WorldWideScience

Sample records for cardiac sympathetic nervous

  1. Effects of cardiac sympathetic nervous system on the stunned myocardium

    International Nuclear Information System (INIS)

    123I-Metaiodobenzylguanidine (123I-MIBG) uptake in the stunned myocardium was investigated in open chest dogs. 123I-MIBG is a tracer taken up in presynaptic adrenergic vesicles and reflects the function of the myocardial sympathetic nervous system. This study revealed that in the stunned myocardium without infarct, 123I-MIBG uptake was normal up to 40 minutes of ischemia and that exogenous noradrenaline improved deteriolated regional wall motion with increased uptake of 123I-MIBG. However, uptake of 123I-MIBG per flow decreased with infarct in ischemic areas, and it showed a linear relation with regional wall motion. Thus, in the absence of infarction 123I-MIBG is a tracer to differentiate stunning from more severe ischemia with persistent wall motion abnormality. Normal uptake and storage of 123I-MIBG in the stunned condition suggests that catecholamine release or second effector mechanism may relate to the mechanism. (author)

  2. A case of cardiac sudden death related to abnormality of sympathetic nervous disturbance detected by 123I-metaiodobenzylguanidine (MIBG)

    International Nuclear Information System (INIS)

    A case of cardiac sudden death was reported. A female, 64 years old patient with multiple myeloma had been treated with total dose of 790 mg of adriamycin. Although treadmill examination, dobutamine-loaded cardiac echography and thallium-loaded myocardial scintigraphy gave normal findings, Holter ECG revealed bigeminy and discontinuous ventricular tachycardia. Mexiletine was not tolerated. 123I-MIBG image gave deficit of lateral to posterior wall and increased washing rate of 65%. At 36 days after hospitalization, the ventricular tachycardia changed to fatal fibrillation. The sympathetic nervous disturbance detected by the enhanced washing rate of 123I-MIBG might have participated in the death. (K.H.)

  3. Significance of cardiac sympathetic nervous system abnormality for predicting vascular events in patients with idiopathic paroxysmal atrial fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Akutsu, Yasushi; Kaneko, Kyouichi; Kodama, Yusuke; Li, Hui-Ling; Kawamura, Mitsuharu; Asano, Taku; Hamazaki, Yuji; Tanno, Kaoru; Kobayashi, Youichi [Showa University School of Medicine, Division of Cardiology, Department of Medicine, Tokyo (Japan); Suyama, Jumpei; Shinozuka, Akira; Gokan, Takehiko [Showa University School of Medicine, Department of Radiology, Tokyo (Japan)

    2010-04-15

    Neuronal system activity plays an important role for the prognosis of patients with atrial fibrillation (AF). Using {sup 123}I metaiodobenzylguanidine ({sup 123}I-MIBG) scintigraphy, we investigated whether a cardiac sympathetic nervous system (SNS) abnormality would be associated with an increased risk of vascular events in patients with paroxysmal AF. {sup 123}I-MIBG scintigraphy was performed in 69 consecutive patients (67 {+-} 13 years, 62% men) with paroxysmal AF who did not have structural heart disease. SNS integrity was assessed from the heart to mediastinum (H/M) ratio on delayed imaging. Serum concentration of C-reactive protein (CRP) was measured before {sup 123}I-MIBG study. During a mean of 4.5 {+-} 3.6 years follow-up, 19 patients had myocardial infarction, stroke or heart failure (range: 0.2-11.5 years). SNS abnormality (H/M ratio <2.7) and high CRP ({>=}0.3 mg/dl) were associated with the vascular events (58.3% in 14 of 24 patients with SNS abnormality vs 11.1% in 5 of 45 patients without SNS abnormality, p < 0.0001, 52.4% in 11 of 21 patients with high CRP vs 16.7% in 8 of 48 patients without high CRP, p < 0.0001). After adjustment for potential confounding variables such as age, left atrial dimension and left ventricular function, SNS abnormality was an independent predictor of vascular events with a hazard ratio of 4.1 [95% confidence interval (CI): 1.3-12.6, p = 0.014]. Further, SNS abnormality had an incremental and additive prognostic power in combination with high CRP with an adjusted hazard ratio of 4.1 (95% CI: 1.5-10.9, p = 0.006). SNS abnormality is predictive of vascular events in patients with idiopathic paroxysmal AF. (orig.)

  4. Significance of cardiac sympathetic nervous system abnormality for predicting vascular events in patients with idiopathic paroxysmal atrial fibrillation

    International Nuclear Information System (INIS)

    Neuronal system activity plays an important role for the prognosis of patients with atrial fibrillation (AF). Using 123I metaiodobenzylguanidine (123I-MIBG) scintigraphy, we investigated whether a cardiac sympathetic nervous system (SNS) abnormality would be associated with an increased risk of vascular events in patients with paroxysmal AF. 123I-MIBG scintigraphy was performed in 69 consecutive patients (67 ± 13 years, 62% men) with paroxysmal AF who did not have structural heart disease. SNS integrity was assessed from the heart to mediastinum (H/M) ratio on delayed imaging. Serum concentration of C-reactive protein (CRP) was measured before 123I-MIBG study. During a mean of 4.5 ± 3.6 years follow-up, 19 patients had myocardial infarction, stroke or heart failure (range: 0.2-11.5 years). SNS abnormality (H/M ratio <2.7) and high CRP (≥0.3 mg/dl) were associated with the vascular events (58.3% in 14 of 24 patients with SNS abnormality vs 11.1% in 5 of 45 patients without SNS abnormality, p < 0.0001, 52.4% in 11 of 21 patients with high CRP vs 16.7% in 8 of 48 patients without high CRP, p < 0.0001). After adjustment for potential confounding variables such as age, left atrial dimension and left ventricular function, SNS abnormality was an independent predictor of vascular events with a hazard ratio of 4.1 [95% confidence interval (CI): 1.3-12.6, p = 0.014]. Further, SNS abnormality had an incremental and additive prognostic power in combination with high CRP with an adjusted hazard ratio of 4.1 (95% CI: 1.5-10.9, p = 0.006). SNS abnormality is predictive of vascular events in patients with idiopathic paroxysmal AF. (orig.)

  5. Assessment of cardiac sympathetic nerve integrity with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raffel, David M. E-mail: raffel@umich.edu; Wieland, Donald M

    2001-07-01

    The autonomic nervous system plays a critical role in the regulation of cardiac function. Abnormalities of cardiac innervation have been implicated in the pathophysiology of many heart diseases, including sudden cardiac death and congestive heart failure. In an effort to provide clinicians with the ability to regionally map cardiac innervation, several radiotracers for imaging cardiac sympathetic neurons have been developed. This paper reviews the development of neuronal imaging agents and discusses their emerging role in the noninvasive assessment of cardiac sympathetic innervation.

  6. Evaluation of cardiac sympathetic nervous function by 123I-metaiodobenzylguanidine scintigraphy in insulin-treated non-insulin dependent diabetics with hypoglycemia unawareness

    International Nuclear Information System (INIS)

    The association between the lack of adrenergic symptoms during hypoglycemia and myocardial 123I-metaiodobenzylguanidine (MIBG) accumulation was investigated in 12 insulin-treated non-insulin-dependent diabetes mellitus (NIDDM) patients who had no evidence of heart disease. These patients were divided into 2 groups according to the presence (group A) or absence (group B) of adrenergic symptoms during hypoglycemia. Autonomic function tests revealed significantly severe autonomic dysfunction in group B compared to that in group A. Insulin infusion test indicated no significant difference in the catecholamine response between the two groups. 123I-MIBG scintigraphy showed that the heart/mediastinum ratio of MIBG uptake was significantly lower, and scintigraphic defect was greater in group B than in group A. There were no significant differences in the washout rate between the two groups. These results suggested that the lack of adrenergic symptoms during hypoglycemia may be associated with cardiac sympathetic nervous dysfunction in insulin-treated NIDDM patients, and this dysfunction is mainly due to cardiac sympathetic denervation. (author)

  7. Evaluation of cardiac sympathetic nervous function by {sup 123}I-metaiodobenzylguanidine scintigraphy in insulin-treated non-insulin dependent diabetics with hypoglycemia unawareness

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Tomio; Toyama, Takuji; Hoshizaki, Hiroshi [Gunma Prefectural Cardiovascular Center, Maebashi (Japan)] [and others

    1996-02-01

    The association between the lack of adrenergic symptoms during hypoglycemia and myocardial {sup 123}I-metaiodobenzylguanidine (MIBG) accumulation was investigated in 12 insulin-treated non-insulin-dependent diabetes mellitus (NIDDM) patients who had no evidence of heart disease. These patients were divided into 2 groups according to the presence (group A) or absence (group B) of adrenergic symptoms during hypoglycemia. Autonomic function tests revealed significantly severe autonomic dysfunction in group B compared to that in group A. Insulin infusion test indicated no significant difference in the catecholamine response between the two groups. {sup 123}I-MIBG scintigraphy showed that the heart/mediastinum ratio of MIBG uptake was significantly lower, and scintigraphic defect was greater in group B than in group A. There were no significant differences in the washout rate between the two groups. These results suggested that the lack of adrenergic symptoms during hypoglycemia may be associated with cardiac sympathetic nervous dysfunction in insulin-treated NIDDM patients, and this dysfunction is mainly due to cardiac sympathetic denervation. (author).

  8. Usefulness of 123I-Meta-iodobenzylguanidine (MIBG) myocardial scintigraphy for evaluation of cardiac sympathetic nervous system function in diabetic patients

    International Nuclear Information System (INIS)

    The cardiac sympathetic nervous system function of diabetic patients with no definite cardiovascular complications other than hypertension was evaluated by 123I -MIBG myocardial scintigraphy. The subjects consisted of 82 diabetic patients, 59 men, 23 women, mean age 57 years, 17 with hypertension and 65 with normal blood pressure, and they were compared with normal controls (8 men and 3 women, mean age 54 years). Myocardial scintigraphy was performed 10 minutes and 4 hours after administration of MIBG. The superior mediastinum and whole myocardium were set as regions of interest, and the heart-to-mediastinum ratio (H/M ratio) and the washout rate (%WR) were calculated. The mean observation period was 18±12 months, and 17 of the 65 diabetic patients with normal blood pressure before the study developed hypertension during the observation period. There were significant differences in H/M ratio and %WR between the diabetic patients and normal controls (H/M ratio; 1.96±0.34 vs 2.27±0.20, %WR; 24.71±16.99% vs 12.89±11.94). The diabetic patients with hypertension had higher morbidity with diabetic retinopathy and a lower H/M ratio. The 17 patients who developed hypertension during the observation period showed an increase in %WR and a reduction in the H/M ratio. Five patients who died during the observation period had a reduced H/M ratio and increased of %WR. 123I-MIBG myocardial scintigraphy in diabetic patients was shown to be useful for detecting cardiac sympathetic nervous system dysfunction, predicting the development of hypertension, and identifying patients who had a poor outcome. Diabetic patients with abnormal signals on MIBG myocardial scintigraphy need to be monitored much more carefully. (K.H.)

  9. Usefulness of {sup 123}I-Meta-iodobenzylguanidine (MIBG) myocardial scintigraphy for evaluation of cardiac sympathetic nervous system function in diabetic patients.

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Koji; Nakatani, Yuko; Doi, Kenji; Adachi, Gakuji; Takada, Kou

    2001-11-01

    The cardiac sympathetic nervous system function of diabetic patients with no definite cardiovascular complications other than hypertension was evaluated by {sup 123}I -MIBG myocardial scintigraphy. The subjects consisted of 82 diabetic patients, 59 men, 23 women, mean age 57 years, 17 with hypertension and 65 with normal blood pressure, and they were compared with normal controls (8 men and 3 women, mean age 54 years). Myocardial scintigraphy was performed 10 minutes and 4 hours after administration of MIBG. The superior mediastinum and whole myocardium were set as regions of interest, and the heart-to-mediastinum ratio (H/M ratio) and the washout rate (%WR) were calculated. The mean observation period was 18{+-}12 months, and 17 of the 65 diabetic patients with normal blood pressure before the study developed hypertension during the observation period. There were significant differences in H/M ratio and %WR between the diabetic patients and normal controls (H/M ratio; 1.96{+-}0.34 vs 2.27{+-}0.20, %WR; 24.71{+-}16.99% vs 12.89{+-}11.94). The diabetic patients with hypertension had higher morbidity with diabetic retinopathy and a lower H/M ratio. The 17 patients who developed hypertension during the observation period showed an increase in %WR and a reduction in the H/M ratio. Five patients who died during the observation period had a reduced H/M ratio and increased of %WR. {sup 123}I-MIBG myocardial scintigraphy in diabetic patients was shown to be useful for detecting cardiac sympathetic nervous system dysfunction, predicting the development of hypertension, and identifying patients who had a poor outcome. Diabetic patients with abnormal signals on MIBG myocardial scintigraphy need to be monitored much more carefully. (K.H.)

  10. The clinical value of cardiac sympathetic imaging in heart failure

    DEFF Research Database (Denmark)

    Christensen, Thomas Emil; Kjaer, Andreas; Hasbak, Philip

    2014-01-01

    The autonomic nervous system plays an important role in the pathology of heart failure. The single-photon emission computed tomography tracer iodine-123-metaiodobenzylguanidine ((123) I-MIBG) can be used to investigate the activity of the predominant neurotransmitter of the sympathetic nervous...... system, norepinephrine. Also, positron emission tomography tracers are being developed for the same purpose. With (123) I-MIBG as a starting point, this brief review introduces the modalities used for cardiac sympathetic imaging....

  11. Regulation of sympathetic nervous system function after cardiovascular deconditioning

    Science.gov (United States)

    Hasser, E. M.; Moffitt, J. A.

    2001-01-01

    Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently

  12. Antihypertensive drugs and the sympathetic nervous system.

    Science.gov (United States)

    Del Colle, Sara; Morello, Fulvio; Rabbia, Franco; Milan, Alberto; Naso, Diego; Puglisi, Elisabetta; Mulatero, Paolo; Veglio, Franco

    2007-11-01

    Hypertension has been associated with several modifications in the function and regulation of the sympathetic nervous system (SNS). Although it is unclear whether this dysfunction is primary or secondary to the development of hypertension, these alterations are considered to play an important role in the evolution, maintenance, and development of hypertension and its target organ damage. Several pharmacological antihypertensive classes are currently available. The main drugs that have been clearly shown to affect SNS function are beta-blockers, alpha-blockers, and centrally acting drugs. On the contrary, the effects of ACE inhibitors (ACE-Is), AT1 receptor blockers (ARBs), calcium channel blockers (CCBs), and diuretics on SNS function remain controversial. These properties are pharmacologically and pathophysiologically relevant and should be considered in the choice of antihypertensive treatments and combination therapies in order to achieve, beyond optimal blood pressure control, a normalization of SNS physiology and the most effective prevention of target organ damage. PMID:18030057

  13. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin

    OpenAIRE

    Zhang, Shujuan; Feng ZHANG; Sun, Haijian; Zhou, Yebo; Han, Ying

    2012-01-01

    Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sym...

  14. Diabetic cardiac autonomic dysfunction. Parasympathetic versus sympathetic

    International Nuclear Information System (INIS)

    Diabetic cardiac autonomic dysfunction often causes lethal arrhythmia and sudden cardiac death. 123I-Metaiodobenzylguanidine (MIBG) can evaluate cardiac sympathetic dysfunction, and analysis of heart rate variability (HRV) can reflect cardiac parasympathetic activity. We examined whether cardiac parasympathetic dysfunction assessed by HRV may correlate with sympathetic dysfunction assessed by MIBG in diabetic patients. In 24-hour electrocardiography, we analyzed 4 HRV parameters: high-frequency power (HF), HF in the early morning (EMHF), rMSSD and pNN50. MIBG planar images and SPECT were obtained 15 minutes (early) and 150 minutes (late) after injection and the heart washout rate was calculated. The defect score in 9 left ventricular regions was scored on a 4 point scale (0=normal - 3=severe defect). In 20 selected diabetic patients without congestive heart failure, coronary artery disease and renal failure, parasympathetic HRV parameters had a negative correlation with the sum of defect scores (DS) in the late images (R=-0.47 to -0.59, p<0.05) and some parameters had a negative correlation with the washout rate (R=-0.50 to -0.55, p<0.05). In a total of 64 diabetic patients also, these parameters had a negative correlation with late DS (R=-0.28 to -0.35, p<0.05) and early DS (R=-0.27 to -0.32, p<0.05). The progress of diabetic cardiac parasympathetic dysfunction may parallel the sympathetic one. (author)

  15. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin.

    Science.gov (United States)

    Zhang, Shujuan; Zhang, Feng; Sun, Haijian; Zhou, Yebo; Han, Ying

    2012-11-01

    Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sympathetic afferent reflex. Heart failure was induced by intraperitoneal injection of adriamycin for six times during 2 weeks (15 mg/kg). Six weeks after the first injection, the rats underwent anesthesia with urethane and α-chloralose. After vagotomy and baroreceptor denervation, cardiac sympathetic afferent reflex was evaluated by renal sympathetic nerve activity and mean arterial pressure (MAP) response to epicardial application of capsaicin (1.0 nmol). The response of MAP to ganglionic blockade with hexamethonium in conscious rats was performed to evaluate sympathetic activity. The renal sympathetic nerve activity and cardiac sympathetic afferent reflex were enhanced in adriamycin rats and the maximum depressor response of MAP induced by hexamethonium was significantly greater in adriamycin rats than that in control rats. Bilateral PVN microinjection of angiotensin II (Ang II) caused larger responses of the cardiac sympathetic afferent reflex, baseline renal sympathetic nerve activity and MAP in adriamycin rats than control rats. These results indicated that both sympathetic activity and cardiac sympathetic afferent reflex were enhanced and Ang II in the PVN was involved in the enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with adriamycin-induced heart failure. PMID:23554781

  16. Cardiac sympathetic dysfunction in Parkinson's disease. Relationship between results of 123I-MIBG scintigraphy and autonomic nervous function evaluated by the Valsalva maneuver

    International Nuclear Information System (INIS)

    We examined whether the results of 123I-MIBG scintigraphy reflect cardiac sympathetic nerve function in patients with Parkinson's disease (PD). The subjects were 62 patients with PD (age, 65.4±6.3 years) and 53 controls (65.2±7.1 years). All subjects underwent 123I-MIBG scintigraphy and QTc interval measurement on electrocardiogram (ECG). Hemodynamic autonomic function was estimated by the Valsalva maneuver in 37 subjects (63.9±5.2 years) randomly selected from the patients with PD. As control, the Valsalva maneuver was also done in 20 randomly selected controls (64.1±5.0 years), and 123I-MIBG scintigraphy was performed in 21 controls (67.7±5.3 years old). The subjects rested in a supine position for 20 min and were given an intravenous injection of 111 MBq 123I-MIBG. Relative organ uptake was determined by the region of interest (ROI) in the anterior view and the ratio of average pixel count in the heart (H) to that in the mediastinum (M) was calculated (H/M ratio) for early (after 15 min) and delayed (after 3 hrs) periods. The Valsalva maneuver was done by having the subjects exhale into a mouthpiece at an expiratory pressure of 40 mmHg for 15 seconds. Blood pressure and RR intervals were measured during the Valsalva maneuver by tonometry, using a noninvasive blood pressure monitoring system (ANS 508, Nihon Colin Co., Ltd.). Baroreceptor reflex sensitivities (BRS) of the second phase (BRS II) and fourth phase (BRS IV) of the Valsalva maneuver were calculated, and blood pressure elevations during the late second phase (IIp) and fourth phase (IVp) were measured. QTc was greater in the patients with PD (417 ms) than in the control subjects (409 ms). The H/M ratios of the early and delayed images in the patients with PD (1.76, 1.61) were significantly lower than those in the control subjects (2.56, 2.45). The early and delayed H/M ratios significantly correlated with the severity of disease according to Hoehn-Yahr stage. QTc interval and IVp significantly

  17. Hypotensive effect of taurine. Possible involvement of the sympathetic nervous system and endogenous opiates.

    OpenAIRE

    Fujita, T.; Sato, Y.

