WorldWideScience

Sample records for cardiac sympathetic nervous

  1. Imaging of the autonomic nervous system: focus on cardiac sympathetic innervation.

    Science.gov (United States)

    Goldstein, David S

    2003-12-01

    Symptoms or signs of abnormal autonomic nervous system function occur commonly in several neurological disorders. Clinical evaluations have depended on physiological, pharmacological, and neurochemical approaches. Recently, imaging of sympathetic noradrenergic innervation has been introduced and applied especially in the heart. Most studies have used the radiolabeled sympathomimetic amine, (123)I-metaiodobenzylguanidine. Decreased uptake or increased "washout" of (123)I-metaiodobenzylguanidine-derived radioactivity is associated with worse prognosis or more severe disease in hypertension, congestive heart failure, arrhythmias, and diabetes mellitus. This pattern may reflect a high rate of postganglionic sympathetic nerve traffic to the heart. Many recent studies have agreed on the remarkable finding that all patients with Parkinson's disease and orthostatic hypotension have a loss of cardiac sympathetic innervation, whereas all patients with multiple system atrophy, often difficult to distinguish clinically from Parkinson's disease, have intact cardiac sympathetic innervation. Because Parkinson's disease entails a postganglionic sympathetic noradrenergic lesion, the disease appears to be not only a movement disorder, with dopamine loss in the nigrostriatal system of the brain, but also a dysautonomia, with noradrenaline loss in the sympathetic nervous system of the heart. As new ligands are developed, one may predict further discoveries of involvement of components of the autonomic nervous system in neurological diseases.

  2. A case of cardiac sudden death related to abnormality of sympathetic nervous disturbance detected by {sup 123}I-metaiodobenzylguanidine (MIBG)

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Masaki; Matsukawa, Seishirou; Morishita, Takeshi [Toho Univ., Tokyo (Japan). School of Medicine

    1996-11-01

    A case of cardiac sudden death was reported. A female, 64 years old patient with multiple myeloma had been treated with total dose of 790 mg of adriamycin. Although treadmill examination, dobutamine-loaded cardiac echography and thallium-loaded myocardial scintigraphy gave normal findings, Holter ECG revealed bigeminy and discontinuous ventricular tachycardia. Mexiletine was not tolerated. {sup 123}I-MIBG image gave deficit of lateral to posterior wall and increased washing rate of 65%. At 36 days after hospitalization, the ventricular tachycardia changed to fatal fibrillation. The sympathetic nervous disturbance detected by the enhanced washing rate of {sup 123}I-MIBG might have participated in the death. (K.H.)

  3. Significance of cardiac sympathetic nervous system abnormality for predicting vascular events in patients with idiopathic paroxysmal atrial fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Akutsu, Yasushi; Kaneko, Kyouichi; Kodama, Yusuke; Li, Hui-Ling; Kawamura, Mitsuharu; Asano, Taku; Hamazaki, Yuji; Tanno, Kaoru; Kobayashi, Youichi [Showa University School of Medicine, Division of Cardiology, Department of Medicine, Tokyo (Japan); Suyama, Jumpei; Shinozuka, Akira; Gokan, Takehiko [Showa University School of Medicine, Department of Radiology, Tokyo (Japan)

    2010-04-15

    Neuronal system activity plays an important role for the prognosis of patients with atrial fibrillation (AF). Using {sup 123}I metaiodobenzylguanidine ({sup 123}I-MIBG) scintigraphy, we investigated whether a cardiac sympathetic nervous system (SNS) abnormality would be associated with an increased risk of vascular events in patients with paroxysmal AF. {sup 123}I-MIBG scintigraphy was performed in 69 consecutive patients (67 {+-} 13 years, 62% men) with paroxysmal AF who did not have structural heart disease. SNS integrity was assessed from the heart to mediastinum (H/M) ratio on delayed imaging. Serum concentration of C-reactive protein (CRP) was measured before {sup 123}I-MIBG study. During a mean of 4.5 {+-} 3.6 years follow-up, 19 patients had myocardial infarction, stroke or heart failure (range: 0.2-11.5 years). SNS abnormality (H/M ratio <2.7) and high CRP ({>=}0.3 mg/dl) were associated with the vascular events (58.3% in 14 of 24 patients with SNS abnormality vs 11.1% in 5 of 45 patients without SNS abnormality, p < 0.0001, 52.4% in 11 of 21 patients with high CRP vs 16.7% in 8 of 48 patients without high CRP, p < 0.0001). After adjustment for potential confounding variables such as age, left atrial dimension and left ventricular function, SNS abnormality was an independent predictor of vascular events with a hazard ratio of 4.1 [95% confidence interval (CI): 1.3-12.6, p = 0.014]. Further, SNS abnormality had an incremental and additive prognostic power in combination with high CRP with an adjusted hazard ratio of 4.1 (95% CI: 1.5-10.9, p = 0.006). SNS abnormality is predictive of vascular events in patients with idiopathic paroxysmal AF. (orig.)

  4. Significance of cardiac sympathetic nervous system abnormality for predicting vascular events in patients with idiopathic paroxysmal atrial fibrillation

    International Nuclear Information System (INIS)

    Neuronal system activity plays an important role for the prognosis of patients with atrial fibrillation (AF). Using 123I metaiodobenzylguanidine (123I-MIBG) scintigraphy, we investigated whether a cardiac sympathetic nervous system (SNS) abnormality would be associated with an increased risk of vascular events in patients with paroxysmal AF. 123I-MIBG scintigraphy was performed in 69 consecutive patients (67 ± 13 years, 62% men) with paroxysmal AF who did not have structural heart disease. SNS integrity was assessed from the heart to mediastinum (H/M) ratio on delayed imaging. Serum concentration of C-reactive protein (CRP) was measured before 123I-MIBG study. During a mean of 4.5 ± 3.6 years follow-up, 19 patients had myocardial infarction, stroke or heart failure (range: 0.2-11.5 years). SNS abnormality (H/M ratio <2.7) and high CRP (≥0.3 mg/dl) were associated with the vascular events (58.3% in 14 of 24 patients with SNS abnormality vs 11.1% in 5 of 45 patients without SNS abnormality, p < 0.0001, 52.4% in 11 of 21 patients with high CRP vs 16.7% in 8 of 48 patients without high CRP, p < 0.0001). After adjustment for potential confounding variables such as age, left atrial dimension and left ventricular function, SNS abnormality was an independent predictor of vascular events with a hazard ratio of 4.1 [95% confidence interval (CI): 1.3-12.6, p = 0.014]. Further, SNS abnormality had an incremental and additive prognostic power in combination with high CRP with an adjusted hazard ratio of 4.1 (95% CI: 1.5-10.9, p = 0.006). SNS abnormality is predictive of vascular events in patients with idiopathic paroxysmal AF. (orig.)

  5. Assessment of cardiac sympathetic nerve integrity with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raffel, David M. E-mail: raffel@umich.edu; Wieland, Donald M

    2001-07-01

    The autonomic nervous system plays a critical role in the regulation of cardiac function. Abnormalities of cardiac innervation have been implicated in the pathophysiology of many heart diseases, including sudden cardiac death and congestive heart failure. In an effort to provide clinicians with the ability to regionally map cardiac innervation, several radiotracers for imaging cardiac sympathetic neurons have been developed. This paper reviews the development of neuronal imaging agents and discusses their emerging role in the noninvasive assessment of cardiac sympathetic innervation.

  6. Evaluation of cardiac sympathetic nervous function by {sup 123}I-metaiodobenzylguanidine scintigraphy in insulin-treated non-insulin dependent diabetics with hypoglycemia unawareness

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Tomio; Toyama, Takuji; Hoshizaki, Hiroshi [Gunma Prefectural Cardiovascular Center, Maebashi (Japan)] [and others

    1996-02-01

    The association between the lack of adrenergic symptoms during hypoglycemia and myocardial {sup 123}I-metaiodobenzylguanidine (MIBG) accumulation was investigated in 12 insulin-treated non-insulin-dependent diabetes mellitus (NIDDM) patients who had no evidence of heart disease. These patients were divided into 2 groups according to the presence (group A) or absence (group B) of adrenergic symptoms during hypoglycemia. Autonomic function tests revealed significantly severe autonomic dysfunction in group B compared to that in group A. Insulin infusion test indicated no significant difference in the catecholamine response between the two groups. {sup 123}I-MIBG scintigraphy showed that the heart/mediastinum ratio of MIBG uptake was significantly lower, and scintigraphic defect was greater in group B than in group A. There were no significant differences in the washout rate between the two groups. These results suggested that the lack of adrenergic symptoms during hypoglycemia may be associated with cardiac sympathetic nervous dysfunction in insulin-treated NIDDM patients, and this dysfunction is mainly due to cardiac sympathetic denervation. (author).

  7. Evaluation of cardiac sympathetic nervous function by 123I-metaiodobenzylguanidine scintigraphy in insulin-treated non-insulin dependent diabetics with hypoglycemia unawareness

    International Nuclear Information System (INIS)

    The association between the lack of adrenergic symptoms during hypoglycemia and myocardial 123I-metaiodobenzylguanidine (MIBG) accumulation was investigated in 12 insulin-treated non-insulin-dependent diabetes mellitus (NIDDM) patients who had no evidence of heart disease. These patients were divided into 2 groups according to the presence (group A) or absence (group B) of adrenergic symptoms during hypoglycemia. Autonomic function tests revealed significantly severe autonomic dysfunction in group B compared to that in group A. Insulin infusion test indicated no significant difference in the catecholamine response between the two groups. 123I-MIBG scintigraphy showed that the heart/mediastinum ratio of MIBG uptake was significantly lower, and scintigraphic defect was greater in group B than in group A. There were no significant differences in the washout rate between the two groups. These results suggested that the lack of adrenergic symptoms during hypoglycemia may be associated with cardiac sympathetic nervous dysfunction in insulin-treated NIDDM patients, and this dysfunction is mainly due to cardiac sympathetic denervation. (author)

  8. Cardiac sympathetic neuronal imaging using PET

    Energy Technology Data Exchange (ETDEWEB)

    Lautamaeki, Riikka; Tipre, Dnyanesh [Johns Hopkins University, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Bengel, Frank M. [Johns Hopkins University, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Cardiovascular Nuclear Medicine, Baltimore, MD (United States)

    2007-06-15

    Balance of the autonomic nervous system is essential for adequate cardiac performance, and alterations seem to play a key role in the development and progression of various cardiac diseases. PET imaging of the cardiac autonomic nervous system has advanced extensively in recent years, and multiple pre- and postsynaptic tracers have been introduced. The high spatial and temporal resolution of PET enables noninvasive quantification of neurophysiologic processes at the tissue level. Ligands for catecholamine receptors, along with radiolabeled catecholamines and catecholamine analogs, have been applied to determine involvement of sympathetic dysinnervation at different stages of heart diseases such as ischemia, heart failure, and arrhythmia. This review summarizes the recent findings in neurocardiological PET imaging. Experimental studies with several radioligands and clinical findings in cardiac dysautonomias are discussed. (orig.)

  9. Usefulness of 123I-Meta-iodobenzylguanidine (MIBG) myocardial scintigraphy for evaluation of cardiac sympathetic nervous system function in diabetic patients

    International Nuclear Information System (INIS)

    The cardiac sympathetic nervous system function of diabetic patients with no definite cardiovascular complications other than hypertension was evaluated by 123I -MIBG myocardial scintigraphy. The subjects consisted of 82 diabetic patients, 59 men, 23 women, mean age 57 years, 17 with hypertension and 65 with normal blood pressure, and they were compared with normal controls (8 men and 3 women, mean age 54 years). Myocardial scintigraphy was performed 10 minutes and 4 hours after administration of MIBG. The superior mediastinum and whole myocardium were set as regions of interest, and the heart-to-mediastinum ratio (H/M ratio) and the washout rate (%WR) were calculated. The mean observation period was 18±12 months, and 17 of the 65 diabetic patients with normal blood pressure before the study developed hypertension during the observation period. There were significant differences in H/M ratio and %WR between the diabetic patients and normal controls (H/M ratio; 1.96±0.34 vs 2.27±0.20, %WR; 24.71±16.99% vs 12.89±11.94). The diabetic patients with hypertension had higher morbidity with diabetic retinopathy and a lower H/M ratio. The 17 patients who developed hypertension during the observation period showed an increase in %WR and a reduction in the H/M ratio. Five patients who died during the observation period had a reduced H/M ratio and increased of %WR. 123I-MIBG myocardial scintigraphy in diabetic patients was shown to be useful for detecting cardiac sympathetic nervous system dysfunction, predicting the development of hypertension, and identifying patients who had a poor outcome. Diabetic patients with abnormal signals on MIBG myocardial scintigraphy need to be monitored much more carefully. (K.H.)

  10. Usefulness of {sup 123}I-Meta-iodobenzylguanidine (MIBG) myocardial scintigraphy for evaluation of cardiac sympathetic nervous system function in diabetic patients.

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Koji; Nakatani, Yuko; Doi, Kenji; Adachi, Gakuji; Takada, Kou

    2001-11-01

    The cardiac sympathetic nervous system function of diabetic patients with no definite cardiovascular complications other than hypertension was evaluated by {sup 123}I -MIBG myocardial scintigraphy. The subjects consisted of 82 diabetic patients, 59 men, 23 women, mean age 57 years, 17 with hypertension and 65 with normal blood pressure, and they were compared with normal controls (8 men and 3 women, mean age 54 years). Myocardial scintigraphy was performed 10 minutes and 4 hours after administration of MIBG. The superior mediastinum and whole myocardium were set as regions of interest, and the heart-to-mediastinum ratio (H/M ratio) and the washout rate (%WR) were calculated. The mean observation period was 18{+-}12 months, and 17 of the 65 diabetic patients with normal blood pressure before the study developed hypertension during the observation period. There were significant differences in H/M ratio and %WR between the diabetic patients and normal controls (H/M ratio; 1.96{+-}0.34 vs 2.27{+-}0.20, %WR; 24.71{+-}16.99% vs 12.89{+-}11.94). The diabetic patients with hypertension had higher morbidity with diabetic retinopathy and a lower H/M ratio. The 17 patients who developed hypertension during the observation period showed an increase in %WR and a reduction in the H/M ratio. Five patients who died during the observation period had a reduced H/M ratio and increased of %WR. {sup 123}I-MIBG myocardial scintigraphy in diabetic patients was shown to be useful for detecting cardiac sympathetic nervous system dysfunction, predicting the development of hypertension, and identifying patients who had a poor outcome. Diabetic patients with abnormal signals on MIBG myocardial scintigraphy need to be monitored much more carefully. (K.H.)

  11. Regulation of sympathetic nervous system function after cardiovascular deconditioning

    Science.gov (United States)

    Hasser, E. M.; Moffitt, J. A.

    2001-01-01

    Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently

  12. The articulo-cardiac sympathetic reflex in spinalized, anesthetized rats.

    Science.gov (United States)

    Nakayama, Tomohiro; Suzuki, Atsuko; Ito, Ryuzo

    2006-04-01

    Somatic afferent regulation of heart rate by noxious knee joint stimulation has been proven in anesthetized cats to be a reflex response whose reflex center is in the brain and whose efferent arc is a cardiac sympathetic nerve. In the present study we examined whether articular stimulation could influence heart rate by this efferent sympathetic pathway in spinalized rats. In central nervous system (CNS)-intact rats, noxious articular movement of either the knee or elbow joint resulted in an increase in cardiac sympathetic nerve activity and heart rate. However, although in acutely spinalized rats a noxious movement of the elbow joint resulted in a significant increase in cardiac sympathetic nerve activity and heart rate, a noxious movement of the knee joint had no such effect and resulted in only a marginal increase in heart rate. Because this marginal increase was abolished by adrenalectomy suggests that it was due to the release of adrenal catecholamines. In conclusion, the spinal cord appears to be capable of mediating, by way of cardiac sympathetic nerves, the propriospinally induced reflex increase in heart rate that follows noxious stimulation of the elbow joint, but not the knee joint.

  13. The Human Sympathetic Nervous System Response to Spaceflight

    Science.gov (United States)

    Ertl, Andrew C.; Diedrich, Andre; Paranjape, Sachin Y.; Biaggioni, Italo; Robertson, Rose Marie; Lane, Lynda D.; Shiavi, Richard; Robertson, David

    2003-01-01

    The sympathetic nervous system is an important part of the autonomic (or automatic) nervous system. When an individual stands up, the sympathetic nervous system speeds the heart and constricts blood vessels to prevent a drop in blood pressure. A significant number of astronauts experience a drop in blood pressure when standing for prolonged periods after they return from spaceflight. Difficulty maintaining blood pressure with standing is also a daily problem for many patients. Indirect evidence available before the Neurolab mission suggested the problem in astronauts while in space might be due partially to reduced sympathetic nervous system activity. The purpose of this experiment was to identify whether sympathetic activity was reduced during spaceflight. Sympathetic nervous system activity can be determined in part by measuring heart rate, nerve activity going to blood vessels, and the release of the hormone norepinephrine into the blood. Norepinephrine is a neurotransmitter discharged from active sympathetic nerve terminals, so its rate of release can serve as a marker of sympathetic nervous system action. In addition to standard cardiovascular measurements (heart rate, blood pressure), we determined sympathetic nerve activity as well as norepinephrine release and clearance on four crewmembers on the Neurolab mission. Contrary to our expectation, the results demonstrated that the astronauts had mildly elevated resting sympathetic nervous system activity in space. Sympathetic nervous system responses to stresses that simulated the cardiovascular effects of standing (lower body negative pressure) were brisk both during and after spaceflight. We concluded that, in the astronauts tested, the activity and response of the sympathetic nervous system to cardiovascular stresses appeared intact and mildly elevated both during and after spaceflight. These changes returned to normal within a few days.

  14. Antihypertensive drugs and the sympathetic nervous system.

    Science.gov (United States)

    Del Colle, Sara; Morello, Fulvio; Rabbia, Franco; Milan, Alberto; Naso, Diego; Puglisi, Elisabetta; Mulatero, Paolo; Veglio, Franco

    2007-11-01

    Hypertension has been associated with several modifications in the function and regulation of the sympathetic nervous system (SNS). Although it is unclear whether this dysfunction is primary or secondary to the development of hypertension, these alterations are considered to play an important role in the evolution, maintenance, and development of hypertension and its target organ damage. Several pharmacological antihypertensive classes are currently available. The main drugs that have been clearly shown to affect SNS function are beta-blockers, alpha-blockers, and centrally acting drugs. On the contrary, the effects of ACE inhibitors (ACE-Is), AT1 receptor blockers (ARBs), calcium channel blockers (CCBs), and diuretics on SNS function remain controversial. These properties are pharmacologically and pathophysiologically relevant and should be considered in the choice of antihypertensive treatments and combination therapies in order to achieve, beyond optimal blood pressure control, a normalization of SNS physiology and the most effective prevention of target organ damage. PMID:18030057

  15. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin

    OpenAIRE

    Zhang, Shujuan; Feng ZHANG; Sun, Haijian; Zhou, Yebo; Han, Ying

    2012-01-01

    Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sym...

  16. The human sympathetic nervous system: its relevance in hypertension and heart failure.

    Science.gov (United States)

    Parati, Gianfranco; Esler, Murray

    2012-05-01

    Evidence assembled in this review indicates that sympathetic nervous system dysfunction is crucial in the development of heart failure and essential hypertension. This takes the form of persistent and adverse activation of sympathetic outflows to the heart and kidneys in both conditions. An important goal for clinical scientists is translation of the knowledge of pathophysiology, such as this, into better treatment for patients. The achievement of this 'mechanisms to management' transition is at different stages of development with regard to the two disorders. Clinical translation is mature in cardiac failure, knowledge of cardiac neural pathophysiology having led to the introduction of beta-adrenergic blockers, an effective therapy. With essential hypertension perhaps we are on the cusp of effective translation, with recent successful testing of selective catheter-based renal sympathetic nerve ablation in patients with resistant hypertension, an intervention firmly based on the demonstration of activation of the renal sympathetic outflow. Additional evidence in this regard is provided by the results of pilot studies exploring the possibility to reduce blood pressure in resistant hypertensives through electrical stimulation of the area of carotid baroreceptors. Despite the general importance of the sympathetic nervous system in blood pressure regulation, and the specific demonstration that the blood pressure elevation in essential hypertension is commonly initiated and sustained by sympathetic nervous activation, drugs antagonizing this system are currently underutilized in the care of patients with hypertension. Use of beta-adrenergic blocking drugs is waning, given the propensity of this drug class to have adverse metabolic effects, including predisposition to diabetes development. The blood pressure lowering achieved with carotid baroreceptor stimulation and with the renal denervation device affirms the importance of the sympathetic nervous system in

  17. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin.

    Science.gov (United States)

    Zhang, Shujuan; Zhang, Feng; Sun, Haijian; Zhou, Yebo; Han, Ying

    2012-11-01

    Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sympathetic afferent reflex. Heart failure was induced by intraperitoneal injection of adriamycin for six times during 2 weeks (15 mg/kg). Six weeks after the first injection, the rats underwent anesthesia with urethane and α-chloralose. After vagotomy and baroreceptor denervation, cardiac sympathetic afferent reflex was evaluated by renal sympathetic nerve activity and mean arterial pressure (MAP) response to epicardial application of capsaicin (1.0 nmol). The response of MAP to ganglionic blockade with hexamethonium in conscious rats was performed to evaluate sympathetic activity. The renal sympathetic nerve activity and cardiac sympathetic afferent reflex were enhanced in adriamycin rats and the maximum depressor response of MAP induced by hexamethonium was significantly greater in adriamycin rats than that in control rats. Bilateral PVN microinjection of angiotensin II (Ang II) caused larger responses of the cardiac sympathetic afferent reflex, baseline renal sympathetic nerve activity and MAP in adriamycin rats than control rats. These results indicated that both sympathetic activity and cardiac sympathetic afferent reflex were enhanced and Ang II in the PVN was involved in the enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with adriamycin-induced heart failure. PMID:23554781

  18. Cardiac sympathetic dysfunction in Parkinson's disease. Relationship between results of 123I-MIBG scintigraphy and autonomic nervous function evaluated by the Valsalva maneuver

    International Nuclear Information System (INIS)

    We examined whether the results of 123I-MIBG scintigraphy reflect cardiac sympathetic nerve function in patients with Parkinson's disease (PD). The subjects were 62 patients with PD (age, 65.4±6.3 years) and 53 controls (65.2±7.1 years). All subjects underwent 123I-MIBG scintigraphy and QTc interval measurement on electrocardiogram (ECG). Hemodynamic autonomic function was estimated by the Valsalva maneuver in 37 subjects (63.9±5.2 years) randomly selected from the patients with PD. As control, the Valsalva maneuver was also done in 20 randomly selected controls (64.1±5.0 years), and 123I-MIBG scintigraphy was performed in 21 controls (67.7±5.3 years old). The subjects rested in a supine position for 20 min and were given an intravenous injection of 111 MBq 123I-MIBG. Relative organ uptake was determined by the region of interest (ROI) in the anterior view and the ratio of average pixel count in the heart (H) to that in the mediastinum (M) was calculated (H/M ratio) for early (after 15 min) and delayed (after 3 hrs) periods. The Valsalva maneuver was done by having the subjects exhale into a mouthpiece at an expiratory pressure of 40 mmHg for 15 seconds. Blood pressure and RR intervals were measured during the Valsalva maneuver by tonometry, using a noninvasive blood pressure monitoring system (ANS 508, Nihon Colin Co., Ltd.). Baroreceptor reflex sensitivities (BRS) of the second phase (BRS II) and fourth phase (BRS IV) of the Valsalva maneuver were calculated, and blood pressure elevations during the late second phase (IIp) and fourth phase (IVp) were measured. QTc was greater in the patients with PD (417 ms) than in the control subjects (409 ms). The H/M ratios of the early and delayed images in the patients with PD (1.76, 1.61) were significantly lower than those in the control subjects (2.56, 2.45). The early and delayed H/M ratios significantly correlated with the severity of disease according to Hoehn-Yahr stage. QTc interval and IVp significantly

  19. Hypotensive effect of taurine. Possible involvement of the sympathetic nervous system and endogenous opiates.

    OpenAIRE

    Fujita, T.; Sato, Y.

    1988-01-01

    We studied the role of diminished sympathetic nervous system (SNS) activity and endogenous opiate activation in the hypotensive action of taurine, a sulfur amino acid, in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Supplementation of taurine could prevent the development of DOCA-salt hypertension in rats, but failed to change blood pressure in vehicle-treated control rats. Cardiac NE turnover, which was determined from the rate of decline of tissue NE concentration after the ad...

  20. Usefulness of Cardiac Sympathetic Nerve Imaging Using (123)Iodine-Metaiodobenzylguanidine Scintigraphy for Predicting Sudden Cardiac Death in Patients With Heart Failure.

    Science.gov (United States)

    Kasama, Shu; Toyama, Takuji; Kurabayashi, Masahiko

    2016-01-01

    The autonomic nervous system plays an important role in the human heart. Activation of the cardiac sympathetic nervous system is a cardinal pathophysiological abnormality associated with the failing human heart. Myocardial imaging using (123)I-metaiodobenzylguanidine (MIBG), an analog of norepinephrine, can be used to investigate the activity of norepinephrine, the predominant neurotransmitter of the sympathetic nervous system. Many clinical trials have demonstrated that (123)I-MIBG scintigraphic parameters predict cardiac adverse events, especially sudden cardiac death, in patients with heart failure. In this review, we summarize results from published studies that have focused on the use of cardiac sympathetic nerve imaging using (123)I-MIBG scintigraphy for risk stratification of sudden cardiac death in patients with heart failure.

  1. Expressions of cardiac sympathetic norepinephrine transporter and β1-adrenergic receptor decreased in aged rats

    Institute of Scientific and Technical Information of China (English)

    He LI; Xiao-qing MA; Fan YE; Jing ZHANG; Xin ZHOU; Zhi-hong WANG; Yu-ming LI; Guo-yuan ZHANG

    2009-01-01

    Evidence suggests that the deterioration of communication between the sympathetic nervous system and cardiovas-cular system always accompanies the aging of human and animals. Cardiac sympathetic norepinephrine (NE) transporter (NET) on presynaptic membrane is a predominant component to eliminate released NE in the synaptic cleff and maintains the sensitivity of the β-adrenergic receptor (β-AR). In the present study, we investigated NET and β1-AR mRNA levels and sympathetic nerve density in cardiac sympathetic ganglion and leff ventricular myocardium in 2- and 16-month-old rats with Northern blot analysis and immunohistochemistry. The expression levels of NET mRNA, NET protein and β1-AR mRNA in the ganglia or myocardia of 16-month-old rats were markedly reduced by 67%, 26%, and 43%, respectively, in comparison with those in 2-month-old rats. Our results also show that aging induces a strong decrease of the catecholaminergic nerve fiber density.

  2. PET and SPET tracers for mapping the cardiac nervous system

    International Nuclear Information System (INIS)

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[18F]fluorodopamine, (-)-6-[18F]fluoronorepinephrine and (-)-[11C]epinephrine, and radiolabelled catecholamine analogues, such as [123I]meta-iodobenzylguanidine, [11C]meta-hydroxyephedrine, [18F]fluorometaraminol, [11C]phenylephrine and meta-[76Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[18F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility for cardiac neuronal imaging. (orig.)

  3. PET and SPET tracers for mapping the cardiac nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Oliver; Halldin, Christer [Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institute, Karolinska Hospital, 17176 Stockholm (Sweden)

    2002-03-01

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[{sup 18}F]fluorodopamine, (-)-6-[{sup 18}F]fluoronorepinephrine and (-)-[{sup 11}C]epinephrine, and radiolabelled catecholamine analogues, such as [{sup 123}I]meta-iodobenzylguanidine, [{sup 11}C]meta-hydroxyephedrine, [{sup 18}F]fluorometaraminol, [{sup 11}C]phenylephrine and meta-[{sup 76}Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[{sup 18}F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility

  4. Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia

    Directory of Open Access Journals (Sweden)

    Suuronen Erik J

    2011-08-01

    Full Text Available Abstract Background Diabetes mellitus is strongly associated with cardiovascular dysfunction, derived in part from impairment of sympathetic nervous system signaling. Glucose, insulin, and non-esterified fatty acids are potent stimulants of sympathetic activity and norepinephrine (NE release. We hypothesized that sustained hyperglycemia in the high fat diet-fed streptozotocin (STZ rat model of sustained hyperglycemia with insulin resistance would exhibit progressive sympathetic nervous dysfunction in parallel with deteriorating myocardial systolic and/or diastolic function. Methods Cardiac sympathetic nervous integrity was investigated in vivo via biodistribution of the positron emission tomography radiotracer and NE analogue [11C]meta-hydroxyephedrine ([11C]HED. Cardiac systolic and diastolic function was evaluated by echocardiography. Plasma and cardiac NE levels and NE reuptake transporter (NET expression were evaluated as correlative measurements. Results The animal model displays insulin resistance, sustained hyperglycemia, and progressive hypoinsulinemia. After 8 weeks of persistent hyperglycemia, there was a significant 13-25% reduction in [11C]HED retention in myocardium of STZ-treated hyperglycemic but not euglycemic rats as compared to controls. There was a parallel 17% reduction in immunoblot density for NE reuptake transporter, a 1.2 fold and 2.5 fold elevation of cardiac and plasma NE respectively, and no change in sympathetic nerve density. No change in ejection fraction or fractional area change was detected by echocardiography. Reduced heart rate, prolonged mitral valve deceleration time, and elevated transmitral early to atrial flow velocity ratio measured by pulse-wave Doppler in hyperglycemic rats suggest diastolic impairment of the left ventricle. Conclusions Taken together, these data suggest that sustained hyperglycemia is associated with elevated myocardial NE content and dysregulation of sympathetic nervous system

  5. Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents.

    Science.gov (United States)

    Kanazawa, Hideaki; Ieda, Masaki; Kimura, Kensuke; Arai, Takahide; Kawaguchi-Manabe, Haruko; Matsuhashi, Tomohiro; Endo, Jin; Sano, Motoaki; Kawakami, Takashi; Kimura, Tokuhiro; Monkawa, Toshiaki; Hayashi, Matsuhiko; Iwanami, Akio; Okano, Hideyuki; Okada, Yasunori; Ishibashi-Ueda, Hatsue; Ogawa, Satoshi; Fukuda, Keiichi

    2010-02-01

    Although several cytokines and neurotrophic factors induce sympathetic neurons to transdifferentiate into cholinergic neurons in vitro, the physiological and pathophysiological roles of this remain unknown. During congestive heart failure (CHF), sympathetic neural tone is upregulated, but there is a paradoxical reduction in norepinephrine synthesis and reuptake in the cardiac sympathetic nervous system (SNS). Here we examined whether cholinergic transdifferentiation can occur in the cardiac SNS in rodent models of CHF and investigated the underlying molecular mechanism(s) using genetically modified mice. We used Dahl salt-sensitive rats to model CHF and found that, upon CHF induction, the cardiac SNS clearly acquired cholinergic characteristics. Of the various cholinergic differentiation factors, leukemia inhibitory factor (LIF) and cardiotrophin-1 were strongly upregulated in the ventricles of rats with CHF. Further, LIF and cardiotrophin-1 secreted from cultured failing rat cardiomyocytes induced cholinergic transdifferentiation in cultured sympathetic neurons, and this process was reversed by siRNAs targeting Lif and cardiotrophin-1. Consistent with the data in rats, heart-specific overexpression of LIF in mice caused cholinergic transdifferentiation in the cardiac SNS. Further, SNS-specific targeting of the gene encoding the gp130 subunit of the receptor for LIF and cardiotrophin-1 in mice prevented CHF-induced cholinergic transdifferentiation. Cholinergic transdifferentiation was also observed in the cardiac SNS of autopsied patients with CHF. Thus, CHF causes target-dependent cholinergic transdifferentiation of the cardiac SNS via gp130-signaling cytokines secreted from the failing myocardium.

  6. The clinical value of cardiac sympathetic imaging in heart failure

    DEFF Research Database (Denmark)

    Christensen, Thomas Emil; Kjaer, Andreas; Hasbak, Philip

    2014-01-01

    The autonomic nervous system plays an important role in the pathology of heart failure. The single-photon emission computed tomography tracer iodine-123-metaiodobenzylguanidine ((123) I-MIBG) can be used to investigate the activity of the predominant neurotransmitter of the sympathetic nervous...

  7. Pathophysiology of Resistant Hypertension: The Role of Sympathetic Nervous System

    Directory of Open Access Journals (Sweden)

    Costas Tsioufis

    2011-01-01

    Full Text Available Resistant hypertension (RH is a powerful risk factor for cardiovascular morbidity and mortality. Among the characteristics of patients with RH, obesity, obstructive sleep apnea, and aldosterone excess are covering a great area of the mosaic of RH phenotype. Increased sympathetic nervous system (SNS activity is present in all these underlying conditions, supporting its crucial role in the pathophysiology of antihypertensive treatment resistance. Current clinical and experimental knowledge points towards an impact of several factors on SNS activation, namely, insulin resistance, adipokines, endothelial dysfunction, cyclic intermittent hypoxaemia, aldosterone effects on central nervous system, chemoreceptors, and baroreceptors dysregulation. The further investigation and understanding of the mechanisms leading to SNS activation could reveal novel therapeutic targets and expand our treatment options in the challenging management of RH.

  8. Cardiac sympathetic nerve terminal function in congestive heart failure

    Institute of Scientific and Technical Information of China (English)

    Chang-seng LIANG

    2007-01-01

    Increased cardiac release of norepinephrine (NE) and depleted cardiac stores of NE are two salient features of the human failing heart. Researches from my labo-ratory have shown that these changes are accompanied by a functional defect of NE uptake in the cardiac sympathetic nerve terminals. Our studies have shown that the decrease of NE uptake is caused by reduction of NE transporter density in the sympathetic nerve endings, and this change is responsible, at least in part, for the increased myocardial interstitial NE, decreased myocardial adrenoceptor density, and increased myocyte apoptosis in experimental cardiomyopathies. We have also provided evidence in both intact animals and cultured PC12 cells that the decrease of NE transporter is induced by the actions of oxidative metabolites of exogenous NE, involving endoplasmic reticulum stress and impaired N-glycosylation of the NE transporter. This change in the cardiac sympathetic NE uptake function, as demonstrated by [123I] metaiodobenzylguanidine in human studies, may not only serve as an important prognostic variable in patients with congestive heart failure, but also be used as a surrogate for the efficacies of various therapeutic interventions for heart failure. Finally, increasing evidence suggests and further studies are needed to show that the cardiac sympathetic nerve terminal function may be a direct target for pharmacologic treatment of congestive heart failure.

  9. P2 receptors in the central and peripheral nervous systems modulating sympathetic vasomotor tone.

    Science.gov (United States)

    Ralevic, V

    2000-07-01

    Arterial pressure depends on the level of activity of sympathetic vasoconstrictor outflow to blood vessels. This activity is generated in the central nervous system, and involves inputs from a variety of brain regions projecting to sympathetic preganglionic neurones. Of especial interest are a group of neurones in the rostral ventrolateral medulla (RVLM), as they have been demonstrated to have a fundamental role in reflex regulation of the cardiovascular system, and in generation of tonic drive to sympathetic outflow. Sympathetic outflow to blood vessels is additionally modulated at sympathetic ganglia, and at the peripheral terminals of sympathetic nerves. This review considers the role of P2 purine receptors in this neural pathway. Ionotropic P2X receptors are expressed in the RVLM, in sympathetic ganglia, and at the sympathetic neuromuscular junction, and mediate fast excitatory neurotransmission, indicating a general role for ATP as a regulator of sympathetic vasomotor tone. P2Y receptors couple to G proteins and mediate slower signalling to ATP; they have been reported to inhibit prejunctionally neurotransmission at the peripheral terminals of sympathetic nerves, but little is known about their possible role in the central nervous system and in sympathetic ganglia.

  10. The paradox of systemic vasodilatation and sympathetic nervous stimulation in space

    DEFF Research Database (Denmark)

    Norsk, Peter; Christensen, Niels Juel

    2009-01-01

    Cardiac output is increased by some 18% by weightlessness during the initial week of spaceflight compared to upright standing or sitting on the ground and more so during the initial days of flight than at the end. In addition, mean 24-h diastolic, but not systolic pressure, is significantly...... decreased by 5mmHg. This is in accordance with observations that very acute weightlessness during parabolic airplane flights and a week of weightlessness in space leads to a decrease in systemic vascular resistance. That the arterial resistance vessels are dilated in space is in contrast to the augmented...... sympathetic nervous activity and decreased urine production, which have consistently been observed in astronauts in space. These contrasting observations require further investigation....

  11. Guidelines on surgery of the thoracic sympathetic nervous system.

    Science.gov (United States)

    Moreno Balsalobre, Ramón; Moreno Mata, Nicolás; Ramos Izquierdo, Ricard; Aragón Valverde, Francisco Javier; Molins López-Rodo, Laureano; Rivas de Andrés, Juan José; García Fernández, José Luis; Cañizares Carretero, Miguel Ángel; Congregado Loscertales, Miguel; Carbajo Carbajo, Miguel

    2011-02-01

    Thoracic sympathetic nervous system (TSNS) surgery has increased in importance in the last few years, generating great expectations among the general population and the scientific community. This has been due to the excellent results obtained by videothoracoscopy-assisted thoracic sympathectomy in the treatment of essential hyperhidrosis and other TSNS disorders. This minimally invasive surgical technique has been shown to be effective, and with a low morbidity it is accepted as one of the best therapeutic options for the treatment of palmar and bilateral axillary hyperhidrosis and the number of patients consulting with the intention of having the operation has increased considerably. Although compensatory sweating, which is occasionally intense, often occurs after the surgery, this and other secondary effects of the technique are well tolerated by patients. The current evidence on TSNS and the treatment of essential hyperhidrosis is based on observational studies, making it difficult to compare series and draw conclusions. There has been much discussion on standardising the technique, defining the most favourable levels for clipping, and choosing the type of denervation with least secondary effects. This has led to the need to draw up these guidelines which should clarify and standardise the criteria for managing patients with disorders of TSNS. PMID:21342743

  12. Cardiac sympathetic denervation in 6-OHDA-treated nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Valerie Joers

    Full Text Available Cardiac sympathetic neurodegeneration and dysautonomia affect patients with sporadic and familial Parkinson's disease (PD and are currently proposed as prodromal signs of PD. We have recently developed a nonhuman primate model of cardiac dysautonomia by iv 6-hydroxydopamine (6-OHDA. Our in vivo findings included decreased cardiac uptake of a sympathetic radioligand and circulating catecholamines; here we report the postmortem characterization of the model. Ten adult rhesus monkeys (5-17 yrs old were used in this study. Five animals received 6-OHDA (50 mg/kg i.v. and five were age-matched controls. Three months post-neurotoxin the animals were euthanized; hearts and adrenal glands were processed for immunohistochemistry. Quantification of immunoreactivity (ir of stainings was performed by an investigator blind to the treatment group using NIH ImageJ software (for cardiac bundles and adrenals, area above threshold and optical density and MBF StereoInvestigator (for cardiac fibers, area fraction fractionator probe. Sympathetic cardiac nerve bundle analysis and fiber area density showed a significant reduction in global cardiac tyrosine hydroxylase-ir (TH; catecholaminergic marker in 6-OHDA animals compared to controls. Quantification of protein gene protein 9.5 (pan-neuronal marker positive cardiac fibers showed a significant deficit in 6-OHDA monkeys compared to controls and correlated with TH-ir fiber area. Semi-quantitative evaluation of human leukocyte antigen-ir (inflammatory marker and nitrotyrosine-ir (oxidative stress marker did not show significant changes 3 months post-neurotoxin. Cardiac nerve bundle α-synuclein-ir (presynaptic protein was reduced (trend in 6-OHDA treated monkeys; insoluble proteinase-K resistant α-synuclein (typical of PD pathology was not observed. In the adrenal medulla, 6-OHDA monkeys had significantly reduced TH-ir and aminoacid decarboxylase-ir. Our results confirm that systemic 6-OHDA dosing to nonhuman primates

  13. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans

    NARCIS (Netherlands)

    Kox, M.; Eijk, L.T.G.J. van; Zwaag, J.; Wildenberg, J. van den; Sweep, F.C.; Hoeven, J.G. van der; Pickkers, P.

    2014-01-01

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot b

  14. Role of sympathetic nervous system and neuropeptides in obesity hypertension

    Directory of Open Access Journals (Sweden)

    Hall J.E.

    2000-01-01

    Full Text Available Obesity is the most common cause of human essential hypertension in most industrialized countries. Although the precise mechanisms of obesity hypertension are not fully understood, considerable evidence suggests that excess renal sodium reabsorption and a hypertensive shift of pressure natriuresis play a major role. Sympathetic activation appears to mediate at least part of the obesity-induced sodium retention and hypertension since adrenergic blockade or renal denervation markedly attenuates these changes. Recent observations suggest that leptin and its multiple interactions with neuropeptides in the hypothalamus may link excess weight gain with increased sympathetic activity. Leptin is produced mainly in adipocytes and is believed to regulate energy balance by acting on the hypothalamus to reduce food intake and to increase energy expenditure via sympathetic activation. Short-term administration of leptin into the cerebral ventricles increases renal sympathetic activity, and long-term leptin infusion at rates that mimic plasma concentrations found in obesity raises arterial pressure and heart rate via adrenergic activation in non-obese rodents. Transgenic mice overexpressing leptin also develop hypertension. Acute studies suggest that the renal sympathetic effects of leptin may depend on interactions with other neurochemical pathways in the hypothalamus, including the melanocortin-4 receptor (MC4-R. However, the role of this pathway in mediating the long-term effects of leptin on blood pressure is unclear. Also, it is uncertain whether there is resistance to the chronic renal sympathetic and blood pressure effects of leptin in obese subjects. In addition, leptin also has other cardiovascular and renal actions, such as stimulation of nitric oxide formation and improvement of insulin sensitivity, which may tend to reduce blood pressure in some conditions. Although the role of these mechanisms in human obesity has not been elucidated, this

  15. Leptin‐Induced Endothelial Dysfunction Is Mediated by Sympathetic Nervous System Activity

    OpenAIRE

    Wang, Jintao; Wang, Hui; Luo, Wei; Guo, Chiao; Wang, Julia; Chen, Y.E.; Chang, Lin; Eitzman, Daniel T.

    2013-01-01

    Background The adipocyte‐derived hormone leptin is elevated in obesity and may contribute to vascular risk associated with obesity. The mechanism(s) by which leptin affects vascular disease is unclear, although leptin has been shown to increase sympathetic activity. The aim of this study was to investigate the effect of leptin treatment on endothelial function and the role of the local sympathetic nervous system in mediating these effects. Methods and Results Recombinant leptin was administer...

  16. Abnormal sympathetic nervous system development and physiologic dysautonomia in Egr3-deficient mice

    OpenAIRE

    Eldredge, Laurie C.; Gao, Xiaoguang M.; Quach, David; LI, Lin; Han, Xiaoqiang; Lomasney, Jon; Tourtellotte, Warren G.

    2008-01-01

    Sympathetic nervous system development depends upon many factors that mediate neuron migration, differentiation and survival. Target tissue-derived nerve growth factor (NGF) signaling-induced gene expression is required for survival, differentiation and target tissue innervation of post-migratory sympathetic neurons. However, the transcriptional regulatory mechanisms mediated by NGF signaling are very poorly defined. Here, we identify Egr3, a member of the early growth response (Egr) family o...

  17. The Sympathetic Nervous System in the Pathogenesis of Takotsubo Syndrome.

    Science.gov (United States)

    Wittstein, Ilan S

    2016-10-01

    Takotsubo syndrome is a unique clinical condition of acute heart failure and reversible left ventricular dysfunction frequently precipitated by sudden emotional or physical stress. There is growing evidence that exaggerated sympathetic stimulation is central to the pathogenesis of this syndrome. Precisely how catecholamines mediate myocardial stunning in takotsubo syndrome remains incompletely understood; but possible mechanisms include epicardial spasm, microvascular dysfunction, direct adrenergic-receptor-mediated myocyte injury, and systemic vascular effects that alter ventricular-arterial coupling. Risk factors that increase sympathetic tone and/or catecholamine sensitivity may render individuals particularly susceptible to takotsubo syndrome during episodes of acute stress. PMID:27638019

  18. Norepinephrine transporter (NET) is expressed in cardiac sympathetic ganglia of adult rat

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The sympathetic nervous system plays a cardinal role in regulating cardiac function through releasing the neurotransmitter norepinephrine (NE). In comparison with central nervous system, the molecular mechanism of NE uptake in myocardium is not clear. In present study, we proved that in rat the CNS type of NE transporter (NET) was also expressed in middle cervical-stellate ganglion complex (MC-SG complex) which is considered to control the activity of heart, but not expressed in myocardium. The results also showed that NET expression level in right ganglion was significantly higher than in the left, rendering the greater capacity of NE uptake in right ventricle, a fact which may contribute to the maintenance of right ventricular function under pathologic state.

  19. Relationship between duration of illness and cardiac autonomic nervous activity in anorexia nervosa

    OpenAIRE

    Nakai, Yoshikatsu; Fujita, Masatoshi; Nin, Kazuko; Noma, Shun’ichi; Teramukai, Satoshi

    2015-01-01

    Background The mortality rate associated with anorexia nervosa (AN) is high, and death is mainly attributable to cardiac events. A wide range of autonomic nervous system disturbances may be mechanisms underlying the increased cardiovascular mortality and sudden death of patients with AN. Heart rate variability (HRV) has been proven to be a reliable noninvasive method for quantitative assessment of sympathetic and parasympathetic regulation of heart rate (HR). The longer the duration of illnes...

  20. Relationship between duration of illness and cardiac autonomic nervous activity in anorexia nervosa

    OpenAIRE

    Nakai, Yoshikatsu; Fujita, Masatoshi; Nin, Kazuko; Noma, Shun'ichi; Teramukai, Satoshi

    2015-01-01

    Background: The mortality rate associated with anorexia nervosa (AN) is high, and death is mainly attributable to cardiac events. A wide range of autonomic nervous system disturbances may be mechanisms underlying the increased cardiovascular mortality and sudden death of patients with AN. Heart rate variability (HRV) has been proven to be a reliable noninvasive method for quantitative assessment of sympathetic and parasympathetic regulation of heart rate (HR). The longer the duration of illne...

  1. Cardiac Sympathetic Hyperactivity after Chemotherapy: Early Sign of Cardiotoxicity?

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, Sarita Lígia Pessoa de Melo Machado [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Hospital Agamenon Magalhães (HAM), Recife, PE (Brazil); Brandão, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Andrade, Luciana Raposo [Hospital Santa Joana, Recife, PE (Brazil); Maia, Rafael José Coelho [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Hospital Agamenon Magalhães (HAM), Recife, PE (Brazil); Markman Filho, Brivaldo [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil)

    2015-09-15

    Chemotherapy with anthracyclines and trastuzumab can cause cardiotoxicity. Alteration of cardiac adrenergic function assessed by metaiodobenzylguanidine labeled with iodine-123 ({sup 123}I-mIBG) seems to precede the drop in left ventricular ejection fraction. To evaluate and to compare the presence of cardiovascular abnormalities among patients with breast cancer undergoing chemotherapy with anthracyclines and trastuzumab, and only with anthracycline. Patients with breast cancer were analyzed clinical, laboratory, electrocardiographic and echocardiographic and cardiac sympathetic activity. In scintigraphic images, the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum, and the washout rate were calculated. The variables were compared between patients who received anthracyclines and trastuzumab (Group 1) and only anthracyclines (Group 2). Twenty patients, with mean age 57 ± 14 years, were studied. The mean left ventricular ejection fraction by echocardiography was 67.8 ± 4.0%. Mean washout rate was 28.39 ± 9.23% and the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum was 2.07 ± 0.28. Of the patients, 82% showed an increased in washout rate, and the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum decreased in 25%. Concerning the groups, the mean washout rate of Group 1 was 32.68 ± 9.30% and of Group 2 was 24.56 ± 7.72% (p = 0,06). The ratio of {sup 123}I-mIBG uptake between the heart and mediastinum was normal in all patients in Group 2, however, the Group 1, showed 50% the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum ≤ 1.8 (p = 0.02). In women with breast cancer undergoing chemotherapy, assessment of cardiac sympathetic activity with {sup 123}I-mIBG appears to be an early marker of cardiotoxicity. The combination of chemotherapy showed higher risk of cardiac adrenergic hyperactivity.

  2. Role of sympathetic nervous system and neuropeptides in obesity hypertension

    OpenAIRE

    Hall, J. E.; M.W. Brands; D.A. Hildebrandt; Kuo, J.; Fitzgerald, S.

    2000-01-01

    Obesity is the most common cause of human essential hypertension in most industrialized countries. Although the precise mechanisms of obesity hypertension are not fully understood, considerable evidence suggests that excess renal sodium reabsorption and a hypertensive shift of pressure natriuresis play a major role. Sympathetic activation appears to mediate at least part of the obesity-induced sodium retention and hypertension since adrenergic blockade or renal denervation markedly attenuates...

  3. Systematic morphology and evolutionary anatomy of the autonomic cardiac nervous system in the lesser apes, gibbons (hylobatidae).

    Science.gov (United States)

    Kawashima, Tomokazu; Thorington, Richard W; Kunimatsu, Yutaka; Whatton, James F

    2008-08-01

    We examined the morphology of the autonomic cardiac nervous system (ACNS) on 20 sides of 10 gibbons (Hylobatidae) of three genera, and we have inferred the evolution of the anatomy of the primate ACNS. We report the following. (1) Several trivial intraspecific and interspecific variations are present in gibbons, but the general arrangement of the ACNS in gibbons is consistent. (2) Although the parasympathetic vagal cardiac nervous system is extremely consistent, the sympathetic cardiac nervous system, such as the composition of the sympathetic ganglia and the range of origin of the sympathetic cardiac nerves, exhibit topographical differences among primates. (3) The vertebral ganglion, seldom observed in the Old World monkeys (Cercopithecidae), was consistently present in gibbons as well as in humans. (4) There are fewer thoracic ganglia contributing to the cervicothoracic ganglion in humans than in gibbons and in gibbons than in Old World monkeys. (5) The superior cardiac nerve originating from the superior cervical ganglion, rarely observed in Old World monkeys but commonly observed in humans, was present in 13 of 20 sides (65%), mostly on the left. Accordingly, the ACNS morphology exhibits evolutionary changes within the primate lineage. These evolutionary differences between Old World monkeys, gibbons, and humans are most parsimoniously interpreted as resulting from regular changes in the lineages leading from their common ancestor to the extant species that we dissected. They include the reduction in the number of thoracic ganglia contributing to the cervicothoracic ganglion and the expansion of the range of the cardiac nervous origin.

  4. Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia

    OpenAIRE

    Suuronen Erik J; Harper Mary-Ellen; Radziuk Jerry; Thackeray James T; Ascah Kathryn J; Beanlands Rob S; DaSilva Jean N

    2011-01-01

    Abstract Background Diabetes mellitus is strongly associated with cardiovascular dysfunction, derived in part from impairment of sympathetic nervous system signaling. Glucose, insulin, and non-esterified fatty acids are potent stimulants of sympathetic activity and norepinephrine (NE) release. We hypothesized that sustained hyperglycemia in the high fat diet-fed streptozotocin (STZ) rat model of sustained hyperglycemia with insulin resistance would exhibit progressive sympathetic nervous dysf...

  5. Impact of sympathetic nervous system activity on post-exercise flow-mediated dilatation in humans.

    NARCIS (Netherlands)

    Atkinson, C.L.; Lewis, N.C.; Carter, H.H.; Thijssen, D.H.J.; Ainslie, P.N.; Green, D.J.

    2015-01-01

    KEY POINTS: Previous studies indicate a transient reduction in arterial function following large muscle group exercise, but the mechanisms involved are unknown. Sympathetic nervous system activation may contribute to such reductions through direct effects in the artery wall, or because of decreases

  6. Cortisol and Children's Adjustment: The Moderating Role of Sympathetic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Erath, Stephen A.; Buckhalt, Joseph A.; Granger, Douglas A.; Mize, Jacquelyn

    2008-01-01

    We examined relations among cortisol, markers of sympathetic nervous system (SNS) activity (including salivary alpha-amylase and skin conductance level), and children's adjustment. We also tested the Bauer et al. ("Journal of Developmental and Behavioral Pediatrics," 23(2), 102-113, 2002) hypothesis that interactions between the SNS and cortisol…

  7. Marital Conflict and Children's Externalizing Behavior: Interactions between Parasympathetic and Sympathetic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Kouros, Chrystyna D.; Erath, Stephen; Cummings, E. Mark; Keller, Peggy; Staton, Lori

    2009-01-01

    Toward greater specificity in the prediction of externalizing problems in the context of interparental conflict, interactions between children's parasympathetic and sympathetic nervous system (PNS and SNS) activity were examined as moderators. PNS activity was indexed by respiratory sinus arrhythmia (RSA) and RSA reactivity (RSA-R) to lab…

  8. Sympathetic nervous system activation, arterial shear rate, and flow-mediated dilation.

    NARCIS (Netherlands)

    Thijssen, D.H.J.; Atkinson, C.L.; Ono, K.; Sprung, V.S.; Spence, A.L.; Pugh, C.J.; Green, D.J.

    2014-01-01

    The aim of this study was to examine the contribution of arterial shear to changes in flow-mediated dilation (FMD) during sympathetic nervous system (SNS) activation in healthy humans. Ten healthy men reported to our laboratory four times. Bilateral FMD, shear rate (SR), and catecholamines were exam

  9. Leptin regulates bone formation via the sympathetic nervous system

    Science.gov (United States)

    Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard

    2002-01-01

    We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.

  10. Renal sympathetic nervous system and the effects of denervation on renal arteries

    Institute of Scientific and Technical Information of China (English)

    Arun; Kannan; Raul; Ivan; Medina; Nagapradeep; Nagajothi; Saravanan; Balamuthusamy

    2014-01-01

    Resistant hypertension is associated with chronic activation of the sympathetic nervous system resulting in various comorbidities. The prevalence of resistant hypertension is often under estimated due to various reasons. Activation of sympathetic nervous system at the renal-as well as systemic-level contributes to the increased level of catecholamines and resulting increase in the blood pressure. This increased activity was demonstrated by increased muscle sympathetic nerve activity and renal and total body noradrenaline spillover. Apart from the hypertension, it is hypothesized to be associated with insulin resistance, congestive heart failure and obstructive sleep apnea. Renal denervation is a novel procedure where the sympathetic afferent and efferent activity is reduced by various techniques and has been used successfully to treat drug-resistant hypertension improvement of various metabolic derangements.Renal denervation has the unique advantage of offering the denervation at the renal level, thus mitigating the systemic side effects. Renal denervation can be done by various techniques including radiofrequency ablation, ultrasound guided ablation and chemical ablation. Various trials evaluated the role of renal denervation in the management of resistant hypertension and have found promising results. More studies are underway to evaluate the role of renal denervation in patients presenting with resistant hypertension in different scenarios. Appropriate patient selection might be the key in determining the effectiveness of the procedure.

  11. Autonomic Nervous System Responses to Viewing Green and Built Settings: Differentiating Between Sympathetic and Parasympathetic Activity

    Science.gov (United States)

    van den Berg, Magdalena M.H.E.; Maas, Jolanda; Muller, Rianne; Braun, Anoek; Kaandorp, Wendy; van Lien, René; van Poppel, Mireille N.M.; van Mechelen, Willem; van den Berg, Agnes E.

    2015-01-01

    This laboratory study explored buffering and recovery effects of viewing urban green and built spaces on autonomic nervous system activity. Forty-six students viewed photos of green and built spaces immediately following, and preceding acute stress induction. Simultaneously recorded electrocardiogram and impedance cardiogram signal was used to derive respiratory sinus arrhythmia (RSA) and pre-ejection period (PEP), indicators of respectively parasympathetic and sympathetic activity. The findings provide support for greater recovery after viewing green scenes, as marked by a stronger increase in RSA as a marker of parasympathetic activity. There were no indications for greater recovery after viewing green scenes in PEP as a marker of sympathetic activity, and there were also no indications of greater buffering effects of green space in neither RSA nor PEP. Overall, our findings are consistent with a predominant role of the parasympathetic nervous system in restorative effects of viewing green space. PMID:26694426

  12. Autonomic Nervous System Responses to Viewing Green and Built Settings: Differentiating Between Sympathetic and Parasympathetic Activity

    Directory of Open Access Journals (Sweden)

    Magdalena M.H.E. van den Berg

    2015-12-01

    Full Text Available This laboratory study explored buffering and recovery effects of viewing urban green and built spaces on autonomic nervous system activity. Forty-six students viewed photos of green and built spaces immediately following, and preceding acute stress induction. Simultaneously recorded electrocardiogram and impedance cardiogram signal was used to derive respiratory sinus arrhythmia (RSA and pre-ejection period (PEP, indicators of respectively parasympathetic and sympathetic activity. The findings provide support for greater recovery after viewing green scenes, as marked by a stronger increase in RSA as a marker of parasympathetic activity. There were no indications for greater recovery after viewing green scenes in PEP as a marker of sympathetic activity, and there were also no indications of greater buffering effects of green space in neither RSA nor PEP. Overall, our findings are consistent with a predominant role of the parasympathetic nervous system in restorative effects of viewing green space.

  13. Differential effects of cardiac sympathetic afferent stimulation on neurons in the nucleus tractus solitarius

    OpenAIRE

    Wang, Wei-zhong; Gao, Lie; Pan, Yan-Xia; Zucker, Irving H.; Wang, Wei

    2006-01-01

    Activation of the cardiacsympathetic afferent” reflex (CSAR) has been reported to depress the arterial baroreflex and enhance the arterial chemoreflex via a central mechanism. In the present study, we used single-unit extracellular recording techniques to examine the effects of stimulation of cardiac sympathetic afferents on baro- or chemosensitive neurons in the nucleus tractus solitarius (NTS) in anesthetized rats. Of 54 barosensitive NTS neurons tested for their response to epicardial ap...

  14. Obesity-induced Hypertension: Role of Sympathetic Nervous System, Leptin, and Melanocortins*

    OpenAIRE

    Hall, John E.; da Silva, Alexandre A.; do Carmo, Jussara M.; Dubinion, John; Hamza, Shereen; Munusamy, Shankar; Smith, Grant; Stec, David E.

    2010-01-01

    Excess weight gain contributes to increased blood pressure in most patients with essential hypertension. Although the mechanisms of obesity hypertension are not fully understood, increased renal sodium reabsorption and impaired pressure natriuresis play key roles. Several mechanisms contribute to altered kidney function and hypertension in obesity, including activation of the sympathetic nervous system, which appears to be mediated in part by increased levels of the adipocyte-derived hormone ...

  15. Cutting Edge: Sympathetic Nervous System Increases Proinflammatory Cytokines and Exacerbates Influenza A Virus Pathogenesis

    OpenAIRE

    Grebe, Kristie M.; Takeda, Kazuyo; Hickman, Heather D.; Bailey, Adam M.; Embry, Alan C.; Bennink, Jack R.; Yewdell, Jonathan W.

    2009-01-01

    Although the sympathetic nervous system innervates the lung, little is known about its participation in host immunity to pulmonary pathogens. In this study, we show that peripheral sympathectomy reduces mouse morbidity and mortality from influenza A virus-induced pneumonia due to reduced inflammatory influx of monocytes, neutrophils, and NK cells. Mortality was also delayed by treating mice with an α-adrenergic antagonist. Sympathectomy diminished the immediate innate cytokine responses, part...

  16. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins.

    Science.gov (United States)

    Hall, John E; da Silva, Alexandre A; do Carmo, Jussara M; Dubinion, John; Hamza, Shereen; Munusamy, Shankar; Smith, Grant; Stec, David E

    2010-06-01

    Excess weight gain contributes to increased blood pressure in most patients with essential hypertension. Although the mechanisms of obesity hypertension are not fully understood, increased renal sodium reabsorption and impaired pressure natriuresis play key roles. Several mechanisms contribute to altered kidney function and hypertension in obesity, including activation of the sympathetic nervous system, which appears to be mediated in part by increased levels of the adipocyte-derived hormone leptin, stimulation of pro-opiomelanocortin neurons, and subsequent activation of central nervous system melanocortin 4 receptors. PMID:20348094

  17. Norepinephrine-induced nerve growth factor depletion causes cardiac sympathetic denervation in severe heart failure.

    Science.gov (United States)

    Kimura, Kensuke; Kanazawa, Hideaki; Ieda, Masaki; Kawaguchi-Manabe, Haruko; Miyake, Yoshiko; Yagi, Takashi; Arai, Takahide; Sano, Motoaki; Fukuda, Keiichi

    2010-08-25

    In severe congestive heart failure (CHF), sympathetic overactivity correlates with the exacerbation of cardiac performance. To test the hypothesis that the cardiac sympathetic nerve density dramatically changes with the acceleration of circulating norepinephrine (NE) concentration, we investigated the temporal association of nerve growth factor (NGF) expression in the heart and cardiac sympathetic nerve density during the development of CHF in the continuous NE-infused rats. The animals were analyzed at 0-, 1-, 3-, 7-, 14-, and 28-day after implantation of osmotic pump at a rate of 0.05 mg/kg/hr. The cardiac performance was temporally facilitated in NE-exposed rats at 3-day in accordance with the sympathetic hyper-innervation induced by the augmentation of NGF mRNA expression in the heart. In NE-treated rats, left ventricular end-diastolic pressure was significantly increased after 7-day and marked left ventricular hypertrophy and systemic fluid retention were observed at 28-day. CHF-induced sympathetic overactivity further increased plasma NE concentration in NE-treated rats and finally reached to 16.1+/-5.6 ng/ml at 28-day (control level was 0.39+/-0.1 ng/ml, pcardiac performance. The cardiac sympathetic fiber loss was also confirmed in NE-exposed DBH (dopamine beta-hydroxylase)-Cre/Floxed-EGFP (enhanced green fluorescent protein) mice with severe CHF, in which sympathetic nerve could be traced by EGFP. Our results suggest that the cardiac sympathetic nerve density is strictly regulated by the NGF expression in the heart and long-exposure of high plasma NE concentration caused myocardial NGF reduction, following sympathetic fiber loss in severe CHF animals.

  18. Connections of Barrington's nucleus to the sympathetic nervous system in rats.

    Science.gov (United States)

    Cano, G; Card, J P; Rinaman, L; Sved, A F

    2000-03-15

    Barrington's nucleus (BN) has been considered a pontine center related exclusively to the control of pelvic parasympathetic activity. The present study demonstrates an anatomical linkage between BN and autonomic outflow to visceral targets innervated exclusively by the sympathetic division of the autonomic nervous system. Temporal analysis of infection after injection of pseudorabies virus (PRV), a retrograde transynaptic tracer, into two sympathetically innervated organs, the spleen and the kidney, revealed the presence of infected neurons in BN at early post-inoculation survival intervals. Immunohistochemical localization of PRV after spleen injections showed that a small subpopulation of BN neurons became labeled in a time frame coincident with the appearance of infected neurons in other brain regions known to project to sympathetic preganglionic neurons (SPNs) in the thoracic spinal cord; a larger number of infected neurons appeared in BN at intermediate intervals after PRV injections into the spleen or kidney. Coinjection of the retrograde tracer Fluoro-Gold i.p. and PRV into the spleen demonstrated that parasympathetic preganglionic neurons in the caudal medulla or lumbo-sacral spinal cord were not infected, indicating that infected BN neurons were not infected via a parasympathetic route. Thus, BN neurons become infected after PRV injections into the spleen or kidney either directly through BN projections to SPNs, or secondarily via BN projections to infected pre-preganglionic neurons. These results demonstrate an anatomical linkage, either direct or indirect, between BN and sympathetic activity. Because BN receives numerous inputs from diverse brain regions, the relation of BN with both branches of the autonomic nervous system suggests that this nucleus might play a role in the integration of supraspinal inputs relevant to the central coordination of sympathetic and parasympathetic activity.

  19. Inhibition of cardiac sympathetic afferent reflex and sympathetic activity by baroreceptor and vagal afferent inputs in chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Xian-Bing Gan

    Full Text Available BACKGROUND: Cardiac sympathetic afferent reflex (CSAR contributes to sympathetic activation and angiotensin II (Ang II in paraventricular nucleus (PVN augments the CSAR in vagotomized (VT and baroreceptor denervated (BD rats with chronic heart failure (CHF. This study was designed to determine whether it is true in intact (INT rats with CHF and to determine the effects of cardiac and baroreceptor afferents on the CSAR and sympathetic activity in CHF. METHODOLOGY/PRINCIPAL FINDINGS: Sham-operated (Sham or coronary ligation-induced CHF rats were respectively subjected to BD+VT, VT, cardiac sympathetic denervation (CSD or INT. Under anesthesia, renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were recorded, and the CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Either CSAR or the responses of RSNA, MAP and CSAR to Ang II in PVN were enhanced in CHF rats treated with BD+VT, VT or INT. Treatment with VT or BD+VT potentiated the CSAR and the CSAR responses to Ang II in both Sham and CHF rats. Treatment with CSD reversed the capsaicin-induced RSNA and MAP changes and the CSAR responses to Ang II in both Sham and CHF rats, and reduced the RSNA and MAP responses to Ang II only in CHF rats. CONCLUSIONS: The CSAR and the CSAR responses to Ang II in PVN are enhanced in intact CHF rats. Baroreceptor and vagal afferent activities inhibit CSAR and the CSAR responses to Ang II in intact Sham and CHF rats.

  20. Role of the sympathetic nervous system in carbon tetrachloride-induced hepatotoxicity and systemic inflammation.

    Directory of Open Access Journals (Sweden)

    Jung-Chun Lin

    Full Text Available Carbon tetrachloride (CCl4 is widely used as an animal model of hepatotoxicity and the mechanisms have been arduously studied, however, the contribution of the sympathetic nervous system (SNS in CCl4-induced acute hepatotoxicity remains controversial. It is also known that either CCl4 or SNS can affect systemic inflammatory responses. The aim of this study was to establish the effect of chemical sympathectomy with 6-hydroxydopamine (6-OHDA in a mouse model of CCl4-induced acute hepatotoxicity and systemic inflammatory response. Mice exposed to CCl4 or vehicle were pretreated with 6-OHDA or saline. The serum levels of aminotransferases and alkaline phosphatase in the CCl4-poisoning mice with sympathetic denervation were significantly lower than those without sympathetic denervation. With sympathetic denervation, hepatocellular necrosis and fat infiltration induced by CCl4 were greatly decreased. Sympathetic denervation significantly attenuated CCl4-induced lipid peroxidation in liver and serum. Acute CCl4 intoxication showed increased expression of inflammatory cytokines/chemokines [eotaxin-2/CCL24, Fas ligand, interleukin (IL-1α, IL-6, IL-12p40p70, monocyte chemoattractant protein-1 (MCP-1/CCL2, and tumor necrosis factor-α (TNF-α], as well as decreased expression of granulocyte colony-stimulating factor and keratinocyte-derived chemokine. The overexpressed levels of IL-1α, IL-6, IL-12p40p70, MCP-1/CCL2, and TNF-α were attenuated by sympathetic denervation. Pretreatment with dexamethasone significantly reduced CCl4-induced hepatic injury. Collectively, this study demonstrates that the SNS plays an important role in CCl4-induced acute hepatotoxicity and systemic inflammation and the effect may be connected with chemical- or drug-induced hepatotoxicity and circulating immune response.

  1. Angiotensin-(1-7 in paraventricular nucleus modulates sympathetic activity and cardiac sympathetic afferent reflex in renovascular hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Ying Han

    Full Text Available BACKGROUND: Excessive sympathetic activity contributes to the pathogenesis and progression of hypertension. Enhanced cardiac sympathetic afferent reflex (CSAR is involved in sympathetic activation. This study was designed to determine the roles of angiotensin (Ang-(1-7 in paraventricular nucleus (PVN in modulating sympathetic activity and CSAR and its signal pathway in renovascular hypertension. METHODOLOGY/PRINCIPAL FINDINGS: Renovascular hypertension was induced with two-kidney, one-clip method. Renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were recorded in sinoaortic-denervated and cervical-vagotomized rats with anesthesia. CSAR was evaluated with the RSNA and MAP responses to epicardial application of capsaicin. PVN microinjection of Ang-(1-7 and cAMP analogue db-cAMP caused greater increases in RSNA and MAP, and enhancement in CSAR in hypertensive rats than in sham-operated rats, while Mas receptor antagonist A-779 produced opposite effects. There was no significant difference in the angiotensin-converting enzyme 2 (ACE2 activity and Ang-(1-7 level in the PVN between sham-operated rats and hypertensive rats, but the Mas receptor protein expression in the PVN was increased in hypertensive rats. The effects of Ang-(1-7 were abolished by A-779, adenylyl cyclase inhibitor SQ22536 or protein kinase A (PKA inhibitor Rp-cAMP. SQ22536 or Rp-cAMP reduced RSNA and MAP in hypertensive rats, and attenuated the CSAR in both sham-operated and hypertensive rats. CONCLUSIONS: Ang-(1-7 in the PVN increases RSNA and MAP and enhances the CSAR, which is mediated by Mas receptors. Endogenous Ang-(1-7 and Mas receptors contribute to the enhanced sympathetic outflow and CSAR in renovascular hypertension. A cAMP-PKA pathway is involved in the effects of Ang-(1-7 in the PVN.

  2. Effects of alpha-adrenoceptor and of combined sympathetic and parasympathetic blockade on cardiac performance and vascular resistance

    DEFF Research Database (Denmark)

    Kelbaek, H; Frandsen, Henrik Lund; Hilsted, J;

    1992-01-01

    ) blockade. 2. During alpha-adrenoceptor blockade heart rate and cardiac output increased considerably and left ventricular ejection fraction increased because of increased contractility. Systemic vascular resistance fell both during alpha-adrenoceptor blockade alone and during combined blockade. The...... increase in calf blood flow was of the same magnitude after combined blockade and after alpha-adrenoceptor blockade alone, and was considerably higher than the fall in systemic vascular resistance. Plasma catecholamine concentrations increased after phentolamine, but the changes were blunted when...... propranolol and atropine were added. 3. These results indicate that peripheral vasoconstriction especially that exerted by alpha-adrenoceptor nervous tone in skeletal muscle restricts left ventricular emptying of the intact heart. During pharmacologic blockade of the sympathetic and parasympathetic nervous...

  3. Postnatal Cardiac Autonomic Nervous Control in Pediatric Congenital Heart Disease

    Directory of Open Access Journals (Sweden)

    Ineke Nederend

    2016-04-01

    Full Text Available Congenital heart disease is the most common congenital defect. During childhood, survival is generally good but, in adulthood, late complications are not uncommon. Abnormal autonomic control in children with congenital heart disease may contribute considerably to the pathophysiology of these long term sequelae. This narrative review of 34 studies aims to summarize current knowledge on function of the autonomic nervous system in children with a congenital heart defect. Large scale studies that measure both branches of the nervous system for prolonged periods of time in well-defined patient cohorts in various phases of childhood and adolescence are currently lacking. Pending such studies, there is not yet a good grasp on the extent and direction of sympathetic and parasympathetic autonomic function in pediatric congenital heart disease. Longitudinal studies in homogenous patient groups linking autonomic nervous system function and clinical outcome are warranted.

  4. Magnitude of Morning Surge in Blood Pressure Is Associated with Sympathetic but Not Cardiac Baroreflex Sensitivity

    Science.gov (United States)

    Johnson, Aaron W.; Hissen, Sarah L.; Macefield, Vaughan G.; Brown, Rachael; Taylor, Chloe E.

    2016-01-01

    The ability of the arterial baroreflex to regulate blood pressure may influence the magnitude of the morning surge in blood pressure (MSBP). The aim was to investigate the relationships between sympathetic and cardiac baroreflex sensitivity (BRS) and the morning surge. Twenty-four hour ambulatory blood pressure was recorded in 14 young individuals. The morning surge was defined via the pre-awakening method, which is calculated as the difference between mean blood pressure values 2 h before and 2 h after rising from sleep. The mean systolic morning surge, diastolic morning surge, and morning surge in mean arterial pressures were 15 ± 2, 13 ± 1, and 11 ± 1 mmHg, respectively. During the laboratory protocol, continuous measurements of blood pressure, heart rate, and muscle sympathetic nerve activity (MSNA) were made over a 10-min period of rest. Sympathetic BRS was quantified by plotting MSNA burst incidence against diastolic pressure (sympathetic BRSinc), and by plotting total MSNA against diastolic pressure (sympathetic BRStotal). Cardiac BRS was quantified using the sequence method. The mean values for sympathetic BRSinc, sympathetic BRStotal and cardiac BRS were −1.26 ± 0.26 bursts/100 hb/mmHg, −1.60 ± 0.37 AU/beat/mmHg, and 13.1 ± 1.5 ms/mmHg respectively. Significant relationships were identified between sympathetic BRSinc and the diastolic morning surge (r = 0.62, p = 0.02) and the morning surge in mean arterial pressure (r = 0.57, p = 0.03). Low sympathetic BRS was associated with a larger morning surge in mean arterial and diastolic blood pressure. Trends for relationships were identified between sympathetic BRStotal and the diastolic morning surge (r = 0.52, p = 0.066) and the morning surge in mean arterial pressure (r = 0.48, p = 0.095) but these did not reach significance. There were no significant relationships between cardiac BRS and the morning surge. These findings indicate that the ability of the baroreflex to buffer increases in blood

  5. Co-localization of histamine and norepinephrine in sympathetic ganglia and exocytosis of endogenous histamine from cardiac sympathetic nerve endings of macaca mulatto monkey

    Institute of Scientific and Technical Information of China (English)

    Ming-kaiLI; Xiao-xingLUO; Liang-weiCHEN; ZhongCHEN; JiaMENG; JingHU; Yu-meiWU; Jing-ruMENG; ZhengHOU; XueMA

    2005-01-01

    AIM To provide the evidence about localization, biosynthesis, metabolism and release of histamine from the cardiac sympathetic nerve terminals, and endogenous sympathetic histamine could inhibit itsel frelease from the nerve terminal through the presynaptic histamine H3 receptor. METHODS Using double-labeled immunohistochemistry to observe the co-localization of histamine and NE in the superior cer-vical ganglia (SCG) of macaca mulatto monkey; Different-speed centrifugation to obtain the cardiac sympathetic nerve terminal model (the cardiac synaptosomes), spectrofluorometer and ELISA techniques to detect the release of histamine from the cardiacsynaptosomes. RESULTS ( 1 ) The coexistence of histamine and norepinephrine immunoreactivities was identified in the same neuron within SCG of macaca mulatto monkey. (2) Depolarization of macaca mulatto monkey cardiac synaptosomes with 50 mmol/L potassium caused the release of endogenous histamine,

  6. Permissive Parenting, Deviant Peer Affiliations, and Delinquent Behavior in Adolescence: the Moderating Role of Sympathetic Nervous System Reactivity.

