WorldWideScience

Sample records for cardiac sympathetic nervous

  1. Imaging of the autonomic nervous system: focus on cardiac sympathetic innervation.

    Science.gov (United States)

    Goldstein, David S

    2003-12-01

    Symptoms or signs of abnormal autonomic nervous system function occur commonly in several neurological disorders. Clinical evaluations have depended on physiological, pharmacological, and neurochemical approaches. Recently, imaging of sympathetic noradrenergic innervation has been introduced and applied especially in the heart. Most studies have used the radiolabeled sympathomimetic amine, (123)I-metaiodobenzylguanidine. Decreased uptake or increased "washout" of (123)I-metaiodobenzylguanidine-derived radioactivity is associated with worse prognosis or more severe disease in hypertension, congestive heart failure, arrhythmias, and diabetes mellitus. This pattern may reflect a high rate of postganglionic sympathetic nerve traffic to the heart. Many recent studies have agreed on the remarkable finding that all patients with Parkinson's disease and orthostatic hypotension have a loss of cardiac sympathetic innervation, whereas all patients with multiple system atrophy, often difficult to distinguish clinically from Parkinson's disease, have intact cardiac sympathetic innervation. Because Parkinson's disease entails a postganglionic sympathetic noradrenergic lesion, the disease appears to be not only a movement disorder, with dopamine loss in the nigrostriatal system of the brain, but also a dysautonomia, with noradrenaline loss in the sympathetic nervous system of the heart. As new ligands are developed, one may predict further discoveries of involvement of components of the autonomic nervous system in neurological diseases.

  2. Quantifying cardiac sympathetic and parasympathetic nervous activities using principal dynamic modes analysis of heart rate variability.

    Science.gov (United States)

    Zhong, Yuru; Jan, Kung-Ming; Ju, Ki Hwan; Chon, Ki H

    2006-09-01

    The ratio between low-frequency (LF) and high-frequency (HF) spectral power of heart rate has been used as an approximate index for determining the autonomic nervous system (ANS) balance. An accurate assessment of the ANS balance can only be achieved if clear separation of the dynamics of the sympathetic and parasympathetic nervous activities can be obtained, which is a daunting task because they are nonlinear and have overlapping dynamics. In this study, a promising nonlinear method, termed the principal dynamic mode (PDM) method, is used to separate dynamic components of the sympathetic and parasympathetic nervous activities on the basis of ECG signal, and the results are compared with the power spectral approach to assessing the ANS balance. The PDM analysis based on the 28 subjects consistently resulted in a clear separation of the two nervous systems, which have similar frequency characteristics for parasympathetic and sympathetic activities as those reported in the literature. With the application of atropine, in 13 of 15 supine subjects there was an increase in the sympathetic-to-parasympathetic ratio (SPR) due to a greater decrease of parasympathetic than sympathetic activity (P=0.003), and all 13 subjects in the upright position had a decrease in SPR due to a greater decrease of sympathetic than parasympathetic activity (Pparasympathetic and sympathetic nervous systems. The culprit is equivalent decreases in both the sympathetic and parasympathetic activities irrespective of the pharmacological blockades. These findings suggest that the PDM shows promise as a noninvasive and quantitative marker of ANS imbalance, which has been shown to be a factor in many cardiac and stress-related diseases.

  3. Selective quantification of the cardiac sympathetic and parasympathetic nervous systems by multisignal analysis of cardiorespiratory variability.

    Science.gov (United States)

    Chen, Xiaoxiao; Mukkamala, Ramakrishna

    2008-01-01

    Heart rate (HR) power spectral indexes are limited as measures of the cardiac autonomic nervous systems (CANS) in that they neither offer an effective marker of the beta-sympathetic nervous system (SNS) due to its overlap with the parasympathetic nervous system (PNS) in the low-frequency (LF) band nor afford specific measures of the CANS due to input contributions to HR [e.g., arterial blood pressure (ABP) and instantaneous lung volume (ILV)]. We derived new PNS and SNS indexes by multisignal analysis of cardiorespiratory variability. The basic idea was to identify the autonomically mediated transfer functions relating fluctuations in ILV to HR (ILV-->HR) and fluctuations in ABP to HR (ABP-->HR) so as to eliminate the input contributions to HR and then separate each estimated transfer function in the time domain into PNS and SNS indexes using physiological knowledge. We evaluated these indexes with respect to selective pharmacological autonomic nervous blockade in 14 humans. Our results showed that the PNS index derived from the ABP-->HR transfer function was correctly decreased after vagal and double (vagal + beta-sympathetic) blockade (P < 0.01) and did not change after beta-sympathetic blockade, whereas the SNS index derived from the same transfer function was correctly reduced after beta-sympathetic blockade in the standing posture and double blockade (P < 0.05) and remained the same after vagal blockade. However, this SNS index did not significantly decrease after beta-sympathetic blockade in the supine posture. Overall, these predictions were better than those provided by the traditional high-frequency (HF) power, LF-to-HF ratio, and normalized LF power of HR variability.

  4. Cardiac sympathetic nervous system imaging with (123)I-meta-iodobenzylguanidine: Perspectives from Japan and Europe.

    Science.gov (United States)

    Nakajima, Kenichi; Scholte, Arthur J H A; Nakata, Tomoaki; Dimitriu-Leen, Aukelien C; Chikamori, Taishiro; Vitola, João V; Yoshinaga, Keiichiro

    2017-03-13

    Cardiac sympathetic nervous system dysfunction is closely associated with risk of serious cardiac events in patients with heart failure (HF), including HF progression, pump-failure death, and sudden cardiac death by lethal ventricular arrhythmia. For cardiac sympathetic nervous system imaging, (123)I-meta-iodobenzylguanidine ((123)I-MIBG) was approved by the Japanese Ministry of Health, Labour and Welfare in 1992 and has therefore been widely used since in clinical settings. (123)I-MIBG was also later approved by the Food and Drug Administration (FDA) in the United States of America (USA) and it was expected to achieve broad acceptance. In Europe, (123)I-MIBG is currently used only for clinical research. This review article is based on a joint symposium of the Japanese Society of Nuclear Cardiology (JSNC) and the American Society of Nuclear Cardiology (ASNC), which was held in the annual meeting of JSNC in July 2016. JSNC members and a member of ASNC discussed the standardization of (123)I-MIBG parameters, and clinical aspects of (123)I-MIBG with a view to further promoting (123)I-MIBG imaging in Asia, the USA, Europe, and the rest of the world.

  5. The sympathetic nervous system in obesity hypertension.

    Science.gov (United States)

    Lohmeier, Thomas E; Iliescu, Radu

    2013-08-01

    Abundant evidence supports a role of the sympathetic nervous system in the pathogenesis of obesity-related hypertension. However, the nature and temporal progression of mechanisms underlying this sympathetically mediated hypertension are incompletely understood. Recent technological advances allowing direct recordings of renal sympathetic nerve activity (RSNA) in conscious animals, together with direct suppression of RSNA by renal denervation and reflex-mediated global sympathetic inhibition in experimental animals and human subjects have been especially valuable in elucidating these mechanisms. These studies strongly support the concept that increased RSNA is the critical mechanism by which increased central sympathetic outflow initiates and maintains reductions in renal excretory function, causing obesity hypertension. Potential determinants of renal sympathoexcitation and the differential mechanisms mediating the effects of renal-specific versus reflex-mediated, global sympathetic inhibition on renal hemodynamics and cardiac autonomic function are discussed. These differential mechanisms may impact the efficacy of current device-based approaches for hypertension therapy.

  6. An electrophysiologist perspective on risk stratification in heart failure: can better understanding of the condition of the cardiac sympathetic nervous system help?

    Science.gov (United States)

    Borgquist, Rasmus; Singh, Jagmeet P

    2015-06-01

    Heart failure is often complicated by arrhythmias that can adversely affect the quality of life and increase the risk for sudden cardiac death. Current risk stratification strategies for sudden cardiac death in the heart failure patient are not ideal, with much potential for further refinement. Overactivation of the sympathetic nervous system has been shown to be associated with worsening heart failure as well as arrhythmic events. Recent advances in our understanding of the autonomic nervous system and new methods for quantification of the pathologic activation of the sympathetic nerves have triggered increasing interest in this field. This viewpoint focuses on the need for and challenges of risk stratification of sudden death in the heart failure patient and discusses the potential value of measuring sympathetic nervous system activity to better stratify risk and to select patients with heart failure for implantable cardioverter defibrillator therapy.

  7. Scintigraphic assessment of regional cardiac sympathetic nervous system in patients with single-vessel coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Kazuyuki; Yoshida, Hiroshi; Nawada, Ryuzo; Obayashi, Kazuhiko; Tamekiyo, Hiromichi; Mochizuki, Mamoru [Shizuoka General Hospital (Japan)

    2000-06-01

    In coronary artery disease, the cardiac sympathetic nervous system is closely associated with myocardial ischemia. I-123 metaiodobenzylguanidine (MIBG) imaging allows us to assess the cardiac sympathetic nervous system regionally. One-hundred and eleven patients with single-vessel disease underwent regional quantitative analysis of MIBG imaging before successful percutaneous transluminal coronary angioplasty (PTCA), and repeat angiography 6 months after PTCA. Based on the results of the follow-up left ventriculogram, patients were divided into 3 groups: 39 angina pectoris (AP), 48 prior myocardial infarction without asynergy (MI without asynergy) and 24 prior myocardial infarction with asynergy (Ml with asynergy). AP and MI without asynergy had significant correlations between uptake parameters and regional washout in the territory of diseased vessels, among which the severity score in AP was the most closely correlated with regional washout (r=0.79, p<0.0001). These correlations disappeared in MI with asynergy. To compare regional MIBG parameters in the territory of the diseased vessel as well as in the territories of the other major coronary arteries among the 3 groups, we examined MIBG parameters in 57 patients with left anterior descending artery (LAD) disease selected from among the study patients. Regional washout in the territory of the LAD was significantly higher in the MI without asynergy group than in the other two groups. The left circumflex artery (LCX) region showed significantly reduced MlBG uptake and an increased extent score in the MI with asynergy group compared with the AP group, although only a difference in the extent score existed between the MI with asynergy group and the AP group in the right coronary artery (RCA) region. In addition, the global ejection fraction before PTCA showed a significant negative correlation with each regional washout rate. In this way, regional quantitative analysis of MIBG imaging can detect the regional

  8. Cardiac spectral power reflects parasympathetic but not sympathetic nervous system activity in a clinical population.

    Science.gov (United States)

    Muth, E R; Morrow, G R; Jiang, W; Stern, R M; Dubeshter, B

    1996-11-06

    The purpose of this short communication is to report our clinical findings regarding the use of the low frequency (LF, 0.02-0.15 Hz) and high frequency (HF, > 0.15 Hz) components of the spectral decomposition of heart-rate as indices of sympathetic (SNS) and parasympathetic nervous system (PNS) activity, respectively. Thirty-two females with histologically confirmed ovarian cancer, ranging in age from 46-72 years, participated in an autonomic assessment protocol consisting of a resting heart rate recording and several ANS function tests. The LF, HF and total power measures from the spectral decomposition were highly correlated with one another. In addition, the spectral components were most highly correlated with measures of PNS activity, i.e. standard deviation of heart rate at rest and the ratio of the six longest to the six shortest R-R intervals during deep breathing (E:I ratio). It is concluded, as other researchers have stated, that the use of the HF component of the HR spectrum as a measure of PNS activity is warranted, but caution must be used when interpreting the LF component.

  9. Sympathetic nervous system and chronic renal failure.

    Science.gov (United States)

    Boero, R; Pignataro, A; Ferro, M; Quarello, F

    2001-01-01

    The aim of this work was to review evidence on the role of the sympathetic nervous system (SNS) in chronic renal failure (CRF). Three main points are discussed: 1) SNS and pathogenesis of arterial hypertension; 2) SNS and cardiovascular risk; 3) implication of SNS in arterial hypotension during hemodialysis. Several lines of evidence indicate the presence of a sympathetic hyperactivity in CRF, and its relationship with arterial hypertension. It is suggested that diseased kidneys send afferent nervous signals to central integrative sympathetic nuclei, thus contributing to the development and maintenance of arterial hypertension. The elimination of these impulses with nephrectomy could explain the concomitant reduction of blood pressure. Several experiments confirmed this hypothesis. Regarding SNS and cardiovascular risk, some data suggest that reduced heart rate variability identifies an increased risk for both all causes and sudden death, independently from other recognized risk factors. Symptomatic hypotension is a common problem during hemodialysis treatment, occurring in approximately 20-30% of all hemodialysis sessions and is accompanied by acute withdrawal of sympathetic activity, vasodilation and relative bradicardia. This reflex is thought to be evoked by vigorous contraction of a progressively empty left ventricle, activating cardiac mechanoceptors. This inhibits cardiovascular centers through vagal afferents, and overrides the stimulation by baroreceptor deactivation. Alternative explanations include cerebral ischemia and increased production of nitric oxide, which inhibit central sympathetic activity. It is hoped that therapies aimed at modulating sympathetic nerve activity in patients with CRF will ameliorate their prognosis and quality of life.

  10. Significance of cardiac sympathetic nervous system abnormality for predicting vascular events in patients with idiopathic paroxysmal atrial fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Akutsu, Yasushi; Kaneko, Kyouichi; Kodama, Yusuke; Li, Hui-Ling; Kawamura, Mitsuharu; Asano, Taku; Hamazaki, Yuji; Tanno, Kaoru; Kobayashi, Youichi [Showa University School of Medicine, Division of Cardiology, Department of Medicine, Tokyo (Japan); Suyama, Jumpei; Shinozuka, Akira; Gokan, Takehiko [Showa University School of Medicine, Department of Radiology, Tokyo (Japan)

    2010-04-15

    Neuronal system activity plays an important role for the prognosis of patients with atrial fibrillation (AF). Using {sup 123}I metaiodobenzylguanidine ({sup 123}I-MIBG) scintigraphy, we investigated whether a cardiac sympathetic nervous system (SNS) abnormality would be associated with an increased risk of vascular events in patients with paroxysmal AF. {sup 123}I-MIBG scintigraphy was performed in 69 consecutive patients (67 {+-} 13 years, 62% men) with paroxysmal AF who did not have structural heart disease. SNS integrity was assessed from the heart to mediastinum (H/M) ratio on delayed imaging. Serum concentration of C-reactive protein (CRP) was measured before {sup 123}I-MIBG study. During a mean of 4.5 {+-} 3.6 years follow-up, 19 patients had myocardial infarction, stroke or heart failure (range: 0.2-11.5 years). SNS abnormality (H/M ratio <2.7) and high CRP ({>=}0.3 mg/dl) were associated with the vascular events (58.3% in 14 of 24 patients with SNS abnormality vs 11.1% in 5 of 45 patients without SNS abnormality, p < 0.0001, 52.4% in 11 of 21 patients with high CRP vs 16.7% in 8 of 48 patients without high CRP, p < 0.0001). After adjustment for potential confounding variables such as age, left atrial dimension and left ventricular function, SNS abnormality was an independent predictor of vascular events with a hazard ratio of 4.1 [95% confidence interval (CI): 1.3-12.6, p = 0.014]. Further, SNS abnormality had an incremental and additive prognostic power in combination with high CRP with an adjusted hazard ratio of 4.1 (95% CI: 1.5-10.9, p = 0.006). SNS abnormality is predictive of vascular events in patients with idiopathic paroxysmal AF. (orig.)

  11. Assessment of cardiac sympathetic nerve integrity with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raffel, David M. E-mail: raffel@umich.edu; Wieland, Donald M

    2001-07-01

    The autonomic nervous system plays a critical role in the regulation of cardiac function. Abnormalities of cardiac innervation have been implicated in the pathophysiology of many heart diseases, including sudden cardiac death and congestive heart failure. In an effort to provide clinicians with the ability to regionally map cardiac innervation, several radiotracers for imaging cardiac sympathetic neurons have been developed. This paper reviews the development of neuronal imaging agents and discusses their emerging role in the noninvasive assessment of cardiac sympathetic innervation.

  12. Usefulness of {sup 123}I-Meta-iodobenzylguanidine (MIBG) myocardial scintigraphy for evaluation of cardiac sympathetic nervous system function in diabetic patients.

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Koji; Nakatani, Yuko; Doi, Kenji; Adachi, Gakuji; Takada, Kou

    2001-11-01

    The cardiac sympathetic nervous system function of diabetic patients with no definite cardiovascular complications other than hypertension was evaluated by {sup 123}I -MIBG myocardial scintigraphy. The subjects consisted of 82 diabetic patients, 59 men, 23 women, mean age 57 years, 17 with hypertension and 65 with normal blood pressure, and they were compared with normal controls (8 men and 3 women, mean age 54 years). Myocardial scintigraphy was performed 10 minutes and 4 hours after administration of MIBG. The superior mediastinum and whole myocardium were set as regions of interest, and the heart-to-mediastinum ratio (H/M ratio) and the washout rate (%WR) were calculated. The mean observation period was 18{+-}12 months, and 17 of the 65 diabetic patients with normal blood pressure before the study developed hypertension during the observation period. There were significant differences in H/M ratio and %WR between the diabetic patients and normal controls (H/M ratio; 1.96{+-}0.34 vs 2.27{+-}0.20, %WR; 24.71{+-}16.99% vs 12.89{+-}11.94). The diabetic patients with hypertension had higher morbidity with diabetic retinopathy and a lower H/M ratio. The 17 patients who developed hypertension during the observation period showed an increase in %WR and a reduction in the H/M ratio. Five patients who died during the observation period had a reduced H/M ratio and increased of %WR. {sup 123}I-MIBG myocardial scintigraphy in diabetic patients was shown to be useful for detecting cardiac sympathetic nervous system dysfunction, predicting the development of hypertension, and identifying patients who had a poor outcome. Diabetic patients with abnormal signals on MIBG myocardial scintigraphy need to be monitored much more carefully. (K.H.)

  13. The clinical value of cardiac sympathetic imaging in heart failure

    DEFF Research Database (Denmark)

    Christensen, Thomas Emil; Kjaer, Andreas; Hasbak, Philip

    2014-01-01

    The autonomic nervous system plays an important role in the pathology of heart failure. The single-photon emission computed tomography tracer iodine-123-metaiodobenzylguanidine ((123) I-MIBG) can be used to investigate the activity of the predominant neurotransmitter of the sympathetic nervous...... system, norepinephrine. Also, positron emission tomography tracers are being developed for the same purpose. With (123) I-MIBG as a starting point, this brief review introduces the modalities used for cardiac sympathetic imaging....

  14. Cardiac sympathetic imaging with mIBG in cirrhosis and portal hypertension

    DEFF Research Database (Denmark)

    Møller, Søren; Mortensen, Christian; Bendtsen, Flemming

    2012-01-01

    Autonomic and cardiac dysfunction is frequent in cirrhosis and includes increased sympathetic nervous activity, impaired heart rate variability (HRV), and baroreflex sensitivity (BRS). Quantified (123)I-metaiodobenzylguanidine (mIBG) scintigraphy reflects cardiac noradrenaline uptake, and in pati...

  15. Cardiac fibroblasts regulate sympathetic nerve sprouting and neurocardiac synapse stability.

    Directory of Open Access Journals (Sweden)

    Céline Mias

    Full Text Available Sympathetic nervous system (SNS plays a key role in cardiac homeostasis and its deregulations always associate with bad clinical outcomes. To date, little is known about molecular mechanisms regulating cardiac sympathetic innervation. The aim of the study was to determine the role of fibroblasts in heart sympathetic innervation. RT-qPCR and western-blots analysis performed in cardiomyocytes and fibroblasts isolated from healthy adult rat hearts revealed that Pro-Nerve growth factor (NGF and pro-differentiating mature NGF were the most abundant neurotrophins expressed in cardiac fibroblasts while barely detectable in cardiomyocytes. When cultured with cardiac fibroblasts or fibroblast-conditioned medium, PC12 cells differentiated into/sympathetic-like neurons expressing axonal marker Tau-1 at neurites in contact with cardiomyocytes. This was prevented by anti-NGF blocking antibodies suggesting a paracrine action of NGF secreted by fibroblasts. When co-cultured with cardiomyocytes to mimic neurocardiac synapse, differentiated PC12 cells exhibited enhanced norepinephrine secretion as quantified by HPLC compared to PC12 cultured alone while co-culture with fibroblasts had no effect. However, when supplemented to PC12-cardiomyocytes co-culture, fibroblasts allowed long-term survival of the neurocardiac synapse. Activated fibroblasts (myofibroblasts isolated from myocardial infarction rat hearts exhibited significantly higher mature NGF expression than normal fibroblasts and also promoted PC12 cells differentiation. Within the ischemic area lacking cardiomyocytes and neurocardiac synapses, tyrosine hydroxylase immunoreactivity was increased and associated with local anarchical and immature sympathetic hyperinnervation but tissue norepinephrine content was similar to that of normal cardiac tissue, suggesting depressed sympathetic function. Collectively, these findings demonstrate for the first time that fibroblasts are essential for the setting of

  16. Gender differences in sympathetic nervous system regulation.

    Science.gov (United States)

    Hinojosa-Laborde, C; Chapa, I; Lange, D; Haywood, J R

    1999-02-01

    1. Females are protected against the development of hypertension. The purpose of the current review is to present the evidence for gender differences in the regulation of the sympatho-adrenal nervous system and to determine if these differences support the hypothesis that, in females, the regulation of the sympathetic nervous system (SNS) is altered such that sympatho-adrenal activation is attenuated or sympatho-adrenal inhibition is augmented. 2. The central control of sympatho-adrenal function is different in females and responses vary during the oestral and menstrual cycles. Pathways regulating the SNS appear to be less sensitive to excitatory stimuli and more sensitive to inhibitory stimuli in females compared with males. 3. Gender differences in arterial baroreflex sensitivity suggest that females may have a greater baroreflex sensitivity, such that alterations in blood pressure are more efficiently controlled than in males. Cardiopulmonary reflex inhibition of sympathetic nerve activity is greater in females, possibly resulting in a greater renal excretory function. 4. An attenuated sensitivity to adrenergic nerve stimulation, but not to noradrenaline (NA), suggests that gender differences in noradrenergic neurotransmission may protect females against sympathetic hyperactivity. Gender differences in the regulation of NA release via presynaptic alpha 2-adrenoceptors, the vasoconstrictor response to the cotransmitter neuropeptide Y and the clearance of catecholamines are consistent with this hypothesis. 5. Similarly, attenuated stress-induced increases in plasma catecholamines in women suggest that females are less sensitive and/or less responsive to adrenal medullary activation. This is supported by findings of gender differences in adrenal medullary catecholamine content, release and degradation. 6. We conclude that there is strong evidence that supports the hypothesis that, in females, the regulation of the SNS is altered such that sympatho

  17. The articulo-cardiac sympathetic reflex in spinalized, anesthetized rats.

    Science.gov (United States)

    Nakayama, Tomohiro; Suzuki, Atsuko; Ito, Ryuzo

    2006-04-01

    Somatic afferent regulation of heart rate by noxious knee joint stimulation has been proven in anesthetized cats to be a reflex response whose reflex center is in the brain and whose efferent arc is a cardiac sympathetic nerve. In the present study we examined whether articular stimulation could influence heart rate by this efferent sympathetic pathway in spinalized rats. In central nervous system (CNS)-intact rats, noxious articular movement of either the knee or elbow joint resulted in an increase in cardiac sympathetic nerve activity and heart rate. However, although in acutely spinalized rats a noxious movement of the elbow joint resulted in a significant increase in cardiac sympathetic nerve activity and heart rate, a noxious movement of the knee joint had no such effect and resulted in only a marginal increase in heart rate. Because this marginal increase was abolished by adrenalectomy suggests that it was due to the release of adrenal catecholamines. In conclusion, the spinal cord appears to be capable of mediating, by way of cardiac sympathetic nerves, the propriospinally induced reflex increase in heart rate that follows noxious stimulation of the elbow joint, but not the knee joint.

  18. The sympathetic nervous system alterations in human hypertension.

    Science.gov (United States)

    Grassi, Guido; Mark, Allyn; Esler, Murray

    2015-03-13

    Several articles have dealt with the importance and mechanisms of the sympathetic nervous system alterations in experimental animal models of hypertension. This review addresses the role of the sympathetic nervous system in the pathophysiology and therapy of human hypertension. We first discuss the strengths and limitations of various techniques for assessing the sympathetic nervous system in humans, with a focus on heart rate, plasma norepinephrine, microneurographic recording of sympathetic nerve traffic, and measurements of radiolabeled norepinephrine spillover. We then examine the evidence supporting the importance of neuroadrenergic factors as promoters and amplifiers of human hypertension. We expand on the role of the sympathetic nervous system in 2 increasingly common forms of secondary hypertension, namely hypertension associated with obesity and with renal disease. With this background, we examine interventions of sympathetic deactivation as a mode of antihypertensive treatment. Particular emphasis is given to the background and results of recent therapeutic approaches based on carotid baroreceptor stimulation and radiofrequency ablation of the renal nerves.

  19. The Human Sympathetic Nervous System Response to Spaceflight

    Science.gov (United States)

    Ertl, Andrew C.; Diedrich, Andre; Paranjape, Sachin Y.; Biaggioni, Italo; Robertson, Rose Marie; Lane, Lynda D.; Shiavi, Richard; Robertson, David

    2003-01-01

    The sympathetic nervous system is an important part of the autonomic (or automatic) nervous system. When an individual stands up, the sympathetic nervous system speeds the heart and constricts blood vessels to prevent a drop in blood pressure. A significant number of astronauts experience a drop in blood pressure when standing for prolonged periods after they return from spaceflight. Difficulty maintaining blood pressure with standing is also a daily problem for many patients. Indirect evidence available before the Neurolab mission suggested the problem in astronauts while in space might be due partially to reduced sympathetic nervous system activity. The purpose of this experiment was to identify whether sympathetic activity was reduced during spaceflight. Sympathetic nervous system activity can be determined in part by measuring heart rate, nerve activity going to blood vessels, and the release of the hormone norepinephrine into the blood. Norepinephrine is a neurotransmitter discharged from active sympathetic nerve terminals, so its rate of release can serve as a marker of sympathetic nervous system action. In addition to standard cardiovascular measurements (heart rate, blood pressure), we determined sympathetic nerve activity as well as norepinephrine release and clearance on four crewmembers on the Neurolab mission. Contrary to our expectation, the results demonstrated that the astronauts had mildly elevated resting sympathetic nervous system activity in space. Sympathetic nervous system responses to stresses that simulated the cardiovascular effects of standing (lower body negative pressure) were brisk both during and after spaceflight. We concluded that, in the astronauts tested, the activity and response of the sympathetic nervous system to cardiovascular stresses appeared intact and mildly elevated both during and after spaceflight. These changes returned to normal within a few days.

  20. Sympathetic nervous system behavior in human obesity.

    Science.gov (United States)

    Davy, Kevin P; Orr, Jeb S

    2009-02-01

    The sympathetic nervous system (SNS) plays an essential role in the regulation of metabolic and cardiovascular homeostasis. Low SNS activity has been suggested to be a risk factor for weight gain and obesity development. In contrast, SNS activation is characteristic of a number of metabolic and cardiovascular diseases that occur more frequently in obese individuals. Until recently, the relation between obesity and SNS behavior has been controversial because previous approaches for assessing SNS activity in humans have produced inconsistent findings. Beginning in the early 1990s, many studies using state of the art neurochemical and neurophysiological techniques have provided important insight. The purpose of the present review is to provide an overview of our current understanding of the region specific alterations in SNS behavior in human obesity. We will discuss findings from our own laboratory which implicate visceral fat as an important depot linking obesity with skeletal muscle SNS activation. The influence of weight change on SNS behavior and the potential mechanisms and consequences of region specific SNS activation in obesity will also be considered.

  1. Sympathetic Nervous System, Hypertension, Obesity and Metabolic Syndrome.

    Science.gov (United States)

    Seravalle, Gino; Grassi, Guido

    2016-09-01

    Experimental and clinical studies have clearly shown the role of the sympathetic nervous system in the pathophysiology of several cardiovascular and non-cardiovascular diseases. This short review will be aimed at focusing and discussing the new information collected on two specific clinical conditions such as obesity and metabolic syndrome. The paper will briefly describe the four main mechanisms that represent the common link between these two pathophysiological conditions and that through the sympathetic nervous system contribute to increase the cardiovascular risk.

  2. Cardiac autonomic nervous system activity in obesity.

    Science.gov (United States)

    Liatis, Stavros; Tentolouris, Nikolaos; Katsilambros, Nikolaos

    2004-08-01

    The development of obesity is caused by a disturbance of energy balance, with energy intake exceeding energy expenditure. As the autonomic nervous system (ANS) has a role in the regulation of both these variables, it has become a major focus of investigation in the fields of obesity pathogenesis. The enhanced cardiac sympathetic drive shown in most of the studies in obese persons might be due to an increase in their levels of circulating insulin. The role of leptin needs further investigation with studies in humans. There is a blunted response of the cardiac sympathetic nervous system (SNS) activity in obese subjects after consumption of a carbohydrate-rich meal as well as after insulin administration. This might be due to insulin resistance. It is speculated that increased SNS activity in obesity may contribute to the development of hypertension in genetically susceptible individuals. It is also speculated that the increase in cardiac SNS activity under fasting conditions in obesity may be associated with high cardiovascular morbidity and mortality.

  3. The human sympathetic nervous system: its relevance in hypertension and heart failure.

    Science.gov (United States)

    Parati, Gianfranco; Esler, Murray

    2012-05-01

    Evidence assembled in this review indicates that sympathetic nervous system dysfunction is crucial in the development of heart failure and essential hypertension. This takes the form of persistent and adverse activation of sympathetic outflows to the heart and kidneys in both conditions. An important goal for clinical scientists is translation of the knowledge of pathophysiology, such as this, into better treatment for patients. The achievement of this 'mechanisms to management' transition is at different stages of development with regard to the two disorders. Clinical translation is mature in cardiac failure, knowledge of cardiac neural pathophysiology having led to the introduction of beta-adrenergic blockers, an effective therapy. With essential hypertension perhaps we are on the cusp of effective translation, with recent successful testing of selective catheter-based renal sympathetic nerve ablation in patients with resistant hypertension, an intervention firmly based on the demonstration of activation of the renal sympathetic outflow. Additional evidence in this regard is provided by the results of pilot studies exploring the possibility to reduce blood pressure in resistant hypertensives through electrical stimulation of the area of carotid baroreceptors. Despite the general importance of the sympathetic nervous system in blood pressure regulation, and the specific demonstration that the blood pressure elevation in essential hypertension is commonly initiated and sustained by sympathetic nervous activation, drugs antagonizing this system are currently underutilized in the care of patients with hypertension. Use of beta-adrenergic blocking drugs is waning, given the propensity of this drug class to have adverse metabolic effects, including predisposition to diabetes development. The blood pressure lowering achieved with carotid baroreceptor stimulation and with the renal denervation device affirms the importance of the sympathetic nervous system in

  4. Usefulness of Cardiac Sympathetic Nerve Imaging Using (123)Iodine-Metaiodobenzylguanidine Scintigraphy for Predicting Sudden Cardiac Death in Patients With Heart Failure.

    Science.gov (United States)

    Kasama, Shu; Toyama, Takuji; Kurabayashi, Masahiko

    2016-01-01

    The autonomic nervous system plays an important role in the human heart. Activation of the cardiac sympathetic nervous system is a cardinal pathophysiological abnormality associated with the failing human heart. Myocardial imaging using (123)I-metaiodobenzylguanidine (MIBG), an analog of norepinephrine, can be used to investigate the activity of norepinephrine, the predominant neurotransmitter of the sympathetic nervous system. Many clinical trials have demonstrated that (123)I-MIBG scintigraphic parameters predict cardiac adverse events, especially sudden cardiac death, in patients with heart failure. In this review, we summarize results from published studies that have focused on the use of cardiac sympathetic nerve imaging using (123)I-MIBG scintigraphy for risk stratification of sudden cardiac death in patients with heart failure.

  5. Expressions of cardiac sympathetic norepinephrine transporter and β1-adrenergic receptor decreased in aged rats

    Institute of Scientific and Technical Information of China (English)

    He LI; Xiao-qing MA; Fan YE; Jing ZHANG; Xin ZHOU; Zhi-hong WANG; Yu-ming LI; Guo-yuan ZHANG

    2009-01-01

    Evidence suggests that the deterioration of communication between the sympathetic nervous system and cardiovas-cular system always accompanies the aging of human and animals. Cardiac sympathetic norepinephrine (NE) transporter (NET) on presynaptic membrane is a predominant component to eliminate released NE in the synaptic cleff and maintains the sensitivity of the β-adrenergic receptor (β-AR). In the present study, we investigated NET and β1-AR mRNA levels and sympathetic nerve density in cardiac sympathetic ganglion and leff ventricular myocardium in 2- and 16-month-old rats with Northern blot analysis and immunohistochemistry. The expression levels of NET mRNA, NET protein and β1-AR mRNA in the ganglia or myocardia of 16-month-old rats were markedly reduced by 67%, 26%, and 43%, respectively, in comparison with those in 2-month-old rats. Our results also show that aging induces a strong decrease of the catecholaminergic nerve fiber density.

  6. Sympathetic cardiac hyperinnervation and atrial autonomic imbalance in diet-induced obesity promote cardiac arrhythmias.

    Science.gov (United States)

    McCully, Belinda H; Hasan, Wohaib; Streiff, Cole T; Houle, Jennifer C; Woodward, William R; Giraud, George D; Brooks, Virginia L; Habecker, Beth A

    2013-11-15

    Obesity increases the risk of arrhythmias and sudden cardiac death, but the mechanisms are unknown. This study tested the hypothesis that obesity-induced cardiac sympathetic outgrowth and hyperinnervation promotes the development of arrhythmic events. Male Sprague-Dawley rats (250-275 g), fed a high-fat diet (33% kcal/fat), diverged into obesity-resistant (OR) and obesity-prone (OP) groups and were compared with rats fed normal chow (13% kcal/fat; CON). In vitro experiments showed that both OR and OP rats exhibited hyperinnervation of the heart and high sympathetic outgrowth compared with CON rats, even though OR rats are not obese. Despite the hyperinnervation and outgrowth, we showed that, in vivo, OR rats were less susceptible to arrhythmic events after an intravenous epinephrine challenge compared with OP rats. On examining total and stimulus-evoked neurotransmitter levels in an ex vivo system, we demonstrate that atrial acetylcholine content and release were attenuated in OP compared with OR and CON groups. OP rats also expressed elevated atrial norepinephrine content, while norepinephrine release was suppressed. These findings suggest that the consumption of a high-fat diet, even in the absence of overt obesity, stimulates sympathetic outgrowth and hyperinnervation of the heart. However, normalized cardiac parasympathetic nervous system control may protect the heart from arrhythmic events.

  7. Estimated central blood volume in cirrhosis: relationship to sympathetic nervous activity, beta-adrenergic blockade and atrial natriuretic factor

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik; Bendtsen, Flemming; Gerbes, A L

    1992-01-01

    The estimated central blood volume (i.e., blood volume in the heart cavities, lungs and central arterial tree) was determined by multiplying cardiac output by circulatory mean transit time in 19 patients with cirrhosis and compared with sympathetic nervous activity and circulating level of atrial...

  8. Role of the autonomic nervous system in modulating cardiac arrhythmias.

    Science.gov (United States)

    Shen, Mark J; Zipes, Douglas P

    2014-03-14

    The autonomic nervous system plays an important role in the modulation of cardiac electrophysiology and arrhythmogenesis. Decades of research has contributed to a better understanding of the anatomy and physiology of cardiac autonomic nervous system and provided evidence supporting the relationship of autonomic tone to clinically significant arrhythmias. The mechanisms by which autonomic activation is arrhythmogenic or antiarrhythmic are complex and different for specific arrhythmias. In atrial fibrillation, simultaneous sympathetic and parasympathetic activations are the most common trigger. In contrast, in ventricular fibrillation in the setting of cardiac ischemia, sympathetic activation is proarrhythmic, whereas parasympathetic activation is antiarrhythmic. In inherited arrhythmia syndromes, sympathetic stimulation precipitates ventricular tachyarrhythmias and sudden cardiac death except in Brugada and J-wave syndromes where it can prevent them. The identification of specific autonomic triggers in different arrhythmias has brought the idea of modulating autonomic activities for both preventing and treating these arrhythmias. This has been achieved by either neural ablation or stimulation. Neural modulation as a treatment for arrhythmias has been well established in certain diseases, such as long QT syndrome. However, in most other arrhythmia diseases, it is still an emerging modality and under investigation. Recent preliminary trials have yielded encouraging results. Further larger-scale clinical studies are necessary before widespread application can be recommended.

  9. PET and SPET tracers for mapping the cardiac nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Oliver; Halldin, Christer [Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institute, Karolinska Hospital, 17176 Stockholm (Sweden)

    2002-03-01

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[{sup 18}F]fluorodopamine, (-)-6-[{sup 18}F]fluoronorepinephrine and (-)-[{sup 11}C]epinephrine, and radiolabelled catecholamine analogues, such as [{sup 123}I]meta-iodobenzylguanidine, [{sup 11}C]meta-hydroxyephedrine, [{sup 18}F]fluorometaraminol, [{sup 11}C]phenylephrine and meta-[{sup 76}Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[{sup 18}F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility

  10. Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents.

    Science.gov (United States)

    Kanazawa, Hideaki; Ieda, Masaki; Kimura, Kensuke; Arai, Takahide; Kawaguchi-Manabe, Haruko; Matsuhashi, Tomohiro; Endo, Jin; Sano, Motoaki; Kawakami, Takashi; Kimura, Tokuhiro; Monkawa, Toshiaki; Hayashi, Matsuhiko; Iwanami, Akio; Okano, Hideyuki; Okada, Yasunori; Ishibashi-Ueda, Hatsue; Ogawa, Satoshi; Fukuda, Keiichi

    2010-02-01

    Although several cytokines and neurotrophic factors induce sympathetic neurons to transdifferentiate into cholinergic neurons in vitro, the physiological and pathophysiological roles of this remain unknown. During congestive heart failure (CHF), sympathetic neural tone is upregulated, but there is a paradoxical reduction in norepinephrine synthesis and reuptake in the cardiac sympathetic nervous system (SNS). Here we examined whether cholinergic transdifferentiation can occur in the cardiac SNS in rodent models of CHF and investigated the underlying molecular mechanism(s) using genetically modified mice. We used Dahl salt-sensitive rats to model CHF and found that, upon CHF induction, the cardiac SNS clearly acquired cholinergic characteristics. Of the various cholinergic differentiation factors, leukemia inhibitory factor (LIF) and cardiotrophin-1 were strongly upregulated in the ventricles of rats with CHF. Further, LIF and cardiotrophin-1 secreted from cultured failing rat cardiomyocytes induced cholinergic transdifferentiation in cultured sympathetic neurons, and this process was reversed by siRNAs targeting Lif and cardiotrophin-1. Consistent with the data in rats, heart-specific overexpression of LIF in mice caused cholinergic transdifferentiation in the cardiac SNS. Further, SNS-specific targeting of the gene encoding the gp130 subunit of the receptor for LIF and cardiotrophin-1 in mice prevented CHF-induced cholinergic transdifferentiation. Cholinergic transdifferentiation was also observed in the cardiac SNS of autopsied patients with CHF. Thus, CHF causes target-dependent cholinergic transdifferentiation of the cardiac SNS via gp130-signaling cytokines secreted from the failing myocardium.

  11. Effect of regional myocardial ischemia on sympathetic nervous system as assessed by fluorine-18-metaraminol

    Energy Technology Data Exchange (ETDEWEB)

    Schwaiger, M.; Guibourg, H.; Rosenspire, K.; McClanahan, T.; Gallagher, K.; Hutchins, G.; Wieland, D.M. (Univ. of Michigan Medical Center, Ann Arbor (USA))

    1990-08-01

    With the introduction of radiolabeled catecholamine analogues, the noninvasive evaluation of the cardiac sympathetic nervous system has become possible. This study evaluated the effect of regional ischemia on myocardial retention of the new norepinephrine analogue 6-({sup 18}F) fluorometaraminol (FMR) in the open chest dog model. Six dogs were injected intravenously with FMR following 30-min occlusion of the left anterior descending artery. Six sham animals served as control group. Regional myocardial blood flow as determined by microspheres decreased 87% during ischemia (p less than 0.01), but was not significantly different from control myocardium following reperfusion. Regional myocardial 18F activity as determined postmortem was significantly reduced in reperfused myocardium (-34%), which paralleled an 18% reduction of tissue norepinephrine concentration. Thus, short time periods of coronary occlusion affect neuronal function indicating the sensitivity of the sympathetic nerve terminals to ischemia. FMR provides a new tracer approach for the characterization of neuronal integrity in postischemic myocardium.

  12. Pathophysiology of Resistant Hypertension: The Role of Sympathetic Nervous System

    Directory of Open Access Journals (Sweden)

    Costas Tsioufis

    2011-01-01

    Full Text Available Resistant hypertension (RH is a powerful risk factor for cardiovascular morbidity and mortality. Among the characteristics of patients with RH, obesity, obstructive sleep apnea, and aldosterone excess are covering a great area of the mosaic of RH phenotype. Increased sympathetic nervous system (SNS activity is present in all these underlying conditions, supporting its crucial role in the pathophysiology of antihypertensive treatment resistance. Current clinical and experimental knowledge points towards an impact of several factors on SNS activation, namely, insulin resistance, adipokines, endothelial dysfunction, cyclic intermittent hypoxaemia, aldosterone effects on central nervous system, chemoreceptors, and baroreceptors dysregulation. The further investigation and understanding of the mechanisms leading to SNS activation could reveal novel therapeutic targets and expand our treatment options in the challenging management of RH.

  13. Estimated central blood volume in cirrhosis: relationship to sympathetic nervous activity, beta-adrenergic blockade and atrial natriuretic factor

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Bendtsen, F; Gerbes, A L

    1992-01-01

    The estimated central blood volume (i.e., blood volume in the heart cavities, lungs and central arterial tree) was determined by multiplying cardiac output by circulatory mean transit time in 19 patients with cirrhosis and compared with sympathetic nervous activity and circulating level of atrial...... natriuretic factor. Arterial norepinephrine level, an index of overall sympathetic nervous activity (3.08 nmol/L in patients vs. 1.36 nmol/L in controls; p blood volume (mean = 23 ml/kg in patients vs. 27 ml/kg in controls; p ....05). Similarly, renal venous norepinephrine level (an index of renal sympathetic tone; 4.26 nmol/L in patients vs. 1.78 nmol/L in controls; p blood volume (r = -0.53, n = 18, p

  14. Cardiac sympathetic nerve terminal function in congestive heart failure

    Institute of Scientific and Technical Information of China (English)

    Chang-seng LIANG

    2007-01-01

    Increased cardiac release of norepinephrine (NE) and depleted cardiac stores of NE are two salient features of the human failing heart. Researches from my labo-ratory have shown that these changes are accompanied by a functional defect of NE uptake in the cardiac sympathetic nerve terminals. Our studies have shown that the decrease of NE uptake is caused by reduction of NE transporter density in the sympathetic nerve endings, and this change is responsible, at least in part, for the increased myocardial interstitial NE, decreased myocardial adrenoceptor density, and increased myocyte apoptosis in experimental cardiomyopathies. We have also provided evidence in both intact animals and cultured PC12 cells that the decrease of NE transporter is induced by the actions of oxidative metabolites of exogenous NE, involving endoplasmic reticulum stress and impaired N-glycosylation of the NE transporter. This change in the cardiac sympathetic NE uptake function, as demonstrated by [123I] metaiodobenzylguanidine in human studies, may not only serve as an important prognostic variable in patients with congestive heart failure, but also be used as a surrogate for the efficacies of various therapeutic interventions for heart failure. Finally, increasing evidence suggests and further studies are needed to show that the cardiac sympathetic nerve terminal function may be a direct target for pharmacologic treatment of congestive heart failure.

  15. Central Sympathetic Inhibition: a Neglected Approach for Treatment of Cardiac Arrhythmias?

    Science.gov (United States)

    Cagnoni, Francesca; Destro, Maurizio; Bontempelli, Erika; Locatelli, Giovanni; Hering, Dagmara; Schlaich, Markus P

    2016-02-01

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Overactivation of the sympathetic nervous system (SNS) plays an important role in the pathogenesis of comorbidities related to AF such as hypertension, congestive heart failure, obesity, insulin resistance, and obstructive sleep apnea. Methods that reduce sympathetic drive, such as centrally acting sympatho-inhibitory agents, have been shown to reduce the incidence of spontaneous or induced atrial arrhythmias, suggesting that neuromodulation may be helpful in controlling AF. Moxonidine acts centrally to reduce activity of the SNS, and clinical trials indicate that this is associated with a decreased AF burden in hypertensive patients with paroxysmal AF and reduced post-ablation recurrence of AF in patients with hypertension who underwent pulmonary vein isolation (PVI). Furthermore, device-based approaches to reduce sympathetic drive, such as renal denervation, have yielded promising results in the prevention and treatment of cardiac arrhythmias. In light of these recent findings, targeting elevated sympathetic drive with either pharmacological or device-based approaches has become a focus of clinical research. Here, we review the data currently available to explore the potential utility of sympatho-inhibitory therapies in the prevention and treatment of cardiac arrhythmias.

  16. Should the sympathetic nervous system be a target to improve cardiometabolic risk in obesity?

    Science.gov (United States)

    Lambert, Elisabeth A; Straznicky, Nora E; Dixon, John B; Lambert, Gavin W

    2015-07-15

    The sympathetic nervous system (SNS) plays a key role in both cardiovascular and metabolic regulation; hence, disturbances in SNS regulation are likely to impact on both cardiovascular and metabolic health. With excess adiposity, in particular when visceral fat accumulation is present, sympathetic activation commonly occurs. Experimental investigations have shown that adipose tissue releases a large number of adipokines, cytokines, and bioactive mediators capable of stimulating the SNS. Activation of the SNS and its interaction with adipose tissue may lead to the development of hypertension and end-organ damage including vascular, cardiac, and renal impairment and in addition lead to metabolic abnormalities, especially insulin resistance. Lifestyle changes such as weight loss and exercise programs considerably improve the cardiovascular and metabolic profile of subjects with obesity and decrease their cardiovascular risk, but unfortunately weight loss is often difficult to achieve and sustain. Pharmacological and device-based approaches to directly or indirectly target the activation of the SNS may offer some benefit in reducing the cardiometabolic consequences of obesity. Preliminary evidence is encouraging, but more trials are needed to investigate whether sympathetic inhibition could be used in obesity to reverse or prevent cardiometabolic disease development. The purpose of this review article is to highlight the current knowledge of the role that SNS plays in obesity and its associated metabolic disorders and to review the potential benefits of sympathoinhibition on metabolic and cardiovascular functions.

  17. Effects of alpha-adrenoceptor and of combined sympathetic and parasympathetic blockade on cardiac performance and vascular resistance

    DEFF Research Database (Denmark)

    Kelbaek, H; Frandsen, Henrik Lund; Hilsted, J

    1992-01-01

    1. Cardiac performance and vascular resistance was studied in seven healthy men by radionuclide cardiography and venous plethysmography before and after alpha-adrenoceptor blockade with phentolamine and after combined alpha-adrenoceptor, beta-adrenoceptor (propranolol) and parasympathetic (atropine...... propranolol and atropine were added. 3. These results indicate that peripheral vasoconstriction especially that exerted by alpha-adrenoceptor nervous tone in skeletal muscle restricts left ventricular emptying of the intact heart. During pharmacologic blockade of the sympathetic and parasympathetic nervous...

  18. Short-term sertraline treatment suppresses sympathetic nervous system activity in healthy human subjects.

    Science.gov (United States)

    Shores, M M; Pascualy, M; Lewis, N L; Flatness, D; Veith, R C

    2001-05-01

    Increased sympathetic nervous system (SNS) activity has been associated with stress, major depression, aging, and several medical conditions. This study assessed the effect of the selective serotonin reuptake inhibitor (SSRI), sertraline, on sympathetic nervous system (SNS) activity in healthy subjects. Twelve healthy volunteers participated in a double-blind, placebo-controlled, norepinephrine (NE) kinetic study, in which the effects of sertraline on SNS activity were ascertained by determining NE plasma concentrations and NE plasma appearance rates and clearance rates in sertraline or placebo conditions. Subjects received 50 mg of sertraline or placebo for two days and then one week later underwent the same protocol with the other drug. By single compartmental analysis, plasma NE appearance rates were significantly lower in the sertraline compared to the placebo condition (0.26+/-0.10 vs 0.40+/-0.23 microg/m(2)/min; P=0.04). Our study found that the net effect of short-term SSRI treatment is an apparent suppression of SNS activity as indicated by a decreased plasma NE appearance rate in the sertraline condition. If this preliminary finding can be extended to long-term treatment of patients, this could have significant therapeutic relevance for treating depression in elderly patients or those with cardiac disease, in which elevated SNS activity may exacerbate underlying medical conditions.

  19. P2 receptors in the central and peripheral nervous systems modulating sympathetic vasomotor tone.

    Science.gov (United States)

    Ralevic, V

    2000-07-01

    Arterial pressure depends on the level of activity of sympathetic vasoconstrictor outflow to blood vessels. This activity is generated in the central nervous system, and involves inputs from a variety of brain regions projecting to sympathetic preganglionic neurones. Of especial interest are a group of neurones in the rostral ventrolateral medulla (RVLM), as they have been demonstrated to have a fundamental role in reflex regulation of the cardiovascular system, and in generation of tonic drive to sympathetic outflow. Sympathetic outflow to blood vessels is additionally modulated at sympathetic ganglia, and at the peripheral terminals of sympathetic nerves. This review considers the role of P2 purine receptors in this neural pathway. Ionotropic P2X receptors are expressed in the RVLM, in sympathetic ganglia, and at the sympathetic neuromuscular junction, and mediate fast excitatory neurotransmission, indicating a general role for ATP as a regulator of sympathetic vasomotor tone. P2Y receptors couple to G proteins and mediate slower signalling to ATP; they have been reported to inhibit prejunctionally neurotransmission at the peripheral terminals of sympathetic nerves, but little is known about their possible role in the central nervous system and in sympathetic ganglia.

  20. Neural regulation of gastrointestinal inflammation: role of the sympathetic nervous system.

    Science.gov (United States)

    Cervi, Andrea L; Lukewich, Mark K; Lomax, Alan E

    2014-05-01

    The sympathetic innervation of the gastrointestinal (GI) tract regulates motility, secretion and blood flow by inhibiting the activity of the enteric nervous system (ENS) and direct vasoconstrictor innervation of the gut microvasculature. In addition to these well-established roles, there is evidence that the sympathetic nervous system (SNS) can modulate GI inflammation. Postganglionic sympathetic neurons innervate lymphoid tissues and immune cells within the GI tract. Furthermore, innate and adaptive immune cells express receptors for sympathetic neurotransmitters. Activation of these receptors can affect a variety of important immune cell functions, including cytokine release and differentiation of helper T lymphocyte subsets. This review will consider the neuroanatomical evidence of GI immune cell innervation by sympathetic axons, the effects of blocking or enhancing SNS activity on GI inflammation, and the converse modulation of sympathetic neuroanatomy and function by GI inflammation.

  1. Heart Rate Changes in Response to Mechanical Pressure Stimulation of Skeletal Muscles Are Mediated by Cardiac Sympathetic Nerve Activity

    Science.gov (United States)

    Watanabe, Nobuhiro; Hotta, Harumi

    2017-01-01

    Stimulation of mechanoreceptors in skeletal muscles such as contraction and stretch elicits reflexive autonomic nervous system changes which impact cardiovascular control. There are pressure-sensitive mechanoreceptors in skeletal muscles. Mechanical pressure stimulation of skeletal muscles can induce reflex changes in heart rate (HR) and blood pressure, although the neural mechanisms underlying this effect are unclear. We examined the contribution of cardiac autonomic nerves to HR responses induced by mechanical pressure stimulation (30 s, ~10 N/cm2) of calf muscles in isoflurane-anesthetized rats. Animals were artificially ventilated and kept warm using a heating pad and lamp, and respiration and core body temperature were maintained within physiological ranges. Mechanical stimulation was applied using a stimulation probe 6 mm in diameter with a flat surface. Cardiac sympathetic and vagus nerves were blocked to test the contribution of the autonomic nerves. For sympathetic nerve block, bilateral stellate ganglia, and cervical sympathetic nerves were surgically sectioned, and for vagus nerve block, the nerve was bilaterally severed. In addition, mass discharges of cardiac sympathetic efferent nerve were electrophysiologically recorded. Mechanical stimulation increased or decreased HR in autonomic nerve-intact rats (range: −56 to +10 bpm), and the responses were negatively correlated with pre-stimulus HR (r = −0.65, p = 0.001). Stimulation-induced HR responses were markedly attenuated by blocking the cardiac sympathetic nerve (range: −9 to +3 bpm, p mechanical stimulation increased, or decreased the frequency of sympathetic nerve activity in parallel with HR (r = 0.77, p = 0.0004). Furthermore, the changes in sympathetic nerve activity were negatively correlated with its tonic level (r = −0.62, p = 0.0066). These results suggest that cardiac sympathetic nerve activity regulates HR responses to muscle mechanical pressure stimulation and the direction of HR

  2. Sympathetic nervous activity in cirrhosis. A survey of plasma catecholamine studies

    DEFF Research Database (Denmark)

    Henriksen, J H; Ring-Larsen, H; Christensen, N J

    1985-01-01

    in this condition. This may especially apply to the sympathetic tone in the kidney, as evaluated by regional measurements of noradrenaline overflow. Hepatic elimination of catecholamines is only slightly reduced. Activation of the sympathetic nervous system seems to play an important role in the avid sodium...

  3. Differential Control of the Sympathetic Nervous System by Leptin: Implications for Obesity

    OpenAIRE

    Rahmouni, Kamal

    2007-01-01

    1. Leptin is a hormone that is secreted by adipocytes and delivered to the brain to regulate appetite and energy expenditure. Other effects of leptin include activation of the sympathetic nervous system and an increase in arterial pressure.

  4. Multilevel interactions between the sympathetic and parasympathetic nervous systems: a minireview.

    Science.gov (United States)

    Ondicova, K; Mravec, B

    2010-04-01

    In order to allow precise regulation of bodily functions, the activity of the autonomic nervous system must be precisely regulated. The traditional model concerning the regulation of norepinephrine and acetylcholine release in target tissues suggests that the activities of the efferent arms of the autonomic nervous system are more or less independent of each other. However, plenty of experimental and clinical studies have demonstrated the presence of multiple interactions between the sympathetic and parasympathetic nervous system that are mediated through several pathways and mechanisms at both central and peripheral levels of the neuraxis. Interactions within the central nervous system are mediated predominantly by neurons within the nucleus of the solitary tract and paraventricular hypothalamic nucleus. Peripheral interactions are based on the morphological-functional organization of the sympathetic and parasympathetic pathways at the levels of the sympathetic prevertebral ganglia or neuroeffector connections. Furthermore, evidence suggests that neuroeffector connections may be realized at the axo-axonal, presynaptic, postsynaptic, and post-receptor levels. Alterations in interactions between the sympathetic and parasympathetic nervous system can lead to unbalanced autonomic activities, which may influence the development of various disorders, including cardiovascular, inflammatory, metabolic, neurological, and psychiatric diseases. The aim of this article is to illustrate the complexity of interaction between the sympathetic and parasympathetic nervous systems and to describe the role of these interactions in the heart, adrenal medulla, and vagal trunk.

  5. [Role of the sympathetic nervous system in vasovagal syncope and rationale for beta-blockers and norepinephrine transporter inhibitors].

    Science.gov (United States)

    Márquez, Manlio F; Gómez-Flores, Jorge Rafael; González-Hermosillo, Jesús A; Ruíz-Siller, Teresita de Jesús; Cárdenas, Manuel

    2016-12-29

    Vasovagal or neurocardiogenic syncope is a common clinical situation and, as with other entities associated with orthostatic intolerance, the underlying condition is a dysfunction of the autonomic nervous system. This article reviews various aspects of vasovagal syncope, including its relationship with orthostatic intolerance and the role of the autonomic nervous system in it. A brief history of the problem is given, as well as a description of how the names and associated concepts have evolved. The response of the sympathetic system to orthostatic stress, the physiology of the baroreflex system and the neurohumoral changes that occur with standing are analyzed. Evidence is presented of the involvement of the autonomic nervous system, including studies of heart rate variability, microneurography, cardiac innervation, and molecular genetic studies. Finally, we describe different studies on the use of beta-blockers and norepinephrine transporter inhibitors (sibutramine, reboxetine) and the rationality of their use to prevent this type of syncope.

  6. Relevance of Sympathetic Nervous System Activation in Obesity and Metabolic Syndrome.

    Science.gov (United States)

    Thorp, Alicia A; Schlaich, Markus P

    2015-01-01

    Sympathetic tone is well recognised as being implicit in cardiovascular control. It is less readily acknowledged that activation of the sympathetic nervous system is integral in energy homeostasis and can exert profound metabolic effects. Accumulating data from animal and human studies suggest that central sympathetic overactivity plays a pivotal role in the aetiology and complications of several metabolic conditions that can cluster to form the Metabolic Syndrome (MetS). Given the known augmented risk for type 2 diabetes, cardiovascular disease, and premature mortality associated with the MetS understanding the complex pathways underlying the metabolic derangements involved has become a priority. Many factors have been proposed to contribute to increased sympathetic nerve activity in metabolic abnormalities including obesity, impaired baroreflex sensitivity, hyperinsulinemia, and elevated adipokine levels. Furthermore there is mounting evidence to suggest that chronic sympathetic overactivity can potentiate two of the key metabolic alterations of the MetS, central obesity and insulin resistance. This review will discuss the regulatory role of the sympathetic nervous system in metabolic control and the proposed pathophysiology linking sympathetic overactivity to metabolic abnormalities. Pharmacological and device-based approaches that target central sympathetic drive will also be discussed as possible therapeutic options to improve metabolic control in at-risk patient cohorts.

  7. Chemistry and biology of radiotracers that target changes in sympathetic and parasympathetic nervous systems in heart disease.

    Science.gov (United States)

    Eckelman, William C; Dilsizian, Vasken

    2015-06-01

    Following the discovery of the sympathetic and parasympathetic nervous system, numerous adrenoceptor drugs were radiolabeled and potent radioligands were prepared in order to image the β-adrenergic and the muscarinic systems. But the greatest effort has been in preparing noradrenaline analogs, such as norepinephrine, (11)C-metahydroxyephedrine, and (123)I-metaiodobenzylguanidine that measure cardiac sympathetic nerve varicosities. Given the technical and clinical challenges in designing and validating targeted adrenoceptor-binding radiotracers, namely the heavily weighted flow dependence and relatively low target-to-background ratio, both requiring complicated mathematic analysis, and the inability of targeted adrenoceptor radioligands to have an impact on clinical care of heart disease, the emphasis has been on radioligands monitoring the norepinephrine pathway. The chemistry and biology of such radiotracers, and the clinical and prognostic impact of these innervation imaging studies in patients with heart disease, are examined.

  8. Cardiac Dysregulation and Myocardial Injury in a 6-Hydroxydopamine-Induced Rat Model of Sympathetic Denervation.

    Directory of Open Access Journals (Sweden)

    Yue-Hua Jiang

    Full Text Available Cardiac sympathetic denervation is found in various cardiac pathologies; however, its relationship with myocardial injury has not been thoroughly investigated.Twenty-four rats were assigned to the normal control group (NC, sympathectomy control group (SC, and a sympathectomy plus mecobalamin group (SM. Sympathectomy was induced by injection of 6-OHDA, after which, the destruction and distribution of sympathetic and vagal nerve in the left ventricle (LV myocardial tissue were determined by immunofluorescence and ELISA. Heart rate variability (HRV, ECG and echocardiography, and assays for myocardial enzymes in serum before and after sympathectomy were examined. Morphologic changes in the LV by HE staining and transmission electron microscope were used to estimate levels of myocardial injury and concentrations of inflammatory cytokines were used to reflect the inflammatory reaction.Injection of 6-OHDA decreased NE (933.1 ± 179 ng/L for SC vs. 3418.1± 443.6 ng/L for NC, P < 0.01 and increased NGF (479.4± 56.5 ng/mL for SC vs. 315.85 ± 28.6 ng/mL for NC, P < 0.01 concentrations. TH expression was reduced, while ChAT expression showed no change. Sympathectomy caused decreased HRV and abnormal ECG and echocardiography results, and histopathologic examinations showed myocardial injury and increased collagen deposition as well as inflammatory cell infiltration in the cardiac tissue of rats in the SC and SM groups. However, all pathologic changes in the SM group were less severe compared to those in the SC group.Chemical sympathectomy with administration of 6-OHDA caused dysregulation of the cardiac autonomic nervous system and myocardial injuries. Mecobalamin alleviated inflammatory and myocardial damage by protecting myocardial sympathetic nerves.

  9. Norepinephrine transporter (NET) is expressed in cardiac sympathetic ganglia of adult rat

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The sympathetic nervous system plays a cardinal role in regulating cardiac function through releasing the neurotransmitter norepinephrine (NE). In comparison with central nervous system, the molecular mechanism of NE uptake in myocardium is not clear. In present study, we proved that in rat the CNS type of NE transporter (NET) was also expressed in middle cervical-stellate ganglion complex (MC-SG complex) which is considered to control the activity of heart, but not expressed in myocardium. The results also showed that NET expression level in right ganglion was significantly higher than in the left, rendering the greater capacity of NE uptake in right ventricle, a fact which may contribute to the maintenance of right ventricular function under pathologic state.

  10. Sympathetic nervous activation in obesity and the metabolic syndrome--causes, consequences and therapeutic implications.

    Science.gov (United States)

    Lambert, Gavin W; Straznicky, Nora E; Lambert, Elisabeth A; Dixon, John B; Schlaich, Markus P

    2010-05-01

    The world wide prevalence of obesity and the metabolic syndrome is escalating. Contrary to earlier experimental evidence, human obesity is characterised by sympathetic nervous activation, with the outflows to both the kidney and skeletal muscle being activated. While the mechanisms responsible for initiating the sympathetic activation remain to be unequivocally elucidated, hyperinsulinemia, obstructive sleep apnoea, increased circulating adipokines, stress and beta adrenergic receptor polymorphisms are implicated. The pattern of sympathetic activation may be the pathophysiological mechanism underpinning much obesity-related illnesses with the consequences including, amongst others, the development of hypertension, insulin resistance, diastolic dysfunction and renal impairment. While diet and exercise are the first line therapy for the treatment of obesity and the metabolic syndrome, pharmacological interventions targeting the sympathetic nervous system, either directly or indirectly are also likely to be of benefit. Importantly, the benefit may not necessarily be weight related but may be associated with a reduction in end organ damage.

  11. Role of sympathetic nervous system and neuropeptides in obesity hypertension

    Directory of Open Access Journals (Sweden)

    J.E. Hall

    2000-06-01

    Full Text Available Obesity is the most common cause of human essential hypertension in most industrialized countries. Although the precise mechanisms of obesity hypertension are not fully understood, considerable evidence suggests that excess renal sodium reabsorption and a hypertensive shift of pressure natriuresis play a major role. Sympathetic activation appears to mediate at least part of the obesity-induced sodium retention and hypertension since adrenergic blockade or renal denervation markedly attenuates these changes. Recent observations suggest that leptin and its multiple interactions with neuropeptides in the hypothalamus may link excess weight gain with increased sympathetic activity. Leptin is produced mainly in adipocytes and is believed to regulate energy balance by acting on the hypothalamus to reduce food intake and to increase energy expenditure via sympathetic activation. Short-term administration of leptin into the cerebral ventricles increases renal sympathetic activity, and long-term leptin infusion at rates that mimic plasma concentrations found in obesity raises arterial pressure and heart rate via adrenergic activation in non-obese rodents. Transgenic mice overexpressing leptin also develop hypertension. Acute studies suggest that the renal sympathetic effects of leptin may depend on interactions with other neurochemical pathways in the hypothalamus, including the melanocortin-4 receptor (MC4-R. However, the role of this pathway in mediating the long-term effects of leptin on blood pressure is unclear. Also, it is uncertain whether there is resistance to the chronic renal sympathetic and blood pressure effects of leptin in obese subjects. In addition, leptin also has other cardiovascular and renal actions, such as stimulation of nitric oxide formation and improvement of insulin sensitivity, which may tend to reduce blood pressure in some conditions. Although the role of these mechanisms in human obesity has not been elucidated, this

  12. Cholinergic Signaling Exerts Protective Effects in Models of Sympathetic Hyperactivity-Induced Cardiac Dysfunction

    Science.gov (United States)

    Gavioli, Mariana; Lara, Aline; Almeida, Pedro W. M.; Lima, Augusto Martins; Damasceno, Denis D.; Rocha-Resende, Cibele; Ladeira, Marina; Resende, Rodrigo R.; Martinelli, Patricia M.; Melo, Marcos Barrouin; Brum, Patricia C.; Fontes, Marco Antonio Peliky; Souza Santos, Robson A.; Prado, Marco A. M.; Guatimosim, Silvia

    2014-01-01

    Cholinergic control of the heart is exerted by two distinct branches; the autonomic component represented by the parasympathetic nervous system, and the recently described non-neuronal cardiomyocyte cholinergic machinery. Previous evidence has shown that reduced cholinergic function leads to deleterious effects on the myocardium. Yet, whether conditions of increased cholinergic signaling can offset the pathological remodeling induced by sympathetic hyperactivity, and its consequences for these two cholinergic axes are unknown. Here, we investigated two models of sympathetic hyperactivity: i) the chronic beta-adrenergic receptor stimulation evoked by isoproterenol (ISO), and ii) the α2A/α2C-adrenergic receptor knockout (KO) mice that lack pre-synaptic adrenergic receptors. In both models, cholinergic signaling was increased by administration of the cholinesterase inhibitor, pyridostigmine. First, we observed that isoproterenol produces an autonomic imbalance characterized by increased sympathetic and reduced parasympathetic tone. Under this condition transcripts for cholinergic proteins were upregulated in ventricular myocytes, indicating that non-neuronal cholinergic machinery is activated during adrenergic overdrive. Pyridostigmine treatment prevented the effects of ISO on autonomic function and on the ventricular cholinergic machinery, and inhibited cardiac remodeling. α2A/α2C-KO mice presented reduced ventricular contraction when compared to wild-type mice, and this dysfunction was also reversed by cholinesterase inhibition. Thus, the cardiac parasympathetic system and non-neuronal cardiomyocyte cholinergic machinery are modulated in opposite directions under conditions of increased sympathetic drive or ACh availability. Moreover, our data support the idea that pyridostigmine by restoring ACh availability is beneficial in heart disease. PMID:24992197

  13. Cholinergic signaling exerts protective effects in models of sympathetic hyperactivity-induced cardiac dysfunction.

    Directory of Open Access Journals (Sweden)

    Mariana Gavioli

    Full Text Available Cholinergic control of the heart is exerted by two distinct branches; the autonomic component represented by the parasympathetic nervous system, and the recently described non-neuronal cardiomyocyte cholinergic machinery. Previous evidence has shown that reduced cholinergic function leads to deleterious effects on the myocardium. Yet, whether conditions of increased cholinergic signaling can offset the pathological remodeling induced by sympathetic hyperactivity, and its consequences for these two cholinergic axes are unknown. Here, we investigated two models of sympathetic hyperactivity: i the chronic beta-adrenergic receptor stimulation evoked by isoproterenol (ISO, and ii the α2A/α2C-adrenergic receptor knockout (KO mice that lack pre-synaptic adrenergic receptors. In both models, cholinergic signaling was increased by administration of the cholinesterase inhibitor, pyridostigmine. First, we observed that isoproterenol produces an autonomic imbalance characterized by increased sympathetic and reduced parasympathetic tone. Under this condition transcripts for cholinergic proteins were upregulated in ventricular myocytes, indicating that non-neuronal cholinergic machinery is activated during adrenergic overdrive. Pyridostigmine treatment prevented the effects of ISO on autonomic function and on the ventricular cholinergic machinery, and inhibited cardiac remodeling. α2A/α2C-KO mice presented reduced ventricular contraction when compared to wild-type mice, and this dysfunction was also reversed by cholinesterase inhibition. Thus, the cardiac parasympathetic system and non-neuronal cardiomyocyte cholinergic machinery are modulated in opposite directions under conditions of increased sympathetic drive or ACh availability. Moreover, our data support the idea that pyridostigmine by restoring ACh availability is beneficial in heart disease.

  14. The facial massage reduced anxiety and negative mood status, and increased sympathetic nervous activity.

    Science.gov (United States)

    Hatayama, Tomoko; Kitamura, Shingo; Tamura, Chihiro; Nagano, Mayumi; Ohnuki, Koichiro

    2008-12-01

    The aim of this study was to clarify the effects of 45 min of facial massage on the activity of autonomic nervous system, anxiety and mood in 32 healthy women. Autonomic nervous activity was assessed by heart rate variability (HRV) with spectral analysis. In the spectral analysis of HRV, we evaluated the high-frequency components (HF) and the low- to high-frequency ratio (LF/HF ratio), reflecting parasympathetic nervous activity and sympathetic nervous activity, respectively. The State Trait Anxiety Inventory (STAI) and the Profile of Mood Status (POMS) were administered to evaluate psychological status. The score of STAI and negative scale of POMS were significantly reduced following the massage, and only the LF/HF ratio was significantly enhanced after the massage. It was concluded that the facial massage might refresh the subjects by reducing their psychological distress and activating the sympathetic nervous system.

  15. Cardiac Sympathetic Hyperactivity after Chemotherapy: Early Sign of Cardiotoxicity?

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, Sarita Lígia Pessoa de Melo Machado [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Hospital Agamenon Magalhães (HAM), Recife, PE (Brazil); Brandão, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Andrade, Luciana Raposo [Hospital Santa Joana, Recife, PE (Brazil); Maia, Rafael José Coelho [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Hospital Agamenon Magalhães (HAM), Recife, PE (Brazil); Markman Filho, Brivaldo [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil)

    2015-09-15

    Chemotherapy with anthracyclines and trastuzumab can cause cardiotoxicity. Alteration of cardiac adrenergic function assessed by metaiodobenzylguanidine labeled with iodine-123 ({sup 123}I-mIBG) seems to precede the drop in left ventricular ejection fraction. To evaluate and to compare the presence of cardiovascular abnormalities among patients with breast cancer undergoing chemotherapy with anthracyclines and trastuzumab, and only with anthracycline. Patients with breast cancer were analyzed clinical, laboratory, electrocardiographic and echocardiographic and cardiac sympathetic activity. In scintigraphic images, the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum, and the washout rate were calculated. The variables were compared between patients who received anthracyclines and trastuzumab (Group 1) and only anthracyclines (Group 2). Twenty patients, with mean age 57 ± 14 years, were studied. The mean left ventricular ejection fraction by echocardiography was 67.8 ± 4.0%. Mean washout rate was 28.39 ± 9.23% and the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum was 2.07 ± 0.28. Of the patients, 82% showed an increased in washout rate, and the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum decreased in 25%. Concerning the groups, the mean washout rate of Group 1 was 32.68 ± 9.30% and of Group 2 was 24.56 ± 7.72% (p = 0,06). The ratio of {sup 123}I-mIBG uptake between the heart and mediastinum was normal in all patients in Group 2, however, the Group 1, showed 50% the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum ≤ 1.8 (p = 0.02). In women with breast cancer undergoing chemotherapy, assessment of cardiac sympathetic activity with {sup 123}I-mIBG appears to be an early marker of cardiotoxicity. The combination of chemotherapy showed higher risk of cardiac adrenergic hyperactivity.

  16. Developmental gene expression of sympathetic nervous system tumors reflects their histogenesis.

    Science.gov (United States)

    Hoehner, J C; Hedborg, F; Eriksson, L; Sandstedt, B; Grimelius, L; Olsen, L; Påhlman, S

    1998-01-01

    Comparisons of the developing human sympathetic nervous system (SNS) to tumors presumed to derive from these cells may suggest tumor progenitors and predict tumor biologic behavior. Classic neuroblastoma (NB) and its more highly differentiated stroma-rich subtypes, extra-adrenal sympathetic paraganglioma, and pheochromocytoma were examined for the presence of the developmentally characterized gene products NSE, S-100, CD44, Bcl-2, HNK-1, PNMT, TrkA, IGF2, and tyrosine hydroxylase. The marker gene expression profiles of these tumors were compared with those similarly determined for a number of normal prenatal and postnatal human SNS cell types. Sympathetic paraganglioma, pheochromocytoma, and stroma-rich NB display marker expression profiles mimicking those of childhood sympathetic paraganglia, adrenal chromaffin cells, and sympathetic neurons, respectively. A selection of differentiating, extra-adrenal NB tumors with prognostically favorable features possess marker gene expression profiles paralleling that observed for fetal extra-adrenal sympathetic paraganglia/small intensely fluorescent cells. In contrast, undifferentiated, clinically aggressive NB tumors manifest characteristics mirroring that of embryonic/early fetal sympathetic neuroblasts of sympathetic ganglia and of the adrenal gland. These findings suggest that clinical features, such as primary tumor location and age at diagnosis, provide prognostic information for NB patients by virtue of the existence and biology of the presumed tumor progenitor cell type.

  17. Systematic morphology and evolutionary anatomy of the autonomic cardiac nervous system in the lesser apes, gibbons (hylobatidae).