    1988-01-01

    We studied the role of diminished sympathetic nervous system (SNS) activity and endogenous opiate activation in the hypotensive action of taurine, a sulfur amino acid, in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Supplementation of taurine could prevent the development of DOCA-salt hypertension in rats, but failed to change blood pressure in vehicle-treated control rats. Cardiac NE turnover, which was determined from the rate of decline of tissue NE concentration after the ad...

  18. Expressions of cardiac sympathetic norepinephrine transporter and β1-adrenergic receptor decreased in aged rats

    Institute of Scientific and Technical Information of China (English)

    He LI; Xiao-qing MA; Fan YE; Jing ZHANG; Xin ZHOU; Zhi-hong WANG; Yu-ming LI; Guo-yuan ZHANG

    2009-01-01

    Evidence suggests that the deterioration of communication between the sympathetic nervous system and cardiovas-cular system always accompanies the aging of human and animals. Cardiac sympathetic norepinephrine (NE) transporter (NET) on presynaptic membrane is a predominant component to eliminate released NE in the synaptic cleff and maintains the sensitivity of the β-adrenergic receptor (β-AR). In the present study, we investigated NET and β1-AR mRNA levels and sympathetic nerve density in cardiac sympathetic ganglion and leff ventricular myocardium in 2- and 16-month-old rats with Northern blot analysis and immunohistochemistry. The expression levels of NET mRNA, NET protein and β1-AR mRNA in the ganglia or myocardia of 16-month-old rats were markedly reduced by 67%, 26%, and 43%, respectively, in comparison with those in 2-month-old rats. Our results also show that aging induces a strong decrease of the catecholaminergic nerve fiber density.

  19. PET and SPET tracers for mapping the cardiac nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Oliver; Halldin, Christer [Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institute, Karolinska Hospital, 17176 Stockholm (Sweden)

    2002-03-01

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[{sup 18}F]fluorodopamine, (-)-6-[{sup 18}F]fluoronorepinephrine and (-)-[{sup 11}C]epinephrine, and radiolabelled catecholamine analogues, such as [{sup 123}I]meta-iodobenzylguanidine, [{sup 11}C]meta-hydroxyephedrine, [{sup 18}F]fluorometaraminol, [{sup 11}C]phenylephrine and meta-[{sup 76}Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[{sup 18}F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility

  20. PET and SPET tracers for mapping the cardiac nervous system

    International Nuclear Information System (INIS)

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[18F]fluorodopamine, (-)-6-[18F]fluoronorepinephrine and (-)-[11C]epinephrine, and radiolabelled catecholamine analogues, such as [123I]meta-iodobenzylguanidine, [11C]meta-hydroxyephedrine, [18F]fluorometaraminol, [11C]phenylephrine and meta-[76Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[18F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility for cardiac neuronal imaging. (orig.)

  1. Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia

    Directory of Open Access Journals (Sweden)

    Suuronen Erik J

    2011-08-01

    Full Text Available Abstract Background Diabetes mellitus is strongly associated with cardiovascular dysfunction, derived in part from impairment of sympathetic nervous system signaling. Glucose, insulin, and non-esterified fatty acids are potent stimulants of sympathetic activity and norepinephrine (NE release. We hypothesized that sustained hyperglycemia in the high fat diet-fed streptozotocin (STZ rat model of sustained hyperglycemia with insulin resistance would exhibit progressive sympathetic nervous dysfunction in parallel with deteriorating myocardial systolic and/or diastolic function. Methods Cardiac sympathetic nervous integrity was investigated in vivo via biodistribution of the positron emission tomography radiotracer and NE analogue [11C]meta-hydroxyephedrine ([11C]HED. Cardiac systolic and diastolic function was evaluated by echocardiography. Plasma and cardiac NE levels and NE reuptake transporter (NET expression were evaluated as correlative measurements. Results The animal model displays insulin resistance, sustained hyperglycemia, and progressive hypoinsulinemia. After 8 weeks of persistent hyperglycemia, there was a significant 13-25% reduction in [11C]HED retention in myocardium of STZ-treated hyperglycemic but not euglycemic rats as compared to controls. There was a parallel 17% reduction in immunoblot density for NE reuptake transporter, a 1.2 fold and 2.5 fold elevation of cardiac and plasma NE respectively, and no change in sympathetic nerve density. No change in ejection fraction or fractional area change was detected by echocardiography. Reduced heart rate, prolonged mitral valve deceleration time, and elevated transmitral early to atrial flow velocity ratio measured by pulse-wave Doppler in hyperglycemic rats suggest diastolic impairment of the left ventricle. Conclusions Taken together, these data suggest that sustained hyperglycemia is associated with elevated myocardial NE content and dysregulation of sympathetic nervous system

  2. Approach behavior and sympathetic nervous system reactivity predict substance use in young adults.

    Science.gov (United States)

    Hinnant, J Benjamin; Forman-Alberti, Alissa B; Freedman, Anna; Byrnes, Lindsay; Degnan, Kathryn A

    2016-07-01

    A behavioral measure of approach (performance on a resource gathering task) in combination with sympathetic nervous system (SNS) reactivity was used to predict substance use in a sample of young adults (n=93). Pre-ejection period reactivity (PEP-R), a cardiac index of SNS reactivity, was recorded during the resource gathering task (task PEP - resting PEP). Higher levels of approach behaviors on the task in combination with less PEP-R (blunted SNS reactivity) predicted the highest levels of substance use. Findings are discussed in the context of behavioral and physiological systems of approach and avoidance. PMID:27178723

  3. Pathophysiology of Resistant Hypertension: The Role of Sympathetic Nervous System

    Directory of Open Access Journals (Sweden)

    Costas Tsioufis

    2011-01-01

    Full Text Available Resistant hypertension (RH is a powerful risk factor for cardiovascular morbidity and mortality. Among the characteristics of patients with RH, obesity, obstructive sleep apnea, and aldosterone excess are covering a great area of the mosaic of RH phenotype. Increased sympathetic nervous system (SNS activity is present in all these underlying conditions, supporting its crucial role in the pathophysiology of antihypertensive treatment resistance. Current clinical and experimental knowledge points towards an impact of several factors on SNS activation, namely, insulin resistance, adipokines, endothelial dysfunction, cyclic intermittent hypoxaemia, aldosterone effects on central nervous system, chemoreceptors, and baroreceptors dysregulation. The further investigation and understanding of the mechanisms leading to SNS activation could reveal novel therapeutic targets and expand our treatment options in the challenging management of RH.

  4. Central Sympathetic Inhibition: a Neglected Approach for Treatment of Cardiac Arrhythmias?

    Science.gov (United States)

    Cagnoni, Francesca; Destro, Maurizio; Bontempelli, Erika; Locatelli, Giovanni; Hering, Dagmara; Schlaich, Markus P

    2016-02-01

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Overactivation of the sympathetic nervous system (SNS) plays an important role in the pathogenesis of comorbidities related to AF such as hypertension, congestive heart failure, obesity, insulin resistance, and obstructive sleep apnea. Methods that reduce sympathetic drive, such as centrally acting sympatho-inhibitory agents, have been shown to reduce the incidence of spontaneous or induced atrial arrhythmias, suggesting that neuromodulation may be helpful in controlling AF. Moxonidine acts centrally to reduce activity of the SNS, and clinical trials indicate that this is associated with a decreased AF burden in hypertensive patients with paroxysmal AF and reduced post-ablation recurrence of AF in patients with hypertension who underwent pulmonary vein isolation (PVI). Furthermore, device-based approaches to reduce sympathetic drive, such as renal denervation, have yielded promising results in the prevention and treatment of cardiac arrhythmias. In light of these recent findings, targeting elevated sympathetic drive with either pharmacological or device-based approaches has become a focus of clinical research. Here, we review the data currently available to explore the potential utility of sympatho-inhibitory therapies in the prevention and treatment of cardiac arrhythmias. PMID:26781253

  5. The paradox of systemic vasodilatation and sympathetic nervous stimulation in space

    DEFF Research Database (Denmark)

    Norsk, Peter; Christensen, Niels Juel

    2009-01-01

    Cardiac output is increased by some 18% by weightlessness during the initial week of spaceflight compared to upright standing or sitting on the ground and more so during the initial days of flight than at the end. In addition, mean 24-h diastolic, but not systolic pressure, is significantly...... decreased by 5mmHg. This is in accordance with observations that very acute weightlessness during parabolic airplane flights and a week of weightlessness in space leads to a decrease in systemic vascular resistance. That the arterial resistance vessels are dilated in space is in contrast to the augmented...... sympathetic nervous activity and decreased urine production, which have consistently been observed in astronauts in space. These contrasting observations require further investigation....

  6. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography

    International Nuclear Information System (INIS)

    The noninvasive functional characterization of the cardiac sympathetic nervous system by imaging techniques may provide important pathophysiological information in various cardiac disease states. Hydroxyephedrine labeled with carbon 11 has been developed as a new catecholamine analogue to be used in the in vivo evaluation of presynaptic adrenergic nerve terminals by positron emission tomography (PET). To determine the feasibility of this imaging approach in the human heart, six normal volunteers and five patients with recent cardiac transplants underwent dynamic PET imaging after intravenous injection of 20 mCi [11C]hydroxyephedrine. Blood and myocardial tracer kinetics were assessed using a regions-of-interest approach. In normal volunteers, blood 11C activity cleared rapidly, whereas myocardium retained 11C activity with a long tissue half-life. Relative tracer retention in the myocardium averaged 79 +/- 31% of peak activity at 60 minutes after tracer injection. The heart-to-blood 11C activity ratio exceeded 6:1 as soon as 30 minutes after tracer injection, yielding excellent image quality. Little regional variation of tracer retention was observed, indicating homogeneous sympathetic innervation throughout the left ventricle. In the transplant recipients, myocardial [11C]hydroxyephedrine retention at 60 minutes was significantly less (-82%) than that of normal volunteers, indicating only little non-neuronal binding of the tracer in the denervated human heart. Thus, [11C]hydroxyephedrine, in combination with dynamic PET imaging, allows the noninvasive delineation of myocardial adrenergic nerve terminals. Tracer kinetic modeling may permit quantitative assessment of myocardial catecholamine uptake, which will in turn provide insights into the effects of various disease processes on the neuronal integrity of the heart

  7. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schwaiger, M.; Kalff, V.; Rosenspire, K.; Haka, M.S.; Molina, E.; Hutchins, G.D.; Deeb, M.; Wolfe, E. Jr.; Wieland, D.M. (Univ. of Michigan Medical Center, Ann Arbor (USA))

    1990-08-01

    The noninvasive functional characterization of the cardiac sympathetic nervous system by imaging techniques may provide important pathophysiological information in various cardiac disease states. Hydroxyephedrine labeled with carbon 11 has been developed as a new catecholamine analogue to be used in the in vivo evaluation of presynaptic adrenergic nerve terminals by positron emission tomography (PET). To determine the feasibility of this imaging approach in the human heart, six normal volunteers and five patients with recent cardiac transplants underwent dynamic PET imaging after intravenous injection of 20 mCi (11C)hydroxyephedrine. Blood and myocardial tracer kinetics were assessed using a regions-of-interest approach. In normal volunteers, blood 11C activity cleared rapidly, whereas myocardium retained 11C activity with a long tissue half-life. Relative tracer retention in the myocardium averaged 79 +/- 31% of peak activity at 60 minutes after tracer injection. The heart-to-blood 11C activity ratio exceeded 6:1 as soon as 30 minutes after tracer injection, yielding excellent image quality. Little regional variation of tracer retention was observed, indicating homogeneous sympathetic innervation throughout the left ventricle. In the transplant recipients, myocardial (11C)hydroxyephedrine retention at 60 minutes was significantly less (-82%) than that of normal volunteers, indicating only little non-neuronal binding of the tracer in the denervated human heart. Thus, (11C)hydroxyephedrine, in combination with dynamic PET imaging, allows the noninvasive delineation of myocardial adrenergic nerve terminals. Tracer kinetic modeling may permit quantitative assessment of myocardial catecholamine uptake, which will in turn provide insights into the effects of various disease processes on the neuronal integrity of the heart.

  8. Cardiac sympathetic denervation in 6-OHDA-treated nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Valerie Joers

    Full Text Available Cardiac sympathetic neurodegeneration and dysautonomia affect patients with sporadic and familial Parkinson's disease (PD and are currently proposed as prodromal signs of PD. We have recently developed a nonhuman primate model of cardiac dysautonomia by iv 6-hydroxydopamine (6-OHDA. Our in vivo findings included decreased cardiac uptake of a sympathetic radioligand and circulating catecholamines; here we report the postmortem characterization of the model. Ten adult rhesus monkeys (5-17 yrs old were used in this study. Five animals received 6-OHDA (50 mg/kg i.v. and five were age-matched controls. Three months post-neurotoxin the animals were euthanized; hearts and adrenal glands were processed for immunohistochemistry. Quantification of immunoreactivity (ir of stainings was performed by an investigator blind to the treatment group using NIH ImageJ software (for cardiac bundles and adrenals, area above threshold and optical density and MBF StereoInvestigator (for cardiac fibers, area fraction fractionator probe. Sympathetic cardiac nerve bundle analysis and fiber area density showed a significant reduction in global cardiac tyrosine hydroxylase-ir (TH; catecholaminergic marker in 6-OHDA animals compared to controls. Quantification of protein gene protein 9.5 (pan-neuronal marker positive cardiac fibers showed a significant deficit in 6-OHDA monkeys compared to controls and correlated with TH-ir fiber area. Semi-quantitative evaluation of human leukocyte antigen-ir (inflammatory marker and nitrotyrosine-ir (oxidative stress marker did not show significant changes 3 months post-neurotoxin. Cardiac nerve bundle α-synuclein-ir (presynaptic protein was reduced (trend in 6-OHDA treated monkeys; insoluble proteinase-K resistant α-synuclein (typical of PD pathology was not observed. In the adrenal medulla, 6-OHDA monkeys had significantly reduced TH-ir and aminoacid decarboxylase-ir. Our results confirm that systemic 6-OHDA dosing to nonhuman primates

  9. Role of sympathetic nervous system and neuropeptides in obesity hypertension

    Directory of Open Access Journals (Sweden)

    Hall J.E.

    2000-01-01

    Full Text Available Obesity is the most common cause of human essential hypertension in most industrialized countries. Although the precise mechanisms of obesity hypertension are not fully understood, considerable evidence suggests that excess renal sodium reabsorption and a hypertensive shift of pressure natriuresis play a major role. Sympathetic activation appears to mediate at least part of the obesity-induced sodium retention and hypertension since adrenergic blockade or renal denervation markedly attenuates these changes. Recent observations suggest that leptin and its multiple interactions with neuropeptides in the hypothalamus may link excess weight gain with increased sympathetic activity. Leptin is produced mainly in adipocytes and is believed to regulate energy balance by acting on the hypothalamus to reduce food intake and to increase energy expenditure via sympathetic activation. Short-term administration of leptin into the cerebral ventricles increases renal sympathetic activity, and long-term leptin infusion at rates that mimic plasma concentrations found in obesity raises arterial pressure and heart rate via adrenergic activation in non-obese rodents. Transgenic mice overexpressing leptin also develop hypertension. Acute studies suggest that the renal sympathetic effects of leptin may depend on interactions with other neurochemical pathways in the hypothalamus, including the melanocortin-4 receptor (MC4-R. However, the role of this pathway in mediating the long-term effects of leptin on blood pressure is unclear. Also, it is uncertain whether there is resistance to the chronic renal sympathetic and blood pressure effects of leptin in obese subjects. In addition, leptin also has other cardiovascular and renal actions, such as stimulation of nitric oxide formation and improvement of insulin sensitivity, which may tend to reduce blood pressure in some conditions. Although the role of these mechanisms in human obesity has not been elucidated, this

  10. Leptin‐Induced Endothelial Dysfunction Is Mediated by Sympathetic Nervous System Activity

    OpenAIRE

    Wang, Jintao; Wang, Hui; Luo, Wei; Guo, Chiao; Wang, Julia; Chen, Y.E.; Chang, Lin; Eitzman, Daniel T.

    2013-01-01

    Background The adipocyte‐derived hormone leptin is elevated in obesity and may contribute to vascular risk associated with obesity. The mechanism(s) by which leptin affects vascular disease is unclear, although leptin has been shown to increase sympathetic activity. The aim of this study was to investigate the effect of leptin treatment on endothelial function and the role of the local sympathetic nervous system in mediating these effects. Methods and Results Recombinant leptin was administer...

  11. Reduced sympathetic nervous activity. A potential mechanism predisposing to body weight gain.

    OpenAIRE

    Spraul, M.; Ravussin, E.; Fontvieille, A M; Rising, R; Larson, D. E.; Anderson, E. A.

    1993-01-01

    The sympathetic nervous system is recognized to play a role in the etiology of animal and possibly human obesity through its impact on energy expenditure and/or food intake. We, therefore, measured fasting muscle sympathetic nerve activity (MSNA) in the peroneal nerve and its relationship with energy expenditure and body composition in 25 relatively lean Pima Indian males (means +/- SD; 26 +/- 6 yr, 82 +/- 19 kg, 28 +/- 10% body fat) and 19 Caucasian males (29 +/- 5 yr, 81 +/- 13 kg, 24 +/- 9...

  12. Abnormal sympathetic nervous system development and physiologic dysautonomia in Egr3-deficient mice

    OpenAIRE

    Eldredge, Laurie C.; Gao, Xiaoguang M.; Quach, David; LI, Lin; Han, Xiaoqiang; Lomasney, Jon; Tourtellotte, Warren G.

    2008-01-01

    Sympathetic nervous system development depends upon many factors that mediate neuron migration, differentiation and survival. Target tissue-derived nerve growth factor (NGF) signaling-induced gene expression is required for survival, differentiation and target tissue innervation of post-migratory sympathetic neurons. However, the transcriptional regulatory mechanisms mediated by NGF signaling are very poorly defined. Here, we identify Egr3, a member of the early growth response (Egr) family o...

  13. Norepinephrine transporter (NET) is expressed in cardiac sympathetic ganglia of adult rat

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The sympathetic nervous system plays a cardinal role in regulating cardiac function through releasing the neurotransmitter norepinephrine (NE). In comparison with central nervous system, the molecular mechanism of NE uptake in myocardium is not clear. In present study, we proved that in rat the CNS type of NE transporter (NET) was also expressed in middle cervical-stellate ganglion complex (MC-SG complex) which is considered to control the activity of heart, but not expressed in myocardium. The results also showed that NET expression level in right ganglion was significantly higher than in the left, rendering the greater capacity of NE uptake in right ventricle, a fact which may contribute to the maintenance of right ventricular function under pathologic state.

  14. Cardiac Dysregulation and Myocardial Injury in a 6-Hydroxydopamine-Induced Rat Model of Sympathetic Denervation.

    Directory of Open Access Journals (Sweden)

    Yue-Hua Jiang

    Full Text Available Cardiac sympathetic denervation is found in various cardiac pathologies; however, its relationship with myocardial injury has not been thoroughly investigated.Twenty-four rats were assigned to the normal control group (NC, sympathectomy control group (SC, and a sympathectomy plus mecobalamin group (SM. Sympathectomy was induced by injection of 6-OHDA, after which, the destruction and distribution of sympathetic and vagal nerve in the left ventricle (LV myocardial tissue were determined by immunofluorescence and ELISA. Heart rate variability (HRV, ECG and echocardiography, and assays for myocardial enzymes in serum before and after sympathectomy were examined. Morphologic changes in the LV by HE staining and transmission electron microscope were used to estimate levels of myocardial injury and concentrations of inflammatory cytokines were used to reflect the inflammatory reaction.Injection of 6-OHDA decreased NE (933.1 ± 179 ng/L for SC vs. 3418.1± 443.6 ng/L for NC, P < 0.01 and increased NGF (479.4± 56.5 ng/mL for SC vs. 315.85 ± 28.6 ng/mL for NC, P < 0.01 concentrations. TH expression was reduced, while ChAT expression showed no change. Sympathectomy caused decreased HRV and abnormal ECG and echocardiography results, and histopathologic examinations showed myocardial injury and increased collagen deposition as well as inflammatory cell infiltration in the cardiac tissue of rats in the SC and SM groups. However, all pathologic changes in the SM group were less severe compared to those in the SC group.Chemical sympathectomy with administration of 6-OHDA caused dysregulation of the cardiac autonomic nervous system and myocardial injuries. Mecobalamin alleviated inflammatory and myocardial damage by protecting myocardial sympathetic nerves.