    Science.gov (United States)

    Hinnant, J Benjamin; Erath, Stephen A; Tu, Kelly M; El-Sheikh, Mona

    2016-08-01

    The present study examined two measures of sympathetic nervous system (SNS) activity as moderators of the indirect path from permissive parenting to deviant peer affiliations to delinquency among a community sample of adolescents. Participants included 252 adolescents (M = 15.79 years; 53 % boys; 66 % European American, 34 % African American). A multi-method design was employed to address the research questions. Two indicators of SNS reactivity, skin conductance level reactivity (SCLR) and cardiac pre-ejection period reactivity (PEPR) were examined. SNS activity was measured during a baseline period and a problem-solving task (star-tracing); reactivity was computed as the difference between the task and baseline periods. Adolescents reported on permissive parenting, deviant peer affiliations, externalizing behaviors, and substance use (alcohol, marijuana). Analyses revealed indirect effects between permissive parenting and delinquency via affiliation with deviant peers. Additionally, links between permissive parenting to affiliation with deviant peers and affiliation with deviant peers to delinquency was moderated by SNS reactivity. Less SNS reactivity (less PEPR and/or less SCLR) were risk factors for externalizing problems and alcohol use. Findings highlight the moderating role of SNS reactivity in parenting and peer pathways that may contribute to adolescent delinquency and point to possibilities of targeted interventions for vulnerable youth. PMID:26667026

  7. Adrenal G protein-coupled receptor kinase-2 in regulation of sympathetic nervous system activity in heart failure

    Institute of Scientific and Technical Information of China (English)

    Katie; A; Mc; Crink; Ava; Brill; Anastasios; Lymperopoulos

    2015-01-01

    Heart failure(HF), the number one cause of death in the western world, is caused by the insufficient performance of the heart leading to tissue underperfusion in response to an injury or insult. It comprises complex interactions between important neurohormonal mechanisms that try but ultimately fail to sustain cardiac output. The most prominent such mechanism is the sympathetic(adrenergic) nervous system(SNS), whose activity and outflow are greatly elevated in HF. SNS hyperactivity confers significant toxicity to the failing heart and markedly increases HF morbidity and mortality via excessive activation of adrenergic receptors, which are G protein-coupled receptors. Thus, ligand binding induces their coupling to heterotrimeric G proteins that transduce intracellular signals. G protein signaling is turned-off by the agonist-bound receptor phosphorylation courtesy of G protein-coupled receptor kinases(GRKs), followed by βarrestin binding, which prevents the GRK-phosphorylated receptor from further interaction with the G proteins and simultaneously leads it inside the cell(receptor sequestration). Recent evidence indicates that adrenal GRK2 and βarrestins can regulate adrenal catecholamine secretion, thereby modulating SNS activity in HF. The present review gives an account of all these studies on adrenal GRKs and βarrestins in HF and discusses the exciting new therapeutic possibilities for chronic HF offered by targeting these proteins pharmacologically.

  8. Scintigraphic assessment of cardiac sympathetic innervation with I-123-metaiodobenzylguanidine in cardiomyopathy. Special reference to cardiac arrhythmia

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Takahisa; Otsuka, Nobuaki; Sone, Teruki; Mimura, Hiroaki; Yanagimoto, Shinichi; Tomomitsu, Tatsushi; Fukunaga, Masao [Kawasaki Medical School, Kurashiki, Okayama (Japan); Morita, Koichi

    1999-07-01

    Cardiac sympathetic imagings with I-123-metaiodobenzylguanidine (MIBG) were carried out in 5 cases with dilated cardiomyopathy (DCM), 26 cases with hypertrophic cardiomyopathy (HCM), and 4 cases without cardiac disease as a control to assess cardiac sympathetic innervation qualitatively and quantitatively, and to clarify the relation of MIBG accumulation to arrhythmia. MIBG scintigraphy was performed at 15 min. (early image) and 4 hr. (delayed image) after intravenous injection of MIBG 111 MBq. The MIBG uptake ratio of mediastinum (H/M) and the cardiac washout rate (WR) from early to delayed images were calculated. On both early and delayed SPECTs, MIBG uptake was assessed by defect scores (DSs). Regarding the cases with HCM, the MIBG uptake ratio, WR, and DS were also compared in cases with and without arrhythmia. In DCM, the MIBG uptake on delayed SPECT was markedly low, the H/M ratio was significantly lower, and the DS was significantly higher than in the control (all p<0.05). As for the WR, there was no significant difference between HCM, DCM and the control. In HCM, significantly reduced MIBG uptake was observed in cases with ventricular techycardia (VT) and in cases with atrial fibrillation (Af), as compared with cases without arrhythmia (all p<0.05). There results suggest that MIBG scintigraphy might be a useful tool in the assessment of cardiac sympathetic abnormalities in cardiomyopathy, especially in cases with arrhythmia. (author)

  9. Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis.

    Science.gov (United States)

    Lowin, Torsten; Straub, Rainer H

    2015-09-06

    Chronic inflammation in rheumatoid arthritis (RA) is accompanied by activation of the sympathetic nervous system, which can support the immune system to perpetuate inflammation. Several animal models of arthritis already demonstrated a profound influence of adrenergic signaling on the course of RA. Peripheral norepinephrine release from sympathetic terminals is controlled by cannabinoid receptor type 1 (CB1), which is activated by two major endocannabinoids (ECs), arachidonylethanolamine (anandamide) and 2-arachidonylglycerol. These ECs also modulate function of transient receptor potential channels (TRPs) located on sensory nerve fibers, which are abundant in arthritic synovial tissue. TRPs not only induce the sensation of pain but also support inflammation via secretion of pro-inflammatory neuropeptides. In addition, many cell types in synovial tissue express CB1 and TRPs. In this review, we focus on CB1 and transient receptor potential vanilloid 1 (TRPV1)-mediated effects on RA since most anti-inflammatory mechanisms induced by cannabinoids are attributed to cannabinoid receptor type 2 (CB2) activation. We demonstrate how CB1 agonism or antagonism can modulate arthritic disease. The concept of functional antagonism with continuous CB1 activation is discussed. Since fatty acid amide hydrolase (FAAH) is a major EC-degrading enzyme, the therapeutic possibility of FAAH inhibition is studied. Finally, the therapeutic potential of ECs is examined since they interact with cannabinoid receptors and TRPs but do not produce central side effects.

  10. Evidence for a curvilinear relationship between sympathetic nervous system activation and women's physiological sexual arousal.

    Science.gov (United States)

    Lorenz, Tierney Ahrold; Harte, Christopher B; Hamilton, Lisa Dawn; Meston, Cindy M

    2012-01-01

    There is increasing evidence that women's physiological sexual arousal is facilitated by moderate sympathetic nervous system (SNS) activation. Literature also suggests that the level of SNS activation may play a role in the degree to which SNS activity affects sexual arousal. We provide the first empirical examination of a possible curvilinear relationship between SNS activity and women's genital arousal using a direct measure of SNS activation in 52 sexually functional women. The relationship between heart rate variability (HRV), a specific and sensitive marker of SNS activation, and vaginal pulse amplitude (VPA), a measure of genital arousal, was analyzed. Moderate increases in SNS activity were associated with higher genital arousal, while very low or very high SNS activation was associated with lower genital arousal. These findings imply that there is an optimal level of SNS activation for women's physiological sexual arousal. PMID:22092348

  11. Role of the Sympathetic Nervous System in Stress-Mediated Cardiovascular Disease.

    Science.gov (United States)

    Hering, Dagmara; Lachowska, Kamila; Schlaich, Markus

    2015-10-01

    A high incidence of acute cardiovascular events and sudden cardiac death following unexpected acute emotional stress or a natural catastrophic disaster has been well-documented over the past decades. Chronic psychosocial factors have been shown to be directly linked to the development of hypertension, cardiovascular disease and stroke. Activation of various neurogenic pathways is an important mediator of acute and chronic stress-induced hypertension and heart disease. Heightened sympathetic activation has been shown to be a critical contributor linking psychogenic effects on cardiovascular regulation to serious and often fatal CV outcomes. Accordingly, several therapeutic approaches that attenuate autonomic imbalance via modulation of increased sympathetic outflow by either non-pharmacological or interventional means have been shown to alleviate clinical symptoms. Likewise stress reduction per se achieved with transcendental medicine has been linked to improved patient outcomes. Therapies that oppose adrenergic activity and/or have the potential to attenuate negative emotions are likely to reduce cardiovascular risk and its adverse consequences attributable to chronic mental stress. PMID:26318888

  12. Role of the Sympathetic Nervous System in Stress-Mediated Cardiovascular Disease.

    Science.gov (United States)

    Hering, Dagmara; Lachowska, Kamila; Schlaich, Markus

    2015-10-01

    A high incidence of acute cardiovascular events and sudden cardiac death following unexpected acute emotional stress or a natural catastrophic disaster has been well-documented over the past decades. Chronic psychosocial factors have been shown to be directly linked to the development of hypertension, cardiovascular disease and stroke. Activation of various neurogenic pathways is an important mediator of acute and chronic stress-induced hypertension and heart disease. Heightened sympathetic activation has been shown to be a critical contributor linking psychogenic effects on cardiovascular regulation to serious and often fatal CV outcomes. Accordingly, several therapeutic approaches that attenuate autonomic imbalance via modulation of increased sympathetic outflow by either non-pharmacological or interventional means have been shown to alleviate clinical symptoms. Likewise stress reduction per se achieved with transcendental medicine has been linked to improved patient outcomes. Therapies that oppose adrenergic activity and/or have the potential to attenuate negative emotions are likely to reduce cardiovascular risk and its adverse consequences attributable to chronic mental stress.

  13. Cardiac sympathetic modulation in response to apneas/hypopneas through heart rate variability analysis.

    Directory of Open Access Journals (Sweden)

    Florian Chouchou

    Full Text Available Autonomic dysfunction is recognized to contribute to cardiovascular consequences in obstructive sleep apnea/hypopnea syndrome (OSAHS patients who present predominant cardiovascular sympathetic activity that persists during wakefulness. Here, we examined 1 the factors that influence sympathetic cardiac modulation in response to apneas/hypopneas; and 2 the influence of autonomic activity during apneas/hypopneas on CA. Sixteen OSAHS patients underwent in-hospital polysomnography. RR interval (RR and RR spectral analysis using wavelet transform were used to study parasympathetic (high frequency power: HF(WV and sympathetic (low frequency power: LF(WV and LF(WV/HF(WV ratio activity before and after apnea/hypopnea termination. Autonomic cardiac modulations were compared according to sleep stage, apnea/hypopnea type and duration, arterial oxygen saturation, and presence of CA. At apnea/hypopnea termination, RR decreased (p<0.001 while LF(WV (p = 0.001 and LF(WV/HF(WV ratio (p = 0.001 increased. Only RR and LF(WV/HF(WV ratio changes were higher when apneas/hypopneas produced CA (p = 0.030 and p = 0.035, respectively or deep hypoxia (p = 0.023 and p = 0.046, respectively. Multivariate statistical analysis showed that elevated LF(WV (p = 0.006 and LF(WV/HF(WV ratio (p = 0.029 during apneas/hypopneas were independently related to higher CA occurrence. Both the arousal and hypoxia processes may contribute to sympathetic cardiovascular overactivity by recurrent cardiac sympathetic modulation in response to apneas/hypopneas. Sympathetic overactivity also may play an important role in the acute central response to apneas/hypopneas, and in the sleep fragmentation.

  14. Relationships between salt sensitivity of blood pressure and sympathetic nervous system activity: a short review of evidence.

    Science.gov (United States)

    Strazzullo, P; Barbato, A; Vuotto, P; Galletti, F

    2001-01-01

    Experimental and clinical studies provided evidence in favor of complex relationships between sympathetic nervous system activity and salt-sensitivity of blood pressure. Genetic and acquired metabolic alterations associated with a tendency to retain salt and water may generate salt-sensitivity of blood pressure and shift the pressure-natriuresis curve to the right, promoting an increase in blood pressure. Sympathetic activation is a factor contributing to this result. Chronic high dietary salt intake is followed by a derangement in mechanisms of central sympathetic inhibition and then by an enhanced peripheral sympathetic tone. This, in turn, may generate salt-sensitivity of blood pressure by affecting renal hemodynamics, tubular sodium and water handling. Insulin resistance and sodium and water retention are prompted by high-fat (as well as high carbohydrate) diets, and by an increase in body fat mass. Also, aging is a condition of impaired interactions of the above factors. A gain in weight due to reduced physical activity, not followed by a parallel decrease in calorie intake, brings to a fall in insulin sensitivity. In many cases, the natural age-related decline of renal function is associated with a reduced physical exercise, hyperinsulinemia and sodium retention; sympathetic nervous system activity is enhanced and causes an increase in blood pressure. PMID:11270585

  15. Functional coupling with cardiac muscle promotes maturation of hPSC-derived sympathetic neurons

    Science.gov (United States)

    Oh, Yohan; Cho, Gun-Sik; Li, Zhe; Hong, Ingie; Zhu, Renjun; Kim, Min-Jeong; Kim, Yong Jun; Tampakakis, Emmanouil; Tung, Leslie; Huganir, Richard; Dong, Xinzhong; Kwon, Chulan; Lee, Gabsang

    2016-01-01

    Summary Neurons derived from human pluripotent stem cells (hPSCs) are powerful tools for studying human neural development and diseases. Robust functional coupling of hPSC-derived neurons with target tissues in vitro is essential for modeling intercellular physiology in a dish and to further translational studies, but has proven difficult to achieve. Here, we derive sympathetic neurons from hPSCs and show they can form physical and functional connections with cardiac muscle cells. Using multiple hPSC reporter lines, we recapitulated human autonomic neuron development in vitro and successfully isolated PHOX2B:eGFP+ neurons that exhibit sympathetic marker expression and electrophysiological properties, and norepinephrine secretion. Upon pharmacologic and optogenetic manipulation, PHOX:eGFP+ neurons controlled beating rates of cardiomyocytes, and the physical interactions between these cells increased neuronal maturation. This study provides a foundation for human sympathetic neuron specification and for hPSC-based neuronal control of organs in a dish. PMID:27320040

  16. (Non-invasive evaluation of the cardiac autonomic nervous system by PET)

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The proposed research addresses the development, validation and application of cardiac PET imaging techniques to characterize the autonomic nervous system of the heart. PET technology has significantly matured over the last two decades. Instrument design, image processing and production of radiochemical compounds have formed an integrative approach to provide a powerful and novel imaging modality for the quantitative in vivo evaluation of the autonomic nervous system of the heart. Animal studies using novel tracers for the sympathetic and parasympathetic nerve terminals will be employed to characterize the functional integrity of nerve terminals. This work will be complemented by the development of agents which bind to postsynaptic receptor sites. The combined evaluation of presynaptic and postsynaptic neuronal function will allow a unique characterization of neuronal function. Initial development in animal studies will be followed by feasibility studies in humans. These studies are designed to test sophisticated imaging protocols in the human heart and validate the scintigraphic findings with independent markers of autonomic innervation. Subsequent clinical application in various cardiac diseases is expected to provide new insights into the neuropathophysiology of the heart.

  17. Chronic central leptin infusion restores cardiac sympathetic-vagal balance and baroreflex sensitivity in diabetic rats

    OpenAIRE

    do Carmo, Jussara M.; Hall, John E.; da Silva, Alexandre A.

    2008-01-01

    This study tested whether leptin restores sympathetic-vagal balance, heart rate (HR) variability, and cardiac baroreflex sensitivity (BRS) in streptozotocin (STZ)-induced diabetes. Sprague-Dawley rats were instrumented with arterial and venous catheters, and a cannula was placed in the lateral ventricle for intracerebroventricular (ICV) leptin infusion. Blood pressure (BP) and HR were monitored by telemetry. BRS and HR variability were estimated by linear regression between HR and BP response...

  18. Cardiac sympathetic denervation preceding motor signs in Parkinson disease

    OpenAIRE

    Goldstein, David S.; Sharabi, Yehonatan; Karp, Barbara I.; Bentho, Oladi; Saleem, Ahmed; Pacak, Karel; Eisenhofer, Graeme

    2007-01-01

    There is substantial interest in identifying biomarkers to detect early Parkinson disease (PD). Cardiac noradrenergic denervation and attenuated baroreflex-cardiovagal function occur in de novo PD, but whether these abnormalities can precede PD has been unknown. Here we report the case of a patient who had profoundly decreased left ventricular myocardial 6-[18F]fluorodopamine-derived radioactivity and low baroreflex-cardiovagal gain, 4 years before the onset of symptoms and signs of PD. The r...

  19. Differential effects of defibrillation on systemic and cardiac sympathetic activity

    OpenAIRE

    Bode, F; U. Wiegand; Raasch, W; Richardt, G.; Potratz, J

    1998-01-01

    Objective—To assess the effect of defibrillation shocks on cardiac and circulating catecholamines.
Design—Prospective examination of myocardial catecholamine balance during dc shock by simultaneous determination of arterial and coronary sinus plasma concentrations. Internal countershocks (10-34 J) were applied in 30 patients after initiation of ventricular fibrillation for a routine implantable cardioverter defibrillator test. Another 10 patients were externally cardioverted (50-360 J) for at...

  20. Impaired cardiac sympathetic innervation in symptomatic patients with long QT syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kies, Peter; Stegger, Lars; Schober, Otmar [University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); Paul, Matthias; Moennig, Gerold [University Hospital Muenster, Department for Cardiology and Angiology, Muenster (Germany); Gerss, Joachim [University of Muenster, Institute of Biostatistics and Clinical Research, Muenster (Germany); Wichter, Thomas [Marienhospital Osnabrueck, Department of Cardiology, Niels-Stensen-Kliniken, Osnabrueck (Germany); Schaefers, Michael [University of Muenster, European Institute of Molecular Imaging - EIMI, Muenster (Germany); Schulze-Bahr, Eric [University Hospital Muenster, Department for Cardiology and Angiology, Muenster (Germany); University Hospital Muenster, Institute for Genetics of Heart Diseases, Muenster (Germany)

    2011-10-15

    Increased sympathetic activation is a key modifier for arrhythmogenesis in patients with long QT syndrome (LQTS), a congenital channelopathy. Therefore, we investigated cardiac sympathetic function using {sup 123}I-metaiodobenzylguanidine (MIBG) single photon emission computed tomography (SPECT) in a cohort of symptomatic LQTS patients and correlated these findings with the underlying genotype. [{sup 123}I]MIBG SPECT was performed in 28 LQTS patients. Among these, 18 patients (64%) had a previous syncope and 10 patients (36%) survived sudden cardiac arrest. Patients were characterized in terms of genetic subtypes and QTc interval on surface ECGs. SPECT images were analysed for regional [{sup 123}I]MIBG uptake in a 33-segment bullseye scheme and compared to those obtained from 10 age-matched healthy control subjects (43 {+-} 12 years). An abnormal {sup 123}I-MIBG scan was found in 17 of 28 LQTS patients (61%) with a tracer reduction mainly located in the anteroseptal segments of the left ventricle. This finding was independent of the genetic LQTS subtype. In addition, no differences were found between LQTS patients with a QTc >500 ms vs <500 ms or those suffering from syncope vs VF (p > 0.05). A distinct regional pattern of impaired cardiac sympathetic function was identified in the majority of symptomatic LQTS patients. This innervation defect was independent of the underlying genotype and clinical disease expression. (orig.)

  1. Impaired cardiac sympathetic innervation in symptomatic patients with long QT syndrome

    International Nuclear Information System (INIS)

    Increased sympathetic activation is a key modifier for arrhythmogenesis in patients with long QT syndrome (LQTS), a congenital channelopathy. Therefore, we investigated cardiac sympathetic function using 123I-metaiodobenzylguanidine (MIBG) single photon emission computed tomography (SPECT) in a cohort of symptomatic LQTS patients and correlated these findings with the underlying genotype. [123I]MIBG SPECT was performed in 28 LQTS patients. Among these, 18 patients (64%) had a previous syncope and 10 patients (36%) survived sudden cardiac arrest. Patients were characterized in terms of genetic subtypes and QTc interval on surface ECGs. SPECT images were analysed for regional [123I]MIBG uptake in a 33-segment bullseye scheme and compared to those obtained from 10 age-matched healthy control subjects (43 ± 12 years). An abnormal 123I-MIBG scan was found in 17 of 28 LQTS patients (61%) with a tracer reduction mainly located in the anteroseptal segments of the left ventricle. This finding was independent of the genetic LQTS subtype. In addition, no differences were found between LQTS patients with a QTc >500 ms vs 0.05). A distinct regional pattern of impaired cardiac sympathetic function was identified in the majority of symptomatic LQTS patients. This innervation defect was independent of the underlying genotype and clinical disease expression. (orig.)

  2. Locus coeruleus lesions and PCOS: role of the central and peripheral sympathetic nervous system in the ovarian function of rat

    Directory of Open Access Journals (Sweden)

    Farideh Zafari Zangeneh

    2012-01-01

    Full Text Available Polycystic ovary syndrome (PCOS is a complex endocrine and metabolic disorder associated with ovulatory dysfunction”. “Autonomic and central nervous systems play important roles in the regulation of ovarian physiology”. The noradrenergic nucleus locus coeruleus (LC plays a central role in the regulation of the sympathetic nervous system and synaptically connected to the preganglionic cell bodies of the ovarian sympathetic pathway and its activation is essential to trigger spontaneous or induced LH surges. This study evaluates sympathetic outflow in central and peripheral pathways in PCO rats. Objective: Our objectives in this study were (1 to estimate LC activity in rats with estradiol valerate (EV-induced PCO; (2 to antagonized alpha2a adrenoceptor in systemic conditions with yohimbine. Materials and Methods: Forty two rats were divided into two groups: 1 LC and yohimbine and 2 control. Every group subdivided in two groups: eighteen rats were treated with estradiol valerate for induction of follicular cysts and the remainders were sesame oil groups. Results: Estradiol concentration was significantly augmented by the LC lesion in PCO rats (p<0.001, while LC lesion could not alter serum concentrations of LH and FSH, like yohimbine. The morphological observations of ovaries of LC lesion rats showed follicles with hyperthecosis, but yohimbine reduced the number of cysts, increased corpus lutea and developed follicles. Conclusion: Rats with EV-induced PCO increased sympathetic activity. LC lesion and yohimbine decreased the number of cysts and yohimbine increased corpus lutea and developed follicles in PCO rats.

  3. Psychobiology of PTSD in the Acute Aftermath of Trauma: Integrating Research on Coping, HPA Function and Sympathetic Nervous System Activity

    OpenAIRE

    Morris, Matthew C.; Rao, Uma

    2012-01-01

    Research on the psychobiological sequelae of trauma has typically focused on long-term alterations in individuals with chronic posttraumatic stress disorder (PTSD). Far less is known about the nature and course of psychobiological risk factors for PTSD during the acute aftermath of trauma. In this review, we summarize data from prospective studies focusing on the relationships among sympathetic nervous system activity, hypothalamic-pituitary-adrenal function, coping strategies and PTSD sympto...

  4. Tonic arterial chemoreceptor activity contributes to cardiac sympathetic activation in mild ovine heart failure.

    Science.gov (United States)

    Xing, Daniel T; May, Clive N; Booth, Lindsea C; Ramchandra, Rohit

    2014-08-01

    Heart failure (HF) is associated with a large increase in cardiac sympathetic nerve activity (CSNA), which has detrimental effects on the heart and promotes arrhythmias and sudden death. There is increasing evidence that arterial chemoreceptor activation plays an important role in stimulating renal sympathetic nerve activity (RSNA) and muscle sympathetic nerve activity in HF. Given that sympathetic nerve activity to individual organs is differentially controlled, we investigated whether tonic arterial chemoreceptor activation contributes to the increased CSNA in HF. We recorded CSNA and RSNA in conscious normal sheep and in sheep with mild HF induced by rapid ventricular pacing (ejection fraction chemoreceptor function was evaluated by supplementing room air with 100% intranasal oxygen (2-3 l min(-1)) for 20 min, thereby deactivating chemoreceptors. The effects of hyperoxia on resting levels and baroreflex control of heart rate, CSNA and RSNA were determined. In HF, chemoreceptor deactivation induced by hyperoxia significantly reduced CSNA [90 ± 2 versus 75 ± 5 bursts (100 heart beats)(-1), P chemoreceptor deactivation reduced heart rate without a significant effect on CSNA or RSNA. In summary, deactivation of peripheral chemoreceptors during HF reduced the elevated levels of CSNA, indicating that tonic arterial chemoreceptor activation plays a critical role in stimulating the elevated CSNA in HF.

  5. Increased cardiac sympathetic activity in patients with hypothyroidism as determined by iodine-123 metaiodobenzylguanidine scintigraphy

    International Nuclear Information System (INIS)

    Clinical manifestations of hypothyroidism, such as bradycardia, suggest decreased sympathetic tone. However, previous studies in patients with hypothyroidism have suggested that increased plasma noradrenaline (NA) levels represent enhanced general sympathetic activity. As yet, cardiac sympathetic activity (CSA) in hypothyroidism has not been clarified. To evaluate CSA in patients with hypothyroidism, iodine-123 metaiodobenzylguanidine (MIBG) scintigraphy was performed in eight patients with hypothyroidism before therapy and in ten normal control patients. Planar images were obtained at 15 min and 4 h after injection of MIBG. The ratio of early myocardial uptake to the total injected dose (MU) and myocardial clearance of MIBG within 4 h p.i. (MC) were calculated. Plasma NA was also measured, and echocardiography was performed in all patients. Those patients with hypothyroidism in the euthyroid state after medical therapy were also evaluated in a similar manner. Left ventricular ejection fraction, measured by echocardiography, did not differ significantly between the groups. NA, MU and MC were significantly higher in patients with hypothyroidism than in controls, and all parameters were decreased after therapy. MC was well correlated with NA in hypothyroidism (r=0.86) before therapy. We conclude that CSA is increased in patients with hypothyroidism, in parallel with the enhanced general sympathetic activity. (orig.). With 4 figs., 2 tabs

  6. Sympathetic restraint of respiratory sinus arrhythmia: implications for vagal-cardiac tone assessment in humans

    Science.gov (United States)

    Taylor, J. A.; Myers, C. W.; Halliwill, J. R.; Seidel, H.; Eckberg, D. L.

    2001-01-01

    Clinicians and experimentalists routinely estimate vagal-cardiac nerve traffic from respiratory sinus arrhythmia. However, evidence suggests that sympathetic mechanisms may also modulate respiratory sinus arrhythmia. Our study examined modulation of respiratory sinus arrhythmia by sympathetic outflow. We measured R-R interval spectral power in 10 volunteers that breathed sequentially at 13 frequencies, from 15 to 3 breaths/min, before and after beta-adrenergic blockade. We fitted changes of respiratory frequency R-R interval spectral power with a damped oscillator model: frequency-dependent oscillations with a resonant frequency, generated by driving forces and modified by damping influences. beta-Adrenergic blockade enhanced respiratory sinus arrhythmia at all frequencies (at some, fourfold). The damped oscillator model fit experimental data well (39 of 40 ramps; r = 0.86 +/- 0.02). beta-Adrenergic blockade increased respiratory sinus arrhythmia by amplifying respiration-related driving forces (P arrhythmia is mediated simply by vagal-cardiac nerve activity. These results have important implications for clinical and experimental estimation of human vagal cardiac tone.

  7. Clinical relationship of myocardial sympathetic nervous activity to cardiovascular functions in chronic heart failure: assessment by myocardial scintigraphy with 123I-metaiodobenzylguanidine.

    Science.gov (United States)

    Wada, Yukoh; Miura, Masaetsu; Fujiwara, Satomi; Mori, Shunpei; Seiji, Kazumasa; Kimura, Tokihisa

    2003-12-01

    The aim of this study was to clarify the relationship between cardiac sympathetic nervous activity (SNA) assessed by radioiodinated metaiodobenzylguanidine (123I-MIBG), an analogue of norepinephrine and cardiovascular functions in patients with chronic heart failure (CHF). Subjects were 17 patients with CHF. A dose of 111 MBq of 123I-MIBG was administered intravenously, and 5-minute anterior planar images were obtained 15 minutes (early image) and 3 hours (delayed image) after the injection. The heart/mediastinum (H/M) count ratio was defined to quantify cardiac 123I-MIBG uptake. The washout ratio (WR) of 123I-MIBG from the heart was calculated as follows: (early counts-delayed counts)/early counts x 100 (%). Echocardiography was performed on all patients within 1 week of 123I-MIBG scintigraphy to measure stroke volume index (SVI). Blood pressure and heart rate (HR) in the resting state were also recorded to calculate cardiovascular functions including cardiac output, pulse pressure (PP), and mean blood pressure. Significant linear correlations were found between the early H/M ratio of 123I-MIBG and SVI, and between the delayed H/M ratio of 123I-MIBG and SVI, respectively. WR of 123I-MIBG was correlated with HR, and was inversely correlated with SVI and with PP, respectively. It is likely that a decrease in SVI is associated with enhanced cardiac SNA in severe CHF. 123I-MIBG scintigraphy is effective in assessing the cardiac functional status and SNA in patients with CHF in vivo. Moreover, changes in PP and HR indicate well alteration in SNA. PMID:14690018

  8. Using Lorenz plot and Cardiac Sympathetic Index of heart rate variability for detecting seizures for patients with epilepsy.

    Science.gov (United States)

    Jeppesen, Jesper; Beniczky, Sandor; Johansen, Peter; Sidenius, Per; Fuglsang-Frederiksen, Anders

    2014-01-01

    Tachycardia is often seen during epileptic seizures, but it also occurs during physical exercise. In order to assess whether focal epileptic seizures can be detected by short term moving window Heart Rate Variability (HRV) analysis, we modified the geometric HRV method, Lorenz plot, to consist of only 30, 50 or 100 R-R intervals per analyzed window. From each window we calculated the longitudinal (L) and transverse (T) variability of Lorenz plot to retrieve the Cardiac Sympathetic Index (CSI) as (L/T) and "Modified CSI" (described in methods), and compared the maximum during the patient's epileptic seizures with that during the patient's own exercise and non-seizure sessions as control. All five analyzed patients had complex partial seizures (CPS) originating in the temporal lobe (11 seizures) during their 1-5 days long term video-EEG monitoring. All CPS with electroencephalographic correlation were selected for the HRV analysis. The CSI and Modified CSI were correspondently calculated after each heart beat depicting the prior 30, 50 and 100 R-R intervals at the time. CSI (30, 50 and 100) and Modified CSI (100) showed a higher maximum peak during seizures than exercise/non-seizure (121-296%) for 4 of the 5 patients within 4 seconds before till 60 seconds after seizure onset time even though exercise maximum HR exceeded that of the seizures. The results indicate a detectable, sudden and inordinate shift towards sympathetic overdrive in the sympathovagal balance of the autonomic nervous system just around seizure-onset for certain patients. This new modified moving window Lorenz plot method seems promising way of constructing a portable ECG-based epilepsy alarm for certain patients with epilepsy who needs aid during seizure.

  9. Mean 24-hours sympathetic nervous system activity decreases during head-down tilted bed rest but not during microgravity

    Science.gov (United States)

    Christensen, Nj; Heer, M.; Ivanova, K.; Norsk, P.

    Sympathetic nervous system activity is closely related to gravitational stress in ground based experiments. Thus a high activity is present in the standing-up position and a very low activity is observed during acute head-out water immersion. Adjustments in sympathetic activity are necessary to maintain a constant blood pressure during variations in venous return. Head-down tilted bed rest is applied as a model to simulate changes observed during microgravity. The aim of the present study was to test the hypothesis that mean 24-hours sympathetic activity was low and similar during space flight and in ground based observation obtained during long-term head-down tilted bed rest. Forearm venous plasma noradrenaline was measured by a radioenzymatic technique as an index of muscle sympathetic activity and thrombocyte noradrenaline and adrenaline were measured as indices of mean 24-hours sympathoadrenal activity. Previous results have indicated that thrombocyte noradrenaline level has a half-time of 2 days. Thus to reflect sympathetic activity during a specific experiment the study period must last for at least 6 days and a sample must be obtained within 12 hours after the experiment has ended. Ten normal healthy subjects were studied before and during a 14 days head-down tilted bed rest as well as during an ambulatory study period of a similar length. The whole experiment was repeated while the subjects were on a low calorie diet. Thrombocyte noradrenaline levels were studied in 4 cosmonauts before and within 12 hours after landing after more than 7 days in flight. Thrombocyte noradrenaline decreased markedly during the head-down tilted bed rest (pnoradrenaline decreased in the adaptation period but not during the intervention. During microgravity thrombocyte noradrenaline increased in four cosmonauts and the percentage changes were significantly different in cosmonauts and in subjects participating in the head down tilted bed rest study (170± 29% (Mean± SEM) vs. 57

  10. Influences of Vestibular System on Sympathetic Nervous System. Implications for countermeasures.

    Science.gov (United States)

    Denise, Pr Pierre

    As gravity is a direct and permanent stress on body fluids, muscles and bones, it is not surpris-ing that weightlessness has important effects on cardiovascular and musculo-skeletal systems. However, these harmful effects do not totally result from the removal of the direct stress of gravity on these organs, but are also partially and indirectly mediated by the vestibular sys-tem. Besides its well known crucial role in spatial orientation and postural equilibrium, it is now clear that the vestibular system is also involved in the regulation of other important physi-ological systems: respiratory and cardiovascular systems, circadian regulation, food intake and even bone mineralization. The neuroanatomical substrate for these vestibular-mediated reg-ulations is still poorly defined, but there is much evidence that vestibular system has strong impacts not only on brainstem autonomic centers but on many hypothalamic nuclei as well. As autonomic nervous system controls almost all body organs, bringing into play the vestibular system by hypergravity or microgravity could virtually affects all major physiological func-tions. There is experimental evidence that weightlessness as well as vestibular lesion induce sympathetic activation thus participating in space related physiological alterations. The fact that some effects of weightlessness on biological systems are mediated by the vestibular system has an important implication for using artificial gravity as a countermeasure: artificial gravity should load not only bones and the cardiovascular system but the vestibular system as well. In short-arm centrifuges, the g load at the head level is low because the head is near the axis of rotation. If the vestibular system is involved in cardiovascular deconditioning and bone loss during weightlessness, it would be more effective to significantly stimulate it and thus it would be necessary to place the head off-axis. Moreover, as the otolithic organs are non longer stimu-lated in

  11. Renal sympathetic denervation prevents the development of pulmonary arterial hypertension and cardiac dysfunction in dogs.

    Science.gov (United States)

    Hu, Wei; Yu, Sheng-Bo; Chen, Liao; Guo, Rui-Qiang; Zhao, Qing-Yan

    2015-08-01

    The renin-angiotensin-aldosterone system is activated in pulmonary arterial hypertension (PAH) patients, and this activation may have long-term negative effects on the progression of PAH. The purpose of this study was to evaluate the effects of transcatheter renal sympathetic denervation (RSD) on the development of pulmonary arterial hypertension and cardiac dysfunction in dogs using two-dimensional speckle tracking imaging. Twenty-two dogs were randomly divided into three groups: control group (n = 7), PAH group (n = 8), and PAH + RSD group (n = 7). All dogs were assessed using two-dimensional speckle tracking imaging. The ventricular strain, ventricular synchrony, left ventricular (LV) twist, and torsion rate were analyzed to evaluate cardiac function. After 8 weeks, the right ventricular lateral longitudinal strain and the septum longitudinal strain were reduced in the PAH group compared with the control group (p dogs.

  12. Prognostic value of sympathetic innervation and cardiac asynchrony in dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Manrique, Alain; Hitzel, Anne; Vera, Pierre [Rouen University Hospital - Henri Becquerel Center, Nuclear Medicine, Rouen (France); Bernard, Mathieu; Bauer, Fabrice [Rouen University Hospital, Cardiology, Rouen (France); Menard, Jean-Francois [Rouen University Hospital, Biostatistics, Rouen (France); Sabatier, Remi [Caen University Hospital, Cardiology, Caen (France); Jacobson, Arnold [GE Healthcare, Princeton, NJ (United States); Agostini, Denis [Caen University Hospital, Nuclear Medicine, Caen (France)

    2008-11-15

    The purpose of the study is to examine prognostic values of cardiac I-123 metaiodobenzylguanidine (MIBG) uptake and cardiac dyssynchrony in patients with dilated cardiomyopathy (DCM). Ninety-four patients with non-ischemic DCM underwent I-123 MIBG imaging for assessing cardiac sympathetic innervation and equilibrium radionuclide angiography. Mean phase angles and SD of the phase histogram were computed for both right ventricular (RV) and left ventricular (LV). Phase measures of interventricular (RV-LV) and intraventricular (SD-RV and SD-LV) asynchrony were computed. Most patients were receiving beta-blockers (89%) and angiotensin-converting enzyme inhibitors (88%). One patient (1%) was lost to follow-up, six had cardiac death (6.4%), eight had heart transplantation (8.6%), and seven had unplanned hospitalization for heart failure (7.5%; mean follow-up: 37 {+-} 16 months). Patients with poor clinical outcome were older, had higher The New York Heart Association functional class, impaired right ventricular ejection fraction and left ventricular ejection fraction, and impaired cardiac I-123 MIBG uptake. On multivariate analysis, I-123 MIBG heart-to-mediastinum (H/M) uptake ratio <1.6 was the only predictor of both primary (cardiac death or heart transplantation, RR = 7.02, p < 0.01) and secondary (cardiac death, heart transplantation, or recurrent heart failure, RR = 8.10, p = 0.0008) end points. In patients receiving modern medical therapy involving beta-blockers, I-123 MIBG uptake, but not intra-LV asynchrony, was predictive of clinical outcome. The impact of beta-blockers on the prognostic value of ventricular asynchrony remains to be clarified. (orig.)

  13. Modeling and imaging cardiac sympathetic neurodegeneration in Parkinson’s disease

    OpenAIRE

    Joers, Valerie; Emborg, Marina E.

    2014-01-01

    Parkinson’s disease (PD) is currently recognized as a multisystem disorder affecting several components of the central and peripheral nervous system. This new understanding of PD helps explain the complexity of the patients’ symptoms while challenges researchers to identify new diagnostic and therapeutic strategies. Cardiac neurodegeneration and dysautonomia affect PD patients and are associated with orthostatic hypotension, fatigue, and abnormal control of electrical heart activity. They can...

  14. [Non-invasive evaluation of the cardiac autonomic nervous system by PET]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data.

  15. [Non-invasive evaluation of the cardiac autonomic nervous system by PET

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data.

  16. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  17. Psychobiology of PTSD in the acute aftermath of trauma: Integrating research on coping, HPA function and sympathetic nervous system activity.

    Science.gov (United States)

    Morris, Matthew C; Rao, Uma

    2013-02-01

    Research on the psychobiological sequelae of trauma has typically focused on long-term alterations in individuals with chronic posttraumatic stress disorder (PTSD). Far less is known about the nature and course of psychobiological risk factors for PTSD during the acute aftermath of trauma. In this review, we summarize data from prospective studies focusing on the relationships among sympathetic nervous system activity, hypothalamic-pituitary-adrenal function, coping strategies and PTSD symptoms during the early recovery (or non-recovery) phase. Findings from pertinent studies are integrated to inform psychobiological profiles of PTSD-risk in children and adults in the context of existing models of PTSD-onset and maintenance. Data regarding bidirectional relations between coping strategies and stress hormones is reviewed. Limitations of existing literature and recommendations for future research are discussed.

  18. [Non-invasive evaluation of the cardiac autonomic nervous system by PET]. Progress report, September 1991--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The proposed research addresses the development, validation and application of cardiac PET imaging techniques to characterize the autonomic nervous system of the heart. PET technology has significantly matured over the last two decades. Instrument design, image processing and production of radiochemical compounds have formed an integrative approach to provide a powerful and novel imaging modality for the quantitative in vivo evaluation of the autonomic nervous system of the heart. Animal studies using novel tracers for the sympathetic and parasympathetic nerve terminals will be employed to characterize the functional integrity of nerve terminals. This work will be complemented by the development of agents which bind to postsynaptic receptor sites. The combined evaluation of presynaptic and postsynaptic neuronal function will allow a unique characterization of neuronal function. Initial development in animal studies will be followed by feasibility studies in humans. These studies are designed to test sophisticated imaging protocols in the human heart and validate the scintigraphic findings with independent markers of autonomic innervation. Subsequent clinical application in various cardiac diseases is expected to provide new insights into the neuropathophysiology of the heart.

  19. The Aqueous Calyx Extract of Hibiscus sabdariffa Lowers Blood Pressure and Heart Rate via Sympathetic Nervous System Dependent Mechanisms.

    Science.gov (United States)

    Aliyu, B; Oyeniyi, Y J; Mojiminiyi, F B O; Isezuo, S A; Alada, A R A

    2014-01-01

    The antihypertensive effect of Hibiscus sabdariffa (HS) has been validated in animals and man. This study tested the hypothesis that its hypotensive effect may be sympathetically mediated. The cold pressor test (CPT) and handgrip exercise (HGE) were performed in 20 healthy subjects before and after the oral administration of 15mg/Kg HS. The blood pressure (BP) and heart rate (HR) responses were measured digitally. Mean arterial pressure (MAP; taken as representative BP) was calculated. Results are expressed as mean ±SEM. P<0.05 was considered significant. CPT without HS resulted in a significant rise in MAP and HR (111.1±2.1mmHg and 100.8±2.0/min) from the basal values (97.9±1.9mmHg and 87.8±2.1/min; P<0.0001 respectively). In the presence of HS, CPT-induced changes (ΔMAP=10.1±1.7mmHg; ΔHR= 8.4±1.0/min) were significantly reduced compared to its absence (ΔMAP= 13.2±1.2mmHg; ΔHR= 13.8±1.6/min; P<0.0001 respectively). The HGE done without HS also resulted in an increase in MAP and HR (116.3±2.1mmHg and 78.4±1.2/min) from the basal values (94.8±1.6mmHg and 76.1±1.0/min; p<0.0001 respectively). In the presence of HS the HGE-induced changes (ΔMAP= 11.5±1.0mmHg; ΔHR= 3.3±1.0/min) were significantly decreased compared to its absence (ΔMAP=21.4±1.2mmHg; ΔHR= 12.8±2.0/min; P<0.0001 respectively). The CPT and HGE -induced increases in BP and HR suggest Sympathetic nervous system activation. These increases were significantly dampened by HS suggesting, indirectly, that its hypotensive effect may be due to an attenuation of the discharge of the sympathetic nervous system. PMID:26196579

  20. Effects of renal sympathetic denervation on post-myocardial infarction cardiac remodeling in rats.

    Directory of Open Access Journals (Sweden)

    Jialu Hu

    Full Text Available OBJECTIVE: To investigate the therapeutic effects of renal denervation (RD on post- myocardial infarction (MI cardiac remodeling in rats, the most optimal time for intervention and the sustainability of these effects. METHODS: One hundred SPF male Wistar rats were randomly assigned to N group (Normal, n=10, MI group(MI, n=20,RD group (RD, n=10, RD3+MI (MI three days after RD, n=20, MI1+RD (RD one day after MI, n=20, MI7+RD (RD seven days after MI, n=20. MI was produced through thoracotomic ligation of the anterior descending artery. RD was performed through laparotomic stripping of the renal arteriovenous adventitial sympathetic nerve. Left ventricular function, hemodynamics, plasma BNP, urine volume, urine sodium excretion and other indicators were measured four weeks after MI. RESULTS: (1 The left ventricular function of the MI group significantly declined (EF<40%, plasma BNP was elevated, urine output was significantly reduced, and 24-hour urine sodium excretion was significantly reduced. (2 Denervation can be achieved by surgically stripping the arteriovenous adventitia, approximately 3 mm from the abdominal aorta. (3 In rats with RD3+MI, MI1+RD and MI7+RD, compared with MI rats respectively, the LVEF was significantly improved (75 ± 8.4%,69 ± 3.8%,73 ± 5.5%, hemodynamic indicators were significantly improved, plasma BNP was significantly decreased, and the urine output was significantly increased (21.3 ± 5 ml,23.8 ± 5.4 ml,25.2 ± 8.7 ml. However, the urinary sodium excretion also increased but without significant difference. CONCLUSIONS: RD has preventive and therapeutic effects on post-MI cardiac remodeling.These effects can be sustained for at least four weeks, but there were no significant differences between denervation procedures performed at different times in the course of illness. Cardiac function, hemodynamics, urine volume and urine sodium excretion in normal rats were not affected by RD.

  1. Proposal for standardization of I-123-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology

    NARCIS (Netherlands)

    A. Flotats; I. Carrio; D. Agostini; D. Le Guludec; C. Marcassa; M. Schaffers; G.A. Somsen; M. Unlu; H.J. Verberne

    2010-01-01

    This proposal for standardization of I-123-metaiodobenzylguanidine (iobenguane, MIBG) cardiac sympathetic imaging includes recommendations for patient information and preparation, radiopharmaceutical, injected activities and dosimetry, image acquisition, quality control, reconstruction methods, atte

  2. Non-invasive assessment of the effect of cardiac sympathetic innervation on metabolism of the human heart

    Energy Technology Data Exchange (ETDEWEB)

    Bengel, F.M.; Ziegler, S.I.; Nekolla, S.G.; Odaka, K.; Schwaiger, M. [Muenchen Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin; Ueberfuhr, P.; Reichart, B. [Muenchen Univ. (Germany). Herzchirurgische Klinik

    2000-11-01

    The role of cardiac sympathetic nerves in the regulation of myocardial metabolism is not well defined. Owing to the presence of incomplete reinnervation, heart transplant recipients provide a unique model to study the effects of efferent sympathetic innervation. Using this model, we sought to determine the influence of cardiac sympathetic signals on substrate utilisation and overall oxidative metabolism. In 21 transplant recipients, positron emission tomography was applied to determine sympathetic innervation with the noradrenaline analogue carbon-11 hydroxyephedrine, oxidative metabolism with carbon-11 acetate (n=14), and glucose utilisation with fluorine-18 fluorodeoxyglucose (n=7). The reinnervated area comprised 22%{+-}20% of the left ventricle. Oxidative metabolism was similar in denervated and reinnervated myocardium [0.06{+-}0.01 vs 0.06{+-}0.01/min for k(mono)], while glucose uptake was significantly higher in denervated myocardium (6.9{+-}6.6 vs 6.0{+-}6.2 {mu}mol/min/100 g; P=0.03). Reinnervation mainly occurred in the territory of the left anterior descending artery, where retention of {sup 11}C-hydroxyephedrine (6.8{+-}2.7%/min) was higher compared with territories of the left circumflex (4.1{+-}1.7%/min; P<0.01) and right coronary (3.8{+-}1.1%/min; P<0.01) arteries. Oxidative metabolism was similar in all three territories, but compared with the reinnervated territory of the left anterior descending artery (53%{+-}16% of maximum), relative FDG uptake was higher in territories of the left circumflex (76%{+-}6%, P<0.01) and right coronary (67%{+-}10%, P<0.05) arteries. Similar degrees of regional heterogeneity were not observed in normals. Thus, while overall energy production through oxidative metabolism remains unaffected, cardiac utilisation of glucose in the fasting state is increased in the absence of catecholamine uptake sites. Innervated myocardium, however, may preferentially utilise free fatty acids, suggesting a role for sympathetic tone in

  3. Evaluation of cardiac sympathetic neuronal integrity in diabetic patients using iodine-123 metaiodobenzylguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Jung [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Lee, Jong Doo [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Ryu, Young Hoon [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Jeon, Pyoung [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Shim, Yong Woon [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Yoo, Hyung Sik [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Park, Chang Yun [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Lim, Seung Gil [Department of Endocrinology, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of)

    1996-04-01

    Autonomic dysfunction is associated with increased mortality in diabetic patients. To evaluate the cardiac autonomic dysfunction in these patients, a prospective study was undertaken using iodine-123 metaiodobenzylguanidine (MIBG) single-photon emission tomography (SPET). The study groups consisted of ten diabetic patients with cardiac autonomic neuropathy (group I) and six without autonomic neuropathy (group II). Autonomic nervous function tests, thallium scan, radionuclide ventriculographic data including ejection fraction and wall motion study, and 24-h urine catecholamine levels were evaluated. {sup 123}I-MIBG SPET was performed at 30 min and 4 h following injection of 3 mCi of {sup 123}I-MIBG in groups I and II and in normal subjects (n=4). On planar images, the heart to mediastinum (H/M) ratio was measured. Defect pattern and severity of MIBG uptake were qualitatively analysed on SPET. Compared with control subjects, diabetic patients had a reduced H/M ratio regardless of the presence of clinical autonomic neuropathy. There was no difference in H/M ratio between groups I and II. On SPET images, focal or diffuse defects were demonstrated in all patients in group I, and in five of the six patients in group II. The extent of defects tended to be more pronounced in group I than in group II. In conclusion, {sup 123}I-MIBG scan was found to be a more sensitive method than clinical autonomic nervous function tests for the detection of autonomic neuropathy in diabetes. (orig.). With 3 figs., 1 tab.

  4. Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: Intermediate and long-term follow-up

    OpenAIRE

    Vaseghi, M; Gima, J; Kanaan, C; Ajijola, OA; Marmureanu, A; Mahajan, A.; Shivkumar, K

    2014-01-01

    Background Left and bilateral cardiac sympathetic denervation (CSD) have been shown to reduce burden of ventricular arrhythmias acutely in a small number of patients with ventricular tachyarrhythmia (VT) storm. The effects of this procedure beyond the acute setting are unknown. Objective The purpose of this study was to evaluate the intermediate and long-term effects of left and bilateral CSD in patients with cardiomyopathy and refractory VT or VT storm. Methods Retrospective analysis of medi...

  5. Reactive oxygen species in paraventricular nucleus involved in cardiac sympathetic afferent reflex in rats

    Institute of Scientific and Technical Information of China (English)

    Feng Zhang; Yang Yu; Ying Zhang; Yingchun Li; Luqing Zhang; Lingling Fan; Yingya Gao; Guoqing Zhu

    2005-01-01

    Objective: The present study was designed to determine if reactive oxygen species (ROS) in the paraventricularnucleus (PVN) were involved in modulating cardiac sympathetic afferent reflex (CSAR) in anesthetized rats. Methods: Malondialdehyde(MDA), the end product of lipid peroxidation, in the PVN, was determined by thiobarbituric acid (TBA) spectrometric method. Renalsympathetic nerve activity (RSNA) and arterial pressure were recorded in sinoaortic-denervated and cervical-vagotomized rats. The CSARwas evaluated by the response of the RSNA evoked by epicardial application of bradykinin (BK, 0.4 μg). Results: The MDA in the PVNwas significantly increased after epicardial application of BK compared with control (2.0 + 0.3 vs 0.8 + 0.1 nmol/mg protein, P < 0.01 ).Microinjectionof a superoxide anion scavenger, tiron (20 nmol) into the PVN significantly inhibited the CSAR evoked by BK (12.3 ± 1.9vs 4.2+ 1.2%, P < 0.01) and decreased MDA level (1.9±0.3 vs 0.6+0.1 nmol/mg protein, P <0.01) compared with control.Conclusion: The ROS in the PVN is involved in modulating the CSAR in rats.

  6. Links between adolescent sympathetic and parasympathetic nervous system functioning and interpersonal behavior over time.

    Science.gov (United States)

    Diamond, Lisa M; Cribbet, Matthew R

    2013-06-01

    Extensive research has investigated links between individual differences in youths' autonomic nervous system (ANS) functioning and psychological outcomes related to emotion regulation, yet little of this research has examined developmental change. The study tested whether individual differences in youths' tonic and stress-induced ANS functioning, assessed at age 14, and changes in ANS functioning from age 14 to 16 predicted corresponding changes in youths' behavioral warmth, as displayed during videotaped mother-child conflict interactions conducted at age 14 and 16. Increased behavioral warmth was predicted by increased baseline respiratory sinus arrhythmia (RSA), increased SCL stress reactivity, decreased RSA stress reactivity (i.e., greater vagal suppression), and decreased baseline SCL. There was also an interaction between RSA stress reactivity at age 14 and changes in maternal warmth from age 14 to 16, such that increased maternal warmth was only associated with increased adolescent warmth for adolescents with lower RSA stress reactivity at age 14.

  7. Clinical usefulness of {sup 123}I-metaiodobenzylguanidine myocardial scintigraphy in diabetic patients with cardiac sympathetic nerve dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Miyanaga, Hajime; Yoneyama, Satoshi; Kamitani, Tadaaki; Kawasaki, Shingo; Takahashi, Toru; Kunishige, Hiroshi [Matsushita Memorial Hospital, Osaka (Japan)

    1995-09-01

    To assess the clinical utility of {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy in evaluating cardiac sympathetic nerve disturbance in diabetic patients, we performed MIBG scintigraphy in 18 diabetic patients and 11 normal controls. Diabetic patients with symptomatic neuropathy (DM2) had a significantly lower heart to mediastinum uptake ratio than did those without neuropathy or normal controls in initial and delayed images (initial image, 1.90{+-}0.27 vs 2.32{+-}0.38, 2.41{+-}0.40, p<0.01; delayed image, 1.80{+-}0.31 vs 2.48{+-}0.35, 2.56{+-}0.28, p<001, respectively). Defect score, assessed visually, were higher in DM2 patients than in patients in the other two groups (initial image, 7{+-}2.6 vs 1.5{+-}1.9, 0.7{+-}0.9; delayed image 10.6{+-}3.3 vs 4.0{+-}2.5, 1.7{+-}1.6 p<0.01, respectively). The maximum washout rate in DM2 patients was also higher than those in patients in the other two groups. The findings of these indices obtained from MIBG scintigraphy coincided with the % low-frequency power extracted from heart rate fluctuations using a power spectral analysis and the results of the Schellong test, which were used to evaluate sympathetic function. These results suggest that MIBG scintigraphy may be useful for evaluating cardiac sympathetic nerve disturbance in patients with diabetes. (author).

  8. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system.

    Science.gov (United States)

    Kim, Minji; Goto, Tsuyoshi; Yu, Rina; Uchida, Kunitoshi; Tominaga, Makoto; Kano, Yuriko; Takahashi, Nobuyuki; Kawada, Teruo

    2015-12-17

    Brown adipose tissue (BAT) plays a central role in regulating energy homeostasis, and may provide novel strategies for the treatment of human obesity. BAT-mediated thermogenesis is regulated by mitochondrial uncoupling protein 1 (UCP1) in classical brown and ectopic beige adipocytes, and is controlled by sympathetic nervous system (SNS). Previous work indicated that fish oil intake reduces fat accumulation and induces UCP1 expression in BAT; however, the detailed mechanism of this effect remains unclear. In this study, we investigated the effect of fish oil on energy expenditure and the SNS. Fish oil intake increased oxygen consumption and rectal temperature, with concomitant upregulation of UCP1 and the β3 adrenergic receptor (β3AR), two markers of beige adipocytes, in the interscapular BAT and inguinal white adipose tissue (WAT). Additionally, fish oil intake increased the elimination of urinary catecholamines and the noradrenaline (NA) turnover rate in interscapular BAT and inguinal WAT. Furthermore, the effects of fish oil on SNS-mediated energy expenditure were abolished in transient receptor potential vanilloid 1 (TRPV1) knockout mice. In conclusion, fish oil intake can induce UCP1 expression in classical brown and beige adipocytes via the SNS, thereby attenuating fat accumulation and ameliorating lipid metabolism.

  9. Effects of Antidepressants, but not Psychopathology, on Cardiac Sympathetic Control : A Longitudinal Study

    NARCIS (Netherlands)

    Licht, Carmilla M. M.; Penninx, Brenda W. J. H.; de Geus, Eco J. C.

    2012-01-01

    Increased sympathetic activity has been hypothesized to have a role in the elevated somatic disease risk in persons with depressive or anxiety disorders. However, it remains unclear whether increased sympathetic activity reflects a direct effect of anxiety or depression or an indirect effect of anti

  10. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis

    OpenAIRE

    Jessica M. F. Hall; desAnges Cruser; Alan Podawiltz; Mummert, Diana I.; Harlan Jones; Mummert, Mark E.

    2012-01-01

    Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental i...

  11. Interaction between cardiac sympathetic afferent reflex and chemoreflex is mediated by the NTS AT1 receptors in heart failure.

    Science.gov (United States)

    Wang, Wei-Zhong; Gao, Lie; Wang, Han-Jun; Zucker, Irving H; Wang, Wei

    2008-09-01

    Several sympathoexcitatory reflexes, such as the cardiac sympathetic afferent reflex (CSAR) and arterial chemoreflex, are significantly augmented and contribute to elevated sympathetic outflow in chronic heart failure (CHF). This study was undertaken to investigate the interaction between the CSAR and the chemoreflex in CHF and to further identify the involvement of angiotensin II type 1 receptors (AT1Rs) in the nucleus of the tractus solitarius (NTS) in this interaction. CHF was induced in rats by coronary ligation. Acute experiments were performed in anesthetized rats. The chemoreflex-induced increase in cardiovascular responses was significantly greater in CHF than in sham-operated rats after either chemical or electrical activation of the CSAR. The inhibition of the CSAR by epicardial lidocaine reduced the chemoreflex-induced effects in CHF rats but not in sham-operated rats. Bilateral NTS injection of the AT1R antagonist losartan (10 and 100 pmol) dose-dependently decreased basal sympathetic nerve activity in CHF but not in sham-operated rats. This procedure also abolished the CSAR-induced enhancement of the chemoreflex. The discharge and chemosensitivity of NTS chemosensitive neurons were significantly increased following the stimulation of the CSAR in sham-operated and CHF rats, whereas CSAR inhibition by epicardial lidocaine significantly attenuated chemosensitivity of NTS neurons in CHF but not in sham-operated rats. Finally, the protein expression of AT1R in the NTS was significantly higher in CHF than in sham-operated rats. These results demonstrate that the enhanced cardiac sympathetic afferent input contributes to an excitatory effect of chemoreflex function in CHF, which is mediated by an NTS-AT1R-dependent mechanism.

  12. Circadian profile of cardiac autonomic nervous modulation in healthy subjects

    DEFF Research Database (Denmark)

    Bonnemeier, Hendrik; Richardt, Gert; Potratz, Jürgen;

    2003-01-01

    UNLABELLED: Circadian Profile of Heart Rate Variability. INTRODUCTION: Although heart rate variability (HRV) has been established as a tool to study cardiac autonomic activity, almost no data are available on the circadian patterns of HRV in healthy subjects aged 20 to 70 years. METHODS AND RESULTS......: We investigated 166 healthy volunteers (81 women and 85 men; age 42 +/- 15 years, range 20-70) without evidence of cardiac disease. Time-domain HRV parameters were determined from 24-hour Holter monitoring and calculated as hourly mean values and mean 24-hour values. All volunteers were fully mobile...

  13. Angiotensin II and angiotensin-(1-7 in paraventricular nucleus modulate cardiac sympathetic afferent reflex in renovascular hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Hai-Jian Sun

    Full Text Available BACKGROUND: The enhanced cardiac sympathetic afferent reflex (CSAR is involved in the sympathetic activation that contributes to the pathogenesis and progression of hypertension. Activation of AT(1 receptors by angiotension (Ang II in the paraventricular nucleus (PVN augments the enhanced CSAR and sympathetic outflow in hypertension. The present study is designed to determine whether Ang-(1-7 in PVN plays the similar roles as Ang II and the interaction between Ang-(1-7 and Ang II on CSAR in renovascular hypertension. METHODOLOGY/PRINCIPAL FINDINGS: The two-kidney, one-clip (2K1C method was used to induce renovascular hypertension. The CSAR was evaluated by the renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP responses to epicardial application of capsaicin in sinoaortic-denervated and cervical-vagotomized rats with urethane and α-chloralose anesthesia. Either Ang II or Ang-(1-7 in PVN caused greater increases in RSNA and MAP, and enhancement in CSAR in 2K1C rats than in sham-operated (Sham rats. Mas receptor antagonist A-779 and AT(1 receptor antagonist losartan induced opposite effects to Ang-(1-7 or Ang II respectively in 2K1C rats, but losartan had no effects in Sham rats. Losartan but not the A-779 abolished the effects of Ang II, while A-779 but not the losartan blocked the effects of Ang-(1-7. PVN pretreatment with Ang-(1-7 dose-dependently augmented the RSNA, MAP, and CSAR responses to the Ang II in 2K1C rats. Ang II level, AT(1 receptor and Mas receptor protein expression in PVN increased in 2K1C rats compared with Sham rats but Ang-(1-7 level did not. CONCLUSIONS: Ang-(1-7 in PVN is as effective as Ang II in enhancing the CSAR and increasing sympathetic outflow and both endogenous Ang-(1-7 and Ang II in PVN contribute to the enhanced CSAR and sympathetic outflow in renovascular hypertension. Ang-(1-7 in PVN potentiates the effects of Ang II in renovascular hypertension.

  14. Anatomy of the cardiac nervous system with clinical and comparative morphological implications.

    Science.gov (United States)

    Kawashima, Tomokazu

    2011-03-01

    Unlike autonomic nervous preservation in other surgeries for improving patient quality of life, autonomic cardiac nervous system (ACNS) preservation has been neglected in cardiovascular surgery because of technical difficulties and other unsolved issues. Because such ACNS preservation in cardiovascular surgery is anticipated in the future, detailed anatomical investigation of the human ACNS is required. Therefore, we have conducted morphological studies of the ACNS from macroscopic, clinical, and evolutionary anatomical viewpoints. In this study, I review detailed anatomical studies of the human ACNS together with their clinical implications. In addition, the evolutionary comparative anatomical significance of primate ACNS is also summarized to help understand and translate the findings of functional experiments to humans. These integrated findings will be the subject of a future study unifying molecular embryological and anatomical findings to clarify cardiac functions based on functional animal experiments, clinical applications such as improving surgery techniques and individual order-made surgery in cardiac surgery, and for future evaluation in regenerative medicine. PMID:21116884

  15. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis.

    Science.gov (United States)

    Hall, Jessica M F; Cruser, Desanges; Podawiltz, Alan; Mummert, Diana I; Jones, Harlan; Mummert, Mark E

    2012-01-01

    Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis. PMID:22969795

  16. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis

    Directory of Open Access Journals (Sweden)

    Jessica M. F. Hall

    2012-01-01

    Full Text Available Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity and alters antigen presentation by epidermal Langerhans cells (adaptive immunity. Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis.

  17. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis.

    Science.gov (United States)

    Hall, Jessica M F; Cruser, Desanges; Podawiltz, Alan; Mummert, Diana I; Jones, Harlan; Mummert, Mark E

    2012-01-01

    Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis.

  18. Effects of short-term carvedilol on the cardiac sympathetic activity assessed by {sup 123}I-MIBG scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Sandra Marina Ribeiro de; Mesquita, Evandro Tinoco; Freire, Fabiano de Lima; Ribeiro, Mario Luiz; Nobrega, Antonio Claudio Lucas da; Mesquita, Claudio Tinoco, E-mail: sandramarina@cardiol.b [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Azevedo, Jader Cunha; Barbirato, Gustavo Borges; Coimbra, Alexandro [Hospital Pro-Cardiaco, Rio de Janeiro, RJ (Brazil); Dohmann, Hans Fernando da Rocha [Centro de Ensino e Pesquisa do Pro-Cardiaco (PROCEP), Rio de Janeiro, RJ (Brazil)

    2010-03-15

    Background: autonomic alterations in heart failure are associated with an increase in morbimortality. Several noninvasive methods have been employed to evaluate the sympathetic function, including the Meta-Iodobenzylguanidine ({sup 123}I-MIBG) scintigraphy imaging of the heart. Objective: to evaluate the cardiac sympathetic activity through {sup 123}I-MIBG scintigraphy, before and after three months of carvedilol therapy in patients with heart failure and left ventricular ejection fraction (LVEF) < 45%. Patients and methods: sixteen patients, aged 56.3 +- 12.6 years (11 males), with a mean LVEF of 28% +- 8% and no previous use of beta-blockers were recruited for the study. Images of the heart innervation were acquired with {sup 123}I-MIBG, and the serum levels of catecholamines (epinephrine, dopamine and norepinephrine) were measured; the radioisotope ventriculography (RIV) was performed before and after a three-month therapy with carvedilol. Results: patients' functional class showed improvement: before the treatment, 50% of the patients were FC II and 50% were FC III. After 3 months, 7 patients were FC I (43.8%) and 9 were FC II (56.2%), (rho = 0.0001). The mean LVEF assessed by RIV increased from 29% to 33% (rho = 0.017). There was no significant variation in cardiac adrenergic activity assessed by {sup 123}I-MIBG (early and late resting images and washout rate). No significant variation was observed regarding the measurement of catecholamines. Conclusion: the short-term treatment with carvedilol promoted the clinical and LVEF improvement. However, this was not associated to an improvement in the cardiac adrenergic activity, assessed by {sup 123}I-MIBG scintigraphy, as well as the measurement of circulating catecholamines. (author)

  19. Assessment of central chemosensitivity and cardiac sympathetic nerve activity using I-123 MIBG imaging in central sleep apnea syndrome in patients with dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Iodine-123 m-iodobenzylguanidine (MIBG) imaging has been used to study cardiac sympathetic function in various cardiac diseases. Central sleep apnea syndrome (CSAS) occurs frequently in patients with chronic heart failure (CHF) and is reported to be associated with a poor prognosis. One of the mechanisms of its poor prognosis may be related to impaired cardiac sympathetic activity. However, the relationship between chemosensitivity to carbon dioxide, which is reported to correlate with the severity of CSAS, and cardiac sympathetic activity has not been investigated. Therefore, this study was undertaken to assess cardiac sympathetic function and chemosensitivity to carbon dioxide in CHF patients. The oxygen desaturation index (ODI) was evaluated in 21 patients with dilated cardiomyopathy (male/female: 19/2, left ventricular ejection fraction (LVEF)5 times/h underwent polysomnography. Patients with an apnea hypopnea index >15/h but without evidence of obstructive apnea were defined as having CSAS. Early (15 min) and delayed (4 hr) planar MIBG images were obtained from these patients. The mean counts in the whole heart and the mediastinum were obtained. The heart-to-mediastinum count ratio of the delayed image (H/M) and the corrected myocardial washout rate (WR) were also calculated. The central chemoreflex was assessed with the rebreathing method using a hypercapnic gas mixture (7% CO2 and 93% O2). Ten of the 21 patients had CSAS. The H/M ratio was similar in patients both with and without CSAS (1.57±0.18 vs. 1.59±0.14, p=0.82). However, the WR was higher in patients with CSAS than in patients without CSAS (40±8% vs. 30±12%, p<0.05). ODI significantly correlated with central chemosensitivity to carbon dioxide. Moreover, there was a highly significant correlation between WR and central chemosensitivity (r=0.65, p<0.05). However, there was no correlation between ODI and the WR (r=0.36, p=0.11). Cardiac sympathetic nerve activity in patients with CHF and CSAS is

  20. Sympathetic reinnervation in cardiac transplants: 123I-MIBG and 201Tl/99mTc-MIBI scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Oh, S. J.; Son, M. S.; Son, J. W.; Koh, K. K.; Choi, I. S.; Shin, E. K.; Park, K. Y. [Gachon Medical College, Gil Heart Center, Inchon (Korea, Republic of)

    1998-07-01

    Iodine-123 metaiodobenzylguanidine (123I-MIBG) is a norepinephrine (NE) analogue and taken up by myocardial sympathetic nerves. To determine whether cardiac sympathetic reinnervation occurs after orthotopic heart transplantation (TPL). We performed 24 serial or followup cardiac 123I-MIBG imaging and 201T1/99mTc-MIBI dipyridamole stress gated myocardial perfusion SPECT (g-MPS) in 15 pts(M : F =10 : 5; mean ages = 34.67{+-}12.92 yr; idiopathic: rheumatic=14:1) (10.80{+-}11.88 (1-48) mo) after TPL. 123I-MIBG imagins were performed in anterior position 15 minutes, 4 and 24 hours after i.v. injection of 148 MBq 123I MIBG. Image quantitation was based on the ratio of heart to mediastinal MIBG uptake (HMR). 12 subjects with < 13 (4.91{+-}3.67) months after TPL had no visible 123I-MIBG uptake on early 15 min imaging however, 12 subjects with 13 to 48(28.58{+-}12.77) months had visible cardiac 123I-MIBG uptake (HMR: 1.65 {+-}0.21 vs. 1.32{+-}0.26 p=0.002). Correlation was found between plasma NE concentration and HMR ( r=0.80: p<0.05). Compared to HMR on 15 min images (1.48{+-}0.28), neither four nor 24 hour delayed images (1.26{+-}0.23 vs. 1.06{+-}0.10 : p<0.05, respectively, ANOVA) showed definite delayed localization of MIBG. To dipyridamole stress, transplant hearts showed significant subnormal hemodynamic responses of HR, s-BP, d-BP, and rate pressure product (90.9{+-}14.9 to 102.2{+-}15.3, 136.5{+-}17.3 to 124.9{+-}13.3, 83.3{+-}12.5 to 74.7{+-}15.6, 123.2{+-}19.4 to 127.4{+-}21.8 p<0.05, respectively). One-year followup 123I-MIBG scintigraphy in nine pts showed increased HMR (1.50{+-}0,37 to 1.61{+-}0.15, p=ns) but couldnt reach the statistical significance. Out of nine followup patients, five showed increased HMR but four didnt. gMPS performed at post-TPL 48 months in one patient complaining vague chest pain whose HMR value 1.73 to 1.62 showed an apicoanterior wall reversible perfusion defect which confirmed as 90% distal left anterior descending artery stenosis by

  1. {sup 123}I-Labelled metaiodobenzylguanidine for the evaluation of cardiac sympathetic denervation in early stage amyloidosis

    Energy Technology Data Exchange (ETDEWEB)

    Noordzij, Walter; Glaudemans, Andor W.J.M.; Rheenen, Ronald W.J. van; Dierckx, Rudi A.J.O.; Slart, Riemer H.J.A. [University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, PO Box 30.001, Groningen (Netherlands); Hazenberg, Bouke P.C. [University of Groningen, Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [University of Groningen, Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands)

    2012-10-15

    Cardiac amyloidosis is a rare disorder, but it may lead to potentially life-threatening restrictive cardiomyopathy. Cardiac manifestations frequently occur in primary amyloidosis (AL) and familial amyloidosis (ATTR), but are uncommon in secondary amyloidosis (AA). Echocardiography is the method of choice for assessing cardiac amyloidosis. Amyloid deposits impair the function of sympathetic nerve endings. Disturbance of myocardial sympathetic innervations may play an important role in the remodelling process. {sup 123}I-MIBG can detect these innervation changes. Patients with biopsy-proven amyloidosis underwent general work-up, echocardiography and {sup 123}I-MIBG scintigraphy. Left ventricular internal dimensions and wall thickness were measured, and highly refractile cardiac echoes (sparkling) were analysed. Early (15 min) and late (4 h) heart-to-mediastinum ratio (HMR) and wash-out rate were determined after administration of MIBG. Included in the study were 61 patients (30 women and 31 men; mean age 62 years; 39 AL, 11 AA, 11 ATTR). Echocardiographic parameters were not significantly different between the groups. Sparkling was present in 72 % of ATTR patients, in 54 % of AL patients and in 45 % of AA patients. Mean late HMR in all patients was 2.3 {+-} 0.75, and the mean wash-out rate was 8.6 {+-} 14 % (the latter not significantly different between the patient groups). Late HMR was significantly lower in patients with echocardiographic signs of amyloidosis than in patients without (2.0 {+-} 0.70 versus 2.8 {+-} 0.58, p < 0.001). Wash-out rates were significantly higher in these patients (-3.3 {+-} 9.9 % vs. 17 {+-} 10 %, p < 0.001). In ATTR patients without echocardiographic signs of amyloidosis, HMR was lower than in patients with the other types (2.0 {+-} 0.59 vs. 2.9 {+-} 0.50, p = 0.007). MIBG HMR is lower and wash-out rate is higher in patients with echocardiographic signs of amyloidosis. Also, {sup 123}I-MIBG scintigraphy can detect cardiac denervation in

  2. LMI1195 PET imaging in evaluation of regional cardiac sympathetic denervation and its potential role in antiarrhythmic drug treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ming; Bozek, Jody; Lamoy, Melanie; Kagan, Mikhail; Benites, Pedro; Onthank, David; Robinson, Simon P. [Lantheus Medical Imaging, Discovery Research, N. Billerica, MA (United States)

    2012-12-15

    Regional cardiac sympathetic denervation (RCSD) associated with reduced noradrenaline transporter (NAT) function has been linked to cardiac arrhythmia. This study examined the association of LMI1195, an {sup 18}F-labeled NAT substrate developed for positron emission tomography (PET) imaging, with NAT in vitro, and its imaging to detect RCSD and guide antiarrhythmic drug treatment in vivo. LMI1195 association with NAT was assessed in comparison with other substrates, noradrenaline (NA) and {sup 123}I-metaiodobenzylguanidine (MIBG), in NAT-expressing cells. LMI1195 cardiac imaging was performed for evaluation of RCSD in a rabbit model surgically developed by regional phenol application on the left ventricular (LV) wall. The normal LV areas in images were quantified as regions with radioactivity {>=}50 % maximum. Potential impact of RCSD on dofetilide, an antiarrhythmic drug, induced ECG changes was assessed. NAT blockade with desipramine reduced LMI1195 cell uptake by 90 {+-} 3 %, similar to NA and MIBG. NA, MIBG, or self inhibited LMI1195 cell uptake concentration-dependently with comparable IC{sub 50} values (1.09, 0.21, and 0.90 {mu}M). LMI1195 cardiac imaging differentiated innervated and denervated areas in RCSD rabbits. The surgery resulted in a large denervated LV area at 2 weeks which was partially recovered at 12 weeks. Myocardial perfusion imaging with flurpiridaz F 18 showed normal perfusion in RCSD areas. Dofetilide induced more prominent QTc prolongation in RCSD than control animals. However, changes in heart rate were comparable. LMI1195 exhibits high association with NAT and can be used for imaging RCSD. The detected RCSD increases cardiac risks to the antiarrhythmic drug, dofetilide, by inducing more QTc prolongation. (orig.)

  3. The role of plasma volume, plasma renin and the sympathetic nervous system in the posture-induced decline in renal lithium clearance in man.

