomyocytes. mIGF-1-induced SirT1 activity exerts protection against angiotensin II (Ang II)-triggered hypertrophy and against paraquat (PQ) and Ang II-induced oxidative stress. Conversely, circulating IGF-1 triggered itself oxidative stress and cardiomyocyte hypertrophy. Interestingly, potent cardio-protective genes (adiponectin, UCP-1 and MT-2) were increased specifically in mIGF-1-overexpressing cardiomyocytes, in a SirT1-dependent fashion. Thus, mIGF-1 protects cardiomyocytes from oxidative and hypertrophic stresses via SirT1 activity, and may represent a promising cardiac therapeutic.

  13. Hydrogen sulfide inhibits L-type calcium currents depending upon the protein sulfhydryl state in rat cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Rongyuan Zhang

    Full Text Available Hydrogen sulfide (H(2S is a novel gasotransmitter that inhibits L-type calcium currents (I (Ca, L. However, the underlying molecular mechanisms are unclear. In particular, the targeting site in the L-type calcium channel where H(2S functions remains unknown. The study was designed to investigate if the sulfhydryl group could be the possible targeting site in the L-type calcium channel in rat cardiomyocytes. Cardiac function was measured in isolated perfused rat hearts. The L-type calcium currents were recorded by using a whole cell voltage clamp technique on the isolated cardiomyocytes. The L-type calcium channel containing free sulfhydryl groups in H9C2 cells were measured by using Western blot. The results showed that sodium hydrosulfide (NaHS, an H(2S donor produced a negative inotropic effect on cardiac function, which could be partly inhibited by the oxidant sulfhydryl modifier diamide (DM. H(2S donor inhibited the peak amplitude of I( Ca, L in a concentration-dependent manner. However, dithiothreitol (DTT, a reducing sulfhydryl modifier markedly reversed the H(2S donor-induced inhibition of I (Ca, L in cardiomyocytes. In contrast, in the presence of DM, H(2S donor could not alter cardiac function and L type calcium currents. After the isolated rat heart or the cardiomyocytes were treated with DTT, NaHS could markedly alter cardiac function and L-type calcium currents in cardiomyocytes. Furthermore, NaHS could decrease the functional free sulfhydryl group in the L-type Ca(2+ channel, which could be reversed by thiol reductant, either DTT or reduced glutathione. Therefore, our results suggest that H(2S might inhibit L-type calcium currents depending on the sulfhydryl group in rat cardiomyocytes.

  14. [The influence of fibroblast growth factor (FGF2) on cardiomyocytes differentiation of mesenchymal stem cells of bone marrow ex vivo]. (United States)

    Lobanok, E S; Kvacheva, Z B; Pinchuk, S V; Volk, M V; Mezhevkina, L M; Fesenko, E E; Volotovski, I D


    The influence of FGF2 on the efficiency of cardiomyocytes differentiation of mesenchymal stem cells (MSC) of bone marrow induced by 5-azacetidine (5-aza) was studied. The effect of FGF2 developing by the 14th day after the combined action of a differentiating agent and growth factor was manifested in an increase in Mef2A, Mef2D and gene transcription and a rise of ionized Ca2+ concentration in cytoplasm keeping cell viability and proliferation activity. In the presence of FGF2 this approach provided cardiomyogenesis and the increase in the formation of early precursors of cardiomyocytes.

  15. Lipoprotein lipase and angiopoietin-like 4 - Cardiomyocyte secretory proteins that regulate metabolism during diabetic heart disease. (United States)

    Puthanveetil, Prasanth; Wan, Andrea; Rodrigues, Brian


    Cardiac diseases have been extensively studied following diabetes and altered metabolism has been implicated in its initiation. In this context, there is a shift from glucose utilization to predominantly fatty acid metabolism. We have focused on the micro- and macro-environments that the heart uses to provide fatty acids to the cardiomyocyte. Specifically, we will discuss the cross talk between endothelial cells, smooth muscles and cardiomyocytes, and their respective secretory products that allows for this shift in metabolism. These changes will then be linked to alterations in the cardiovascular system and the augmented heart disease observed during diabetes. Traditionally, the heart was only thought of as an organ that supplies oxygen and nutrients to the body through its function as a pump. However, the heart as an endocrine organ has also been suggested. Secreted products from the cardiomyocytes include the natriuretic peptides atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Both have been shown to have vasodilatory, diuretic and antihypertensive effects. These peptides have been extensively studied and their deficiency is considered to be a major cause for the initiation of cardiovascular and cardiometabolic disorders. Another secretory enzyme, lipoprotein lipase (LPL), has been implicated in diabetic heart disease. LPL is a triglyceride-hydrolyzing enzyme that is synthesized within the cardiomyocyte and secreted towards the lumen under various conditions. For example, moderate or short-term hyperglycemia stimulates the release of LPL from the cardiomyocytes towards the endothelial cells. This process allows LPL to contact lipoprotein triglycerides, initiating their break down, with the product of lipolysis (free fatty acids, FA) translocating towards the cardiomyocytes for energy consumption. This mechanism compensates for the lack of glucose availability following diabetes. Under prolonged, chronic conditions of hyperglycemia, there is

  16. A Non-invasive Platform for Functional Characterization of Stem-Cell-Derived Cardiomyocytes with Applications in Cardiotoxicity Testing

    Directory of Open Access Journals (Sweden)

    Mahnaz Maddah


    Full Text Available We present a non-invasive method to characterize the function of pluripotent stem-cell-derived cardiomyocytes based on video microscopy and image analysis. The platform, called Pulse, generates automated measurements of beating frequency, beat duration, amplitude, and beat-to-beat variation based on motion analysis of phase-contrast images captured at a fast frame rate. Using Pulse, we demonstrate recapitulation of drug effects in stem-cell-derived cardiomyocytes without the use of exogenous labels and show that our platform can be used for high-throughput cardiotoxicity drug screening and studying physiologically relevant phenotypes.

  17. Portion size (United States)

    ... Romaine lettuce) One medium baked potato is a computer mouse To control your portion sizes when you ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  18. Nuclear magnetic resonance studies of an N2-guanine adduct derived from the tumorigen dibenzo[a,l]pyrene in DNA: impact of adduct stereochemistry, size, and local DNA sequence on solution conformations. (United States)

    Rodríguez, Fabián A; Liu, Zhi; Lin, Chin H; Ding, Shuang; Cai, Yuqin; Kolbanovskiy, Alexander; Kolbanovskiy, Marina; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E


    The dimensions and arrangements of aromatic rings (topology) in adducts derived from the reactions of polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites with DNA influence the distortions and stabilities of double-stranded DNA, and hence their recognition and processing by the human nucleotide excision repair (NER) system. Dibenzo[a,l]pyrene (DB[a,l]P) is a highly tumorigenic six-ring PAH, which contains a nonplanar and aromatic fjord region that is absent in the structurally related bay region five-ring PAH benzo[a]pyrene (B[a]P). The PAH diol epoxide-DNA adducts formed include the stereoisomeric 14S and 14R trans-anti-DB[a,l]P-N(2)-dG and the stereochemically analogous 10S- and 10R-B[a]P-N(2)-dG (B[a]P-dG) guanine adducts. However, nuclear magnetic resonance (NMR) solution studies of the 14S-DB[a,l]P-N(2)-dG adduct in DNA have not yet been presented. Here we have investigated the 14S-DB[a,l]P-N(2)-dG adduct in two different sequence contexts using NMR methods with distance-restrained molecular dynamics simulations. In duplexes with dC opposite the adduct deleted, a well-resolved base-displaced intercalative adduct conformation can be observed. In full duplexes, in contrast to the intercalated 14R stereoisomeric adduct, the bulky DB[a,l]P residue in the 14S adduct is positioned in a greatly widened and distorted minor groove, with significant disruptions and distortions of base pairing at the lesion site and two 5'-side adjacent base pairs. These unique structural features are significantly different from those of the stereochemically analogous but smaller B[a]P-dG adduct. The greater size and different topology of the DB[a,l]P aromatic ring system lead to greater structurally destabilizing DNA distortions that are partially compensated by stabilizing DB[a,l]P-DNA van der Waals interactions, whose combined effects impact the NER response to the adduct. These structural results broaden our understanding of the structure-function relationship in NER.

  19. ERK5 knock down aggravates detrimental effects of hypothermal stimulation on cardiomyocytes via Bim upregulation. (United States)

    Wang, Yao-Sheng; Zhou, Jing; Liang, Chun; Hong, Kui; Cheng, Xiao-Shu; Wu, Zong-Gui


    Mechanism of cold induced myocardial injury remained unclear. Our study investigated the role of ERK5/Bim pathway in hypothermal stimulation-induced apoptosis or damage of cardiomyocytes (CMs). Results showed that in CMs which under hypothermal stimulation, ERK5 siRNA promoted expression of Bim protein. Bim siRNA did not influence ERK5 expression but attenuated production of p-ERK5. ERK5 siRNA induced higher apoptosis rate; intracellular Ca(2+) overload; ROS activity; ΔΨm damage in hypothermia stimulated CMs, when compared with hypothermal stimulation solely treated group, while Bim siRNA effected oppositely and canceled pro-apoptotic effect of ERK5 siRNA. In conclusion, ERK5 knock down releases inhibition to Bim expression, induces aggravated apoptosis in CMs under hypothermal stimulation, which related to higher intracellular Ca(2+) overload, ROS activity, and more severe ΔΨm damage. Results revealed regulative role of ERK5/Bim pathway in hypothermal stimulation-induced injure or apoptosis of cardiomyocytes.

  20. Automated Electrophysiological and Pharmacological Evaluation of Human Pluripotent Stem Cell-Derived Cardiomyocytes (United States)

    Rajamohan, Divya; Kalra, Spandan; Duc Hoang, Minh; George, Vinoj; Staniforth, Andrew; Russell, Hugh; Yang, Xuebin


    Automated planar patch clamp systems are widely used in drug evaluation studies because of their ability to provide accurate, reliable, and reproducible data in a high-throughput manner. Typically, CHO and HEK tumorigenic cell lines overexpressing single ion channels are used since they can be harvested as high-density, homogenous, single-cell suspensions. While human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are physiologically more relevant, these cells are fragile, have complex culture requirements, are inherently heterogeneous, and are expensive to produce, which has restricted their use on automated patch clamp (APC) devices. Here, we used high efficiency differentiation protocols to produce cardiomyocytes from six different hPSC lines for analysis on the Patchliner (Nanion Technologies GmbH) APC platform. We developed a two-step cell preparation protocol that yielded cell catch rates and whole-cell breakthroughs of ∼80%, with ∼40% of these cells allowing electrical activity to be recorded. The protocol permitted formation of long-lasting (>15 min), high quality seals (>2 GΩ) in both voltage- and current-clamp modes. This enabled density of sodium, calcium, and potassium currents to be evaluated, along with dose–response curves to their respective channel inhibitors, tetrodotoxin, nifedipine, and E-4031. Thus, we show the feasibility of using the Patchliner platform for automated evaluation of the electrophysiology and pharmacology of hPSC-CMs, which will enable considerable increase in throughput for reliable and efficient drug evaluation. PMID:26906236

  1. Late Sodium Current in Human Atrial Cardiomyocytes from Patients in Sinus Rhythm and Atrial Fibrillation

    DEFF Research Database (Denmark)

    Poulet, Claire; Wettwer, Erich; Grunnet, Morten


    -pulse to -80 mV) TTX-sensitive INa,late was always larger than with protocol I. Ranolazine (30 μM) reduced INa,late by 0.02±0.02 pA/pF in SR and 0.09±0.02 pA/pF in AF cells. At physiological temperature (37°C), however, INa,late became insignificant. Plateau phase and upstroke velocity of action potentials...... to -30 mV from a holding potential of -80 mV with a 100-ms pre-pulse to -110 mV (protocol I). INa,late at -30 mV was not discernible as deviation from the extrapolated straight line IV-curve between -110 mV and -80 mV in human atrial cells. Therefore, tetrodotoxin (TTX, 10 μM) was used to define...... persistent inward current after 250 ms at -30 mV as INa,late. TTX-sensitive current was 0.27±0.06 pA/pF in ventricular cardiomyocytes from ΔKPQ mice, and amounted to 0.04±0.01 pA/pF and 0.09±0.02 pA/pF in SR and AF human atrial cardiomyocytes, respectively. With protocol II (holding potential -120 mV, pre...