  15. Relationship between duration of illness and cardiac autonomic nervous activity in anorexia nervosa

    OpenAIRE

    Nakai, Yoshikatsu; Fujita, Masatoshi; Nin, Kazuko; Noma, Shun’ichi; Teramukai, Satoshi

    2015-01-01

    Background The mortality rate associated with anorexia nervosa (AN) is high, and death is mainly attributable to cardiac events. A wide range of autonomic nervous system disturbances may be mechanisms underlying the increased cardiovascular mortality and sudden death of patients with AN. Heart rate variability (HRV) has been proven to be a reliable noninvasive method for quantitative assessment of sympathetic and parasympathetic regulation of heart rate (HR). The longer the duration of illnes...

  16. Relationship between duration of illness and cardiac autonomic nervous activity in anorexia nervosa

    OpenAIRE

    Nakai, Yoshikatsu; Fujita, Masatoshi; Nin, Kazuko; Noma, Shun'ichi; Teramukai, Satoshi

    2015-01-01

    Background: The mortality rate associated with anorexia nervosa (AN) is high, and death is mainly attributable to cardiac events. A wide range of autonomic nervous system disturbances may be mechanisms underlying the increased cardiovascular mortality and sudden death of patients with AN. Heart rate variability (HRV) has been proven to be a reliable noninvasive method for quantitative assessment of sympathetic and parasympathetic regulation of heart rate (HR). The longer the duration of illne...

  17. Role of sympathetic nervous system and neuropeptides in obesity hypertension

    OpenAIRE

    Hall, J. E.; M.W. Brands; D.A. Hildebrandt; Kuo, J.; Fitzgerald, S.

    2000-01-01

    Obesity is the most common cause of human essential hypertension in most industrialized countries. Although the precise mechanisms of obesity hypertension are not fully understood, considerable evidence suggests that excess renal sodium reabsorption and a hypertensive shift of pressure natriuresis play a major role. Sympathetic activation appears to mediate at least part of the obesity-induced sodium retention and hypertension since adrenergic blockade or renal denervation markedly attenuates...

  18. Cardiac Sympathetic Hyperactivity after Chemotherapy: Early Sign of Cardiotoxicity?

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, Sarita Lígia Pessoa de Melo Machado [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Hospital Agamenon Magalhães (HAM), Recife, PE (Brazil); Brandão, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Andrade, Luciana Raposo [Hospital Santa Joana, Recife, PE (Brazil); Maia, Rafael José Coelho [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Hospital Agamenon Magalhães (HAM), Recife, PE (Brazil); Markman Filho, Brivaldo [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil)

    2015-09-15

    Chemotherapy with anthracyclines and trastuzumab can cause cardiotoxicity. Alteration of cardiac adrenergic function assessed by metaiodobenzylguanidine labeled with iodine-123 ({sup 123}I-mIBG) seems to precede the drop in left ventricular ejection fraction. To evaluate and to compare the presence of cardiovascular abnormalities among patients with breast cancer undergoing chemotherapy with anthracyclines and trastuzumab, and only with anthracycline. Patients with breast cancer were analyzed clinical, laboratory, electrocardiographic and echocardiographic and cardiac sympathetic activity. In scintigraphic images, the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum, and the washout rate were calculated. The variables were compared between patients who received anthracyclines and trastuzumab (Group 1) and only anthracyclines (Group 2). Twenty patients, with mean age 57 ± 14 years, were studied. The mean left ventricular ejection fraction by echocardiography was 67.8 ± 4.0%. Mean washout rate was 28.39 ± 9.23% and the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum was 2.07 ± 0.28. Of the patients, 82% showed an increased in washout rate, and the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum decreased in 25%. Concerning the groups, the mean washout rate of Group 1 was 32.68 ± 9.30% and of Group 2 was 24.56 ± 7.72% (p = 0,06). The ratio of {sup 123}I-mIBG uptake between the heart and mediastinum was normal in all patients in Group 2, however, the Group 1, showed 50% the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum ≤ 1.8 (p = 0.02). In women with breast cancer undergoing chemotherapy, assessment of cardiac sympathetic activity with {sup 123}I-mIBG appears to be an early marker of cardiotoxicity. The combination of chemotherapy showed higher risk of cardiac adrenergic hyperactivity.

  19. Cardiac Sympathetic Hyperactivity after Chemotherapy: Early Sign of Cardiotoxicity?

    International Nuclear Information System (INIS)

    Chemotherapy with anthracyclines and trastuzumab can cause cardiotoxicity. Alteration of cardiac adrenergic function assessed by metaiodobenzylguanidine labeled with iodine-123 (123I-mIBG) seems to precede the drop in left ventricular ejection fraction. To evaluate and to compare the presence of cardiovascular abnormalities among patients with breast cancer undergoing chemotherapy with anthracyclines and trastuzumab, and only with anthracycline. Patients with breast cancer were analyzed clinical, laboratory, electrocardiographic and echocardiographic and cardiac sympathetic activity. In scintigraphic images, the ratio of 123I-mIBG uptake between the heart and mediastinum, and the washout rate were calculated. The variables were compared between patients who received anthracyclines and trastuzumab (Group 1) and only anthracyclines (Group 2). Twenty patients, with mean age 57 ± 14 years, were studied. The mean left ventricular ejection fraction by echocardiography was 67.8 ± 4.0%. Mean washout rate was 28.39 ± 9.23% and the ratio of 123I-mIBG uptake between the heart and mediastinum was 2.07 ± 0.28. Of the patients, 82% showed an increased in washout rate, and the ratio of 123I-mIBG uptake between the heart and mediastinum decreased in 25%. Concerning the groups, the mean washout rate of Group 1 was 32.68 ± 9.30% and of Group 2 was 24.56 ± 7.72% (p = 0,06). The ratio of 123I-mIBG uptake between the heart and mediastinum was normal in all patients in Group 2, however, the Group 1, showed 50% the ratio of 123I-mIBG uptake between the heart and mediastinum ≤ 1.8 (p = 0.02). In women with breast cancer undergoing chemotherapy, assessment of cardiac sympathetic activity with 123I-mIBG appears to be an early marker of cardiotoxicity. The combination of chemotherapy showed higher risk of cardiac adrenergic hyperactivity

  20. Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia

    OpenAIRE

    Suuronen Erik J; Harper Mary-Ellen; Radziuk Jerry; Thackeray James T; Ascah Kathryn J; Beanlands Rob S; DaSilva Jean N

    2011-01-01

    Abstract Background Diabetes mellitus is strongly associated with cardiovascular dysfunction, derived in part from impairment of sympathetic nervous system signaling. Glucose, insulin, and non-esterified fatty acids are potent stimulants of sympathetic activity and norepinephrine (NE) release. We hypothesized that sustained hyperglycemia in the high fat diet-fed streptozotocin (STZ) rat model of sustained hyperglycemia with insulin resistance would exhibit progressive sympathetic nervous dysf...

  1. Marital Conflict and Children's Externalizing Behavior: Interactions between Parasympathetic and Sympathetic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Kouros, Chrystyna D.; Erath, Stephen; Cummings, E. Mark; Keller, Peggy; Staton, Lori

    2009-01-01

    Toward greater specificity in the prediction of externalizing problems in the context of interparental conflict, interactions between children's parasympathetic and sympathetic nervous system (PNS and SNS) activity were examined as moderators. PNS activity was indexed by respiratory sinus arrhythmia (RSA) and RSA reactivity (RSA-R) to lab…

  2. Sympathetic nervous system activation, arterial shear rate, and flow-mediated dilation.

    NARCIS (Netherlands)

    Thijssen, D.H.J.; Atkinson, C.L.; Ono, K.; Sprung, V.S.; Spence, A.L.; Pugh, C.J.; Green, D.J.

    2014-01-01

    The aim of this study was to examine the contribution of arterial shear to changes in flow-mediated dilation (FMD) during sympathetic nervous system (SNS) activation in healthy humans. Ten healthy men reported to our laboratory four times. Bilateral FMD, shear rate (SR), and catecholamines were exam

  3. Central Gi(2) proteins, sympathetic nervous system and blood pressure regulation

    Czech Academy of Sciences Publication Activity Database

    Zicha, Josef

    2016-01-01

    Roč. 216, č. 3 (2016), s. 258-259. ISSN 1748-1708 Institutional support: RVO:67985823 Keywords : inhibitory G proteins * sympathetic nervous system * central blood pressure control Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.382, year: 2014

  4. Cortisol and Children's Adjustment: The Moderating Role of Sympathetic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Erath, Stephen A.; Buckhalt, Joseph A.; Granger, Douglas A.; Mize, Jacquelyn

    2008-01-01

    We examined relations among cortisol, markers of sympathetic nervous system (SNS) activity (including salivary alpha-amylase and skin conductance level), and children's adjustment. We also tested the Bauer et al. ("Journal of Developmental and Behavioral Pediatrics," 23(2), 102-113, 2002) hypothesis that interactions between the SNS and cortisol…

  5. Leptin regulates bone formation via the sympathetic nervous system

    Science.gov (United States)

    Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard

    2002-01-01

    We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.

  6. 123I-Labelled metaiodobenzylguanidine for the evaluation of cardiac sympathetic denervation in early stage amyloidosis

    OpenAIRE

    Noordzij, Walter; Glaudemans, Andor W. J. M.; van Rheenen, Ronald W. J.; Hazenberg, Bouke P. C.; Tio, René A; Dierckx, Rudi A. J. O.; Slart, Riemer H.J.A.

    2012-01-01

    Purpose Cardiac amyloidosis is a rare disorder, but it may lead to potentially life-threatening restrictive cardiomyopathy. Cardiac manifestations frequently occur in primary amyloidosis (AL) and familial amyloidosis (ATTR), but are uncommon in secondary amyloidosis (AA). Echocardiography is the method of choice for assessing cardiac amyloidosis. Amyloid deposits impair the function of sympathetic nerve endings. Disturbance of myocardial sympathetic innervations may play an important role in ...

  7. Renal sympathetic nervous system and the effects of denervation on renal arteries

    Institute of Scientific and Technical Information of China (English)

    Arun; Kannan; Raul; Ivan; Medina; Nagapradeep; Nagajothi; Saravanan; Balamuthusamy

    2014-01-01

    Resistant hypertension is associated with chronic activation of the sympathetic nervous system resulting in various comorbidities. The prevalence of resistant hypertension is often under estimated due to various reasons. Activation of sympathetic nervous system at the renal-as well as systemic-level contributes to the increased level of catecholamines and resulting increase in the blood pressure. This increased activity was demonstrated by increased muscle sympathetic nerve activity and renal and total body noradrenaline spillover. Apart from the hypertension, it is hypothesized to be associated with insulin resistance, congestive heart failure and obstructive sleep apnea. Renal denervation is a novel procedure where the sympathetic afferent and efferent activity is reduced by various techniques and has been used successfully to treat drug-resistant hypertension improvement of various metabolic derangements.Renal denervation has the unique advantage of offering the denervation at the renal level, thus mitigating the systemic side effects. Renal denervation can be done by various techniques including radiofrequency ablation, ultrasound guided ablation and chemical ablation. Various trials evaluated the role of renal denervation in the management of resistant hypertension and have found promising results. More studies are underway to evaluate the role of renal denervation in patients presenting with resistant hypertension in different scenarios. Appropriate patient selection might be the key in determining the effectiveness of the procedure.

  8. Obesity-induced Hypertension: Role of Sympathetic Nervous System, Leptin, and Melanocortins*

    OpenAIRE

    Hall, John E.; da Silva, Alexandre A.; do Carmo, Jussara M.; Dubinion, John; Hamza, Shereen; Munusamy, Shankar; Smith, Grant; Stec, David E.

    2010-01-01

    Excess weight gain contributes to increased blood pressure in most patients with essential hypertension. Although the mechanisms of obesity hypertension are not fully understood, increased renal sodium reabsorption and impaired pressure natriuresis play key roles. Several mechanisms contribute to altered kidney function and hypertension in obesity, including activation of the sympathetic nervous system, which appears to be mediated in part by increased levels of the adipocyte-derived hormone ...

  9. Cutting Edge: Sympathetic Nervous System Increases Proinflammatory Cytokines and Exacerbates Influenza A Virus Pathogenesis

    OpenAIRE

    Grebe, Kristie M.; Takeda, Kazuyo; Hickman, Heather D.; Bailey, Adam M.; Embry, Alan C.; Bennink, Jack R.; Yewdell, Jonathan W.

    2009-01-01

    Although the sympathetic nervous system innervates the lung, little is known about its participation in host immunity to pulmonary pathogens. In this study, we show that peripheral sympathectomy reduces mouse morbidity and mortality from influenza A virus-induced pneumonia due to reduced inflammatory influx of monocytes, neutrophils, and NK cells. Mortality was also delayed by treating mice with an α-adrenergic antagonist. Sympathectomy diminished the immediate innate cytokine responses, part...

  10. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins.

    Science.gov (United States)

    Hall, John E; da Silva, Alexandre A; do Carmo, Jussara M; Dubinion, John; Hamza, Shereen; Munusamy, Shankar; Smith, Grant; Stec, David E

    2010-06-01

    Excess weight gain contributes to increased blood pressure in most patients with essential hypertension. Although the mechanisms of obesity hypertension are not fully understood, increased renal sodium reabsorption and impaired pressure natriuresis play key roles. Several mechanisms contribute to altered kidney function and hypertension in obesity, including activation of the sympathetic nervous system, which appears to be mediated in part by increased levels of the adipocyte-derived hormone leptin, stimulation of pro-opiomelanocortin neurons, and subsequent activation of central nervous system melanocortin 4 receptors. PMID:20348094

  11. Differential effects of cardiac sympathetic afferent stimulation on neurons in the nucleus tractus solitarius

    OpenAIRE

    Wang, Wei-zhong; Gao, Lie; Pan, Yan-Xia; Zucker, Irving H.; Wang, Wei

    2006-01-01

    Activation of the cardiacsympathetic afferent” reflex (CSAR) has been reported to depress the arterial baroreflex and enhance the arterial chemoreflex via a central mechanism. In the present study, we used single-unit extracellular recording techniques to examine the effects of stimulation of cardiac sympathetic afferents on baro- or chemosensitive neurons in the nucleus tractus solitarius (NTS) in anesthetized rats. Of 54 barosensitive NTS neurons tested for their response to epicardial ap...

  12. Role of the sympathetic nervous system in carbon tetrachloride-induced hepatotoxicity and systemic inflammation.

    Directory of Open Access Journals (Sweden)

    Jung-Chun Lin

    Full Text Available Carbon tetrachloride (CCl4 is widely used as an animal model of hepatotoxicity and the mechanisms have been arduously studied, however, the contribution of the sympathetic nervous system (SNS in CCl4-induced acute hepatotoxicity remains controversial. It is also known that either CCl4 or SNS can affect systemic inflammatory responses. The aim of this study was to establish the effect of chemical sympathectomy with 6-hydroxydopamine (6-OHDA in a mouse model of CCl4-induced acute hepatotoxicity and systemic inflammatory response. Mice exposed to CCl4 or vehicle were pretreated with 6-OHDA or saline. The serum levels of aminotransferases and alkaline phosphatase in the CCl4-poisoning mice with sympathetic denervation were significantly lower than those without sympathetic denervation. With sympathetic denervation, hepatocellular necrosis and fat infiltration induced by CCl4 were greatly decreased. Sympathetic denervation significantly attenuated CCl4-induced lipid peroxidation in liver and serum. Acute CCl4 intoxication showed increased expression of inflammatory cytokines/chemokines [eotaxin-2/CCL24, Fas ligand, interleukin (IL-1α, IL-6, IL-12p40p70, monocyte chemoattractant protein-1 (MCP-1/CCL2, and tumor necrosis factor-α (TNF-α], as well as decreased expression of granulocyte colony-stimulating factor and keratinocyte-derived chemokine. The overexpressed levels of IL-1α, IL-6, IL-12p40p70, MCP-1/CCL2, and TNF-α were attenuated by sympathetic denervation. Pretreatment with dexamethasone significantly reduced CCl4-induced hepatic injury. Collectively, this study demonstrates that the SNS plays an important role in CCl4-induced acute hepatotoxicity and systemic inflammation and the effect may be connected with chemical- or drug-induced hepatotoxicity and circulating immune response.

  13. Inhibition of cardiac sympathetic afferent reflex and sympathetic activity by baroreceptor and vagal afferent inputs in chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Xian-Bing Gan

    Full Text Available BACKGROUND: Cardiac sympathetic afferent reflex (CSAR contributes to sympathetic activation and angiotensin II (Ang II in paraventricular nucleus (PVN augments the CSAR in vagotomized (VT and baroreceptor denervated (BD rats with chronic heart failure (CHF. This study was designed to determine whether it is true in intact (INT rats with CHF and to determine the effects of cardiac and baroreceptor afferents on the CSAR and sympathetic activity in CHF. METHODOLOGY/PRINCIPAL FINDINGS: Sham-operated (Sham or coronary ligation-induced CHF rats were respectively subjected to BD+VT, VT, cardiac sympathetic denervation (CSD or INT. Under anesthesia, renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were recorded, and the CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Either CSAR or the responses of RSNA, MAP and CSAR to Ang II in PVN were enhanced in CHF rats treated with BD+VT, VT or INT. Treatment with VT or BD+VT potentiated the CSAR and the CSAR responses to Ang II in both Sham and CHF rats. Treatment with CSD reversed the capsaicin-induced RSNA and MAP changes and the CSAR responses to Ang II in both Sham and CHF rats, and reduced the RSNA and MAP responses to Ang II only in CHF rats. CONCLUSIONS: The CSAR and the CSAR responses to Ang II in PVN are enhanced in intact CHF rats. Baroreceptor and vagal afferent activities inhibit CSAR and the CSAR responses to Ang II in intact Sham and CHF rats.

  14. Angiotensin-(1-7 in paraventricular nucleus modulates sympathetic activity and cardiac sympathetic afferent reflex in renovascular hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Ying Han

    Full Text Available BACKGROUND: Excessive sympathetic activity contributes to the pathogenesis and progression of hypertension. Enhanced cardiac sympathetic afferent reflex (CSAR is involved in sympathetic activation. This study was designed to determine the roles of angiotensin (Ang-(1-7 in paraventricular nucleus (PVN in modulating sympathetic activity and CSAR and its signal pathway in renovascular hypertension. METHODOLOGY/PRINCIPAL FINDINGS: Renovascular hypertension was induced with two-kidney, one-clip method. Renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were recorded in sinoaortic-denervated and cervical-vagotomized rats with anesthesia. CSAR was evaluated with the RSNA and MAP responses to epicardial application of capsaicin. PVN microinjection of Ang-(1-7 and cAMP analogue db-cAMP caused greater increases in RSNA and MAP, and enhancement in CSAR in hypertensive rats than in sham-operated rats, while Mas receptor antagonist A-779 produced opposite effects. There was no significant difference in the angiotensin-converting enzyme 2 (ACE2 activity and Ang-(1-7 level in the PVN between sham-operated rats and hypertensive rats, but the Mas receptor protein expression in the PVN was increased in hypertensive rats. The effects of Ang-(1-7 were abolished by A-779, adenylyl cyclase inhibitor SQ22536 or protein kinase A (PKA inhibitor Rp-cAMP. SQ22536 or Rp-cAMP reduced RSNA and MAP in hypertensive rats, and attenuated the CSAR in both sham-operated and hypertensive rats. CONCLUSIONS: Ang-(1-7 in the PVN increases RSNA and MAP and enhances the CSAR, which is mediated by Mas receptors. Endogenous Ang-(1-7 and Mas receptors contribute to the enhanced sympathetic outflow and CSAR in renovascular hypertension. A cAMP-PKA pathway is involved in the effects of Ang-(1-7 in the PVN.