    Science.gov (United States)

    Smith, D F; Shimizu, M

    1978-01-01

    Excretion of lithium in urine was studied in 2 healthy males while recumbent and while upright, either walking or standing quietly. An oral dose of 24.3 mmol of Lit was taken as three lithium carbonate tablets 13 h before clearance tests. Renal lithium clearance decreased and lithium fractional reabsorption increased while upright. Standing immersed to the neck in water, which prevents the fall in plasma volume upon changing posture from recumbent to upright, prevented the fall in renal lithium clearance as well as the rise in lithium fractional reabsorption while upright. Oral doses of guanethidine (total dose of 200 mg) or oxprenolol (total dose of 140 mg) taken to prevent high levels of sympathetic nervous system activity and plasma renin, respectively, failed to prevent the fall in renal lithium clearance or the rise in lithium fractional reabsorption upon changing posture from recumbent to upright. The findings indicate that the fall in renal lithium clearance and the rise in lithium fractional reabsorption upon changing posture from recumbent to upright is related to the fall in plasma volume but not to high levels of sympathetic nervous system activity or plasma renin activity.

  4. Regulation of the sympathetic nervous system by nitric oxide and oxidative stress in the rostral ventrolateral medulla: 2012 Academic Conference Award from the Japanese Society of Hypertension.

    Science.gov (United States)

    Kishi, Takuya

    2013-10-01

    Sympathoexcitation has an important role in the pathogenesis of hypertension. Previous studies have demonstrated that nitric oxide (NO) and/or oxidative stress in the brain are important for the regulation of the sympathetic nervous system. We have investigated the role of NO derived from an overexpression of endothelial NO synthase (eNOS) or oxidative stress in the rostral ventrolateral medulla (RVLM), which is known as a vasomotor center in the brainstem, on the regulation of the sympathetic nervous system. Our results indicated that NO derived from an overexpression of eNOS in the RVLM caused sympathoinhibition via an increase in γ-amino butyric acid and that angiotensin II type 1 receptor (AT1R)-induced oxidative stress in the RVLM caused sympathoexcitation. We also demonstrated that oxidative stress in the RVLM caused sympathoexcitation via interactions with NO, effects on the signal transduction or apoptosis of the astrocytes. Furthermore, several orally administered AT1R blockers have been found to cause sympathoinhibition via a reduction in oxidative stress through the blockade of AT1R in the RVLM of hypertensive rats. In conclusion, our studies suggest that the increase in AT1R-induced oxidative stress and/or the decrease in NO in the RVLM mainly cause sympathoexcitation in hypertension.

  5. Mechanisms responsible for postmenopausal hypertension in a rat model: Roles of the renal sympathetic nervous system and the renin-angiotensin system.

    Science.gov (United States)

    Maranon, Rodrigo O; Reckelhoff, Jane F

    2016-02-01

    Hypertension in postmenopausal women is less well controlled than in age-matched men. The aging female SHR is a model of postmenopausal hypertension that is mediated in part by activation of the renin-angiotensin system (RAS) and by the renal sympathetic nervous system. In this study, the hypothesis was tested that renal denervation would lower the blood pressure in old female SHR and would attenuate the antihypertensive effects of AT1 receptor antagonism. Retired breeder female SHR were subjected to right uninephrectomy (UNX) and left renal denervation (RD) or UNX and sham, and 2 weeks later, baseline mean arterial pressure (MAP; radiotelemetry) was measured for 4 days, and then rats were treated with angiotensin (AT1) receptor antagonist, losartan (40 mg/kg/day po) for 6 days. Renal denervation reduced MAP in old females compared to sham (172 ± 6 vs. 193 ± 6 mm Hg; P system and the RAS have independent effects to control the blood pressure in old female SHR. Since the denervated rats treated with losartan remained hypertensive, the data also suggest that other mechanisms than the RAS and renal sympathetic nervous system contribute to the hypertension in old female SHR. The data also suggest that multiple mechanisms may mediate the elevated blood pressure in postmenopausal women.

  6. The role of plasma volume, plasma renin and the sympathetic nervous system in the posture-induced decline in renal lithium clearance in man.

    Science.gov (United States)

    Smith, D F; Shimizu, M

    1978-01-01

    Excretion of lithium in urine was studied in 2 healthy males while recumbent and while upright, either walking or standing quietly. An oral dose of 24.3 mmol of Lit was taken as three lithium carbonate tablets 13 h before clearance tests. Renal lithium clearance decreased and lithium fractional reabsorption increased while upright. Standing immersed to the neck in water, which prevents the fall in plasma volume upon changing posture from recumbent to upright, prevented the fall in renal lithium clearance as well as the rise in lithium fractional reabsorption while upright. Oral doses of guanethidine (total dose of 200 mg) or oxprenolol (total dose of 140 mg) taken to prevent high levels of sympathetic nervous system activity and plasma renin, respectively, failed to prevent the fall in renal lithium clearance or the rise in lithium fractional reabsorption upon changing posture from recumbent to upright. The findings indicate that the fall in renal lithium clearance and the rise in lithium fractional reabsorption upon changing posture from recumbent to upright is related to the fall in plasma volume but not to high levels of sympathetic nervous system activity or plasma renin activity. PMID:692834

  7. Reevaluation of the Role of the Sympathetic Nervous System in Cutaneous Vasodilation during Dorsal Spinal Cord Stimulation: Are Multiple Mechanisms Active?

    Science.gov (United States)

    Croom, J E; Foreman, R D; Chandler, M J; Barron, K W

    1998-04-01

    Objective. In addition to treatment of refractory chronic pain in patients with peripheral vascular disease, dorsal spinal cord stimulation (DCS) increases cutaneous blood flow to the extremities and may have a limb-saving effect. The purpose of this study was to examine the role of the sympathetic nervous system in the cutaneous vasodilation due to DCS. Methods. Male Sprague-Dawley rats were anesthetized with pentobarbital (60 mg/kg, i.p.). A unipolar ball electrode was placed on the left side of the exposed spinal cord at approximately the L1-L2 level. Blood flow was concurrently recorded from both hindpaw foot pads with laser Doppler flowmeters. Blood flow responses were assessed during 1 min of DCS (0.6 mA at 50 Hz, 0.2 msec pulse duration) at 10 min intervals. To determine the contribution of the sympathetic nervous system in the blood flow response to DCS, the role of ganglionic transmission, alpha-adrenergic receptors, beta-adrenergic receptors, and adrenal catecholamine secretion were investigated using adrenergic receptor antagonists. Results. Hexamethonium (10 mg/kg, i.v.), an autonomic ganglionic receptor antagonist, did not attenuate the cutaneous vasodilation during DCS. Phentolamine (3 mg/kg, i.v.), a nonselective alpha-adrenergic receptor antagonist, also did not attenuate the DCS-induced increase in peripheral cutaneous blood flow. On the other hand, prazosin (0.1 mg/kg, i.v.), a selective alpha-1-adrenergic receptor antagonist, attenuated the DCS response but this may, at least, be partly due to a vehicle effect. Propranolol (5 mg/kg, i.v.), a nonselective beta-adrenergic receptor antagonist, attenuated the DCS response while adrenal demedullation did not. Conclusion. Overall, our results show that DCS-induced vasodilation can occur through mechanisms that are independent of sympathetic outflow. PMID:22150941

  8. EFFECT OF ELECTROACUPUNCTURE ON MYOCARDIAL ISCHEMIA INDUCED CHANGES OF CARDIAC SYMPATHETIC ACTIVITY AND INVOLVEMENT OF SPINIAL δ-OPIOID,NMDA-AND NON-NMDA RECEPTORS IN THE RABBIT

    Institute of Scientific and Technical Information of China (English)

    刘俊岭; 高永辉; 陈淑萍

    2003-01-01

    Aim: To observe the effect of electroacupuncture (EA) on acute myocardial ischemia (AMI) induced changes of cardiac sympathetic discharges and the effects of some related receptors in the spinal cord. Methods: A total of 53 rabbits anesthetized with mixture solution of 25% urethane (420 mg/kg) and 1.5% chloralose (50 mg/kg)were used in this study. AMI was induced by occlusion of the ventricular branch of the left coronary artery. Discharges of the left cardiac sympathetic nerve were recorded by using a bipolar platinum electrode. Bilateral "Ximen"(PC 40)and "Kongzhui"(LU 6) were stimulated electrically by using an EA therapeutic apparatus or an electrical stimulator.DPDPE δ-opiate receptor agonist, 20 nmol, 10 μL, n= 8), Naltrindole Hydrochloride (δ-opiate receptor antagonist, 20nmol, 10 μL, n=8), DAP5 (NMDA receptor antagonist, 5 nmol, 10 μL, n=9) and CNQX (non-NMDA receptor antagonist, 5 nmol, 10 μL, n=8) were respectively injected into the thoracic subarachnoid space of the spinal cord in different groups, followed by observing their effects on changes of sympathetic activity evoked by EA of the abovementioned acupoints. Results: ① After AMI, sympathetic discharges increased (200.56± 79.89%) in 10 cases and decreased (- 59.34 ±7.06% ) in other 9 cases in comparison with their individual basal values. After EA of "Ximen" (PC 4)and "Kongzhui" (Lu 6), AMI-induced increase and decrease changes of the sympathetic activity were suppressed significantly, but the effect of EA of LU-6 was weaker than that of EA of PC-4.②Following EA of PC-4 and LU-6, sympathetic discharges increased significantly in 2 and 4 cases, decreased apparently in 7 and 3 cases, and had no striking changes in 1 and 3 cases respectively. The mean reaction threshold of sympathetic activity after EA of PC-4 and LU-6were 2.1 ± 0.65 mA and 3.28± 1.13 mA separately.③ After pre-treatment with DPDPE, the reaction threshold of the cardiac sympathetic activity to EA of PC-4 elevated

  9. Sympathetic nervous system overactivity in patients with chronic kidney disease : studies on the pathophysiology, clinical relevance and treatment

    NARCIS (Netherlands)

    Nadery-Siddiqi, L.

    2011-01-01

    The evidence summarized in Chapter 1, served as the rationale for the studies presented in this thesis. The questions addressed in this thesis are: - In chapter 3, we addressed the idea that sympathetic activity in CKD patients is related to cardiovascular organ damage. We hypothesized that patient

  10. Foxo1 regulates Dbh expression and the activity of the sympathetic nervous system in vivo

    Directory of Open Access Journals (Sweden)

    Daisuke Kajimura

    2014-10-01

    Full Text Available The transcription factor FoxO1 regulates multiple physiological processes. Here, we show that FoxO1 is highly expressed in neurons of the locus coeruleus and of various sympathetic ganglions, but not in the adrenal medulla. Consistent with this pattern of expression, mice lacking FoxO1 only in sympathetic neurons (FoxO1Dbh−/− display a low sympathetic tone without modification of the catecholamine content in the adrenal medulla. As a result, FoxO1Dbh−/− mice demonstrate an increased insulin secretion, improved glucose tolerance, low energy expenditure, and high bone mass. FoxO1 favors catecholamine synthesis because it is a potent regulator of the expression of Dbh that encodes the initial and rate-limiting enzyme in the synthesis of these neurotransmitters. By identifying FoxO1 as a transcriptional regulator of the sympathetic tone, these results advance our understanding of the control of some aspects of metabolism and of bone mass accrual.

  11. Electrical modulation of the sympathetic nervous system in order to augment cerebral blood flow : a protocol for an experimental study

    NARCIS (Netherlands)

    Ter Laan, Mark; van Dijk, J. Marc C.; Staal, Michiel J.; Elting, Jan-Willem J.

    2011-01-01

    Introduction: Cerebral blood flow (CBF) is regulated by several mechanisms. Neurogenic control has been a matter of debate, even though several publications reported the effects of changes in sympathetic tone on CBF. Transcutaneous electrical nerve stimulation and spinal-cord stimulation have been s

  12. Cardiac biopotentials influence on central nervous system functioning: first steps in hypothesis verification

    Directory of Open Access Journals (Sweden)

    Kondal'skaya Yu.O.

    2012-12-01

    Full Text Available The research goal is to verify the hypothesis on influence of cardiac biopotentials on central nervous system. Materials: 20 healthy individuals aged 18-26 years old have been participated in the investigations. Two groups composed of 10 patients each have been formed. Double increase in heart biopotentials by means of artificial impulse insertion between natural cardiac contractions has been modeled. Artificial impulses have been similar to unaffected ones, produced in a normal heart work. Additional impulses have been generated using external pacemaker and have been linked up with electrodes on the chest. They have been synchronized with the heart rhythm and located in-between R waves. The duration of those impulses has been fully matched to ventricular complex. Their amplitude has been adjusted individually depending on the height of R wave. Nervous system mobility has been used as the indicator reflecting the central nervous system functioning. Degree of mobility has been defined on the basis of tapping test results. The test has been repeated at specific intervals. Groups have been exposed to two adverse testing modes. Additional impulses have been conducted to the patients of group I within an hour over a period of the first and the third 15-minute intervals and to the patients of group II over a period of the second and the fourth 15-minute intervals. In the middle and in the end of each time interval tapping test has been carried out. After preliminary analysis two other modes of stimulation have been tested. The stimulation has been performed within the 40-minute course: over a period of the first 20-minute interval and vice versa. Results: Detailed evaluation has revealed that short-time increase of nervous processes has been checked in combination with decrease in their stability. Conclusion: The data obtained have shown that there is possible influence on central nervous system functioning. The article ends with prospects of further

  13. Noninvasive evaluation of the cardiac autonomic nervous system. Final progress report, December 24, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    During the first year of funding, C-11 hydroxyephedrine has been introduced as the first clinically usable norepinephrine analogue. Studies in normal volunteers and patients with various cardiac disorders indicated the feasibility of this tracer for further evaluation. Simultaneously, animal studies have been used to assess the use of these radiopharmaceuticals in ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threo-hydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, the authors are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve their ability to identify abnormalities. They are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. In addition, they are participating in the development of radiopharmaceuticals for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in their institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by preliminary PET data. A compilation of all publications funded by this grant is presented in this report.

  14. Iyengar Yoga Increases Cardiac Parasympathetic Nervous Modulation among Healthy Yoga Practitioners

    Directory of Open Access Journals (Sweden)

    Kerstin Khattab

    2007-01-01

    Full Text Available Relaxation techniques are established in managing of cardiac patients during rehabilitation aiming to reduce future adverse cardiac events. It has been hypothesized that relaxation-training programs may significantly improve cardiac autonomic nervous tone. However, this has not been proven for all available relaxation techniques. We tested this assumption by investigating cardiac vagal modulation during yoga.We examined 11 healthy yoga practitioners (7 women and 4 men, mean age: 43 ± 11; range: 26–58 years. Each individual was subjected to training units of 90 min once a week over five successive weeks. During two sessions, they practiced a yoga program developed for cardiac patients by B.K.S. Iyengar. On three sessions, they practiced a placebo program of relaxation. On each training day they underwent ambulatory 24 h Holter monitoring. The group of yoga practitioners was compared to a matched group of healthy individuals not practicing any relaxation techniques. Parameters of heart rate variability (HRV were determined hourly by a blinded observer. Mean RR interval (interval between two R-waves of the ECG was significantly higher during the time of yoga intervention compared to placebo and to control (P < 0.001 for both. The increase in HRV parameters was significantly higher during yoga exercise than during placebo and control especially for the parameters associated with vagal tone, i.e. mean standard deviation of NN (Normal Beat to Normal Beat of the ECG intervals for all 5-min intervals (SDNNi, P < 0.001 for both and root mean square successive difference (rMSSD, P < 0.01 for both. In conclusion, relaxation by yoga training is associated with a significant increase of cardiac vagal modulation. Since this method is easy to apply with no side effects, it could be a suitable intervention in cardiac rehabilitation programs.

  15. Regional heterogeneity in cardiac sympathetic innervation in acute myocardial infarction: relationship with myocardial oedema on magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Gimelli, Alessia; Masci, Pier Giorgio; Pasanisi, Emilio Maria; Lombardi, Massimo [Fondazione CNR/Regione Toscana, Pisa (Italy); Liga, Riccardo; Grigoratos, Chrysanthos [University Hospital of Pisa, Pisa (Italy); Marzullo, Paolo [Fondazione CNR/Regione Toscana, Pisa (Italy); Institute of Clinical Physiology, CNR, Pisa (Italy)

    2014-09-15

    To assess the relationships between myocardial structure and function on cardiac magnetic resonance (CMR) imaging and sympathetic tone on {sup 123}I-metaiodobenzylguanidine ({sup 123}I-MIBG) scintigraphy early after myocardial infarction (MI). Ten patients underwent {sup 123}I-MIBG and {sup 99m}Tc-tetrofosmin rest cadmium zinc telluride scintigraphy 4 ± 1 days after MI. The segmental left ventricular (LV) relative radiotracer uptake of both {sup 99m}Tc-tetrofosmin and early {sup 123}I-MIBG was calculated. The day after scintigraphy, on CMR imaging, the extent of ischaemia-related oedema and of myocardial fibrosis (late gadolinium enhancement, LGE) was assessed. Accordingly, the extent of oedema and LGE was evaluated for each segment and segmental wall thickening determined. Based on LGE distribution, LV segments were categorized as ''infarcted'' (56 segments), ''adjacent'' (66 segments) or ''remote'' (48 segments). Infarcted segments showed a more depressed systolic wall thickening and greater extent of oedema than adjacent segments (p < 0.001) and remote segments (p < 0.001). Interestingly, while uptake of {sup 99m}Tc-tetrofosmin was significantly depressed only in infarcted segments (p < 0.001 vs. both adjacent and remote segments), uptake of {sup 123}I-MIBG was impaired not only in infarcted segments (p < 0.001 vs. remote) but also in adjacent segments (p = 0.024 vs. remote segments). At the regional level, after correction for {sup 99m}Tc-tetrofosmin and LGE distribution, segmental {sup 123}I-MIBG uptake (p < 0.001) remained an independent predictor of ischaemia-related oedema. After acute MI the regional impairment of sympathetic tone extends beyond the area of altered myocardial perfusion and is associated with myocardial oedema. (orig.)

  16. Association between left ventricular regional sympathetic denervation and mechanical dyssynchrony in phase analysis: a cardiac CZT study

    Energy Technology Data Exchange (ETDEWEB)

    Gimelli, Alessia; Genovesi, Dario; Giorgetti, Assuero; Kusch, Annette [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Liga, Riccardo [Scuola Superiore Sant' Anna, Pisa (Italy); Marzullo, Paolo [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); CNR, Institute of Clinical Physiology, Pisa (Italy)

    2014-05-15

    To evaluate the relationships among myocardial sympathetic innervation, perfusion and mechanical synchronicity assessed with cardiac cadmium-zinc-telluride (CZT) scintigraphy. A group of 29 patients underwent an evaluation of myocardial perfusion with {sup 99m}Tc-tetrofosmin CZT scintigraphy and adrenergic innervation with {sup 123}I-metaiodobenzylguanidine (MIBG) CZT scintigraphy. The summed rest score (SRS), motion score (SMS) and thickening score (STS), as well as the summed {sup 123}I-MIBG defect score (SS-MIBG), were determined. Regional tracer uptake for both {sup 99m}Tc-tetrofosmin and {sup 123}I-MIBG was also calculated. Finally, the presence of significant myocardial mechanical dyssynchrony was evaluated in phase analysis on gated CZT images and the region of latest mechanical activation identified. Significant mechanical dyssynchrony was present in 17 patients (59 %) and associated with higher SRS (P = 0.030), SMS (P < 0.001), STS (P = 0.003) and early SS-MIBG (P = 0.037) as well as greater impairments in left ventricular ejection fraction (P < 0.001) and end-diastolic volume (P < 0.001). In multivariate analysis a higher end-diastolic volume remained the only predictor of mechanical dyssynchrony (P = 0.047). Interestingly, while in the whole population regional myocardial perfusion and adrenergic activity were strongly correlated (R = 0.68), in patients with mechanical dyssynchrony the region of latest mechanical activation was predicted only by greater impairment in regional {sup 123}I-MIBG uptake (P = 0.012) that overwhelmed the effect of depressed regional perfusion. Left ventricular mechanical dyssynchrony is associated with greater depression in contractile function and greater impairments in regional myocardial perfusion and sympathetic activity. In patients with dyssynchrony, the region of latest mechanical activation is characterized by a significantly altered adrenergic tone. (orig.)

  17. Metabolic responses to high-fat or low-fat meals and association with sympathetic nervous system activity in healthy young men.

    Science.gov (United States)

    Nagai, Narumi; Sakane, Naoki; Moritani, Toshio

    2005-10-01

    The present study was designed to investigate the metabolic and sympathetic responses to a high-fat meal in humans. Fourteen young men (age: 23.6 +/- 0.5 y, BMI: 21.3 +/- 0.4 kg/m2) were examined for energy expenditure and fat oxidation measured by indirect calorimetry for 3.5 h after a high-fat (70%, energy from fat) or an isoenergetic low-fat (20% energy from fat) meal served in random order. The sympathetic nervous system (SNS) activity was assessed using power spectral analysis of heart rate variability (HRV). After the high-fat meal, increases in thermoregulatory SNS activity (very low-frequency component of HRV, 0.007-0.035 Hz, 577.4+/-45.9 vs. 432.0+/-49.3 ms2, p<0.05) and fat oxidation (21.0+/-5.3 vs. 13.3+/-4.3 g, p<0.001) were greater than those after the low-fat meal. However, thermic effects of the meal (TEM) were lower after the high-fat meal than after the low-fat meal (27.5+/-11.2 vs. 36.1+/-10.9 kcal, p<0.05). In conclusion, the high-fat meal can stimulate thermoregulatory SNS and lipolysis, but resulted in lower TEM, suggesting that a high proportion of dietary fat intake, even with a normal daily range of calories, may be a potent risk factor for further weight gain.

  18. Alterations of left ventricular deformation and cardiac sympathetic derangement in patients with systolic heart failure: a 3D speckle tracking echocardiography and cardiac {sup 123}I-MIBG study

    Energy Technology Data Exchange (ETDEWEB)

    Leosco, Dario; Parisi, Valentina; Pagano, Gennaro; Femminella, Grazia Daniela; Bevilacqua, Agnese; Formisano, Roberto; Ferro, Gaetana; De Lucia, Claudio; Ferrara, Nicola [University Federico II, Department of Translational Medical Science, Naples (Italy); Pellegrino, Teresa [Italian National Research Council (CNR), Institute of Biostructure and Bioimaging, Naples (Italy); University Federico II, Department of Advanced Biomedical Science, Naples (Italy); Paolillo, Stefania [University Federico II, Department of Advanced Biomedical Science, Naples (Italy); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples (Italy); Prastaro, Maria; Filardi, Pasquale Perrone; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Science, Naples (Italy); Rengo, Giuseppe [University Federico II, Department of Translational Medical Science, Naples (Italy); Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, BN (Italy)

    2015-09-15

    Myocardial contractile function is under the control of cardiac sympathetic activity. Three-dimensional speckle tracking echocardiography (3D-STE) and cardiac imaging with {sup 123}I-metaiodobenzylguanidine ({sup 123}I-MIBG) are two sophisticated techniques for the assessment of left ventricular (LV) deformation and sympathetic innervation, respectively, which offer important prognostic information in patients with heart failure (HF). The purpose of this investigation was to explore, in patients with systolic HF, the relationship between LV deformation assessed by 3D-STE and cardiac sympathetic derangement evaluated by {sup 123}I-MIBG imaging. We prospectively studied 75 patients with systolic HF. All patients underwent a 3D-STE study (longitudinal, circumferential, area and radial) and {sup 123}I-MIBG planar and SPECT cardiac imaging. 3D-STE longitudinal, circumferential and area strain values were correlated with {sup 123}I-MIBG late heart to mediastinum (H/M) ratio and late SPECT total defect score. After stratification of the patients according to ischaemic or nonischaemic HF aetiology, we observed a good correlation of all 3D-STE measurements with late H/M ratio and SPECT data in the ischaemic group, but in patients with HF of nonischaemic aetiology, no correlation was found between LV deformation and cardiac sympathetic activity. At the regional level, the strongest correlation between LV deformation and adrenergic innervation was found for the left anterior descending coronary artery distribution territory for all four 3D-STE values. In multivariate linear regression analyses, including age, gender, LV ejection fraction, NYHA class, body mass index, heart rate and HF aetiology, only 3D-STE area and radial strain values significantly predicted cardiac sympathetic derangement on {sup 123}I-MIBG late SPECT. This study indicated that 3D-STE measurements are correlated with {sup 123}I-MIBG planar and SPECT data. Furthermore, 3D-STE area and radial strain values

  19. Hypothalamic neuropeptide Y (NPY) controls hepatic VLDL-triglyceride secretion in rats via the sympathetic nervous system

    NARCIS (Netherlands)

    Bruinstroop, E.; Pei, L.; Ackermans, M.T.; Foppen, E.; Borgers, A.J.F.; Kwakkel, J.; Alkemade, A.; Fliers, E.; Kalsbeek, A.

    2012-01-01

    Excessive secretion of triglyceride-rich very low-density lipoproteins (VLDL-TG) contributes to diabetic dyslipidemia. Earlier studies have indicated a possible role for the hypothalamus and autonomic nervous system in the regulation of VLDL-TG. In the current study, we investigated whether the auto

  20. [The state of sympathetic-adrenal system in patients with chronic cardiac insufficiency].

    Science.gov (United States)

    Nigmatullin, R R; Kirillova, V V; Dzhordzhikiia, R K; Kudrin, V S; Klodt, P M

    2009-01-01

    Activation of sympato-adrenal system plays an important role in the development of chronic cardiac failure (CCF). However, its relation to morpho-functional state of myocardium in CCF patients is virtually unknown. HPLC with electrochemical detection was used to determine plasma noradrenalin, adrenalin, and their precursors, 3,4-dioxyphenylalanine (DOPA) and dopamine, in patients with different morpho-functional changes in myocardium. The study demonstrated enhanced activity of sympato-adrenal system in patients with CCF. It showed for the first time that activity of sympato-adrenal system in CCF patients depends on the morpho-functional status of myocardium.

  1. Role of endothelin-1 in mediating changes in cardiac sympathetic nerve activity in heart failure.

    Science.gov (United States)

    Abukar, Yonis; May, Clive N; Ramchandra, Rohit

    2016-01-01

    Heart failure (HF) is associated with increased sympathetic nerve activity to the heart (CSNA), which is directly linked to mortality in HF patients. Previous studies indicate that HF is associated with high levels of plasma endothelin-1 (ET-1), which correlates with the severity of the disease. We hypothesized that blockade of endothelin receptors would decrease CSNA. The effects of intravenous tezosentan (a nonselective ETA and ETB receptor antagonist) (8 mg·kg(-1)·h(-1)) on resting levels of CSNA, arterial pressure, and heart rate were determined in conscious normal sheep (n = 6) and sheep with pacing-induced HF (n = 7). HF was associated with a significant decrease in ejection fraction (from 74 ± 2% to 38 ± 1%, P < 0.001) and a significant increase in resting levels of CSNA burst incidence (from 56 ± 11 to 87 ± 2 bursts/100 heartbeats, P < 0.01). Infusion of tezosentan for 60 min significantly decreased resting mean aterial pressure (MAP) in both normal and HF sheep (-8 ± 4 mmHg and -4 ± 3 mmHg, respectively; P < 0.05). This was associated with a significant decrease in CSNA (by 25 ± 26% of control) in normal sheep, but there was no change in CSNA in HF sheep. Calculation of spontaneous baroreflex gain indicated significant impairment of the baroreflex control of HR after intravenous tezosentan infusion in normal animals but no change in HF animals. These data suggest that endogenous levels of ET-1 contribute to the baseline levels of CSNA in normal animals, but this effect is absent in HF.

  2. Quantification of cardiac autonomic nervous activities in ambulatory dogs by eliminating cardiac electric activities using cubic smoothing spline

    International Nuclear Information System (INIS)

    With the development of an implantable radio transmitter system, direct measurement of cardiac autonomic nervous activities (CANAs) became possible for ambulatory animals for a couple of months. However, measured CANAs include not only CANA but also cardiac electric activity (CEA) that can affect the quantification of CANAs. In this study, we propose a novel CEA removal method using moving standard deviation and cubic smoothing spline. This method consisted of two steps of detecting CEA segments and eliminating CEAs in detected segments. Using implanted devices, we recorded stellate ganglion nerve activity (SGNA), vagal nerve activity (VNA) and superior left ganglionated plexi nerve activity (SLGPNA) directly from four ambulatory dogs. The CEA-removal performance of the proposed method was evaluated and compared with commonly used high-pass filtration (HPF) for various heart rates and CANA amplitudes. Results tested with simulated CEA and simulated true CANA revealed stable and excellent performance of the suggested method compared to the HPF method. The averaged relative error percentages of the proposed method were less than 0.67%, 0.65% and 1.76% for SGNA, VNA and SLGPNA, respectively. (paper)

  3. What can we learn about neural control of the cardiovascular system by studying rhythms in sympathetic nerve activity?

    Science.gov (United States)

    Barman, Susan M

    2016-05-01

    Since the first recordings of sympathetic nerve activity in the 1930s, it was very clear that the activity was organized into bursts synchronized to the respiratory and cardiac cycles. Since the early studies, evidence has accumulated showing that sympathetic neural networks are quite complex and generate a variety of periodicities that range between ~0.04 and 10Hz, depending on the physiological state, type of nerve being analyzed, age of the subject, and the species. Despite the ubiquity of sympathetic rhythms, many investigators have failed to consider this oscillatory characteristic of sympathetic nerve activity and instead rely on simply quantifying changes in the level of activity to make decisions about the role of the sympathetic nervous system in mediating certain behaviors. This review highlights work that shows the importance of including an assessment of the frequency characteristics of sympathetic nerve activity. PMID:25681532

  4. Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction.

    Science.gov (United States)

    Lymperopoulos, Anastasios; Rengo, Giuseppe; Gao, Erhe; Ebert, Steven N; Dorn, Gerald W; Koch, Walter J

    2010-05-21

    Chronic heart failure (HF) is characterized by sympathetic overactivity and enhanced circulating catecholamines (CAs), which significantly increase HF morbidity and mortality. We recently reported that adrenal G protein-coupled receptor kinase 2 (GRK2) is up-regulated in chronic HF, leading to enhanced CA release via desensitization/down-regulation of the chromaffin cell alpha(2)-adrenergic receptors that normally inhibit CA secretion. We also showed that adrenal GRK2 inhibition decreases circulating CAs and improves cardiac inotropic reserve and function. Herein, we hypothesized that adrenal-targeted GRK2 gene deletion before the onset of HF might be beneficial by reducing sympathetic activation. To specifically delete GRK2 in the chromaffin cells of the adrenal gland, we crossed PNMTCre mice, expressing Cre recombinase under the chromaffin cell-specific phenylethanolamine N-methyltransferase (PNMT) gene promoter, with floxedGRK2 mice. After confirming a significant ( approximately 50%) reduction of adrenal GRK2 mRNA and protein levels, the PNMT-driven GRK2 knock-out (KO) offspring underwent myocardial infarction (MI) to induce HF. At 4 weeks post-MI, plasma levels of both norepinephrine and epinephrine were reduced in PNMT-driven GRK2 KO, compared with control mice, suggesting markedly reduced post-MI sympathetic activation. This translated in PNMT-driven GRK2 KO mice into improved cardiac function and dimensions as well as amelioration of abnormal cardiac beta-adrenergic receptor signaling at 4 weeks post-MI. Thus, adrenal-targeted GRK2 gene KO decreases circulating CAs, leading to improved cardiac function and beta-adrenergic reserve in post-MI HF. GRK2 inhibition in the adrenal gland might represent a novel sympatholytic strategy that can aid in blocking HF progression.

  5. Discrimination between Healthy and Sick Cardiac Autonomic Nervous System by Detrended Heart Rate Variability Analysis

    CERN Document Server

    Ashkenazy, Yu; Levitan, J; Havlin, S; Saermark, K; Moelgaard, H; Bloch-Thomsen, P E

    1998-01-01

    Multiresolution Wavelet Transform and Detrended Fluctuation Analysis have been recently proven as excellent methods in the analysis of Heart Rate Variability, and in distinguishing between healthy subjects and patients with various dysfunctions of the cardiac nervous system. We argue that it is possible to obtain a distinction between healthy subjects/patients of at least similar quality by, first, detrending the time-series of RR-intervals by subtracting a running average based on a local window with a length of around 32 data points, and then, calculating the standard deviation of the detrended time-series. The results presented here indicate that the analysis can be based on very short time-series of RR-data (7-8 minutes), which is a considerable improvement relative to 24-hours Holter recordings.

  6. 肥胖相关高血压交感神经系统过度激活机制研究进展%Research progress of overactivation mechanism of sympathetic nervous system in obesity-related hyper-tension

    Institute of Scientific and Technical Information of China (English)

    刘敏

    2015-01-01

    Obesity is an independent risk factor for hypertension.Overactivation of sympathetic nervous system caused by obesity is an important path inducing hypertension.This article made following overview on research pro-gress of overactivation mechanism of sympathetic nervous system in obesity-related hypertension.%肥胖是高血压的独立危险因素。肥胖引起交感神经系统过度激活是诱发高血压的一种重要途径,本文就肥胖相关高血压交感神经系统过度激活机制研究进展作以下综述。

  7. Dysfunction of pre- and post-operative cardiac autonomic nervous system in elderly patients with diabetes mellitus.

    Science.gov (United States)

    Zhang, Junlong; Tu, Weifeng; Dai, Jianqiang; Lv, Qing; Yang, Xiaoqi

    2011-01-01

    The pre- and post-operative cardiac autonomic nervous functions were compared in elderly, non-cardiac surgery patients with diabetes mellitus (DM) and without diabetes mellitus (NDM). A group of 30 unpremedicated elderly patients scheduled to undergo elective non-cardiac surgery were studied, including 15 DM patients and 15 NDM patients. Each component of heart rate variability (HRV) analysis in the frequency domain was monitored with Holter during the nights of the day before and on 1st and 2nd day after operation. After surgery, total power (TP), high frequency (HF), low frequency (LF) and very low frequency (VLF) significantly decreased as compared to the baseline values before operation in both groups (p<0.05). The LF/HF ratio was significantly changed in DM group but did not change in NDM group. On the 2nd postoperative day, TP, HF, LF and VLF in DM group were further decreased as compared to those on the 1st postoperative day and were significantly lower than those in NDM group (p<0.01 or 0.05), but these indices in NDM group did not show significant decreases. Surgery induced the cardiac autonomic nervous dysfunction in elderly patients not only with DM but also without diabetes. On the 2nd postoperative day, the disturbances of cardiac autonomic nervous activity were more sever in DM patients, compared to the 1st postoperative day, but was not significantly more sever than in the NDM patients.

  8. Effects of perindopril on cardiac sympathetic nerve activity in patients with congestive heart failure: comparison with enalapril

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu; Toyama, Takuji; Suzuki, Tadashi; Kurabayashi, Masahiko [Gunma University School of Medicine, Department of Cardiovascular Medicine, Maebashi, Gunma (Japan); Kumakura, Hisao; Takayama, Yoshiaki; Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan, Department of Internal Medicine, Gunma (Japan)

    2005-08-01

    The production of aldosterone in the heart is suppressed by the angiotensin-converting enzyme (ACE) inhibitor perindopril in patients with congestive heart failure (CHF). Moreover, perindopril has been reported to have more cardioprotective effects than enalapril. Forty patients with CHF [left ventricular ejection fraction (LVEF) <45%; mean 33{+-}7%] were randomly assigned to perindopril (2 mg/day; n=20) or enalapril (5 mg/day; n=20). All patients were also treated with diuretics. The delayed heart/mediastinum count (H/M) ratio, delayed total defect score (TDS) and washout rate (WR) were determined from {sup 123}I-meta-iodobenzylguanidine (MIBG) images, and plasma brain natriuretic peptide (BNP) concentrations were measured before and 6 months after treatment. The left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV) and LVEF were also determined by echocardiography. After treatment, in patients receiving perindopril, TDS decreased from 39{+-}10 to 34{+-}9 (P<0.01), H/M ratios increased from 1.62{+-}0.27 to 1.76{+-}0.29 (P<0.01), WR decreased from 50{+-}14% to 42{+-}14% (P<0.05) and plasma BNP concentrations decreased from 226{+-}155 to 141{+-}90 pg/ml (P<0.0005). In addition, the LVEDV decreased from 180{+-}30 to 161{+-}30 ml (P<0.05) and the LVESV decreased from 122{+-}35 to 105{+-}36 ml (P<0.05). Although the LVEF tended to increase, the change was not statistically significant (from 33{+-}8% to 36{+-}12%; P=NS). On the other hand, there were no significant changes in these parameters in patients receiving enalapril. Plasma BNP concentrations, {sup 123}I-MIBG scintigraphic and echocardiographic parameters improved after 6 months of perindopril treatment. These findings indicate that perindopril treatment can ameliorate the cardiac sympathetic nerve activity and the left ventricular performance in patients with CHF. (orig.)

  9. Changes in Sympathetic Nervous System Activity are Associated with Changes in Sexual Wellbeing in Women with a History of Childhood Sexual Abuse

    Science.gov (United States)

    Lorenz, Tierney K.; Harte, Christopher B.; Meston, Cindy M.

    2015-01-01

    Introduction Women with histories of childhood sexual abuse (CSA) have higher rates of sexual difficulties, as well as high sympathetic nervous system (SNS) response to sexual stimuli. Aim To examine whether treatment-related changes in autonomic balance, as indexed by heart rate variability (HRV), were associated with changes in sexual arousal and orgasm function. Methods In Study 1, we measured HRV while writing a sexual essay in 42 healthy, sexually functional women without any history of sexual trauma. These data, along with demographics, were used to develop HRV norms equations. In Study 2, 136 women with a history of CSA were randomized to one of three active expressive writing treatments that focused on their trauma, sexuality, or daily life (control condition). We recorded HRV while writing a sexual essay at pre-treatment, post-treatment, and 2 week, 1 month, and 6 month follow-ups; we also calculated the expected HRV for each participant based on the norms equations from Study 1. Main Outcome Measures Heart rate variability, Female Sexual Function Index (FSFI), Sexual Satisfaction Scale – Women (SSS-W) Results The difference between expected and observed HRV decreased over time, indicating that, post-treatment, CSA survivors displayed HRV closer to the expected HRV of a demographics-matched woman with no history of sexual trauma. Also, over time, participants whose HRV became less dysregulated showed the biggest gains in sexual arousal and orgasm function. These effects were consistent across condition. Conclusions Treatments that reduce autonomic imbalance may improve sexual wellbeing among CSA populations. PMID:25963394

  10. Augmented Endothelial-Specific L-Arginine Transport Blunts the Contribution of the Sympathetic Nervous System to Obesity Induced Hypertension in Mice.

    Science.gov (United States)

    Rajapakse, Niwanthi W; Karim, Florian; Evans, Roger G; Kaye, David M; Head, Geoffrey A

    2015-01-01

    Augmenting endothelial specific transport of the nitric oxide precursor L-arginine via cationic amino acid transporter-1 (CAT1) can prevent obesity related hypertension. We tested the hypotheses that CAT1 overexpression prevents obesity-induced hypertension by buffering the influence of the sympathetic nervous system (SNS) on the maintenance of arterial pressure and by buffering pressor responses to stress. Wild type (WT; n=13) and CAT1 overexpressing mice (CAT+; n=13) were fed a normal or a high fat diet for 20 weeks. Mice fed a high fat diet were returned to the control diet before experiments commenced. Baseline mean arterial pressure (MAP) and effects of restraint-, shaker- and almond feeding-stress and ganglionic blockade (pentolinium; 5 mg/kg; i.p.) on MAP were determined in conscious mice. Fat feeding increased body weight to a similar extent in WT and CAT+ but MAP was greater only in WT compared to appropriate controls (by 29%). The depressor response to pentolinium was 65% greater in obese WT than lean WT (P obese and lean CAT+ (P = 0.65). In lean WT and CAT+, pressor responses to shaker and feeding stress, but not restraint stress, were less in the latter genotype compared to the former (P ≤ 0.001). Pressor responses to shaker and feeding stress were less in obese WT than lean WT (P ≤ 0.001), but similar in obese and lean CAT+. The increase in MAP in response to restraint stress was less in obese WT (22 ± 2%), but greater in obese CAT+ (37 ± 2%), when compared to respective lean WT (31 ± 3%) and lean CAT+ controls (27 ± 2%; P ≤ 0.02). We conclude that CAT1 overexpression prevents obesity-induced hypertension by reducing the influence of the SNS on the maintenance of arterial pressure but not by buffering pressor responses to stress.

  11. Two-week stimulation or blockade of the sympathetic nervous system in man: influence on body weight, body composition, and twenty four-hour energy expenditure.

    Science.gov (United States)

    Acheson, K J; Ravussin, E; Schoeller, D A; Christin, L; Bourquin, L; Baertschi, P; Danforth, E; Jéquier, E

    1988-01-01

    Seven lean healthy young men were studied for 6 weeks during exposure to pharmacologic inhibition or stimulation of the sympathetic nervous system. For a period of 2 weeks their beta-adrenergic receptors were either blocked with propranolol hydrochloride (160 mg/d) or stimulated with terbutaline sulphate (15 mg/d). After a further 2 weeks of placebo administration (500 mg lactose/d), the subjects crossed over to the drug they had not been taking at the beginning of the experiment for another 14 days. During the last five days of each 2-week period, the subjects consumed a weight-maintaining diet, composed of 12% protein, 48% carbohydrate, and 40% fat. They consumed exactly the same menus on the same days during the subsequent study periods. Body weight and physical activity were measured every day for 6 weeks. Daily heart rate and nitrogen excretion were measured continuously for days at the end of each 2-week period, the last two days of which were spent in a respiration chamber where energy expenditure and a variety of metabolic parameters were measured. In the respiration chamber on the propranolol, placebo, and terbutaline treatments, respectively, significant differences were observed in mean daily heart rate (65 +/- 3, 75 +/- 4, and 84 +/- 4 beats/min), mean sleeping heart rate (51 +/- 2, 56 +/- 3, and 62 +/- 3 beats/min), nitrogen excretion (13.6 +/- 0.7, 12.6 +/- 0.6, and 11.9 +/- 0.6 g/d), fat oxidation (+1,045 +/- 95, +1,243 +/- 148, and +1,278 +/- 84 kcal/d) and thyroid hormones (12.0 +/- 0.7, 15.7 +/- 0.9, and 17.2 +/- 1.0 T3/T4 ratio).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3275861

  12. The Mikamo lecture. Role of higher nervous activity in sudden cardiac death.

    Science.gov (United States)

    Lown, B

    1990-06-01

    The brain receives and catalogues myriads of information from within and without the organism. These inputs promote neural integration of bodily function through a multiplicity of cybernetic feedback loops. Higher nervous activity shapes the contours of perceived well-being and determines the course and progress of disease. Behavioral and neural factors play an important role in cardiovascular function and are especially relevant to the problem of sudden cardiac death (SCD). Clinical data attesting to the role of biobehavioral factors in SCD derive from a diversity of sources. It has long been known that bereavement increases the prevalence of cardiac fatality. Business failure rates are strongly related to increased mortality among persons aged 55 and over. Recession in economic activity, with increasing unemployment, is associated with augmented death rates from ischemic heart disease. In extensive surveys conducted among London civil servants, Rose and Marmot found not only the level but the type of employment to be a factor determining coronary heart disease mortality. Blue collar workers had a 3.6 times greater chance of dying from heart disease than an age-matched population in the higher ranks of civil service. A man's employment status was a stronger predictor of risk for dying from coronary heart disease than any of the usual risk factors, such as smoking, blood pressure, height-weight ratio, leisure time activities, glucose tolerance, or plasma cholesterol. Operation of behavioral factors is also suggested by the time of occurrence of sudden death. Among 3,983 men followed for more than 30 years, Rabkin and co-workers observed an excess proportion of fatalities on Mondays. No such pattern was noted for cancer mortality. Not only the day of the week but the time of day appears to be a factor. Muller and co-workers found a significant preponderance in the occurrence of myocardial infarction and sudden death from 6:00 AM to noon. They could not implicate

  13. Exercise training improves cardiac autonomic nervous system activity in type 1 diabetic children.

    Science.gov (United States)

    Shin, Ki Ok; Moritani, Toshio; Woo, Jinhee; Jang, Ki Soeng; Bae, Ju Yong; Yoo, Jaeho; Kang, Sunghwun

    2014-01-01

    [Purpose] We investigated the effect exercise training has on cardiac autonomic nervous system (ANS) and cardiovascular risk profiles in children with type 1 diabetes mellitus (DM). [Subjects] Fifteen type 1 DM children (all boys; 13.0±1.0 years of age) were enrolled in the study. [Methods] The subjects received exercise training three times a week in a 12-week program. Each child was asked to walk on a treadmill to achieve an exercise intensity of VO2max 60%. ANS activity was measured by power spectral analysis of the electrocardiogram (ECG). Blood samples were obtained for serum lipid profiles. To evaluate Doppler-shifted Fourier pulsatility index (PI) analysis, a 5-MHz continuous wave Doppler (VASCULAB D10) set was used to measure forward blood flow velocity (FLOW) in the radial artery. [Results] Total and low-frequency (LF) power of heart rate variability increased significantly after exercise intervention. Total cholesterol (TC) levels were significant lower after exercise intervention. Total and high-frequency (HF) power were significantly correlated with higher TC levels, but diastolic blood pressure and HF was significantly correlated with lower TC levels. [Conclusion] Regular exercise intervention should be prescribed for children with type 1 DM.

  14. Discrimination of the Healthy and Sick Cardiac Autonomic Nervous System by a New Wavelet Analysis of Heartbeat Intervals

    OpenAIRE

    Ashkenazy, Y.; Lewkowicz, M.; Levitan, J.; Moelgaard, H.; Thomsen, P. E. Bloch; Saermark, K.

    1998-01-01

    We demonstrate that it is possible to distinguish with a complete certainty between healthy subjects and patients with various dysfunctions of the cardiac nervous system by way of multiresolutional wavelet transform of RR intervals. We repeated the study of Thurner et al on different ensemble of subjects. We show that reconstructed series using a filter which discards wavelet coefficients related with higher scales enables one to classify individuals for which the method otherwise is inconclu...

  15. Use of iodine-123 metaiodobenzylguanidine scintigraphy to assess cardiac sympathetic denervation and the impact of hypertension in patients with non-insulin-dependent diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Koji; Nakatani, Yuko; Onishi, Satoshi [Dept. of Internal Medicine, Keihanna Hospital, Hirakata City, Osaka (Japan); Utsunomiya, Keita; Saika, Yoshinori [Dept. of Radiology, Keihanna Hospital, Hirakata City (Japan); Iwasaka, Toshiji [Cardiovascular Center, Kansai Medical University, Osaka (Japan)

    1999-10-01

    The objectives of this clinical study using iodine-123 metaiodobenzylguanidine (MIBG) scintigraphy were (a) to evaluate cardiac sympathetic denervation in non-insulin-dependent diabetes mellitus (NIDDM) patients with and without hypertension and (b) to investigate the relation between cardiac sympathetic denervation and prognosis in NIDDM patients. We compared clinical characteristics and MIBG data [heart to mediastinum (H/M) ratio and % washout rate (WR)] in a control group and NIDDM patients with and without hypertension. MIBG scintigraphy was performed in 11 controls and 82 NIDDM patients without overt cardiovascular disease except for hypertension (systolic blood pressure {>=}140 and/or diastolic blood pressure {>=}90 mmHg). After MIBG examination, blood pressure was measured regularly in all NIDDM patients. There were significant differences between 65 normotensive and 17 hypertensive NIDDM patients with respect to age (55{+-}11 vs 63{+-}12 years, respectively, P<0.05), prevalence of diabetic retinopathy (12% vs 35%, respectively, P<0.05) and systolic blood pressure (120{+-}12 vs 145{+-}16 mmHg, respectively, P<0.001). The H/M ratio in hypertensive NIDDM patients was significantly lower than in the control group (1.81{+-}0.29 vs 2.27{+-}0.20, respectively, P<0.01). During the follow-up period (18{+-} 12 months), 17 NIDDM patients newly developed hypertension after MIBG examination. There were no significant differences in their clinical characteristics compared with persistently normotensive or hypertensive NIDDM patients. %WR in patients with new onset hypertension was significantly higher than in the control group (30.88%{+-}16.87% vs 12.89%{+-}11.94%, respectively, P<0.05). Moreover, in these patients %WR correlated with duration from the date of MIBG scintigraphy to the onset of hypertension (r=-0.512, P<0.05). Five NIDDM patients died during the follow-up period (four newly hypertensive patients and one normotensive patient). There were significant

  16. Angiotensin II--nitric oxide interactions in the control of sympathetic outflow in heart failure.

    Science.gov (United States)

    Zucker, I H; Liu, J L

    2000-03-01

    Activation of the sympathetic nervous system is a compensatory mechanism which initially provides support for the circulation in the face of a falling cardiac output. It has been recognized for some time that chronic elevation of sympathetic outflow with the consequent increase in plasma norepinephrine, is counterproductive to improving cardiac function. Indeed, therapeutic targeting to block excessive sympathetic activation in heart failure is becoming a more accepted modality. The mechanism(s) by which sympathetic excitation occurs in the heart failure state are not completely understood. Components of abnormal cardiovascular reflex regulation most likely contribute to this sympatho-excitation. However, central mechanisms which relate to the elaboration of angiotensin II (Ang II) and nitric oxide (NO) may also play an important role. Ang II has been shown to be a sympatho-excitatory peptide in the central nervous system while NO is sympatho-inhibitory. Recent studies have demonstrated that blockade of Ang II receptors of the AT(1) subtype augments arterial baroreflex control of sympathetic nerve activity in the heart failure state, thereby predisposing to a reduction in sympathetic tone. Ang II and NO interact to regulate sympathetic outflow. Blockade of NO production in normal conscious rabbits was only capable of increasing sympathetic outflow when accompanied by a background infusion of Ang II. Conversely, providing a source of NO to rabbits with heart failure reduced sympathetic nerve activity when accompanied by blockade of AT(1) receptors. Chronic heart failure is also associated with a decrease in NO synthesis in the brain as indicated by a reduction in the mRNA for the neuronal isoform (nNOS). Chronic blockade of Ang II receptors can up regulate nNOS expression. In addition, exercise training of rabbits with developing heart failure has been shown to reduce sympathetic tone, decrease plasma Ang II, improve arterial baroreflex function and increase n

  17. Sympathetic reinnervation in cardiac transplants: {sup 123}I-MIBG and {sup 201}Tl/{sup 99m}Tc-MIBI scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Oh, S. J.; Son, M. S.; Son, J. W.; Choi, I. S.; Shin, E. K.; Park, C. H. [Gachon Medical School, Gil Heart Cener, Inchon (Korea, Republic of)

    2000-07-01

    The purpose was to evaluate cardiac sympathetic reinnervation and hemodynamic changes after orthotopic heart transplantation (TPL). We performed 24 serial or followup cardiac 123I-MIBG imaging and rest 201Tl/99mTc-MIBI dipyridamole stress gated myocardial perfusion SPECT (g-MPS) in 15 patients (M:F=10:5;mean ages=34.5{+-}13.0 yr; idiopathic:rheumatic=14:1; one heart lung TPL)(10.80 {+-}11.88 (1-48) mo) after TPL 123I-MIBG imagings were performed in anterior position 15 minutes, 4 and 24 hours after i.v. injection of 148 MBq 123I MIBG. Image quantitation was based on the ratio of heart to mediastinal MIBG uptake (HMR) Compared to HMR on 15 min images (1.48 {+-} 0.28), neither four nor 24 hour delayed images (1.26 {+-} 0.23 vs. 1.06 {+-} 0.26: p<0.05, respectively, ANOVA) showed definite delayed localization of MIBG. 12 subjects with <13 (4.9 {+-}3.7) months after TPL had no visible 123I-MIBG uptake on early 15 min imaging however, 12 subjects with 13 to 48(28.6{+-}12.8) months had visible cardiac 123I-MIBG uptake (HMR: 1.65{+-}0.21 vs. 1.32{+-}0.26; p=0.002). One-year followup 123I-MIBG scintigraphy in nine pts showed significantly increased HMR(1.40{+-}0.31 to 1.61{+-}0.16, p<0.05) but a plateau was reached at HMR value of 2.0, which was still lower than 3.0 in normal controls. Plasma NE was increased according to I-123 MIBG myocardial uptake. Annual G-MPS detected an allograft atherosclerosis in one pt and showed progressive normalization of tachycardia and significant deterioration of LVEF and cardiac indices according to severity of rejection. To dipyridamole stress, transplant heats showed significant subnormal hemodynamic responses. Partial sympathetic late reinnervation can occur <1 year after TPL, and reached a plateau of two-third of normal value. G-MPS seems to be a useful screening test for the detection of allograft atherosclerosis and rejection.

  18. The Association between Baseline Subjective Anxiety Rating and Changes in Cardiac Autonomic Nervous Activity in Response to Tryptophan Depletion in Healthy Volunteers.

    Science.gov (United States)

    Hsiao, Chih Yin; Tsai, Hsin Chun; Chi, Mei Hung; Chen, Kao Chin; Chen, Po See; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang

    2016-05-01

    The aim of this study was to investigate the influence of serotonin on anxiety and autonomic nervous system (ANS) function; the correlation between subjective anxiety rating and changes of ANS function following tryptophan depletion (TD) in healthy volunteers was examined. Twenty-eight healthy participants, consisting of 15 females and 13 males, with an average age of 33.3 years, were recruited.Baseline Chinese Symptom Checklist-90-Revised and ANS function measurements were taken. TD was carried out on the testing day, and participants provided blood samples right before and 5 hours after TD. ANS function, somatic symptoms, and Visual Analogue Scales (VASs) were determined after TD. Wilcoxon signed rank test and Spearman ρ correlation were adapted for analyses of the results.The TD procedure reduced total and free plasma tryptophan effectively. After TD, the sympathetic nervous activity increased and parasympathetic nervous activity decreased. Baseline anxiety ratings positively correlated with post-TD changes in sympathetic nervous activity, VAS ratings, and physical symptoms. However, a negative correlation with post-TD changes in parasympathetic nervous activity was found.The change in ANS function after TD was associated with the severity of anxiety in healthy volunteers. This supports the fact that the effect of anxiety on heart rate variability is related to serotonin vulnerability. Furthermore, it also shows that the subjective anxiety rating has a biological basis related to serotonin.

  19. Discrimination of the Healthy and Sick Cardiac Autonomic Nervous System by a New Wavelet Analysis of Heartbeat Intervals

    CERN Document Server

    Ashkenazy, Yu; Levitan, J; Moelgaard, H; Bloch-Thomsen, P E; Saermark, K

    1998-01-01

    We demonstrate that it is possible to distinguish with a complete certainty between healthy subjects and patients with various dysfunctions of the cardiac nervous system by way of multiresolutional wavelet transform of RR intervals. We repeated the study of Thurner et al on different ensemble of subjects. We show that reconstructed series using a filter which discards wavelet coefficients related with higher scales enables one to classify individuals for which the method otherwise is inconclusive. We suggest a delimiting diagnostic value of the standard deviation of the filtered, reconstructed RR interval time series in the range of $\\sim 0.035$ (for the above mentioned filter), below which individuals are at risk.

  20. Macaque cardiac physiology is sensitive to the valence of passively viewed sensory stimuli.

    Directory of Open Access Journals (Sweden)

    Eliza Bliss-Moreau

    Full Text Available Autonomic nervous system activity is an important component of affective experience. We demonstrate in the rhesus monkey that both the sympathetic and parasympathetic branches of the autonomic nervous system respond differentially to the affective valence of passively viewed video stimuli. We recorded cardiac impedance and an electrocardiogram while adult macaques watched a series of 300 30-second videos that varied in their affective content. We found that sympathetic activity (as measured by cardiac pre-ejection period increased and parasympathetic activity (as measured by respiratory sinus arrhythmia decreased as video content changes from positive to negative. These findings parallel the relationship between autonomic nervous system responsivity and valence of stimuli in humans. Given the relationship between human cardiac physiology and affective processing, these findings suggest that macaque cardiac physiology may be an index of affect in nonverbal animals.

  1. Cardiovascular and autonomic modulation by the central nervous system after aerobic exercise training

    Directory of Open Access Journals (Sweden)

    M.C. Martins-Pinge

    2011-09-01

    Full Text Available The autonomic nervous system plays a key role in maintaining homeostasis under normal and pathological conditions. The sympathetic tone, particularly for the cardiovascular system, is generated by sympathetic discharges originating in specific areas of the brainstem. Aerobic exercise training promotes several cardiovascular adjustments that are influenced by the central areas involved in the output of the autonomic nervous system. In this review, we emphasize the studies that investigate aerobic exercise training protocols to identify the cardiovascular adaptations that may be the result of central nervous system plasticity due to chronic exercise. The focus of our study is on some groups of neurons involved in sympathetic regulation. They include the nucleus tractus solitarii, caudal ventrolateral medulla and the rostral ventrolateral medulla that maintain and regulate the cardiac and vascular autonomic tonus. We also discuss studies that demonstrate the involvement of supramedullary areas in exercise training modulation, with emphasis on the paraventricular nucleus of the hypothalamus, an important area of integration for autonomic and neuroendocrine responses. The results of these studies suggest that the beneficial effects of physical activity may be due, at least in part, to reductions in sympathetic nervous system activity. Conversely, with the recent association of physical inactivity with chronic disease, these data may also suggest that increases in sympathetic nervous system activity contribute to the increased incidence of cardiovascular diseases associated with a sedentary lifestyle.

  2. Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Directory of Open Access Journals (Sweden)

    Moulton Alan

    2009-10-01

    Full Text Available Abstract Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS, screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1 the thoracospinal concept for right thoracic AIS in girls; (2 the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3 white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4 central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively, with asymmetry as an adverse response (hormesis; this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept. In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic

  3. Use of iodine-123 metaiodobenzylguanidine scintigraphy to assess cardiac sympathetic denervation and the impact of hypertension in patients with non-insulin-dependent diabetes mellitus

    International Nuclear Information System (INIS)

    The objectives of this clinical study using iodine-123 metaiodobenzylguanidine (MIBG) scintigraphy were (a) to evaluate cardiac sympathetic denervation in non-insulin-dependent diabetes mellitus (NIDDM) patients with and without hypertension and (b) to investigate the relation between cardiac sympathetic denervation and prognosis in NIDDM patients. We compared clinical characteristics and MIBG data [heart to mediastinum (H/M) ratio and % washout rate (WR)] in a control group and NIDDM patients with and without hypertension. MIBG scintigraphy was performed in 11 controls and 82 NIDDM patients without overt cardiovascular disease except for hypertension (systolic blood pressure ≥140 and/or diastolic blood pressure ≥90 mmHg). After MIBG examination, blood pressure was measured regularly in all NIDDM patients. There were significant differences between 65 normotensive and 17 hypertensive NIDDM patients with respect to age (55±11 vs 63±12 years, respectively, P<0.05), prevalence of diabetic retinopathy (12% vs 35%, respectively, P<0.05) and systolic blood pressure (120±12 vs 145±16 mmHg, respectively, P<0.001). The H/M ratio in hypertensive NIDDM patients was significantly lower than in the control group (1.81±0.29 vs 2.27±0.20, respectively, P<0.01). During the follow-up period (18± 12 months), 17 NIDDM patients newly developed hypertension after MIBG examination. There were no significant differences in their clinical characteristics compared with persistently normotensive or hypertensive NIDDM patients. %WR in patients with new onset hypertension was significantly higher than in the control group (30.88%±16.87% vs 12.89%±11.94%, respectively, P<0.05). Moreover, in these patients %WR correlated with duration from the date of MIBG scintigraphy to the onset of hypertension (r=-0.512, P<0.05). Five NIDDM patients died during the follow-up period (four newly hypertensive patients and one normotensive patient). There were significant statistical differences

  4. Sympathetic reinnervation in cardiac transplants : preliminary results {sup 123}I-MIBG and {sup 201}Tl/{sup 99m}Tc-MIBI scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joug Ho; Oh, Se Jin; Son, Min Soo; Son, Ji Won; Choi, In Seok; Shin, Euk Kyun; Park, Kuk Yang; Kim, Ju E. [International Medicine and Thoraic Surgery, Inchon (Korea, Republic of)

    1997-07-01

    Iodine-123 metaiodobenzylguanidine ({sup 123}I-MIBG) is a norepinephrine (NE) analogue. To determine whether cardiac sympathetic reinnervation occurs after orthotopic heart transplantation (TPL). Nine patients (M : F=7 :2; mean ages=34{+-}24.1 yr; idiopathic:rheumatic = 8: 1) within 197.{+-}14.3 (4-36) months after TPL performed both {sup 123}I-MIBG scintigraphy and {sup 201}Tl/{sup 99m}Tc-MIBI dipyridamole stress gated myocardial perfusion SPECT (g-MPS). {sup 23}I-MIBG imagings were performed in anterior position 15 minutes, 4 and 24 hours after i.v. injection of 148 MBq {sup 123}I MIBG. Image quantitation was based on the ratio of hear to mediastinal MIBG uptake (HMR). Six subjects with <14 (4.3{+-}1.4) months after TPL had no visible {sup 123}I-MIBG uptake on early 15. min imaging however, three subjects with 26 to 36(32.0{+-}5.3) months had visible cardiac {sup 123}I-MIBG uptake (HMR:1.24{+-}0.09 vs. 1.8{+-}0.2). Correlation was found between plasma NE concentration and HMR(r=0.80: p<0.05). Compared to HMR on 15 min images (1.5{+-}0.3), neither four nor 24 hour delayed images (1.3{+-}0.3 vs. 1.1{+-}0.1 : p<0.05, respectively, ANOVA) showed definite delayed localization of MIBG. The uptakes in the liver, lung, salivary glands and spleen were present. To dipyridamole stress, transplant hearts showed significant subnormal hemodynamic responses of HR, s-BP, d-BP, and rate pressure product (95.4{+-}13.8 to 107.4{+-}14.6, 131.0{+-}16.7 to 123.6{+-}13.4, 79.1{+-}12.7 to 72.2{+-}12.7, 124.5{+-}19.6 to 133.0{+-}23.6 p<0.05, respectively). G-MPS of one patient shod an apicoanterior wall reversible perfusion defect which was confirmed as 90% distal left anterior descending artery stenosis by coronary angiography. MIBG uptake seems to involve mainly the specific sodium and energy dependent uptake-1 pathway, and the non-neuronal uptake-2 involving simple diffusion is not significant. Conclusively, partial sympathetic late reinnervation of the transplant human hearts can

  5. elPBN neurons regulate rVLM activity through elPBN-rVLM projections during activation of cardiac sympathetic afferent nerves.

    Science.gov (United States)

    Guo, Zhi-Ling; Longhurst, John C; Tjen-A-Looi, Stephanie C; Fu, Liang-Wu

    2016-08-01

    The external lateral parabrachial nucleus (elPBN) within the pons and rostral ventrolateral medulla (rVLM) contributes to central processing of excitatory cardiovascular reflexes during stimulation of cardiac sympathetic afferent nerves (CSAN). However, the importance of elPBN cardiovascular neurons in regulation of rVLM activity during CSAN activation remains unclear. We hypothesized that CSAN stimulation excites the elPBN cardiovascular neurons and, in turn, increases rVLM activity through elPBN-rVLM projections. Compared with controls, in rats subjected to microinjection of retrograde tracer into the rVLM, the numbers of elPBN neurons double-labeled with c-Fos (an immediate early gene) and the tracer were increased after CSAN stimulation (P stimulation of CSAN increased the activity of elPBN cardiovascular neurons, which was attenuated (n = 6, P stimulation (n = 5, P stimulation activates cardiovascular neurons in the elPBN and rVLM sequentially through a monosynaptic (glutamatergic) excitatory elPBN-rVLM pathway. PMID:27225950

  6. Relatively lower body mass index is associated with an excess of severe truncal asymmetry in healthy adolescents: Do white adipose tissue, leptin, hypothalamus and sympathetic nervous system influence truncal growth asymmetry?

    Directory of Open Access Journals (Sweden)

    Triantafyllopoulos Georgios

    2009-06-01

    of severe TA in girls and boys has the same mechanism as that proposed recently for AIS girls, namely: severe TAs are initiated by a genetically-determined selectively increased hypothalamic sensitivity (up-regulation, i.e. increased sensitivity to leptin with asymmetry as an adverse response to stress (hormesis, mediated bilaterally mainly to the growing trunk via the sympathetic nervous system (leptin-hypothalamic-sympathetic nervous system (LHS concept. The putative autonomic dysfunction is thought to be increased by any lower circulating leptin levels associated with relatively lower BMIs. Sympathetic nervous system activation with asymmetry leads to asymmetries in ribs and/or vertebrae producing severe TA when beyond the capacity of postural mechanisms of the somatic nervous system to control the shape distortion of the trunk. A test of this hypothesis testing skin sympathetic responses, as in the Rett syndrome, is suggested.

  7. Central nervous system neuropeptide Y regulates mediators of hepatic phospholipid remodeling and very low-density lipoprotein triglyceride secretion via sympathetic innervation

    NARCIS (Netherlands)

    Rojas, Jennifer M; Bruinstroop, E.; Printz, Richard L; Alijagic-Boers, Aldijana; Foppen, E.; Turney, Maxine K; George, Leena; Beck-Sickinger, Annette G; Kalsbeek, A.; Niswender, Kevin D

    2015-01-01

    OBJECTIVE: Elevated very low-density lipoprotein (VLDL)-triglyceride (TG) secretion from the liver contributes to an atherogenic dyslipidemia that is associated with obesity, diabetes and the metabolic syndrome. Numerous models of obesity and diabetes are characterized by increased central nervous s

  8. Complex Nonlinear Autonomic Nervous System Modulation Link Cardiac Autonomic Neuropathy and Peripheral Vascular Disease

    Directory of Open Access Journals (Sweden)

    Kinda eKhalaf

    2015-03-01

    Full Text Available Background: Physiological interactions are abundant within, and between, body systems. These interactions may evolve into discrete states during pathophysiological processes resulting from common mechanisms. An association between arterial stenosis, identified by low ankle-brachial pressure index (ABPI and cardiovascular disease (CVD as been reported. Whether an association between vascular calcification - characterized by high ABPI and a different pathophysiology - is similarly associated with CVD, has not been established. The current study aims to investigate the association between ABPI, and cardiac rhythm, as an indicator of cardiovascular health and functionality, utilising heart rate variability (HRV.Methods and Results: Two hundred and thirty six patients underwent ABPI assessment. Standard time and frequency domain, and non-linear HRV measures were determined from 5-minute electrocardiogram. ABPI data were divided into normal (n=101, low (n=67 and high (n=66 and compared to HRV measures.(DFAα1 and SampEn were significantly different between the low ABPI, high ABPI and control groups (p<0.05.Conclusion: A possible coupling between arterial stenosis and vascular calcification with decreased and increased HRV respectively was observed. Our results suggest a model for interpreting the relationship between vascular pathophysiology and cardiac rhythm. The cardiovascular system may be viewed as a complex system comprising a number of interacting subsystems. These cardiac and vascular subsystems/networks may be coupled and undergo transitions in response to internal or external perturbations. From a clinical perspective, the significantly increased sample entropy compared to the normal ABPI group and the decreased and increased complex correlation properties measured by DFA for the low and high ABPI groups respectively, may be useful indicators that a more holistic treatment approach in line with this more complex clinical picture is required.

  9. Nicotine and sympathetic neurotransmission.

    Science.gov (United States)

    Haass, M; Kübler, W

    1997-01-01

    Nicotine increases heart rate, myocardial contractility, and blood pressure. These nicotine-induced cardiovascular effects are mainly due to stimulation of sympathetic neurotransmission, as nicotine stimulates catecholamine release by an activation of nicotine acetylcholine receptors localized on peripheral postganglionic sympathetic nerve endings and the adrenal medulla. The nicotinic acetylcholine receptor is a ligand-gated cation channel with a pentameric structure and a central pore with a cation gate, which is essential for ion selectivity and permeability. Binding of nicotine to its extracellular binding site leads to a conformational change of the central pore, which results in the influx of sodium and calcium ions. The resulting depolarization of the sympathetic nerve ending stimulates calcium influx through voltage-dependent N-type calcium channels, which triggers the nicotine-evoked exocytotic catecholamine release. In the isolated perfused guinea-pig heart, cardiac energy depletion sensitizes cardiac sympathetic nerves to the norepinephrine-releasing effect of nicotine, as indicated by a leftward shift of the concentration-response curve, a potentiation of maximum transmitter release, and a delay of the tachyphylaxis of nicotine-evoked catecholamine release. This sensitization was also shown to occur in the human heart under in vitro conditions. Through the intracardiac release of norepinephrine, nicotine induces a beta-adrenoceptor-mediated increase in heart rate and contractility, and an alpha-adrenoceptor-mediated increase in coronary vasomotor tone. The resulting simultaneous increase in oxygen demand and coronary resistance has a detrimental effect on the oxygen balance of the heart, especially in patients with coronary artery disease. Sensitization of the ischemic heart to the norepinephrine-releasing effect of nicotine may be a trigger for acute cardiovascular events in humans, such as acute myocardial infarction and/or life

  10. Sympathetic Activation Does Not Affect the Cardiac and Respiratory Contribution to the Relationship between Blood Pressure and Pial Artery Pulsation Oscillations in Healthy Subjects.

    Directory of Open Access Journals (Sweden)

    Pawel J Winklewski

    Full Text Available Using a novel method called near-infrared transillumination backscattering sounding (NIR-T/BSS that allows for the non-invasive measurement of pial artery pulsation (cc-TQ and subarachnoid width (sas-TQ in humans, we assessed the influence of sympathetic activation on the cardiac and respiratory contribution to blood pressure (BP cc-TQ oscillations in healthy subjects.The pial artery and subarachnoid width response to handgrip (HGT and cold test (CT were studied in 20 healthy subjects. The cc-TQ and sas-TQ were measured using NIR-T/BSS; cerebral blood flow velocity (CBFV was measured using Doppler ultrasound of the left internal carotid artery; heart rate (HR and beat-to-beat mean BP were recorded using a continuous finger-pulse photoplethysmography; respiratory rate (RR, minute ventilation (MV, end-tidal CO2 (EtCO2 and end-tidal O2 (EtO2 were measured using a metabolic and spirometry module of the medical monitoring system. Wavelet transform analysis was used to assess the relationship between BP and cc-TQ oscillations.HGT evoked an increase in BP (+15.9%; P<0.001, HR (14.7; P<0.001, SaO2 (+0.5; P<0.001 EtO2 (+2.1; P<0.05 RR (+9.2%; P = 0.05 and MV (+15.5%; P<0.001, while sas-TQ was diminished (-8.12%; P<0.001, and a clear trend toward cc-TQ decline was observed (-11.0%; NS. CBFV (+2.9%; NS and EtCO2 (-0.7; NS did not change during HGT. CT evoked an increase in BP (+7.4%; P<0.001, sas-TQ (+3.5%; P<0.05 and SaO2(+0.3%; P<0.05. HR (+2.3%; NS, CBFV (+2.0%; NS, EtO2 (-0.7%; NS and EtCO2 (+0.9%; NS remained unchanged. A trend toward decreased cc-TQ was observed (-5.1%; NS. The sas-TQ response was biphasic with elevation during the first 40 seconds (+8.8% vs. baseline; P<0.001 and subsequent decline (+4.1% vs. baseline; P<0.05. No change with respect to wavelet coherence and wavelet phase coherence was found between the BP and cc-TQ oscillations.Short sympathetic activation does not affect the cardiac and respiratory contribution to the relationship

  11. Fibromyalgia: When Distress Becomes (Un)sympathetic Pain

    OpenAIRE

    Manuel Martinez-Lavin

    2012-01-01

    Fibromyalgia is a painful stress-related disorder. A key issue in fibromyalgia research is to investigate how distress could be converted into pain. The sympathetic nervous system is the main element of the stress response system. In animal models, physical trauma, infection, or distressing noise can induce abnormal connections between the sympathetic nervous system and the nociceptive system. Dorsal root ganglia sodium channels facilitate this type of sympathetic pain. Similar mechanisms may...

  12. Different patterns of cardiac sympathetic denervation in tremor-type compared to akinetic-rigid-type Parkinson's disease: molecular imaging with ¹²³I-MIBG.

    Science.gov (United States)

    Chiaravalloti, A; Stefani, A; Tavolozza, M; Pierantozzi, M; Di Biagio, D; Olivola, E; Di Pietro, B; Stampanoni, M; Danieli, R; Simonetti, G; Stanzione, P; Schillaci, O

    2012-12-01

    The aim of this study was to evaluate the correlation between the clinical motor phenotypes of Parkinson's disease (PD) and ¹²³I-MIBG myocardial uptake. In total, 53 patients with PD [31 males and 22 females, mean age 62±10 years; 19 Hoehn & Yahr (H&Y) stage 1, 9 stage 1.5, 15 stage 2 and 10 at stage 3] were examined and subdivided into different clinical forms on the basis of dominance of resting tremor (n=19, TDT) and bradykinesia plus rigidity (n=34, ART). This status was correlated with the semi-quantitative analysis of ¹²³I-MIBG myocardial uptake. An age-matched control group of 18 patients was recruited (8 males and 10 females, mean age 62.4±16.3 years). ¹²³I-MIBG myocardial uptake significantly correlated with disease duration in early (r²=0.1894; P=0.0028) and delayed images (r²=0.1795; P=0.0037) in PD patients, while no correlation was found when considering age at examination, UPDRS III motor examination section score and H&Y score. PD patients showed a reduced ¹²³I-MIBG myocardial uptake compared to the control group in early (P=0.0026) and delayed images (P=0.0040), and ¹²³I-MIBG myocardial uptake was significantly lower in delayed images in TDT patients compared with ART patients (P=0.0167). A decrease was detected in the heart-to-mediastinum (H/M) ratio in delayed images compared to that of the early images in TDT patients (P=0.0040) and in the whole PD population (P=0.0012), while no differences were found in ART patients (P=0.1043). The results of the present study revealed that the cardiac sympathetic system is more severely impaired in TDT than in ART patients and ¹²³I-MIBG molecular imaging has the potential help in improving therapeutic planning in these patients. PMID:23023866

  13. Effects of adding intravenous nicorandil to standard therapy on cardiac sympathetic nerve activity and myocyte dysfunction in patients with acute decompensated heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Toyama, Takuji; Funada, Ryuichi; Takama, Noriaki; Koitabashi, Norimichi; Kurabayashi, Masahiko [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Suzuki, Yasuyuki; Matsumoto, Naoya [Nihon University School of Medicine, Department of Cardiology, Tokyo (Japan); Sato, Yuichi [Health Park Clinic, Department of Imaging, Takasaki, Gunma (Japan)

    2015-04-01

    Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, improves cardiac sympathetic nerve activity (CSNA) in ischemic heart disease or chronic heart failure. However, its effects on CSNA and myocyte dysfunction in acute heart failure (AHF) remain unclear. We investigated the effects of adding intravenous nicorandil to standard therapy on CSNA and myocyte dysfunction in AHF. We selected 70 patients with mild to moderate nonischemic AHF who were treated with standard conventional therapy soon after admission. Thirty-five patients were assigned to additionally receive intravenous nicorandil (4-12 mg/h; group A), whereas the remaining patients continued their current drug regimen (group B). Delayed total defect score (TDS), delayed heart to mediastinum count (H/M) ratio, and washout rate (WR) were determined by {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy within 3 days of admission and 4 weeks later. High sensitivity troponin T (hs-TnT) level was also measured at the same time points. After treatment, MIBG scintigraphic parameters significantly improved in both groups. However, the extent of the changes in these parameters in group A significantly exceeded the extent of the changes in group B [TDS -11.3 ± 4.3 in group A vs -4.0 ± 6.0 in group B (p < 0.01); H/M ratio 0.31 ± 0.16 vs 0.14 ± 0.16 (p < 0.01); WR -13.8 ± 7.8 % vs -6.1 ± 8.9 % (p < 0.01)]. The hs-TnT level decreased significantly from 0.052 ± 0.043 to 0.041 ± 0.033 ng/ml (p < 0.05) in group A, but showed no significant change in group B. Moreover, in both groups, no relationships between the extent of changes in MIBG parameters and hs-TnT level were observed. Adding intravenous nicorandil to standard therapy provides additional benefits for CSNA and myocyte dysfunction over conventional therapy alone in AHF patients. Furthermore, the mechanisms of improvement in CSNA and myocyte dysfunction after nicorandil treatment in AHF patients were distinct. (orig.)