    Science.gov (United States)

    Kawashima, Tomokazu; Thorington, Richard W; Kunimatsu, Yutaka; Whatton, James F

    2008-08-01

    We examined the morphology of the autonomic cardiac nervous system (ACNS) on 20 sides of 10 gibbons (Hylobatidae) of three genera, and we have inferred the evolution of the anatomy of the primate ACNS. We report the following. (1) Several trivial intraspecific and interspecific variations are present in gibbons, but the general arrangement of the ACNS in gibbons is consistent. (2) Although the parasympathetic vagal cardiac nervous system is extremely consistent, the sympathetic cardiac nervous system, such as the composition of the sympathetic ganglia and the range of origin of the sympathetic cardiac nerves, exhibit topographical differences among primates. (3) The vertebral ganglion, seldom observed in the Old World monkeys (Cercopithecidae), was consistently present in gibbons as well as in humans. (4) There are fewer thoracic ganglia contributing to the cervicothoracic ganglion in humans than in gibbons and in gibbons than in Old World monkeys. (5) The superior cardiac nerve originating from the superior cervical ganglion, rarely observed in Old World monkeys but commonly observed in humans, was present in 13 of 20 sides (65%), mostly on the left. Accordingly, the ACNS morphology exhibits evolutionary changes within the primate lineage. These evolutionary differences between Old World monkeys, gibbons, and humans are most parsimoniously interpreted as resulting from regular changes in the lineages leading from their common ancestor to the extant species that we dissected. They include the reduction in the number of thoracic ganglia contributing to the cervicothoracic ganglion and the expansion of the range of the cardiac nervous origin.

  18. Cardiac sympathetic dysfunction in anti-NMDA receptor encephalitis.

    Science.gov (United States)

    Byun, Jung-Ick; Lee, Soon-Tae; Moon, Jangsup; Jung, Keun-Hwa; Shin, Jung-Won; Sunwoo, Jun-Sang; Lim, Jung-Ah; Shin, Yong-Won; Kim, Tae-Joon; Lee, Keon-Joo; Park, Kyung-Il; Jung, Ki-Young; Lee, Sang Kun; Chu, Kon

    2015-12-01

    Patients with anti-NMDA receptor (anti-NMDAR) encephalitis frequently suffer from autonomic dysfunctions, which can cause substantial morbidity. This study assessed cardiac autonomic functions in patients with anti-NMDAR encephalitis using heart rate variability (HRV) analysis. This was a retrospective single-center case-control study. Eleven patients with anti-NMDAR encephalitis and 15 age- and sex-matched controls were included in this study. To ensure that autonomic dysfunction does not occur in any encephalitis, we additionally analyzed HRV of 9 patients with herpes encephalitis (HSE) and compared with that of NMDAR encephalitis patients and controls. Five minute resting stationary electrocardiogram was collected from each subject, and HRV was analyzed. Total power and low frequency (LF) power were lower in anti-NMDAR encephalitis patients than those in controls (p=0.005, 0.001 respectively), indicating cardiac autonomic dysfunction especially in sympathetic system. Patients with HSE showed no significant difference in HRV parameters compared with that of controls. Cardiac autonomic dysfunction was associated with 3 month functional outcome in anti-NMDAR encephalitis patients.

  19. Cortisol and Children's Adjustment: The Moderating Role of Sympathetic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Erath, Stephen A.; Buckhalt, Joseph A.; Granger, Douglas A.; Mize, Jacquelyn

    2008-01-01

    We examined relations among cortisol, markers of sympathetic nervous system (SNS) activity (including salivary alpha-amylase and skin conductance level), and children's adjustment. We also tested the Bauer et al. ("Journal of Developmental and Behavioral Pediatrics," 23(2), 102-113, 2002) hypothesis that interactions between the SNS and cortisol…

  20. Impact of sympathetic nervous system activity on post-exercise flow-mediated dilatation in humans.

    NARCIS (Netherlands)

    Atkinson, C.L.; Lewis, N.C.; Carter, H.H.; Thijssen, D.H.J.; Ainslie, P.N.; Green, D.J.

    2015-01-01

    KEY POINTS: Previous studies indicate a transient reduction in arterial function following large muscle group exercise, but the mechanisms involved are unknown. Sympathetic nervous system activation may contribute to such reductions through direct effects in the artery wall, or because of decreases

  1. Marital Conflict and Children's Externalizing Behavior: Interactions between Parasympathetic and Sympathetic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Kouros, Chrystyna D.; Erath, Stephen; Cummings, E. Mark; Keller, Peggy; Staton, Lori

    2009-01-01

    Toward greater specificity in the prediction of externalizing problems in the context of interparental conflict, interactions between children's parasympathetic and sympathetic nervous system (PNS and SNS) activity were examined as moderators. PNS activity was indexed by respiratory sinus arrhythmia (RSA) and RSA reactivity (RSA-R) to lab…

  2. Cardiac sympathetic denervation in familial amyloid polyneuropathy assessed by iodine-123 metaiodobenzylguanidine scintigraphy and heart rate variability

    Energy Technology Data Exchange (ETDEWEB)

    Delahaye, N.; Le Guludec, D. [Department of Nuclear Medicine, Bichat Hospital, Paris (France); Dinanian, S.; Slama, M.S. [Department of Cardiology, A. Beclere Hospital, Paris (France); Mzabi, H.; Samuel, D. [Department of Hepatic Surgery, P. Brousse Hospital, Paris (France); Adams, D. [Department of Neurology, Bicetre Hospital, Paris (France); Merlet, P. [SHFJ, DSV-CEA, Orsay (France)

    1999-04-29

    Familial amyloid polyneuropathy (FAP) is a rare and severe hereditary form of amyloidosis, due to nervous deposits of a genetic variant transthyretin produced by the liver and characterized by both sensorimotor and autonomic neuropathy. Left ventricular systolic dysfunction is rare, but conduction disturbances and sudden deaths can occur. The neurological status of the heart has not been elucidated, and an alteration of the sympathetic nerves may be involved. We studied 17 patients (42{+-}12 years) before liver transplantation by iodine-123 metaiodobenzylguanidine (MIBG) scintigraphy, heart rate variability analysis, coronary angiography, radionuclide ventriculography, rest thallium single-photon emission tomography (SPET) and echocardiography. Coronary arteries, left ventricular systolic function and rest thallium SPET were normal in all patients. Only mild evidence of amyloid infiltration was found at echocardiographic examination. Cardiac MIBG uptake was dramatically decreased in patients compared with age-matched control subjects (heart-to-mediastinum activity ratio at 4 h: 1.36{+-}0.26 versus 1.98{+-}0.35, P<0.001), while there was no difference in MIBG washout rate. Heart rate variability analysis showed a considerable scatter of values, with high values in four patients despite cardiac sympathetic denervation as assessed by MIBG imaging. The clinical severity of the polyneuropathy correlated with MIBG uptake at 4 h but not with the heart rate variability indices. Cardiac MIBG uptake and the heart rate variability indices did not differ according to the presence or absence of conduction disturbances. Patients with FAP have sympathetic cardiac denervation as assessed by MIBG imaging despite a preserved left ventricular systolic function and cardiac perfusion, without correlation with conduction disturbances. Results of the heart rate variability analysis were more variable and this technique does not seem to be the best way to evaluate the extent of cardiac

  3. Leptin regulates bone formation via the sympathetic nervous system

    Science.gov (United States)

    Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard

    2002-01-01

    We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.

  4. The role of the sympathetic nervous system in obesity-related hypertension.

    Science.gov (United States)

    da Silva, Alexandre A; do Carmo, Jussara; Dubinion, John; Hall, John E

    2009-06-01

    Obesity is recognized as a major health problem throughout the world. Excess weight is a major cause of increased blood pressure in most patients with essential hypertension and greatly increases the risk for diabetes, cardiovascular diseases, and end-stage renal disease. Although the mechanisms by which obesity raises blood pressure are not completely understood, increased renal sodium reabsorption, impaired pressure natriuresis, and volume expansion appear to play important roles. Several potential mechanisms have been suggested to contribute to altered kidney function and hypertension in obesity, including activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system, as well as physical compression of the kidneys, especially when visceral obesity is present. Activation of the sympathetic nervous system in obesity may be due, in part, to hyperleptinemia and other factors secreted by adipocytes and the gastrointestinal tract, activation of the central nervous system melanocortin pathway, and baroreceptor dysfunction.

  5. Nonselective Blocking of the Sympathetic Nervous System Decreases Detrusor Overactivity in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Chang-Shin Park

    2012-04-01

    Full Text Available The involuntary dual control systems of the autonomic nervous system (ANS in the bladder of awake spontaneously hypertensive rats (SHRs were investigated through simultaneous registrations of intravesical and intraabdominal pressures to observe detrusor overactivity (DO objectively as a core symptom of an overactive bladder. SHRs (n = 6 showed the features of overactive bladder syndrome during urodynamic study, especially DO during the filling phase. After injection of the nonselective sympathetic blocking agent labetalol, DO disappeared in 3 of 6 SHRs (50%. DO frequency decreased from 0.98 ± 0.22 min−1 to 0.28 ± 0.19 min−1 (p < 0.01, and DO pressure decreased from 3.82 ± 0.57 cm H2O to 1.90 ± 0.86 cm H2O (p < 0.05. This suggests that the DO originating from the overactive parasympathetic nervous system is attenuated by the nonselective blocking of the sympathetic nervous system. The detailed mechanism behind this result is still not known, but parasympathetic overactivity seems to require overactive sympathetic nervous system activity in a kind of balance between these two systems. These findings are consistent with recent clinical findings suggesting that patients with idiopathic overactive bladder may have ANS dysfunction, particularly a sympathetic dysfunction. The search for newer and better drugs than the current anticholinergic drugs as the mainstay for overactive bladder will be fueled by our research on these sympathetic mechanisms. Further studies of this principle are required.

  6. Ghrelin modulates sympathetic nervous system activity and stress response in lean and overweight men.

    Science.gov (United States)

    Lambert, Elisabeth; Lambert, Gavin; Ika-Sari, Carolina; Dawood, Tye; Lee, Katie; Chopra, Reena; Straznicky, Nora; Eikelis, Nina; Drew, Sara; Tilbrook, Alan; Dixon, John; Esler, Murray; Schlaich, Markus P

    2011-07-01

    Ghrelin is a growth hormone-releasing peptide secreted by the stomach with potent effects on appetite. Experimental and clinical studies indicate that ghrelin also influences cardiovascular regulation and metabolic function and mediates behavioral responses to stress. We investigated the effects of ghrelin on blood pressure (BP), sympathetic nervous system activity, and mental stress responses in lean (n=13) and overweight or obese (n=13) individuals. Subjects received an intravenous infusion of human ghrelin (5 pmol/kg per minute for 1 hour) and saline in a randomized fashion. Ghrelin decreased systolic (-6 and -11 mm Hg) and diastolic BP (-8 mm Hg for both), increased muscle sympathetic nervous system activity (18±2 to 28±3 bursts per min, P<0.05 and from 21±2 to 32±3 bursts per min, P<0.001) in lean and overweight or obese subjects, respectively, without a significant change in heart rate, calf blood flow, or vascular resistance. Ghrelin induced a rise in plasma glucose concentration in lean individuals (P<0.05) and increased cortisol levels in both groups (P<0.05). Stress induced a significant change in mean BP (+22 and +27 mm Hg), heart rate (+36 and +29 bpm), and muscle sympathetic nervous system activity (+6.1±1.6 and +6.8±2.7 bursts per min) during saline infusion in lean and overweight or obese subjects, respectively. During ghrelin infusion, the changes in BP and muscle sympathetic nerve activity in response to stress were significantly reduced in both groups (P<0.05). In conclusion, ghrelin exerts unique effects in that it reduces BP and increases muscle sympathetic nervous system activity and blunts cardiovascular responses to mental stress. These responses may represent a combination of peripheral (baroreflex-mediated) and central effects of ghrelin.

  7. Renal sympathetic nervous system and the effects of denervation on renal arteries

    Institute of Scientific and Technical Information of China (English)

    Arun; Kannan; Raul; Ivan; Medina; Nagapradeep; Nagajothi; Saravanan; Balamuthusamy

    2014-01-01

    Resistant hypertension is associated with chronic activation of the sympathetic nervous system resulting in various comorbidities. The prevalence of resistant hypertension is often under estimated due to various reasons. Activation of sympathetic nervous system at the renal-as well as systemic-level contributes to the increased level of catecholamines and resulting increase in the blood pressure. This increased activity was demonstrated by increased muscle sympathetic nerve activity and renal and total body noradrenaline spillover. Apart from the hypertension, it is hypothesized to be associated with insulin resistance, congestive heart failure and obstructive sleep apnea. Renal denervation is a novel procedure where the sympathetic afferent and efferent activity is reduced by various techniques and has been used successfully to treat drug-resistant hypertension improvement of various metabolic derangements.Renal denervation has the unique advantage of offering the denervation at the renal level, thus mitigating the systemic side effects. Renal denervation can be done by various techniques including radiofrequency ablation, ultrasound guided ablation and chemical ablation. Various trials evaluated the role of renal denervation in the management of resistant hypertension and have found promising results. More studies are underway to evaluate the role of renal denervation in patients presenting with resistant hypertension in different scenarios. Appropriate patient selection might be the key in determining the effectiveness of the procedure.

  8. Autonomic Nervous System Responses to Viewing Green and Built Settings: Differentiating Between Sympathetic and Parasympathetic Activity.

    Science.gov (United States)

    van den Berg, Magdalena M H E; Maas, Jolanda; Muller, Rianne; Braun, Anoek; Kaandorp, Wendy; van Lien, René; van Poppel, Mireille N M; van Mechelen, Willem; van den Berg, Agnes E

    2015-12-14

    This laboratory study explored buffering and recovery effects of viewing urban green and built spaces on autonomic nervous system activity. Forty-six students viewed photos of green and built spaces immediately following, and preceding acute stress induction. Simultaneously recorded electrocardiogram and impedance cardiogram signal was used to derive respiratory sinus arrhythmia (RSA) and pre-ejection period (PEP), indicators of respectively parasympathetic and sympathetic activity. The findings provide support for greater recovery after viewing green scenes, as marked by a stronger increase in RSA as a marker of parasympathetic activity. There were no indications for greater recovery after viewing green scenes in PEP as a marker of sympathetic activity, and there were also no indications of greater buffering effects of green space in neither RSA nor PEP. Overall, our findings are consistent with a predominant role of the parasympathetic nervous system in restorative effects of viewing green space.

  9. Autonomic Nervous System Responses to Viewing Green and Built Settings: Differentiating Between Sympathetic and Parasympathetic Activity

    Science.gov (United States)

    van den Berg, Magdalena M.H.E.; Maas, Jolanda; Muller, Rianne; Braun, Anoek; Kaandorp, Wendy; van Lien, René; van Poppel, Mireille N.M.; van Mechelen, Willem; van den Berg, Agnes E.

    2015-01-01

    This laboratory study explored buffering and recovery effects of viewing urban green and built spaces on autonomic nervous system activity. Forty-six students viewed photos of green and built spaces immediately following, and preceding acute stress induction. Simultaneously recorded electrocardiogram and impedance cardiogram signal was used to derive respiratory sinus arrhythmia (RSA) and pre-ejection period (PEP), indicators of respectively parasympathetic and sympathetic activity. The findings provide support for greater recovery after viewing green scenes, as marked by a stronger increase in RSA as a marker of parasympathetic activity. There were no indications for greater recovery after viewing green scenes in PEP as a marker of sympathetic activity, and there were also no indications of greater buffering effects of green space in neither RSA nor PEP. Overall, our findings are consistent with a predominant role of the parasympathetic nervous system in restorative effects of viewing green space. PMID:26694426

  10. Autonomic Nervous System Responses to Viewing Green and Built Settings: Differentiating Between Sympathetic and Parasympathetic Activity

    Directory of Open Access Journals (Sweden)

    Magdalena M.H.E. van den Berg

    2015-12-01

    Full Text Available This laboratory study explored buffering and recovery effects of viewing urban green and built spaces on autonomic nervous system activity. Forty-six students viewed photos of green and built spaces immediately following, and preceding acute stress induction. Simultaneously recorded electrocardiogram and impedance cardiogram signal was used to derive respiratory sinus arrhythmia (RSA and pre-ejection period (PEP, indicators of respectively parasympathetic and sympathetic activity. The findings provide support for greater recovery after viewing green scenes, as marked by a stronger increase in RSA as a marker of parasympathetic activity. There were no indications for greater recovery after viewing green scenes in PEP as a marker of sympathetic activity, and there were also no indications of greater buffering effects of green space in neither RSA nor PEP. Overall, our findings are consistent with a predominant role of the parasympathetic nervous system in restorative effects of viewing green space.

  11. Norepinephrine-induced nerve growth factor depletion causes cardiac sympathetic denervation in severe heart failure.

    Science.gov (United States)

    Kimura, Kensuke; Kanazawa, Hideaki; Ieda, Masaki; Kawaguchi-Manabe, Haruko; Miyake, Yoshiko; Yagi, Takashi; Arai, Takahide; Sano, Motoaki; Fukuda, Keiichi

    2010-08-25

    In severe congestive heart failure (CHF), sympathetic overactivity correlates with the exacerbation of cardiac performance. To test the hypothesis that the cardiac sympathetic nerve density dramatically changes with the acceleration of circulating norepinephrine (NE) concentration, we investigated the temporal association of nerve growth factor (NGF) expression in the heart and cardiac sympathetic nerve density during the development of CHF in the continuous NE-infused rats. The animals were analyzed at 0-, 1-, 3-, 7-, 14-, and 28-day after implantation of osmotic pump at a rate of 0.05 mg/kg/hr. The cardiac performance was temporally facilitated in NE-exposed rats at 3-day in accordance with the sympathetic hyper-innervation induced by the augmentation of NGF mRNA expression in the heart. In NE-treated rats, left ventricular end-diastolic pressure was significantly increased after 7-day and marked left ventricular hypertrophy and systemic fluid retention were observed at 28-day. CHF-induced sympathetic overactivity further increased plasma NE concentration in NE-treated rats and finally reached to 16.1+/-5.6 ng/ml at 28-day (control level was 0.39+/-0.1 ng/ml, pcardiac performance. The cardiac sympathetic fiber loss was also confirmed in NE-exposed DBH (dopamine beta-hydroxylase)-Cre/Floxed-EGFP (enhanced green fluorescent protein) mice with severe CHF, in which sympathetic nerve could be traced by EGFP. Our results suggest that the cardiac sympathetic nerve density is strictly regulated by the NGF expression in the heart and long-exposure of high plasma NE concentration caused myocardial NGF reduction, following sympathetic fiber loss in severe CHF animals.

  12. Modulation operated by the sympathetic nervous system on jaw reflexes and masticatory movement.

    Science.gov (United States)

    Passatore, Magda; Roatta, Silvestro

    2007-04-01

    The sympathetic nervous system (SNS), that is activated under condition of physical, psychological and psychosocial stress, affects force production and fatigability of muscles by controlling both muscle blood flow and the intracellular contractile mechanism. In addition SNS may affect motor function by modulating afferent activity from muscle spindles that are highly concentrated in jaw-closing muscles. Possible implications of these actions on masticatory function and myofascial pain are discussed.

  13. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins.

    Science.gov (United States)

    Hall, John E; da Silva, Alexandre A; do Carmo, Jussara M; Dubinion, John; Hamza, Shereen; Munusamy, Shankar; Smith, Grant; Stec, David E

    2010-06-04

    Excess weight gain contributes to increased blood pressure in most patients with essential hypertension. Although the mechanisms of obesity hypertension are not fully understood, increased renal sodium reabsorption and impaired pressure natriuresis play key roles. Several mechanisms contribute to altered kidney function and hypertension in obesity, including activation of the sympathetic nervous system, which appears to be mediated in part by increased levels of the adipocyte-derived hormone leptin, stimulation of pro-opiomelanocortin neurons, and subsequent activation of central nervous system melanocortin 4 receptors.

  14. Paring down on Descartes: a review of brain noradrenaline and sympathetic nervous function.

    Science.gov (United States)

    Lambert, G W

    2001-12-01

    1. The conceptual framework of mind-body interaction can be traced back to the seminal observations of the French philosopher and mathematician René Descartes (1596-1650). Descartes succeeded in eliminating the soul's apparent physiological role and established the brain as the body's control centre. 2. While the pivotal role played by the central nervous system (CNS) in the maintenance of physiological and psychological health has long been recognized, the development of methods designed for the direct examination of human CNS processes has only recently come to fruition. 3. There exists a substantial body of evidence derived from clinical and experimental studies indicating that CNS monoaminergic cell groups, in particular those using noradrenaline as their neurotransmitter, participate in the excitatory regulation of the sympathetic nervous system and the development and maintenance of the hypertensive state. 4. In essential hypertension, particularly in younger patients, there occurs an activation of sympathetic nervous outflows to the kidneys, heart and skeletal muscle. The existence of a correlation between subcortical brain noradrenaline turnover and total body noradrenaline spillover to plasma, resting blood pressure and heart rate provides further support for the observation that elevated subcortical noradrenergic activity subserves a sympathoexcitatory role in the regulation of sympathetic preganglionic neurons of the thorocolumbar cord.

  15. Connections of Barrington's nucleus to the sympathetic nervous system in rats.

    Science.gov (United States)

    Cano, G; Card, J P; Rinaman, L; Sved, A F

    2000-03-15

    Barrington's nucleus (BN) has been considered a pontine center related exclusively to the control of pelvic parasympathetic activity. The present study demonstrates an anatomical linkage between BN and autonomic outflow to visceral targets innervated exclusively by the sympathetic division of the autonomic nervous system. Temporal analysis of infection after injection of pseudorabies virus (PRV), a retrograde transynaptic tracer, into two sympathetically innervated organs, the spleen and the kidney, revealed the presence of infected neurons in BN at early post-inoculation survival intervals. Immunohistochemical localization of PRV after spleen injections showed that a small subpopulation of BN neurons became labeled in a time frame coincident with the appearance of infected neurons in other brain regions known to project to sympathetic preganglionic neurons (SPNs) in the thoracic spinal cord; a larger number of infected neurons appeared in BN at intermediate intervals after PRV injections into the spleen or kidney. Coinjection of the retrograde tracer Fluoro-Gold i.p. and PRV into the spleen demonstrated that parasympathetic preganglionic neurons in the caudal medulla or lumbo-sacral spinal cord were not infected, indicating that infected BN neurons were not infected via a parasympathetic route. Thus, BN neurons become infected after PRV injections into the spleen or kidney either directly through BN projections to SPNs, or secondarily via BN projections to infected pre-preganglionic neurons. These results demonstrate an anatomical linkage, either direct or indirect, between BN and sympathetic activity. Because BN receives numerous inputs from diverse brain regions, the relation of BN with both branches of the autonomic nervous system suggests that this nucleus might play a role in the integration of supraspinal inputs relevant to the central coordination of sympathetic and parasympathetic activity.

  16. Role of the sympathetic nervous system in carbon tetrachloride-induced hepatotoxicity and systemic inflammation.

    Directory of Open Access Journals (Sweden)

    Jung-Chun Lin

    Full Text Available Carbon tetrachloride (CCl4 is widely used as an animal model of hepatotoxicity and the mechanisms have been arduously studied, however, the contribution of the sympathetic nervous system (SNS in CCl4-induced acute hepatotoxicity remains controversial. It is also known that either CCl4 or SNS can affect systemic inflammatory responses. The aim of this study was to establish the effect of chemical sympathectomy with 6-hydroxydopamine (6-OHDA in a mouse model of CCl4-induced acute hepatotoxicity and systemic inflammatory response. Mice exposed to CCl4 or vehicle were pretreated with 6-OHDA or saline. The serum levels of aminotransferases and alkaline phosphatase in the CCl4-poisoning mice with sympathetic denervation were significantly lower than those without sympathetic denervation. With sympathetic denervation, hepatocellular necrosis and fat infiltration induced by CCl4 were greatly decreased. Sympathetic denervation significantly attenuated CCl4-induced lipid peroxidation in liver and serum. Acute CCl4 intoxication showed increased expression of inflammatory cytokines/chemokines [eotaxin-2/CCL24, Fas ligand, interleukin (IL-1α, IL-6, IL-12p40p70, monocyte chemoattractant protein-1 (MCP-1/CCL2, and tumor necrosis factor-α (TNF-α], as well as decreased expression of granulocyte colony-stimulating factor and keratinocyte-derived chemokine. The overexpressed levels of IL-1α, IL-6, IL-12p40p70, MCP-1/CCL2, and TNF-α were attenuated by sympathetic denervation. Pretreatment with dexamethasone significantly reduced CCl4-induced hepatic injury. Collectively, this study demonstrates that the SNS plays an important role in CCl4-induced acute hepatotoxicity and systemic inflammation and the effect may be connected with chemical- or drug-induced hepatotoxicity and circulating immune response.

  17. Sympathetic nervous system activity is associated with obesity-induced subclinical organ damage in young adults.

    Science.gov (United States)

    Lambert, Elisabeth; Sari, Carolina Ika; Dawood, Tye; Nguyen, Julie; McGrane, Mariee; Eikelis, Nina; Chopra, Reena; Wong, Chiew; Chatzivlastou, Kanella; Head, Geoff; Straznicky, Nora; Esler, Murray; Schlaich, Markus; Lambert, Gavin

    2010-09-01

    Excess weight is established as a major risk factor for cardiovascular diseases, particularly in young individuals. To get a better understanding of the pathophysiology underlying increased cardiovascular disease risk, we evaluated early signs of organ damage and their possible relationship to sympathetic nervous activity. Eighteen lean (body mass index obese (body mass index >25 kg/m(2)) healthy university students were included in the study. We comprehensively assessed subclinical target organ damage, including the following: (1) assessment of renal function; (2) left ventricular structure and systolic and diastolic function; and (3) endothelial function. Muscle sympathetic nervous activity was assessed by microneurography. Participants with excess weight had decreased endothelial function (Pnervous activity (Pnervous activity (R(2)=0.244; Pnervous activity, after adjustment for body mass index, sex, and blood pressure (R(2)=0.318, P<0.01 and R(2)=0.312, P<0.05, respectively). Excess weight in young individuals is associated with subclinical alterations in renal and endothelial function, as well as in the structure of the heart, even in the absence of hypertension. Sympathetic activity is closely associated with cardiovascular and renal alterations observed in these subjects.

  18. Measuring Cardiac Autonomic Nervous System (ANS) Activity in Toddlers - Resting and Developmental Challenges.

    Science.gov (United States)

    Bush, Nicole R; Caron, Zoe K; Blackburn, Katherine S; Alkon, Abbey

    2016-02-25

    The autonomic nervous system (ANS) consists of two branches, the parasympathetic and sympathetic nervous systems, and controls the function of internal organs (e.g., heart rate, respiration, digestion) and responds to everyday and adverse experiences (1). ANS measures in children have been found to be related to behavior problems, emotion regulation, and health (2-7). Therefore, understanding the factors that affect ANS development during early childhood is important. Both branches of the ANS affect young children's cardiovascular responses to stimuli and have been measured noninvasively, via external monitoring equipment, using valid and reliable measures of physiological change (8-11). However, there are few studies of very young children with simultaneous measures of the parasympathetic and sympathetic nervous systems, which limits understanding of the integrated functioning of the two systems. In addition, the majority of existing studies of young children report on infants' resting ANS measures or their reactivity to commonly used mother-child interaction paradigms, and less is known about ANS reactivity to other challenging conditions. We present a study design and standardized protocol for a non-invasive and rapid assessment of cardiac autonomic control in 18 month old children. We describe methods for continuous monitoring of the parasympathetic and sympathetic branches of the ANS under resting and challenge conditions during a home or laboratory visit and provide descriptive findings from our sample of 140 ethnically diverse toddlers using validated equipment and scoring software. Results revealed that this protocol can produce a range of physiological responses to both resting and developmentally challenging conditions, as indicated by changes in heart rate and indices of parasympathetic and sympathetic activity. Individuals demonstrated variability in resting levels, responses to challenges, and challenge reactivity, which provides additional evidence

  19. Giving support to others reduces sympathetic nervous system-related responses to stress.

    Science.gov (United States)

    Inagaki, Tristen K; Eisenberger, Naomi I

    2016-04-01

    Social support is a major contributor to the link between social ties and beneficial health outcomes. Research to date has focused on how receiving support from others might be good for us; however, we know less about the health effects of giving support to others. Based on prior work in animals showing that stimulating neural circuitry important for caregiving behavior can reduce sympathetic-related responses to stressors, it is possible that, in humans, giving to others can reduce stressor-evoked sympathetic nervous system responding, which has implications for health outcomes. To test the effect of giving support on the physiological stress response, participants either wrote a supportive note to a friend (support-giving condition) or wrote about their route to school/work (control condition) before undergoing a standard laboratory-based stress task. Physiological responses (heart rate, blood pressure, salivary alpha-amylase, salivary cortisol), and self-reported stress were collected throughout the protocol. In line with hypotheses, support giving (vs. control) reduced sympathetic-related responses (systolic blood pressure and alpha-amylase) to the stressor. No effects of support giving were found on self-reported psychological stress or cortisol levels. Results add to existing knowledge of the pathways by which support giving may lead to health benefits and highlight the contribution of giving to others in the broader social support-health link.

  20. Sympathetic nervous system in obesity-related hypertension: mechanisms and clinical implications.

    Science.gov (United States)

    Kalil, Graziela Z; Haynes, William G

    2012-01-01

    Obesity markedly increases the risk of hypertension and cardiovascular disease, which may be related to activation of the sympathetic nervous system (SNS). Sympathetic overactivity directly and indirectly contributes to blood pressure (BP) elevation in obesity, including stimulation of the renin-angiotensin-aldosterone system (RAAS). The adipocyte-derived peptide leptin suppresses appetite, increases thermogenesis, but also raises SNS activity and BP. Obese individuals exhibit hyperleptinemia but are resistant to its appetite-suppressing actions. Interestingly, animal models of obesity exhibit preserved sympathoexcitatory and pressor actions of leptin, despite resistance to its anorexic and metabolic actions, suggesting selective leptin resistance. Disturbance of intracellular signaling at specific hypothalamic neural networks appears to underlie selective leptin resistance. Delineation of these pathways should lead to novel approaches to treatment. In the meantime, treatment of obesity-hypertension has relied on antihypertensive drugs. Although sympathetic blockade is mechanistically attractive in obesity-hypertension, in practice its effects are disappointing because of adverse metabolic effects and inferior outcomes. On the basis of subgroup analyses of obese patients in large randomized clinical trials, drugs such as diuretics and RAAS blockers appear superior in preventing cardiovascular events in obesity--hypertension. An underused alternative approach to obesity-hypertension is induction of weight loss, which reduces circulating leptin and insulin, partially reverses resistance to these hormones, decreases sympathetic activation and improves BP and other risk factors. Though weight loss induced by lifestyle is often modest and transient, carefully selected pharmacological weight loss therapies can produce substantial and sustained antihypertensive effects additive to lifestyle interventions.

  1. Heart-rate response to sympathetic nervous stimulation, exercise, and magnesium concentration in various sleep conditions.

    Science.gov (United States)

    Omiya, Kazuto; Akashi, Yoshihiro J; Yoneyama, Kihei; Osada, Naohiko; Tanabe, Kazuhiko; Miyake, Fumihiko

    2009-04-01

    The aim of this study was to clarify the mechanism of impaired exercise tolerance in chronic sleep-restricted conditions by investigating variables related to heart-rate (HR) response to sympathetic nervous stimulation. Sixteen healthy men (mean age 21.5 years) were tested in a control state, acute sleep-loss state, and chronic sleep-restricted state. Participants underwent cardiopulmonary exercise testing in each state. Their norepinephrine (NE) concentration was measured before and immediately after exercise. Intracellular magnesium (Mg) concentration was measured in a resting state. Exercise duration was shorter and the ratio of HR response to the percentage increase in NE was higher in the chronic sleep-restricted state than in the control state. Intracellular Mg gradually decreased from control to chronic sleep restriction. There was a negative correlation between peak exercise duration and the ratios of HR response to the rate of increase in NE. Intracellular Mg was positively correlated with the ratios of HR response to the increase in NE both in control and in acute sleep loss. The authors conclude that the impaired exercise tolerance in a chronic sleep-restricted state is caused by hypersensitivity of the HR response to sympathetic nervous stimulation, which showed a compensation for decreased intracellular Mg concentration.

  2. Postnatal Cardiac Autonomic Nervous Control in Pediatric Congenital Heart Disease

    Directory of Open Access Journals (Sweden)

    Ineke Nederend

    2016-04-01

    Full Text Available Congenital heart disease is the most common congenital defect. During childhood, survival is generally good but, in adulthood, late complications are not uncommon. Abnormal autonomic control in children with congenital heart disease may contribute considerably to the pathophysiology of these long term sequelae. This narrative review of 34 studies aims to summarize current knowledge on function of the autonomic nervous system in children with a congenital heart defect. Large scale studies that measure both branches of the nervous system for prolonged periods of time in well-defined patient cohorts in various phases of childhood and adolescence are currently lacking. Pending such studies, there is not yet a good grasp on the extent and direction of sympathetic and parasympathetic autonomic function in pediatric congenital heart disease. Longitudinal studies in homogenous patient groups linking autonomic nervous system function and clinical outcome are warranted.

  3. Pacemaker current inhibition in experimental human cardiac sympathetic activation: a double-blind, randomized, crossover study

    NARCIS (Netherlands)

    Schroeder, C.; Heusser, K.; Zoerner, A.A.; Grosshennig, A.; Wenzel, D.; May, M.; Sweep, F.C.; Mehling, H.; Luft, F.C.; Tank, J.; Jordan, J.

    2014-01-01

    Hyperpolarization-activated, cyclic nucleotide-gated 4 (HCN4) channels comprise the final pathway for autonomic heart rate (HR) regulation. We hypothesized that HCN4 inhibition could reverse autonomic imbalance in a human model of cardiac sympathetic activation. Nineteen healthy men ingested oral me

  4. Co-localization of histamine and norepinephrine in sympathetic ganglia and exocytosis of endogenous histamine from cardiac sympathetic nerve endings of macaca mulatto monkey

    Institute of Scientific and Technical Information of China (English)

    Ming-kaiLI; Xiao-xingLUO; Liang-weiCHEN; ZhongCHEN; JiaMENG; JingHU; Yu-meiWU; Jing-ruMENG; ZhengHOU; XueMA

    2005-01-01

    AIM To provide the evidence about localization, biosynthesis, metabolism and release of histamine from the cardiac sympathetic nerve terminals, and endogenous sympathetic histamine could inhibit itsel frelease from the nerve terminal through the presynaptic histamine H3 receptor. METHODS Using double-labeled immunohistochemistry to observe the co-localization of histamine and NE in the superior cer-vical ganglia (SCG) of macaca mulatto monkey; Different-speed centrifugation to obtain the cardiac sympathetic nerve terminal model (the cardiac synaptosomes), spectrofluorometer and ELISA techniques to detect the release of histamine from the cardiacsynaptosomes. RESULTS ( 1 ) The coexistence of histamine and norepinephrine immunoreactivities was identified in the same neuron within SCG of macaca mulatto monkey. (2) Depolarization of macaca mulatto monkey cardiac synaptosomes with 50 mmol/L potassium caused the release of endogenous histamine,

  5. Scintigraphic assessment of cardiac sympathetic innervation with I-123-metaiodobenzylguanidine in cardiomyopathy. Special reference to cardiac arrhythmia

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Takahisa; Otsuka, Nobuaki; Sone, Teruki; Mimura, Hiroaki; Yanagimoto, Shinichi; Tomomitsu, Tatsushi; Fukunaga, Masao [Kawasaki Medical School, Kurashiki, Okayama (Japan); Morita, Koichi

    1999-07-01

    Cardiac sympathetic imagings with I-123-metaiodobenzylguanidine (MIBG) were carried out in 5 cases with dilated cardiomyopathy (DCM), 26 cases with hypertrophic cardiomyopathy (HCM), and 4 cases without cardiac disease as a control to assess cardiac sympathetic innervation qualitatively and quantitatively, and to clarify the relation of MIBG accumulation to arrhythmia. MIBG scintigraphy was performed at 15 min. (early image) and 4 hr. (delayed image) after intravenous injection of MIBG 111 MBq. The MIBG uptake ratio of mediastinum (H/M) and the cardiac washout rate (WR) from early to delayed images were calculated. On both early and delayed SPECTs, MIBG uptake was assessed by defect scores (DSs). Regarding the cases with HCM, the MIBG uptake ratio, WR, and DS were also compared in cases with and without arrhythmia. In DCM, the MIBG uptake on delayed SPECT was markedly low, the H/M ratio was significantly lower, and the DS was significantly higher than in the control (all p<0.05). As for the WR, there was no significant difference between HCM, DCM and the control. In HCM, significantly reduced MIBG uptake was observed in cases with ventricular techycardia (VT) and in cases with atrial fibrillation (Af), as compared with cases without arrhythmia (all p<0.05). There results suggest that MIBG scintigraphy might be a useful tool in the assessment of cardiac sympathetic abnormalities in cardiomyopathy, especially in cases with arrhythmia. (author)

  6. Adrenal G protein-coupled receptor kinase-2 in regulation of sympathetic nervous system activity in heart failure

    Institute of Scientific and Technical Information of China (English)

    Katie; A; Mc; Crink; Ava; Brill; Anastasios; Lymperopoulos

    2015-01-01

    Heart failure(HF), the number one cause of death in the western world, is caused by the insufficient performance of the heart leading to tissue underperfusion in response to an injury or insult. It comprises complex interactions between important neurohormonal mechanisms that try but ultimately fail to sustain cardiac output. The most prominent such mechanism is the sympathetic(adrenergic) nervous system(SNS), whose activity and outflow are greatly elevated in HF. SNS hyperactivity confers significant toxicity to the failing heart and markedly increases HF morbidity and mortality via excessive activation of adrenergic receptors, which are G protein-coupled receptors. Thus, ligand binding induces their coupling to heterotrimeric G proteins that transduce intracellular signals. G protein signaling is turned-off by the agonist-bound receptor phosphorylation courtesy of G protein-coupled receptor kinases(GRKs), followed by βarrestin binding, which prevents the GRK-phosphorylated receptor from further interaction with the G proteins and simultaneously leads it inside the cell(receptor sequestration). Recent evidence indicates that adrenal GRK2 and βarrestins can regulate adrenal catecholamine secretion, thereby modulating SNS activity in HF. The present review gives an account of all these studies on adrenal GRKs and βarrestins in HF and discusses the exciting new therapeutic possibilities for chronic HF offered by targeting these proteins pharmacologically.

  7. Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis.

    Science.gov (United States)

    Lowin, Torsten; Straub, Rainer H

    2015-09-06

    Chronic inflammation in rheumatoid arthritis (RA) is accompanied by activation of the sympathetic nervous system, which can support the immune system to perpetuate inflammation. Several animal models of arthritis already demonstrated a profound influence of adrenergic signaling on the course of RA. Peripheral norepinephrine release from sympathetic terminals is controlled by cannabinoid receptor type 1 (CB1), which is activated by two major endocannabinoids (ECs), arachidonylethanolamine (anandamide) and 2-arachidonylglycerol. These ECs also modulate function of transient receptor potential channels (TRPs) located on sensory nerve fibers, which are abundant in arthritic synovial tissue. TRPs not only induce the sensation of pain but also support inflammation via secretion of pro-inflammatory neuropeptides. In addition, many cell types in synovial tissue express CB1 and TRPs. In this review, we focus on CB1 and transient receptor potential vanilloid 1 (TRPV1)-mediated effects on RA since most anti-inflammatory mechanisms induced by cannabinoids are attributed to cannabinoid receptor type 2 (CB2) activation. We demonstrate how CB1 agonism or antagonism can modulate arthritic disease. The concept of functional antagonism with continuous CB1 activation is discussed. Since fatty acid amide hydrolase (FAAH) is a major EC-degrading enzyme, the therapeutic possibility of FAAH inhibition is studied. Finally, the therapeutic potential of ECs is examined since they interact with cannabinoid receptors and TRPs but do not produce central side effects.

  8. Influence of sympathetic nervous system on sensorimotor function: whiplash associated disorders (WAD) as a model.

    Science.gov (United States)

    Passatore, Magda; Roatta, Silvestro

    2006-11-01

    There is increasing interest about the possible involvement of the sympathetic nervous system (SNS) in initiation and maintenance of chronic muscle pain syndromes of different aetiology. Epidemiological data show that stresses of different nature, e.g. work-related, psychosocial, etc., typically characterised by SNS activation, may be a co-factor in the development of the pain syndrome and/or negatively affect its time course. In spite of their clear traumatic origin, whiplash associated disorders (WAD) appear to share many common features with other chronic pain syndromes affecting the musculo-skeletal system. These features do not only include symptoms, like type of pain or sensory and motor dysfunctions, but possibly also some of the pathophysiological mechanisms that may concur to establish the chronic pain syndrome. This review focuses on WAD, particular emphasis being devoted to sensorimotor symptoms, and on the actions exerted by the sympathetic system at muscle level. Besides its well-known action on muscle blood flow, the SNS is able to affect the contractility of muscle fibres, to modulate the proprioceptive information arising from the muscle spindle receptors and, under certain conditions, to modulate nociceptive information. Furthermore, the activity of the SNS itself is in turn affected by muscle conditions, such as its current state of activity, fatigue and pain signals originating in the muscle. The possible involvement of the SNS in the development of WAD is discussed in light of the several positive feedback loops in which it is implicated.

  9. Does the Sympathetic Nervous System contribute to the pathophysiology of MetabolicSyndrome?

    Directory of Open Access Journals (Sweden)

    Marina Conceição dos Santos Moreira

    2015-08-01

    Full Text Available The metabolic syndrome (MS, formally known as syndrome X, is a clustering of several riskfactors such as obesity, hypertension, insulin resistance and dislypidemia which could lead to thedevelopment of diabetes and cardiovascular diseases (CVD. The frequent changes in the definitionand diagnostic criteria of MS are indications of the controversy and the challenges surrounding theunderstanding of this syndrome among researchers. Obesity and insulin resistance are leading riskfactors of MS. Moreover, obesity and hypertension are closely associated to the increase andaggravation of oxidative stress. The recommended treatment of MS frequently involves change oflifestyles to prevent weight gain. MS is not only an important screening tool for the identification ofindividuals at high risk of CVD and diabetes but also an indicator of suitable treatment. Assympathetic disturbances and oxidative stress are often associated with obesity and hypertension,the present review summarizes the role of sympathetic nervous system and oxidative stress in theMS.

  10. Role of the Sympathetic Nervous System in Stress-Mediated Cardiovascular Disease.

    Science.gov (United States)

    Hering, Dagmara; Lachowska, Kamila; Schlaich, Markus

    2015-10-01

    A high incidence of acute cardiovascular events and sudden cardiac death following unexpected acute emotional stress or a natural catastrophic disaster has been well-documented over the past decades. Chronic psychosocial factors have been shown to be directly linked to the development of hypertension, cardiovascular disease and stroke. Activation of various neurogenic pathways is an important mediator of acute and chronic stress-induced hypertension and heart disease. Heightened sympathetic activation has been shown to be a critical contributor linking psychogenic effects on cardiovascular regulation to serious and often fatal CV outcomes. Accordingly, several therapeutic approaches that attenuate autonomic imbalance via modulation of increased sympathetic outflow by either non-pharmacological or interventional means have been shown to alleviate clinical symptoms. Likewise stress reduction per se achieved with transcendental medicine has been linked to improved patient outcomes. Therapies that oppose adrenergic activity and/or have the potential to attenuate negative emotions are likely to reduce cardiovascular risk and its adverse consequences attributable to chronic mental stress.

  11. Radionuclide imaging of cardiac sympathetic innervation in heart failure: unlocking untapped potential.

    Science.gov (United States)

    Gupta, Shuchita; Amanullah, Aman

    2015-03-01

    Heart failure (HF) is associated with sympathetic overactivity, which contributes to disease progression and arrhythmia development. Cardiac sympathetic innervation imaging can be performed using radiotracers that are taken up in the presynaptic nerve terminal of sympathetic nerves. The commonly used radiotracers are (123)I-metaiodobenzylguanidine ((123)I-mIBG) for planar and single-photon emission computed tomography imaging, and (11)C-hydroxyephedrine for positron emission tomography imaging. Sympathetic innervation imaging has been used in assessing prognosis, response to treatment, risk of ventricular arrhythmias and sudden death and prediction of response to cardiac resynchronization therapy in patients with HF. Other potential applications of these techniques are in patients with chemotherapy-induced cardiomyopathy, predicting myocardial recovery in patients with left ventricular assist devices, and assessing reinnervation following cardiac transplantation. There is a lack of standardization with respect to technique of (123)I-mIBG imaging that needs to be overcome for the imaging modality to gain popularity in clinical practice.

  12. A systematic review concerning the relation between the sympathetic nervous system and heart failure with preserved left ventricular ejection fraction.

    Directory of Open Access Journals (Sweden)

    Willemien L Verloop

    Full Text Available Heart failure with preserved left ventricular ejection fraction (HFPEF affects about half of all patients diagnosed with heart failure. The pathophysiological aspect of this complex disease state has been extensively explored, yet it is still not fully understood. Since the sympathetic nervous system is related to the development of systolic HF, we hypothesized that an increased sympathetic nerve activation (SNA is also related to the development of HFPEF. This review summarizes the available literature regarding the relation between HFPEF and SNA.Electronic databases and reference lists through April 2014 were searched resulting in 7722 unique articles. Three authors independently evaluated citation titles and abstracts, resulting in 77 articles reporting about the role of the sympathetic nervous system and HFPEF. Of these 77 articles, 15 were included for critical appraisal: 6 animal and 9 human studies. Based on the critical appraisal, we selected 9 articles (3 animal, 6 human for further analysis. In all the animal studies, isoproterenol was administered to mimic an increased sympathetic activity. In human studies, different modalities for assessment of sympathetic activity were used. The studies selected for further evaluation reported a clear relation between HFPEF and SNA.Current literature confirms a relation between increased SNA and HFPEF. However, current literature is not able to distinguish whether enhanced SNA results in HFPEF, or HFPEF results in enhanced SNA. The most likely setting is a vicious circle in which HFPEF and SNA sustain each other.

  13. Differential cardiac responses to unilateral sympathetic nerve stimulation in the isolated innervated rabbit heart.

    Science.gov (United States)

    Winter, James; Tanko, Abdul Samed; Brack, Kieran E; Coote, John H; Ng, G André

    2012-01-26

    The heart receives both a left and right sympathetic innervation. Currently there is no description of an in vitro whole heart preparation for comparing the influence of each sympathetic supply on cardiac function. The aim was to establish the viability of using an in vitro model to investigate the effects of left and right sympathetic chain stimulation (LSS/RSS). For this purpose the upper sympathetic chain on each side was isolated and bipolar stimulating electrodes were attached between T2-T3 and electrically insulated from surrounding tissue in a Langendorff innervated rabbit heart preparation (n=8). Heart rate (HR) was investigated during sinus rhythm, whilst dromotropic, inotropic and ventricular electrophysiological effects were measured during constant pacing (250 bpm). All responses exhibited linear increases with increases in stimulation frequency (2-10 Hz). The change in HR was larger during RSS than LSS (P<0.01), increasing by 78±9 bpm and 49±8 bpm respectively (10 Hz, baseline; 145±7 bpm). Left ventricular pressure was increased from a baseline of 50±4 mmHg, by 22±5 mmHg (LSS, 10 Hz) and 4±1 mmHg (RSS, 10 Hz) respectively (P<0.001). LSS, but not RSS, caused a shortening of basal and apical monophasic action potential duration (MAPD90). We demonstrate that RSS exerts a greater effect at the sinoatrial node and LSS at the left ventricle. The study confirms previous experiments on dogs and cats, provides quantitative data on the comparative influence of right and left sympathetic nerves and demonstrates the feasibility of isolating and stimulating the ipsilateral cardiac sympathetic supply in an in vitro innervated rabbit heart preparation.

  14. Sympathetic nervous system promotes hepatocarcinogenesis by modulating inflammation through activation of alpha1-adrenergic receptors of Kupffer cells.

    Science.gov (United States)

    Huan, Hong-Bo; Wen, Xu-Dong; Chen, Xue-Jiao; Wu, Lin; Wu, Li-Li; Zhang, Liang; Yang, Da-Peng; Zhang, Xia; Bie, Ping; Qian, Cheng; Xia, Feng

    2017-01-01

    The sympathetic nervous system (SNS) is known to play a significant role in tumor initiation and metastasis. Hepatocellular carcinoma (HCC) frequently occurs in cirrhotic livers after chronic inflammation, and the SNS is hyperactive in advanced liver cirrhosis. However, it remains unclear whether the SNS promotes hepatocarcinogenesis by modulating chronic liver inflammation. In this study, a retrospective pathological analysis and quantification of sympathetic nerve fiber densities (tyrosine hydroxylase, TH(+)) in HCC patients, and diethylnitrosamine (DEN)-induced hepatocarcinogenesis in rats were performed. Our data showed that high density of sympathetic nerve fibers and α1-adrenergic receptors (ARs) of Kupffer cells (KCs) were associated with a poor prognosis of HCC. Sympathetic denervation or blocking of α1-ARs decreased DEN-induced HCC incidence and tumor development. In addition, synergistic effects of interleukin-6 (IL-6) and transforming growth factor-beta (TGF-β) in hepatocarcinogenesis were observed. The suppression of the SNS reduced IL-6 and TGF-β expression, which suppressed hepatocarcinogenesis, and KCs play a key role in this process. After the ablation of KCs, IL-6 and TGF-β expression and the development of HCC were inhibited. This study demonstrates that sympathetic innervation is crucial for hepatocarcinogenesis and that the SNS promotes hepatocarcinogenesis by activating α1-ARs of KCs to boost the activation of KCs and to maintain the inflammatory microenvironment. These results indicate that sympathetic denervation or α1-ARs blockage may represent novel treatment approaches for HCC.

  15. Impaired cardiac sympathetic innervation in symptomatic patients with long QT syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kies, Peter; Stegger, Lars; Schober, Otmar [University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); Paul, Matthias; Moennig, Gerold [University Hospital Muenster, Department for Cardiology and Angiology, Muenster (Germany); Gerss, Joachim [University of Muenster, Institute of Biostatistics and Clinical Research, Muenster (Germany); Wichter, Thomas [Marienhospital Osnabrueck, Department of Cardiology, Niels-Stensen-Kliniken, Osnabrueck (Germany); Schaefers, Michael [University of Muenster, European Institute of Molecular Imaging - EIMI, Muenster (Germany); Schulze-Bahr, Eric [University Hospital Muenster, Department for Cardiology and Angiology, Muenster (Germany); University Hospital Muenster, Institute for Genetics of Heart Diseases, Muenster (Germany)

    2011-10-15

    Increased sympathetic activation is a key modifier for arrhythmogenesis in patients with long QT syndrome (LQTS), a congenital channelopathy. Therefore, we investigated cardiac sympathetic function using {sup 123}I-metaiodobenzylguanidine (MIBG) single photon emission computed tomography (SPECT) in a cohort of symptomatic LQTS patients and correlated these findings with the underlying genotype. [{sup 123}I]MIBG SPECT was performed in 28 LQTS patients. Among these, 18 patients (64%) had a previous syncope and 10 patients (36%) survived sudden cardiac arrest. Patients were characterized in terms of genetic subtypes and QTc interval on surface ECGs. SPECT images were analysed for regional [{sup 123}I]MIBG uptake in a 33-segment bullseye scheme and compared to those obtained from 10 age-matched healthy control subjects (43 {+-} 12 years). An abnormal {sup 123}I-MIBG scan was found in 17 of 28 LQTS patients (61%) with a tracer reduction mainly located in the anteroseptal segments of the left ventricle. This finding was independent of the genetic LQTS subtype. In addition, no differences were found between LQTS patients with a QTc >500 ms vs <500 ms or those suffering from syncope vs VF (p > 0.05). A distinct regional pattern of impaired cardiac sympathetic function was identified in the majority of symptomatic LQTS patients. This innervation defect was independent of the underlying genotype and clinical disease expression. (orig.)

  16. Macrophage populations and cardiac sympathetic denervation during L-NAME-induced hypertension in rats

    DEFF Research Database (Denmark)

    Neves, S R S; Machado, C R S; Pinto, A M T;

    2006-01-01

    The rat model of hypertension induced by prolonged treatment with Nomega-nitro-L-arginine methyl ester (L-NAME) has been extensively used. However, the effects on cardiac autonomic innervation are unknown. Here, the cardiac sympathetic innervation is analyzed in parallel with myocardial lesions...... and macrophage infiltration at day 7. No denervation was detectable at day 14 of double treatment, using subcutaneous AG. Our findings favor a role for ED1+ macrophages and iNOS in the hypertension-induced denervation process....

  17. (Non-invasive evaluation of the cardiac autonomic nervous system by PET)

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The proposed research addresses the development, validation and application of cardiac PET imaging techniques to characterize the autonomic nervous system of the heart. PET technology has significantly matured over the last two decades. Instrument design, image processing and production of radiochemical compounds have formed an integrative approach to provide a powerful and novel imaging modality for the quantitative in vivo evaluation of the autonomic nervous system of the heart. Animal studies using novel tracers for the sympathetic and parasympathetic nerve terminals will be employed to characterize the functional integrity of nerve terminals. This work will be complemented by the development of agents which bind to postsynaptic receptor sites. The combined evaluation of presynaptic and postsynaptic neuronal function will allow a unique characterization of neuronal function. Initial development in animal studies will be followed by feasibility studies in humans. These studies are designed to test sophisticated imaging protocols in the human heart and validate the scintigraphic findings with independent markers of autonomic innervation. Subsequent clinical application in various cardiac diseases is expected to provide new insights into the neuropathophysiology of the heart.

  18. Chronic orthostatic intolerance: a disorder with discordant cardiac and vascular sympathetic control

    Science.gov (United States)

    Furlan, R.; Jacob, G.; Snell, M.; Robertson, D.; Porta, A.; Harris, P.; Mosqueda-Garcia, R.

    1998-01-01

    BACKGROUND: Chronic orthostatic intolerance (COI) is a debilitating autonomic condition in young adults. Its neurohumoral and hemodynamic profiles suggest possible alterations of postural sympathetic function and of baroreflex control of heart rate (HR). METHODS AND RESULTS: In 16 COI patients and 16 healthy volunteers, intra-arterial blood pressure (BP), ECG, central venous pressure (CVP), and muscle sympathetic nerve activity (MSNA) were recorded at rest and during 75 degrees tilt. Spectral analysis of RR interval and systolic arterial pressure (SAP) variabilities provided indices of sympathovagal modulation of the sinoatrial node (ratio of low-frequency to high-frequency components, LF/HF) and of sympathetic vasomotor control (LFSAP). Baroreflex mechanisms were assessed (1) by the slope of the regression line obtained from changes of RR interval and MSNA evoked by pharmacologically induced alterations in BP and (2) by the index alpha, obtained from cross-spectral analysis of RR and SAP variabilities. At rest, HR, MSNA, LF/HF, and LFSAP were higher in COI patients, whereas BP and CVP were similar in the two groups. During tilt, BP did not change and CVP fell by the same extent in the 2 groups; the increase of HR and LF/HF was more pronounced in COI patients. Conversely, the increase of MSNA was lower in COI than in control subjects. Baroreflex sensitivity was similar in COI and control subjects at rest; tilt reduced alpha similarly in both groups. CONCLUSIONS: COI is characterized by an overall enhancement of noradrenergic tone at rest and by a blunted postganglionic sympathetic response to standing, with a compensatory cardiac sympathetic overactivity. Baroreflex mechanisms maintain their functional responsiveness. These data suggest that in COI, the functional distribution of central sympathetic tone to the heart and vasculature is abnormal.

  19. Locus coeruleus lesions and PCOS: role of the central and peripheral sympathetic nervous system in the ovarian function of rat

    Directory of Open Access Journals (Sweden)

    Farideh Zafari Zangeneh

    2012-01-01

    Full Text Available Polycystic ovary syndrome (PCOS is a complex endocrine and metabolic disorder associated with ovulatory dysfunction”. “Autonomic and central nervous systems play important roles in the regulation of ovarian physiology”. The noradrenergic nucleus locus coeruleus (LC plays a central role in the regulation of the sympathetic nervous system and synaptically connected to the preganglionic cell bodies of the ovarian sympathetic pathway and its activation is essential to trigger spontaneous or induced LH surges. This study evaluates sympathetic outflow in central and peripheral pathways in PCO rats. Objective: Our objectives in this study were (1 to estimate LC activity in rats with estradiol valerate (EV-induced PCO; (2 to antagonized alpha2a adrenoceptor in systemic conditions with yohimbine. Materials and Methods: Forty two rats were divided into two groups: 1 LC and yohimbine and 2 control. Every group subdivided in two groups: eighteen rats were treated with estradiol valerate for induction of follicular cysts and the remainders were sesame oil groups. Results: Estradiol concentration was significantly augmented by the LC lesion in PCO rats (p<0.001, while LC lesion could not alter serum concentrations of LH and FSH, like yohimbine. The morphological observations of ovaries of LC lesion rats showed follicles with hyperthecosis, but yohimbine reduced the number of cysts, increased corpus lutea and developed follicles. Conclusion: Rats with EV-induced PCO increased sympathetic activity. LC lesion and yohimbine decreased the number of cysts and yohimbine increased corpus lutea and developed follicles in PCO rats.

  20. The inhibitory role of sympathetic nervous system in the Ca2+-dependent proteolysis of skeletal muscle

    Directory of Open Access Journals (Sweden)

    L.C.C. Navegantes

    2009-01-01

    Full Text Available Mammalian cells contain several proteolytic systems to carry out the degradative processes and complex regulatory mechanisms to prevent excessive protein breakdown. Among these systems, the Ca2+-activated proteolytic system involves the cysteine proteases denoted calpains, and their inhibitor, calpastatin. Despite the rapid progress in molecular research on calpains and calpastatin, the physiological role and regulatory mechanisms of these proteins remain obscure. Interest in the adrenergic effect on Ca2+-dependent proteolysis has been stimulated by the finding that the administration of β2-agonists induces muscle hypertrophy and prevents the loss of muscle mass in a variety of pathologic conditions in which calpains are activated. This review summarizes evidence indicating that the sympathetic nervous system produces anabolic, protein-sparing effects on skeletal muscle protein metabolism. Studies are reviewed, which indicate that epinephrine secreted by the adrenal medulla and norepinephrine released from adrenergic terminals have inhibitory effects on Ca2+-dependent protein degradation, mainly in oxidative muscles, by increasing calpastatin levels. Evidence is also presented that this antiproteolytic effect, which occurs under both basal conditions and in stress situations, seems to be mediated by β2- and β3-adrenoceptors and cAMP-dependent pathways. The understanding of the precise mechanisms by which catecholamines promote muscle anabolic effects may have therapeutic value for the treatment of muscle-wasting conditions and may enhance muscle growth in farm species for economic and nutritional purposes.

  1. Cardiac-locked bursts of muscle sympathetic nerve activity are absent in familial dysautonomia.

    Science.gov (United States)

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Axelrod, Felicia B; Kaufmann, Horacio

    2013-02-01

    Familial dysautonomia (Riley-Day syndrome) is an hereditary sensory and autonomic neuropathy (HSAN type III), expressed at birth, that is associated with reduced pain and temperature sensibilities and absent baroreflexes, causing orthostatic hypotension as well as labile blood pressure that increases markedly during emotional excitement. Given the apparent absence of functional baroreceptor afferents, we tested the hypothesis that the normal cardiac-locked bursts of muscle sympathetic nerve activity (MSNA) are absent in patients with familial dysautonomia. Tungsten microelectrodes were inserted percutaneously into muscle or cutaneous fascicles of the common peroneal nerve in 12 patients with familial dysautonomia. Spontaneous bursts of MSNA were absent in all patients, but in five patients we found evidence of tonically firing sympathetic neurones, with no cardiac rhythmicity, that increased their spontaneous discharge during emotional arousal but not during a manoeuvre that unloads the baroreceptors. Conversely, skin sympathetic nerve activity (SSNA), recorded in four patients, appeared normal. We conclude that the loss of phasic bursts of MSNA and the loss of baroreflex modulation of muscle vasoconstrictor drive contributes to the poor control of blood pressure in familial dysautonomia, and that the increase in tonic firing of muscle vasoconstrictor neurones contributes to the increase in blood pressure during emotional excitement.

  2. Sympathetic pain? A role of poor parasympathetic nervous system engagement in vicarious pain states.

    Science.gov (United States)

    Nazarewicz, Julia; Verdejo-Garcia, Antonio; Giummarra, Melita J

    2015-11-01

    This study investigated the psychophysiological correlates of the subjective experience of vicarious pain; that is, a spontaneous experience of pain when seeing another in pain. Forty-nine healthy, otherwise pain-free individuals aged 18-55 years completed empathy and anxiety questionnaires and were classified into three groups: vicarious responders with high anxiety (n = 11), vicarious responders with low anxiety (n = 22), and nonresponders (n = 16). Electrophysiological recordings of heart rate variability (HRV) during paced breathing and cognitive stress (serial sevens task) were completed before participants viewed short videos of athletes in states of pain or happiness, taken from Australian League Football matches. Change in beats per minute, relative to neutral scenes, were analyzed for the first 4 s after onset of the painful or happy event. Anxious responders had lower HF-HRV than both other groups, implicating poor parasympathetic regulation specific to states of stress. Both vicarious responder groups had elevated HR at the event onset, regardless of valence. After viewing painful injuries, nonanxious vicarious responders showed sustained HR over time, anxious responders showed HR acceleration with a peak at 3 s after the injury onset, and nonresponders showed a pattern of marked HR deceleration. These findings suggest that vicarious pain in anxious responders is associated with poorly regulated sympathetic arousal via insufficient inhibitory parasympathetic activity, whereas nonanxious persons show sustained arousal. Clearly, multiple mechanisms in the central and peripheral nervous system must play a role in vicarious pain states, and the different manifestations are likely to lead to very different behavioral consequences.

  3. Heart rate complexity and cardiac sympathetic dysinnervation in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Baumert, Mathias; Sacre, Julian W

    2013-01-01

    Cardiovascular autonomic neuropathy (CAN) is one of the most severe complications of type 2 diabetes mellitus (T2DM). The aim of this study was to investigate associations of cardiac sympathetic dysinnervation (CSD; by (123)I-MIBG scintigraphy) with short-term heart rate variability (HRV) measured by traditional vs. complexity markers. ECG was measured in 31 diabetic patients during rest over a period of 5 minutes and HRV quantified in different domains (time and frequency domain, scaling properties, symbolic dynamics). (123)I-MIBG scintigraphy identified 16 patients with CSD. Resting heart rate was increased and HRV reduced in these patients. In a subgroup of 16 patients ECG was also measured during standing. Changes in several HRV measures upon standing demonstrated cardiac responsiveness to orthostatic stress. Strong correlations between HRV, measured during standing, and CSD were observed with metrics based on symbolic dynamics. In conclusion, HRV assessment during standing may be useful for assessing cardiac sympathetic dysinnervation in patients with type 2 diabetes mellitus.

  4. Physiological and pathophysiological interactions between the respiratory central pattern generator and the sympathetic nervous system.

    Science.gov (United States)

    Molkov, Yaroslav I; Zoccal, Daniel B; Baekey, David M; Abdala, Ana P L; Machado, Benedito H; Dick, Thomas E; Paton, Julian F R; Rybak, Ilya A

    2014-01-01

    Respiratory modulation seen in the sympathetic nerve activity (SNA) implies that the respiratory and sympathetic networks interact. During hypertension elicited by chronic intermittent hypoxia (CIH), the SNA displays an enhanced respiratory modulation reflecting strengthened interactions between the networks. In this chapter, we review a series of experimental and modeling studies that help elucidate possible mechanisms of sympatho-respiratory coupling. We conclude that this coupling significantly contributes to both the sympathetic baroreflex and the augmented sympathetic activity after exposure to CIH. This conclusion is based on the following findings. (1) Baroreceptor activation results in perturbation of the respiratory pattern via transient activation of postinspiratory neurons in the Bötzinger complex (BötC). The same BötC neurons are involved in the respiratory modulation of SNA, and hence provide an additional pathway for the sympathetic baroreflex. (2) Under hypercapnia, phasic activation of abdominal motor nerves (AbN) is accompanied by synchronous discharges in SNA due to the common source of this rhythmic activity in the retrotrapezoid nucleus (RTN). CIH conditioning increases the CO2 sensitivity of central chemoreceptors in the RTN which results in the emergence of AbN and SNA discharges under normocapnic conditions similar to those observed during hypercapnia in naïve animals. Thus, respiratory-sympathetic interactions play an important role in defining sympathetic output and significantly contribute to the sympathetic activity and hypertension under certain physiological or pathophysiological conditions, and the theoretical framework presented may be instrumental in understanding of malfunctioning control of sympathetic activity in a variety of disease states.

  5. Using Lorenz plot and Cardiac Sympathetic Index of heart rate variability for detecting seizures for patients with epilepsy.

    Science.gov (United States)

    Jeppesen, Jesper; Beniczky, Sandor; Johansen, Peter; Sidenius, Per; Fuglsang-Frederiksen, Anders

    2014-01-01

    Tachycardia is often seen during epileptic seizures, but it also occurs during physical exercise. In order to assess whether focal epileptic seizures can be detected by short term moving window Heart Rate Variability (HRV) analysis, we modified the geometric HRV method, Lorenz plot, to consist of only 30, 50 or 100 R-R intervals per analyzed window. From each window we calculated the longitudinal (L) and transverse (T) variability of Lorenz plot to retrieve the Cardiac Sympathetic Index (CSI) as (L/T) and "Modified CSI" (described in methods), and compared the maximum during the patient's epileptic seizures with that during the patient's own exercise and non-seizure sessions as control. All five analyzed patients had complex partial seizures (CPS) originating in the temporal lobe (11 seizures) during their 1-5 days long term video-EEG monitoring. All CPS with electroencephalographic correlation were selected for the HRV analysis. The CSI and Modified CSI were correspondently calculated after each heart beat depicting the prior 30, 50 and 100 R-R intervals at the time. CSI (30, 50 and 100) and Modified CSI (100) showed a higher maximum peak during seizures than exercise/non-seizure (121-296%) for 4 of the 5 patients within 4 seconds before till 60 seconds after seizure onset time even though exercise maximum HR exceeded that of the seizures. The results indicate a detectable, sudden and inordinate shift towards sympathetic overdrive in the sympathovagal balance of the autonomic nervous system just around seizure-onset for certain patients. This new modified moving window Lorenz plot method seems promising way of constructing a portable ECG-based epilepsy alarm for certain patients with epilepsy who needs aid during seizure.

  6. Role of left cardiac sympathetic denervation in the management of congenital long QT syndrome.

    Directory of Open Access Journals (Sweden)

    Wang L

    2003-01-01

    Full Text Available Congenital long QT syndrome (LQTS is a rare but life-threatening disorder affecting cardiac electrophysiology. It occurs due to mutation in genes encoding for the ion channels in ventricular cell membrane. Syncopal attacks and cardiac arrest are the main symptoms of the disease. Anti-adrenergic therapy with oral beta-blockers has been the mainstay of treatment for LQTS. However, up to 30% of patients fail to respond to medical therapy and remain symptomatic. An alarming 10% of patients still experience cardiac arrest or sudden cardiac death during the course of therapy. Left cardiac sympathetic denervation (LCSD has been used as an alternative therapy in patients who are resistant to beta-blockers. Although LCSD appears effective in reducing the frequency of syncopal attacks and improving the survival rate in both the short and long-term, its use has not gained popularity. The recent advent of minimally invasive thoracoscopic sympathectomy may improve the acceptance of LCSD by physicians and patients in the future. The primary objective of this article was to review the current evidence of the clinical efficacy and safety of LCSD in the management of LQTS. The review was based on Medline search of articles published between 1966 and 2002.

  7. Impact of aging on cardiac sympathetic innervation measured by {sup 123}I-mIBG imaging in patients with systolic heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Rengo, Giuseppe; Ferrara, Nicola [Scientific Institute of Telese Terme, Salvatore Maugeri Foundation, IRCCS, Telese Terme (Italy); University of Naples Federico II, Division of Geriatrics, Department of Translational Medical Sciences, Naples (Italy); Pagano, Gennaro; Formisano, Roberto; Komici, Klara; Petraglia, Laura; Parisi, Valentina; Femminella, Grazia Daniela; De Lucia, Claudio; Cannavo, Alessandro; Memmi, Alessia; Leosco, Dario [University of Naples Federico II, Division of Geriatrics, Department of Translational Medical Sciences, Naples (Italy); Vitale, Dino Franco [Scientific Institute of Telese Terme, Salvatore Maugeri Foundation, IRCCS, Telese Terme (Italy); Paolillo, Stefania [Institute of Diagnostic and Nuclear Development, SDN Foundation, Naples (Italy); Attena, Emilio [Fatebenefratelli Hospital, Department of Cardiology, Naples (Italy); Pellegrino, Teresa [Institute of Biostructures and Bioimages of the National Council of Research, Naples (Italy); Federico II University of Naples, Division of Imaging, Radiotherapy, Neuroradiology, and Medical Physics, Department of Advanced Biomedical Sciences, Naples (Italy); Dellegrottaglie, Santo [Ospedale Medico-Chirurgico Accreditato Villa dei Fiori, Division of Cardiology, Acerra, Naples (Italy); Trimarco, Bruno; Filardi, Pasquale Perrone [Federico II University of Naples, Division of Cardiology, Department of Advanced Biomedical Sciences, Naples (Italy); Cuocolo, Alberto [Institute of Diagnostic and Nuclear Development, SDN Foundation, Naples (Italy); Federico II University of Naples, Division of Imaging, Radiotherapy, Neuroradiology, and Medical Physics, Department of Advanced Biomedical Sciences, Naples (Italy)

    2016-12-15

    Sympathetic nervous system (SNS) hyperactivity is a salient characteristic of chronic heart failure (HF) and contributes to the progression of the disease. Iodine-123 meta-iodobenzylguanidine ({sup 123}I-mIBG) imaging has been successfully used to assess cardiac SNS activity in HF patients and to predict prognosis. Importantly, SNS hyperactivity characterizes also physiological ageing, and there is conflicting evidence on cardiac {sup 123}I-mIBG uptake in healthy elderly subjects compared to adults. However, little data are available on the impact of ageing on cardiac sympathetic nerve activity assessed by {sup 123}I-mIBG scintigraphy, in patients with HF. We studied 180 HF patients (age = 66.1 ± 10.5 years [yrs]), left ventricular ejection fraction (LVEF = 30.6 ± 6.3 %) undergoing cardiac {sup 123}I-mIBG imaging. Early and late heart to mediastinum (H/M) ratios and washout rate were calculated in all patients. Demographic, clinical, and echocardiographic data were also collected. Our study population consisted of 53 patients aged >75 years (age = 77.7 ± 4.0 year), 67 patients aged 62-72 years (age = 67.9 ± 3.2 years) and 60 patients aged ≤61 year (age = 53.9 ± 5.6 years). In elderly patients, both early and late H/M ratios were significantly lower compared to younger patients (p < 0.05). By multivariate analysis, H/M ratios (both early and late) and washout rate were significantly correlated with LVEF and age. Our data indicate that, in a population of HF patients, there is an independent age-related effect on cardiac SNS innervation assessed by {sup 123}I-mIBG imaging. This finding suggests that cardiac {sup 123}I-mIBG uptake in patients with HF might be affected by patient age. (orig.)

  8. Renal sympathetic denervation prevents the development of pulmonary arterial hypertension and cardiac dysfunction in dogs.

    Science.gov (United States)

    Hu, Wei; Yu, Sheng-Bo; Chen, Liao; Guo, Rui-Qiang; Zhao, Qing-Yan

    2015-08-01

    The renin-angiotensin-aldosterone system is activated in pulmonary arterial hypertension (PAH) patients, and this activation may have long-term negative effects on the progression of PAH. The purpose of this study was to evaluate the effects of transcatheter renal sympathetic denervation (RSD) on the development of pulmonary arterial hypertension and cardiac dysfunction in dogs using two-dimensional speckle tracking imaging. Twenty-two dogs were randomly divided into three groups: control group (n = 7), PAH group (n = 8), and PAH + RSD group (n = 7). All dogs were assessed using two-dimensional speckle tracking imaging. The ventricular strain, ventricular synchrony, left ventricular (LV) twist, and torsion rate were analyzed to evaluate cardiac function. After 8 weeks, the right ventricular lateral longitudinal strain and the septum longitudinal strain were reduced in the PAH group compared with the control group (p dogs.

  9. Prognostic value of sympathetic innervation and cardiac asynchrony in dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Manrique, Alain; Hitzel, Anne; Vera, Pierre [Rouen University Hospital - Henri Becquerel Center, Nuclear Medicine, Rouen (France); Bernard, Mathieu; Bauer, Fabrice [Rouen University Hospital, Cardiology, Rouen (France); Menard, Jean-Francois [Rouen University Hospital, Biostatistics, Rouen (France); Sabatier, Remi [Caen University Hospital, Cardiology, Caen (France); Jacobson, Arnold [GE Healthcare, Princeton, NJ (United States); Agostini, Denis [Caen University Hospital, Nuclear Medicine, Caen (France)

    2008-11-15

    The purpose of the study is to examine prognostic values of cardiac I-123 metaiodobenzylguanidine (MIBG) uptake and cardiac dyssynchrony in patients with dilated cardiomyopathy (DCM). Ninety-four patients with non-ischemic DCM underwent I-123 MIBG imaging for assessing cardiac sympathetic innervation and equilibrium radionuclide angiography. Mean phase angles and SD of the phase histogram were computed for both right ventricular (RV) and left ventricular (LV). Phase measures of interventricular (RV-LV) and intraventricular (SD-RV and SD-LV) asynchrony were computed. Most patients were receiving beta-blockers (89%) and angiotensin-converting enzyme inhibitors (88%). One patient (1%) was lost to follow-up, six had cardiac death (6.4%), eight had heart transplantation (8.6%), and seven had unplanned hospitalization for heart failure (7.5%; mean follow-up: 37 {+-} 16 months). Patients with poor clinical outcome were older, had higher The New York Heart Association functional class, impaired right ventricular ejection fraction and left ventricular ejection fraction, and impaired cardiac I-123 MIBG uptake. On multivariate analysis, I-123 MIBG heart-to-mediastinum (H/M) uptake ratio <1.6 was the only predictor of both primary (cardiac death or heart transplantation, RR = 7.02, p < 0.01) and secondary (cardiac death, heart transplantation, or recurrent heart failure, RR = 8.10, p = 0.0008) end points. In patients receiving modern medical therapy involving beta-blockers, I-123 MIBG uptake, but not intra-LV asynchrony, was predictive of clinical outcome. The impact of beta-blockers on the prognostic value of ventricular asynchrony remains to be clarified. (orig.)