  15. Electron microscopic autoradiography and its application in research of sympathetic nervous system

    International Nuclear Information System (INIS)

    A literary survey is presented of the application of electron microscopic autoradiography in research of the sympathetic nervous system and the results are reported of experiments with the application of electron microscopy in the research of ganglion cervicale superioris in rats and of nerve endings in the muscle septa of the cat spleen. Two methods were also compared of applying nuclear emulsions, i.e. on the mesh with histological sections and on the sections placed on the supporting membrane and on the glass slide. The former was found to be less exacting as concerns time. (L.O.)

  16. Effects of alpha-adrenoceptor and of combined sympathetic and parasympathetic blockade on cardiac performance and vascular resistance

    DEFF Research Database (Denmark)

    Kelbaek, H; Frandsen, Henrik Lund; Hilsted, J;

    1992-01-01

    ) blockade. 2. During alpha-adrenoceptor blockade heart rate and cardiac output increased considerably and left ventricular ejection fraction increased because of increased contractility. Systemic vascular resistance fell both during alpha-adrenoceptor blockade alone and during combined blockade. The...... increase in calf blood flow was of the same magnitude after combined blockade and after alpha-adrenoceptor blockade alone, and was considerably higher than the fall in systemic vascular resistance. Plasma catecholamine concentrations increased after phentolamine, but the changes were blunted when...... propranolol and atropine were added. 3. These results indicate that peripheral vasoconstriction especially that exerted by alpha-adrenoceptor nervous tone in skeletal muscle restricts left ventricular emptying of the intact heart. During pharmacologic blockade of the sympathetic and parasympathetic nervous...

  17. Sympathetic Nervous System Control of Carbon Tetrachloride-Induced Oxidative Stress in Liver through α-Adrenergic Signaling

    OpenAIRE

    Jung-Chun Lin; Yi-Jen Peng; Shih-Yu Wang; Mei-Ju Lai; Ton-Ho Young; Salter, Donald M.; Herng-Sheng Lee

    2015-01-01

    In addition to being the primary organ involved in redox cycling, the liver is one of the most highly innervated tissues in mammals. The interaction between hepatocytes and sympathetic, parasympathetic, and peptidergic nerve fibers through a variety of neurotransmitters and signaling pathways is recognized as being important in the regulation of hepatocyte function, liver regeneration, and hepatic fibrosis. However, less is known regarding the role of the sympathetic nervous system (SNS) in m...

  18. Sympathetic Nervous System Control of Carbon Tetrachloride-Induced Oxidative Stress in Liver through a-Adrenergic Signaling

    OpenAIRE

    Lin, Jung-Chun; Peng, Yi-Jen; Wang, Shih-Yu; Lai, Mei-Ju; Young, Ton-Ho; Salter, Donald; Lee, Herng-Sheng

    2016-01-01

    In addition to being the primary organ involved in redox cycling, the liver is one of the most highly innervated tissues in mammals. The interaction between hepatocytes and sympathetic, parasympathetic, and peptidergic nerve fibers through a variety of neurotransmitters and signaling pathways is recognized as being important in the regulation of hepatocyte function, liver regeneration, and hepatic fibrosis. However, less is known regarding the role of the sympathetic nervous system (SNS) in m...

  19. Postnatal Cardiac Autonomic Nervous Control in Pediatric Congenital Heart Disease

    Directory of Open Access Journals (Sweden)

    Ineke Nederend

    2016-04-01

    Full Text Available Congenital heart disease is the most common congenital defect. During childhood, survival is generally good but, in adulthood, late complications are not uncommon. Abnormal autonomic control in children with congenital heart disease may contribute considerably to the pathophysiology of these long term sequelae. This narrative review of 34 studies aims to summarize current knowledge on function of the autonomic nervous system in children with a congenital heart defect. Large scale studies that measure both branches of the nervous system for prolonged periods of time in well-defined patient cohorts in various phases of childhood and adolescence are currently lacking. Pending such studies, there is not yet a good grasp on the extent and direction of sympathetic and parasympathetic autonomic function in pediatric congenital heart disease. Longitudinal studies in homogenous patient groups linking autonomic nervous system function and clinical outcome are warranted.

  20. Physiological changes in human cardiac sympathetic innervation and activity assessed by 123I-metaiodobenzylguanidine (MIBG) imaging

    International Nuclear Information System (INIS)

    Physiologic changes in the human sympathetic nervous system (SNS) may be associated with cardiovascular diseases, so the present study assessed the age and gender differences in global cardiac SNS in normal subjects. The 163 subjects (74 men, 89 women; age range 40-89 years) whose coronary arteriogram was normal, and who had no other cardiac or neurohormonal diseases, and no medication affecting the autonomic nervous system were included. All study subjects underwent metaiodobenzylguanidine imaging. Both initial and delayed heart-to-mediastinum (H/M) ratios had a significant gender difference and showed a progressive decrease with aging. In addition, the initial H/M ratio had a significant positive correlation with the delayed H/M ratio (r=0.89, P<0.0001). Females (50-59 years) demonstrated significantly higher delayed H/M ratio than males of the same age. After the age of 60, the delayed H/M ratio in females progressively decreased with aging, similar to males. As for the washout rate, both genders had a significantly progressive increase with aging. In addition, there was a significant decrease in the delayed H/M ratio in 10 females with surgical menopause compared with 15 age-matched females without surgical menopause. Cardiac SNS appears to be regulated by various physiological factors. (author)

  1. Neuropeptide Y Gates a Stress-Induced, Long-Lasting Plasticity in the Sympathetic Nervous System

    Science.gov (United States)

    Wang, Qian; Wang, Manqi

    2013-01-01

    Acute stress evokes the fight-or-flight reflex, which via release of the catecholamine hormones affects the function of every major organ. Although the reflex is transient, it has lasting consequences that produce an exaggerated response when stress is reexperienced. How this change is encoded is not known. We investigated whether the reflex affects the adrenal component of the sympathetic nervous system, a major branch of the stress response. Mice were briefly exposed to the cold-water forced swim test (FST) which evoked an increase in circulating catecholamines. Although this hormonal response was transient, the FST led to a long-lasting increase in the catecholamine secretory capacity measured amperometrically from chromaffin cells and in the expression of tyrosine hydroxylase. A variety of approaches indicate that these changes are regulated postsynaptically by neuropeptide Y (NPY), an adrenal cotransmitter. Using immunohistochemistry, RT-PCR, and NPY(GFP) BAC mice, we find that NPY is synthesized by all chromaffin cells. Stress failed to increase secretory capacity in NPY knock-out mice. Genetic or pharmacological interference with NPY and Y1 (but not Y2 or Y5) receptor signaling attenuated the stress-induced change in tyrosine hydroxylase expression. These results indicate that, under basal conditions, adrenal signaling is tonically inhibited by NPY, but stress overrides this autocrine negative feedback loop. Because acute stress leads to a lasting increase in secretory capacity in vivo but does not alter sympathetic tone, these postsynaptic changes appear to be an adaptive response. We conclude that the sympathetic limb of the stress response exhibits an activity-dependent form of long-lasting plasticity. PMID:23904607

  2. Permissive Parenting, Deviant Peer Affiliations, and Delinquent Behavior in Adolescence: the Moderating Role of Sympathetic Nervous System Reactivity.

    Science.gov (United States)

    Hinnant, J Benjamin; Erath, Stephen A; Tu, Kelly M; El-Sheikh, Mona

    2016-08-01

    The present study examined two measures of sympathetic nervous system (SNS) activity as moderators of the indirect path from permissive parenting to deviant peer affiliations to delinquency among a community sample of adolescents. Participants included 252 adolescents (M = 15.79 years; 53 % boys; 66 % European American, 34 % African American). A multi-method design was employed to address the research questions. Two indicators of SNS reactivity, skin conductance level reactivity (SCLR) and cardiac pre-ejection period reactivity (PEPR) were examined. SNS activity was measured during a baseline period and a problem-solving task (star-tracing); reactivity was computed as the difference between the task and baseline periods. Adolescents reported on permissive parenting, deviant peer affiliations, externalizing behaviors, and substance use (alcohol, marijuana). Analyses revealed indirect effects between permissive parenting and delinquency via affiliation with deviant peers. Additionally, links between permissive parenting to affiliation with deviant peers and affiliation with deviant peers to delinquency was moderated by SNS reactivity. Less SNS reactivity (less PEPR and/or less SCLR) were risk factors for externalizing problems and alcohol use. Findings highlight the moderating role of SNS reactivity in parenting and peer pathways that may contribute to adolescent delinquency and point to possibilities of targeted interventions for vulnerable youth. PMID:26667026

  3. Evidence for a curvilinear relationship between sympathetic nervous system activation and women's physiological sexual arousal.

    Science.gov (United States)

    Lorenz, Tierney Ahrold; Harte, Christopher B; Hamilton, Lisa Dawn; Meston, Cindy M

    2012-01-01

    There is increasing evidence that women's physiological sexual arousal is facilitated by moderate sympathetic nervous system (SNS) activation. Literature also suggests that the level of SNS activation may play a role in the degree to which SNS activity affects sexual arousal. We provide the first empirical examination of a possible curvilinear relationship between SNS activity and women's genital arousal using a direct measure of SNS activation in 52 sexually functional women. The relationship between heart rate variability (HRV), a specific and sensitive marker of SNS activation, and vaginal pulse amplitude (VPA), a measure of genital arousal, was analyzed. Moderate increases in SNS activity were associated with higher genital arousal, while very low or very high SNS activation was associated with lower genital arousal. These findings imply that there is an optimal level of SNS activation for women's physiological sexual arousal. PMID:22092348

  4. Role of the Sympathetic Nervous System in Stress-Mediated Cardiovascular Disease.

    Science.gov (United States)

    Hering, Dagmara; Lachowska, Kamila; Schlaich, Markus

    2015-10-01

    A high incidence of acute cardiovascular events and sudden cardiac death following unexpected acute emotional stress or a natural catastrophic disaster has been well-documented over the past decades. Chronic psychosocial factors have been shown to be directly linked to the development of hypertension, cardiovascular disease and stroke. Activation of various neurogenic pathways is an important mediator of acute and chronic stress-induced hypertension and heart disease. Heightened sympathetic activation has been shown to be a critical contributor linking psychogenic effects on cardiovascular regulation to serious and often fatal CV outcomes. Accordingly, several therapeutic approaches that attenuate autonomic imbalance via modulation of increased sympathetic outflow by either non-pharmacological or interventional means have been shown to alleviate clinical symptoms. Likewise stress reduction per se achieved with transcendental medicine has been linked to improved patient outcomes. Therapies that oppose adrenergic activity and/or have the potential to attenuate negative emotions are likely to reduce cardiovascular risk and its adverse consequences attributable to chronic mental stress. PMID:26318888

  5. Scintigraphic assessment of cardiac sympathetic innervation with I-123-metaiodobenzylguanidine in cardiomyopathy. Special reference to cardiac arrhythmia

    International Nuclear Information System (INIS)

    Cardiac sympathetic imagings with I-123-metaiodobenzylguanidine (MIBG) were carried out in 5 cases with dilated cardiomyopathy (DCM), 26 cases with hypertrophic cardiomyopathy (HCM), and 4 cases without cardiac disease as a control to assess cardiac sympathetic innervation qualitatively and quantitatively, and to clarify the relation of MIBG accumulation to arrhythmia. MIBG scintigraphy was performed at 15 min. (early image) and 4 hr. (delayed image) after intravenous injection of MIBG 111 MBq. The MIBG uptake ratio of mediastinum (H/M) and the cardiac washout rate (WR) from early to delayed images were calculated. On both early and delayed SPECTs, MIBG uptake was assessed by defect scores (DSs). Regarding the cases with HCM, the MIBG uptake ratio, WR, and DS were also compared in cases with and without arrhythmia. In DCM, the MIBG uptake on delayed SPECT was markedly low, the H/M ratio was significantly lower, and the DS was significantly higher than in the control (all p<0.05). As for the WR, there was no significant difference between HCM, DCM and the control. In HCM, significantly reduced MIBG uptake was observed in cases with ventricular techycardia (VT) and in cases with atrial fibrillation (Af), as compared with cases without arrhythmia (all p<0.05). There results suggest that MIBG scintigraphy might be a useful tool in the assessment of cardiac sympathetic abnormalities in cardiomyopathy, especially in cases with arrhythmia. (author)

  6. Scintigraphic assessment of cardiac sympathetic innervation with I-123-metaiodobenzylguanidine in cardiomyopathy. Special reference to cardiac arrhythmia

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Takahisa; Otsuka, Nobuaki; Sone, Teruki; Mimura, Hiroaki; Yanagimoto, Shinichi; Tomomitsu, Tatsushi; Fukunaga, Masao [Kawasaki Medical School, Kurashiki, Okayama (Japan); Morita, Koichi

    1999-07-01

    Cardiac sympathetic imagings with I-123-metaiodobenzylguanidine (MIBG) were carried out in 5 cases with dilated cardiomyopathy (DCM), 26 cases with hypertrophic cardiomyopathy (HCM), and 4 cases without cardiac disease as a control to assess cardiac sympathetic innervation qualitatively and quantitatively, and to clarify the relation of MIBG accumulation to arrhythmia. MIBG scintigraphy was performed at 15 min. (early image) and 4 hr. (delayed image) after intravenous injection of MIBG 111 MBq. The MIBG uptake ratio of mediastinum (H/M) and the cardiac washout rate (WR) from early to delayed images were calculated. On both early and delayed SPECTs, MIBG uptake was assessed by defect scores (DSs). Regarding the cases with HCM, the MIBG uptake ratio, WR, and DS were also compared in cases with and without arrhythmia. In DCM, the MIBG uptake on delayed SPECT was markedly low, the H/M ratio was significantly lower, and the DS was significantly higher than in the control (all p<0.05). As for the WR, there was no significant difference between HCM, DCM and the control. In HCM, significantly reduced MIBG uptake was observed in cases with ventricular techycardia (VT) and in cases with atrial fibrillation (Af), as compared with cases without arrhythmia (all p<0.05). There results suggest that MIBG scintigraphy might be a useful tool in the assessment of cardiac sympathetic abnormalities in cardiomyopathy, especially in cases with arrhythmia. (author)

  7. Cardiac sympathetic modulation in response to apneas/hypopneas through heart rate variability analysis.

    Directory of Open Access Journals (Sweden)

    Florian Chouchou

    Full Text Available Autonomic dysfunction is recognized to contribute to cardiovascular consequences in obstructive sleep apnea/hypopnea syndrome (OSAHS patients who present predominant cardiovascular sympathetic activity that persists during wakefulness. Here, we examined 1 the factors that influence sympathetic cardiac modulation in response to apneas/hypopneas; and 2 the influence of autonomic activity during apneas/hypopneas on CA. Sixteen OSAHS patients underwent in-hospital polysomnography. RR interval (RR and RR spectral analysis using wavelet transform were used to study parasympathetic (high frequency power: HF(WV and sympathetic (low frequency power: LF(WV and LF(WV/HF(WV ratio activity before and after apnea/hypopnea termination. Autonomic cardiac modulations were compared according to sleep stage, apnea/hypopnea type and duration, arterial oxygen saturation, and presence of CA. At apnea/hypopnea termination, RR decreased (p<0.001 while LF(WV (p = 0.001 and LF(WV/HF(WV ratio (p = 0.001 increased. Only RR and LF(WV/HF(WV ratio changes were higher when apneas/hypopneas produced CA (p = 0.030 and p = 0.035, respectively or deep hypoxia (p = 0.023 and p = 0.046, respectively. Multivariate statistical analysis showed that elevated LF(WV (p = 0.006 and LF(WV/HF(WV ratio (p = 0.029 during apneas/hypopneas were independently related to higher CA occurrence. Both the arousal and hypoxia processes may contribute to sympathetic cardiovascular overactivity by recurrent cardiac sympathetic modulation in response to apneas/hypopneas. Sympathetic overactivity also may play an important role in the acute central response to apneas/hypopneas, and in the sleep fragmentation.

  8. Relationships between salt sensitivity of blood pressure and sympathetic nervous system activity: a short review of evidence.

    Science.gov (United States)

    Strazzullo, P; Barbato, A; Vuotto, P; Galletti, F

    2001-01-01

    Experimental and clinical studies provided evidence in favor of complex relationships between sympathetic nervous system activity and salt-sensitivity of blood pressure. Genetic and acquired metabolic alterations associated with a tendency to retain salt and water may generate salt-sensitivity of blood pressure and shift the pressure-natriuresis curve to the right, promoting an increase in blood pressure. Sympathetic activation is a factor contributing to this result. Chronic high dietary salt intake is followed by a derangement in mechanisms of central sympathetic inhibition and then by an enhanced peripheral sympathetic tone. This, in turn, may generate salt-sensitivity of blood pressure by affecting renal hemodynamics, tubular sodium and water handling. Insulin resistance and sodium and water retention are prompted by high-fat (as well as high carbohydrate) diets, and by an increase in body fat mass. Also, aging is a condition of impaired interactions of the above factors. A gain in weight due to reduced physical activity, not followed by a parallel decrease in calorie intake, brings to a fall in insulin sensitivity. In many cases, the natural age-related decline of renal function is associated with a reduced physical exercise, hyperinsulinemia and sodium retention; sympathetic nervous system activity is enhanced and causes an increase in blood pressure. PMID:11270585

  9. Usefulness of cardiac 125I-metaiodobenzylguanidine uptake for evaluation of cardiac sympathetic nerve abnormalities in diabetic rats

    International Nuclear Information System (INIS)

    We investigated cardiac sympathetic nerve abnormalities in streptozocin-induced diabetic rats using 125I-metaiodobenzylguanidine (MIBG). The radioactivity ratio of cardiac tissue to 1 ml blood (H/B) was used as an index of cardiac MIBG uptake. Cardiac 125I-MIBG uptake (H/B) in 4-, 8- and 20-wk diabetic rats was 48% lower than that in control rats. Similar results were obtained even when the data were corrected for g wet tissue weight. Although there was no improvement in H/B following 2-wk insulin treatment, the H/B ratio increased significantly, to 85% of control levels, following 4 wk insulin treatment indicating the reversibility of impaired MIBG uptake in diabetic rats. In vivo reserpine treatment resulted in a 50% reduction in the H/B value in control rats. However, the treatment did not significantly suppress uptake in diabetic rats. Cardiac norepinephrine content in both *4- and **8-wk diabetic rats was significantly (*p**p125I-MIBG in diabetic rats is significantly impaired due to cardiac sympathetic nerve abnormalities. These abnormalities are reversible, however, dependent on the diabetic state. (author)

  10. Functional coupling with cardiac muscle promotes maturation of hPSC-derived sympathetic neurons

    Science.gov (United States)

    Oh, Yohan; Cho, Gun-Sik; Li, Zhe; Hong, Ingie; Zhu, Renjun; Kim, Min-Jeong; Kim, Yong Jun; Tampakakis, Emmanouil; Tung, Leslie; Huganir, Richard; Dong, Xinzhong; Kwon, Chulan; Lee, Gabsang

    2016-01-01

    Summary Neurons derived from human pluripotent stem cells (hPSCs) are powerful tools for studying human neural development and diseases. Robust functional coupling of hPSC-derived neurons with target tissues in vitro is essential for modeling intercellular physiology in a dish and to further translational studies, but has proven difficult to achieve. Here, we derive sympathetic neurons from hPSCs and show they can form physical and functional connections with cardiac muscle cells. Using multiple hPSC reporter lines, we recapitulated human autonomic neuron development in vitro and successfully isolated PHOX2B:eGFP+ neurons that exhibit sympathetic marker expression and electrophysiological properties, and norepinephrine secretion. Upon pharmacologic and optogenetic manipulation, PHOX:eGFP+ neurons controlled beating rates of cardiomyocytes, and the physical interactions between these cells increased neuronal maturation. This study provides a foundation for human sympathetic neuron specification and for hPSC-based neuronal control of organs in a dish. PMID:27320040

  11. Chronic central leptin infusion restores cardiac sympathetic-vagal balance and baroreflex sensitivity in diabetic rats

    OpenAIRE

    do Carmo, Jussara M.; Hall, John E.; da Silva, Alexandre A.