  14. Sympathetic Modulation of Immunity: Relevance to Disease

    OpenAIRE

    Bellinger, Denise L.; Millar, Brooke A.; Perez, Sam; Carter, Jeff; Wood, Carlo; ThyagaRajan, Srinivasan; Molinaro, Christine; Lubahn, Cheri; Lorton, Dianne

    2008-01-01

    Optimal host defense against pathogens requires cross-talk between the nervous and immune systems. This paper reviews sympathetic-immune interaction, one major communication pathway, and its importance for health and disease. Sympathetic innervation of primary and secondary immune organs is described, as well as evidence for neurotransmission with cells of the immune system as targets. Most research thus far as focused on neural-immune modulation in secondary lymphoid organs, and have reveale...

  15. Drug-Free Correction of the Tone of the Autonomic Nervous System in the Management of Cardiac Arrhythmia in Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Sergey V. Popov, PhD, ScD

    2013-06-01

    Full Text Available Background: The aim of our study was to examine the possibility of ventricular extrasystole (VES management in CAD (coronary artery disease patients by attenuating the sympathetic activity with a course of electrical stimulation of the vagus nerve. Methods: A decrease in sympathetic tone was achieved via vagus nerve electrical stimulation (VNES. VNES was performed in 48 male CAD patients, mean age 53.5±4.1 years. Antiarrhythmic drug therapy was canceled prior to VNES therapy. The effect of VNES on heart rate variability (HRV and VES were carefully studied. All the patients received a 24-hour ECG monitoring. HRV was calculated for high frequency (HF and low frequency (LF bands and the LF/HF index was determined. Results: Immediately following VNES therapy, 30 patients (group 1 reported alleviation of angina signs and the LF/HF index was significantly decreased (p=0.001. Eighteen patients (group 2 showed no change either in health or the LF/HF index. According to ECG and echocardiography, the VES number did not significantly change immediately after VNES therapy. One month after the VNES course, group 1 reported further improvement in health; the LF/HF index approached normal values. In group 2, the LF/HF significantly decreased (p=0.043. However, in the entire study sample, the VES number significantly decreased overall (p=0.025. Conclusion: VNES attenuated the cardiac effects of hypersympathicotonia decreased the ischemic impact on the myocardium, alleviated the cardiac angina signs, and beneficially influenced the VES number in CAD patients.

  16. High Frequency Yoga Breathing: A Review of Nervous System Effects and Adjunctive Therapeutic and Premeditation Potential

    Directory of Open Access Journals (Sweden)

    Anna Andaházy

    2016-05-01

    Full Text Available High frequency yoga breathing (HFYB results in a shifting of the autonomic nervous system balance towards sympathetic nervous system dominance. In an effort to more fully understand the complex effects of this form of yogic breath-work, tests are being conducted on practitioners’ physiological and neurological response processes. Studies on heart rate variability (HRV indicating cardiac autonomic control have shown a resulting reduction of vagal activity following HFYB, leading to passive sympathetic dominance without overt excitation or exhaustion. Comparative cognitive tests taken after the practice have shown that HFYB results in reduced auditory and visual reaction times, and a decrease in optical illusion. The vigilant, wakeful, yet relaxed state induced by HFYB has been associated with improvements in attention, memory, sensorimotor performance, and mood. As breathing bridges conscious and unconscious functions, the potential role of HFYB as an adjunctive therapeutic intervention as well as its possible application in preparation for meditation is considered.

  17. Comparing the accuracy of ES-BC, EIS-GS, and ES Oxi on body composition, autonomic nervous system activity, and cardiac output to standardized assessments

    Directory of Open Access Journals (Sweden)

    Lewis JE

    2011-09-01

    Full Text Available John E Lewis1, Stacey L Tannenbaum1, Jinrun Gao3, Angelica B Melillo1, Evan G Long1, Yaima Alonso2, Janet Konefal1, Judi M Woolger2, Susanna Leonard1, Prabjot K Singh1, Lawrence Chen1, Eduard Tiozzo1 1Department of Psychiatry and Behavioral Sciences, 2Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 3State Farm Insurance, Bloomington, IL, USA Background and purpose: The Electro Sensor Complex (ESC is software that combines three devices using bioelectrical impedance, galvanic skin response, and spectrophotometry: (1 ES-BC (Electro Sensor-Body Composition; LD Technology, Miami, FL to assess body composition, (2 EIS-GS (Electro Interstitial Scan-Galvanic Skin; LD Technology to predict autonomic nervous system activity, and (3 ES Oxi (Electro Sensor Oxi; LD Technology to assess cardiac output. The objective of this study was to compare each to a standardized assessment: ES-BC to dual-energy X-ray absorptiometry (DXA, EIS-GS to heart rate variability, and ES Oxi to BioZ Dx Diagnostic System (BioZ Dx; SonoSite Inc, Bothell, WA. Patients and methods: The study was conducted in two waves. Fifty subjects were assessed for body composition and autonomic nervous system activity. Fifty-one subjects were assessed for cardiac output. Results: We found adequate relative and absolute agreement between ES-BC and DXA for fat mass (r = 0.97, P < 0.001 with ES-BC overestimating fat mass by 0.1 kg and for body fat percentage (r = 0.92, P < 0.001 with overestimation of fat percentage by 0.4%. For autonomic nervous system activity, we found marginal relative agreement between EIS-GS and heart rate variability by using EIS-GS as the predictor in a linear regression equation (adjusted R2 = 0.56, P = 0.03. For cardiac output, adequate relative and absolute agreement was found between ES Oxi and BioZ Dx at baseline (r = 0.60, P < 0.001, after the first exercise stage (r = 0.79, P < 0.001, and after the second exercise stage (r = 0.86, P

  18. Abnormal cardiac autonomic regulation in mice lacking ASIC3.

    Science.gov (United States)

    Cheng, Ching-Feng; Kuo, Terry B J; Chen, Wei-Nan; Lin, Chao-Chieh; Chen, Chih-Cheng

    2014-01-01

    Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3(-/-) mice. Asic3(-/-) mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3(-/-) mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3(-/-) mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases. PMID:24804235

  19. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    Directory of Open Access Journals (Sweden)

    Ching-Feng Cheng

    2014-01-01

    Full Text Available Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3 is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  20. Autonomic nervous system function in type 2 diabetes using conventional clinical autonomic tests, heart rate and blood pressure variability measures

    Directory of Open Access Journals (Sweden)

    S Sucharita

    2011-01-01

    Full Text Available Background: There are currently approximately 40.9 million patients with diabetes mellitus in India and this number is expected to rise to about 69.9 million by the year 2025. This high burden of diabetes is likely to be associated with an increase in associated complications. Materials and Methods: A total of 23 (15 male and 8 female patients with type 2 diabetes of 10-15 years duration and their age and gender matched controls (n=23 were recruited. All subjects underwent detailed clinical proforma, questionnaire related to autonomic symptoms, anthropometry, peripheral neural examination and tests of autonomic nervous system including both conventional and newer methods (heart rate and blood pressure variability. Results: Conventional tests of cardiac parasympathetic and sympathetic activity were significantly lower in patients with diabetes compared to the controls (P<0.05. The diabetic patients group had significantly lower high frequency and low-frequency HRV when expressed in absolute units (P<0.05 and total power (P<0.01 compared to the controls. Conclusion: Data from the current study demonstrated that diabetics had both cardiac sympathetic and cardiac parasympathetic nervous system involvement. The presence of symptoms and involvement of both components of the autonomic nervous system suggest that dysfunction has been present for a while in these diabetics. There is a strong need for earlier and regular evaluation of autonomic nervous system in type 2 diabetics to prevent further complications.

  1. Causal interactions between the cerebral cortex and the autonomic nervous system.

    Science.gov (United States)

    Yu, XiaoLin; Zhang, Chong; Zhang, JianBao

    2014-05-01

    Mental states such as stress and anxiety can cause heart disease. On the other hand, meditation can improve cardiac performance. In this study, the heart rate variability, directed transfer function and corrected conditional entropy were used to investigate the effects of mental tasks on cardiac performance, and the functional coupling between the cerebral cortex and the heart. When subjects tried to decrease their heart rate by volition, the sympathetic nervous system was inhibited and the heart rate decreased. When subjects tried to increase their heart rate by volition, the parasympathetic nervous system was inhibited and the sympathetic nervous system was stimulated, and the heart rate increased. When autonomic nervous system activity was regulated by mental tasks, the information flow from the post-central areas to the pre-central areas of the cerebral cortex increased, and there was greater coupling between the brain and the heart. Use of directed transfer function and corrected conditional entropy techniques enabled analysis of electroencephalographic recordings, and of the information flow causing functional coupling between the brain and the heart.

  2. REVERSAL OF GENETIC SALT-SENSITIVE HYPERTENSION BY TARGETED SYMPATHETIC ABLATION

    OpenAIRE

    Foss, Jason; Fink, Gregory D; Osborn, John W.

    2013-01-01

    The sympathetic nervous system plays an important role in some forms of human hypertension as well as the Dahl salt-sensitive rat model of hypertension; however, the sympathetic targets involved remain unclear. To address this, we examined the role of the renal and splanchnic sympathetic nerves in Dahl hypertension by performing either sham surgery (n = 10) or targeted sympathetic ablation of the renal nerves (renal denervation, n = 11), the splanchnic nerves (celiac ganglionectomy, n = 11) o...

  3. Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats

    Directory of Open Access Journals (Sweden)

    A. Medeiros

    2004-12-01

    Full Text Available The effect of swimming training (ST on vagal and sympathetic cardiac effects was investigated in sedentary (S, N = 12 and trained (T, N = 12 male Wistar rats (200-220 g. ST consisted of 60-min swimming sessions 5 days/week for 8 weeks, with a 5% body weight load attached to the tail. The effect of the autonomic nervous system in generating training-induced resting bradycardia (RB was examined indirectly after cardiac muscarinic and adrenergic receptor blockade. Cardiac hypertrophy was evaluated by cardiac weight and myocyte morphometry. Plasma catecholamine concentrations and citrate synthase activity in soleus muscle were also determined in both groups. Resting heart rate was significantly reduced in T rats (355 ± 16 vs 330 ± 20 bpm. RB was associated with a significantly increased cardiac vagal effect in T rats (103 ± 25 vs 158 ± 40 bpm, since the sympathetic cardiac effect and intrinsic heart rate were similar for the two groups. Likewise, no significant difference was observed for plasma catecholamine concentrations between S and T rats. In T rats, left ventricle weight (13% and myocyte dimension (21% were significantly increased, suggesting cardiac hypertrophy. Skeletal muscle citrate synthase activity was significantly increased by 52% in T rats, indicating endurance conditioning. These data suggest that RB induced by ST is mainly mediated parasympathetically and differs from other training modes, like running, that seems to mainly decrease intrinsic heart rate in rats. The increased cardiac vagal activity associated with ST is of clinical relevance, since both are related to increased life expectancy and prevention of cardiac events.

  4. Neurohumoral indicators of efficacy radiofrequency cardiac denervation

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, A. V., E-mail: ave@cardio-tomsk.ru; Evtushenko, V. V. [National Research Tomsk State University, Tomsk (Russian Federation); Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Saushkina, Yu. V.; Gusakova, A. M.; Suslova, T. E.; Dymbrylova, O. N.; Smyshlyaev, K. A.; Kurlov, I. O. [Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Lishmanov, Yu. B.; Anfinogenova, Ya. D. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Sergeevichev, D. S. [Academician E.N. Meshalkin State Research Institute of Circulation Pathology, Novosibirsk (Russian Federation); Bykov, A. N.; Syryamkin, V. I.; Kistenev, Yu. V. [National Research Tomsk State University, Tomsk (Russian Federation); Lotkov, A. I. [Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS, Tomsk (Russian Federation); Pokushalov, E. A.

    2015-11-17

    In this study, we compared pre- and postoperative parameters of the cardiac sympathetic innervation. The aim of the study was to examine the approaches to evaluating the quality of radiofrequency (RF)-induced cardiac denervation by using non-invasive and laboratory methods. The study included 32 people with long-lasting persistent atrial fibrillation (AF). The patients were divided into 2 groups according to the objectives of the study: group 1 (main) - 21 patients with mitral valve diseases, which simultaneously with radiofrequency ablation (RFA) AF carried out on the effects of the paraganglionic nervous plexuses by C. Pappone (2004) and N. Doll (2008) schemes. The second group (control) contained 11 patients with heart diseases in sinus rhythm (the RF denervation not been performed). All patients, who underwent surgical treatment, were received examination of cardiac sympathetic tone by using {sup 123}I-MIBG. All of them made blood analysis from ascending aorta and coronary sinus to determine the level of norepinephrine and its metabolites before and after cardiac denervation. Data of radionuclide examination are correlating with laboratory data.

  5. Neurohumoral indicators of efficacy radiofrequency cardiac denervation

    Science.gov (United States)

    Evtushenko, A. V.; Evtushenko, V. V.; Saushkina, Yu. V.; Lishmanov, Yu. B.; Pokushalov, E. A.; Sergeevichev, D. S.; Gusakova, A. M.; Suslova, T. E.; Dymbrylova, O. N.; Bykov, A. N.; Syryamkin, V. I.; Kistenev, Yu. V.; Anfinogenova, Ya. D.; Smyshlyaev, K. A.; Lotkov, A. I.; Kurlov, I. O.

    2015-11-01

    In this study, we compared pre- and postoperative parameters of the cardiac sympathetic innervation. The aim of the study was to examine the approaches to evaluating the quality of radiofrequency (RF)-induced cardiac denervation by using non-invasive and laboratory methods. The study included 32 people with long-lasting persistent atrial fibrillation (AF). The patients were divided into 2 groups according to the objectives of the study: group 1 (main) - 21 patients with mitral valve diseases, which simultaneously with radiofrequency ablation (RFA) AF carried out on the effects of the paraganglionic nervous plexuses by C. Pappone (2004) and N. Doll (2008) schemes. The second group (control) contained 11 patients with heart diseases in sinus rhythm (the RF denervation not been performed). All patients, who underwent surgical treatment, were received examination of cardiac sympathetic tone by using 123I-MIBG. All of them made blood analysis from ascending aorta and coronary sinus to determine the level of norepinephrine and its metabolites before and after cardiac denervation. Data of radionuclide examination are correlating with laboratory data.

  6. Evaluation of cardiac blood blow, metabolism and sympathetic nerve function in patients with cardiac failure using PET and SPECT. Prognostic diagnosis based on the analysis of aggravating factors of the disease

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Yoshio; Shimozu, Junko; Yasumura, Yoshio; Nagatani, Kenzo; Miyatake, Kunio [National Cardiovascular Center, Suita, Osaka (Japan)

    1998-02-01

    Focusing on the failure of energy metabolism, which is assumed to be attributed to the cardiac muscle disorder of a patient with cardiac failure, the characteristics and diagnostic significance of the metabolic disorders of cadiac muscles were investigated in those patients. The diagnostic efficacy of {beta}-methyl iodophenyl pentadecanoic acid (BMIPP) which is a imaging agent for lipid metabolism in the cardiac muscle was assessed in the clinical states of cardiac failure due to pulmonary hypertension. Even if there was a considerable increase in the mean pulmonary arterial pressure (mPAP), the initial accumulation of BMIPP linearly increased, similarly to the increase in the accumulation of MIBI, a blood flow agent. The initial accumulation of BMIPP was thought to reflect a thicken cardiac muscle and/or increased blood flow. Also, its washing-out rate was suggested to be usable as an clinical indicator to estimate the loading of ventricular pressure. (M.N.)

  7. Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure.

    Science.gov (United States)

    Lymperopoulos, Anastasios; Rengo, Giuseppe; Funakoshi, Hajime; Eckhart, Andrea D; Koch, Walter J

    2007-03-01

    Cardiac overstimulation by the sympathetic nervous system (SNS) is a salient characteristic of heart failure, reflected by elevated circulating levels of catecholamines. The success of beta-adrenergic receptor (betaAR) antagonists in heart failure argues for SNS hyperactivity being pathogenic; however, sympatholytic agents targeting alpha2AR-mediated catecholamine inhibition have been unsuccessful. By investigating adrenal adrenergic receptor signaling in heart failure models, we found molecular mechanisms to explain the failure of sympatholytic agents and discovered a new strategy to lower SNS activity. During heart failure, there is substantial alpha2AR dysregulation in the adrenal gland, triggered by increased expression and activity of G protein-coupled receptor kinase 2 (GRK2). Adrenal gland-specific GRK2 inhibition reversed alpha2AR dysregulation in heart failure, resulting in lowered plasma catecholamine levels, improved cardiac betaAR signaling and function, and increased sympatholytic efficacy of a alpha2AR agonist. This is the first demonstration, to our knowledge, of a molecular mechanism for SNS hyperactivity in heart failure, and our study identifies adrenal GRK2 activity as a new sympatholytic target.

  8. Obesity-Related Metabolic Syndrome: Mechanisms of Sympathetic Overactivity

    Directory of Open Access Journals (Sweden)

    Maria Paola Canale

    2013-01-01

    Full Text Available The prevalence of the metabolic syndrome has increased worldwide over the past few years. Sympathetic nervous system overactivity is a key mechanism leading to hypertension in patients with the metabolic syndrome. Sympathetic activation can be triggered by reflex mechanisms as arterial baroreceptor impairment, by metabolic factors as insulin resistance, and by dysregulated adipokine production and secretion from visceral fat with a mainly permissive role of leptin and antagonist role of adiponectin. Chronic sympathetic nervous system overactivity contributes to a further decline of insulin sensitivity and creates a vicious circle that may contribute to the development of hypertension and of the metabolic syndrome and favor cardiovascular and kidney disease. Selective renal denervation is an emerging area of interest in the clinical management of obesity-related hypertension. This review focuses on current understanding of some mechanisms through which sympathetic overactivity may be interlaced to the metabolic syndrome, with particular regard to the role of insulin resistance and of some adipokines.

  9. Measurement of the effect of Isha Yoga on cardiac autonomic nervous system using short-term heart rate variability

    Directory of Open Access Journals (Sweden)

    Krishnan Muralikrishnan

    2012-01-01

    Full Text Available Background: Beneficial effects of Yoga have been postulated to be due to modulation of the autonomic nervous system. Objective: To assess the effect of Isha Yoga practices on cardiovascular autonomic nervous system through short-term heart rate variability (HRV. Design of the Study: Short-term HRV of long-term regular healthy 14 (12 males and 2 females Isha Yoga practitioners was compared with that of age- and gender-matched 14 (12 males and 2 females non-Yoga practitioners. Methods and Materials: ECG Lead II and respiratory movements were recorded in both groups using Polyrite during supine rest for 5 min and controlled deep breathing for 1 minute. Frequency domain analysis [RR interval is the mean of distance between subsequent R wave peaks in ECG], low frequency (LF power, high frequency (HF power, LF normalized units (nu, HF nu, LF/HF ratio] and time domain analysis [Standard Deviation of normal to normal interval (SDNN, square of mean squared difference of successive normal to normal intervals (RMSSD, normal to normal intervals which are differing by 50 ms (NN50, and percentage of NN50 (pNN50] of HRV variables were analyzed for supine rest. Time domain analysis was recorded for deep breathing. Results: Results showed statistically significant differences between Isha Yoga practitioners and controls in both frequency and time domain analyses of HRV indices, with no difference in resting heart rate between the groups. Conclusions: Practitioners of Isha Yoga showed well-balanced beneficial activity of vagal efferents, an overall increased HRV, and sympathovagal balance, compared to non-Yoga practitioners during supine rest and deep breathing.

  10. 123I-MIBG Myocardial sympathetic innervation scintigraphy and Parkinson's disease

    International Nuclear Information System (INIS)

    Aim: Dysfunction of the autonomic nervous system is an under-recognised but important aspect of the aetiological and clinical manifestation of primary degenerative dysautonomias such as Parkinson's disease (PD). Functional imaging studies suggest that selective cardiac sympathetic denervation may occur early in PD but not in other parkinsonian syndromes. The clinical implication of this apparently disease specific peripheral dysautonomia is unknown and would be the subject of much interest in future years. Scintigraphy with radiolabeled metaiodobenzylguanidine (123I-MIBG) enables the visualization and quantification of cardiac sympathetic function. Materials and Methods: We prospectively performed 73 123I-MIBG myocardial studies in two groups of patients: 61 patients (30 male/31 female) diagnosed of PD without any autonomic dysfunction (PD group) and 12 patients (7 male/4 female) were studied for a suspicion of pheochromocytoma (nonPD group). Severity of PD was evaluated by Hoehn-Yahr scale. Myocardial imaging with 123I-MIBG was performed to evaluate cardiac sympathetic function. Early and delayed images of the anterior view were obtained 15min and 4h after injection of 111 MBq iv of 123I-MIBG. Quantification of 123I-MIBG uptake using a heart-to-mediastinum ratio (H/M) and washout ratio (W) and comparison between groups were carried out. Results: The 123I-MIBG heart uptake was: a) reduced in 16 PD patients (26.2% of PD), b) absent in 42 PD patients (62.8% of PD) and c) normal in 3 PD (4.9% of PD) and in all of the 12 nonPD patients. H/M was significantly smaller in PD patients than nonPD patients (P 123I-MIBG uptake is a valuable and sensitive tool to identify early cardiac sympathetic dysfunction in patients with PD. As this finding could be characteristic of PD patients, the 123I-MIBG myocardial scintigraphy would be useful to discriminate them from other neurodegenerative disorders early in the course of the disease

  11. Obesity-Related Metabolic Syndrome: Mechanisms of Sympathetic Overactivity

    OpenAIRE

    Maria Paola Canale; Simone Manca di Villahermosa; Giuliana Martino; Valentina Rovella; Annalisa Noce; Antonino De Lorenzo; Nicola Di Daniele

    2013-01-01

    The prevalence of the metabolic syndrome has increased worldwide over the past few years. Sympathetic nervous system overactivity is a key mechanism leading to hypertension in patients with the metabolic syndrome. Sympathetic activation can be triggered by reflex mechanisms as arterial baroreceptor impairment, by metabolic factors as insulin resistance, and by dysregulated adipokine production and secretion from visceral fat with a mainly permissive role of leptin and antagonist role of adipo...

  12. Sympathetic and sensory innervation of brown adipose tissue

    OpenAIRE

    Bartness, TJ; Vaughan, CH; Song, CK

    2010-01-01

    The innervation of brown adipose tissue (BAT) by the sympathetic nervous system (SNS) is incontrovertible and, with its activation, functions as the principal, if not exclusive, stimulator of BAT thermogenesis. The parasympathetic innervation of BAT only appears in two minor BAT depots, but not in the major interscapular BAT (IBAT) depot. BAT thermogenesis is triggered by the release of norepinephrine from its sympathetic nerve terminals, stimulating β3-adrenoceptors that turns on a cascade o...

  13. Early atherosclerosis and cardiac autonomic responses to mental stress: a population-based study of the moderating influence of impaired endothelial function

    OpenAIRE

    Juonala Markus; Ravaja Niklas; Hintsa Taina; Hintsanen Mirka; Chumaeva Nadja; Raitakari Olli T; Keltikangas-Järvinen Liisa

    2010-01-01

    Abstract Background Acute mental stress may contribute to the cardiovascular disease progression via autonomic nervous system controlled negative effects on the endothelium. The joint effects of stress-induced sympathetic or parasympathetic activity and endothelial function on atherosclerosis development have not been investigated. The present study aims to examine the interactive effect of acute mental stress-induced cardiac reactivity/recovery and endothelial function on the prevalence of c...

  14. Macrophage depletion suppresses sympathetic hyperinnervation following myocardial infarction

    OpenAIRE

    Wernli, G.; Hasan, W.; Bhattacherjee, A.; Rooijen, van, J.; Smith, P K

    2009-01-01

    Myocardial infarction induces sympathetic axon sprouting adjacent to the necrotic region, and this has been implicated in the etiology of arrhythmias resulting in sudden cardiac death. Previous studies show that nerve growth factor (NGF) is essential for enhanced post-infarct sympathetic sprouting, but the cell types necessary to supply this neurotrophic protein are unknown. The objective of the present study was to determine whether macrophages, which are known to synthesize NGF, are necessa...

  15. Imaging of cardiac innervation: when will it reach clinical value?; Bildgebung der kardialen Innervation: Wann gelingt der Sprung in die Klinik?

    Energy Technology Data Exchange (ETDEWEB)

    Schaefers, M. [Klinik und Poliklinik fuer Nuklearmedizin, Universitaetsklinikum Muenster (Germany); Inst. fuer Arterioskleroseforschung, Westfaelische Wilhelms-Univ., Muenster (Germany); Schober, O. [Klinik und Poliklinik fuer Nuklearmedizin, Universitaetsklinikum Muenster (Germany)

    2004-09-01

    The autonomic nervous system is involved in the regulation of the majority of basic cardiac and vascular functions, e.g. the control of perfusion, rhythm, metabolism and contraction. This results in an involvement of the autonomic nervous system in many pathophysiologic processes affecting the heart. Furthermore, in clinical medicine the autonomic nervous system is a target of specific pharmacological treatment such as {beta}-blockade. Imaging of the autonomic nervous system in a clinical context should therefore proof useful in clinical decision making and therapy control of cardiovascular diseases. Today, scintigraphic techniques are a unique mean to image and quantify sympathetic and parasympathetic cardiac innervation non-invasively in vivo. Although these technologies are already available, these are not yet implemented in clinical algorithms. (orig.)

  16. [Effectiveness of sympathetic block using various technics].

    Science.gov (United States)

    Weissenberg, W

    1987-07-01

    Blocking of sympathetic conduction aims at permanent or temporary elimination of those pain pathways conducted by the sympathetic nervous system. In order to provide an objective evaluation of sufficient blocking effect, earlier inquiries referred to parameters such as: (1) observation of clinical signs such as Horner's syndrome, Guttman's sign, anhidrosis, extended venous filling; (2) difference in skin temperature of at least 1.5 degrees C between blocked and unblocked side; (3) increase in amplitude of the pulse wave; and (4) depression of the psychogalvanic reflex (PGR) on the blocked side (Fig. 1). In clinical practice, these control parameters are effective because they are time-saving, technically simple, and highly evidential. Further parameters for evaluating sympathetic blockade are examination of hydrosis by means of color indicators such as bromocresol and ninhydrin, oscillometry, and plethysmography. The effectiveness of sympathetic blockade after stellate ganglion and sympathetic trunk blocks has been verified by various authors. In a clinical study, 16 patients were divided into four groups in order to test the effectiveness of sympathetic blockade after spinal anesthesia with 3 ml 0.75% bupivacaine (group I) and 4 ml 0.75% bupivacaine (group II) and after peridural anesthesia with 15 ml 0.75% bupivacaine (group III) and 20 ml 0.75% bupivacaine (group IV) by means of temperature difference, response of pulse wave amplitude and PGR between blocked lower and unblocked upper extremity, and sensory levels of block. The patients were classified as ASA I and II; their ages varied from 20 to 63 years.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Relationship between left ventricular diastolic function and myocardial sympathetic denervation measured by {sup 123}I-meta-iodobenzylguanidine imaging in Anderson-Fabry disease

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Letizia; Giudice, Caterina Anna; Imbriaco, Massimo; Trimarco, Bruno; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy); Pellegrino, Teresa [Institute of Biostructure and Bioimaging, National Council of Research, Naples (Italy); Pisani, Antonio; Riccio, Eleonora [University Federico II, Department of Public Health, Naples (Italy); Salvatore, Marco [IRCCS SDN, Naples (Italy)

    2016-04-15

    Whether cardiac sympathetic nervous function abnormalities may be present in patients with Anderson-Fabry disease (AFD) remains unexplored. We investigated the relationship between left ventricular (LV) function and cardiac sympathetic nervous function in patients with AFD. Twenty-five patients (12 men, mean age 43 ± 13 years) with genetically proved AFD and preserved LV ejection fraction and ten age and gender-matched control subjects underwent speckle tracking echocardiography and {sup 123}I-meta-iodobenzylguanidine (MIBG) imaging from which early and late heart to mediastinum (H/M) ratios and myocardial washout rate values were calculated. In AFD patients, a significant correlation between late H/M ratio and LV mass index (r = -61, p = 0.001), left atrial volume (r = -0.72, p < 0.001), systolic pulmonary artery pressure (r = -0.75, p < 0.001), and early diastolic untwisting rate (r = -0.66, p < 0.001) was found. Ten AFD patients exhibited a late H/M ratio below two fold standard deviation of control subjects (≤1.75). Patients showing late H/M ratio ≤ 1.75 had significantly higher LV mass index, relative wall thickness, left atrial volume and systolic pulmonary artery pressure, lower systolic longitudinal strain and an early diastolic untwisting rate compared to patients with late H/M ratio > 1.75. At multivariable linear regression analysis, early diastolic untwisting rate was the only independent predictor of late H/M ratio ≤ 1.75 (odds ratio 1.15, 95 % confidence interval 1.07-1.31, p < 0.05). The present findings provide the first demonstration of a cardiac sympathetic derangement in AFD patients with preserved LV ejection fraction, which is mostly related to LV diastolic dysfunction. (orig.)

  18. Relationship between left ventricular diastolic function and myocardial sympathetic denervation measured by 123I-meta-iodobenzylguanidine imaging in Anderson-Fabry disease

    International Nuclear Information System (INIS)

    Whether cardiac sympathetic nervous function abnormalities may be present in patients with Anderson-Fabry disease (AFD) remains unexplored. We investigated the relationship between left ventricular (LV) function and cardiac sympathetic nervous function in patients with AFD. Twenty-five patients (12 men, mean age 43 ± 13 years) with genetically proved AFD and preserved LV ejection fraction and ten age and gender-matched control subjects underwent speckle tracking echocardiography and 123I-meta-iodobenzylguanidine (MIBG) imaging from which early and late heart to mediastinum (H/M) ratios and myocardial washout rate values were calculated. In AFD patients, a significant correlation between late H/M ratio and LV mass index (r = -61, p = 0.001), left atrial volume (r = -0.72, p < 0.001), systolic pulmonary artery pressure (r = -0.75, p < 0.001), and early diastolic untwisting rate (r = -0.66, p < 0.001) was found. Ten AFD patients exhibited a late H/M ratio below two fold standard deviation of control subjects (≤1.75). Patients showing late H/M ratio ≤ 1.75 had significantly higher LV mass index, relative wall thickness, left atrial volume and systolic pulmonary artery pressure, lower systolic longitudinal strain and an early diastolic untwisting rate compared to patients with late H/M ratio > 1.75. At multivariable linear regression analysis, early diastolic untwisting rate was the only independent predictor of late H/M ratio ≤ 1.75 (odds ratio 1.15, 95 % confidence interval 1.07-1.31, p < 0.05). The present findings provide the first demonstration of a cardiac sympathetic derangement in AFD patients with preserved LV ejection fraction, which is mostly related to LV diastolic dysfunction. (orig.)

  19. 反射性交感神经营养不良%Reflex sympathetic dystrophy

    Institute of Scientific and Technical Information of China (English)

    马抒音; 张丽苓

    2002-01-01

    @@ Background: Reflex sympathetic dystrophy (RSD),also known as complex regional pain syndrome (CRPS), is a nervous system disorder that often results in severe chronic and burning pain and other symptoms.

  20. Sympathetic neural adaptation to hypocaloric diet with or without exercise training in obese metabolic syndrome subjects

    DEFF Research Database (Denmark)

    Straznicky, Nora E; Lambert, Elisabeth A; Nestel, Paul J;

    2010-01-01

    Sympathetic nervous system (SNS) overactivity contributes to the pathogenesis and target organ complications of obesity. This study was conducted to examine the effects of lifestyle interventions (weight loss alone or together with exercise) on SNS function....

  1. Investigation of Sleep Bruxism Relating to Micro-arousals and Cardiac Sympathetic Activities%夜磨牙与微觉醒及心脏交感神经活动的关系

    Institute of Scientific and Technical Information of China (English)

    刘伟才; 王海波; 陈威; 李强

    2012-01-01

    Objective: To investigate whether rhythmic masticatory muscle activity (RMMA) is associated with sleep micro- arousals (MA), and analyze the association between RMMA of sleep bruxism patients (RMMA/SB) and autonomic cardiac activity. Methods: Thirty SB subjects and thirty control subjects for two consecutive nights were performed by polygraphic recordings. MA index and RMMA index were scored. The mean heart rate from a series of 10 cardiac cycles was calculated at 60, 40, 20 and 5 sec before RMMA onset respectively. To assess a transient beat-to-beat heart rate change in relation to the RMMA onset, heart rate from 5 cardiac cycles before and 5 cycles after the onset were also calculated. Results: Sleep bruxism (SB) subjects showed a higher incidence of rhythmic masticatory muscle activity (RMMA) than control subjects (6.10±1.05 vs. 1.81 ±0.39, P<0.0001). However, no difference was found in according to their micro-arousal index(7.72±1.21 vs.7.53±1.33, P=0.5641). RMMA/SB was associated with sleep micro-arousals. In both groups, transient heart rate acceleration was observed in relation to the onset of RMMA episodes. Conclusion: RMMA is associated with sleep micro-arousals. In SB subjects, a clear increase in sympathetic activity precedes SB onset.%目的:研究夜磨牙(sleep bruxism,SB)患者睡眠期咀嚼肌节律性运动(RMMA)发生的微觉醒机制.方法:对30名夜磨牙患者、30名正常人进行连续2夜的多导睡眠监测,研究RMMA事件与微觉醒(MA)的时间相关性;比较2组间RMMA指数及MA指数的差异;RMMA事件发生前60 s、前40 s、前20 s、前5s,共5个时间点的各连续10个心动周期的平均心率,以及RMMA事件发生前后各5个心动周期的心率变化.结果:夜磨牙症患者微觉醒指数(7.72±1.21)与正常对照相似(7.53±1.33,P=0.5641);但咀嚼肌节律性运动频率,即磨牙指数[(6.10±1.05)次/h]约3倍于正常对照组[(1.81±0.39)次/h,P<0.0001)].RMMA事件与MA存在高度时间相关

  2. Leptin as a mediator between obesity and cardiac dysfunction

    Directory of Open Access Journals (Sweden)

    Joanna Karbowska

    2012-05-01

    Full Text Available  Obesity is now recognised as one of the most important risk factors for heart disease. Obese individuals have high circulating levels of leptin, a hormone secreted by adipose tissue and in­volved in energy homeostasis. Growing evidence suggests that leptin may contribute to the development of cardiac dysfunction. In a large prospective study leptin has been shown to be an independent risk factor for coronary heart disease. An independent positive association has also been found between plasma leptin levels and heart rate in hypertensive patients and heart transplant recipients. In animal studies chronic leptin infusion increased heart rate and blood pressure. It has also been demonstrated that circulating leptin levels are elevated in patients with heart failure. The level of plasma leptin was associated with increased myocardial wall thickness and correlated with left ventricular mass, suggesting a role for this hormone in mediating left ventricular hypertrophy in humans. Moreover, leptin directly induced hypertrophy and hyperplasia in human and rodent cardiomyocytes, accompanied by cardiac extracellular matrix remodelling. Leptin may also influence energy substrate utilisation in cardiac tissue.These findings suggest that leptin acting directly or through the sympathetic nervous system may have adverse effects on cardiac structure and function, and that chronic hyperleptinaemia may greatly increase the risk of cardiac disorders. Additional studies are needed to define the role of leptin in cardiac physiology and pathophysiology, nevertheless the reduction in plasma leptin levels with caloric restriction and weight loss may prevent cardiac dysfunction in obese patients.

  3. Nitric oxide and the autonomic regulation of cardiac excitability. The G.L. Brown Prize Lecture.

    Science.gov (United States)

    Paterson, D

    2001-01-01

    Cardiac sympathetic imbalance and arrhythmia; Nitric oxide-cGMP pathway and the cholinergic modulation of cardiac excitability; Nitric oxide-cGMP pathway and the sympathetic modulation of cardiac excitability; Functional significance of nitric oxide in the autonomic regulation of cardiac excitability; Summary; References. Experimental Physiology (2001) 86.1, 1-12. PMID:11429613

  4. Nitric oxide and the autonomic regulation of cardiac excitability. The G.L. Brown Prize Lecture.

    Science.gov (United States)

    Paterson, D

    2001-01-01

    Cardiac sympathetic imbalance and arrhythmia; Nitric oxide-cGMP pathway and the cholinergic modulation of cardiac excitability; Nitric oxide-cGMP pathway and the sympathetic modulation of cardiac excitability; Functional significance of nitric oxide in the autonomic regulation of cardiac excitability; Summary; References. Experimental Physiology (2001) 86.1, 1-12.

  5. Cardiac sympathetic-parasympathetic balance in rats with experimentally-induced acute chagasic myocarditis O balanço autonômico cardíaco nas ratas com miocardite chagásica aguda experimental

    Directory of Open Access Journals (Sweden)

    Diego F. Davila

    1995-04-01

    Full Text Available To clarify the mechanism responsible for the transient sinus tachycardia in rats with acute chagasic myocarditis, we have examined the cardiac sympathetic-parasympathetic balance of 29 rats inoculated with 200,000 parasites (Trypanosoma cruzi. Sixteen infected animals and 8 controls were studied between days 18 and 21 after inoculation (acute stage. The remaining 13 infected animals and 9 controls were studied between days 60 and 70 after inoculation (sub-acute stage. Under anesthesia (urethane 1.25 g/kg, all animals received intravenous atenolol (5 mg/kg and atropine (10 mg/kg. Acute stage: The baseline heart rate of the infected animals was significantly higher than that of the controls (P Com a finalidade de pesquisar o mecanismo responsável pela taquicardia sinusal transitória que ocorre nas ratas com miocardite chagásica aguda, foi estudado o balanço autonômico cardíaco em 16 ratas inoculadas com Trypanosoma cruzi por via intraperitoneal. Oito animais foram estudados aos 18 e 21 dias após-inoculação (Estádio agudo; os oito animais restantes foram estudados entre os dias 60 a 70 após inoculação (Estádio sub-agudo. Todos os animais em estudo bem como os controles receberam atenolol e atropina. No estádio agudo, a frequência cardíaca basal dos animais infectados foi significativamente maior que a dos controles. A resposta cronotrópica negativa pela administração de atenolol foi quatro vezes maior nos animais infectados. No estádio sub-agudo, a frequência cardíaca basal e a resposta cronotrópica ao atenolol e atropina foi similar nos dois grupos do estudo. Os nossos resultados sugerem que no estádio agudo da miocardite chagásica experimental, a atividade simpática encontra-se periodicamente aumentada.

  6. Reduced nitric oxide in the rostral ventrolateral medulla enhances cardiac sympathetic afferent reflex in rats with chronic heart failure%延髓头端腹外侧区一氧化氮与慢性心力衰竭大鼠心交感传入反射的关系

    Institute of Scientific and Technical Information of China (English)

    朱国庆; 高兴亚; 张枫; 王玮

    2004-01-01

    The purpose of this study was to determine the effect of nitric oxide (NO) in the rostral ventrolateral medulla (RVLM)on the central integration of the cardiac sympathetic afferent reflex (CSAR) in normal rats and in rats with coronary ligationinduced chronic heart failure (CHF). Under α-chloralose and urethane anesthesia, mean arterial pressure, heart rate and renal sympathetic nerve activity (RSNA) were recorded at baseline and during elicitation of the CSAR evoked by electrical stimulation of the cardiac afferent sympathetic nerves in sino-aortic denervated and cervical vagotomized rats. A cannula was inserted into the left RVLM for microinjection of NO synthase inhibitor, S-methyl-L-thiocitruline (MeTC) or NO donor, S-nitroso-N-acetyl-penicillamine (SNAP). The CSAR was tested by electrical stimulation (5, 10, 20 and 30 Hz at 10 V for 1 ms) of the afferent cardiac sympathetic nerves. It was observed that (1) the responses of RSNA to stimulation were enhanced in rats with CHF; (2) MeTC (80nmol) potentiated the responses of RSNA to stimulation in sham rats but not in rats with CHF; (3) SNAP (50 nmol) depressed the enhanced RSNA response to stimulation in CHF rats but had no effect in sham rats; and (4) MeTC increased the baseline RSNA and MAP only in sham rats, but SNAP inhibited the baseline RSNA and MAP in both sham and CHF rats. These results indicate that reductance of NO in the RVLM is involved in the augmentation of CSAR in CHF rats.%为观察延髓头端腹外侧区(rostral ventrolateral medulla,RVLM)一氧化氮(NO)在慢性心力衰竭(chronic heartfailure,CHF)大鼠增强的心交感传入反射(cardiac sympathetic afferent reflex,CSAR)中的作用,实验在去压力感受器神经支配的结扎冠状动脉诱发的CHF大鼠和假手术SD大鼠进行,记录电刺激心交感传入神经中枢端前后的血压和肾交感神经活动(renal sympathetic nerve activity,RSNA)变化以评价CSAR.结果显示:(1)CHF大鼠的CSAR显著增强;(2)RVLM微量注

  7. Sympathetic Blocks Provided Sustained Pain Relief in a Patient with Refractory Painful Diabetic Neuropathy

    Directory of Open Access Journals (Sweden)

    Jianguo Cheng

    2012-01-01

    Full Text Available The sympathetic nervous system has been implicated in pain associated with painful diabetic neuropathy. However, therapeutic intervention targeted at the sympathetic nervous system has not been established. We thus tested the hypothesis that sympathetic nerve blocks significantly reduce pain in a patient with painful diabetic neuropathy who has failed multiple pharmacological treatments. The diagnosis of small fiber sensory neuropathy was based on clinical presentations and confirmed by skin biopsies. A series of 9 lumbar sympathetic blocks over a 26-month period provided sustained pain relief in his legs. Additional thoracic paravertebral blocks further provided control of the pain in the trunk which can occasionally be seen in severe diabetic neuropathy cases, consequent to extensive involvement of the intercostal nerves. These blocks provided sustained and significant pain relief and improvement of quality of life over a period of more than two years. We thus provided the first clinical evidence supporting the notion that sympathetic nervous system plays a critical role in painful diabetic neuropathy and sympathetic blocks can be an effective management modality of painful diabetic neuropathy. We concluded that the sympathetic nervous system is a valuable therapeutic target of pharmacological and interventional modalities of treatments in painful diabetic neuropathy patients.

  8. Cardiac lesions in patients with lethal central nervous system trauma Daño cardíaco en pacientes con trauma mortal del sistema nervioso central

    Directory of Open Access Journals (Sweden)

    María E. Cardona

    1991-03-01

    Full Text Available

    Fifteen men with lethal central nervous system trauma were studied to look for the presence of cardiac lesions. They were between 16 and 60 years of age with an average of 32. There were five gunshot wounds and nine central nervous system contusions; four of these occurred in traffic accidents. The remaining patient was wounded with a machete. AII patients were adequately treated since the beginning of their hospital stay and 14 were surgically managed. Average survival after trauma was 6.6 days. In every case there were ECG alterations, the most frequent being sinusal tachycardia. Creatine phosphokinase levels were high in all and the MB fraction was above normal levels in three patients in whom heart damage was confirmed at autopsy. In 40% of cases heart lesions were found and the most common was subendocardial hemorrhage. In an era of increasing need of organs for transplantation potential donors have to be thoroughly studied to determine if heart lesions have occurred and to decide if they are suitable as transplant organs.

    Analizamos los casos de 15 hombres con trauma mortal del sistema nervioso central. Sus edades fluctuaron entre 16 y 60 años con un promedio de 32. Las lesiones más frecuentes fueron por proyectil de arma de fuego (5 casos y por contusión (9 casos, cuatro de ellos en accidente de tránsito. El paciente restante fue lesionado con arma corto contundente. En todos los pacientes el manejo fue adecuado desde el principio de la hospitalización ya 14 se les hizo tratamiento quirúrgico. El promedio de sobrevida después del trauma fue 6.6 días. Sin excepción el estudio electrocardiográfico mostró alteraciones; la taquicardia sinusal fue la más frecuente. La CPK estuvo elevada en todos los pacientes; en 3 de ellos, con da

  9. Auditory stimulation and cardiac autonomic regulation

    Directory of Open Access Journals (Sweden)

    Vitor E. Valenti

    2012-08-01

    Full Text Available Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: "auditory stimulation", "autonomic nervous system", "music" and "heart rate variability". The selected studies indicated that there is a strong correlation between noise intensity and vagal-sympathetic balance. Additionally, it was reported that music therapy improved heart rate variability in anthracycline-treated breast cancer patients. It was hypothesized that dopamine release in the striatal system induced by pleasurable songs is involved in cardiac autonomic regulation. Musical auditory stimulation influences heart rate variability through a neural mechanism that is not well understood. Further studies are necessary to develop new therapies to treat cardiovascular disorders.

  10. Role of sympathetic nerve activity in the process of fainting

    Directory of Open Access Journals (Sweden)

    Satoshi eIwase

    2014-09-01

    Full Text Available Syncope is defined as a transient loss of consciousness and postural tone, characterized by rapid onset, short duration, and spontaneous recovery, and the process of syncope progression will be described with two types of sympathetic change. Simultaneous recordings of microneurographically recorded MSNA and continuous and noninvasive blood pressure measurement have disclose what is going on in the course of progression of the syncope. Vasovagal or neurally mediated syncope, three stages are identified in the course of syncope onset, oscillation, imbalance, and catastrophe phases. The vasovagal syncope is characterized by the sympathoexcitation, followed by vagal overcome via the Bezold-Jarisch reflex. Orthostatic syncope is caused by the response failure or lack of sympathetic nerve activity toward the orthostatic challenge followed by the fluid shift, and subsequent cerebral low perfusion. Four causes are considered for the compensatory failure, which triggers the orthostatic syncope; hypovolemia, increased pooling in the lower body, failure to activate the sympathetic activity, and failure of vasoconstriction against sympathetic vasoconstrictive stimulation. Many pathophysiological conditions were described in the viewpoint of 1 exaggerated sympathoexcitation and 2 failure to activate the sympathetic nerve. We conclude that the sympathetic nervous system can control the cardiovascular function, and its failure resulted syncope, however, responses of the system by microneurographically recorded MSNA would determine the pathophysiology of the onset and progression of syncope, explaining the treatment effect that could be achieved by the analysis of this mechanism.

  11. Adrenergic innervation of the developing chick heart: neural crest ablations to produce sympathetically aneural hearts

    International Nuclear Information System (INIS)

    Ablation of various regions of premigratory trunk neural crest which gives rise to the sympathetic trunks was used to remove sympathetic cardiac innervation. Neuronal uptake of [3H]-norepinephrine was used as an index of neuronal development in the chick atrium. Following ablation of neural crest over somites 10-15 or 15-20, uptake was significantly decreased in the atrium at 16 and 17 days of development. Ablation of neural crest over somites 5-10 and 20-25 caused no decrease in [3H]-norepinephrine uptake. Removal of neural crest over somites 5-25 or 10-20 caused approximately equal depletions of [3H]-norepinephrine uptake in the atrium. Cardiac norepinephrine concentration was significantly depressed following ablation of neural crest over somites 5-25 but not over somites 10-20. Light-microscopic and histofluorescent preparations confirmed the absence of sympathetic trunks in the region of the normal origin of the sympathetic cardiac nerves following neural crest ablation over somites 10-20. The neural tube and dorsal root ganglia were damaged in the area of the neural-crest ablation; however, all of these structures were normal cranial and caudal to the lesioned area. Development of most of the embryos as well as the morphology of all of the hearts was normal following the lesion. These results indicate that it is possible to produce sympathetically aneural hearts by neural-crest ablation; however, sympathetic cardiac nerves account for an insignificant amount of cardiac norepinephrine

  12. [The structure of the initial inputs into the metasympathetic nervous system of the rat uterus].

    Science.gov (United States)

    Kucheriavykh, L E; Skopichev, V G; Nozdrachev, A D

    1999-01-01

    Different populations of sympathetic neurons exerting modulating influence on neurons of nervous plexuses of proper metasympathetic nervous system of the uterus in albino laboratory rats were detected using the method on retrograde transport of fluorescent marker primulin. Following the injection of the marker into uterovaginal plexus, labelled neurons were found as aggregations in caudal mesenterial sympathetic ganglia, ganglia of coeliac plexus, renal ganglia and ganglia of coeliac trunk. The structure of nervous paths of external control of uterus functioning was analysed. PMID:10709194

  13. Effects of autonomic balance and fluid and electrolyte changes on cardiac function in infarcted rats: A serial study of sexual dimorphism.

    Science.gov (United States)

    Souza, N S; Dos-Santos, R C; Silveira, Anderson Luiz Bezerra da; R, Sonoda-Côrtes; Gantus, Michel Alexandre Villani; Fortes, F S; Olivares, Emerson Lopes

    2016-04-01

    Premenopausal women are known to show lower incidence of cardiovascular disease than men. During myocardial infarction (MI), homeostatic responses are activated, including the sympathetic autonomic nervous system and the rennin-angiotensin-aldosterone system, which is related to the fluid and electrolyte balance, both aiming to maintain cardiac output. This study sought to perform a serial evaluation of sexual dimorphism in cardiac autonomic control and fluid and electrolyte balance during the development of MI-induced heart failure in rats. Experimental MI was induced in male (M) and female (F) adult (7-9 weeks of age) Wistar rats. The animals were placed in metabolic cages to assess fluid intake and urine volume 1 and 4 weeks after inducing MI (male myocardial infarction (MMI) and female myocardial infarction (FMI) groups). They subsequently underwent echocardiographic evaluation and spectral analysis of heart rate variability. After completing each protocol, the animals were killed for postmortem evaluation and histology. The MMI group showed earlier and more intense cardiac morphological and functional changes than the FMI group, although the extent of MI did not differ between groups (P > 0.05). The MMI group showed higher sympathetic modulation and sodium and water retention than the FMI group (P < 0.05), which may partly explain both the echocardiographic and pathological findings. Females subjected to infarction seem to show attenuation of sympathetic modulation, more favourable fluid and electrolyte balances, and better preserved cardiac function compared to males subjected to the same infarction model. PMID:26748814

  14. Is There Anything "Autonomous" in the Nervous System?

    Science.gov (United States)

    Rasia-Filho, Alberto A.

    2006-01-01

    The terms "autonomous" or "vegetative" are currently used to identify one part of the nervous system composed of sympathetic, parasympathetic, and gastrointestinal divisions. However, the concepts that are under the literal meaning of these words can lead to misconceptions about the actual nervous organization. Some clear-cut examples indicate…

  15. [The influence of aging on autonomic nervous system activity and gastric myoelectric activity in humans].

    Science.gov (United States)

    Thor, P J; Kolasińska-Kloch, W; Pitala, A; Janik, A; Kopp, B; Sibiga, W

    1999-01-01

    The study was performed on 84 healthy volunteers (33 women, 52 men) of age 20-71 years with no history of the circulatory or gastrointestinal system disease. The gastric myoelectrical activity (EGG) was recorded with the cutaneous electrodes--electrogastrography Synectics (Sweden). The activity of the cardiac autonomic nervous system was measured by HRV (heart rate variability) recorded with EGG and computer assisted programme Proster (Poland). Subject were divided into 5 groups according to the decade of age (20-70). Percentage of basal electrical rhythm (BER) dysrhythmias increased (1.9 +/- 0.5% vs 21.1 +/- 3.2% in fasting and 2.4 +/- 1.2% vs 24.6 +/- 5% postprandially but decrease of the EGG amplitude after the meal was observed (270 +/- 20% vs 90 +/- 7%) in youngest and oldest group respectively. With the ageing the cardiac sympathetic and parasympathetic activity (LF and HF) decreased in first and last group respectively. In the forth decade in man and women the sympathetic activity system prevalence expressed by the LF/HF rate increased (1.09 +/- 0.2 vs. 2.14 +/- 0.5) (p < 0.05). The results of our study suggest the deleterious influence of the ageing on the of autonomic system activity as shown by changes in HRV and dysrhythmia of the gastric slow waves in EGG. PMID:10909474

  16. Cardiac autonomic nervous test value to the diagnosis of plant diabetic neuropathy%心脏自主神经试验对糖尿病合并植物神经病变的诊断价值

    Institute of Scientific and Technical Information of China (English)

    何煜暐

    2015-01-01

    目的:对46例糖尿病患者心脏自主神经试验进行分析,探讨心脏自主神经试验对糖尿病合并植物神经病变的诊断价值。方法:根据临床表现把糖尿病患者分为糖尿病合并植物神经病变组和糖尿病不合并植物神经病变组。行心脏自主神经试验,并对两组数据进行比较。结果:糖尿病合并植物神经病变组呼吸差,乏氏指数、30/15比值均低于不合并植物神经病变组。结论:心脏自主神经试验方法简单方便,容易掌握,重复性好,可作为评估糖尿病合并植物神经病变的敏感指标。%Objective46 cases of diabetic cardiac autonomic nervous test were analyzed, and discuss the heart autonomic nervous test value to the diagnosis of plant diabetic neuropathy.MethodsThe diabetes patients according to clinical manifestations of divided into diabetic neuropathy group and diabetes do not merge plants group of neuropathy. Heart the heart nerve test, and carries on the comparison to 2 sets of data.ResultsPlant diabetic neuropathy group of poor breathing, lack of index, the ratio of 30/15 were less merger plant neuropathy group.Conclusions Cardiac autonomic nervous test method is simple and convenient, easy to learn, good repeatability, can be used as evaluation of sensitive indicator of plant diabetic neuropathy.

  17. Renal sympathetic denervation for the treatment of refractory hypertension.

    Science.gov (United States)

    Leong, Kui Toh Gerard; Walton, Antony; Krum, Henry

    2014-01-01

    Resistant hypertension poses significant health concerns. There are strong demands for new and safe therapies to control resistant hypertension while addressing its common causes, specifically poor compliance to lifelong polypharmacy, lifestyle modifications, and physician inertia. The sympathetic nervous system plays a significant pathophysiological role in hypertension. Surgical sympathectomy for blood pressure reduction is an old but extremely efficacious therapeutic concept, now abandoned with the dawn of a safer contemporary pharmacology era. Recently, clinical studies have revealed promising results for safe and sustained blood pressure reduction with percutaneous renal sympathetic denervation. This is a novel, minimally invasive, device-based therapy, specifically targeting and ablating the renal artery nerves with radiofrequency waves without permanent implantation. There are also reported additional benefits in related comorbidities, such as impaired glucose metabolism, renal impairment, left ventricular hypertrophy, heart failure, and others. This review focuses on how selective renal sympathetic denervation works, its present and potential therapeutic indications, and its future directions. PMID:24422574

  18. Propranolol for Paroxysmal Sympathetic Hyperactivity with Lateralizing Hyperhidrosis after Stroke

    Directory of Open Access Journals (Sweden)

    Jason W. Siefferman

    2015-01-01

    Full Text Available Brain injury can lead to impaired cortical inhibition of the hypothalamus, resulting in increased sympathetic nervous system activation. Symptoms of paroxysmal sympathetic hyperactivity may include hyperthermia, tachycardia, tachypnea, vasodilation, and hyperhidrosis. We report the case of a 41-year-old man who suffered from a left middle cerebral artery stroke and subsequently developed central fever, contralateral temperature change, and hyperhidrosis. His symptoms abated with low-dose propranolol and then returned upon discontinuation. Restarting propranolol again stopped his symptoms. This represents the first report of propranolol being used for unilateral dysautonomia after stroke. Propranolol is a lipophilic nonselective beta-blocker which easily crosses the blood-brain barrier and may be used to treat paroxysmal sympathetic hyperactivity.

  19. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.

    Science.gov (United States)

    Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne

    2015-06-23

    The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation.

  20. Effect of nitric oxide on rostral ventrolateral medulla modulating cardiac sympathetic afferent reflex in rats with chronic heart failure%延髓头端腹外侧区一氧化氮对慢性心力衰竭大鼠心交感传入反射的影响

    Institute of Scientific and Technical Information of China (English)

    高兴亚; 郭瑞; 王玮; 张枫; 朱国庆

    2005-01-01

    大变化速率明显降低,左室舒张末压明显增加.②与假手术大鼠相比,慢性心力衰竭大鼠的心交感传入反射显著增强.③延髓头端腹外侧区微量注射MeTC(80 nmol)仅增强假手术大鼠的心交感传入反射,对慢性心力衰竭大鼠的心交感传入反射无显著影响.④延髓头端腹外侧区微量注射SNAP(50 nmol)同时抑制假手术和慢性心力衰竭大鼠的心交感传入反射.⑤心室前壁表面用利多卡因预处理可完全抑制心室前壁表面应用缓激肽所引起的肾交感神经活动增加.结论:延髓头端腹外侧区的一氧化氮抑制正常大鼠和慢性心力衰竭大鼠心室表面应用缓激肽引起的心交感传入反射,慢性心力衰竭大鼠心交感传入反射增强与延髓头端腹外侧区中内源性一氧化氮减少有关.%BACKGROUND: Nitric oxide in the central nervous system is involved in controlling the sympathetic outflow. The authors' recent data show that the reduction of nitric oxide in the rostral ventrolateral medulla (RVLM)enhanced the cardiac sympathetic afferent reflex (CSAR) evoked by stimulating the cardiac sympathetic afferent nerves in rats with chronic heart failure (CHF).OBJECTIVE: To further investigate the effect of nitric oxide in the RVLM on modulating the CSAR evoked by epicardial chemical stimulation in rats with CHF.DESIGN: Randomized controlled experiment.SETTING: Department of Physiology, Nanjing Medical University, and Department of Cellular and Integrative Physiology, University of Nebraska College of Medicine.MATERIALS: This study was carried out in the Department of Physiology, Nanjing Medical University from July 2003 to May 2004. A total of 52male Sprague-Dawley rats weighing 360-420 g were used, and were randomly divided into chronic heart failure group and control group with 23 in each group.METHODS: The rats were carried out either sham surgery or the left coronary artery ligation. Six to eight weeks later, all rats were

  1. Comparative anatomy of the autonomic nervous system.

    Science.gov (United States)

    Nilsson, Stefan

    2011-11-16

    This short review aims to point out the general anatomical features of the autonomic nervous systems of non-mammalian vertebrates. In addition it attempts to outline the similarities and also the increased complexity of the autonomic nervous patterns from fish to tetrapods. With the possible exception of the cyclostomes, perhaps the most striking feature of the vertebrate autonomic nervous system is the similarity between the vertebrate classes. An evolution of the complexity of the system can be seen, with the segmental ganglia of elasmobranchs incompletely connected longitudinally, while well developed paired sympathetic chains are present in teleosts and the tetrapods. In some groups the sympathetic chains may be reduced (dipnoans and caecilians), and have yet to be properly described in snakes. Cranial autonomic pathways are present in the oculomotor (III) and vagus (X) nerves of gnathostome fish and the tetrapods, and with the evolution of salivary and lachrymal glands in the tetrapods, also in the facial (VII) and glossopharyngeal (IX) nerves.

  2. Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease.

    Science.gov (United States)

    Khan, Muzamil Majid; Lustrino, Danilo; Silveira, Willian A; Wild, Franziska; Straka, Tatjana; Issop, Yasmin; O'Connor, Emily; Cox, Dan; Reischl, Markus; Marquardt, Till; Labeit, Dittmar; Labeit, Siegfried; Benoit, Evelyne; Molgó, Jordi; Lochmüller, Hanns; Witzemann, Veit; Kettelhut, Isis C; Navegantes, Luiz C C; Pozzan, Tullio; Rudolf, Rüdiger

    2016-01-19

    The distribution and function of sympathetic innervation in skeletal muscle have largely remained elusive. Here we demonstrate that sympathetic neurons make close contact with neuromuscular junctions and form a network in skeletal muscle that may functionally couple different targets including blood vessels, motor neurons, and muscle fibers. Direct stimulation of sympathetic neurons led to activation of muscle postsynaptic β2-adrenoreceptor (ADRB2), cAMP production, and import of the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PPARGC1A) into myonuclei. Electrophysiological and morphological deficits of neuromuscular junctions upon sympathectomy and in myasthenic mice were rescued by sympathicomimetic treatment. In conclusion, this study identifies the neuromuscular junction as a target of the sympathetic nervous system and shows that sympathetic input is crucial for synapse maintenance and function. PMID:26733679

  3. Involvement of Hypothalamic AMP-Activated Protein Kinase in Leptin-Induced Sympathetic Nerve Activation

    OpenAIRE

    Mamoru Tanida; Naoki Yamamoto; Toshishige Shibamoto; Kamal Rahmouni

    2013-01-01

    In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK) is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb). We investigated the potential of AMPKα2 in the sympathetic effec...

  4. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, G.L.; Palma, R.K.; Brito, J.O.; Sanches, I.C. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil); Irigoyen, M.C. [Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); De Angelis, K. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil)

    2015-03-27

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation.

  5. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    Directory of Open Access Journals (Sweden)

    G.L. Shimojo

    2015-06-01

    Full Text Available The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC, sedentary hypertensive (SH, sedentary hypertensive ovariectomized (SHO, and resistance-trained hypertensive ovariectomized (RTHO. Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR responses to methylatropine (3 mg/kg, iv and propranolol (4 mg/kg, iv. Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg, as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm. Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05. The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation.

  6. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation

  7. Efeito do carvedilol a curto prazo na atividade simpática cardíaca pela cintilografia com 123I-MIBG Effects of short-term carvedilol on the cardiac sympathetic activity assessed by 123I-MIBG scintigraphy

    Directory of Open Access Journals (Sweden)

    Sandra Marina Ribeiro de Miranda

    2010-03-01

    Full Text Available FUNDAMENTO: Alterações autonômicas na insuficiência cardíaca estão associadas a um aumento da morbimortalidade. Vários métodos não invasivos têm sido empregados para avaliar a função simpática, incluindo a imagem cardíaca com 123I-MIBG. OBJETIVO: Avaliar a atividade simpática cardíaca, por meio da cintilografia com 123I-MIBG, antes e após três meses de terapia com carvedilol em pacientes com insuficiência cardíaca com fração de ejeção do VE BACKGROUND: Autonomic alterations in heart failure are associated with an increase in morbimortality. Several noninvasive methods have been employed to evaluate the sympathetic function, including the Meta-Iodobenzylguanidine (123I-MIBG scintigraphy imaging of the heart. OBJECTIVE: to evaluate the cardiac sympathetic activity through 123I-MIBG scintigraphy, before and after three months of carvedilol therapy in patients with heart failure and left ventricular ejection fraction (LVEF < 45%. PATIENTS AND METHODS: Sixteen patients, aged 56.3 ± 12.6 years (11 males, with a mean LVEF of 28% ± 8% and no previous use of beta-blockers were recruited for the study. Images of the heart innervation were acquired with 123I-MIBG, and the serum levels of catecholamines (epinephrine, dopamine and norepinephrine were measured; the radioisotope ventriculography (RIV was performed before and after a three-month therapy with carvedilol. RESULTS: Patients' functional class showed improvement: before the treatment, 50% of the patients were FC II and 50% were FC III. After 3 months, 7 patients were FC I (43.8% and 9 were FC II (56.2%, (p = 0.0001. The mean LVEF assessed by RIV increased from 29% to 33% (p = 0.017. There was no significant variation in cardiac adrenergic activity assessed by 123I-MIBG (early and late resting images and washout rate. No significant variation was observed regarding the measurement of catecholamines. CONCLUSION: The short-term treatment with carvedilol promoted the clinical

  8. Perturbed autonomic nervous system function in metabolic syndrome.

    Science.gov (United States)

    Tentolouris, Nicholas; Argyrakopoulou, Georgia; Katsilambros, Nicholas

    2008-01-01

    The metabolic syndrome is characterized by the clustering of various common metabolic abnormalities in an individual and it is associated with increased risk for the development of type 2 diabetes and cardiovascular diseases. Its prevalence in the general population is approximately 25%. Central fat accumulation and insulin resistance are considered as the common denominators of the abnormalities of the metabolic syndrome. Subjects with metabolic syndrome have autonomic nervous system dysfunction characterized by predominance of the sympathetic nervous system in many organs, i.e. heart, kidneys, vasculature, adipose tissue, and muscles. Sympathetic nervous system activation in metabolic syndrome is detected as increased heart rate and blood pressure, diminished heart rate variability, baroreceptor dysfunction, enhanced lipolysis in visceral fat, increased muscle sympathetic nerve activity, and high urine or plasma catecholamine concentrations as well as turnover rates. The augmented sympathetic activity in individuals with metabolic syndrome worsens prognosis of this high-risk population. The mechanisms linking metabolic syndrome with sympathetic activation are complex and not clearly understood. Whether sympathetic overactivity is involved in the development of the metabolic syndrome or is a consequence of it remains to be elucidated since data from prospective studies are missing. Intervention studies have demonstrated that the autonomic disturbances of the metabolic syndrome may be reversible.

  9. Insights into the clinical and functional significance of cardiac autonomic dysfunction in Chagas disease

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Junqueira Junior

    2012-04-01

    Full Text Available INTRODUCTION: Exclusive or associated lesions in various structures of the autonomic nervous system occur in the chronic forms of Chagas disease. In the indeterminate form, the lesions are absent or mild, whereas in the exclusive or combined heart and digestive disease forms, they are often more pronounced. Depending on their severity these lesions can result mainly in cardiac parasympathetic dysfunction but also in sympathetic dysfunction of variable degrees. Despite the key autonomic effect on cardiovascular functioning, the pathophysiological and clinical significance of the cardiac autonomic dysfunction in Chagas disease remains unknown. METHODS: Review of data on the cardiac autonomic dysfunction in Chagas disease and their potential consequences, and considerations supporting the possible relationship between this disturbance and general or cardiovascular clinical and functional adverse outcomes. RESULTS: We hypothesise that possible consequences that cardiac dysautonomia might variably occasion or predispose in Chagas disease include: transient or sustained arrhythmias, sudden cardiac death, adverse overall and cardiovascular prognosis with enhanced morbidity and mortality, an inability of the cardiovascular system to adjust to functional demands and/or respond to internal or external stimuli by adjusting heart rate and other hemodynamic variables, and immunomodulatory and cognitive disturbances. CONCLUSIONS: Impaired cardiac autonomic modulation in Chagas disease might not be a mere epiphenomenon without significance. Indirect evidences point for a likely important role of this alteration as a primary predisposing or triggering cause or mediator favouring the development of subtle or evident secondary cardiovascular functional disturbances and clinical consequences, and influencing adverse outcomes.

  10. Sympathetic Denervation-Induced MSC Mobilization in Distraction Osteogenesis Associates with Inhibition of MSC Migration and Osteogenesis by Norepinephrine/adrb3

    OpenAIRE

    Du, Zhaojie; Wang, Lei; Zhao, Yinghua; Cao, Jian; Tao WANG; Liu, Peng; Zhang, Yabo; Yang, Xinjie; Cheng, Xiaobing; Liu, Baolin; Lei, Delin

    2014-01-01

    The sympathetic nervous system regulates bone formation and resorption under physiological conditions. However, it is still unclear how the sympathetic nerves affect stem cell migration and differentiation in bone regeneration. Distraction osteogenesis is an ideal model of bone regeneration due to its special nature as a self-engineering tissue. In this study, a rat model of mandibular distraction osteogenesis with transection of cervical sympathetic trunk was used to demonstrate that sympath...

  11. Frontal midline theta rhythm is correlated with cardiac autonomic activities during the performance of an attention demanding meditation procedure.

    Science.gov (United States)

    Kubota, Y; Sato, W; Toichi, M; Murai, T; Okada, T; Hayashi, A; Sengoku, A

    2001-04-01

    Frontal midline theta rhythm (Fm theta), recognized as distinct theta activity on EEG in the frontal midline area, reflects mental concentration as well as meditative state or relief from anxiety. Attentional network in anterior frontal lobes including anterior cingulate cortex is suspected to be the generator of this activity, and the regulative function of the frontal neural network over autonomic nervous system (ANS) during cognitive process is suggested. However no studies have examined peripheral autonomic activities during Fm theta induction, and interaction of central and peripheral mechanism associated with Fm theta remains unclear. In the present study, a standard procedure of Zen meditation requiring sustained attention and breath control was employed as the task to provoke Fm theta, and simultaneous EEG and ECG recordings were performed. For the subjects in which Fm theta activities were provoked (six men, six women, 48% of the total subjects), peripheral autonomic activities were evaluated during the appearance of Fm theta as well as during control periods. Successive inter-beat intervals were measured from the ECG, and a recently developed method of analysis by Toichi et al. (J. Auton. Nerv. Syst. 62 (1997) 79-84) based on heart rate variability was used to assess cardiac sympathetic and parasympathetic functions separately. Both sympathetic and parasympathetic indices were increased during the appearance of Fm theta compared with control periods. Theta band activities in the frontal area were correlated negatively with sympathetic activation. The results suggest a close relationship between cardiac autonomic function and activity of medial frontal neural circuitry.

  12. 心理应激的免疫抑制作用及其与神经内分泌反应的相关性%THE EFFECT OF EMOTIONAL STRESS ON THE PRIMARY HUMORAL IMMUNITY OF RATS: INTERACTION WITH THE SYMPATHETIC NERVOUS SYSTEM

    Institute of Scientific and Technical Information of China (English)

    邵枫; 林文娟; 王玮雯

    2001-01-01

    以给予经定时喂水训练大鼠空瓶刺激为情绪性心理应激源,研究了此情绪应激对大鼠特异性原发体液免疫反应的影响及其可能的作用机制。结果表明每次10分钟,共14次的情绪应激显著低大鼠抗特异性抗原OVA的抗体水平及脾脏指数,而显著增高血肾上腺素、去甲肾上腺素和皮质酮水平。研究还发现去甲肾上腺素与抗特异性抗原OVA的抗体水平呈显著负相关。该研究证实了情绪性心理应激对大鼠体液免疫功能的抑制作用,并提示交感神经系统可能参与了此免疫调节作用。%The effect of exposure to emotional stress on the primary humoral immune function(antiovallum antibody level and spleen index), the endocrine response (corticosterone level, epinephrine and norepinephrine levels), the behavioral changes (exploring, grooming and attacking behavior) was studied in adult male Wistar rats. Emotional stress was induced by randomly giving empty water bottles to rats trained to drink water at two set times each day. Emotional stress were given 14 times, ten minutes per each time during experimental period. Results showed that firstly, empty water bottles induced significant attacking behavior (biting the empty water bottle and cage shed) in rats of emotional stress group, secondly emotional stress decreased the weight of the spleen and the level of specific anti-OVA IgG antibody and increased the levels of epinephrine, norepinephrine and corticosterone. A negative correlation between antibody levels and level of norepinephrine was also found. Together with the previous work in our laboratory, the results demonstrated that emotional stress suppressed the specific primary humoral immunity of rats. The sympathetic nervous system may be involved in this immunomodulation.

  13. [Cardiac amyloidosis].

    Science.gov (United States)

    Hoyer, Caroline; Angermann, Christiane E; Knop, Stefan; Ertl, Georg; Störk, Stefan

    2008-03-15

    Amyloidoses are a heterogeneous group of multisystem disorders, which are characterized by an extracellular deposition of amyloid fibrils. Typically affected are the heart, liver, kidneys, and nervous system. More than half of the patients die due to cardiac involvement. Clinical signs of cardiac amyloidosis are edema of the lower limbs, hepatomegaly, ascites and elevated jugular vein pressure, frequently in combination with dyspnea. There can also be chest pain, probably due to microvessel disease. Dysfunction of the autonomous nervous system or arrhythmias may cause low blood pressure, dizziness, or recurrent syncope. The AL amyloidosis caused by the deposition of immunoglobulin light chains is the most common form. It can be performed by monoclonal gammopathy. The desirable treatment therapy consists of high-dose melphalan therapy twice followed by autologous stem cell transplantation. Due to the high peritransplantation mortality, selection of appropriate patients is mandatory. The ATTR amyloidosis is an autosomal dominant disorder caused by the amyloidogenic form of transthyretin, a plasmaprotein that is synthesized in the liver. Therefore, liver transplantation is the only curative therapy. The symptomatic treatment of cardiac amyloidosis is based on the current guidelines for chronic heart failure according to the patient's New York Heart Association (NYHA) state. Further types of amyloidosis with possible cardiac involvement comprise the senile systemic amyloidosis caused by the wild-type transthyretin, secondary amyloidosis after chronic systemic inflammation, and the beta(2)-microglobulin amyloidosis after long-term dialysis treatment. PMID:18344065

  14. Research on the features of cardiac autonomic nervous activity of divers under simulated stressors with computer games%电脑游戏模拟应激条件下潜水员心脏自主神经活动特点的研究

    Institute of Scientific and Technical Information of China (English)

    马海鹰; 经冥; 邓光辉; 江楠楠; 解汝庆

    2013-01-01

    marked [F(2,110) =20.774,P < 0.01)],the main effect on HF was also marked [(F (2,110) =5.647,P <0.05)],the main effects on LF/HF could be significantly noted [(F(2,110) =6.101,P < 0.05)],and the main effect on Lfnu was significant [(F (2,110) =6.184,P < 0.05)] and the main effect of Hfnu was also significant [(F (2,110) =6.735,P < 0.05)].(3) No significant differences could be seen,when comparisons were made between the groups,and interactions were quite obvious in LF/HF between the 2 groups and at different stages [F (2,110) =4.285,P < 0.05].Conclusions (1) Under simulated stressful conditions,cardiac autonomic nervous activity of divers had the following features:sympathetic nerve strain increased at the anticipation period,and parasympathetic nerve strain decreased.However,at the coping period,both sympathetic nerve and parasympathetic nerve strain all decreased,with the parasympathetie nerve strain decreased only with a small margin.(2) Better vagus nerve function in divers could down-regulate the intensity of negative emotion and at the same time incoordination of vagus nerve also had some effect on sensitivity of negative emotion.