  10. Central activation of the sympathetic nervous system including the adrenals in anaesthetized guinea pigs by the muscarinic agonist talsaclidine.

    Science.gov (United States)

    Walland, A; Pieper, M P

    1998-04-01

    Talsaclidine, a novel M1-receptor selective muscarinic agonist for cholinergic substitution therapy of Alzheimer's disease, activates the sympathetic nervous system in guinea pigs and dogs at the orthosympathic ganglia and the paraganglionic adrenals. Results from guinea pigs provide indirect evidence for an additional central site of action. The present investigation in anaesthetized and vagotomized guinea pigs intended to demonstrate central activation of the sympathetic nervous system directly by comparing the blood pressure effects of intracerebroventricular and intravenous injections of small doses of talsaclidine. Increasing doses of 0.2 and 0.6 mg/kg talsaclidine were injected alternately into the third cerebral ventricle and intravenously in 6 guinea pigs before and after blockade of peripheral muscarinic receptors with 1 mg/kg ipratropium bromide i.v. In another group of 6 animals the injections were given into the cisterna cerebellomedullaris using the same protocol. In both groups central administration of talsaclidine caused dose-related hypertension while intravenous injections were hypotensive. Ipratropium bromide, a peripheral antimuscarinic drug, reversed this hypotensive action of intravenous talsaclidine into hypertension, but did not inhibit the effects of central administration. In contrast, atropine, an antimuscarinic drug which passes the blood-brain barrier, abolished the effect of 0.6 mg/kg talsaclidine injected into the cisterna cerebellomedullaris of 8 guinea pigs. The hypertensive effect of a first injection of 0.6 mg/kg talsaclidine into the cisterna cerebellomedullaris of 6 guinea pigs was approximately twice as large as that of a second given 90 min after bilateral adrenalectomy. Sham operation in another 6 animals was not inhibitory. The results demonstrate that talsaclidine, a selective muscarinic M1-receptor agonist, activates central parts of the sympathetic nervous system, including central projections of the adrenals by an action

  11. [Non-invasive evaluation of the cardiac autonomic nervous system by PET]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data.

  12. [Non-invasive evaluation of the cardiac autonomic nervous system by PET

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data.

  13. Polycystic Ovary Syndrome Presents Higher Sympathetic Cardiac Autonomic Modulation that is not altered by Strength Training

    Science.gov (United States)

    RIBEIRO, VICTOR B.; KOGURE, GISLAINE S.; REIS, ROSANA M.; GASTALDI, ADA C.; DE ARAÚJO, JOÃO E.; MAZON, JOSÉ H.; BORGHI, AUDREY; SOUZA, HUGO C.D.

    2016-01-01

    Polycystic ovary syndrome (PCOS) may present important comorbidities, such as cardiovascular and metabolic diseases, which are often preceded by changes in cardiac autonomic modulation. Different types of physical exercises are frequently indicated for the prevention and treatment of PCOS. However, little is known about the effects of strength training on the metabolic, hormonal, and cardiac autonomic parameters. Therefore, our aim was to investigate the effects of strength training on the autonomic modulation of heart rate variability (HRV) and its relation to endocrine-metabolic parameters in women with PCOS. Fifty-three women were divided into two groups: CONTROL (n=26) and PCOS (n=27). The strength training lasted 4 months, which was divided into mesocycles of 4 weeks each. The training load started with 70% of one repetition maximum (1RM). Blood samples were collected before and after intervention for analysis of fasting insulin and glucose, HOMA-IR, testosterone, androstenedione and testosterone/androstenedione (T/A) ratio. Spectral analysis of HRV was performed to assess cardiac autonomic modulation indexes. The PCOS group presented higher insulin and testosterone levels, T/A ratio, along with increased sympathetic cardiac autonomic modulation before intervention. The training protocol used did not cause any change of endocrine-metabolic parameters in the CONTROL group. Interestingly, in the PCOS group, reduced testosterone levels and T/A ratio. Additionally, strength training did not have an effect on the spectral parameter values of HRV obtained in both groups. Strength training was not able to alter HRV autonomic modulation in women with PCOS, however may reduce testosterone levels and T/A ratio. PMID:27990221

  14. Giving support to others reduces sympathetic nervous system-related responses to stress

    OpenAIRE

    Inagaki, TK; Eisenberger, NI

    2015-01-01

    © 2015 Society for Psychophysiological Research. Social support is a major contributor to the link between social ties and beneficial health outcomes. Research to date has focused on how receiving support from others might be good for us; however, we know less about the health effects of giving support to others. Based on prior work in animals showing that stimulating neural circuitry important for caregiving behavior can reduce sympathetic-related responses to stressors, it is possible that,...

  15. In vivo demonstration of H3-histaminergic inhibition of cardiac sympathetic stimulation by R-α-methyl-histamine and its prodrug BP 2.94 in the dog

    OpenAIRE

    Mazenot, Catherine; Ribuot, Christophe; Durand, Andrée; Joulin, Yves; Demenge, Pierre; Godin-Ribuot, Diane

    1999-01-01

    The aim of this study was to investigate whether histamine H3-receptor agonists could inhibit the effects of cardiac sympathetic nerve stimulation in the dog.Catecholamine release by the heart and the associated variation of haemodynamic parameters were measured after electrical stimulation of the right cardiac sympathetic nerves (1–4 Hz, 10 V, 10 ms) in the anaesthetized dog treated with R-α-methyl-histamine (R-HA) and its prodrug BP 2.94 (BP).Cardiac sympathetic stimulation induced a noradr...

  16. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  17. The role of the sympathetic nervous system in postasphyxial intestinal hypoperfusion in the pre-term sheep fetus.

    Science.gov (United States)

    Quaedackers, Josine S; Roelfsema, Vincent; Heineman, Erik; Gunn, Alistair J; Bennet, Laura

    2004-06-15

    Asphyxia in utero in pre-term fetuses is associated with evolving hypoperfusion of the gut after the insult. We examined the role of the sympathetic nervous system (SNS) in mediating this secondary hypoperfusion. Gut blood flow changes were also assessed during postasphyxial seizures. Preterm fetal sheep at 70% of gestation (103-104 days, term is 147 days) underwent sham asphyxia or asphyxia induced by 25 min of complete cord occlusion and fetuses were studied for 3 days afterwards. Phentolamine (10 mg bolus plus 10 mg h(-1)i.v.) or saline was infused for 8 h starting 15 min after the end of asphyxia or sham asphyxia. Phentolamine blocked the fall in superior mesenteric artery blood flow (SMABF) after asphyxia and there was a significant decrease in MAP for the first 3 h of infusion (33 +/- 1.6 mmHg versus vehicle 36.7 +/- 0.8 mmHg, P fall in SMABF. In conclusion, the present study confirms the hypothesis that postasphyxial hypoperfusion of the gut is strongly mediated by the SNS. The data highlight the importance of sympathetic activity in the initial elevation of blood pressure after asphyxia and are consistent with a role for the mesenteric system as a key resistance bed that helps to maintain perfusion in other, more vulnerable systems.

  18. Psychobiology of PTSD in the acute aftermath of trauma: Integrating research on coping, HPA function and sympathetic nervous system activity.

    Science.gov (United States)

    Morris, Matthew C; Rao, Uma

    2013-02-01

    Research on the psychobiological sequelae of trauma has typically focused on long-term alterations in individuals with chronic posttraumatic stress disorder (PTSD). Far less is known about the nature and course of psychobiological risk factors for PTSD during the acute aftermath of trauma. In this review, we summarize data from prospective studies focusing on the relationships among sympathetic nervous system activity, hypothalamic-pituitary-adrenal function, coping strategies and PTSD symptoms during the early recovery (or non-recovery) phase. Findings from pertinent studies are integrated to inform psychobiological profiles of PTSD-risk in children and adults in the context of existing models of PTSD-onset and maintenance. Data regarding bidirectional relations between coping strategies and stress hormones is reviewed. Limitations of existing literature and recommendations for future research are discussed.

  19. Diesel Exhaust-Induced Cardiac Dysfunction Is Mediated by Sympathetic Dominance in Heart Failure-Prone Rats

    Science.gov (United States)

    Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) may provoke cardiac events through defective co-ordination of the two main autonomic nervous system (ANS) branches. We exposed heart failure-prone rats once to DE (500 g/m3 ...

  20. Sex differences in ischemia/reperfusion-induced acute kidney injury are dependent on the renal sympathetic nervous system.

    Science.gov (United States)

    Tanaka, Ryosuke; Tsutsui, Hidenobu; Ohkita, Mamoru; Takaoka, Masanori; Yukimura, Tokihito; Matsumura, Yasuo

    2013-08-15

    Resistance to ischemic acute kidney injury has been shown to be higher in female rats than in male rats. We found that renal venous norepinephrine overflow after reperfusion played important roles in the development of ischemic acute kidney injury. In the present study, we investigated whether sex differences in the pathogenesis of ischemic acute kidney injury were derived from the renal sympathetic nervous system using male and female Sprague-Dawley rats. Ischemia/reperfusion-induced acute kidney injury was achieved by clamping the left renal artery and vein for 45 min followed by reperfusion, 2 weeks after contralateral nephrectomy. Renal function was impaired after reperfusion in both male and female rats; however, renal dysfunction and histological damage were more severe in male rats than in female rats. Renal venous plasma norepinephrine levels after reperfusion were markedly elevated in male rats, but were not in female rats. These sex differences were eliminated by ovariectomy or treatment with tamoxifen, an estrogen receptor antagonist, in female rats. Furthermore, an intravenous injection of hexamethonium (25mg/kg), a ganglionic blocker, 5 min before ischemia suppressed the elevation in renal venous plasma norepinephrine levels after reperfusion, and attenuated renal dysfunction and histological damage in male rats, and ovariectomized and tamoxifen-treated female rats, but not in intact females. Thus, the present findings confirmed sex differences in the pathogenesis of ischemic acute kidney injury, and showed that the attenuation of ischemia/reperfusion-induced acute kidney injury observed in intact female rats may be dependent on depressing the renal sympathetic nervous system with endogenous estrogen.

  1. [Non-invasive evaluation of the cardiac autonomic nervous system by PET]. Progress report, September 1991--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The proposed research addresses the development, validation and application of cardiac PET imaging techniques to characterize the autonomic nervous system of the heart. PET technology has significantly matured over the last two decades. Instrument design, image processing and production of radiochemical compounds have formed an integrative approach to provide a powerful and novel imaging modality for the quantitative in vivo evaluation of the autonomic nervous system of the heart. Animal studies using novel tracers for the sympathetic and parasympathetic nerve terminals will be employed to characterize the functional integrity of nerve terminals. This work will be complemented by the development of agents which bind to postsynaptic receptor sites. The combined evaluation of presynaptic and postsynaptic neuronal function will allow a unique characterization of neuronal function. Initial development in animal studies will be followed by feasibility studies in humans. These studies are designed to test sophisticated imaging protocols in the human heart and validate the scintigraphic findings with independent markers of autonomic innervation. Subsequent clinical application in various cardiac diseases is expected to provide new insights into the neuropathophysiology of the heart.

  2. Effects of renal sympathetic denervation on post-myocardial infarction cardiac remodeling in rats.

    Directory of Open Access Journals (Sweden)

    Jialu Hu

    Full Text Available OBJECTIVE: To investigate the therapeutic effects of renal denervation (RD on post- myocardial infarction (MI cardiac remodeling in rats, the most optimal time for intervention and the sustainability of these effects. METHODS: One hundred SPF male Wistar rats were randomly assigned to N group (Normal, n=10, MI group(MI, n=20,RD group (RD, n=10, RD3+MI (MI three days after RD, n=20, MI1+RD (RD one day after MI, n=20, MI7+RD (RD seven days after MI, n=20. MI was produced through thoracotomic ligation of the anterior descending artery. RD was performed through laparotomic stripping of the renal arteriovenous adventitial sympathetic nerve. Left ventricular function, hemodynamics, plasma BNP, urine volume, urine sodium excretion and other indicators were measured four weeks after MI. RESULTS: (1 The left ventricular function of the MI group significantly declined (EF<40%, plasma BNP was elevated, urine output was significantly reduced, and 24-hour urine sodium excretion was significantly reduced. (2 Denervation can be achieved by surgically stripping the arteriovenous adventitia, approximately 3 mm from the abdominal aorta. (3 In rats with RD3+MI, MI1+RD and MI7+RD, compared with MI rats respectively, the LVEF was significantly improved (75 ± 8.4%,69 ± 3.8%,73 ± 5.5%, hemodynamic indicators were significantly improved, plasma BNP was significantly decreased, and the urine output was significantly increased (21.3 ± 5 ml,23.8 ± 5.4 ml,25.2 ± 8.7 ml. However, the urinary sodium excretion also increased but without significant difference. CONCLUSIONS: RD has preventive and therapeutic effects on post-MI cardiac remodeling.These effects can be sustained for at least four weeks, but there were no significant differences between denervation procedures performed at different times in the course of illness. Cardiac function, hemodynamics, urine volume and urine sodium excretion in normal rats were not affected by RD.

  3. Evaluation of cardiac sympathetic neuronal integrity in diabetic patients using iodine-123 metaiodobenzylguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Jung [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Lee, Jong Doo [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Ryu, Young Hoon [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Jeon, Pyoung [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Shim, Yong Woon [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Yoo, Hyung Sik [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Park, Chang Yun [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Lim, Seung Gil [Department of Endocrinology, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of)

    1996-04-01

    Autonomic dysfunction is associated with increased mortality in diabetic patients. To evaluate the cardiac autonomic dysfunction in these patients, a prospective study was undertaken using iodine-123 metaiodobenzylguanidine (MIBG) single-photon emission tomography (SPET). The study groups consisted of ten diabetic patients with cardiac autonomic neuropathy (group I) and six without autonomic neuropathy (group II). Autonomic nervous function tests, thallium scan, radionuclide ventriculographic data including ejection fraction and wall motion study, and 24-h urine catecholamine levels were evaluated. {sup 123}I-MIBG SPET was performed at 30 min and 4 h following injection of 3 mCi of {sup 123}I-MIBG in groups I and II and in normal subjects (n=4). On planar images, the heart to mediastinum (H/M) ratio was measured. Defect pattern and severity of MIBG uptake were qualitatively analysed on SPET. Compared with control subjects, diabetic patients had a reduced H/M ratio regardless of the presence of clinical autonomic neuropathy. There was no difference in H/M ratio between groups I and II. On SPET images, focal or diffuse defects were demonstrated in all patients in group I, and in five of the six patients in group II. The extent of defects tended to be more pronounced in group I than in group II. In conclusion, {sup 123}I-MIBG scan was found to be a more sensitive method than clinical autonomic nervous function tests for the detection of autonomic neuropathy in diabetes. (orig.). With 3 figs., 1 tab.

  4. Longitudinal Evaluation of Sympathetic Nervous System and Perfusion in Normal and Spontaneously Hypertensive Rat Hearts with Dynamic Single-Photon Emission Computed Tomography

    Directory of Open Access Journals (Sweden)

    Yunlong Zan

    2015-07-01

    Full Text Available The objective of this work was to evaluate the sympathetic nervous system and structure remodeling during the progression of heart failure in a rodent model using dynamic cardiac single-photon emission computed tomography (SPECT. The spontaneously hypertensive rat (SHR model was used to study changes in the nervous system innervation and perfusion in the left ventricular (LV myocardium with the progression of left ventricular hypertrophy (LVH to heart failure. Longitudinal dynamic SPECT studies were performed with seven SHR and seven Wistar-Kyoto (WKY rats over 1.5 years using a dual-head SPECT scanner with pinhole collimators. Time-activity curves (TACs of the 123I-MIBG and 201Tl distribution in the LV blood pool and myocardium were extracted from dynamic SPECT data and fitted to compartment models to determine the influx rate, washout rate, and distribution volume (DV of 123I-MIBG and 201Tl in the LV myocardium. The standardized uptake values (SUVs of 123I-MIBG and 201Tl in the LV myocardium were also calculated from the static reconstructed images. The influx and washout rates of 123I-MIBG did not show a significant difference between SHRs and WKY rats. The DVs of 123I-MIBG were greater in the SHRs than in the WKY rats (p = .0028. Specifically, the DV of 123I-MIBG became greater in the SHRs by 6 months of age (p = .0017 and was still significant at the age of 22 months. The SUV of 123I-MIBG in SHRs exhibited abnormal values compared to WKY rats from the age of 18 months. There was no difference in the influx rate and the washout rate of 201Tl between the SHRs and WKY rats. The SHRs exhibited greater DV of 201Tl than WKY rats after the age of 18 months (p = .034. The SUV of 201Tl in SHRs did not show any significant difference from WKY at all ages. The higher DV of 123I-MIBG in the LV myocardium reveals abnormal nervous system activity of the SHRs at an age of 6 months, whereas a greater DV of 201Tl in the LV myocardium can only be detected at

  5. Assessment of cardiac sympathetic nerve abnormalities by {sup 123}I-MIBG (metaiodobenzylguanidine) myocardial scintigraphy in diabetic patients undergoing hemodialysis

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Hiroshige; Oda, Hiroshi; Matsuno, Yukihiko [Prefectural Gifu Hospital (Japan)] [and others

    1995-05-01

    We compared cardiac sympathetic nerve abnormalities in patients hemodialyzed because of diabetic nephropathy (DN, n=18) and chronic glomerulonephritis (CGN, n=21). {sup 123}I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy was performed in this study. SPECT and anterior planar myocardial images were obtained 15 minutes after (initial images) and 4 hours after (delayed images) an injection of MIBG. The following results were obtained: (1) SPECT showed more defects in DN than in CGN. (2) The heart to superior mediastinum uptake ratio (H/M) was lower in DN than in CGN. These findings suggest that myocardial uptake of MIBG in DN is significantly impaired because of cardiac sympathetic nerve abnormalities. These abnormalities may affect the prognosis in DN. (author).

  6. Autonomic nervous system responses to viewing green and built settings: differentiating between sympathetic and parasympathetic activity

    NARCIS (Netherlands)

    van den Berg, Magdalena; Maas, Jolanda; Mulder, Rianne; Braun, Anoek; Kaandorp, Wendy; van Lien, René; van Poppel, Mireille; van Mechelen, Willem; van den Berg, Agnes

    2015-01-01

    his laboratory study explored buffering and recovery effects of viewing urban green and built spaces on autonomic nervous system activity. Forty-six students viewed photos of green and built spaces immediately following, and preceding acute stress induction. Simultaneously recorded electrocardiogram

  7. Clinical usefulness of {sup 123}I-metaiodobenzylguanidine myocardial scintigraphy in diabetic patients with cardiac sympathetic nerve dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Miyanaga, Hajime; Yoneyama, Satoshi; Kamitani, Tadaaki; Kawasaki, Shingo; Takahashi, Toru; Kunishige, Hiroshi [Matsushita Memorial Hospital, Osaka (Japan)

    1995-09-01

    To assess the clinical utility of {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy in evaluating cardiac sympathetic nerve disturbance in diabetic patients, we performed MIBG scintigraphy in 18 diabetic patients and 11 normal controls. Diabetic patients with symptomatic neuropathy (DM2) had a significantly lower heart to mediastinum uptake ratio than did those without neuropathy or normal controls in initial and delayed images (initial image, 1.90{+-}0.27 vs 2.32{+-}0.38, 2.41{+-}0.40, p<0.01; delayed image, 1.80{+-}0.31 vs 2.48{+-}0.35, 2.56{+-}0.28, p<001, respectively). Defect score, assessed visually, were higher in DM2 patients than in patients in the other two groups (initial image, 7{+-}2.6 vs 1.5{+-}1.9, 0.7{+-}0.9; delayed image 10.6{+-}3.3 vs 4.0{+-}2.5, 1.7{+-}1.6 p<0.01, respectively). The maximum washout rate in DM2 patients was also higher than those in patients in the other two groups. The findings of these indices obtained from MIBG scintigraphy coincided with the % low-frequency power extracted from heart rate fluctuations using a power spectral analysis and the results of the Schellong test, which were used to evaluate sympathetic function. These results suggest that MIBG scintigraphy may be useful for evaluating cardiac sympathetic nerve disturbance in patients with diabetes. (author).

  8. Links between adolescent sympathetic and parasympathetic nervous system functioning and interpersonal behavior over time.

    Science.gov (United States)

    Diamond, Lisa M; Cribbet, Matthew R

    2013-06-01

    Extensive research has investigated links between individual differences in youths' autonomic nervous system (ANS) functioning and psychological outcomes related to emotion regulation, yet little of this research has examined developmental change. The study tested whether individual differences in youths' tonic and stress-induced ANS functioning, assessed at age 14, and changes in ANS functioning from age 14 to 16 predicted corresponding changes in youths' behavioral warmth, as displayed during videotaped mother-child conflict interactions conducted at age 14 and 16. Increased behavioral warmth was predicted by increased baseline respiratory sinus arrhythmia (RSA), increased SCL stress reactivity, decreased RSA stress reactivity (i.e., greater vagal suppression), and decreased baseline SCL. There was also an interaction between RSA stress reactivity at age 14 and changes in maternal warmth from age 14 to 16, such that increased maternal warmth was only associated with increased adolescent warmth for adolescents with lower RSA stress reactivity at age 14.

  9. Effects of Antidepressants, but not Psychopathology, on Cardiac Sympathetic Control : A Longitudinal Study

    NARCIS (Netherlands)

    Licht, Carmilla M. M.; Penninx, Brenda W. J. H.; de Geus, Eco J. C.

    2012-01-01

    Increased sympathetic activity has been hypothesized to have a role in the elevated somatic disease risk in persons with depressive or anxiety disorders. However, it remains unclear whether increased sympathetic activity reflects a direct effect of anxiety or depression or an indirect effect of anti

  10. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system.

    Science.gov (United States)

    Kim, Minji; Goto, Tsuyoshi; Yu, Rina; Uchida, Kunitoshi; Tominaga, Makoto; Kano, Yuriko; Takahashi, Nobuyuki; Kawada, Teruo

    2015-12-17

    Brown adipose tissue (BAT) plays a central role in regulating energy homeostasis, and may provide novel strategies for the treatment of human obesity. BAT-mediated thermogenesis is regulated by mitochondrial uncoupling protein 1 (UCP1) in classical brown and ectopic beige adipocytes, and is controlled by sympathetic nervous system (SNS). Previous work indicated that fish oil intake reduces fat accumulation and induces UCP1 expression in BAT; however, the detailed mechanism of this effect remains unclear. In this study, we investigated the effect of fish oil on energy expenditure and the SNS. Fish oil intake increased oxygen consumption and rectal temperature, with concomitant upregulation of UCP1 and the β3 adrenergic receptor (β3AR), two markers of beige adipocytes, in the interscapular BAT and inguinal white adipose tissue (WAT). Additionally, fish oil intake increased the elimination of urinary catecholamines and the noradrenaline (NA) turnover rate in interscapular BAT and inguinal WAT. Furthermore, the effects of fish oil on SNS-mediated energy expenditure were abolished in transient receptor potential vanilloid 1 (TRPV1) knockout mice. In conclusion, fish oil intake can induce UCP1 expression in classical brown and beige adipocytes via the SNS, thereby attenuating fat accumulation and ameliorating lipid metabolism.

  11. Locus coeruleus lesion & cold stress: Role of the central and peripheral sympathetic nervous system in rat’s late proestrous phase

    Directory of Open Access Journals (Sweden)

    Farideh Zafari Zangeneh

    2010-03-01

    Full Text Available Objective: LC/NA system is activator of hypothalamic–pituitar–adrenal (HPA axis and cold stress triggers an equally robust increase in plasma NA. Increased LHRH content probably due to absence or decrease of NE release from the LC and positive feedback action of E2 on LH secretion show that in late proestrous phase NA, LH and E2 have a strong link. This study was conducted to evaluate the effect of central sympathetic nervous system (by LC lesion and acute cold stress induction and peripheral sympathetic nervous system (with propranolol administration on late proestrous phase in rat.Material and Method: One hundred eight rats were divided into control and study groups. Study group was divided into three main sub groups: LC lesion (electrolytic lesion, acute cold stress (4°C for 20 minutes and propranolol (antagonist of sympathetic nervous system. Vaginal smears were taken for all groups and late proestrous was selective phase for this study. Statistical differences were determined by one–way ANOVA followed by the Tukey post hoc test. SPSS 11 was used for data analysis. P value ≤ 0.05 was defined as significant level.Results: LC lesion decreased only estradiol level (P≤0.001 but could increase serum level of LH like propranolol administration (7mg/kg ip (P≤0.01. No significant changes were noted in the levels of LH and estradiol in cold stress group like the synergistic effect of LC lesion and Cold stress also synergism of LC lesion, Cold stress and propranolol.Conclusion: This study demonstrated that late proestrous phase has a critical role in LH surge and sympathetic nervous system (NA and E2 are important and basic factors in this process.

  12. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis

    OpenAIRE

    Hall, Jessica M. F.; desAnges Cruser; Alan Podawiltz; Mummert, Diana I.; Harlan Jones; Mummert, Mark E.

    2012-01-01

    Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental i...

  13. Interaction between cardiac sympathetic afferent reflex and chemoreflex is mediated by the NTS AT1 receptors in heart failure.

    Science.gov (United States)

    Wang, Wei-Zhong; Gao, Lie; Wang, Han-Jun; Zucker, Irving H; Wang, Wei

    2008-09-01

    Several sympathoexcitatory reflexes, such as the cardiac sympathetic afferent reflex (CSAR) and arterial chemoreflex, are significantly augmented and contribute to elevated sympathetic outflow in chronic heart failure (CHF). This study was undertaken to investigate the interaction between the CSAR and the chemoreflex in CHF and to further identify the involvement of angiotensin II type 1 receptors (AT1Rs) in the nucleus of the tractus solitarius (NTS) in this interaction. CHF was induced in rats by coronary ligation. Acute experiments were performed in anesthetized rats. The chemoreflex-induced increase in cardiovascular responses was significantly greater in CHF than in sham-operated rats after either chemical or electrical activation of the CSAR. The inhibition of the CSAR by epicardial lidocaine reduced the chemoreflex-induced effects in CHF rats but not in sham-operated rats. Bilateral NTS injection of the AT1R antagonist losartan (10 and 100 pmol) dose-dependently decreased basal sympathetic nerve activity in CHF but not in sham-operated rats. This procedure also abolished the CSAR-induced enhancement of the chemoreflex. The discharge and chemosensitivity of NTS chemosensitive neurons were significantly increased following the stimulation of the CSAR in sham-operated and CHF rats, whereas CSAR inhibition by epicardial lidocaine significantly attenuated chemosensitivity of NTS neurons in CHF but not in sham-operated rats. Finally, the protein expression of AT1R in the NTS was significantly higher in CHF than in sham-operated rats. These results demonstrate that the enhanced cardiac sympathetic afferent input contributes to an excitatory effect of chemoreflex function in CHF, which is mediated by an NTS-AT1R-dependent mechanism.

  14. Cardiac sympathetic activity in chronic heart failure: cardiac (123)I-mIBG scintigraphy to improve patient selection for ICD implantation.

    Science.gov (United States)

    Verschure, D O; van Eck-Smit, B L F; Somsen, G A; Knol, R J J; Verberne, H J

    2016-12-01

    Heart failure is a life-threatening disease with a growing incidence in the Netherlands. This growing incidence is related to increased life expectancy, improvement of survival after myocardial infarction and better treatment options for heart failure. As a consequence, the costs related to heart failure care will increase. Despite huge improvements in treatment, the prognosis remains unfavourable with high one-year mortality rates. The introduction of implantable devices such as implantable cardioverter defibrillators (ICD) and cardiac resynchronisation therapy (CRT) has improved the overall survival of patients with chronic heart failure. However, after ICD implantation for primary prevention in heart failure a high percentage of patients never have appropriate ICD discharges. In addition 25-50 % of CRT patients have no therapeutic effect. Moreover, both ICDs and CRTs are associated with malfunction and complications (e. g. inappropriate shocks, infection). Last but not least is the relatively high cost of these devices. Therefore, it is essential, not only from a clinical but also from a socioeconomic point of view, to optimise the current selection criteria for ICD and CRT. This review focusses on the role of cardiac sympathetic hyperactivity in optimising ICD selection criteria. Cardiac sympathetic hyperactivity is related to fatal arrhythmias and can be non-invasively assessed with (123)I-meta-iodobenzylguanide ((123)I-mIBG) scintigraphy. We conclude that cardiac sympathetic activity assessed with (123)I-mIBG scintigraphy is a promising tool to better identify patients who will benefit from ICD implantation.

  15. Effects of physiological and pharmacological variation of sympathetic nervous system activity on plasma non-esterified fatty acid concentrations in man.

    Science.gov (United States)

    Barbe, P; Galitzky, J; Riviere, D; Senard, J M; Lafontan, M; Garrigues, M; Berlan, M

    1993-01-01

    1. The consequence of the sympatholytic effect of clonidine (alpha 2-adrenoceptor agonist) was compared with the effect of a physiological inhibition of sympathetic nervous system activity (change from upright to supine position) on plasma catecholamine and non-esterified fatty acid (NEFA) concentrations in overnight fasting healthy men. 2. Clonidine (150 micrograms orally) administered in upright position induced a significant reduction of plasma noradrenaline and NEFA concentrations. A change from upright to supine position which provoked a more marked decrease in plasma noradrenaline concentrations induced a weak increase in plasma NEFA concentrations. 3. The modification of plasma NEFA and catecholamine concentrations brought about by standing up was studied after placebo or yohimbine (alpha 2-adrenoceptor antagonist) administration. With placebo, standing up promotes a 100% increase in plasma noradrenaline concentrations (measured 5 and 15 min after rising) and a weak transient decrease in plasma NEFA concentrations (5 min after rising). In the supine position, yohimbine increased plasma noradrenaline and NEFA concentrations by about 100% and 55% respectively. Standing after yohimbine administration promoted large increases in plasma noradrenaline and NEFA concentrations. 4. These results indicate that a reduction of sympathetic nervous activity is not associated with a decrease of plasma NEFA concentrations and argue for a role of alpha 2-adrenoceptors in the NEFA mobilization from adipose tissue after sympathetic nervous system activation in man. PMID:8373709

  16. Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity.

    Science.gov (United States)

    Nogueiras, Ruben; Pérez-Tilve, Diego; Veyrat-Durebex, Christelle; Morgan, Donald A; Varela, Luis; Haynes, William G; Patterson, James T; Disse, Emmanuel; Pfluger, Paul T; López, Miguel; Woods, Stephen C; DiMarchi, Richard; Diéguez, Carlos; Rahmouni, Kamal; Rohner-Jeanrenaud, Françoise; Tschöp, Matthias H

    2009-05-06

    We investigated a possible role of the central glucagon-like peptide (GLP-1) receptor system as an essential brain circuit regulating adiposity through effects on nutrient partitioning and lipid metabolism independent from feeding behavior. Both lean and diet-induced obesity mice were used for our experiments. GLP-1 (7-36) amide was infused in the brain for 2 or 7 d. The expression of key enzymes involved in lipid metabolism was measured by real-time PCR or Western blot. To test the hypothesis that the sympathetic nervous system may be responsible for informing adipocytes about changes in CNS GLP-1 tone, we have performed direct recording of sympathetic nerve activity combined with experiments in genetically manipulated mice lacking beta-adrenergic receptors. Intracerebroventricular infusion of GLP-1 in mice directly and potently decreases lipid storage in white adipose tissue. These effects are independent from nutrient intake. Such CNS control of adipocyte metabolism was found to depend partially on a functional sympathetic nervous system. Furthermore, the effects of CNS GLP-1 on adipocyte metabolism were blunted in diet-induced obese mice. The CNS GLP-1 system decreases fat storage via direct modulation of adipocyte metabolism. This CNS GLP-1 control of adipocyte lipid metabolism appears to be mediated at least in part by the sympathetic nervous system and is independent of parallel changes in food intake and body weight. Importantly, the CNS GLP-1 system loses the capacity to modulate adipocyte metabolism in obese states, suggesting an obesity-induced adipocyte resistance to CNS GLP-1.

  17. Treadmill running and swimming imposes distinct cardiovascular physiological adaptations in the rat: focus on serotonergic and sympathetic nervous systems modulation.

    Science.gov (United States)

    Baptista, S; Piloto, N; Reis, F; Teixeira-de-Lemos, E; Garrido, A P; Dias, A; Lourenço, M; Palmeiro, A; Ferrer-Antunes, C; Teixeira, F

    2008-12-01

    Physical exercise may improve the metabolic and haemodynamic responses, but the beneficial effects seem to depend on intensity, duration and muscular mass recruitment, which may vary between different types of protocols. This study was performed to evaluate the effects of two distinct moderate/long-term aerobic training protocols in the normal Wistar rat, the treadmill running and the swimming, on several important parameters related to cardiovascular (CV) physiological adaptations, namely: lipid profile, haemorheological measures, lipid peroxidation, peripheral serotonergic system (SS) modulation and sympathetic nervous system (SNS) activation. In both groups under training an HDL-c increment versus the sedentary control was demonstrated. There was a noticeable increase in ADP-induced platelet aggregation in the exercised rats, together with higher PDW and MPV values. The RBC patterns were altered in both groups under training; in the swimming one, however, significantly higher RBC and HCT and lower MCH and MCHC values were found, suggesting renovation of the RBCs. Plasma and platelet SS measures were generally higher in both groups under training, being noticeably relevant the 5-HT and 5-HIAA increment in the treadmill. In opposition, concerning the plasma and platelet NE and E concentrations, the rise was remarkably higher in the rats under a swimming protocol. In conclusion, this study demonstrates that, despite the similar beneficial effects on lipid profile, different aerobic exercise protocols may produce distinct CV physiological adaptations. Therefore, treadmill running was more influent than swimming concerning peripheral SS modulation while swimming was more important on SNS activation, thus recommending a judicious choice of the protocol to be tested in works which make use of rat models of exercise to study physiological or pathophysiological conditions.

  18. Cardiorenal axis and arrhythmias: Will renal sympathetic denervation provide additive value to the therapeutic arsenal?

    Science.gov (United States)

    van Brussel, Peter M; Lieve, Krystien V V; de Winter, Robbert J; Wilde, Arthur A M

    2015-05-01

    Disruption of sympathetic tone may result in the occurrence or maintenance of cardiac arrhythmias. Multiple arrhythmic therapies that intervene by influencing cardiac sympathetic tone are common in clinical practice. These vary from pharmaceutical (β-blockers, angiotensin-converting enzyme inhibitors, and calcium antagonists) to percutaneous/surgical (cardiac sympathetic denervation) interventions. In some patients, however, these therapies have insufficient prophylactic and therapeutic capabilities. A safe and effective additional therapy wherein sympathetic drive is further attenuated would be expedient. Recently, renal sympathetic denervation (RSD) has been subject of research for various sympathetic nervous system-related diseases. By its presumed afferent and efferent sympatholytic effects, RSD might indirectly attenuate sympathetic outflow via the brain to the heart but might also reduce systemic catecholamine excretion and might therefore reduce catecholamine-sensitive arrhythmias. RSD is subject of research for various sympathetically driven arrhythmias, both supraventricular and ventricular. In this review, we give an overview of the rationale behind RSD as potential therapy in mediating arrhythmias that are triggered by a disrupted sympathetic nervous system and discuss the presently available results from animal and human studies.

  19. The low frequency power of heart rate variability is neither a measure of cardiac sympathetic tone nor of baroreflex sensitivity.

    Science.gov (United States)

    Martelli, Davide; Silvani, Alessandro; McAllen, Robin M; May, Clive N; Ramchandra, Rohit

    2014-10-01

    The lack of noninvasive approaches to measure cardiac sympathetic nerve activity (CSNA) has driven the development of indirect estimates such as the low-frequency (LF) power of heart rate variability (HRV). Recently, it has been suggested that LF HRV can be used to estimate the baroreflex modulation of heart period (HP) rather than cardiac sympathetic tone. To test this hypothesis, we measured CSNA, HP, blood pressure (BP), and baroreflex sensitivity (BRS) of HP, estimated with the modified Oxford technique, in conscious sheep with pacing-induced heart failure and in healthy control sheep. We found that CSNA was higher and systolic BP and HP were lower in sheep with heart failure than in control sheep. Cross-correlation analysis showed that in each group, the beat-to-beat changes in HP correlated with those in CSNA and in BP, but LF HRV did not correlate significantly with either CSNA or BRS. However, when control sheep and sheep with heart failure were considered together, CSNA correlated negatively with HP and BRS. There was also a negative correlation between CSNA and BRS in control sheep when considered alone. In conclusion, we demonstrate that in conscious sheep, LF HRV is neither a robust index of CSNA nor of BRS and is outperformed by HP and BRS in tracking CSNA. These results do not support the use of LF HRV as a noninvasive estimate of either CSNA or baroreflex function, but they highlight a link between CSNA and BRS.

  20. Effects of extreme endurance running on cardiac autonomic nervous modulation in healthy trained subjects.

    Science.gov (United States)

    Sztajzel, Juan; Atchou, Guillaume; Adamec, Richard; Bayes de Luna, Antonio

    2006-01-15

    This study examined spectral components of heart rate variability (HRV) during endurance mountain running in 8 healthy trained subjects. The data showed that during this type of mountain running, all spectral components of HRV may severely decrease, particularly very-low-frequency and low-frequency (LF) power, suggesting extreme activation of the sympathetic nervous system. The physiologic response of the heart in this situation was the downregulation of the beta-adrenergic receptors to protect myocardial function, with a subsequent increase in parasympathetic tone, reflected by an increase in high-frequency (HF) power and a decrease in the LF/HF ratio.

  1. Assessment of cardiac sympathetic nerve activity in children with chronic heart failure using quantitative iodine-123 metaiodobenzylguanidine imaging

    Energy Technology Data Exchange (ETDEWEB)

    Karasawa, Kensuke; Ayusawa, Mamoru; Noto, Nobutaka; Sumitomo, Naokata; Okada, Tomoo; Harada, Kensuke [Nihon Univ., Tokyo (Japan). School of Medicine

    2000-12-01

    Cardiac sympathetic nerve activity in children with chronic heart failure was examined by quantitative iodine-123 metaiodobenzylguanidine (MIBG) myocardial imaging in 33 patients aged 7.5{+-}6.1 years (range 0-18 years), including 8 with cardiomyopathy, 15 with congenital heart disease, 3 with anthracycrine cardiotoxicity, 3 with myocarditis, 3 with primary pulmonary hypertension and 1 with Pompe's disease. Anterior planar images were obtained 15 min and 3 hr after the injection of iodine-123 MIBG. The cardiac iodine-123 MIBG uptake was assessed as the heart to upper mediastinum uptake activity ratio of the delayed image (H/M) and the cardiac percentage washout rate (%WR). The severity of chronic heart failure was class I (no medication) in 8 patients, class II (no symptom with medication) in 9, class III (symptom even with medication) in 10 and class IV (late cardiac death) in 6. H/M was 2.33{+-}0.22 in chronic heart failure class I, 2.50{+-}0.34 in class II, 1.95{+-}0.61 in class III, and 1.39{+-}0.29 in class IV (p<0.05). %WR was 24.8{+-}12.8% in chronic heart failure class I, 23.3{+-}10.2% in class II, 49.2{+-}24.5% in class III, and 66.3{+-}26.5% in class IV (p<0.05). The low H/M and high %WR were proportionate to the severity of chronic heart failure. Cardiac iodine-123 MIBG showed cardiac adrenergic neuronal dysfunction in children with severe chronic heart failure. Quantitative iodine-123 MIBG myocardial imaging is clinically useful as a predictor of therapeutic outcome and mortality in children with chronic heart failure. (author)

  2. Incomplete Horner syndrome: Report of a case and description of the sympathetic nervous system anatomy involved in Horner syndrome.

    Science.gov (United States)

    Garbo, Grant M; Harmatz, Alexander J; Isaacson, Glenn

    2011-02-01

    Horner syndrome, in which ptosis, miosis, and anhidrosis occur concomitantly, can arise from injury to the sympathetic nerve pathways anywhere from the brain to the end organs. Incomplete Horner syndrome lacks the sign of anhidrosis. We present a case of incomplete Horner syndrome caused by internal carotid artery dissection and provide a road map of the cervical sympathetic nerves involved in Horner syndrome to explain its etiology. We also discuss the imaging of and therapy for internal carotid artery dissections.

  3. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis

    Directory of Open Access Journals (Sweden)

    Jessica M. F. Hall

    2012-01-01

    Full Text Available Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity and alters antigen presentation by epidermal Langerhans cells (adaptive immunity. Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis.

  4. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis.

    Science.gov (United States)

    Hall, Jessica M F; Cruser, Desanges; Podawiltz, Alan; Mummert, Diana I; Jones, Harlan; Mummert, Mark E

    2012-01-01

    Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis.

  5. Effects of short-term carvedilol on the cardiac sympathetic activity assessed by {sup 123}I-MIBG scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Sandra Marina Ribeiro de; Mesquita, Evandro Tinoco; Freire, Fabiano de Lima; Ribeiro, Mario Luiz; Nobrega, Antonio Claudio Lucas da; Mesquita, Claudio Tinoco, E-mail: sandramarina@cardiol.b [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Azevedo, Jader Cunha; Barbirato, Gustavo Borges; Coimbra, Alexandro [Hospital Pro-Cardiaco, Rio de Janeiro, RJ (Brazil); Dohmann, Hans Fernando da Rocha [Centro de Ensino e Pesquisa do Pro-Cardiaco (PROCEP), Rio de Janeiro, RJ (Brazil)

    2010-03-15

    Background: autonomic alterations in heart failure are associated with an increase in morbimortality. Several noninvasive methods have been employed to evaluate the sympathetic function, including the Meta-Iodobenzylguanidine ({sup 123}I-MIBG) scintigraphy imaging of the heart. Objective: to evaluate the cardiac sympathetic activity through {sup 123}I-MIBG scintigraphy, before and after three months of carvedilol therapy in patients with heart failure and left ventricular ejection fraction (LVEF) < 45%. Patients and methods: sixteen patients, aged 56.3 +- 12.6 years (11 males), with a mean LVEF of 28% +- 8% and no previous use of beta-blockers were recruited for the study. Images of the heart innervation were acquired with {sup 123}I-MIBG, and the serum levels of catecholamines (epinephrine, dopamine and norepinephrine) were measured; the radioisotope ventriculography (RIV) was performed before and after a three-month therapy with carvedilol. Results: patients' functional class showed improvement: before the treatment, 50% of the patients were FC II and 50% were FC III. After 3 months, 7 patients were FC I (43.8%) and 9 were FC II (56.2%), (rho = 0.0001). The mean LVEF assessed by RIV increased from 29% to 33% (rho = 0.017). There was no significant variation in cardiac adrenergic activity assessed by {sup 123}I-MIBG (early and late resting images and washout rate). No significant variation was observed regarding the measurement of catecholamines. Conclusion: the short-term treatment with carvedilol promoted the clinical and LVEF improvement. However, this was not associated to an improvement in the cardiac adrenergic activity, assessed by {sup 123}I-MIBG scintigraphy, as well as the measurement of circulating catecholamines. (author)

  6. The role of the peripheral sympathetic nervous system in the natriuresis following central administration of an I1 imidazoline agonist, moxonidine.

    Science.gov (United States)

    Penner, S. B.; Smyth, D. D.

    1995-01-01

    1. Central administration of the I1-imidazoline receptor agonist moxonidine increases sodium excretion without alteration of blood pressure. In the present study we determined whether this natriuretic action was mediated through a decrease in activity of the sympathetic nervous system, as has been reported for the antihypertensive action of this compound. Interruption of the sympathetic nervous system was achieved with prazosin (alpha 1-adrenoceptor antagonist) and renal denervation. 2. In pentobarbitone-anaesthetized Sprague-Dawley rats, intracerebroventricular (i.c.v.) injection of moxonidine alone increased urine volume and sodium excretion. Prazosin (0.15 mg kg-1, i.v.) alone decreased urine flow rate and sodium excretion as compared to the vehicle controls. In the presence of prazosin, i.c.v. injection of moxonidine failed to increase sodium excretion or urine volume as compared to animals which received the prazosin alone. 3. The administration of moxonide (i.c.v.) to sham renal-denervated animals caused an increase in urine flow rate, urine sodium excretion, osmolar clearance and free water clearance. The increase in sodium excretion and osmolar clearance were completely attenuated in renal denervated rats, however, urine flow rate was still increased and this was secondary to the increase in free water clearance which remained intact. 4. These results indicate the importance of an intact sympathetic nervous system in the renal response to i.c.v. moxonidine. Moreover, the differential antagonism of these interventions on solute and water excretion indicate that they may be mediated at two separate sites and/or receptors following i.c.v. moxonidine. PMID:8590981

  7. Music Improves Subjective Feelings Leading to Cardiac Autonomic Nervous Modulation: A Pilot Study

    Science.gov (United States)

    Kume, Satoshi; Nishimura, Yukako; Mizuno, Kei; Sakimoto, Nae; Hori, Hiroshi; Tamura, Yasuhisa; Yamato, Masanori; Mitsuhashi, Rika; Akiba, Keigo; Koizumi, Jun-ichi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-01-01

    It is widely accepted that listening to music improves subjective feelings and reduces fatigue sensations, and different kinds of music lead to different activations of these feelings. Recently, cardiac autonomic nervous modulation has been proposed as a useful objective indicator of fatigue. However, scientific considerations of the relation between feelings of fatigue and cardiac autonomic nervous modulation while listening to music are still lacking. In this study, we examined which subjective feelings of fatigue are related to participants' cardiac autonomic nervous function while they listen to music. We used an album of comfortable and relaxing environmental music, with blended sounds from a piano and violin as well as natural sound sources. We performed a crossover trial of environmental music and silent sessions for 20 healthy subjects, 12 females, and 8 males, after their daily work shift. We measured changes in eight types of subjective feelings, including healing, fatigue, sleepiness, relaxation, and refreshment, using the KOKORO scale, a subjective mood measurement system for self-reported feelings. Further, we obtained measures of cardiac autonomic nervous function on the basis of heart rate variability before and after the sessions. During the music session, subjective feelings significantly shifted toward healing and a secure/relaxed feeling and these changes were greater than those in the silent session. Heart rates (ΔHR) in the music session significantly decreased compared with those in the silent session. Other cardiac autonomic parameters such as high-frequency (HF) component and the ratio of low-frequency (LF) and HF components (LF/HF) were similar in the two sessions. In the linear regression analysis of the feelings with ΔHR and changes in LF/HF (ΔLF/HF), increases and decreases in ΔHR were correlated to the feeling axes of Fatigue-Healing and Anxiety/Tension–Security/Relaxation, whereas those in ΔLF/HF were related to the feeling axes

  8. Music Improves Subjective Feelings Leading to Cardiac Autonomic Nervous Modulation: A Pilot Study.

    Science.gov (United States)

    Kume, Satoshi; Nishimura, Yukako; Mizuno, Kei; Sakimoto, Nae; Hori, Hiroshi; Tamura, Yasuhisa; Yamato, Masanori; Mitsuhashi, Rika; Akiba, Keigo; Koizumi, Jun-Ichi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-01-01

    It is widely accepted that listening to music improves subjective feelings and reduces fatigue sensations, and different kinds of music lead to different activations of these feelings. Recently, cardiac autonomic nervous modulation has been proposed as a useful objective indicator of fatigue. However, scientific considerations of the relation between feelings of fatigue and cardiac autonomic nervous modulation while listening to music are still lacking. In this study, we examined which subjective feelings of fatigue are related to participants' cardiac autonomic nervous function while they listen to music. We used an album of comfortable and relaxing environmental music, with blended sounds from a piano and violin as well as natural sound sources. We performed a crossover trial of environmental music and silent sessions for 20 healthy subjects, 12 females, and 8 males, after their daily work shift. We measured changes in eight types of subjective feelings, including healing, fatigue, sleepiness, relaxation, and refreshment, using the KOKORO scale, a subjective mood measurement system for self-reported feelings. Further, we obtained measures of cardiac autonomic nervous function on the basis of heart rate variability before and after the sessions. During the music session, subjective feelings significantly shifted toward healing and a secure/relaxed feeling and these changes were greater than those in the silent session. Heart rates (ΔHR) in the music session significantly decreased compared with those in the silent session. Other cardiac autonomic parameters such as high-frequency (HF) component and the ratio of low-frequency (LF) and HF components (LF/HF) were similar in the two sessions. In the linear regression analysis of the feelings with ΔHR and changes in LF/HF (ΔLF/HF), increases and decreases in ΔHR were correlated to the feeling axes of Fatigue-Healing and Anxiety/Tension-Security/Relaxation, whereas those in ΔLF/HF were related to the feeling axes

  9. Influence of central inhibition of sympathetic nervous activity on myocardial metabolism in chronic heart failure: acute effects of the imidazoline I1-receptor agonist moxonidine.

    Science.gov (United States)

    Mobini, Reza; Fu, Michael; Jansson, Per-Anders; Bergh, Claes-Håkan; Scharin Täng, Margareta; Waagstein, Finn; Andersson, Bert

    2006-03-01

    Although beta-adrenergic blockade is beneficial in heart failure, inhibition of central sympathetic outflow using moxonidine has been associated with increased mortality. In the present study, we studied the acute effects of the imidazoline-receptor agonist moxonidine on haemodynamics, NA (noradrenaline) kinetics and myocardial metabolism. Fifteen patients with CHF (chronic heart failure) were randomized to a single dose of 0.6 mg of sustained-release moxonidine or matching placebo. Haemodynamics, NA kinetics and myocardial metabolism were studied over a 2.5 h time period. There was a significant reduction in pulmonary and systemic arterial pressures, together with a decrease in cardiac index in the moxonidine group. Furthermore, there was a simultaneous reduction in systemic and cardiac net spillover of NA in the moxonidine group. Analysis of myocardial consumption of substrates in the moxonidine group showed a significant increase in non-esterified fatty acid consumption and a possible trend towards an increase in myocardial oxygen consumption compared with the placebo group (P=0.16). We conclude that a single dose of moxonidine (0.6 mg) in patients already treated with a beta-blocker reduced cardiac and overall sympathetic activity. The finding of increased lipid consumption without decreased myocardial oxygen consumption indicates a lack of positive effects on myocardial metabolism under these conditions. We suggest this might be a reason for the failure of moxonidine to prevent deaths in long-term studies in CHF.

  10. {sup 123}I-Labelled metaiodobenzylguanidine for the evaluation of cardiac sympathetic denervation in early stage amyloidosis

    Energy Technology Data Exchange (ETDEWEB)

    Noordzij, Walter; Glaudemans, Andor W.J.M.; Rheenen, Ronald W.J. van; Dierckx, Rudi A.J.O.; Slart, Riemer H.J.A. [University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, PO Box 30.001, Groningen (Netherlands); Hazenberg, Bouke P.C. [University of Groningen, Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [University of Groningen, Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands)

    2012-10-15

    Cardiac amyloidosis is a rare disorder, but it may lead to potentially life-threatening restrictive cardiomyopathy. Cardiac manifestations frequently occur in primary amyloidosis (AL) and familial amyloidosis (ATTR), but are uncommon in secondary amyloidosis (AA). Echocardiography is the method of choice for assessing cardiac amyloidosis. Amyloid deposits impair the function of sympathetic nerve endings. Disturbance of myocardial sympathetic innervations may play an important role in the remodelling process. {sup 123}I-MIBG can detect these innervation changes. Patients with biopsy-proven amyloidosis underwent general work-up, echocardiography and {sup 123}I-MIBG scintigraphy. Left ventricular internal dimensions and wall thickness were measured, and highly refractile cardiac echoes (sparkling) were analysed. Early (15 min) and late (4 h) heart-to-mediastinum ratio (HMR) and wash-out rate were determined after administration of MIBG. Included in the study were 61 patients (30 women and 31 men; mean age 62 years; 39 AL, 11 AA, 11 ATTR). Echocardiographic parameters were not significantly different between the groups. Sparkling was present in 72 % of ATTR patients, in 54 % of AL patients and in 45 % of AA patients. Mean late HMR in all patients was 2.3 {+-} 0.75, and the mean wash-out rate was 8.6 {+-} 14 % (the latter not significantly different between the patient groups). Late HMR was significantly lower in patients with echocardiographic signs of amyloidosis than in patients without (2.0 {+-} 0.70 versus 2.8 {+-} 0.58, p < 0.001). Wash-out rates were significantly higher in these patients (-3.3 {+-} 9.9 % vs. 17 {+-} 10 %, p < 0.001). In ATTR patients without echocardiographic signs of amyloidosis, HMR was lower than in patients with the other types (2.0 {+-} 0.59 vs. 2.9 {+-} 0.50, p = 0.007). MIBG HMR is lower and wash-out rate is higher in patients with echocardiographic signs of amyloidosis. Also, {sup 123}I-MIBG scintigraphy can detect cardiac denervation in

  11. LMI1195 PET imaging in evaluation of regional cardiac sympathetic denervation and its potential role in antiarrhythmic drug treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ming; Bozek, Jody; Lamoy, Melanie; Kagan, Mikhail; Benites, Pedro; Onthank, David; Robinson, Simon P. [Lantheus Medical Imaging, Discovery Research, N. Billerica, MA (United States)

    2012-12-15

    Regional cardiac sympathetic denervation (RCSD) associated with reduced noradrenaline transporter (NAT) function has been linked to cardiac arrhythmia. This study examined the association of LMI1195, an {sup 18}F-labeled NAT substrate developed for positron emission tomography (PET) imaging, with NAT in vitro, and its imaging to detect RCSD and guide antiarrhythmic drug treatment in vivo. LMI1195 association with NAT was assessed in comparison with other substrates, noradrenaline (NA) and {sup 123}I-metaiodobenzylguanidine (MIBG), in NAT-expressing cells. LMI1195 cardiac imaging was performed for evaluation of RCSD in a rabbit model surgically developed by regional phenol application on the left ventricular (LV) wall. The normal LV areas in images were quantified as regions with radioactivity {>=}50 % maximum. Potential impact of RCSD on dofetilide, an antiarrhythmic drug, induced ECG changes was assessed. NAT blockade with desipramine reduced LMI1195 cell uptake by 90 {+-} 3 %, similar to NA and MIBG. NA, MIBG, or self inhibited LMI1195 cell uptake concentration-dependently with comparable IC{sub 50} values (1.09, 0.21, and 0.90 {mu}M). LMI1195 cardiac imaging differentiated innervated and denervated areas in RCSD rabbits. The surgery resulted in a large denervated LV area at 2 weeks which was partially recovered at 12 weeks. Myocardial perfusion imaging with flurpiridaz F 18 showed normal perfusion in RCSD areas. Dofetilide induced more prominent QTc prolongation in RCSD than control animals. However, changes in heart rate were comparable. LMI1195 exhibits high association with NAT and can be used for imaging RCSD. The detected RCSD increases cardiac risks to the antiarrhythmic drug, dofetilide, by inducing more QTc prolongation. (orig.)

  12. Regulation of the sympathetic nervous system by nitric oxide and oxidative stress in the rostral ventrolateral medulla: 2012 Academic Conference Award from the Japanese Society of Hypertension.

    Science.gov (United States)

    Kishi, Takuya

    2013-10-01

    Sympathoexcitation has an important role in the pathogenesis of hypertension. Previous studies have demonstrated that nitric oxide (NO) and/or oxidative stress in the brain are important for the regulation of the sympathetic nervous system. We have investigated the role of NO derived from an overexpression of endothelial NO synthase (eNOS) or oxidative stress in the rostral ventrolateral medulla (RVLM), which is known as a vasomotor center in the brainstem, on the regulation of the sympathetic nervous system. Our results indicated that NO derived from an overexpression of eNOS in the RVLM caused sympathoinhibition via an increase in γ-amino butyric acid and that angiotensin II type 1 receptor (AT1R)-induced oxidative stress in the RVLM caused sympathoexcitation. We also demonstrated that oxidative stress in the RVLM caused sympathoexcitation via interactions with NO, effects on the signal transduction or apoptosis of the astrocytes. Furthermore, several orally administered AT1R blockers have been found to cause sympathoinhibition via a reduction in oxidative stress through the blockade of AT1R in the RVLM of hypertensive rats. In conclusion, our studies suggest that the increase in AT1R-induced oxidative stress and/or the decrease in NO in the RVLM mainly cause sympathoexcitation in hypertension.

  13. The role of plasma volume, plasma renin and the sympathetic nervous system in the posture-induced decline in renal lithium clearance in man.

    Science.gov (United States)

    Smith, D F; Shimizu, M

    1978-01-01

    Excretion of lithium in urine was studied in 2 healthy males while recumbent and while upright, either walking or standing quietly. An oral dose of 24.3 mmol of Lit was taken as three lithium carbonate tablets 13 h before clearance tests. Renal lithium clearance decreased and lithium fractional reabsorption increased while upright. Standing immersed to the neck in water, which prevents the fall in plasma volume upon changing posture from recumbent to upright, prevented the fall in renal lithium clearance as well as the rise in lithium fractional reabsorption while upright. Oral doses of guanethidine (total dose of 200 mg) or oxprenolol (total dose of 140 mg) taken to prevent high levels of sympathetic nervous system activity and plasma renin, respectively, failed to prevent the fall in renal lithium clearance or the rise in lithium fractional reabsorption upon changing posture from recumbent to upright. The findings indicate that the fall in renal lithium clearance and the rise in lithium fractional reabsorption upon changing posture from recumbent to upright is related to the fall in plasma volume but not to high levels of sympathetic nervous system activity or plasma renin activity.

  14. Evidence for the participation of the stimulated sympathetic nervous system in the regulation of carnitine blood levels of soccer players during a game.

    Science.gov (United States)

    Schulpis, Kleopatra H; Parthimos, Theodore; Papakonstantinou, Evangelos D; Tsakiris, Theodore; Parthimos, Nickolaos; Mentis, Alexios-Fotios A; Tsakiris, Stylianos

    2009-08-01

    Catecholamines and carnitine blood levels are closely implicated with training. The aim of the study was to investigate the effect of sympathetic nervous system stimulation on carnitine and its fraction levels during training. Blood was obtained from 14 soccer players pregame, at intermission, and postgame. Catecholamines were measured with high-performance liquid chromatography methods; muscle enzymes creatine kinase and lactate dehydrogenase as well as lactate, pyruvate, and total antioxidant status with commercial kits; and carnitine and fraction levels with tandem mass spectrometry. Total antioxidant status (2.97 +/- 0.13 vs 0.96 +/- 0.10 mmol/L, P r = -0.51, P r = 0.58, P r = 0.49, P < .01). The significant positive correlation of adrenaline levels with total acylcarnitine and total long-chain acylcarnitine blood levels in athletes as well as the inverse correlation with free carnitine levels may indicate participation of the stimulated sympathetic nervous system in the regulation of some carnitine fraction levels during exercise.

  15. Mechanisms responsible for postmenopausal hypertension in a rat model: Roles of the renal sympathetic nervous system and the renin-angiotensin system.

    Science.gov (United States)

    Maranon, Rodrigo O; Reckelhoff, Jane F

    2016-02-01

    Hypertension in postmenopausal women is less well controlled than in age-matched men. The aging female SHR is a model of postmenopausal hypertension that is mediated in part by activation of the renin-angiotensin system (RAS) and by the renal sympathetic nervous system. In this study, the hypothesis was tested that renal denervation would lower the blood pressure in old female SHR and would attenuate the antihypertensive effects of AT1 receptor antagonism. Retired breeder female SHR were subjected to right uninephrectomy (UNX) and left renal denervation (RD) or UNX and sham, and 2 weeks later, baseline mean arterial pressure (MAP; radiotelemetry) was measured for 4 days, and then rats were treated with angiotensin (AT1) receptor antagonist, losartan (40 mg/kg/day po) for 6 days. Renal denervation reduced MAP in old females compared to sham (172 ± 6 vs. 193 ± 6 mm Hg; P system and the RAS have independent effects to control the blood pressure in old female SHR. Since the denervated rats treated with losartan remained hypertensive, the data also suggest that other mechanisms than the RAS and renal sympathetic nervous system contribute to the hypertension in old female SHR. The data also suggest that multiple mechanisms may mediate the elevated blood pressure in postmenopausal women.

  16. Electrical modulation of the sympathetic nervous system in order to augment cerebral blood flow : a protocol for an experimental study

    NARCIS (Netherlands)

    Ter Laan, Mark; van Dijk, J. Marc C.; Staal, Michiel J.; Elting, Jan-Willem J.

    2011-01-01

    Introduction: Cerebral blood flow (CBF) is regulated by several mechanisms. Neurogenic control has been a matter of debate, even though several publications reported the effects of changes in sympathetic tone on CBF. Transcutaneous electrical nerve stimulation and spinal-cord stimulation have been s

  17. Regional heterogeneity in cardiac sympathetic innervation in acute myocardial infarction: relationship with myocardial oedema on magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Gimelli, Alessia; Masci, Pier Giorgio; Pasanisi, Emilio Maria; Lombardi, Massimo [Fondazione CNR/Regione Toscana, Pisa (Italy); Liga, Riccardo; Grigoratos, Chrysanthos [University Hospital of Pisa, Pisa (Italy); Marzullo, Paolo [Fondazione CNR/Regione Toscana, Pisa (Italy); Institute of Clinical Physiology, CNR, Pisa (Italy)

    2014-09-15

    To assess the relationships between myocardial structure and function on cardiac magnetic resonance (CMR) imaging and sympathetic tone on {sup 123}I-metaiodobenzylguanidine ({sup 123}I-MIBG) scintigraphy early after myocardial infarction (MI). Ten patients underwent {sup 123}I-MIBG and {sup 99m}Tc-tetrofosmin rest cadmium zinc telluride scintigraphy 4 ± 1 days after MI. The segmental left ventricular (LV) relative radiotracer uptake of both {sup 99m}Tc-tetrofosmin and early {sup 123}I-MIBG was calculated. The day after scintigraphy, on CMR imaging, the extent of ischaemia-related oedema and of myocardial fibrosis (late gadolinium enhancement, LGE) was assessed. Accordingly, the extent of oedema and LGE was evaluated for each segment and segmental wall thickening determined. Based on LGE distribution, LV segments were categorized as ''infarcted'' (56 segments), ''adjacent'' (66 segments) or ''remote'' (48 segments). Infarcted segments showed a more depressed systolic wall thickening and greater extent of oedema than adjacent segments (p < 0.001) and remote segments (p < 0.001). Interestingly, while uptake of {sup 99m}Tc-tetrofosmin was significantly depressed only in infarcted segments (p < 0.001 vs. both adjacent and remote segments), uptake of {sup 123}I-MIBG was impaired not only in infarcted segments (p < 0.001 vs. remote) but also in adjacent segments (p = 0.024 vs. remote segments). At the regional level, after correction for {sup 99m}Tc-tetrofosmin and LGE distribution, segmental {sup 123}I-MIBG uptake (p < 0.001) remained an independent predictor of ischaemia-related oedema. After acute MI the regional impairment of sympathetic tone extends beyond the area of altered myocardial perfusion and is associated with myocardial oedema. (orig.)

  18. Association between left ventricular regional sympathetic denervation and mechanical dyssynchrony in phase analysis: a cardiac CZT study

    Energy Technology Data Exchange (ETDEWEB)

    Gimelli, Alessia; Genovesi, Dario; Giorgetti, Assuero; Kusch, Annette [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Liga, Riccardo [Scuola Superiore Sant' Anna, Pisa (Italy); Marzullo, Paolo [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); CNR, Institute of Clinical Physiology, Pisa (Italy)

    2014-05-15

    To evaluate the relationships among myocardial sympathetic innervation, perfusion and mechanical synchronicity assessed with cardiac cadmium-zinc-telluride (CZT) scintigraphy. A group of 29 patients underwent an evaluation of myocardial perfusion with {sup 99m}Tc-tetrofosmin CZT scintigraphy and adrenergic innervation with {sup 123}I-metaiodobenzylguanidine (MIBG) CZT scintigraphy. The summed rest score (SRS), motion score (SMS) and thickening score (STS), as well as the summed {sup 123}I-MIBG defect score (SS-MIBG), were determined. Regional tracer uptake for both {sup 99m}Tc-tetrofosmin and {sup 123}I-MIBG was also calculated. Finally, the presence of significant myocardial mechanical dyssynchrony was evaluated in phase analysis on gated CZT images and the region of latest mechanical activation identified. Significant mechanical dyssynchrony was present in 17 patients (59 %) and associated with higher SRS (P = 0.030), SMS (P < 0.001), STS (P = 0.003) and early SS-MIBG (P = 0.037) as well as greater impairments in left ventricular ejection fraction (P < 0.001) and end-diastolic volume (P < 0.001). In multivariate analysis a higher end-diastolic volume remained the only predictor of mechanical dyssynchrony (P = 0.047). Interestingly, while in the whole population regional myocardial perfusion and adrenergic activity were strongly correlated (R = 0.68), in patients with mechanical dyssynchrony the region of latest mechanical activation was predicted only by greater impairment in regional {sup 123}I-MIBG uptake (P = 0.012) that overwhelmed the effect of depressed regional perfusion. Left ventricular mechanical dyssynchrony is associated with greater depression in contractile function and greater impairments in regional myocardial perfusion and sympathetic activity. In patients with dyssynchrony, the region of latest mechanical activation is characterized by a significantly altered adrenergic tone. (orig.)

  19. Cardiac biopotentials influence on central nervous system functioning: first steps in hypothesis verification

    Directory of Open Access Journals (Sweden)

    Kondal'skaya Yu.O.

    2012-12-01

    Full Text Available The research goal is to verify the hypothesis on influence of cardiac biopotentials on central nervous system. Materials: 20 healthy individuals aged 18-26 years old have been participated in the investigations. Two groups composed of 10 patients each have been formed. Double increase in heart biopotentials by means of artificial impulse insertion between natural cardiac contractions has been modeled. Artificial impulses have been similar to unaffected ones, produced in a normal heart work. Additional impulses have been generated using external pacemaker and have been linked up with electrodes on the chest. They have been synchronized with the heart rhythm and located in-between R waves. The duration of those impulses has been fully matched to ventricular complex. Their amplitude has been adjusted individually depending on the height of R wave. Nervous system mobility has been used as the indicator reflecting the central nervous system functioning. Degree of mobility has been defined on the basis of tapping test results. The test has been repeated at specific intervals. Groups have been exposed to two adverse testing modes. Additional impulses have been conducted to the patients of group I within an hour over a period of the first and the third 15-minute intervals and to the patients of group II over a period of the second and the fourth 15-minute intervals. In the middle and in the end of each time interval tapping test has been carried out. After preliminary analysis two other modes of stimulation have been tested. The stimulation has been performed within the 40-minute course: over a period of the first 20-minute interval and vice versa. Results: Detailed evaluation has revealed that short-time increase of nervous processes has been checked in combination with decrease in their stability. Conclusion: The data obtained have shown that there is possible influence on central nervous system functioning. The article ends with prospects of further

  20. Noninvasive evaluation of the cardiac autonomic nervous system. Final progress report, December 24, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    During the first year of funding, C-11 hydroxyephedrine has been introduced as the first clinically usable norepinephrine analogue. Studies in normal volunteers and patients with various cardiac disorders indicated the feasibility of this tracer for further evaluation. Simultaneously, animal studies have been used to assess the use of these radiopharmaceuticals in ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threo-hydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, the authors are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve their ability to identify abnormalities. They are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. In addition, they are participating in the development of radiopharmaceuticals for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in their institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by preliminary PET data. A compilation of all publications funded by this grant is presented in this report.

  1. Iyengar Yoga Increases Cardiac Parasympathetic Nervous Modulation among Healthy Yoga Practitioners

    Directory of Open Access Journals (Sweden)

    Kerstin Khattab

    2007-01-01

    Full Text Available Relaxation techniques are established in managing of cardiac patients during rehabilitation aiming to reduce future adverse cardiac events. It has been hypothesized that relaxation-training programs may significantly improve cardiac autonomic nervous tone. However, this has not been proven for all available relaxation techniques. We tested this assumption by investigating cardiac vagal modulation during yoga.We examined 11 healthy yoga practitioners (7 women and 4 men, mean age: 43 ± 11; range: 26–58 years. Each individual was subjected to training units of 90 min once a week over five successive weeks. During two sessions, they practiced a yoga program developed for cardiac patients by B.K.S. Iyengar. On three sessions, they practiced a placebo program of relaxation. On each training day they underwent ambulatory 24 h Holter monitoring. The group of yoga practitioners was compared to a matched group of healthy individuals not practicing any relaxation techniques. Parameters of heart rate variability (HRV were determined hourly by a blinded observer. Mean RR interval (interval between two R-waves of the ECG was significantly higher during the time of yoga intervention compared to placebo and to control (P < 0.001 for both. The increase in HRV parameters was significantly higher during yoga exercise than during placebo and control especially for the parameters associated with vagal tone, i.e. mean standard deviation of NN (Normal Beat to Normal Beat of the ECG intervals for all 5-min intervals (SDNNi, P < 0.001 for both and root mean square successive difference (rMSSD, P < 0.01 for both. In conclusion, relaxation by yoga training is associated with a significant increase of cardiac vagal modulation. Since this method is easy to apply with no side effects, it could be a suitable intervention in cardiac rehabilitation programs.

  2. Metabolic responses to high-fat or low-fat meals and association with sympathetic nervous system activity in healthy young men.

    Science.gov (United States)

    Nagai, Narumi; Sakane, Naoki; Moritani, Toshio

    2005-10-01

    The present study was designed to investigate the metabolic and sympathetic responses to a high-fat meal in humans. Fourteen young men (age: 23.6 +/- 0.5 y, BMI: 21.3 +/- 0.4 kg/m2) were examined for energy expenditure and fat oxidation measured by indirect calorimetry for 3.5 h after a high-fat (70%, energy from fat) or an isoenergetic low-fat (20% energy from fat) meal served in random order. The sympathetic nervous system (SNS) activity was assessed using power spectral analysis of heart rate variability (HRV). After the high-fat meal, increases in thermoregulatory SNS activity (very low-frequency component of HRV, 0.007-0.035 Hz, 577.4+/-45.9 vs. 432.0+/-49.3 ms2, p<0.05) and fat oxidation (21.0+/-5.3 vs. 13.3+/-4.3 g, p<0.001) were greater than those after the low-fat meal. However, thermic effects of the meal (TEM) were lower after the high-fat meal than after the low-fat meal (27.5+/-11.2 vs. 36.1+/-10.9 kcal, p<0.05). In conclusion, the high-fat meal can stimulate thermoregulatory SNS and lipolysis, but resulted in lower TEM, suggesting that a high proportion of dietary fat intake, even with a normal daily range of calories, may be a potent risk factor for further weight gain.

  3. Motor imagery muscle contraction strength influences spinal motor neuron excitability and cardiac sympathetic nerve activity

    OpenAIRE

    2015-01-01

    [Purpose] The aim of this study was to investigate the changes in spinal motor neuron excitability and autonomic nervous system activity during motor imagery of isometric thenar muscle activity at 10% and 50% maximal voluntary contraction (MVC). [Methods] The F-waves and low frequency/high frequency (LF/HF) ratio were recorded at rest, during motor imagery, and post-trial. For motor imagery trials, subjects were instructed to imagine thenar muscle activity at 10% and 50% MVC while holding the...

  4. Effects of Spinal Cord Stimulation on Cardiac Sympathetic Nerve Activity in Patients with Heart Failure

    DEFF Research Database (Denmark)

    Naar, Jan; Jaye, Deborah; Linde, Cecilia

    2017-01-01

    activity in HF patients. Secondary hypotheses were that SCS improves left ventricular function and dimension, exercise capacity, and clinical variables relevant to HF. METHODS: HF patients with a SCS device previously participating in the DEFEAT-HF trial were included in this crossover study with 6-week...... intervention periods (SCS-ON and SCS-OFF). SCS (50 Hz, 210-μs pulse duration, aiming at T2-T4 segments) was delivered for 12 hours daily. Indices of myocardial sympathetic neuronal function (heart-to-mediastinum ratio, HMR) and activity (washout rate, WR) were assessed using (123) I......-metaiodobenzylguanidine (MIBG) scintigraphy. Echocardiography, exercise testing, and clinical data collection were also performed. RESULTS: We included 13 patients (65.3 ± 8.0 years, nine males) and MIBG scintigraphy data were available in 10. HMR was not different comparing SCS-ON (1.37 ± 0.16) and SCS-OFF (1.41 ± 0.21, P = 0...