  2. Cardioprotective Effects of Quercetin in Cardiomyocyte under Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Yi-Wen Chen


    Full Text Available Quercetin, a polyphenolic compound existing in many vegetables, fruits, has antiinflammatory, antiproliferation, and antioxidant effect on mammalian cells. Quercetin was evaluated for protecting cardiomyocytes from ischemia/reperfusion injury, but its protective mechanism remains unclear in the current study. The cardioprotective effects of quercetin are achieved by reducing the activity of Src kinase, signal transducer and activator of transcription 3 (STAT3, caspase 9, Bax, intracellular reactive oxygen species production, and inflammatory factor and inducible MnSOD expression. Fluorescence two-dimensional differential gel electrophoresis (2D-DIGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS can reveal the differentially expressed proteins of H9C2 cells treated with H2O2 or quercetin. Although 17 identified proteins were altered in H2O2-induced cells, these proteins such as alpha-soluble NSF attachment protein (α-SNAP, Ena/VASP-like protein (Evl, and isopentenyl-diphosphate delta-isomerase 1 (Idi-1 were reverted by pretreatment with quercetin, which correlates with kinase activation, DNA repair, lipid, and protein metabolism. Quercetin dephosphorylates Src kinase in H2O2-induced H9C2 cells and likely blocks the H2O2-induced inflammatory response through STAT3 kinase modulation. This probably contributes to prevent ischemia/reperfusion injury in cardiomyocytes.

  3. C-phycocyanin ameliorates doxorubicin-induced oxidative stress and apoptosis in adult rat cardiomyocytes. (United States)

    Khan, Mahmood; Varadharaj, Saradhadevi; Shobha, Jagdish C; Naidu, Madireddi U; Parinandi, Narasimham L; Kutala, Vijay Kumar; Kuppusamy, Periannan


    Doxorubicin (DOX), a potent antineoplastic agent, poses limitations for its therapeutic use due to the associated risk of developing cardiomyopathy and congestive heart failure. The cardiotoxicity of doxorubicin is associated with oxidative stress and apoptosis. We have recently shown that Spirulina, a blue-green alga with potent antioxidant properties, offered significant protection against doxorubicin-induced cardiotoxicity in mice. The aim of the present study was to establish the possible protective role of C-phycocyanin, one of the active ingredients of Spirulina, against doxorubicin-induced oxidative stress and apoptosis. The study was carried out using cardiomyocytes isolated from adult rat hearts. Doxorubicin significantly enhanced the formation of reactive oxygen species (ROS) in cells as measured by the 2',7'-dichlorodihydrofluorescein diacetate and dihydroethidium fluorescence. The doxorubicin-induced reactive oxygen species formation was significantly attenuated in cells pretreated with C-phycocyanin. It was further observed that the doxorubicin-induced DNA fragmentation and apoptosis, as assayed by TUNEL assay and flow cytometry coupled with BrdU-FITC/propidium iodide staining, were markedly attenuated by C-phycocyanin. C-phycocyanin also significantly attenuated the doxorubicin-induced increase in the expression of Bax protein, release of cytochrome c, and increase in the activity of caspase-3 in cells. In summary, C-phycocyanin ameliorated doxorubicin-induced oxidative stress and apoptosis in cardiomyocytes. This study further supports the crucial role of the antioxidant nature of C-phycocyanin in its cardioprotection against doxorubicin-induced oxidative stress and apoptosis.

  4. Proper Voltage-Dependent Ion Channel Function in Dysferlin-Deficient Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Lena Rubi


    Full Text Available Background/Aims: Dysferlin plays a decisive role in calcium-dependent membrane repair in myocytes. Mutations in the encoding DYSF gene cause a number of myopathies, e.g. limb-girdle muscular dystrophy type 2B (LGMD2B. Besides skeletal muscle degenerative processes, dysferlin deficiency is also associated with cardiac complications. Thus, both LGMD2B patients and dysferlin-deficient mice develop a dilated cardiomyopathy. We and others have recently reported that dystrophin-deficient ventricular cardiomyocytes from mouse models of Duchenne muscular dystrophy show significant abnormalities in voltage-dependent ion channels, which may contribute to the pathophysiology in dystrophic cardiomyopathy. The aim of the present study was to investigate if dysferlin, like dystrophin, is a regulator of cardiac ion channels. Methods and Results: By using the whole cell patch-clamp technique, we compared the properties of voltage-dependent calcium and sodium channels, as well as action potentials in ventricular cardiomyocytes isolated from the hearts of normal and dysferlin-deficient (dysf mice. In contrast to dystrophin deficiency, the lack of dysferlin did not impair the ion channel properties and left action potential parameters unaltered. In connection with normal ECGs in dysf mice these results suggest that dysferlin deficiency does not perturb cardiac electrophysiology. Conclusion: Our study demonstrates that dysferlin does not regulate cardiac voltage-dependent ion channels, and implies that abnormalities in cardiac ion channels are not a universal characteristic of all muscular dystrophy types.

  5. Decreased beating rate variability of spontaneously contracting cardiomyocytes after co-incubation with endotoxin. (United States)

    Schmidt, Hendrik; Saworski, Jana; Werdan, Karl; Müller-Werdan, Ursula


    Decreased heart rate variability (HRV) in critically ill patients indicates a poor prognosis. In heart failure patients, there is an elevated sympathetic tone, reflected by a dominance of sympathetic parameters in HRV, whereas in critically ill patients sympathetic and parasympathetic modulation of heart rate is attenuated despite increased catecholamine blood levels. Thus, autonomic dysfunction in the critically ill cannot be causally related to an impairment at the level of neural transmission, but may be due to a derangement of signal transduction at the effector cell level. On the basis of our working hypothesis that endotoxin may be involved in this blunting of effector cell response to nerval input, we studied the spontaneous beating of cardiomyocytes under the influence of endotoxin. Applying the clinically established indices of HRV to the analysis of beating rate variability (BRV) of neonatal rat cardiomyocytes in serum-free medium, a narrowing of their BRV by endotoxin is demonstrated. We propose that the narrowing of HRV in critically ill patients does not only reflect the altered input from the central or peripheral neurons, but rather a remodeling of the cardiac pacemaker cells by endotoxin and inflammatory mediators.

  6. Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. (United States)

    Yu, Xi-Yong; Song, Yao-Hua; Geng, Yong-Jian; Lin, Qiu-Xiong; Shan, Zhi-Xin; Lin, Shu-Guang; Li, Yangxin


    Glucose toxicity is an important initiator of cardiovascular disease, contributing to the development of cardiomyocyte death and diabetic complications. The present study investigated whether high glucose state could induce apoptosis of rat cardiomyocyte cell line H9C2 through microRNA regulated insulin-like growth factor (IGF-1) signaling pathway. Our data showed that H9C2 cells exposed to high glucose have increased miR-1 expression level, decreased mitochondrial membrane potential, increased cytochrome-c release, and increased apoptosis. Glucose induced mitochondrial dysfunction, cytochrome-c release and apoptosis was blocked by IGF-1. Using prediction algorithms, we identified 3'-untranslated regions of IGF-1 gene are the target of miR-1. miR-1 mimics, but not mutant miR-1, blocked the capacity of IGF-1 to prevent glucose-induced mitochondrial dysfunction, cytochrome-c release and apoptosis. In conclusion, our data demonstrate that IGF-1 inhibits glucose-induced mitochondrial dysfunction, cytochrome-c release and apoptosis and IGF-1's effect is regulated by miR-1.

  7. Glucose Starvation in Cardiomyocytes Enhances Exosome Secretion and Promotes Angiogenesis in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Nahuel A Garcia

    Full Text Available Cardiomyocytes (CMs and endothelial cells (ECs have an intimate anatomical relationship that is essential for maintaining normal development and function in the heart. Little is known about the mechanisms that regulate cardiac and endothelial crosstalk, particularly in situations of acute stress when local active processes are required to regulate endothelial function. We examined whether CM-derived exosomes could modulate endothelial function. Under conditions of glucose deprivation, immortalized H9C2 cardiomyocytes increase their secretion of exosomes. CM-derived exosomes are loaded with a broad repertoire of miRNA and proteins in a glucose availability-dependent manner. Gene Ontology (GO analysis of exosome cargo molecules identified an enrichment of biological process that could alter EC activity. We observed that addition of CM-derived exosomes to ECs induced changes in transcriptional activity of pro-angiogenic genes. Finally, we demonstrated that incubation of H9C2-derived exosomes with ECs induced proliferation and angiogenesis in the latter. Thus, exosome-mediated communication between CM and EC establishes a functional relationship that could have potential implications for the induction of local neovascularization during acute situations such as cardiac injury.

  8. ALDH2 Inhibition Potentiates High Glucose Stress-Induced Injury in Cultured Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Guodong Pan


    Full Text Available Aldehyde dehydrogenase (ALDH gene superfamily consists of 19 isozymes. They are present in various organs and involved in metabolizing aldehydes that are biologically generated. For instance, ALDH2, a cardiac mitochondrial ALDH isozyme, is known to detoxify 4-hydroxy-2-nonenal, a reactive aldehyde produced upon lipid peroxidation in diabetic conditions. We hypothesized that inhibition of ALDH leads to the accumulation of unmetabolized 4HNE and consequently exacerbates injury in cells subjected to high glucose stress. H9C2 cardiomyocyte cell lines were pretreated with 10 μM disulfiram (DSF, an inhibitor of ALDH2 or vehicle (DMSO for 2 hours, and then subjected to high glucose stress {33 mM D-glucose (HG or 33 mM D-mannitol as an osmotic control (Ctrl} for 24 hrs. The decrease in ALDH2 activity with DSF pretreatment was higher in HG group when compared to Ctrl group. Increased 4HNE adduct formation with DSF pretreatment was higher in HG group compared to Ctrl group. Pretreatment with DSF leads to potentiated HG-induced cell death in cultured H9C2 cardiomyocytes by lowering mitochondrial membrane potential. Our results indicate that ALDH2 activity is important in preventing high glucose induced cellular dysfunction.

  9. A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel

    Directory of Open Access Journals (Sweden)

    Andrew P. Wojtovich


    Full Text Available Opening of BK-type Ca2+ activated K+ channels protects the heart against ischemia-reperfusion (IR injury. However, the location of BK channels responsible for cardioprotection is debated. Herein we confirmed that openers of the SLO1 BK channel, NS1619 and NS11021, were protective in a mouse perfused heart model of IR injury. As anticipated, deletion of the Slo1 gene blocked this protection. However, in an isolated cardiomyocyte model of IR injury, protection by NS1619 and NS11021 was insensitive to Slo1 deletion. These data suggest that protection in intact hearts occurs by a non-cardiomyocyte autonomous, SLO1-dependent, mechanism. In this regard, an in-situ assay of intrinsic cardiac neuronal function (tachycardic response to nicotine revealed that NS1619 preserved cardiac neurons following IR injury. Furthermore, blockade of synaptic transmission by hexamethonium suppressed cardioprotection by NS1619 in intact hearts. These results suggest that opening SLO1 protects the heart during IR injury, via a mechanism that involves intrinsic cardiac neurons. Cardiac neuronal ion channels may be useful therapeutic targets for eliciting cardioprotection.

  10. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. (United States)

    Mummery, Christine L; Zhang, Jianhua; Ng, Elizabeth S; Elliott, David A; Elefanty, Andrew G; Kamp, Timothy J


    Since human embryonic stem cells were first differentiated to beating cardiomyocytes a decade ago, interest in their potential applications has increased exponentially. This has been further enhanced over recent years by the discovery of methods to induce pluripotency in somatic cells, including those derived from patients with hereditary cardiac diseases. Human pluripotent stem cells have been among the most challenging cell types to grow stably in culture, but advances in reagent development now mean that most laboratories can expand both embryonic and induced pluripotent stem cells robustly using commercially available products. However, differentiation protocols have lagged behind and in many cases only produce the cell types required with low efficiency. Cardiomyocyte differentiation techniques were also initially inefficient and not readily transferable across cell lines, but there are now a number of more robust protocols available. Here, we review the basic biology underlying the differentiation of pluripotent cells to cardiac lineages and describe current state-of-the-art protocols, as well as ongoing refinements. This should provide a useful entry for laboratories new to this area to start their research. Ultimately, efficient and reliable differentiation methodologies are essential to generate desired cardiac lineages to realize the full promise of human pluripotent stem cells for biomedical research, drug development, and clinical applications.