  15. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  16. Bursting into space: alterations of sympathetic control by space travel

    Science.gov (United States)

    Eckberg, D. L.

    2003-01-01

    AIM: Astronauts return to Earth with reduced red cell masses and hypovolaemia. Not surprisingly, when they stand, their heart rates may speed inordinately, their blood pressures may fall, and some may experience frank syncope. We studied autonomic function in six male astronauts (average +/- SEM age: 40 +/- 2 years) before, during, and after the 16-day Neurolab space shuttle mission. METHOD: We recorded electrocardiograms, finger photoplethysmographic arterial pressures, respiration, peroneal nerve muscle sympathetic activity, plasma noradrenaline and noradrenaline kinetics, and cardiac output, and we calculated stroke volume and total peripheral resistance. We perturbed autonomic function before and during spaceflight with graded Valsalva manoeuvres and lower body suction, and before and after the mission with passive upright tilt. RESULTS: In-flight baseline sympathetic nerve activity was increased above pre-flight levels (by 10-33%) in three subjects, in whom noradrenaline spillover and clearance also were increased. Valsalva straining provoked greater reductions of arterial pressure, and proportionally greater sympathetic responses in space than on Earth. Lower body suction elicited greater increases of sympathetic nerve activity, plasma noradrenaline, and noradrenaline spillover in space than on Earth. After the Neurolab mission, left ventricular stroke volume was lower and heart rate was higher during tilt, than before spaceflight. No astronaut experienced orthostatic hypotension or pre-syncope during 10 min of post-flight tilting. CONCLUSION: We conclude that baseline sympathetic outflow, however measured, is higher in space than on earth, and that augmented sympathetic nerve responses to Valsalva straining, lower body suction, and post-flight upright tilt represent normal adjustments to greater haemodynamic stresses associated with hypovolaemia.

  17. Gyrosonics a Novel Stimulant for Autonomic Nervous System

    CERN Document Server

    Ghatak, S K; Choudhuri, R; Banerjee, S

    2009-01-01

    Gyrosonics refers to novel audio binaural stimulus that produces rotational perceptions of sound movement in head at a particular predetermined frequency. Therapeutic effect observed with this is considered to be associated with modification of arousal of autonomic nervous system. The heart rate variability (HRV), non-invasive measure of autonomic nervous system, has been measured for group of 30 subjects for pre- and post- gyrosonic installation. The time- and frequency- domain analysis of HRV results show overall decrease in sympathetic response and increase in para- sympathetic response due to listening of gyro sonics.

  18. Reflex Sympathetic Dystrophy in Children

    OpenAIRE

    Adnan Ayvaz

    2013-01-01

       Reflex sympathetic dystrophy (chronic regional pain syndrome) isn’t frequently encountered in practical pediatrics and childhood. Reflex sympathetic dystrophy syndrome (RSD) is a disorder characterized by widespread localized pain, often along with swelling, discoloration, trophic changes and autonomic abnormalities such as vasomotor disorders. Its etio-pathogenesis hasn’t been completely determined.The disease can form in an area innerved by a partially damaged nerve...

  19. Sympathetically evoked Ca2+ signaling in arterial smooth muscle

    Institute of Scientific and Technical Information of China (English)

    Wei-jin ZANG; Joseph ZACHARIA; Christine LAMONT; Withrow Gil WIER

    2006-01-01

    The sympathetic nervous system plays an essential role in the control of total peripheral vascular resistance and blood flow, by controlling the contraction of small arteries. Perivascular sympathetic nerves release ATP, norepinephrine (NE) and neuropeptide Y. This review summarizes our knowledge of the intracellular Ca2+ signals that are activated by ATP and NE, acting respectively on P2X1 and α1 adrenoceptors in arterial smooth muscle. Each neurotransmitter produces a unique type of post-synaptic Ca2+ signal and associated contraction. The neural release of ATP and NE is thought to vary markedly with the pattern of nerve activity, probably reflecting both pre- and post-synaptic mechanisms. Finally, we show that Ca2+ signaling during neurogenic contractions activated by trains of sympathetic nerve fiber action potentials are in fact significantly different from that elicited by simple bath application of exogenous neurotransmitters to isolated arteries (a common experimental technique), and end by identifying important questions remaining in our understanding of sympathetic neurotransmission and the physiological regulation of contraction of small arteries.

  20. Sympathetic Responses to Noxious Stimulation of Muscle and Skin.

    Science.gov (United States)

    Burton, Alexander R; Fazalbhoy, Azharuddin; Macefield, Vaughan G

    2016-01-01

    Acute pain triggers adaptive physiological responses that serve as protective mechanisms that prevent continuing damage to tissues and cause the individual to react to remove or escape the painful stimulus. However, an extension of the pain response beyond signaling tissue damage and healing, such as in chronic pain states, serves no particular biological function; it is maladaptive. The increasing number of chronic pain sufferers is concerning, and the associated disease burden is putting healthcare systems around the world under significant pressure. The incapacitating effects of long-lasting pain are not just psychological - reflexes driven by nociceptors during the establishment of chronic pain may cause serious physiological consequences on regulation of other body systems. The sympathetic nervous system is inherently involved in a host of physiological responses evoked by noxious stimulation. Experimental animal and human models demonstrate a diverse array of heterogeneous reactions to nociception. The purpose of this review is to understand how pain affects the sympathetic nervous system by investigating the reflex cardiovascular and neural responses to acute pain and the long-lasting physiological responses to prolonged (tonic) pain. By observing the sympathetic responses to long-lasting pain, we can begin to understand the physiological consequences of long-term pain on cardiovascular regulation. PMID:27445972

  1. [Reflex sympathetic dystrophy].

    Science.gov (United States)

    Oliveira, Marta; Manuela, Manuela; Cantinho, Guilhermina

    2011-01-01

    Reflex Sympathetic Dystrophy is rare in pediatrics. It is a complex regional pain syndrome, of unknown etiology, usually post-traumatic, characterized by dysfunctions of the musculoskeletal, vascular and skin systems: severe persistent pain of a limb, sensory and vascular alterations, associated disability and psychosocial dysfunction. The diagnosis is based in high clinical suspection. In children and adolescents there are aspects that are different from the adult ones. Excessive tests may result in worsening of the clinical symptoms. Bone scintigraphy can help. Pain treatment is difficult, not specific. Physical therapies and relaxation technics give some relief. Depression must be treated. This syndrome includes fibromyalgia and complex regional pain syndrome type I. We present a clinical report of an adolescent girl, referred for pain, cold temperature, pallor and functional disability of an inferior limb, all signals disclosed by a minor trauma. She had been diagnosed depression the year before. The bone scintigraphy was a decisive test. The treatment with gabapentin, C vitamin, physiotherapy and pshycotherapy has been effective. PMID:22713207

  2. Egr3 dependent sympathetic target tissue innervation in the absence of neuron death.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available Nerve Growth Factor (NGF is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS development. Egr3 is a transcription factor regulated by NGF signaling in sympathetic neurons that is essential for normal SNS development. Germline Egr3-deficient mice have physiologic dysautonomia characterized by apoptotic sympathetic neuron death and abnormal innervation to many target tissues. The extent to which sympathetic innervation abnormalities in the absence of Egr3 is caused by altered innervation or by neuron death during development is unknown. Using Bax-deficient mice to abrogate apoptotic sympathetic neuron death in vivo, we show that Egr3 has an essential role in target tissue innervation in the absence of neuron death. Sympathetic target tissue innervation is abnormal in many target tissues in the absence of neuron death, and like NGF, Egr3 also appears to effect target tissue innervation heterogeneously. In some tissues, such as heart, spleen, bowel, kidney, pineal gland and the eye, Egr3 is essential for normal innervation, whereas in other tissues such as lung, stomach, pancreas and liver, Egr3 appears to have little role in innervation. Moreover, in salivary glands and heart, two tissues where Egr3 has an essential role in sympathetic innervation, NGF and NT-3 are expressed normally in the absence of Egr3 indicating that abnormal target tissue innervation is not due to deregulation of these neurotrophins in target tissues. Taken together, these results clearly demonstrate a role for Egr3 in mediating sympathetic target tissue innervation that is independent of neuron survival or neurotrophin deregulation.

  3. Of Scaredy Cats and Cold Fish: The autonomic nervous system and behaviour in young children

    OpenAIRE

    Dierckx, Bram

    2014-01-01

    markdownabstract__Abstract__ The autonomic nervous system regulates the body’s internal functions. The goal of this regulation is to maintain bodily homeostasis in a changing external environment. The autonomic nervous system acts largely independent of volition and controls heart rate, respiratory rate, digestion, and perspiration. It is divided into two partially antagonistic systems: the sympathetic nervous system and the parasympathetic or vagal nervous system. In general, the vagal syste...

  4. The anemia of microgravity and recumbency. Role of sympathetic neural control of erythropoietin production

    Science.gov (United States)

    Robertson, David; Krantz, Sanford B.; Biaggioni, Italo

    We hypothesize that reduced sympathetic stimulation of erythropoietin production may maintain the anemia which develops in virtually all space travellers. We tested this hypothesis in a human model of reduced sympathetic activity. Thirty-three patients with the Bradbury-Eggleston syndrome were divided into three groups according to their hemoglobin (Hgb) level. Patients with low Hgb had lower upright norepinephrine and lower upright renin. Patients with anemia also had inappropriately low plasma erythropoietin levels. We administered recombinant erythropoietin (Epogen) 25-50 units/kg s.c. 3 times per week and found that the anemia seen in autonomic failure could be reversed by this treatment. These results support the hypothesis that erythropoiesis is modulated by the sympathetic nervous system and that such mechanisms may also operate in the microgravity environment where sympathetic activity is reduced.

  5. Clinical efficacy of efonidipine hydrochloride, a T-type calcium channel inhibitor, on sympathetic activities. Examination using spectral analysis of heart rate/blood pressure variabilities and 123I-Metaiodobenzylguanidine myocardial scintigraphy

    International Nuclear Information System (INIS)

    Dihydropyridine Ca antagonists cause reflex tachycardia related to their hypotensive effects. Efonidipine hydrochloride has inhibitory effects on T-type Ca channels, even as it inhibits reflex tachycardia. In the present study, the influence of efonidipine hydrochloride on heart rate and autonomic nervous function was investigated. Using an electrocardiogram and a tonometric blood pressure measurement, autonomic nervous activity was evaluated using spectral analysis of heart rate/systolic blood pressure variability. Three protocols were used: a single dose of efonidipine hydrochloride was administered orally to healthy subjects with resting heart rate values of 75 beats/min or more (high-heart rate (HR) group) and to healthy subjects with resting heart rate values less than 75 beats/min (low-HR group); efonidipine hydrochloride was newly administered to untreated patients with essential hypertension, and autonomic nervous activity was investigated after a 4-week treatment period; and patients with high heart rate values (≥75 beats/min) who had been treated with a dihydropyridine L-type Ca channel inhibitor for 1 month or more were switched to efonidipine hydrochloride and any changes in autonomic nervous activity were investigated. In all protocols, administration of efonidipine hydrochloride decreased the heart rate in patients with a high heart rate, reduced sympathetic nervous activity, and enhanced parasympathetic nervous activity. In addition, myocardial scintigraphy with 123I-metaiodobenzylguanidine showed significant improvement in the washout rate and heart to mediastinum (H/M) ratio of patients who were switched from other dihydropyridine Ca antagonists to efonidipine hydrochloride. Efonidipine hydrochloride inhibits increases in heart rate and has effects on the autonomic nervous system. It may be useful for treating hypertension and angina pectoris, and may also have a cardiac protective function. (author)

  6. Electrocardiographic abnormalities and cardiac arrhythmias in structural brain lesions.

    Science.gov (United States)

    Katsanos, Aristeidis H; Korantzopoulos, Panagiotis; Tsivgoulis, Georgios; Kyritsis, Athanassios P; Kosmidou, Maria; Giannopoulos, Sotirios

    2013-07-31

    Cardiac arrhythmias and electrocardiographic abnormalities are frequently observed after acute cerebrovascular events. The precise mechanism that leads to the development of these arrhythmias is still uncertain, though increasing evidence suggests that it is mainly due to autonomic nervous system dysregulation. In massive brain lesions sympathetic predominance and parasympathetic withdrawal during the first 72 h are associated with the occurrence of severe secondary complications in the first week. Right insular cortex lesions are also related with sympathetic overactivation and with a higher incidence of electrocardiographic abnormalities, mostly QT prolongation, in patients with ischemic stroke. Additionally, female sex and hypokalemia are independent risk factors for severe prolongation of the QT interval which subsequently results in malignant arrhythmias and poor outcome. The prognostic value of repolarization changes commonly seen after aneurysmal subarachnoid hemorrhage, such as ST segment, T wave, and U wave abnormalities, still remains controversial. In patients with traumatic brain injury both intracranial hypertension and cerebral hypoperfusion correlate with low heart rate variability and increased mortality. Given that there are no firm guidelines for the prevention or treatment of the arrhythmias that appear after cerebral incidents this review aims to highlight important issues on this topic. Selected patients with the aforementioned risk factors could benefit from electrocardiographic monitoring, reassessment of the medications that prolong QTc interval, and administration of antiadrenergic agents. Further research is required in order to validate these assumptions and to establish specific therapeutic strategies.

  7. Effects of renal sympathetic denervation on cardiac remodeling following myocardial infarction in rats%去肾交感神经术对大鼠急性心肌梗死后心室重构的影响

    Institute of Scientific and Technical Information of China (English)

    刘夙璇; 王国坤; 丁雪燕; 董斐斐; 安丽娜; 赵仙先; 秦永文

    2014-01-01

    目的 对急性心肌梗死(myocardial infarction,MI)大鼠进行双侧肾交感神经切除,探讨去肾交感神经术(renal sympathetic denervation,RDN)能否缓解MI后心室重构并进行可能的机制探讨.方法 结扎大鼠左冠状动脉前降支构建MI模型,实验分组为:MI组(n=10)、MI+ RDN组(MI建模1周后进行RDN,n=10)和假手术组(n=10).MI建模4周后对各组大鼠进行超声心动图检查测定心室重构程度和左心功能,对梗死边缘区心肌进行Masson染色观察心肌纤维化程度,免疫组化检测Ⅰ型胶原、Ⅲ型胶原和转化生长因子β1 (transforming growth factor β1,TGF-β1)的表达.结果 与MI组相比,MI+ RDN组的左室射血分数(ejection fraction,EF)和短轴缩短率(fractional shortening,FS)升高,左室收缩末期内径(left ventricular internal dimensions at end systole,LVIDS)和左室舒张末期内径(left ventricular internal dimensions at end diastole, LVIDD)减少(P均<0.05).心肌Masson染色结果显示,MI+ RDN组大鼠梗死边缘区的心肌纤维化程度较MI组减轻.免疫组化检测显示,与MI组相比,MI+RDN组大鼠梗死边缘区的Ⅰ型胶原、Ⅲ型胶原和TGF-β1表达减少(P均<o.05).结论 RDN可以改善Mt大鼠心室重构,提高左心收缩功能,其机制可能与局部下调心肌TGF-β1表达进而减少Ⅰ型胶原和Ⅲ型胶原沉积有关.

  8. Marital Conflict and Growth in Children's Internalizing Symptoms: The Role of Autonomic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Keiley, Margaret; Erath, Stephen; Dyer, W. Justin

    2013-01-01

    We assessed trajectories of children's internalizing symptoms, indexed through anxiety and depression, with a focus on the role of interactions between interparental marital conflict, children's sympathetic nervous system activity indexed by skin conductance level (SCL), and parasympathetic nervous system activity indexed by respiratory sinus…

  9. Multiple hemodynamic effects of endogenous hydrogen sulfide on central nervous system in rats

    Institute of Scientific and Technical Information of China (English)

    REN Yong-sheng; WU Sheng-ying; WANG Xing-jun; YU Fang; ZHAO Jing; TANG Chao-shu; OUYANG Jing-ping; GENG Bin

    2011-01-01

    Background Endogenous hydrogen sulfide is a new neuromodulator which takes part in the regulation of central nervous system physiology and diseases.Whether endogenous hydrogen sulfide in the central nervous system regulates cardiovascular activity is not known.In the present study,we observed the hemodynamic changes of hydrogen sulfide or its precursor by intracerebroventricular injection,and investigate the possible roles of endogenous digitalis like factors and sympathetic activity in the regulation.Methods Ninety-four Sprague-Dawley rats underwent a right cerebroventricular puncture,then the hydrogen sulfide saturation buffer or its precursor injected by intrcerebroventricular catheter.A heperin-filled catheter was inserted into the right femoral artery or into the left ventricle,and changes of blood pressure or cardiac function recorded by a Powerlab/4S instrument.Phentolamine or metoprolol were pre-injected to observe the possible role in autonomic nerve activity.After rats were sacrificed,plasma was collected and endogenous digitalis-like factors were measured with a commercial radioimmunoassay kit.The aortic,cardiac sarcolemmal vesicles were isolated and the activity of Na+-K+-ATPase was measured as ouabain-sensitive ATP hydrolysis under maximal velocity conditions by measuring the release of inorganic phosphate from ATP.Unpaired Student's ttest for two groups or analysis of variances (ANOVA) for multiple groups were used to compare the differences of the changes.Results Intracerebroventricular injection of hydrogen sulfide induced a transient hypotension,then dramatic hypertenive effects in a dose-dependent manner.Bolus injection of L-cysteine or beta-mercaptopyruvate also increased mean arterial pressure (P <0.01),whereas hydroxylamine-a cystathionine beta synthase inhibitor decreased the arterial pressure (P <0.01).Hydrogen sulfide and L-cysteine increased mean arterial pressure,left ventricular develop pressure and left-ventricle maximal rate of

  10. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation.

    Directory of Open Access Journals (Sweden)

    Mamoru Tanida

    Full Text Available In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb. We investigated the potential of AMPKα2 in the sympathetic effects of leptin using in vivo siRNA injection to knockdown AMPKα2 in rats, to produce reduced hypothalamic AMPKα2 expression. Leptin effects on body weight, food intake, and blood FFA levels were eliminated in AMPKα2 siRNA-treated rats. Leptin-evoked enhancements of the sympathetic nerve outflows to the kidney, brown and white adipose tissues were attenuated in AMPKα2 siRNA-treated rats. To check whether AMPKα2 was specific to sympathetic changes induced by leptin, we examined the effects of injecting MT-II, a melanocortin-3 and -4 receptor agonist, on the sympathetic nerve outflows to the kidney and adipose tissue. MT-II-induced sympatho-excitation in the kidney was unchanged in AMPKα2 siRNA-treated rats. However, responses of neural activities involving adipose tissue to MT-II were attenuated in AMPKα2 siRNA-treated rats. These results suggest that hypothalamic AMPKα2 is involved not only in appetite and body weight regulation but also in the regulation of sympathetic nerve discharges to the kidney and adipose tissue. Thus, AMPK might function not only as an energy sensor, but as a key molecule in the cardiovascular, thermogenic, and lipolytic effects of leptin through the sympathetic nervous system.

  11. Evaluation of acceleration and deceleration cardiac processes using phase-rectified signal averaging in healthy and idiopathic dilated cardiomyopathy subjects.

    Science.gov (United States)

    Bas, Rosana; Vallverdú, Montserrat; Valencia, Jose F; Voss, Andreas; de Luna, Antonio Bayés; Caminal, Pere

    2015-02-01

    The aim of the present study was to investigate the suitability of the Phase-Rectified Signal Averaging (PRSA) method for improved risk prediction in cardiac patients. Moreover, this technique, which separately evaluates acceleration and deceleration processes of cardiac rhythm, allows the effect of sympathetic and vagal modulations of beat-to-beat intervals to be characterized. Holter recordings of idiopathic dilated cardiomyopathy (IDC) patients were analyzed: high-risk (HR), who suffered sudden cardiac death (SCD) during the follow-up; and low-risk (LR), without any kind of cardiac-related death. Moreover, a control group of healthy subjects was analyzed. PRSA indexes were analyzed, for different time scales T and wavelet scales s, from RR series of 24 h-ECG recordings, awake periods and sleep periods. Also, the behavior of these indexes from simulated data was analyzed and compared with real data results. Outcomes demonstrated the PRSA capacity to significantly discriminate healthy subjects from IDC patients and HR from LR patients on a higher level than traditional temporal and spectral measures. The behavior of PRSA indexes agrees with experimental evidences related to cardiac autonomic modulations. Also, these parameters reflect more regularity of the autonomic nervous system (ANS) in HR patients. PMID:25585858

  12. Dysautonomia due to reduced cholinergic neurotransmission causes cardiac remodeling and heart failure.

    Science.gov (United States)

    Lara, Aline; Damasceno, Denis D; Pires, Rita; Gros, Robert; Gomes, Enéas R; Gavioli, Mariana; Lima, Ricardo F; Guimarães, Diogo; Lima, Patricia; Bueno, Carlos Roberto; Vasconcelos, Anilton; Roman-Campos, Danilo; Menezes, Cristiane A S; Sirvente, Raquel A; Salemi, Vera M; Mady, Charles; Caron, Marc G; Ferreira, Anderson J; Brum, Patricia C; Resende, Rodrigo R; Cruz, Jader S; Gomez, Marcus Vinicius; Prado, Vania F; de Almeida, Alvair P; Prado, Marco A M; Guatimosim, Silvia

    2010-04-01

    Overwhelming evidence supports the importance of the sympathetic nervous system in heart failure. In contrast, much less is known about the role of failing cholinergic neurotransmission in cardiac disease. By using a unique genetically modified mouse line with reduced expression of the vesicular acetylcholine transporter (VAChT) and consequently decreased release of acetylcholine, we investigated the consequences of altered cholinergic tone for cardiac function. M-mode echocardiography, hemodynamic experiments, analysis of isolated perfused hearts, and measurements of cardiomyocyte contraction indicated that VAChT mutant mice have decreased left ventricle function associated with altered calcium handling. Gene expression was analyzed by quantitative reverse transcriptase PCR and Western blotting, and the results indicated that VAChT mutant mice have profound cardiac remodeling and reactivation of the fetal gene program. This phenotype was attributable to reduced cholinergic tone, since administration of the cholinesterase inhibitor pyridostigmine for 2 weeks reversed the cardiac phenotype in mutant mice. Our findings provide direct evidence that decreased cholinergic neurotransmission and underlying autonomic imbalance cause plastic alterations that contribute to heart dysfunction.

  13. Leptin into the rostral ventral lateral medulla (RVLM augments renal sympathetic nerve activity and blood pressure

    Directory of Open Access Journals (Sweden)

    Maria J Barnes

    2014-08-01

    Full Text Available Leptin is a hormone released from adipose tissue. While this hormone normally acts to reduce feeding behavior and increase energy expenditure, in obesity, resistance to these effects occurs even though the hormone is released in large amounts. Although leptin no longer works to suppress feeding in the obese, leptin retains its potent effects on other autonomic functions such as blood pressure regulation. Leptin has been associated with hypertension and increased sympathetic autonomic activity. Therefore, leptin is emerging as a major contributor to the hypertensive state observed in obesity. Sympathetic control of blood pressure is maintained principally by autonomic reflex control circuits in the caudal brainstem. The rostral ventral-lateral medulla (RVLM is the primary regulator of the sympathetic nervous system, sending excitatory fibers to sympathetic preganglionic neurons to regulate sympathetic control over resistance vessels and blood pressure. Previous studies from our laboratory have shown that neurons in the ventral lateral medulla express leptin receptors (ObRb. Our present study using pseudo-rabies multi-synaptic retrograde tract tracing and immunohistochemical methods revealed that neurons within the RVLM that send sympathetic projections to the kidney express leptin receptors. Acute microinjection of leptin (1 and 3µg; 40nL into the RVLM evoked a significant increase in Mean Arterial Pressure (MAP and renal sympathetic nerve activity (RSNA. When the 3µg dose of leptin was preceded with a leptin antagonist, (SLAN-4; 1ng, it attenuated the cardiovascular response of leptin. Taken together, these data suggest that leptin’s actions within the RVLM may influence blood pressure and renal sympathetic nerve activity.

  14. An Autonomic Link Between Inhaled Diesel Exhaust and Impaired Cardiac Performance: Insight From Treadmill and Doubutamine Challenges in Heart Failure-Prone Rats

    Science.gov (United States)

    Background: Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) is an ubiquitous air pollutant believed to provoke cardiac events partly through imbalance of the sympathetic and parasympathetic branches of the autonomic nervo...

  15. Evaluation of sympathetic activity by 123I-metaiodobenzylguanidine myocardial scintigraphy in dilated cardiomyopathy patients with sleep breathing disorder

    International Nuclear Information System (INIS)

    Because increased sympathetic nervous activity (SNA) in patients with dilated cardiomyopathy (DCM) associated with sleep breathing disorder (SBD) is known to deteriorate the prognosis of cardiac failure, 123I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy was used as the investigative tool in the present study. The study group comprised 53 patients (47 men, 6 women; mean age 56±3 years) with chronic stable DCM. Patients were divided into SBD(+) or SBD(-) group according to 24-h pulse oximetry results. SBD(+) was defined when the 3% oxygen desaturation index was more than 15/h during sleep. In total, 32 patients were SBD(-) and 21 were SBD(+). In both groups, pulse oximetry were performed during sleep and awakening pulse rate, and measurement of the blood levels of catecholamines and B-type natriuretic peptide was performed. MIBG myocardial scintigraphy and echocardiography were performed at the same time. No significant difference was found between the 2 groups in catecholamine levels or left ventricular ejection fraction. However, MIBG had a significantly increased washout rate and a significantly decreased delayed heart to mediastinum ratio in the SBD(+) group compared with the SBD(-) group. SNA is increased in DCM patients when associated with SBD. MIBG myocardial scintigraphy may be a sensitive method of detecting increased SNA. (author)

  16. [Emotion, amygdala, and autonomic nervous system].

    Science.gov (United States)

    Ueyama, Takashi

    2012-10-01

    Emotion refers to the dynamic changes of feeling accompanied by the alteration of physical and visceral activities. Autonomic nervous system (sympathetic and parasympathetic) regulates the visceral activities. Therefore, monitoring and analyzing autonomic nervous activity help understand the emotional changes. To this end, the survey of the expression of immediate early genes (IEGs), such as c-Fos in the brain and target organs, and the viral transneuronal labeling method using the pseudorabies virus (PRV) have enabled the visualization of the neurocircuitry of emotion. By comparing c-Fos expression and data from PRV or other neuroanatomical labeling techniques, the central sites that regulate emotional stress-induced autonomic activation can be deduced. Such regions have been identified in the limbic system (e. g., the extended amygdaloid complex; lateral septum; and infralimbic, insular, and ventromedial temporal cortical regions), as well as in several hypothalamic and brainstem nuclei. The amygdala is structurally diverse and comprises several subnuclei, which play a role in emotional process via projections from the cortex and a variety of subcortical structures. All amygdaloid subnuclei receive psychological information from other limbic systems, while the lateral and central subnuclei receive peripheral and sensory information. Output to the hypothalamus and peripheral sympathetic system mainly originates from the medial amygdala. As estrogen receptor α, estrogen receptor β, and androgen receptor are expressed in the medial amygdala, sex steroids may modulate the autonomic nervous activities.

  17. The relationship between the sympathetic skin response and event-related brain potentials in sensorimotor control of human voluntary movements

    OpenAIRE

    Shimoda, Masahiro

    2000-01-01

    The autonomic nervous syste m (ANS) maintains the internal environment of the human body. It has recently been suggested that the ANS also contributes to the control of voluntary movements. Especially, the sympathetic nervous system in the ANS plays an important role in subserving voluntary movements. Many researchers have become to be interested in the neuro-behavioral relationship between the ANS and the cortical motor areas, such as the primary motor area, supplementary motor area, and cin...

  18. Brain and Nervous System

    Science.gov (United States)

    ... to Know About Zika & Pregnancy Brain and Nervous System KidsHealth > For Parents > Brain and Nervous System Print ... is quite the juggler. Anatomy of the Nervous System If you think of the brain as a ...

  19. Autonomic Nervous System Disorders

    Science.gov (United States)

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  20. Effects of nitric oxide synthase inhibition on sympathetically-mediated tachycardia

    Science.gov (United States)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The aim of the present study was to determine whether inhibition of nitric oxide (NO) synthesis directly alters the tachycardia produced by sympathetically-derived norepinephrine. The NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME; 50 micromol/kg, i.v.), produced a marked rise in mean arterial blood pressure. This pressor response was associated with a fall in heart rate which involved the withdrawal of cardiac sympathetic nerve activity. The NO-donor, sodium nitroprusside (5 microg/kg, i.v.), produced a pronounced fall in mean arterial blood pressure but only a minor increase in heart rate. The beta-adrenoceptor agonist, isoproterenol (0.5 micromol/kg, i.v.), and the membrane-permeable cAMP analogue, 8-(4-chlorophenylthiol)-cAMP (10 micromol/kg, i.v.), produced falls in mean arterial blood pressure and pronounced increases in heart rate. The indirectly acting sympathomimetic agent, tyramine (0.5 mg/kg, i.v.), produced a pressor response and a tachycardia. The effects of sodium nitroprusside, tyramine, isoproterenol and 8-(4-chlorophenylthiol)-cAMP on mean arterial blood pressure were not markedly affected by L-NAME. However, the tachycardia produced by these agents was considerably exaggerated in the presence of this NO synthesis inhibitor. These findings suggest that L-NAME potentiates the tachycardia produced by sympathetically-derived norepinephrine. The increased responsiveness to norepinephrine may involve (i) a rapid up-regulation of cardiac beta1-adrenoceptors and cAMP signaling in cardiac pacemaker cells due to the loss of the inhibitory influence of cardiac NO, and (ii) the up-regulation of beta1-adrenoceptor-mediated signal transduction processes in response to the L-NAME-induced withdrawal of cardiac sympathetic nerve activity.

  1. ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function.

    Directory of Open Access Journals (Sweden)

    Huijing Xia

    Full Text Available Oxidative stress in the central nervous system mediates the increase in sympathetic tone that precedes the development of hypertension. We hypothesized that by transforming Angiotensin-II (AngII into Ang-(1-7, ACE2 might reduce AngII-mediated oxidative stress in the brain and prevent autonomic dysfunction. To test this hypothesis, a relationship between ACE2 and oxidative stress was first confirmed in a mouse neuroblastoma cell line (Neuro2A cells treated with AngII and infected with Ad-hACE2. ACE2 overexpression resulted in a reduction of reactive oxygen species (ROS formation. In vivo, ACE2 knockout (ACE2(-/y mice and non-transgenic (NT littermates were infused with AngII (10 days and infected with Ad-hACE2 in the paraventricular nucleus (PVN. Baseline blood pressure (BP, AngII and brain ROS levels were not different between young mice (12 weeks. However, cardiac sympathetic tone, brain NADPH oxidase and SOD activities were significantly increased in ACE2(-/y. Post infusion, plasma and brain AngII levels were also significantly higher in ACE2(-/y, although BP was similarly increased in both genotypes. ROS formation in the PVN and RVLM was significantly higher in ACE2(-/y mice following AngII infusion. Similar phenotypes, i.e. increased oxidative stress, exacerbated dysautonomia and hypertension, were also observed on baseline in mature ACE2(-/y mice (48 weeks. ACE2 gene therapy to the PVN reduced AngII-mediated increase in NADPH oxidase activity and normalized cardiac dysautonomia in ACE2(-/y mice. Altogether, these data indicate that ACE2 gene deletion promotes age-dependent oxidative stress, autonomic dysfunction and hypertension, while PVN-targeted ACE2 gene therapy decreases ROS formation via NADPH oxidase inhibition and improves autonomic function. Accordingly, ACE2 could represent a new target for the treatment of hypertension-associated dysautonomia and oxidative stress.

  2. Pmch-Deficiency in Rats Is Associated with Normal Adipocyte Differentiation and Lower Sympathetic Adipose Drive

    OpenAIRE

    Mul, Joram D.; Eoghan O'Duibhir; Shrestha, Yogendra B.; Arjen Koppen; Peter Vargoviç; Toonen, Pim W; Eleen Zarebidaki; Richard Kvetnansky; Eric Kalkhoven; Edwin Cuppen; Bartness, Timothy J.

    2013-01-01

    The orexigenic neuropeptide melanin-concentrating hormone (MCH), a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS) drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively). MCH binds to MCH receptor 1 (MCH1R), which is present on adipocytes. ...

  3. Control and Physiological Determinants of Sympathetically Mediated Brown Adipose Tissue Thermogenesis

    OpenAIRE

    DenisRichard; ÉricTurcotte

    2012-01-01

    Brown adipose tissue (BAT) represents a remarkable heat-producing tissue. The thermogenic potential of BAT is conferred by uncoupling protein 1, a protein found uniquely in the brown adipocytes. The physiological control of BAT activity and capacity is ensured by the sympathetic nervous system (SNS), which densely innervates brown fat depots. SNS-mediated BAT thermogenesis is essentially governed by hypothalamic and brainstem neurons. BAT is not only controlled by the brain thermoregulatory c...

  4. Sympathetic activity of S-(+)-ketamine low doses in the epidural space

    OpenAIRE

    2014-01-01

    BACKGROUND AND OBJECTIVES: S-(+)-ketamine is an intravenous anaesthetic and sympathomimetic with properties of local anaesthetic. It has an effect of an analgetic and local anaesthetic when administered epidurally, but there are no data whether low doses of S-(+)-ketamine have sympathomimetic effects. The aim of this study was to determine whether low doses of S-(+)-ketamine, given epidurally together with local anaesthetic, have any effect on sympathetic nervous system, both systemic and be...

  5. Autonomic nervous activities assessed by heart rate variability in pre- and post-adolescent Japanese.

    Science.gov (United States)

    Fukuba, Yoshiyuki; Sato, Hironori; Sakiyama, Tomomi; Yamaoka Endo, Masako; Yamada, Masako; Ueoka, Hatsumi; Miura, Akira; Koga, Shunsaku

    2009-11-01

    There are many studies with respect to the age-related change of the characteristics of beat-to-beat heart rate variability (HRV), reflected by cardiac autonomic control, especially focusing on adulthood (i.e., aging related to the incidence of metabolic syndrome) in Japanese individuals. However, it is not still clear how basic control matures during childhood. This study was, therefore, designed to explore the HRV characteristics of pre- and post-adolescent Japanese, in a cross-sectional manner. Resting HRV data was recorded in a relaxing supine position from 136 healthy individuals between 8 and 20 years (48 boys between 8 and 14 years; 88 girls between 8 and 20 years) who were instructed to breathe periodically (0.25 Hz). Frequency-domain analysis (i.e., the spectral analysis based on an autoregressive model) of short-term, stationary R-R intervals was performed to evaluate the low- (LF; below 0.15 Hz) and high- (HF; 0.15-0.40 Hz) frequency powers. The HF to total power represents the vagal control of heart rate (PNS indicator), and the ratio of LF to HF (LF/HF) is considered to relate to the sympathetic modulations (SNS indicator). Both PNS and SNS indices had substantially no effect from age and/or gender in the range between 8 and 20 years. In conclusion, the control of the cardiac autonomic nervous system in Japanese seems already to be compatible with that in adulthood before approximately 10 years. In other word, the cardiac autonomic modulation would presumably be maturated before the age of approximately 7-8 years, though further research is awaited.

  6. Relationship between cardiac {sup 123}I-Metaiodobenzylguanidine imaging and the transcardiac gradient of neurohumoral factors in patients with dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Toshiki; Tsutamoto, Takayoshi; Kinoshita, Masahiko [Shiga Univ. of Medical Science, Otsu (Japan)

    2001-12-01

    Cardiac sympathetic nervous function is altered in congestive heart failure (CHF) and the uptake and washout rate of cardiac {sup 123}I-metaiodobenzylguanidine (MIBG) are useful markers for evaluating the severity of it. To assess what parameters predict decreased uptake or increased washout rate of MIBG, the concentrations of neurohumoral factor in both the aorta (Ao) and coronary sinus (CS) were measured, as well as hemodynamic parameters by catheterization, in patients with dilated cardiomyopathy (DCM). MIBG imaging was performed within 1 week of cardiac catheterization. Regarding MIBG parameters, the correlation with the transcardiac gradient of norepinephrine (NE), brain natriuretic peptide (BNP) and hemodynamics was investigated. Stepwise multivariate regression analysis was used to determine which variables closely correlated with cardiac MIBG parameters. There was a significant increase in the NE level between the Ao (446 pg/ml) and the CS (727 pg/ml). According to stepwise multivariate regression analysis, the heart/mediastinum (H/M) ratio independently correlated with the transcardiac gradient of BNP (r=-0.480, p<0.01), and the washout rate independently correlated with the transcardiac gradient of NE (r=0.481, p<0.01). These findings indicate that the H/M ratio may reflect the transcardiac gradient of BNP, which implies the degree of left ventricular dysfunction and/or damage and the washout rate may reflect altered cardiac sympathetic nerve terminal in DCM patients with CHF, suggesting that both the H/M ratio and washout rate provide important information about the failing ventricle. (author)

  7. Hypothalamic Nesfatin-1 Stimulates Sympathetic Nerve Activity via Hypothalamic ERK Signaling.

    Science.gov (United States)

    Tanida, Mamoru; Gotoh, Hitoshi; Yamamoto, Naoki; Wang, Mofei; Kuda, Yuhichi; Kurata, Yasutaka; Mori, Masatomo; Shibamoto, Toshishige

    2015-11-01

    Nesfatin-1 acts on the hypothalamus and regulates the autonomic nervous system. However, the hypothalamic mechanisms of nesfatin-1 on the autonomic nervous system are not well understood. In this study, we found that intracerebroventricular (ICV) administration of nesfatin-1 increased the extracellular signal-regulated kinase (ERK) activity in rats. Furthermore, the activity of sympathetic nerves, in the kidneys, liver, and white adipose tissue (WAT), and blood pressure was stimulated by the ICV injection of nesfatin-1, and these effects were abolished owing to pharmacological inhibition of ERK. Renal sympathoexcitatory and hypertensive effects were also observed with nesfatin-1 microinjection into the paraventricular hypothalamic nucleus (PVN). Moreover, nesfatin-1 increased the number of phospho (p)-ERK1/2-positive neurons in the PVN and coexpression of the protein in neurons expressing corticotropin-releasing hormone (CRH). Pharmacological blockade of CRH signaling inhibited renal sympathetic and hypertensive responses to nesfatin-1. Finally, sympathetic stimulation of WAT and increased p-ERK1/2 levels in response to nesfatin-1 were preserved in obese animals such as rats that were fed a high-fat diet and leptin receptor-deficient Zucker fatty rats. These findings indicate that nesfatin-1 regulates the autonomic nervous system through ERK signaling in PVN-CRH neurons to maintain cardiovascular function and that the antiobesity effect of nesfatin-1 is mediated by hypothalamic ERK-dependent sympathoexcitation in obese animals. PMID:26310564

  8. Is reduced myocardial sympathetic innervation associated with clinical symptoms of autonomic impairment in idiopathic Parkinson's disease?

    Science.gov (United States)

    Guidez, Daniel; Behnke, Stefanie; Halmer, Ramona; Dillmann, Ulrich; Faßbender, Klaus; Kirsch, Carl M; Hellwig, Dirk; Spiegel, Jörg

    2014-01-01

    Patients with idiopathic Parkinson's disease (IPD) have a reduced myocardial MIBG uptake in MIBG scintigraphy, indicating myocardial sympathetic denervation. We were interested whether this myocardial sympathetic denervation coincides with clinical symptoms of autonomic impairment in IPD patients. We performed MIBG scintigraphy, the SCOPA-AUT scale, a standardized medical history (developed in our clinic) and autonomic nervous system testing in 47 IPD patients (21 female, 26 male patients). We correlated myocardial MIBG uptake with the results of the SCOPA-AUT scale, the standardized medical history and the autonomic nervous system testing through the use of Spearman's correlation. Myocardial MIBG uptake correlated significantly (p autonomic nervous system testing (all patients: sum score, Ewing orthostasis test). Remarkably, we found more significant correlations in male than in female patients. Reduced myocardial sympathetic innervation-as revealed by MIBG scintigraphy-is associated with clinical symptoms of autonomic impairment. This association is more pronounced in male than in female patients. The cause for this gender-specific phenomenon is unclear.

  9. Power Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment.

    Science.gov (United States)

    Posada-Quintero, Hugo F; Florian, John P; Orjuela-Cañón, Alvaro D; Aljama-Corrales, Tomas; Charleston-Villalobos, Sonia; Chon, Ki H

    2016-10-01

    Time-domain features of electrodermal activity (EDA), the measurable changes in conductance at the skin surface, are typically used to assess overall activation of the sympathetic system. These time domain features, the skin conductance level (SCL) and the nonspecific skin conductance responses (NS.SCRs), are consistently elevated with sympathetic nervous arousal, but highly variable between subjects. A novel frequency-domain approach to quantify sympathetic function using the power spectral density (PSD) of EDA is proposed. This analysis was used to examine if some of the induced stimuli invoke the sympathetic nervous system's dynamics which can be discernible as a large spectral peak, conjectured to be present in the low frequency band. The resulting indices were compared to the power of low-frequency components of heart rate variability (HRVLF) time series, as well as to time-domain features of EDA. Twelve healthy subjects were subjected to orthostatic, physical and cognitive stress, to test these techniques. We found that the increase in the spectral powers of the EDA was largely confined to 0.045-0.15 Hz, which is in the prescribed band for HRVLF. These low frequency components are known to be, in part, influenced by the sympathetic nervous dynamics. However, we found an additional 5-10% of the spectral power in the frequency range of 0.15-0.25 Hz with all three stimuli. Thus, dynamics of the normalized sympathetic component of the EDA, termed EDASympn, are represented in the frequency band 0.045-0.25 Hz; only a small amount of spectral power is present in frequencies higher than 0.25 Hz. Our results showed that the time-domain indices (the SCL and NS.SCRs), and EDASympn, exhibited significant increases under orthostatic, physical, and cognitive stress. However, EDASympn was more responsive than the SCL and NS.SCRs to the cold pressor stimulus, while the latter two were more sensitive to the postural and Stroop tests. Additionally, EDASympn exhibited an

  10. Determinación de la eficacia analgésica de los bloqueos del ganglio estrellado en el síndrome doloroso regional complejo con dolor mediado por el sistema nervioso simpático: estudio preliminar Study of the analgesic efficacy of stellate ganglion blockade in the management of the complex regional pain syndrome in patients with pain mediated by sympathetic nervous system: preliminary study

    Directory of Open Access Journals (Sweden)

    R. F. Rodríguez

    2006-05-01

    Full Text Available Objetivo: Este estudio fue realizado con el propósito de determinar la eficacia analgésica de los bloqueos del ganglio estrellado, en el alivio del dolor mediado por el sistema nervioso simpático, en pacientes con síndrome doloroso regional complejo. Pacientes y métodos: Se realizó un ensayo clínico controlado con asignación aleatoria y enmascaramiento simple. Treinta y nueve pacientes fueron tratados con una serie de bloqueos de ganglio estrellado, terapia física y tratamiento farmacológico, mientras que treinta y dos pacientes fueron tratados con fisioterapia y el mismo esquema farmacológico. Para determinar la asociación entre las variables se utilizó el riesgo relativo con sus respectivos intervalos de confianza. Resultados: En la evaluación clínica realizada un mes postratamiento se encontró alivio del dolor en 84,6% de los pacientes del grupo de intervención y en 78,1% de los controles (RR= 1,08; I.C. 95%=0,8-1,4; p=0.48, sin encontrarse diferencias estadísticamente significativas. No se encontró asociación entre la eficacia analgésica y tabaquismo, dominancia, género, tipo de SDRC, causa desencadenante y nivel educativo.Objective: The purpose of this study was to determine the analgesic efficacy of stellate ganglion blockade in pain mediated by the sympathetic nervous system in patients with Complex Regional Pain Syndrome (CRPS. Patients and methods: A randomized, simple-blinded controlled clinical trial was conducted. Thirty nine patients were randomly assigned to an intervention group which was treated with a series of stellate ganglion blockades, physical therapy and pharmacological treatment, and thirty two to a control group which was treated with physical therapy and the same pharmacological treatment. Risk ratio was used to evaluate outcome and determine association with predictor variables. Results: At the end of the first month post treatment, it was found that 84.6% of patients in the intervention group had

  11. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF.

    Directory of Open Access Journals (Sweden)

    Keiko Miwa

    Full Text Available Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs and sympathetic neurons (SNs isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml or nerve growth factor (50 ng/ml. As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts.

  12. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF).

    Science.gov (United States)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Hirabayashi, Masumi; Watabe, Kazuhiko; Jimbo, Yasuhiko; Kodama, Itsuo; Komuro, Issei

    2013-01-01

    Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF) promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs) and sympathetic neurons (SNs) isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml) or nerve growth factor (50 ng/ml). As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR) with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs) attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts.

  13. A Demonstration of Sympathetic Cotransmission

    Science.gov (United States)

    Johnson, Christopher D.

    2010-01-01

    Currently, most undergraduate textbooks that cover the autonomic nervous system retain the concept that autonomic nerves release either acetylcholine or norepinephrine. However, in recent years, a large volume of research has superseded this concept with one in which autonomic nerves normally release at least one cotransmitter along with a…

  14. Scintigraphic differentiation between two forms of primary dysautonomia early after onset of autonomic dysfunction: value of cardiac and pulmonary iodine-123 MIBG uptake

    International Nuclear Information System (INIS)

    Primary dysfunction of the autonomic nervous system can be observed in patients with Parkinson's disease and those with multiple system atrophy. However, the fate of the two diseases differs considerably and leads to different strategies for patient management. Differentiation of the two diseases currently requires a combination of several clinical and electrophysiological tests. First studies of myocardial innervation using iodine-123 metaiodobenzylguanidine (MIBG) indicated a possible role of scintigraphy for this purpose. An increase in the pulmonary uptake of 123I-MIBG has been reported in secondary dysautonomias. Whether sympathetic innervation of the lung is affected in primary dysautonomias is currently unknown. Therefore, cardiac and pulmonary uptake of 123I-MIBG was studied in 21 patients with Parkinson's disease, 7 patients with multiple system atrophy and 13 age- and sex-matched controls. Thoracic images were obtained in the anterior view 4 h after intravenous injection of 185 MBq 123I-MIBG, at which time the maximum neuronal uptake is reached. All patients with Parkinson's disease had significantly lower cardiac uptake of 123I-MIBG than patients with multiple system atrophy and controls. Sympathetic innervation of the lung was not affected in either disease. It is concluded that scintigraphy with 123I-MIBG appears to be a useful tool for differentiation between Parkinson's disease and multiple system atrophy early after onset of autonomic dysfunction. (orig.)

  15. Scintigraphic differentiation between two forms of primary dysautonomia early after onset of autonomic dysfunction: value of cardiac and pulmonary iodine-123 MIBG uptake

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, M.J.; Juengling, F.D.; Krause, T.M. [Dept. of Nuclear Medicine, Freiburg University Hospital (Germany); Braune, S. [Dept. of Neurology, Freiburg University Hospital (Germany)

    2000-05-01

    Primary dysfunction of the autonomic nervous system can be observed in patients with Parkinson's disease and those with multiple system atrophy. However, the fate of the two diseases differs considerably and leads to different strategies for patient management. Differentiation of the two diseases currently requires a combination of several clinical and electrophysiological tests. First studies of myocardial innervation using iodine-123 metaiodobenzylguanidine (MIBG) indicated a possible role of scintigraphy for this purpose. An increase in the pulmonary uptake of {sup 123}I-MIBG has been reported in secondary dysautonomias. Whether sympathetic innervation of the lung is affected in primary dysautonomias is currently unknown. Therefore, cardiac and pulmonary uptake of {sup 123}I-MIBG was studied in 21 patients with Parkinson's disease, 7 patients with multiple system atrophy and 13 age- and sex-matched controls. Thoracic images were obtained in the anterior view 4 h after intravenous injection of 185 MBq {sup 123}I-MIBG, at which time the maximum neuronal uptake is reached. All patients with Parkinson's disease had significantly lower cardiac uptake of {sup 123}I-MIBG than patients with multiple system atrophy and controls. Sympathetic innervation of the lung was not affected in either disease. It is concluded that scintigraphy with {sup 123}I-MIBG appears to be a useful tool for differentiation between Parkinson's disease and multiple system atrophy early after onset of autonomic dysfunction. (orig.)

  16. Sympathetic system activity in obesity and metabolic syndrome.

    Science.gov (United States)

    Tentolouris, N; Liatis, S; Katsilambros, N

    2006-11-01

    Obesity is a very common disease worldwide, resulting from a disturbance in the energy balance. The metabolic syndrome is also a cluster of abnormalities with basic characteristics being insulin resistance and visceral obesity. The major concerns of obesity and metabolic syndrome are the comorbidities, such as type 2 diabetes, cardiovascular disease, stroke, and certain types of cancers. Sympathetic nervous system (SNS) activity is associated with both energy balance and metabolic syndrome. Sympathomimetic medications decrease food intake, increase resting metabolic rate (RMR), and thermogenic responses, whereas blockage of the SNS exerts opposite effects. The contribution of the SNS to the daily energy expenditure, however, is small ( approximately 5%) in normal subjects consuming a weight maintenance diet. Fasting suppresses, whereas meal ingestion induces SNS activity. Most of the data agree that obesity is characterized by SNS predominance in the basal state and reduced SNS responsiveness after various sympathetic stimuli. Weight loss reduces SNS overactivity in obesity. Metabolic syndrome is characterized by enhanced SNS activity. Most of the indices used for the assessment of its activity are better associated with visceral fat than with total fat mass. Visceral fat is prone to lipolysis: this effect is mediated by catecholamine action on the sensitive beta(3)-adrenoceptors found in the intraabdominal fat. In addition, central fat distribution is associated with disturbances in the hypothalamo-pituitary-adrenal axis, suggesting that a disturbed axis may be implicated in the development of the metabolic syndrome. Furthermore, SNS activity induces a proinflammatory state by IL-6 production, which in turn results in an acute phase response. The increased levels of inflammatory markers seen in the metabolic syndrome may be elicited, at least in part, by SNS overactivity. Intervention studies showed that the disturbances of the autonomic nervous system seen in the

  17. Sympathetic vasoconstrictor nerve function in alcoholic neuropathy

    DEFF Research Database (Denmark)

    Jensen, K; Andersen, K; Smith, T;

    1984-01-01

    The peripheral sympathetic vasomotor nerve function was investigated in 18 male chronic alcoholics admitted for intellectual impairment or polyneuropathy. By means of the local 133Xenon washout technique, the sympathetic veno-arteriolar axon-reflex was studied. This normally is responsible for a 50...... (18% and 48% decrease respectively). However, in three patients with moderate neuropathy, and in one patient with no signs of neuropathy, this veno-arteriolar reflex was absent, indicating dysfunction of the peripheral sympathetic adrenergic nerve fibres. The three patients also showed a lesser degree...

  18. Cardiovascular Response Patterns to Sympathetic Stimulation by Central Hypovolemia.

    Science.gov (United States)

    Bronzwaer, Anne-Sophie G T; Verbree, Jasper; Stok, Wim J; van Buchem, Mark A; Daemen, Mat J A P; van Osch, Matthias J P; van Lieshout, Johannes J

    2016-01-01

    In healthy subjects, variation in cardiovascular responses to sympathetic stimulation evoked by submaximal lower body negative pressure (LBNP) is considerable. This study addressed the question whether inter-subject variation in cardiovascular responses coincides with consistent and reproducible responses in an individual subject. In 10 healthy subjects (5 female, median age 22 years), continuous hemodynamic parameters (finger plethysmography; Nexfin, Edwards Lifesciences), and time-domain baroreflex sensitivity (BRS) were quantified during three consecutive 5-min runs of LBNP at -50 mmHg. The protocol was repeated after 1 week to establish intra-subject reproducibility. In response to LBNP, 5 subjects (3 females) showed a prominent increase in heart rate (HR; 54 ± 14%, p = 0.001) with no change in total peripheral resistance (TPR; p = 0.25) whereas the other 5 subjects (2 females) demonstrated a significant rise in TPR (7 ± 3%, p = 0.017) with a moderate increase in HR (21 ± 9%, p = 0.004). These different reflex responses coincided with differences in resting BRS (22 ± 8 vs. 11 ± 3 ms/mmHg, p = 0.049) and resting HR (57 ± 8 vs. 71 ± 12 bpm, p = 0.047) and were highly reproducible over time. In conclusion, we found distinct cardiovascular response patterns to sympathetic stimulation by LBNP in young healthy individuals. These patterns of preferential autonomic blood pressure control appeared related to resting cardiac BRS and HR and were consistent over time. PMID:27378944

  19. Novel heart rate parameters for the assessment of autonomic nervous system function in premature infants.

    Science.gov (United States)

    Lucchini, M; Fifer, W P; Sahni, R; Signorini, M G

    2016-09-01

    Autonomic nervous system (ANS) balance is a key factor in homeostatic control of cardiac activity, breathing and certain reflex reactions such as coughing, sneezing and swallowing and thus plays a crucial role for survival. ANS impairment has been related to many neonatal pathologies, including sudden infant death syndrome (SIDS). Moreover, some conditions have been identified as risk factors for SIDS, such as prone sleep position. There is an urgent need for timely and non-invasive assessment of ANS function in at-risk infants. Systematic measurement of heart rate variability (HRV) offers an optimal approach to access indirectly both sympathetic and parasympathetic influences on ANS functioning. In this paper, data from premature infants collected in a sleep physiology laboratory in the NICU are presented: traditional and novel approaches to HRV analyses are applied and compared in order to evaluate their relative merits in the assessment of ANS activity and the influence of sleep position. Indices from time domain and nonlinear approaches contributed as markers of physiological development in premature infants. Moreover, significant differences were observed as a function of sleep position. PMID:27480495

  20. Sympathetic re-innervation after heart transplantation: dual-isotope neurotransmitter scintigraphy, norepinephrine content and historical examination

    International Nuclear Information System (INIS)

    Cardiac transplantation entails surgical disruption of the sympathetic nerve fibres from their somata, resulting in sympathetic denervation. In order to investigate the occurrence of sympathetic re-innervation, neurotransmitter scintigraphy using the norepinephrine analogue iodine-123 metaiodobenzylguanidine (MIBG) was performed in 15 patients 2-69 months after transplantation. In addition, norepinephrine content and immunohistochemical reactions of antibodies to Schwann cell-associated S100 protein, to neuron-specific enolase (NSE) and to norepinephrine were examined in 34 endomyocardial biopsies of 29 patients 1-88 months after transplantation. Anterobasal 123I-MIBG uptake indicating partial sympathetic re-innervation could be shown in 40% of the scintigraphically investigated patients 37-69 months after transplantation. In immunohistochemical studies 83% of the patients investigated 1-72 Months after transplantation showed nerve fibres in their biopsies but not positive reaction to norepinephrine. Significant norepinephrine content indicating re-innervation could not be detected in any biopsy. It was concluded that in spite of the lack of norepinephrine content there seemed to be immunohistological and scintigraphic evidence of sympathetic re-innervation. An explanation for this contradictory finding may be the reduced or missing norepinephrine storage ability compared to the restored uptake ability of regenerated sympathetic nerve fibres. (orig.)

  1. Sensory and sympathetic innervation of cervical facet joint in rats

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hai-yu; CHEN An-min; GUO Feng-jing; LIAO Guang-jun; XIAO Wei-dong

    2006-01-01

    Objective: To explore the patterns of innervation of cervical facet joints and determine the pathways from facet joints to dorsal root ganglions (DRGs) in order to clarify the causes of diffuse neck pain, headache, and shoulder pain.Methods: Forty-two male Sprague-Dawley rats,weighing 250-300 g, were randomly divided into three groups: Group A ( n = 18), Group B ( n = 18), and Group C (n = 6 ). Under anesthesia with intraperitoneal pentobarbital sodium (45 mg/kg body weight), a midline dorsal longitudinal incision was made over the cervical spine to expose the left cervical facet joint capsule of all the rats under a microscope. The rats in Group A underwent sympathectomy, but the rats in Group B and Group C did not undergo sympathectomy. Then 0.6 μl 5 % bisbenzimide (Bb) were injected into the C1-2, C3-4 and C5-6 facet joints of 6 rats respectively in Group A and Group B. The holes were immediately sealed with mineral wax to prevent leakage of Bb and the fascia and skin were closed. But in Group C, 0.9% normal saline was injected into the corresponding joint capsules. Then under deep reanesthesia with intraperitoneal pentobarbital sodium (45 mg/kg body weight), C1-C8 left DRGs in all rats and the sympathetic ganglions in Group B were obtained and the number of the labeled neurons was determined.Results: Neurons labeled with Bb were present in C1-C8 DRGs in both Group A and Group B, and sympathetic ganglions in Group B. In the C1-2 and C3-4 subgroups,labeled neurons were present from C1 to C8 DRGs, while in C5-6 subgroups they were from C, to C8. The number of Bb ( + ) neurons after sympathectomy was not significantly different in the injected level from that without sympathectomy. But in the other levels, the number of Bb ( + ) neurons after sympathectomy was significantly less than that without sympathectomy.Conclusions: The innervation of the cervical facet joints is derived from both sensory and sympathetic nervous system, and DRGs are associated with

  2. Impact of Six-Month Caloric Restriction on Autonomic Nervous System Activity in Healthy, Overweight, Individuals

    OpenAIRE

    de Jonge, Lillian; Moreira, Emilia AM; Martin, Corby K.; Ravussin, Eric

    2009-01-01

    Caloric restriction (CR) increases maximum lifespan but the mechanisms are unclear. Dominance of the sympathetic nervous System (SNS) over the Parasympathetic Nervous System (PNS) has been shown to be a strong risk factor for cardiovascular disease. Obesity and aging are associated with increased SNS activity and weight loss and/or exercise seem to have positive effects on this balance. We therefore evaluated the effect of different approaches of CR on autonomic function in 48 overweight indi...

  3. Central nervous system

    Science.gov (United States)

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  4. Anorexia nervosa depends on adrenal sympathetic hyperactivity: opposite neuroautonomic profile of hyperinsulinism syndrome

    Directory of Open Access Journals (Sweden)

    Fuad Lechin

    2010-09-01

    Full Text Available Fuad Lechin1,2, Bertha van der Dijs1,2, Betty Pardey-Maldonado1, Jairo E Rivera1, Scarlet Baez1, Marcel E Lechin31Department of Pathophysiology, Sections of Neuroendocrinology, Neuropharmacology, and Neurochemistry, Instituto de Medicina Experimental, Faculty of Medicine, Universidad Central de Venezuela, Caracas; 2Instituto de Vias Digestivas Caracas, Centro Clínico Profesional, Caracas, Venezuela; 3Department of Internal Medicine, Texas A and M Health Science Center, College of Medicine, Texas, USAObjective: The aim of our study was to determine the central and peripheral autonomic nervous system profiles underlying anorexia nervosa (AN syndrome, given that affected patients present with the opposite clinical profile to that seen in the hyperinsulinism syndrome.Design: We measured blood pressure and heart rate, as well as circulating neurotransmitters (noradrenaline, adrenaline, dopamine, plasma serotonin, and platelet serotonin, using high-performance liquid chromatography with electrochemical detection, during supine resting, one minute of orthostasis, and after five minutes of exercise. In total, 22 AN patients (12 binge-eating/purging type and 10 restricting type and age-, gender-, and race-matched controls (70 ± 10.1% versus 98 ± 3.0% of ideal body weight were recruited.Results: We found that patients with AN had adrenal sympathetic overactivity and neural sympathetic underactivity, demonstrated by a predominance of circulating adrenaline over noradrenaline levels, not only during the supine resting state (52 ± 2 versus 29 ± 1 pg/mL but also during orthostasis (67 ± 3 versus 32 ± 2 pg/mL, P < 0.05 and after exercise challenge (84 ± 4 versus 30 ± 3 pg/mL, P < 0.01.Conclusion: Considering that this peripheral autonomic nervous system disorder depends on the absolute predominance of adrenomedullary C1 adrenergic nuclei over A5 noradrenergic pontine nucleus, let us ratify the abovementioned findings. The AN syndrome depends on the

  5. Neuroaxonal dystrophy in aging human sympathetic ganglia.

    OpenAIRE

    Schmidt, R.E.; Chae, H. Y.; Parvin, C. A.; Roth, K A

    1990-01-01

    Autonomic dysfunction is an increasingly recognized problem in aging animals and man. The pathologic changes that produce autonomic dysfunction in human aging are largely unknown; however, in experimental animal models specific pathologic changes have been found in selected sympathetic ganglia. To address whether similar neuropathologic changes occur in aging humans, the authors have examined paravertebral and prevertebral sympathetic ganglia from a series of 56 adult autopsied nondiabetic pa...

  6. The role of the autonomic nervous system in Tourette Syndrome

    Directory of Open Access Journals (Sweden)

    Jack eHawksley

    2015-05-01

    Full Text Available Tourette Syndrome (TS is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics and one or more vocal (phonic tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS. Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an

  7. Emotion Regulation via the Autonomic Nervous System in Children with Attention-Deficit/Hyperactivity Disorder (ADHD)

    Science.gov (United States)

    Musser, Erica D.; Backs, Richard W.; Schmitt, Colleen F.; Ablow, Jennifer C.; Measelle, Jeffery R.; Nigg, Joel T.

    2011-01-01

    Despite growing interest in conceptualizing ADHD as involving disrupted emotion regulation, few studies have examined the physiological mechanisms related to emotion regulation in children with this disorder. This study examined parasympathetic and sympathetic nervous system reactivity via measures of respiratory sinus arrhythmia (RSA) and cardiac…

  8. Cardiac arrhythmias

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008407 Effects of sympathetic nerve stimulation on connexin43 and ventricular arrhythmias during acute myocardial ischemia: experiment with rats. HU Xiaorong(胡笑容), et al. Dept Cardiol, Renmin Hosp, Wuhan Univ, Wuhan 430060. Natl Med J China 2008;88(24):1707-1710. Objective To investigate the effects of sympathetic nerve stimulation (SNS) on connexin43 (Cx43) and ventricular arrhythmias during acute myocardial ischemia (MI).

  9. Investigation of the Effects of Continuous Low-Dose Epidural Analgesia on the Autonomic Nervous System Using Hilbert Huang Transform

    Directory of Open Access Journals (Sweden)

    Wei-Ren Chuang

    2010-01-01

    Full Text Available Effects of continuous low-dose epidural bupivacaine (0.05-0.1% infusion on the Doppler velocimetry for labor analgesia have been well documented. The aim of this study was to monitor the activity of the autonomic nervous system (ANS for women in labor based on Hilbert Huang transform (HHT, which performs signal processing for nonlinear systems, such as human cardiac systems. Thirteen pregnant women were included in the experimental group for labor analgesia. They received continuous epidural bupivacaine 0.075% infusion. The normal-to-normal intervals (NN-interval were downloaded from an ECG holter. Another 20 pregnant women in non-anesthesia labor (average gestation age was 38.6 weeks were included in the comparison group. In this study, HHT was used to decompose components of ECG signals, which reflect three different frequency bands of a person's heart rate spectrum (viz. high frequency (HF, low frequency (LF and very low frequency (VLF. It was found that the change of energy in subjects without anesthesia was more active than that with continuous epidural bupivacaine 0.075% infusion. The energy values of the experimental group (i.e., labor analgesia of HF and LF of ANS activities were significantly lower (P < 0.05 than the values of the comparison group (viz. labor without analgesia, but the trend of energy ratio of LF/HF was opposite. In conclusion, the sympathetic and parasympathetic components of ANS are all suppressed by continuous low-dose epidural bupivacaine 0.075% infusion, but parasympathetic power is suppressed more than sympathetic power.

  10. Non-linear HRV indices under autonomic nervous system blockade.

    Science.gov (United States)

    Bolea, Juan; Pueyo, Esther; Laguna, Pablo; Bailón, Raquel

    2014-01-01

    Heart rate variability (HRV) has been studied as a non-invasive technique to characterize the autonomic nervous system (ANS) regulation of the heart. Non-linear methods based on chaos theory have been used during the last decades as markers for risk stratification. However, interpretation of these nonlinear methods in terms of sympathetic and parasympathetic activity is not fully established. In this work we study linear and non-linear HRV indices during ANS blockades in order to assess their relation with sympathetic and parasympathetic activities. Power spectral content in low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) bands of HRV, as well as correlation dimension, sample and approximate entropies were computed in a database of subjects during single and dual ANS blockade with atropine and/or propranolol. Parasympathetic blockade caused a significant decrease in the low and high frequency power of HRV, as well as in correlation dimension and sample and approximate entropies. Sympathetic blockade caused a significant increase in approximate entropy. Sympathetic activation due to postural change from supine to standing caused a significant decrease in all the investigated non-linear indices and a significant increase in the normalized power in the low frequency band. The other investigated linear indices did not show significant changes. Results suggest that parasympathetic activity has a direct relation with sample and approximate entropies.

  11. Comparing the Accuracy of ES-BC, EIS-GS, and ES Oxi on Body Composition, Autonomic Nervous System Activity, and Cardiac Outputto Standardized Assessments%ES-BC,EIS-GS与ES Oxi测量方法准确率研究

    Institute of Scientific and Technical Information of China (English)

    宋军

    2014-01-01

    人体生物刺激反馈仪通常包括三种测量原理,即ES-BC(生物电阻抗)、EIS-GS(皮电反应)和ES Oxi(光度法),本文通过文献检索研究,分析三种测量方式的准确性,探讨其在临床应用中的价值。%The Electro Sensor Complex (ESC) is software that combines three devices using bioelectrical impedance, galvanic skin response, and spectrophotometry: (1) ES-BC (Electro Sensor-Body Composition; to assess body composition, (2) EIS-GS to predict autonomic nervous system activity, and (3) ES Oxi to assess cardiac output. analysis of clinical application of human biological stimulation feedback Instrument.

  12. Altered balance in the autonomic nervous system in schizophrenic patients

    DEFF Research Database (Denmark)

    Nielsen, B M; Mehlsen, J; Behnke, K

    1988-01-01

    .05). Heart-rate response to inspiration was greater in non-medicated schizophrenics compared to normal subjects (P less than 0.05), whereas no difference was found between medicated and non-medicated schizophrenics. The results show that the balance in the autonomic nervous system is altered in schizophrenic...... patients with a hyperexcitability in both the sympathetic and the parasympathetic division. Our study has thus indicated a dysfunction in the autonomic nervous system per se and the previous interpretations of attentional orienting responses in schizophrenia is questioned. Medication with neuroleptics......The aim of the present study was to evaluate the autonomic nervous function in schizophrenic patients. Twenty-eight patients (29 +/- 6 years) diagnosed as schizophrenics and in stable medication were included, together with ten schizophrenic patients (25 +/- 5 years) who were unmedicated. Eleven...

  13. Pmch-deficiency in rats is associated with normal adipocyte differentiation and lower sympathetic adipose drive.

    Directory of Open Access Journals (Sweden)

    Joram D Mul

    Full Text Available The orexigenic neuropeptide melanin-concentrating hormone (MCH, a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively. MCH binds to MCH receptor 1 (MCH1R, which is present on adipocytes. Currently it is unknown if Pmch-ablation changes adipocyte differentiation or sympathetic adipose drive. Using Pmch-deficient and wild-type rats on a standard low-fat diet, we analyzed dorsal subcutaneous and perirenal WAT mass and adipocyte morphology (size and number throughout development, and indices of sympathetic activation in WAT and iBAT during adulthood. Moreover, using an in vitro approach we investigated the ability of MCH to modulate 3T3-L1 adipocyte differentiation. Pmch-deficiency decreased dorsal subcutaneous and perirenal WAT mass by reducing adipocyte size, but not number. In line with this, in vitro 3T3-L1 adipocyte differentiation was unaffected by MCH. Finally, adult Pmch-deficient rats had lower norepinephrine turnover (an index of sympathetic adipose drive in WAT and iBAT than wild-type rats. Collectively, our data indicate that MCH/MCH1R-pathway does not modify adipocyte differentiation, whereas Pmch-deficiency in laboratory rats lowers adiposity throughout development and sympathetic adipose drive during adulthood.

  14. Central and cerebrovascular effects of leg crossing in humans with sympathetic failure

    DEFF Research Database (Denmark)

    Harms, Mark P M; Wieling, Wouter; Colier, Willy N J M;

    2010-01-01

    MCA Vmean (middle cerebral artery blood velocity; using transcranial Doppler ultrasound), frontal lobe oxygenation [O2Hb (oxyhaemoglobin)] and MAP (mean arterial pressure), CO (cardiac output) and TPR (total peripheral resistance) in six patients (aged 37-67 years; three women) and age- and gender.......12 (0.52-3.27)] in the patients compared with the controls [0.83 (-0.11 to 2.04) micromol/l]. In the control subjects, CO increased 11% (PTPR. By contrast, in the patients, CO increased 9% (PTPR increased by 13% (P... cerebral perfusion and oxygenation both in patients with sympathetic failure and in healthy subjects. However, in healthy subjects, cerebral perfusion and oxygenation were improved by a rise in CO without significant changes in TPR or MAP, whereas in patients with sympathetic failure, cerebral perfusion...

  15. Burnout versus work engagement in their effects on 24-hour ambulatory monitored cardiac autonomic function

    NARCIS (Netherlands)

    L.J.P. van Doornen (Lorenz); J.H. Houtveen (Jan); S. Langelaan (Saar); A.B. Bakker (Arnold); W. van Rhenen (Willem); W.B. Schaufeli (Wilmar)

    2009-01-01

    textabstractBurnout has been associated with increased risk of cardiovascular disease. This relationship may be mediated by a stress-related disruption in cardiac autonomic activity. The aim of the present study was to assess cardiac autonomic activity (sympathetic and parasympathetic) during a work

  16. Cardiac autonomic control in the obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Nouha Gammoudi

    2015-04-01

    Full Text Available Introduction: The sympathetic activation is considered to be the main mechanism involved in the development of cardiovascular diseases in obstructive sleep apnea (OSA. The heart rate variability (HRV analysis represents a non-invasive tool allowing the study of the autonomic nervous system. The impairment of HRV parameters in OSA has been documented. However, only a few studies tackled the dynamics of the autonomic nervous system during sleep in patients having OSA. Aims: To analyze the HRV over sleep stages and across sleep periods in order to clarify the impact of OSA on cardiac autonomic modulation. The second objective is to examine the nocturnal HRV of OSA patients to find out which HRV parameter is the best to reflect the symptoms severity. Methods: The study was retrospective. We have included 30 patients undergoing overnight polysomnography. Subjects were categorized into two groups according to apnea–hypopnea index (AHI: mild-to-moderate OSAS group (AHI: 5–30 and severe OSAS group (AHI>30. The HRV measures for participants with low apnea–hypopnea indices were compared to those of patients with high rates of apnea–hypopnea across the sleep period and sleep stages. Results: HRV measures during sleep stages for the group with low rates of apnea–hypopnea have indicated a parasympathetic activation during non-rapid eye movement (NREM sleep. However, no significant difference has been observed in the high AHI group except for the mean of RR intervals (mean RR. The parasympathetic activity tended to increase across the night but without a statistical difference. After control of age and body mass index, the most significant correlation found was for the mean RR (p=0.0001, r=−0.248. Conclusion: OSA affects sympathovagal modulation during sleep, and this impact has been correlated to the severity of the disease. The mean RR seemed to be a better index allowing the sympathovagal balance appreciation during the night in OSA.

  17. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice.

    Science.gov (United States)

    Nohara, Kazunari; Waraich, Rizwana S; Liu, Suhuan; Ferron, Mathieu; Waget, Aurélie; Meyers, Matthew S; Karsenty, Gérard; Burcelin, Rémy; Mauvais-Jarvis, Franck

    2013-06-15

    Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension.

  18. SYMPATHETIC SKIN RESPONSE AND GALVANIC SKIN RESISTANCE IN MALES WITH TYPE 2 DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    Saravanan Mohanraj

    2016-06-01

    Full Text Available BACKGROUND Diabetes mellitus, a metabolic disorder affects the nervous system due to alteration in various metabolic pathways. As neuropathy manifests in longstanding diabetes mellitus, autonomic nervous system also gets affected. The study was started based on the hypothesis that the sweat glands innervated by autonomic nervous system will be affected in patients with type 2 diabetes mellitus patients with clinical features of neuropathy. This study was undertaken to compare the sympathetic skin response (SSR and galvanic skin resistance (GSR in males with type 2 diabetes mellitus and in controls. METHODS Thirty males in the age group of 45-55 years, known to have diabetes mellitus and having a history of neuropathic symptoms served as subjects and thirty males in the same age group with no history of diabetes mellitus and neuropathy served as controls. SSR and GSR were recorded using Recorders and Medicare Systems 4 channel polygraph in the noise and light reduced research laboratory, Department of Physiology. All the recordings were done between 10-12 noon at ambient temperature. SSR was measured by deep inspiration and the GSR was measured in the supine and standing response. Comparison of latency and amplitude of the sympathetic skin response and the percentage of decrease in galvanic skin resistance was done. RESULT A statistically significant delay in the latency and a reduction in the amplitude of sympathetic skin response was observed in the diabetes patients. There was a lesser percentage of decrease in GSR in the diabetic patients. CONCLUSION This study shows that the SSR and GSR responses are significantly reduced in diabetic individuals and can be used as a diagnostic tool in the detection of diabetic autonomic neuropathy.

  19. Sympathetic reflex control of blood flow in human peripheral tissues

    DEFF Research Database (Denmark)

    Henriksen, O

    1991-01-01

    Sympathetic vasoconstrictor reflexes are essential for the maintenance of arterial blood pressure in upright position. It has been generally believed that supraspinal sympathetic vasoconstrictor reflexes elicited by changes in baroreceptor activity play an important role. Recent studies on human ...... to collision of normodromically and antidromically conducted impulses in efferent sympathetic vasoconstrictor fibers. The evidence obtained suggests that sympathetic vasoconstrictor reflexes to postural changes are complex and highly differentiated....

  20. Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. II. The peripheral nervous system.