  5. Alterations of left ventricular deformation and cardiac sympathetic derangement in patients with systolic heart failure: a 3D speckle tracking echocardiography and cardiac {sup 123}I-MIBG study

    Energy Technology Data Exchange (ETDEWEB)

    Leosco, Dario; Parisi, Valentina; Pagano, Gennaro; Femminella, Grazia Daniela; Bevilacqua, Agnese; Formisano, Roberto; Ferro, Gaetana; De Lucia, Claudio; Ferrara, Nicola [University Federico II, Department of Translational Medical Science, Naples (Italy); Pellegrino, Teresa [Italian National Research Council (CNR), Institute of Biostructure and Bioimaging, Naples (Italy); University Federico II, Department of Advanced Biomedical Science, Naples (Italy); Paolillo, Stefania [University Federico II, Department of Advanced Biomedical Science, Naples (Italy); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples (Italy); Prastaro, Maria; Filardi, Pasquale Perrone; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Science, Naples (Italy); Rengo, Giuseppe [University Federico II, Department of Translational Medical Science, Naples (Italy); Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, BN (Italy)

    2015-09-15

    Myocardial contractile function is under the control of cardiac sympathetic activity. Three-dimensional speckle tracking echocardiography (3D-STE) and cardiac imaging with {sup 123}I-metaiodobenzylguanidine ({sup 123}I-MIBG) are two sophisticated techniques for the assessment of left ventricular (LV) deformation and sympathetic innervation, respectively, which offer important prognostic information in patients with heart failure (HF). The purpose of this investigation was to explore, in patients with systolic HF, the relationship between LV deformation assessed by 3D-STE and cardiac sympathetic derangement evaluated by {sup 123}I-MIBG imaging. We prospectively studied 75 patients with systolic HF. All patients underwent a 3D-STE study (longitudinal, circumferential, area and radial) and {sup 123}I-MIBG planar and SPECT cardiac imaging. 3D-STE longitudinal, circumferential and area strain values were correlated with {sup 123}I-MIBG late heart to mediastinum (H/M) ratio and late SPECT total defect score. After stratification of the patients according to ischaemic or nonischaemic HF aetiology, we observed a good correlation of all 3D-STE measurements with late H/M ratio and SPECT data in the ischaemic group, but in patients with HF of nonischaemic aetiology, no correlation was found between LV deformation and cardiac sympathetic activity. At the regional level, the strongest correlation between LV deformation and adrenergic innervation was found for the left anterior descending coronary artery distribution territory for all four 3D-STE values. In multivariate linear regression analyses, including age, gender, LV ejection fraction, NYHA class, body mass index, heart rate and HF aetiology, only 3D-STE area and radial strain values significantly predicted cardiac sympathetic derangement on {sup 123}I-MIBG late SPECT. This study indicated that 3D-STE measurements are correlated with {sup 123}I-MIBG planar and SPECT data. Furthermore, 3D-STE area and radial strain values

  6. POINCARE PLOT OF HEART RATE VARIABILITY: QUANTITATIVE ANALYSIS OF SYMPATHETIC NERVOUS ACTIVITY IN NON-OBESE POLYCYSTIC OVARY SYNDROME PATIENTS

    Directory of Open Access Journals (Sweden)

    Malathi

    2016-06-01

    Full Text Available BACKGROUND Polycystic Ovary Syndrome (PCOS is one of the most common endocrinopathy in premenopausal women. AIM The aim of the study was to evaluate the effectiveness of the Poincare plot analysis of Heart Rate Variability (HRV in PCOS. METHODS AND MATERIALS 24 PCOS diagnosed by Rotterdam 2003 Diagnostic Criteria and were of lean and ideal weight as per WHO criteria and 24 BMI matched, age matched normally menstruating women served as study participants. People of the study group underwent 5 min of ECG, which was evaluated for HRV. HRV analysed were Geometrical parameters (HRV, TRI, INDEX, TINN, Total Power (TP and Poincare plot parameters (SD1, SD2, SD1/SD2, S. RESULTS The Poincare scatter grams were narrower in patients and wider in control groups showing parasympathetic withdrawal and sympathetic dominance, but were not statistically significant. Area (S, TP and HRV TRI INDEX, TINN showed overall decrease in autonomic activity denoting altered sympathovagal balance favouring sympathetic dominance. There was a significant correlation of TP, SD1, SD2, S, TINN and HRV TRI INDEX with increased Rate Pressure Product (RPP as well as with one another, but not with BMI. The regression analysis did not lay forward the independent associations of these variables. DISCUSSION AND CONCLUSION This study indicates the total variability is decreased even in young, lean and ideal weight PCOS patients. Larger studies are needed to evaluating the short- and long-term variability.

  7. Maternal overreactive sympathetic nervous system responses to repeated infant crying predicts risk for impulsive harsh discipline of infants.

    Science.gov (United States)

    Joosen, Katharina J; Mesman, Judi; Bakermans-Kranenburg, Marian J; van Ijzendoorn, Marinus H

    2013-11-01

    Physiological reactivity to repeated infant crying was examined as a predictor of risk for harsh discipline use with 12-month-olds in a longitudinal study with 48 low-income mother-infant dyads. Physiological reactivity was measured while mothers listened to three blocks of infant cry sounds in a standard cry paradigm when their infants were 3 months old. Signs of harsh discipline use were observed during two tasks during a home visit when the infants were 12 months old. Mothers showing signs of harsh discipline (n = 10) with their 12-month-olds were compared to mothers who did not (n = 38) on their sympathetic (skin conductance levels [SCL]) and parasympathetic (respiratory sinus arrhythmia) reactivity to the cry sounds. Results showed a significant interaction effect for sympathetic reactivity only. Mean SCL of harsh-risk mothers showed a significant different response pattern from baseline to crying and onward into the recovery, suggesting that mean SCL of mothers who showed signs of harsh discipline continued to rise across the repeated bouts of cry sounds while, after an initial increase, mean SCL level of the other mothers showed a steady decline. We suggest that harsh parenting is reflected in physiological overreactivity to negative infant signals and discuss our findings from a polyvagal perspective.

  8. [The state of sympathetic-adrenal system in patients with chronic cardiac insufficiency].

    Science.gov (United States)

    Nigmatullin, R R; Kirillova, V V; Dzhordzhikiia, R K; Kudrin, V S; Klodt, P M

    2009-01-01

    Activation of sympato-adrenal system plays an important role in the development of chronic cardiac failure (CCF). However, its relation to morpho-functional state of myocardium in CCF patients is virtually unknown. HPLC with electrochemical detection was used to determine plasma noradrenalin, adrenalin, and their precursors, 3,4-dioxyphenylalanine (DOPA) and dopamine, in patients with different morpho-functional changes in myocardium. The study demonstrated enhanced activity of sympato-adrenal system in patients with CCF. It showed for the first time that activity of sympato-adrenal system in CCF patients depends on the morpho-functional status of myocardium.

  9. Role of endothelin-1 in mediating changes in cardiac sympathetic nerve activity in heart failure.

    Science.gov (United States)

    Abukar, Yonis; May, Clive N; Ramchandra, Rohit

    2016-01-01

    Heart failure (HF) is associated with increased sympathetic nerve activity to the heart (CSNA), which is directly linked to mortality in HF patients. Previous studies indicate that HF is associated with high levels of plasma endothelin-1 (ET-1), which correlates with the severity of the disease. We hypothesized that blockade of endothelin receptors would decrease CSNA. The effects of intravenous tezosentan (a nonselective ETA and ETB receptor antagonist) (8 mg·kg(-1)·h(-1)) on resting levels of CSNA, arterial pressure, and heart rate were determined in conscious normal sheep (n = 6) and sheep with pacing-induced HF (n = 7). HF was associated with a significant decrease in ejection fraction (from 74 ± 2% to 38 ± 1%, P < 0.001) and a significant increase in resting levels of CSNA burst incidence (from 56 ± 11 to 87 ± 2 bursts/100 heartbeats, P < 0.01). Infusion of tezosentan for 60 min significantly decreased resting mean aterial pressure (MAP) in both normal and HF sheep (-8 ± 4 mmHg and -4 ± 3 mmHg, respectively; P < 0.05). This was associated with a significant decrease in CSNA (by 25 ± 26% of control) in normal sheep, but there was no change in CSNA in HF sheep. Calculation of spontaneous baroreflex gain indicated significant impairment of the baroreflex control of HR after intravenous tezosentan infusion in normal animals but no change in HF animals. These data suggest that endogenous levels of ET-1 contribute to the baseline levels of CSNA in normal animals, but this effect is absent in HF.

  10. Hypothalamic neuropeptide Y (NPY) controls hepatic VLDL-triglyceride secretion in rats via the sympathetic nervous system

    NARCIS (Netherlands)

    Bruinstroop, E.; Pei, L.; Ackermans, M.T.; Foppen, E.; Borgers, A.J.F.; Kwakkel, J.; Alkemade, A.; Fliers, E.; Kalsbeek, A.

    2012-01-01

    Excessive secretion of triglyceride-rich very low-density lipoproteins (VLDL-TG) contributes to diabetic dyslipidemia. Earlier studies have indicated a possible role for the hypothalamus and autonomic nervous system in the regulation of VLDL-TG. In the current study, we investigated whether the auto

  11. Targeted NGF siRNA delivery attenuates sympathetic nerve sprouting and deteriorates cardiac dysfunction in rats with myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Hesheng Hu

    Full Text Available Nerve growth factor (NGF is involved in nerve sprouting, hyper-innervation, angiogenesis, anti-apoptosis, and preservation of cardiac function after myocardial infarction (MI. Positively modulating NGF expression may represent a novel pharmacological strategy to improve post-infarction prognosis. In this study, lentivirus encoding NGF short interfering RNA (siRNA was prepared, and MI was modeled in the rat using left anterior descending coronary artery ligation. Rats were randomly grouped to receive intramyocardial injection of lentiviral solution containing NGF-siRNA (n = 19, MI-SiNGF group, lentiviral solution containing empty vector (n = 18, MI-GFP group or 0.9% NaCl solution (n = 18, MI-control group, or to receive thoracotomy and pericardiotomy (n = 17, sham-operated group. At 1, 2, 4, and 8 wk after transduction, rats in the MI-control group had higher levels of NGF mRNA and protein than those in the sham-operated group, rats in the MI-GFP group showed similar levels as the MI-control group, and rats in the MI-SiNGF group had lower levels compared to the MI-GFP group, indicating that MI model was successfully established and NGF siRNA effectively inhibited the expression of NGF. At 8 wk, echocardiographic and hemodynamic studies revealed a more severe cardiac dysfunction in the MI-siRNA group compared to the MI-GFP group. Moreover, rats in the MI-siRNA group had lower mRNA and protein expression levels of tyrosine hydroxylase (TH and growth-associated protein 43-positive nerve fibers (GAP-43 at both the infarcted border and within the non-infarcted left ventricles (LV. NGF silencing also reduced the vascular endothelial growth factor (VEGF expression and decreased the arteriolar and capillary densities at the infarcted border compared to the MI-GFP group. Histological analysis indicated a large infarcted size in the MI-SiNGF group. These findings suggested that endogenous NGF silencing attenuated sympathetic nerve sprouting

  12. Effects of nicorandil on cardiac sympathetic nerve activity after reperfusion therapy in patients with first anterior acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu; Toyama, Takuji; Suzuki, Tadashi; Kurabayashi, Masahiko [Gunma University School of Medicine, Department of Cardiovascular Medicine, Maebashi (Japan); Kumakura, Hisao; Takayama, Yoshiaki; Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan, Gunma (Japan)

    2005-03-01

    Ischaemic preconditioning (PC) is a cardioprotective phenomenon in which short periods of myocardial ischaemia result in resistance to decreased contractile dysfunction during a subsequent period of sustained ischaemia. Nicorandil, an ATP-sensitive potassium channel opener, can induce PC effects on sympathetic nerves during myocardial ischaemia. However, its effects on cardiac sympathetic nerve activity (CSNA) and left ventricular remodelling have not been determined. In this study, we sought to determine whether nicorandil administration improves CSNA in patients with acute myocardial infarction (AMI). We studied 58 patients with first anterior AMI, who were randomly assigned to receive nicorandil (group A) or isosorbide dinitrate (group B) after primary coronary angioplasty. The nicorandil or isosorbide dinitrate was continuously infused for >48 h. The extent score (ES) was determined from {sup 99m}Tc-pyrophosphate scintigraphy, and the total defect score (TDS) was determined from {sup 201}Tl scintigraphy 3-5 days after primary angioplasty. The left ventricular end-diastolic volume (LVEDV) and left ventricular ejection fraction (LVEF) were determined by left ventriculography 2 weeks later. The delayed heart/mediastinum count (H/M) ratio, delayed TDS and washout rate (WR) were determined from {sup 123}I-meta-iodobenzylguanidine (MIBG) images 3 weeks later. The left ventriculography results were re-examined 6 months after treatment. Fifty patients originally enrolled in the trial completed the entire protocol. After treatment, no significant differences were observed in ES or left ventricular parameters between the two groups. However, in group A (n=25), the TDSs determined from {sup 201}Tl and {sup 123}I-MIBG were significantly lower (26{+-}6 vs 30{+-}5, P<0.01, and 32{+-}8 vs 40{+-}6, P<0.0001, respectively), the H/M ratio significantly higher (1.99{+-}0.16 vs 1.77{+-}0.30, P<0.005) and the WR significantly lower (36%{+-}8% vs 44%{+-}12%, P<0.005) than in group B

  13. The lipid-mobilizing effect of atrial natriuretic peptide is unrelated to sympathetic nervous system activation or obesity in young men.

    Science.gov (United States)

    Galitzky, J; Sengenès, C; Thalamas, C; Marques, M A; Senard, J M; Lafontan, M; Berlan, M

    2001-04-01

    We recently demonstrated that natriuretic peptides and especially the atrial natriuretic peptide (ANP) are powerful lipolytic agents on isolated human fat cells. To search for a possible influence of obesity on ANP responsiveness, we compared the lipolytic effects of human ANP (h-ANP) on isolated subcutaneous abdominal adipose tissue (SCAAT) fat cells from young healthy lean and obese men. The lipid-mobilizing effects of an intravenous infusion of h-ANP was studied, as well as various metabolic and cardiovascular parameters that were compared in the same subjects. h-ANP (50 ng/min/kg) was infused iv for 60 min. Microdialysis probes were inserted in SCAAT to measure modifications of the extracellular glycerol concentrations during h-ANP infusion. Spectral analysis of blood pressure and heart rate oscillations that were recorded using digital photoplethysmography were used to assess changes in autonomic nervous system activity. h-ANP induced a marked and similar increase in glycerol and nonesterified fatty acids, and a weak increase in insulin plasma levels in lean and obese men. Plasma norepinephrine concentrations rose similarly during h-ANP infusion in lean and obese men. The effects of h-ANP infusion on the autonomic nervous system were similar in both groups, with an increase in the spectral energy of the low-frequency band of systolic blood pressure variability and a decrease in the spectral energy of the high-frequency band of heart rate. In SCAAT, h-ANP infusion increased extracellular glycerol concentration and decreased blood flow similarly in both groups. The increase in extracellular glycerol observed during h-ANP infusion was not modified when 0.1 mM propranolol was added to the microdialysis probe perfusate to prevent beta-adrenoceptor activation. These data show that ANP is a potent lipolytic hormone independent of the activation of the sympathetic nervous system, and that obesity did not modify the lipid-mobilizing effect of ANP in young obese

  14. Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction.

    Science.gov (United States)

    Lymperopoulos, Anastasios; Rengo, Giuseppe; Gao, Erhe; Ebert, Steven N; Dorn, Gerald W; Koch, Walter J

    2010-05-21

    Chronic heart failure (HF) is characterized by sympathetic overactivity and enhanced circulating catecholamines (CAs), which significantly increase HF morbidity and mortality. We recently reported that adrenal G protein-coupled receptor kinase 2 (GRK2) is up-regulated in chronic HF, leading to enhanced CA release via desensitization/down-regulation of the chromaffin cell alpha(2)-adrenergic receptors that normally inhibit CA secretion. We also showed that adrenal GRK2 inhibition decreases circulating CAs and improves cardiac inotropic reserve and function. Herein, we hypothesized that adrenal-targeted GRK2 gene deletion before the onset of HF might be beneficial by reducing sympathetic activation. To specifically delete GRK2 in the chromaffin cells of the adrenal gland, we crossed PNMTCre mice, expressing Cre recombinase under the chromaffin cell-specific phenylethanolamine N-methyltransferase (PNMT) gene promoter, with floxedGRK2 mice. After confirming a significant ( approximately 50%) reduction of adrenal GRK2 mRNA and protein levels, the PNMT-driven GRK2 knock-out (KO) offspring underwent myocardial infarction (MI) to induce HF. At 4 weeks post-MI, plasma levels of both norepinephrine and epinephrine were reduced in PNMT-driven GRK2 KO, compared with control mice, suggesting markedly reduced post-MI sympathetic activation. This translated in PNMT-driven GRK2 KO mice into improved cardiac function and dimensions as well as amelioration of abnormal cardiac beta-adrenergic receptor signaling at 4 weeks post-MI. Thus, adrenal-targeted GRK2 gene KO decreases circulating CAs, leading to improved cardiac function and beta-adrenergic reserve in post-MI HF. GRK2 inhibition in the adrenal gland might represent a novel sympatholytic strategy that can aid in blocking HF progression.

  15. Discrimination between Healthy and Sick Cardiac Autonomic Nervous System by Detrended Heart Rate Variability Analysis

    CERN Document Server

    Ashkenazy, Yu; Levitan, J; Havlin, S; Saermark, K; Moelgaard, H; Bloch-Thomsen, P E

    1998-01-01

    Multiresolution Wavelet Transform and Detrended Fluctuation Analysis have been recently proven as excellent methods in the analysis of Heart Rate Variability, and in distinguishing between healthy subjects and patients with various dysfunctions of the cardiac nervous system. We argue that it is possible to obtain a distinction between healthy subjects/patients of at least similar quality by, first, detrending the time-series of RR-intervals by subtracting a running average based on a local window with a length of around 32 data points, and then, calculating the standard deviation of the detrended time-series. The results presented here indicate that the analysis can be based on very short time-series of RR-data (7-8 minutes), which is a considerable improvement relative to 24-hours Holter recordings.

  16. Nitrogen and sodium balance and sympathetic-nervous-system activity in obese subjects treated with a low-calorie protein or mixed diet.

    Science.gov (United States)

    DeHaven, J; Sherwin, R; Hendler, R; Felig, P

    1980-02-28

    Seven obese subjects were placed on a 400-kcal protein diet and on an isocaloric mixed diet (50 per cent protein and 50 per cent carbohydrate), three to 5 1/2 weeks for each diet. Despite twofold to fivefold increases in ketone levels in the blood and urine with the protein diet, net nitrogen balance was no different from that with the mixed diet (-2.1 +/- 0.9 vs. -2.6 +/- 0.4 g per day; mean +/- S.E.M.). However, net sodium loss with the protein diet (-382 +/- 117 mmol) was significantly greater than with the mixed diet (-25 +/- 105 mmol; P less than 0.02). Furthermore, maximal orthostatic decreases in systolic blood pressure with the protein diet (-28 +/- 3 mm Hg) were greater than with the mixed diet (-18 +/- 3 mm Hg; P less than 0.02) and were accompanied by symptoms of orthostatic hypotension in all patients. The protein diet (but not the mixed diet) also resulted in a 40 per cent decline in basal plasma levels of norepinephrine (P less than 0.01) and a failure of plasma norepinephrine to rise after two minutes of standing. We conclude that as compared with mixed diets, hypocaloric protein diets offer no advantage with respect to nitrogen metabolism but result in greater sodium depletion, a decrease in sympathetic-nervous-system activity, and the development of orthostatic hypotension.

  17. Research progress of overactivation mechanism of sympathetic nervous system in obesity-related hyper-tension%肥胖相关高血压交感神经系统过度激活机制研究进展

    Institute of Scientific and Technical Information of China (English)

    刘敏

    2015-01-01

    Obesity is an independent risk factor for hypertension.Overactivation of sympathetic nervous system caused by obesity is an important path inducing hypertension.This article made following overview on research pro-gress of overactivation mechanism of sympathetic nervous system in obesity-related hypertension.%肥胖是高血压的独立危险因素。肥胖引起交感神经系统过度激活是诱发高血压的一种重要途径,本文就肥胖相关高血压交感神经系统过度激活机制研究进展作以下综述。

  18. Dysfunction of pre- and post-operative cardiac autonomic nervous system in elderly patients with diabetes mellitus.

    Science.gov (United States)

    Zhang, Junlong; Tu, Weifeng; Dai, Jianqiang; Lv, Qing; Yang, Xiaoqi

    2011-01-01

    The pre- and post-operative cardiac autonomic nervous functions were compared in elderly, non-cardiac surgery patients with diabetes mellitus (DM) and without diabetes mellitus (NDM). A group of 30 unpremedicated elderly patients scheduled to undergo elective non-cardiac surgery were studied, including 15 DM patients and 15 NDM patients. Each component of heart rate variability (HRV) analysis in the frequency domain was monitored with Holter during the nights of the day before and on 1st and 2nd day after operation. After surgery, total power (TP), high frequency (HF), low frequency (LF) and very low frequency (VLF) significantly decreased as compared to the baseline values before operation in both groups (p<0.05). The LF/HF ratio was significantly changed in DM group but did not change in NDM group. On the 2nd postoperative day, TP, HF, LF and VLF in DM group were further decreased as compared to those on the 1st postoperative day and were significantly lower than those in NDM group (p<0.01 or 0.05), but these indices in NDM group did not show significant decreases. Surgery induced the cardiac autonomic nervous dysfunction in elderly patients not only with DM but also without diabetes. On the 2nd postoperative day, the disturbances of cardiac autonomic nervous activity were more sever in DM patients, compared to the 1st postoperative day, but was not significantly more sever than in the NDM patients.

  19. GENDER-SELECTIVE INTERACTION BETWEEN AGING AND CARDIOVASCULAR SYMPATHETIC ACTIVITY

    Directory of Open Access Journals (Sweden)

    Thorat D Kiran

    2010-06-01

    Full Text Available Physiologically aging refers to the impaired ability to maintain homeostasis during external as wellas internal stresses. The sympathetic nervous system becomes tonically, progressively and markedlyactivated with aging in humans. Study is done to measure the cardiovascular sympatheticdysfunctions in the males and females of the different age groups. Total 80, healthy subjects nothaving any major illness and any chronic addiction, were selected for the study. All the subjects wereevaluated by using “CANWIN cardiac autonomic neuropathy analyzer” using the tests like Pulse rateby Palpatory method, Blood Pressure response to sudden standing and Sustained Handgrip test. In all the elderly subjects the sympathetic system was over activated and this over activation of the sympathetic system became more severe as the age advanced. Aging is accompanied by a greater increase in sympathetic activity in women than in men, independent of menopausal status. The study concludes that there is more marked influence of age on sympathetic nervous system activation and impaired sensitivity of baroreceptors in women than men.

  20. Effects of perindopril on cardiac sympathetic nerve activity in patients with congestive heart failure: comparison with enalapril

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu; Toyama, Takuji; Suzuki, Tadashi; Kurabayashi, Masahiko [Gunma University School of Medicine, Department of Cardiovascular Medicine, Maebashi, Gunma (Japan); Kumakura, Hisao; Takayama, Yoshiaki; Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan, Department of Internal Medicine, Gunma (Japan)

    2005-08-01

    The production of aldosterone in the heart is suppressed by the angiotensin-converting enzyme (ACE) inhibitor perindopril in patients with congestive heart failure (CHF). Moreover, perindopril has been reported to have more cardioprotective effects than enalapril. Forty patients with CHF [left ventricular ejection fraction (LVEF) <45%; mean 33{+-}7%] were randomly assigned to perindopril (2 mg/day; n=20) or enalapril (5 mg/day; n=20). All patients were also treated with diuretics. The delayed heart/mediastinum count (H/M) ratio, delayed total defect score (TDS) and washout rate (WR) were determined from {sup 123}I-meta-iodobenzylguanidine (MIBG) images, and plasma brain natriuretic peptide (BNP) concentrations were measured before and 6 months after treatment. The left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV) and LVEF were also determined by echocardiography. After treatment, in patients receiving perindopril, TDS decreased from 39{+-}10 to 34{+-}9 (P<0.01), H/M ratios increased from 1.62{+-}0.27 to 1.76{+-}0.29 (P<0.01), WR decreased from 50{+-}14% to 42{+-}14% (P<0.05) and plasma BNP concentrations decreased from 226{+-}155 to 141{+-}90 pg/ml (P<0.0005). In addition, the LVEDV decreased from 180{+-}30 to 161{+-}30 ml (P<0.05) and the LVESV decreased from 122{+-}35 to 105{+-}36 ml (P<0.05). Although the LVEF tended to increase, the change was not statistically significant (from 33{+-}8% to 36{+-}12%; P=NS). On the other hand, there were no significant changes in these parameters in patients receiving enalapril. Plasma BNP concentrations, {sup 123}I-MIBG scintigraphic and echocardiographic parameters improved after 6 months of perindopril treatment. These findings indicate that perindopril treatment can ameliorate the cardiac sympathetic nerve activity and the left ventricular performance in patients with CHF. (orig.)

  1. Effect of functional sympathetic nervous system impairment of the liver and abdominal visceral adipose tissue on circulating triglyceride-rich lipoproteins

    Science.gov (United States)

    Cirnigliaro, Christopher M.; Kirshblum, Steven C.; McKenna, Cristin

    2017-01-01

    Background Interruption of sympathetic innervation to the liver and visceral adipose tissue (VAT) in animal models has been reported to reduce VAT lipolysis and hepatic secretion of very low density lipoprotein (VLDL) and concentrations of triglyceride-rich lipoprotein particles. Whether functional impairment of sympathetic nervous system (SNS) innervation to tissues of the abdominal cavity reduce circulating concentrations of triglyceride (TG) and VLDL particles (VLDL-P) was tested in men with spinal cord injury (SCI). Methods One hundred-three non-ambulatory men with SCI [55 subjects with neurologic injury at or proximal to the 4th thoracic vertebrae (↑T4); 48 subjects with SCI at or distal to the 5th thoracic vertebrae (↓T5)] and 53 able-bodied (AB) subjects were studied. Fasting blood samples were obtained for determination of TG, VLDL-P concentration by NMR spectroscopy, serum glucose by autoanalyzer, and plasma insulin by radioimmunoassay. VAT volume was determined by dual energy x-ray absorptiometry imaging with calculation by a validated proprietary software package. Results Significant group main effects for TG and VLDL-P were present; post-hoc tests revealed that serum TG concentrations were significantly higher in ↓T5 group compared to AB and ↑T4 groups [150±9 vs. 101±8 (p<0.01) and 112±8 mg/dl (p<0.05), respectively]. VLDL-P concentration was significantly elevated in ↓T5 group compared to AB and ↑T4 groups [74±4 vs. 58±4 (p<0.05) and 55±4 μmol/l (p<0.05)]. VAT volume was significantly higher in both SCI groups than in the AB group, and HOMA-IR was higher and approached significance in the SCI groups compared to the AB group. A linear relationship between triglyceride rich lipoproteins (i.e., TG or Large VLDL-P) and VAT volume or HOMA-IR was significant only in the ↓T5 group. Conclusions Despite a similar VAT volume and insulin resistance in both SCI groups, the ↓T5 group had significantly higher serum TG and VLDL-P values than

  2. Angiotensin II, sympathetic nerve activity and chronic heart failure.

    Science.gov (United States)

    Wang, Yutang; Seto, Sai-Wang; Golledge, Jonathan

    2014-03-01

    Sympathetic nerve activity has been reported to be increased in both humans and animals with chronic heart failure. One of the mechanisms believed to be responsible for this phenomenon is increased systemic and cerebral angiotensin II signaling. Plasma angiotensin II is increased in humans and animals with chronic heart failure. The increase in angiotensin II signaling enhances sympathetic nerve activity through actions on both central and peripheral sites during chronic heart failure. Angiotensin II signaling is enhanced in different brain sites such as the paraventricular nucleus, the rostral ventrolateral medulla and the area postrema. Blocking angiotensin II type 1 receptors decreases sympathetic nerve activity and cardiac sympathetic afferent reflex when therapy is administered to the paraventricular nucleus. Injection of an angiotensin receptor blocker into the area postrema activates the sympathoinhibitory baroreflex. In peripheral regions, angiotensin II elevates both norepinephrine release and synthesis and inhibits norepinephrine uptake at nerve endings, which may contribute to the increase in sympathetic nerve activity seen in chronic heart failure. Increased circulating angiotensin II during chronic heart failure may enhance the sympathoexcitatory chemoreflex and inhibit the sympathoinhibitory baroreflex. In addition, increased circulating angiotensin II can directly act on the central nervous system via the subfornical organ and the area postrema to increase sympathetic outflow. Inhibition of angiotensin II formation and its type 1 receptor has been shown to have beneficial effects in chronic heart failure patients.

  3. Fetal heart rate variability reveals differential dynamics in the intrauterine development of the sympathetic and parasympathetic branches of the autonomic nervous system.

    Science.gov (United States)

    Schneider, U; Schleussner, E; Fiedler, A; Jaekel, S; Liehr, M; Haueisen, J; Hoyer, D

    2009-02-01

    The aim of this study was to investigate the hypothesis that fetal beat-to-beat heart rate variability (fHRV) displays the different time scales of sympatho-vagal development prior to and after 32 weeks of gestation (wks GA). Ninety-two magnetocardiograms of singletons with normal courses of pregnancy between 24 + 1 and 41 + 6 wks GA were studied. Heart rate patterns were either quiet/non-accelerative (fHRP I) or active/accelerative (fHRP II) and recording quality sufficient for fHRV. The sample was divided into the GA groups 32 wks GA. Linear parameters of fHRV were calculated: mean heart rate (mHR), SDNN and RMSSD of normal-to-normal interbeat intervals, power in the low (0.04-0.15 Hz) and high frequency range (0.15-0.4 Hz) and the ratios SDNN/RMSSD and LF/HF as markers for sympatho-vagal balance. fHRP I is characterized by decreasing SDNN/RMSSD, LF/HF and mHR. The decrease is more pronounced 32 wks GA. LF/HF increases in fHRP II during the first half of the third trimester. Non-accelerative fHRP are indicative of parasympathetic dominance >32 wks GA. In contrast, the sympathetic accentuation during accelerative fHRP is displayed in the interrelations between mHR, SDNN and SDNN/RMSSD. Prior to 32 wks GA, fHRV reveals the increasing activity of the respective branches of the autonomic nervous system differentiating the types of fHRP.

  4. Augmented Endothelial-Specific L-Arginine Transport Blunts the Contribution of the Sympathetic Nervous System to Obesity Induced Hypertension in Mice.

    Science.gov (United States)

    Rajapakse, Niwanthi W; Karim, Florian; Evans, Roger G; Kaye, David M; Head, Geoffrey A

    2015-01-01

    Augmenting endothelial specific transport of the nitric oxide precursor L-arginine via cationic amino acid transporter-1 (CAT1) can prevent obesity related hypertension. We tested the hypotheses that CAT1 overexpression prevents obesity-induced hypertension by buffering the influence of the sympathetic nervous system (SNS) on the maintenance of arterial pressure and by buffering pressor responses to stress. Wild type (WT; n=13) and CAT1 overexpressing mice (CAT+; n=13) were fed a normal or a high fat diet for 20 weeks. Mice fed a high fat diet were returned to the control diet before experiments commenced. Baseline mean arterial pressure (MAP) and effects of restraint-, shaker- and almond feeding-stress and ganglionic blockade (pentolinium; 5 mg/kg; i.p.) on MAP were determined in conscious mice. Fat feeding increased body weight to a similar extent in WT and CAT+ but MAP was greater only in WT compared to appropriate controls (by 29%). The depressor response to pentolinium was 65% greater in obese WT than lean WT (P obese and lean CAT+ (P = 0.65). In lean WT and CAT+, pressor responses to shaker and feeding stress, but not restraint stress, were less in the latter genotype compared to the former (P ≤ 0.001). Pressor responses to shaker and feeding stress were less in obese WT than lean WT (P ≤ 0.001), but similar in obese and lean CAT+. The increase in MAP in response to restraint stress was less in obese WT (22 ± 2%), but greater in obese CAT+ (37 ± 2%), when compared to respective lean WT (31 ± 3%) and lean CAT+ controls (27 ± 2%; P ≤ 0.02). We conclude that CAT1 overexpression prevents obesity-induced hypertension by reducing the influence of the SNS on the maintenance of arterial pressure but not by buffering pressor responses to stress.

  5. Induced Effects of Transcranial Magnetic Stimulation on the Autonomic Nervous System and the Cardiac Rhythm

    Directory of Open Access Journals (Sweden)

    Mercedes Cabrerizo

    2014-01-01

    Full Text Available Several standard protocols based on repetitive transcranial magnetic stimulation (rTMS have been employed for treatment of a variety of neurological disorders. Despite their advantages in patients that are retractable to medication, there is a lack of knowledge about the effects of rTMS on the autonomic nervous system that controls the cardiovascular system. Current understanding suggests that the shape of the so-called QRS complex together with the size of the different segments and intervals between the PQRST deflections of the heart could predict the nature of the different arrhythmias and ailments affecting the heart. This preliminary study involving 10 normal subjects from 20 to 30 years of age demonstrated that rTMS can induce changes in the heart rhythm. The autonomic activity that controls the cardiac rhythm was indeed altered by an rTMS session targeting the motor cortex using intensity below the subject’s motor threshold and lasting no more than 5 minutes. The rTMS activation resulted in a reduction of the RR intervals (cardioacceleration in most cases. Most of these cases also showed significant changes in the Poincare plot descriptor SD2 (long-term variability, the area under the low frequency (LF power spectrum density curve, and the low frequency to high frequency (LF/HF ratio. The RR intervals changed significantly in specific instants of time during rTMS activation showing either heart rate acceleration or heart rate deceleration.

  6. Exercise training improves cardiac autonomic nervous system activity in type 1 diabetic children.

    Science.gov (United States)

    Shin, Ki Ok; Moritani, Toshio; Woo, Jinhee; Jang, Ki Soeng; Bae, Ju Yong; Yoo, Jaeho; Kang, Sunghwun

    2014-01-01

    [Purpose] We investigated the effect exercise training has on cardiac autonomic nervous system (ANS) and cardiovascular risk profiles in children with type 1 diabetes mellitus (DM). [Subjects] Fifteen type 1 DM children (all boys; 13.0±1.0 years of age) were enrolled in the study. [Methods] The subjects received exercise training three times a week in a 12-week program. Each child was asked to walk on a treadmill to achieve an exercise intensity of VO2max 60%. ANS activity was measured by power spectral analysis of the electrocardiogram (ECG). Blood samples were obtained for serum lipid profiles. To evaluate Doppler-shifted Fourier pulsatility index (PI) analysis, a 5-MHz continuous wave Doppler (VASCULAB D10) set was used to measure forward blood flow velocity (FLOW) in the radial artery. [Results] Total and low-frequency (LF) power of heart rate variability increased significantly after exercise intervention. Total cholesterol (TC) levels were significant lower after exercise intervention. Total and high-frequency (HF) power were significantly correlated with higher TC levels, but diastolic blood pressure and HF was significantly correlated with lower TC levels. [Conclusion] Regular exercise intervention should be prescribed for children with type 1 DM.

  7. Use of iodine-123 metaiodobenzylguanidine scintigraphy to assess cardiac sympathetic denervation and the impact of hypertension in patients with non-insulin-dependent diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Koji; Nakatani, Yuko; Onishi, Satoshi [Dept. of Internal Medicine, Keihanna Hospital, Hirakata City, Osaka (Japan); Utsunomiya, Keita; Saika, Yoshinori [Dept. of Radiology, Keihanna Hospital, Hirakata City (Japan); Iwasaka, Toshiji [Cardiovascular Center, Kansai Medical University, Osaka (Japan)

    1999-10-01

    The objectives of this clinical study using iodine-123 metaiodobenzylguanidine (MIBG) scintigraphy were (a) to evaluate cardiac sympathetic denervation in non-insulin-dependent diabetes mellitus (NIDDM) patients with and without hypertension and (b) to investigate the relation between cardiac sympathetic denervation and prognosis in NIDDM patients. We compared clinical characteristics and MIBG data [heart to mediastinum (H/M) ratio and % washout rate (WR)] in a control group and NIDDM patients with and without hypertension. MIBG scintigraphy was performed in 11 controls and 82 NIDDM patients without overt cardiovascular disease except for hypertension (systolic blood pressure {>=}140 and/or diastolic blood pressure {>=}90 mmHg). After MIBG examination, blood pressure was measured regularly in all NIDDM patients. There were significant differences between 65 normotensive and 17 hypertensive NIDDM patients with respect to age (55{+-}11 vs 63{+-}12 years, respectively, P<0.05), prevalence of diabetic retinopathy (12% vs 35%, respectively, P<0.05) and systolic blood pressure (120{+-}12 vs 145{+-}16 mmHg, respectively, P<0.001). The H/M ratio in hypertensive NIDDM patients was significantly lower than in the control group (1.81{+-}0.29 vs 2.27{+-}0.20, respectively, P<0.01). During the follow-up period (18{+-} 12 months), 17 NIDDM patients newly developed hypertension after MIBG examination. There were no significant differences in their clinical characteristics compared with persistently normotensive or hypertensive NIDDM patients. %WR in patients with new onset hypertension was significantly higher than in the control group (30.88%{+-}16.87% vs 12.89%{+-}11.94%, respectively, P<0.05). Moreover, in these patients %WR correlated with duration from the date of MIBG scintigraphy to the onset of hypertension (r=-0.512, P<0.05). Five NIDDM patients died during the follow-up period (four newly hypertensive patients and one normotensive patient). There were significant

  8. A comparative study of changes operated by sympathetic nervous system activation on spindle afferent discharge and on tonic vibration reflex in rabbit jaw muscles.

    Science.gov (United States)

    Passatore, M; Deriu, F; Grassi, C; Roatta, S

    1996-03-07

    The effect of sympathetic activation on the spindle afferent response to vibratory stimuli eliciting the tonic vibration reflex in jaw closing muscles was studied in precollicularly decerebrate rabbits. Stimulation of the cervical sympathetic trunk, at frequencies within the physiologic range, consistently induced a decrease in spindle response to muscle vibration, which was often preceded by a transient enhancement. Spindle discharge was usually correlated with the EMG activity in the masseter muscle and the tension reflexly developed by jaw muscles. The changes in spindle response to vibration were superimposed on variations of the basal discharge which exhibited different patterns in the studied units, increases in the firing rate being more frequently observed. These effects were mimicked by close arterial injection of the selective alpha 1-adrenoceptor agonist phenylephrine. Data presented here suggest that sympathetically-induced modifications of the tonic vibration reflex are due to changes exerted on muscle spindle afferent information.

  9. The Association between Baseline Subjective Anxiety Rating and Changes in Cardiac Autonomic Nervous Activity in Response to Tryptophan Depletion in Healthy Volunteers.

    Science.gov (United States)

    Hsiao, Chih Yin; Tsai, Hsin Chun; Chi, Mei Hung; Chen, Kao Chin; Chen, Po See; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang

    2016-05-01

    The aim of this study was to investigate the influence of serotonin on anxiety and autonomic nervous system (ANS) function; the correlation between subjective anxiety rating and changes of ANS function following tryptophan depletion (TD) in healthy volunteers was examined. Twenty-eight healthy participants, consisting of 15 females and 13 males, with an average age of 33.3 years, were recruited.Baseline Chinese Symptom Checklist-90-Revised and ANS function measurements were taken. TD was carried out on the testing day, and participants provided blood samples right before and 5 hours after TD. ANS function, somatic symptoms, and Visual Analogue Scales (VASs) were determined after TD. Wilcoxon signed rank test and Spearman ρ correlation were adapted for analyses of the results.The TD procedure reduced total and free plasma tryptophan effectively. After TD, the sympathetic nervous activity increased and parasympathetic nervous activity decreased. Baseline anxiety ratings positively correlated with post-TD changes in sympathetic nervous activity, VAS ratings, and physical symptoms. However, a negative correlation with post-TD changes in parasympathetic nervous activity was found.The change in ANS function after TD was associated with the severity of anxiety in healthy volunteers. This supports the fact that the effect of anxiety on heart rate variability is related to serotonin vulnerability. Furthermore, it also shows that the subjective anxiety rating has a biological basis related to serotonin.

  10. Macaque cardiac physiology is sensitive to the valence of passively viewed sensory stimuli.

    Directory of Open Access Journals (Sweden)

    Eliza Bliss-Moreau

    Full Text Available Autonomic nervous system activity is an important component of affective experience. We demonstrate in the rhesus monkey that both the sympathetic and parasympathetic branches of the autonomic nervous system respond differentially to the affective valence of passively viewed video stimuli. We recorded cardiac impedance and an electrocardiogram while adult macaques watched a series of 300 30-second videos that varied in their affective content. We found that sympathetic activity (as measured by cardiac pre-ejection period increased and parasympathetic activity (as measured by respiratory sinus arrhythmia decreased as video content changes from positive to negative. These findings parallel the relationship between autonomic nervous system responsivity and valence of stimuli in humans. Given the relationship between human cardiac physiology and affective processing, these findings suggest that macaque cardiac physiology may be an index of affect in nonverbal animals.

  11. Discrimination of the Healthy and Sick Cardiac Autonomic Nervous System by a New Wavelet Analysis of Heartbeat Intervals

    CERN Document Server

    Ashkenazy, Yu; Levitan, J; Moelgaard, H; Bloch-Thomsen, P E; Saermark, K

    1998-01-01

    We demonstrate that it is possible to distinguish with a complete certainty between healthy subjects and patients with various dysfunctions of the cardiac nervous system by way of multiresolutional wavelet transform of RR intervals. We repeated the study of Thurner et al on different ensemble of subjects. We show that reconstructed series using a filter which discards wavelet coefficients related with higher scales enables one to classify individuals for which the method otherwise is inconclusive. We suggest a delimiting diagnostic value of the standard deviation of the filtered, reconstructed RR interval time series in the range of $\\sim 0.035$ (for the above mentioned filter), below which individuals are at risk.

  12. Prenatal stress and balance of the child's cardiac autonomic nervous system at age 5-6 years.

    Directory of Open Access Journals (Sweden)

    Aimée E van Dijk

    Full Text Available OBJECTIVE: Autonomic nervous system (ANS misbalance is a potential causal factor in the development of cardiovascular disease. The ANS may be programmed during pregnancy due to various maternal factors. Our aim is to study maternal prenatal psychosocial stress as a potential disruptor of cardiac ANS balance in the child. METHODS: Mothers from a prospective birth cohort (ABCD study filled out a questionnaire at gestational week 16 [IQR 12-20], that included validated instruments for state anxiety, depressive symptoms, pregnancy-related anxiety, parenting daily hassles and job strain. A cumulative stress score was also calculated (based on 80(th percentiles. Indicators of cardiac ANS in the offspring at age 5-6 years are: pre-ejection period (PEP, heart rate (HR, respiratory sinus arrhythmia (RSA and cardiac autonomic balance (CAB, measured with electrocardiography and impedance cardiography in resting supine and sitting positions. RESULTS: 2,624 mother-child pairs, only single births, were available for analysis. The stress scales were not significantly associated with HR, PEP, RSA and CAB (p≥0.17. Accumulation of maternal stress was also not associated with HR, PEP, RSA and CAB (p≥0.07. CONCLUSION: Results did not support the hypothesis that prenatal maternal psychosocial stress deregulates cardiac ANS balance in the offspring, at least in rest, and at the age of five-six years.

  13. Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Directory of Open Access Journals (Sweden)

    Moulton Alan

    2009-10-01

    Full Text Available Abstract Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS, screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1 the thoracospinal concept for right thoracic AIS in girls; (2 the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3 white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4 central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively, with asymmetry as an adverse response (hormesis; this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept. In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic

  14. Sympathetic reinnervation in cardiac transplants : preliminary results {sup 123}I-MIBG and {sup 201}Tl/{sup 99m}Tc-MIBI scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joug Ho; Oh, Se Jin; Son, Min Soo; Son, Ji Won; Choi, In Seok; Shin, Euk Kyun; Park, Kuk Yang; Kim, Ju E. [International Medicine and Thoraic Surgery, Inchon (Korea, Republic of)

    1997-07-01

    Iodine-123 metaiodobenzylguanidine ({sup 123}I-MIBG) is a norepinephrine (NE) analogue. To determine whether cardiac sympathetic reinnervation occurs after orthotopic heart transplantation (TPL). Nine patients (M : F=7 :2; mean ages=34{+-}24.1 yr; idiopathic:rheumatic = 8: 1) within 197.{+-}14.3 (4-36) months after TPL performed both {sup 123}I-MIBG scintigraphy and {sup 201}Tl/{sup 99m}Tc-MIBI dipyridamole stress gated myocardial perfusion SPECT (g-MPS). {sup 23}I-MIBG imagings were performed in anterior position 15 minutes, 4 and 24 hours after i.v. injection of 148 MBq {sup 123}I MIBG. Image quantitation was based on the ratio of hear to mediastinal MIBG uptake (HMR). Six subjects with <14 (4.3{+-}1.4) months after TPL had no visible {sup 123}I-MIBG uptake on early 15. min imaging however, three subjects with 26 to 36(32.0{+-}5.3) months had visible cardiac {sup 123}I-MIBG uptake (HMR:1.24{+-}0.09 vs. 1.8{+-}0.2). Correlation was found between plasma NE concentration and HMR(r=0.80: p<0.05). Compared to HMR on 15 min images (1.5{+-}0.3), neither four nor 24 hour delayed images (1.3{+-}0.3 vs. 1.1{+-}0.1 : p<0.05, respectively, ANOVA) showed definite delayed localization of MIBG. The uptakes in the liver, lung, salivary glands and spleen were present. To dipyridamole stress, transplant hearts showed significant subnormal hemodynamic responses of HR, s-BP, d-BP, and rate pressure product (95.4{+-}13.8 to 107.4{+-}14.6, 131.0{+-}16.7 to 123.6{+-}13.4, 79.1{+-}12.7 to 72.2{+-}12.7, 124.5{+-}19.6 to 133.0{+-}23.6 p<0.05, respectively). G-MPS of one patient shod an apicoanterior wall reversible perfusion defect which was confirmed as 90% distal left anterior descending artery stenosis by coronary angiography. MIBG uptake seems to involve mainly the specific sodium and energy dependent uptake-1 pathway, and the non-neuronal uptake-2 involving simple diffusion is not significant. Conclusively, partial sympathetic late reinnervation of the transplant human hearts can

  15. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study.

    Directory of Open Access Journals (Sweden)

    Karin A M Janssens

    Full Text Available Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS. However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autonomic nervous system (ANS levels during a standardized stressful situation, and whether these associations are symptom-specific.We examined 715 adolescents (16.1 years, 51.3% girls from the Dutch cohort study Tracking Adolescents' Individual Lives Sample during the Groningen Social Stress Test (GSST. FSS were assessed by the Youth Self-Report, and clustered into a cluster of overtiredness, dizziness and musculoskeletal pain and a cluster of headache and gastrointestinal symptoms. Perceived stress levels (i.e. unpleasantness and arousal were assessed by the Self-Assessment Manikin, and cardiac ANS activity by assessing heart rate variability (HRV-HF and pre-ejection period (PEP. Perceived stress and cardiac ANS levels before, during, and after the GSST were studied as well as cardiac ANS reactivity. Linear regression analyses were used to examine the associations.Perceived arousal levels during (beta = 0.09, p = 0.04 and after (beta = 0.07, p = 0.047 the GSST, and perceived unpleasantness levels before (beta = 0.07, p = 0.048 and during (beta = 0.12, p = 0.001 the GSST were related to FSS during the past couple of months. The association between perceived stress and FSS was stronger for the FSS cluster of overtiredness, dizziness and musculoskeletal pain than for the cluster of headache and gastrointestinal symptoms. Neither ANS activity levels before, during, and after the GSST, nor maximal HF-HRV and PEP reactivity were related to FSS.This study suggests that perceived stress levels during social stress are related to FSS, whereas cardiac ANS activity and reactivity are not related to FSS.

  16. 等长收缩训练治疗下颈椎失稳交感神经症状的效果①%Effect of Isometric Contraction on Sympathetic Nervous Symptoms Followed Subaxial Cervical Instability

    Institute of Scientific and Technical Information of China (English)

    郄淑燕; 张夏琳; 潘钰; 马全胜; 张丽华; 丁永红

    2013-01-01

    Objective To study the effect of isometric contraction on subaxial cervical instability with sympathetic nervous symptoms. Methods 41 subaxial cervical instability patients with sympathetic nervous symptoms were assigned to experimental group (n=21) and con-trol group (n=20). Both groups received manipulation therapy. Experimental group received isometric contraction in addition. They were as-sessed with Visual Analogue Scale (VAS) and heart rate variability (HRV), including total power (TP), low frequency power (LF), high fre-quency power (HF), and LF/HF before and 3 weeks after treatment. Results The scores of VAS, LF and LF/HF decreased in both groups af-ter treatment (P<0.05), which decreased more in the experiement group than in the control group (P<0.05). Conclusion Isometric contrac-tion can release the sympathetic nervous symptoms post subaxial cervical instability.%  目的探讨颈部肌群等长收缩训练对下颈椎失稳交感神经症状的临床疗效。方法41例下颈椎失稳并发交感神经症状的患者分为试验组(n=21)和对照组(n=20)。两组均接受为期3周的手法治疗,试验组同时行颈部肌群等长收缩训练。治疗前后采用视觉模拟评分法(VAS)评价临床症状,采用短程频谱分析法检测心率变异性,包括总功率(TP)、低频成分(LF)、高频成分(HF)、低频高频比(LF/HF)。结果治疗后,两组 VAS 评分、LF、LF/HF 均下降(P<0.05);试验组 VAS 评分、LF、LF/HF 均低于对照组(P<0.05)。结论等长收缩训练可改善下颈椎失稳患者交感神经症状。

  17. Sympathetic actions on the skeletal muscle.

    Science.gov (United States)

    Roatta, Silvestro; Farina, Dario

    2010-01-01

    The sympathetic nervous system (SNS) modulates several functions in skeletal muscle fibers, including metabolism, ionic transport across the membrane, and contractility. These actions, together with the sympathetic control of other organ systems, support intense motor activity. However, some SNS actions on skeletal muscles may not always be functionally advantageous. Implications for motor control and sport performance are discussed.

  18. Habitual traffic noise at home reduces cardiac parasympathetic tone during sleep

    NARCIS (Netherlands)

    Graham, J.M.A.; Janssen, S.A.; Vos, H.; Miedema, H.M.E.

    2009-01-01

    The relationships between road and rail traffic noise with pre-ejection period (PEP) and with respiratory sinus arrhythmia (RSA) during sleep, as indices of cardiac sympathetic and parasympathetic nervous system tone, were investigated in the field (36 subjects, with 188 and 192 valid subject nights

  19. Autonomic Modulation by Electrical Stimulation of the Parasympathetic Nervous System: An Emerging Intervention for Cardiovascular Diseases.

    Science.gov (United States)

    He, Bo; Lu, Zhibing; He, Wenbo; Huang, Bing; Jiang, Hong

    2016-06-01

    The cardiac autonomic nervous system has been known to play an important role in the development and progression of cardiovascular diseases. Autonomic modulation by electrical stimulation of the parasympathetic nervous system, which increases the parasympathetic activity and suppresses the sympathetic activity, is emerging as a therapeutic strategy for the treatment of cardiovascular diseases. Here, we review the recent literature on autonomic modulation by electrical stimulation of the parasympathetic nervous system, including vagus nerve stimulation, transcutaneous auricular vagal stimulation, spinal cord stimulation, and ganglionated plexi stimulation, in the treatment of heart failure, atrial fibrillation, and ventricular arrhythmias.

  20. Sympathetic Activation Does Not Affect the Cardiac and Respiratory Contribution to the Relationship between Blood Pressure and Pial Artery Pulsation Oscillations in Healthy Subjects.

    Directory of Open Access Journals (Sweden)

    Pawel J Winklewski

    Full Text Available Using a novel method called near-infrared transillumination backscattering sounding (NIR-T/BSS that allows for the non-invasive measurement of pial artery pulsation (cc-TQ and subarachnoid width (sas-TQ in humans, we assessed the influence of sympathetic activation on the cardiac and respiratory contribution to blood pressure (BP cc-TQ oscillations in healthy subjects.The pial artery and subarachnoid width response to handgrip (HGT and cold test (CT were studied in 20 healthy subjects. The cc-TQ and sas-TQ were measured using NIR-T/BSS; cerebral blood flow velocity (CBFV was measured using Doppler ultrasound of the left internal carotid artery; heart rate (HR and beat-to-beat mean BP were recorded using a continuous finger-pulse photoplethysmography; respiratory rate (RR, minute ventilation (MV, end-tidal CO2 (EtCO2 and end-tidal O2 (EtO2 were measured using a metabolic and spirometry module of the medical monitoring system. Wavelet transform analysis was used to assess the relationship between BP and cc-TQ oscillations.HGT evoked an increase in BP (+15.9%; P<0.001, HR (14.7; P<0.001, SaO2 (+0.5; P<0.001 EtO2 (+2.1; P<0.05 RR (+9.2%; P = 0.05 and MV (+15.5%; P<0.001, while sas-TQ was diminished (-8.12%; P<0.001, and a clear trend toward cc-TQ decline was observed (-11.0%; NS. CBFV (+2.9%; NS and EtCO2 (-0.7; NS did not change during HGT. CT evoked an increase in BP (+7.4%; P<0.001, sas-TQ (+3.5%; P<0.05 and SaO2(+0.3%; P<0.05. HR (+2.3%; NS, CBFV (+2.0%; NS, EtO2 (-0.7%; NS and EtCO2 (+0.9%; NS remained unchanged. A trend toward decreased cc-TQ was observed (-5.1%; NS. The sas-TQ response was biphasic with elevation during the first 40 seconds (+8.8% vs. baseline; P<0.001 and subsequent decline (+4.1% vs. baseline; P<0.05. No change with respect to wavelet coherence and wavelet phase coherence was found between the BP and cc-TQ oscillations.Short sympathetic activation does not affect the cardiac and respiratory contribution to the relationship

  1. Central nervous system neuropeptide Y regulates mediators of hepatic phospholipid remodeling and very low-density lipoprotein triglyceride secretion via sympathetic innervation

    NARCIS (Netherlands)

    Rojas, Jennifer M; Bruinstroop, E.; Printz, Richard L; Alijagic-Boers, Aldijana; Foppen, E.; Turney, Maxine K; George, Leena; Beck-Sickinger, Annette G; Kalsbeek, A.; Niswender, Kevin D

    2015-01-01

    OBJECTIVE: Elevated very low-density lipoprotein (VLDL)-triglyceride (TG) secretion from the liver contributes to an atherogenic dyslipidemia that is associated with obesity, diabetes and the metabolic syndrome. Numerous models of obesity and diabetes are characterized by increased central nervous s

  2. Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal.

    Science.gov (United States)

    McConnell, Patrick A; Froeliger, Brett; Garland, Eric L; Ives, Jeffrey C; Sforzo, Gary A

    2014-01-01

    Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics [heart rate variability (HRV)] during post-exercise relaxation. Subjects (n = 21; 18-29 years old) participated in a double-blind, placebo-controlled study during which binaural beats and placebo were administered over two randomized and counterbalanced sessions (within-subjects repeated-measures design). At the onset of each visit, subjects exercised for 20-min; post-exercise, subjects listened to either binaural beats ('wide-band' theta-frequency binaural beats) or placebo (carrier tones) for 20-min while relaxing alone in a quiet, low-light environment. Dependent variables consisted of high-frequency (HF, reflecting parasympathetic activity), low-frequency (LF, reflecting sympathetic and parasympathetic activity), and LF/HF normalized powers, as well as self-reported relaxation. As compared to the placebo visit, the binaural-beat visit resulted in greater self-reported relaxation, increased parasympathetic activation and increased sympathetic withdrawal. By the end of the 20-min relaxation period there were no observable differences in HRV between binaural-beat and placebo visits, although binaural-beat associated HRV significantly predicted subsequent reported relaxation. Findings suggest that listening to binaural beats may exert an acute influence on both LF and HF components of HRV and may increase subjective feelings of relaxation.

  3. Renal denervation for treatment of cardiac arrhythmias: state of the art and future directions.

    Science.gov (United States)

    Kosiuk, Jedrzej; Hilbert, Sebastian; Pokushalov, Evgeny; Hindricks, Gerhard; Steinberg, Jonathan S; Bollmann, Andreas

    2015-02-01

    It has now been more than a quarter of a century since modulation of the sympathetic nervous system was proposed for the treatment of cardiac arrhythmias of different origins. But it has also been some time since some of the early surgical attempts have been abandoned. With the development of ablation techniques, however, new approaches and targets have been recently introduced that have revolutionized our way of thinking about sympathetic modulation. Renal nerve ablation technology is now being successfully used for the treatment of resistant hypertension, but the indication spectrum might broaden and new therapeutic options might arise in the near future. This review focuses on the possible impact of renal sympathetic system modulation on cardiac arrhythmias, the current evidence supporting this approach, and the ongoing trials of this method in electrophysiological laboratories. We will discuss the potential roles that sympathetic modulation may play in the future.

  4. A novel electrophilic synthesis and evaluation of medium specific radioactivity (1R,2S)-4-[{sup 18}F]fluorometaraminol, a tracer for the assessment of cardiac sympathetic nerve integrity with PET

    Energy Technology Data Exchange (ETDEWEB)

    Eskola, Olli E-mail: olesko@utu.fi; Groenroos, Tove; Bergman, Joergen; Haaparanta, Merja; Marjamaeki, Paeivi; Lehikoinen, Pertti; Forsback, Sarita; Langer, Oliver; Hinnen, Francoise; Dolle, Frederic; Halldin, Christer; Solin, Olof

    2004-01-01

    (1R,2S)-4-[{sup 18}F]fluorometaraminol (4-[{sup 18}F]FMR), a tracer for cardiac sympathetic innervation, was synthesized by electrophilic aromatic substitution. A trimethylstannyl precursor, protected with tert-butoxycarbonyl protecting groups, was radiofluorinated with high specific radioactivity [{sup 18}F]F{sub 2}. Specific radioactivity of 4-[{sup 18}F]FMR, in average 11.8 {+-}3.3 GBq/{mu}mol, was improved 40-800-fold in comparison to the previous electrophilic fluorinations. The biodistribution of 4-[{sup 18}F]FMR in rat was in accordance with the known distribution of sympathetic innervation. 4-[{sup 18}F]FMR showed no metabolic degradation in left ventricle of rat heart, where the uptake was high, rapid and specific.

  5. Disruption of cardiac cholinergic neurons enhances susceptibility to ventricular arrhythmias

    Science.gov (United States)

    Jungen, Christiane; Scherschel, Katharina; Eickholt, Christian; Kuklik, Pawel; Klatt, Niklas; Bork, Nadja; Salzbrunn, Tim; Alken, Fares; Angendohr, Stephan; Klene, Christiane; Mester, Janos; Klöcker, Nikolaj; Veldkamp, Marieke W.; Schumacher, Udo; Willems, Stephan; Nikolaev, Viacheslav O.; Meyer, Christian

    2017-01-01

    The parasympathetic nervous system plays an important role in the pathophysiology of atrial fibrillation. Catheter ablation, a minimally invasive procedure deactivating abnormal firing cardiac tissue, is increasingly becoming the therapy of choice for atrial fibrillation. This is inevitably associated with the obliteration of cardiac cholinergic neurons. However, the impact on ventricular electrophysiology is unclear. Here we show that cardiac cholinergic neurons modulate ventricular electrophysiology. Mechanical disruption or pharmacological blockade of parasympathetic innervation shortens ventricular refractory periods, increases the incidence of ventricular arrhythmia and decreases ventricular cAMP levels in murine hearts. Immunohistochemistry confirmed ventricular cholinergic innervation, revealing parasympathetic fibres running from the atria to the ventricles parallel to sympathetic fibres. In humans, catheter ablation of atrial fibrillation, which is accompanied by accidental parasympathetic and concomitant sympathetic denervation, raises the burden of premature ventricular complexes. In summary, our results demonstrate an influence of cardiac cholinergic neurons on the regulation of ventricular function and arrhythmogenesis. PMID:28128201

  6. Autonomic Nervous System in Viral Myocarditis: Pathophysiology and Therapy.

    Science.gov (United States)

    Cheng, Zheng; Li-Sha, Ge; Yue-Chun, Li

    2016-01-01

    Myocarditis, which is caused by viral infection, can lead to heart failure, malignant arrhythmias, and even sudden cardiac death in young patients. It is also one of the most important causes of dilated cardiomyopathy worldwide. Although remarkable advances in diagnosis and understanding of pathophysiological mechanisms of viral myocarditis have been gained during recent years, no standard treatment strategies have been defined as yet. Fortunately, recent studies present some evidence that immunomodulating therapy is effective for myocarditis. The immunomodulatory effect of the autonomic nervous system has raised considerable interest over recent decades. Studying the influence on the inflammation and immune system of the sympathetic and parasympathetic nervous systems will not only increase our understanding of the mechanism of disease but could also lead to the identification of potential new therapies for viral myocarditis. Studies have shown that the immunomodulating effect of the sympathetic and parasympathetic nervous system is realized by the release of neurotransmitters to their corresponding receptors (catecholamine for α or β adrenergic receptor, acetylcholine for α7 nicotinic acetylcholinergic receptor). This review will discuss the current knowledge of the roles of both the sympathetic and parasympathetic nervous system in inflammation, with a special focus on their roles in viral myocarditis.

  7. Neuronal types and their specification dynamics in the autonomic nervous system

    OpenAIRE

    2016-01-01

    The autonomic nervous system is formed by a sympathetic and a parasympathetic division that have complementary roles in the maintenance of body homeostasis. Autonomic neurons, also known as visceral motor neurons, are tonically active and innervate virtually every organ in our body. For instance, cardiac outflow, thermoregulation and even the focusing of our eyes are just some of the plethora of physiological functions under the control of this system. Consequently, perturbatio...

  8. Effects of adding intravenous nicorandil to standard therapy on cardiac sympathetic nerve activity and myocyte dysfunction in patients with acute decompensated heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Toyama, Takuji; Funada, Ryuichi; Takama, Noriaki; Koitabashi, Norimichi; Kurabayashi, Masahiko [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Suzuki, Yasuyuki; Matsumoto, Naoya [Nihon University School of Medicine, Department of Cardiology, Tokyo (Japan); Sato, Yuichi [Health Park Clinic, Department of Imaging, Takasaki, Gunma (Japan)

    2015-04-01

    Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, improves cardiac sympathetic nerve activity (CSNA) in ischemic heart disease or chronic heart failure. However, its effects on CSNA and myocyte dysfunction in acute heart failure (AHF) remain unclear. We investigated the effects of adding intravenous nicorandil to standard therapy on CSNA and myocyte dysfunction in AHF. We selected 70 patients with mild to moderate nonischemic AHF who were treated with standard conventional therapy soon after admission. Thirty-five patients were assigned to additionally receive intravenous nicorandil (4-12 mg/h; group A), whereas the remaining patients continued their current drug regimen (group B). Delayed total defect score (TDS), delayed heart to mediastinum count (H/M) ratio, and washout rate (WR) were determined by {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy within 3 days of admission and 4 weeks later. High sensitivity troponin T (hs-TnT) level was also measured at the same time points. After treatment, MIBG scintigraphic parameters significantly improved in both groups. However, the extent of the changes in these parameters in group A significantly exceeded the extent of the changes in group B [TDS -11.3 ± 4.3 in group A vs -4.0 ± 6.0 in group B (p < 0.01); H/M ratio 0.31 ± 0.16 vs 0.14 ± 0.16 (p < 0.01); WR -13.8 ± 7.8 % vs -6.1 ± 8.9 % (p < 0.01)]. The hs-TnT level decreased significantly from 0.052 ± 0.043 to 0.041 ± 0.033 ng/ml (p < 0.05) in group A, but showed no significant change in group B. Moreover, in both groups, no relationships between the extent of changes in MIBG parameters and hs-TnT level were observed. Adding intravenous nicorandil to standard therapy provides additional benefits for CSNA and myocyte dysfunction over conventional therapy alone in AHF patients. Furthermore, the mechanisms of improvement in CSNA and myocyte dysfunction after nicorandil treatment in AHF patients were distinct. (orig.)

  9. Trypanosoma cruzi strains and autonomic nervous system pathology in experimental chagas disease

    Directory of Open Access Journals (Sweden)

    Márcia Maria de Souza

    1996-04-01

    Full Text Available Lesions involving the sympathetic (para-vertebral ganglia and para-sympathetic ganglia of intestines (Auerbach plexus and heart (right atrial ganglia were comparatively analyzed in mice infected with either of three different strain types of Trypanosoma cruzi, during acute and chronic infection, in an attempt to understand the influence of parasite strain in causing autonomic nervous system pathology. Ganglionar involvement with neuronal destruction appeared related to inflammation, which most of the times extended from neighboring adipose and cardiac, smooth and striated muscular tissues. Intraganglionic parasitism was exceptional. Inflammation involving peripheral nervous tissue exhibited a focal character and its variability in the several groups examined appeared unpredictable. Although lesions were generally more severe with the Y strain, comparative qualitative study did not allow the conclusion, under the present experimental conditions, that one strain was more pathogenic to the autonomic nervous system than others. No special tropism of the parasites from any strain toward autonomic ganglia was disclosed.

  10. Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight

    Science.gov (United States)

    Levine, Benjamin D.; Pawelczyk, James A.; Ertl, Andrew C.; Cox, James F.; Zuckerman, Julie H.; Diedrich, Andre; Biaggioni, Italo; Ray, Chester A.; Smith, Michael L.; Iwase, Satoshi; Saito, Mitsuru; Sugiyama, Yoshiki; Mano, Tadaaki; Zhang, Rong; Iwasaki, Kenichi; Lane, Lynda D.; Buckey, Jay C Jr; Cooke, William H.; Baisch, Friedhelm J.; Eckberg, Dwain L.; Blomqvist, C. Gunnar

    2002-01-01

    Orthostatic intolerance is common when astronauts return to Earth: after brief spaceflight, up to two-thirds are unable to remain standing for 10 min. Previous research suggests that susceptible individuals are unable to increase their systemic vascular resistance and plasma noradrenaline concentrations above pre-flight upright levels. In this study, we tested the hypothesis that adaptation to the microgravity of space impairs sympathetic neural responses to upright posture on Earth. We studied six astronauts approximately 72 and 23 days before and on landing day after the 16 day Neurolab space shuttle mission. We measured heart rate, arterial pressure and cardiac output, and calculated stroke volume and total peripheral resistance, during supine rest and 10 min of 60 deg upright tilt. Muscle sympathetic nerve activity was recorded in five subjects, as a direct measure of sympathetic nervous system responses. As in previous studies, mean (+/- S.E.M.) stroke volume was lower (46 +/- 5 vs. 76 +/- 3 ml, P = 0.017) and heart rate was higher (93 +/- 1 vs. 74 +/- 4 beats min(-1), P = 0.002) during tilt after spaceflight than before spaceflight. Total peripheral resistance during tilt post flight was higher in some, but not all astronauts (1674 +/- 256 vs. 1372 +/- 62 dynes s cm(-5), P = 0.32). No crew member exhibited orthostatic hypotension or presyncopal symptoms during the 10 min of postflight tilting. Muscle sympathetic nerve activity was higher post flight in all subjects, in supine (27 +/- 4 vs. 17 +/- 2 bursts min(-1), P = 0.04) and tilted (46 +/- 4 vs. 38 +/- 3 bursts min(-1), P = 0.01) positions. A strong (r(2) = 0.91-1.00) linear correlation between left ventricular stroke volume and muscle sympathetic nerve activity suggested that sympathetic responses were appropriate for the haemodynamic challenge of upright tilt and were unaffected by spaceflight. We conclude that after 16 days of spaceflight, muscle sympathetic nerve responses to upright tilt are normal.

  11. Drug-Free Correction of the Tone of the Autonomic Nervous System in the Management of Cardiac Arrhythmia in Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Sergey V. Popov, PhD, ScD

    2013-06-01

    Full Text Available Background: The aim of our study was to examine the possibility of ventricular extrasystole (VES management in CAD (coronary artery disease patients by attenuating the sympathetic activity with a course of electrical stimulation of the vagus nerve. Methods: A decrease in sympathetic tone was achieved via vagus nerve electrical stimulation (VNES. VNES was performed in 48 male CAD patients, mean age 53.5±4.1 years. Antiarrhythmic drug therapy was canceled prior to VNES therapy. The effect of VNES on heart rate variability (HRV and VES were carefully studied. All the patients received a 24-hour ECG monitoring. HRV was calculated for high frequency (HF and low frequency (LF bands and the LF/HF index was determined. Results: Immediately following VNES therapy, 30 patients (group 1 reported alleviation of angina signs and the LF/HF index was significantly decreased (p=0.001. Eighteen patients (group 2 showed no change either in health or the LF/HF index. According to ECG and echocardiography, the VES number did not significantly change immediately after VNES therapy. One month after the VNES course, group 1 reported further improvement in health; the LF/HF index approached normal values. In group 2, the LF/HF significantly decreased (p=0.043. However, in the entire study sample, the VES number significantly decreased overall (p=0.025. Conclusion: VNES attenuated the cardiac effects of hypersympathicotonia decreased the ischemic impact on the myocardium, alleviated the cardiac angina signs, and beneficially influenced the VES number in CAD patients.

  12. 交感神经活性在高血压患者中的影响价值%Value of Sympathetic Nervous Activity in Patients with Hypertention JIN

    Institute of Scientific and Technical Information of China (English)

    金晶晶

    2013-01-01

    高血压作为危害全人类健康的疾病之一,受到极大的重视,目前全球发病率呈日益增高的趋势,但高血压的知晓率、治疗率和控制率仍较低,所以阐明高血压发病机制以指导降压治疗十分必要.对高血压发病机制研究发现,其机制是十分复杂的过程,是遗传、环境、神经体液等共同参与的结果,现通过对交感神经活性的探讨分析,认为其激活对高血压患者有重要的影响,从而进一步指导高血压病的治疗.%As one of the diseases harmful to mankind health, hypertention has received a great deal of attention. Currently the incidence of hypertension is still at a growing trend,but the awareness, treatment and control of it are still not satisfactory. So,to clarify the pathogenesis of hypertention is necessary to guide anti-hypertension therapy. Researches on hypertension had proved that its mech-anism was very complex involving heredity,environment,neurohumor. Here is to analyze the sympathetic nervous activity in patients with hypertension to further guide the treatment.

  13. Research progress of myocardial ischemia and sympathetic afferent%心肌缺血与交感神经传入的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘俊; 梁尚栋

    2011-01-01

    心脏的自主神经包括交感神经与副交感神经.支配心脏的交感神经不仅有传出轴突,也有传递心脏感受的传入神经.心肌缺血可激活心交感传入神经并将信息传递到大脑心血管中枢,通过兴奋交感传出神经引起交感兴奋性反射,出现心率加快和血压升高等现象使心肌缺血、缺氧和心绞痛加重.因此,交感神经功能变化可加重心肌缺血损伤.%The heart autonomic nervous system consists of both sympathetic and parasympathetic nerves. The heart sympathetic nerves contain not only efferent axons, but also the afferentnerve( transmitting messages to the heart ). Myocardial ischemia activates cardiac sympathetic afferent nerve and transmits the information to the brain and cardiovascular centre, which resultsin sympathetic reflex excitability by excitatory sympathetic efferent. This causes an increase in heart rate and blood pressure, leading to the development of myocardial ischemia, hypoxia and angina pain. Therefore, the change in sympathetic function is acontributing factor to myocardial ischemia.

  14. High Frequency Yoga Breathing: A Review of Nervous System Effects and Adjunctive Therapeutic and Premeditation Potential

    Directory of Open Access Journals (Sweden)

    Anna Andaházy

    2016-05-01

    Full Text Available High frequency yoga breathing (HFYB results in a shifting of the autonomic nervous system balance towards sympathetic nervous system dominance. In an effort to more fully understand the complex effects of this form of yogic breath-work, tests are being conducted on practitioners’ physiological and neurological response processes. Studies on heart rate variability (HRV indicating cardiac autonomic control have shown a resulting reduction of vagal activity following HFYB, leading to passive sympathetic dominance without overt excitation or exhaustion. Comparative cognitive tests taken after the practice have shown that HFYB results in reduced auditory and visual reaction times, and a decrease in optical illusion. The vigilant, wakeful, yet relaxed state induced by HFYB has been associated with improvements in attention, memory, sensorimotor performance, and mood. As breathing bridges conscious and unconscious functions, the potential role of HFYB as an adjunctive therapeutic intervention as well as its possible application in preparation for meditation is considered.