  11. Making cardiomyocytes with your chemistry set:Small molecule-induced cardiogenesis in somatic cells

    Institute of Scientific and Technical Information of China (English)

    Woong-Hee; Kim; Da-Woon; Jung; Darren; Reece; Williams


    Cell transplantation is an attractive potential therapy for heart diseases. For example, myocardial infarction(MI) is a leading cause of mortality in many countries. Numerous medical interventions have been developed to stabilize patients with MI and, although this has increased survival rates, there is currently no clinically approved method to reverse the loss of cardiac muscle cells(cardiomyocytes) that accompanies this disease. Cell transplantation has been proposed as a method to replace cardiomyocytes, but a safe and reliable source of cardiogenic cells is required. An ideal source would be the patients’ own somatic tissue cells, which could be converted into cardiogenic cells and transplanted into the site of MI. However, these are difficult to produce in large quantities and standardized protocols to produce cardiac cells would be advantageous for the research community. To achieve these research goals, small molecules represent attractive tools to control cell behavior. In this editorial, we introduce the use of small molecules in stem cell research and summarize their application to the induction of cardiogenesis in noncardiac cells. Exciting new developments in this field are discussed, which we hope will encourage cardiac stem cell biologists to further consider employing small molecules in their culture protocols.

  12. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sheyda R Frolova

    Full Text Available The ability of azobenzene trimethylammonium bromide (azoTAB to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav, calcium (ICav, and potassium (IKv currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+ and calcium (Ca2+ currents and potentiation of net potassium (K+ currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential.

  13. Modeling Catecholaminergic Polymorphic Ventricular Tachycardia using Induced Pluripotent Stem Cell-derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Atara Novak


    Full Text Available Catecholaminergic polymorphic ventricular tachycardia (CPVT is an inherited arrhythmogenic cardiac disorder characterized by life-threatening arrhythmias induced by physical or emotional stress, in the absence structural heart abnormalities. The arrhythmias may cause syncope or degenerate into cardiac arrest and sudden death which usually occurs during childhood. Recent studies have shown that CPVT is caused by mutations in the cardiac ryanodine receptor type 2 (RyR2 or calsequestrin 2 (CASQ2 genes. Both proteins are key contributors to the intracellular Ca2+ handling process and play a pivotal role in Ca2+ release from the sarcoplasmic reticulum to the cytosol during systole. Although the molecular pathogenesis of CPVT is not entirely clear, it was suggested that the CPVT mutations promote excessive sarcoplasmic reticulum Ca2+ leak, which initiates delayed afterdepolarizations (DADs and triggered arrhythmias in cardiac myocytes. The recent breakthrough discovery of induced pluripotent stem cells (iPSC generated from somatic cells (e.g. fibroblasts, keratinocytes now enables researches to investigate mutated cardiomyocytes generated from the patient’s iPSC. To this end, in the present article we review recent studies on CPVT iPSC-derived cardiomyocytes, thus demonstrating in the mutated cells catecholamine-induced DADs and triggered arrhythmias.

  14. Generation of Cardiomyocytes in Pipe-Based Microbioreactor Under Segmented Flow

    Directory of Open Access Journals (Sweden)

    Dimitry Spitkovsky


    Full Text Available Background/Aims: Embryonic stem (ES cells have got a broad range differentiation potential. The differentiation is initiated via aggregation of non-differentiated ES cells into embryoid body (EB capable of multi-lineage development. However experimental variables present in standard differentiation techniques lead to high EB heterogeneity, affecting development into the cells of desired lineage, and do not support the process automatization and scalability. Methods: Here we present a novel pipe based microbioreactor (PBM setup based on segmented flow, designed for spatial maintenance of temperature, nutrition supply, gas supply and sterility. Results: We verified PBM feasibility for continuous process generating cardiac cells starting from single ES cell suspension followed by EB formation for up to 10 days. The ES cells used in the study were genetically modified for cardiac-specific EGFP expression allowing optical monitoring of cardiomyocytes while EBs remained within PBM for up to 10 days. Efficiency of cardiac cells formation within PBM was similar compared to a standard hanging drop based protocol. Conclusion: Our findings ensure further development of microfluidic bioreactor technology to enable robust cardiomyocytes production for needs of drug screening, tissue engineering and other applications.

  15. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. (United States)

    Denning, Chris; Borgdorff, Viola; Crutchley, James; Firth, Karl S A; George, Vinoj; Kalra, Spandan; Kondrashov, Alexander; Hoang, Minh Duc; Mosqueira, Diogo; Patel, Asha; Prodanov, Ljupcho; Rajamohan, Divya; Skarnes, William C; Smith, James G W; Young, Lorraine E


    Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas9/CRISPR genome engineering and hPSC-CM differentiation have improved patient care, progressed drugs to clinic and opened a new era in safety pharmacology. Nevertheless, predictive cardiotoxicity using hPSC-CMs contrasts from failure to almost total success. Since this likely relates to cell immaturity, efforts are underway to use biochemical and biophysical cues to improve many of the ~30 structural and functional properties of hPSC-CMs towards those seen in adult CMs. Other developments needed for widespread hPSC-CM utility include subtype specification, cost reduction of large scale differentiation and elimination of the phenotyping bottleneck. This review will consider these factors in the evolution of hPSC-CM technologies, as well as their integration into high content industrial platforms that assess structure, mitochondrial function, electrophysiology, calcium transients and contractility. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  16. Semantics-Based Composition of Integrated Cardiomyocyte Models Motivated by Real-World Use Cases. (United States)

    Neal, Maxwell L; Carlson, Brian E; Thompson, Christopher T; James, Ryan C; Kim, Karam G; Tran, Kenneth; Crampin, Edmund J; Cook, Daniel L; Gennari, John H


    Semantics-based model composition is an approach for generating complex biosimulation models from existing components that relies on capturing the biological meaning of model elements in a machine-readable fashion. This approach allows the user to work at the biological rather than computational level of abstraction and helps minimize the amount of manual effort required for model composition. To support this compositional approach, we have developed the SemGen software, and here report on SemGen's semantics-based merging capabilities using real-world modeling use cases. We successfully reproduced a large, manually-encoded, multi-model merge: the "Pandit-Hinch-Niederer" (PHN) cardiomyocyte excitation-contraction model, previously developed using CellML. We describe our approach for annotating the three component models used in the PHN composition and for merging them at the biological level of abstraction within SemGen. We demonstrate that we were able to reproduce the original PHN model results in a semi-automated, semantics-based fashion and also rapidly generate a second, novel cardiomyocyte model composed using an alternative, independently-developed tension generation component. We discuss the time-saving features of our compositional approach in the context of these merging exercises, the limitations we encountered, and potential solutions for enhancing the approach.

  17. Spatiotemporal stability of neonatal rat cardiomyocyte monolayers spontaneous activity is dependent on the culture substrate.

    Directory of Open Access Journals (Sweden)

    Jonathan Boudreau-Béland

    Full Text Available In native conditions, cardiac cells must continuously comply with diverse stimuli necessitating a perpetual adaptation. Polydimethylsiloxane (PDMS is commonly used in cell culture to study cellular response to changes in the mechanical environment. The aim of this study was to evaluate the impact of using PDMS substrates on the properties of spontaneous activity of cardiomyocyte monolayer cultures. We compared PDMS to the gold standard normally used in culture: a glass substrate. Although mean frequency of spontaneous activity remained unaltered, incidence of reentrant activity was significantly higher in samples cultured on glass compared to PDMS substrates. Higher spatial and temporal instability of the spontaneous rate activation was found when cardiomyocytes were cultured on PDMS, and correlated with decreased connexin-43 and increased CaV3.1 and HCN2 mRNA levels. Compared to cultures on glass, cultures on PDMS were associated with the strongest response to isoproterenol and acetylcholine. These results reveal the importance of carefully selecting the culture substrate for studies involving mechanical stimulation, especially for tissue engineering or pharmacological high-throughput screening of cardiac tissue analog.

  18. Cardiomyocyte aldose reductase causes heart failure and impairs recovery from ischemia.

    Directory of Open Access Journals (Sweden)

    Ni-Huiping Son

    Full Text Available Aldose reductase (AR, an enzyme mediating the first step in the polyol pathway of glucose metabolism, is associated with complications of diabetes mellitus and increased cardiac ischemic injury. We investigated whether deleterious effects of AR are due to its actions specifically in cardiomyocytes. We created mice with cardiac specific expression of human AR (hAR using the α-myosin heavy chain (MHC promoter and studied these animals during aging and with reduced fatty acid (FA oxidation. hAR transgenic expression did not alter cardiac function or glucose and FA oxidation gene expression in young mice. However, cardiac overexpression of hAR caused cardiac dysfunction in older mice. We then assessed whether hAR altered heart function during ischemia reperfusion. hAR transgenic mice had greater infarct area and reduced functional recovery than non-transgenic littermates. When the hAR transgene was crossed onto the PPAR alpha knockout background, another example of greater heart glucose oxidation, hAR expressing mice had increased heart fructose content, cardiac fibrosis, ROS, and apoptosis. In conclusion, overexpression of hAR in cardiomyocytes leads to cardiac dysfunction with aging and in the setting of reduced FA and increased glucose metabolism. These results suggest that pharmacological inhibition of AR will be beneficial during ischemia and in some forms of heart failure.

  19. Exploring Size. (United States)

    Brand, Judith, Ed.


    "Exploring" is a magazine of science, art, and human perception that communicates ideas museum exhibits cannot demonstrate easily by using experiments and activities for the classroom. This issue concentrates on size, examining it from a variety of viewpoints. The focus allows students to investigate and discuss interconnections among…

  20. Size matter!

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg; Jespersen, Andreas Maaløe; Skov, Laurits Rhoden


    Objectives We examined how a reduction in plate size would affect the amount of food waste from leftovers in a field experiment at a standing lunch for 220 CEOs. Methods A standing lunch for 220 CEOs in the Danish Opera House was arranged to feature two identical buffets with plates of two differ...

  1. An evaluation of a novel chick cardiomyocyte micromass culture assay with two teratogens/embryotoxins associated with heart defects. (United States)

    Hurst, Helena S; Clothier, Richard H; Pratten, Margaret


    This study was aimed at determining whether the chick cardiomyocyte micromass (MM) system could be employed to predict the teratogenicity/embryotoxicity of exogenous chemicals. Two documented teratogens/embryotoxins, sodium valproate (the sodium salt of valproic acid; VPA) and all-trans retinoic acid (tRA), were used in the initial phase of the study. White Leghorn 5-day-old embryo hearts were dissociated to produce a cardiomyocyte suspension in Dulbecco's Modified Eagle's Medium. Cultures were incubated at 37 degrees C in 5% CO(2) in air, and observations were made every 24 hours over 5 days, for the detection of beating. Culture viability was assessed by using the resazurin reduction assay for determining culture activity and the kenacid blue assay for determining cell number. It was found that tRA significantly reduced cell activity and beating, whilst not affecting total cell number. VPA up to 500 microM induced no cytotoxicity in the MM cardiomyocyte cultures, whilst all the VPA concentrations tested reduced beating. The results demonstrate the potential of the chick cardiomyocyte MM culture assay to identify teratogens/embryotoxins that alter functionality, which may result in a teratogenic outcome, whilst not causing cytotoxicity (direct embryotoxicity). This could form part of a screen for developmental toxicity related to cardiac function, whilst limb cultures and brain cultures based on the same system could be relevant to teratogenic effects on those tissues.