    2008-01-01

    This study tested whether leptin restores sympathetic-vagal balance, heart rate (HR) variability, and cardiac baroreflex sensitivity (BRS) in streptozotocin (STZ)-induced diabetes. Sprague-Dawley rats were instrumented with arterial and venous catheters, and a cannula was placed in the lateral ventricle for intracerebroventricular (ICV) leptin infusion. Blood pressure (BP) and HR were monitored by telemetry. BRS and HR variability were estimated by linear regression between HR and BP response...

  12. Induction of chronic non-inflammatory widespread pain increases cardiac sympathetic modulation in rats

    OpenAIRE

    Oliveira, Larissa Resende; de Melo, Vitor Ulisses; Macedo, Fabricio Nunes; Barreto, Andre Sales; Badaue-Passos, Daniel; Viana dos Santos, Marcio Roberto; Dias, Daniel Penteado Martins; Sluka, Kathleen A.; DeSantana, Josimari M.; Valter J. Santana-Filho

    2012-01-01

    Fibromyalgia (FM) is characterized by chronic non-inflammatory widespread pain (CWP) and changes in sympathetic function. In attempt to elucidate the pathophysiological mechanisms of FM we used a well-established CWP animal model. We aimed to evaluate changes in cardiac autonomic balance and baroreflex function in response to CWP induction in rats. CWP was induced by two injections of acidic saline (pH 4.0, n=8) five days apart into the left gastrocnemius muscle. Control animals were injected...

  13. Locus coeruleus lesions and PCOS: role of the central and peripheral sympathetic nervous system in the ovarian function of rat

    Directory of Open Access Journals (Sweden)

    Farideh Zafari Zangeneh

    2012-01-01

    Full Text Available Polycystic ovary syndrome (PCOS is a complex endocrine and metabolic disorder associated with ovulatory dysfunction”. “Autonomic and central nervous systems play important roles in the regulation of ovarian physiology”. The noradrenergic nucleus locus coeruleus (LC plays a central role in the regulation of the sympathetic nervous system and synaptically connected to the preganglionic cell bodies of the ovarian sympathetic pathway and its activation is essential to trigger spontaneous or induced LH surges. This study evaluates sympathetic outflow in central and peripheral pathways in PCO rats. Objective: Our objectives in this study were (1 to estimate LC activity in rats with estradiol valerate (EV-induced PCO; (2 to antagonized alpha2a adrenoceptor in systemic conditions with yohimbine. Materials and Methods: Forty two rats were divided into two groups: 1 LC and yohimbine and 2 control. Every group subdivided in two groups: eighteen rats were treated with estradiol valerate for induction of follicular cysts and the remainders were sesame oil groups. Results: Estradiol concentration was significantly augmented by the LC lesion in PCO rats (p<0.001, while LC lesion could not alter serum concentrations of LH and FSH, like yohimbine. The morphological observations of ovaries of LC lesion rats showed follicles with hyperthecosis, but yohimbine reduced the number of cysts, increased corpus lutea and developed follicles. Conclusion: Rats with EV-induced PCO increased sympathetic activity. LC lesion and yohimbine decreased the number of cysts and yohimbine increased corpus lutea and developed follicles in PCO rats.

  14. Impaired cardiac sympathetic innervation in symptomatic patients with long QT syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kies, Peter; Stegger, Lars; Schober, Otmar [University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); Paul, Matthias; Moennig, Gerold [University Hospital Muenster, Department for Cardiology and Angiology, Muenster (Germany); Gerss, Joachim [University of Muenster, Institute of Biostatistics and Clinical Research, Muenster (Germany); Wichter, Thomas [Marienhospital Osnabrueck, Department of Cardiology, Niels-Stensen-Kliniken, Osnabrueck (Germany); Schaefers, Michael [University of Muenster, European Institute of Molecular Imaging - EIMI, Muenster (Germany); Schulze-Bahr, Eric [University Hospital Muenster, Department for Cardiology and Angiology, Muenster (Germany); University Hospital Muenster, Institute for Genetics of Heart Diseases, Muenster (Germany)

    2011-10-15

    Increased sympathetic activation is a key modifier for arrhythmogenesis in patients with long QT syndrome (LQTS), a congenital channelopathy. Therefore, we investigated cardiac sympathetic function using {sup 123}I-metaiodobenzylguanidine (MIBG) single photon emission computed tomography (SPECT) in a cohort of symptomatic LQTS patients and correlated these findings with the underlying genotype. [{sup 123}I]MIBG SPECT was performed in 28 LQTS patients. Among these, 18 patients (64%) had a previous syncope and 10 patients (36%) survived sudden cardiac arrest. Patients were characterized in terms of genetic subtypes and QTc interval on surface ECGs. SPECT images were analysed for regional [{sup 123}I]MIBG uptake in a 33-segment bullseye scheme and compared to those obtained from 10 age-matched healthy control subjects (43 {+-} 12 years). An abnormal {sup 123}I-MIBG scan was found in 17 of 28 LQTS patients (61%) with a tracer reduction mainly located in the anteroseptal segments of the left ventricle. This finding was independent of the genetic LQTS subtype. In addition, no differences were found between LQTS patients with a QTc >500 ms vs <500 ms or those suffering from syncope vs VF (p > 0.05). A distinct regional pattern of impaired cardiac sympathetic function was identified in the majority of symptomatic LQTS patients. This innervation defect was independent of the underlying genotype and clinical disease expression. (orig.)

  15. Impaired cardiac sympathetic innervation in symptomatic patients with long QT syndrome

    International Nuclear Information System (INIS)

    Increased sympathetic activation is a key modifier for arrhythmogenesis in patients with long QT syndrome (LQTS), a congenital channelopathy. Therefore, we investigated cardiac sympathetic function using 123I-metaiodobenzylguanidine (MIBG) single photon emission computed tomography (SPECT) in a cohort of symptomatic LQTS patients and correlated these findings with the underlying genotype. [123I]MIBG SPECT was performed in 28 LQTS patients. Among these, 18 patients (64%) had a previous syncope and 10 patients (36%) survived sudden cardiac arrest. Patients were characterized in terms of genetic subtypes and QTc interval on surface ECGs. SPECT images were analysed for regional [123I]MIBG uptake in a 33-segment bullseye scheme and compared to those obtained from 10 age-matched healthy control subjects (43 ± 12 years). An abnormal 123I-MIBG scan was found in 17 of 28 LQTS patients (61%) with a tracer reduction mainly located in the anteroseptal segments of the left ventricle. This finding was independent of the genetic LQTS subtype. In addition, no differences were found between LQTS patients with a QTc >500 ms vs 0.05). A distinct regional pattern of impaired cardiac sympathetic function was identified in the majority of symptomatic LQTS patients. This innervation defect was independent of the underlying genotype and clinical disease expression. (orig.)

  16. Differential effects of defibrillation on systemic and cardiac sympathetic activity

    OpenAIRE

    Bode, F; U. Wiegand; Raasch, W; Richardt, G.; Potratz, J

    1998-01-01

    Objective—To assess the effect of defibrillation shocks on cardiac and circulating catecholamines.
Design—Prospective examination of myocardial catecholamine balance during dc shock by simultaneous determination of arterial and coronary sinus plasma concentrations. Internal countershocks (10-34 J) were applied in 30 patients after initiation of ventricular fibrillation for a routine implantable cardioverter defibrillator test. Another 10 patients were externally cardioverted (50-360 J) for at...

  17. Cardiac sympathetic denervation preceding motor signs in Parkinson disease

    OpenAIRE

    Goldstein, David S.; Sharabi, Yehonatan; Karp, Barbara I.; Bentho, Oladi; Saleem, Ahmed; Pacak, Karel; Eisenhofer, Graeme

    2007-01-01

    There is substantial interest in identifying biomarkers to detect early Parkinson disease (PD). Cardiac noradrenergic denervation and attenuated baroreflex-cardiovagal function occur in de novo PD, but whether these abnormalities can precede PD has been unknown. Here we report the case of a patient who had profoundly decreased left ventricular myocardial 6-[18F]fluorodopamine-derived radioactivity and low baroreflex-cardiovagal gain, 4 years before the onset of symptoms and signs of PD. The r...

  18. The role of sympathetic nervous system in the development of neurogenic pulmonary edema in spinal cord-injured rats

    Czech Academy of Sciences Publication Activity Database

    Šedý, Jiří; Zicha, Josef; Nedvídková, J.; Kuneš, Jaroslav

    2012-01-01

    Roč. 112, č. 1 (2012), s. 1-8. ISSN 8750-7587 R&D Projects: GA MŠk(CZ) 1M0510; GA ČR(CZ) GA305/08/0139; GA AV ČR(CZ) IAA500110902 Institutional research plan: CEZ:AV0Z50110509 Keywords : neurogenic pulmonary edema * sympathetic nervous system * baroreflex Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 3.484, year: 2012

  19. Psychobiology of PTSD in the Acute Aftermath of Trauma: Integrating Research on Coping, HPA Function and Sympathetic Nervous System Activity

    OpenAIRE

    Morris, Matthew C.; Rao, Uma

    2012-01-01

    Research on the psychobiological sequelae of trauma has typically focused on long-term alterations in individuals with chronic posttraumatic stress disorder (PTSD). Far less is known about the nature and course of psychobiological risk factors for PTSD during the acute aftermath of trauma. In this review, we summarize data from prospective studies focusing on the relationships among sympathetic nervous system activity, hypothalamic-pituitary-adrenal function, coping strategies and PTSD sympto...

  20. Fluvastatin attenuates diabetes-induced cardiac sympathetic neuropathy in association with a decrease in oxidative stress

    International Nuclear Information System (INIS)

    Increased oxidative stress might contribute to diabetic (DM) neuropathy, so the effects of long-term treatment with fluvastatin (FL) on myocardial oxidative stress and cardiac sympathetic neural function were investigated in diabetic rats. FL (10 mg·kg-1·day-1, DM-FL) or vehicle (DM-VE) was orally administered for 2 weeks to streptozotocin-induced DM rats. Cardiac oxidative stress was determined by myocardial 8-iso-prostaglandin F2α (PGF2α) and nicotinamide adenine dinucleotide (NADPH) oxidase subunit p22phox mRNA expression. Sympathetic neural function was quantified by autoradiography using 131I- and 125I-metaiodobenzylguanidine (MIBG). FL did not affect plasma glucose levels but remarkably decreased PGF2α levels compared with DM-VE rats (13.8±9.2 vs 175.0±93.9 ng/g tissue), although PGF2α levels were below the detection limit in non-DM rats. FL significantly reduced myocardial p22phox mRNA expression. Cardiac 131I-MIBG uptake was lower in DM-VE rats than in non-DM rats, but the decrease was attenuated in DM-FL rats (1.31±0.08, 1.88±0.22, and 1.58±0.18%kg dose/g, respectively, P<0.01). Cardiac MIBG clearance was not affected by the induction of DM or by FL, indicating that the reduced MIBG uptake in DM rats might result from impaired neural function. FL ameliorates cardiac sympathetic neural dysfunction in DM rats in association with attenuation of increased myocardial oxidative stress. (author)

  1. Increased cardiac sympathetic activity in patients with hypothyroidism as determined by iodine-123 metaiodobenzylguanidine scintigraphy

    International Nuclear Information System (INIS)

    Clinical manifestations of hypothyroidism, such as bradycardia, suggest decreased sympathetic tone. However, previous studies in patients with hypothyroidism have suggested that increased plasma noradrenaline (NA) levels represent enhanced general sympathetic activity. As yet, cardiac sympathetic activity (CSA) in hypothyroidism has not been clarified. To evaluate CSA in patients with hypothyroidism, iodine-123 metaiodobenzylguanidine (MIBG) scintigraphy was performed in eight patients with hypothyroidism before therapy and in ten normal control patients. Planar images were obtained at 15 min and 4 h after injection of MIBG. The ratio of early myocardial uptake to the total injected dose (MU) and myocardial clearance of MIBG within 4 h p.i. (MC) were calculated. Plasma NA was also measured, and echocardiography was performed in all patients. Those patients with hypothyroidism in the euthyroid state after medical therapy were also evaluated in a similar manner. Left ventricular ejection fraction, measured by echocardiography, did not differ significantly between the groups. NA, MU and MC were significantly higher in patients with hypothyroidism than in controls, and all parameters were decreased after therapy. MC was well correlated with NA in hypothyroidism (r=0.86) before therapy. We conclude that CSA is increased in patients with hypothyroidism, in parallel with the enhanced general sympathetic activity. (orig.). With 4 figs., 2 tabs

  2. Physiological and pathophysiological interactions between the respiratory central pattern generator and the sympathetic nervous system.

    Science.gov (United States)

    Molkov, Yaroslav I; Zoccal, Daniel B; Baekey, David M; Abdala, Ana P L; Machado, Benedito H; Dick, Thomas E; Paton, Julian F R; Rybak, Ilya A

    2014-01-01

    Respiratory modulation seen in the sympathetic nerve activity (SNA) implies that the respiratory and sympathetic networks interact. During hypertension elicited by chronic intermittent hypoxia (CIH), the SNA displays an enhanced respiratory modulation reflecting strengthened interactions between the networks. In this chapter, we review a series of experimental and modeling studies that help elucidate possible mechanisms of sympatho-respiratory coupling. We conclude that this coupling significantly contributes to both the sympathetic baroreflex and the augmented sympathetic activity after exposure to CIH. This conclusion is based on the following findings. (1) Baroreceptor activation results in perturbation of the respiratory pattern via transient activation of postinspiratory neurons in the Bötzinger complex (BötC). The same BötC neurons are involved in the respiratory modulation of SNA, and hence provide an additional pathway for the sympathetic baroreflex. (2) Under hypercapnia, phasic activation of abdominal motor nerves (AbN) is accompanied by synchronous discharges in SNA due to the common source of this rhythmic activity in the retrotrapezoid nucleus (RTN). CIH conditioning increases the CO2 sensitivity of central chemoreceptors in the RTN which results in the emergence of AbN and SNA discharges under normocapnic conditions similar to those observed during hypercapnia in naïve animals. Thus, respiratory-sympathetic interactions play an important role in defining sympathetic output and significantly contribute to the sympathetic activity and hypertension under certain physiological or pathophysiological conditions, and the theoretical framework presented may be instrumental in understanding of malfunctioning control of sympathetic activity in a variety of disease states. PMID:25194190

  3. LEPTIN REGULATION OF BONE RESORPTION BY THE SYMPATHETIC NERVOUS SYSTEM AND CART

    Science.gov (United States)

    Bone remodelling, the mechanism by which vertebrates regulate bone mass, comprises two phases, namely resorption by osteoclasts and formation by osteoblasts; osteoblasts are multifunctional cells also controlling osteoclast differentiation. Sympathetic signalling via beta2-adrenergic receptors (Adrb...

  4. Mean 24-hours sympathetic nervous system activity decreases during head-down tilted bed rest but not during microgravity

    Science.gov (United States)

    Christensen, Nj; Heer, M.; Ivanova, K.; Norsk, P.

    Sympathetic nervous system activity is closely related to gravitational stress in ground based experiments. Thus a high activity is present in the standing-up position and a very low activity is observed during acute head-out water immersion. Adjustments in sympathetic activity are necessary to maintain a constant blood pressure during variations in venous return. Head-down tilted bed rest is applied as a model to simulate changes observed during microgravity. The aim of the present study was to test the hypothesis that mean 24-hours sympathetic activity was low and similar during space flight and in ground based observation obtained during long-term head-down tilted bed rest. Forearm venous plasma noradrenaline was measured by a radioenzymatic technique as an index of muscle sympathetic activity and thrombocyte noradrenaline and adrenaline were measured as indices of mean 24-hours sympathoadrenal activity. Previous results have indicated that thrombocyte noradrenaline level has a half-time of 2 days. Thus to reflect sympathetic activity during a specific experiment the study period must last for at least 6 days and a sample must be obtained within 12 hours after the experiment has ended. Ten normal healthy subjects were studied before and during a 14 days head-down tilted bed rest as well as during an ambulatory study period of a similar length. The whole experiment was repeated while the subjects were on a low calorie diet. Thrombocyte noradrenaline levels were studied in 4 cosmonauts before and within 12 hours after landing after more than 7 days in flight. Thrombocyte noradrenaline decreased markedly during the head-down tilted bed rest (pnoradrenaline decreased in the adaptation period but not during the intervention. During microgravity thrombocyte noradrenaline increased in four cosmonauts and the percentage changes were significantly different in cosmonauts and in subjects participating in the head down tilted bed rest study (170± 29% (Mean± SEM) vs. 57

  5. 123I-Labelled metaiodobenzylguanidine for the evaluation of cardiac sympathetic denervation in early stage amyloidosis

    International Nuclear Information System (INIS)

    Cardiac amyloidosis is a rare disorder, but it may lead to potentially life-threatening restrictive cardiomyopathy. Cardiac manifestations frequently occur in primary amyloidosis (AL) and familial amyloidosis (ATTR), but are uncommon in secondary amyloidosis (AA). Echocardiography is the method of choice for assessing cardiac amyloidosis. Amyloid deposits impair the function of sympathetic nerve endings. Disturbance of myocardial sympathetic innervations may play an important role in the remodelling process. 123I-MIBG can detect these innervation changes. Patients with biopsy-proven amyloidosis underwent general work-up, echocardiography and 123I-MIBG scintigraphy. Left ventricular internal dimensions and wall thickness were measured, and highly refractile cardiac echoes (sparkling) were analysed. Early (15 min) and late (4 h) heart-to-mediastinum ratio (HMR) and wash-out rate were determined after administration of MIBG. Included in the study were 61 patients (30 women and 31 men; mean age 62 years; 39 AL, 11 AA, 11 ATTR). Echocardiographic parameters were not significantly different between the groups. Sparkling was present in 72 % of ATTR patients, in 54 % of AL patients and in 45 % of AA patients. Mean late HMR in all patients was 2.3 ± 0.75, and the mean wash-out rate was 8.6 ± 14 % (the latter not significantly different between the patient groups). Late HMR was significantly lower in patients with echocardiographic signs of amyloidosis than in patients without (2.0 ± 0.70 versus 2.8 ± 0.58, p 123I-MIBG scintigraphy can detect cardiac denervation in ATTR patients before signs of amyloidosis are evident on echocardiography. (orig.)