    Science.gov (United States)

    Schäfer, M K; Eiden, L E; Weihe, E

    1998-05-01

    The peripheral sympathetic and parasympathetic cholinergic innervation was investigated with antibodies directed against the C-terminus of the rat vesicular acetylcholine transporter. Immunohistochemistry for the vesicular acetylcholine transporter resulted in considerably more detailed visualization of cholinergic terminal fields in the peripheral nervous system than reported previously and was well suited to also identify cholinergic perikarya. Vesicular acetylcholine transporter immunoreactivity completely delineated the preganglionic sympathetic terminals in pre- and paravertebral sympathetic ganglia, and in the adrenal medulla as well as postganglionic cholinergic neurons in the paravertebral chain. Cholinergic terminals of sudomotor and vasomotor nerves of skeletal muscle were optimally visualized. Mixed peripheral ganglia, including periprostatic and uterovaginal ganglia, exhibited extensive preganglionic cholinergic innervation of both noradrenergic and cholinergic postganglionic principal neurons which were intermingled in these ganglia. Varicose vesicular acetylcholine transporter-positive fibres and terminals, representing the cranial parasympathetic innervation of the cerebral vasculature, of salivary and lacrimal glands, of the eye, of the respiratory tract and of the upper digestive tract innervated various target structures including seromucous gland epithelium and myoepithelium, respiratory epithelium, and smooth muscle of the tracheobronchial tree. The only macrovascular elements receiving vesicular acetylcholine transporter-positive innervation were the cerebral arteries. The microvasculature throughout the viscera, with the exception of lymphoid tissues, the liver and kidney, received vesicular acetylcholine transporter-positive innervation while the microvasculature of limb and trunk skeletal muscle appeared to be the only relevant somatic target of vesicular acetylcholine transporter innervation. Vesicular acetylcholine transporter

  1. A perspective on sympathetic renal denervation in chronic congestive heart failure.

    Science.gov (United States)

    Madanieh, Raef; El-Hunjul, Mohammed; Alkhawam, Hassan; Kosmas, Constantine E; Madanieh, Abed; Vittorio, Timothy J

    2016-01-01

    Medical therapy has indisputably been the mainstay of management for chronic congestive heart failure. However, a significant percentage of patients continue to experience worsening heart failure (HF) symptoms despite treatment with multiple therapeutic agents. Recently, catheter-based interventional strategies that interrupt the renal sympathetic nervous system have shown promising results in providing better symptom control in patients with HF. In this article, we will review the pathophysiology of HF for better understanding of the interplay between the cardiovascular system and the kidney. Subsequently, we will briefly discuss pivotal renal denervation (RDN) therapy trials in patients with resistant hypertension and then present the available evidence on the role of RDN in HF therapy.

  2. The renin-angiotensin system and the central nervous system.

    Science.gov (United States)

    Ganong, W F

    1977-04-01

    One of several factors affecting the secretion of renin by the kidneys is the sympathetic nervous system. The sympathetic input is excitatory and is mediated by beta-adrenergic receptors, which are probably located on the membranes of the juxtaglomerular cells. Stimulation of sympathetic areas in the medulla, midbrain and hypothalamus raises blood pressure and increases renin secretion, whereas stimulation of other parts of the hypothalamus decreases blood pressure and renin output. The centrally active alpha-adrenergic agonist clonidine decreases renin secretion, lowers blood pressure, inhibits ACTH and vasopressin secretion, and increases growth hormone secretion in dogs. The effects on ACTH and growth hormone are abolished by administration of phenoxybenzamine into the third ventricle, whereas the effect on blood pressure is abolished by administration of phenoxybenzamine in the fourth ventricle without any effect on the ACTH and growth hormone responses. Fourth ventricular phenoxybenzamine decreases but does not abolish the inhibitory effect of clonidine on renin secretion. Circulating angiotensin II acts on the brain via the area postrema to raise blood pressure and via the subfornical organ to increase water intake. Its effect on vasopressin secretion is debated. The brain contains a renin-like enzyme, converting enzyme, renin substrate, and angiotensin. There is debate about the nature and physiological significance of the angiotensin II-generating enzyme in the brain, and about the nature of the angiotensin I and angiotensin II that have been reported to be present in the central nervous system. However, injection of angiotensin II into the cerebral ventricles produces drinking, increased secretion of vasopressin and ACTH, and increased blood pressure. The same responses are produced by intraventricular renin. Angiotensin II also facilitates sympathetic discharge in the periphery, and the possibility that it exerts a similar action on the adrenergic neurons

  3. Periodic Repolarisation Dynamics: A Natural Probe of the Ventricular Response to Sympathetic Activation

    Science.gov (United States)

    Rizas, Konstantinos D; Hamm, Wolfgang; Kääb, Stefan; Schmidt, Georg; Bauer, Axel

    2016-01-01

    Periodic repolarisation dynamics (PRD) refers to low-frequency (≤0.1Hz) modulations of cardiac repolarisation instability. Spontaneous PRD can be assessed non-invasively from 3D high-resolution resting ECGs. Physiological and experimental studies have indicated that PRD correlates with efferent sympathetic nerve activity, which clusters in low-frequency bursts. PRD is increased by physiological provocations that lead to an enhancement of sympathetic activity, whereas it is suppressed by pharmacological β-blockade. Electrophysiological studies revealed that PRD occurs independently from heart rate variability. Increased PRD under resting conditions is a strong predictor of mortality in post-myocardial infarction (post-MI) patients, yielding independent prognostic value from left-ventricular ejection fraction (LVEF), heart rate variability, the Global Registry of Acute Coronary Events score and other established risk markers. The predictive value of PRD is particularly strong in post-MI patients with preserved LVEF (>35 %) in whom it identifies a new high-risk group of patients. The upcoming Implantable Cardiac Monitors in High-Risk Post-Infarction Patients with Cardiac Autonomic Dysfunction and Moderately Reduced Left Ventricular Ejection Fraction (SMART-MI) trial will test prophylactic strategies in high-risk post-MI patients with LVEF 36–50 % identified by PRD and deceleration capacity of heart rate (NCT02594488). PMID:27403291

  4. Vitamin D Levels Are Associated with Cardiac Autonomic Activity in Healthy Humans

    Directory of Open Access Journals (Sweden)

    Linda Ellis

    2013-06-01

    Full Text Available Vitamin D deficiency (≤50nmol/L 25-hydroxy vitamin D is a cardiovascular (CV risk factor that affects approximately one billion people worldwide, particularly those affected by chronic kidney disease (CKD. Individuals with CKD demonstrate abnormal cardiac autonomic nervous system activity, which has been linked to the significant rates of CV-related mortality in this population. Whether vitamin D deficiency has a direct association with regulation of cardiac autonomic activity has never been explored in humans. Methods: Thirty-four (34 healthy, normotensive subjects were studied and categorized based on 25-hydroxy vitamin D deficiency (deficient vs. non-deficient, n = 7 vs. 27, as well as 1,25-dihydroxy vitamin D levels (above vs. below 25th percentile, n = 8 vs. 26. Power spectral analysis of electrocardiogram recordings provided measures of cardiac autonomic activity across low frequency (LF and high frequency (HF, representative of vagal contribution bands, representative of the sympathetic and vagal limbs of the autonomic nervous system when transformed to normalized units (nu, respectively, as well as overall cardiosympathovagal balance (LF:HF during graded angiotensin II (AngII challenge (3 ng/kg/min × 30 min, 6 ng/kg/min × 30 min. Results: At baseline, significant suppression of sympathovagal balance was observed in the 25-hydroxy vitamin D-deficient participants (LF:HF, p = 0.02 vs. non-deficient, although no other differences were observed throughout AngII challenge. Participants in the lowest 1,25-dihydroxy VD quartile experienced significant withdrawal of inhibitory vagal control, as well as altered overall sympathovagal balance throughout AngII challenge (HF, mean difference = −6.98 ± 3 nu, p = 0.05; LF:HF, mean difference = 0.34 ± 0.1, p = 0.043 vs. above 25th percentile. Conclusions: Vitamin D deficiency is associated with suppression of resting cardiac autonomic activity, while low 1,25-dihydroxy vitamin D levels are

  5. Clinical application of l-123 MlBG cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young [College of Medicine, Donga Univ., Busan (Korea, Republic of)

    2004-10-01

    Cardiac neurotransmission imaging allows in vivo assessment of presynaptic reuptake, neurotransmitter storage and postsynaptic receptors. Among the various neurotransmitter, I-123 MlBG is most available and relatively well-established. Metaiodobenzylguanidine (MIBG) is an analogue of the false neurotransmitter guanethidine. It is taken up to adrenergic neurons by uptake-1 mechanism as same as norepinephrine. As tagged with I-123, it can be used to image sympathetic function in various organs including heart with planar or SPECT techniques. I-123 MIBG imaging has a unique advantage to evaluate myocardial neuronal activity in which the heart has no significant structural abnormality or even no functional derangement measured with other conventional examination. In patients with cardiomyopathy and heart failure, this imaging has most sensitive technique to predict prognosis and treatment response of betablocker or ACE inhibitor. In diabetic patients, it allow very early detection of autonomic neuropathy. In patients with dangerous arrhythmia such as ventricular tachycardia or fibrillation, MIBG imaging may be only an abnormal result among various exams. In patients with ischemic heart disease, sympathetic derangement may be used as the method of risk stratification. In heart transplanted patients, sympathetic reinnervation is well evaluated. Adriamycin-induced cardiotoxicity is detected earlier than ventricular dysfunction with sympathetic dysfunction. Neurodegenerative disorder such as Parkinson's disease or dementia with Lewy bodies has also cardiac sympathetic dysfunction. Noninvasive assessment of cardiac sympathetic nerve activity with l-123 MlBG imaging may be improve understanding of the pathophysiology of cardiac disease and make a contribution to predict survival and therapy efficacy.

  6. Trapping and Sympathetic Cooling of Boron Ions

    CERN Document Server

    Rugango, Rene; Shu, Gang; Brown, Kenneth R

    2016-01-01

    We demonstrate the trapping and sympathetic cooling of B$^{+}$ ions in a Coulomb crystal of laser-cooled Ca$^{+}$, We non-destructively confirm the presence of the both B$^+$ isotopes by resonant excitation of the secular motion. The B$^{+}$ ions are loaded by ablation of boron and the secular excitation spectrum also reveals features consistent with ions of the form B$_{n}^{+}$.

  7. Sympathetic Ophthalmia: Mangement and Role of Immunosuppressants

    OpenAIRE

    R.Kapoor, A.K.Sharma,Subash Bhardwaj

    2000-01-01

    Presented here is a case of sympathetic ophthalmia that provided us an oppotunity to evaluate theefficacy bfimmunosuppressive drugs with steroids in reduced doses and their outcome in improvingthe visual loss in a young patient who had fast deterioration in his visual acuity.

  8. Sympathetic Ophthalmia: Mangement and Role of Immunosuppressants

    Directory of Open Access Journals (Sweden)

    R.Kapoor, A.K.Sharma,Subash Bhardwaj

    2000-04-01

    Full Text Available Presented here is a case of sympathetic ophthalmia that provided us an oppotunity to evaluate theefficacy bfimmunosuppressive drugs with steroids in reduced doses and their outcome in improvingthe visual loss in a young patient who had fast deterioration in his visual acuity.

  9. Cardiac autonomic nerve distribution and arrhythmia

    Institute of Scientific and Technical Information of China (English)

    Quan Liu; Dongmei Chen; Yonggang Wang; Xin Zhao; Yang Zheng

    2012-01-01

    OBJECTIVE: To analyze the distribution characteristics of cardiac autonomic nerves and to explore the correlation between cardiac autonomic nerve distribution and arrhythmia.DATA RETRIEVAL: A computer-based retrieval was performed for papers examining the distribution of cardiac autonomic nerves, using "heart, autonomic nerve, sympathetic nerve, vagus nerve, nerve distribution, rhythm and atrial fibrillation" as the key words.SELECTION CRITERIA: A total of 165 studies examining the distribution of cardiac autonomic nerve were screened, and 46 of them were eventually included.MAIN OUTCOME MEASURES: The distribution and characteristics of cardiac autonomic nerves were observed, and immunohistochemical staining was applied to determine the levels of tyrosine hydroxylase and acetylcholine transferase (main markers of cardiac autonomic nerve distribution). In addition, the correlation between cardiac autonomic nerve distribution and cardiac arrhythmia was investigated.RESULTS: Cardiac autonomic nerves were reported to exhibit a disordered distribution in different sites, mainly at the surface of the cardiac atrium and pulmonary vein, forming a ganglia plexus. The distribution of the pulmonary vein autonomic nerve was prominent at the proximal end rather than the distal end, at the upper left rather than the lower right, at the epicardial membrane rather than the endocardial membrane, at the left atrium rather than the right atrium, and at the posterior wall rather than the anterior wall. The main markers used for cardiac autonomic nerves were tyrosine hydroxylase and acetylcholine transferase. Protein gene product 9.5 was used to label the immunoreactive nerve distribution, and the distribution density of autonomic nerves was determined using a computer-aided morphometric analysis system.CONCLUSION: The uneven distribution of the cardiac autonomic nerves is the leading cause of the occurrence of arrhythmia, and the cardiac autonomic nerves play an important role in the

  10. Sympathetic and Catecholaminergic Alterations in Sleep Apnea with Particular Emphasis on Children.

    Directory of Open Access Journals (Sweden)

    Fahed eHakim

    2012-01-01

    Full Text Available Sleep is involved in the regulation of major organ functions in the human body, and disruption of sleep potentially can elicit organ dysfunction. Obstructive sleep apnea (OSA is the most prevalent sleep disorder of breathing in adults and children, and its manifestations reflect the interactions between intermittent hypoxia (IH, intermittent hypercapnia, increased intra-thoracic pressure swings, and sleep fragmentation, as elicited by the episodic changes in upper airway resistance during sleep. The sympathetic nervous system is an important modulator of the cardiovascular, immune, endocrine and metabolic systems, and alterations in autonomic activity may lead to metabolic imbalance and organ dysfunction. Here we review how OSA and its constitutive components can lead to perturbation of the autonomic nervous system in general, and to altered regulation of catecholamines, both of which then playing an important role in some of the mechanisms underlying OSA-induced morbidities.

  11. Sympathetic and hypothalamic-pituitary-adrenal asymmetry in generalized anxiety disorder.

    Science.gov (United States)

    Reeves, Jonathan W; Fisher, Aaron J; Newman, Michelle G; Granger, Douglas A

    2016-06-01

    Physiologic investigations of generalized anxiety disorder (GAD) have skewed toward assessment of the autonomic nervous system, largely neglecting hypothalamic-pituitary-adrenal (HPA) axis variables. Although these systems coordinate-suggesting a degree of symmetry-to promote adaptive functioning, most studies opt to monitor either one system or the other. Using a ratio of salivary alpha-amylase (sAA) over salivary cortisol, the present study examined symmetry between the sympathetic nervous system (SNS) and HPA axis in individuals with GAD (n = 71) and healthy controls (n = 37). Compared to healthy controls, individuals with GAD exhibited greater baseline ratios of sAA/cortisol and smaller ratios of sAA/cortisol following a mental arithmetic challenge. We propose that the present study provides evidence for SNS-HPA asymmetry in GAD. Further, these results suggest that increased SNS suppression in GAD may be partially mediated by cortisol activity. PMID:26934635

  12. Cardiac arrest

    Science.gov (United States)

    ... Article.jsp. Accessed June 16, 2014. Myerburg RJ, Castellanos A. Approach to cardiac arrest and life-threatening ... PA: Elsevier Saunders; 2011:chap 63. Myerburg RJ, Castellanos A. Cardiac arrest and audden aardiac death. In: ...

  13. Autonomic Nervous System Disorders

    Science.gov (United States)

    ... with breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result of another disease, such as Parkinson's disease, alcoholism and diabetes. Problems can affect either part ...

  14. Central nervous system resuscitation

    DEFF Research Database (Denmark)

    McIntosh, T K; Garde, E; Saatman, K E;

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities...

  15. Highly abnormal thermotests in familial dysautonomia suggest increased cardiac autonomic risk

    OpenAIRE

    Hilz, M; Kolodny, E.; Neuner, I; Stemper, B; Axelrod, F

    1998-01-01

    OBJECTIVE—Patients with familial dysautonomia have an increased risk of sudden death. In some patients with familial dysautonomia, sympathetic cardiac dysfunction is indicated by prolongation of corrected QT (QTc) interval, especially during stress tests. As many patients do not tolerate physical stress, additional indices are needed to predict autonomic risk. In familial dysautonomia there is a reduction of both sympathetic neurons and peripheral small nerve fibres which...

  16. Sympathetic Tone Induced by High Acoustic Tempo Requires Fast Respiration.

    Science.gov (United States)

    Watanabe, Ken; Ooishi, Yuuki; Kashino, Makio

    2015-01-01

    Many studies have revealed the influences of music, and particularly its tempo, on the autonomic nervous system (ANS) and respiration patterns. Since there is the interaction between the ANS and the respiratory system, namely sympatho-respiratory coupling, it is possible that the effect of musical tempo on the ANS is modulated by the respiratory system. Therefore, we investigated the effects of the relationship between musical tempo and respiratory rate on the ANS. Fifty-two healthy people aged 18-35 years participated in this study. Their respiratory rates were controlled by using a silent electronic metronome and they listened to simple drum sounds with a constant tempo. We varied the respiratory rate-acoustic tempo combination. The respiratory rate was controlled at 15 or 20 cycles per minute (CPM) and the acoustic tempo was 60 or 80 beats per minute (BPM) or the environment was silent. Electrocardiograms and an elastic chest band were used to measure the heart rate and respiratory rate, respectively. The mean heart rate and heart rate variability (HRV) were regarded as indices of ANS activity. We observed a significant increase in the mean heart rate and the low (0.04-0.15 Hz) to high (0.15-0.40 Hz) frequency ratio of HRV, only when the respiratory rate was controlled at 20 CPM and the acoustic tempo was 80 BPM. We suggest that the effect of acoustic tempo on the sympathetic tone is modulated by the respiratory system. PMID:26284521

  17. Sympathetic Tone Induced by High Acoustic Tempo Requires Fast Respiration.

    Directory of Open Access Journals (Sweden)

    Ken Watanabe

    Full Text Available Many studies have revealed the influences of music, and particularly its tempo, on the autonomic nervous system (ANS and respiration patterns. Since there is the interaction between the ANS and the respiratory system, namely sympatho-respiratory coupling, it is possible that the effect of musical tempo on the ANS is modulated by the respiratory system. Therefore, we investigated the effects of the relationship between musical tempo and respiratory rate on the ANS. Fifty-two healthy people aged 18-35 years participated in this study. Their respiratory rates were controlled by using a silent electronic metronome and they listened to simple drum sounds with a constant tempo. We varied the respiratory rate-acoustic tempo combination. The respiratory rate was controlled at 15 or 20 cycles per minute (CPM and the acoustic tempo was 60 or 80 beats per minute (BPM or the environment was silent. Electrocardiograms and an elastic chest band were used to measure the heart rate and respiratory rate, respectively. The mean heart rate and heart rate variability (HRV were regarded as indices of ANS activity. We observed a significant increase in the mean heart rate and the low (0.04-0.15 Hz to high (0.15-0.40 Hz frequency ratio of HRV, only when the respiratory rate was controlled at 20 CPM and the acoustic tempo was 80 BPM. We suggest that the effect of acoustic tempo on the sympathetic tone is modulated by the respiratory system.

  18. Bypassing damaged nervous tissue

    CERN Document Server

    Shneider, M N

    2016-01-01

    We show the principal ability of bypassing damaged demyelinated portions of nervous tissue, thereby restoring its normal function for the passage of action potentials. We carry out a theoretical analysis on the basis of the synchronization mechanism of action potential propagation along a bundle of neurons, proposed recently in [1]. And we discuss the feasibility of implement a bypass to restore damaged nervous tissue and creating an artificial neuron network.

  19. Effect of percutaneous renal sympathetic nerve radiofrequency ablation in patients with severe heart failure.

    Science.gov (United States)

    Dai, Qiming; Lu, Jing; Wang, Benwen; Ma, Genshan

    2015-01-01

    This study aimed to investigate the clinical feasibility and effects of percutaneous renal sympathetic nerve radiofrequency ablation in patients with heart failure. A total of 20 patients with heart failure were enrolled, aged from 47 to 75 years (63±10 years). They were divided into the standard therapy (n = 10), and renal nerve radiofrequency ablation groups (n = 10). There were 15 males and 5 female patients, including 8 ischemic cardiomyopathy, 8 dilated cardiomyopathy, and 8 hypertensive cardiopathy. All of the patients met the criteria of New York Heart Association classes III-IV cardiac function. Patients with diabetes and renal failure were excluded. Percutaneous renal sympathetic nerve radiofrequency ablation was performed on the renal artery wall under X-ray guidance. Serum electrolytes, neurohormones, and 24 h urine volume were recorded 24 h before and after the operation. Echocardiograms were performed to obtain left ventricular ejection fraction at baseline and 6 months. Heart rate, blood pressure, symptoms of dyspnea and edema were also monitored. After renal nerve ablation, 24 h urine volume was increased, while neurohormone levels were decreased compared with those of pre-operation and standard therapy. No obvious change in heart rate or blood pressure was recorded. Symptoms of heart failure were improved in patients after the operation. No complications were recorded in the study. Percutaneous renal sympathetic nerve radiofrequency ablation may be a feasible, safe, and effective treatment for the patients with severe congestive heart failure.

  20. Intragastric injection of Lactobacillus casei strain Shirota suppressed spleen sympathetic activation by central corticotrophin-releasing factor or peripheral 2-deoxy-d-glucose in anesthetized rats.

    Science.gov (United States)

    Tanida, Mamoru; Takada, Mai; Kato-Kataoka, Akito; Kawai, Mitsuhisa; Miyazaki, Kouji; Shibamoto, Toshishige

    2016-04-21

    Intragastric (IG) administration of probiotic strain Lactobacillus casei Shirota (LcS) decreases the sympathetic nerve outflow of anesthetized rats in a tissue-specific manner. In the present study, we examined the effects of IG administration of LcS on sympathetic activation induced by an intracerebroventricular (ICV) injection of corticotrophin-releasing factor (CRF) and an intravenous (IV) injection of 2-deoxy-d-glucose (2DG) or interleukin (IL)-1β in urethane-anesthetized rats. The IG administration of LcS differently affected the stimulatory responses of sympathetic nerve outflow to CRF. LcS suppressed the increase in splenic sympathetic nerve activity (Spleen-SNA), induced by central CRF, in a dose-dependent manner; however, it did not alter adrenal sympathetic nervous activity (ASNA). In contrast, LcS did not affect spleen-SNA and ASNA following an IV injection of IL-1β. On the other hand, IG administration of LcS suppressed the activation of ASNA following an IV injection of 2DG. These findings suggest that the suppression of central CRF-induced sympathetic activation by LcS is tissue-specific. Moreover, it can suppress the 2DG-induced sympathetic activation. Furthermore, we found that stomach-specific vagotomy attenuates the suppressive effect of LcS on CRF-mediated spleen-SNA activation. Thus, the present study suggests that LcS administered to the stomach may act on the afferent vagal nerve and send afferent signals to the brain to regulate efferent SNA induced by sympathetic stimulators. PMID:26971699

  1. Sympathetic activity of S-(+-ketamine low doses in the epidural space

    Directory of Open Access Journals (Sweden)

    Slobodan Mihaljevic

    2014-07-01

    Full Text Available BACKGROUND AND OBJECTIVES: S-(+-ketamine is an intravenous anaesthetic and sympathomimetic with properties of local anaesthetic. It has an effect of an analgetic and local anaesthetic when administered epidurally, but there are no data whether low doses of S-(+-ketamine have sympathomimetic effects. The aim of this study was to determine whether low doses of S-(+-ketamine, given epidurally together with local anaesthetic, have any effect on sympathetic nervous system, both systemic and below the level of anaesthetic block. METHODS: The study was conducted on two groups of patients to whom epidural anaesthesia was administered to. Local anaesthesia (0.5% bupivacaine was given to one group (control group while local anaesthesia and S-(+-ketamine were given to other group. Age, height, weight, systolic, diastolic and mean arterial blood pressure were measured. Non-competitive enzyme immunochemistry method (Cat Combi ELISA was used to determine the concentrations of catecholamines (adrenaline and noradrenaline. Immunoenzymometric determination with luminescent substrate on a machine called Vitros Eci was used to determine the concentration of cortisol. Pulse transit time was measured using photoplethysmography. Mann-Whitney U-test, Wilcoxon test and Friedman ANOVA were the statistical tests. Blood pressure, pulse, adrenaline, noradrenaline and cortisol concentrations were measured in order to estimate systemic sympathetic effects. RESULTS: 40 patients in the control group were given 0.5% bupivacaine and 40 patients in the test group were given 0.5% bupivacaine with S-(+-ketamine. Value p < 0.05 has been taken as a limit of statistical significance. CONCLUSIONS: Low dose of S-(+-ketamine administered epidurally had no sympathomimetic effects; it did not change blood pressure, pulse, serum hormones or pulse transit time. Low dose of S-(+-ketamine administered epidurally did not deepen sympathetic block. Adding 25 mg of S-(+-ketamine to 0

  2. Sympathetic activity in the rat: effects of anaesthesia on noradrenaline kinetics.

    Science.gov (United States)

    Maignan, E; Dong, W X; Legrand, M; Safar, M; Cuche, J L

    2000-04-12

    Noradrenaline (NA) kinetics represent an effective tool for evaluating the activity of the sympathetic system: thus plasma NA concentration, spillover rate (SOR) and metabolic clearance rate (MC) were measured in the rat. The dilution technique was adapted and validated: pithing that caused mechanical destruction of the spinal cord was shown to reduce drastically NA-SOR and plasma NA concentration with no effect on NA-MC. NA-SOR and plasma NA concentration were restored within their normal limits when 2.5 Hz electrical stimulation of the sympathetic roots was superimposed. Normal values of NA kinetics in non-anaesthetised normotensive 12-week-old rats are reported: NA-SOR=196.1+/-26.4 ng/kg/min, NA-MC=413.9+/-38.8 ml/kg/min and plasma NA=486+/-52 pg/ml. NA kinetic was investigated in response to anaesthesia, known to depress excitable tissues of the central nervous system and expected to depress the activity of the sympathetic system. When NA-SOR was significantly reduced during anaesthesia with either sodium pentobarbital or chloralose, plasma NA concentration was not changed because NA-MC was also reduced. Thus, plasma NA concentration can be a misleading marker of the sympathetic activity. The response of the sympathetic activity to four different anaesthetic agents is shown to be heterogeneous, ranging from inhibition to stimulation. Sodium pentobarbital anaesthesia was associated with a statistically significant reduction of both NA-SOR (105.6+/-14.1 ng/kg/min, P<0. 01) and NA-MC (239.3+/-18.7 ml/kg/min, P<0.001) while plasma NA was not changed (438+/-47 pg/ml). Chloralose reduced NA-SOR (101.6+/-20. 1 ng/kg/min, P<0.05) while ketamine did not (150.6+/-35.5 ng/kg/min, n.s.): both compounds reduced NA-MC (257.9+/-27.8 ml/kg/min, P<0.01 and 265.8+/-34.3 ml/kg/min, P<0.05, respectively). Diethyl ether was shown to increase both NA-SOR (472.2+/-111 ng/kg/min, P<0.05) and plasma NA concentration (1589+/-436 pg/ml, P<0.01), while NA-MC remained unchanged. Thus, any

  3. Increased Feeding Speed Is Associated with Higher Subsequent Sympathetic Activity in Dogs.

    Directory of Open Access Journals (Sweden)

    Nobuyo Ohtani

    Full Text Available Although the domestication process has altered the feeding behavior of dogs, some breeds still demonstrate a remarkable ability to gorge, and will eat exceptionally large quantities of food whenever it is available. Lesions in the ventromedial hypothalamus increase appetite and lead to obesity, suggesting that the autonomic nervous system plays an important role in feeding. Focusing on the autonomic activities closely involved in food intake, we investigated sympathetic activities before and after feeding in dogs. The subjects were 56 healthy dogs of 21 different breeds (29 males and 27 females. Based on feeding habits, the 56 dogs were divided into three groups: Fast (n = 19, Slow (n = 24 and Leftover (n = 13. The feeding speed and the amount of food per mouthful of the Fast dogs were significantly greater than those of the Slow and the Leftover dogs. The plasma norepinephrine level in dogs of the Fast group was significantly increased after feeding, while those in the Slow and Leftover groups were significantly decreased after feeding, compared with the pre-feeding concentrations. The low frequency/high frequency ratio of heart rate variability is a good indicator of sympathetic activity and was also significantly higher in the Fast group than in the other groups. Delayed feeding using automatic feeding equipment decreased the plasma norepinephrine concentration and low frequency/high frequency ratio observed after feeding in dogs of the Fast group. In conclusion, dogs eating rapidly with less chewing, which indicates increased sympathetic activity during feeding, may benefit from delayed feeding. The slow eating may activate the parasympathetic nervous system after feeding, which could enhance the activity of the digestive system.

  4. Effects of mildly increasing dialysis sodium removal on renin and sympathetic system in hemodialysis patients

    Institute of Scientific and Technical Information of China (English)

    Shen Yang; Sun Fang; Liu Jing; Ma Lijie; Huang Jing; Zhou Yilun; Liu Wenhu

    2014-01-01

    Background It has been argued that the benefits of reducing sodium loading may be offset by increased activation of the renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system.This study aimed to investigate the long-term effects of an increase in dialysis sodium removal on circulating RAAS and sympathetic system in hypertensive hemodialysis (HD) patients with "normal" post-HD volume status.Methods Thirty hypertensive HD patients were enrolled in this pilot trial.After one month period of dialysis with standard dialysate sodium of 138 mmol/L,the patients were followed up for a four months period with dialysate sodium set at 136 mmol/L,without changes in instructions regarding dietary sodium control.During the period of study,the dry weight was adjusted monthly under the guidance of bioimpedance spectroscopy to maintain post-HD volume status in a steady state; 44-hour ambulatory blood pressure,plasma renin,angiotensin Ⅱ (Ang Ⅱ),aldosterone,and norepinephrine (NE) were measured.Results After four months of HD with low dialysate sodium of 136 mmol/L,44-hour systolic and diastolic blood pressures (BPs) were significantly lower (-10 and-6 mmHg),in the absence of changes in antihypertensive medications.No significant changes were observed in plasma renin,Ang Ⅱ,aldosterone,and NE concentrations.The post-HD volume parameters were kept constant.Conclusion Mildly increasing dialysis sodium removal over 4 months can significantly improve BP control and does not activate circulating RAAS and sympathetic nervous system in hypertensive HD patients.

  5. Cervical sympathetic chain schwannoma: a case report

    OpenAIRE

    Inès Nacef; Skander Kedous; Zied Attia; Slim Touati; Said Gritli

    2012-01-01

    Nerve tumors arising from the sympathetic chain are uncommon slow-growing tumors and represent a diagnosis challenge. Their malignant degeneration is rare. Definitive pre-operative diagnosis may be difficult as investigations are not usually helpful. We report the case of a 23-year old woman who presented with an asymptomatic solitary left cervical swelling. She was evaluated with sonography and computed tomography. Complete surgical excision of the lesion was carried out and histologic exami...

  6. Sympathetic hyperactivity syndrome following cerebral fat embolization

    OpenAIRE

    2013-01-01

    To date, there have been no reports of paroxysmal sympathetic hyperactivity syndrome (PSHS) associated with cerebral fat embolization. We describe the case of a young male who developed acute brain injury and acute hypoxemic respiratory failure secondary to significant fat embolization following a traumatic femur injury. Our patient demonstrated episodes of significant hypertension, tachycardia, fever and extensor posturing. Extensive evaluation lead to the diagnosis and appropriate ...

  7. [Cardiac reserve in Parkinson's disease and exercise therapy].

    Science.gov (United States)

    Hirayama, Masaaki; Nakamura, Tomohiko; Sobue, Gen

    2013-01-01

    The clinical feature of Parkinson's disease (PD) is not based on the identification of the extrapyramidal symptom such as bradykinesia, restinbg tremor, rigidity, but also other non-motor symptom (REM sleep disorder, autonomic dysfunction, hyposmia etc). According to the cardio-sympathetic dysfunction, it is well known abnormal MIBG and orthostatic hypotension finding was seen in early disease stage. Furthermore denervation supersensitivity using β1 stimulant correlates the severity of MIBG image, so that this abnormal cardiac function induces inadequate cardiac capacity for exercise. Inadequate cardiac capacity makes easy fatigability, which correlates the abnormal MIBG image and cardio-sympathetic damage. So it is difficult to prescribe a specific exercise program to meet individual PD patients needs. Music therapy and trunk exercise (for example Tai-Chi exercise) are better suited for PD patients. PMID:24291996

  8. Decreased uptake on bone scans in reflex sympathetic dystrophy. Sixteen personal cases with a review of the literature

    International Nuclear Information System (INIS)

    Until recently, reflex sympathetic dystrophy was thought to be a disease that necessarily involved the bones, with significant, homogeneous or heterogeneous bone loss, and consistently increased uptake on bone scans using technetium 99m diphosphonates. Actually, recent studies have focused on the great variability of findings in this disease, which is always responsible for pain in one or more joints, due to vasomotor disorders originating in autonomic nervous system dysfuncion, and for a very broad spectrum of functional manifestations. Among the many clinical patterns found in reflex sympathetic dystrophy, forms with ischemic manifestations at onset, including hypothermia and decreased uptake on bone scans have been described. In some instances, the clinical picture is reminiscent of ischemic arterial disease. Although these cold-onset forms seem fairly rare in adults, they appear to be more frequent than hot-onset forms in children. Decreased isotope uptake is found in more than 63% of reflex sympathetic dystrophies in children. As concerns course and management, these cold-onset forms are not very different from habitual forms. Decreased isotope uptake shoul now be listed with increased uptake among the findings suggestive of reflex sympathetic dystrophy, especially, through not exclusively, in young adults and above all children

  9. Prognostic value of myocardial sympathetic activity in patients with asymptomatic myocardial infarction

    International Nuclear Information System (INIS)

    To clarify the significance of myocardial sympathetic activity in patients with asymptomatic myocardial infarction (MI), we performed 123I-metaiodobenzyl-guanidine (MIBG) and 201Tl imaging at rest. We calculated the ratio of cardiac uptake of the isotope to the total injected dose (%Uptake), percent washout of MIBG over 3 hours and the Uptake Ratio (UR, %Uptake of MIBG divided by %Uptake of 201Tl). We compared these indices with clinical findings, exercise stress-rest myocardial perfusion imaging with 99Tc-methoxy-2-isobutyl isonitrile, coronary angiography, echocardiography and neurohumoral findings. During the follow-up period of 19.9±10.3 months in 32 patients, events (heart failure or cardiac death) developed in 10 (31%). In univariate analysis, diabetes mellitus, atrial fibrillation, left ventricular end-diastolic dimension (LVDd) greater than 54 mm, and the %Uptake of MIBG and UR differed significantly between event and event-free groups. Cox proportional hazard model showed that the UR was a predictor of events (p=0.0007). In patients with UR less than 0.58, the relative risk of events was 19.1 times greater than in patients with an UR greater than 0.58. UR was closely correlated to LVDd (r=-0.578, p=0.01) suggesting that myocardial sympathetic activity is related to LV remodeling after MI. MIBG imaging provides important information regarding the prognosis and the pathophysiologic process of asymptomatic MI. (author)

  10. Prognostic value of myocardial sympathetic activity in patients with asymptomatic myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Michihiro; Kurihara, Tadashi; Sindoh, Takashi; Sawada, Yoshihiro [Sumitomo Hospital, Osaka (Japan)

    1999-04-01

    To clarify the significance of myocardial sympathetic activity in patients with asymptomatic myocardial infarction (MI), we performed {sup 123}I-metaiodobenzyl-guanidine (MIBG) and {sup 201}Tl imaging at rest. We calculated the ratio of cardiac uptake of the isotope to the total injected dose (%Uptake), percent washout of MIBG over 3 hours and the Uptake Ratio (UR, %Uptake of MIBG divided by %Uptake of {sup 201}Tl). We compared these indices with clinical findings, exercise stress-rest myocardial perfusion imaging with {sup 99}Tc-methoxy-2-isobutyl isonitrile, coronary angiography, echocardiography and neurohumoral findings. During the follow-up period of 19.9{+-}10.3 months in 32 patients, events (heart failure or cardiac death) developed in 10 (31%). In univariate analysis, diabetes mellitus, atrial fibrillation, left ventricular end-diastolic dimension (LVDd) greater than 54 mm, and the %Uptake of MIBG and UR differed significantly between event and event-free groups. Cox proportional hazard model showed that the UR was a predictor of events (p=0.0007). In patients with UR less than 0.58, the relative risk of events was 19.1 times greater than in patients with an UR greater than 0.58. UR was closely correlated to LVDd (r=-0.578, p=0.01) suggesting that myocardial sympathetic activity is related to LV remodeling after MI. MIBG imaging provides important information regarding the prognosis and the pathophysiologic process of asymptomatic MI. (author)

  11. Um modelo experimental de ablação do Sistema Nervoso Intrínseco Cardíaco reduz a contratilidade do coração de ratos A new experimental model of chemical ablation of the Intrinsic Cardiac Nervous System reduces heart contractility and causes a type of dilated cardiopathy in rats

    Directory of Open Access Journals (Sweden)

    Adilson Scorzoni Filho

    2004-09-01

    Full Text Available OBJETIVO: A função do Sistema Nervoso Intrínseco Cardíaco e o seu papel na doença cardíaca permanecem pobremente compreendidos. Sabe-se que o cloreto de benzalcônio (CB induz a desnervação intrínseca do tubo digestivo. O objetivo deste estudo foi tentar produzir um modelo experimental de desnervação intrínseca do coração utilizando o CB. MÉTODO: Trinta ratos Wistar foram submetidos à aplicação intrapericárdica de CB (0,3% e trinta animais controle receberam a solução salina. Após 15 dias, os animais foram divididos em três grupos, com 10 animais tratados e 10 controles em cada. Os animais do grupo I foram submetidos a estudo radiológico e histopatológico. A área cardíaca e o índice cardiotorácico (ICT foram medidos nas radiografias. Os animais do grupo II foram submetidos a estudo hemodinâmico com registro da pressão arterial, freqüência cardíaca e débito cardíaco. No grupo III, a integridade da inervação parassimpática extrínseca do coração foi avaliada por estimulação vagal direita. O sistema de condução foi avaliado pelo ECG basal. RESULTADOS: A aplicação de CB acarretou aumento do ICT, da área cardíaca, pressão arterial e débito cardíaco, bem como do peso ponderal e do fígado. Nestes animais, a análise histopatológica mostrou redução do número de neurônios atriais e congestão passiva crônica do fígado. A estimulação vagal não mostrou diferenças entre os grupos experimentais. CONCLUSÃO: A ablação do sistema nervoso intrínseco propiciou o aparecimento de cardiopatia dilatada com insuficiência cardíaca direita e esquerda. Esse modelo experimental inédito deverá nortear futuros estudos na tentativa da elucidação da relação entre lesão neuronal e miocardiopatia.OBJECTIVE: The function of Intrinsic Cardiac Nervous System is largely unknown, as is its role in heart disease. In the digestive system, a topic aplication of Benzalkonium chloride (BC leads to intrinsic

  12. Increased sympathetic tone in forearm subcutaneous tissue in primary hypothyroidism

    DEFF Research Database (Denmark)

    Vagn Nielsen, H; Hasselström, K; Feldt-Rasmussen, U;

    1987-01-01

    Sympathetic reflex regulation of subcutaneous blood flow (SBF) in the forearm was studied in eight patients with primary hypothyroidism. Diastolic arterial pressure was greater than or equal to 95 mmHg in five patients. SBF was determined by local clearance of Na99mTcO4. Sympathetic vasoconstrict......Sympathetic reflex regulation of subcutaneous blood flow (SBF) in the forearm was studied in eight patients with primary hypothyroidism. Diastolic arterial pressure was greater than or equal to 95 mmHg in five patients. SBF was determined by local clearance of Na99mTcO4. Sympathetic.......02)). In conclusion sympathetic vasoconstrictor activity in adipose tissue is markedly increased in primary hypothyroidism. Sympathetic tone and arterial pressure are reduced during treatment....

  13. Glial cell line-derived neurotrophic factor (GDNF) enhances sympathetic neurite growth in rat hearts at early developmental stages.

    Science.gov (United States)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Kodama, Itsuo

    2010-12-01

    Molecular signaling of sympathetic innervation of myocardium is an unresolved issue. The purpose of this study was to investigate the effect of neurotrophic factors on sympathetic neurite growth towards cardiomyocytes. Cardiomyocytes (CMs) and sympathetic neurons (SNs) were isolated from neonatal rat hearts and superior cervical ganglia, and were co-cultured, either in a random or localized way. Neurite growth from SNs toward CMs was assessed by immunohistochemistry for neurofilament M and α-actinin in response to neurotrophic factors-nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF) and a chemical repellent, semaphorin 3A. As a result, GDNF as well as NGF and BDNF stimulated neurite growth. GDNF enhanced neurite outgrowth even under the NGF-depleted culture condition, excluding an indirect effect of GDNF via NGF. Quantification of mRNA and protein by real-time PCR and immunohistochemistry at different developmental stages revealed that GDNF is abundantly expressed in the hearts of embryos and neonates, but not in adult hearts. GDNF plays an important role in inducing cardiac sympathetic innervation at the early developmental stages. A possible role in (re)innervation of injured or transplanted or cultured and transplanted myocardium may deserve investigation.

  14. Larval nervous systems

    DEFF Research Database (Denmark)

    Nielsen, Claus

    2015-01-01

    as the adult central nervous system (CNS). Two structures can be recognized, viz. a pair of cerebral ganglia, which form the major part of the adult brain, and a blastoporal (circumblastoporal) nerve cord, which becomes differentiated into a perioral loop, paired or secondarily fused ventral nerve cords......, and the nervous systems of echinoderms and enteropneusts appear completely enigmatic. The ontogeny of the chordate CNS can perhaps be interpreted as a variation of the ontogeny of the blastoporal nerve cord of the protostomes, and this is strongly supported by patterns of gene expression. The presence...

  15. Sympathetic denervation-induced MSC mobilization in distraction osteogenesis associates with inhibition of MSC migration and osteogenesis by norepinephrine/adrb3.

    Directory of Open Access Journals (Sweden)

    Zhaojie Du

    Full Text Available The sympathetic nervous system regulates bone formation and resorption under physiological conditions. However, it is still unclear how the sympathetic nerves affect stem cell migration and differentiation in bone regeneration. Distraction osteogenesis is an ideal model of bone regeneration due to its special nature as a self-engineering tissue. In this study, a rat model of mandibular distraction osteogenesis with transection of cervical sympathetic trunk was used to demonstrate that sympathetic denervation can deplete norepinephrine (NE in distraction-induced bone callus, down-regulate β3-adrenergic receptor (adrb3 in bone marrow mesenchymal stem cells (MSCs, and promote MSC migration from perivascular regions to bone-forming units. An in vitro Transwell assay was here used to demonstrate that NE can inhibit stroma-derived factor-1 (SDF-1-induced MSC migration and expression of the migration-related gene matrix metalloproteinase-2 (MMP-2 and downregulate that of the anti-migration gene tissue inhibitor of metalloproteinase-3 (TIMP-3. Knockdown of adrb3 using siRNA abolishes inhibition of MSC migration. An in vitro osteogenic assay was used to show that NE can inhibit the formation of MSC bone nodules and expression of the osteogenic marker genes alkaline phosphatase (ALP, osteocalcin (OCN, and runt-related transcription factor-2 (RUNX2, but knockdown of adrb3 by siRNA can abolish such inhibition of the osteogenic differentiation of MSCs. It is here concluded that sympathetic denervation-induced MSC mobilization in rat mandibular distraction osteogenesis is associated with inhibition of MSC migration and osteogenic differentiation by NE/adrb3 in vitro. These findings may facilitate understanding of the relationship of MSC mobilization and sympathetic nervous system across a wide spectrum of tissue regeneration processes.

  16. Sympathetic denervation-induced MSC mobilization in distraction osteogenesis associates with inhibition of MSC migration and osteogenesis by norepinephrine/adrb3.

    Science.gov (United States)

    Du, Zhaojie; Wang, Lei; Zhao, Yinghua; Cao, Jian; Wang, Tao; Liu, Peng; Zhang, Yabo; Yang, Xinjie; Cheng, Xiaobing; Liu, Baolin; Lei, Delin

    2014-01-01

    The sympathetic nervous system regulates bone formation and resorption under physiological conditions. However, it is still unclear how the sympathetic nerves affect stem cell migration and differentiation in bone regeneration. Distraction osteogenesis is an ideal model of bone regeneration due to its special nature as a self-engineering tissue. In this study, a rat model of mandibular distraction osteogenesis with transection of cervical sympathetic trunk was used to demonstrate that sympathetic denervation can deplete norepinephrine (NE) in distraction-induced bone callus, down-regulate β3-adrenergic receptor (adrb3) in bone marrow mesenchymal stem cells (MSCs), and promote MSC migration from perivascular regions to bone-forming units. An in vitro Transwell assay was here used to demonstrate that NE can inhibit stroma-derived factor-1 (SDF-1)-induced MSC migration and expression of the migration-related gene matrix metalloproteinase-2 (MMP-2) and downregulate that of the anti-migration gene tissue inhibitor of metalloproteinase-3 (TIMP-3). Knockdown of adrb3 using siRNA abolishes inhibition of MSC migration. An in vitro osteogenic assay was used to show that NE can inhibit the formation of MSC bone nodules and expression of the osteogenic marker genes alkaline phosphatase (ALP), osteocalcin (OCN), and runt-related transcription factor-2 (RUNX2), but knockdown of adrb3 by siRNA can abolish such inhibition of the osteogenic differentiation of MSCs. It is here concluded that sympathetic denervation-induced MSC mobilization in rat mandibular distraction osteogenesis is associated with inhibition of MSC migration and osteogenic differentiation by NE/adrb3 in vitro. These findings may facilitate understanding of the relationship of MSC mobilization and sympathetic nervous system across a wide spectrum of tissue regeneration processes. PMID:25144690

  17. Sympathetic nervous system control of triglyceride metabolism: Novel concepts derived from recent studies

    NARCIS (Netherlands)

    Geerling, J.J.; Boon, M.R.; Kooijman, S.; Parlevliet, E.T.; Havekes, L.M.; Romijn, J.A.; Meurs, I.M.; Rensen, P.C.N.

    2014-01-01

    Abstract Important players in triglyceride (TG) metabolism include the liver (production), white adipose tissue (WAT) (storage), heart and skeletal muscle (combustion to generate ATP), and brown adipose tissue (BAT) (combustion toward heat), the collective action of which determine plasma TG levels.

  18. Depression induces bone loss through stimulation of the sympathetic nervous system

    OpenAIRE

    Yirmiya, Raz; Goshen, Inbal; Bajayo, Alon; Kreisel, Tirzah; Feldman, Sharon; Tam, Joseph; Trembovler, Victoria; Csernus, Valér; Shohami, Esther; Bab, Itai

    2006-01-01

    Major depression is associated with low bone mass and increased incidence of osteoporotic fractures. However, causality between depression and bone loss has not been established. Here, we show that mice subjected to chronic mild stress (CMS), an established model of depression in rodents, display behavioral depression accompanied by impaired bone mass and structure, as portrayed by decreases in trabecular bone volume density, trabecular number, and trabecular connectivity density assessed in ...

  19. Sympathetic nervous activity decreases during head-down bed rest but not during microgravity

    DEFF Research Database (Denmark)

    Christensen, Niels J; Heer, Martina; Ivanova, Krassimira;

    2005-01-01

    We tested the hypothesis that sympathoadrenal activity in humans is low during spaceflight and that this effect can be simulated by head-down bed rest (HDBR). Platelet norepinephrine and epinephrine were measured as indexes of long-term changes in sympathoadrenal activity. Ten normal healthy subj...

  20. The Nervous System Game

    Science.gov (United States)

    Corbitt, Cynthia; Carpenter, Molly

    2006-01-01

    For many children, especially those with reading difficulties, a motor-kinesthetic learning activity may be an effective tool to teach complex concepts. With this in mind, the authors developed and tested a game designed to teach fourth- to sixth-grade children some basic principles of nervous system function by allowing the children themselves to…

  1. Psychoneuroimmunology--cross-talk between the immune and nervous systems.

    Science.gov (United States)

    Ziemssen, Tjalf; Kern, Simone

    2007-05-01

    Psychoneuroimmunology is a relatively new field of study that investigates interactions between behaviour and the immune system, mediated by the endocrine and nervous systems. The immune and central nervous system (CNS) maintain extensive communication. On the one hand, the brain modulates the immune system by hardwiring sympathetic and parasympathetic nerves (autonomic nervous system) to lymphoid organs. On the other hand, neuroendocrine hormones such as corticotrophin-releasing hormone or substance P regulate cytokine balance. Vice versa, the immune system modulates brain activity including sleep and body temperature. Based on a close functional and anatomical link, the immune and nervous systems act in a highly reciprocal manner. From fever to stress, the influence of one system on the other has evolved in an intricate manner to help sense danger and to mount an appropriate adaptive response. Over recent decades, reasonable evidence has emerged that these brain-to-immune interactions are highly modulated by psychological factors which influence immunity and immune system-mediated disease.

  2. Cervical sympathetic chain schwannoma: A case report

    Directory of Open Access Journals (Sweden)

    Inès Nacef

    2014-07-01

    Full Text Available Nerve tumors arising from the sympathetic chain are uncommon slow-growing tumors and represent a diagnosis challenge. Their malignant degeneration is rare. Definitive pre-operative diagnosis may be difficult as investigations are not usually helpful. We report the case of a 23-year old woman who presented with an asymptomatic solitary left cervical swelling. She was evaluated with sonography and computed tomography. Complete surgical excision of the lesion was carried out and histologic examination revealed a schwannoma. Post-operatively, the patient showed clinical findings of Horner’s syndrome. Pathologic and radiological evaluation, differential diagnosis of this neoplasm and its management are discussed.

  3. Role of sympathetic innervation in obesity

    OpenAIRE

    Pereira, Mafalda Maria Robalo de Azevedo Aleixo

    2015-01-01

    Part of the results presented in this thesis were published in the following reference (DOI 10.1016/j.cell.2015.08.055): Wenwen Zeng*, Roksana M. Pirzgalska*, Mafalda M.A. Pereira, Nadiya Kubasova, Andreia Barateiro, Elsa Seixas, Yi-Hsueh Lu, Albina Kozlova, Henning Voss, Gabriel G. Martins, Jeffrey M. Friedman and Ana I. Domingos. Sympathetic Neuro-adipose Connections Mediate Leptin-Driven Lipolysis. Cell 163, 84-94 (2015). The work was also presented through poster presentations at iMED Con...

  4. HIF2A and IGF2 Expression Correlates in Human Neuroblastoma Cells and Normal Immature Sympathetic Neuroblasts

    Directory of Open Access Journals (Sweden)

    Sofie Mohlin

    2013-03-01

    Full Text Available During normal sympathetic nervous system (SNS development, cells of the ganglionic lineage can malignantly transform and develop into the childhood tumor neuroblastoma. Hypoxia-inducible transcription factors (HIFs mediate cellular responses during normal development and are central in the adaptation to oxygen shortage. HIFs are also implicated in the progression of several cancer forms, and high HIF-2α expression correlates with disseminated disease and poor outcome in neuroblastoma. During normal SNS development, HIF2A is transiently expressed in neuroblasts and chromaffin cells. SNS cells can, during development, be distinguished by distinct gene expression patterns, and insulin-like growth factor 2 (IGF2 is a marker of sympathetic chromaffin cells, whereas sympathetic neuroblasts lack IGF2 expression. Despite the neuronal derivation of neuroblastomas, we show that neuroblastoma cell lines and specimens express IGF2 and that expression of HIF2A and IGF2 correlates, with the strongest correlation in high-stage tumors. In neuroblastoma, both IGF2 and HIF2A are hypoxia-driven and knocking down IGF2 at hypoxia resulted in downregulated HIF2A levels. HIF-2α and IGF2 were strongly expressed in subsets of immature neuroblastoma cells, suggesting that these two genes could be co-expressed also at early stages of SNS development. We show that IGF2 is indeed expressed in sympathetic chain ganglia at embryonic week 6.5, a developmental stage when HIF-2α is present. These findings provide a rationale for the unexpected IGF2 expression in neuroblastomas and might suggest that IGF2 and HIF2A positive neuroblastoma cells are arrested at an embryonic differentiation stage corresponding to the stage when sympathetic chain ganglia begins to coalesce.

  5. A study of relationship between function of cardiac autonomic nervous system and 24-hour ambulatory blood pressure in diabetes mellitus%糖尿病患者心自主神经系统功能与24 小时动态血压变化关系的探讨

    Institute of Scientific and Technical Information of China (English)

    李荣; 严钟德; 刘东方

    2000-01-01

    目的 探讨偶测血压正常的糖尿病(DM)患者心自主神经系统功能(ANSF)状况与24小时动态血压(24小时AMBP)的变化关系。方法对71例偶测血压正常的DM患者进行心率功率谱分析及24小时AMBP检测。结果无心自主神经病变(AN)的DM患者与健康人有类似的24小时AMBP;伴轻度AN的DM患者,其24小时动态收缩压及压力负荷发生率明显高于正常对照组,而昼夜改变百分率明显低于正常对照组;伴重度AN的DM患者,其24小时动态收缩压及24小时AMBP负荷发生率高于伴轻度AN的DM患者,昼夜改变百分率低于伴轻度AN的DM患者,但两者间无显著性差异。结论偶测血压正常的DM患者一旦发生心AN,则会对血压造成明显不利的影响;DM患者异常的ANSF和血压参与了急性心血管病变的发生、发展;随访DM患者心ANSF状况及对偶测血压正常、伴AN的DM患者进行早期干预治疗尤为重要。%Objective To study the relationship between function of cardiac autonomic nervous system and 24-hourambulatory blood pressure in diabetes mellitus with normal blood pressure in the casual assay.Methods71 DMpatients with normal blood pressure in casual assay were measured with cardiac power spectral analysis and 24hAMBPassessment.Results There was no difference in 24hAMBP between DM patients without AND and normal subjects.24-hour ambulatory systolic pressure values and the prevalence of blood pressure burden in DM patients with mild AND were significantly higher than that in the control group and the percentage of day-night change in AMBP weresignificantly lower than that in the control group.In DM patients with severe AND, 24-hour ambulatory systolicpressure values and the prevalence of 24hAMBP burden were higher and the percentage of day-night change was lowerthan that in DM patients with mild AND, however, there was no significant difference between them.Conclusion Blood pressure was in severe disorder as

  6. Cardiac Malpositions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Shi Joon; Im, Chung Gie; Yeon, Kyung Mo; Hasn, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    Cardiac Malposition refers to any position of the heart other than a left-sided heart in a situs solitus individual. Associated cardiac malformations are so complex that even angiocardiographic and autopsy studies may not afford an accurate information. Although the terms and classifications used to describe the internal cardiac anatomy and their arterial connections in cardiac malpositions differ and tend to be confusing, common agreement exists on the need for a segmental approach to diagnosis. Authors present 18 cases of cardiac malpositions in which cardiac catheterization and angiocardiography were done at the Department of Radiology, Seoul National University Hospital between 1971 and 1979. Authors analyzed the clinical, radiographic, operative and autopsy findings with the emphasis on the angiocardiographic findings. The results are as follows: 1. Among 18 cases with cardiac malpositions, 6 cases had dextrocardia with situs inversus, 9 cases had dextrocardia with situs solitus and 3 cases had levocardia with situs inversus. 2. There was no genuine exception to visceroatrial concordance rule. 3. Associated cardiac malpositions were variable and complex with a tendency of high association of transposition and double outlet varieties with dextrocardia in situs solitus and levocardia in situs inversus. Only one in 6 cases of dextrocardia with situs inversus had pure transposition. 4. In two cases associated pulmonary atresia was found at surgery which was not predicted by angiocardiography. 5. Because many of the associated complex lesions can be corrected surgically provided the diagnosis is accurate, the selective biplane angiocardiography with or without cineradiography is essential.

  7. The orphan nuclear receptor Nr4a1 couples sympathetic and inflammatory cues in CNS-recruited macrophages to limit neuroinflammation

    OpenAIRE

    Shaked, Iftach; Hanna, Richard N.; Shaked, Helena; Chodaczek, Grzegorz; Nowyhed, Heba N.; Tweet, George; Tacke, Robert; Basat, Alp Bugra; Mikulski, Zbigniew; Togher, Susan; Miller, Jacqueline; Blatchley, Amy; Salek-Ardakani, Shahram; Darvas, Martin; Kaikkonen, Minna U.

    2015-01-01

    Molecular mechanisms linking the sympathetic stress response and inflammation remain enigmatic. Here we demonstrate that the transcription factor Nr4a1 regulates production of norepinephrine (NE) in macrophages, thereby limiting experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Lack of Nr4a1 in myeloid cells led to enhanced NE production, accelerated leukocyte infiltration to the central nervous system (CNS) and disease exacerbation in vivo. In contrast, my...

  8. Quantitative thermal sensory testing and sympathetic skin response in primary Restless legs syndrome – A prospective study on 57 Indian patients

    OpenAIRE

    Garima Shukla; Vinay Goyal; Achal Srivastava; Madhuri Behari

    2012-01-01

    Patients with restless leg syndrome present with sensory symptoms similar to peripheral neuropathy. While there is evidence of abnormalities of dopaminergic pathways, the peripheral nervous system has been studied infrequently. We studied conventional nerve conduction studies, quantitative thermal sensory testing and sympathetic skin response in 57 patients with primary restless leg syndrome. Almost two third patients demonstrated abnormalities in the detailed testing of the peripheral nervou...

  9. Role of Nuclear Medicine in the cardiac resinchronization therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Giorgi, Maria Clementina Pinto; D' Orio, Silvana Angelina; Meneghetti, Jose Claudio [Instituto do Coracao (InCor/FM/USP), Sao Paulo, SP (Brazil)

    2011-10-15

    Cardiac resynchronization therapy (CRT) emerged as one of the most promising approaches in the treatment of cardiac dyssynchrony in heart failure patients' refractory to medical treatment. However, despite very promising clinical and functional results, individual response analyses show that a significant number of patients do not respond to treatment. The role of nuclear medicine and molecular imaging in the selection of CRT candidates by the assessment of cardiac dyssynchrony, myocardial viability, myocardial perfusion and blood flow and sympathetic cardiac activity has been discussed in this review. The potential utilization of this tool to improve the comprehension of detrimental effects of dyssynchrony on cardiac function and the evaluation and monitoring of the response to CRT were also considered. Other molecular targets that characterize glucose and fatty acid metabolism, apoptosis, angiotensin converting enzyme activity and angiogenesis that can be evaluated with this technique were described. (author)

  10. Role of Nuclear Medicine in the cardiac resinchronization therapy

    International Nuclear Information System (INIS)

    Cardiac resynchronization therapy (CRT) emerged as one of the most promising approaches in the treatment of cardiac dyssynchrony in heart failure patients' refractory to medical treatment. However, despite very promising clinical and functional results, individual response analyses show that a significant number of patients do not respond to treatment. The role of nuclear medicine and molecular imaging in the selection of CRT candidates by the assessment of cardiac dyssynchrony, myocardial viability, myocardial perfusion and blood flow and sympathetic cardiac activity has been discussed in this review. The potential utilization of this tool to improve the comprehension of detrimental effects of dyssynchrony on cardiac function and the evaluation and monitoring of the response to CRT were also considered. Other molecular targets that characterize glucose and fatty acid metabolism, apoptosis, angiotensin converting enzyme activity and angiogenesis that can be evaluated with this technique were described. (author)

  11. Sympathetic re-innervation of myocardium after liver transplant in the hereditary amyloid neuropathy

    International Nuclear Information System (INIS)

    The hereditary amyloid neuropathy (HAN) is characterized by a progressive sensory-motor poly-neuropathy and a dysautonomia with myocardium sympathetic denervation. This is established by MIBL scintigraphy and may enhance the troubles of conduction and of cardiac rhythm. The amyloid deposits are constituted of anomalous pre-albumin fabricated by liver. The hepatic transplant (HT) is the only known treatment. Four patients (GI: 39 ± 5 years) have been studied by MIBG scintigraphy, 2.2 ± 0.7 years after HT, and compared with 12 patients (GII: 39 ± 12 years) studied before HT. The left ventricular function, the coronary arteries and the at-rest scintigraphy with thallium were normal for all of them. The cardiac capture of MIBG, evaluated by the cardio-mediastinal activity ratio (C/M), measured on an anterior thoracic planar acquisition performed 4 hours after the intravenous injection of 300 MBq, was higher for GI than for GII (1.49 ± 0.12 vs 1.29 ± 0.13, p 0.02). The washouts (4 h / 20 min) were not different. In tomography, the patients of GI presented focal anomalies with a more-or-less extended apical defect, a satisfying fixation of the basal half of the anterior wall, more-or-less overflowing the septal and lateral walls, and for 2 patients, a satisfying inferior fixation. On the contrary, 9/12 patients of GII have had a diffuse absence of fixation, the other three heaving a satisfying antero-basal fixation (χ2, p = 0.05). The results are not explained by difference of severity or evolution duration of HAN. Thus, it appears that there exists a sympathetic re-innervation of myocardium after HT in the HAN, debuting by the heart base, similarly with the effect of anatomic interruption of innervation in cardiac transplants

  12. Sympathetic nerve damage and restoration after ischemia-reperfusion injury as assessed by {sup 11}C-hydroxyephedrine

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Rudolf A.; Higuchi, Takahiro [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); University of Wuerzburg, Comprehensive Heart Failure Center, Wuerzburg (Germany); Maya, Yoshifumi [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Nihon Medi-Physics Co., Ltd., Research Centre, Chiba (Japan); Rischpler, Christoph [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Muenchen (Germany); Javadi, Mehrbod S. [Johns Hopkins University, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, Baltimore, MD (United States); Fukushima, Kazuhito [Hyogo College of Medicine, Department of Radiology, Hyogo (Japan); Lapa, Constantin [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Herrmann, Ken [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); David Geffen School of Medicine at UCLA, Department of Molecular and Medical Pharmacology, Los Angeles, CA (United States)

    2016-02-15

    An altered state of the cardiac sympathetic nerves is an important prognostic factor in patients with coronary artery disease. The aim of this study was to investigate regional sympathetic nerve damage and restoration utilizing a rat model of myocardial transient ischemia and a catecholamine analog PET tracer, {sup 11}C-hydroxyephedrine ({sup 11}C-HED). Transient myocardial ischemia was induced by coronary occlusion for 20 min and reperfusion in male Wistar rats. Dual-tracer autoradiography was performed subacutely (7 days) and chronically (2 months) after ischemia, and in control rats without ischemia using {sup 11}C-HED as a marker of sympathetic innervation and {sup 201}TI for perfusion. Additional serial in vivo cardiac {sup 11}C-HED and {sup 18}F-FDG PET scans were performed in the subacute and chronic phases after ischemia. After transient ischemia, the {sup 11}C-HED uptake defect areas in both the subacute and chronic phases were clearly larger than the perfusion defect areas in the midventricular wall. The subacute {sup 11}C-HED uptake defect showed a transmural pattern, whereas uptake recovered in the subepicardial portion in the chronic phase. Tyrosine hydroxylase antibody nerve staining confirmed regional denervation corresponding to areas of decreased {sup 11}C-HED uptake. Serial in vivo PET imaging visualized reductions in the area of the {sup 11}C-HED uptake defects in the chronic phase consistent with autoradiography and histology. Higher susceptibility of sympathetic neurons compared to myocytes was confirmed by a larger {sup 11}C-HED defect with a corresponding histologically identified region of denervation. Furthermore, partial reinnervation was observed in the chronic phase as shown by recovery of subepicardial {sup 11}C-HED uptake. (orig.)

  13. Reflex sympathetic dystrophy: Early treatment and psychological aspects

    NARCIS (Netherlands)

    Geertzen, J.H.B.; De Bruijn, H.; De Bruijn-Kofman, A.T.; Arendzen, J.H.

    1994-01-01

    We report the results of two prospective studies of early treatment and psychological aspects in a series of 26 patients with sympathetic reflex dystrophy of the hand in which treatment was started within 3 months after diagnosis. Ismelin blocks is an often used therapy in sympathetic reflex dystrop

  14. Renal sympathetic denervation: MDCT evaluation of the renal arteries.

    LENUS (Irish Health Repository)

    Hutchinson, Barry D

    2013-08-01

    Percutaneous transluminal renal sympathetic denervation is a new treatment of refractory systemic hypertension. The purpose of this study was to assess the clinical utility of MDCT to evaluate the anatomic configuration of the renal arteries in the context of renal sympathetic denervation.

  15. Lower limb pain in sympathetic-sensory coupling

    Institute of Scientific and Technical Information of China (English)

    Hongjun Yang; Kairun Peng; Sanjue Hu; Li Xuan

    2011-01-01

    Previous studies have shown that sympathetic nerves are related to certain types of pain, and this phenomenon is referred to as sympathetic-sensory coupling. Chronic pain resulting from nerve injury can be exacerbated by sympathetic stimulation or relieved by sympathetic inhibition. In the present study, the correlation between pain and sympathetic nerves was analyzed in patients with severe pain in lower limbs, as well as in a chronically compressed dorsal root ganglion (CCD) rat model (model of low back pain and sciatica). Patients with severe pain in the lower limbs underwent chemical lumbar sympathectomy (CLS), and the analgesic effects of CLS were compared with painkillers. Results demonstrated significantly relieved lower limb pain following CLS, and the analgesic effects of CLS were superior to those seen with painkillers. In the CCD rat model, dorsal root ganglion neuronal activity significantly increased as a result of electrical stimulation to the sympathetic nerves. These results suggest that sympathetic nerves are closely associated with pain and sympathetic-sensory coupling is likely in lower limb pain in both patients and rat models of CCD.

  16. A Case Report of Renal Sympathetic Denervation for the Treatment of Polymorphic Ventricular Premature Complexes

    Science.gov (United States)

    Kiuchi, Márcio Galindo; Vitorio, Frederico Puppim; da Silva, Gustavo Ramalho; Paz, Luis Marcelo Rodrigues; Souto, Gladyston Luiz Lima

    2015-01-01

    Abstract Premature ventricular complexes are very common, appearing most frequently in patients with hypertension, obesity, sleep apnea, and structural heart disease. Sympathetic hyperactivity plays a critical role in the development, maintenance, and aggravation of ventricular arrhythmias. Recently, Armaganijan et al reported the relevance of sympathetic activation in patients with ventricular arrhythmias and suggested a potential role for catheter-based renal sympathetic denervation in reducing the arrhythmic burden. In this report, we describe a 32-year-old hypertensive male patient presenting with a high incidence of polymorphic premature ventricular complexes on a 24 hour Holter monitor. Beginning 1 year prior, the patient experienced episodes of presyncope, syncope, and tachycardia palpitations. The patient was taking losartan 100 mg/day, which kept his blood pressure (BP) under control, and sotalol 160 mg twice daily. Bisoprolol 10 mg/day was used previously but was not successful for controlling the episodes. The 24 hour Holter performed after the onset of sotalol 160 mg twice daily showed a heart rate ranging between 48 (minimum)–78 (average)–119 (maximum) bpm; 14,286 polymorphic premature ventricular complexes; 3 episodes of nonsustained ventricular tachycardia, the largest composed of 4 beats at a rate of 197 bpm; and 14 isolated atrial ectopic beats. Cardiac magnetic resonance imaging with gadolinium perfusion performed at rest and under pharmacological stress with dipyridamole showed increased left atrial internal volume, preserved systolic global biventricular function, and an absence of infarcted or ischemic areas. The patient underwent bilateral renal sympathetic denervation. The only drug used postprocedure was losartan 25 mg/day. Three months after the patient underwent renal sympathetic denervation, the mean BP value dropped to 132/86 mmHg, the mean systolic/diastolic 24 hour ambulatory BP measurement was reduced to 128/83

  17. Chain Reconnections observed in Sympathetic Eruptions

    CERN Document Server

    Joshi, Navin Chandra; Magara, Tetsuya; Guo, Yang; Aulanier, Guillaume

    2016-01-01

    The nature of various plausible causal links between sympathetic events is still a controversial issue. In this work, we present multi-wavelength observations of sympathetic eruptions, associated flares and coronal mass ejections (CMEs) occurring on 2013 November 17 in two close-by active regions. Two filaments i.e., F1 and F2 are observed in between the active regions. Successive magnetic reconnections, caused by different reasons (flux cancellation, shear and expansion) have been identified during the whole event. The first reconnection occurred during the first eruption via flux cancellation between the sheared arcades overlying filament F2, creating a flux rope and leading to the first double ribbon solar flare. During this phase we observed the eruption of overlaying arcades and coronal loops, which leads to the first CME. The second reconnection is believed to occur between the expanding flux rope of F2 and the overlying arcades of the filament F1. We suggest that this reconnection destabilized the equi...

  18. Sympathetic adaptations to one-legged training

    Science.gov (United States)

    Ray, C. A.

    1999-01-01

    The purpose of the present study was to determine the effect of leg exercise training on sympathetic nerve responses at rest and during dynamic exercise. Six men were trained by using high-intensity interval and prolonged continuous one-legged cycling 4 day/wk, 40 min/day, for 6 wk. Heart rate, mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA; peroneal nerve) were measured during 3 min of upright dynamic one-legged knee extensions at 40 W before and after training. After training, peak oxygen uptake in the trained leg increased 19 +/- 2% (P training (108 +/- 5 to 96 +/- 5 beats/min and 132 +/- 8 to 119 +/- 4 mmHg, respectively, during the third minute of exercise; P training. However, MSNA was significantly less during the third minute of exercise after training (32 +/- 2 to 22 +/- 3 bursts/min; P training effect on MSNA remained when MSNA was expressed as bursts per 100 heartbeats. Responses to exercise in five untrained control subjects were not different at 0 and 6 wk. These results demonstrate that exercise training prolongs the decrease in MSNA during upright leg exercise and indicates that attenuation of MSNA to exercise reported with forearm training also occurs with leg training.

  19. [A case of prolonged paroxysmal sympathetic hyperactivity].

    Science.gov (United States)

    Yamamoto, Akiko; Ide, Shuhei; Iwasaki, Yuji; Kaga, Makiko; Arima, Masataka

    2016-03-01

    We report the case of a 4-year-old girl who presented with paroxysmal sympathetic hyperactivity (PSH), after developing severe hypoxic-ischemic-encephalopathy because of cardiopulmonary arrest. She showed dramatic paroxysmal sympathetic activity with dystonia. She was treated with wide variety of medications against PSH, which were found to be effective in previous studies. Among them, morphine, bromocriptine, propranolol, and clonidine were effective in reducing the frequency of her attacks while gabapentin, baclofen, dantrolene, and benzodiazepine were ineffective. Though the paroxysms decreased markedly after the treatment, they could not be completely controlled beyond 500 days. Following the treatment, levels of plasma catecholamines and their urinary metabolites decreased to normal during inter- paroxysms. However, once a paroxysm had recurred, these levels were again very high. This case study is considered significant for two rea- sons. One is that PSH among children have been rarely reported, and the other is that this case of prolonged PSH delineated the transition of plasma catecholamines during the treatment. The excitatory: inhibitory ratio (EIR) model proposed by Baguley was considered while dis- cussing drug sensitivity in this case. Accumulation of similar case studies will help establish more effective treatment strategies and elucidate the pathophysiology of PSH. PMID:27149743

  20. Nervous System Problems and Dementia

    Science.gov (United States)

    ... Language: Fact Sheet 505 Nervous System Problems and Dementia WHAT ARE NERVOUS SYSTEM PROBLEMS? WHAT ARE THE ... of AIDS these were all called “HIV-Associated Dementia.” However, a broader range of problems is showing ...

  1. Exogenous angiotensin II does not facilitate norepinephrine release in the heart

    NARCIS (Netherlands)

    Th.W. Lameris (Thomas); P.A. de Zeeuw (Sandra); D.J.G.M. Duncker (Dirk); G. Alberts; F. Boomsma (Frans); P.D. Verdouw (Pieter); A.H. van den Meiracker (Anton)

    2002-01-01

    textabstractStudies on the effect of angiotensin II on norepinephrine release from sympathetic nerve terminals through stimulation of presynaptic angiotensin II type 1 receptors are equivocal. Furthermore, evidence that angiotensin II activates the cardiac sympathetic nervous syste

  2. Sympathetic block by metal clips may be a reversible operation

    DEFF Research Database (Denmark)

    Thomsen, Lars L; Mikkelsen, Rasmus T; Derejko, Miroslawa;

    2014-01-01

    the sympathetic chain vary tremendously. Most surgeons transect or resect the sympathetic chain, but application of a metal clip that blocks transmission of nerve impulses in the sympathetic chain is used increasingly worldwide. This approach offers potential reversibility if patients regret surgery......, but the question of reversibility remains controversial. Two recent experimental studies found severe histological signs of nerve damage 4-6 weeks after clip removal, but they only used conventional histopathological staining methods. METHODS: Thoracoscopic clipping of the sympathetic trunk was performed in adult...... sheep, and the clip was removed thoracoscopically after 7 days. Following another 4 weeks (n = 6) or 12 weeks (n = 3), the sympathetic trunks were harvested and analysed by conventional and specific nerve tissue immunohistochemical stains (S100, neurofilament protein and synaptophysin...

  3. Central nervous system diseases

    International Nuclear Information System (INIS)

    It is shown that roentgenological examination plays an important role in diagnosis of central nervous system diseases in children. The methods of roentgenological examinations are divided into 3 groups: roentgenography without contrast media (conventional roentgenography), roentgenography with artificial contrasting of liquor space (ventriculopneumoencelography, myelography) and contrasting of brain and spinal blood vessels (angiography). Conventional contrastless roentgenography of skull and vertebral column occupies leadership in diagnosis of brain neoplasms and some vascular diseases

  4. Your Brain and Nervous System

    Science.gov (United States)

    ... Help White House Lunch Recipes Your Brain & Nervous System KidsHealth > For Kids > Your Brain & Nervous System Print A A A Text Size What's in ... spinal cord and nerves — known as the nervous system — that let messages flow back and forth between ...