  2. Tumor suppressor gene ING3 induces cardiomyocyte hypertrophy via inhibition of AMPK and activation of p38 MAPK signaling. (United States)

    Wang, Jiaojiao; Liu, Zhiping; Feng, Xiaojun; Gao, Si; Xu, Suowen; Liu, Peiqing


    Cardiac hypertrophy, an adaptive growth process that occurs in response to various pathophysiological stimuli, constitutes an important risk factor for the development of heart failure. However, the molecular mechanisms that regulate this cardiac growth response are not completely understood. Here we revealed that ING3 (inhibitor of growth family, member 3), a type II tumor suppressor, plays a critical role in the regulation of cardiac hypertrophy. ING3 expression was present in relatively high abundance in the heart, and was prominently upregulated in hypertrophic agonists angiotensin II (Ang II), phenylephrine (PE), or isoproterenol (ISO)-stimulated cardiomyocytes and in hearts of rat undergoing abdominal aortic constriction (AAC) surgery. In cardiomyocytes, overexpression of ING3 caused an increase in ANP, BNP and β-MHC mRNA levels and cell surface area, while depletion of ING3 attenuated PE-induced cardiomyocyte hypertrophy. Mechanistically, we have demonstrated that overexpression of ING3 could inactivate the AMPK and activate the canonical p38 MAPK signaling. Remarkably, AMPK agonist AICAR or p38 MAPK inhibitor SB203580 abrogated ING3-induced hypertrophic response in cardiomyocytes. In summary, our data disclose a novel role of ING3 as an inducer of pathological cardiac hypertrophy, suggesting that silencing of ING3 may be explored as a potential therapeutic target in preventing cardiac hypertrophy.

  3. Embryonic template-based generation and purification of pluripotent stem cell-derived cardiomyocytes for heart repair

    NARCIS (Netherlands)

    Dierickx, P.; Doevendans, P.A.; Geijsen, N.; van Laake, L.W.


    Cardiovascular disease remains a leading cause of death in Western countries. Many types of cardiovascular diseases are due to a loss of functional cardiomyocytes, which can result in irreversible cardiac failure. Since the adult human heart has limited regenerative potential, cardiac transplantatio

  4. Effect of K201, a novel antiarrhythmic drug on calcium handling and arrhythmogenic activity of pulmonary vein cardiomyocytes (United States)

    Chen, Y-J; Chen, Y-C; Wongcharoen, W; Lin, C-I; Chen, S-A


    Background and purpose: Pulmonary veins are the most important focus for the generation of atrial fibrillation. Abnormal calcium homeostasis with ryanodine receptor dysfunction may underlie the arrhythmogenic activity in pulmonary veins. The preferential ryanodine receptor stabilizer (K201) possesses antiarrhythmic effects through calcium regulation. The purpose of this study was to investigate the effects of K201 on the arrhythmogenic activity and calcium regulation of pulmonary vein cardiomyocytes. Experimental approach: The ionic currents and intracellular calcium were studied in isolated single cardiomyocytes from rabbit pulmonary vein before and after the administration of K201, by the whole-cell patch clamp and indo-1 fluorimetric ratio techniques. Key results: K201 (0.1, 0.3, 1 μM) reduced the firing rates in pulmonary vein cardiomyocytes, decreased the amplitudes of the delayed afterdepolarizations and prolonged the action potential duration. K201 decreased the L-type calcium currents, Na+/Ca2+ exchanger currents, transient inward currents and calcium transients. K201 (1 μM, but not 0.1 μM or 0.3 μM) also reduced the sarcoplasmic reticulum calcium content. Moreover, both the pretreatment and administration of K201 (0.3 μM) decreased the isoprenaline (10 nM)-induced arrhythmogenesis in pulmonary veins. Conclusions and implications: K201 reduced the arrhythmogenic activity of pulmonary vein cardiomyocytes and attenuated the arrhythmogenicity induced by isoprenaline. These findings may reveal the anti-arrhythmic potential of K201. PMID:17994112

  5. Methods for in vitro functional analysis of iPSC derived cardiomyocytes - Special focus on analyzing the mechanical beating behavior. (United States)

    Laurila, Eeva; Ahola, Antti; Hyttinen, Jari; Aalto-Setälä, Katriina


    A rapidly increasing number of papers describing novel iPSC models for cardiac diseases are being published. To be able to understand the disease mechanisms in more detail, we should also take the full advantage of the various methods for analyzing these cell models. The traditionally and commonly used electrophysiological analysis methods have been recently accompanied by novel approaches for analyzing the mechanical beatingbehavior of the cardiomyocytes. In this review, we provide first a concise overview on the methodology for cardiomyocyte functional analysis and then concentrate on the video microscopy, which provides a promise for a new faster yet reliable method for cardiomyocyte functional analysis. We also show how analysis conditions may affect the results. Development of the methodology not only serves the basic research on the disease models, but could also provide the much needed efficient early phase screening method for cardiac safety toxicology. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  6. MicroRNA-34a regulates high glucose-induced apoptosis in H9c2 cardiomyocytes. (United States)

    Zhao, Fang; Li, Bo; Wei, Yin-zhi; Zhou, Bin; Wang, Han; Chen, Ming; Gan, Xue-dong; Wang, Zhao-hui; Xiong, Shi-xi


    Hyperglycemia is an important initiator of cardiovascular disease, contributing to the development of cardiomyocyte death and diabetic complications. The purpose of the present study was to investigate whether high glucose state could induce apoptosis of rat cardiomyocyte cell line H9c2 through microRNA-mediated Bcl-2 signaling pathway. The expression of miR-34a and Bcl-2 mRNA was detected by using real-time PCR. Western blotting was used to examine the changes in apoptosis-associated protein Bcl-2. Apoptosis of H9c2 cells was tested by using flow cytometry. The results showed that the expression of miR-34a was significantly elevated and that of Bcl-2 was strongly reduced, and apoptosis of cardiomyocytes was apparently increased in the high-glucose-treated H9c2 cells as compared with normal-glucose-treated controls. In addition, we identified Bcl-2 gene was the target of miR-34a. miR-34a mimics reduced the expression of Bcl-2 and increased glucose-induced apoptosis, but miR-34a inhibitor acted as the opposite mediator. Our data demonstrate that miR-34a contributes to high glucose-induced decreases in Bcl-2 expression and subsequent cardiomyocyte apoptosis.

  7. Role of nitric oxide in the regulation of mechanosensitive ionic channels in cardiomyocytes: contribution of NO-synthases. (United States)

    Kazanski, V E; Kamkin, A G; Makarenko, E Yu; Lysenko, N N; Sutiagin, P V; Kiseleva, I S


    The role of NO in the regulation of currents passing through ion channels activated by cell stretching (mechanically gated channels, MGC), particularly through cation-selective K(+)-channels TRPC6, TREK1 (K(2P)2.1), and TREK2 (K(2P)10.1), was studied on isolated mouse, rat, and guinea pig cardiomyocytes using whole-cell patch-clamp technique. In non-deformed cells, binding of endogenous NO with PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-1-oxy-3-oxide) irreversibly shifted the diastolic membrane potential towards negative values, modulates K(ir)-channels by reducing I(K1), and blocks MGC. Perfusion of stretched cells with PTIO solution completely blocked MG-currents. NO-synthase inhibitors L-NAME and L-NMMA completely blocked MGC. Stretching of cardiomyocytes isolated from wild type mice and from NOS1(-/-)- and NOS2(-/-)- knockout mice led to the appearance in MG-currents typical for the specified magnitude of stretching, while stretching of cardiomyocytes from NOS3(-/-)- knockout mice did not produce in MG-current. These findings suggest that NO plays a role in the regulation of MGC activity and that endothelial NO-synthase predominates as NO source in cardiomyocyte response to stretching.

  8. Role of nitric oxide in activity control of mechanically gated ionic channels in cardiomyocytes: NO-donor study. (United States)

    Kazanski, V E; Kamkin, A G; Makarenko, E Yu; Lysenko, N N; Sutiagin, P V; Bo, Tian; Kiseleva, I S


    Whole-cell ionic currents through mechanically gated channels (MGC) were recorded in isolated cardiomyocytes under voltage clamp conditions. In unstrained cells, NO donors SNAP and DEA-NO activated MGC and induced MG-like currents. In contrast, in stretched cells with activated MGC, these NO-donors inactivated and inhibited MGC.

  9. Myc overexpression enhances of epicardial contribution to the developing heart and promotes extensive expansion of the cardiomyocyte population (United States)

    Villa del Campo, Cristina; Lioux, Ghislaine; Carmona, Rita; Sierra, Rocío; Muñoz-Chápuli, Ramón; Clavería, Cristina; Torres, Miguel


    Myc is an essential regulator of cell growth and proliferation. Myc overexpression promotes the homeostatic expansion of cardiomyocyte populations by cell competition, however whether this applies to other cardiac lineages remains unknown. The epicardium contributes signals and cells to the developing and adult injured heart and exploring strategies for modulating its activity is of great interest. Using inducible genetic mosaics, we overexpressed Myc in the epicardium and determined the differential expansion of Myc-overexpressing cells with respect to their wild type counterparts. Myc-overexpressing cells overcolonized all epicardial-derived lineages and showed increased ability to invade the myocardium and populate the vasculature. We also found massive colonization of the myocardium by Wt1Cre-derived Myc-overexpressing cells, with preservation of cardiac development. Detailed analyses showed that this contribution is unlikely to derive from Cre activity in early cardiomyocytes but does not either derive from established epicardial cells, suggesting that early precursors expressing Wt1Cre originate the recombined cardiomyocytes. Myc overexpression does not modify the initial distribution of Wt1Cre-recombined cardiomyocytes, indicating that it does not stimulate the incorporation of early expressing Wt1Cre lineages to the myocardium, but differentially expands this initial population. We propose that strategies using epicardial lineages for heart repair may benefit from promoting cell competitive ability. PMID:27752085

  10. Ginsenoside-Rb1 Protects Hypoxic- and Ischemic-Damaged Cardiomyocytes by Regulating Expression of miRNAs

    Directory of Open Access Journals (Sweden)

    Xu Yan


    Full Text Available Ginsenoside (GS-Rb1 is one of the most important active compounds of ginseng, with extensive evidence of its cardioprotective properties. However, the miRNA mediated mechanism of GS-Rb1 on cardiomyocytes remains unclear. Here, the roles of miRNAs in cardioprotective activity of GS-Rb1 were investigated in hypoxic- and ischemic-damaged cardiomyocytes. Neonatal rat cardiomyocytes (NRCMs were first isolated, cultured, and then incubated with or without GS-Rb1 (2.5–40 μM in vitro under conditions of hypoxia and ischemia. Cell growth, proliferation, and apoptosis were detected by MTT and flow cytometry. Expressions of various microRNAs were analyzed by real-time PCR. Compared with that of the control group, GS-Rb1 significantly decreased cell death in a dose-dependent manner and expressions of mir-1, mir-29a, and mir-208 obviously increased in the experimental model groups. In contrast, expressions of mir-21 and mir-320 were significantly downregulated and GS-Rb1 could reverse the differences in a certain extent. The miRNAs might be involved in the protective effect of GS-Rb1 on the hypoxia/ischemia injuries in cardiomyocytes. The effect might be based on the upregulation of mir-1, mir-29a, and mir-208 and downregulation of mir-21 and mir-320. This might provide us a new target to explore the novel strategy for ischemic cardioprotection.

  11. Contractile Defect Caused by Mutation in MYBPC3 Revealed under Conditions Optimized for Human PSC-Cardiomyocyte Function

    NARCIS (Netherlands)

    M.J. Birket (Matthew J.); M.C. Ribeiro (Marcelo C.); G. Kosmidis (Georgios); D. Ward (Dorien); A.R. Leitoguinho (Ana Rita); V. van de Pol (Vera); C. Dambrot (Cheryl); H.D. Devalla (Harsha D.); R.P. Davis (Richard P.); P.G. Mastroberardino (Pier); D.E. Atsma (Douwe); R. Passier (Robert); C.L. Mummery (Christine)


    textabstractMaximizing baseline function of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is essential for their effective application in models of cardiac toxicity and disease. Here, we aimed to identify factors that would promote an adequate level of function to permit robust singl

  12. MiR-155 inhibits cell migration of human cardiomyocyte progenitor cells (hCMPCs) via targeting of MMP-16

    NARCIS (Netherlands)

    Liu, Jia; van Mil, Alain; Aguor, Eissa N. E.; Siddiqi, Sailay; Vrijsen, Krijn; Jaksani, Sridevi; Metz, Corina; Zhao, Jiajun; Strijkers, Gustav J.; Doevendans, Pieter A.; Sluijter, Joost P. G.