  6. Influences of Vestibular System on Sympathetic Nervous System. Implications for countermeasures.

    Science.gov (United States)

    Denise, Pr Pierre

    As gravity is a direct and permanent stress on body fluids, muscles and bones, it is not surpris-ing that weightlessness has important effects on cardiovascular and musculo-skeletal systems. However, these harmful effects do not totally result from the removal of the direct stress of gravity on these organs, but are also partially and indirectly mediated by the vestibular sys-tem. Besides its well known crucial role in spatial orientation and postural equilibrium, it is now clear that the vestibular system is also involved in the regulation of other important physi-ological systems: respiratory and cardiovascular systems, circadian regulation, food intake and even bone mineralization. The neuroanatomical substrate for these vestibular-mediated reg-ulations is still poorly defined, but there is much evidence that vestibular system has strong impacts not only on brainstem autonomic centers but on many hypothalamic nuclei as well. As autonomic nervous system controls almost all body organs, bringing into play the vestibular system by hypergravity or microgravity could virtually affects all major physiological func-tions. There is experimental evidence that weightlessness as well as vestibular lesion induce sympathetic activation thus participating in space related physiological alterations. The fact that some effects of weightlessness on biological systems are mediated by the vestibular system has an important implication for using artificial gravity as a countermeasure: artificial gravity should load not only bones and the cardiovascular system but the vestibular system as well. In short-arm centrifuges, the g load at the head level is low because the head is near the axis of rotation. If the vestibular system is involved in cardiovascular deconditioning and bone loss during weightlessness, it would be more effective to significantly stimulate it and thus it would be necessary to place the head off-axis. Moreover, as the otolithic organs are non longer stimu-lated in

  7. Alterations of left ventricular deformation and cardiac sympathetic derangement in patients with systolic heart failure: a 3D speckle tracking echocardiography and cardiac 123I-MIBG study

    International Nuclear Information System (INIS)

    Myocardial contractile function is under the control of cardiac sympathetic activity. Three-dimensional speckle tracking echocardiography (3D-STE) and cardiac imaging with 123I-metaiodobenzylguanidine (123I-MIBG) are two sophisticated techniques for the assessment of left ventricular (LV) deformation and sympathetic innervation, respectively, which offer important prognostic information in patients with heart failure (HF). The purpose of this investigation was to explore, in patients with systolic HF, the relationship between LV deformation assessed by 3D-STE and cardiac sympathetic derangement evaluated by 123I-MIBG imaging. We prospectively studied 75 patients with systolic HF. All patients underwent a 3D-STE study (longitudinal, circumferential, area and radial) and 123I-MIBG planar and SPECT cardiac imaging. 3D-STE longitudinal, circumferential and area strain values were correlated with 123I-MIBG late heart to mediastinum (H/M) ratio and late SPECT total defect score. After stratification of the patients according to ischaemic or nonischaemic HF aetiology, we observed a good correlation of all 3D-STE measurements with late H/M ratio and SPECT data in the ischaemic group, but in patients with HF of nonischaemic aetiology, no correlation was found between LV deformation and cardiac sympathetic activity. At the regional level, the strongest correlation between LV deformation and adrenergic innervation was found for the left anterior descending coronary artery distribution territory for all four 3D-STE values. In multivariate linear regression analyses, including age, gender, LV ejection fraction, NYHA class, body mass index, heart rate and HF aetiology, only 3D-STE area and radial strain values significantly predicted cardiac sympathetic derangement on 123I-MIBG late SPECT. This study indicated that 3D-STE measurements are correlated with 123I-MIBG planar and SPECT data. Furthermore, 3D-STE area and radial strain values, but not LVEF, predict cardiac sympathetic

  8. Prognostic value of sympathetic innervation and cardiac asynchrony in dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Manrique, Alain; Hitzel, Anne; Vera, Pierre [Rouen University Hospital - Henri Becquerel Center, Nuclear Medicine, Rouen (France); Bernard, Mathieu; Bauer, Fabrice [Rouen University Hospital, Cardiology, Rouen (France); Menard, Jean-Francois [Rouen University Hospital, Biostatistics, Rouen (France); Sabatier, Remi [Caen University Hospital, Cardiology, Caen (France); Jacobson, Arnold [GE Healthcare, Princeton, NJ (United States); Agostini, Denis [Caen University Hospital, Nuclear Medicine, Caen (France)

    2008-11-15

    The purpose of the study is to examine prognostic values of cardiac I-123 metaiodobenzylguanidine (MIBG) uptake and cardiac dyssynchrony in patients with dilated cardiomyopathy (DCM). Ninety-four patients with non-ischemic DCM underwent I-123 MIBG imaging for assessing cardiac sympathetic innervation and equilibrium radionuclide angiography. Mean phase angles and SD of the phase histogram were computed for both right ventricular (RV) and left ventricular (LV). Phase measures of interventricular (RV-LV) and intraventricular (SD-RV and SD-LV) asynchrony were computed. Most patients were receiving beta-blockers (89%) and angiotensin-converting enzyme inhibitors (88%). One patient (1%) was lost to follow-up, six had cardiac death (6.4%), eight had heart transplantation (8.6%), and seven had unplanned hospitalization for heart failure (7.5%; mean follow-up: 37 {+-} 16 months). Patients with poor clinical outcome were older, had higher The New York Heart Association functional class, impaired right ventricular ejection fraction and left ventricular ejection fraction, and impaired cardiac I-123 MIBG uptake. On multivariate analysis, I-123 MIBG heart-to-mediastinum (H/M) uptake ratio <1.6 was the only predictor of both primary (cardiac death or heart transplantation, RR = 7.02, p < 0.01) and secondary (cardiac death, heart transplantation, or recurrent heart failure, RR = 8.10, p = 0.0008) end points. In patients receiving modern medical therapy involving beta-blockers, I-123 MIBG uptake, but not intra-LV asynchrony, was predictive of clinical outcome. The impact of beta-blockers on the prognostic value of ventricular asynchrony remains to be clarified. (orig.)

  9. Effect of Atorvastatin vs. Rosuvastatin on cardiac sympathetic nerve activity in non-diabetic patients with dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Effects of statin therapy on cardiac sympathetic nerve activity in patients with chronic heart failure (CHF) have not previously been evaluated. To compare the effects of lipophilic atorvastatin and hydrophilic rosuvastatin on cardiac sympathetic nerve activity in CHF patients with dilated cardiomyopathy (DCM), 63 stable outpatients with DCM, who were already receiving standard therapy for CHF, were randomized to atorvastatin (n=32) or rosuvastatin (n=31). We evaluated cardiac sympathetic nerve activity by cardiac 123I-metaiodobenzylguanidine (MIBG) scintigraphy, hemodynamic parameters and neurohumoral factors before and after 6 months of treatment. There were no differences in the baseline characteristics of the 2 groups. In the rosuvastatin group, there were no changes in MIBG parameters, left ventricular ejection fraction or plasma levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP) after 6 months of treatment. In contrast, the atorvastatin group showed a significant increase in the delayed heart/mediastinum count ratio (2.18±0.4 vs. 2.36±0.4, P<0.0001), and the washout rate was significantly decreased (34.8±5.7 vs. 32.6±6.3%, P=0.0001) after 6 months of treatment compared with the baseline values. The plasma NT-proBNP level was also significantly decreased (729±858 vs. 558±747 pg/ml, P=0.0139). Lipophilic atorvastatin but not hydrophilic rosuvastatin improves cardiac sympathetic nerve activity in CHF patients with DCM. (author)

  10. Effect of left ventricular dyssynchrony on cardiac sympathetic activity in heart failure patients with wide QRS duration

    International Nuclear Information System (INIS)

    Dyssynchrony has various detrimental effects on cardiac function, but its effect on cardiac sympathetic activity is not fully understood. We studied 50 heart failure patients who underwent cardiac resynchronization therapy (CRT). Cardiac sympathetic activity was assessed by (123I-metaiodobenzylguanidine (123I-MIBG) scintigraphy as the delayed heart-to-mediastinum ratio (H/M ratio). Echocardiography was performed before and 7 months after CRT, and response was defined as a ≥15% decrease in end-systolic volume. Dyssynchrony was determined by the time difference between the anteroseptal-to-posterior wall using speckle-tracking radial strain (≥130 ms predefined as significant). H/M ratio in patients with dyssynchrony was less than that in patients without dyssynchrony (1.62±0.31 vs. 1.82±0.36, P123I-MIBG scintigraphy may be valuable for predicting the response to CRT. (author)

  11. Modeling and imaging cardiac sympathetic neurodegeneration in Parkinson’s disease

    OpenAIRE

    Joers, Valerie; Emborg, Marina E.

    2014-01-01

    Parkinson’s disease (PD) is currently recognized as a multisystem disorder affecting several components of the central and peripheral nervous system. This new understanding of PD helps explain the complexity of the patients’ symptoms while challenges researchers to identify new diagnostic and therapeutic strategies. Cardiac neurodegeneration and dysautonomia affect PD patients and are associated with orthostatic hypotension, fatigue, and abnormal control of electrical heart activity. They can...

  12. [Non-invasive evaluation of the cardiac autonomic nervous system by PET

    International Nuclear Information System (INIS)

    C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data

  13. Giving support to others reduces sympathetic nervous system-related responses to stress

    OpenAIRE

    Inagaki, TK; Eisenberger, NI

    2016-01-01

    © 2015 Society for Psychophysiological Research. Social support is a major contributor to the link between social ties and beneficial health outcomes. Research to date has focused on how receiving support from others might be good for us; however, we know less about the health effects of giving support to others. Based on prior work in animals showing that stimulating neural circuitry important for caregiving behavior can reduce sympathetic-related responses to stressors, it is possible that,...

  14. Sympathetic Nervous System Control of Carbon Tetrachloride-Induced Oxidative Stress in Liver through α-Adrenergic Signaling

    Directory of Open Access Journals (Sweden)

    Jung-Chun Lin

    2016-01-01

    Full Text Available In addition to being the primary organ involved in redox cycling, the liver is one of the most highly innervated tissues in mammals. The interaction between hepatocytes and sympathetic, parasympathetic, and peptidergic nerve fibers through a variety of neurotransmitters and signaling pathways is recognized as being important in the regulation of hepatocyte function, liver regeneration, and hepatic fibrosis. However, less is known regarding the role of the sympathetic nervous system (SNS in modulating the hepatic response to oxidative stress. Our aim was to investigate the role of the SNS in healthy and oxidatively stressed liver parenchyma. Mice treated with 6-hydroxydopamine hydrobromide were used to realize chemical sympathectomy. Carbon tetrachloride (CCl4 injection was used to induce oxidative liver injury. Sympathectomized animals were protected from CCl4 induced hepatic lipid peroxidation-mediated cytotoxicity and genotoxicity as assessed by 4-hydroxy-2-nonenal levels, morphological features of cell damage, and DNA oxidative damage. Furthermore, sympathectomy modulated hepatic inflammatory response induced by CCl4-mediated lipid peroxidation. CCl4 induced lipid peroxidation and hepatotoxicity were suppressed by administration of an α-adrenergic antagonist. We conclude that the SNS provides a permissive microenvironment for hepatic oxidative stress indicating the possibility that targeting the hepatic α-adrenergic signaling could be a viable strategy for improving outcomes in patients with acute hepatic injury.

  15. The Aqueous Calyx Extract of Hibiscus sabdariffa Lowers Blood Pressure and Heart Rate via Sympathetic Nervous System Dependent Mechanisms.

    Science.gov (United States)

    Aliyu, B; Oyeniyi, Y J; Mojiminiyi, F B O; Isezuo, S A; Alada, A R A

    2014-01-01

    The antihypertensive effect of Hibiscus sabdariffa (HS) has been validated in animals and man. This study tested the hypothesis that its hypotensive effect may be sympathetically mediated. The cold pressor test (CPT) and handgrip exercise (HGE) were performed in 20 healthy subjects before and after the oral administration of 15mg/Kg HS. The blood pressure (BP) and heart rate (HR) responses were measured digitally. Mean arterial pressure (MAP; taken as representative BP) was calculated. Results are expressed as mean ±SEM. P<0.05 was considered significant. CPT without HS resulted in a significant rise in MAP and HR (111.1±2.1mmHg and 100.8±2.0/min) from the basal values (97.9±1.9mmHg and 87.8±2.1/min; P<0.0001 respectively). In the presence of HS, CPT-induced changes (ΔMAP=10.1±1.7mmHg; ΔHR= 8.4±1.0/min) were significantly reduced compared to its absence (ΔMAP= 13.2±1.2mmHg; ΔHR= 13.8±1.6/min; P<0.0001 respectively). The HGE done without HS also resulted in an increase in MAP and HR (116.3±2.1mmHg and 78.4±1.2/min) from the basal values (94.8±1.6mmHg and 76.1±1.0/min; p<0.0001 respectively). In the presence of HS the HGE-induced changes (ΔMAP= 11.5±1.0mmHg; ΔHR= 3.3±1.0/min) were significantly decreased compared to its absence (ΔMAP=21.4±1.2mmHg; ΔHR= 12.8±2.0/min; P<0.0001 respectively). The CPT and HGE -induced increases in BP and HR suggest Sympathetic nervous system activation. These increases were significantly dampened by HS suggesting, indirectly, that its hypotensive effect may be due to an attenuation of the discharge of the sympathetic nervous system. PMID:26196579

  16. Rats with steroid-induced polycystic ovaries develop hypertension and increased sympathetic nervous system activity

    Directory of Open Access Journals (Sweden)

    Ploj Karolina

    2005-09-01

    Full Text Available Abstract Background Polycystic ovary syndrome (PCOS is a complex endocrine and metabolic disorder associated with ovulatory dysfunction, abdominal obesity, hyperandrogenism, hypertension, and insulin resistance. Methods Our objectives in this study were (1 to estimate sympathetic-adrenal medullary (SAM activity by measuring mean systolic blood pressure (MSAP in rats with estradiol valerate (EV-induced PCO; (2 to estimate alpha1a and alpha2a adrenoceptor expression in a brain area thought to mediate central effects on MSAP regulation and in the adrenal medulla; (3 to assess hypothalamic-pituitary-adrenal (HPA axis regulation by measuring adrenocorticotropic hormone (ACTH and corticosterone (CORT levels in response to novel-environment stress; and (4 to measure abdominal obesity, sex steroids, and insulin sensitivity. Results The PCO rats had significantly higher MSAP than controls, higher levels of alpha1a adrenoceptor mRNA in the hypothalamic paraventricular nucleus (PVN, and lower levels of alpha2a adrenoceptor mRNA in the PVN and adrenal medulla. After exposure to stress, PCO rats had higher ACTH and CORT levels. Plasma testosterone concentrations were lower in PCO rats, and no differences in insulin sensitivity or in the weight of intraabdominal fat depots were found. Conclusion Thus, rats with EV-induced PCO develop hypertension and increased sympathetic and HPA-axis activity without reduced insulin sensitivity, obesity, or hyperandrogenism. These findings may have implications for mechanisms underlying hypertension in PCOS.

  17. Non-invasive assessment of the effect of cardiac sympathetic innervation on metabolism of the human heart

    Energy Technology Data Exchange (ETDEWEB)

    Bengel, F.M.; Ziegler, S.I.; Nekolla, S.G.; Odaka, K.; Schwaiger, M. [Muenchen Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin; Ueberfuhr, P.; Reichart, B. [Muenchen Univ. (Germany). Herzchirurgische Klinik

    2000-11-01

    The role of cardiac sympathetic nerves in the regulation of myocardial metabolism is not well defined. Owing to the presence of incomplete reinnervation, heart transplant recipients provide a unique model to study the effects of efferent sympathetic innervation. Using this model, we sought to determine the influence of cardiac sympathetic signals on substrate utilisation and overall oxidative metabolism. In 21 transplant recipients, positron emission tomography was applied to determine sympathetic innervation with the noradrenaline analogue carbon-11 hydroxyephedrine, oxidative metabolism with carbon-11 acetate (n=14), and glucose utilisation with fluorine-18 fluorodeoxyglucose (n=7). The reinnervated area comprised 22%{+-}20% of the left ventricle. Oxidative metabolism was similar in denervated and reinnervated myocardium [0.06{+-}0.01 vs 0.06{+-}0.01/min for k(mono)], while glucose uptake was significantly higher in denervated myocardium (6.9{+-}6.6 vs 6.0{+-}6.2 {mu}mol/min/100 g; P=0.03). Reinnervation mainly occurred in the territory of the left anterior descending artery, where retention of {sup 11}C-hydroxyephedrine (6.8{+-}2.7%/min) was higher compared with territories of the left circumflex (4.1{+-}1.7%/min; P<0.01) and right coronary (3.8{+-}1.1%/min; P<0.01) arteries. Oxidative metabolism was similar in all three territories, but compared with the reinnervated territory of the left anterior descending artery (53%{+-}16% of maximum), relative FDG uptake was higher in territories of the left circumflex (76%{+-}6%, P<0.01) and right coronary (67%{+-}10%, P<0.05) arteries. Similar degrees of regional heterogeneity were not observed in normals. Thus, while overall energy production through oxidative metabolism remains unaffected, cardiac utilisation of glucose in the fasting state is increased in the absence of catecholamine uptake sites. Innervated myocardium, however, may preferentially utilise free fatty acids, suggesting a role for sympathetic tone in

  18. Sympathetic reinnervation in cardiac transplants: 123I-MIBG and 201Tl/99mTc-MIBI scintigraphy

    International Nuclear Information System (INIS)

    Iodine-123 metaiodobenzylguanidine (123I-MIBG) is a norepinephrine (NE) analogue and taken up by myocardial sympathetic nerves. To determine whether cardiac sympathetic reinnervation occurs after orthotopic heart transplantation (TPL). We performed 24 serial or followup cardiac 123I-MIBG imaging and 201T1/99mTc-MIBI dipyridamole stress gated myocardial perfusion SPECT (g-MPS) in 15 pts(M : F =10 : 5; mean ages = 34.67±12.92 yr; idiopathic: rheumatic=14:1) (10.80±11.88 (1-48) mo) after TPL. 123I-MIBG imagins were performed in anterior position 15 minutes, 4 and 24 hours after i.v. injection of 148 MBq 123I MIBG. Image quantitation was based on the ratio of heart to mediastinal MIBG uptake (HMR). 12 subjects with 1 year after TPL whereas reinnervation is less likely to occur in pts with a pretransplantation diagnosis idiopathic cardiomyopathy

  19. Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: Intermediate and long-term follow-up

    OpenAIRE

    Vaseghi, M; Gima, J; Kanaan, C; Ajijola, OA; Marmureanu, A; Mahajan, A.; Shivkumar, K

    2014-01-01

    Background Left and bilateral cardiac sympathetic denervation (CSD) have been shown to reduce burden of ventricular arrhythmias acutely in a small number of patients with ventricular tachyarrhythmia (VT) storm. The effects of this procedure beyond the acute setting are unknown. Objective The purpose of this study was to evaluate the intermediate and long-term effects of left and bilateral CSD in patients with cardiomyopathy and refractory VT or VT storm. Methods Retrospective analysis of medi...

  20. Reactive oxygen species in paraventricular nucleus involved in cardiac sympathetic afferent reflex in rats

    Institute of Scientific and Technical Information of China (English)

    Feng Zhang; Yang Yu; Ying Zhang; Yingchun Li; Luqing Zhang; Lingling Fan; Yingya Gao; Guoqing Zhu

    2005-01-01

    Objective: The present study was designed to determine if reactive oxygen species (ROS) in the paraventricularnucleus (PVN) were involved in modulating cardiac sympathetic afferent reflex (CSAR) in anesthetized rats. Methods: Malondialdehyde(MDA), the end product of lipid peroxidation, in the PVN, was determined by thiobarbituric acid (TBA) spectrometric method. Renalsympathetic nerve activity (RSNA) and arterial pressure were recorded in sinoaortic-denervated and cervical-vagotomized rats. The CSARwas evaluated by the response of the RSNA evoked by epicardial application of bradykinin (BK, 0.4 μg). Results: The MDA in the PVNwas significantly increased after epicardial application of BK compared with control (2.0 + 0.3 vs 0.8 + 0.1 nmol/mg protein, P < 0.01 ).Microinjectionof a superoxide anion scavenger, tiron (20 nmol) into the PVN significantly inhibited the CSAR evoked by BK (12.3 ± 1.9vs 4.2+ 1.2%, P < 0.01) and decreased MDA level (1.9±0.3 vs 0.6+0.1 nmol/mg protein, P <0.01) compared with control.Conclusion: The ROS in the PVN is involved in modulating the CSAR in rats.