  5. Effect of Autonomic Nervous System on the Transmurai Dispersion of Ventricular Repolarization in Intact Canine

    Institute of Scientific and Technical Information of China (English)

    张存泰; 徐大文; 李泱; 刘念; 王琳; 陆再英

    2004-01-01

    Summary: The effect of the autonomic nerves on the transmural dispersion of ventricular repolarization in intact canine was investigated. By using the monophasic action potential (MAP) recording technique, monophasic action potentials (MAPs) of the epicardium (Epi), midmyocardium (Mid)and endocardium (Endo) were recorded simultaneously by specially designed plunge-needle electrodes at the left ventricular free wall in 12 open-chest dogs. MAPD90 and transmural dispersion of repolarization among three myocardial layers as well as the incidence of the EAD before autonomic nervous stimulation and during autonomic nervous stimulation were compared. The results showed that the MAPD90 of Epi, Mid and Endo before autonomic nervous stimulation were 278±11 ms,316± 16 ms and 270± 12 ms respectively, the MAPD90of Mid was significantly longer than that of Epi or Endo (P<0.01). MAPD90 of Epi, Mid and Endo were shortened by 19±4 ms, 45±6 ms,18± 3 ms respectively during sympathetic stimulation. Compared with that of the control, the transmural dispersion of repolarization during sympathetic stimulation was shortened from 44 ± 4 ms to 15±3 ms (P<0. 01), but early afterdepolarizations were elicited in the Mid of 5 dogs (41 0%)during sympathetic stimulation. Parasympathetic stimulation did not significantly affect the MAPD90 in the three layers. It is concluded that there is the transmural dispersion of ventricular repolarization in intact canine. Sympathetic stimulation can reduce transmural dispersion of repolarization, but it can produce early afterdepolarizations in the Mid. Parasympathetic stimulation does not significantly affect the transmural dispersion of ventricular repolarization.

  6. Atrophy and neuron loss: effects of a protein-deficient diet on sympathetic neurons.

    Science.gov (United States)

    Gomes, Silvio Pires; Nyengaard, Jens Randel; Misawa, Rúbia; Girotti, Priscila Azevedo; Castelucci, Patrìcia; Blazquez, Francisco Hernandez Javier; de Melo, Mariana Pereira; Ribeiro, Antonio Augusto Coppi

    2009-12-01

    Protein deficiency is one of the biggest public health problems in the world, accounting for about 30-40% of hospital admissions in developing countries. Nutritional deficiencies lead to alterations in the peripheral nervous system and in the digestive system. Most studies have focused on the effects of protein-deficient diets on the enteric neurons, but not on sympathetic ganglia, which supply extrinsic sympathetic input to the digestive system. Hence, in this study, we investigated whether a protein-restricted diet would affect the quantitative structure of rat coeliac ganglion neurons. Five male Wistar rats (undernourished group) were given a pre- and postnatal hypoproteinic diet receiving 5% casein, whereas the nourished group (n = 5) was fed with 20% casein (normoproteinic diet). Blood tests were carried out on the animals, e.g., glucose, leptin, and triglyceride plasma concentrations. The main structural findings in this study were that a protein-deficient diet (5% casein) caused coeliac ganglion (78%) and coeliac ganglion neurons (24%) to atrophy and led to neuron loss (63%). Therefore, the fall in the total number of coeliac ganglion neurons in protein-restricted rats contrasts strongly with no neuron losses previously described for the enteric neurons of animals subjected to similar protein-restriction diets. Discrepancies between our figures and the data for enteric neurons (using very similar protein-restriction protocols) may be attributable to the counting method used. In light of this, further systematic investigations comparing 2-D and 3-D quantitative methods are warranted to provide even more advanced data on the effects that a protein-deficient diet may exert on sympathetic neurons. (c) 2009 Wiley-Liss, Inc.

  7. Muscle afferent receptors engaged in augmented sympathetic responsiveness in peripheral artery disease

    Directory of Open Access Journals (Sweden)

    Jianhua eLi

    2012-07-01

    Full Text Available The exercise pressor reflex (EPR is a neural control mechanism responsible for the cardiovascular responses to exercise. As exercise is initiated, thin fiber muscle afferent nerves are activated by mechanical and metabolic stimuli arising in the contracting muscles. This leads to reflex increases in arterial blood pressure and heart rate primarily through activation of sympathetic nerve activity (SNA. Studies of humans and animals have indicated that the EPR is exaggerated in a number of cardiovascular diseases. For the last several years, studies have specifically employed a rodent model to examine the mechanisms at receptor and cellular levels by which responses of SNA and blood pressure to static exercise are heightened in peripheral artery disease (PAD, one of the most common cardiovascular disorders. A rat model of this disease has well been established. Specifically, femoral artery occlusion is used to study intermittent claudication that is observed in human PAD. The receptors on thin fiber muscle afferents that are engaged in this disease include transient receptor potential vanilloid type 1 (TRPV1, purinergic P2X and acid sensing ion channel (ASIC. The role played by nerve growth factor (NGF in regulating those sensory receptors in the processing of amplified EPR was also investigated. The purpose of this review is to focus on a theme namely that PAD accentuates autonomic reflex responses to exercise and further address regulatory mechanisms leading to abnormal sympathetic responsiveness. This review will present some of recent results in regard with several receptors in muscle sensory neurons in contribution to augmented autonomic reflex responses in PAD. Review of the findings from recent studies would lead to a better understanding in integrated processing of sympathetic nervous system in PAD.

  8. Leptin differentially increases sympathetic nerve activity and its baroreflex regulation in female rats: role of oestrogen.

    Science.gov (United States)

    Shi, Zhigang; Brooks, Virginia L

    2015-04-01

    Obesity and hypertension are commonly associated, and activation of the sympathetic nervous system is considered to be a major contributor, at least in part due to the central actions of leptin. However, while leptin increases sympathetic nerve activity (SNA) in males, whether leptin is equally effective in females is unknown. Here, we show that intracerebroventricular (i.c.v.) leptin increases lumbar (LSNA) and renal (RSNA) SNA and baroreflex control of LSNA and RSNA in α-chloralose anaesthetized female rats, but only during pro-oestrus. In contrast, i.c.v. leptin increased basal and baroreflex control of splanchnic SNA (SSNA) and heart rate (HR) in rats in both the pro-oestrus and dioestrus states. The effects of leptin on basal LSNA, RSNA, SSNA and HR were similar in males and pro-oestrus females; however, i.c.v. leptin increased mean arterial pressure (MAP) only in males. Leptin did not alter LSNA or HR in ovariectomized rats, but its effects were normalized with 4 days of oestrogen treatment. Bilateral nanoinjection of SHU9119 into the paraventricular nucleus of the hypothalamus (PVN), to block α-melanocyte-stimulating hormone (α-MSH) type 3 and 4 receptors, decreased LSNA in leptin-treated pro-oestrus but not dioestrus rats. Unlike leptin, i.c.v. insulin infusion increased basal and baroreflex control of LSNA and HR similarly in pro-oestrus and dioestrus rats; these responses did not differ from those in male rats. We conclude that, in female rats, leptin's stimulatory effects on SNA are differentially enhanced by oestrogen, at least in part via an increase in α-MSH activity in the PVN. These data further suggest that the actions of leptin and insulin to increase the activity of various sympathetic nerves occur via different neuronal pathways or cellular mechanisms. These results may explain the poor correlation in females of SNA with adiposity, or of MAP with leptin. PMID:25398524

  9. Alterations in electrodermal activity and cardiac parasympathetic tone during hypnosis.

    Science.gov (United States)

    Kekecs, Zoltán; Szekely, Anna; Varga, Katalin

    2016-02-01

    Exploring autonomic nervous system (ANS) changes during hypnosis is critical for understanding the nature and extent of the hypnotic phenomenon and for identifying the mechanisms underlying the effects of hypnosis in different medical conditions. To assess ANS changes during hypnosis, electrodermal activity and pulse rate variability (PRV) were measured in 121 young adults. Participants either received hypnotic induction (hypnosis condition) or listened to music (control condition), and both groups were exposed to test suggestions. Blocks of silence and experimental sound stimuli were presented at baseline, after induction, and after de-induction. Skin conductance level (SCL) and high frequency (HF) power of PRV measured at each phase were compared between groups. Hypnosis decreased SCL compared to the control condition; however, there were no group differences in HF power. Furthermore, hypnotic suggestibility did not moderate ANS changes in the hypnosis group. These findings indicate that hypnosis reduces tonic sympathetic nervous system activity, which might explain why hypnosis is effective in the treatment of disorders with strong sympathetic nervous system involvement, such as rheumatoid arthritis, hot flashes, hypertension, and chronic pain. Further studies with different control conditions are required to examine the specificity of the sympathetic effects of hypnosis.

  10. Alterations in electrodermal activity and cardiac parasympathetic tone during hypnosis.

    Science.gov (United States)

    Kekecs, Zoltán; Szekely, Anna; Varga, Katalin

    2016-02-01

    Exploring autonomic nervous system (ANS) changes during hypnosis is critical for understanding the nature and extent of the hypnotic phenomenon and for identifying the mechanisms underlying the effects of hypnosis in different medical conditions. To assess ANS changes during hypnosis, electrodermal activity and pulse rate variability (PRV) were measured in 121 young adults. Participants either received hypnotic induction (hypnosis condition) or listened to music (control condition), and both groups were exposed to test suggestions. Blocks of silence and experimental sound stimuli were presented at baseline, after induction, and after de-induction. Skin conductance level (SCL) and high frequency (HF) power of PRV measured at each phase were compared between groups. Hypnosis decreased SCL compared to the control condition; however, there were no group differences in HF power. Furthermore, hypnotic suggestibility did not moderate ANS changes in the hypnosis group. These findings indicate that hypnosis reduces tonic sympathetic nervous system activity, which might explain why hypnosis is effective in the treatment of disorders with strong sympathetic nervous system involvement, such as rheumatoid arthritis, hot flashes, hypertension, and chronic pain. Further studies with different control conditions are required to examine the specificity of the sympathetic effects of hypnosis. PMID:26488759

  11. Cardiac rehabilitation

    Science.gov (United States)

    ... attack or other heart problem. You might consider cardiac rehab if you have had: Heart attack Coronary heart disease (CHD) Heart failure Angina (chest pain) Heart or heart valve surgery Heart transplant Procedures such as angioplasty and stenting In some ...

  12. Relationship between Sympathetic Skin Responses and Auditory Hypersensitivity to Different Auditory Stimuli.

    Science.gov (United States)

    Kato, Fumi; Iwanaga, Ryoichiro; Chono, Mami; Fujihara, Saori; Tokunaga, Akiko; Murata, Jun; Tanaka, Koji; Nakane, Hideyuki; Tanaka, Goro

    2014-07-01

    [Purpose] Auditory hypersensitivity has been widely reported in patients with autism spectrum disorders. However, the neurological background of auditory hypersensitivity is currently not clear. The present study examined the relationship between sympathetic nervous system responses and auditory hypersensitivity induced by different types of auditory stimuli. [Methods] We exposed 20 healthy young adults to six different types of auditory stimuli. The amounts of palmar sweating resulting from the auditory stimuli were compared between groups with (hypersensitive) and without (non-hypersensitive) auditory hypersensitivity. [Results] Although no group × type of stimulus × first stimulus interaction was observed for the extent of reaction, significant type of stimulus × first stimulus interaction was noted for the extent of reaction. For an 80 dB-6,000 Hz stimulus, the trends for palmar sweating differed between the groups. For the first stimulus, the variance became larger in the hypersensitive group than in the non-hypersensitive group. [Conclusion] Subjects who regularly felt excessive reactions to auditory stimuli tended to have excessive sympathetic responses to repeated loud noises compared with subjects who did not feel excessive reactions. People with auditory hypersensitivity may be classified into several subtypes depending on their reaction patterns to auditory stimuli.

  13. Sympathetic dysfunction in vasovagal syncope and the postural orthostatic tachycardia syndrome.

    Science.gov (United States)

    Lambert, Elisabeth; Lambert, Gavin W

    2014-01-01

    Orthostatic intolerance is the inability to tolerate the upright posture and is relieved by recumbence. It most commonly affects young women and has a major impact on quality of life and psychosocial well-being. Several forms of orthostatic intolerance have been described. The most common one is the recurrent vasovagal syncope (VVS) phenotype which presents as a transient and abrupt loss of consciousness and postural tone that is followed by rapid recovery. Another common type of orthostatic intolerance is the postural orthostatic tachycardia syndrome (POTS) which is characterized by an excessive rise in heart rate upon standing and is associated with symptoms of presyncope such as light-headedness, fatigue, palpitations, and nausea. Maintenance of arterial pressure under condition of reduced central blood volume during the orthostasis is accomplished in large part through sympathetic efferent nerve traffic to the peripheral vasculature. Therefore sympathetic nervous system (SNS) dysfunction is high on the list of possible contributors to the pathophysiology of orthostatic intolerance. Investigations into the role of the SNS in orthostatic intolerance have yielded mixed results. This review outlines the current knowledge of the function of the SNS in both VVS and POTS.

  14. Sympathetic dysfunction in vasovagal syncope and the postural orthostatic tachycardia syndrome

    Directory of Open Access Journals (Sweden)

    Elisabeth eLambert

    2014-07-01

    Full Text Available Orthostatic intolerance is the inability to tolerate the upright posture and is relieved by recumbence. It most commonly affects young women and has a major impact on quality of life and psychosocial well being. Several forms of orthostatic intolerance have been described. The most common one is the recurrent vasovagal syncope (VVS phenotype which presents as a transient and abrupt loss of consciousness and postural tone that is followed by rapid recovery. Another common type of orthostatic intolerance is the postural orthostatic tachycardia syndrome (POTS which is characterized by an excessive rise in heart rate upon standing and is associated with symptoms of presyncope such as light-headedness, fatigue, palpitations and nausea. Maintenance of arterial pressure under condition of reduced central blood volume during the orthostasis is accomplished in large part through sympathetic efferent nerve traffic to the peripheral vasculature. Therefore sympathetic nervous system (SNS dysfunction is high on the list of possible contributors to the pathophysiology of orthostatic intolerance. Investigations into the role of the SNS in orthostatic intolerance have yielded mixed results. This review outlines the current knowledge of the function of the SNS in both VVS and POTS.

  15. Inclusion of Height and Limb Length when Interpreting Sympathetic Skin Response

    Directory of Open Access Journals (Sweden)

    Mohamadreza Emad

    2016-01-01

    Full Text Available It is more than a decade since scientists are making use of sympathetic skin response (SSR as a clinical and research method to evaluate sympathetic nervous system. A major portion of the efferent pathway of this response is composed of non-myelinated nerves. Thus, the latency of the response may be significantly different in normal individuals with different height and limb lengths. This study was designed to investigate the effect of these parameters on the SSR results. We measured the height and limb length of 65 normal individuals with different heights (divided into 3 groups of height ≤150 cm, 150-170 cm, and ≥170 cm. The participants had neither peripheral nor central neuropathy. They also had none of the exclusion criteria. Then, they underwent SSR testing of both palms and soles. The correlation between the height and limb length in relation to SSR parameters (latency and amplitude was analyzed statistically by Pearson’s correlation. No significant correlation was detected between the height and limb length and the SSR amplitude. However, the results showed significant correlation between SSR latency recorded from all four sites (both palms and soles and the height of participants. Furthermore, there was a significant correlation between SSR latency recorded from any limb and the length of that limb. Regarding the significant effect of the height and limb length on the SSR latency, both the height and limb length should be considered when interpreting the results of SSR.

  16. Mechanism of relation among heart meridian, referred cardiac pain and heart

    Institute of Scientific and Technical Information of China (English)

    RONG; Peijing(荣培晶); ZHU; Bing(朱兵)

    2002-01-01

    It has been demonstrated that an important clinical phenomenon often associated with visceral diseases is the referred pain to somatic structures, especially to the body areaof homo-segmental innervation. It is interesting that the somatic foci of cardiac referred pain wereoften and mainly distributed along the heart meridian (HM), whereas the acupoints of HM havebeen applied to treat cardiac disease since ancient times. The purpose of this study was to inves-tigate the neural relationship between the cardiac referred pain and the heart meridian.Fluorescent triple-labeling was injected into the pericardium, some acupoints of HM and lung me-ridian (LM, for control). The responses of the left cardiac sympathetic nerve and of the EMG in left HM and LM were electrophysiologically studied, when the electrical stimuli were applied to the acupoints of left HM and to the left cardiac sympathetic nerve. More double-labeled neurons in HM-heart, not in LM-heart, were observed in the ipsilateral dorsal root ganglia of the spinal segments C8-T3. Electric stimulation of the acupoints of left HM was able to elicit more responses of left cardiac sympathetic nerve than that of the LM-acupoints. Electric stimulation of the left cardiac sympathetic nerve resulted in stronger activities of EMG-response in the acupoints of left HM than in LM-acupoints. We conclude that double-labeling study has provided direct evidence for the existence of dichotomizing afferent fibers that supply both the pericardium and HM. Electrophysiological results show that HM is more closely related functionally to heart. These findings provide a possible morphological and physiological explanation for the referred cardiac pain and HM-heart interrelation.

  17. A new predisposing factor for trigemino-cardiac reflex during subdural empyema drainage: a case report

    OpenAIRE

    Arasho Belachew; Sandu Nora; Spiriev Toma; Kondoff Slavomir; Tzekov Christo; Schaller Bernhard

    2010-01-01

    Abstract Introduction The trigemino-cardiac reflex is defined as the sudden onset of parasympathetic dysrhythmia, sympathetic hypotension, apnea, or gastric hypermotility during stimulation of any of the sensory branches of the trigeminal nerve. Clinically, trigemino-cardiac reflex has been reported to occur during neurosurgical skull-base surgery. Apart from the few clinical reports, the physiological function of this brainstem reflex has not yet been fully explored. Little is known regardin...

  18. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Secher, Niels H

    2011-01-01

    This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF...... as evidenced by pharmacological manipulation of adrenergic and cholinergic receptors. Cholinergic blockade by glycopyrrolate blocks the exercise-induced increase in the transcranial Doppler determined mean flow velocity (MCA Vmean). Conversely, alpha-adrenergic activation increases that expression of cerebral...... perfusion and reduces the near-infrared determined cerebral oxygenation at rest, but not during exercise associated with an increased cerebral metabolic rate for oxygen (CMRO(2)), suggesting competition between CMRO(2) and sympathetic control of CBF. CMRO(2) does not change during even intense handgrip...

  19. Myocardial pre-synaptic sympathetic function correlates with glucose uptake in the failing human heart

    International Nuclear Information System (INIS)

    We have previously shown that the myocardium of patients with heart failure (HF) is insulin resistant. Chronic β-adrenergic stimulation has been implicated in insulin resistance in cultured cardiomyocytes in vitro, where sustained noradrenaline stimulation inhibited insulin-modulated glucose uptake. As the failing heart is characterized by increased sympathetic drive, we hypothesized that there is a correlation between pre-synaptic sympathetic function and insulin sensitivity in the myocardium of patients with HF. Eight patients (aged 67 ± 7 years) with coronary artery disease and left ventricular dysfunction (ejection fraction 44 ± 10%) underwent function and viability assessment with cardiovascular magnetic resonance. Myocardial glucose utilization (MGU) was measured using positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG). Pre-synaptic noradrenaline re-uptake was measured by calculating [11C]meta-hydroxy-ephedrine (HED) volume of distribution (Vd) with PET. Two groups of healthy volunteers served as controls for the FDG (n = 8, aged 52 ± 4 years, p -1.g-1) and dysfunctional (0.49 ± 0.14 μmol.min-1.g-1) segments compared with controls (0.61 ± 0.7 μmol.min-1.g-1; p d was reduced in dysfunctional segments of patients (38.9 ± 21.2 ml.g-1) compared with normal segments (52.2 ± 19.6 ml.g-1) and compared with controls (62.7 ± 11.3 ml.g-1). In patients, regional MGU was correlated with HED Vd. The results of this study provide novel evidence of a correlation between cardiac sympathetic function and insulin sensitivity, which may represent one of the mechanisms contributing to insulin resistance in failing human hearts. (orig.)

  20. Do sympathetic nerves release noradrenaline in "quanta"?

    Science.gov (United States)

    Stjärne, L

    2000-07-01

    The discovery of excitatory junction potentials (EJPs) in guinea-pig vas deferens by Burnstock and Holman (1960) showed for the first time that a sympathetic transmitter, now known to be ATP, is secreted in "quanta". As it was assumed at the time that EJPS are triggered by noradrenaline, this discovery led to attempts to use the fractional overflow of noradrenaline from sympathetically innervated tissues to assess, indirectly, the number of noradrenaline molecules in the average "quantum". The basic finding was that each pulse released 1/50000 of the tissue content of noradrenaline, when reuptake was blocked and prejunctional alpha(2)-adrenoceptors were intact. This provided the constraints, two extreme alternatives: (i) each pulse releases 0.2-3% of the content of a vesicle from all varicosities, or (ii) each pulse releases the whole content of a vesicle from 0.2 to 3% of the varicosities. New techniques have made it possible to address questions about the release probability in individual sites, or the "quantal" size, more directly. Results by optical (comparison of the labelling of SV2 and synaptotagmin, proteins in the membrane of transmitter vesicles), electrophysiological (excitatory junction currents, EJCs, at single visualized varicosities) and amperometric (the noradrenaline oxidation current at a carbon fibre electrode) methods reveal that transmitter exocytosis in varicosities is intermittent. The EJC and noradrenaline oxidation current responses (in rat arteries) to a train of single pulses were observed to be similar in intermittency and amplitude fluctuation. This suggests that they are caused by exocytosis of single or very few "quanta" of ATP and noradrenaline, respectively, equal to the contents of single vesicles, from a small population of release sites. These findings support, but do not conclusively prove the validity of the "intermittent" model of noradrenaline release. The question if noradrenaline is always secreted in packets of preset size

  1. CHAIN RECONNECTIONS OBSERVED IN SYMPATHETIC ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Navin Chandra; Magara, Tetsuya [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do, 446-701 (Korea, Republic of); Schmieder, Brigitte; Aulanier, Guillaume [LESIA, Observatoire de Paris, PSL Research University, CNRS Sarbonne Universités, Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Jansson, F-92195 Meudon (France); Guo, Yang, E-mail: navin@khu.ac.kr, E-mail: njoshi98@gmail.com [School of Astronomy and Space Science, Nanjing University, 210023 Nanjing (China)

    2016-04-01

    The nature of various plausible causal links between sympathetic events is still a controversial issue. In this work, we present multiwavelength observations of sympathetic eruptions, associated flares, and coronal mass ejections (CMEs) occurring on 2013 November 17 in two close active regions. Two filaments, i.e., F1 and F2, are observed in between the active regions. Successive magnetic reconnections, caused for different reasons (flux cancellation, shear, and expansion) have been identified during the whole event. The first reconnection occurred during the first eruption via flux cancellation between the sheared arcades overlying filament F2, creating a flux rope and leading to the first double-ribbon solar flare. During this phase, we observed the eruption of overlying arcades and coronal loops, which leads to the first CME. The second reconnection is believed to occur between the expanding flux rope of F2 and the overlying arcades of filament F1. We suggest that this reconnection destabilized the equilibrium of filament F1, which further facilitated its eruption. The third stage of reconnection occurred in the wake of the erupting filament F1 between the legs of the overlying arcades. This may create a flux rope and the second double-ribbon flare and a second CME. The fourth reconnection was between the expanding arcades of the erupting filament F1 and the nearby ambient field, which produced the bi-directional plasma flows both upward and downward. Observations and a nonlinear force-free field extrapolation confirm the possibility of reconnection and the causal link between the magnetic systems.

  2. [Clinical application of skin sympathetic nerve activity].

    Science.gov (United States)

    Iwase, Satoshi

    2009-03-01

    Skin sympathetic nerve activity (SSNA) is microneurographically recorded from the skin nerve fascicle in the peripheral nerves. It is characterized by the following features: 1) irregular, pulse asynchronous, burst activity with respiratory variation, 2) burst activity followed by vasoconstriction and/or sweating, 3) elicited by mental stress and arousal stimuli, e.g., sound, pain, electric stimulation, 4) burst with longer duration as compared with sympathetic outflow to muscles, and 5) burst activity following sudden inspiratory action. It comprises vasoconstrictor (VC) and sudomotor(SM) activity, as well as vasodilator (VD) activity. VC and SM discharge independently, whereas VD is the same activity with different neurotransmission. The VC and SM are differentiated by effector response, e.g., laser Doppler flowmetry and skin potential changes. SSNA function in thermoregulation in the human body; however it is also elicited by mental stress. SSNA is the lowest at thermoneutral ambient temperature (approximately 27 degrees C), and is enhanced in the pressence of ambient warm and cool air. The burst amplitude is well-correlated to both skin blood flow reduction rate or sweat rate change. The clinical application of SSNA comprises the following: 1) clarification of sweating phenomenon, 2) clarification and diagnosis of anhidrosis, 3) clarification and diagnosis of hyperhidrosis, 4) clarification of thermoregulatory function and diagnosis of thermoregulatory disorder, 5) clarification of pathophysiology and diagnosis of vascular diseases, e.g., Raynaud and Buerger diseases. 6) clarification of the relation between cognitive function and SSNA and 7) determination of pharmacological effect attributable to change in neuroeffector responses. PMID:19301594

  3. Catheter Ablation of Atrial Fibrillation Raises the Plasma Level of NGF-β Which Is Associated with Sympathetic Nerve Activity

    OpenAIRE

    Park, Jae Hyung; Hong, Sung Yu; Wi, Jin; Lee, Da Lyung; Joung, Boyoung; Lee, Moon Hyoung; Pak, Hui-Nam

    2015-01-01

    Purpose The expression of nerve growth factor-β (NGF-β) is related to cardiac nerve sprouting and sympathetic hyper innervation. We investigated the changes of plasma levels of NGF-β and the relationship to follow-up heart rate variability (HRV) after radiofrequency catheter ablation (RFCA) of atrial fibrillation (AF). Materials and Methods This study included 147 patients with AF (117 men, 55.8±11.5 years, 106 paroxysmal AF) who underwent RFCA. The plasma levels of NGF-β were quantified usin...

  4. Catecholamine-induced excitation of nociceptors in sympathetically maintained pain.

    Science.gov (United States)

    Jørum, Ellen; Ørstavik, Kristin; Schmidt, Roland; Namer, Barbara; Carr, Richard W; Kvarstein, Gunnvald; Hilliges, Marita; Handwerker, Hermann; Torebjörk, Erik; Schmelz, Martin

    2007-02-01

    Sympathetically maintained pain could either be mediated by ephaptic interactions between sympathetic efferent and afferent nociceptive fibers or by catecholamine-induced activation of nociceptive nerve endings. We report here single fiber recordings from C nociceptors in a patient with sympathetically maintained pain, in whom sympathetic blockade had repeatedly eliminated the ongoing pain in both legs. We classified eight C-fibers as mechano-responsive and six as mechano-insensitive nociceptors according to their mechanical responsiveness and activity-dependent slowing of conduction velocity (latency increase of 0.5+/-1.1 vs. 7.1+/-2.0 ms for 20 pulses at 0.125 Hz). Two C-fibers were activated with a delay of several seconds following strong endogenous sympathetic bursts; they were also excited for about 3 min following the injection of norepinephrine (10 microl, 0.05%) into their innervation territory. In these two fibers, a prolonged activation by injection of low pH solution (phosphate buffer, pH 6.0, 10 microl) and sensitization of their heat response following prostaglandin E2 injection were recorded, evidencing their afferent nature. Moreover, their activity-dependent slowing was typical for mechano-insensitive nociceptors. We conclude that sensitized mechano-insensitive nociceptors can be activated by endogenously released catecholamines and thereby may contribute to sympathetically maintained pain. No evidence for ephaptic interaction between sympathetic efferent and nociceptive afferent fibers was found. PMID:16997471

  5. Overview of the Autonomic Nervous System

    Science.gov (United States)

    ... reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...

  6. Maneuvering in Nervous Times

    DEFF Research Database (Denmark)

    Veel, Kristin Eva Albrechtsen

    2012-01-01

    Reinhard Jirgl is an important and challenging but still relatively understudied contemporary German writer. This article looks at his novel Abtrünnig: Roman aus der nervösen Zeit from 2005, focusing on the function of the hyperlinks boxes, which dominate the textual layout. It shows that Abtrünn...... as an enhancement of the plot and the story it wants to tell. The hyperlinks are thus not merely a formal feature, but an integrated part of the novel's depiction of contemporary conditions of life in the “nervous times” it portrays....

  7. Autonomic nervous system:its response and adaptation to exercises%自主神经系统对运动反应、适应的研究与进展

    Institute of Scientific and Technical Information of China (English)

    邵连杰

    2015-01-01

    1997 to March 2015 using the keywords of “autonomic nervous system, heart rate variability, HRV, exercise intervention, exercise training” in English. RESULTS AND CONCLUSION:Totaly 405 articles were retrieved, and finaly 79 articles were included in result analysis. We can assess aerobic capacity and make individual intervention program through observing the changes of cardiac autonomic nervous system during a one-time exercise. Response and adaptation of the cardiac autonomic nervous system to exercise depend on exercise intensity and duration, but there is a great inter-individual difference. The long-term inhibition and excitement of the sympathetic nerve and vagus nerve may indicate overtraining.

  8. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  9. (123)I-Meta-iodobenzylguanidine Sympathetic Imaging: Standardization and Application to Neurological Diseases.

    Science.gov (United States)

    Nakajima, Kenichi; Yamada, Masahito

    2016-09-01

    (123)I-meta-iodobenzylguanidine (MIBG) has become widely applied in Japan since its introduction to clinical cardiology and neurology practice in the 1990s. Neurological studies found decreased cardiac uptake of (123)I-MIBG in Lewy-body diseases including Parkinson's disease and dementia with Lewy bodies. Thus, cardiac MIBG uptake is now considered a biomarker of Lewy body diseases. Although scintigraphic images of (123)I-MIBG can be visually interpreted, an average count ratio of heart-to-mediastinum (H/M) has commonly served as a semi-quantitative marker of sympathetic activity. Since H/M ratios significantly vary according to acquisition and processing conditions, quality control should be appropriate, and quantitation should be standardized. The threshold H/M ratio for differentiating Lewy-body disease is 2.0-2.1, and was based on standardized H/M ratios to comparable values of medium-energy collimators. Parkinson's disease can be separated from various types of parkinsonian syndromes using cardiac (123)I-MIBG, whereas activity is decreased on images of Lewy-body diseases using both (123)I-ioflupane for the striatum and (123)I-MIBG. Despite being a simple index, the H/M ratio of (123)I-MIBG uptake is reproducible and can serve as an effective tool to support a diagnosis of Lewy-body diseases in neurological practice. PMID:27689024

  10. 123I-Meta-iodobenzylguanidine Sympathetic Imaging: Standardization and Application to Neurological Diseases

    Science.gov (United States)

    Yamada, Masahito

    2016-01-01

    123I-meta-iodobenzylguanidine (MIBG) has become widely applied in Japan since its introduction to clinical cardiology and neurology practice in the 1990s. Neurological studies found decreased cardiac uptake of 123I-MIBG in Lewy-body diseases including Parkinson's disease and dementia with Lewy bodies. Thus, cardiac MIBG uptake is now considered a biomarker of Lewy body diseases. Although scintigraphic images of 123I-MIBG can be visually interpreted, an average count ratio of heart-to-mediastinum (H/M) has commonly served as a semi-quantitative marker of sympathetic activity. Since H/M ratios significantly vary according to acquisition and processing conditions, quality control should be appropriate, and quantitation should be standardized. The threshold H/M ratio for differentiating Lewy-body disease is 2.0-2.1, and was based on standardized H/M ratios to comparable values of medium-energy collimators. Parkinson's disease can be separated from various types of parkinsonian syndromes using cardiac 123I-MIBG, whereas activity is decreased on images of Lewy-body diseases using both 123I-ioflupane for the striatum and 123I-MIBG. Despite being a simple index, the H/M ratio of 123I-MIBG uptake is reproducible and can serve as an effective tool to support a diagnosis of Lewy-body diseases in neurological practice. PMID:27689024

  11. Cardiac Neurotransmission Imaging with 123I-Meta-iodobenzylguanidine in Postural Tachycardia Syndrome.

    OpenAIRE

    Haensch, Carl-Albrecht; Lerch, Hartmut; Schlemmer, Hans; Jigalin, Anna; Isenmann, Stefan

    2010-01-01

    Abstract Background: Postural orthostatic tachycardia syndrome (POTS) is a disorder of orthostatic intolerance characterized by excessive tachycardia of unknown etiology. Whether this condition involves abnormal cardiac sympathetic innervation or function remains elusive. Metaiodobenzylguanidine (MIBG) resembles guanethidine and is a pharmacologically inactive analogue of norepinephrine, which is similarly metabolized in noradrenergic neurons. MIBG myocardial scintigraphy is clinic...

  12. Effect of Yoga on migraine: A comprehensive study using clinical profile and cardiac autonomic functions

    Directory of Open Access Journals (Sweden)

    Ravikiran Kisan

    2014-01-01

    Conclusions: Intervention showed significant clinical improvement in both groups. Headache frequency and intensity were reduced more in Yoga with conventional care than the conventional care group alone. Furthermore, Yoga therapy enhanced the vagal tone and decreased the sympathetic drive, hence improving the cardiac autonomic balance. Thus, Yoga therapy can be effectively incorporated as an adjuvant therapy in migraine patients.

  13. Investigation of close interactions between sympathetic neural fibres and the follicular dendritic cells network in the mouse spleen

    Directory of Open Access Journals (Sweden)

    C Demonceau

    2009-08-01

    Full Text Available In this study, co-localization between sympathetic neural fibres and the follicular dendritic cells (FDCs network was observed within the mouse spleen by confocal technology. Immunohistochemical techniques were used to reveal the rare interactions between the FDCs network and sympathetic neural fibres.We estimated the frequency of three kinds of close interactions which could be defined as overlaps, contacts or neural fibres closer than 10 ?m from a FDCs network. Using these estimates, a comparison was made between five uninfected mouse strains exhibiting the same Prnpa genotype but showing different incubation periods when inoculated with primary bovine spongiform encephalopathy (BSE-infected brain. In prion disease, infectivity is generally detected in the spleen much earlier than in the brain, especially after peripheral inoculation. The way by which the infectious agent reaches the central nervous system is still unclear. From the five mouse strains, we obtained differences in the proportion of splenic FDCs networks with close interactions. Our work suggests that the percentage of splenic FDCs networks with at least one sympathetic neural fibre in close vicinity may influence the length of incubation period.

  14. Investigation of close interactions between sympathetic neural fibres and the follicular dendritic cells network in the mouse spleen.

    Science.gov (United States)

    Demonceau, Caroline; Marshall, A S; Sales, J; Heinen, E

    2008-01-01

    In this study, co-localization between sympathetic neural fibres and the follicular dendritic cells (FDCs) network was observed within the mouse spleen by confocal technology. Immunohistochemical techniques were used to reveal the rare interactions between the FDCs network and sympathetic neural fibres. We estimated the frequency of three kinds of close interactions which could be defined as overlaps, contacts or neural fibres closer than 10 microm from a FDCs network. Using these estimates, a comparison was made between five uninfected mouse strains exhibiting the same Prnpa genotype but showing different incubation periods when inoculated with primary bovine spongiform encephalopathy (BSE)-infected brain. In prion disease, infectivity is generally detected in the spleen much earlier than in the brain, especially after peripheral inoculation. The way by which the infectious agent reaches the central nervous system is still unclear. From the five mouse strains, we obtained differences in the proportion of splenic FDCs networks with close interactions. Our work suggests that the percentage of splenic FDCs networks with at least one sympathetic neural fibre in close vicinity may influence the length of incubation period. PMID:18591154

  15. Molecular Mechanisms Underlying β-Adrenergic Receptor-Mediated Cross-Talk between Sympathetic Neurons and Immune Cells

    Directory of Open Access Journals (Sweden)

    Dianne Lorton

    2015-03-01

    Full Text Available Cross-talk between the sympathetic nervous system (SNS and immune system is vital for health and well-being. Infection, tissue injury and inflammation raise firing rates of sympathetic nerves, increasing their release of norepinephrine (NE in lymphoid organs and tissues. NE stimulation of β2-adrenergic receptors (ARs in immune cells activates the cAMP-protein kinase A (PKA intracellular signaling pathway, a pathway that interfaces with other signaling pathways that regulate proliferation, differentiation, maturation and effector functions in immune cells. Immune–SNS cross-talk is required to maintain homeostasis under normal conditions, to develop an immune response of appropriate magnitude after injury or immune challenge, and subsequently restore homeostasis. Typically, β2-AR-induced cAMP is immunosuppressive. However, many studies report actions of β2-AR stimulation in immune cells that are inconsistent with typical cAMP–PKA signal transduction. Research during the last decade in non-immune organs, has unveiled novel alternative signaling mechanisms induced by β2-AR activation, such as a signaling switch from cAMP–PKA to mitogen-activated protein kinase (MAPK pathways. If alternative signaling occurs in immune cells, it may explain inconsistent findings of sympathetic regulation of immune function. Here, we review β2-AR signaling, assess the available evidence for alternative signaling in immune cells, and provide insight into the circumstances necessary for “signal switching” in immune cells.

  16. Baroreflex failure in a patient with central nervous system lesions involving the nucleus tractus solitarii

    Science.gov (United States)

    Biaggioni, I.; Whetsell, W. O.; Jobe, J.; Nadeau, J. H.

    1994-01-01

    Animal studies have shown the importance of the nucleus tractus solitarii, a collection of neurons in the brain stem, in the acute regulation of blood pressure. Impulses arising from the carotid and aortic baroreceptors converge in this center, where the first synapse of the baroreflex is located. Stimulation of the nucleus tractus solitarii provides an inhibitory signal to other brain stem structures, particularly the rostral ventrolateral medulla, resulting in a reduction in sympathetic outflow and a decrease in blood pressure. Conversely, experimental lesions of the nucleus tractus solitarii lead to loss of baroreflex control of blood pressure, sympathetic activation, and severe hypertension in animals. In humans, baroreflex failure due to deafferentation of baroreceptors has been previously reported and is characterized by episodes of severe hypertension and tachycardia. We present a patient with an undetermined process of the central nervous system characterized pathologically by ubiquitous infarctions that were particularly prominent in the nucleus tractus solitarii bilaterally but spared the rostral ventrolateral medulla. Absence of a functioning baroreflex was evidenced by the lack of reflex tachycardia to the hypotensive effects of sodium nitroprusside, exaggerated pressor responses to handgrip and cold pressor test, and exaggerated depressor responses to meals and centrally acting alpha 2-agonists. This clinicopathological correlate suggests that the patient's baroreflex failure can be explained by the unique combination of the destruction of sympathetic inhibitory centers (ie, the nucleus tractus solitarii) and preservation of centers that exert a positive modulation on sympathetic tone (ie, the rostral ventrolateral medulla).

  17. Control of the Cutaneous Circulation by the Central Nervous System.

    Science.gov (United States)

    Blessing, William; McAllen, Robin; McKinley, Michael

    2016-01-01

    The central nervous system (CNS), via its control of sympathetic outflow, regulates blood flow to the acral cutaneous beds (containing arteriovenous anastomoses) as part of the homeostatic thermoregulatory process, as part of the febrile response, and as part of cognitive-emotional processes associated with purposeful interactions with the external environment, including those initiated by salient or threatening events (we go pale with fright). Inputs to the CNS for the thermoregulatory process include cutaneous sensory neurons, and neurons in the preoptic area sensitive to the temperature of the blood in the internal carotid artery. Inputs for cognitive-emotional control from the exteroceptive sense organs (touch, vision, sound, smell, etc.) are integrated in forebrain centers including the amygdala. Psychoactive drugs have major effects on the acral cutaneous circulation. Interoceptors, chemoreceptors more than baroreceptors, also influence cutaneous sympathetic outflow. A major advance has been the discovery of a lower brainstem control center in the rostral medullary raphé, regulating outflow to both brown adipose tissue (BAT) and to the acral cutaneous beds. Neurons in the medullary raphé, via their descending axonal projections, increase the discharge of spinal sympathetic preganglionic neurons controlling the cutaneous vasculature, utilizing glutamate, and serotonin as neurotransmitters. Present evidence suggests that both thermoregulatory and cognitive-emotional control of the cutaneous beds from preoptic, hypothalamic, and forebrain centers is channeled via the medullary raphé. Future studies will no doubt further unravel the details of neurotransmitter pathways connecting these rostral control centers with the medullary raphé, and those operative within the raphé itself. © 2016 American Physiological Society. Compr Physiol 6:1161-1197, 2016. PMID:27347889

  18. Pediatric central nervous system vascular malformations

    Energy Technology Data Exchange (ETDEWEB)

    Burch, Ezra A. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Orbach, Darren B. [Boston Children' s Hospital, Neurointerventional Radiology, Boston, MA (United States)

    2015-09-15

    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  19. Autonomic nervous system response to L-dopa in patients with advanced Parkinson's disease.

    Science.gov (United States)

    Ruonala, Verneri; Tarvainen, Mika P; Karjalainen, Pasi A; Pekkonen, Eero; Rissanen, Saara M

    2015-01-01

    Levodopa is the main treatment method for reducing the symptoms of Parkinson's disease. Whereas it reduces the motor symptoms efficiently, its effect on autonomous nervous system is not clear. The information about effect of levodopa on heart rate variability is not coherent between the studies. In this study, ECG of 11 patients with Parkinson's disease was measured during levodopa challenge with pronounced dose of fast release levodopa to ensure the positive drug effect for deep brain stimulation treatment. Heart rate variability analysis was done at three time points, before administration of levodopa, 30 and 60 minutes after administration. After 30 minutes of administration, the HRV parameters show that parasympathetic nervous system activity is decreased and the sympatho-vagal balance is shifted towards sympathetic control. At 60 minutes after administration the parasympathetic nervous system activates slightly and causes a decrease in heart rate.

  20. Sympathetic Innervation Induced in Engrafted Engineered Cardiomyocyte Sheets by Glial Cell Line Derived Neurotrophic Factor In Vivo

    Directory of Open Access Journals (Sweden)

    Xian-ming Fu

    2013-01-01

    Full Text Available The aim of myocardial tissue engineering is to repair or regenerate damaged myocardium with engineered cardiac tissue. However, this strategy has been hampered by lack of functional integration of grafts with native myocardium. Autonomic innervation may be crucial for grafts to function properly with host myocardium. In this study, we explored the feasibility of in vivo induction of autonomic innervation to engineered myocardial tissue using genetic modulation by adenovirus encoding glial cell line derived neurotrophic factor (GDNF. GFP-transgene (control group or GDNF overexpressing (GDNF group engineered cardiomyocyte sheets were transplanted on cryoinjured hearts in rats. Nerve fibers in the grafts were examined by immunohistochemistry at 1, 2, and 4 weeks postoperatively. Growth associated protein-43 positive growing nerves and tyrosine hydroxylase positive sympathetic nerves were first detected in the grafts at 2 weeks postoperatively in control group and 1 week in GDNF group. The densities of growing nerve and sympathetic nerve in grafts were significantly increased in GDNF group. No choline acetyltransferase immunopositive parasympathetic nerves were observed in grafts. In conclusion, sympathetic innervation could be effectively induced into engrafted engineered cardiomyocyte sheets using GDNF.

  1. Exercise and the autonomic nervous system.

    Science.gov (United States)

    Fu, Qi; Levine, Benjamin D

    2013-01-01

    The autonomic nervous system plays a crucial role in the cardiovascular response to acute (dynamic) exercise in animals and humans. During exercise, oxygen uptake is a function of the triple-product of heart rate and stroke volume (i.e., cardiac output) and arterial-mixed venous oxygen difference (the Fick principle). The degree to which each of the variables can increase determines maximal oxygen uptake (V˙O2max). Both "central command" and "the exercise pressor reflex" are important in determining the cardiovascular response and the resetting of the arterial baroreflex during exercise to precisely match systemic oxygen delivery with metabolic demand. In general, patients with autonomic disorders have low levels of V˙O2max, indicating reduced physical fitness and exercise capacity. Moreover, the vast majority of the patients have blunted or abnormal cardiovascular response to exercise, especially during maximal exercise. There is now convincing evidence that some of the protective and therapeutic effects of chronic exercise training are related to the impact on the autonomic nervous system. Additionally, training induced improvement in vascular function, blood volume expansion, cardiac remodeling, insulin resistance and renal-adrenal function may also contribute to the protection and treatment of cardiovascular, metabolic and autonomic disorders. Exercise training also improves mental health, helps to prevent depression, and promotes or maintains positive self-esteem. Moderate-intensity exercise at least 30 minutes per day and at least 5 days per week is recommended for the vast majority of people. Supervised exercise training is preferable to maximize function capacity, and may be particularly important for patients with autonomic disorders. PMID:24095123

  2. Adipose afferent reflex: sympathetic activation and obesity hypertension.

    Science.gov (United States)

    Xiong, X-Q; Chen, W-W; Zhu, G-Q

    2014-03-01

    Excessive sympathetic activity contributes to the pathogenesis of hypertension and the progression of the related organ damage. Adipose afferent reflex (AAR) is a sympatho-excitatory reflex that the afferent activity from white adipose tissue (WAT) increases sympathetic outflow and blood pressure. Hypothalamic paraventricular nucleus (PVN or PVH) is one of the central sites in the control of the AAR, and ionotropic glutamate receptors in the nucleus mediate the AAR. The AAR is enhanced in obesity and obesity hypertension. Enhanced WAT afferent activity and AAR contribute to the excessive sympathetic activation and hypertension in obesity. Blockage of the AAR attenuates the excessive sympathetic activity and hypertension. Leptin may be one of sensors in the WAT for the AAR, and is involved in the enhanced AAR in obesity and hypertension. This review focuses on the neuroanatomical basis and physiological functions of the AAR, and the important role of the enhanced AAR in the pathogenesis of obesity hypertension.

  3. A comparison of sympathoadrenal activity and cardiac performance at rest and during exercise in patients with ventricular demand or atrial synchronous pacing.

    OpenAIRE

    Pehrsson, S K; Hjemdahl, P; Nordlander, R; Aström, H

    1988-01-01

    Cardiac sympathetic function was assessed by measuring the coronary sinus overflow of noradrenaline and dopamine at rest and during supine exercise in eight patients with high degree atrioventricular block treated with dual chamber pacemakers (DDD). Patients exercised (30-60 W) during both ventricular inhibited (VVI) and atrial synchronous (VAT) pacing. During exercise cardiac output increased less markedly in the VVI mode than in the VAT mode. The cardiac output response was entirely stroke ...

  4. Factors influencing the cardiac MIBG accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Takatsu, Hisato; Fujiwara, Hisayoshi [Gifu Univ. (Japan). School of Medicine

    1997-02-01

    Following factors possibly influencing the cardiac MIBG accumulation were examined mainly in mice. 1. The specific activity of the MIBG (meta-iodo-benzyl guanidine) on the neuronal and non-neuronal fractions. 2. Motor restriction stress on MIBG accumulation and washout. 3. Loading and restriction of sodium chloride on the accumulation and effect of suppression of renin-angiotensin system. 4. Examinations in Dahl rats. 125I- or 131I-MIBG was intravenously administered to mice at 74 kBq. At 30 min or 4 hr after administration, mice were sacrificed and their left ventricles were dissected out for measurement of radioactivity in a liquid scintillation counter. Salt-sensitive and -resistant Dahl rats were given with 37 MBq of 123I-MIBG and cardiac radioactivity was measured externally for calculation of washout. Factors examined were found highly correlated with the accumulation of MIBG and measurement of its washout was considered useful for evaluating sympathetic activity. (K.H.)

  5. Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie

    2011-07-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  6. Region-specific changes in sympathetic nerve activity in angiotensin II-salt hypertension in the rat.

    Science.gov (United States)

    Osborn, John W; Fink, Gregory D

    2010-01-01

    It is now well accepted that many forms of experimental hypertension and human essential hypertension are caused by increased activity of the sympathetic nervous system. However, the role of region-specific changes in sympathetic nerve activity (SNA) in the pathogenesis of hypertension has been difficult to determine because methods for chronic measurement of SNA in conscious animals have not been available. We have recently combined indirect, and continuous and chronic direct, assessment of region-specific SNA to characterize hypertension produced by administration of angiotensin II (Ang II) to rats consuming a high-salt diet (Ang II-salt hypertension). Angiotensin II increases whole-body noradrenaline (NA) spillover and depressor responses to ganglionic blockade in rats consuming a high-salt diet, but not in rats on a normal-salt diet. Despite this evidence for increased 'whole-body SNA' in Ang II-salt hypertensive rats, renal SNA is decreased in this model and renal denervation does not attenuate the steady-state level of arterial pressure. In addition, neither lumbar SNA, which largely targets skeletal muscle, nor hindlimb NA spillover is changed from control levels in Ang II-salt hypertensive rats. However, surgical denervation of the splanchnic vascular bed attenuates/abolishes the increase in arterial pressure and total peripheral resistance, as well as the decrease in vascular capacitance, observed in Ang II-salt hypertensive rats. We hypothesize that the 'sympathetic signature' of Ang II-salt hypertension is characterized by increased splanchnic SNA, no change in skeletal muscle SNA and decreased renal SNA, and this sympathetic signature creates unique haemodynamic changes capable of producing sustained hypertension. PMID:19717492

  7. Turo (Qi Dance Training Attenuates Psychological Symptoms and Sympathetic Activation Induced by Mental Stress in Healthy Women

    Directory of Open Access Journals (Sweden)

    Hwa-Jin Lee

    2009-01-01

    Full Text Available Vagal withdrawal and sympathetic overactivity accompany various types of stress. Qi training is reported to reduce sympathetic hyper-reactivity in a stressful situation. Turo, which is a type of dance that uses the Meridian Qi System, may reduce the psychological symptoms induced by an imbalance of the autonomic nervous system (ANS. We observed whether Turo training alters psychopathological and psychological symptoms using the Symptom Checklist 90-Revision (SCL-90-R and examined whether it attenuates the stress response to mental stress in healthy adolescent females using the power spectrum analysis of heart rate variability (HRV. Twenty-one subjects received Turo training and 27 subjects were trained with mimicking movements. The SCL-90-R was measured before and after the 2-month training period. Heart rate (HR, total power (TP and the LF/HF ratio of HRV were compared between the Turo and control groups during and after mental stress. The somatization and hostility subscales of the SCL-90-R of the Turo group were significantly lower than those of the control group after 2 months. The increases in HR and the LF/HF ratio of HRV induced by the stress test were significantly lower in the Turo group than in the control group. The TP of the Turo group was significantly higher than that of the control group. The psychological symptoms and sympathetic activation induced by the artificial stress were significantly reduced by the Turo training. These findings suggest that Turo training can play a critical role in attenuating psychological symptoms and stress-induced sympathetic activation.

  8. Effects of leptin on sympathetic nerve activity in conscious mice

    OpenAIRE

    Morgan, Donald A.; Despas, Fabien; Rahmouni, Kamal

    2015-01-01

    The adipocyte-derived hormone, leptin, has emerged as an important regulator of regional sympathetic nerve activity (SNA) with pathophysiological implications in obesity. Genetically engineered mice are useful to understand the molecular pathways underlying the SNA responses evoked by leptin. However, so far the effect of leptin on direct SNA in mice has been studied under general anesthesia. Here, we examined the sympathetic responses evoked by leptin in conscious mice. Mice were instrumente...

  9. Receptor-mediated regional sympathetic nerve activation by leptin.

    OpenAIRE

    Haynes, W G; Morgan, D A; Walsh, S A; Mark, A L; Sivitz, W I

    1997-01-01

    Leptin is a peptide hormone produced by adipose tissue which acts centrally to decrease appetite and increase energy expenditure. Although leptin increases norepinephrine turnover in thermogenic tissues, the effects of leptin on directly measured sympathetic nerve activity to thermogenic and other tissues are not known. We examined the effects of intravenous leptin and vehicle on sympathetic nerve activity to brown adipose tissue, kidney, hindlimb, and adrenal gland in anesthetized Sprague-Da...

  10. Centrally administered glucagon stimulates sympathetic nerve activity in rat.

    Science.gov (United States)

    Krzeski, R; Czyzyk-Krzeska, M F; Trzebski, A; Millhorn, D E

    1989-12-18

    The effect of pancreatic glucagon given intravenously, intracerebroventricularly and microinjected into the nucleus of the solitary tract on sympathetic activity in the cervical trunk and adrenal nerve was examined in rat. In each case glucagon caused a relatively long-lasting substantial increase in discharge of both nerves. This finding shows that glucagon can act centrally to stimulate sympathetic activity. The most probable site for the sympathoexcitatory effect of glucagon is the nucleus of the solitary tract. PMID:2598031

  11. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons

    OpenAIRE

    Holstein, Gay R.; Friedrich, Victor L. Jr.; Martinelli, Giorgio P.

    2016-01-01

    The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and ...

  12. Cross-talk between sympathetic neurons and adipocytes in coculture

    OpenAIRE

    Turtzo, L. Christine; Marx, Ruth; Lane, M. Daniel

    2001-01-01

    White adipose tissue plays an integral role in energy metabolism and is governed by endocrine, autocrine, and neural signals. Neural control of adipose metabolism is mediated by sympathetic neurons that innervate the tissue. To investigate the effects of this innervation, an ex vivo system was developed in which 3T3-L1 adipocytes are cocultured with sympathetic neurons isolated from the superior cervical ganglia of newborn rats. In coculture, both adipocytes and neurons exhibit appropriate mo...

  13. Involvement of the autonomic nervous system in the in vivo memory to glucose of pancreatic beta cell in rats.

    OpenAIRE

    N'Guyen, J M; C. Magnan; Laury, M C; Thibault, C.; Leveteau, J; Gilbert, M.; Pénicaud, L.; Ktorza, A

    1994-01-01

    The fact that the potentiating effect of prolonged hyperglycemia on the subsequent insulin secretion is observed in vivo but not in vitro suggests the involvement of extrapancreatic factors in the in vivo memory of pancreatic beta cells to glucose. We have investigated the possible role of the autonomic nervous system. Rats were made hyperglycemic by a 48-h infusion with glucose (HG rats). At the end of glucose infusion as well as 6 h postinfusion, both parasympathetic and sympathetic nerve a...

  14. Characteristics of renal sympathetic nerve single units in rabbits with angiotensin-induced hypertension.

    Science.gov (United States)

    Burke, Sandra L; Lukoshkova, Elena V; Head, Geoffrey A

    2016-01-01

    We examined the effect of chronic angiotensin (Ang II)-induced hypertension on activity of postganglionic renal sympathetic units to determine whether altered whole renal nerve activity is due to recruitment or changes in firing frequency. Rabbits were treated with a low (20 ng kg(-1) min(-1), 8 weeks) or high dose (50 ng kg(-1) min(-1), 4 weeks) of Ang II before the experiment under chloralose-urethane anaesthesia. Spontaneously active units were detected from multiunit recordings using an algorithm that separated units by action potential shape using templates that matched spikes within a prescribed standard deviation. Multiunit sympathetic nerve activity was 40% higher in rabbits treated with low-dose Ang II than in sham (P = 0.012) but not different in high-dose Ang II. Resting firing frequency was similar in sham rabbits (1.00 ± 0.09 spikes s(-1), n = 144) and in those treated with high-dose Ang II (1.10 ± 0.08 spikes s(-1), n = 112) but was lower with low-dose Ang II (0.65 ± 0.08 spikes s(-1), n = 149, P < 0.05). Unit firing rhythmicity was linked to the cardiac cycle and was similar in sham and low-dose Ang II groups but 29-32% lower in rabbits treated with high-dose Ang II (P < 0.001). Cardiac linkage followed a similar pattern during hypoxia. All units showed baroreceptor dependency. Baroreflex gain and range were reduced and curves shifted to the right in Ang II groups. Firing frequency during hypoxia increased by +39% in low-dose Ang II and +82% in shams, but the greatest increase was in the high-dose Ang II group (+103%, P(dose) = 0.001). Responses to hypercapnia were similar in all groups. Increases in sympathetic outflow in hypertension caused by low-dose chronic Ang II administration are due to recruitment of neurons, but high-dose Ang II increases firing frequency in response to chemoreceptor stimuli independently of the arterial baroreceptors. PMID:26467849

  15. Paroxysmal sympathetic hyperactivity in neurological critical care

    Directory of Open Access Journals (Sweden)

    Rajesh Verma

    2015-01-01

    Full Text Available Introduction: Paroxysmal sympathetic hyperactivity (PSH is a clinical disorder mainly caused by traumatic brain injury, stroke, encephalitis and other types of brain injury. The clinical features are episodes of hypertension, tachycardia, tachypnea, fever and dystonic postures. In this study, we described clinical profile and outcome of six patients of PSH admitted in neurocritical care unit. Materials and Methods: This was a prospective observational study conducted at neurology critical care unit of a tertiary care center. All patients admitted at neurology critical unit during 6-month period from August 2013 to January 2014 were screened for the occurrence of PSH. The clinical details and outcome was documented. Results: PSH was observed in 6 patients. Male to female ratio was 5:1. Mean age ± SD was 36.67 ± 15.19 years. The leading causes were traumatic brain injury (two patients, stroke (two patients and Japanese encephalitis (JE (one patient and tuberculous meningitis (one patient. Conclusion: PSH is an unusual complication in neurocritical care. It prolonged the hospitalization and hampers recovery. The other life-threatening conditions that mimic PSH should be excluded. The association with JE and tuberculous meningitis was not previously described in literature.

  16. Reduced CGP12177 binding to cardiac {beta}-adrenoceptors in hyperglycemic high-fat-diet-fed, streptozotocin-induced diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Thackeray, James T.; Parsa-Nezhad, Maryam; Kenk, Miran; Thorn, Stephanie L. [Molecular Function and Imaging Program, National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y4W7 (Canada); Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Roger Guindon Hall, Ottawa, Ontario, K1H8M5 (Canada); Kolajova, Maria [Molecular Function and Imaging Program, National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y4W7 (Canada); Beanlands, Rob S.B. [Molecular Function and Imaging Program, National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y4W7 (Canada); Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Roger Guindon Hall, Ottawa, Ontario, K1H8M5 (Canada); DaSilva, Jean N., E-mail: jdasilva@ottawaheart.ca [Molecular Function and Imaging Program, National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y4W7 (Canada); Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Roger Guindon Hall, Ottawa, Ontario, K1H8M5 (Canada)

    2011-10-15

    Introduction: Abnormal sympathetic nervous system and {beta}-adrenoceptor ({beta}-AR) signaling is associated with diabetes. [{sup 3}H]CGP12177 is a nonselective {beta}-AR antagonist that can be labeled with carbon-11 for positron emission tomography. The aim of this study was to examine the suitability of this tracer for evaluation of altered {beta}-AR expression in diabetic rat hearts. Methods: Ex vivo biodistribution with [{sup 3}H]CGP12177 was carried out in normal Sprague-Dawley rats for evaluation of specific binding and response to continuous {beta}-AR stimulation by isoproterenol. In a separate group, high-fat-diet feeding imparted insulin resistance and a single intraperitoneal injection of streptozotocin (STZ) or vehicle evoked hyperglycemia (blood glucose >11 mM). [{sup 3}H]CGP12177 biodistribution was assessed at 2 and 8 weeks post-STZ to measure {beta}-AR binding in heart, 30 min following tracer injection. Western blotting of {beta}-AR subtypes was completed in parallel. Results: Infusion of isoproterenol over 14 days did not affect cardiac binding of [{sup 3}H]CGP12177. Approximately half of rats treated with STZ exhibited sustained hyperglycemia and progressive hypoinsulinemia. Myocardial [{sup 3}H]CGP12177 specific binding was unchanged at 2 weeks post-STZ but significantly reduced by 30%-40% at 8 weeks in hyperglycemic but not euglycemic STZ-treated rats compared with vehicle-treated controls. Western blots supported a significant decrease in {beta}{sub 1}-AR in hyperglycemic rats. Conclusions: Reduced cardiac [{sup 3}H]CGP12177 specific binding in the presence of sustained hyperglycemia corresponds to a decrease in relative {beta}{sub 1}-AR expression. These data indirectly support the use of [{sup 11}C]CGP12177 for assessment of cardiac dysfunction in diabetes.

  17. Recent evidence for activity-dependent initiation of sympathetic sprouting and neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    Jun-Ming ZHANG; Judith A. Strong

    2008-01-01

    Traumatic injury or inflammatory irritation of the peripheral nervous system often leads to persistent pathophysiological pain states. It has been well-documented that, after peripheral nerve injury or inflammation, functional and anatomical alterations sweep over the entire peripheral nervous system including the peripheral nerve endings, the injured or inflamed afferent fibers, the dorsal root ganglion (DRG), and the central afferent terminals in the spinal cord. Among all the changes, ectopic discharge or spontaneous activity of primary sensory neurons is of great clinical interest, as such discharges doubtless contribute to the develop-ment of pathological pain states such as neuropathic pain. Two key sources of abnormal spontaneous activity have been identified following peripheral nerve injury: the injured afferent fibers (neuroma) leading to the DRG, and the DRG somata. The purpose of this review is to provide a global account of the abnormal spontaneous activity in various animal models of pain. Particular attention is focused on the consequence of peripheral nerve injury and localized inflammation. Further, mechanisms involved in the generation of spontaneous activity are also reviewed; evidence of spontaneous activity in contributing to abnormal sympathetic sprouting in the axotomized DRG and to the initiation of neuropathic pain based on new findings from our research group are discussed. An improved understanding of the causes of spontaneous activity and the origins of neuropathic pain should facilitate the development of novel strategies for effective treatment of pathological pain.

  18. The nervous systems of cnidarians

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Westfall, J A

    1995-01-01

    Cnidarians have simple nervous systems and it was probably within this group or a closely-related ancestor that nervous systems first evolved. The basic plan of the cnidarian nervous system is that of a nerve net which, at some locations, has condensed to form nerve plexuses, or circular...... specialized neurons that we find in higher animals today. The primitive nervous system of cnidarians is strongly peptidergic: from a single sea anemone species Anthopleura elegantissima, we have now isolated 16 different novel neuropeptides. These peptides are biologically active and cause inhibitions...... that the peptides are located in neuronal dense-cored vesicles associated with both synaptic and non-synaptic release sites. All these data indicate that evolutionarily "old" nervous systems use peptides as transmitters. We have also investigated the biosynthesis of the cnidarian neuropeptides. These neuropeptides...

  19. Dynamic analysis of mental sweating and the peripheral vessels for the activity of the autonomic nervous system by optical coherence tomography

    Science.gov (United States)

    Ohmi, Masato; Takada, Daisuke; Wada, Yuki; Haruna, Masamitsu

    2012-01-01

    OCT is highly potential for dynamic analysis of physiological functions of mental sweating and peripheral vessels as demonstrated by the authors. Both mental sweating and the peripheral vessels reflect the activity of the sympathetic nerve of the autonomic nervous system (ANS). The sympathetic nerve also exhibits the LF/HF ratio of the heart rate variability (HRV). In this paper, we demonstrate dynamic analysis of mental sweating and the peripheral vessels for the external stimulus by SS-OCT. In the experiment, the Kraepelin test as a continuous stimulus was applied to the volunteer to discuss in detail dynamics of the physiological function of such small organs in response to the HRV.

  20. Iodine-123 metaiodobenzylguanidine imaging of the heart in idiopathic congestive cardiomyopathy and cardiac transplants

    Energy Technology Data Exchange (ETDEWEB)

    Glowniak, J.V.; Turner, F.E.; Gray, L.L.; Palac, R.T.; Lagunas-Solar, M.C.; Woodward, W.R.

    1989-07-01

    Iodine-123 metaiodobenzylguanidine ((/sup 123/I)MIBG) is a norepinephrine analog which can be used to image the sympathetic innervation of the heart. In this study, cardiac imaging with (/sup 123/I)MIBG was performed in patients with idiopathic congestive cardiomyopathy and compared to normal controls. Initial uptake, half-time of tracer within the heart, and heart to lung ratios were all significantly reduced in patients compared to normals. Uptake in lungs, liver, salivary glands, and spleen was similar in controls and patients with cardiomyopathy indicating that decreased MIBG uptake was not a generalized abnormality in these patients. Iodine-123 MIBG imaging was also performed in cardiac transplant patients to determine cardiac nonneuronal uptake. Uptake in transplants was less than 10% of normals in the first 2 hr and nearly undetectable after 16 hr. The decreased uptake of MIBG suggests cardiac sympathetic nerve dysfunction while the rapid washout of MIBG from the heart suggests increased cardiac sympathetic nerve activity in idiopathic congestive cardiomyopathy.

  1. Reduced cardiac {sup 123}I-metaiodobenzylguanidine uptake in patients with spinocerebellar ataxia type 2: a comparative study with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    De Rosa, Anna; De Leva, Maria Fulvia; Maddaluno, Gennaro; Filla, Alessandro; De Michele, Giuseppe [University Federico II, Department of Neurosciences and Reproductive and Odontostomatologic Sciences, Naples (Italy); Pappata, Sabina; Pellegrino, Teresa [National Council of Research, Institute of Biostructure and Bioimaging, Naples (Italy); Fiumara, Giovanni [Institute of Diagnostic and Nuclear Development, SDN Foundation, Naples (Italy); Carotenuto, Raffaella; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy); Petretta, Mario [University Federico II, Department of Translational Medical Sciences, Naples (Italy)

    2013-12-15

    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disorder characterized by cerebellar ataxia, supranuclear ophthalmoplegia, and peripheral neuropathy. Autonomic nervous system dysfunction is often present. This study evaluated the cardiac sympathetic function in patients with SCA2 using {sup 123}I-metaiodobenzylguanidine (MIBG) in comparison with patients with Parkinson's disease (PD) and control subjects. Nine patients with SCA2, nine patients with PD, and nine control subjects underwent {sup 123}I-MIBG imaging studies from which early and late heart-to-mediastinum (H/M) ratios and myocardial washout rates were calculated. Early (F = 12.3, p < 0.0001) and late (F = 16.8, p < 0.0001) H/M ratios were significantly different among groups. In controls, early and late H/M ratios (2.2 {+-} 0.12 and 2.1 {+-} 0.20) were significantly higher than in patients with SCA2 (1.9 {+-} 0.23 and 1.8 {+-} 0.20, both p < 0.05) and with patients with PD (1.7 {+-} 0.29 and 1.4 {+-} 0.35, both p < 0.001). There was also a significant difference in washout rates among groups (F = 11.7, p < 0.0001). In controls the washout rate (19.9 {+-} 9.6 %) was significantly lower (p < 0.005) than in patients with PD (51.0 {+-} 23.7 %), but not different from that in SCA2 patients (19.5 {+-} 9.4 %). In SCA2 patients, in a multivariable linear regression analysis only the Scale for the Assessment and Rating of Ataxia score was independently associated with early H/M ratio ({beta} = -0.12, p < 0.05). {sup 123}I-MIBG myocardial scintigraphy demonstrated an impairment of cardiac sympathetic function in patients with SCA2, which was less marked than in PD patients. These results suggest that {sup 123}I-MIBG cardiac imaging could become a useful tool for analysing the pathophysiology of SCA2. (orig.)

  2. Sympathetic cooling of ytterbium with rubidium

    International Nuclear Information System (INIS)

    Within the scope of this thesis, a mixture of ultracold ytterbium and rubidium atoms was experimentally realized and investigated. For these experiments, a novel trap geometry was developed which allows simultaneous trapping and cooling of diamagnetic and paramagnetic atomic species. The main focus was put on the investigation of the interspecies scattering properties, where sympathetic cooling of ytterbium through elastic collisions with rubidium could be demonstrated. In addition, the interspecies scattering length could be determined. In the current configuration the combined trap allows the preparation of up to 2.105 atoms of 170Yb, 171Yb, 172Yb, 174Yb or 176Yb at a temperature of 40..60 μK and a density in the range of 1012 cm-3, and of about 10787Rb atoms at a temperature of 25 μK and a density in the range of 5.1011 cm-3. Detailed studies of the thermalization of bosonic 170Yb, 172Yb, 174Yb and 176Yb and of fermionic 171Yb each with 87Rb were performed under varying experimental conditions. The deduced total scattering cross section was clearly found to increase with higher mass of the ytterbium isotope. In general, a mass scaling of the scattering properties is in agreement with theoretical models and former experimental work. With the assumption of pure s-wave scattering, which is approximately fulfilled for the given experimental parameters, the interspecies scattering length could be derived from the measured thermalization data and was found to be (in units of the Bohr radius a0): 170Yb-87Rb:(18+12-4)a0, 171Yb-87Rb:(25+14-7)a0, 172Yb-87Rb:(33+23-7)a0, 174Yb-87Rb:(83+89-25)a0, 176Yb-87Rb:(127+245-45)a0. (orig./HSI)

  3. Development of sympathetic ophthalmia following globe injury

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; ZHANG Mao-nian; JIANG Cai-hui; YAO Yi

    2009-01-01

    Background Sympathetic ophthalmia (SO), a rare, bilateral, diffuse granulomatous uveitis, usually occurs after open globe injury or intraocular surgery. We sought to identify the risk factors for the development of SO after open globe injury and describe their demographic and clinical features and outcomes of treatments.Methods A retrospective study of inpatients with globe injury in 15 tertiary referral hospitals of China from January 2001 to December 2005 was conducted. The information of demography, nature and mechanism of injury, time and ways of treatments and outcomes was reviewed. Diagnosis of SO was made based on a history of ocular trauma or surgery and subsequent development of bilateral or contralateral uveitis consistent with SO. Any association between related parameters and development of SO was analyzed.Results Among 9103 patients (9776 eyes) of globe injury, SO occurred after open globe injury in 18 cases with an occurrence rate of 0.37%, vitrectomy of closed globe injury in 2 (0.37%) and perforation of burned eyes in another 2. For open globe injury, the median age ((36.72±13.59) years, P=0.01) was higher in patients with SO; there were no significant effects of sexes, injury type, uvea proplaps, once or multi-intraocular surgery, once or multi-vitrectomy and endophthalmitis on incidence of SO; 0.70% endophthalmitis concurred with SO; 83.33% of SO occurred within 1 year after injury or last ocular surgery. SO developed in a fellow eye one week after evisceration of the perforating burned eye. Good final visual acuity was obtained in sympathizing eyes with prompt treatment.Conclusions For open globe injuries, SO sufferers were relatively older and any injury type could induce SO with equal possibility. The initial open globe injury was more likely to be the trigger of SO than subsequent intraocular surgeries including vitrectomy. Prophylactic enucleation after injury is not recommended.

  4. Central nervous system tumors

    International Nuclear Information System (INIS)

    Central nervous system (CNS) tumors are relatively common in veterinary medicine, with most diagnoses occurring in the canine and feline species. Numerous tumor types from various cells or origins have been identified with the most common tumors being meningiomas and glial cell tumors. Radiation therapy is often used as an aid to control the clinical signs associated with these neoplasms. In general, these tumors have a very low metastatic potential, such that local control offers substantial benefit. Experience in veterinary radiation oncology would indicate that many patients benefit from radiation treatment. Current practice indicates the need for computed tomography or magnetic resonance imaging studies. These highly beneficial studies are used for diagnosis, treatment planning, and to monitor treatment response. Improvements in treatment planning and radiation delivered to the tumor, while sparing the normal tissues, should improve local control and decrease potential radiation related problems to the CNS. When possible, multiple fractions of 3 Gy or less should be used. The tolerance dose to the normal tissue with this fractionation schedule is 50 to 55 Gy. The most common and serious complications of radiation for CNS tumors is delayed radiation myelopathy and necrosis. Medical management of the patient during radiation therapy requires careful attention to anesthetic protocols, and medications to reduce intracranial pressure that is often elevated in these patients. Canine brain tumors have served as an experimental model to test numerous new treatments. Increased availability of advanced imaging modalities has spawned increased detection of these neoplasms. Early detection of these tumors with appropriate aggressive therapy should prove beneficial to many patients

  5. Cardiac rhabdomyosarcoma

    OpenAIRE

    Chlumský, Jaromír; Holá, Dana; Hlaváček, Karel; Michal, Michal; Švec, Alexander; Špatenka, Jaroslav; Dušek, Jan

    2001-01-01

    Cardiac sarcoma is a very rare neoplasm and is difficult to diagnose. The case of a 51-year-old man with a left atrial tumour, locally recurrent three months after its surgical removal, is presented. Computed tomography showed metastatic spread to the lung parenchyma. On revised histology, the mass extirpated was a sarcoma. Because of the metastatic spread, further therapy was symptomatic only; the patient died 15 months after the first manifestation of his problems. Immunohistochemical stain...

  6. Depression and Cardiac Disease: Epidemiology, Mechanisms, and Diagnosis

    OpenAIRE

    Huffman, Jeff C.; Christopher M Celano; Beach, Scott R.; Shweta R. Motiwala; Januzzi, James L.

    2013-01-01

    In patients with cardiovascular disease (CVD), depression is common, persistent, and associated with worse health-related quality of life, recurrent cardiac events, and mortality. Both physiological and behavioral factors—including endothelial dysfunction, platelet abnormalities, inflammation, autonomic nervous system dysfunction, and reduced engagement in health-promoting activities—may link depression with adverse cardiac outcomes. Because of the potential impact of depression on quality of...

  7. The evolution of the serotonergic nervous system

    DEFF Research Database (Denmark)

    Hay-Schmidt, Anders

    2000-01-01

    Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion......Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion...

  8. Effect of acute ozone induced airway inflammation on human sympathetic nerve traffic: a randomized, placebo controlled, crossover study.

    Directory of Open Access Journals (Sweden)

    Jens Tank

    Full Text Available BACKGROUND: Ozone concentrations in ambient air are related to cardiopulmonary perturbations in the aging population. Increased central sympathetic nerve activity induced by local airway inflammation may be one possible mechanism. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate this issue further, we performed a randomized, double-blind, cross-over study, including 14 healthy subjects (3 females, age 22-47 years, who underwent a 3 h exposure with intermittent exercise to either ozone (250 ppb or clean air. Induced sputum was collected 3 h after exposure. Nineteen to 22 hours after exposure, we recorded ECG, finger blood pressure, brachial blood pressure, respiration, cardiac output, and muscle sympathetic nerve activity (MSNA at rest, during deep breathing, maximum-inspiratory breath hold, and a Valsalva maneuver. While the ozone exposure induced the expected airway inflammation, as indicated by a significant increase in sputum neutrophils, we did not detect a significant estimated treatment effect adjusted for period on cardiovascular measurements. Resting heart rate (clean air: 59±2, ozone 60±2 bpm, blood pressure (clean air: 121±3/71±2 mmHg; ozone: 121±2/71±2 mmHg, cardiac output (clean air: 7.42±0.29 mmHg; ozone: 7.98±0.60 l/min, and plasma norepinephrine levels (clean air: 213±21 pg/ml; ozone: 202±16 pg/ml, were similar on both study days. No difference of resting MSNA was observed between ozone and air exposure (air: 23±2, ozone: 23±2 bursts/min. Maximum MSNA obtained at the end of apnea (air: 44±4, ozone: 48±4 bursts/min and during the phase II of the Valsalva maneuver (air: 64±5, ozone: 57±6 bursts/min was similar. CONCLUSIONS/SIGNIFICANCE: Our study suggests that acute ozone-induced airway inflammation does not increase resting sympathetic nerve traffic in healthy subjects, an observation that is relevant for environmental health. However, we can not exclude that chronic airway inflammation may contribute to sympathetic

  9. Central and cerebrovascular effects of leg crossing in humans with sympathetic failure

    NARCIS (Netherlands)

    M.P. Harms; W. Wieling; W.N. Colier; J.W. Lenders; N.H. Secher; J.J. van Lieshout

    2010-01-01

    Leg crossing increases arterial pressure and combats symptomatic orthostatic hypotension in patients with sympathetic failure This study compared the central and cerebrovascular effects of leg crossing in patients with sympathetic failure and healthy controls. We addressed the relationship between M

  10. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients.