    Undesired cell migration after targeted cell transplantation potentially limits beneficial effects for cardiac regeneration. MicroRNAs are known to be involved in several cellular processes, including cell migration. Here, we attempt to reduce human cardiomyocyte progenitor cell (hCMPC) migration vi

  13. Parallel activation of Ca(2+)-induced survival and death pathways in cardiomyocytes by sorbitol-induced hyperosmotic stress. (United States)

    Chiong, M; Parra, V; Eisner, V; Ibarra, C; Maldonado, C; Criollo, A; Bravo, R; Quiroga, C; Contreras, A; Vicencio, J M; Cea, P; Bucarey, J L; Molgó, J; Jaimovich, E; Hidalgo, C; Kroemer, G; Lavandero, S


    Hyperosmotic stress promotes rapid and pronounced apoptosis in cultured cardiomyocytes. Here, we investigated if Ca(2+) signals contribute to this response. Exposure of cardiomyocytes to sorbitol [600 mosmol (kg water)(-1)] elicited large and oscillatory intracellular Ca(2+) concentration increases. These Ca(2+) signals were inhibited by nifedipine, Cd(2+), U73122, xestospongin C and ryanodine, suggesting contributions from both Ca(2+) influx through voltage dependent L-type Ca(2+) channels plus Ca(2+) release from intracellular stores mediated by IP(3) receptors and ryanodine receptors. Hyperosmotic stress also increased mitochondrial Ca(2+) levels, promoted mitochondrial depolarization, reduced intracellular ATP content, and activated the transcriptional factor cyclic AMP responsive element binding protein (CREB), determined by increased CREB phosphorylation and electrophoretic mobility shift assays. Incubation with 1 mM EGTA to decrease extracellular [Ca(2+)] prevented cardiomyocyte apoptosis induced by hyperosmotic stress, while overexpression of an adenoviral dominant negative form of CREB abolished the cardioprotection provided by 1 mM EGTA. These results suggest that hyperosmotic stress induced by sorbitol, by increasing Ca(2+) influx and raising intracellular Ca(2+) concentration, activates Ca(2+) release from stores and causes cell death through mitochondrial function collapse. In addition, the present results suggest that the Ca(2+) increase induced by hyperosmotic stress promotes cell survival by recruiting CREB-mediated signaling. Thus, the fate of cardiomyocytes under hyperosmotic stress will depend on the balance between Ca(2+)-induced survival and death pathways.

  14. Cardiomyocyte-specific deletion of leptin receptors causes lethal heart failure in Cre-recombinase-mediated cardiotoxicity. (United States)

    Hall, Michael E; Smith, Grant; Hall, John E; Stec, David E


    Although disruption of leptin signaling is associated with obesity as well as cardiac lipid accumulation and dysfunction, it has been difficult to separate the direct effects of leptin on the heart from those associated with the effects of leptin on body weight and fat mass. Using Cre-loxP recombinase technology, we developed tamoxifen-inducible, cardiomyocyte-specific leptin receptor-deficient mice to assess the role of leptin in regulating cardiac function. Cre recombinase activation in the heart resulted in transient reduction in left ventricular systolic function which recovered to normal levels by day 10. However, when cardiomyocyte leptin receptors were deleted in the setting of Cre recombinase-induced left ventricular dysfunction, irreversible lethal heart failure was observed in less than 10 days in all mice. Heart failure after leptin receptor deletion was associated with marked decreases of cardiac mitochondrial ATP, phosphorylated mammalian target of rapamycin (mTOR), and AMP-activated kinase (pAMPK). Our results demonstrate that specific deletion of cardiomyocyte leptin receptors, in the presence of increased Cre recombinase expression, causes lethal heart failure associated with decreased cardiac energy production. These observations indicate that leptin plays an important role in regulating cardiac function in the setting of cardiac stress caused by Cre-recombinase expression, likely through actions on cardiomyocyte energy metabolism.

  15. Stroma cell-derived factor-1α signaling enhances calcium transients and beating frequency in rat neonatal cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Ielham Hadad

    Full Text Available Stroma cell-derived factor-1α (SDF-1α is a cardioprotective chemokine, acting through its G-protein coupled receptor CXCR4. In experimental acute myocardial infarction, administration of SDF-1α induces an early improvement of systolic function which is difficult to explain solely by an anti-apoptotic and angiogenic effect. We wondered whether SDF-1α signaling might have direct effects on calcium transients and beating frequency.Primary rat neonatal cardiomyocytes were culture-expanded and characterized by immunofluorescence staining. Calcium sparks were studied by fluorescence microscopy after calcium loading with the Fluo-4 acetoxymethyl ester sensor. The cardiomyocyte enriched cellular suspension expressed troponin I and CXCR4 but was vimentin negative. Addition of SDF-1α in the medium increased cytoplasmic calcium release. The calcium response was completely abolished by using a neutralizing anti-CXCR4 antibody and partially suppressed and delayed by preincubation with an inositol triphosphate receptor (IP3R blocker, but not with a ryanodine receptor (RyR antagonist. Calcium fluxes induced by caffeine, a RyR agonist, were decreased by an IP3R blocker. Treatment with forskolin or SDF-1α increased cardiomyocyte beating frequency and their effects were additive. In vivo, treatment with SDF-1α increased left ventricular dP/dtmax.These results suggest that in rat neonatal cardiomyocytes, the SDF-1α/CXCR4 signaling increases calcium transients in an IP3-gated fashion leading to a positive chronotropic and inotropic effect.

  16. Substance P Receptor Signaling Mediates Doxorubicin-Induced Cardiomyocyte Apoptosis and Triple-Negative Breast Cancer Chemoresistance. (United States)

    Robinson, Prema; Kasembeli, Moses; Bharadwaj, Uddalak; Engineer, Nikita; Eckols, Kris T; Tweardy, David J


    Doxorubicin (DOX), an anthracycline, is broadly considered the most active single agent available for treating breast cancer but has been known to induce cardiotoxicity. Although DOX is highly effective in treating triple-negative breast cancer (TNBC), DOX can have poor outcomes owing to induction of chemoresistance. There is an urgent need to develop new therapies for TNBC aimed at improving DOX outcome and DOX-induced cardiotoxicity. Substance P (SP), a neuropeptide involved in pain transmission is known to stimulate production of reactive oxygen species (ROS). Elevated cardiac ROS is linked with heart injury and failure. We investigated the role of SP in chemotherapy-associated death of cardiomyocytes and chemoresistance. We showed that pretreating a cardiomyocyte cell line (H9C2) and a TNBC cell line (MDA-MB 231) with aprepitant, a SP receptor antagonist that is routinely used to treat chemotherapy-associated associated nausea, decreased DOX-induced reduction of cell viability, apoptotic cell death, and ROS production in cardiomyocytes and increased DOX-induced reduction of cell viability, apoptotic cell death, and ROS production in TNBC cells compared with cells treated with DOX alone. Our findings demonstrate the ability of aprepitant to decrease DOX-induced killing of cardiomyocytes and to increase cancer cell sensitivity to DOX, which has tremendous clinical significance.

  17. Substance P Receptor Signaling Mediates Doxorubicin-Induced Cardiomyocyte Apoptosis and Triple-Negative Breast Cancer Chemoresistance

    Directory of Open Access Journals (Sweden)

    Prema Robinson


    Full Text Available Doxorubicin (DOX, an anthracycline, is broadly considered the most active single agent available for treating breast cancer but has been known to induce cardiotoxicity. Although DOX is highly effective in treating triple-negative breast cancer (TNBC, DOX can have poor outcomes owing to induction of chemoresistance. There is an urgent need to develop new therapies for TNBC aimed at improving DOX outcome and DOX-induced cardiotoxicity. Substance P (SP, a neuropeptide involved in pain transmission is known to stimulate production of reactive oxygen species (ROS. Elevated cardiac ROS is linked with heart injury and failure. We investigated the role of SP in chemotherapy-associated death of cardiomyocytes and chemoresistance. We showed that pretreating a cardiomyocyte cell line (H9C2 and a TNBC cell line (MDA-MB 231 with aprepitant, a SP receptor antagonist that is routinely used to treat chemotherapy-associated associated nausea, decreased DOX-induced reduction of cell viability, apoptotic cell death, and ROS production in cardiomyocytes and increased DOX-induced reduction of cell viability, apoptotic cell death, and ROS production in TNBC cells compared with cells treated with DOX alone. Our findings demonstrate the ability of aprepitant to decrease DOX-induced killing of cardiomyocytes and to increase cancer cell sensitivity to DOX, which has tremendous clinical significance.

  18. Defined MicroRNAs Induce Aspects of Maturation in Mouse and Human Embryonic-Stem-Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Desy S. Lee


    Full Text Available Pluripotent-cell-derived cardiomyocytes have great potential for use in research and medicine, but limitations in their maturity currently constrain their usefulness. Here, we report a method for improving features of maturation in murine and human embryonic-stem-cell-derived cardiomyocytes (m/hESC-CMs. We found that coculturing m/hESC-CMs with endothelial cells improves their maturity and upregulates several microRNAs. Delivering four of these microRNAs, miR-125b-5p, miR-199a-5p, miR-221, and miR-222 (miR-combo, to m/hESC-CMs resulted in improved sarcomere alignment and calcium handling, a more negative resting membrane potential, and increased expression of cardiomyocyte maturation markers. Although this could not fully phenocopy all adult cardiomyocyte characteristics, these effects persisted for two months following delivery of miR-combo. A luciferase assay demonstrated that all four miRNAs target ErbB4, and siRNA knockdown of ErbB4 partially recapitulated the effects of miR-combo. In summary, a combination of miRNAs induced via endothelial coculture improved ESC-CM maturity, in part through suppression of ErbB4 signaling.

  19. The Influence of Copper (Cu) Deficiency in a Cardiomyocyte Cell Model (HL-1 Cell) of Ischemia/Reperfusion Injury (United States)

    Mitochondria are important mediators of cell death and this study examines whether mitochondrial dysfunction caused by Cu deprivation promotes cell death in a cell culture model for ischemia/reperfusion injury in cardiomyocytes. HL-1 cells (kindly donated by Dr. William C. Claycomb, LSU Health Scien...

  20. TGF-β receptor type II costameric localization in cardiomyocytes and host cell TGF-β response is disrupted by Trypanosoma cruzi infection. (United States)

    Calvet, Claudia Magalhães; Silva, Tatiana Araújo; DE Melo, Tatiana Galvão; DE Araújo-Jorge, Tânia Cremonini; Pereira, Mirian Claudia DE Souza


    Transforming growth factor beta (TGF-β) cytokine is involved in Chagas disease establishment and progression. Since Trypanosoma cruzi can modulate host cell receptors, we analysed the TGF-β receptor type II (TβRII) expression and distribution during T. cruzi - cardiomyocyte interaction. TβRII immunofluorescent staining revealed a striated organization in cardiomyocytes, which was co-localized with vinculin costameres and enhanced (38%) after TGF-β treatment. Cytochalasin D induced a decrease of 45·3% in the ratio of cardiomyocytes presenting TβRII striations, demonstrating an association of TβRII with the cytoskeleton. Western blot analysis showed that cytochalasin D significantly inhibited Smad 2 phosphorylation and fibronectin stimulation after TGF-β treatment in cardiomyocytes. Trypanosoma cruzi infection elicited a decrease of 79·8% in the frequency of cardiomyocytes presenting TβRII striations, but did not interfere significantly in its expression. In addition, T. cruzi-infected cardiomyocytes present a lower response to exogenous TGF-β, showing no enhancement of TβRII striations and a reduction of phosphorylated Smad 2, with no significant difference in TβRII expression when compared to uninfected cells. Together, these results suggest that the co-localization of TβRII with costameres is important in activating the TGF-β signalling cascade, and that T. cruzi-derived cytoskeleton disorganization could result in altered or low TGF-β response in infected cardiomyocytes.

  1. Mechanical stress triggers cardiomyocyte autophagy through angiotensin II type 1 receptor-mediated p38MAP kinase independently of angiotensin II.