  15. Comparing the accuracy of ES-BC, EIS-GS, and ES Oxi on body composition, autonomic nervous system activity, and cardiac output to standardized assessments

    Directory of Open Access Journals (Sweden)

    Lewis JE

    2011-09-01

    Full Text Available John E Lewis1, Stacey L Tannenbaum1, Jinrun Gao3, Angelica B Melillo1, Evan G Long1, Yaima Alonso2, Janet Konefal1, Judi M Woolger2, Susanna Leonard1, Prabjot K Singh1, Lawrence Chen1, Eduard Tiozzo1 1Department of Psychiatry and Behavioral Sciences, 2Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 3State Farm Insurance, Bloomington, IL, USA Background and purpose: The Electro Sensor Complex (ESC is software that combines three devices using bioelectrical impedance, galvanic skin response, and spectrophotometry: (1 ES-BC (Electro Sensor-Body Composition; LD Technology, Miami, FL to assess body composition, (2 EIS-GS (Electro Interstitial Scan-Galvanic Skin; LD Technology to predict autonomic nervous system activity, and (3 ES Oxi (Electro Sensor Oxi; LD Technology to assess cardiac output. The objective of this study was to compare each to a standardized assessment: ES-BC to dual-energy X-ray absorptiometry (DXA, EIS-GS to heart rate variability, and ES Oxi to BioZ Dx Diagnostic System (BioZ Dx; SonoSite Inc, Bothell, WA. Patients and methods: The study was conducted in two waves. Fifty subjects were assessed for body composition and autonomic nervous system activity. Fifty-one subjects were assessed for cardiac output. Results: We found adequate relative and absolute agreement between ES-BC and DXA for fat mass (r = 0.97, P < 0.001 with ES-BC overestimating fat mass by 0.1 kg and for body fat percentage (r = 0.92, P < 0.001 with overestimation of fat percentage by 0.4%. For autonomic nervous system activity, we found marginal relative agreement between EIS-GS and heart rate variability by using EIS-GS as the predictor in a linear regression equation (adjusted R2 = 0.56, P = 0.03. For cardiac output, adequate relative and absolute agreement was found between ES Oxi and BioZ Dx at baseline (r = 0.60, P < 0.001, after the first exercise stage (r = 0.79, P < 0.001, and after the second exercise stage (r = 0.86, P

  16. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    Directory of Open Access Journals (Sweden)

    Ching-Feng Cheng

    2014-01-01

    Full Text Available Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3 is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  17. Cardiac nociception in rats - Neuronal pathways and the influence of dermal neurostimulation on conveyance to the central nervous system

    NARCIS (Netherlands)

    Albutaihi, IAM; Hautvast, RWM; DeJongste, MJL; Ter Horst, GJ; Staal, MJ

    2003-01-01

    Neurostimulation for refractory angina pectoris is often advocated for its clinical efficacy. However, the recruited pathways to induce electroanalgesia are partially unknown. Therefore, we sought to study the effect of neurostimulation on experimentally induced cardiac nociception, using capsaicin

  18. Autonomic nervous system function in type 2 diabetes using conventional clinical autonomic tests, heart rate and blood pressure variability measures

    Directory of Open Access Journals (Sweden)

    S Sucharita

    2011-01-01

    Full Text Available Background: There are currently approximately 40.9 million patients with diabetes mellitus in India and this number is expected to rise to about 69.9 million by the year 2025. This high burden of diabetes is likely to be associated with an increase in associated complications. Materials and Methods: A total of 23 (15 male and 8 female patients with type 2 diabetes of 10-15 years duration and their age and gender matched controls (n=23 were recruited. All subjects underwent detailed clinical proforma, questionnaire related to autonomic symptoms, anthropometry, peripheral neural examination and tests of autonomic nervous system including both conventional and newer methods (heart rate and blood pressure variability. Results: Conventional tests of cardiac parasympathetic and sympathetic activity were significantly lower in patients with diabetes compared to the controls (P<0.05. The diabetic patients group had significantly lower high frequency and low-frequency HRV when expressed in absolute units (P<0.05 and total power (P<0.01 compared to the controls. Conclusion: Data from the current study demonstrated that diabetics had both cardiac sympathetic and cardiac parasympathetic nervous system involvement. The presence of symptoms and involvement of both components of the autonomic nervous system suggest that dysfunction has been present for a while in these diabetics. There is a strong need for earlier and regular evaluation of autonomic nervous system in type 2 diabetics to prevent further complications.

  19. Sympathetic Blocks Provided Sustained Pain Relief in a Patient with Refractory Painful Diabetic Neuropathy

    OpenAIRE

    2012-01-01

    The sympathetic nervous system has been implicated in pain associated with painful diabetic neuropathy. However, therapeutic intervention targeted at the sympathetic nervous system has not been established. We thus tested the hypothesis that sympathetic nerve blocks significantly reduce pain in a patient with painful diabetic neuropathy who has failed multiple pharmacological treatments. The diagnosis of small fiber sensory neuropathy was based on clinical presentations and confirmed by skin ...

  20. Causal interactions between the cerebral cortex and the autonomic nervous system.

    Science.gov (United States)

    Yu, XiaoLin; Zhang, Chong; Zhang, JianBao

    2014-05-01

    Mental states such as stress and anxiety can cause heart disease. On the other hand, meditation can improve cardiac performance. In this study, the heart rate variability, directed transfer function and corrected conditional entropy were used to investigate the effects of mental tasks on cardiac performance, and the functional coupling between the cerebral cortex and the heart. When subjects tried to decrease their heart rate by volition, the sympathetic nervous system was inhibited and the heart rate decreased. When subjects tried to increase their heart rate by volition, the parasympathetic nervous system was inhibited and the sympathetic nervous system was stimulated, and the heart rate increased. When autonomic nervous system activity was regulated by mental tasks, the information flow from the post-central areas to the pre-central areas of the cerebral cortex increased, and there was greater coupling between the brain and the heart. Use of directed transfer function and corrected conditional entropy techniques enabled analysis of electroencephalographic recordings, and of the information flow causing functional coupling between the brain and the heart.

  1. Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats

    Directory of Open Access Journals (Sweden)

    A. Medeiros

    2004-12-01

    Full Text Available The effect of swimming training (ST on vagal and sympathetic cardiac effects was investigated in sedentary (S, N = 12 and trained (T, N = 12 male Wistar rats (200-220 g. ST consisted of 60-min swimming sessions 5 days/week for 8 weeks, with a 5% body weight load attached to the tail. The effect of the autonomic nervous system in generating training-induced resting bradycardia (RB was examined indirectly after cardiac muscarinic and adrenergic receptor blockade. Cardiac hypertrophy was evaluated by cardiac weight and myocyte morphometry. Plasma catecholamine concentrations and citrate synthase activity in soleus muscle were also determined in both groups. Resting heart rate was significantly reduced in T rats (355 ± 16 vs 330 ± 20 bpm. RB was associated with a significantly increased cardiac vagal effect in T rats (103 ± 25 vs 158 ± 40 bpm, since the sympathetic cardiac effect and intrinsic heart rate were similar for the two groups. Likewise, no significant difference was observed for plasma catecholamine concentrations between S and T rats. In T rats, left ventricle weight (13% and myocyte dimension (21% were significantly increased, suggesting cardiac hypertrophy. Skeletal muscle citrate synthase activity was significantly increased by 52% in T rats, indicating endurance conditioning. These data suggest that RB induced by ST is mainly mediated parasympathetically and differs from other training modes, like running, that seems to mainly decrease intrinsic heart rate in rats. The increased cardiac vagal activity associated with ST is of clinical relevance, since both are related to increased life expectancy and prevention of cardiac events.

  2. Evaluation of cardiac blood blow, metabolism and sympathetic nerve function in patients with cardiac failure using PET and SPECT. Prognostic diagnosis based on the analysis of aggravating factors of the disease

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Yoshio; Shimozu, Junko; Yasumura, Yoshio; Nagatani, Kenzo; Miyatake, Kunio [National Cardiovascular Center, Suita, Osaka (Japan)

    1998-02-01

    Focusing on the failure of energy metabolism, which is assumed to be attributed to the cardiac muscle disorder of a patient with cardiac failure, the characteristics and diagnostic significance of the metabolic disorders of cadiac muscles were investigated in those patients. The diagnostic efficacy of {beta}-methyl iodophenyl pentadecanoic acid (BMIPP) which is a imaging agent for lipid metabolism in the cardiac muscle was assessed in the clinical states of cardiac failure due to pulmonary hypertension. Even if there was a considerable increase in the mean pulmonary arterial pressure (mPAP), the initial accumulation of BMIPP linearly increased, similarly to the increase in the accumulation of MIBI, a blood flow agent. The initial accumulation of BMIPP was thought to reflect a thicken cardiac muscle and/or increased blood flow. Also, its washing-out rate was suggested to be usable as an clinical indicator to estimate the loading of ventricular pressure. (M.N.)

  3. Neurohumoral indicators of efficacy radiofrequency cardiac denervation

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, A. V., E-mail: ave@cardio-tomsk.ru; Evtushenko, V. V. [National Research Tomsk State University, Tomsk (Russian Federation); Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Saushkina, Yu. V.; Gusakova, A. M.; Suslova, T. E.; Dymbrylova, O. N.; Smyshlyaev, K. A.; Kurlov, I. O. [Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Lishmanov, Yu. B.; Anfinogenova, Ya. D. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Sergeevichev, D. S. [Academician E.N. Meshalkin State Research Institute of Circulation Pathology, Novosibirsk (Russian Federation); Bykov, A. N.; Syryamkin, V. I.; Kistenev, Yu. V. [National Research Tomsk State University, Tomsk (Russian Federation); Lotkov, A. I. [Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS, Tomsk (Russian Federation); Pokushalov, E. A.

    2015-11-17

    In this study, we compared pre- and postoperative parameters of the cardiac sympathetic innervation. The aim of the study was to examine the approaches to evaluating the quality of radiofrequency (RF)-induced cardiac denervation by using non-invasive and laboratory methods. The study included 32 people with long-lasting persistent atrial fibrillation (AF). The patients were divided into 2 groups according to the objectives of the study: group 1 (main) - 21 patients with mitral valve diseases, which simultaneously with radiofrequency ablation (RFA) AF carried out on the effects of the paraganglionic nervous plexuses by C. Pappone (2004) and N. Doll (2008) schemes. The second group (control) contained 11 patients with heart diseases in sinus rhythm (the RF denervation not been performed). All patients, who underwent surgical treatment, were received examination of cardiac sympathetic tone by using {sup 123}I-MIBG. All of them made blood analysis from ascending aorta and coronary sinus to determine the level of norepinephrine and its metabolites before and after cardiac denervation. Data of radionuclide examination are correlating with laboratory data.

  4. Neurohumoral indicators of efficacy radiofrequency cardiac denervation

    Science.gov (United States)

    Evtushenko, A. V.; Evtushenko, V. V.; Saushkina, Yu. V.; Lishmanov, Yu. B.; Pokushalov, E. A.; Sergeevichev, D. S.; Gusakova, A. M.; Suslova, T. E.; Dymbrylova, O. N.; Bykov, A. N.; Syryamkin, V. I.; Kistenev, Yu. V.; Anfinogenova, Ya. D.; Smyshlyaev, K. A.; Lotkov, A. I.; Kurlov, I. O.

    2015-11-01

    In this study, we compared pre- and postoperative parameters of the cardiac sympathetic innervation. The aim of the study was to examine the approaches to evaluating the quality of radiofrequency (RF)-induced cardiac denervation by using non-invasive and laboratory methods. The study included 32 people with long-lasting persistent atrial fibrillation (AF). The patients were divided into 2 groups according to the objectives of the study: group 1 (main) - 21 patients with mitral valve diseases, which simultaneously with radiofrequency ablation (RFA) AF carried out on the effects of the paraganglionic nervous plexuses by C. Pappone (2004) and N. Doll (2008) schemes. The second group (control) contained 11 patients with heart diseases in sinus rhythm (the RF denervation not been performed). All patients, who underwent surgical treatment, were received examination of cardiac sympathetic tone by using 123I-MIBG. All of them made blood analysis from ascending aorta and coronary sinus to determine the level of norepinephrine and its metabolites before and after cardiac denervation. Data of radionuclide examination are correlating with laboratory data.

  5. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? : The TRAILS Study

    NARCIS (Netherlands)

    Janssens, Karin A M; Riese, Harriëtte; Van Roon, Arie M; Hunfeld, Joke A M; Groot, Paul F C; Oldehinkel, Albertine J; Rosmalen, Judith G M

    2016-01-01

    OBJECTIVE: Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS). However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autono

  6. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study

    NARCIS (Netherlands)

    Janssens, Karin A. M.; Riese, Harriette; Van Roon, Arie M.; Hunfeld, Joke A. M.; Groot, Paul F. C.; Oldehinkel, Albertine J.; Rosmalen, Judith G. M.

    2016-01-01

    Objective Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS). However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autonom

  7. Differential effects of adrenergic antagonists (Carvedilol vs Metoprolol on parasympathetic and sympathetic activity: a comparison of clinical results

    Directory of Open Access Journals (Sweden)

    Heather L. Bloom

    2014-08-01

    Full Text Available Background Cardiovascular autonomic neuropathy (CAN is recognized as a significant health risk, correlating with risk of heart disease, silent myocardial ischemia or sudden cardiac death. Beta-blockers are often prescribed to minimize risk. Objectives In this second of two articles, the effects on parasympathetic and sympathetic activity of the alpha/beta-adrenergic blocker, Carvedilol, are compared with those of the selective beta-adrenergic blocker, Metoprolol. Methods Retrospective, serial autonomic nervous system test data from 147 type 2 diabetes mellitus patients from eight ambulatory clinics were analyzed. Patients were grouped according to whether a beta-blocker was (1 introduced, (2 discontinued or (3 continued without adjustment. Group 3 served as the control. Results Introducing Carvedilol or Metoprolol decreased heart rate and blood pressure, and discontinuing them had the opposite effect. Parasympathetic activity increased with introducing Carvedilol. Sympathetic activity increased more after discontinuing Carvedilol, suggesting better sympathetic suppression. With ongoing treatment, resting parasympathetic activity decreased with Metoprolol but increased with Carvedilol. Conclusion Carvedilol has a more profound effect on sympathovagal balance than Metoprolol. While both suppress sympathetic activity, only Carvedilol increases parasympathetic activity. Increased parasympathetic activity may underlie the lower mortality risk with Carvedilol.

  8. Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure.

    Science.gov (United States)

    Lymperopoulos, Anastasios; Rengo, Giuseppe; Funakoshi, Hajime; Eckhart, Andrea D; Koch, Walter J

    2007-03-01

    Cardiac overstimulation by the sympathetic nervous system (SNS) is a salient characteristic of heart failure, reflected by elevated circulating levels of catecholamines. The success of beta-adrenergic receptor (betaAR) antagonists in heart failure argues for SNS hyperactivity being pathogenic; however, sympatholytic agents targeting alpha2AR-mediated catecholamine inhibition have been unsuccessful. By investigating adrenal adrenergic receptor signaling in heart failure models, we found molecular mechanisms to explain the failure of sympatholytic agents and discovered a new strategy to lower SNS activity. During heart failure, there is substantial alpha2AR dysregulation in the adrenal gland, triggered by increased expression and activity of G protein-coupled receptor kinase 2 (GRK2). Adrenal gland-specific GRK2 inhibition reversed alpha2AR dysregulation in heart failure, resulting in lowered plasma catecholamine levels, improved cardiac betaAR signaling and function, and increased sympatholytic efficacy of a alpha2AR agonist. This is the first demonstration, to our knowledge, of a molecular mechanism for SNS hyperactivity in heart failure, and our study identifies adrenal GRK2 activity as a new sympatholytic target.

  9. Protein kinase C pathway on cardiac sympathetic nerve neuroplasticity and myocardial interstitial remodeling%心脏交感神经和心肌间质重塑的共同通路——蛋白激酶C途径

    Institute of Scientific and Technical Information of China (English)

    李贺; 周欣; 王坷; 赵丽霞; 王志宏; 李玉明

    2011-01-01

    Cardiac sympathetic nerve and myocardial interstitium play important roles for preservation of heart function. Different extent of the interstitial remodeling and neuroplasticity commonly occur in many kinds of cardiovascular diseases. The abnormalities interact and contribute to progression and worsening of the diseases. There is accumulating evidence suggesting that protein kinase C activation as a regulator involves in and mediates interaction between the neuroplasticity and remodeling under such conditions, which plays a critical role in the nerve dysfunction and myocardial fibrosis.%心脏交感神经和心肌间质对维持正常心功能有重要作用.心血管患病时,两者均发生不同程度的重塑,并互相影响,这些变化对疾病进展发挥重要影响.研究证据显示,两者间的相互作用可能通过蛋白激酶C介导,对交感神经功能异常和心肌纤维化都发挥重要作用.

  10. Computer-based analysis of cardiac state using entropies, recurrence plots and Poincare geometry.

    Science.gov (United States)

    Chua, K C; Chandran, V; Acharya, U R; Lim, C M

    2008-01-01

    Heart rate variability refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability is important because it provides a window to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computer-based intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Parameters are extracted from the heart rate signals and analysed using computers for diagnostics. This paper describes the analysis of normal and seven types of cardiac abnormal signals using approximate entropy (ApEn), sample entropy (SampEn), recurrence plots and Poincare plot patterns. Ranges of these parameters for various cardiac abnormalities are presented with an accuracy of more than 95%. Among the two entropies, ApEn showed better performance for all the cardiac abnormalities. Typical Poincare and recurrence plots are shown for various cardiac abnormalities.

  11. Obesity-Related Metabolic Syndrome: Mechanisms of Sympathetic Overactivity

    Directory of Open Access Journals (Sweden)

    Maria Paola Canale

    2013-01-01

    Full Text Available The prevalence of the metabolic syndrome has increased worldwide over the past few years. Sympathetic nervous system overactivity is a key mechanism leading to hypertension in patients with the metabolic syndrome. Sympathetic activation can be triggered by reflex mechanisms as arterial baroreceptor impairment, by metabolic factors as insulin resistance, and by dysregulated adipokine production and secretion from visceral fat with a mainly permissive role of leptin and antagonist role of adiponectin. Chronic sympathetic nervous system overactivity contributes to a further decline of insulin sensitivity and creates a vicious circle that may contribute to the development of hypertension and of the metabolic syndrome and favor cardiovascular and kidney disease. Selective renal denervation is an emerging area of interest in the clinical management of obesity-related hypertension. This review focuses on current understanding of some mechanisms through which sympathetic overactivity may be interlaced to the metabolic syndrome, with particular regard to the role of insulin resistance and of some adipokines.

  12. Measurement of the effect of Isha Yoga on cardiac autonomic nervous system using short-term heart rate variability

    Directory of Open Access Journals (Sweden)

    Krishnan Muralikrishnan

    2012-01-01

    Full Text Available Background: Beneficial effects of Yoga have been postulated to be due to modulation of the autonomic nervous system. Objective: To assess the effect of Isha Yoga practices on cardiovascular autonomic nervous system through short-term heart rate variability (HRV. Design of the Study: Short-term HRV of long-term regular healthy 14 (12 males and 2 females Isha Yoga practitioners was compared with that of age- and gender-matched 14 (12 males and 2 females non-Yoga practitioners. Methods and Materials: ECG Lead II and respiratory movements were recorded in both groups using Polyrite during supine rest for 5 min and controlled deep breathing for 1 minute. Frequency domain analysis [RR interval is the mean of distance between subsequent R wave peaks in ECG], low frequency (LF power, high frequency (HF power, LF normalized units (nu, HF nu, LF/HF ratio] and time domain analysis [Standard Deviation of normal to normal interval (SDNN, square of mean squared difference of successive normal to normal intervals (RMSSD, normal to normal intervals which are differing by 50 ms (NN50, and percentage of NN50 (pNN50] of HRV variables were analyzed for supine rest. Time domain analysis was recorded for deep breathing. Results: Results showed statistically significant differences between Isha Yoga practitioners and controls in both frequency and time domain analyses of HRV indices, with no difference in resting heart rate between the groups. Conclusions: Practitioners of Isha Yoga showed well-balanced beneficial activity of vagal efferents, an overall increased HRV, and sympathovagal balance, compared to non-Yoga practitioners during supine rest and deep breathing.

  13. Morphology of sympathetic chain in Saguinus niger

    Directory of Open Access Journals (Sweden)

    MARINA P.E. PINTO

    2013-03-01

    Full Text Available Saguinus niger popularly known as Sauim, is a Brazilian North primate. Sympathetic chain investigation would support traumatic and/or cancer diagnosis which are little described in wild animals. The aim of this study was to describe the morphology and distribution of sympathetic chain in order to supply knowledge for neurocomparative research. Three female young animals that came death by natural causes were investigated. Animals were fixed in formaldehyde 10% and dissected along the sympathetic chain in neck, thorax and abdomen. Cranial cervical ganglion was located at the level of carotid bifurcation, related to carotid internal artery. In neck basis the vagosympathetic trunk divides into the sympathetic trunk and the parasympathetic vagal nerve. Sympathetic trunk ran in dorsal position and originated the stellate ganglia, formed by the fusion of caudal cervical and first thoracic ganglia. Vagal trunk laid ventrally to heart and formed the cardiac plexus. In abdomen, on the right side, were found the celiac ganglion and cranial mesenteric ganglion; in the left side these ganglia were fusioned into the celiac-mesenteric ganglion displaced closely to the celiac artery. In both sides, the caudal mesenteric ganglion was located near to the caudal mesenteric artery.

  14. 3H-digoxin distribution in the nervous system in ventricular tachycardia. [Dogs

    Energy Technology Data Exchange (ETDEWEB)

    Frazer, G.; Binnion, P.

    The distribution of 3H-digoxin has been measured in a large number of tissues from the central, autonomic, and peripheral nervous system after the induction of ventricular tachycardia by infusing digoxin into anesthetized dogs. In most parts of the nervous system the tissue digoxin concentration was close to that in the cerebrospinal fluid. Digoxin accumulation in the choroid plexus probably represented a labeling of adenosine triphosphatase. There was a markedly higher concentration of digoxin in the neurohypophysis than in the adenohypophysis, and the very high levels in the neurohypophysis are hard to explain. There may be a relationship between the pituitary and the hypothalamic digoxin levels, although the concentration in the latter was unimpressive. The fornix showed a modest increase in 3H-digoxin concentration and may play a role, as its efferent discharge goes to the hypothalamus. The high concentration of digoxin in the area postrema suggests that this central nervous system structure is responsible, at least in part, for producing digoxin-induced cardiac arrhythmias. It may act as a sensing organ sensitive to blood digoxin concentration. Either it is the only central nervous structure implicated, or it is involved together with the fornix-hypothalamus-hypophysis pathways. Further proof is given for the importance of the autonomic nervous system in cardiac arrhythmias by the high digoxin levels in the superior cervical sympathetic ganglion and adrenal medulla.

  15. Immunopathology of sympathetic ophthalmia.

    Science.gov (United States)

    Marak, G E

    1976-01-01

    The long held notion that sympathetic ophthalmia represents an autoimmune reaction to uveal pigment is no longer tenable. Pigmentation influences the histopathologic picture of sympathetic ophthalmia but no evidence supports the role of uveal pigment as inciting antigen. Several recent studies have confirmed our initial report of the participation of cellular hypersensitivity to ocular tissues in the pathogenesis of this disease. Both clinical and experimental studies implicate retinal tissue as being more immunogenic than uveal antigens. The recent histopathologic observation that eosinophils concentrate near the choriocapillaris suggests that outer retina and retinal pigment epithelium should not be overlooked as a potential source of the stimulating antigen in sympathetic ophthalmia.

  16. [Effectiveness of sympathetic block using various technics].

    Science.gov (United States)

    Weissenberg, W

    1987-07-01

    Blocking of sympathetic conduction aims at permanent or temporary elimination of those pain pathways conducted by the sympathetic nervous system. In order to provide an objective evaluation of sufficient blocking effect, earlier inquiries referred to parameters such as: (1) observation of clinical signs such as Horner's syndrome, Guttman's sign, anhidrosis, extended venous filling; (2) difference in skin temperature of at least 1.5 degrees C between blocked and unblocked side; (3) increase in amplitude of the pulse wave; and (4) depression of the psychogalvanic reflex (PGR) on the blocked side (Fig. 1). In clinical practice, these control parameters are effective because they are time-saving, technically simple, and highly evidential. Further parameters for evaluating sympathetic blockade are examination of hydrosis by means of color indicators such as bromocresol and ninhydrin, oscillometry, and plethysmography. The effectiveness of sympathetic blockade after stellate ganglion and sympathetic trunk blocks has been verified by various authors. In a clinical study, 16 patients were divided into four groups in order to test the effectiveness of sympathetic blockade after spinal anesthesia with 3 ml 0.75% bupivacaine (group I) and 4 ml 0.75% bupivacaine (group II) and after peridural anesthesia with 15 ml 0.75% bupivacaine (group III) and 20 ml 0.75% bupivacaine (group IV) by means of temperature difference, response of pulse wave amplitude and PGR between blocked lower and unblocked upper extremity, and sensory levels of block. The patients were classified as ASA I and II; their ages varied from 20 to 63 years.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. 肾交感神经去除术对心力衰竭犬心功能的影响%Influence of renal sympathetic denervation on cardiac function of dogs with heart failure

    Institute of Scientific and Technical Information of China (English)

    黄达民; 侯舒心; 罗晓菡; 张金春; 卢英民

    2016-01-01

    Objective:To study influence of renal sympathetic denervation (RDN)on cardiac function of dogs with heart failure (HF).Methods:A total of 40 dogs were randomly and equally divided into RDN group [received bilat- eral renal artery radiofrequency ablation (RFA)]and model group (only received femoral puncture).Pacemaker was implanted in every dog,and dog HF model was established using rapid right ventricular pacing.Cardiac and re-nal function indexes,BNP and sympathetic activity index levels were observed and compared between two groups be- fore RFA/sham operation,instant and four weeks after model establishment.Results:After operation four weeks, compared with model group,there were significant reductions in levels of epinephrine (E)[(362.69±42.54)ng/ml vs.(290.36±42.32)ng/ml],renin (R)[(305.46± 39.68)ng/ml vs.(230.04±32.80)ng/ml],aldosterone (AD)[(408.00±38.56)ng/ml vs.(246.00± 48.37)ng/ml],angiotensin Ⅱ (ATⅡ)[(280.00±48.08)pg/ml vs.(172.00±25.04)pg/ml]and norepinephrine (NE)[(425.65±50.54)ng/ml vs.(316.76±46.29)ng/ml]in RDN group (P<0.05 all);there were significant reductions in HR,respiratory rate (RR)and BNP level in RDN group,P<0.05 all;there were significant rise in SBP,LVEF,CO,CI,left ventricular pressure maximal rising rate (+dp/dtmax),left ventricular pressure maximal dropping rate (-dp/dtmax)and left ventricular end-systolic pressure (LVESP),and significant reductions in left ventricular end-systolic dimension (LVESd),left ventricular end-diastolic dimension (LVEDd)and left ventricular end-diastolic pressure (LVEDP)in RDN group,P<0.05 all.Conclusion:RDN can decrease renal sympathetic activity,improve heart function,inhibit myocardial remode- ling,its therapeutic effect is significant%目的:研究肾交感神经去除术(RDN)对心力衰竭(HF)犬心功能的影响.方法:选择实验犬40只,随机均分为RDN组(接受双肾动脉射频消融)及模型组(仅予股动脉穿刺).40只犬均安置心脏起搏器,用快速右室起搏的方法

  18. Relationship between left ventricular diastolic function and myocardial sympathetic denervation measured by {sup 123}I-meta-iodobenzylguanidine imaging in Anderson-Fabry disease

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Letizia; Giudice, Caterina Anna; Imbriaco, Massimo; Trimarco, Bruno; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy); Pellegrino, Teresa [Institute of Biostructure and Bioimaging, National Council of Research, Naples (Italy); Pisani, Antonio; Riccio, Eleonora [University Federico II, Department of Public Health, Naples (Italy); Salvatore, Marco [IRCCS SDN, Naples (Italy)

    2016-04-15

    Whether cardiac sympathetic nervous function abnormalities may be present in patients with Anderson-Fabry disease (AFD) remains unexplored. We investigated the relationship between left ventricular (LV) function and cardiac sympathetic nervous function in patients with AFD. Twenty-five patients (12 men, mean age 43 ± 13 years) with genetically proved AFD and preserved LV ejection fraction and ten age and gender-matched control subjects underwent speckle tracking echocardiography and {sup 123}I-meta-iodobenzylguanidine (MIBG) imaging from which early and late heart to mediastinum (H/M) ratios and myocardial washout rate values were calculated. In AFD patients, a significant correlation between late H/M ratio and LV mass index (r = -61, p = 0.001), left atrial volume (r = -0.72, p < 0.001), systolic pulmonary artery pressure (r = -0.75, p < 0.001), and early diastolic untwisting rate (r = -0.66, p < 0.001) was found. Ten AFD patients exhibited a late H/M ratio below two fold standard deviation of control subjects (≤1.75). Patients showing late H/M ratio ≤ 1.75 had significantly higher LV mass index, relative wall thickness, left atrial volume and systolic pulmonary artery pressure, lower systolic longitudinal strain and an early diastolic untwisting rate compared to patients with late H/M ratio > 1.75. At multivariable linear regression analysis, early diastolic untwisting rate was the only independent predictor of late H/M ratio ≤ 1.75 (odds ratio 1.15, 95 % confidence interval 1.07-1.31, p < 0.05). The present findings provide the first demonstration of a cardiac sympathetic derangement in AFD patients with preserved LV ejection fraction, which is mostly related to LV diastolic dysfunction. (orig.)

  19. Sympathetic neural adaptation to hypocaloric diet with or without exercise training in obese metabolic syndrome subjects

    DEFF Research Database (Denmark)

    Straznicky, Nora E; Lambert, Elisabeth A; Nestel, Paul J

    2010-01-01

    Sympathetic nervous system (SNS) overactivity contributes to the pathogenesis and target organ complications of obesity. This study was conducted to examine the effects of lifestyle interventions (weight loss alone or together with exercise) on SNS function....

  20. 反射性交感神经营养不良%Reflex sympathetic dystrophy

    Institute of Scientific and Technical Information of China (English)

    马抒音; 张丽苓

    2002-01-01

    @@ Background: Reflex sympathetic dystrophy (RSD),also known as complex regional pain syndrome (CRPS), is a nervous system disorder that often results in severe chronic and burning pain and other symptoms.

  1. Investigation of Sleep Bruxism Relating to Micro-arousals and Cardiac Sympathetic Activities%夜磨牙与微觉醒及心脏交感神经活动的关系

    Institute of Scientific and Technical Information of China (English)

    刘伟才; 王海波; 陈威; 李强

    2012-01-01

    Objective: To investigate whether rhythmic masticatory muscle activity (RMMA) is associated with sleep micro- arousals (MA), and analyze the association between RMMA of sleep bruxism patients (RMMA/SB) and autonomic cardiac activity. Methods: Thirty SB subjects and thirty control subjects for two consecutive nights were performed by polygraphic recordings. MA index and RMMA index were scored. The mean heart rate from a series of 10 cardiac cycles was calculated at 60, 40, 20 and 5 sec before RMMA onset respectively. To assess a transient beat-to-beat heart rate change in relation to the RMMA onset, heart rate from 5 cardiac cycles before and 5 cycles after the onset were also calculated. Results: Sleep bruxism (SB) subjects showed a higher incidence of rhythmic masticatory muscle activity (RMMA) than control subjects (6.10±1.05 vs. 1.81 ±0.39, P<0.0001). However, no difference was found in according to their micro-arousal index(7.72±1.21 vs.7.53±1.33, P=0.5641). RMMA/SB was associated with sleep micro-arousals. In both groups, transient heart rate acceleration was observed in relation to the onset of RMMA episodes. Conclusion: RMMA is associated with sleep micro-arousals. In SB subjects, a clear increase in sympathetic activity precedes SB onset.%目的:研究夜磨牙(sleep bruxism,SB)患者睡眠期咀嚼肌节律性运动(RMMA)发生的微觉醒机制.方法:对30名夜磨牙患者、30名正常人进行连续2夜的多导睡眠监测,研究RMMA事件与微觉醒(MA)的时间相关性;比较2组间RMMA指数及MA指数的差异;RMMA事件发生前60 s、前40 s、前20 s、前5s,共5个时间点的各连续10个心动周期的平均心率,以及RMMA事件发生前后各5个心动周期的心率变化.结果:夜磨牙症患者微觉醒指数(7.72±1.21)与正常对照相似(7.53±1.33,P=0.5641);但咀嚼肌节律性运动频率,即磨牙指数[(6.10±1.05)次/h]约3倍于正常对照组[(1.81±0.39)次/h,P<0.0001)].RMMA事件与MA存在高度时间相关

  2. Sympathetic predominance is associated with impaired endothelial progenitor cells and tunneling nanotubes in controlled-hypertensive patients.

    Science.gov (United States)

    de Cavanagh, Elena M V; González, Sergio A; Inserra, Felipe; Forcada, Pedro; Castellaro, Carlos; Chiabaut-Svane, Jorge; Obregón, Sebastián; Casarini, María Jesús; Kempny, Pablo; Kotliar, Carol

    2014-07-15

    Early endothelial progenitor cells (early EPC) and late EPC are involved in endothelial repair and can rescue damaged endothelial cells by transferring organelles through tunneling nanotubes (TNT). In rodents, EPC mobilization from the bone marrow depends on sympathetic nervous system activity. Indirect evidence suggests a relation between autonomic derangements and human EPC mobilization. We aimed at testing whether hypertension-related autonomic imbalances are associated with EPC impairment. Thirty controlled-essential hypertensive patients [systolic blood pressure/diastolic blood pressure = 130(120-137)/85(61-88) mmHg; 81.8% male] and 20 healthy normotensive subjects [114(107-119)/75(64-79) mmHg; 80% male] were studied. Mononuclear cells were cultured on fibronectin- and collagen-coated dishes for early EPC and late EPC, respectively. Low (LF)- and high (HF)-frequency components of short-term heart rate variability were analyzed during a 5-min rest, an expiration/inspiration maneuver, and a Stroop color-word test. Modulations of cardiac sympathetic and parasympathetic activities were evaluated by LF/HF (%) and HF power (ms(2)), respectively. In controlled-hypertensive patients, the numbers of early EPC, early EPC that emitted TNT, late EPC, and late EPC that emitted TNT were 41, 77, 50, and 88% lower than in normotensive subjects (P hypertensive patients, late EPC number was positively associated with cardiac parasympathetic reserve during the expiration/inspiration maneuver (rho = 0.45, P = 0.031) and early EPC with brachial flow-mediated dilation (rho = 0.655; P = 0.049); also, late TNT number was inversely related to cardiac sympathetic response during the stress test (rho = -0.426, P = 0.045). EPC exposure to epinephrine or norepinephrine showed negative dose-response relationships on cell adhesion to fibronectin and collagen; both catecholamines stimulated early EPC growth, but epinephrine inhibited late EPC growth. In controlled-hypertensive patients

  3. Leptin as a mediator between obesity and cardiac dysfunction

    Directory of Open Access Journals (Sweden)

    Joanna Karbowska

    2012-05-01

    Full Text Available  Obesity is now recognised as one of the most important risk factors for heart disease. Obese individuals have high circulating levels of leptin, a hormone secreted by adipose tissue and in­volved in energy homeostasis. Growing evidence suggests that leptin may contribute to the development of cardiac dysfunction. In a large prospective study leptin has been shown to be an independent risk factor for coronary heart disease. An independent positive association has also been found between plasma leptin levels and heart rate in hypertensive patients and heart transplant recipients. In animal studies chronic leptin infusion increased heart rate and blood pressure. It has also been demonstrated that circulating leptin levels are elevated in patients with heart failure. The level of plasma leptin was associated with increased myocardial wall thickness and correlated with left ventricular mass, suggesting a role for this hormone in mediating left ventricular hypertrophy in humans. Moreover, leptin directly induced hypertrophy and hyperplasia in human and rodent cardiomyocytes, accompanied by cardiac extracellular matrix remodelling. Leptin may also influence energy substrate utilisation in cardiac tissue.These findings suggest that leptin acting directly or through the sympathetic nervous system may have adverse effects on cardiac structure and function, and that chronic hyperleptinaemia may greatly increase the risk of cardiac disorders. Additional studies are needed to define the role of leptin in cardiac physiology and pathophysiology, nevertheless the reduction in plasma leptin levels with caloric restriction and weight loss may prevent cardiac dysfunction in obese patients.

  4. Nitric oxide and the autonomic regulation of cardiac excitability. The G.L. Brown Prize Lecture.

    Science.gov (United States)

    Paterson, D

    2001-01-01

    Cardiac sympathetic imbalance and arrhythmia; Nitric oxide-cGMP pathway and the cholinergic modulation of cardiac excitability; Nitric oxide-cGMP pathway and the sympathetic modulation of cardiac excitability; Functional significance of nitric oxide in the autonomic regulation of cardiac excitability; Summary; References. Experimental Physiology (2001) 86.1, 1-12.

  5. Causes and consequences of increased sympathetic activity in renal disease

    NARCIS (Netherlands)

    Joles, JA; Koomans, HA

    2004-01-01

    Much evidence indicates increased sympathetic nervous activity (SNA) in renal disease. Renal ischemia is probably a primary event leading to increased SNA. Increased SNA often occurs in association with hypertension. However, the deleterious effect of increased SNA on the diseased kidney is not only

  6. Autonomic nervous system and immune system interactions.

    Science.gov (United States)

    Kenney, M J; Ganta, C K

    2014-07-01

    The present review assesses the current state of literature defining integrative autonomic-immune physiological processing, focusing on studies that have employed electrophysiological, pharmacological, molecular biological, and central nervous system experimental approaches. Central autonomic neural networks are informed of peripheral immune status via numerous communicating pathways, including neural and non-neural. Cytokines and other immune factors affect the level of activity and responsivity of discharges in sympathetic and parasympathetic nerves innervating diverse targets. Multiple levels of the neuraxis contribute to cytokine-induced changes in efferent parasympathetic and sympathetic nerve outflows, leading to modulation of peripheral immune responses. The functionality of local sympathoimmune interactions depends on the microenvironment created by diverse signaling mechanisms involving integration between sympathetic nervous system neurotransmitters and neuromodulators; specific adrenergic receptors; and the presence or absence of immune cells, cytokines, and bacteria. Functional mechanisms contributing to the cholinergic anti-inflammatory pathway likely involve novel cholinergic-adrenergic interactions at peripheral sites, including autonomic ganglion and lymphoid targets. Immune cells express adrenergic and nicotinic receptors. Neurotransmitters released by sympathetic and parasympathetic nerve endings bind to their respective receptors located on the surface of immune cells and initiate immune-modulatory responses. Both sympathetic and parasympathetic arms of the autonomic nervous system are instrumental in orchestrating neuroimmune processes, although additional studies are required to understand dynamic and complex adrenergic-cholinergic interactions. Further understanding of regulatory mechanisms linking the sympathetic nervous, parasympathetic nervous, and immune systems is critical for understanding relationships between chronic disease

  7. Sympathetic Blocks Provided Sustained Pain Relief in a Patient with Refractory Painful Diabetic Neuropathy

    Directory of Open Access Journals (Sweden)

    Jianguo Cheng

    2012-01-01

    Full Text Available The sympathetic nervous system has been implicated in pain associated with painful diabetic neuropathy. However, therapeutic intervention targeted at the sympathetic nervous system has not been established. We thus tested the hypothesis that sympathetic nerve blocks significantly reduce pain in a patient with painful diabetic neuropathy who has failed multiple pharmacological treatments. The diagnosis of small fiber sensory neuropathy was based on clinical presentations and confirmed by skin biopsies. A series of 9 lumbar sympathetic blocks over a 26-month period provided sustained pain relief in his legs. Additional thoracic paravertebral blocks further provided control of the pain in the trunk which can occasionally be seen in severe diabetic neuropathy cases, consequent to extensive involvement of the intercostal nerves. These blocks provided sustained and significant pain relief and improvement of quality of life over a period of more than two years. We thus provided the first clinical evidence supporting the notion that sympathetic nervous system plays a critical role in painful diabetic neuropathy and sympathetic blocks can be an effective management modality of painful diabetic neuropathy. We concluded that the sympathetic nervous system is a valuable therapeutic target of pharmacological and interventional modalities of treatments in painful diabetic neuropathy patients.

  8. Cardiac lesions in patients with lethal central nervous system trauma Daño cardíaco en pacientes con trauma mortal del sistema nervioso central

    Directory of Open Access Journals (Sweden)

    María E. Cardona

    1991-03-01

    Full Text Available

    Fifteen men with lethal central nervous system trauma were studied to look for the presence of cardiac lesions. They were between 16 and 60 years of age with an average of 32. There were five gunshot wounds and nine central nervous system contusions; four of these occurred in traffic accidents. The remaining patient was wounded with a machete. AII patients were adequately treated since the beginning of their hospital stay and 14 were surgically managed. Average survival after trauma was 6.6 days. In every case there were ECG alterations, the most frequent being sinusal tachycardia. Creatine phosphokinase levels were high in all and the MB fraction was above normal levels in three patients in whom heart damage was confirmed at autopsy. In 40% of cases heart lesions were found and the most common was subendocardial hemorrhage. In an era of increasing need of organs for transplantation potential donors have to be thoroughly studied to determine if heart lesions have occurred and to decide if they are suitable as transplant organs.

    Analizamos los casos de 15 hombres con trauma mortal del sistema nervioso central. Sus edades fluctuaron entre 16 y 60 años con un promedio de 32. Las lesiones más frecuentes fueron por proyectil de arma de fuego (5 casos y por contusión (9 casos, cuatro de ellos en accidente de tránsito. El paciente restante fue lesionado con arma corto contundente. En todos los pacientes el manejo fue adecuado desde el principio de la hospitalización ya 14 se les hizo tratamiento quirúrgico. El promedio de sobrevida después del trauma fue 6.6 días. Sin excepción el estudio electrocardiográfico mostró alteraciones; la taquicardia sinusal fue la más frecuente. La CPK estuvo elevada en todos los pacientes; en 3 de ellos, con da

  9. PM2.5对大鼠心脏交感神经分布的影响及其与心肌神经生长因子表达的关系%Effect of PM2.5 on sympathetic innervation by stimulating the secretion of cardiac nerve growth factor in healthy rat hearts

    Institute of Scientific and Technical Information of China (English)

    段军; 丛鲁红; 李刚; 易丽; 柯元南; 周益锋

    2012-01-01

    Objective To assess the effect of PM2.5 on sympathetic innervation and the relationship with cardiac nerve growth factor in healthy rat hearts,identify the ability to the sympathetic nerve reconstruction,and explore the possible arrhythogenic mechanism of PM2.5.Methods Forty healthy SD rats were instilled into trachea with two different solutions twice per week for four weeks:control group with saline and experimental group with PM2.5 25 mg/kg.Then these rats were killed,and biatrial appendages,two ventricular anterior walls were left.Immune cytochemical staining of cardiac nerves was performed using anti-tyrosine hydroxylase antibodies and cardiac nerve growth factor was detected by western blotting.Resuits Compared with the control group,both the density of sympathetic nerves and the expression of cardiac NGF protein in the experimental group were much higher in the left ventricular anterior wall ( P<0.01 and P<0.05) and in the right ventricular anterior wall ( P<0.01 and P<0.05).Conclusions PM2.5 can induce regional sympathetic hyperinnervation in both ventricular anterior walls in healthy rats by stimulating the NGF protein secretion,and the sympathetic nerve reconstruction effect of PM2.5 was confirmed.%目的 研究可吸入颗粒物PM2.5对大鼠心脏交感神经分布的影响及其与心肌神经生长因子表达的关系,明确PM2.5是否具有致交感神经重构作用,探讨PM2.5致心律失常的可能机制.方法 40只SD雄性大鼠,随机分为对照组和实验组,每组20只.实验组大鼠按25 mg/kg剂量经气管内缓慢注入颗粒物悬液染毒,每周染毒2次,连续染毒4周;对照组以生理盐水代替颗粒物悬液;两组大鼠于末次染毒后次日处死,开胸留取双侧心耳和双心室前壁,通过免疫组化方法检测酪氨酸羟化酶染色阳性的交感神经纤维分布密度,同时采用蛋白免疫印迹法检测心肌神经生长因子(NGF)蛋白表达.结果 与对照组比较,实验组大鼠吸入PM2

  10. Research progress on sepsis-induced cardiac autonomic nervous system dysfunction%脓毒症心脏自主神经功能障碍研究进展

    Institute of Scientific and Technical Information of China (English)

    余海洋; 俞凤

    2011-01-01

    脓毒症是诱发脓毒性休克,多器官功能障碍综合征的重要原因,病死率高,目前仍是危重病领域关注的问题之一.脓毒症合并心功能不全非常常见,其机制尚未完全阐明.目前认为脓毒症患者自主神经系统功能障碍是脓毒症并发心血管功能障碍的机制之一.该文以心血管自主神经调控为切入点,对脓毒症心脏自主神经系统功能障碍的表现、引起心脏自主神经系统功能障碍的机制及相关干预措施进行综述,以期为脓毒症的研究和防治提供理论依据.%Sepsis with its high mortality,was an important etiology of septic shock and multiple organ dysfunction syndrome. It remainsone of the research focuses in critical care areas. Cardiac dysfunction is common in patients with sepsis, and its pathogenesis remains incompletely clear. Nowadays, autonomic nervous system dysfunction is considered one of the mechanisms of sepsis-induced cardiovascular dysfunction. In this review.we will expatiate on the cardiovascular autonomic control mechanism. the manifestation and pathogenesis of sepsis-induced cardiac autonomic nervous system dysfunction. Furthermore. some intervention measures in sepsis-induced cardiac autonomic nervous system dysfunction was introduced. We hope to provide theory basis in the prevention and treatment of sepsis.

  11. Role of sympathetic nerve activity in the process of fainting

    Directory of Open Access Journals (Sweden)

    Satoshi eIwase

    2014-09-01

    Full Text Available Syncope is defined as a transient loss of consciousness and postural tone, characterized by rapid onset, short duration, and spontaneous recovery, and the process of syncope progression will be described with two types of sympathetic change. Simultaneous recordings of microneurographically recorded MSNA and continuous and noninvasive blood pressure measurement have disclose what is going on in the course of progression of the syncope. Vasovagal or neurally mediated syncope, three stages are identified in the course of syncope onset, oscillation, imbalance, and catastrophe phases. The vasovagal syncope is characterized by the sympathoexcitation, followed by vagal overcome via the Bezold-Jarisch reflex. Orthostatic syncope is caused by the response failure or lack of sympathetic nerve activity toward the orthostatic challenge followed by the fluid shift, and subsequent cerebral low perfusion. Four causes are considered for the compensatory failure, which triggers the orthostatic syncope; hypovolemia, increased pooling in the lower body, failure to activate the sympathetic activity, and failure of vasoconstriction against sympathetic vasoconstrictive stimulation. Many pathophysiological conditions were described in the viewpoint of 1 exaggerated sympathoexcitation and 2 failure to activate the sympathetic nerve. We conclude that the sympathetic nervous system can control the cardiovascular function, and its failure resulted syncope, however, responses of the system by microneurographically recorded MSNA would determine the pathophysiology of the onset and progression of syncope, explaining the treatment effect that could be achieved by the analysis of this mechanism.

  12. Effect of quinapril or metoprolol on circadian sympathetic and parasympathetic modulation after acute myocardial infarction.

    Science.gov (United States)

    Kontopoulos, A G; Athyros, V G; Papageorgiou, A A; Boudoulas, H

    1999-11-15

    Abnormal autonomic nervous system impairment in patients with acute myocardial infarction (AMI) has a circadian pattern with the greatest manifestation in the morning hours; it probably plays an important role in the pathogenesis of cardiac arrhythmias and acute ischemic syndromes. Angiotensin-converting enzyme inhibitors improve autonomic function in patients with AMI, but the circadian pattern of this effect has not been studied. Heart rate variability-normalized frequency domain indexes were assessed 5 days (baseline) after the onset of uncomplicated AMI and 30 days after therapy with quinapril (n = 30), metoprolol (n = 30), or placebo (n = 30) with a solid-state digital Holter monitor. Normal subjects (n = 30) were used as controls. Quinapril increased parasympathetic and decreased sympathetic modulation, and improved sympathovagal interactions manifested by an increase in normalized high-frequency power (HFP), and a decrease in normalized low-frequency power (LFP), and their ratio (LFP/HFP) during the entire 24-hour period (pMetoprolol increased HFP and decreased LFP and the LFP/HFP ratio mainly between 08.00 A.M. to 12.00 noon, and 19.00 to 22.00 P.M. (delta% ratio -21%, and -12% respectively, pMetoprolol had a similar effect during the late morning and evening hours, but at a lower level. These effects may prove beneficial in reducing cardiac arrhythmias and acute ischemic syndromes in past-AMI patients.

  13. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.

    Science.gov (United States)

    Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne

    2015-06-23

    The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation.

  14. Propranolol for Paroxysmal Sympathetic Hyperactivity with Lateralizing Hyperhidrosis after Stroke

    Directory of Open Access Journals (Sweden)

    Jason W. Siefferman

    2015-01-01

    Full Text Available Brain injury can lead to impaired cortical inhibition of the hypothalamus, resulting in increased sympathetic nervous system activation. Symptoms of paroxysmal sympathetic hyperactivity may include hyperthermia, tachycardia, tachypnea, vasodilation, and hyperhidrosis. We report the case of a 41-year-old man who suffered from a left middle cerebral artery stroke and subsequently developed central fever, contralateral temperature change, and hyperhidrosis. His symptoms abated with low-dose propranolol and then returned upon discontinuation. Restarting propranolol again stopped his symptoms. This represents the first report of propranolol being used for unilateral dysautonomia after stroke. Propranolol is a lipophilic nonselective beta-blocker which easily crosses the blood-brain barrier and may be used to treat paroxysmal sympathetic hyperactivity.

  15. Is There Anything "Autonomous" in the Nervous System?

    Science.gov (United States)

    Rasia-Filho, Alberto A.

    2006-01-01

    The terms "autonomous" or "vegetative" are currently used to identify one part of the nervous system composed of sympathetic, parasympathetic, and gastrointestinal divisions. However, the concepts that are under the literal meaning of these words can lead to misconceptions about the actual nervous organization. Some clear-cut examples indicate…

  16. Cardiac autonomic nervous test value to the diagnosis of plant diabetic neuropathy%心脏自主神经试验对糖尿病合并植物神经病变的诊断价值

    Institute of Scientific and Technical Information of China (English)

    何煜暐

    2015-01-01

    目的:对46例糖尿病患者心脏自主神经试验进行分析,探讨心脏自主神经试验对糖尿病合并植物神经病变的诊断价值。方法:根据临床表现把糖尿病患者分为糖尿病合并植物神经病变组和糖尿病不合并植物神经病变组。行心脏自主神经试验,并对两组数据进行比较。结果:糖尿病合并植物神经病变组呼吸差,乏氏指数、30/15比值均低于不合并植物神经病变组。结论:心脏自主神经试验方法简单方便,容易掌握,重复性好,可作为评估糖尿病合并植物神经病变的敏感指标。%Objective46 cases of diabetic cardiac autonomic nervous test were analyzed, and discuss the heart autonomic nervous test value to the diagnosis of plant diabetic neuropathy.MethodsThe diabetes patients according to clinical manifestations of divided into diabetic neuropathy group and diabetes do not merge plants group of neuropathy. Heart the heart nerve test, and carries on the comparison to 2 sets of data.ResultsPlant diabetic neuropathy group of poor breathing, lack of index, the ratio of 30/15 were less merger plant neuropathy group.Conclusions Cardiac autonomic nervous test method is simple and convenient, easy to learn, good repeatability, can be used as evaluation of sensitive indicator of plant diabetic neuropathy.

  17. Is it time for cardiac innervation imaging?

    Energy Technology Data Exchange (ETDEWEB)

    Knuuti, J. [Turku Univ., Turku (Finland) Turku PET Center; Sipola, P. [Kuopio Univ., Kuopio (Finland)

    2005-03-01

    The autonomic nervous system plays an important role in the regulation of cardiac function and the regional distribution of cardiac nerve terminals can be visualized using scintigraphic techniques. The most commonly used tracer is iodine-123-metaiodobenzylguanidine (MIBG) but C-11-hydroxyephedrine has also been used with PET. When imaging with MIBG, the ratio of heart-to-mediastinal counts is used as an index of tracer uptake, and regional distribution is also assessed from tomographic images. The rate of clearance of the tracer can also be measured and indicates the function of the adrenergic system. Innervation imaging has been applied in patients with susceptibility to arrythmias, coronary artery disease, hypertrophic and dilated cardiomyopathy and anthracycline induced cardiotoxicity. Abnormal adrenergic innervation or function appear to exist in many pathophysiological conditions indicating that sympathetic neurons are very susceptible to damage. Abnormal findings in innervation imaging also appear to have significant prognostic value especially in patients with cardiomyopathy. Recently, it has also been shown that innervation imaging can monitor drug-induced changes in cardiac adrenergic activity. Although innervation imaging holds great promise for clinical use, the method has not received wider clinical acceptance. Larger randomized studies are required to confirm the value of innervation imaging in various specific indications.

  18. Hemodynamic and cardiac effects of chronic eprosartan and moxonidine therapy in stroke-prone spontaneously hypertensive rats.

    Science.gov (United States)

    Mukaddam-Daher, Suhayla; Menaouar, Ahmed; Paquette, Pierre-Alexandre; Jankowski, Marek; Gutkowska, Jolanta; Gillis, Marc-Antoine; Shi, Yan-Fen; Calderone, Angelo; Tardif, Jean-Claude

    2009-05-01

    The renin-angiotensin and sympathetic nervous systems play critical interlinked roles in the development of left ventricular hypertrophy, fibrosis, and dysfunction. These studies investigated the hemodynamic and cardiac effects of monoblockade and coblockade of renin-angiotensin and sympathetic nervous systems. Stroke-prone spontaneously hypertensive rats (16 weeks old; male; n=12 per group) received the sympatholytic imidazoline compound, moxonidine (2.4 mg/kg per day); the angiotensin-receptor blocker eprosartan (30 mg/kg per day), separately or in combination; or saline vehicle for 8 weeks, SC, via osmotic minipumps. Blood pressure and heart rate were continuously measured by radiotelemetry. After 8 weeks, in vivo cardiac function and structure were measured by transthoracic echocardiography and a Millar conductance catheter, and the rats were then euthanized and blood and heart ventricles collected for various determinations. Compared with vehicle, the subhypotensive dose of moxonidine resulted in lower (P<0.01) heart rate, left ventricular hypertrophy, cardiomyocyte cross-sectional area, interleukin 1 beta, tumor necrosis factor-alpha, and mRNA for natriuretic peptides. Eprosartan reduced pressure (P<0.01), as well as extracellular signal-regulated kinase (ERK) 44 phosphorylation, Bax/Bcl-2, and collagen I/III, and improved left ventricular diastolic function (P<0.03). Combined treatment resulted in greater reductions in blood pressure, heart rate, left ventricular hypertrophy, collagen I/III, and inhibited inducible NO synthase and increased endothelial NO synthase phosphorylation, as well as reduced left ventricular anterior wall thickness, without altering the other parameters. Thus, in advanced hypertension complicated with cardiac fibrosis, sympathetic inhibition and angiotensin II blockade resulted in greater reduction in blood pressure and heart rate, inhibition of inflammation, and improved left ventricular pathology but did not add to the benefits of

  19. Spinal Cord Injury-Induced Dysautonomia via Plasticity in Paravertebral Sympathetic Postganglionic

    Science.gov (United States)

    2015-10-01

    preganglionic divergence and convergence onto thoracic chain SPNs was previously examined in guinea pig 6,7. We began to undertake similar studies in the...autonomic nervous system 18, 195-205 (1987). 6 Blackman, J. G. & Purves, R. D. Intracellular recordings from ganglia of the thoracic sympathetic chain of...the guinea - pig . J Physiol. 203, 173-198. (1969). 7 Lichtman, J. W., Purves, D. & Yip, J. W. Innervation of sympathetic neurones in the guinea - pig

  20. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, G.L.; Palma, R.K.; Brito, J.O.; Sanches, I.C. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil); Irigoyen, M.C. [Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); De Angelis, K. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil)

    2015-03-27

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation.

  1. Cardiac autonomic neuropathy in patients with diabetes mellitus.

    Science.gov (United States)

    Dimitropoulos, Gerasimos; Tahrani, Abd A; Stevens, Martin J

    2014-02-15

    Cardiac autonomic neuropathy (CAN) is an often overlooked and common complication of diabetes mellitus. CAN is associated with increased cardiovascular morbidity and mortality. The pathogenesis of CAN is complex and involves a cascade of pathways activated by hyperglycaemia resulting in neuronal ischaemia and cellular death. In addition, autoimmune and genetic factors are involved in the development of CAN. CAN might be subclinical for several years until the patient develops resting tachycardia, exercise intolerance, postural hypotension, cardiac dysfunction and diabetic cardiomyopathy. During its sub-clinical phase, heart rate variability that is influenced by the balance between parasympathetic and sympathetic tones can help in detecting CAN before the disease is symptomatic. Newer imaging techniques (such as scintigraphy) have allowed earlier detection of CAN in the pre-clinical phase and allowed better assessment of the sympathetic nervous system. One of the main difficulties in CAN research is the lack of a universally accepted definition of CAN; however, the Toronto Consensus Panel on Diabetic Neuropathy has recently issued guidance for the diagnosis and staging of CAN, and also proposed screening for CAN in patients with diabetes mellitus. A major challenge, however, is the lack of specific treatment to slow the progression or prevent the development of CAN. Lifestyle changes, improved metabolic control might prevent or slow the progression of CAN. Reversal will require combination of these treatments with new targeted therapeutic approaches. The aim of this article is to review the latest evidence regarding the epidemiology, pathogenesis, manifestations, diagnosis and treatment for CAN.

  2. Comparative anatomy of the autonomic nervous system.

    Science.gov (United States)

    Nilsson, Stefan

    2011-11-16

    This short review aims to point out the general anatomical features of the autonomic nervous systems of non-mammalian vertebrates. In addition it attempts to outline the similarities and also the increased complexity of the autonomic nervous patterns from fish to tetrapods. With the possible exception of the cyclostomes, perhaps the most striking feature of the vertebrate autonomic nervous system is the similarity between the vertebrate classes. An evolution of the complexity of the system can be seen, with the segmental ganglia of elasmobranchs incompletely connected longitudinally, while well developed paired sympathetic chains are present in teleosts and the tetrapods. In some groups the sympathetic chains may be reduced (dipnoans and caecilians), and have yet to be properly described in snakes. Cranial autonomic pathways are present in the oculomotor (III) and vagus (X) nerves of gnathostome fish and the tetrapods, and with the evolution of salivary and lachrymal glands in the tetrapods, also in the facial (VII) and glossopharyngeal (IX) nerves.

  3. Sympathetic dysfunction of central origin in patients with ALS

    DEFF Research Database (Denmark)

    Karlsborg, M; Andersen, E B; Wiinberg, N

    2003-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe, progressive disease affecting both the central and peripheral parts of the motor nervous system. Some studies have shown unequivocal indications of a more disseminated disease also affecting the autonomic nervous system. We therefore evaluated....... There were no correlations between the ALS Severity Scores and blood flow changes, diastolic blood pressure or MAP. Our study supports previous results, but indicates abnormalities consistent with a solely centrally located sympathetic dysfunction in ALS, independent of the stage of the disease....

  4. [Psychosomatic aspects of cardiac arrhythmias].

    Science.gov (United States)

    Siepmann, Martin; Kirch, Wilhelm

    2010-07-01

    Emotional stress facilitates the occurrence of cardiac arrhythmias including sudden cardiac death. The prevalence of anxiety and depression is increased in cardiac patients as compared to the normal population. The risk of cardiovascular mortality is enhanced in patients suffering from depression. Comorbid anxiety disorders worsen the course of cardiac arrhythmias. Disturbance of neurocardiac regulation with predominance of the sympathetic tone is hypothesized to be causative for this. The emotional reaction to cardiac arrhythmias is differing to a large extent between individuals. Emotional stress may result from coping with treatment of cardiac arrhythmias. Emotional stress and cardiac arrhythmias may influence each other in the sense of a vicious circle. Somatoform cardiac arrhythmias are predominantly of psychogenic origin. Instrumental measures and frequent contacts between physicians and patients may facilitate disease chronification. The present review is dealing with the multifaceted relationships between cardiac arrhythmias and emotional stress. The underlying mechanisms and corresponding treatment modalities are discussed.

  5. Efeito do carvedilol a curto prazo na atividade simpática cardíaca pela cintilografia com 123I-MIBG Effects of short-term carvedilol on the cardiac sympathetic activity assessed by 123I-MIBG scintigraphy

    Directory of Open Access Journals (Sweden)

    Sandra Marina Ribeiro de Miranda

    2010-03-01

    Full Text Available FUNDAMENTO: Alterações autonômicas na insuficiência cardíaca estão associadas a um aumento da morbimortalidade. Vários métodos não invasivos têm sido empregados para avaliar a função simpática, incluindo a imagem cardíaca com 123I-MIBG. OBJETIVO: Avaliar a atividade simpática cardíaca, por meio da cintilografia com 123I-MIBG, antes e após três meses de terapia com carvedilol em pacientes com insuficiência cardíaca com fração de ejeção do VE BACKGROUND: Autonomic alterations in heart failure are associated with an increase in morbimortality. Several noninvasive methods have been employed to evaluate the sympathetic function, including the Meta-Iodobenzylguanidine (123I-MIBG scintigraphy imaging of the heart. OBJECTIVE: to evaluate the cardiac sympathetic activity through 123I-MIBG scintigraphy, before and after three months of carvedilol therapy in patients with heart failure and left ventricular ejection fraction (LVEF < 45%. PATIENTS AND METHODS: Sixteen patients, aged 56.3 ± 12.6 years (11 males, with a mean LVEF of 28% ± 8% and no previous use of beta-blockers were recruited for the study. Images of the heart innervation were acquired with 123I-MIBG, and the serum levels of catecholamines (epinephrine, dopamine and norepinephrine were measured; the radioisotope ventriculography (RIV was performed before and after a three-month therapy with carvedilol. RESULTS: Patients' functional class showed improvement: before the treatment, 50% of the patients were FC II and 50% were FC III. After 3 months, 7 patients were FC I (43.8% and 9 were FC II (56.2%, (p = 0.0001. The mean LVEF assessed by RIV increased from 29% to 33% (p = 0.017. There was no significant variation in cardiac adrenergic activity assessed by 123I-MIBG (early and late resting images and washout rate. No significant variation was observed regarding the measurement of catecholamines. CONCLUSION: The short-term treatment with carvedilol promoted the clinical

  6. Sympathetic-leptin relationship in obesity: effect of weight loss.

    Science.gov (United States)

    Quilliot, Didier; Böhme, Philip; Zannad, Faiez; Ziegler, Olivier

    2008-04-01

    Obese patients have high plasma leptin concentrations that do not induce the expected responses on weight regulation, suggesting a leptin resistance in obesity. Elevated leptin levels are also thought to be related to a high sympathetic nervous system (SNS) activity. This effect could be preserved, lowered, or even abolished in obesity. We planned to investigate the possible association in a longitudinal study. Ninety-five normotensive healthy women, aged 40.4 +/- 11.4 years and body mass index of 33.2 +/- 2.3 kg/m(2), were studied. Baseline leptin, fat mass, and heart rate variability were measured and included in a 6-month longitudinal study. Body composition was measured by dual-energy x-ray absorption. Time domain heart rate variability, QT dynamicity, and spectral components on ambulatory electrocardiographs were analyzed. Dietary advice was given by a dietitian to the patient (maximum caloric reduction of 30%), and subjects were randomized in 3 treatment groups: sibutramine 10 mg, sibutramine 20 mg, or placebo. At baseline, low frequencies (LF) and the LF-high frequencies (HF) ratio, mainly related to the SNS, were negatively correlated to leptin concentration (r = -0.30, P = .002 and r = -0.36, P < .001) and to the leptin-fat mass ratio (r = -0.28, P = .004 and r = - 0.33, P = .0007), thus explaining 38% of the LF variance and 33% of the LF/HF variance. Diastolic blood pressure was also negatively correlated to leptin concentrations (-0.20, P = .04) and to the leptin-fat mass ratio (-0.22, P = .022). In contrast, no consistent correlations between leptin and the time domain components related to vagal activity were observed. At 6 months, after completion of the weight loss program, LF significantly decreased (-7.7% +/- 7.9%, P < .001), whereas HF was higher than the initial value (+20% +/- 5.2%). The leptin-fat mass ratio remained negatively correlated to the LF (r = -0.34, P = .030) and to LF/HF (r = -0.35, P = .021) values, explaining 21% of the LF

  7. Renal sympathetic denervation for treatment of patients with heart failure: summary of the available evidence.

    Science.gov (United States)

    Nammas, Wail; Koistinen, Juhani; Paana, Tuomas; Karjalainen, Pasi P

    2017-02-10

    Heart failure syndrome results from compensatory mechanisms that operate to restore - back to normal - the systemic perfusion pressure. Sympathetic overactivity plays a pivotal role in heart failure; norepinephrine contributes to maintenance of the systemic blood pressure and increasing preload. Cardiac norepinephrine spillover increases in patients with heart failure; norepinephrine exerts direct toxicity on cardiac myocytes resulting in a decrease of synthetic activity and/or viability. Importantly, cardiac norepinephrine spillover is a powerful predictor of mortality in patients with moderate to severe HF. This provided the rationale for trials that demonstrated survival benefit associated with the use of beta adrenergic blockers in heart failure with reduced ejection fraction. Nevertheless, the MOXCON trial demonstrated that rapid uptitration of moxonidine (inhibitor of central sympathetic outflow) in patients with heart failure was associated with excess mortality and morbidity, despite reduction of plasma norepinephrine. Interestingly, renal norepinephrine spillover was the only independent predictor of adverse outcome in patients with heart failure, in multivariable analysis. Recently, renal sympathetic denervation has emerged as a novel approach for control of blood pressure in patients with treatment-resistant hypertension. This article summarizes the available evidence for the effect of renal sympathetic denervation in the setting of heart failure. Key messages Experimental studies supported a beneficial effect of renal sympathetic denervation in heart failure with reduced ejection fraction. Clinical studies demonstrated improvement of symptoms, and left ventricular function. In heart failure and preserved ejection fraction, renal sympathetic denervation is associated with improvement of surrogate endpoints.

  8. Biochemical Regulation of the Response of the Sympathetic Nervous System.

    Science.gov (United States)

    1986-05-08

    Kraemer, D. A Technique for embryo transfer in the laboratory rat . Proc. Western. Pharmacol. Soc. (In press, 1986) Vulliet, P. and Mitchell, J...CO, February, 1986. Vulliet, P. R., Loskutoff, N. and Kraemer, D. A Technique of Embryo Transfer in the Laboratory Rat . Annual meeting of the Western

  9. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves.

    Science.gov (United States)

    Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H

    2016-08-03

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation.

  10. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Stanton, M.S.; Tuli, M.M.; Radtke, N.L.; Heger, J.J.; Miles, W.M.; Mock, B.H.; Burt, R.W.; Wellman, H.N.; Zipes, D.P. (Indiana Univ. School of Medicine, IN (USA))

    1989-11-15

    Transmural myocardial infarction in dogs produces denervation of sympathetic nerves in viable myocardium apical to the infarct that may be arrhythmogenic. It is unknown whether sympathetic denervation occurs in humans. The purpose of this study was to use iodine-123-metaiodobenzylguanidine (MIBG), a radiolabeled guanethidine analog that is actively taken up by sympathetic nerve terminals, to image noninvasively the cardiac sympathetic nerves in patients with and without ventricular arrhythmias after myocardial infarction. Results showed that 10 of 12 patients with spontaneous ventricular tachyarrhythmias after myocardial infarction exhibited regions of thallium-201 uptake indicating viable perfused myocardium, with no MIBG uptake. Such a finding is consistent with sympathetic denervation. One patient had frequent episodes of nonsustained ventricular tachycardia induced at exercise testing that was eliminated by beta-adrenoceptor blockade. Eleven of the 12 patients had ventricular tachycardia induced at electrophysiologic study and metoprolol never prevented induction. Sympathetic denervation was also detected in two of seven postinfarction patients without ventricular arrhythmias. Normal control subjects had no regions lacking MIBG uptake. This study provides evidence that regional sympathetic denervation occurs in humans after myocardial infarction and can be detected noninvasively by comparing MIBG and thallium-201 images. Although the presence of sympathetic denervation may be related to the onset of spontaneous ventricular tachyarrhythmias in some patients, it does not appear to be related to sustained ventricular tachycardia induced at electrophysiologic study.

  11. Habitual traffic noise at home reduces cardiac parasympathetic tone during sleep.

    Science.gov (United States)

    Graham, Jamie M A; Janssen, Sabine A; Vos, Henk; Miedema, Henk M E

    2009-05-01

    The relationships between road and rail traffic noise with pre-ejection period (PEP) and with respiratory sinus arrhythmia (RSA) during sleep, as indices of cardiac sympathetic and parasympathetic nervous system tone, were investigated in the field (36 subjects, with 188 and 192 valid subject nights for PEP and RSA, respectively). Two analyses were conducted. The first analysis investigated the overall relationships across the entire sleep period. A second analysis investigated differences in the relationships between the first and second halves of the sleep period. Separate multilevel linear regression models for PEP and RSA were employed. Potential covariates for each model were selected from the same pool of variables, which included: gender, age, body-mass index, education level, traffic noise source type, intake of medication, caffeine, alcohol and cigarette smoke, and hindrance during sleep due to the ambulatory recordings. RSA models were adjusted for respiration rate. Mean indoor traffic noise exposure was negatively related to mean RSA during the sleep period, specifically during the second half of the sleep period. Both respiration rate and age were negatively associated with RSA. No significant relationships were observed for PEP. The results indicate that higher indoor traffic noise exposure levels may lead to cardiac parasympathetic withdrawal during sleep, specifically during the second half of the sleep period. No effect of indoor traffic noise on cardiac sympathetic tone was observed.

  12. Perturbed autonomic nervous system function in metabolic syndrome.

    Science.gov (United States)

    Tentolouris, Nicholas; Argyrakopoulou, Georgia; Katsilambros, Nicholas

    2008-01-01

    The metabolic syndrome is characterized by the clustering of various common metabolic abnormalities in an individual and it is associated with increased risk for the development of type 2 diabetes and cardiovascular diseases. Its prevalence in the general population is approximately 25%. Central fat accumulation and insulin resistance are considered as the common denominators of the abnormalities of the metabolic syndrome. Subjects with metabolic syndrome have autonomic nervous system dysfunction characterized by predominance of the sympathetic nervous system in many organs, i.e. heart, kidneys, vasculature, adipose tissue, and muscles. Sympathetic nervous system activation in metabolic syndrome is detected as increased heart rate and blood pressure, diminished heart rate variability, baroreceptor dysfunction, enhanced lipolysis in visceral fat, increased muscle sympathetic nerve activity, and high urine or plasma catecholamine concentrations as well as turnover rates. The augmented sympathetic activity in individuals with metabolic syndrome worsens prognosis of this high-risk population. The mechanisms linking metabolic syndrome with sympathetic activation are complex and not clearly understood. Whether sympathetic overactivity is involved in the development of the metabolic syndrome or is a consequence of it remains to be elucidated since data from prospective studies are missing. Intervention studies have demonstrated that the autonomic disturbances of the metabolic syndrome may be reversible.

  13. Frontal midline theta rhythm is correlated with cardiac autonomic activities during the performance of an attention demanding meditation procedure.

    Science.gov (United States)

    Kubota, Y; Sato, W; Toichi, M; Murai, T; Okada, T; Hayashi, A; Sengoku, A

    2001-04-01

    Frontal midline theta rhythm (Fm theta), recognized as distinct theta activity on EEG in the frontal midline area, reflects mental concentration as well as meditative state or relief from anxiety. Attentional network in anterior frontal lobes including anterior cingulate cortex is suspected to be the generator of this activity, and the regulative function of the frontal neural network over autonomic nervous system (ANS) during cognitive process is suggested. However no studies have examined peripheral autonomic activities during Fm theta induction, and interaction of central and peripheral mechanism associated with Fm theta remains unclear. In the present study, a standard procedure of Zen meditation requiring sustained attention and breath control was employed as the task to provoke Fm theta, and simultaneous EEG and ECG recordings were performed. For the subjects in which Fm theta activities were provoked (six men, six women, 48% of the total subjects), peripheral autonomic activities were evaluated during the appearance of Fm theta as well as during control periods. Successive inter-beat intervals were measured from the ECG, and a recently developed method of analysis by Toichi et al. (J. Auton. Nerv. Syst. 62 (1997) 79-84) based on heart rate variability was used to assess cardiac sympathetic and parasympathetic functions separately. Both sympathetic and parasympathetic indices were increased during the appearance of Fm theta compared with control periods. Theta band activities in the frontal area were correlated negatively with sympathetic activation. The results suggest a close relationship between cardiac autonomic function and activity of medial frontal neural circuitry.

  14. Stress, acute hyperglycemia, and hyperlipidemia role of the autonomic nervous system and cytokines.

    Science.gov (United States)

    Nonogaki, K; Iguchi, A

    1997-07-01

    Stress is accompanied by metabolic alterations that could contribute to the etiology of diabetes mellitus, arteriosclerosis, and cardiovascular diseases; however, the mechanisms by which stress affects glucose and lipid metabolism remain to be resolved. Stress-induced effects on neurotransmission and interleukin-1 (IL-1) signaling rapidly produce hyperglycemia by increasing sympathetic outflow. Activation of the sympathetic nervous system can also rapidly stimulate lipolysis and hepatic triglyceride secretion. Furthermore, stress increases serum interleukin-6 (IL-6) and nerve growth factor (NGF) levels by activating neuroendocrine systems. IL-6 and NGF can rapidly increase lipolysis and hepatic triglyceride secretion without inducing hyperglycemia. The sympathetic nervous system does not mediate cytokine-induced hypertriglyceridemia. Thus, the central nervous system plays an important role in regulation of hepatic glucose and lipid metabolism via the sympathetic nervous system and cytokines. (Trends Endocrinol Metab 1997;8:192-197). (c) 1997, Elsevier Science Inc.

  15. Recent advances in sympathetic ophthalmia.

    Science.gov (United States)

    Marak, G E

    1979-01-01

    Recent advances in understanding the pathogenesis of sympathetic ophthalmia are helping to remove the pigmented cloud which has obstructed the view of researchers on this disease for many years. Clinical features, diagnostic testing, histopathologic variations and principles of treatment are evaluated in the context of our increasing understanding of the pathogenesis of this disease. The relationship of sympathetic ophthalmia to Harada's disease and phacoantigenic uveitis are reviewed.

  16. Bursting into space: alterations of sympathetic control by space travel

    Science.gov (United States)

    Eckberg, D. L.

    2003-01-01

    AIM: Astronauts return to Earth with reduced red cell masses and hypovolaemia. Not surprisingly, when they stand, their heart rates may speed inordinately, their blood pressures may fall, and some may experience frank syncope. We studied autonomic function in six male astronauts (average +/- SEM age: 40 +/- 2 years) before, during, and after the 16-day Neurolab space shuttle mission. METHOD: We recorded electrocardiograms, finger photoplethysmographic arterial pressures, respiration, peroneal nerve muscle sympathetic activity, plasma noradrenaline and noradrenaline kinetics, and cardiac output, and we calculated stroke volume and total peripheral resistance. We perturbed autonomic function before and during spaceflight with graded Valsalva manoeuvres and lower body suction, and before and after the mission with passive upright tilt. RESULTS: In-flight baseline sympathetic nerve activity was increased above pre-flight levels (by 10-33%) in three subjects, in whom noradrenaline spillover and clearance also were increased. Valsalva straining provoked greater reductions of arterial pressure, and proportionally greater sympathetic responses in space than on Earth. Lower body suction elicited greater increases of sympathetic nerve activity, plasma noradrenaline, and noradrenaline spillover in space than on Earth. After the Neurolab mission, left ventricular stroke volume was lower and heart rate was higher during tilt, than before spaceflight. No astronaut experienced orthostatic hypotension or pre-syncope during 10 min of post-flight tilting. CONCLUSION: We conclude that baseline sympathetic outflow, however measured, is higher in space than on earth, and that augmented sympathetic nerve responses to Valsalva straining, lower body suction, and post-flight upright tilt represent normal adjustments to greater haemodynamic stresses associated with hypovolaemia.