  1. Role of the Rostral Ventrolateral Medulla (RVLM) in the Patterning of Vestibular System Influences on Sympathetic Nervous System Outflow to the Upper and Lower Body

    OpenAIRE

    Sugiyama, Yoichiro; Suzuki, Takeshi; Yates, Bill J.

    2011-01-01

    Research on animal models as well as human subjects has demonstrated that the vestibular system contributes to regulating the distribution of blood in the body through effects on the sympathetic nervous system. Elimination of vestibular inputs results in increased blood flow to the hindlimbs during vestibular stimulation, because it attenuates the increase in vascular resistance that ordinarily occurs in the lower body during head-up tilts. Additionally, the changes in vascular resistance pro...

  2. Acute and chronic role of nitric oxide, renin-angiotensin system and sympathetic nervous system in the modulation of calcium sensitization in Wistar Rats

    Czech Academy of Sciences Publication Activity Database

    Brunová, Aneta; Bencze, Michal; Behuliak, Michal; Zicha, Josef

    2015-01-01

    Roč. 64, č. 4 (2015), s. 447-457. ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP304/12/0259; GA MZd(CZ) NV15-25396A Institutional support: RVO:67985823 Keywords : blood pressure * kalcium sensitization * Rho kinase * nitric oxide * renin-angiotensin system * sympathetic nervous system * fasudil Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.293, year: 2014

  3. The altered balance between sympathetic nervous system and nitric oxide in salt hypertensive Dahl rats: ontogenetic and F2 hybrid studies

    Czech Academy of Sciences Publication Activity Database

    Dobešová, Zdenka; Kuneš, Jaroslav; Zicha, Josef

    2002-01-01

    Roč. 20, č. 5 (2002), s. 945-955. ISSN 0263-6352 R&D Projects: GA AV ČR IAA7011805; GA AV ČR IAA7011711; GA MŠk LN00A069 Institutional research plan: CEZ:AV0Z5011922 Keywords : salt hypertension * sympathetic nervous system * Dahl rats Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 3.534, year: 2002

  4. Cardiac sympathetic dysfunction in an athlete's heart detected by 1''2''3I-metaiodobenzylguanidine scintigraphy

    International Nuclear Information System (INIS)

    The athlete's heart is commonly characterized by an increase in left ventricular mass because of an increase in the left ventricular diastolic cavity dimensions or wall thickness or both. Endurance exercise also induces numerous cardiovascular adaptations, including increased vagal tone. However, the sympathetic function has not yet been precisely elucidated, so the present study evaluated cardiac sympathetic nerve function from metaiodobenzylguanidine (MIBG) images obtained 15 and 180 min after the injection of 123I-MIBG at a dose of 111MBq. The ratio of heart/mediastinum count (H/M) and the washout rates of 123I-MIBG (WR) were calculated in 25 consecutive patients who were athletes (aged 52±13 years) and 23 normal subjects. There was a significant difference in the H/M between the athletic and normal hearts (2.3±0.3 vs 2.6±0.3, p<0.01, Scheffe's test). An increased WR was observed in the athletes group when compared with the normal group (34±4 vs 28±3, p<0.01), and there was a significant correlation between WR and the left ventricular mass index (r=0.578, p<0.01). Prolonged exercise training may alter cardiac sympathetic nerve function, which can be detected by MIBG imaging. (author)

  5. Central nervous system involvement in the autonomic responses to psychological distress

    OpenAIRE

    de Morree, H. M.; Szabó, B. M.; Rutten, G.-J.; Kop, W.J.

    2012-01-01

    Psychological distress can trigger acute coronary syndromes and sudden cardiac death in vulnerable patients. The primary pathophysiological mechanism that plays a role in stress-induced cardiac events involves the autonomic nervous system, particularly disproportional sympathetic activation and parasympathetic withdrawal. This article describes the relation between psychological distress and autonomic nervous system function, with a focus on subsequent adverse cardiovascular outcomes. The rol...

  6. Non-invasive assessment of the effect of cardiac sympathetic innervation on metabolism of the human heart

    International Nuclear Information System (INIS)

    The role of cardiac sympathetic nerves in the regulation of myocardial metabolism is not well defined. Owing to the presence of incomplete reinnervation, heart transplant recipients provide a unique model to study the effects of efferent sympathetic innervation. Using this model, we sought to determine the influence of cardiac sympathetic signals on substrate utilisation and overall oxidative metabolism. In 21 transplant recipients, positron emission tomography was applied to determine sympathetic innervation with the noradrenaline analogue carbon-11 hydroxyephedrine, oxidative metabolism with carbon-11 acetate (n=14), and glucose utilisation with fluorine-18 fluorodeoxyglucose (n=7). The reinnervated area comprised 22%±20% of the left ventricle. Oxidative metabolism was similar in denervated and reinnervated myocardium [0.06±0.01 vs 0.06±0.01/min for k(mono)], while glucose uptake was significantly higher in denervated myocardium (6.9±6.6 vs 6.0±6.2 μmol/min/100 g; P=0.03). Reinnervation mainly occurred in the territory of the left anterior descending artery, where retention of 11C-hydroxyephedrine (6.8±2.7%/min) was higher compared with territories of the left circumflex (4.1±1.7%/min; P<0.01) and right coronary (3.8±1.1%/min; P<0.01) arteries. Oxidative metabolism was similar in all three territories, but compared with the reinnervated territory of the left anterior descending artery (53%±16% of maximum), relative FDG uptake was higher in territories of the left circumflex (76%±6%, P<0.01) and right coronary (67%±10%, P<0.05) arteries. Similar degrees of regional heterogeneity were not observed in normals. Thus, while overall energy production through oxidative metabolism remains unaffected, cardiac utilisation of glucose in the fasting state is increased in the absence of catecholamine uptake sites. Innervated myocardium, however, may preferentially utilise free fatty acids, suggesting a role for sympathetic tone in substrate utilisation. (orig.)

  7. Leptin enhances insulin sensitivity by direct and sympathetic nervous system regulation of muscle IGFBP-2 expression: evidence from nonrodent models.

    Science.gov (United States)

    Yau, Steven W; Henry, Belinda A; Russo, Vincenzo C; McConell, Glenn K; Clarke, Iain J; Werther, George A; Sabin, Matthew A

    2014-06-01

    Leptin is produced from white adipose tissue and acts primarily to regulate energy balance. Obesity is associated with leptin resistance and increased circulating levels of leptin. Leptin has recently been shown to influence levels of IGF binding protein-2 (IGFBP-2), a protein that is reduced in obesity and type 2 diabetes. Overexpression of IGFBP-2 protects against obesity and type 2 diabetes. As such, IGFBP-2 signaling may represent a novel pathway by which leptin regulates insulin sensitivity. We sought to investigate how leptin regulates skeletal muscle IGFBP-2 levels and to assess the impact of this on insulin signaling and glucose uptake. In vitro experiments were undertaken in cultured human skeletal myotubes, whereas in vivo experiments assessed the effect of intracerebroventricular leptin on peripheral skeletal muscle IGFBP-2 expression and insulin sensitivity in sheep. Leptin directly increased IGFBP-2 mRNA and protein in human skeletal muscle through both signal transducer and activator of transcription-3 and phosphatidylinositol 3-kinase signaling, in parallel with enhanced insulin signaling. Silencing IGFBP-2 lowered leptin- and insulin-stimulated protein kinase B phosphorylation and glucose uptake. In in vivo experiments, intracerebroventricular leptin significantly increased hind-limb skeletal muscle IGFBP-2, an effect completely blocked by concurrent peripheral infusion of a β-adrenergic blocking agent. Sheep receiving central leptin showed improvements in glucose tolerance and circulating insulin levels after an iv glucose load. In summary, leptin regulates skeletal muscle IGFBP-2 by both direct peripheral and central (via the sympathetic nervous system) mechanisms, and these likely impact on peripheral insulin sensitivity and glucose metabolism. PMID:24654786

  8. Postnatal Cardiac Autonomic Nervous Control in Pediatric Congenital Heart Disease

    OpenAIRE

    Ineke Nederend; Jongbloed, Monique R. M.; de Geus, Eco J. C.; Blom, Nico A; Arend D. J. ten Harkel

    2016-01-01

    Congenital heart disease is the most common congenital defect. During childhood, survival is generally good but, in adulthood, late complications are not uncommon. Abnormal autonomic control in children with congenital heart disease may contribute considerably to the pathophysiology of these long term sequelae. This narrative review of 34 studies aims to summarize current knowledge on function of the autonomic nervous system in children with a congenital heart defect. Large scale studies that...

  9. Angiotensin II and angiotensin-(1-7 in paraventricular nucleus modulate cardiac sympathetic afferent reflex in renovascular hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Hai-Jian Sun

    Full Text Available BACKGROUND: The enhanced cardiac sympathetic afferent reflex (CSAR is involved in the sympathetic activation that contributes to the pathogenesis and progression of hypertension. Activation of AT(1 receptors by angiotension (Ang II in the paraventricular nucleus (PVN augments the enhanced CSAR and sympathetic outflow in hypertension. The present study is designed to determine whether Ang-(1-7 in PVN plays the similar roles as Ang II and the interaction between Ang-(1-7 and Ang II on CSAR in renovascular hypertension. METHODOLOGY/PRINCIPAL FINDINGS: The two-kidney, one-clip (2K1C method was used to induce renovascular hypertension. The CSAR was evaluated by the renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP responses to epicardial application of capsaicin in sinoaortic-denervated and cervical-vagotomized rats with urethane and α-chloralose anesthesia. Either Ang II or Ang-(1-7 in PVN caused greater increases in RSNA and MAP, and enhancement in CSAR in 2K1C rats than in sham-operated (Sham rats. Mas receptor antagonist A-779 and AT(1 receptor antagonist losartan induced opposite effects to Ang-(1-7 or Ang II respectively in 2K1C rats, but losartan had no effects in Sham rats. Losartan but not the A-779 abolished the effects of Ang II, while A-779 but not the losartan blocked the effects of Ang-(1-7. PVN pretreatment with Ang-(1-7 dose-dependently augmented the RSNA, MAP, and CSAR responses to the Ang II in 2K1C rats. Ang II level, AT(1 receptor and Mas receptor protein expression in PVN increased in 2K1C rats compared with Sham rats but Ang-(1-7 level did not. CONCLUSIONS: Ang-(1-7 in PVN is as effective as Ang II in enhancing the CSAR and increasing sympathetic outflow and both endogenous Ang-(1-7 and Ang II in PVN contribute to the enhanced CSAR and sympathetic outflow in renovascular hypertension. Ang-(1-7 in PVN potentiates the effects of Ang II in renovascular hypertension.

  10. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis

    Directory of Open Access Journals (Sweden)

    Jessica M. F. Hall

    2012-01-01

    Full Text Available Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity and alters antigen presentation by epidermal Langerhans cells (adaptive immunity. Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis.

  11. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis.

    Science.gov (United States)

    Hall, Jessica M F; Cruser, Desanges; Podawiltz, Alan; Mummert, Diana I; Jones, Harlan; Mummert, Mark E

    2012-01-01

    Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis. PMID:22969795

  12. Anatomy of the cardiac nervous system with clinical and comparative morphological implications.

    Science.gov (United States)

    Kawashima, Tomokazu

    2011-03-01

    Unlike autonomic nervous preservation in other surgeries for improving patient quality of life, autonomic cardiac nervous system (ACNS) preservation has been neglected in cardiovascular surgery because of technical difficulties and other unsolved issues. Because such ACNS preservation in cardiovascular surgery is anticipated in the future, detailed anatomical investigation of the human ACNS is required. Therefore, we have conducted morphological studies of the ACNS from macroscopic, clinical, and evolutionary anatomical viewpoints. In this study, I review detailed anatomical studies of the human ACNS together with their clinical implications. In addition, the evolutionary comparative anatomical significance of primate ACNS is also summarized to help understand and translate the findings of functional experiments to humans. These integrated findings will be the subject of a future study unifying molecular embryological and anatomical findings to clarify cardiac functions based on functional animal experiments, clinical applications such as improving surgery techniques and individual order-made surgery in cardiac surgery, and for future evaluation in regenerative medicine. PMID:21116884

  13. Circadian profile of cardiac autonomic nervous modulation in healthy subjects

    DEFF Research Database (Denmark)

    Bonnemeier, Hendrik; Richardt, Gert; Potratz, Jürgen;

    2003-01-01

    , awoke around 7 A.M., and had 6 to 8 hours of sleep. Circadian profiles of vagus-associated HRV parameters revealed a marked day-night pattern, with a peak at nighttime and a plateau at daytime. The characteristic nocturnal peak and the day-night amplitude diminished with aging by decade. Estimates of......UNLABELLED: Circadian Profile of Heart Rate Variability. INTRODUCTION: Although heart rate variability (HRV) has been established as a tool to study cardiac autonomic activity, almost no data are available on the circadian patterns of HRV in healthy subjects aged 20 to 70 years. METHODS AND RESULTS...

  14. Nifedipine-sensitive blood pressure component in hypertensive models characterized by high activity of either sympathetic nervous system or renin-angiotensin system

    Czech Academy of Sciences Publication Activity Database

    Zicha, Josef; Dobešová, Zdenka; Behuliak, Michal; Pintérová, Mária; Kuneš, Jaroslav; Vaněčková, Ivana

    2014-01-01

    Roč. 63, č. 1 (2014), s. 13-26. ISSN 0862-8408 R&D Projects: GA MŠk(CZ) 1M0510; GA ČR(CZ) GA305/09/0336; GA ČR(CZ) GAP304/12/0259 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : voltage-gated caclium channels * sympathetic nervous system * renin-angiotensin system * nitric oxide Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.293, year: 2014

  15. Assessment of cardiac sympathetic nerve activity in children with chronic heart failure using quantitative iodine-123 metaiodobenzylguanidine imaging

    International Nuclear Information System (INIS)

    Cardiac sympathetic nerve activity in children with chronic heart failure was examined by quantitative iodine-123 metaiodobenzylguanidine (MIBG) myocardial imaging in 33 patients aged 7.5±6.1 years (range 0-18 years), including 8 with cardiomyopathy, 15 with congenital heart disease, 3 with anthracycrine cardiotoxicity, 3 with myocarditis, 3 with primary pulmonary hypertension and 1 with Pompe's disease. Anterior planar images were obtained 15 min and 3 hr after the injection of iodine-123 MIBG. The cardiac iodine-123 MIBG uptake was assessed as the heart to upper mediastinum uptake activity ratio of the delayed image (H/M) and the cardiac percentage washout rate (%WR). The severity of chronic heart failure was class I (no medication) in 8 patients, class II (no symptom with medication) in 9, class III (symptom even with medication) in 10 and class IV (late cardiac death) in 6. H/M was 2.33±0.22 in chronic heart failure class I, 2.50±0.34 in class II, 1.95±0.61 in class III, and 1.39±0.29 in class IV (p<0.05). %WR was 24.8±12.8% in chronic heart failure class I, 23.3±10.2% in class II, 49.2±24.5% in class III, and 66.3±26.5% in class IV (p<0.05). The low H/M and high %WR were proportionate to the severity of chronic heart failure. Cardiac iodine-123 MIBG showed cardiac adrenergic neuronal dysfunction in children with severe chronic heart failure. Quantitative iodine-123 MIBG myocardial imaging is clinically useful as a predictor of therapeutic outcome and mortality in children with chronic heart failure. (author)

  16. Effects of short-term carvedilol on the cardiac sympathetic activity assessed by {sup 123}I-MIBG scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Sandra Marina Ribeiro de; Mesquita, Evandro Tinoco; Freire, Fabiano de Lima; Ribeiro, Mario Luiz; Nobrega, Antonio Claudio Lucas da; Mesquita, Claudio Tinoco, E-mail: sandramarina@cardiol.b [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Azevedo, Jader Cunha; Barbirato, Gustavo Borges; Coimbra, Alexandro [Hospital Pro-Cardiaco, Rio de Janeiro, RJ (Brazil); Dohmann, Hans Fernando da Rocha [Centro de Ensino e Pesquisa do Pro-Cardiaco (PROCEP), Rio de Janeiro, RJ (Brazil)

    2010-03-15

    Background: autonomic alterations in heart failure are associated with an increase in morbimortality. Several noninvasive methods have been employed to evaluate the sympathetic function, including the Meta-Iodobenzylguanidine ({sup 123}I-MIBG) scintigraphy imaging of the heart. Objective: to evaluate the cardiac sympathetic activity through {sup 123}I-MIBG scintigraphy, before and after three months of carvedilol therapy in patients with heart failure and left ventricular ejection fraction (LVEF) < 45%. Patients and methods: sixteen patients, aged 56.3 +- 12.6 years (11 males), with a mean LVEF of 28% +- 8% and no previous use of beta-blockers were recruited for the study. Images of the heart innervation were acquired with {sup 123}I-MIBG, and the serum levels of catecholamines (epinephrine, dopamine and norepinephrine) were measured; the radioisotope ventriculography (RIV) was performed before and after a three-month therapy with carvedilol. Results: patients' functional class showed improvement: before the treatment, 50% of the patients were FC II and 50% were FC III. After 3 months, 7 patients were FC I (43.8%) and 9 were FC II (56.2%), (rho = 0.0001). The mean LVEF assessed by RIV increased from 29% to 33% (rho = 0.017). There was no significant variation in cardiac adrenergic activity assessed by {sup 123}I-MIBG (early and late resting images and washout rate). No significant variation was observed regarding the measurement of catecholamines. Conclusion: the short-term treatment with carvedilol promoted the clinical and LVEF improvement. However, this was not associated to an improvement in the cardiac adrenergic activity, assessed by {sup 123}I-MIBG scintigraphy, as well as the measurement of circulating catecholamines. (author)

  17. Assessment of central chemosensitivity and cardiac sympathetic nerve activity using I-123 MIBG imaging in central sleep apnea syndrome in patients with dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Iodine-123 m-iodobenzylguanidine (MIBG) imaging has been used to study cardiac sympathetic function in various cardiac diseases. Central sleep apnea syndrome (CSAS) occurs frequently in patients with chronic heart failure (CHF) and is reported to be associated with a poor prognosis. One of the mechanisms of its poor prognosis may be related to impaired cardiac sympathetic activity. However, the relationship between chemosensitivity to carbon dioxide, which is reported to correlate with the severity of CSAS, and cardiac sympathetic activity has not been investigated. Therefore, this study was undertaken to assess cardiac sympathetic function and chemosensitivity to carbon dioxide in CHF patients. The oxygen desaturation index (ODI) was evaluated in 21 patients with dilated cardiomyopathy (male/female: 19/2, left ventricular ejection fraction (LVEF)5 times/h underwent polysomnography. Patients with an apnea hypopnea index >15/h but without evidence of obstructive apnea were defined as having CSAS. Early (15 min) and delayed (4 hr) planar MIBG images were obtained from these patients. The mean counts in the whole heart and the mediastinum were obtained. The heart-to-mediastinum count ratio of the delayed image (H/M) and the corrected myocardial washout rate (WR) were also calculated. The central chemoreflex was assessed with the rebreathing method using a hypercapnic gas mixture (7% CO2 and 93% O2). Ten of the 21 patients had CSAS. The H/M ratio was similar in patients both with and without CSAS (1.57±0.18 vs. 1.59±0.14, p=0.82). However, the WR was higher in patients with CSAS than in patients without CSAS (40±8% vs. 30±12%, p<0.05). ODI significantly correlated with central chemosensitivity to carbon dioxide. Moreover, there was a highly significant correlation between WR and central chemosensitivity (r=0.65, p<0.05). However, there was no correlation between ODI and the WR (r=0.36, p=0.11). Cardiac sympathetic nerve activity in patients with CHF and CSAS is

  18. Effects of CH-19 Sweet, a non-pungent cultivar of red pepper, on sympathetic nervous activity, body temperature, heart rate, and blood pressure in humans.