    Directory of Open Access Journals (Sweden)

    Li Lin

    Full Text Available Angiotensin II (Ang II type 1 (AT1 receptor is known to mediate a variety of physiological actions of Ang II including autophagy. However, the role of AT1 receptor in cardiomyocyte autophagy triggered by mechanical stress still remains elusive. The aim of this study was therefore to examine whether and how AT1 receptor participates in cardiomyocyte autophagy induced by mechanical stresses. A 48-hour mechanical stretch and a 4-week transverse aorta constriction (TAC were imposed to cultured cardiomyocytes of neonatal rats and adult male C57B/L6 mice, respectively, to induce cardiomyocyte hypertrophy prior to the assessment of cardiomyocyte autophagy using LC3b-II. Losartan, an AT1 receptor blocker, but not PD123319, the AT2 inhibitor, was found to significantly reduce mechanical stretch-induced LC3b-II upregulation. Moreover, inhibition of p38MAP kinase attenuated not only mechanical stretch-induced cardiomyocyte hypertrophy but also autophagy. To the contrary, inhibition of ERK and JNK suppressed cardiac hypertrophy but not autophagy. Intriguingly, mechanical stretch-induced autophagy was significantly inhibited by Losartan in the absence of Ang II. Taken together, our results indicate that mechanical stress triggers cardiomyocyte autophagy through AT1 receptor-mediated activation of p38MAP kinase independently of Ang II.

  2. Angiotensin Ⅱ type Ⅰ receptor agonistic autoantibody-induced apoptosis in neonatal rat cardiomyocytes is dependent on the generation of tumor necrosis factor-α

    Institute of Scientific and Technical Information of China (English)

    Weiran Chai; Wenhui Zhang; Zhu Jin; Yiping Feng; Yanping Kuang; Jianming Zhi


    Angiotensin Ⅱ type Ⅰ receptor agonistic autoantibodies (AT1-AA) are related to pre-eclampsia and hypertension and have a direct effect of stimulating the production of tumor necrosis factor-alpha (TNF-α) in the placenta.TNF-α is a known mediator of apoptosis.However,few studies have reported the role of TNF-α and its relationship within AT1-AA-induced apoptosis of cardiomyocytes.In this study,neonatal rat cardiomyocytes were treated with various concentrations of AT1-AA.The apoptosis of neonatal rat cardiomyocytes was determined using TUNEL assay and flow cytometry.The level of secreted TNF-α was measured by enzyme-linked immunosorbent assay,and caspase-3 activity was measured by a fluorogenic protease assay kit.AT1 receptor blockade and TNF inhibitor were added to determine whether they could inhibit the apoptotic effect of AT1-AA.Results showed that AT1-AA induced the apoptosis of neonatal rat cardiomyocytes in a dose-dependent and time-dependent manner.AT1-AA increased TNF secretion and caspase-3activities.AT1 receptor blockade completely abrogated AT1-AA-induced TNF-α secretion,caspase-3 activation,and cardiomyocyte apoptosis.TNF-α receptor inhibitor significantly attenuated AT1-AA-induced neonatal rat cardiomyocyte apoptosis.AT1-AA in the plasma of preeclamptic patients promoted neonatal rat cardiomyocyte apoptosis through a TNF-caspase signaling pathway.

  3. Transplantation of neonatal cardiomyocytes plus fibrin sealant restores myocardial function in a rat model of myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    LI Yong-shun; GAO Bing-ren


    Background Most cardiac regenerative approaches can restore injured heart muscles. In this study, we investigated if fibrin sealant could help neonatal cardiomyocytes restore myocardial function in a rat model of myocardial infarction.Methods The left anterior descending artery in adult female Sprague-Dawley (SD) rats was ligated to make a myocardial infarction model. Neonatal ventricular cardiomyocytes from one-day male SD rats were isolated, labeled and cultured. The cells were injected into the infarcted area three weeks later. The animals were randomized into four recipient groups: (1) cardiomyocytes plus fibrin sealant (group CF, n=10); (2) cardiomyocytes alone (group C, n=10); (3)fibrin sealant recipients alone (group F, n=10); (4) control group (n=10). Four weeks after transplantation,echocardiography and Langerdoff model were used to assess heart function. Immunohistochemical staining and polymerase chain reaction (PCR) were performed to track the implanted cardiomyocytes and detect the sex-determining region Y gene on Y chromosome.Results Echocardiography showed the fraction shortening (FS) in groups CF, C, F and control group was (27.80±6.32)%, (22.29±4.54)%, (19.24±6.29)% and (20.36±3.29)% respectively with statistically significant differences in group CF compared with the other groups (P<0.05). The Langendoff model revealed that the left ventricular development of peak pressure (LVDPmax, mmHg) in groups CF, C, F and control group was 104.81±17.05, 80.97±21.60, 72.07±26.17 and 71.42±17.55 respectively with statistically significant differences in group CF compared with the other groups (P<0.05). Pathological examination and PCR indicated that transplanted cardiomyocytes in group CF survived better than those in the other groups.Conclusion Transplanted neonatal cardiomyocytes plus fibrin sealant can survive in myocardial infarctioned area and improve heart function greatly in rat models.

  4. Same-Single-Cell Analysis of Pacemaker-Specific Markers in Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Subtypes Classified by Electrophysiology. (United States)

    Yechikov, Sergey; Copaciu, Raul; Gluck, Jessica M; Deng, Wenbin; Chiamvimonvat, Nipavan; Chan, James W; Lieu, Deborah K


    Insights into the expression of pacemaker-specific markers in human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte subtypes can facilitate the enrichment and track differentiation and maturation of hiPSC-derived pacemaker-like cardiomyocytes. To date, no study has directly assessed gene expression in each pacemaker-, atria-, and ventricular-like cardiomyocyte subtype derived from hiPSCs since currently the subtypes of these immature cardiomyocytes can only be identified by action potential profiles. Traditional acquisition of action potentials using patch-clamp recordings renders the cells unviable for subsequent analysis. We circumvented these issues by acquiring the action potential profile of a single cell optically followed by assessment of protein expression through immunostaining in that same cell. Our same-single-cell analysis for the first time revealed expression of proposed pacemaker-specific markers-hyperpolarization-activated cyclic nucleotide-modulated (HCN)4 channel and Islet (Isl)1-at the protein level in all three hiPSC-derived cardiomyocyte subtypes. HCN4 expression was found to be higher in pacemaker-like hiPSC-derived cardiomyocytes than atrial- and ventricular-like subtypes but its downregulation over time in all subtypes diminished the differences. Isl1 expression in pacemaker-like hiPSC-derived cardiomyocytes was initially not statistically different than the contractile subtypes but did become statistically higher than ventricular-like cells with time. Our observations suggest that although HCN4 and Isl1 are differentially expressed in hiPSC-derived pacemaker-like relative to ventricular-like cardiomyocytes, these markers alone are insufficient in identifying hiPSC-derived pacemaker-like cardiomyocytes. Stem Cells 2016.

  5. Differentiation of embryonic stem cells into cardiomyocytes used to investigate the cardioprotective effect of salvianolic acid B through BNIP3 involved pathway. (United States)

    Huang, Chih-Yang; Chen, Shao-Yu; Fu, Ru-Huei; Huang, Yu-Chuen; Chen, Shih-Yin; Shyu, Woei-Cherng; Lin, Shinn-Zong; Liu, Shih-Ping


    Cardiovascular diseases are related to many risk factors, such as diabetes, high blood pressure, smoking, and obesity. Myocardial infarction (MI), a cardiovascular disease, is the most common cause of cardiomyocyte death. In MI, hypoxia induces cardiomyocyte apoptosis; in particular, diabetes combined with MI has a synergistic effect that exacerbates cardiomyocyte death. The hypoxia-inducible factor-1α (HIF1α) transcriptional factor and a BH-3 only protein, Bcl-2 adenovirus E1B 19-kDa interacting protein 3 (BNIP3), are known to play fundamental roles in both adaptive and cell death processes in response to hypoxia. In addition, most cardioprotective studies used H9c2 cells that were not beating, so H9c2 cells may not be the best model for testing cardioprotective effects. Embryonic stem cells (ESCs) are pluripotent stem cells that are able to differentiate into several types of cells, including cardiomyocytes. In this study, we reveal a simple method to differentiate ESCs into cardiomyocytes by using poly-d-lysine-coated plates combined with ITS and N2-containing medium and characterized the ESC-derived cardiomyocytes by cardiomyocyte marker staining. The ESC-derived cardiomyocytes were used to investigate the protective effect of salvianolic acid B (Sal-B) in high glucose combined with hypoxic conditions to mimic diabetes patients with ischemia. The results of MTT and TUNEL assays indicate that Sal-B suppresses the apoptotic effect of treatment with high glucose combined with hypoxia in ESC-derived cardiomyocytes. In particular, Sal-B inhibited HIF1α, BNIP3, and cleavage caspase 3 expression levels, thereby suppressing apoptosis. This is the first study to mention the correlation between BNIP3 and Sal-B for cardioprotective effects. In conclusion, we suggest that Sal-B may be suitable for use as a future cardioprotective medicine.

  6. Effects of transforming growth factor-β1 and signal protein Smad3 on rat cardiomyocyte hypertrophy

    Institute of Scientific and Technical Information of China (English)

    黄俊; 覃国辉; 胡昌兴; 龚丽娅; 程芳舟; 马业新; 陆再英


    Background SMAD proteins have recently been identified as the first family of putative transforming growth factor-β1(TGF-β1) signal transducers. This study was to investigate the effects of TGF-β1 and signal protein Smad3 on rat cardiac hypertrophy.Methods The incorporation of [3H]-leucine was measured to determine the hypertrophy of cardiomyocyte incubated with different doses of TGF-β1 in cultured neonatal cardiomyocytes. The model of rat cardiac hypertrophy was produced with constriction of the abdominal aorta. At different times after the operation, rats were killed, and their left ventricular mass index (LVMI) determined. The mRNA expression of TGF-β1 and Smad3 of cultured cells and hypertrophic left ventricles were assessed by RT-PCR. The protein expression of Smad3 was assessed by Western blot.Results In cultured neonatal cardiomyocytes, TGF-β1 significantly promoted incorporation of [3H]-leucine. With the concentration of 3 pg/L, it increased the expression of Smad3 in mRNA and protein levels after 15 minutes, and continued for up to 8 hours of cultured cardiomyocytes. The LVMI and the expression of TGF-β1 (mRNA) and Smad3 (mRNA and protein) of hypertrophic left ventricle were increased by day 3 after the operation and continued to the 4th week. The peak expression of these was in the second week after operation.Conclusion TGF-β1 has positive effects on rat cardiomyocyte hypertrophy. Signal protein Smad3 could be related to the pathologic progression of rat cardiac hypertrophy.

  7. Engineered myocardial tissues constructed in vivo using cardiomyocyte-like cells derived from bone marrow mesenchymal stem cells in rats

    Directory of Open Access Journals (Sweden)

    Xing Yujie


    Full Text Available Abstract Background To explore the feasibility of constructing engineered myocardial tissues (EMTs in vivo, using polylactic acid -co-glycolic acid (PLGA for scaffold and cardiomyocyte-like cells derived from bone marrow mesenchymal stem cells (BMMSCs for seeded cells. Methods BMMSCs were isolated from femur and tibia of Sprague-Dawley (SD rats by density-gradient centrifugation. The third passage cells were treated with 10 μmol/L 5-azacytidine (5-aza and 0.1 μmol/L angiotensin II (Ang II for 24 h, followed by culturing in complete medium for 3 weeks to differentiated into cardiomyocyte-like cells. The cardiomyocyte-like cells were seeded into PLGA scaffolds to form the grafts. The grafts were cultured in the incubator for three days and then implanted into the peritoneal cavity of SD rats. Four weeks later, routine hematoxylin-eosin (HE staining, immunohistochemical staining for myocardium-specific cardiac troponin I (cTnI, scanning electron microscopy and transmission electron microscopy were used to analyze the morphology and microconstruction of the EMTs in host rats. Results HE staining showed that the cardiomyocyte-like cells distributed equally in the PLGA scaffold, and the nuclei arranged in the spindle shape. Immunohistochemical staining revealed that majority of engrafted cells in the PLGA -Cardiomyocyte-like cells group were positive for cTnI. Scanning electron microscopy showed that the inoculated cells well attached to PLGA and grew in 3 dimensions in construct. Transmission electron microscopy showed that the EMTs contained well arranged myofilaments paralleled to the longitudinal cell axis, the cells were rich in endoplasmic reticulum and mitochondria, while desmosomes, gap junction and Z line-like substances were also can be observed as well within the engrafted cells. Conclusion We have developed an in vivo method to construct engineered myocardial tissue. The in vivo microenvironment helped engrafted cells/tissue survive and

  8. Inducible effects of icariin, icaritin, and desmethylicaritin on directional differentiation of embryonic stem cells into cardiomyocytes in vitro

    Institute of Scientific and Technical Information of China (English)

    Dan-yan ZHU; Yi-jia LOU


    Aim: To investigate the possible inducible effects of icariin, icaritin, and desmethylicaritin on the directional differentiation of embryonic stem (ES) cells into cardiomyocytes in vitro. Methods: ES cells were cultivated as embryoid bodies (EBs) in hanging drops with icariin, icaritin, or desmethylicaritin. ES cells treated with retinoic acid and with solvent were used as positive and negative controls, respectively. The cardiomyocytes derived from the ES cells were veri fied using immunocytochemistry. The expression of cardiac developmental dependent genes was detected using the reverse transcription-polymerase chain reaction (RT-PCR) method. Cell cycle distribution and apoptosis were analyzed using flow cytometry to determine the partly inducible effect mechanisms involved.Results: The total percentage of beating EBs treated with 1 × 10-7 mol/L ic ariin,icaritin, or desmethylicaritin was 87% (P<0.01 ), 59% (P<0.01), and 49%, respectively.All the beating cardiomyocytes derived from the ES cells expressed cardiacspecific proteins for α-actinin and troponin T. Among them, 1 × 10-7 mol/L icariin treatment resulted in a significantly advanced and increased mRNA level of α-cardiac myosin heavy chain (MHC) and myosin light chain 2v (MLC-2v) in EBs in the early cardiac developmental stage. Before shifting to the cardiomyocyte phenotype, icariin could evoke the accumulation of ES cells in G0/G1 and accelerate apoptosis of the cell population (P<0.05). Conclusion: Icariin facilitated the directional differentiation of ES cells into cardiomyocytes at a concentration of 1 × 10-7 mol/L. The promoting effect of icariin on cardiac differentiation was related to increasing and accelerating gene expression of α-cardiac MHC and MLC-2v, as well as regulating the cell cycles and inducing apoptosis.