  17. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  18. Sympathetically evoked Ca2+ signaling in arterial smooth muscle

    Institute of Scientific and Technical Information of China (English)

    Wei-jin ZANG; Joseph ZACHARIA; Christine LAMONT; Withrow Gil WIER

    2006-01-01

    The sympathetic nervous system plays an essential role in the control of total peripheral vascular resistance and blood flow, by controlling the contraction of small arteries. Perivascular sympathetic nerves release ATP, norepinephrine (NE) and neuropeptide Y. This review summarizes our knowledge of the intracellular Ca2+ signals that are activated by ATP and NE, acting respectively on P2X1 and α1 adrenoceptors in arterial smooth muscle. Each neurotransmitter produces a unique type of post-synaptic Ca2+ signal and associated contraction. The neural release of ATP and NE is thought to vary markedly with the pattern of nerve activity, probably reflecting both pre- and post-synaptic mechanisms. Finally, we show that Ca2+ signaling during neurogenic contractions activated by trains of sympathetic nerve fiber action potentials are in fact significantly different from that elicited by simple bath application of exogenous neurotransmitters to isolated arteries (a common experimental technique), and end by identifying important questions remaining in our understanding of sympathetic neurotransmission and the physiological regulation of contraction of small arteries.

  19. Characteristics of regional sympathetic innervation in diabetic patients with silent myocardial ischemia assessed by {sup 123}I-metaiodobenzylguanidine imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Shinro; Takahashi, Masayuki; Yoshida, Shintaro; Inoue, Tohru; Nakamura, Yasuyuki; Mitsunami, Kenichi; Kinoshita, Masahiro [Shiga Univ. of Medical Science, Otsu (Japan)

    1996-05-01

    The purpose of this study was to clarify any association between clinically detectable silent myocardial ischemia (SMI) and myocardial {sup 123}I-metaiodobenzylguanidine (MIBG) uptake. Subjects of this study were patients with SMI with diabetes (n=15), patients with angina pectoris with diabetes (n=15), patients with SMI without diabetes (n=8) and normal subjects (n=23). Subjects underwent planar and single photon-emission-computed tomography (SPECT) imaging 15 min and 3 hours after injection of {sup 123}I-MIBG. H/M ratio was significantly lower in diabetic SMI (2.1{+-}0.3) and non-diabetic SMI (2.3{+-}0.3) than control subjects (2.6{+-}0.3). The inferior-to-anterior wall count ratio (I/A) in diabetic SMI group was the lowest among all groups (p<0.05). A significant difference was observed in relative regional uptake in the inferior segment of the distal left ventricle between SMI and angina group in patients with diabetes mellittus (p<0.05). The decreased MIBG uptake in the inferior wall may be an important sign of cardiac sympathetic dysfunction, suggesting the abnormalities in cardiac nervous system play an important role in the mechanism of diabetic silent myocardial ischemia. (author)

  20. Sympathetic Responses to Noxious Stimulation of Muscle and Skin.

    Science.gov (United States)

    Burton, Alexander R; Fazalbhoy, Azharuddin; Macefield, Vaughan G

    2016-01-01

    Acute pain triggers adaptive physiological responses that serve as protective mechanisms that prevent continuing damage to tissues and cause the individual to react to remove or escape the painful stimulus. However, an extension of the pain response beyond signaling tissue damage and healing, such as in chronic pain states, serves no particular biological function; it is maladaptive. The increasing number of chronic pain sufferers is concerning, and the associated disease burden is putting healthcare systems around the world under significant pressure. The incapacitating effects of long-lasting pain are not just psychological - reflexes driven by nociceptors during the establishment of chronic pain may cause serious physiological consequences on regulation of other body systems. The sympathetic nervous system is inherently involved in a host of physiological responses evoked by noxious stimulation. Experimental animal and human models demonstrate a diverse array of heterogeneous reactions to nociception. The purpose of this review is to understand how pain affects the sympathetic nervous system by investigating the reflex cardiovascular and neural responses to acute pain and the long-lasting physiological responses to prolonged (tonic) pain. By observing the sympathetic responses to long-lasting pain, we can begin to understand the physiological consequences of long-term pain on cardiovascular regulation.

  1. Gyrosonics a Novel Stimulant for Autonomic Nervous System

    CERN Document Server

    Ghatak, S K; Choudhuri, R; Banerjee, S

    2009-01-01

    Gyrosonics refers to novel audio binaural stimulus that produces rotational perceptions of sound movement in head at a particular predetermined frequency. Therapeutic effect observed with this is considered to be associated with modification of arousal of autonomic nervous system. The heart rate variability (HRV), non-invasive measure of autonomic nervous system, has been measured for group of 30 subjects for pre- and post- gyrosonic installation. The time- and frequency- domain analysis of HRV results show overall decrease in sympathetic response and increase in para- sympathetic response due to listening of gyro sonics.

  2. Egr3 dependent sympathetic target tissue innervation in the absence of neuron death.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available Nerve Growth Factor (NGF is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS development. Egr3 is a transcription factor regulated by NGF signaling in sympathetic neurons that is essential for normal SNS development. Germline Egr3-deficient mice have physiologic dysautonomia characterized by apoptotic sympathetic neuron death and abnormal innervation to many target tissues. The extent to which sympathetic innervation abnormalities in the absence of Egr3 is caused by altered innervation or by neuron death during development is unknown. Using Bax-deficient mice to abrogate apoptotic sympathetic neuron death in vivo, we show that Egr3 has an essential role in target tissue innervation in the absence of neuron death. Sympathetic target tissue innervation is abnormal in many target tissues in the absence of neuron death, and like NGF, Egr3 also appears to effect target tissue innervation heterogeneously. In some tissues, such as heart, spleen, bowel, kidney, pineal gland and the eye, Egr3 is essential for normal innervation, whereas in other tissues such as lung, stomach, pancreas and liver, Egr3 appears to have little role in innervation. Moreover, in salivary glands and heart, two tissues where Egr3 has an essential role in sympathetic innervation, NGF and NT-3 are expressed normally in the absence of Egr3 indicating that abnormal target tissue innervation is not due to deregulation of these neurotrophins in target tissues. Taken together, these results clearly demonstrate a role for Egr3 in mediating sympathetic target tissue innervation that is independent of neuron survival or neurotrophin deregulation.

  3. Autonomic nervous system dysregulation in pediatric hypertension.

    Science.gov (United States)

    Feber, Janusz; Ruzicka, Marcel; Geier, Pavel; Litwin, Mieczyslaw

    2014-05-01

    Historically, primary hypertension (HTN) has been prevalent typically in adults. Recent data however, suggests an increasing number of children diagnosed with primary HTN, mainly in the setting of obesity. One of the factors considered in the etiology of HTN is the autonomous nervous system, namely its dysregulation. In the past, the sympathetic nervous system (SNS) was regarded as a system engaged mostly in buffering major acute changes in blood pressure (BP), in response to physical and emotional stressors. Recent evidence suggests that the SNS plays a much broader role in the regulation of BP, including the development and maintenance of sustained HTN by a chronically elevated central sympathetic tone in adults and children with central/visceral obesity. Consequently, attempts have been made to reduce the SNS hyperactivity, in order to intervene early in the course of the disease and prevent HTN-related complications later in life.

  4. The anemia of microgravity and recumbency. Role of sympathetic neural control of erythropoietin production

    Science.gov (United States)

    Robertson, David; Krantz, Sanford B.; Biaggioni, Italo

    We hypothesize that reduced sympathetic stimulation of erythropoietin production may maintain the anemia which develops in virtually all space travellers. We tested this hypothesis in a human model of reduced sympathetic activity. Thirty-three patients with the Bradbury-Eggleston syndrome were divided into three groups according to their hemoglobin (Hgb) level. Patients with low Hgb had lower upright norepinephrine and lower upright renin. Patients with anemia also had inappropriately low plasma erythropoietin levels. We administered recombinant erythropoietin (Epogen) 25-50 units/kg s.c. 3 times per week and found that the anemia seen in autonomic failure could be reversed by this treatment. These results support the hypothesis that erythropoiesis is modulated by the sympathetic nervous system and that such mechanisms may also operate in the microgravity environment where sympathetic activity is reduced.

  5. Orexin-A controls sympathetic activity and eating behavior.

    Science.gov (United States)

    Messina, Giovanni; Dalia, Carmine; Tafuri, Domenico; Monda, Vincenzo; Palmieri, Filomena; Dato, Amelia; Russo, Angelo; De Blasio, Saverio; Messina, Antonietta; De Luca, Vincenzo; Chieffi, Sergio; Monda, Marcellino

    2014-01-01

    It is extremely important for the health to understand the regulatory mechanisms of energy expenditure. These regulatory mechanisms play a central role in the pathogenesis of body weight alteration. The hypothalamus integrates nutritional information derived from all peripheral organs. This region of the brain controls hormonal secretions and neural pathways of the brainstem. Orexin-A is a hypothalamic neuropeptide involved in the regulation of feeding behavior, sleep-wakefulness rhythm, and neuroendocrine homeostasis. This neuropeptide is involved in the control of the sympathetic activation, blood pressure, metabolic status, and blood glucose level. This minireview focuses on relationship between the sympathetic nervous system and orexin-A in the control of eating behavior and energy expenditure. The "thermoregulatory hypothesis" of food intake is analyzed, underlining the role played by orexin-A in the control of food intake related to body temperature. Furthermore, the paradoxical eating behavior induced orexin-A is illustrated in this minireview.

  6. Orexin-A controls sympathetic activity and eating behavior

    Directory of Open Access Journals (Sweden)

    Giovanni eMessina

    2014-09-01

    Full Text Available It is extremely important for the health to understand the regulatory mechanisms of energy expenditure. These regulatory mechanisms play a central role in the pathogenesis of body weight alteration. The hypothalamus integrates nutritional information derived from all peripheral organs. This region of the brain controls hormonal secretions and neural pathways of the brainstem. Orexin-A is a hypothalamic neuropeptide involved in the regulation of feeding behavior, sleep-wakefulness rhythm, and neuroendocrine homeostasis. This neuropeptide is involved in the control of the sympathetic activation, blood pressure, metabolic status, and blood glucose level. This minireview focuses on relationship between the sympathetic nervous system and orexin-A in the control of eating behavior and energy expenditure. The thermoregulatory hypothesis of food intake is analyzed, underlining the role played by orexin-A in the control of food intake related to body temperature. Furthermore, the paradoxical eating behavior induced orexin-A is illustrated in this minireview.

  7. ALTERED SYMPATHETIC CONTROL OF NUTRIENT MOBILIZATION DURING PHYSICAL EXERCISE AFTER LESIONS IN THE VMH

    NARCIS (Netherlands)

    Balkan, B.; Strubbe, J.H.; Bruggink, J.E.; Steffens, A.B.

    1991-01-01

    To study the impact of obesity on sympathetic nervous regulation of nutrient mobilization, obese rats and lean controls were subjected to physical exercise. Male Wistar rats, rendered obese by bilateral electrolytic lesions of the ventromedial hypothalamus (VMH) were subjected to 15 min swimming. Pe

  8. Evidence of dominant parasympathetic nervous activity of great cormorants (Phalacrocorax carbo).

    Science.gov (United States)

    Yamamoto, Maki; Kato, Akiko; Ropert-Coudert, Yan; Kuwahara, Masayoshi; Hayama, Shinichi; Naito, Yasuhiko

    2009-04-01

    The characteristics of autonomic nervous activity were examined on captive great cormorants Phalacrocorax carbo hanedae, using a power spectral analysis of heart rate variability. Heart rates were calculated from recordings of the electrocardiograms of the birds via embarked data loggers. We investigated the effects of blockades of the sympathetic or parasympathetic nervous systems using the indices of autonomic nervous activity such as high frequency (0.061-1.5 Hz) component, low frequency (0.02-0.060 Hz) component and the low frequency power component to high frequency power component ratio. Resting heart rate (85.5 +/- 6.1 bpm) was lower than the intrinsic heart rate (259.2 +/- 15.3 bpm). The heart rate drastically increased after the injection of the parasympathetic nervous blocker, on the other hand it slightly decreased after the injection of the sympathetic nervous blocker. The sympathetic, parasympathetic and net autonomic nervous tones calculated from heart rate with and without blockades were 40.9 +/- 27.6, -44.5 +/- 7.4 and -29.5 +/- 9.0%, respectively. The effect of the parasympathetic nervous blockade on low frequency and high frequency power was greater than that of the sympathetic nervous blockade. Those data suggested that the parasympathetic nervous activity was dominant for great cormorants.

  9. Clinical efficacy of efonidipine hydrochloride, a T-type calcium channel inhibitor, on sympathetic activities. Examination using spectral analysis of heart rate/blood pressure variabilities and {sup 123}I-Metaiodobenzylguanidine myocardial scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Kenji; Nomura, Masahiro; Nishikado, Akiyoshi; Uehara, Kouzoh; Nakaya, Yutaka; Ito, Susumu [Tokushima Univ. (Japan). School of Medicine

    2003-02-01

    Dihydropyridine Ca antagonists cause reflex tachycardia related to their hypotensive effects. Efonidipine hydrochloride has inhibitory effects on T-type Ca channels, even as it inhibits reflex tachycardia. In the present study, the influence of efonidipine hydrochloride on heart rate and autonomic nervous function was investigated. Using an electrocardiogram and a tonometric blood pressure measurement, autonomic nervous activity was evaluated using spectral analysis of heart rate/systolic blood pressure variability. Three protocols were used: a single dose of efonidipine hydrochloride was administered orally to healthy subjects with resting heart rate values of 75 beats/min or more (high-heart rate (HR) group) and to healthy subjects with resting heart rate values less than 75 beats/min (low-HR group); efonidipine hydrochloride was newly administered to untreated patients with essential hypertension, and autonomic nervous activity was investigated after a 4-week treatment period; and patients with high heart rate values ({>=}75 beats/min) who had been treated with a dihydropyridine L-type Ca channel inhibitor for 1 month or more were switched to efonidipine hydrochloride and any changes in autonomic nervous activity were investigated. In all protocols, administration of efonidipine hydrochloride decreased the heart rate in patients with a high heart rate, reduced sympathetic nervous activity, and enhanced parasympathetic nervous activity. In addition, myocardial scintigraphy with {sup 123}I-metaiodobenzylguanidine showed significant improvement in the washout rate and heart to mediastinum (H/M) ratio of patients who were switched from other dihydropyridine Ca antagonists to efonidipine hydrochloride. Efonidipine hydrochloride inhibits increases in heart rate and has effects on the autonomic nervous system. It may be useful for treating hypertension and angina pectoris, and may also have a cardiac protective function. (author)

  10. Electrocardiographic abnormalities and cardiac arrhythmias in structural brain lesions.

    Science.gov (United States)

    Katsanos, Aristeidis H; Korantzopoulos, Panagiotis; Tsivgoulis, Georgios; Kyritsis, Athanassios P; Kosmidou, Maria; Giannopoulos, Sotirios

    2013-07-31

    Cardiac arrhythmias and electrocardiographic abnormalities are frequently observed after acute cerebrovascular events. The precise mechanism that leads to the development of these arrhythmias is still uncertain, though increasing evidence suggests that it is mainly due to autonomic nervous system dysregulation. In massive brain lesions sympathetic predominance and parasympathetic withdrawal during the first 72 h are associated with the occurrence of severe secondary complications in the first week. Right insular cortex lesions are also related with sympathetic overactivation and with a higher incidence of electrocardiographic abnormalities, mostly QT prolongation, in patients with ischemic stroke. Additionally, female sex and hypokalemia are independent risk factors for severe prolongation of the QT interval which subsequently results in malignant arrhythmias and poor outcome. The prognostic value of repolarization changes commonly seen after aneurysmal subarachnoid hemorrhage, such as ST segment, T wave, and U wave abnormalities, still remains controversial. In patients with traumatic brain injury both intracranial hypertension and cerebral hypoperfusion correlate with low heart rate variability and increased mortality. Given that there are no firm guidelines for the prevention or treatment of the arrhythmias that appear after cerebral incidents this review aims to highlight important issues on this topic. Selected patients with the aforementioned risk factors could benefit from electrocardiographic monitoring, reassessment of the medications that prolong QTc interval, and administration of antiadrenergic agents. Further research is required in order to validate these assumptions and to establish specific therapeutic strategies.

  11. Depressed cardiac autonomic modulation in patients with chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Carlos Alberto de Oliveira

    2014-04-01

    Full Text Available Introduction: A dysfunctional autonomic nervous system (ANS has also been recognized as an important mechanism contributing to the poor outcome in CKD patients, with several studies reporting a reduction in heart rate variability (HRV. Objective: Evaluate the sympathovagal balance in patients with chronic kidney disease on conservative treatment. Methods: In a cross-sectional study, patients with CKD stages 3, 4 and 5 not yet on dialysis (CKD group and age-matched healthy subjects (CON group underwent continuous heart rate recording during two twenty-minute periods in the supine position (pre-inclined, followed by passive postural inclination at 70° (inclined period. Power spectral analysis of the heart rate variability was used to assess the normalized low frequency (LFnu, indicative of sympathetic activity, and the normalized high frequency (HFnu, indicative of parasympathetic activity. The LFnu/HFnu ratio represented sympathovagal balance. Results: After tilting, CKD patients had lower sympathetic activity, higher parasympathetic activity, and lower sympathovagal balance than patients in the CON group. Compared to patients in stage 3, patients in stage 5 had a lower LFnu/HFnu ratio, suggesting a more pronounced impairment of sympathovagal balance as the disease progresses. Conclusion: CKD patients not yet on dialysis have reduced HRV, indicating cardiac autonomic dysfunction early in the course of CKD.

  12. Agmatine suppresses peripheral sympathetic tone by inhibiting N-type Ca(2+) channel activity via imidazoline I2 receptor activation.

    Science.gov (United States)

    Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo

    2016-08-26

    Agmatine, a putative endogenous ligand of imidazoline receptors, suppresses cardiovascular function by inhibiting peripheral sympathetic tone. However, the molecular identity of imidazoline receptor subtypes and its cellular mechanism underlying the agmatine-induced sympathetic suppression remains unknown. Meanwhile, N-type Ca(2+) channels are important for the regulation of NA release in the peripheral sympathetic nervous system. Therefore, it is possible that agmatine suppresses NA release in peripheral sympathetic nerve terminals by inhibiting Ca(2+) influx through N-type Ca(2+) channels. We tested this hypothesis by investigating agmatine effect on electrical field stimulation (EFS)-evoked contraction and NA release in endothelium-denuded rat superior mesenteric arterial strips. We also investigated the effect of agmatine on the N-type Ca(2+) current in superior cervical ganglion (SCG) neurons in rats. Our study demonstrates that agmatine suppresses peripheral sympathetic outflow via the imidazoline I2 receptor in rat mesenteric arteries. In addition, the agmatine-induced suppression of peripheral vascular sympathetic tone is mediated by modulating voltage-dependent N-type Ca(2+) channels in sympathetic nerve terminals. These results suggest a potential cellular mechanism for the agmatine-induced suppression of peripheral sympathetic tone. Furthermore, they provide basic and theoretical information regarding the development of new agents to treat hypertension.

  13. Marital Conflict and Growth in Children's Internalizing Symptoms: The Role of Autonomic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Keiley, Margaret; Erath, Stephen; Dyer, W. Justin

    2013-01-01

    We assessed trajectories of children's internalizing symptoms, indexed through anxiety and depression, with a focus on the role of interactions between interparental marital conflict, children's sympathetic nervous system activity indexed by skin conductance level (SCL), and parasympathetic nervous system activity indexed by respiratory sinus…

  14. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation.

    Directory of Open Access Journals (Sweden)

    Mamoru Tanida

    Full Text Available In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb. We investigated the potential of AMPKα2 in the sympathetic effects of leptin using in vivo siRNA injection to knockdown AMPKα2 in rats, to produce reduced hypothalamic AMPKα2 expression. Leptin effects on body weight, food intake, and blood FFA levels were eliminated in AMPKα2 siRNA-treated rats. Leptin-evoked enhancements of the sympathetic nerve outflows to the kidney, brown and white adipose tissues were attenuated in AMPKα2 siRNA-treated rats. To check whether AMPKα2 was specific to sympathetic changes induced by leptin, we examined the effects of injecting MT-II, a melanocortin-3 and -4 receptor agonist, on the sympathetic nerve outflows to the kidney and adipose tissue. MT-II-induced sympatho-excitation in the kidney was unchanged in AMPKα2 siRNA-treated rats. However, responses of neural activities involving adipose tissue to MT-II were attenuated in AMPKα2 siRNA-treated rats. These results suggest that hypothalamic AMPKα2 is involved not only in appetite and body weight regulation but also in the regulation of sympathetic nerve discharges to the kidney and adipose tissue. Thus, AMPK might function not only as an energy sensor, but as a key molecule in the cardiovascular, thermogenic, and lipolytic effects of leptin through the sympathetic nervous system.

  15. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation.

    Science.gov (United States)

    Tanida, Mamoru; Yamamoto, Naoki; Shibamoto, Toshishige; Rahmouni, Kamal

    2013-01-01

    In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK) is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb). We investigated the potential of AMPKα2 in the sympathetic effects of leptin using in vivo siRNA injection to knockdown AMPKα2 in rats, to produce reduced hypothalamic AMPKα2 expression. Leptin effects on body weight, food intake, and blood FFA levels were eliminated in AMPKα2 siRNA-treated rats. Leptin-evoked enhancements of the sympathetic nerve outflows to the kidney, brown and white adipose tissues were attenuated in AMPKα2 siRNA-treated rats. To check whether AMPKα2 was specific to sympathetic changes induced by leptin, we examined the effects of injecting MT-II, a melanocortin-3 and -4 receptor agonist, on the sympathetic nerve outflows to the kidney and adipose tissue. MT-II-induced sympatho-excitation in the kidney was unchanged in AMPKα2 siRNA-treated rats. However, responses of neural activities involving adipose tissue to MT-II were attenuated in AMPKα2 siRNA-treated rats. These results suggest that hypothalamic AMPKα2 is involved not only in appetite and body weight regulation but also in the regulation of sympathetic nerve discharges to the kidney and adipose tissue. Thus, AMPK might function not only as an energy sensor, but as a key molecule in the cardiovascular, thermogenic, and lipolytic effects of leptin through the sympathetic nervous system.

  16. Molecular Aspects of Exercise-induced Cardiac Remodeling.

    Science.gov (United States)

    Bernardo, Bianca C; McMullen, Julie R

    2016-11-01

    Exercise-induced cardiac remodeling is typically an adaptive response associated with cardiac myocyte hypertrophy and renewal, increased cardiac myocyte contractility, sarcomeric remodeling, cell survival, metabolic and mitochondrial adaptations, electrical remodeling, and angiogenesis. Initiating stimuli/triggers of cardiac remodeling include increased hemodynamic load, increased sympathetic activity, and the release of hormones and growth factors. Prolonged and strenuous exercise may lead to maladaptive exercise-induced cardiac remodeling including cardiac dysfunction and arrhythmia. In addition, this article describes novel therapeutic approaches for the treatment of heart failure that target mechanisms responsible for adaptive exercise-induced cardiac remodeling, which are being developed and tested in preclinical models.

  17. Mineralocorticoid receptors, inflammation and sympathetic drive in a rat model of systolic heart failure.

    Science.gov (United States)

    Felder, Robert B

    2010-01-01

    Appreciation for the role of aldosterone and mineralocorticoid receptors in cardiovascular disease is accelerating rapidly. Recent experimental work has unveiled a strong relationship between brain mineralocorticoid receptors and sympathetic drive, an important determinant of outcome in heart failure and hypertension. Two putative mechanisms are explored in this manuscript. First, brain mineralocorticoid receptors may influence sympathetic discharge by regulating the release of pro-inflammatory cytokines into the circulation. Blood-borne pro-inflammatory cytokines act upon receptors in the microvasculature of the brain to induce cyclooxygenase-2 activity and the production of prostaglandin E(2), which penetrates the blood-brain barrier to activate the sympathetic nervous system. Second, brain mineralocorticoid receptors may influence sympathetic drive by upregulating the activity of the brain renin-angiotensin system, resulting in NAD(P)H oxidase-dependent superoxide production. A potential role for superoxide-dependent mitogen-activated protein kinase signalling pathways in the regulation of sympathetic nerve activity is also considered. Other potential downstream signalling mechanisms contributing to mineralocorticoid receptor-mediated sympathetic excitation are under investigation.

  18. Nerve Growth Factor Decreases in Sympathetic and Sensory Nerves of Rats with Chronic Heart Failure

    Science.gov (United States)

    Lu, Jian

    2014-01-01

    Nerve growth factor (NGF) plays a critical role in the maintenance and survival of both sympathetic and sensory nerves. Also, NGF can regulate receptor expression and neuronal activity in the sympathetic and sensory neurons. Abnormalities in NGF regulation are observed in patients and animals with heart failure (HF). Nevertheless, the effects of chronic HF on the levels of NGF within the sympathetic and sensory nerves are not known. Thus, the ELISA method was used to assess the levels of NGF in the stellate ganglion (SG) and dorsal root ganglion (DRG) neurons of control rats and rats with chronic HF induced by myocardial infarction. Our data show for the first time that the levels of NGF were significantly decreased (P < 0.05) in the SG and DRG neurons 6–20 weeks after ligation of the coronary artery. In addition, a close relation was observed between the NGF levels and the left ventricular function. In conclusion, chronic HF impairs the expression of NGF in the sympathetic and sensory nerves. Given that sensory afferent nerves are engaged in the sympathetic nervous responses to somatic stimulation (i.e. muscle activity during exercise) via a reflex mechanism, our data indicate that NGF is likely responsible for the development of muscle reflex-mediated abnormal sympathetic responsiveness observed in chronic HF. PMID:24913185

  19. Multiple hemodynamic effects of endogenous hydrogen sulfide on central nervous system in rats

    Institute of Scientific and Technical Information of China (English)

    REN Yong-sheng; WU Sheng-ying; WANG Xing-jun; YU Fang; ZHAO Jing; TANG Chao-shu; OUYANG Jing-ping; GENG Bin

    2011-01-01

    Background Endogenous hydrogen sulfide is a new neuromodulator which takes part in the regulation of central nervous system physiology and diseases.Whether endogenous hydrogen sulfide in the central nervous system regulates cardiovascular activity is not known.In the present study,we observed the hemodynamic changes of hydrogen sulfide or its precursor by intracerebroventricular injection,and investigate the possible roles of endogenous digitalis like factors and sympathetic activity in the regulation.Methods Ninety-four Sprague-Dawley rats underwent a right cerebroventricular puncture,then the hydrogen sulfide saturation buffer or its precursor injected by intrcerebroventricular catheter.A heperin-filled catheter was inserted into the right femoral artery or into the left ventricle,and changes of blood pressure or cardiac function recorded by a Powerlab/4S instrument.Phentolamine or metoprolol were pre-injected to observe the possible role in autonomic nerve activity.After rats were sacrificed,plasma was collected and endogenous digitalis-like factors were measured with a commercial radioimmunoassay kit.The aortic,cardiac sarcolemmal vesicles were isolated and the activity of Na+-K+-ATPase was measured as ouabain-sensitive ATP hydrolysis under maximal velocity conditions by measuring the release of inorganic phosphate from ATP.Unpaired Student's ttest for two groups or analysis of variances (ANOVA) for multiple groups were used to compare the differences of the changes.Results Intracerebroventricular injection of hydrogen sulfide induced a transient hypotension,then dramatic hypertenive effects in a dose-dependent manner.Bolus injection of L-cysteine or beta-mercaptopyruvate also increased mean arterial pressure (P <0.01),whereas hydroxylamine-a cystathionine beta synthase inhibitor decreased the arterial pressure (P <0.01).Hydrogen sulfide and L-cysteine increased mean arterial pressure,left ventricular develop pressure and left-ventricle maximal rate of

  20. CAPSAICIN SUPPLEMENTATION FAILS TO MODULATE AUTONOMIC AND CARDIAC ELECTROPHYSIOLOGIC ACTIVITY DURING EXERCISE IN THE OBESE: WITH VARIANTS OF UCP2 AND UCP3 POLYMORPHISM

    Directory of Open Access Journals (Sweden)

    Ki Ok Shin

    2008-09-01

    Full Text Available We investigated the effects of capsaicin supplementation (150mg on alterations of autonomic nervous system (ANS activity associated with adverse effects of cardiac depolarization-repolarization intervals during aerobic exercise in obese humans. Nine obese males (26.1 ± 1.5 yrs volunteered between study designed. The cardiac ANS activities evaluated by means of heart rate variability of power spectral analysis and cardiac QT interval were continuously measured during 5-min rest and 30-min exercise at 50% of maximal ventilation threshold (50%VTmax on stationary ergometer with placebo (CON or capsaicin (CAP oral administration chosen at random. The uncoupling protein (UCP 2 and UCP 3 genetic variants of the subjects were analyzed by noninvasive genotyping method from collecting buccal mucosa cells. The results indicated that there were no significant differences in cardiac ANS activities during rest and exercise between CON and CAP trials. Although no significant difference, A/A allele of UCP2 polymorphism showed a reduced sympathetic nervous system (SNS index activity compared to G/G + G/A allele during exercise intervention in our subjects. On the other hand, the data on cardiac QT interval showed no significant difference, indicating that oral administration of capsaicin did not cause any adverse effect on cardiac depolarization-repolarization. In conclusion, our results suggest that capsaicin supplementation 1 h before exercise intervention has no effect on cardiac ANS activities and cardiac electrical stability during exercise in obese individuals. Further studies should also consider genetic variants for exercise efficacy against obesity

  1. Paradoxical Sleep Deprivation Causes Cardiac Dysfunction and the Impairment Is Attenuated by Resistance Training

    Science.gov (United States)

    Giampá, Sara Quaglia de Campos; Mônico-Neto, Marcos; de Mello, Marco Tulio; Souza, Helton de Sá; Tufik, Sergio; Lee, Kil Sun; Koike, Marcia Kiyomi; dos Santos, Alexandra Alberta; Antonio, Ednei Luiz; Serra, Andrey Jorge; Tucci, Paulo José Ferreira

    2016-01-01

    Background Paradoxical sleep deprivation activates the sympathetic nervous system and the hypothalamus-pituitary-adrenal axis, subsequently interfering with the cardiovascular system. The beneficial effects of resistance training are related to hemodynamic, metabolic and hormonal homeostasis. We hypothesized that resistance training can prevent the cardiac remodeling and dysfunction caused by paradoxical sleep deprivation. Methods Male Wistar rats were distributed into four groups: control (C), resistance training (RT), paradoxical sleep deprivation for 96 hours (PSD96) and both resistance training and sleep deprivation (RT/PSD96). Doppler echocardiograms, hemodynamics measurements, cardiac histomorphometry, hormonal profile and molecular analysis were evaluated. Results Compared to the C group, PSD96 group had a higher left ventricular systolic pressure, heart rate and left atrium index. In contrast, the left ventricle systolic area and the left ventricle cavity diameter were reduced in the PSD96 group. Hypertrophy and fibrosis were also observed. Along with these alterations, reduced levels of serum testosterone and insulin-like growth factor-1 (IGF-1), as well as increased corticosterone and angiotensin II, were observed in the PSD96 group. Prophylactic resistance training attenuated most of these changes, except angiotensin II, fibrosis, heart rate and concentric remodeling of left ventricle, confirmed by the increased of NFATc3 and GATA-4, proteins involved in the pathologic cardiac hypertrophy pathway. Conclusions Resistance training effectively attenuates cardiac dysfunction and hormonal imbalance induced by paradoxical sleep deprivation. PMID:27880816

  2. Dysautonomia due to reduced cholinergic neurotransmission causes cardiac remodeling and heart failure.

    Science.gov (United States)

    Lara, Aline; Damasceno, Denis D; Pires, Rita; Gros, Robert; Gomes, Enéas R; Gavioli, Mariana; Lima, Ricardo F; Guimarães, Diogo; Lima, Patricia; Bueno, Carlos Roberto; Vasconcelos, Anilton; Roman-Campos, Danilo; Menezes, Cristiane A S; Sirvente, Raquel A; Salemi, Vera M; Mady, Charles; Caron, Marc G; Ferreira, Anderson J; Brum, Patricia C; Resende, Rodrigo R; Cruz, Jader S; Gomez, Marcus Vinicius; Prado, Vania F; de Almeida, Alvair P; Prado, Marco A M; Guatimosim, Silvia

    2010-04-01

    Overwhelming evidence supports the importance of the sympathetic nervous system in heart failure. In contrast, much less is known about the role of failing cholinergic neurotransmission in cardiac disease. By using a unique genetically modified mouse line with reduced expression of the vesicular acetylcholine transporter (VAChT) and consequently decreased release of acetylcholine, we investigated the consequences of altered cholinergic tone for cardiac function. M-mode echocardiography, hemodynamic experiments, analysis of isolated perfused hearts, and measurements of cardiomyocyte contraction indicated that VAChT mutant mice have decreased left ventricle function associated with altered calcium handling. Gene expression was analyzed by quantitative reverse transcriptase PCR and Western blotting, and the results indicated that VAChT mutant mice have profound cardiac remodeling and reactivation of the fetal gene program. This phenotype was attributable to reduced cholinergic tone, since administration of the cholinesterase inhibitor pyridostigmine for 2 weeks reversed the cardiac phenotype in mutant mice. Our findings provide direct evidence that decreased cholinergic neurotransmission and underlying autonomic imbalance cause plastic alterations that contribute to heart dysfunction.

  3. Leptin into the rostral ventral lateral medulla (RVLM augments renal sympathetic nerve activity and blood pressure

    Directory of Open Access Journals (Sweden)

    Maria J Barnes

    2014-08-01

    Full Text Available Leptin is a hormone released from adipose tissue. While this hormone normally acts to reduce feeding behavior and increase energy expenditure, in obesity, resistance to these effects occurs even though the hormone is released in large amounts. Although leptin no longer works to suppress feeding in the obese, leptin retains its potent effects on other autonomic functions such as blood pressure regulation. Leptin has been associated with hypertension and increased sympathetic autonomic activity. Therefore, leptin is emerging as a major contributor to the hypertensive state observed in obesity. Sympathetic control of blood pressure is maintained principally by autonomic reflex control circuits in the caudal brainstem. The rostral ventral-lateral medulla (RVLM is the primary regulator of the sympathetic nervous system, sending excitatory fibers to sympathetic preganglionic neurons to regulate sympathetic control over resistance vessels and blood pressure. Previous studies from our laboratory have shown that neurons in the ventral lateral medulla express leptin receptors (ObRb. Our present study using pseudo-rabies multi-synaptic retrograde tract tracing and immunohistochemical methods revealed that neurons within the RVLM that send sympathetic projections to the kidney express leptin receptors. Acute microinjection of leptin (1 and 3µg; 40nL into the RVLM evoked a significant increase in Mean Arterial Pressure (MAP and renal sympathetic nerve activity (RSNA. When the 3µg dose of leptin was preceded with a leptin antagonist, (SLAN-4; 1ng, it attenuated the cardiovascular response of leptin. Taken together, these data suggest that leptin’s actions within the RVLM may influence blood pressure and renal sympathetic nerve activity.

  4. Moderate pressure massage elicits a parasympathetic nervous system response.

    Science.gov (United States)

    Diego, Miguel A; Field, Tiffany

    2009-01-01

    Twenty healthy adults were randomly assigned to a moderate pressure or a light pressure massage therapy group, and EKGs were recorded during a 3-min baseline, during the 15-min massage period and during a 3-min postmassage period. EKG data were then used to derive the high frequency (HF), low frequency (LF) components of heart rate variability and the low to high frequency ratio (LF/HF) as noninvasive markers of autonomic nervous system activity. The participants who received the moderate pressure massage exhibited a parasympathetic nervous system response characterized by an increase in HF, suggesting increased vagal efferent activity and a decrease in the LF/HF ratio, suggesting a shift from sympathetic to parasympathetic activity that peaked during the first half of the massage period. On the other hand, those who received the light pressure massage exhibited a sympathetic nervous system response characterized by decreased HF and increased LF/HF.

  5. An Autonomic Link Between Inhaled Diesel Exhaust and Impaired Cardiac Performance: Insight From Treadmill and Doubutamine Challenges in Heart Failure-Prone Rats

    Science.gov (United States)

    Background: Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) is an ubiquitous air pollutant believed to provoke cardiac events partly through imbalance of the sympathetic and parasympathetic branches of the autonomic nervo...

  6. FAVORABLE OUTCOME IN IDIOPATHIC VENTRICULAR-FIBRILLATION WITH TREATMENT AIMED AT PREVENTION OF HIGH SYMPATHETIC TONE AND SUPPRESSION OF INDUCIBLE ARRHYTHMIAS

    NARCIS (Netherlands)

    CRIJNS, HJGM; WIESFELD, ACP; POSMA, JL; LIE, KI

    1995-01-01

    Objective-In the absence of an obvious cause for cardiac arrest, patients with idiopathic ventricular fibrillation are difficult to manage. A subset of patients has inducible arrhythmias. In others sympathetic excitation plays a role in the onset of the cardiac arrest. This study evaluates a prospec

  7. Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis.

    Science.gov (United States)

    Koopman, Frieda A; Stoof, Susanne P; Straub, Rainer H; Van Maanen, Marjolein A; Vervoordeldonk, Margriet J; Tak, Paul P

    2011-01-01

    The immunomodulatory effect of the autonomic nervous system has raised considerable interest over the last decades. Studying the influence on the immune system and the role in inflammation of the sympathetic as well as the parasympathetic nervous system not only will increase our understanding of the mechanism of disease, but also could lead to the identification of potential new therapeutic targets for chronic immune-mediated inflammatory diseases, such as rheumatoid arthritis (RA). An imbalanced autonomic nervous system, with a reduced parasympathetic and increased sympathetic tone, has been a consistent finding in RA patients. Studies in animal models of arthritis have shown that influencing the sympathetic (via α- and β-adrenergic receptors) and the parasympathetic (via the nicotinic acetylcholine receptor α7nAChR or by electrically stimulating the vagus nerve) nervous system can have a beneficial effect on inflammation markers and arthritis. The immunosuppressive effect of the parasympathetic nervous system appears less ambiguous than the immunomodulatory effect of the sympathetic nervous system, where activation can lead to increased or decreased inflammation depending on timing, doses and kind of adrenergic agent used. In this review we will discuss the current knowledge of the role of both the sympathetic (SNS) and parasympathetic nervous system (PNS) in inflammation with a special focus on the role in RA. In addition, potential antirheumatic strategies that could be developed by targeting these autonomic pathways are discussed.

  8. Cardiac autonomic modulation in non-frail, pre-frail and frail elderly women: a pilot study.

    Science.gov (United States)

    Katayama, Pedro Lourenço; Dias, Daniel Penteado Martins; Silva, Luiz Eduardo Virgilio; Virtuoso-Junior, Jair Sindra; Marocolo, Moacir

    2015-10-01

    Frailty has been defined as a geriatric syndrome that results in high vulnerability to health adverse outcomes. This increased vulnerability state results from dysregulation of multiple physiological systems and its complex interactions. Thus, assessment of physiological systems integrity and of its dynamic interactions seems to be useful in the context of frailty management. Heart rate variability (HRV) analysis provides information about autonomic nervous system (ANS) function, which is responsible to control several physiologic functions. This study investigated the cardiac autonomic modulation by HRV analysis in community-dwelling elderly women classified as non-frail, pre-frail and frail. Twenty-three elderly women were assigned to the following groups: non-frail (n = 8), pre-frail (n = 8) and frail (n = 7). HRV assessment was performed through linear and non-linear analysis of cardiac interval variability. It was observed a higher sympathetic and lower parasympathetic modulation in frail when compared with non-frail and pre-frail groups (p elderly women present an autonomic imbalance characterized by a shift towards sympathetic predominance. Thus, monitoring ANS function in the context of frailty management may be an important strategy to prevention, diagnosis and treatment of this syndrome and its consequences.

  9. Subacute cardiac sympathetic dys-innervation, evaluated by the tomo-scintigraphy with {sup 123}I-Mibg in the Takotsubo syndrome: about one case; Dysinnervation sympathique cardiaque subaigue, evaluee par la tomoscintigraphie a l'123I-MIBG dans le syndrome de Takotsubo: a propos d'un cas

    Energy Technology Data Exchange (ETDEWEB)

    Costo, S.; Agostini, D. [Service de medecine nucleaire, CHU Cote-de-Nacre, Caen, (France); Sabatier, R. [service de cardiologie, CHU Cote-de-Nacre, Caen, (France)

    2009-05-15

    The association of perfusion imaging and myocardium innervation showed a major mismatch of fixation attesting of a sympathetic default of innervation contemporary of a left ventricle dysfunction without perfusion troubles, for a patient with a Takotsubo cardiomyopathy. (N.C.)

  10. [Emotion, amygdala, and autonomic nervous system].

    Science.gov (United States)

    Ueyama, Takashi

    2012-10-01

    Emotion refers to the dynamic changes of feeling accompanied by the alteration of physical and visceral activities. Autonomic nervous system (sympathetic and parasympathetic) regulates the visceral activities. Therefore, monitoring and analyzing autonomic nervous activity help understand the emotional changes. To this end, the survey of the expression of immediate early genes (IEGs), such as c-Fos in the brain and target organs, and the viral transneuronal labeling method using the pseudorabies virus (PRV) have enabled the visualization of the neurocircuitry of emotion. By comparing c-Fos expression and data from PRV or other neuroanatomical labeling techniques, the central sites that regulate emotional stress-induced autonomic activation can be deduced. Such regions have been identified in the limbic system (e. g., the extended amygdaloid complex; lateral septum; and infralimbic, insular, and ventromedial temporal cortical regions), as well as in several hypothalamic and brainstem nuclei. The amygdala is structurally diverse and comprises several subnuclei, which play a role in emotional process via projections from the cortex and a variety of subcortical structures. All amygdaloid subnuclei receive psychological information from other limbic systems, while the lateral and central subnuclei receive peripheral and sensory information. Output to the hypothalamus and peripheral sympathetic system mainly originates from the medial amygdala. As estrogen receptor α, estrogen receptor β, and androgen receptor are expressed in the medial amygdala, sex steroids may modulate the autonomic nervous activities.

  11. Decreasing adrenergic or sympathetic hyperactivity after severe traumatic brain injury using propranolol and clonidine (DASH After TBI Study: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Patel Mayur B

    2012-09-01

    Full Text Available Abstract Background Severe TBI, defined as a Glasgow Coma Scale ≤ 8, increases intracranial pressure and activates the sympathetic nervous system. Sympathetic hyperactivity after TBI manifests as catecholamine excess, hypertension, abnormal heart rate variability, and agitation, and is associated with poor neuropsychological outcome. Propranolol and clonidine are centrally acting drugs that may decrease sympathetic outflow, brain edema, and agitation. However, there is no prospective randomized evidence available demonstrating the feasibility, outcome benefits, and safety for adrenergic blockade after TBI. Methods/Design The DASH after TBI study is an actively accruing, single-center, randomized, double-blinded, placebo-controlled, two-arm trial, where one group receives centrally acting sympatholytic drugs, propranolol (1 mg intravenously every 6 h for 7 days and clonidine (0.1 mg per tube every 12 h for 7 days, and the other group, double placebo, within 48 h of severe TBI. The study uses a weighted adaptive minimization randomization with categories of age and Marshall head CT classification. Feasibility will be assessed by ability to provide a neuroradiology read for randomization, by treatment contamination, and by treatment compliance. The primary endpoint is reduction in plasma norepinephrine level as measured on day 8. Secondary endpoints include comprehensive plasma and urine catecholamine levels, heart rate variability, arrhythmia occurrence, infections, agitation measures using the Richmond Agitation-Sedation Scale and Agitated Behavior scale, medication use (anti-hypertensive, sedative, analgesic, and antipsychotic, coma-free days, ventilator-free days, length of stay, and mortality. Neuropsychological outcomes will be measured at hospital discharge and at 3 and 12 months. The domains tested will include global executive function, memory, processing speed, visual-spatial, and behavior. Other assessments include

  12. Sympathetic crashing acute pulmonary edema.

    Science.gov (United States)

    Agrawal, Naman; Kumar, Akshay; Aggarwal, Praveen; Jamshed, Nayer

    2016-12-01

    Sympathetic crashing acute pulmonary edema (SCAPE) is the extreme end of the spectrum of acute pulmonary edema. It is important to understand this disease as it is relatively common in the emergency department (ED) and has better outcomes when managed appropriately. The patients have an abrupt redistribution of fluid in the lungs, and when treated promptly and effectively, these patients will rapidly recover. Noninvasive ventilation and intravenous nitrates are the mainstay of treatment which should be started within minutes of the patient's arrival to the ED. Use of morphine and intravenous loop diuretics, although popular, has poor scientific evidence.

  13. Interstitial cells of Cajal mediate excitatory sympathetic neurotransmission in guinea pig prostate.

    Science.gov (United States)

    Wang, Jiang-ping; Ding, Guo-fu; Wang, Qin-zhang

    2013-06-01

    Morphological and functional studies have confirmed that interstitial cells of Cajal (ICCs) are involved in many enteric motor neurotransmission pathways. Recent investigations have demonstrated that human and guinea pig prostate glands possess a distinct cell type with morphological and immunological similarities to ICCs. These prostate ICCs have a close relationship with nerve bundles and smooth muscle cells. Prostate smooth muscle tone is largely induced by stimulation from the sympathetic nervous system, which releases excitatory norepinephrine (NE) to act on the α1-adrenoceptor. We have performed morphological and functional experiments to determine the role of ICCs in sympathetic neurotransmission in the guinea pig prostate based on the hypothesis that prostate ICCs act as mediators of sympathetic neurotransmission. Immunohistochemistry revealed many close points of contact between ICCs and sympathetic nerve bundles and smooth muscle cells. Double-labeled sections revealed that α1-adrenoceptor and the gap junction protein connexin 43 were expressed in prostate ICCs. Surprisingly, prostate ICCs co-expressed tyrosine hydroxylase and dopamine β-hydroxylase, two markers of sympathetic neurons. Functionally, the application of NE evoked a large single inward current in isolated prostate ICCs in a dose-dependent manner. The inward current evoked by NE was mediated via the activation of α1-adrenoceptors, because it was abolished by the non-specific α-adrenoceptor antagonist, phentolamine and the specific α1-adrenoceptor antagonist, prazosin. Thus, ICCs in the guinea pig prostate are target cells for prostate sympathetic nerves and possess the morphological and functional characteristics required to mediate sympathetic signals.

  14. Pmch-deficiency in rats is associated with normal adipocyte differentiation and lower sympathetic adipose drive.

    Science.gov (United States)

    Mul, Joram D; O'Duibhir, Eoghan; Shrestha, Yogendra B; Koppen, Arjen; Vargoviç, Peter; Toonen, Pim W; Zarebidaki, Eleen; Kvetnansky, Richard; Kalkhoven, Eric; Cuppen, Edwin; Bartness, Timothy J

    2013-01-01

    The orexigenic neuropeptide melanin-concentrating hormone (MCH), a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS) drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively). MCH binds to MCH receptor 1 (MCH1R), which is present on adipocytes. Currently it is unknown if Pmch-ablation changes adipocyte differentiation or sympathetic adipose drive. Using Pmch-deficient and wild-type rats on a standard low-fat diet, we analyzed dorsal subcutaneous and perirenal WAT mass and adipocyte morphology (size and number) throughout development, and indices of sympathetic activation in WAT and iBAT during adulthood. Moreover, using an in vitro approach we investigated the ability of MCH to modulate 3T3-L1 adipocyte differentiation. Pmch-deficiency decreased dorsal subcutaneous and perirenal WAT mass by reducing adipocyte size, but not number. In line with this, in vitro 3T3-L1 adipocyte differentiation was unaffected by MCH. Finally, adult Pmch-deficient rats had lower norepinephrine turnover (an index of sympathetic adipose drive) in WAT and iBAT than wild-type rats. Collectively, our data indicate that MCH/MCH1R-pathway does not modify adipocyte differentiation, whereas Pmch-deficiency in laboratory rats lowers adiposity throughout development and sympathetic adipose drive during adulthood.

  15. Autonomic Nervous System Disorders

    Science.gov (United States)

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  16. Brain and Nervous System

    Science.gov (United States)

    ... Your 1- to 2-Year-Old Brain and Nervous System KidsHealth > For Parents > Brain and Nervous System Print ... brain is quite the juggler. Anatomy of the Nervous System If you think of the brain as a ...

  17. Sympathetic blocks for visceral cancer pain management

    DEFF Research Database (Denmark)

    Mercadante, Sebastiano; Klepstad, Pal; Kurita, Geana Paula

    2015-01-01

    The neurolytic blocks of sympathetic pathways, including celiac plexus block (CPB) and superior hypogastric plexus block (SHPB) , have been used for years. The aim of this review was to assess the evidence to support the performance of sympathetic blocks in cancer patients with abdominal visceral...

  18. Sympathetic vasoconstrictor nerve function in alcoholic neuropathy

    DEFF Research Database (Denmark)

    Jensen, K; Andersen, K; Smith, T;

    1984-01-01

    The peripheral sympathetic vasomotor nerve function was investigated in 18 male chronic alcoholics admitted for intellectual impairment or polyneuropathy. By means of the local 133Xenon washout technique, the sympathetic veno-arteriolar axon-reflex was studied. This normally is responsible for a ...

  19. Adaptive reaction of boys’ sympathetic-adrenal system to physical activity in puberty.

    Directory of Open Access Journals (Sweden)

    Alekcei Anatolevich Zverev

    2016-04-01

    Full Text Available This paper deals with the study of adaptive reactions of the sympathetic-adrenal system of 11-16-year-old boys to graduated exercise at different pubertal stages. To evaluate the functional state of the cardiovascular system, the heart rate, systolic and cardiac output were determined. The state of the sympathetic-adrenal system was analyzed by the excretion level of catecholamines and DOPA. Cardiac output in response to graduated exercise in boys at pubertal stages 1-2 is substantially ensured by the increased heart rate, and at the other stages of puberty - mainly due to increase in stroke volume, which is estimated as a favorable response to exercise. In mechanisms of urgent adaptation to graduated exercise, the boys of third and fourth pubertal stages show an intensive functioning of the cardiovascular system and a reducing reserve capacity of the sympathetic-adrenal system. The adolescents of fifth pubertal stage show economical response to functional tests, a reduced reactivity of the components of the sympathetic-adrenal system on the background of a significant increase in the excretion of precursors.

  20. Restoring the Balance of the Autonomic Nervous System as an Innovative Approach to the Treatment of Rheumatoid Arthritis

    NARCIS (Netherlands)

    Koopman, F.A.; Stoof, S.P.; Straub, R.H.; van Maanen, M.A.; Vervoordeldonk, M.J.; Tak, P.P.

    2011-01-01

    The immunomodulatory effect of the autonomic nervous system has raised considerable interest over the last decades. Studying the influence on the immune system and the role in inflammation of the sympathetic as well as the parasympathetic nervous system not only will increase our understanding of th

  1. Is reduced myocardial sympathetic innervation associated with clinical symptoms of autonomic impairment in idiopathic Parkinson's disease?

    Science.gov (United States)

    Guidez, Daniel; Behnke, Stefanie; Halmer, Ramona; Dillmann, Ulrich; Faßbender, Klaus; Kirsch, Carl M; Hellwig, Dirk; Spiegel, Jörg

    2014-01-01

    Patients with idiopathic Parkinson's disease (IPD) have a reduced myocardial MIBG uptake in MIBG scintigraphy, indicating myocardial sympathetic denervation. We were interested whether this myocardial sympathetic denervation coincides with clinical symptoms of autonomic impairment in IPD patients. We performed MIBG scintigraphy, the SCOPA-AUT scale, a standardized medical history (developed in our clinic) and autonomic nervous system testing in 47 IPD patients (21 female, 26 male patients). We correlated myocardial MIBG uptake with the results of the SCOPA-AUT scale, the standardized medical history and the autonomic nervous system testing through the use of Spearman's correlation. Myocardial MIBG uptake correlated significantly (p autonomic nervous system testing (all patients: sum score, Ewing orthostasis test). Remarkably, we found more significant correlations in male than in female patients. Reduced myocardial sympathetic innervation-as revealed by MIBG scintigraphy-is associated with clinical symptoms of autonomic impairment. This association is more pronounced in male than in female patients. The cause for this gender-specific phenomenon is unclear.

  2. Relationship between cardiac {sup 123}I-Metaiodobenzylguanidine imaging and the transcardiac gradient of neurohumoral factors in patients with dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Toshiki; Tsutamoto, Takayoshi; Kinoshita, Masahiko [Shiga Univ. of Medical Science, Otsu (Japan)

    2001-12-01

    Cardiac sympathetic nervous function is altered in congestive heart failure (CHF) and the uptake and washout rate of cardiac {sup 123}I-metaiodobenzylguanidine (MIBG) are useful markers for evaluating the severity of it. To assess what parameters predict decreased uptake or increased washout rate of MIBG, the concentrations of neurohumoral factor in both the aorta (Ao) and coronary sinus (CS) were measured, as well as hemodynamic parameters by catheterization, in patients with dilated cardiomyopathy (DCM). MIBG imaging was performed within 1 week of cardiac catheterization. Regarding MIBG parameters, the correlation with the transcardiac gradient of norepinephrine (NE), brain natriuretic peptide (BNP) and hemodynamics was investigated. Stepwise multivariate regression analysis was used to determine which variables closely correlated with cardiac MIBG parameters. There was a significant increase in the NE level between the Ao (446 pg/ml) and the CS (727 pg/ml). According to stepwise multivariate regression analysis, the heart/mediastinum (H/M) ratio independently correlated with the transcardiac gradient of BNP (r=-0.480, p<0.01), and the washout rate independently correlated with the transcardiac gradient of NE (r=0.481, p<0.01). These findings indicate that the H/M ratio may reflect the transcardiac gradient of BNP, which implies the degree of left ventricular dysfunction and/or damage and the washout rate may reflect altered cardiac sympathetic nerve terminal in DCM patients with CHF, suggesting that both the H/M ratio and washout rate provide important information about the failing ventricle. (author)

  3. Autonomic nervous activities assessed by heart rate variability in pre- and post-adolescent Japanese.

    Science.gov (United States)

    Fukuba, Yoshiyuki; Sato, Hironori; Sakiyama, Tomomi; Yamaoka Endo, Masako; Yamada, Masako; Ueoka, Hatsumi; Miura, Akira; Koga, Shunsaku

    2009-11-01

    There are many studies with respect to the age-related change of the characteristics of beat-to-beat heart rate variability (HRV), reflected by cardiac autonomic control, especially focusing on adulthood (i.e., aging related to the incidence of metabolic syndrome) in Japanese individuals. However, it is not still clear how basic control matures during childhood. This study was, therefore, designed to explore the HRV characteristics of pre- and post-adolescent Japanese, in a cross-sectional manner. Resting HRV data was recorded in a relaxing supine position from 136 healthy individuals between 8 and 20 years (48 boys between 8 and 14 years; 88 girls between 8 and 20 years) who were instructed to breathe periodically (0.25 Hz). Frequency-domain analysis (i.e., the spectral analysis based on an autoregressive model) of short-term, stationary R-R intervals was performed to evaluate the low- (LF; below 0.15 Hz) and high- (HF; 0.15-0.40 Hz) frequency powers. The HF to total power represents the vagal control of heart rate (PNS indicator), and the ratio of LF to HF (LF/HF) is considered to relate to the sympathetic modulations (SNS indicator). Both PNS and SNS indices had substantially no effect from age and/or gender in the range between 8 and 20 years. In conclusion, the control of the cardiac autonomic nervous system in Japanese seems already to be compatible with that in adulthood before approximately 10 years. In other word, the cardiac autonomic modulation would presumably be maturated before the age of approximately 7-8 years, though further research is awaited.

  4. Nuclear imaging in cardiac amyloidosis

    Energy Technology Data Exchange (ETDEWEB)

    Glaudemans, A.W.J.M.; Slart, R.H.J.A.; Veltman, N.C.; Dierckx, R.A.J.O. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, P.O. Box 30001, Groningen (Netherlands); Zeebregts, C.J. [University Medical Center Groningen, Department of Surgery (Division of Vascular Surgery), Groningen (Netherlands); Tio, R.A. [University Medical Center Groningen, Department of Cardiology, Groningen (Netherlands); Hazenberg, B.P.C. [University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Groningen (Netherlands)

    2009-04-15

    Amyloidosis is a disease characterized by depositions of amyloid in organs and tissues. It can be localized (in just one organ) or systemic. Cardiac amyloidosis is a debilitating disease and can lead to arrhythmias, deterioration of heart function and even sudden death. We reviewed PubMed/Medline, without time constraints, on the different nuclear imaging modalities that are used to visualize myocardial amyloid involvement. Several SPECT tracers have been used for this purpose. The results with these tracers in the evaluation of myocardial amyloidosis and their mechanisms of action are described. Most clinical evidence was found for the use of {sup 123}I-MIBG. Myocardial defects in MIBG activity seem to correlate well with impaired cardiac sympathetic nerve endings due to amyloid deposits. {sup 123}I-MIBG is an attractive option for objective evaluation of cardiac sympathetic level and may play an important role in the indirect measurement of the effect of amyloid myocardial infiltration. Other, less sensitive, options are {sup 99m}Tc-aprotinin for imaging amyloid deposits and perhaps {sup 99m}Tc-labelled phosphate derivatives, especially in the differential diagnosis of the aetiology of cardiac amyloidosis. PET tracers, despite the advantage of absolute quantification and higher resolution, are not yet well evaluated for the study of cardiac amyloidosis. Because of these advantages, there is still the need for further research in this field. (orig.)

  5. Power Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment.

    Science.gov (United States)

    Posada-Quintero, Hugo F; Florian, John P; Orjuela-Cañón, Alvaro D; Aljama-Corrales, Tomas; Charleston-Villalobos, Sonia; Chon, Ki H

    2016-10-01

    Time-domain features of electrodermal activity (EDA), the measurable changes in conductance at the skin surface, are typically used to assess overall activation of the sympathetic system. These time domain features, the skin conductance level (SCL) and the nonspecific skin conductance responses (NS.SCRs), are consistently elevated with sympathetic nervous arousal, but highly variable between subjects. A novel frequency-domain approach to quantify sympathetic function using the power spectral density (PSD) of EDA is proposed. This analysis was used to examine if some of the induced stimuli invoke the sympathetic nervous system's dynamics which can be discernible as a large spectral peak, conjectured to be present in the low frequency band. The resulting indices were compared to the power of low-frequency components of heart rate variability (HRVLF) time series, as well as to time-domain features of EDA. Twelve healthy subjects were subjected to orthostatic, physical and cognitive stress, to test these techniques. We found that the increase in the spectral powers of the EDA was largely confined to 0.045-0.15 Hz, which is in the prescribed band for HRVLF. These low frequency components are known to be, in part, influenced by the sympathetic nervous dynamics. However, we found an additional 5-10% of the spectral power in the frequency range of 0.15-0.25 Hz with all three stimuli. Thus, dynamics of the normalized sympathetic component of the EDA, termed EDASympn, are represented in the frequency band 0.045-0.25 Hz; only a small amount of spectral power is present in frequencies higher than 0.25 Hz. Our results showed that the time-domain indices (the SCL and NS.SCRs), and EDASympn, exhibited significant increases under orthostatic, physical, and cognitive stress. However, EDASympn was more responsive than the SCL and NS.SCRs to the cold pressor stimulus, while the latter two were more sensitive to the postural and Stroop tests. Additionally, EDASympn exhibited an

  6. Role of autoinhibitory feedback in cardiac sympathetic transmission

    Energy Technology Data Exchange (ETDEWEB)

    Angus, J.A.; Korner, P.I.; Jackman, G.P.; Bobik, A.; Kopin, I.J.

    1984-01-01

    The relationship between two indices of transmitter release measured simultaneously and the frequency of 4 field pulses (0.125-2 Hz) were obtained from superfused guinea pig right atria after labelling with /sup 3/H-noradrenaline. The relationships between /sup 3/H-efflux or rate responses and frequency were hyperbolic. Autoinhibitory feedback did not play a role since phentolamine (1 microM) did not alter the /sup 3/H-efflux or rate responses to 4 field pulses that gave 50-60% of the maximum rate response. In the presence of neuronal uptake block (desipramine (0.1 microM) phentolamine enhanced /sup 3/H-efflux and rate responses to 4 field pulses at all frequencies. In the absence of desipramine prolonged trains of field pulses (8-12 pulses) at low frequency (0.25 Hz) were not sufficient to activate autoinhibitory feedback. At 2 Hz phentolamine enhanced both responses at 12 field pulses. We conclude that in the right atrium autoinhibitory feedback plays little role in the modulation of transmitter release at levels of stimulation that cause 50-60% of maximum tissue response. The presence of neuronal uptake inhibition or high stimulus strengths are necessary to evoke autoinhibitory feedback.

  7. Renal sympathetic nerve activity during asphyxia in fetal sheep.

    Science.gov (United States)

    Booth, Lindsea C; Malpas, Simon C; Barrett, Carolyn J; Guild, Sarah-Jane; Gunn, Alistair J; Bennet, Laura

    2012-07-01

    The sympathetic nervous system (SNS) is an important mediator of fetal adaptation to life-threatening in utero challenges, such as asphyxia. Although the SNS is active well before term, SNS responses mature significantly over the last third of gestation, and its functional contribution to adaptation to asphyxia over this critical period of life remains unclear. Therefore, we examined the hypotheses that increased renal sympathetic nerve activity (RSNA) is the primary mediator of decreased renal vascular conductance (RVC) during complete umbilical cord occlusion in preterm fetal sheep (101 ± 1 days; term 147 days) and that near-term fetuses (119 ± 0 days) would have a more rapid initial vasomotor response, with a greater increase in RSNA. Causality of the relationship of RSNA and RVC was investigated using surgical (preterm) and chemical (near-term) denervation. All fetal sheep showed a significant increase in RSNA with occlusion, which was more sustained but not significantly greater near-term. The initial fall in RVC was more rapid in near-term than preterm fetal sheep and preceded the large increase in RSNA. These data suggest that although RSNA can increase as early as 0.7 gestation, it is not the primary determinant of RVC. This finding was supported by denervation studies. Interestingly, chemical denervation in near-term fetal sheep was associated with an initial fall in blood pressure, suggesting that by 0.8 gestation sympathetic innervation of nonrenal vascular beds is critical to maintain arterial blood pressure during the rapid initial adaptation to asphyxia.

  8. Determinación de la eficacia analgésica de los bloqueos del ganglio estrellado en el síndrome doloroso regional complejo con dolor mediado por el sistema nervioso simpático: estudio preliminar Study of the analgesic efficacy of stellate ganglion blockade in the management of the complex regional pain syndrome in patients with pain mediated by sympathetic nervous system: preliminary study

    Directory of Open Access Journals (Sweden)

    R. F. Rodríguez

    2006-05-01

    Full Text Available Objetivo: Este estudio fue realizado con el propósito de determinar la eficacia analgésica de los bloqueos del ganglio estrellado, en el alivio del dolor mediado por el sistema nervioso simpático, en pacientes con síndrome doloroso regional complejo. Pacientes y métodos: Se realizó un ensayo clínico controlado con asignación aleatoria y enmascaramiento simple. Treinta y nueve pacientes fueron tratados con una serie de bloqueos de ganglio estrellado, terapia física y tratamiento farmacológico, mientras que treinta y dos pacientes fueron tratados con fisioterapia y el mismo esquema farmacológico. Para determinar la asociación entre las variables se utilizó el riesgo relativo con sus respectivos intervalos de confianza. Resultados: En la evaluación clínica realizada un mes postratamiento se encontró alivio del dolor en 84,6% de los pacientes del grupo de intervención y en 78,1% de los controles (RR= 1,08; I.C. 95%=0,8-1,4; p=0.48, sin encontrarse diferencias estadísticamente significativas. No se encontró asociación entre la eficacia analgésica y tabaquismo, dominancia, género, tipo de SDRC, causa desencadenante y nivel educativo.Objective: The purpose of this study was to determine the analgesic efficacy of stellate ganglion blockade in pain mediated by the sympathetic nervous system in patients with Complex Regional Pain Syndrome (CRPS. Patients and methods: A randomized, simple-blinded controlled clinical trial was conducted. Thirty nine patients were randomly assigned to an intervention group which was treated with a series of stellate ganglion blockades, physical therapy and pharmacological treatment, and thirty two to a control group which was treated with physical therapy and the same pharmacological treatment. Risk ratio was used to evaluate outcome and determine association with predictor variables. Results: At the end of the first month post treatment, it was found that 84.6% of patients in the intervention group had

  9. Quantitative thermal sensory testing and sympathetic skin response in primary Restless legs syndrome - A prospective study on 57 Indian patients

    Directory of Open Access Journals (Sweden)

    Garima Shukla

    2012-01-01

    Full Text Available Patients with restless leg syndrome present with sensory symptoms similar to peripheral neuropathy. While there is evidence of abnormalities of dopaminergic pathways, the peripheral nervous system has been studied infrequently. We studied conventional nerve conduction studies, quantitative thermal sensory testing and sympathetic skin response in 57 patients with primary restless leg syndrome. Almost two third patients demonstrated abnormalities in the detailed testing of the peripheral nervous system. Sbtle abnormalities of the peripheral nervous system may be more common than previously believed.

  10. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF).

    Science.gov (United States)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Hirabayashi, Masumi; Watabe, Kazuhiko; Jimbo, Yasuhiko; Kodama, Itsuo; Komuro, Issei

    2013-01-01

    Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF) promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs) and sympathetic neurons (SNs) isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml) or nerve growth factor (50 ng/ml). As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR) with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs) attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts.

  11. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF.

    Directory of Open Access Journals (Sweden)

    Keiko Miwa

    Full Text Available Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs and sympathetic neurons (SNs isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml or nerve growth factor (50 ng/ml. As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts.

  12. Central nervous system dysfunction in obesity-induced hypertension.

    Science.gov (United States)

    Head, Geoffrey A; Lim, Kyungjoon; Barzel, Benjamin; Burke, Sandra L; Davern, Pamela J

    2014-09-01

    The activation of the sympathetic nervous system is a major mechanism underlying both human and experimental models of obesity-related hypertension. While insulin and the adipokine leptin have long been thought to contribute to obesity-related neurogenic mechanisms, the evidence is now very strong that they play a major role, shown particularly in animal studies using selective receptor antagonists. There is not just maintenance of leptin's sympatho-excitatory actions as previously suggested but considerable amplification particularly in renal sympathetic nervous activity. Importantly, these changes are not dependent on short-term elevation or reduction in plasma leptin or insulin, but require some weeks to develop indicating a slow "neural adaptivity" within hypothalamic signalling. These effects can be carried across generations even when offspring are raised on a normal diet. A better understanding of the underlying mechanism should be a high research priority given the prevalence of obesity not just in the current population but also for future generations.

  13. Cardiac Autonomic Nerve Stimulation in the Treatment of Heart Failure

    OpenAIRE

    Kobayashi, Mariko; Massiello, Alex; Karimov, Jamshid H.; Van Wagoner, David R.; Fukamachi, Kiyotaka

    2013-01-01

    Research on the therapeutic modulation of cardiac autonomic tone by electrical stimulation has yielded encouraging early clinical results. Vagus nerve stimulation has reduced the rates of morbidity and sudden death from heart failure, but therapeutic vagus nerve stimulation is limited by side effects of hypotension and bradycardia. Sympathetic nerve stimulation that has been implemented in the experiment may exacerbate the sympathetic-dominated autonomic imbalance. In contrast, concurrent sti...

  14. Sympathetic system activity in obesity and metabolic syndrome.

    Science.gov (United States)

    Tentolouris, N; Liatis, S; Katsilambros, N

    2006-11-01

    Obesity is a very common disease worldwide, resulting from a disturbance in the energy balance. The metabolic syndrome is also a cluster of abnormalities with basic characteristics being insulin resistance and visceral obesity. The major concerns of obesity and metabolic syndrome are the comorbidities, such as type 2 diabetes, cardiovascular disease, stroke, and certain types of cancers. Sympathetic nervous system (SNS) activity is associated with both energy balance and metabolic syndrome. Sympathomimetic medications decrease food intake, increase resting metabolic rate (RMR), and thermogenic responses, whereas blockage of the SNS exerts opposite effects. The contribution of the SNS to the daily energy expenditure, however, is small ( approximately 5%) in normal subjects consuming a weight maintenance diet. Fasting suppresses, whereas meal ingestion induces SNS activity. Most of the data agree that obesity is characterized by SNS predominance in the basal state and reduced SNS responsiveness after various sympathetic stimuli. Weight loss reduces SNS overactivity in obesity. Metabolic syndrome is characterized by enhanced SNS activity. Most of the indices used for the assessment of its activity are better associated with visceral fat than with total fat mass. Visceral fat is prone to lipolysis: this effect is mediated by catecholamine action on the sensitive beta(3)-adrenoceptors found in the intraabdominal fat. In addition, central fat distribution is associated with disturbances in the hypothalamo-pituitary-adrenal axis, suggesting that a disturbed axis may be implicated in the development of the metabolic syndrome. Furthermore, SNS activity induces a proinflammatory state by IL-6 production, which in turn results in an acute phase response. The increased levels of inflammatory markers seen in the metabolic syndrome may be elicited, at least in part, by SNS overactivity. Intervention studies showed that the disturbances of the autonomic nervous system seen in the

  15. Hydralazine tachycardia and sympathetic cardiovascular reactivity in normal subjects.

    Science.gov (United States)

    Vidrio, H; Tena, I

    1980-11-01

    The correlation between hydralazine-induced tachycardia and overall cardiovascular reactivity to sympathetic stimulation was explored in 50 normal subjects. Blood pressure and heart rate changes after standing, immersion of a hand in cold water, the Valsalva maneuver, and moderate exercise were compared with pressure and rate responses to 20 mg oral hydralazine. The drug did not modify blood pressure but increased heart rate, mainly in the standing position. Because plotting the magnitude of this response suggested a two-population distribution, subjects were divided into hyporeactor and hyperreactor groups. Reactivity did not appear to be related to acetylator phenotype. The magnitude of the cardiac response correlated with heart rate responses to standing and to the Valsalva maneuver; when analyzed separately from hyporeactors, correlation was greater among hyperreactors. Because the orthostatic and Valsalva responses are reflex in nature, these results suggest that hydralazine tachycardia is also reflexly induced, that its magnitude depends on individual baroreceptor sensitivity, which is distributed nonnormally, and that it can be predicted by suitable tests of sympathetic responsiveness.

  16. Sympathetic innervation of the spleen in male Brown Norway rats: a longitudinal aging study.

    Science.gov (United States)

    Perez, Sam D; Silva, Dorian; Millar, Ashley Brooke; Molinaro, Christine A; Carter, Jeff; Bassett, Katie; Lorton, Dianne; Garcia, Paola; Tan, Laren; Gross, Jonathon; Lubahn, Cheri; Thyagarajan, Srinivasan; Bellinger, Denise L

    2009-12-11

    Aging leads to reduced cellular immunity with consequent increased rates of infectious disease, cancer, and autoimmunity in the elderly. The sympathetic nervous system (SNS) modulates innate and adaptive immunity via innervation of lymphoid organs. In aged Fischer 344 (F344) rats, noradrenergic (NA) nerve density in secondary lymphoid organs declines, which may contribute to immunosenescence with aging. These studies suggest there is SNS involvement in age-induced immune dysregulation. The purpose of this study was to longitudinally characterize age-related change in sympathetic innervation of the spleen and sympathetic activity/tone in male Brown Norway (BN) rats, which live longer and have a strikingly different immune profile than F344 rats, the traditional animal model for aging research. Splenic sympathetic neurotransmission was evaluated between 8 and 32 months of age by assessing (1) NA nerve fiber density, (2) splenic norepinephrine (NE) concentration, and (3) circulating catecholamine levels after decapitation. We report a decline in NA nerve density in splenic white pulp (45%) at 15 months of age compared with 8-month-old (M) rats, which is followed by a much slower rate of decline between 24 and 32 months. Lower splenic NE concentrations between 15 and 32 months of age compared with 8M rats were consistent with morphometric findings. Circulating catecholamine levels after decapitation stress generally dropped with increasing age. These findings suggest there is a sympathetic-to-immune system dysregulation beginning at middle age. Given the unique T-helper-2 bias in BN rats, altered sympathetic-immune communication may be important for understanding the age-related rise in asthma and autoimmunity.