    NARCIS (Netherlands)

    Heusser, K.; Tank, J.; Engeli, S.; Diedrich, A.; Menne, J.; Eckert, S.; Peters, T.; Sweep, F.C.; Haller, H.; Pichlmaier, A.M.; Luft, F.C.; Jordan, J.

    2010-01-01

    In animals, electric field stimulation of carotid baroreceptors elicits a depressor response through sympathetic inhibition. We tested the hypothesis that the stimulation acutely reduces sympathetic vasomotor tone and blood pressure in patients with drug treatment-resistant arterial hypertension. Fu

  11. Cardiac contractility, central haemodynamics and blood pressure regulation during semistarvation

    DEFF Research Database (Denmark)

    Stokholm, K H; Breum, L; Astrup, A

    1991-01-01

    pressure (BP) declined. The fall in BP was caused by the reduction in cardiac output as the total peripheral resistance was unchanged. Finally, the decline in total blood volume was not significant. These findings together with a reduction in heart rate indicated that a reduced sympathetic tone via......Eight obese patients were studied before and after 2 weeks of treatment by a very-low-calorie diet (VLCD). Cardiac output and central blood volume (pulmonary blood volume and left atrial volume) were determined by indicator dilution (125I-albumin) and radionuclide angiocardiography (first pass...... and equilibrium technique by [99Tcm]red blood cells). Cardiac output decreased concomitantly with the reduction in oxygen uptake as the calculated systemic arteriovenous difference of oxygen was unaltered. There were no significant decreases in left ventricular contractility indices, i.e. the ejection fraction...

  12. Connection of supreme nervous functioning’s neuro-dynamic characteristics with success of junior sportsmen in sports dances

    Directory of Open Access Journals (Sweden)

    Korobeynikov G.V.

    2016-08-01

    Full Text Available Purpose: to find peculiar features of neuro-dynamic characteristics of 14-15 years’ age sportsmen in sport dances and their influence on successfulness. Material: we tested 32 qualified dancers of 15-16 years’ age. Results: it was found that high workability and reduced anxiety level of dancers with higher successfulness is accompanied by sympathetic adrenalin system’s activation, resulted from mobilization of organism’s adaptation resources. The presence of nervous processes’ high mobility and increase of quickness of information perception and processing are the keys to success in sport dances. It was proved that success in sport dances is connected with nervous processes’ balance and facilitates higher organization of psycho-motor skills. It is also conditioned by concentration on fulfillment of motor skills, accompanied by reduction of nervous processes’ lability. Conclusions: we found connection between individual-typological characteristics of junior dancers’ high nervous functioning. We also determined that high workability and reduced anxiety of sportsmen with high successfulness is accompanied by sympathetic adrenalin system’s activation, resulted from mobilization of organism’s adaptation resources. It follows form mobilization of organism’s adaptation resources. Increase of accuracy and stability of motor skills’ realization reduces the level of junior dancers’ psycho-motor productivity.

  13. Vasomotor sympathetic outflow in the muscle metaboreflex in low birth weight young adults

    Directory of Open Access Journals (Sweden)

    Chifamba J

    2015-05-01

    Full Text Available Jephat Chifamba,1 Brilliant Mbangani,1 Casper Chimhete,1 Lenon Gwaunza,1 Larry A Allen,2 Herbert Mapfumo Chinyanga1 1Department of Physiology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe; 2Section of Advanced Heart Failure and Transplantation, University of Colorado School of Medicine, Aurora, CO, USA Abstract: A growing body of evidence suggests that low birth weight (LBW offspring are associated with long-term structural and functional changes in cardiovascular and neuroendocrine systems. We tested the hypothesis that muscle metaboreflex activation produces exaggerated responses in cardiac autonomic tone (represented by heart rate variability ratio and cutaneous vascular sympathetic tone (represented by plethysmography pulse wave amplitude in LBW compared to normal birth weight (NBW young adults. We recruited 23 LBW (18 females and five males and 23 NBW (14 females and nine males University of Zimbabwe students with neonatal clinical cards as proof of birth weight at term. Resting electrocardiogram, pulse waves, and blood pressures were recorded. Participants then underwent a static/isometric handgrip exercise until fatigue and a post-exercise circulatory arrest period of 2 minutes. We observed (results mean ± standard deviation a greater mean increase in heart rate variability ratio from baseline to exercise for LBW compared to NBW individuals (1.015±1.034 versus [vs] 0.119±0.789, respectively; P<0.05. We also observed a greater mean decrease in plethysmography pulse wave amplitude from baseline to exercise (-1.32±1.064 vs -0.735±0.63; P<0.05 and from baseline to post-exercise circulatory arrest (-0.932±0.998 vs -0.389±0.563; P<0.05 for LBW compared to NBW individuals. We conclude that LBW may be associated with an exaggerated sympathetic discharge in response to muscle metaboreflex. Keywords: blood pressure, heart rate variability, plethysmography pulse

  14. Mechanisms mediating renal sympathetic nerve activation in obesity-related hypertension.

    Science.gov (United States)

    Chen, W; Leo, S; Weng, C; Yang, X; Wu, Y; Tang, X

    2015-04-01

    Excessive renal sympathetic nerve activation may be one of the mechanisms underlying obesity-related hypertension. Impaired baroreflex sensitivity, adipokine disorders-such as leptin, adiponectin, and resistin-activation of the renin-angiotensin system, hyperinsulinemia, insulin resistance, and renal sodium retention present in obesity increase renal sympathetic nerve activity, thus contributing to the development of hypertension. Renal sympathetic denervation reduces both renal sympathetic activity and blood pressure in patients with obesity-related hypertension. PMID:24609799

  15. A comparison of sympathetic and conventional training methods on responses to initial horse training

    NARCIS (Netherlands)

    Visser, E.K.; Dierendonck, van M.; Ellis, A.D.; Rijksen, C.; Reenen, van C.G.

    2009-01-01

    In `sympathetic horsemanship¿ the importance of the natural behaviour of the horse and the use of body language in communication is emphasised. However, it is unclear what effect sympathetic horsemanship has on the welfare of horses. During a 5-week starting period the effect of a sympathetic (ST) v

  16. When do the symptoms of autonomic nervous system malfunction appear in patients with Parkinson’s disease?

    Directory of Open Access Journals (Sweden)

    De Luka Silvio R.

    2014-01-01

    Full Text Available Background/Aim. Dysautonomia appears in almost all patients with Parkinson’s disease (PD in a certain stage of their condition. The aim of our study was to detect the development and type of autonomic disorders, find out the factors affecting their manifestation by analyzing the potential association with demographic variables related to clinical presentation, as well as the symptoms of the disease in a PD patient cohort. Methods. The patients with PD treated at the Clinic of Neurology in Belgrade during a 2-year period, divided into 3 groups were studied: 25 de novo patients, 25 patients already treated and had no long-term levodopa therapy-related complications and 22 patients treated with levodopa who manifested levodopa-induced motor complications. Simultaneously, 35 healthy control subjects, matched by age and sex, were also analyzed. Results. Autonomic nervous system malfunction was defined by Ewing diagnostic criteria. The tests, indicators of sympathetic and parasympathetic nervous systems, were significantly different in the PD patients as compared with the controls, suggesting the failure of both systems. However, it was shown, in the selected groups of patients, that the malfunction of both systems was present in two treated groups of PD patients, while de novo group manifested only sympathetic dysfunction. For this reason, the complete autonomic neuropathy was diagnosed only in the treated PD patients, while de novo patients were defined as those with the isolated sympathetic dysfunction. The patients with the complete autonomic neuropathy differed from the subjects without such neuropathy in higher cumulative and motor unified Parkinson’s disease rating score (UPDRS (p < 0.01, activities of daily living scores (p < 0.05, Schwab-England scale (p < 0.001 and Hoehn-Yahr scale. There was no difference between the patients in other clinical-demographic characteristics (sex, age at the time of diagnosis, actual age, duration of

  17. Effects of leptin on sympathetic nerve activity in conscious mice.

    Science.gov (United States)

    Morgan, Donald A; Despas, Fabien; Rahmouni, Kamal

    2015-09-01

    The adipocyte-derived hormone, leptin, has emerged as an important regulator of regional sympathetic nerve activity (SNA) with pathophysiological implications in obesity. Genetically engineered mice are useful to understand the molecular pathways underlying the SNA responses evoked by leptin. However, so far the effect of leptin on direct SNA in mice has been studied under general anesthesia. Here, we examined the sympathetic responses evoked by leptin in conscious mice. Mice were instrumented, under ketamine/xylazine anesthesia, with renal or lumbar SNA recordings using a thin (40 gauge) bipolar platinum-iridium wire. The electrodes were exteriorized at the nape of the neck and mice were allowed (5 h) to recover from anesthesia. Interestingly, the reflex increases in renal and lumbar SNA caused by sodium nitroprusside (SNP)-induced hypotension was higher in the conscious phase versus the anesthetized state, whereas the increase in both renal and lumbar SNA evoked by leptin did not differ between anesthetized or conscious mice. Next, we assessed whether isoflurane anesthesia would yield a better outcome. Again, the SNP-induced increase in renal SNA and baroreceptor-renal SNA reflex were significantly elevated in the conscious states relative to isoflurane-anesthetized phase, but the renal SNA response induced by leptin in the conscious states were qualitatively comparable to those evoked above. Thus, despite improvement in sympathetic reflexes in conscious mice the sympathetic responses evoked by leptin mimic those induced during anesthesia. PMID:26381017

  18. Axillary Brachial Plexus Blockade for the Reflex Sympathetic Dystrophy Syndrome.

    Science.gov (United States)

    Ribbers, G. M.; Geurts, A. C. H.; Rijken, R. A. J.; Kerkkamp, H. E. M.

    1997-01-01

    Reflex sympathetic dystrophy syndrome (RSD) is a neurogenic pain syndrome characterized by pain, vasomotor and dystrophic changes, and often motor impairments. This study evaluated the effectiveness of brachial plexus blockade with local anaesthetic drugs as a treatment for this condition. Three patients responded well; three did not. (DB)

  19. Baroreflex control of sympathetic activity in experimental hypertension

    Directory of Open Access Journals (Sweden)

    M.C.C. Irigoyen

    1998-09-01

    Full Text Available The arterial baroreceptor reflex system is one of the most powerful and rapidly acting mechanisms for controlling arterial pressure. The purpose of the present review is to discuss data relating sympathetic activity to the baroreflex control of arterial pressure in two different experimental models: neurogenic hypertension by sinoaortic denervation (SAD and high-renin hypertension by total aortic ligation between the renal arteries in the rat. SAD depresses baroreflex regulation of renal sympathetic activity in both the acute and chronic phases. However, increased sympathetic activity (100% was found only in the acute phase of sinoaortic denervation. In the chronic phase of SAD average discharge normalized but the pattern of discharges was different from that found in controls. High-renin hypertensive rats showed overactivity of the renin angiotensin system and a great depression of the baroreflexes, comparable to the depression observed in chronic sinoaortic denervated rats. However, there were no differences in the average tonic sympathetic activity or changes in the pattern of discharges in high-renin rats. We suggest that the difference in the pattern of discharges may contribute to the increase in arterial pressure lability observed in chronic sinoaortic denervated rats.

  20. Prolonged Paroxysmal Sympathetic Storming Associated with Spontaneous Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2013-01-01

    Full Text Available Paroxysmal sympathetic storming (PSS is a rare disorder characterized by acute onset of nonstimulated tachycardia, hypertension, tachypnea, hyperthermia, external posturing, and diaphoresis. It is most frequently associated with severe traumatic brain injuries and has been reported in intracranial tumors, hydrocephalous, severe hypoxic brain injury, and intracerebral hemorrhage. Although excessive release of catecholamine and therefore increased sympathetic activities have been reported in subarachnoid hemorrhage (SAH, there is no descriptive report of PSS primarily caused by spontaneous SAH up to date. Here, we report a case of prolonged PSS in a patient with spontaneous subarachnoid hemorrhage and consequent vasospasm. The sympathetic storming started shortly after patient was rewarmed from hypothermia protocol and symptoms responded to Labetalol, but intermittent recurrence did not resolve until 3 weeks later with treatment involving Midazolam, Fentanyl, Dexmedetomidine, Propofol, Bromocriptine, and minimizing frequency of neurological and vital checks. In conclusion, prolonged sympathetic storming can also be caused by spontaneous SAH. In this case, vasospasm might be a precipitating factor. Paralytics and hypothermia could mask the manifestations of PSS. The treatment of the refractory case will need both timely adjustment of medications and minimization of exogenous stressors or stimuli.

  1. Transcription factor Nr4a1 couples sympathetic and inflammatory cues in CNS-recruited macrophages to limit neuroinflammation.

    Science.gov (United States)

    Shaked, Iftach; Hanna, Richard N; Shaked, Helena; Chodaczek, Grzegorz; Nowyhed, Heba N; Tweet, George; Tacke, Robert; Basat, Alp Bugra; Mikulski, Zbigniew; Togher, Susan; Miller, Jacqueline; Blatchley, Amy; Salek-Ardakani, Shahram; Darvas, Martin; Kaikkonen, Minna U; Thomas, Graham D; Lai-Wing-Sun, Sonia; Rezk, Ayman; Bar-Or, Amit; Glass, Christopher K; Bandukwala, Hozefa; Hedrick, Catherine C

    2015-12-01

    The molecular mechanisms that link the sympathetic stress response and inflammation remain obscure. Here we found that the transcription factor Nr4a1 regulated the production of norepinephrine (NE) in macrophages and thereby limited experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Lack of Nr4a1 in myeloid cells led to enhanced NE production, accelerated infiltration of leukocytes into the central nervous system (CNS) and disease exacerbation in vivo. In contrast, myeloid-specific deletion of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, protected mice against EAE. Furthermore, we found that Nr4a1 repressed autocrine NE production in macrophages by recruiting the corepressor CoREST to the Th promoter. Our data reveal a new role for macrophages in neuroinflammation and identify Nr4a1 as a key regulator of catecholamine production by macrophages. PMID:26523867

  2. Assessment of autonomic nervous system activity by heart rate recovery response

    Institute of Scientific and Technical Information of China (English)

    MENG Zhaohui; BAI Jing

    2004-01-01

    The assessment of autonomic nervous system (ANS) activity is a tool for diagnosing or predicting cardiovascular diseases,while heart rate recovery response (HRRR) after exercise has been promoted as a process under the regulation of ANS (sympathetic and parasympathetic nervous systems).Therefore,assessment of ANS activity was performed by HRRR in this study.Firstly,HRRR signal was extracted based on wavelet decomposition and difference curve of coarse component from heart rate signal.Then,HRRR was divided into quickly descending interval (QDI) and slowly descending interval (SDI).Finally,3 groups of indexes (Difference,Exponential and Quadratic Groups) from QDI and SDI were compared between 50 normotensive and 61 hypertensive subjects.The results showed that the indexes of Difference Group were better choices than others in analyzing the features of HRRR.Furthermore,parasympathetic activity is dominant in QDI,while sympathetic and parasympathetic activities affect SDI together.In conclusion,the proposed method was effective to assess ANS activity.

  3. Responses of Six-Weeks Aquatic Exercise on the Autonomic Nervous System, Peak Nasal Inspiratory Flow and Lung Functions in Young Adults with Allergic Rhinitis

    OpenAIRE

    Taweesak Janyacharoen; Narupon Kunbootsri; Preeda Arayawichanon; Seksun Chainansamit; Kittisak Sawanyawisuth

    2015-01-01

    Allergic rhinitis is a chronic respiratory disease. Sympathetic hypofunction is identified in all of the allergic rhinitis patients. Moreover, allergic rhinitis is associated with decreased peak nasal inspiratory flow (PNIF) and impaired lung functions. The aim of this study was to investigate effects of six-week of aquatic exercise on the autonomic nervous system function, PNIF and lung functions in allergic rhinitis patients.Twenty-six allergic rhinitis patients, 12 males and 14 females wer...

  4. Cardiac MRI in Athletes

    NARCIS (Netherlands)

    Luijkx, T.

    2012-01-01

    Cardiac magnetic resonance imaging (CMR) is often used in athletes to image cardiac anatomy and function and is increasingly requested in the context of screening for pathology that can cause sudden cardiac death (SCD). In this thesis, patterns of cardiac adaptation to sports are investigated with C

  5. A new method of assessing cardiac autonomic function and its comparison with spectral analysis and coefficient of variation of R-R interval.

    Science.gov (United States)

    Toichi, M; Sugiura, T; Murai, T; Sengoku, A

    1997-01-12

    A new non-linear method of assessing cardiac autonomic function was examined in a pharmacological experiment in ten healthy volunteers. The R-R interval data obtained under a control condition and in autonomic blockade by atropine and by propranolol were analyzed by each of the new methods employing Lorenz plot, spectral analysis and the coefficient of variation. With our method we derived two measures, the cardiac vagal index and the cardiac sympathetic index, which indicate vagal and sympathetic function separately. These two indices were found to be more reliable than those obtained by the other two methods. We anticipate that the non-invasive assessment of short-term cardiac autonomic function will come to be performed more reliably and conveniently by this method.

  6. Ang II enhances noradrenaline release from sympathetic nerve endings thus contributing to the up-regulation of metalloprotease-2 in aortic dissection patients' aorta wall.

    Directory of Open Access Journals (Sweden)

    Zhipeng Hu

    Full Text Available OBJECT: To test the hypothesis that angiotensin II (Ang II could enhance noradrenaline (NA release from sympathetic nerve endings of the aorta thus contributing to the up-regulation of matrix metalloproteinase 2 (MMP-2 during the formation of aortic dissection (AD. METHODS: Ang II, NA, MMP-2, MMP-9 of the aorta sample obtained during operation from aortic dissection patients were detected by High Performance Liquid Chromatography and ELISA and compared with controls. Isotope labelling method was used to test the impact of exogenous Ang II and noradrenaline on the NA release and MMP-2, MMP-9 expression on Sprague Dawley (SD rat aorta rings in vitro. Two kidneys, one clip, models were replicated for further check of that impact in SD rats in vivo. RESULTS: The concentration of Ang II, MMP-2, 9 was increased and NA concentration was decreased in aorta samples from AD patients. Exogenous Ang II enhanced while exogenous NA restrained NA release from aortic sympathetic endings. The Ang II stimulated NA release and the following MMP-2 up-regulation could be weakened by Losartan and chemical sympathectomy. Beta blocker did not influence NA release but down-regulated MMP-2. Long term in vivo experiments confirmed that Ang II could enhance NA release and up-regulate MMP-2. CONCLUSIONS: AD is initiated by MMP-2 overexpression as a result of increased NA release from sympathetic nervous endings in response to Ang II. This indicates an interaction of RAS and SAS during the formation of AD.

  7. Perinatal exposure to a high-fat diet is associated with reduced hepatic sympathetic innervation in one-year old male Japanese macaques.

    Directory of Open Access Journals (Sweden)

    Wilmon F Grant

    Full Text Available Our group recently demonstrated that maternal high-fat diet (HFD consumption is associated with non-alcoholic fatty liver disease, increased apoptosis, and changes in gluconeogenic gene expression and chromatin structure in fetal nonhuman primate (NHP liver. However, little is known about the long-term effects that a HFD has on hepatic nervous system development in offspring, a system that plays an important role in regulating hepatic metabolism. Utilizing immunohistochemistry and Real-Time PCR, we quantified sympathetic nerve fiber density, apoptosis, inflammation, and other autonomic components in the livers of fetal and one-year old Japanese macaques chronically exposed to a HFD. We found that HFD exposure in-utero and throughout the postnatal period (HFD/HFD, when compared to animals receiving a CTR diet for the same developmental period (CTR/CTR, is associated with a 1.7 fold decrease in periportal sympathetic innervation, a 5 fold decrease in parenchymal sympathetic innervation, and a 2.5 fold increase in hepatic apoptosis in the livers of one-year old male animals. Additionally, we observed an increase in hepatic inflammation and a decrease in a key component of the cholinergic anti-inflammatory pathway in one-year old HFD/HFD offspring. Taken together, these findings reinforce the impact that continuous exposure to a HFD has in the development of long-term hepatic pathologies in offspring and highlights a potential neuroanatomical basis for hepatic metabolic dysfunction.

  8. Macrophage populations and cardiac sympathetic denervation during L-NAME-induced hypertension in rats

    DEFF Research Database (Denmark)

    Neves, S R S; Machado, C R S; Pinto, A M T;

    2006-01-01

    ventricle, the hypertrophic cardiomyocytes were restricted to damaged areas. Significant reduction of the noradrenergic nerve terminals occurred from day 3 to 28. The area occupied by ED1+ (hematogenous) macrophages increased until day 7, and dropped to control levels by day 10. ED2+ (resident) macrophages...... and macrophage infiltration at day 7. No denervation was detectable at day 14 of double treatment, using subcutaneous AG. Our findings favor a role for ED1+ macrophages and iNOS in the hypertension-induced denervation process....

  9. Autonomic nervous system and risk factors for vascular disease. Effects of autonomic unbalance in schizophrenia and Parkinson's disease.

    Science.gov (United States)

    Scigliano, Giulio; Ronchetti, Gabriele; Girotti, Floriano

    2008-02-01

    Alterations of the cardiovascular system and of the glucose and lipid metabolism can represent important factors of vascular risk. The autonomic nervous system, through its two efferent branches, the parasympatheticcholinergic and the sympathetic-adrenergic, plays an important role in the control of the cardiovascular activity and of the glucose and lipid metabolism, and its impaired working can interfere with these functions. An increased sympathetic activity and an increased frequency of diabetes, dyslipidemia, hypertension and obesity have been reported in untreated schizophrenic patients, and a further worsening of these vascular risk factors has been signalled as a side effect of treatment with neuroleptic drugs. The opposite is observed in Parkinson's disease, where the reduced autonomic activity induced by the illness is associated with a decreased frequency of vascular risk factors, and their occurrence is further reduced by the treatment with dopaminergic drugs.

  10. School burnout: increased sympathetic vasomotor tone and attenuated ambulatory diurnal blood pressure variability in young adult women.

    Science.gov (United States)

    May, Ross W; Sanchez-Gonzalez, Marcos A; Fincham, Frank D

    2015-01-01

    Two studies examined autonomic and cardiovascular functioning that may link school burnout to cardiovascular risk factors in young healthy adult females. Study 1 (N = 136) investigated whether school burnout was related to resting values of blood pressure (BP) and blood pressure variability (BPV) through laboratory beat-to-beat BP assessment. Study 2 (N = 94) examined the link between school burnout and diurnal BPV through ambulatory BP monitoring. Controlling for anxiety and depressive symptomatology, school burnout demonstrated strong positive relationships with indices of cardiac sympathovagal tone, sympathetic vasomotor tone, inefficient myocardial oxygen consumption, increased 24-h ambulatory heart rate and BP, blunted BP diurnal variability, and increased arterial stiffness. These studies establish cardiovascular biomarkers of school burnout and suggest that even in a seemingly healthy sample school burnout may predispose females to increased cardiovascular risk. Several future lines of research are outlined.

  11. Cardiac Autonomic Drive during Arterial Hypertension and Metabolic Disturbances.

    Science.gov (United States)

    Kseneva, S I; Borodulina, E V; Trifonova, O Yu; Udut, V V

    2016-06-01

    ANS support of the cardiac work was assessed with analysis of heart rate variability in representative samples of patients with arterial hypertension and metabolic disturbances manifested by overweight, classes I-II obesity, compromised glucose tolerance, and type II diabetes. Initially enhanced sympathetic effects on the heart rate demonstrated no further increase during the orthostatic test in contrast to suprasegmentary influences enhanced by this test. The pronouncedness of revealed peculiarities in ANS drive to the heart correlated with metabolic disturbances, and these peculiarities attained maximum in patients with type II diabetes. PMID:27383176

  12. Control and physiological determinants of sympathetically-mediated brown adipose tissue thermogenesis

    Directory of Open Access Journals (Sweden)

    Denis eRichard

    2012-02-01

    Full Text Available Brown adipose tissue (BAT represents a remarkable heat-producing tissue. The thermogenic potential of BAT is conferred by uncoupling protein 1, a protein found uniquely in the brown adipocytes. The physiological control of BAT activity and capacity is ensured by the sympathetic nervous system (SNS, which densely innervates brown fat depots. SNS-mediated BAT thermogenesis is essentially governed by hypothalamic and brainstem neurons. BAT is not only controlled by the brain thermoregulatory circuits but also by brain energy balance pathways including the very significant brain melanocortin system, which speaks in favor of the genuine involvement of SNS-mediated BAT thermogenesis in energy homeostasis. The use of positron emission tomography/computed tomography (PET/CT scanning has further revealed the presence of well-defined BAT depots in the cervical, clavicular, and paraspinal areas in adult humans. The prevalence of these depots was reported to be higher in subjects exposed to low temperature and was also higher in women than men. Moreover, the prevalence of BAT was shown to decrease with age and body fat mass, which suggests that BAT could not only be involved in cold-induced non shivering thermogenesis but also in the energy balance regulation and obesity in humans. This short review summarizes recent progress made in our understanding of the control of SNS-mediated BAT thermogenesis and of the determinants of BAT prevalence or detection in humans.

  13. Analysis and measurement of the sympathetic and sensory innervation of white and brown adipose tissue.

    Science.gov (United States)

    Vaughan, Cheryl H; Zarebidaki, Eleen; Ehlen, J Christopher; Bartness, Timothy J

    2014-01-01

    Here, we provide a detailed account of how to denervate white and brown adipose tissue (WAT and BAT) and how to measure sympathetic nervous system (SNS) activity to these and other tissues neurochemically. The brain controls many of the functions of WAT and BAT via the SNS innervation of the tissues, especially lipolysis and thermogenesis, respectively. There is no clearly demonstrated parasympathetic innervation of WAT or the major interscapular BAT (IBAT) depot. WAT and BAT communicate with the brain neurally via sensory nerves. We detail the surgical denervation (eliminating both innervations) of several WAT pads and IBAT. We also detail more selective chemical denervation of the SNS innervation via intra-WAT/IBAT 6-hydroxy-dopamine (a catecholaminergic neurotoxin) injections and selective chemical sensory denervation via intra-WAT/IBAT capsaicin (a sensory nerve neurotoxin) injections. Verifications of the denervations are provided (HPLC-EC detection for SNS, ELIA for calcitonin gene-related peptide (proven sensory nerve marker)). Finally, assessment of the SNS drive to WAT/BAT or other tissues is described using the alpha-methyl-para-tyrosine method combined with HPLC-EC, a direct neurochemical measure of SNS activity. These methods have proven useful for us and for other investigators interested in innervation of adipose tissues. The chemical denervation approach has been extended to nonadipose tissues as well.

  14. Cardiac Iodine-123-Meta-Iodo-Benzylguanidine Uptake in Carotid Sinus Hypersensitivity.

    Directory of Open Access Journals (Sweden)

    Maw Pin Tan

    Full Text Available Carotid sinus syndrome is the association of carotid sinus hypersensitivity with syncope, unexplained falls and drop attacks in generally older people. We evaluated cardiac sympathetic innervation in this disorder in individuals with carotid sinus syndrome, asymptomatic carotid sinus hypersensitivity and controls without carotid sinus hypersensitivity.Consecutive patients diagnosed with carotid sinus syndrome at a specialist falls and syncope unit were recruited. Asymptomatic carotid sinus hypersensitivity and non-carotid sinus hypersensitivity control participants recruited from a community-dwelling cohort. Cardiac sympathetic innervation was determined using Iodine-123-metaiodobenzylguanidine (123-I-MIBG scanning. Heart to mediastinal uptake ratio (H:M were determined for early and late uptake on planar scintigraphy at 20 minutes and 3 hours following intravenous injection of 123-I-MIBG.Forty-two subjects: carotid sinus syndrome (n = 21, asymptomatic carotid sinus hypersensitivity (n = 12 and no carotid sinus hypersensitivity (n = 9 were included. Compared to the non- carotid sinus hypersensitivity control group, the carotid sinus syndrome group had significantly higher early H:M (estimated mean difference, B = 0.40; 95% confidence interval, CI = 0.13 to 0.67, p = 0.005 and late H:M (B = 0.32; 95%CI = 0.03 to 0.62, p = 0.032. There was, however, no significant difference in early H:M (p = 0.326 or late H:M (p = 0.351 between the asymptomatic carotid sinus hypersensitivity group and non- carotid sinus hypersensitivity controls.Cardiac sympathetic neuronal activity is increased relative to age-matched controls in individuals with carotid sinus syndrome but not those with asymptomatic carotid sinus hypersensitivity. Blood pressure and heart rate measurements alone may therefore represent an over simplification in the assessment for carotid sinus syndrome and the relative increase in cardiac sympathetic innervation provides additional clues to

  15. High sugar intake exacerbates cardiac reperfusion injury in perinatal taurine depleted adult rats

    OpenAIRE

    Kulthinee Supaporn; Wyss J Michael; Jirakulsomchok Dusit; Roysommuti Sanya

    2010-01-01

    Abstract Perinatal taurine depletion and high sugar diets blunted baroreflex function and heightens sympathetic nerve activity in adult rats. Cardiac ischemia/reperfusion also produces these disorders and taurine treatment appears to improve these effects. This study tests the hypothesis that perinatal taurine exposure predisposes recovery from reperfusion injury in rats on either a basal or high sugar diet. Female Sprague-Dawley rats were fed normal rat chow with 3% beta-alanine (taurine dep...

  16. Cardiac autonomic function in patients with diabetes improves with practice of comprehensive yogic breathing program

    Directory of Open Access Journals (Sweden)

    Viveka P Jyotsna

    2013-01-01

    Full Text Available Background: The aim of this study was to observe the effect comprehensive yogic breathing (Sudarshan Kriya Yoga [SKY] and Pranayam had on cardiac autonomic functions in patients with diabetes. Materials and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 64 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program. Standard therapy included dietary advice, brisk walking for 45 min daily, and administration of oral antidiabetic drugs. Comprehensive yogic breathing program was introduced to the participants through a course of 12 h spread over 3 days. It was an interactive session in which SKY, a rhythmic cyclical breathing, preceded by Pranayam is taught under the guidance of a certified teacher. Cardiac autonomic function tests were done before and after 6 months of intervention. Results: In the intervention group, after practicing the breathing techniques for 6 months, the improvement in sympathetic functions was statistically significant (P 0.04. The change in sympathetic functions in the standard therapy group was not significant (P 0.75.Parasympathetic functions did not show any significant change in either group. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P 0.06. In the standard therapy group, no change in cardiac autonomic functions was noted (P 0.99. Conclusion: Cardiac autonomic functions improved in patients with diabetes on standard treatment who followed the comprehensive yogic breathing program compared to patients who were on standard therapy alone.

  17. Hypothalamic-pituitary-adrenal and cardiac autonomic responses to transrectal examination differ with behavioral reactivity in dairy cows.

    Science.gov (United States)

    Kovács, L; Kézér, F L; Kulcsár-Huszenicza, M; Ruff, F; Szenci, O; Jurkovich, V

    2016-09-01

    Behavior, hypothalamic-pituitary-adrenal axis, and cardiac autonomic nervous system (ANS) activity were evaluated in response to transrectal examination in nonlactating Holstein-Friesian cows with different behavioral reactivity. According to behavioral reactions shown to the procedure of fixing the heart rate (HR) monitors, the 20 cows with the highest and the 20 cows with the lowest behavioral reactivity were involved in the study (high responder, n=20; and low responder, n=20, respectively). Activity of the ANS was assessed by HR and HR variability parameters. Blood and saliva were collected at 5 min before (baseline) and 0, 5 10, 15, 20, 30, 40, 60, and 120 min after the examination to determine cortisol concentrations. The examination lasted for 5 min. Cardiac parameters included HR, the root mean square of successive differences between the consecutive interbeat intervals, the high frequency (HF) component of heart rate variability, and the ratio between the low frequency (LF) and HF parameter (LF/HF). Following the examination, peak plasma and saliva cortisol levels and the amplitude of the plasma and saliva cortisol response were higher in high responder cows than in low responders. Areas under the plasma and saliva cortisol response curves were greater in high responder cows. Plasma and salivary cortisol levels correlated significantly at baseline (r=0.91), right after examination (r=0.98), and at peak levels (r=0.96). Area under the HR response curve was higher in low responder cows; however, maximum HR and the amplitude of the HR response showed no differences between groups. Minimum values of both parameters calculated for the examination were higher in high responders. Following the examination, response parameters of root mean square of successive differences and HF did not differ between groups. The maximum and the amplitude of LF/HF response and area under the LF/HF response curve were lower in low responder cows, suggesting a lower sympathetic

  18. Gender affects sympathetic neurovascular control during postural stress.

    Science.gov (United States)

    Shoemaker, J K; Hughson, R L; Sinoway, L I

    2002-07-01

    Sympathetic outflow increases during head-up tilt (HUT) to stabilize blood pressure in the presence of decreases in venous return and stroke volume (SV). Otherwise, orthostatic hypotension would develop. Gender differences in orthostatic tolerance have been noted but the mechanisms are still uncertain. More recently, Waters et al. reported in a limited sample, greater susceptibility of women to demonstrate orthostatic intolerance following space flight. Therefore, it is important to understand gender differences in reflex blood pressure regulation. Recently, we reported smaller increments in muscle sympathetic nerve activity (MSNA) in healthy women during graded HUT and a non-baroreflex cold pressor test. The purpose of this report is to examine the hypothesis that gender differences in blood pressure control during HUT are related to important variations in MSNA discharge patterns.

  19. Comparison of compensatory sweating and quality of life following thoracic sympathetic block for palmar hyperhidrosis: electrocautery hook versus titanium clip

    Institute of Scientific and Technical Information of China (English)

    WANG Fei-ge; CHEN Yong-bing; YANG Wen-tao; SHI Li

    2011-01-01

    Background Video-assisted thoracic sympathetic block is an effective,safe,and minimally invasive method fortreatment of primary hyperhidrosis.The purpose of this study was to decide which one of using electrocautery hook and titanium clip is the appropriate procedure for primary palmar hyperhidrosis by assessing the compensatory sweating (CS)and quality of life (QOL) of patients after sympathetic block.Methods Between October 2007 to August 2010,120 patients with primary palmar hyperhidrosis were randomly divided into two groups,electrocautery hook group (60 patients) and titanium clip group (60 patients).All patients were treated by sympathetic block at T4 level.The CS was graded based on severity and location; the QOL was classified to 5 different levels based upon the summed total scores (range from 20 to 100) before and after surgery.The variables were compared.Results The postoperative follow-up period was 2 months.All patients were cured.Three patients in electrocautery hook group and 1 patient in titanium clip group had a unilateral pneumothorax on chest X-ray,but none of them was necessary to have chest drainage.Neither perioperative mortality nor serious complications such as cardiac arrhythmia or arrest were observed during the operation.No bradycardia or Horner's syndrome occured.CS was not more common in patients in titanium clip group than in those in electrocautery hook group (P=0.001).Moderate and severe CS was few in all patients,and there was no significant difference between two groups (P=-0.193).Most of the patients feel a notable improvement of the the QOL; nevertheless,there was no significant difference between the groups (P=0.588).Conclusions Both electrocautery hook and titanium clip used for sympathetic block at the T4 level are effective,safe,and minimally invasive for palmar hyperhidrosis.Because of the lower severity of CS and the similar improvements in the QOL after operation,we prefer to use of titanium clip for treating palmar

  20. Sympathetic cooling of rovibrationally state-selected molecular ions

    OpenAIRE

    Tong, Xin; Winney, Alexander H.; Willitsch, Stefan

    2010-01-01

    We present a new method for the generation of rotationally and vibrationally state-selected, translationally cold molecular ions in ion traps. Our technique is based on the state-selective threshold photoionization of neutral molecules followed by sympathetic cooling of the resulting ions with laser-cooled calcium ions. Using N$_2^+$ ions as a test system, we achieve > 90 % selectivity in the preparation of the ground rovibrational level and state lifetimes on the order of 15 minutes limited ...

  1. Consolation as possible expression of sympathetic concern among chimpanzees

    OpenAIRE

    Romero, Teresa; Castellanos, Miguel A.; de Waal, Frans B. M.

    2010-01-01

    Chimpanzees are known to spontaneously provide contact comfort to recent victims of aggression, a behavior known as consolation. Similar behavior in human children is attributed to empathic or sympathetic concern. In line with this empathy hypothesis, chimpanzee consolation has been shown to reduce the recipient's state of arousal, hence to likely alleviate distress. Other predictions from the empathy hypothesis have rarely been tested, however, owing to small sample sizes in previous studies...

  2. Thoracoscopic sympathetic clamping in a patient with an azygos fissure.

    Science.gov (United States)

    Moon, Seok Whan; Yoon, Jeong Sub; Jo, Keon Hyeon; Wang, Young Pil; Park, Hyeon Jin

    2005-04-01

    We believe that an azygos fissure may predispose to bleeding during thoracoscopic surgery. An azygos fissure causes important morphologic changes in the superior mediastinum and thereby poses a risk of massive bleeding during thoracoscopic procedures. We report on a successful thoracoscopic procedure conducted in a patient with palmar hyperhidrosis and an azygos fissure and emphasize that the course of the thoracic sympathetic chain runs laterally along the base of the azygos fissure. PMID:15821627

  3. A new concept of the sympathetic pathways to the eye.

    Science.gov (United States)

    Palumbo, L T

    1976-08-01

    The sympathetic pupillociliary pathways controlling the dilatation of the pupil in man have been recorded by many authorities as passing via the first and/or second thoracic (dorsal) rami to the lower part of the stellate (first thoracic) ganglion. It has been stated by these and other authorities that the removal of the lower part of the stellate ganglion and/or resection of the first and/or second thoracic rami would produce a Horner's syndrome. This currently accepted concept of the sympathetic pathways to the eye we believe to be incorrect. Our entire clinical experience has consistently contradicted the findings and reports of other investigators. It is suggested that the ability afforded by a new surgical approach to reach, dissect, and exactly control the line of resection without undue trauma to the stellate ganglion has made possible for the first time a definitive statement concerning the entry of the pupillociliary pathways into the sympathetic chain. It is, therefore, postulated that the preganglionic neurons controlling the pupil enter the upper portion of the stellate ganglion by a separate paravertebral route leaving the ventral roots of the eighth cervical, first and/or second thoracic nerves. Our entire clinical experience refutes the concept that these pathways pass via the first ramus communicans to the first thoracic ganglion. This thesis is based on and supported by the results of new surgical approach originally designed to permit a more direct exposure and to overcome many of the deficiencies of current surgical approaches. The anterior transthoracic, transpleural wound employed allows a more direct approach and a more accurate and complete dissection of this segment of the sympathetic supply to the head, neck, upper extremity, heart, and coronary vessels without incurring the undesirable sequela of a Horner's syndrome in 93% of patients. PMID:962268

  4. Sympathetic neural responses to mental stress during acute simulated microgravity

    OpenAIRE

    Durocher, John J.; Schwartz, Christopher E.; Carter, Jason R.

    2009-01-01

    Neural and cardiovascular responses to mental stress and acute 6° head-down tilt (HDT) were examined separately and combined. We hypothesized sympathoexcitation during mental stress, sympathoinhibition during HDT, and an additive neural interaction during combined mental stress and HDT. Muscle sympathetic nerve activity (MSNA), mean arterial pressure (MAP), and heart rate (HR) were recorded in 16 healthy subjects (8 men, 8 women) in the supine position during three randomized trials: 1) menta...

  5. PROJECTION NEURONS OF THE VESTIBULO-SYMPATHETIC REFLEX PATHWAY

    OpenAIRE

    Holstein, Gay R.; Friedrich, Victor L.; Martinelli, Giorgio P.

    2014-01-01

    Changes in head position and posture are detected by the vestibular system and are normally followed by rapid modifications in blood pressure. These compensatory adjustments, which allow humans to stand up without fainting, are mediated by integration of vestibular system pathways with blood pressure control centers in the ventrolateral medulla. Orthostatic hypotension can reflect altered activity of this neural circuitry. Vestibular sensory input to the vestibulo-sympathetic pathway terminat...

  6. Release of endogenous ATP during sympathetic nerve stimulation.

    OpenAIRE

    Lew, M. J.; White, T. D.

    1987-01-01

    1 Vas deferens from guinea-pig was stimulated with a suction electrode and both contractions and release of endogenous ATP monitored 2 Release of ATP was tetrodotoxin-sensitive and increased when the number of stimuli was increased. 3 Release of ATP was not due to contraction of the muscle and persisted following block of contractions with prazosin and alpha, beta-methylene ATP. 4 These results indicate that stimulation of the sympathetic nerves in the vas deferens releases endogenous ATP pre...

  7. Cardiac perception and cardiac control. A review.

    Science.gov (United States)

    Carroll, D

    1977-12-01

    The evidence regarding specific cardiac perception and discrimination, and its relationship to voluntary cardiac control, is critically reviewed. Studies are considered in three sections, depending on the method used to assess cardiac perception: questionnaire assessment, discrimination procedures, and heartbeat tracking. The heartbeat tracking procedure would appear to suffer least from interpretative difficulties. Recommendations are made regarding the style of analysis used to assess heartbeat perception in such tracking tasks. PMID:348240

  8. Neuronal morphology and the synaptic organisation of sympathetic ganglia.

    Science.gov (United States)

    Gibbins, I L; Jobling, P; Messenger, J P; Teo, E H; Morris, J L

    2000-07-01

    In this article, we provide a short review of the structure and synaptic organisation of the final motor neurons in the sympathetic ganglia of mammals. Combinations of pathway tracing, multiple-labelling immunofluorescence and intracellular dye injection have shown that neurons in different functional pathways differ not only in their patterns of neuropeptide expression, but also in the size of their cell bodies and dendritic fields. Thus, vasoconstrictor neurons consistently are smaller than any other major functional class of neurons. Serial section ultrastructural analysis of dye filled neurons, together with electron microscopic and confocal microscopic analysis of immunolabelled synaptic inputs to sympathetic final motor neurons indicate that synapses are rare and randomly distributed over the surface of the neurons. The total number of synapses is simply proportional to the total surface area of the neurons. Many terminal boutons of peptide-containing preganglionic neurons do not make conventional synapses with target neurons. Furthermore, there is a spatial mismatch in the distribution of peptide-containing terminals and neurons expressing receptors for the corresponding peptides. Together, these results suggest that there are likely to be significant differences in the ways that the final sympathetic motor neurons in distinct functional pathways integrate their synaptic inputs. In at least some pathways, heterosynaptic actions of neuropeptides probably contribute to subtle modulation of ganglionic transmission.

  9. Understanding paroxysmal sympathetic hyperactivity after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Kimberly S Meyer

    2014-01-01

    Full Text Available Background: Paroxysmal sympathetic hyperactivity (PSH is a condition occurring in a small percentage of patients with severe traumatic brain injury (TBI. It is characterized by a constellation of symptoms associated with excessive adrenergic output, including tachycardia, hypertension, tachypnea, and diaphoresis. Diagnosis is one of exclusion and, therefore, is often delayed. Treatment is aimed at minimizing triggers and pharmacologic management of symptoms. Methods: A literature review using medline and cinahl was conducted to identify articles related to PSH. Search terms included paroxysmal sympathetic hyperactivity, autonomic storming, diencephalic seizures, and sympathetic storming. Reference lists of pertinent articles were also reviewed and these additional papers were included. Results: The literature indicates that the understanding of PSH following TBI is in its infancy. The majority of information is based on small case series. The review revealed treatments that may be useful in treating PSH. Conclusions: Nurses play a critical role in the identification of at-risk patients, symptom complexes, and in the education of family. Early detection and treatment is likely to decrease overall morbidity and facilitate recovery. Further research is needed to establish screening tools and treatment algorithms for PSH.

  10. Aging changes in the nervous system

    Science.gov (United States)

    ... article/004023.htm Aging changes in the nervous system To use the sharing features on this page, please enable JavaScript. The brain and nervous system are your body's central control center. They control ...

  11. HIV Infection Seems to Affect Nervous System

    Science.gov (United States)

    ... fullstory_159344.html HIV Infection Seems to Affect Nervous System But symptoms tend to subside once antiretroviral drugs ... mild, it is clear that HIV affects the nervous system within days of infection," she said in a ...

  12. An Electerophisioligic Study Of Autonomic Nervous System In Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Noorolahi Moghaddam H

    2003-11-01

    Full Text Available Autonomic nervous system dysfunction in diabetics can occur apart from peripheral sensorimotor polyneuropathy and sometimes leads to complaints which may be diagnosed by electrodiagnostic methods. Moreover glycemic control of these patients may prevent such a complications."nMaterials and Methods: 30 diabetic patients were compared to the same number of age and sex-matched controls regarding to electrophysiologic findings of autonomic nervous system. Symptoms referable to autonomic disorder including nightly diarrhea, dizziness, urinary incontinence, constipation, nausea, and mouth dryness were recorded in all diabetic patients. Palmar and plantar SSR and expiration to inspiration ratio (E: I and Valsalva ratio were recorded in all diabetics and control individuals by electromyography device. In addition NCS was performed on two sensory and two motor nerves in diabetic patients."nResults: There was no relation between age of diabetics and abnormal D: I ratio, Valsalva ratio and degree of electrophysiologic autonomic impairment. Also no relation between peripheral sensorimotor polyneuropathy and electrophysiologic autonomic impairment was found. Plantar SSR was absent in 80% of diabetics with orthostatic hypotension (p~ 0.019. Palmar and plantar SSR were absent in many diabetics in comparison to control group (for palmar SSR p~ 0.00 and for plantar SSR p< 0.015. There was no relation between diabetes duration since diagnosis and electrophysiologic autonomic impairment."nConclusion: According to the above mentioned findings diabetic autonomic neuropathy develops apart from peripheral sensorimotor polyneuropathy and probably with different mechanisms. Remarkable absence of palmar SSR in diabetics with orthostatic hypotension can be due to its sympathetic origin. Absence of any relation between diabetes duration and electrophysiologic autonomic impairment can be due to late diagnosis of type 2 diabetes or no pathophysiologic relation between chronic

  13. Characterisation of the sympathetic nervous system of Asian (Elephas maximus) and African (Loxodonta africana) elephants based on urinary catecholamine analyses.

    Science.gov (United States)

    Dehnhard, M

    2007-05-01

    Assessing the welfare status of captive animals using non-invasive measurements of hormones is of growing interest because this can serve as an effective tool to facilitate the optimization of environmental and husbandry conditions. Both the African elephant (Loxodonta africana) and the Asian elephant (Elephas maximus) exhibit extremely low breeding success in captivity, and because elevated levels of stress may negatively influence reproductive functions, this study sought to establish a method for assessing sympathoadrenal activity in captive female elephants. We found a circadian variation in urinary noradrenaline (norepinephrine, NE), adrenaline (epinephrine, Epi) and dopamine (DA) under short day length. Peak activity of noradrenaline and dopamine was noted at 3 a.m. Adrenaline showed a biphasic pattern with a minor peak recorded at 3 a.m. and a major peak 9 a.m. Under long-day photoperiodic conditions, simultaneous peaks of noradrenaline and adrenaline were again noted at 3 a.m. whereas dopamine does not appear to have a distinct circadian pattern under long-day length. A transfer of two elephant cows resulted in a marked increase in urinary adrenaline and noradrenaline levels, confirming that the transfer represented a stressful event. During the peripartal period, noradrenaline concentrations increased and maximum concentrations were obtained at delivery. Daily measurements of urinary dopamine throughout the follicular phase revealed an increase in dopamine secretion close to ovulation. This increase might indicate a role of dopamine in the ovulatory mechanisms. These results suggest that changes in urinary catecholamine excretion reflect fluctuations in sympathoadrenal activity and may be a useful indicator of stress. PMID:17336981

  14. Hepatic intestinal uptake and release of catecholamines in alcoholic cirrhosis. Evidence of enhanced hepatic intestinal sympathetic nervous activity

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Ring-Larsen, H; Christensen, N J

    1987-01-01

    Hepatic intestinal and whole body plasma clearance and appearance of noradrenaline (NA) was quantified in patients with alcoholic cirrhosis (n = 12) and in controls (n = 6). As NA may be released as well as removed in the same vascular bed, infusion of tritium labelled NA (3H-NA) was carried out...... during hepatic vein catheterisation in order to determine both flux rates. In alcoholic cirrhosis plasma concentrations of endogenous NA and adrenaline (A) were significantly above control values (NA: median 2.4 v 1.7 nmol/l, p less than 0.02; A: 0.38 v 0.19 nmol/l, p less than 0.01). Whole body...

  15. Effects of moxonidine on sympathetic nervous system activity: An update on metabolism, cardio, and other target-organ protection

    Directory of Open Access Journals (Sweden)

    Eleni F Karlafti

    2013-01-01

    Full Text Available Moxonidine is the newest, second-generation, centrally acting antihypertensive agent. It has selective agonist activity at imidazoline I1 receptors and less adverse effects than the other centrally acting drugs. This fact authorizes the frequent use of moxonidine in clinical practice, as monotherapy or in combination with other antihypertensive agents. Also, moxonidine has beneficial effects in obese and metabolic syndrome and in target-organs, such as heart and kidneys.

  16. PRIMARY CENTRAL NERVOUS SYSTEM LYMPHOMA

    Directory of Open Access Journals (Sweden)

    S.S. Anvari

    2009-08-01

    Full Text Available ObjectivePrimary central nervous system lymphoma (PCNSL is an extremely rare condition in childhood. We report the first case of PCNSL in a child in Iran.Clinical presentationA nine-year-old boy was referred to Mofid Hospital with the history of headache of four months and seizure of 2 months duration. Magnetic resonance imaging of the brain revealed a hyper-intense lesion in left fronto-parietal area with secondary satellite lesions. Biopsy of the brain mass was performed. Pathologic findings showed brain lymphoma and immunohistochemistry confirmed this diagnosis. The treatment started with intrathecal and systemic chemotherapy in combination with radiotherapy.Keywords:Lymphoma, Primary central nervous system lymphoma (PCNSL, Children

  17. Anatomical evidence for ileal Peyer's patches innervation by enteric nervous system: a potential route for prion neuroinvasion?

    Science.gov (United States)

    Chiocchetti, Roberto; Mazzuoli, Gemma; Albanese, Valeria; Mazzoni, Maurizio; Clavenzani, Paolo; Lalatta-Costerbosa, Giovanna; Lucchi, Maria L; Di Guardo, Giovanni; Marruchella, Giuseppe; Furness, John B

    2008-05-01

    We have examined the innervation of the gut-associated lymphoid system of the sheep ileum, with a view to identifying potential sites for neuroinvasion by pathogens, such as prions (PrP(Sc)). Special attention has been paid to the follicles of Peyer's patches (PPs), which are major sites of PrP(Sc) accumulation during infection. Evidence exists that the enteric nervous system, together with the parasympathetic and sympathetic pathways projecting to the intestine, are important for PrP(Sc) entry into the central nervous system. Thus, PrP(Sc) might move from PPs to the neurons and nerve fibres that innervate them. We investigated, by immunohistochemistry and retrograde tracing (DiI) from the follicles, the distribution and phenotype of enteric neurons innervating the follicles. Antibodies against protein gene product 9.5, tyrosine hydroxylase, dopamine beta hydroxylase, choline acetyltransferase, calbindin (CALB), calcitonin gene-related peptide (CGRP), and nitric oxide synthase were used to characterise the neurons. Immunoreactivity for each of these was observed in fibres around and inside PP follicles. CGRP-immunoreactive fibres were mainly seen at the follicular dome. Retrograde tracing revealed submucosal neurons that contributed to the innervation of PPs, including Dogiel type II neurons and neurons immunoreactive for CALB and CGRP. The major source of the adrenergic fibres are the sympathetic ganglia. Our results thus suggest that enteric and sympathetic neurons are involved during the first stage of neuroinvasion, with neurons connecting to them acting as potential carriers of PrP(Sc) to the central nervous system. PMID:18317812

  18. Nanomedicine and the nervous system

    CERN Document Server

    Martin, Colin R; Hunter, Ross J

    2012-01-01

    The nanosciences encompass a variety of technologies ranging from particles to networks and nanostructures. Nanoparticles can be suitable carriers of therapeutic agents, and nanostructures provide suitable platforms and scaffolds for sub-micro bioengineering. This book focuses on nanomedicine and nanotechnology as applied to the nervous system and the brain. It covers nanoparticle-based immunoassays, nanofiber microbrush arrays, nanoelectrodes, protein nanoassemblies, nanoparticles-assisted imaging, nanomaterials, and ion channels. Additional topics include stem cell imaging, neuronal performa

  19. The Nervous System and Gastrointestinal Function

    Science.gov (United States)

    Altaf, Muhammad A.; Sood, Manu R.

    2008-01-01

    The enteric nervous system is an integrative brain with collection of neurons in the gastrointestinal tract which is capable of functioning independently of the central nervous system (CNS). The enteric nervous system modulates motility, secretions, microcirculation, immune and inflammatory responses of the gastrointestinal tract. Dysphagia,…

  20. Bioimpedance harmonic analysis as a tool to simultaneously assess circulation and nervous control

    International Nuclear Information System (INIS)

    Multicycle harmonic (Fourier) analysis of bioimpedance was employed to simultaneously assess circulation and neural activity in visceral (rat urinary bladder) and somatic (human finger) organs. The informative value of the first cardiac harmonic of the bladder impedance as an index of bladder circulation is demonstrated. The individual reactions of normal and obstructive bladders in response to infusion cystometry were recorded. The potency of multicycle harmonic analysis of bioimpedance to assess sympathetic and parasympathetic neural control in urinary bladder is discussed. In the human finger, bioimpedance harmonic analysis revealed three periodic components at the rate of the heart beat, respiration and Mayer wave (0.1 Hz), which were observed under normal conditions and during blood flow arrest in the hand. The revealed spectrum peaks were explained by the changes in systemic blood pressure and in regional vascular tone resulting from neural vasomotor control. During normal respiration and circulation, two side cardiac peaks were revealed in a bioimpedance amplitude spectrum, whose amplitude reflected the depth of amplitude respiratory modulation of the cardiac output. During normal breathing, the peaks corresponding to the second and third cardiac harmonics were split, reflecting frequency respiratory modulation of the heart rate. Multicycle harmonic analysis of bioimpedance is a novel potent tool to examine the interaction between the respiratory and cardiovascular system and to simultaneously assess regional circulation and neural influences in visceral and somatic organs

  1. ACE2-Mediated Reduction of Oxidative Stress in the Central Nervous System Is Associated with Improvement of Autonomic Function

    OpenAIRE

    Huijing Xia; Sonia Suda; Sharell Bindom; Yumei Feng; Gurley, Susan B.; Dale Seth; L Gabriel Navar; Eric Lazartigues

    2011-01-01

    Oxidative stress in the central nervous system mediates the increase in sympathetic tone that precedes the development of hypertension. We hypothesized that by transforming Angiotensin-II (AngII) into Ang-(1-7), ACE2 might reduce AngII-mediated oxidative stress in the brain and prevent autonomic dysfunction. To test this hypothesis, a relationship between ACE2 and oxidative stress was first confirmed in a mouse neuroblastoma cell line (Neuro2A cells) treated with AngII and infected with Ad-hA...

  2. Stress and Female Reproductive System: Disruption of Corticotropin-Releasing Hormone/Opiate Balance by Sympathetic Nerve Traffic

    Directory of Open Access Journals (Sweden)

    Farideh Zafari Zangeneh

    2009-09-01

    Full Text Available Nowadays stress is an integral part of everyday living and the physiological and behavioral consequences of exposure to stressful situations have been extensively studied for decades. The stress response is a necessary mechanism but disrupts homeostatic process and it is sub served by a complex system located in both the central nervous system (CNS and the periphery. Stressor-induced activation of the hypothalamus–pituitary–adrenal (HPA axis and the sympathetic nervous system (SNS results in a series of neural and endocrine adaptations known as the "stress response" or "stress cascade." The stress cascade is responsible for allowing the body to make the necessary physiological and metabolic changes required to cope with the demands of a homeostatic challenge. Normal activation of the HPA axis is essential for reproduction, growth, metabolic homeostasis, and responses to stress and they are critical for adapting to changes in the external environment. The regulation of gonadal function in men and women is under the control of the HPA. This regulation is complex and sex steroids are important regulators of GnRH and gonadotropin release through classical feedback mechanisms in the hypothalamus and the pituitary. The present overview focuses on the neuroendocrine infrastructure of the adaptive response to stress and its effects on the female reproductive system. 

  3. Reflex sympathetic dystrophy: the significance of differing plasma catecholamine concentrations in affected and unaffected limbs.

    Science.gov (United States)

    Drummond, P D; Finch, P M; Smythe, G A

    1991-10-01

    In 26 patients with features of reflex sympathetic dystrophy, venous blood was collected from painful and unaffected limbs. Levels of plasma adrenaline, noradrenaline and its intracellular metabolite, 3,4-dihydroxyphenylethyleneglycol (DHPG), were measured by combined gas chromatography/mass spectrometry. Plasma DHPG was lower on the painful side. Concentration of plasma noradrenaline was also lower on the painful side in patients with widespread allodynia, and in those with hyperhidrosis in the affected hand or foot. These findings do not support the widely held view that autonomic disturbances in reflex sympathetic dystrophy are due to sympathetic overactivity. Rather, they suggest that sweating and changes in peripheral blood flow result from supersensitivity to sympathetic neurotransmitters. After injury, supersensitivity to noradrenaline may also contribute to spontaneous pain and allodynia by disrupting efferent sympathetic modulation of sensation. This would explain why pain and allodynia are relieved by sympathetic blockade, and why noradrenaline rekindles pain in sympathectomized skin. PMID:1933231

  4. Local Sympathetic Denervation of Femoral Artery in a Rabbit Model by Using 6-Hydroxydopamine In Situ

    Directory of Open Access Journals (Sweden)

    Yufei Jin

    2014-01-01

    Full Text Available Both artery bundle and sympathetic nerve were involved with the metabolism of bone tissues. Whether the enhancing effects of artery bundle result from its accompanying sympathetic nerve or blood supply is still unknown. There is no ideal sympathetic nerve-inhibited method for the in situ denervation of artery bundle. Therefore, we dipped the femoral artery in the 6-hydroxydopamine (6-OHDA locally and observed its effect. Compared with control group, the in situ treatment of 6-OHDA did not damage the normal structure of vascular bundle indicated by hematoxylin-eosin (HE staining. However, the functions of sympathetic nerve was completely inhibited for more than 2 weeks, and only a few function of sympathetic nerve resumed 4 weeks later, evidenced by glyoxylic acid staining and the expression of tyrosine hydroxylase (TH and nerve peptide Y (NPY. Thus, 6-OHDA is promising as an ideal reagent for the local denervation of sympathetic nerve from artery system.

  5. [Autonomic nervous system in diabetes].

    Science.gov (United States)

    Emdin, M

    2001-08-01

    Hyperglycemia and hyperinsulinemia have a primary role in determining the early functional and later anatomic changes at the level of the autonomic pathways controlling the circulation, and besides in directly influencing cardiac and vascular cellular targets and feed-back baroreceptor system sensitivity to neurohumoral modulation in patients with diabetes mellitus. The basic mechanisms of dysfunction and damage, and the clinical and prognostic value of diabetic cardiovascular dysautonomia are discussed together with the diagnostic apparatus and the possible therapeutic approaches.

  6. The Nucleus of the Solitary Tract and the coordination of respiratory and sympathetic activities

    OpenAIRE

    DanielB.Zoccal

    2014-01-01

    It is well known that breathing introduces rhythmical oscillations in the heart rate and arterial pressure levels. Sympathetic oscillations coupled to the respiratory activity have been suggested as an important homeostatic mechanism optimizing tissue perfusion and blood gas uptake/delivery. This respiratory-sympathetic coupling is strengthened in conditions of blood gas challenges (hypoxia and hypercapnia) as a result of the synchronized activation of brainstem respiratory and sympathetic ne...

  7. The nucleus of the solitary tract and the coordination of respiratory and sympathetic activities

    OpenAIRE

    Zoccal, Daniel B.; Furuya, Werner I.; Bassi, Mirian; Colombari, Débora S. A.; Colombari, Eduardo

    2014-01-01

    It is well known that breathing introduces rhythmical oscillations in the heart rate and arterial pressure levels. Sympathetic oscillations coupled to the respiratory activity have been suggested as an important homeostatic mechanism optimizing tissue perfusion and blood gas uptake/delivery. This respiratory-sympathetic coupling is strengthened in conditions of blood gas challenges (hypoxia and hypercapnia) as a result of the synchronized activation of brainstem respiratory and sympathetic ne...

  8. Leptin-Induced Sympathetic Nerve Activation: Signaling Mechanisms and Cardiovascular Consequences in Obesity

    OpenAIRE

    Rahmouni, Kamal

    2010-01-01

    Obesity increases cardiovascular morbidity and mortality in part by inducing hypertension. One factor linking excess fat mass to cardiovascular diseases may be the sympathetic cardiovascular actions of leptin. Initial studies of leptin showed it regulates appetite and enhances energy expenditure by activating sympathetic nerve activity (SNA) to thermogenic brown adipose tissue. Further study, however, demonstrated leptin also causes sympathetic excitation to the kidney that, in turn, increase...

  9. Cardiac sodium channelopathies

    NARCIS (Netherlands)

    A.S. Amin; A. Asghari-Roodsari; H.L. Tan

    2010-01-01

    Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (I-Na) during phase 0 of the cardiac action potential. The importance of I-Na for normal cardiac electrical activity is reflected by the high incidence of

  10. Diffuse infiltrative cardiac tuberculosis

    International Nuclear Information System (INIS)

    We present the cardiac magnetic resonance images of an unusual form of cardiac tuberculosis. Nodular masses in a sheet-like distribution were seen to infiltrate the outer myocardium and pericardium along most of the cardiac chambers. The lesions showed significant resolution on antitubercular therapy

  11. Advantage of recording single-unit muscle sympathetic nerve activity in heart failure

    Directory of Open Access Journals (Sweden)

    HISAYOSHI eMURAI

    2012-05-01

    Full Text Available Elevated sympathetic activation is a characteristic feature of heart failure (HF. Excessive sympathetic activation under resting conditions has been shown to increase from the early stages of the disease, and is related to prognosis. Direct recording of multiunit efferent muscle sympathetic nerve activity (MSNA by microneurography is the best method for quantifying sympathetic nerve activity in humans. To date, this technique has been used to evaluate the actual central sympathetic outflow to the periphery in HF patients at rest and during exercise; however, because the firing occurrence of sympathetic activation is mainly synchronized by pulse pressure, multiunit MSNA, expressed as burst frequency (bursts/min and burst incidence (bursts/100heartbeats, may have limitations for the quantification of sympathetic nerve activity. In HF, multiunit MSNA is near the maximum level, and cannot increase further than the heartbeat. Single-unit MSNA analysis in humans is technically demanding, but provides more detailed information regarding central sympathetic firing. Although a great deal is known about the response of multiunit MSNA to stress, little information is available regarding the responses of single-unit MSNA to physiological stress and disease. The purposes of this review are to describe the differences between multiunit and single-unit MSNA during stress and to discuss the advantages of single-unit MSNA recording in improving our understanding the pathology of increased sympathetic activity in HF.

  12. Cardiac iodine-123 metaiodobenzylguanidine uptake in animals with diabetes mellitus and/or hypertension

    International Nuclear Information System (INIS)

    The aim of the present study was to evaluate the use of the noradrenaline analogue iodine-123 metaiodobenzylguanidine ([123I]MIBG) for the assessment of cardiac sympathetic activity in the presence of diabetes mellitus and/or hypertension in animal models. One model used Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) rendered diabetic at 12 weeks of age by an intravenous injection of streptozotocin (STZ). The other model used lean and obese Zucker rats. In all groups basic haemodynamic values were established and animals received an intravenous injection of 50 μCi [123I]MIBG. Initial myocardial uptake and washout rates of [123I]MIBG were measured scintigraphically during 4 h. After sacrifice, plasma noradrenaline and left cardiac ventricular β-adrenoceptor density was determined. The diabetic state, both in STZ-treated rats (direct induction) and in obese Zucker rats (genetic induction), appeared to induce a lower cardiac density of β-adrenoceptors, indicative of increased sympathetic activity. Cardiac [123I]MIBG then showed increased washouts, thereby confirming enhanced noradrenergic activity. This parallism of results led to the conclusion that [123I]MIBG wash-out measurements could provide an excellent tool to assess cardiac sympathetic activity noninvasively. However, in hypertension (WKY vs SHR), both parameters failed to show parallelism: no changes in β-adrenoceptor density were found, whereas [123I]MIBG wash-out rate was increased. Thus, either [123I]MIBG washout or β-adrenoceptor density may not be a reliable parameter under all circumstances to detect changes in the release of noradrenaline. (orig./MG)

  13. Cardiac iodine-123 metaiodobenzylguanidine uptake in animals with diabetes mellitus and/or hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, E.A. [Dept. of Nuclear Medicine, Academic Medical Center, Univ. of Amsterdam (Netherlands)]|[Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands); Kam, K.L. [Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands); Somsen, G.A. [Dept. of Cardiology, Academic Medical Center, Univ. of Amsterdam (Netherlands); Boer, G.J. [Dept. of Nuclear Medicine, Academic Medical Center, Univ. of Amsterdam (Netherlands); Bruin, K. de [Dept. of Nuclear Medicine, Academic Medical Center, Univ. of Amsterdam (Netherlands); Batink, H.D. [Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands); Pfaffendorf, M. [Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands); Royen, E.A. van [Dept. of Nuclear Medicine, Academic Medical Center, Univ. of Amsterdam (Netherlands); Zwieten, P.A. van [Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands)]|[Dept. of Cardiology, Academic Medical Center, Univ. of Amsterdam (Netherlands)

    1996-08-01

    The aim of the present study was to evaluate the use of the noradrenaline analogue iodine-123 metaiodobenzylguanidine ([{sup 123}I]MIBG) for the assessment of cardiac sympathetic activity in the presence of diabetes mellitus and/or hypertension in animal models. One model used Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) rendered diabetic at 12 weeks of age by an intravenous injection of streptozotocin (STZ). The other model used lean and obese Zucker rats. In all groups basic haemodynamic values were established and animals received an intravenous injection of 50 {mu}Ci [{sup 123}I]MIBG. Initial myocardial uptake and washout rates of [{sup 123}I]MIBG were measured scintigraphically during 4 h. After sacrifice, plasma noradrenaline and left cardiac ventricular {beta}-adrenoceptor density was determined. The diabetic state, both in STZ-treated rats (direct induction) and in obese Zucker rats (genetic induction), appeared to induce a lower cardiac density of {beta}-adrenoceptors, indicative of increased sympathetic activity. Cardiac [{sup 123}I]MIBG then showed increased washouts, thereby confirming enhanced noradrenergic activity. This parallism of results led to the conclusion that [{sup 123}I]MIBG wash-out measurements could provide an excellent tool to assess cardiac sympathetic activity noninvasively. However, in hypertension (WKY vs SHR), both parameters failed to show parallelism: no changes in {beta}-adrenoceptor density were found, whereas [{sup 123}I]MIBG wash-out rate was increased. Thus, either [{sup 123}I]MIBG washout or {beta}-adrenoceptor density may not be a reliable parameter under all circumstances to detect changes in the release of noradrenaline. (orig./MG)

  14. Chronic cardiac pressure overload induces adrenal medulla hypertrophy and increased catecholamine synthesis.

    Science.gov (United States)

    Schneider, Johanna; Lother, Achim; Hein, Lutz; Gilsbach, Ralf

    2011-06-01

    Increased activity of the sympathetic system is an important feature contributing to the pathogenesis and progression of chronic heart failure. While the mechanisms and consequences of enhanced norepinephrine release from sympathetic nerves have been intensely studied, the role of the adrenal gland in the development of cardiac hypertrophy and progression of heart failure is less well known. Thus, the aim of the present study was to determine the effect of chronic cardiac pressure overload in mice on adrenal medulla structure and function. Cardiac hypertrophy was induced in wild-type mice by transverse aortic constriction (TAC) for 8 weeks. After TAC, the degree of cardiac hypertrophy correlated significantly with adrenal weight and adrenal catecholamine storage. In the medulla, TAC caused an increase in chromaffin cell size but did not result in chromaffin cell proliferation. Ablation of chromaffin α(2C)-adrenoceptors did not affect adrenal weight or epinephrine synthesis. However, unilateral denervation of the adrenal gland completely prevented adrenal hypertrophy and increased catecholamine synthesis. Transcriptome analysis of microdissected adrenal medulla identified 483 up- and 231 downregulated, well-annotated genes after TAC. Among these genes, G protein-coupled receptor kinases 2 (Grk2) and 6 and phenylethanolamine N-methyltransferase (Pnmt) were significantly upregulated by TAC. In vitro, acetylcholine-induced Pnmt and Grk2 expression as well as enhanced epinephrine content was prevented by inhibition of nicotinic acetylcholine receptors and Ca(2+)/calmodulin-dependent signaling. Thus, activation of preganglionic sympathetic nerves innervating the adrenal medulla plays an essential role in inducing adrenal hypertrophy, enhanced catecholamine synthesis and induction of Grk2 expression after cardiac pressure overload.

  15. Brain renin angiotensin system in cardiac hypertrophy and failure

    Directory of Open Access Journals (Sweden)

    Luciana eCampos

    2012-01-01

    Full Text Available Brain renin-angiotensin system (RAS is significantly involved in the roles of the endocrine RAS in cardiovascular regulation. Our studies indicate that the brain RAS participates in the development of cardiac hypertrophy and fibrosis through sympathetic activation. Inhibition of sympathetic hyperactivity after myocardial infarction through suppression of the brain RAS appears beneficial. The brain RAS is involved in the modulation of circadian rhythms of arterial pressure, contributing to nondipping hypertension. We conclude that the brain RAS in pathophysiological states interacts synergistically with the chronically overactive RAS through a positive biofeedback in order to maintain a state of alert diseased conditions, such as cardiac hypertrophy and failure. Therefore, targeting brain RAS with drugs such as angiotensin converting inhibitors or receptor blockers having increased brain penetrability could be of advantage. These RAS-targeting drugs are first-line therapy for all heart failure patients. Since the RAS has both endocrine and local tissue components, RAS drugs are being developed to attain increased tissue penetrability and volume of distribution and consequently an efficient inhibition of both RAS components.

  16. [Autonomic dysfunction syndrome and diabetic cardiac autonomic neuropathy in children with diabetes mellitus type I. The correction method].

    Science.gov (United States)

    Manukian, V Iu; Bolotova, N V; Aver'ianov, A P; Filina, N Iu; Raĭgorodskiĭ, Iu M

    2011-01-01

    We assessed the state of the autonomic nervous system in 90 children with diabetes mellitus type I. The autonomic dysfunction syndrome was found in 58,9% and diabetic cardiac autonomic neuropathy in 28,9% of patients. We revealed the high risk of the development of diabetic cardiac autonomic neuropathy in children with diabetes mellitus type I in the presence of the autonomic dysfunction syndrome. It has been shown that the early treatment of functional disturbances of the autonomic nervous system using transcranial magnetic stimulation is necessary to prevent the manifestation of diabetic cardiac autonomic neuropathy.

  17. What Are the Parts of the Nervous System?

    Science.gov (United States)

    ... main parts: the central nervous system and the peripheral nervous system: The central nervous system is made up of the brain and spinal cord. The peripheral nervous system is made up of the nerve fibers that ...

  18. Glucocorticoids and nervous system plasticity

    Institute of Scientific and Technical Information of China (English)

    Kathryn M Madalena; Jessica K Lerch

    2016-01-01

    Glucocorticoid and glucocorticoid receptor (GC/GR) interactions alter numerous aspects of neuronal function. These consequences (e.g., anti-inlfammatoryvs. pro-inlfammatory) can vary depending on the duration of GC exposure or central nervous system (CNS) injury model. In this review we discuss how GC/GR interactions impact neuronal recovery after a central or peripheral nerve injury and discuss how GC exposure duration can produce divergent CNS neuronal growth responses. Finally we consider how new ifndings on gender speciifc immune cell responses after a nerve injury could intersect with GC/GR interactions to impact pain processing.

  19. Glucocorticoids and nervous system plasticity

    Directory of Open Access Journals (Sweden)

    Kathryn M Madalena

    2016-01-01

    Full Text Available Glucocorticoid and glucocorticoid receptor (GC/GR interactions alter numerous aspects of neuronal function. These consequences (e.g., anti-inflammatory vs. pro-inflammatory can vary depending on the duration of GC exposure or central nervous system (CNS injury model. In this review we discuss how GC/GR interactions impact neuronal recovery after a central or peripheral nerve injury and discuss how GC exposure duration can produce divergent CNS neuronal growth responses. Finally we consider how new findings on gender specific immune cell responses after a nerve injury could intersect with GC/GR interactions to impact pain processing.

  20. Projection neurons of the vestibulo-sympathetic reflex pathway.

    Science.gov (United States)

    Holstein, Gay R; Friedrich, Victor L; Martinelli, Giorgio P

    2014-06-15

    Changes in head position and posture are detected by the vestibular system and are normally followed by rapid modifications in blood pressure. These compensatory adjustments, which allow humans to stand up without fainting, are mediated by integration of vestibular system pathways with blood pressure control centers in the ventrolateral medulla. Orthostatic hypotension can reflect altered activity of this neural circuitry. Vestibular sensory input to the vestibulo-sympathetic pathway terminates on cells in the vestibular nuclear complex, which in turn project to brainstem sites involved in the regulation of cardiovascular activity, including the rostral and caudal ventrolateral medullary regions (RVLM and CVLM, respectively). In the present study, sinusoidal galvanic vestibular stimulation was used to activate this pathway, and activated neurons were identified through detection of c-Fos protein. The retrograde tracer Fluoro-Gold was injected into the RVLM or CVLM of these animals, and immunofluorescence studies of vestibular neurons were conducted to visualize c-Fos protein and Fluoro-Gold concomitantly. We observed activated projection neurons of the vestibulo-sympathetic reflex pathway in the caudal half of the spinal, medial, and parvocellular medial vestibular nuclei. Approximately two-thirds of the cells were ipsilateral to Fluoro-Gold injection sites in both the RVLM and CVLM, and the remainder were contralateral. As a group, cells projecting to the RVLM were located slightly rostral to those with terminals in the CVLM. Individual activated projection neurons were multipolar, globular, or fusiform in shape. This study provides the first direct demonstration of the central vestibular neurons that mediate the vestibulo-sympathetic reflex. PMID:24323841