  9. Muscle RING finger-1 attenuates IGF-I-dependent cardiomyocyte hypertrophy by inhibiting JNK signaling. (United States)

    Wadosky, Kristine M; Rodríguez, Jessica E; Hite, Rebecca L; Min, Jin-na; Walton, Bethany L; Willis, Monte S


    Recent studies implicate the muscle-specific ubiquitin ligase muscle RING finger-1 (MuRF1) in inhibiting pathological cardiomyocyte growth in vivo by inhibiting the transcription factor SRF. These studies led us to hypothesize that MuRF1 similarly inhibits insulin-like growth factor-I (IGF-I)-mediated physiological cardiomyocyte growth. We identified two lines of evidence to support this hypothesis: IGF-I stimulation of cardiac-derived cells with MuRF1 knockdown 1) exhibited an exaggerated hypertrophy and, 2) conversely, increased MuRF1 expression-abolished IGF-I-dependent cardiomyocyte growth. Enhanced hypertrophy with MuRF1 knockdown was accompanied by increases in Akt-regulated gene expression. Unexpectedly, MuRF1 inhibition of this gene expression profile was not a result of differences in p-Akt. Instead, we found that MuRF1 inhibits total protein levels of Akt, GSK-3β (downstream of Akt), and mTOR while limiting c-Jun protein expression, a mechanism recently shown to govern Akt, GSK-3β, and mTOR activities and expression. These findings establish that MuRF1 inhibits IGF-I signaling by restricting c-Jun activity, a novel mechanism recently identified in the context of ischemia-reperfusion injury. Since IGF-I regulates exercise-mediated physiological cardiac growth, we challenged MuRF1(-/-) and MuRF1-Tg+ mice and their wild-type sibling controls to 5 wk of voluntary wheel running. MuRF1(-/-) cardiac growth was increased significantly over wild-type control; conversely, the enhanced exercise-induced cardiac growth was lost in MuRF1-Tg+ animals. These studies demonstrate that MuRF1-dependent attenuation of IGF-I signaling via c-Jun is applicable in vivo and establish that further understanding of this novel mechanism may be crucial in the development of therapies targeting IGF-I signaling.

  10. Autoantibodies in dilated cardiomyopathy induce vascular endothelial growth factor expression in cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Saygili, Erol, E-mail: [Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf (Germany); Noor-Ebad, Fawad; Schröder, Jörg W.; Mischke, Karl [Department of Cardiology, University RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen (Germany); Saygili, Esra [Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf (Germany); Rackauskas, Gediminas [Department of Cardiovascular Medicine, Vilnius University Hospital Santariskiu Klinikos, Vilnius University (Lithuania); Marx, Nikolaus [Department of Cardiology, University RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen (Germany); Kelm, Malte; Rana, Obaida R. [Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf (Germany)


    Background: Autoantibodies have been identified as major predisposing factors for dilated cardiomyopathy (DCM). Patients with DCM show elevated serum levels of vascular endothelial growth factor (VEGF) whose source is unknown. Besides its well-investigated effects on angiogenesis, evidence is present that VEGF signaling is additionally involved in fibroblast proliferation and cardiomyocyte hypertrophy, hence in cardiac remodeling. Whether autoimmune effects in DCM impact cardiac VEGF signaling needs to be elucidated. Methods: Five DCM patients were treated by the immunoadsorption (IA) therapy on five consecutive days. The eluents from the IA columns were collected and prepared for cell culture. Cardiomyocytes from neonatal rats (NRCM) were incubated with increasing DCM-immunoglobulin-G (IgG) concentrations for 48 h. Polyclonal IgG (Venimmun N), which was used to restore IgG plasma levels in DCM patients after the IA therapy was additionally used for control cell culture purposes. Results: Elevated serum levels of VEGF decreased significantly after IA (Serum VEGF (ng/ml); DCM pre-IA: 45 ± 9.1 vs. DCM post–IA: 29 ± 6.7; P < 0.05). In cell culture, pretreatment of NRCM by DCM-IgG induced VEGF expression in a time and dose dependent manner. Biologically active VEGF that was secreted by NRCM significantly increased BNP mRNA levels in control cardiomyocytes and induced cell-proliferation of cultured cardiac fibroblast (Fibroblast proliferation; NRCM medium/HC-IgG: 1 ± 0.0 vs. NRCM medium/DCM-IgG 100 ng/ml: 5.6 ± 0.9; P < 0.05). Conclusion: The present study extends the knowledge about the possible link between autoimmune signaling in DCM and VEGF induction. Whether this observation plays a considerable role in cardiac remodeling during DCM development needs to be further elucidated. - Highlights: • Mechanisms of remodeling in dilated cardiomyopathy (DCM) are not fully understood. • Autoantibodies have been identified as major predisposing factors

  11. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengpeng [Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); Shan, Tizhong; Liang, Xinrong [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); Deng, Changyan [Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Kuang, Shihuan, E-mail: [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States)


    Highlights: • mTOR is a critical regulator of many biological processes yet its function in heart is not well understood. • MCK-Cre/Mtor{sup flox/flox} mice were established to delete Mtor in cardiomyocytes. • The mTOR-mKO mice developed normally but die prematurely within 5 weeks after birth due to heart disease. • The mTOR-mKO mice had dilated myocardium and increased cell death. • mTOR-mKO hearts had reduced expression of metabolic genes and activation of mTOR target proteins. - Abstract: Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leads to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor{sup flox/flox} mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function.

  12. Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, Kimberly R., E-mail: [Quintiles, 777 Oakmont Lane Suite 100, Westmont, IL 60559 (United States); Wappel, Robert L.; Talbert, Dominique R.; Trusk, Patricia B.; Moran, Diarmuid M. [Quintiles, 777 Oakmont Lane Suite 100, Westmont, IL 60559 (United States); Kramer, James W.; Brown, Arthur M. [ChanTest Corporation, 14656 Neo Parkway, Cleveland, OH 44128 (United States); Shell, Scott A.; Bacus, Sarah [Quintiles, 777 Oakmont Lane Suite 100, Westmont, IL 60559 (United States)


    Tyrosine kinase inhibitors (TKi) have greatly improved the treatment and prognosis of multiple cancer types. However, unexpected cardiotoxicity has arisen in a subset of patients treated with these agents that was not wholly predicted by pre-clinical testing, which centers around animal toxicity studies and inhibition of the human Ether-à-go-go-Related Gene (hERG) channel. Therefore, we sought to determine whether a multi-parameter test panel assessing the effect of drug treatment on cellular, molecular, and electrophysiological endpoints could accurately predict cardiotoxicity. We examined how 4 FDA-approved TKi agents impacted cell viability, apoptosis, reactive oxygen species (ROS) generation, metabolic status, impedance, and ion channel function in human cardiomyocytes. The 3 drugs clinically associated with severe cardiac adverse events (crizotinib, sunitinib, nilotinib) all proved to be cardiotoxic in our in vitro tests while the relatively cardiac-safe drug erlotinib showed only minor changes in cardiac cell health. Crizotinib, an ALK/MET inhibitor, led to increased ROS production, caspase activation, cholesterol accumulation, disruption in cardiac cell beat rate, and blockage of ion channels. The multi-targeted TKi sunitinib showed decreased cardiomyocyte viability, AMPK inhibition, increased lipid accumulation, disrupted beat pattern, and hERG block. Nilotinib, a second generation Bcr-Abl inhibitor, led to increased ROS generation, caspase activation, hERG block, and an arrhythmic beat pattern. Thus, each drug showed a unique toxicity profile that may reflect the multiple mechanisms leading to cardiotoxicity. This study demonstrates that a multi-parameter approach can provide a robust characterization of drug-induced cardiomyocyte damage that can be leveraged to improve drug safety during early phase development. - Highlights: • TKi with known adverse effects show unique cardiotoxicity profiles in this panel. • Crizotinib increases ROS, apoptosis, and

  13. Size matters

    Energy Technology Data Exchange (ETDEWEB)

    Forst, Michael


    The shakeout in the solar cell and module industry is in full swing. While the number of companies and production locations shutting down in the Western world is increasing, the capacity expansion in the Far East seems to be unbroken. Size in combination with a good sales network has become the key to success for surviving in the current storm. The trade war with China already looming on the horizon is adding to the uncertainties. (orig.)

  14. Advanced Ring-Shaped Microelectrode Assay Combined with Small Rectangular Electrode for Quasi-In vivo Measurement of Cell-to-Cell Conductance in Cardiomyocyte Network (United States)

    Nomura, Fumimasa; Kaneko, Tomoyuki; Hamada, Tomoyo; Hattori, Akihiro; Yasuda, Kenji


    To predict the risk of fatal arrhythmia induced by cardiotoxicity in the highly complex human heart system, we have developed a novel quasi-in vivo electrophysiological measurement assay, which combines a ring-shaped human cardiomyocyte network and a set of two electrodes that form a large single ring-shaped electrode for the direct measurement of irregular cell-to-cell conductance occurrence in a cardiomyocyte network, and a small rectangular microelectrode for forced pacing of cardiomyocyte beating and for acquiring the field potential waveforms of cardiomyocytes. The advantages of this assay are as follows. The electrophysiological signals of cardiomyocytes in the ring-shaped network are superimposed directly on a single loop-shaped electrode, in which the information of asynchronous behavior of cell-to-cell conductance are included, without requiring a set of huge numbers of microelectrode arrays, a set of fast data conversion circuits, or a complex analysis in a computer. Another advantage is that the small rectangular electrode can control the position and timing of forced beating in a ring-shaped human induced pluripotent stem cell (hiPS)-derived cardiomyocyte network and can also acquire the field potentials of cardiomyocytes. First, we constructed the human iPS-derived cardiomyocyte ring-shaped network on the set of two electrodes, and acquired the field potential signals of particular cardiomyocytes in the ring-shaped cardiomyocyte network during simultaneous acquisition of the superimposed signals of whole-cardiomyocyte networks representing cell-to-cell conduction. Using the small rectangular electrode, we have also evaluated the response of the cell network to electrical stimulation. The mean and SD of the minimum stimulation voltage required for pacing (VMin) at the small rectangular electrode was 166+/-74 mV, which is the same as the magnitude of amplitude for the pacing using the ring-shaped electrode (179+/-33 mV). The results showed that the

  15. Nuclear Astrophysics (United States)

    Drago, Alessandro


    The activity of the Italian nuclear physicists community in the field of Nuclear Astrophysics is reported. The researches here described have been performed within the project "Fisica teorica del nucleo e dei sistemi a multi corpi", supported by the Ministero dell'Istruzione, dell'Università e della Ricerca.