  17. Sensory and sympathetic innervation of cervical facet joint in rats

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hai-yu; CHEN An-min; GUO Feng-jing; LIAO Guang-jun; XIAO Wei-dong

    2006-01-01

    Objective: To explore the patterns of innervation of cervical facet joints and determine the pathways from facet joints to dorsal root ganglions (DRGs) in order to clarify the causes of diffuse neck pain, headache, and shoulder pain.Methods: Forty-two male Sprague-Dawley rats,weighing 250-300 g, were randomly divided into three groups: Group A ( n = 18), Group B ( n = 18), and Group C (n = 6 ). Under anesthesia with intraperitoneal pentobarbital sodium (45 mg/kg body weight), a midline dorsal longitudinal incision was made over the cervical spine to expose the left cervical facet joint capsule of all the rats under a microscope. The rats in Group A underwent sympathectomy, but the rats in Group B and Group C did not undergo sympathectomy. Then 0.6 μl 5 % bisbenzimide (Bb) were injected into the C1-2, C3-4 and C5-6 facet joints of 6 rats respectively in Group A and Group B. The holes were immediately sealed with mineral wax to prevent leakage of Bb and the fascia and skin were closed. But in Group C, 0.9% normal saline was injected into the corresponding joint capsules. Then under deep reanesthesia with intraperitoneal pentobarbital sodium (45 mg/kg body weight), C1-C8 left DRGs in all rats and the sympathetic ganglions in Group B were obtained and the number of the labeled neurons was determined.Results: Neurons labeled with Bb were present in C1-C8 DRGs in both Group A and Group B, and sympathetic ganglions in Group B. In the C1-2 and C3-4 subgroups,labeled neurons were present from C1 to C8 DRGs, while in C5-6 subgroups they were from C, to C8. The number of Bb ( + ) neurons after sympathectomy was not significantly different in the injected level from that without sympathectomy. But in the other levels, the number of Bb ( + ) neurons after sympathectomy was significantly less than that without sympathectomy.Conclusions: The innervation of the cervical facet joints is derived from both sensory and sympathetic nervous system, and DRGs are associated with

  18. A model for magnetically coupled sympathetic eruptions

    CERN Document Server

    Torok, T; Titov, V S; Mikic, Z; Reeves, K K; Velli, M; Linker, J A; De Toma, G

    2011-01-01

    Sympathetic eruptions on the Sun have been observed for several decades, but the mechanisms by which one eruption can trigger another one remain poorly understood. We present a 3D MHD simulation that suggests two possible magnetic trigger mechanisms for sympathetic eruptions. We consider a configuration that contains two coronal flux ropes located within a pseudo-streamer and one rope located next to it. A sequence of eruptions is initiated by triggering the eruption of the flux rope next to the streamer. The expansion of the rope leads to two consecutive reconnection events, each of which triggers the eruption of a flux rope by removing a sufficient amount of overlying flux. The simulation qualitatively reproduces important aspects of the global sympathetic event on 2010 August 1 and provides a scenario for so-called twin filament eruptions. The suggested mechanisms are applicable also for sympathetic eruptions occurring in other magnetic configurations.

  19. Sympathetic skin responses from the scalp evoked by electrical stimulation in seborrheic dermatitis.

    Science.gov (United States)

    Altunrende, Burcu; Yildiz, Serpil; Kandi, Basak; Yildiz, Nebil

    2013-06-01

    Although the role of autonomic nervous system in seborrheic dermatitis (SD) is still unclear, seborrhea is sometimes accepted as a sign of autonomic dysfunction in several nervous system diseases. Therefore, we aimed to investigate the sympathetic nervous system (SNS) activity in SD by recording sympathetic skin responses (SSR) from the scalp (S-SSR). Thirty-one control subjects and 22 SD patients were studied by evoking right and left S-SSR with electrical stimulation of the right median nerve at the wrist. Mean latencies and maximum amplitudes were calculated for both sides in each group. In seven out of 31 control subjects and in 13 out of 22 patients, the S-SSR could not be elicited on either side. There were four subjects with unilateral response in the patient group. There were significantly more non-responders among the patients with SD (P < 0.000). This study suggests that in SD, the autonomic nervous system may be involved. The S-SSR is a new site for recording SSR. The responses are relatively symmetrical and can be evoked easily by electrical stimulation, and may be used to evaluate the SNS function in SD patients and also in healthy subjects.

  20. Anorexia nervosa depends on adrenal sympathetic hyperactivity: opposite neuroautonomic profile of hyperinsulinism syndrome

    Directory of Open Access Journals (Sweden)

    Lechin F

    2010-09-01

    Full Text Available Fuad Lechin1,2, Bertha van der Dijs1,2, Betty Pardey-Maldonado1, Jairo E Rivera1, Scarlet Baez1, Marcel E Lechin31Department of Pathophysiology, Sections of Neuroendocrinology, Neuropharmacology, and Neurochemistry, Instituto de Medicina Experimental, Faculty of Medicine, Universidad Central de Venezuela, Caracas; 2Instituto de Vias Digestivas Caracas, Centro Clínico Profesional, Caracas, Venezuela; 3Department of Internal Medicine, Texas A and M Health Science Center, College of Medicine, Texas, USAObjective: The aim of our study was to determine the central and peripheral autonomic nervous system profiles underlying anorexia nervosa (AN syndrome, given that affected patients present with the opposite clinical profile to that seen in the hyperinsulinism syndrome.Design: We measured blood pressure and heart rate, as well as circulating neurotransmitters (noradrenaline, adrenaline, dopamine, plasma serotonin, and platelet serotonin, using high-performance liquid chromatography with electrochemical detection, during supine resting, one minute of orthostasis, and after five minutes of exercise. In total, 22 AN patients (12 binge-eating/purging type and 10 restricting type and age-, gender-, and race-matched controls (70 ± 10.1% versus 98 ± 3.0% of ideal body weight were recruited.Results: We found that patients with AN had adrenal sympathetic overactivity and neural sympathetic underactivity, demonstrated by a predominance of circulating adrenaline over noradrenaline levels, not only during the supine resting state (52 ± 2 versus 29 ± 1 pg/mL but also during orthostasis (67 ± 3 versus 32 ± 2 pg/mL, P < 0.05 and after exercise challenge (84 ± 4 versus 30 ± 3 pg/mL, P < 0.01.Conclusion: Considering that this peripheral autonomic nervous system disorder depends on the absolute predominance of adrenomedullary C1 adrenergic nuclei over A5 noradrenergic pontine nucleus, let us ratify the abovementioned findings. The AN syndrome depends on the

  1. Differential sympathetic activation in muscle and skin neural districts in the metabolic syndrome.

    Science.gov (United States)

    Grassi, Guido; Quarti-Trevano, Fosca; Seravalle, Gino; Dell'Oro, Raffaella; Dubini, Antonella; Mancia, Giuseppe

    2009-10-01

    The present study was designed to determine whether and to what extent the activation of the sympathetic nervous system reported in the metabolic syndrome is generalized to the whole cardiovascular system or if it is rather confined to selected vascular districts. In 16 untreated patients with metabolic syndrome, 12 essential hypertensive subjects, 12 obese subjects, and 14 lean healthy normotensive controls, we measured blood pressure (Finapres, Englewood, CO), heart rate (electrocardiogram), venous plasma norepinephrine (high-performance liquid chromatography), and postganglionic sympathetic nerve traffic in the skeletal muscle and in the skin districts (microneurography). The muscle and skin nerve traffic measurements were obtained in a randomized sequence. Measurements also included skin sympathetic nerve responses to an arousal (acoustic stimulus). The 4 groups of subjects had superimposable ages. Muscle sympathetic nerve traffic values were significantly higher in subjects with hypertension and in those with obesity than in controls (51.2 +/- 2.8 and 52.0 +/- 3.0 vs 37.2 +/- 3.3 bursts per 100 heart beats, respectively; P fashion by the various components of the disease.

  2. Sympathetic activation by the cold pressor test does not increase the muscle force generation capacity.

    Science.gov (United States)

    Roatta, Silvestro; Farina, Dario

    2011-06-01

    A positive inotropic action by the sympathetic nervous system on skeletal muscles has been observed and investigated in animal and in vitro studies. This action provided a theoretical basis for the putative ergogenic action of catecholamines and adrenergic agonists, although there is no clear evidence of this effect in humans. The aim of this study was to investigate the occurrence of inotropic effects associated to physiological sympathetic activation in healthy subjects. The muscle force capacity was investigated in the tibialis anterior (n = 9 subjects) and in the soleus (n = 9) muscles electrically stimulated with single pulses and double pulses with variable interspike interval (4-1,000 ms) and short pulse trains (frequency: 5-14 Hz) before, during, and after sympathetic activation by the cold pressor test (CPT). CPT significantly decreased by 10.4 ± 7.2 and 10.6 ± 4.4% the force produced by single and double pulse stimulation, respectively, and produced smaller decreases in the force obtained by train stimulation in the tibialis anterior, while no significant changes were observed in either type of contraction in the soleus muscle. CPT failed to induce any increase in the force capacity of the investigated muscles. The prevalent decrease in force evidenced in this study supports the concept that the weakening sympathetic action on type I fiber, already shown to occur in humans, prevails over the putative potentiating action.

  3. Central nervous system

    Science.gov (United States)

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  4. The role of the autonomic nervous system in Tourette Syndrome

    Directory of Open Access Journals (Sweden)

    Jack eHawksley

    2015-05-01

    Full Text Available Tourette Syndrome (TS is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics and one or more vocal (phonic tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS. Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an

  5. Thin-fiber mechanoreceptors reflexly increase renal sympathetic nerve activity during static contraction.

    Science.gov (United States)

    Kim, Jong Kyung; Hayes, Shawn G; Kindig, Angela E; Kaufman, Marc P

    2007-02-01

    The renal vasoconstriction induced by the sympathetic outflow during exercise serves to direct blood flow from the kidney toward the exercising muscles. The renal circulation seems to be particularly important in this regard, because it receives a substantial part of the cardiac output, which in resting humans has been estimated to be 20%. The role of group III mechanoreceptors in causing the reflex renal sympathetic response to static contraction remains an open question. To shed some light on this question, we recorded the renal sympathetic nerve responses to static contraction before and after injection of gadolinium into the arterial supply of the statically contracting triceps surae muscles of decerebrate unanesthetized and chloralose-anesthetized cats. Gadolinium has been shown to be a selective blocker of mechanogated channels in thin-fiber muscle afferents, which comprise the afferent arm of the exercise pressor reflex arc. In decerebrate (n = 15) and chloralose-anesthetized (n = 12) cats, we found that gadolinium (10 mM; 1 ml) significantly attenuated the renal sympathetic nerve and pressor responses to static contraction (60 s) after a latent period of 60 min; both responses recovered after a latent period of 120 min. We conclude that thin-fiber mechanoreceptors supplying contracting muscle are involved in some of the renal vasoconstriction evoked by the exercise pressor reflex.

  6. Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space

    Science.gov (United States)

    Ertl, Andrew C.; Diedrich, Andre; Biaggioni, Italo; Levine, Benjamin D.; Robertson, Rose Marie; Cox, James F.; Zuckerman, Julie H.; Pawelczyk, James A.; Ray, Chester A.; Buckey, Jay C Jr; Lane, Lynda D.; Shiavi, Richard; Gaffney, F. Andrew; Costa, Fernando; Holt, Carol; Blomqvist, C. Gunnar; Eckberg, Dwain L.; Baisch, Friedhelm J.; Robertson, David

    2002-01-01

    Astronauts returning from space have reduced red blood cell masses, hypovolaemia and orthostatic intolerance, marked by greater cardio-acceleration during standing than before spaceflight, and in some, orthostatic hypotension and presyncope. Adaptation of the sympathetic nervous system occurring during spaceflight may be responsible for these postflight alterations. We tested the hypotheses that exposure to microgravity reduces sympathetic neural outflow and impairs sympathetic neural responses to orthostatic stress. We measured heart rate, photoplethysmographic finger arterial pressure, peroneal nerve muscle sympathetic activity and plasma noradrenaline spillover and clearance, in male astronauts before, during (flight day 12 or 13) and after the 16 day Neurolab space shuttle mission. Measurements were made during supine rest and orthostatic stress, as simulated on Earth and in space by 7 min periods of 15 and 30 mmHg lower body suction. Mean (+/- S.E.M.) heart rates before lower body suction were similar pre-flight and in flight. Heart rate responses to -30 mmHg were greater in flight (from 56 +/- 4 to 72 +/- 4 beats min(-1)) than pre-flight (from 56 +/- 4 at rest to 62 +/- 4 beats min(-1), P < 0.05). Noradrenaline spillover and clearance were increased from pre-flight levels during baseline periods and during lower body suction, both in flight (n = 3) and on post-flight days 1 or 2 (n = 5, P < 0.05). In-flight baseline sympathetic nerve activity was increased above pre-flight levels (by 10-33 %) in the same three subjects in whom noradrenaline spillover and clearance were increased. The sympathetic response to 30 mmHg lower body suction was at pre-flight levels or higher in each subject (35 pre-flight vs. 40 bursts min(-1) in flight). No astronaut experienced presyncope during lower body suction in space (or during upright tilt following the Neurolab mission). We conclude that in space, baseline sympathetic neural outflow is increased moderately and sympathetic

  7. 自主神经诱发心房颤动的离子通道基础%Ion Channel Basis of Atrial Fibrillation Induced by Autonomic Nervous System

    Institute of Scientific and Technical Information of China (English)

    张淑娟(综述); 赵庆彦(审校)

    2015-01-01

    Cardiac autonomic nervous system includes the double control of vagus nerve and sympathetic nerve. Recent experimental and clinical studies suggest that autonomic nervous system plays an important role in the development and maintenance of atrial fibrillation( AF) . Electrical and structural remodeling after AF prompts its maintaining and recurrence. The mechanisms may be related to the neurotransmitters released by nerve endings acting on myocardial cell membrane receptors, thereby affecting the activity of potassium, sodium and calcium and other ion channels on the cardiac cell membrane, resulting in ECG physiological function disorder.%心脏受自主神经包括迷走神经和交感神经的双重支配,近年来的实验及临床研究提示,其在心房颤动(房颤)的发生、发展及维持中起重要作用,房颤发生后的电重构和结构重构促使其自身的维持和复发。其作用机制与其末梢释放神经递质作用于心肌细胞膜上的受体,进而影响心房肌细胞膜上钾、钠及钙等多种离子通道的活动,致使心电生理功能紊乱有关。

  8. Autonomic nervous system function in patients with functional abdominal pain. An experimental study

    DEFF Research Database (Denmark)

    Jørgensen, L S; Christiansen, P; Raundahl, U

    1993-01-01

    Functional abdominal pain--that is, pain without demonstrable organic abnormalities--has often been associated with psychologic stress. The aim of the present study was to investigate whether sympathetic nervous system response to laboratory stress and basal parasympathetic neural activity were...

  9. Emotion Regulation via the Autonomic Nervous System in Children with Attention-Deficit/Hyperactivity Disorder (ADHD)

    Science.gov (United States)

    Musser, Erica D.; Backs, Richard W.; Schmitt, Colleen F.; Ablow, Jennifer C.; Measelle, Jeffery R.; Nigg, Joel T.

    2011-01-01

    Despite growing interest in conceptualizing ADHD as involving disrupted emotion regulation, few studies have examined the physiological mechanisms related to emotion regulation in children with this disorder. This study examined parasympathetic and sympathetic nervous system reactivity via measures of respiratory sinus arrhythmia (RSA) and cardiac…

  10. Cardiac arrhythmias

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008407 Effects of sympathetic nerve stimulation on connexin43 and ventricular arrhythmias during acute myocardial ischemia: experiment with rats. HU Xiaorong(胡笑容), et al. Dept Cardiol, Renmin Hosp, Wuhan Univ, Wuhan 430060. Natl Med J China 2008;88(24):1707-1710. Objective To investigate the effects of sympathetic nerve stimulation (SNS) on connexin43 (Cx43) and ventricular arrhythmias during acute myocardial ischemia (MI).

  11. Investigation of the Effects of Continuous Low-Dose Epidural Analgesia on the Autonomic Nervous System Using Hilbert Huang Transform

    Directory of Open Access Journals (Sweden)

    Wei-Ren Chuang

    2010-01-01

    Full Text Available Effects of continuous low-dose epidural bupivacaine (0.05-0.1% infusion on the Doppler velocimetry for labor analgesia have been well documented. The aim of this study was to monitor the activity of the autonomic nervous system (ANS for women in labor based on Hilbert Huang transform (HHT, which performs signal processing for nonlinear systems, such as human cardiac systems. Thirteen pregnant women were included in the experimental group for labor analgesia. They received continuous epidural bupivacaine 0.075% infusion. The normal-to-normal intervals (NN-interval were downloaded from an ECG holter. Another 20 pregnant women in non-anesthesia labor (average gestation age was 38.6 weeks were included in the comparison group. In this study, HHT was used to decompose components of ECG signals, which reflect three different frequency bands of a person's heart rate spectrum (viz. high frequency (HF, low frequency (LF and very low frequency (VLF. It was found that the change of energy in subjects without anesthesia was more active than that with continuous epidural bupivacaine 0.075% infusion. The energy values of the experimental group (i.e., labor analgesia of HF and LF of ANS activities were significantly lower (P < 0.05 than the values of the comparison group (viz. labor without analgesia, but the trend of energy ratio of LF/HF was opposite. In conclusion, the sympathetic and parasympathetic components of ANS are all suppressed by continuous low-dose epidural bupivacaine 0.075% infusion, but parasympathetic power is suppressed more than sympathetic power.

  12. Regional sympathetic denervation after myocardial infarction: a follow-up study using [123I]MIBG.

    Science.gov (United States)

    Podio, V; Spinnler, M T; Spandonari, T; Moretti, C; Castellano, G; Bessone, M; Brusca, A

    1995-12-01

    Previous studies in dogs have shown that experimental infarction produces myocardial sympathetic denervation not only in the infarcted area, but also in a region apical to the infarction. In these dogs MIBG myocardial scintigraphy detected denervation but returned to normal in a few months at which time reinnervation was shown to have occurred. Myocardial sympathetic denervation was studied with MIBG scintigraphy in ten patients after their first acute transmural myocardial infarction; scans were repeated at 4 months, one year and 30 months to follow the time course of possible reinnervation. Except during the first 48 hours following the infarction, no therapy except for antiaggregants was administered to the patients; during this follow-up period no cardiac events were seen. One week after infarction, comparison of MIBG images with perfusion scans revealed that the denervated area was larger than the infarcted area; no difference in MIBG uptake by the infarcted myocardium was found during the 30 months follow-up.

  13. Central and cerebrovascular effects of leg crossing in humans with sympathetic failure

    DEFF Research Database (Denmark)

    Harms, Mark P M; Wieling, Wouter; Colier, Willy N J M;

    2010-01-01

    MCA Vmean (middle cerebral artery blood velocity; using transcranial Doppler ultrasound), frontal lobe oxygenation [O2Hb (oxyhaemoglobin)] and MAP (mean arterial pressure), CO (cardiac output) and TPR (total peripheral resistance) in six patients (aged 37-67 years; three women) and age- and gender.......12 (0.52-3.27)] in the patients compared with the controls [0.83 (-0.11 to 2.04) micromol/l]. In the control subjects, CO increased 11% (PTPR. By contrast, in the patients, CO increased 9% (PTPR increased by 13% (P... cerebral perfusion and oxygenation both in patients with sympathetic failure and in healthy subjects. However, in healthy subjects, cerebral perfusion and oxygenation were improved by a rise in CO without significant changes in TPR or MAP, whereas in patients with sympathetic failure, cerebral perfusion...

  14. Effects of sympathetic stimulation on the rhythmical jaw movements produced by electrical stimulation of the cortical masticatory areas of rabbits.

    Science.gov (United States)

    Roatta, S; Windhorst, U; Djupsjöbacka, M; Lytvynenko, S; Passatore, M

    2005-03-01

    The somatomotor and sympathetic nervous systems are intimately linked. One example is the influence of peripheral sympathetic fibers on the discharge characteristics of muscle spindles. Since muscle spindles play important roles in various motor behaviors, including rhythmic movements, the working hypothesis of this research was that changes in sympathetic outflow to muscle spindles can change rhythmic movement patterns. We tested this hypothesis in the masticatory system of rabbits. Rhythmic jaw movements and EMG activity induced by long-lasting electrical cortical stimulation were powerfully modulated by electrical stimulation of the peripheral stump of the cervical sympathetic nerve (CSN). This modulation manifested itself as a consistent and marked reduction in the excursion of the mandibular movements (often preceded by a transient modest enhancement), which could be attributed mainly to corresponding changes in masseter muscle activity. These changes outlasted the duration of CSN stimulation. In some of the cortically evoked rhythmic jaw movements (CRJMs) changes in masticatory frequency were also observed. When the jaw-closing muscles were subjected to repetitive ramp-and-hold force pulses, the CRMJs changed characteristics. Masseter EMG activity was strongly enhanced and digastric EMG slightly decreased. This change was considerably depressed during CSN stimulation. These effects of CSN stimulation are similar in sign and time course to the depression exerted by sympathetic activity on the jaw-closing muscle spindle discharge. It is suggested that the change in proprioceptive information induced by an increase in sympathetic outflow (a) has important implications even under normal conditions for the control of motor function in states of high sympathetic activity, and (b) is one of the mechanisms responsible for motor impairment under certain pathological conditions such as chronic musculoskeletal head-neck disorders, associated with stress conditions.

  15. Acupuncture Attenuates Renal Sympathetic Activity and Blood Pressure via Beta-Adrenergic Receptors in Spontaneously Hypertensive Rats

    Science.gov (United States)

    Ye, Yang; Wang, Xue-Rui; Li, Fang; Xiao, Ling-Yong; Shi, Guang-Xia

    2017-01-01

    The sympathetic nervous system, via epinephrine and norepinephrine, regulates β-adrenergic receptor (β-AR) expression, and renal sympathetic activation causes sustained increases in blood pressure by enhanced renin release. In this study, we aim to investigate the effect and underlying mechanism of acupuncture at Taichong (LR3) on renal sympathetic activity in spontaneously hypertensive rats. Unanesthetized rats were subject to daily acupuncture for 2 weeks. Mean blood pressure (MBP) and heart rate variability (HRV) were monitored at days 0, 7, and 14 by radiotelemetry. After euthanasia on the 14th day, blood and the kidneys were collected and subject to the following analyses. Epinephrine and norepinephrine were detected by ELISA. The expression of β-ARs was studied by western blotting and PCR. The renin content was analyzed by radioimmunoassay. 14-day acupuncture significantly attenuates the increase of MBP. The HRV indices, the standard deviation of all normal NN intervals (SDNN), and the ratio of the low-frequency component to the high-frequency component (LF/HF) were improved following acupuncture. Renal sympathetic activation induced upregulation of epinephrine, norepinephrine, and renin content were attenuated by acupuncture. In addition, acupuncture decreased β1-AR expression and improved β2-AR expression. These results indicated that acupuncture relieves the increased MBP via the regulation of renal sympathetic activity and β-ARs. PMID:28270938

  16. Effect of pioglitazone on muscle sympathetic nerve activity in type 2 diabetes mellitus with α-glucosidase inhibitor.

    Science.gov (United States)

    Kobayashi, Daisuke; Takamura, Masayuki; Murai, Hisayoshi; Usui, Soichiro; Ikeda, Tatsunori; Inomata, Jun-ichiro; Takashima, Shin-ichiro; Kato, Takeshi; Furusho, Hiroshi; Takeshita, Yumie; Ota, Tsuguhito; Takamura, Toshinari; Kaneko, Shuichi

    2010-12-08

    Activation of the sympathetic nervous system is augmented in patients with type 2 diabetes mellitus (DM). Pioglitazone, an anti-diabetic drug, improves insulin resistance, but its influence on sympathetic nerve activity is not clear. To identify the relationship between insulin resistance and sympathetic activity, we examined muscle sympathetic nerve activity (MSNA) in controlled type 2 DM patients with alpha-glucosidase inhibitor (GI). We measured MSNA and calculated homeostasis model assessment of insulin resistance index (HOMA-IR) in twelve DM patients treated with alpha-GI and thirteen age-matched healthy subjects. In DM patients with alpha-GI, all parameters were reexamined after three months of treatment with pioglitazone. MSNA and HOMA-IR were significantly greater in DM patients with alpha-GI compared to healthy subjects. Hemoglobin A1c did not differ in DM patients before and after pioglitazone. However, pioglitazone significantly decreased MSNA in DM patients compared with alpha-GI (21.7±5.2 vs. 32.0±6.8 burst/min, ppioglitazone was similar to that in healthy subjects. HOMA-IR significantly decreased after pioglitazone, and a significant relationship was found between the absolute change in MSNA and HOMA-IR (r=0.65, ppioglitazone provides an additional effect on inhibition of sympathetic nerve activity.

  17. Noninvasive assessment of sympathetic vasoconstriction in human and rodent skeletal muscle using near-infrared spectroscopy and Doppler ultrasound.

    Science.gov (United States)

    Fadel, Paul J; Keller, David M; Watanabe, Hitoshi; Raven, Peter B; Thomas, Gail D

    2004-04-01

    The precise role of the sympathetic nervous system in the regulation of skeletal muscle blood flow during exercise has been challenging to define in humans, partly because of the limited techniques available for measuring blood flow in active muscle. Recent studies using near-infrared (NIR) spectroscopy to measure changes in tissue oxygenation have provided an alternative method to evaluate vasomotor responses in exercising muscle, but this approach has not been fully validated. In this study, we tested the hypothesis that sympathetic activation would evoke parallel changes in tissue oxygenation and blood flow in resting and exercising muscle. We simultaneously measured tissue oxygenation with NIR spectroscopy and blood flow with Doppler ultrasound in skeletal muscle of conscious humans (n = 13) and anesthetized rats (n = 9). In resting forearm of humans, reflex activation of sympathetic nerves with the use of lower body negative pressure produced graded decreases in tissue oxygenation and blood flow that were highly correlated (r = 0.80, P blood flow velocity that were highly correlated (r = 0.93, P blood flow evoked by sympathetic activation were significantly attenuated (P < 0.05 vs. rest) but remained highly correlated in both humans (r = 0.80, P < 0.006) and rats (r = 0.92, P < 0.0001). These data indicate that, during steady-state metabolic conditions, changes in tissue oxygenation can be used to reliably assess sympathetic vasoconstriction in both resting and exercising skeletal muscle.

  18. Pmch-deficiency in rats is associated with normal adipocyte differentiation and lower sympathetic adipose drive.

    Directory of Open Access Journals (Sweden)

    Joram D Mul

    Full Text Available The orexigenic neuropeptide melanin-concentrating hormone (MCH, a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively. MCH binds to MCH receptor 1 (MCH1R, which is present on adipocytes. Currently it is unknown if Pmch-ablation changes adipocyte differentiation or sympathetic adipose drive. Using Pmch-deficient and wild-type rats on a standard low-fat diet, we analyzed dorsal subcutaneous and perirenal WAT mass and adipocyte morphology (size and number throughout development, and indices of sympathetic activation in WAT and iBAT during adulthood. Moreover, using an in vitro approach we investigated the ability of MCH to modulate 3T3-L1 adipocyte differentiation. Pmch-deficiency decreased dorsal subcutaneous and perirenal WAT mass by reducing adipocyte size, but not number. In line with this, in vitro 3T3-L1 adipocyte differentiation was unaffected by MCH. Finally, adult Pmch-deficient rats had lower norepinephrine turnover (an index of sympathetic adipose drive in WAT and iBAT than wild-type rats. Collectively, our data indicate that MCH/MCH1R-pathway does not modify adipocyte differentiation, whereas Pmch-deficiency in laboratory rats lowers adiposity throughout development and sympathetic adipose drive during adulthood.

  19. Aldosterone-induced brain MAPK signaling and sympathetic excitation are angiotensin II type-1 receptor dependent.

    Science.gov (United States)

    Zhang, Zhi-Hua; Yu, Yang; Wei, Shun-Guang; Felder, Robert B

    2012-02-01

    Angiotensin II (ANG II)-induced mitogen-activated protein kinase (MAPK) signaling upregulates angiotensin II type-1 receptors (AT(1)R) in hypothalamic paraventricular nucleus (PVN) and contributes to AT(1)R-mediated sympathetic excitation in heart failure. Aldosterone has similar effects to increase AT(1)R expression in the PVN and sympathetic drive. The present study was undertaken to determine whether aldosterone also activates the sympathetic nervous system via MAPK signaling and, if so, whether its effect is independent of ANG II and AT(1)R. In anesthetized rats, a 4-h intravenous infusion of aldosterone induced increases (P < 0.05) in phosphorylated (p-) p44/42 MAPK in PVN, PVN neuronal excitation, renal sympathetic nerve activity (RSNA), mean blood pressure (MBP), and heart rate (HR). Intracerebroventricular or bilateral PVN microinjection of the p44/42 MAPK inhibitor PD-98059 reduced the aldosterone-induced RSNA, HR, and MBP responses. Intracerebroventricular pretreatment (5 days earlier) with pooled small interfering RNAs targeting p44/42 MAPK reduced total and p-p44/42 MAPK, aldosterone-induced c-Fos expression in the PVN, and the aldosterone-induced increases in RSNA, HR, and MBP. Intracerebroventricular infusion of either the mineralocorticoid receptor antagonist RU-28318 or the AT(1)R antagonist losartan blocked aldosterone-induced phosphorylation of p44/42 MAPK and prevented the increases in RSNA, HR, and MBP. These data suggest that aldosterone-induced sympathetic excitation depends upon that AT(1)R-induced MAPK signaling in the brain. The short time course of this interaction suggests a nongenomic mechanism, perhaps via an aldosterone-induced transactivation of the AT(1)R as described in peripheral tissues.

  20. Non-linear HRV indices under autonomic nervous system blockade.

    Science.gov (United States)

    Bolea, Juan; Pueyo, Esther; Laguna, Pablo; Bailón, Raquel

    2014-01-01

    Heart rate variability (HRV) has been studied as a non-invasive technique to characterize the autonomic nervous system (ANS) regulation of the heart. Non-linear methods based on chaos theory have been used during the last decades as markers for risk stratification. However, interpretation of these nonlinear methods in terms of sympathetic and parasympathetic activity is not fully established. In this work we study linear and non-linear HRV indices during ANS blockades in order to assess their relation with sympathetic and parasympathetic activities. Power spectral content in low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) bands of HRV, as well as correlation dimension, sample and approximate entropies were computed in a database of subjects during single and dual ANS blockade with atropine and/or propranolol. Parasympathetic blockade caused a significant decrease in the low and high frequency power of HRV, as well as in correlation dimension and sample and approximate entropies. Sympathetic blockade caused a significant increase in approximate entropy. Sympathetic activation due to postural change from supine to standing caused a significant decrease in all the investigated non-linear indices and a significant increase in the normalized power in the low frequency band. The other investigated linear indices did not show significant changes. Results suggest that parasympathetic activity has a direct relation with sample and approximate entropies.

  1. Burnout versus work engagement in their effects on 24-hour ambulatory monitored cardiac autonomic function

    NARCIS (Netherlands)

    L.J.P. van Doornen (Lorenz); J.H. Houtveen (Jan); S. Langelaan (Saar); A.B. Bakker (Arnold); W. van Rhenen (Willem); W.B. Schaufeli (Wilmar)

    2009-01-01

    textabstractBurnout has been associated with increased risk of cardiovascular disease. This relationship may be mediated by a stress-related disruption in cardiac autonomic activity. The aim of the present study was to assess cardiac autonomic activity (sympathetic and parasympathetic) during a work

  2. Sympathetic and Parasympathetic Activity in Cancer-Related Fatigue: More Evidence for a Physiological Substrate in Cancer Survivors

    OpenAIRE

    2011-01-01

    Fatigue is a notable clinical problem in cancer survivors, and understanding its pathophysiology is important. This study evaluated relationships between fatigue and both sympathetic and parasympathetic nervous system activity in breast cancer survivors. Norepinephrine and heart rate variability (HRV) were evaluated at rest, as well as during and after a standardized laboratory speech and mental arithmetic stressor. The participants, 109 women who had completed treatment for stage 0-IIIA brea...

  3. Sympathetic hyperactivity in patients with chronic kidney disease

    NARCIS (Netherlands)

    Neumann, N.

    2007-01-01

    Sympathetic hyperactivity in patients with chronic kidney disease Chronic kidney disease (CKD) is often characterized by the presence of sympathetic hyperactivity. This contributes to the pathogenesis of renal hypertension. It is also associated with cardiovascular (CV) morbidity and mortality indep

  4. Cardiac autonomic control in the obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Nouha Gammoudi

    2015-04-01

    Full Text Available Introduction: The sympathetic activation is considered to be the main mechanism involved in the development of cardiovascular diseases in obstructive sleep apnea (OSA. The heart rate variability (HRV analysis represents a non-invasive tool allowing the study of the autonomic nervous system. The impairment of HRV parameters in OSA has been documented. However, only a few studies tackled the dynamics of the autonomic nervous system during sleep in patients having OSA. Aims: To analyze the HRV over sleep stages and across sleep periods in order to clarify the impact of OSA on cardiac autonomic modulation. The second objective is to examine the nocturnal HRV of OSA patients to find out which HRV parameter is the best to reflect the symptoms severity. Methods: The study was retrospective. We have included 30 patients undergoing overnight polysomnography. Subjects were categorized into two groups according to apnea–hypopnea index (AHI: mild-to-moderate OSAS group (AHI: 5–30 and severe OSAS group (AHI>30. The HRV measures for participants with low apnea–hypopnea indices were compared to those of patients with high rates of apnea–hypopnea across the sleep period and sleep stages. Results: HRV measures during sleep stages for the group with low rates of apnea–hypopnea have indicated a parasympathetic activation during non-rapid eye movement (NREM sleep. However, no significant difference has been observed in the high AHI group except for the mean of RR intervals (mean RR. The parasympathetic activity tended to increase across the night but without a statistical difference. After control of age and body mass index, the most significant correlation found was for the mean RR (p=0.0001, r=−0.248. Conclusion: OSA affects sympathovagal modulation during sleep, and this impact has been correlated to the severity of the disease. The mean RR seemed to be a better index allowing the sympathovagal balance appreciation during the night in OSA.

  5. Altered balance in the autonomic nervous system in schizophrenic patients

    DEFF Research Database (Denmark)

    Nielsen, B M; Mehlsen, J; Behnke, K

    1988-01-01

    .05). Heart-rate response to inspiration was greater in non-medicated schizophrenics compared to normal subjects (P less than 0.05), whereas no difference was found between medicated and non-medicated schizophrenics. The results show that the balance in the autonomic nervous system is altered in schizophrenic...... patients with a hyperexcitability in both the sympathetic and the parasympathetic division. Our study has thus indicated a dysfunction in the autonomic nervous system per se and the previous interpretations of attentional orienting responses in schizophrenia is questioned. Medication with neuroleptics......The aim of the present study was to evaluate the autonomic nervous function in schizophrenic patients. Twenty-eight patients (29 +/- 6 years) diagnosed as schizophrenics and in stable medication were included, together with ten schizophrenic patients (25 +/- 5 years) who were unmedicated. Eleven...

  6. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice.

    Science.gov (United States)

    Nohara, Kazunari; Waraich, Rizwana S; Liu, Suhuan; Ferron, Mathieu; Waget, Aurélie; Meyers, Matthew S; Karsenty, Gérard; Burcelin, Rémy; Mauvais-Jarvis, Franck

    2013-06-15

    Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension.

  7. Sympathetic reflex control of blood flow in human peripheral tissues

    DEFF Research Database (Denmark)

    Henriksen, O

    1991-01-01

    Sympathetic vasoconstrictor reflexes are essential for the maintenance of arterial blood pressure in upright position. It has been generally believed that supraspinal sympathetic vasoconstrictor reflexes elicited by changes in baroreceptor activity play an important role. Recent studies on human ...... to collision of normodromically and antidromically conducted impulses in efferent sympathetic vasoconstrictor fibers. The evidence obtained suggests that sympathetic vasoconstrictor reflexes to postural changes are complex and highly differentiated....

  8. Bone morphogenetic protein-5 (BMP-5 promotes dendritic growth in cultured sympathetic neurons

    Directory of Open Access Journals (Sweden)

    Higgins Dennis

    2001-09-01

    Full Text Available Abstract Background BMP-5 is expressed in the nervous system throughout development and into adulthood. However its effects on neural tissues are not well defined. BMP-5 is a member of the 60A subgroup of BMPs, other members of which have been shown to stimulate dendritic growth in central and peripheral neurons. We therefore examined the possibility that BMP-5 similarly enhances dendritic growth in cultured sympathetic neurons. Results Sympathetic neurons cultured in the absence of serum or glial cells do not form dendrites; however, addition of BMP-5 causes these neurons to extend multiple dendritic processes, which is preceded by an increase in phosphorylation of the Smad-1 transcription factor. The dendrite-promoting activity of BMP-5 is significantly inhibited by the BMP antagonists noggin and follistatin and by a BMPR-IA-Fc chimeric protein. RT-PCR and immunocytochemical analyses indicate that BMP-5 mRNA and protein are expressed in the superior cervical ganglia (SCG during times of initial growth and rapid expansion of the dendritic arbor. Conclusions These data suggest a role for BMP-5 in regulating dendritic growth in sympathetic neurons. The signaling pathway that mediates the dendrite-promoting activity of BMP-5 may involve binding to BMPR-IA and activation of Smad-1, and relative levels of BMP antagonists such as noggin and follistatin may modulate BMP-5 signaling. Since BMP-5 is expressed at relatively high levels not only in the developing but also the adult nervous system, these findings suggest the possibility that BMP-5 regulates dendritic morphology not only in the developing, but also the adult nervous system.

  9. SYMPATHETIC SKIN RESPONSE AND GALVANIC SKIN RESISTANCE IN MALES WITH TYPE 2 DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    Saravanan Mohanraj

    2016-06-01

    Full Text Available BACKGROUND Diabetes mellitus, a metabolic disorder affects the nervous system due to alteration in various metabolic pathways. As neuropathy manifests in longstanding diabetes mellitus, autonomic nervous system also gets affected. The study was started based on the hypothesis that the sweat glands innervated by autonomic nervous system will be affected in patients with type 2 diabetes mellitus patients with clinical features of neuropathy. This study was undertaken to compare the sympathetic skin response (SSR and galvanic skin resistance (GSR in males with type 2 diabetes mellitus and in controls. METHODS Thirty males in the age group of 45-55 years, known to have diabetes mellitus and having a history of neuropathic symptoms served as subjects and thirty males in the same age group with no history of diabetes mellitus and neuropathy served as controls. SSR and GSR were recorded using Recorders and Medicare Systems 4 channel polygraph in the noise and light reduced research laboratory, Department of Physiology. All the recordings were done between 10-12 noon at ambient temperature. SSR was measured by deep inspiration and the GSR was measured in the supine and standing response. Comparison of latency and amplitude of the sympathetic skin response and the percentage of decrease in galvanic skin resistance was done. RESULT A statistically significant delay in the latency and a reduction in the amplitude of sympathetic skin response was observed in the diabetes patients. There was a lesser percentage of decrease in GSR in the diabetic patients. CONCLUSION This study shows that the SSR and GSR responses are significantly reduced in diabetic individuals and can be used as a diagnostic tool in the detection of diabetic autonomic neuropathy.

  10. Does the autonomic nervous system contribute to the initiation and progression of prostate cancer?

    Science.gov (United States)

    Ventura, Sabatino; Evans, Bronwyn A

    2013-11-01

    In the July 12 issue of Science magazine, researchers from the Albert Einstein College of Medicine, the Mount Sinai School of Medicine, the Durham VA Medical Centre and Duke University published an elegant study demonstrating that the sympathetic nervous system, acting through β2 and β3-adrenoceptors in the prostate, plays an important role in the initiation of prostate cancer, while the parasympathetic nervous system plays a role in the dissemination of tumour metastases via M1 muscarinic receptors. These findings are significant because they indicate that receptors associated with the autonomic nervous system may be viable targets for prostate cancer therapy.

  11. Immunomodulation by the autonomic nervous system: therapeutic approach for cancer, collagen diseases, and inflammatory bowel diseases.

    Science.gov (United States)

    Abo, Toru; Kawamura, Toshihiko

    2002-10-01

    The distribution of leukocytes is regulated by the autonomic nervous system in humans and animals. The number and function of granulocytes are stimulated by sympathetic nerves whereas those of lymphocytes are stimulated by parasympathetic nerves. This is because granulocytes bear adrenergic receptors, but lymphocytes bear cholinergic receptors on the surface. These regulations may be beneficial to protect the body of living beings. However, when the autonomic nervous system deviates too much to one direction, we fall victim to certain diseases. For example, severe physical or mental stress --> sympathetic nerve activation --> granulocytosis --> tissue damage, including collagen diseases, inflammatory bowel diseases, and cancer. If we introduce the concept of immunomodulation by the autonomic nervous system, a new approach for collagen diseases, inflammatory bowel diseases, and even cancer is raised. With this approach, we believe that these diseases are no longer incurable.

  12. Periodic Repolarisation Dynamics: A Natural Probe of the Ventricular Response to Sympathetic Activation

    Science.gov (United States)

    Rizas, Konstantinos D; Hamm, Wolfgang; Kääb, Stefan; Schmidt, Georg; Bauer, Axel

    2016-01-01

    Periodic repolarisation dynamics (PRD) refers to low-frequency (≤0.1Hz) modulations of cardiac repolarisation instability. Spontaneous PRD can be assessed non-invasively from 3D high-resolution resting ECGs. Physiological and experimental studies have indicated that PRD correlates with efferent sympathetic nerve activity, which clusters in low-frequency bursts. PRD is increased by physiological provocations that lead to an enhancement of sympathetic activity, whereas it is suppressed by pharmacological β-blockade. Electrophysiological studies revealed that PRD occurs independently from heart rate variability. Increased PRD under resting conditions is a strong predictor of mortality in post-myocardial infarction (post-MI) patients, yielding independent prognostic value from left-ventricular ejection fraction (LVEF), heart rate variability, the Global Registry of Acute Coronary Events score and other established risk markers. The predictive value of PRD is particularly strong in post-MI patients with preserved LVEF (>35 %) in whom it identifies a new high-risk group of patients. The upcoming Implantable Cardiac Monitors in High-Risk Post-Infarction Patients with Cardiac Autonomic Dysfunction and Moderately Reduced Left Ventricular Ejection Fraction (SMART-MI) trial will test prophylactic strategies in high-risk post-MI patients with LVEF 36–50 % identified by PRD and deceleration capacity of heart rate (NCT02594488). PMID:27403291

  13. A perspective on sympathetic renal denervation in chronic congestive heart failure.

    Science.gov (United States)

    Madanieh, Raef; El-Hunjul, Mohammed; Alkhawam, Hassan; Kosmas, Constantine E; Madanieh, Abed; Vittorio, Timothy J

    2016-01-01

    Medical therapy has indisputably been the mainstay of management for chronic congestive heart failure. However, a significant percentage of patients continue to experience worsening heart failure (HF) symptoms despite treatment with multiple therapeutic agents. Recently, catheter-based interventional strategies that interrupt the renal sympathetic nervous system have shown promising results in providing better symptom control in patients with HF. In this article, we will review the pathophysiology of HF for better understanding of the interplay between the cardiovascular system and the kidney. Subsequently, we will briefly discuss pivotal renal denervation (RDN) therapy trials in patients with resistant hypertension and then present the available evidence on the role of RDN in HF therapy.

  14. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Secher, Niels H

    2011-01-01

    This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF......, but increases during cycling exercise. The increase in CMRO(2) is unaffected by beta-adrenergic blockade even though CBF is reduced suggesting that cerebral oxygenation becomes critical and a limited cerebral mitochondrial oxygen tension may induce fatigue. Also, sympathetic activity may drive cerebral non...

  15. Trapping and Sympathetic Cooling of Boron Ions

    CERN Document Server

    Rugango, Rene; Shu, Gang; Brown, Kenneth R

    2016-01-01

    We demonstrate the trapping and sympathetic cooling of B$^{+}$ ions in a Coulomb crystal of laser-cooled Ca$^{+}$, We non-destructively confirm the presence of the both B$^+$ isotopes by resonant excitation of the secular motion. The B$^{+}$ ions are loaded by ablation of boron and the secular excitation spectrum also reveals features consistent with ions of the form B$_{n}^{+}$.

  16. Pigmentation associated histopathological variations in sympathetic ophthalmia.

    Science.gov (United States)

    Marak, G E; Ikui, H

    1980-01-01

    The severity of inflammation in sympathetic ophthalmia is related to the degree of pigmentation, and the granulomatous response seems to be related to pigmentation. Eosinophilia is also associated with pigmentation, but this association appears to be fortuitous and is a result of the association of eosinophilia with severity of the inflammation. PMID:7387955

  17. Vitamin D Levels Are Associated with Cardiac Autonomic Activity in Healthy Humans

    Directory of Open Access Journals (Sweden)

    Linda Ellis

    2013-06-01

    Full Text Available Vitamin D deficiency (≤50nmol/L 25-hydroxy vitamin D is a cardiovascular (CV risk factor that affects approximately one billion people worldwide, particularly those affected by chronic kidney disease (CKD. Individuals with CKD demonstrate abnormal cardiac autonomic nervous system activity, which has been linked to the significant rates of CV-related mortality in this population. Whether vitamin D deficiency has a direct association with regulation of cardiac autonomic activity has never been explored in humans. Methods: Thirty-four (34 healthy, normotensive subjects were studied and categorized based on 25-hydroxy vitamin D deficiency (deficient vs. non-deficient, n = 7 vs. 27, as well as 1,25-dihydroxy vitamin D levels (above vs. below 25th percentile, n = 8 vs. 26. Power spectral analysis of electrocardiogram recordings provided measures of cardiac autonomic activity across low frequency (LF and high frequency (HF, representative of vagal contribution bands, representative of the sympathetic and vagal limbs of the autonomic nervous system when transformed to normalized units (nu, respectively, as well as overall cardiosympathovagal balance (LF:HF during graded angiotensin II (AngII challenge (3 ng/kg/min × 30 min, 6 ng/kg/min × 30 min. Results: At baseline, significant suppression of sympathovagal balance was observed in the 25-hydroxy vitamin D-deficient participants (LF:HF, p = 0.02 vs. non-deficient, although no other differences were observed throughout AngII challenge. Participants in the lowest 1,25-dihydroxy VD quartile experienced significant withdrawal of inhibitory vagal control, as well as altered overall sympathovagal balance throughout AngII challenge (HF, mean difference = −6.98 ± 3 nu, p = 0.05; LF:HF, mean difference = 0.34 ± 0.1, p = 0.043 vs. above 25th percentile. Conclusions: Vitamin D deficiency is associated with suppression of resting cardiac autonomic activity, while low 1,25-dihydroxy vitamin D levels are

  18. Clinical application of l-123 MlBG cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young [College of Medicine, Donga Univ., Busan (Korea, Republic of)

    2004-10-01

    Cardiac neurotransmission imaging allows in vivo assessment of presynaptic reuptake, neurotransmitter storage and postsynaptic receptors. Among the various neurotransmitter, I-123 MlBG is most available and relatively well-established. Metaiodobenzylguanidine (MIBG) is an analogue of the false neurotransmitter guanethidine. It is taken up to adrenergic neurons by uptake-1 mechanism as same as norepinephrine. As tagged with I-123, it can be used to image sympathetic function in various organs including heart with planar or SPECT techniques. I-123 MIBG imaging has a unique advantage to evaluate myocardial neuronal activity in which the heart has no significant structural abnormality or even no functional derangement measured with other conventional examination. In patients with cardiomyopathy and heart failure, this imaging has most sensitive technique to predict prognosis and treatment response of betablocker or ACE inhibitor. In diabetic patients, it allow very early detection of autonomic neuropathy. In patients with dangerous arrhythmia such as ventricular tachycardia or fibrillation, MIBG imaging may be only an abnormal result among various exams. In patients with ischemic heart disease, sympathetic derangement may be used as the method of risk stratification. In heart transplanted patients, sympathetic reinnervation is well evaluated. Adriamycin-induced cardiotoxicity is detected earlier than ventricular dysfunction with sympathetic dysfunction. Neurodegenerative disorder such as Parkinson's disease or dementia with Lewy bodies has also cardiac sympathetic dysfunction. Noninvasive assessment of cardiac sympathetic nerve activity with l-123 MlBG imaging may be improve understanding of the pathophysiology of cardiac disease and make a contribution to predict survival and therapy efficacy.

  19. The renin-angiotensin system and the central nervous system.

    Science.gov (United States)

    Ganong, W F

    1977-04-01

    One of several factors affecting the secretion of renin by the kidneys is the sympathetic nervous system. The sympathetic input is excitatory and is mediated by beta-adrenergic receptors, which are probably located on the membranes of the juxtaglomerular cells. Stimulation of sympathetic areas in the medulla, midbrain and hypothalamus raises blood pressure and increases renin secretion, whereas stimulation of other parts of the hypothalamus decreases blood pressure and renin output. The centrally active alpha-adrenergic agonist clonidine decreases renin secretion, lowers blood pressure, inhibits ACTH and vasopressin secretion, and increases growth hormone secretion in dogs. The effects on ACTH and growth hormone are abolished by administration of phenoxybenzamine into the third ventricle, whereas the effect on blood pressure is abolished by administration of phenoxybenzamine in the fourth ventricle without any effect on the ACTH and growth hormone responses. Fourth ventricular phenoxybenzamine decreases but does not abolish the inhibitory effect of clonidine on renin secretion. Circulating angiotensin II acts on the brain via the area postrema to raise blood pressure and via the subfornical organ to increase water intake. Its effect on vasopressin secretion is debated. The brain contains a renin-like enzyme, converting enzyme, renin substrate, and angiotensin. There is debate about the nature and physiological significance of the angiotensin II-generating enzyme in the brain, and about the nature of the angiotensin I and angiotensin II that have been reported to be present in the central nervous system. However, injection of angiotensin II into the cerebral ventricles produces drinking, increased secretion of vasopressin and ACTH, and increased blood pressure. The same responses are produced by intraventricular renin. Angiotensin II also facilitates sympathetic discharge in the periphery, and the possibility that it exerts a similar action on the adrenergic neurons

  20. Consciously controlled breathing decreases the high-frequency component of heart rate variability by inhibiting cardiac parasympathetic nerve activity.

    Science.gov (United States)

    Sasaki, Konosuke; Maruyama, Ryoko

    2014-01-01

    Heart rate variability (HRV), the beat-to-beat alterations in heart rate, comprises sympathetic and parasympathetic nerve activities of the heart. HRV analysis is used to quantify cardiac autonomic regulation. Since respiration could be a confounding factor in HRV evaluation, some studies recommend consciously controlled breathing to standardize the method. However, it remains unclear whether controlled breathing affects HRV measurement. We compared the effects of controlled breathing on HRV with those of spontaneous breathing. In 20 healthy volunteers, we measured respiratory frequency (f), tidal volume, and blood pressure (BP) and recorded electrocardiograms during spontaneous breathing (14.8 ± 0.7 breaths/min) and controlled breathing at 15 (0.25 Hz) and 6 (0.10 Hz) breaths/min. Compared to spontaneous breathing, controlled breathing at 0.25 Hz showed a higher heart rate and a lower high-frequency (HF) component, an index of parasympathetic nerve activity, although the f was the same. During controlled breathing at 0.10 Hz, the ratio of the low frequency (LF) to HF components (LF/HF), an index of sympathetic nerve activity, increased greatly and HF decreased, while heart rate and BP remained almost unchanged. Thus, controlled breathing at 0.25 Hz, which requires mental concentration, might inhibit parasympathetic nerve activity. During controlled breathing at 0.10 Hz, LF/HF increases because some HF subcomponents are synchronized with f and probably move into the LF band. This increment leads to misinterpretation of the true autonomic nervous regulation. We recommend that the respiratory pattern of participants should be evaluated before spectral HRV analysis to correctly understand changes in autonomic nervous regulation.

  1. Sympathetic reflex control of blood flow in human peripheral tissues

    DEFF Research Database (Denmark)

    Henriksen, O

    1991-01-01

    Sympathetic vasoconstrictor reflexes are essential for the maintenance of arterial blood pressure in upright position. It has been generally believed that supraspinal sympathetic vasoconstrictor reflexes elicited by changes in baroreceptor activity play an important role. Recent studies on human...... sympathetic vasoconstrictor reflexes are blocked. Blood flow has been measure by the local 133Xe-technique. The results indicate the presence of spinal as well as supraspinal sympathetic vasoconstrictor reflexes to human peripheral tissues. Especially is emphasized the presence of a local sympathetic veno...

  2. Cardiac autonomic nerve distribution and arrhythmia

    Institute of Scientific and Technical Information of China (English)

    Quan Liu; Dongmei Chen; Yonggang Wang; Xin Zhao; Yang Zheng

    2012-01-01

    OBJECTIVE: To analyze the distribution characteristics of cardiac autonomic nerves and to explore the correlation between cardiac autonomic nerve distribution and arrhythmia.DATA RETRIEVAL: A computer-based retrieval was performed for papers examining the distribution of cardiac autonomic nerves, using "heart, autonomic nerve, sympathetic nerve, vagus nerve, nerve distribution, rhythm and atrial fibrillation" as the key words.SELECTION CRITERIA: A total of 165 studies examining the distribution of cardiac autonomic nerve were screened, and 46 of them were eventually included.MAIN OUTCOME MEASURES: The distribution and characteristics of cardiac autonomic nerves were observed, and immunohistochemical staining was applied to determine the levels of tyrosine hydroxylase and acetylcholine transferase (main markers of cardiac autonomic nerve distribution). In addition, the correlation between cardiac autonomic nerve distribution and cardiac arrhythmia was investigated.RESULTS: Cardiac autonomic nerves were reported to exhibit a disordered distribution in different sites, mainly at the surface of the cardiac atrium and pulmonary vein, forming a ganglia plexus. The distribution of the pulmonary vein autonomic nerve was prominent at the proximal end rather than the distal end, at the upper left rather than the lower right, at the epicardial membrane rather than the endocardial membrane, at the left atrium rather than the right atrium, and at the posterior wall rather than the anterior wall. The main markers used for cardiac autonomic nerves were tyrosine hydroxylase and acetylcholine transferase. Protein gene product 9.5 was used to label the immunoreactive nerve distribution, and the distribution density of autonomic nerves was determined using a computer-aided morphometric analysis system.CONCLUSION: The uneven distribution of the cardiac autonomic nerves is the leading cause of the occurrence of arrhythmia, and the cardiac autonomic nerves play an important role in the

  3. Cardiac arrest

    Science.gov (United States)

    ... Article.jsp. Accessed June 16, 2014. Myerburg RJ, Castellanos A. Approach to cardiac arrest and life-threatening ... PA: Elsevier Saunders; 2011:chap 63. Myerburg RJ, Castellanos A. Cardiac arrest and audden aardiac death. In: ...

  4. Sympathetic and Catecholaminergic Alterations in Sleep Apnea with Particular Emphasis on Children.

    Directory of Open Access Journals (Sweden)

    Fahed eHakim

    2012-01-01

    Full Text Available Sleep is involved in the regulation of major organ functions in the human body, and disruption of sleep potentially can elicit organ dysfunction. Obstructive sleep apnea (OSA is the most prevalent sleep disorder of breathing in adults and children, and its manifestations reflect the interactions between intermittent hypoxia (IH, intermittent hypercapnia, increased intra-thoracic pressure swings, and sleep fragmentation, as elicited by the episodic changes in upper airway resistance during sleep. The sympathetic nervous system is an important modulator of the cardiovascular, immune, endocrine and metabolic systems, and alterations in autonomic activity may lead to metabolic imbalance and organ dysfunction. Here we review how OSA and its constitutive components can lead to perturbation of the autonomic nervous system in general, and to altered regulation of catecholamines, both of which then playing an important role in some of the mechanisms underlying OSA-induced morbidities.

  5. Sympathetic and hypothalamic-pituitary-adrenal asymmetry in generalized anxiety disorder.

    Science.gov (United States)

    Reeves, Jonathan W; Fisher, Aaron J; Newman, Michelle G; Granger, Douglas A

    2016-06-01

    Physiologic investigations of generalized anxiety disorder (GAD) have skewed toward assessment of the autonomic nervous system, largely neglecting hypothalamic-pituitary-adrenal (HPA) axis variables. Although these systems coordinate-suggesting a degree of symmetry-to promote adaptive functioning, most studies opt to monitor either one system or the other. Using a ratio of salivary alpha-amylase (sAA) over salivary cortisol, the present study examined symmetry between the sympathetic nervous system (SNS) and HPA axis in individuals with GAD (n = 71) and healthy controls (n = 37). Compared to healthy controls, individuals with GAD exhibited greater baseline ratios of sAA/cortisol and smaller ratios of sAA/cortisol following a mental arithmetic challenge. We propose that the present study provides evidence for SNS-HPA asymmetry in GAD. Further, these results suggest that increased SNS suppression in GAD may be partially mediated by cortisol activity.

  6. Riding out the storm: sympathetic storming after traumatic brain injury.

    Science.gov (United States)

    Lemke, Denise M

    2004-02-01

    Following acute multiple trauma, hypothalamic stimulation of the sympathetic nervous system and adrenal glands causes an increase in circulating corticoids and catecholamines, or a stress response. In individuals with severe traumatic brain injury or a Glasgow Coma Scale score of 3-8, this response can be exaggerated and episodic. A term commonly used by nurses caring for these individuals to describe this phenomenon is storming. Symptoms can include alterations in level of consciousness, increased posturing, dystonia, hypertension, hyperthermia, tachycardia, tachypnea, diaphoresis, and agitation. These individuals generally are at a low level of neurological activity with minimal alertness, minimal awareness, and reflexive motor response to stimulation, and the storming can take a seemingly peaceful individual into a state of chaos. Diagnosis is commonly made solely on clinical assessment, and treatment is aimed at controlling the duration and severity of the symptoms and preventing additional brain injury. Storming can pose a challenge for the nurse, from providing daily care for the individual in the height of the storming episode and treating the symptoms, to educating the family. Careful assessment of the individual leads the nurse to the diagnosis and places the nurse in the role of moderator of the storming episode, including providing treatment and evaluating outcomes.

  7. Effect of percutaneous renal sympathetic nerve radiofrequency ablation in patients with severe heart failure.

    Science.gov (United States)

    Dai, Qiming; Lu, Jing; Wang, Benwen; Ma, Genshan

    2015-01-01

    This study aimed to investigate the clinical feasibility and effects of percutaneous renal sympathetic nerve radiofrequency ablation in patients with heart failure. A total of 20 patients with heart failure were enrolled, aged from 47 to 75 years (63±10 years). They were divided into the standard therapy (n = 10), and renal nerve radiofrequency ablation groups (n = 10). There were 15 males and 5 female patients, including 8 ischemic cardiomyopathy, 8 dilated cardiomyopathy, and 8 hypertensive cardiopathy. All of the patients met the criteria of New York Heart Association classes III-IV cardiac function. Patients with diabetes and renal failure were excluded. Percutaneous renal sympathetic nerve radiofrequency ablation was performed on the renal artery wall under X-ray guidance. Serum electrolytes, neurohormones, and 24 h urine volume were recorded 24 h before and after the operation. Echocardiograms were performed to obtain left ventricular ejection fraction at baseline and 6 months. Heart rate, blood pressure, symptoms of dyspnea and edema were also monitored. After renal nerve ablation, 24 h urine volume was increased, while neurohormone levels were decreased compared with those of pre-operation and standard therapy. No obvious change in heart rate or blood pressure was recorded. Symptoms of heart failure were improved in patients after the operation. No complications were recorded in the study. Percutaneous renal sympathetic nerve radiofrequency ablation may be a feasible, safe, and effective treatment for the patients with severe congestive heart failure.

  8. Effect of postnatal lead exposure on the development of sympathetic innervation of the heart. [Rats

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, M.E.

    1983-01-01

    To determine possible mechanisms for this Pb-induced cardiotoxicity, several neutrochemical parameters indicative of cardiac sympathetic innervation were measured in developing rats. Presynaptic indices of nerve terminal development which were studied included steady-state levels of norepinephrine, neuronal uptake and vesicular storage of /sup 3/H-norepinephrine. Analysis of postsynaptic development was accomplished by quantitating the density of ..beta..-adrenergic receptors and by measuring the activity of adenylate cyclase. Rat pups were exposed to Pb from birth to weaning (21 days) via the milk of dams whose drinking water contained 0.2% Pb acetate. This method and level of Pb treatment had no effect on body or heart weight development, however, it did result in a seven-fold increase in the blood Pb content (70-75 ..mu..g/dl) of the treated pups during the period of exposure. Pb exposure accelerated the development of sympathetic innervation of the heart as detected by significant increases in the vesicular uptake of /sup 3/H-norepinephrine and the steady-state concentration of norepinephrine measured at postnatal day 4. On the other hand, ontogeny of the neutronal uptake of /sup 3/H-norepinephrine in the heart and in the forebrain was not affected by Pb treatment. The apparent premature development of sympathetic innervation induced by Pb treatment was not reflected in significant alterations in either the density or the affinity of ..beta..-adrenergic receptor sites determined by the binding kinetics of /sup 3/H-dihydroalprenolol.

  9. Involvement of the autonomic nervous system in diurnal variation of corrected QT intervals in common marmosets.

    Science.gov (United States)

    Honda, Masaki; Komatsu, Ryuichi; Isobe, Takehito; Tabo, Mitsuyasu; Ishikawa, Tomohisa

    2013-01-01

    Our previous study has shown that the corrected QT (QTc) interval of the electrocardiogram is longer during the dark period than during the light period in telemetered common marmosets. In the present study, we investigated the involvement of sympathetic and parasympathetic nervous activities in the changes of QTc interval associated with the light-dark cycle.Telemetry transmitters were implanted in six common marmosets to continuously record the electrocardiogram. The QT intervals obtained were corrected for the RR interval by applying individual probabilistic QT-rate correction formulae. Power spectral analysis of heart rate variability was performed to quantify each autonomic nervous function. Changes in QTc intervals and autonomic nervous tones were associated with the light-dark cycle. Parasympathetic nervous activity and QTc intervals significantly increased by approximately 10 ms during the dark period.Atropine, a muscarinic receptor antagonist, suppressed the increased parasympathetic tone and QTc prolongation during the dark period. In contrast, propranolol, a β-adrenoceptor antagonist, decreased the sympathetic activity and increased QTc intervals during the light period. These results suggest that the parasympathetic nerve functions prolong QTc intervals during the dark period, while the sympathetic nerve functions shorten them during the light period in common marmosets.

  10. Sympathetic adaptations to one-legged training

    Science.gov (United States)

    Ray, C. A.

    1999-01-01

    The purpose of the present study was to determine the effect of leg exercise training on sympathetic nerve responses at rest and during dynamic exercise. Six men were trained by using high-intensity interval and prolonged continuous one-legged cycling 4 day/wk, 40 min/day, for 6 wk. Heart rate, mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA; peroneal nerve) were measured during 3 min of upright dynamic one-legged knee extensions at 40 W before and after training. After training, peak oxygen uptake in the trained leg increased 19 +/- 2% (P leg exercise and indicates that attenuation of MSNA to exercise reported with forearm training also occurs with leg training.

  11. Sympathetic activity of S-(+-ketamine low doses in the epidural space

    Directory of Open Access Journals (Sweden)

    Slobodan Mihaljevic

    2014-07-01

    Full Text Available BACKGROUND AND OBJECTIVES: S-(+-ketamine is an intravenous anaesthetic and sympathomimetic with properties of local anaesthetic. It has an effect of an analgetic and local anaesthetic when administered epidurally, but there are no data whether low doses of S-(+-ketamine have sympathomimetic effects. The aim of this study was to determine whether low doses of S-(+-ketamine, given epidurally together with local anaesthetic, have any effect on sympathetic nervous system, both systemic and below the level of anaesthetic block. METHODS: The study was conducted on two groups of patients to whom epidural anaesthesia was administered to. Local anaesthesia (0.5% bupivacaine was given to one group (control group while local anaesthesia and S-(+-ketamine were given to other group. Age, height, weight, systolic, diastolic and mean arterial blood pressure were measured. Non-competitive enzyme immunochemistry method (Cat Combi ELISA was used to determine the concentrations of catecholamines (adrenaline and noradrenaline. Immunoenzymometric determination with luminescent substrate on a machine called Vitros Eci was used to determine the concentration of cortisol. Pulse transit time was measured using photoplethysmography. Mann-Whitney U-test, Wilcoxon test and Friedman ANOVA were the statistical tests. Blood pressure, pulse, adrenaline, noradrenaline and cortisol concentrations were measured in order to estimate systemic sympathetic effects. RESULTS: 40 patients in the control group were given 0.5% bupivacaine and 40 patients in the test group were given 0.5% bupivacaine with S-(+-ketamine. Value p < 0.05 has been taken as a limit of statistical significance. CONCLUSIONS: Low dose of S-(+-ketamine administered epidurally had no sympathomimetic effects; it did not change blood pressure, pulse, serum hormones or pulse transit time. Low dose of S-(+-ketamine administered epidurally did not deepen sympathetic block. Adding 25 mg of S-(+-ketamine to 0

  12. Sympathetic activity in the rat: effects of anaesthesia on noradrenaline kinetics.

    Science.gov (United States)

    Maignan, E; Dong, W X; Legrand, M; Safar, M; Cuche, J L

    2000-04-12

    Noradrenaline (NA) kinetics represent an effective tool for evaluating the activity of the sympathetic system: thus plasma NA concentration, spillover rate (SOR) and metabolic clearance rate (MC) were measured in the rat. The dilution technique was adapted and validated: pithing that caused mechanical destruction of the spinal cord was shown to reduce drastically NA-SOR and plasma NA concentration with no effect on NA-MC. NA-SOR and plasma NA concentration were restored within their normal limits when 2.5 Hz electrical stimulation of the sympathetic roots was superimposed. Normal values of NA kinetics in non-anaesthetised normotensive 12-week-old rats are reported: NA-SOR=196.1+/-26.4 ng/kg/min, NA-MC=413.9+/-38.8 ml/kg/min and plasma NA=486+/-52 pg/ml. NA kinetic was investigated in response to anaesthesia, known to depress excitable tissues of the central nervous system and expected to depress the activity of the sympathetic system. When NA-SOR was significantly reduced during anaesthesia with either sodium pentobarbital or chloralose, plasma NA concentration was not changed because NA-MC was also reduced. Thus, plasma NA concentration can be a misleading marker of the sympathetic activity. The response of the sympathetic activity to four different anaesthetic agents is shown to be heterogeneous, ranging from inhibition to stimulation. Sodium pentobarbital anaesthesia was associated with a statistically significant reduction of both NA-SOR (105.6+/-14.1 ng/kg/min, P<0. 01) and NA-MC (239.3+/-18.7 ml/kg/min, P<0.001) while plasma NA was not changed (438+/-47 pg/ml). Chloralose reduced NA-SOR (101.6+/-20. 1 ng/kg/min, P<0.05) while ketamine did not (150.6+/-35.5 ng/kg/min, n.s.): both compounds reduced NA-MC (257.9+/-27.8 ml/kg/min, P<0.01 and 265.8+/-34.3 ml/kg/min, P<0.05, respectively). Diethyl ether was shown to increase both NA-SOR (472.2+/-111 ng/kg/min, P<0.05) and plasma NA concentration (1589+/-436 pg/ml, P<0.01), while NA-MC remained unchanged. Thus, any

  13. [Sympathetically maintained pain (SMP): phentolamine test vs sympathetic nerve blockade. Comparison of two diagnostic methods].

    Science.gov (United States)

    Wehnert, Y; Müller, B; Larsen, B; Kohn, D

    2002-11-01

    The objective of our study was to clarify whether the phentolamine test is as suitable as sympathetic blockade in diagnosing cases of sympathetically maintained pain. The specificity and the sensitivity of both procedures were examined within a prospective and randomized study. Both a local sympathetic blockade and an intravenous phentolamine infusion were carried out in 29 patients with persistent pain in the area of the upper or lower extremities. A significant improvement was defined as reduction of pain of at least 50%. There were no complications in either test procedure. The phentolamine test registers sympathetically maintained pain well when it has a positive result (specificity of 83%). However, the phentolamine test shows only a low sensitivity of 69%. The phentolamine test, on the other hand, can be realized very easily and safely. Therefore, based on the results obtained, it is recommended that the phentolamine test be applied for primary diagnosis. In case of a negative result, further diagnosis should follow subsequently, for example with local sympathetic blockade.

  14. Central nervous system resuscitation

    DEFF Research Database (Denmark)

    McIntosh, T K; Garde, E; Saatman, K E;

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities ...

  15. Central nervous system resuscitation

    DEFF Research Database (Denmark)

    McIntosh, T K; Garde, E; Saatman, K E

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities...

  16. Effects of mildly increasing dialysis sodium removal on renin and sympathetic system in hemodialysis patients

    Institute of Scientific and Technical Information of China (English)

    Shen Yang; Sun Fang; Liu Jing; Ma Lijie; Huang Jing; Zhou Yilun; Liu Wenhu

    2014-01-01

    Background It has been argued that the benefits of reducing sodium loading may be offset by increased activation of the renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system.This study aimed to investigate the long-term effects of an increase in dialysis sodium removal on circulating RAAS and sympathetic system in hypertensive hemodialysis (HD) patients with "normal" post-HD volume status.Methods Thirty hypertensive HD patients were enrolled in this pilot trial.After one month period of dialysis with standard dialysate sodium of 138 mmol/L,the patients were followed up for a four months period with dialysate sodium set at 136 mmol/L,without changes in instructions regarding dietary sodium control.During the period of study,the dry weight was adjusted monthly under the guidance of bioimpedance spectroscopy to maintain post-HD volume status in a steady state; 44-hour ambulatory blood pressure,plasma renin,angiotensin Ⅱ (Ang Ⅱ),aldosterone,and norepinephrine (NE) were measured.Results After four months of HD with low dialysate sodium of 136 mmol/L,44-hour systolic and diastolic blood pressures (BPs) were significantly lower (-10 and-6 mmHg),in the absence of changes in antihypertensive medications.No significant changes were observed in plasma renin,Ang Ⅱ,aldosterone,and NE concentrations.The post-HD volume parameters were kept constant.Conclusion Mildly increasing dialysis sodium removal over 4 months can significantly improve BP control and does not activate circulating RAAS and sympathetic nervous system in hypertensive HD patients.

  17. Bypassing damaged nervous tissue

    CERN Document Server

    Shneider, M N

    2016-01-01

    We show the principal ability of bypassing damaged demyelinated portions of nervous tissue, thereby restoring its normal function for the passage of action potentials. We carry out a theoretical analysis on the basis of the synchronization mechanism of action potential propagation along a bundle of neurons, proposed recently in [1]. And we discuss the feasibility of implement a bypass to restore damaged nervous tissue and creating an artificial neuron network.

  18. A vesicular sequestration to oxidative deamination shift in myocardial sympathetic nerves in Parkinson's disease.

    Science.gov (United States)

    Goldstein, David S; Sullivan, Patricia; Holmes, Courtney; Miller, Gary W; Sharabi, Yehonatan; Kopin, Irwin J

    2014-10-01

    In Parkinson's disease (PD), profound putamen dopamine (DA) depletion reflects denervation and a shift from vesicular sequestration to oxidative deamination of cytoplasmic DA in residual terminals. PD also involves cardiac sympathetic denervation. Whether PD entails myocardial norepinephrine (NE) depletion and a sequestration-deamination shift have been unknown. We measured apical myocardial tissue concentrations of NE, DA, and their neuronal metabolites 3,4-dihydroxyphenylglycol (DHPG), and 3,4-dihydroxyphenylacetic acid (DOPAC) from 23 PD patients and 23 controls and ascertained the extent of myocardial NE depletion in PD. We devised, validated in VMAT2-Lo mice, and applied 5 neurochemical indices of the sequestration-deamination shift-concentration ratios of DOPAC:DA, DA:NE, DHPG:NE, DOPAC:NE, and DHPG:DOPAC-and used a kinetic model to estimate the extent of the vesicular storage defect. The PD group had decreased myocardial NE content (p Parkinson's disease (PD) patients have profound (98%) myocardial norepinephrine depletion, because of both cardiac sympathetic denervation and a shift from vesicular sequestration to oxidative deamination of cytoplasmic catecholamines in the residual nerves. This shift may be part of a final common pathogenetic pathway in the loss of catecholaminergic neurons that characterizes PD.

  19. Increased sympathetic tone in forearm subcutaneous tissue in primary hypothyroidism

    DEFF Research Database (Denmark)

    Vagn Nielsen, H; Hasselström, K; Feldt-Rasmussen, U

    1987-01-01

    Sympathetic reflex regulation of subcutaneous blood flow (SBF) in the forearm was studied in eight patients with primary hypothyroidism. Diastolic arterial pressure was greater than or equal to 95 mmHg in five patients. SBF was determined by local clearance of Na99mTcO4. Sympathetic vasoconstrict......Sympathetic reflex regulation of subcutaneous blood flow (SBF) in the forearm was studied in eight patients with primary hypothyroidism. Diastolic arterial pressure was greater than or equal to 95 mmHg in five patients. SBF was determined by local clearance of Na99mTcO4. Sympathetic.......02)). In conclusion sympathetic vasoconstrictor activity in adipose tissue is markedly increased in primary hypothyroidism. Sympathetic tone and arterial pressure are reduced during treatment....

  20. Glial cell line-derived neurotrophic factor (GDNF) enhances sympathetic neurite growth in rat hearts at early developmental stages.

    Science.gov (United States)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Kodama, Itsuo

    2010-12-01

    Molecular signaling of sympathetic innervation of myocardium is an unresolved issue. The purpose of this study was to investigate the effect of neurotrophic factors on sympathetic neurite growth towards cardiomyocytes. Cardiomyocytes (CMs) and sympathetic neurons (SNs) were isolated from neonatal rat hearts and superior cervical ganglia, and were co-cultured, either in a random or localized way. Neurite growth from SNs toward CMs was assessed by immunohistochemistry for neurofilament M and α-actinin in response to neurotrophic factors-nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF) and a chemical repellent, semaphorin 3A. As a result, GDNF as well as NGF and BDNF stimulated neurite growth. GDNF enhanced neurite outgrowth even under the NGF-depleted culture condition, excluding an indirect effect of GDNF via NGF. Quantification of mRNA and protein by real-time PCR and immunohistochemistry at different developmental stages revealed that GDNF is abundantly expressed in the hearts of embryos and neonates, but not in adult hearts. GDNF plays an important role in inducing cardiac sympathetic innervation at the early developmental stages. A possible role in (re)innervation of injured or transplanted or cultured and transplanted myocardium may deserve investigation.

  1. Heart rate complexity: A novel approach to assessing cardiac stress reactivity.

    Science.gov (United States)

    Brindle, Ryan C; Ginty, Annie T; Phillips, Anna C; Fisher, James P; McIntyre, David; Carroll, Douglas

    2016-04-01

    Correlation dimension (D2), a measure of heart rate (HR) complexity, has been shown to decrease in response to acute mental stress and relate to adverse cardiovascular health. However, the relationship between stress-induced changes in D2 and HR has yet to be established. The present studies aimed to assess this relationship systematically while controlling for changes in respiration and autonomic activity. In Study 1 (N = 25) D2 decreased during stress and predicted HR reactivity even after adjusting for changes in respiration rate, and cardiac vagal tone. This result was replicated in Study 2 (N = 162) and extended by including a measure of cardiac sympathetic activity; correlation dimension remained an independent predictor of HR reactivity in a hierarchical linear model containing measures of cardiac parasympathetic and sympathetic activity and their interaction. These results suggest that correlation dimension may provide additional information regarding cardiac stress reactivity above that provided by traditional measures of cardiac autonomic function.

  2. Um modelo experimental de ablação do Sistema Nervoso Intrínseco Cardíaco reduz a contratilidade do coração de ratos A new experimental model of chemical ablation of the Intrinsic Cardiac Nervous System reduces heart contractility and causes a type of dilated cardiopathy in rats

    Directory of Open Access Journals (Sweden)

    Adilson Scorzoni Filho

    2004-09-01

    Full Text Available OBJETIVO: A função do Sistema Nervoso Intrínseco Cardíaco e o seu papel na doença cardíaca permanecem pobremente compreendidos. Sabe-se que o cloreto de benzalcônio (CB induz a desnervação intrínseca do tubo digestivo. O objetivo deste estudo foi tentar produzir um modelo experimental de desnervação intrínseca do coração utilizando o CB. MÉTODO: Trinta ratos Wistar foram submetidos à aplicação intrapericárdica de CB (0,3% e trinta animais controle receberam a solução salina. Após 15 dias, os animais foram divididos em três grupos, com 10 animais tratados e 10 controles em cada. Os animais do grupo I foram submetidos a estudo radiológico e histopatológico. A área cardíaca e o índice cardiotorácico (ICT foram medidos nas radiografias. Os animais do grupo II foram submetidos a estudo hemodinâmico com registro da pressão arterial, freqüência cardíaca e débito cardíaco. No grupo III, a integridade da inervação parassimpática extrínseca do coração foi avaliada por estimulação vagal direita. O sistema de condução foi avaliado pelo ECG basal. RESULTADOS: A aplicação de CB acarretou aumento do ICT, da área cardíaca, pressão arterial e débito cardíaco, bem como do peso ponderal e do fígado. Nestes animais, a análise histopatológica mostrou redução do número de neurônios atriais e congestão passiva crônica do fígado. A estimulação vagal não mostrou diferenças entre os grupos experimentais. CONCLUSÃO: A ablação do sistema nervoso intrínseco propiciou o aparecimento de cardiopatia dilatada com insuficiência cardíaca direita e esquerda. Esse modelo experimental inédito deverá nortear futuros estudos na tentativa da elucidação da relação entre lesão neuronal e miocardiopatia.OBJECTIVE: The function of Intrinsic Cardiac Nervous System is largely unknown, as is its role in heart disease. In the digestive system, a topic aplication of Benzalkonium chloride (BC leads to intrinsic

  3. Carotid baroreceptor-muscle sympathetic relation in humans.

    Science.gov (United States)

    Rea, R F; Eckberg, D L

    1987-12-01

    The purpose of this study was to define the relation between carotid distending pressure and muscle sympathetic activity in humans. Carotid baroreceptors of nine healthy subjects were compressed or stretched for 5 s with graded neck pressure or suction (+40 to -65 mmHg), and muscle sympathetic nerve activity was recorded. The results delineate several features of human baroreflex function. First, the carotid-muscle sympathetic relation is well described by an inverse sigmoid function. Second, a linear relation exists between carotid distending pressure and sympathetic outflow over a range of approximately 25 mmHg. Third, sympathetic responses to changes of carotid pressures are asymmetric; increases of sympathetic activity during carotid compression are much greater than reductions of sympathetic activity during carotid stretch. Fourth, at rest, normal subjects operate near the threshold level for sympathetic excitation. Thus the carotid-muscle sympathetic baroreflex is poised to oppose reductions more effectively than elevations of arterial pressure, and the range of pressures over which the reflex is active is wider than thought hitherto.

  4. Sympathetic denervation-induced MSC mobilization in distraction osteogenesis associates with inhibition of MSC migration and osteogenesis by norepinephrine/adrb3.

    Directory of Open Access Journals (Sweden)

    Zhaojie Du

    Full Text Available The sympathetic nervous system regulates bone formation and resorption under physiological conditions. However, it is still unclear how the sympathetic nerves affect stem cell migration and differentiation in bone regeneration. Distraction osteogenesis is an ideal model of bone regeneration due to its special nature as a self-engineering tissue. In this study, a rat model of mandibular distraction osteogenesis with transection of cervical sympathetic trunk was used to demonstrate that sympathetic denervation can deplete norepinephrine (NE in distraction-induced bone callus, down-regulate β3-adrenergic receptor (adrb3 in bone marrow mesenchymal stem cells (MSCs, and promote MSC migration from perivascular regions to bone-forming units. An in vitro Transwell assay was here used to demonstrate that NE can inhibit stroma-derived factor-1 (SDF-1-induced MSC migration and expression of the migration-related gene matrix metalloproteinase-2 (MMP-2 and downregulate that of the anti-migration gene tissue inhibitor of metalloproteinase-3 (TIMP-3. Knockdown of adrb3 using siRNA abolishes inhibition of MSC migration. An in vitro osteogenic assay was used to show that NE can inhibit the formation of MSC bone nodules and expression of the osteogenic marker genes alkaline phosphatase (ALP, osteocalcin (OCN, and runt-related transcription factor-2 (RUNX2, but knockdown of adrb3 by siRNA can abolish such inhibition of the osteogenic differentiation of MSCs. It is here concluded that sympathetic denervation-induced MSC mobilization in rat mandibular distraction osteogenesis is associated with inhibition of MSC migration and osteogenic differentiation by NE/adrb3 in vitro. These findings may facilitate understanding of the relationship of MSC mobilization and sympathetic nervous system across a wide spectrum of tissue regeneration processes.

  5. Cardiac Sarcoidosis.

    Science.gov (United States)

    Birnie, David; Ha, Andrew C T; Gula, Lorne J; Chakrabarti, Santabhanu; Beanlands, Rob S B; Nery, Pablo

    2015-12-01

    Studies suggest clinically manifest cardiac involvement occurs in 5% of patients with pulmonary/systemic sarcoidosis. The principal manifestations of cardiac sarcoidosis (CS) are conduction abnormalities, ventricular arrhythmias, and heart failure. Data indicate that an 20% to 25% of patients with pulmonary/systemic sarcoidosis have asymptomatic (clinically silent) cardiac involvement. An international guideline for the diagnosis and management of CS recommends that patients be screened for cardiac involvement. Most studies suggest a benign prognosis for patients with clinically silent CS. Immunosuppression therapy is advocated for clinically manifest CS. Device therapy, with implantable cardioverter defibrillators, is recommended for some patients.

  6. Evaluation of sympathetic nervous system and adrenomedullary activity in normal children.

    Science.gov (United States)

    Armando, I; Levin, G; Barontini, M

    1983-05-01

    In 22 healthy children heart rate, blood pressure and plasma levels of epinephrine (E) and norepinephrine (NE) were evaluated under basal conditions and in response to standing (5 min). Basal plasma E and NE levels found in these children were (means +/- S.E.M.) 139 +/- 17.9 pg/ml and 236 +/- 31.0 pg/ml respectively. Ten out of the 22 children reported dizziness and discomfort by the end of the 5 min standing period. These children showed not only a greater decrease in both systolic and diastolic blood pressure but also a lower basal heart rate, a tendency to higher basal NE levels and a blunted plasma NE response (23 +/- 7%) when compared with children not reporting symptoms (60 +/- 9%, P less than 0.01). Plasma E levels also showed an increment although a wide range of individual responses was observed in both groups.

  7. Sympathetic nervous activity decreases during head-down bed rest but not during microgravity

    DEFF Research Database (Denmark)

    Christensen, Niels J; Heer, Martina; Ivanova, Krassimira

    2005-01-01

    We tested the hypothesis that sympathoadrenal activity in humans is low during spaceflight and that this effect can be simulated by head-down bed rest (HDBR). Platelet norepinephrine and epinephrine were measured as indexes of long-term changes in sympathoadrenal activity. Ten normal healthy...

  8. Hypothalamic-Pituitary-Adrenal and Sympathetic Nervous System Activity and Children's Behavioral Regulation

    Science.gov (United States)

    Lisonbee, Jared A.; Pendry, Patricia; Mize, Jacquelyn; Gwynn, Eugenia Parrett

    2010-01-01

    Self-regulation ability is an important component of children's academic success. Physiological reactivity may relate to brain activity governing attention and behavioral regulation. Saliva samples collected from 186 preschool children (101 boys, mean age = 53 months, 34% minority) before and after a series of mildly challenging games and again 30…

  9. Sympathetic nervous system control of triglyceride metabolism: Novel concepts derived from recent studies

    NARCIS (Netherlands)

    Geerling, J.J.; Boon, M.R.; Kooijman, S.; Parlevliet, E.T.; Havekes, L.M.; Romijn, J.A.; Meurs, I.M.; Rensen, P.C.N.

    2014-01-01

    Abstract Important players in triglyceride (TG) metabolism include the liver (production), white adipose tissue (WAT) (storage), heart and skeletal muscle (combustion to generate ATP), and brown adipose tissue (BAT) (combustion toward heat), the collective action of which determine plasma TG levels.

  10. Interaction of Xylamine with peripheral sympathetic neurons

    Energy Technology Data Exchange (ETDEWEB)

    Ransom, R.W.; Waggaman, L.A.; Cho, A.K.

    1985-09-30

    Xylamine (XYL) administered to intact rats caused a 70-80% reduction in norepinephrine (NE) uptake by the vas deferens but had little or no effect on NE content in that tissue. The vas deferens accumulates /sup 3/H-XYL in vitro by a desmethylimipramine (DMI)-sensitive mechanism. Vasa deferentia from 6-hydroxydopamine (60HDA) pretreated animals exhibited a 80% reduction in both NE content and XYL uptake activity. These results indicate that XYL is taken up by sympathetic nerve terminals and can reduce NE uptake activity without depleting terminals of neurotransmitter. 9 references, 4 tables.

  11. Literary ethnographic writing as sympathetic experiment

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Line

    perhaps only implicitly) of research. But we have no direct access to the subjective world of others and can only inhabit their point of view by way of imagination. Writing literary ethnographic text is one way, I will argue, of experimenting with such sympathetic imagination. By putting together observed...... not propose a radical turn towards literary writing in anthropology. Rather, I suggest that we include the courage of imagination inherent to literature and the accompanying doubt into our existing endeavor, if not for anything else, then for the sake of a more human relationship with our so-called informants....

  12. Age-related changes in rhythmic electrical activity in the cervical sympathetic trunk in rats and cats.

    Science.gov (United States)

    Maslyukov, P M; Korzina, M B; Emanuilov, A I

    2010-03-01

    Baseline electrical activity in the cervical sympathetic trunk was studied in neonatal rats and cats and at ages 10, 20, and 30 days and two and six months, using spectral analysis. Rats from the neonatal period to the end of the first month of life and cats to 20 days of life showed increases at the amplitudes of electrical oscillations. From birth, all animals showed oscillations in the respiratory and cardiac rhythms. From day 20, frequencies with a cardiac component in rats dominated the power spectrum. The proportion of other frequencies, not associated with the cardiac or respiratory rhythms, was smaller. In cats, unlike the situation in rats, there were no age-related changes in the spectral composition of baseline electrical activity. High-frequency oscillations were recorded in cats from birth.

  13. The oestrogenized rat myometrium inhibits organotypic sympathetic reinnervation.

    Science.gov (United States)

    Brauer, M M; Chávez-Genaro, R; Richeri, A; Viettro, L; Frias, A I; Burnstock, G; Cowen, T

    2002-10-31

    Chronic administration of oestrogen to rats during the infantile/prepubertal period provokes, at 28 days of age, complete loss of noradrenaline-labelled intrauterine sympathetic nerves. It is not known whether oestrogen inhibits the growth or causes the degeneration of developing uterine sympathetic nerves, or whether the uterus recovers its innervation following cessation of infantile/prepubertal oestrogen treatment. In the present study, we analysed the time-course of the effects of oestrogen on the development of uterine sympathetic nerves in the rat, using histochemical methods. In addition, the pattern of sympathetic reinnervation of the uterus of intact and ovariectomised females was assessed 3 and 6 months after cessation of chronic oestrogen treatment. The ability of sympathetic nerves to reinnervate the oestrogenized uterine tissue was assessed in intraocular transplants of uterine myometrium into ovariectomised host rats. Early exposure to oestrogen did not inhibit the approach of sympathetic nerves to the uterus, but prevented the normal growth and maturation of intrauterine sympathetic fibres and abolished the innervation that reached the organ before initiation of treatment. Three or six months following cessation of oestrogen treatment, most of the sympathetic nerves were restricted to the mesometrium and mesometrial entrance, whereas intrauterine innervation remained persistently depressed as a consequence of a sustained oestrous-like state provoked by ovarian dysfunction (polycystic ovary). An organotypic regrowth of uterine sympathetic nerves was observed in ovariectomised infantile/prepubertal oestrogen-treated animals. After 5 weeks in oculo, the innervation of oestrogenized myometrial transplants was reduced by 50%, and substantial changes in the pattern of reinnervation were observed. In control transplants, 86% of the nerves were terminal varicose myometrial and perivascular nerve fibres, whereas 14% were preterminal nerve bundles. In

  14. Cardiac Malpositions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Shi Joon; Im, Chung Gie; Yeon, Kyung Mo; Hasn, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    Cardiac Malposition refers to any position of the heart other than a left-sided heart in a situs solitus individual. Associated cardiac malformations are so complex that even angiocardiographic and autopsy studies may not afford an accurate information. Although the terms and classifications used to describe the internal cardiac anatomy and their arterial connections in cardiac malpositions differ and tend to be confusing, common agreement exists on the need for a segmental approach to diagnosis. Authors present 18 cases of cardiac malpositions in which cardiac catheterization and angiocardiography were done at the Department of Radiology, Seoul National University Hospital between 1971 and 1979. Authors analyzed the clinical, radiographic, operative and autopsy findings with the emphasis on the angiocardiographic findings. The results are as follows: 1. Among 18 cases with cardiac malpositions, 6 cases had dextrocardia with situs inversus, 9 cases had dextrocardia with situs solitus and 3 cases had levocardia with situs inversus. 2. There was no genuine exception to visceroatrial concordance rule. 3. Associated cardiac malpositions were variable and complex with a tendency of high association of transposition and double outlet varieties with dextrocardia in situs solitus and levocardia in situs inversus. Only one in 6 cases of dextrocardia with situs inversus had pure transposition. 4. In two cases associated pulmonary atresia was found at surgery which was not predicted by angiocardiography. 5. Because many of the associated complex lesions can be corrected surgically provided the diagnosis is accurate, the selective biplane angiocardiography with or without cineradiography is essential.

  15. Gerstmann's syndrome: can cardiac myxoma be the cause?

    Science.gov (United States)

    Sakellaridis, Timothy; Argiriou, Michalis; Koukis, Ioannis; Panagiotakopoulos, Vicror; Spiliotopoulos, Constantinos; Dimakopoulou, Antonia; Charitos, Christos

    2008-01-01

    Cardiac myxomas are primary cardiac tumours. Clinical presentations vary. Central nervous embolism has been a constant association. We describe a case of a 40-year-old female who presented with neurological signs and symptoms of Gerstmann's syndrome secondary to a left atrial myxoma.

  16. HIF2A and IGF2 Expression Correlates in Human Neuroblastoma Cells and Normal Immature Sympathetic Neuroblasts

    Directory of Open Access Journals (Sweden)

    Sofie Mohlin

    2013-03-01

    Full Text Available During normal sympathetic nervous system (SNS development, cells of the ganglionic lineage can malignantly transform and develop into the childhood tumor neuroblastoma. Hypoxia-inducible transcription factors (HIFs mediate cellular responses during normal development and are central in the adaptation to oxygen shortage. HIFs are also implicated in the progression of several cancer forms, and high HIF-2α expression correlates with disseminated disease and poor outcome in neuroblastoma. During normal SNS development, HIF2A is transiently expressed in neuroblasts and chromaffin cells. SNS cells can, during development, be distinguished by distinct gene expression patterns, and insulin-like growth factor 2 (IGF2 is a marker of sympathetic chromaffin cells, whereas sympathetic neuroblasts lack IGF2 expression. Despite the neuronal derivation of neuroblastomas, we show that neuroblastoma cell lines and specimens express IGF2 and that expression of HIF2A and IGF2 correlates, with the strongest correlation in high-stage tumors. In neuroblastoma, both IGF2 and HIF2A are hypoxia-driven and knocking down IGF2 at hypoxia resulted in downregulated HIF2A levels. HIF-2α and IGF2 were strongly expressed in subsets of immature neuroblastoma cells, suggesting that these two genes could be co-expressed also at early stages of SNS development. We show that IGF2 is indeed expressed in sympathetic chain ganglia at embryonic week 6.5, a developmental stage when HIF-2α is present. These findings provide a rationale for the unexpected IGF2 expression in neuroblastomas and might suggest that IGF2 and HIF2A positive neuroblastoma cells are arrested at an embryonic differentiation stage corresponding to the stage when sympathetic chain ganglia begins to coalesce.

  17. Cardiac function and hypertension in patients with obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Bertolami A

    2014-08-01

    Full Text Available Adriana Bertolami, Carolina Gonzaga, Celso AmodeoSleep Laboratory of Dante Pazzanese Institute of Cardiology, Sao Paulo, BrazilAbstract: Cardiovascular disease is one of the major causes of death worldwide. Among its risk factors, obstructive sleep apnea (OSA is a common but still underestimated condition. OSA often coexists and interacts with obesity, sharing multiple pathophysiological mechanisms and subsequent cardiovascular risk factors, such as type 2 diabetes, dyslipidemia, systemic inflammation, and in particular hypertension. There is also evidence suggesting an increased risk of arrhythmia, heart failure, renal failure, acute myocardial infarction, stroke, and death. OSA is characterized by recurrent episodes of partial (hypopnea or complete interruption (apnea of breathing during sleep due to airway collapse in the pharyngeal region. The main mechanisms linking OSA to impaired cardiovascular function are secondary to hypoxemia and reoxygenation, arousals, and negative intrathoracic pressure. Consequently, the sympathetic nervous and the renin-angiotensin-aldosterone systems may be overestimulated, and blood pressure increased. Resistance to treatment for hypertension represents a growing issue, and given that OSA has been recognized as the major secondary cause of resistant hypertension, clinical investigation for apnea is mandatory in this population. Standard diagnosis includes polysomnography, and treatment for OSA should include control of risk factors for cardiovascular disease, including obesity. So far, continuous positive airway pressure is the treatment of choice for OSA, impacting positively on blood pressure goals; however, the impact on long-term follow-up and on cardiovascular disease should be better assessed.Keywords: obstructive sleep apnea, hypertension, cardiac function

  18. Role of Nuclear Medicine in the cardiac resinchronization therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Giorgi, Maria Clementina Pinto; D' Orio, Silvana Angelina; Meneghetti, Jose Claudio [Instituto do Coracao (InCor/FM/USP), Sao Paulo, SP (Brazil)

    2011-10-15

    Cardiac resynchronization therapy (CRT) emerged as one of the most promising approaches in the treatment of cardiac dyssynchrony in heart failure patients' refractory to medical treatment. However, despite very promising clinical and functional results, individual response analyses show that a significant number of patients do not respond to treatment. The role of nuclear medicine and molecular imaging in the selection of CRT candidates by the assessment of cardiac dyssynchrony, myocardial viability, myocardial perfusion and blood flow and sympathetic cardiac activity has been discussed in this review. The potential utilization of this tool to improve the comprehension of detrimental effects of dyssynchrony on cardiac function and the evaluation and monitoring of the response to CRT were also considered. Other molecular targets that characterize glucose and fatty acid metabolism, apoptosis, angiotensin converting enzyme activity and angiogenesis that can be evaluated with this technique were described. (author)

  19. Chain Reconnections observed in Sympathetic Eruptions

    CERN Document Server

    Joshi, Navin Chandra; Magara, Tetsuya; Guo, Yang; Aulanier, Guillaume

    2016-01-01

    The nature of various plausible causal links between sympathetic events is still a controversial issue. In this work, we present multi-wavelength observations of sympathetic eruptions, associated flares and coronal mass ejections (CMEs) occurring on 2013 November 17 in two close-by active regions. Two filaments i.e., F1 and F2 are observed in between the active regions. Successive magnetic reconnections, caused by different reasons (flux cancellation, shear and expansion) have been identified during the whole event. The first reconnection occurred during the first eruption via flux cancellation between the sheared arcades overlying filament F2, creating a flux rope and leading to the first double ribbon solar flare. During this phase we observed the eruption of overlaying arcades and coronal loops, which leads to the first CME. The second reconnection is believed to occur between the expanding flux rope of F2 and the overlying arcades of the filament F1. We suggest that this reconnection destabilized the equi...

  20. Sympathetic adaptations to one-legged training

    Science.gov (United States)

    Ray, C. A.

    1999-01-01

    The purpose of the present study was to determine the effect of leg exercise training on sympathetic nerve responses at rest and during dynamic exercise. Six men were trained by using high-intensity interval and prolonged continuous one-legged cycling 4 day/wk, 40 min/day, for 6 wk. Heart rate, mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA; peroneal nerve) were measured during 3 min of upright dynamic one-legged knee extensions at 40 W before and after training. After training, peak oxygen uptake in the trained leg increased 19 +/- 2% (P training (108 +/- 5 to 96 +/- 5 beats/min and 132 +/- 8 to 119 +/- 4 mmHg, respectively, during the third minute of exercise; P training. However, MSNA was significantly less during the third minute of exercise after training (32 +/- 2 to 22 +/- 3 bursts/min; P training effect on MSNA remained when MSNA was expressed as bursts per 100 heartbeats. Responses to exercise in five untrained control subjects were not different at 0 and 6 wk. These results demonstrate that exercise training prolongs the decrease in MSNA during upright leg exercise and indicates that attenuation of MSNA to exercise reported with forearm training also occurs with leg training.

  1. Central Nervous System Tuberculosis

    OpenAIRE

    Bano, Shahina; Chaudhary, Vikas; Yadav, Sachchidanand

    2012-01-01

    Central nervous system tuberculosis is a rare presentation of active tuberculosis and accounts for about 1% of cases (1). The three clinical categories include meningitis, intracranial tuberculomas, and spinal tuberculous arachnoiditis. We report a case of a young man who presented with active pulmonary tuberculosis in addition to tuberculous meningitis and the presence of numerous intracranial tuberculomas.

  2. The Nervous System Game

    Science.gov (United States)

    Corbitt, Cynthia; Carpenter, Molly

    2006-01-01

    For many children, especially those with reading difficulties, a motor-kinesthetic learning activity may be an effective tool to teach complex concepts. With this in mind, the authors developed and tested a game designed to teach fourth- to sixth-grade children some basic principles of nervous system function by allowing the children themselves to…

  3. Central nervous system tuberculosis.

    Science.gov (United States)

    Torres, Carlos; Riascos, Roy; Figueroa, Ramon; Gupta, Rakesh K

    2014-06-01

    Tuberculosis (TB) has shown a resurgence in nonendemic populations in recent years and accounts for 8 million deaths annually in the world. Central nervous system involvement is one of the most serious forms of this infection, acting as a prominent cause of morbidity and mortality in developing countries. The rising number of cases in developed countries is mostly attributed to factors such as the pandemic of acquired immunodeficiency syndrome and increased migration in a globalized world. Mycobacterium TB is responsible for almost all cases of tubercular infection in the central nervous system. It can manifest in a variety of forms as tuberculous meningitis, tuberculoma, and tubercular abscess. Spinal infection may result in spondylitis, arachnoiditis, and/or focal intramedullary tuberculomas. Timely diagnosis of central nervous system TB is paramount for the early institution of appropriate therapy, because delayed treatment is associated with severe morbidity and mortality. It is therefore important that physicians and radiologists understand the characteristic patterns, distribution, and imaging manifestations of TB in the central nervous system. Magnetic resonance imaging is considered the imaging modality of choice for the study of patients with suspected TB. Advanced imaging techniques including magnetic resonance perfusion and diffusion tensor imaging may be of value in the objective assessment of therapy and to guide the physician in the modulation of therapy in these patients.

  4. Quantitative thermal sensory testing and sympathetic skin response in primary Restless legs syndrome – A prospective study on 57 Indian patients

    OpenAIRE

    Garima Shukla; Vinay Goyal; Achal Srivastava; Madhuri Behari

    2012-01-01

    Patients with restless leg syndrome present with sensory symptoms similar to peripheral neuropathy. While there is evidence of abnormalities of dopaminergic pathways, the peripheral nervous system has been studied infrequently. We studied conventional nerve conduction studies, quantitative thermal sensory testing and sympathetic skin response in 57 patients with primary restless leg syndrome. Almost two third patients demonstrated abnormalities in the detailed testing of the peripheral nervou...

  5. Renal sympathetic denervation: MDCT evaluation of the renal arteries.

    LENUS (Irish Health Repository)

    Hutchinson, Barry D

    2013-08-01

    Percutaneous transluminal renal sympathetic denervation is a new treatment of refractory systemic hypertension. The purpose of this study was to assess the clinical utility of MDCT to evaluate the anatomic configuration of the renal arteries in the context of renal sympathetic denervation.

  6. Reflex sympathetic dystrophy: Early treatment and psychological aspects

    NARCIS (Netherlands)

    Geertzen, J.H.B.; De Bruijn, H.; De Bruijn-Kofman, A.T.; Arendzen, J.H.

    1994-01-01

    We report the results of two prospective studies of early treatment and psychological aspects in a series of 26 patients with sympathetic reflex dystrophy of the hand in which treatment was started within 3 months after diagnosis. Ismelin blocks is an often used therapy in sympathetic reflex dystrop

  7. Sympathetic hyperactivity - A hidden enemy in chronic kidney disease patients

    NARCIS (Netherlands)

    Blankestijn, Peter J.

    2007-01-01

    Chronic kidney disease is often characterized by the presence of sympathetic hyperactivity. The aim of this brief review is to summarize available knowledge on the pathogenesis of sympathetic hyperactivity and to discuss its clinical relevance, the consequences of this knowledge for the choice of tr

  8. Lower limb pain in sympathetic-sensory coupling

    Institute of Scientific and Technical Information of China (English)

    Hongjun Yang; Kairun Peng; Sanjue Hu; Li Xuan

    2011-01-01

    Previous studies have shown that sympathetic nerves are related to certain types of pain, and this phenomenon is referred to as sympathetic-sensory coupling. Chronic pain resulting from nerve injury can be exacerbated by sympathetic stimulation or relieved by sympathetic inhibition. In the present study, the correlation between pain and sympathetic nerves was analyzed in patients with severe pain in lower limbs, as well as in a chronically compressed dorsal root ganglion (CCD) rat model (model of low back pain and sciatica). Patients with severe pain in the lower limbs underwent chemical lumbar sympathectomy (CLS), and the analgesic effects of CLS were compared with painkillers. Results demonstrated significantly relieved lower limb pain following CLS, and the analgesic effects of CLS were superior to those seen with painkillers. In the CCD rat model, dorsal root ganglion neuronal activity significantly increased as a result of electrical stimulation to the sympathetic nerves. These results suggest that sympathetic nerves are closely associated with pain and sympathetic-sensory coupling is likely in lower limb pain in both patients and rat models of CCD.

  9. Sympathetic nerve damage and restoration after ischemia-reperfusion injury as assessed by {sup 11}C-hydroxyephedrine

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Rudolf A.; Higuchi, Takahiro [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); University of Wuerzburg, Comprehensive Heart Failure Center, Wuerzburg (Germany); Maya, Yoshifumi [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Nihon Medi-Physics Co., Ltd., Research Centre, Chiba (Japan); Rischpler, Christoph [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Muenchen (Germany); Javadi, Mehrbod S. [Johns Hopkins University, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, Baltimore, MD (United States); Fukushima, Kazuhito [Hyogo College of Medicine, Department of Radiology, Hyogo (Japan); Lapa, Constantin [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Herrmann, Ken [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); David Geffen School of Medicine at UCLA, Department of Molecular and Medical Pharmacology, Los Angeles, CA (United States)

    2016-02-15

    An altered state of the cardiac sympathetic nerves is an important prognostic factor in patients with coronary artery disease. The aim of this study was to investigate regional sympathetic nerve damage and restoration utilizing a rat model of myocardial transient ischemia and a catecholamine analog PET tracer, {sup 11}C-hydroxyephedrine ({sup 11}C-HED). Transient myocardial ischemia was induced by coronary occlusion for 20 min and reperfusion in male Wistar rats. Dual-tracer autoradiography was performed subacutely (7 days) and chronically (2 months) after ischemia, and in control rats without ischemia using {sup 11}C-HED as a marker of sympathetic innervation and {sup 201}TI for perfusion. Additional serial in vivo cardiac {sup 11}C-HED and {sup 18}F-FDG PET scans were performed in the subacute and chronic phases after ischemia. After transient ischemia, the {sup 11}C-HED uptake defect areas in both the subacute and chronic phases were clearly larger than the perfusion defect areas in the midventricular wall. The subacute {sup 11}C-HED uptake defect showed a transmural pattern, whereas uptake recovered in the subepicardial portion in the chronic phase. Tyrosine hydroxylase antibody nerve staining confirmed regional denervation corresponding to areas of decreased {sup 11}C-HED uptake. Serial in vivo PET imaging visualized reductions in the area of the {sup 11}C-HED uptake defects in the chronic phase consistent with autoradiography and histology. Higher susceptibility of sympathetic neurons compared to myocytes was confirmed by a larger {sup 11}C-HED defect with a corresponding histologically identified region of denervation. Furthermore, partial reinnervation was observed in the chronic phase as shown by recovery of subepicardial {sup 11}C-HED uptake. (orig.)

  10. A study of relationship between function of cardiac autonomic nervous system and 24-hour ambulatory blood pressure in diabetes mellitus%糖尿病患者心自主神经系统功能与24 小时动态血压变化关系的探讨

    Institute of Scientific and Technical Information of China (English)

    李荣; 严钟德; 刘东方

    2000-01-01

    目的 探讨偶测血压正常的糖尿病(DM)患者心自主神经系统功能(ANSF)状况与24小时动态血压(24小时AMBP)的变化关系。方法对71例偶测血压正常的DM患者进行心率功率谱分析及24小时AMBP检测。结果无心自主神经病变(AN)的DM患者与健康人有类似的24小时AMBP;伴轻度AN的DM患者,其24小时动态收缩压及压力负荷发生率明显高于正常对照组,而昼夜改变百分率明显低于正常对照组;伴重度AN的DM患者,其24小时动态收缩压及24小时AMBP负荷发生率高于伴轻度AN的DM患者,昼夜改变百分率低于伴轻度AN的DM患者,但两者间无显著性差异。结论偶测血压正常的DM患者一旦发生心AN,则会对血压造成明显不利的影响;DM患者异常的ANSF和血压参与了急性心血管病变的发生、发展;随访DM患者心ANSF状况及对偶测血压正常、伴AN的DM患者进行早期干预治疗尤为重要。%Objective To study the relationship between function of cardiac autonomic nervous system and 24-hourambulatory blood pressure in diabetes mellitus with normal blood pressure in the casual assay.Methods71 DMpatients with normal blood pressure in casual assay were measured with cardiac power spectral analysis and 24hAMBPassessment.Results There was no difference in 24hAMBP between DM patients without AND and normal subjects.24-hour ambulatory systolic pressure values and the prevalence of blood pressure burden in DM patients with mild AND were significantly higher than that in the control group and the percentage of day-night change in AMBP weresignificantly lower than that in the control group.In DM patients with severe AND, 24-hour ambulatory systolicpressure values and the prevalence of 24hAMBP burden were higher and the percentage of day-night change was lowerthan that in DM patients with mild AND, however, there was no significant difference between them.Conclusion Blood pressure was in severe disorder as

  11. Psychoneuroimmunology--cross-talk between the immune and nervous systems.

    Science.gov (United States)

    Ziemssen, Tjalf; Kern, Simone

    2007-05-01

    Psychoneuroimmunology is a relatively new field of study that investigates interactions between behaviour and the immune system, mediated by the endocrine and nervous systems. The immune and central nervous system (CNS) maintain extensive communication. On the one hand, the brain modulates the immune system by hardwiring sympathetic and parasympathetic nerves (autonomic nervous system) to lymphoid organs. On the other hand, neuroendocrine hormones such as corticotrophin-releasing hormone or substance P regulate cytokine balance. Vice versa, the immune system modulates brain activity including sleep and body temperature. Based on a close functional and anatomical link, the immune and nervous systems act in a highly reciprocal manner. From fever to stress, the influence of one system on the other has evolved in an intricate manner to help sense danger and to mount an appropriate adaptive response. Over recent decades, reasonable evidence has emerged that these brain-to-immune interactions are highly modulated by psychological factors which influence immunity and immune system-mediated disease.

  12. A Case Report of Renal Sympathetic Denervation for the Treatment of Polymorphic Ventricular Premature Complexes

    Science.gov (United States)

    Kiuchi, Márcio Galindo; Vitorio, Frederico Puppim; da Silva, Gustavo Ramalho; Paz, Luis Marcelo Rodrigues; Souto, Gladyston Luiz Lima

    2015-01-01

    Abstract Premature ventricular complexes are very common, appearing most frequently in patients with hypertension, obesity, sleep apnea, and structural heart disease. Sympathetic hyperactivity plays a critical role in the development, maintenance, and aggravation of ventricular arrhythmias. Recently, Armaganijan et al reported the relevance of sympathetic activation in patients with ventricular arrhythmias and suggested a potential role for catheter-based renal sympathetic denervation in reducing the arrhythmic burden. In this report, we describe a 32-year-old hypertensive male patient presenting with a high incidence of polymorphic premature ventricular complexes on a 24 hour Holter monitor. Beginning 1 year prior, the patient experienced episodes of presyncope, syncope, and tachycardia palpitations. The patient was taking losartan 100 mg/day, which kept his blood pressure (BP) under control, and sotalol 160 mg twice daily. Bisoprolol 10 mg/day was used previously but was not successful for controlling the episodes. The 24 hour Holter performed after the onset of sotalol 160 mg twice daily showed a heart rate ranging between 48 (minimum)–78 (average)–119 (maximum) bpm; 14,286 polymorphic premature ventricular complexes; 3 episodes of nonsustained ventricular tachycardia, the largest composed of 4 beats at a rate of 197 bpm; and 14 isolated atrial ectopic beats. Cardiac magnetic resonance imaging with gadolinium perfusion performed at rest and under pharmacological stress with dipyridamole showed increased left atrial internal volume, preserved systolic global biventricular function, and an absence of infarcted or ischemic areas. The patient underwent bilateral renal sympathetic denervation. The only drug used postprocedure was losartan 25 mg/day. Three months after the patient underwent renal sympathetic denervation, the mean BP value dropped to 132/86 mmHg, the mean systolic/diastolic 24 hour ambulatory BP measurement was reduced to 128/83

  13. Dynamic Radiographic Analysis of Sympathetic Cervical Spondylosis Instability

    Institute of Scientific and Technical Information of China (English)

    Jun Qian; Ye Tian; Gui-xing Qiu; Jian-hua Hu

    2009-01-01

    Objective To investigate the correlation between subaxial cervical spine instability and cervical spondylotic sympathetic symptoms as well as the difference of cervical spondylotic subaxial instability between male and female patients. Methods We analyzed retrospectively 318 surgical cases of cervical spondylosis treated at Department of Orthopedic Surgery of Peking Union Medical College Hospital between July 2003 and December 2007. All cases were divided into group A without sympathetic symptoms (n=284) and group B with sympathetic symptoms (n=34). Angular and horizontal translation values between two adjacent vertebral bodies from C2 to C7 were measured separately on hyperflexion and hyperextension lateral cervical spine radiographs. Fisher's exact test was used to evaluate the correlation between subaxial cervical instability and sympathetic symptoms. Intragroup correlation between patient gender and subaxial cervical instability was also evaluated. Results Subaxial instability incidences in groups A and B were 21.8% (62/284) and 55.9% (19/34), respectively. Statistical analysis indicated a definite correlation between subaxial cervical instability and sympathetic symptoms (P=0.000). Among patients without sympathetic symptoms, subaxial instability incidences were 21.4% (37/173) in males and 22.5% (25/111) in females, respectively (P=0.883). While among patients with sympathetic symptoms, subaxial instability incidences were 27.3% (3/11) in males and 69.6% (16/23) in females, respectively, indicating significant difference (P=0.030). Subaxial instability was most commonly seen at C4-C5 intervertebral space in sympathetic cervical spondylosis patients. Conclusions High correlation exists between subaxial cervical spine instability and cervical spondylotic sympathetic symptoms, especially in female patients. Hyperextension and hyperflexion radiographs of cervical spine are important to assess sympathetic cervical spondylotic subaxial instability.

  14. Effects of β-adrenoceptor subtypes on cardiac function in myocardial infarction rats exposed to fine particulate matter (PM 2.5).

    Science.gov (United States)

    Gao, Yuping; Lv, Jiyuan; Lin, Yuanyuan; Li, Xuewen; Wang, Lixia; Yin, Yanping; Liu, Yan

    2014-01-01

    The pathophysiological mechanisms of heart failure (HF) stems were mainly from longstanding overactivation of the sympathetic nervous system and renin-angiotensin-aldosterone system. Recent studies highlighted the potential benefits of β1-adrenoceptor (β1-AR) blocker combined with β2-adrenergic receptor (β2-AR) agonist in patients with HF. Long-term exposure to fine particulate air pollution, such as particulate matter ≤ 2.5 μm in diameter (PM2.5), has been found associated with acute myocardial infarction (AMI) which is the most common cause of congestive HF. In this study, we have investigated the effect of combined metoprolol and terbutaline on cardiac function in a rat model of AMI exposed to PM2.5. Our results demonstrated that short-term exposure to PM2.5 contributes to aggravate cardiac function in rats with myocardial infarction. The combined use of β1-AR blocker and β2-AR agonist is superior to β1-AR blocker alone for the treatment of AMI rats exposed to PM2.5. The combination of β1-AR blocker and β2-AR agonist may decrease the mortality of patients with myocardial infarction who have been exposed to PM2.5.

  15. Effects of β-Adrenoceptor Subtypes on Cardiac Function in Myocardial Infarction Rats Exposed to Fine Particulate Matter (PM2.5

    Directory of Open Access Journals (Sweden)

    Yuping Gao

    2014-01-01

    Full Text Available The pathophysiological mechanisms of heart failure (HF stems were mainly from longstanding overactivation of the sympathetic nervous system and renin-angiotensin-aldosterone system. Recent studies highlighted the potential benefits of β1-adrenoceptor (β1-AR blocker combined with β2-adrenergic receptor (β2-AR agonist in patients with HF. Long-term exposure to fine particulate air pollution, such as particulate matter ≤ 2.5 μm in diameter (PM2.5, has been found associated with acute myocardial infarction (AMI which is the most common cause of congestive HF. In this study, we have investigated the effect of combined metoprolol and terbutaline on cardiac function in a rat model of AMI exposed to PM2.5. Our results demonstrated that short-term exposure to PM2.5 contributes to aggravate cardiac function in rats with myocardial infarction. The combined use of β1-AR blocker and β2-AR agonist is superior to β1-AR blocker alone for the treatment of AMI rats exposed to PM2.5. The combination of β1-AR blocker and β2-AR agonist may decrease the mortality of patients with myocardial infarction who have been exposed to PM2.5.

  16. Exogenous angiotensin II does not facilitate norepinephrine release in the heart

    NARCIS (Netherlands)

    Th.W. Lameris (Thomas); P.A. de Zeeuw (Sandra); D.J.G.M. Duncker (Dirk); G. Alberts; F. Boomsma (Frans); P.D. Verdouw (Pieter); A.H. van den Meiracker (Anton)

    2002-01-01

    textabstractStudies on the effect of angiotensin II on norepinephrine release from sympathetic nerve terminals through stimulation of presynaptic angiotensin II type 1 receptors are equivocal. Furthermore, evidence that angiotensin II activates the cardiac sympathetic nervous syste

  17. Atrophy and neuron loss: effects of a protein-deficient diet on sympathetic neurons.

    Science.gov (United States)

    Gomes, Silvio Pires; Nyengaard, Jens Randel; Misawa, Rúbia; Girotti, Priscila Azevedo; Castelucci, Patrìcia; Blazquez, Francisco Hernandez Javier; de Melo, Mariana Pereira; Ribeiro, Antonio Augusto Coppi

    2009-12-01

    Protein deficiency is one of the biggest public health problems in the world, accounting for about 30-40% of hospital admissions in developing countries. Nutritional deficiencies lead to alterations in the peripheral nervous system and in the digestive system. Most studies have focused on the effects of protein-deficient diets on the enteric neurons, but not on sympathetic ganglia, which supply extrinsic sympathetic input to the digestive system. Hence, in this study, we investigated whether a protein-restricted diet would affect the quantitative structure of rat coeliac ganglion neurons. Five male Wistar rats (undernourished group) were given a pre- and postnatal hypoproteinic diet receiving 5% casein, whereas the nourished group (n = 5) was fed with 20% casein (normoproteinic diet). Blood tests were carried out on the animals, e.g., glucose, leptin, and triglyceride plasma concentrations. The main structural findings in this study were that a protein-deficient diet (5% casein) caused coeliac ganglion (78%) and coeliac ganglion neurons (24%) to atrophy and led to neuron loss (63%). Therefore, the fall in the total number of coeliac ganglion neurons in protein-restricted rats contrasts strongly with no neuron losses previously described for the enteric neurons of animals subjected to similar protein-restriction diets. Discrepancies between our figures and the data for enteric neurons (using very similar protein-restriction protocols) may be attributable to the counting method used. In light of this, further systematic investigations comparing 2-D and 3-D quantitative methods are warranted to provide even more advanced data on the effects that a protein-deficient diet may exert on sympathetic neurons. (c) 2009 Wiley-Liss, Inc.

  18. Muscle afferent receptors engaged in augmented sympathetic responsiveness in peripheral artery disease

    Directory of Open Access Journals (Sweden)

    Jianhua eLi

    2012-07-01

    Full Text Available The exercise pressor reflex (EPR is a neural control mechanism responsible for the cardiovascular responses to exercise. As exercise is initiated, thin fiber muscle afferent nerves are activated by mechanical and metabolic stimuli arising in the contracting muscles. This leads to reflex increases in arterial blood pressure and heart rate primarily through activation of sympathetic nerve activity (SNA. Studies of humans and animals have indicated that the EPR is exaggerated in a number of cardiovascular diseases. For the last several years, studies have specifically employed a rodent model to examine the mechanisms at receptor and cellular levels by which responses of SNA and blood pressure to static exercise are heightened in peripheral artery disease (PAD, one of the most common cardiovascular disorders. A rat model of this disease has well been established. Specifically, femoral artery occlusion is used to study intermittent claudication that is observed in human PAD. The receptors on thin fiber muscle afferents that are engaged in this disease include transient receptor potential vanilloid type 1 (TRPV1, purinergic P2X and acid sensing ion channel (ASIC. The role played by nerve growth factor (NGF in regulating those sensory receptors in the processing of amplified EPR was also investigated. The purpose of this review is to focus on a theme namely that PAD accentuates autonomic reflex responses to exercise and further address regulatory mechanisms leading to abnormal sympathetic responsiveness. This review will present some of recent results in regard with several receptors in muscle sensory neurons in contribution to augmented autonomic reflex responses in PAD. Review of the findings from recent studies would lead to a better understanding in integrated processing of sympathetic nervous system in PAD.

  19. Sympathetic cooling of nanospheres with cold atoms

    Science.gov (United States)

    Montoya, Cris; Witherspoon, Apryl; Ranjit, Gambhir; Casey, Kirsten; Kitching, John; Geraci, Andrew

    2016-05-01

    Ground state cooling of mesoscopic mechanical structures could enable new hybrid quantum systems where mechanical oscillators act as transducers. Such systems could provide coupling between photons, spins and charges via phonons. It has recently been shown theoretically that optically trapped dielectric nanospheres could reach the ground state via sympathetic cooling with trapped cold atoms. This technique can be beneficial in cases where cryogenic operation of the oscillator is not practical. We describe experimental advances towards coupling an optically levitated dielectric nanosphere to a gas of cold Rubidium atoms. The sphere and the cold atoms are in separate vacuum chambers and are coupled using a one-dimensional optical lattice. This work is partially supported by NSF, Grant Nos. PHY-1205994,PHY-1506431.

  20. Alterations in electrodermal activity and cardiac parasympathetic tone during hypnosis.

    Science.gov (United States)

    Kekecs, Zoltán; Szekely, Anna; Varga, Katalin

    2016-02-01

    Exploring autonomic nervous system (ANS) changes during hypnosis is critical for understanding the nature and extent of the hypnotic phenomenon and for identifying the mechanisms underlying the effects of hypnosis in different medical conditions. To assess ANS changes during hypnosis, electrodermal activity and pulse rate variability (PRV) were measured in 121 young adults. Participants either received hypnotic induction (hypnosis condition) or listened to music (control condition), and both groups were exposed to test suggestions. Blocks of silence and experimental sound stimuli were presented at baseline, after induction, and after de-induction. Skin conductance level (SCL) and high frequency (HF) power of PRV measured at each phase were compared between groups. Hypnosis decreased SCL compared to the control condition; however, there were no group differences in HF power. Furthermore, hypnotic suggestibility did not moderate ANS changes in the hypnosis group. These findings indicate that hypnosis reduces tonic sympathetic nervous system activity, which might explain why hypnosis is effective in the treatment of disorders with strong sympathetic nervous system involvement, such as rheumatoid arthritis, hot flashes, hypertension, and chronic pain. Further studies with different control conditions are required to examine the specificity of the sympathetic effects of hypnosis.

  1. Do sympathetic nerves release noradrenaline in "quanta"?

    Science.gov (United States)

    Stjärne, L

    2000-07-01

    The discovery of excitatory junction potentials (EJPs) in guinea-pig vas deferens by Burnstock and Holman (1960) showed for the first time that a sympathetic transmitter, now known to be ATP, is secreted in "quanta". As it was assumed at the time that EJPS are triggered by noradrenaline, this discovery led to attempts to use the fractional overflow of noradrenaline from sympathetically innervated tissues to assess, indirectly, the number of noradrenaline molecules in the average "quantum". The basic finding was that each pulse released 1/50000 of the tissue content of noradrenaline, when reuptake was blocked and prejunctional alpha(2)-adrenoceptors were intact. This provided the constraints, two extreme alternatives: (i) each pulse releases 0.2-3% of the content of a vesicle from all varicosities, or (ii) each pulse releases the whole content of a vesicle from 0.2 to 3% of the varicosities. New techniques have made it possible to address questions about the release probability in individual sites, or the "quantal" size, more directly. Results by optical (comparison of the labelling of SV2 and synaptotagmin, proteins in the membrane of transmitter vesicles), electrophysiological (excitatory junction currents, EJCs, at single visualized varicosities) and amperometric (the noradrenaline oxidation current at a carbon fibre electrode) methods reveal that transmitter exocytosis in varicosities is intermittent. The EJC and noradrenaline oxidation current responses (in rat arteries) to a train of single pulses were observed to be similar in intermittency and amplitude fluctuation. This suggests that they are caused by exocytosis of single or very few "quanta" of ATP and noradrenaline, respectively, equal to the contents of single vesicles, from a small population of release sites. These findings support, but do not conclusively prove the validity of the "intermittent" model of noradrenaline release. The question if noradrenaline is always secreted in packets of preset size

  2. CHAIN RECONNECTIONS OBSERVED IN SYMPATHETIC ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Navin Chandra; Magara, Tetsuya [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do, 446-701 (Korea, Republic of); Schmieder, Brigitte; Aulanier, Guillaume [LESIA, Observatoire de Paris, PSL Research University, CNRS Sarbonne Universités, Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Jansson, F-92195 Meudon (France); Guo, Yang, E-mail: navin@khu.ac.kr, E-mail: njoshi98@gmail.com [School of Astronomy and Space Science, Nanjing University, 210023 Nanjing (China)

    2016-04-01

    The nature of various plausible causal links between sympathetic events is still a controversial issue. In this work, we present multiwavelength observations of sympathetic eruptions, associated flares, and coronal mass ejections (CMEs) occurring on 2013 November 17 in two close active regions. Two filaments, i.e., F1 and F2, are observed in between the active regions. Successive magnetic reconnections, caused for different reasons (flux cancellation, shear, and expansion) have been identified during the whole event. The first reconnection occurred during the first eruption via flux cancellation between the sheared arcades overlying filament F2, creating a flux rope and leading to the first double-ribbon solar flare. During this phase, we observed the eruption of overlying arcades and coronal loops, which leads to the first CME. The second reconnection is believed to occur between the expanding flux rope of F2 and the overlying arcades of filament F1. We suggest that this reconnection destabilized the equilibrium of filament F1, which further facilitated its eruption. The third stage of reconnection occurred in the wake of the erupting filament F1 between the legs of the overlying arcades. This may create a flux rope and the second double-ribbon flare and a second CME. The fourth reconnection was between the expanding arcades of the erupting filament F1 and the nearby ambient field, which produced the bi-directional plasma flows both upward and downward. Observations and a nonlinear force-free field extrapolation confirm the possibility of reconnection and the causal link between the magnetic systems.

  3. Your Brain and Nervous System

    Science.gov (United States)

    ... dientes Video: Getting an X-ray Your Brain & Nervous System KidsHealth > For Kids > Your Brain & Nervous System Print A A A What's in this article? ... the spinal cord and nerves — known as the nervous system — that let messages flow back and forth between ...

  4. Cardiac cameras.

    Science.gov (United States)

    Travin, Mark I

    2011-05-01

    Cardiac imaging with radiotracers plays an important role in patient evaluation, and the development of suitable imaging instruments has been crucial. While initially performed with the rectilinear scanner that slowly transmitted, in a row-by-row fashion, cardiac count distributions onto various printing media, the Anger scintillation camera allowed electronic determination of tracer energies and of the distribution of radioactive counts in 2D space. Increased sophistication of cardiac cameras and development of powerful computers to analyze, display, and quantify data has been essential to making radionuclide cardiac imaging a key component of the cardiac work-up. Newer processing algorithms and solid state cameras, fundamentally different from the Anger camera, show promise to provide higher counting efficiency and resolution, leading to better image quality, more patient comfort and potentially lower radiation exposure. While the focus has been on myocardial perfusion imaging with single-photon emission computed tomography, increased use of positron emission tomography is broadening the field to include molecular imaging of the myocardium and of the coronary vasculature. Further advances may require integrating cardiac nuclear cameras with other imaging devices, ie, hybrid imaging cameras. The goal is to image the heart and its physiological processes as accurately as possible, to prevent and cure disease processes.

  5. Inclusion of Height and Limb Length when Interpreting Sympathetic Skin Response

    Directory of Open Access Journals (Sweden)

    Mohamadreza Emad

    2016-01-01

    Full Text Available It is more than a decade since scientists are making use of sympathetic skin response (SSR as a clinical and research method to evaluate sympathetic nervous system. A major portion of the efferent pathway of this response is composed of non-myelinated nerves. Thus, the latency of the response may be significantly different in normal individuals with different height and limb lengths. This study was designed to investigate the effect of these parameters on the SSR results. We measured the height and limb length of 65 normal individuals with different heights (divided into 3 groups of height ≤150 cm, 150-170 cm, and ≥170 cm. The participants had neither peripheral nor central neuropathy. They also had none of the exclusion criteria. Then, they underwent SSR testing of both palms and soles. The correlation between the height and limb length in relation to SSR parameters (latency and amplitude was analyzed statistically by Pearson’s correlation. No significant correlation was detected between the height and limb length and the SSR amplitude. However, the results showed significant correlation between SSR latency recorded from all four sites (both palms and soles and the height of participants. Furthermore, there was a significant correlation between SSR latency recorded from any limb and the length of that limb. Regarding the significant effect of the height and limb length on the SSR latency, both the height and limb length should be considered when interpreting the results of SSR.

  6. Sympathetic Neurotransmitters Modulate Osteoclastogenesis and Osteoclast Activity in the Context of Collagen-Induced Arthritis.

    Directory of Open Access Journals (Sweden)

    Dominique Muschter

    Full Text Available Excessive synovial osteoclastogenesis is a hallmark of rheumatoid arthritis (RA. Concomitantly, local synovial changes comprise neuronal components of the peripheral sympathetic nervous system. Here, we wanted to analyze if collagen-induced arthritis (CIA alters bone marrow-derived macrophage (BMM osteoclastogenesis and osteoclast activity, and how sympathetic neurotransmitters participate in this process. Therefore, BMMs from Dark Agouti rats at different CIA stages were differentiated into osteoclasts in vitro and osteoclast number, cathepsin K activity, matrix resorption and apoptosis were analyzed in the presence of acetylcholine (ACh, noradrenaline (NA vasoactive intestinal peptide (VIP and assay-dependent, adenylyl cyclase activator NKH477. We observed modulation of neurotransmitter receptor mRNA expression in CIA osteoclasts without affecting protein level. CIA stage-dependently altered marker gene expression associated with osteoclast differentiation and activity without affecting osteoclast number or activity. Neurotransmitter stimulation modulated osteoclast differentiation, apoptosis and activity. VIP, NA and adenylyl cyclase activator NKH477 inhibited cathepsin K activity and osteoclastogenesis (NKH477, 10(-6 M NA whereas ACh mostly acted pro-osteoclastogenic. We conclude that CIA alone does not affect metabolism of in vitro generated osteoclasts whereas stimulation with NA, VIP plus specific activation of adenylyl cyclase induced anti-resorptive effects probably mediated via cAMP signaling. Contrary, we suggest pro-osteoclastogenic and pro-resorptive properties of ACh mediated via muscarinic receptors.

  7. Sympathetic dysfunction in vasovagal syncope and the postural orthostatic tachycardia syndrome.

    Science.gov (United States)

    Lambert, Elisabeth; Lambert, Gavin W

    2014-01-01

    Orthostatic intolerance is the inability to tolerate the upright posture and is relieved by recumbence. It most commonly affects young women and has a major impact on quality of life and psychosocial well-being. Several forms of orthostatic intolerance have been described. The most common one is the recurrent vasovagal syncope (VVS) phenotype which presents as a transient and abrupt loss of consciousness and postural tone that is followed by rapid recovery. Another common type of orthostatic intolerance is the postural orthostatic tachycardia syndrome (POTS) which is characterized by an excessive rise in heart rate upon standing and is associated with symptoms of presyncope such as light-headedness, fatigue, palpitations, and nausea. Maintenance of arterial pressure under condition of reduced central blood volume during the orthostasis is accomplished in large part through sympathetic efferent nerve traffic to the peripheral vasculature. Therefore sympathetic nervous system (SNS) dysfunction is high on the list of possible contributors to the pathophysiology of orthostatic intolerance. Investigations into the role of the SNS in orthostatic intolerance have yielded mixed results. This review outlines the current knowledge of the function of the SNS in both VVS and POTS.

  8. Sympathetic dysfunction in vasovagal syncope and the postural orthostatic tachycardia syndrome

    Directory of Open Access Journals (Sweden)

    Elisabeth eLambert

    2014-07-01

    Full Text Available Orthostatic intolerance is the inability to tolerate the upright posture and is relieved by recumbence. It most commonly affects young women and has a major impact on quality of life and psychosocial well being. Several forms of orthostatic intolerance have been described. The most common one is the recurrent vasovagal syncope (VVS phenotype which presents as a transient and abrupt loss of consciousness and postural tone that is followed by rapid recovery. Another common type of orthostatic intolerance is the postural orthostatic tachycardia syndrome (POTS which is characterized by an excessive rise in heart rate upon standing and is associated with symptoms of presyncope such as light-headedness, fatigue, palpitations and nausea. Maintenance of arterial pressure under condition of reduced central blood volume during the orthostasis is accomplished in large part through sympathetic efferent nerve traffic to the peripheral vasculature. Therefore sympathetic nervous system (SNS dysfunction is high on the list of possible contributors to the pathophysiology of orthostatic intolerance. Investigations into the role of the SNS in orthostatic intolerance have yielded mixed results. This review outlines the current knowledge of the function of the SNS in both VVS and POTS.

  9. Relationship between Sympathetic Skin Responses and Auditory Hypersensitivity to Different Auditory Stimuli.

    Science.gov (United States)

    Kato, Fumi; Iwanaga, Ryoichiro; Chono, Mami; Fujihara, Saori; Tokunaga, Akiko; Murata, Jun; Tanaka, Koji; Nakane, Hideyuki; Tanaka, Goro

    2014-07-01

    [Purpose] Auditory hypersensitivity has been widely reported in patients with autism spectrum disorders. However, the neurological background of auditory hypersensitivity is currently not clear. The present study examined the relationship between sympathetic nervous system responses and auditory hypersensitivity induced by different types of auditory stimuli. [Methods] We exposed 20 healthy young adults to six different types of auditory stimuli. The amounts of palmar sweating resulting from the auditory stimuli were compared between groups with (hypersensitive) and without (non-hypersensitive) auditory hypersensitivity. [Results] Although no group × type of stimulus × first stimulus interaction was observed for the extent of reaction, significant type of stimulus × first stimulus interaction was noted for the extent of reaction. For an 80 dB-6,000 Hz stimulus, the trends for palmar sweating differed between the groups. For the first stimulus, the variance became larger in the hypersensitive group than in the non-hypersensitive group. [Conclusion] Subjects who regularly felt excessive reactions to auditory stimuli tended to have excessive sympathetic responses to repeated loud noises compared with subjects who did not feel excessive reactions. People with auditory hypersensitivity may be classified into several subtypes depending on their reaction patterns to auditory stimuli.

  10. Arachidonic acid incorporation and turnover is decreased in sympathetically denervated rat heart.

    Science.gov (United States)

    Patrick, Casey B; McHowat, Jane; Rosenberger, Thad A; Rapoport, Stanley I; Murphy, Eric J

    2005-06-01

    Heart sympathetic denervation can accompany Parkinson's disease, but the effect of this denervation on cardiac lipid-mediated signaling is unknown. To address this issue, rats were sympathetically denervated with 6-hydroxydopamine (6-OHDA, 50 mg/kg ip) and infused with 170 muCi/kg of either [1-(14)C]palmitic acid ([1-(14)C]16:0) or [1-(14)C]arachidonic acid ([1-(14)C]20:4 n-6), and kinetic parameters were assessed using a steady-state radiotracer model. Heart norepinephrine and epinephrine levels were decreased 82 and 85%, respectively, in denervated rats, and this correlated with a 34% reduction in weight gain in treated rats. Fatty acid tracer uptake was not significantly different between groups for either tracer, although the dilution coefficient lambda was increased in [1-(14)C]20:4 n-6-infused rats, which indicates that less 20:4 n-6 was recycled in denervated rats. In [1-(14)C]16:0-infused rats, incorporation rate and turnover values of 16:0 in stable lipid compartments were unchanged, which is indicative of preservation of beta-oxidation. In [1-(14)C]20:4 n-6-infused rats, there were dramatic reductions in incorporation rate (60-84%) and turnover value (56-85%) in denervated rats that were dependent upon the lipid compartment. In addition, phospholipase A(2) activity was reduced 40% in treated rats, which is consistent with the reduction observed in 20:4 n-6 turnover. These results demonstrate marked reductions in 20:4 n-6 incorporation rate and turnover in sympathetic denervated rats and thereby suggest an effect on lipid-mediated signal transduction mediated by a reduction in phospholipase A(2) activity.

  11. Role of sympathetic nerves in the establishment of metastatic breast cancer cells in bone

    Directory of Open Access Journals (Sweden)

    Florent Elefteriou

    2016-09-01

    Full Text Available The bone marrow microenvironment is characterized by its multicellular nature, and perhaps less obviously by the high mobility of multiple transient and stationary cell lineages present in this environment. The trafficking of hematopoietic and mesenchymal cells between the bone marrow and blood compartments is regulated by a number of bone marrow-derived factors. It is suspected that transformed metastatic cells “hijack” these processes to engraft into the skeleton and eventually cause the skeletal complications associated with metastatic disease. In this short review, experimental and association data supporting the contribution of a less recognized cell type of the bone marrow – the nerves of the sympathetic nervous system – to early events of the breast cancer bone metastatic process, are summarized.

  12. Mechanism of relation among heart meridian, referred cardiac pain and heart

    Institute of Scientific and Technical Information of China (English)

    RONG; Peijing(荣培晶); ZHU; Bing(朱兵)

    2002-01-01

    It has been demonstrated that an important clinical phenomenon often associated with visceral diseases is the referred pain to somatic structures, especially to the body areaof homo-segmental innervation. It is interesting that the somatic foci of cardiac referred pain wereoften and mainly distributed along the heart meridian (HM), whereas the acupoints of HM havebeen applied to treat cardiac disease since ancient times. The purpose of this study was to inves-tigate the neural relationship between the cardiac referred pain and the heart meridian.Fluorescent triple-labeling was injected into the pericardium, some acupoints of HM and lung me-ridian (LM, for control). The responses of the left cardiac sympathetic nerve and of the EMG in left HM and LM were electrophysiologically studied, when the electrical stimuli were applied to the acupoints of left HM and to the left cardiac sympathetic nerve. More double-labeled neurons in HM-heart, not in LM-heart, were observed in the ipsilateral dorsal root ganglia of the spinal segments C8-T3. Electric stimulation of the acupoints of left HM was able to elicit more responses of left cardiac sympathetic nerve than that of the LM-acupoints. Electric stimulation of the left cardiac sympathetic nerve resulted in stronger activities of EMG-response in the acupoints of left HM than in LM-acupoints. We conclude that double-labeling study has provided direct evidence for the existence of dichotomizing afferent fibers that supply both the pericardium and HM. Electrophysiological results show that HM is more closely related functionally to heart. These findings provide a possible morphological and physiological explanation for the referred cardiac pain and HM-heart interrelation.

  13. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  14. Effect of Autonomic Nervous System on the Transmurai Dispersion of Ventricular Repolarization in Intact Canine

    Institute of Scientific and Technical Information of China (English)

    张存泰; 徐大文; 李泱; 刘念; 王琳; 陆再英

    2004-01-01

    Summary: The effect of the autonomic nerves on the transmural dispersion of ventricular repolarization in intact canine was investigated. By using the monophasic action potential (MAP) recording technique, monophasic action potentials (MAPs) of the epicardium (Epi), midmyocardium (Mid)and endocardium (Endo) were recorded simultaneously by specially designed plunge-needle electrodes at the left ventricular free wall in 12 open-chest dogs. MAPD90 and transmural dispersion of repolarization among three myocardial layers as well as the incidence of the EAD before autonomic nervous stimulation and during autonomic nervous stimulation were compared. The results showed that the MAPD90 of Epi, Mid and Endo before autonomic nervous stimulation were 278±11 ms,316± 16 ms and 270± 12 ms respectively, the MAPD90of Mid was significantly longer than that of Epi or Endo (P<0.01). MAPD90 of Epi, Mid and Endo were shortened by 19±4 ms, 45±6 ms,18± 3 ms respectively during sympathetic stimulation. Compared with that of the control, the transmural dispersion of repolarization during sympathetic stimulation was shortened from 44 ± 4 ms to 15±3 ms (P<0. 01), but early afterdepolarizations were elicited in the Mid of 5 dogs (41 0%)during sympathetic stimulation. Parasympathetic stimulation did not significantly affect the MAPD90 in the three layers. It is concluded that there is the transmural dispersion of ventricular repolarization in intact canine. Sympathetic stimulation can reduce transmural dispersion of repolarization, but it can produce early afterdepolarizations in the Mid. Parasympathetic stimulation does not significantly affect the transmural dispersion of ventricular repolarization.

  15. (123)I-Meta-iodobenzylguanidine Sympathetic Imaging: Standardization and Application to Neurological Diseases.

    Science.gov (United States)

    Nakajima, Kenichi; Yamada, Masahito

    2016-09-01

    (123)I-meta-iodobenzylguanidine (MIBG) has become widely applied in Japan since its introduction to clinical cardiology and neurology practice in the 1990s. Neurological studies found decreased cardiac uptake of (123)I-MIBG in Lewy-body diseases including Parkinson's disease and dementia with Lewy bodies. Thus, cardiac MIBG uptake is now considered a biomarker of Lewy body diseases. Although scintigraphic images of (123)I-MIBG can be visually interpreted, an average count ratio of heart-to-mediastinum (H/M) has commonly served as a semi-quantitative marker of sympathetic activity. Since H/M ratios significantly vary according to acquisition and processing conditions, quality control should be appropriate, and quantitation should be standardized. The threshold H/M ratio for differentiating Lewy-body disease is 2.0-2.1, and was based on standardized H/M ratios to comparable values of medium-energy collimators. Parkinson's disease can be separated from various types of parkinsonian syndromes using cardiac (123)I-MIBG, whereas activity is decreased on images of Lewy-body diseases using both (123)I-ioflupane for the striatum and (123)I-MIBG. Despite being a simple index, the H/M ratio of (123)I-MIBG uptake is reproducible and can serve as an effective tool to support a diagnosis of Lewy-body diseases in neurological practice.

  16. The posterior vermis of the cerebellum selectively inhibits 10-Hz sympathetic nerve discharge in anesthetized cats.

    Science.gov (United States)

    Barman, Susan M; Gebber, Gerard L

    2009-07-01

    We studied the changes in inferior cardiac sympathetic nerve discharge (SND) and mean arterial pressure (MAP) produced by aspiration or chemical inactivation (muscimol microinjection) of lobule IX (uvula) of the posterior vermis of the cerebellum in baroreceptor-denervated and baroreceptor-innervated cats anesthetized with urethane. Autospectral analysis was used to decompose SND into its frequency components. Special attention was paid to the question of whether the experimental procedures affected the rhythmic (10-Hz and cardiac-related) components of SND. Aspiration or chemical inactivation of lobule IX produced an approximately three-fold increase in the 10-Hz rhythmic component of SND (P cats. Total power (0- to 20-Hz band) was unchanged. Despite the absence of a change in total power in SND, there was a statistically significant increase in MAP. In baroreceptor-innervated cats, neither aspiration nor chemical inactivation of the uvula caused a significant change in cardiac-related or total power in SND or MAP. These results are the first to demonstrate a role of cerebellar cortical neurons of the posterior vermis in regulating the frequency composition of naturally occurring SND. Specifically, these neurons selectively inhibit the 10-Hz rhythm-generating network in baroreceptor-denervated, urethane-anesthetized cats. The functional implications of these findings are discussed.

  17. Effect of cortisol on muscle sympathetic nerve activity in Pima Indians and Caucasians.

    Science.gov (United States)

    Vozarova, Barbora; Weyer, Christian; Snitker, Soren; Gautier, Jean-Francois; Cizza, Giovanni; Chrousos, George; Ravussin, Eric; Tataranni, P Antonio

    2003-07-01

    The hypothalamo-pituitary-adrenal axis and sympathetic nervous system (SNS) interact to maintain cardiovascular and metabolic homeostasis, especially during stress. Pima Indians have a low SNS activity, which may contribute to both their increased risk of obesity and reduced risk of hypertension. Although glucocorticoids inhibit SNS activity, Pima Indians are not hypercortisolemic compared with Caucasians. This does not exclude the possibility that the SNS is more responsive to an inhibitory effect of cortisol in the former than in the latter group. We measured fasting plasma ACTH and cortisol and muscle SNS activity [muscle sympathetic nervous system activity (MSNA), microneurography] in 58 males [27 Pimas/31 Caucasians]. Seven Pimas and 12 Caucasians were randomized to a double-blind, placebo-controlled, cross-over study to examine the effect of overnight partial chemical adrenalectomy (metyrapone) followed by cortisol replacement (hydrocortisone) on plasma ACTH, cortisol, and MSNA. There were no ethnic differences in fasting plasma ACTH or cortisol, but MSNA adjusted for percent body fat was lower in Pimas than in Caucasians (P fasting cortisol and basal MSNA. Administration of metyrapone did not lead to significant changes in MSNA. In response to a hydrocortisone infusion, MSNA decreased in Pima Indians (P = 0.03) but not in Caucasians (P = 0.7). Our data indicate that the low SNS activity that predisposes Pima Indians to obesity is not due to a tonic inhibitory effect of cortisol. However, an acute release of cortisol is likely to more effectively contain sympathoexcitation during stress in Pima Indians than in Caucasians, which may be an important mechanism of cardioprotection in this Native American population.

  18. Molecular mechanisms underlying β-adrenergic receptor-mediated cross-talk between sympathetic neurons and immune cells.

    Science.gov (United States)

    Lorton, Dianne; Bellinger, Denise L

    2015-03-11

    Cross-talk between the sympathetic nervous system (SNS) and immune system is vital for health and well-being. Infection, tissue injury and inflammation raise firing rates of sympathetic nerves, increasing their release of norepinephrine (NE) in lymphoid organs and tissues. NE stimulation of β2-adrenergic receptors (ARs) in immune cells activates the cAMP-protein kinase A (PKA) intracellular signaling pathway, a pathway that interfaces with other signaling pathways that regulate proliferation, differentiation, maturation and effector functions in immune cells. Immune-SNS cross-talk is required to maintain homeostasis under normal conditions, to develop an immune response of appropriate magnitude after injury or immune challenge, and subsequently restore homeostasis. Typically, β2-AR-induced cAMP is immunosuppressive. However, many studies report actions of β2-AR stimulation in immune cells that are inconsistent with typical cAMP-PKA signal transduction. Research during the last decade in non-immune organs, has unveiled novel alternative signaling mechanisms induced by β2-AR activation, such as a signaling switch from cAMP-PKA to mitogen-activated protein kinase (MAPK) pathways. If alternative signaling occurs in immune cells, it may explain inconsistent findings of sympathetic regulation of immune function. Here, we review β2-AR signaling, assess the available evidence for alternative signaling in immune cells, and provide insight into the circumstances necessary for "signal switching" in immune cells.

  19. Effect of Yoga on migraine: A comprehensive study using clinical profile and cardiac autonomic functions

    Directory of Open Access Journals (Sweden)

    Ravikiran Kisan

    2014-01-01

    Conclusions: Intervention showed significant clinical improvement in both groups. Headache frequency and intensity were reduced more in Yoga with conventional care than the conventional care group alone. Furthermore, Yoga therapy enhanced the vagal tone and decreased the sympathetic drive, hence improving the cardiac autonomic balance. Thus, Yoga therapy can be effectively incorporated as an adjuvant therapy in migraine patients.

  20. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions.

    Science.gov (United States)

    Browning, Kirsteen N; Travagli, R Alberto

    2014-10-01

    Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathetic nervous system exerts a predominantly inhibitory effect upon GI muscle and provides a tonic inhibitory influence over mucosal secretion while, at the same time, regulates GI blood flow via neurally mediated vasoconstriction. The parasympathetic nervous system, in contrast, exerts both excitatory and inhibitory control over gastric and intestinal tone and motility. Although GI functions are controlled by the autonomic nervous system and occur, by and large, independently of conscious perception, it is clear that the higher CNS centers influence homeostatic control as well as cognitive and behavioral functions. This review will describe the basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways. The role of CNS-centered reflexes in the regulation of GI functions will be discussed as will modulation of these reflexes under both physiological and pathophysiological conditions. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide these answers.

  1. Overview of the Autonomic Nervous System

    Science.gov (United States)

    ... be reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... organs they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...

  2. Heart-brain interactions in cardiac arrhythmia.

    Science.gov (United States)

    Taggart, P; Critchley, H; Lambiase, P D

    2011-05-01

    This review examines current knowledge of the effects of higher brain centres and autonomic control loops on the heart with particular relevance to arrhythmogenesis. There is now substantial evidence that higher brain function (cortex), the brain stem and autonomic nerves affect cardiac electrophysiology and arrhythmia, and that these may function as an interactive system. The roles of mental stress and emotion in arrhythmogenesis and sudden cardiac death are no longer confined to the realms of anecdote. Advances in molecular cardiology have identified cardiac cellular ion channel mutations conferring vulnerability to arrhythmic death at the myocardial level. Indeed, specific channelopathies such as long QT syndrome and Brugada syndrome are selectively sensitive to either sympathetic or vagal stimulation. There is increasing evidence that afferent feedback from the heart to the higher centres may affect efferent input to the heart and modulate the cardiac electrophysiology. The new era of functional neuroimaging has identified the central neural circuitry in this brain-heart axis. Since precipitants of sudden fatal arrhythmia are frequently environmental and behavioural, central pathways translating stress into autonomic effects on the heart might be considered as therapeutic targets. These brain-heart interactions help explain the apparent randomness of sudden cardiac events and provide new insights into future novel therapies to prevent sudden death.

  3. Sympathetic Innervation Induced in Engrafted Engineered Cardiomyocyte Sheets by Glial Cell Line Derived Neurotrophic Factor In Vivo

    Directory of Open Access Journals (Sweden)

    Xian-ming Fu

    2013-01-01

    Full Text Available The aim of myocardial tissue engineering is to repair or regenerate damaged myocardium with engineered cardiac tissue. However, this strategy has been hampered by lack of functional integ