  16. Nuclear multifragmentation: Basic concepts

    Indian Academy of Sciences (India)

    G Chaudhuri; S Mallik; S Das Gupta


    We present a brief overview of nuclear multifragmentation reaction. Basic formalism of canonical thermodynamical model based on equilibrium statistical mechanics is described. This model is used to calculate basic observables of nuclear multifragmentation like mass distribution, fragment multiplicity, isotopic distribution and isoscaling. Extension of canonical thermodynamical model to a projectile fragmentation model is outlined. Application of the projectile fragmentation model for calculating average number of intermediate mass fragments and the average size of the largest cluster at different bound, differential charge distribution and cross-section of neutron-rich nuclei of different projectile fragmentation reactions at different energies are described. Application of nuclear multifragmentation reaction in basic research as well as in other domains is outlined.

  17. Nuclear stress test (United States)

    ... Persantine stress test; Thallium stress test; Stress test - nuclear; Adenosine stress test; Regadenoson stress test; CAD - nuclear stress; Coronary artery disease - nuclear stress; Angina - nuclear ...

  18. Reverse engineering life: physical and chemical mimetics for controlled stem cell differentiation into cardiomyocytes. (United States)

    Skuse, Gary R; Lamkin-Kennard, Kathleen A


    Our ability to manipulate stem cells in order to induce differentiation along a desired developmental pathway has improved immeasurably in recent years. That is in part because we have a better understanding of the intracellular and extracellular signals that regulate differentiation. However, there has also been a realization that stem cell differentiation is not regulated only by chemical signals but also by the physical milieu in which a particular stem cell exists. In this regard we are challenged to mimic both chemical and physical environments. Herein we describe a method to induce stem cell differentiation into cardiomyocytes using a combination of chemical and physical cues. This method can be applied to produce differentiated cells for research and potentially for cell-based therapy of cardiomyopathies.

  19. Characterization of the mechanical properties of HL-1 cardiomyocytes with high throughput magnetic tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim [Institute of Bioelectronics (ICS-8/PGI-8), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany)


    We characterized the mechanical properties of cardiomyocyte-like HL-1 cells using our recently developed multi-pole magnetic tweezers. With the optimized design, both high force and high throughput are achieved at the same time. Force up to 100 pN can be applied on a 1 μm diameter superparamagnetic bead in a workspace with 60 μm radius, which is encircled symmetrically by 3 sharp magnetic tips. By adjusting the coil currents, both the strength and direction of force can be controlled. The result shows that both viscosity and shear elastic modulus of HL-1 cells exhibit an approximately log-normal distribution. The cells became stiffer as they matured, consistent with a transition from proliferating cells to contractile muscle tissue. Moreover, the mechanical properties of HL-1 cells show high heterogeneity, which agrees well with their physiological structure.

  20. GFRA2 Identifies Cardiac Progenitors and Mediates Cardiomyocyte Differentiation in a RET-Independent Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Hidekazu Ishida


    Full Text Available A surface marker that distinctly identifies cardiac progenitors (CPs is essential for the robust isolation of these cells, circumventing the necessity of genetic modification. Here, we demonstrate that a Glycosylphosphatidylinositol-anchor containing neurotrophic factor receptor, Glial cell line-derived neurotrophic factor receptor alpha 2 (Gfra2, specifically marks CPs. GFRA2 expression facilitates the isolation of CPs by fluorescence activated cell sorting from differentiating mouse and human pluripotent stem cells. Gfra2 mutants reveal an important role for GFRA2 in cardiomyocyte differentiation and development both in vitro and in vivo. Mechanistically, the cardiac GFRA2 signaling pathway is distinct from the canonical pathway dependent on the RET tyrosine kinase and its established ligands. Collectively, our findings establish a platform for investigating the biology of CPs as a foundation for future development of CP transplantation for treating heart failure.

  1. Interferon-γ and other inflammatory mediators in cardiomyocyte signaling during Chagas disease cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    Ludmila; Rodrigues; Pinto; Ferreira; Amanda; Farage; Frade; Monique; Andrade; Baron; Isabela; Cunha; Navarro; Jorge; Kalil; Christophe; Chevillard; Edecio; Cunha-Neto


    Chagas disease cardiomyopathy(CCC), the main consequence of Trypanosoma cruzi(T.cruzi) infection, is an inflammatory cardiomyopathy that develops in up to 30% of infected individuals. The heart inflammation in CCC patients is characterized by a Th1 T cell-rich myocarditis with increased production of interferon(IFN)-γ, produced by the CCC myocardial infiltrate and detected at high levels in the periphery. IFN-γ has a central role in the cardiomyocyte signaling during both acute and chronic phases of T.cruzi infection. In this review, we have chosen to focus in its pleiotropic mode of action during CCC, which may ultimately be the strongest driver towards pathological remodeling and heart failure. We describe here the antiparasitic protective and pathogenic dual role of IFN-γ in Chagas disease.

  2. Mapping Human Pluripotent-to-Cardiomyocyte Differentiation: Methylomes, Transcriptomes, and Exon DNA Methylation “Memories”

    Directory of Open Access Journals (Sweden)

    Joshua D. Tompkins


    Full Text Available The directed differentiation of human cardiomyocytes (CMs from pluripotent cells provides an invaluable model for understanding mechanisms of cell fate determination and offers considerable promise in cardiac regenerative medicine. Here, we utilize a human embryonic stem cell suspension bank, produced according to a good manufacturing practice, to generate CMs using a fully defined and small molecule-based differentiation strategy. Primitive and cardiac mesoderm purification was used to remove non-committing and multi-lineage populations and this significantly aided the identification of key transcription factors, lncRNAs, and essential signaling pathways that define cardiomyogenesis. Global methylation profiles reflect CM development and we report on CM exon DNA methylation “memories” persisting beyond transcription repression and marking the expression history of numerous developmentally regulated genes, especially transcription factors.

  3. Substrate stiffness-modulated registry phase correlations in cardiomyocytes map structural order to coherent beating (United States)

    Dasbiswas, K.; Majkut, S.; Discher, D. E.; Safran, Samuel A.


    Recent experiments show that both striation, an indication of the structural registry in muscle fibres, as well as the contractile strains produced by beating cardiac muscle cells can be optimized by substrate stiffness. Here we show theoretically how the substrate rigidity dependence of the registry data can be mapped onto that of the strain measurements. We express the elasticity-mediated structural registry as a phase-order parameter using a statistical physics approach that takes the noise and disorder inherent in biological systems into account. By assuming that structurally registered myofibrils also tend to beat in phase, we explain the observed dependence of both striation and strain measurements of cardiomyocytes on substrate stiffness in a unified manner. The agreement of our ideas with experiment suggests that the correlated beating of heart cells may be limited by the structural order of the myofibrils, which in turn is regulated by their elastic environment.

  4. Cryopreservation of Human Pluripotent Stem Cell-derived Cardiomyocytes: Strategies, Challenges, and Future Directions (United States)

    Preininger, Marcela K.; Singh, Monalisa; Xu, Chunhui


    In recent years, human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as a vital cell source for in vitro modeling of genetic cardiovascular disorders, drug screening, and in vivo cardiac regeneration research. Looking forward, the ability to efficiently cryopreserve hPSC-CMs without compromising their normal biochemical and physiologic functions will dramatically facilitate their various biomedical applications. Although working protocols for freezing, storing, and thawing hPSC-CMs have been established, the question remains as to whether they are optimal. In this chapter, we discuss our current understanding of cryopreservation appertaining to hPSC-CMs, and proffer key questions regarding the mechanical, contractile, and regenerative properties of cryopreserved hPSC-CMs. PMID:27837559

  5. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Afford New Opportunities in Inherited Cardiovascular Disease Modeling

    Directory of Open Access Journals (Sweden)

    Daniel R. Bayzigitov


    Full Text Available Fundamental studies of molecular and cellular mechanisms of cardiovascular disease pathogenesis are required to create more effective and safer methods of their therapy. The studies can be carried out only when model systems that fully recapitulate pathological phenotype seen in patients are used. Application of laboratory animals for cardiovascular disease modeling is limited because of physiological differences with humans. Since discovery of induced pluripotency generating induced pluripotent stem cells has become a breakthrough technology in human disease modeling. In this review, we discuss a progress that has been made in modeling inherited arrhythmias and cardiomyopathies, studying molecular mechanisms of the diseases, and searching for and testing drug compounds using patient-specific induced pluripotent stem cell-derived cardiomyocytes.

  6. Effects of various extracellular matrix proteins on the growth of HL-1 cardiomyocytes. (United States)

    Choi, Seongkyun; Hong, Yoonmi; Lee, Insu; Huh, Dongeun; Jeon, Tae-Joon; Kim, Sun Min


    We present the physical and biochemical effects of extracellular matrixes (ECMs) on HL-1 cardiomyocytes. ECMs play major roles in cell growth, adhesion and the maintenance of native cell functions. We investigated the effects of 6 different cell culture systems: 5 different ECM-treated surfaces (fibronectin, laminin, collagen I, gelatin and a gelatin/fibronectin mixture) and 1 nontreated surface. Surface morphology was scanned and analyzed using atomic force microscopy in order to investigate the physical effects of ECMs. The attachment, growth, viability, proliferation and phenotype of the cells were analyzed using phase-contrast microscopy and immunocytochemistry to elucidate the biochemical effects of ECMs. Our study provides basic information for understanding cell-ECM interactions and should be utilized in future cardiac cell research and tissue engineering.

  7. Differential Proteomic Analysis of Neonatal Cardiomyocytes in Response to β-Adrenergic Receptor Stimulation

    Institute of Scientific and Technical Information of China (English)


    β-Adrenoceptors(β-ARs) play a critical role in regulating cardiac functions under both physiological and pathological conditions. To further explore the mechanisms through whichβ-ARs perform its actions, proteomic approaches were adopted to study the global protein patterns in cultured neonatal rat cardiomyocytes exposed to isoproterenol(ISO). A modified method, "Mirror Images in One Gel", was used to improve the reproducibility and resolution power of two-dimensional electrophoresis. A 2-DE map with a good reproducibility was obtained in which 1281 ± 70spots were detected and about 1191 e 54 spots were matched, with an average matching rate of 92. 9%. Nine proteins with significant changes were identified by using peptide mass fingerprinting(PMF) data obtained via MALDI-MS.

  8. The influence of proteasome inhibitor on the expression of cardiomyocytes damage markers after incubation with doxorubicin

    Directory of Open Access Journals (Sweden)

    Tereszkiewicz Sylwia


    Full Text Available The aim of the study was to verify the thesis that the cardiotoxic effects of doxorubicin are connected with activation of the ubiquitin - proteasome pathway followed by protein degradation. The expression of myocardial damage markers - fatty acid binding protein (H-FABP and brain natriuretic peptide (BNP was evaluated in rat fetal cardiomyocytes simultaneously treated with doxorubicin and the proteasome inhibitor - bortezomib. The level of H-FABP and BNP protein under the influence of doxorubicin was decreased below the detection threshold with unchanged (H-FABP or elevated (BNP mRNA expression level. Against the expectations, the inhibitor of proteasome did not abolish this effect. The observed abnormal expression of BNP and H-FABP protein after doxorubicin treatment makes their diagnostic significance in anthracycline cardiotoxicity questionable.

  9. Induced pluripotent stem cell-derived cardiomyocytes: boutique science or valuable arrhythmia model? (United States)

    Knollmann, Björn C


    This article reviews the strengths and limitations of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) as models of cardiac arrhythmias. Specifically, the article attempts to answer the following questions: Which clinical arrhythmias can be modeled by iPSC-CM? How well can iPSC-CM model adult ventricular myocytes? What are the strengths and limitations of published iPSC-CM arrhythmia models? What new mechanistic insight has been gained? What is the evidence that would support using iPSC-CM to personalize antiarrhythmic drug therapy? The review also discusses the pros and cons of using the iPSC-CM technology for modeling specific genetic arrhythmia disorders, such as long QT syndrome, Brugada Syndrome, or Catecholaminergic Polymorphic Ventricular Tachycardia.

  10. Nuclear questions

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, M. [Physics World (United Kingdom)


    The future of nuclear power has returned to centre stage. Freezing weather on both sides of the Atlantic and last month's climate-change talks