    Science.gov (United States)

    Hachiya, Sachiko; Kawabata, Fuminori; Ohnuki, Koichiro; Inoue, Naohiko; Yoneda, Hirotsugu; Yazawa, Susumu; Fushiki, Tohru

    2007-03-01

    We investigated the changes in autonomic nervous activity, body temperature, blood pressure (BP), and heart rate (HR) after intake of the non-pungent pepper CH-19 Sweet and of hot red pepper in humans to elucidate the mechanisms of diet-induced thermogenesis (DIT) due to CH-19 Sweet. We found that CH-19 Sweet activates the sympathetic nervous system (SNS) and enhances thermogenesis as effectively as hot red pepper, ant that the heat loss effect due to CH-19 Sweet is weaker than that due to hot red pepper. Furthermore, we found that intake of CH-19 Sweet does not affect systolic BP or HR, while hot red pepper transiently elevates them. These results indicate that DIT due to CH-19 Sweet can be induced via the activation of SNS as well as hot red pepper, but that the changes in BP, HR, and heat loss effect are different between these peppers. PMID:17341828

  19. Sympathetic reinnervation in cardiac transplants: 123I-MIBG and 201Tl/99mTc-MIBI scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Oh, S. J.; Son, M. S.; Son, J. W.; Koh, K. K.; Choi, I. S.; Shin, E. K.; Park, K. Y. [Gachon Medical College, Gil Heart Center, Inchon (Korea, Republic of)

    1998-07-01

    Iodine-123 metaiodobenzylguanidine (123I-MIBG) is a norepinephrine (NE) analogue and taken up by myocardial sympathetic nerves. To determine whether cardiac sympathetic reinnervation occurs after orthotopic heart transplantation (TPL). We performed 24 serial or followup cardiac 123I-MIBG imaging and 201T1/99mTc-MIBI dipyridamole stress gated myocardial perfusion SPECT (g-MPS) in 15 pts(M : F =10 : 5; mean ages = 34.67{+-}12.92 yr; idiopathic: rheumatic=14:1) (10.80{+-}11.88 (1-48) mo) after TPL. 123I-MIBG imagins were performed in anterior position 15 minutes, 4 and 24 hours after i.v. injection of 148 MBq 123I MIBG. Image quantitation was based on the ratio of heart to mediastinal MIBG uptake (HMR). 12 subjects with < 13 (4.91{+-}3.67) months after TPL had no visible 123I-MIBG uptake on early 15 min imaging however, 12 subjects with 13 to 48(28.58{+-}12.77) months had visible cardiac 123I-MIBG uptake (HMR: 1.65 {+-}0.21 vs. 1.32{+-}0.26 p=0.002). Correlation was found between plasma NE concentration and HMR ( r=0.80: p<0.05). Compared to HMR on 15 min images (1.48{+-}0.28), neither four nor 24 hour delayed images (1.26{+-}0.23 vs. 1.06{+-}0.10 : p<0.05, respectively, ANOVA) showed definite delayed localization of MIBG. To dipyridamole stress, transplant hearts showed significant subnormal hemodynamic responses of HR, s-BP, d-BP, and rate pressure product (90.9{+-}14.9 to 102.2{+-}15.3, 136.5{+-}17.3 to 124.9{+-}13.3, 83.3{+-}12.5 to 74.7{+-}15.6, 123.2{+-}19.4 to 127.4{+-}21.8 p<0.05, respectively). One-year followup 123I-MIBG scintigraphy in nine pts showed increased HMR (1.50{+-}0,37 to 1.61{+-}0.15, p=ns) but couldnt reach the statistical significance. Out of nine followup patients, five showed increased HMR but four didnt. gMPS performed at post-TPL 48 months in one patient complaining vague chest pain whose HMR value 1.73 to 1.62 showed an apicoanterior wall reversible perfusion defect which confirmed as 90% distal left anterior descending artery stenosis by

  20. {sup 123}I-Labelled metaiodobenzylguanidine for the evaluation of cardiac sympathetic denervation in early stage amyloidosis

    Energy Technology Data Exchange (ETDEWEB)

    Noordzij, Walter; Glaudemans, Andor W.J.M.; Rheenen, Ronald W.J. van; Dierckx, Rudi A.J.O.; Slart, Riemer H.J.A. [University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, PO Box 30.001, Groningen (Netherlands); Hazenberg, Bouke P.C. [University of Groningen, Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [University of Groningen, Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands)

    2012-10-15

    Cardiac amyloidosis is a rare disorder, but it may lead to potentially life-threatening restrictive cardiomyopathy. Cardiac manifestations frequently occur in primary amyloidosis (AL) and familial amyloidosis (ATTR), but are uncommon in secondary amyloidosis (AA). Echocardiography is the method of choice for assessing cardiac amyloidosis. Amyloid deposits impair the function of sympathetic nerve endings. Disturbance of myocardial sympathetic innervations may play an important role in the remodelling process. {sup 123}I-MIBG can detect these innervation changes. Patients with biopsy-proven amyloidosis underwent general work-up, echocardiography and {sup 123}I-MIBG scintigraphy. Left ventricular internal dimensions and wall thickness were measured, and highly refractile cardiac echoes (sparkling) were analysed. Early (15 min) and late (4 h) heart-to-mediastinum ratio (HMR) and wash-out rate were determined after administration of MIBG. Included in the study were 61 patients (30 women and 31 men; mean age 62 years; 39 AL, 11 AA, 11 ATTR). Echocardiographic parameters were not significantly different between the groups. Sparkling was present in 72 % of ATTR patients, in 54 % of AL patients and in 45 % of AA patients. Mean late HMR in all patients was 2.3 {+-} 0.75, and the mean wash-out rate was 8.6 {+-} 14 % (the latter not significantly different between the patient groups). Late HMR was significantly lower in patients with echocardiographic signs of amyloidosis than in patients without (2.0 {+-} 0.70 versus 2.8 {+-} 0.58, p < 0.001). Wash-out rates were significantly higher in these patients (-3.3 {+-} 9.9 % vs. 17 {+-} 10 %, p < 0.001). In ATTR patients without echocardiographic signs of amyloidosis, HMR was lower than in patients with the other types (2.0 {+-} 0.59 vs. 2.9 {+-} 0.50, p = 0.007). MIBG HMR is lower and wash-out rate is higher in patients with echocardiographic signs of amyloidosis. Also, {sup 123}I-MIBG scintigraphy can detect cardiac denervation in

  1. Electrocardiographically gated 11C-hydroxyephedrine PET for the simultaneous assessment of cardiac sympathetic and contractile functions

    International Nuclear Information System (INIS)

    Application of the electrocardiographically (ECG) gated positron emission tomography (PET) technique with 11C-hydroxyephedrine (HED) would allow the simultaneous assessment of cardiac sympathetic and contractile functions. However, there are uncertainties regarding the diagnostic accuracy of left ventricular (LV) volume measurements using ECG-gated HED-PET. The purpose of this study was to clarify the minimal requirement of count statistics to measure LV volumes with ECG-gated HED-PET and to investigate the reliability of the measurements. Five healthy volunteers and 11 patients with heart failure underwent a 40-min list-mode PET scan after an injection of HED (197 ± 35 MBq). The list-mode data were histogrammed into multiple sets of acquisition periods at 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 12.0 Mcount/bin and reconstructed into corresponding gated images using an iterative algorithm. The LV end-diastolic volume (LVEDV), the LV end-systolic volume (LVESV), and the LV ejection fraction (LVEF) were calculated in each acquisition period. These values were compared with those obtained by cardiac magnetic resonance imaging (MRI). Possible effects of HED retention on the accuracy of the volume measurements were investigated. Collecting less than 4.0 Mcount/bin resulted in noisy cardiac images. The lower counts resulted in underestimation in the volume measurements. Reasonably accurate volume measurements required equal to or greater than 6.0 Mcount/bin. This corresponded to 7.0 ± 1.9 min (range, 4.0-10.3 min) for the acquisition period. Volumetric results using the 6.0 Mcount/bin data highly correlated with cardiac MRI (LVEDV: r=0.85, p < 0.0001; LVESV: r=0.89, p < 0.0001; LVEF: r=0.77, p < 0.01). The HED retention did not affect the volumetric results compared to the MRI volumetry. The volumetric accuracy with ECG-gated HED-PET was affected by the count statistics rather than the HED retention. LV volume measurements were feasible with 10-min acquisition period for most of

  2. The role of plasma volume, plasma renin and the sympathetic nervous system in the posture-induced decline in renal lithium clearance in man.

    Science.gov (United States)

    Smith, D F; Shimizu, M

    1978-01-01

    Excretion of lithium in urine was studied in 2 healthy males while recumbent and while upright, either walking or standing quietly. An oral dose of 24.3 mmol of Lit was taken as three lithium carbonate tablets 13 h before clearance tests. Renal lithium clearance decreased and lithium fractional reabsorption increased while upright. Standing immersed to the neck in water, which prevents the fall in plasma volume upon changing posture from recumbent to upright, prevented the fall in renal lithium clearance as well as the rise in lithium fractional reabsorption while upright. Oral doses of guanethidine (total dose of 200 mg) or oxprenolol (total dose of 140 mg) taken to prevent high levels of sympathetic nervous system activity and plasma renin, respectively, failed to prevent the fall in renal lithium clearance or the rise in lithium fractional reabsorption upon changing posture from recumbent to upright. The findings indicate that the fall in renal lithium clearance and the rise in lithium fractional reabsorption upon changing posture from recumbent to upright is related to the fall in plasma volume but not to high levels of sympathetic nervous system activity or plasma renin activity. PMID:692834

  3. Reevaluation of the Role of the Sympathetic Nervous System in Cutaneous Vasodilation during Dorsal Spinal Cord Stimulation: Are Multiple Mechanisms Active?

    Science.gov (United States)

    Croom, J E; Foreman, R D; Chandler, M J; Barron, K W

    1998-04-01

    Objective. In addition to treatment of refractory chronic pain in patients with peripheral vascular disease, dorsal spinal cord stimulation (DCS) increases cutaneous blood flow to the extremities and may have a limb-saving effect. The purpose of this study was to examine the role of the sympathetic nervous system in the cutaneous vasodilation due to DCS. Methods. Male Sprague-Dawley rats were anesthetized with pentobarbital (60 mg/kg, i.p.). A unipolar ball electrode was placed on the left side of the exposed spinal cord at approximately the L1-L2 level. Blood flow was concurrently recorded from both hindpaw foot pads with laser Doppler flowmeters. Blood flow responses were assessed during 1 min of DCS (0.6 mA at 50 Hz, 0.2 msec pulse duration) at 10 min intervals. To determine the contribution of the sympathetic nervous system in the blood flow response to DCS, the role of ganglionic transmission, alpha-adrenergic receptors, beta-adrenergic receptors, and adrenal catecholamine secretion were investigated using adrenergic receptor antagonists. Results. Hexamethonium (10 mg/kg, i.v.), an autonomic ganglionic receptor antagonist, did not attenuate the cutaneous vasodilation during DCS. Phentolamine (3 mg/kg, i.v.), a nonselective alpha-adrenergic receptor antagonist, also did not attenuate the DCS-induced increase in peripheral cutaneous blood flow. On the other hand, prazosin (0.1 mg/kg, i.v.), a selective alpha-1-adrenergic receptor antagonist, attenuated the DCS response but this may, at least, be partly due to a vehicle effect. Propranolol (5 mg/kg, i.v.), a nonselective beta-adrenergic receptor antagonist, attenuated the DCS response while adrenal demedullation did not. Conclusion. Overall, our results show that DCS-induced vasodilation can occur through mechanisms that are independent of sympathetic outflow. PMID:22150941

  4. Sympathetic nervous system overactivity in patients with chronic kidney disease : studies on the pathophysiology, clinical relevance and treatment

    NARCIS (Netherlands)

    Nadery-Siddiqi, L.

    2011-01-01

    The evidence summarized in Chapter 1, served as the rationale for the studies presented in this thesis. The questions addressed in this thesis are: - In chapter 3, we addressed the idea that sympathetic activity in CKD patients is related to cardiovascular organ damage. We hypothesized that patient

  5. Foxo1 regulates Dbh expression and the activity of the sympathetic nervous system in vivo

    Directory of Open Access Journals (Sweden)

    Daisuke Kajimura

    2014-10-01

    Full Text Available The transcription factor FoxO1 regulates multiple physiological processes. Here, we show that FoxO1 is highly expressed in neurons of the locus coeruleus and of various sympathetic ganglions, but not in the adrenal medulla. Consistent with this pattern of expression, mice lacking FoxO1 only in sympathetic neurons (FoxO1Dbh−/− display a low sympathetic tone without modification of the catecholamine content in the adrenal medulla. As a result, FoxO1Dbh−/− mice demonstrate an increased insulin secretion, improved glucose tolerance, low energy expenditure, and high bone mass. FoxO1 favors catecholamine synthesis because it is a potent regulator of the expression of Dbh that encodes the initial and rate-limiting enzyme in the synthesis of these neurotransmitters. By identifying FoxO1 as a transcriptional regulator of the sympathetic tone, these results advance our understanding of the control of some aspects of metabolism and of bone mass accrual.

  6. EFFECT OF ELECTROACUPUNCTURE ON MYOCARDIAL ISCHEMIA INDUCED CHANGES OF CARDIAC SYMPATHETIC ACTIVITY AND INVOLVEMENT OF SPINIAL δ-OPIOID,NMDA-AND NON-NMDA RECEPTORS IN THE RABBIT

    Institute of Scientific and Technical Information of China (English)

    刘俊岭; 高永辉; 陈淑萍

    2003-01-01

    Aim: To observe the effect of electroacupuncture (EA) on acute myocardial ischemia (AMI) induced changes of cardiac sympathetic discharges and the effects of some related receptors in the spinal cord. Methods: A total of 53 rabbits anesthetized with mixture solution of 25% urethane (420 mg/kg) and 1.5% chloralose (50 mg/kg)were used in this study. AMI was induced by occlusion of the ventricular branch of the left coronary artery. Discharges of the left cardiac sympathetic nerve were recorded by using a bipolar platinum electrode. Bilateral "Ximen"(PC 40)and "Kongzhui"(LU 6) were stimulated electrically by using an EA therapeutic apparatus or an electrical stimulator.DPDPE δ-opiate receptor agonist, 20 nmol, 10 μL, n= 8), Naltrindole Hydrochloride (δ-opiate receptor antagonist, 20nmol, 10 μL, n=8), DAP5 (NMDA receptor antagonist, 5 nmol, 10 μL, n=9) and CNQX (non-NMDA receptor antagonist, 5 nmol, 10 μL, n=8) were respectively injected into the thoracic subarachnoid space of the spinal cord in different groups, followed by observing their effects on changes of sympathetic activity evoked by EA of the abovementioned acupoints. Results: ① After AMI, sympathetic discharges increased (200.56± 79.89%) in 10 cases and decreased (- 59.34 ±7.06% ) in other 9 cases in comparison with their individual basal values. After EA of "Ximen" (PC 4)and "Kongzhui" (Lu 6), AMI-induced increase and decrease changes of the sympathetic activity were suppressed significantly, but the effect of EA of LU-6 was weaker than that of EA of PC-4.②Following EA of PC-4 and LU-6, sympathetic discharges increased significantly in 2 and 4 cases, decreased apparently in 7 and 3 cases, and had no striking changes in 1 and 3 cases respectively. The mean reaction threshold of sympathetic activity after EA of PC-4 and LU-6were 2.1 ± 0.65 mA and 3.28± 1.13 mA separately.③ After pre-treatment with DPDPE, the reaction threshold of the cardiac sympathetic activity to EA of PC-4 elevated

  7. Sympathetic reinnervation in cardiac transplants: 123I-MIBG and 201Tl/99mTc-MIBI scintigraphy

    International Nuclear Information System (INIS)

    The purpose was to evaluate cardiac sympathetic reinnervation and hemodynamic changes after orthotopic heart transplantation (TPL). We performed 24 serial or followup cardiac 123I-MIBG imaging and rest 201Tl/99mTc-MIBI dipyridamole stress gated myocardial perfusion SPECT (g-MPS) in 15 patients (M:F=10:5;mean ages=34.5±13.0 yr; idiopathic:rheumatic=14:1; one heart lung TPL)(10.80 ±11.88 (1-48) mo) after TPL 123I-MIBG imagings were performed in anterior position 15 minutes, 4 and 24 hours after i.v. injection of 148 MBq 123I MIBG. Image quantitation was based on the ratio of heart to mediastinal MIBG uptake (HMR) Compared to HMR on 15 min images (1.48 ± 0.28), neither four nor 24 hour delayed images (1.26 ± 0.23 vs. 1.06 ± 0.26: p<0.05, respectively, ANOVA) showed definite delayed localization of MIBG. 12 subjects with <13 (4.9 ±3.7) months after TPL had no visible 123I-MIBG uptake on early 15 min imaging however, 12 subjects with 13 to 48(28.6±12.8) months had visible cardiac 123I-MIBG uptake (HMR: 1.65±0.21 vs. 1.32±0.26; p=0.002). One-year followup 123I-MIBG scintigraphy in nine pts showed significantly increased HMR(1.40±0.31 to 1.61±0.16, p<0.05) but a plateau was reached at HMR value of 2.0, which was still lower than 3.0 in normal controls. Plasma NE was increased according to I-123 MIBG myocardial uptake. Annual G-MPS detected an allograft atherosclerosis in one pt and showed progressive normalization of tachycardia and significant deterioration of LVEF and cardiac indices according to severity of rejection. To dipyridamole stress, transplant heats showed significant subnormal hemodynamic responses. Partial sympathetic late reinnervation can occur <1 year after TPL, and reached a plateau of two-third of normal value. G-MPS seems to be a useful screening test for the detection of allograft atherosclerosis and rejection

  8. Cardiac biopotentials influence on central nervous system functioning: first steps in hypothesis verification

    Directory of Open Access Journals (Sweden)

    Kondal'skaya Yu.O.

    2012-12-01

    Full Text Available The research goal is to verify the hypothesis on influence of cardiac biopotentials on central nervous system. Materials: 20 healthy individuals aged 18-26 years old have been participated in the investigations. Two groups composed of 10 patients each have been formed. Double increase in heart biopotentials by means of artificial impulse insertion between natural cardiac contractions has been modeled. Artificial impulses have been similar to unaffected ones, produced in a normal heart work. Additional impulses have been generated using external pacemaker and have been linked up with electrodes on the chest. They have been synchronized with the heart rhythm and located in-between R waves. The duration of those impulses has been fully matched to ventricular complex. Their amplitude has been adjusted individually depending on the height of R wave. Nervous system mobility has been used as the indicator reflecting the central nervous system functioning. Degree of mobility has been defined on the basis of tapping test results. The test has been repeated at specific intervals. Groups have been exposed to two adverse testing modes. Additional impulses have been conducted to the patients of group I within an hour over a period of the first and the third 15-minute intervals and to the patients of group II over a period of the second and the fourth 15-minute intervals. In the middle and in the end of each time interval tapping test has been carried out. After preliminary analysis two other modes of stimulation have been tested. The stimulation has been performed within the 40-minute course: over a period of the first 20-minute interval and vice versa. Results: Detailed evaluation has revealed that short-time increase of nervous processes has been checked in combination with decrease in their stability. Conclusion: The data obtained have shown that there is possible influence on central nervous system functioning. The article ends with prospects of further

  9. Effectiveness of nocturnal home oxygen therapy to improve exercise capacity, cardiac function and cardiac sympathetic nerve activity in patients with chronic heart failure and central sleep apnea

    International Nuclear Information System (INIS)

    Central sleep apnea, often found in patients with chronic heart failure (CHF), has a high risk of poor prognosis. This study involved 20 patients with CHF (left ventricular ejection fraction (LVEF) 5 times/h who were divided into 2 groups: 10 patients treated with nocturnal home oxygen therapy (HOT) and 10 patients without HOT (non-HOT). All patients had dilated cardiomyopathy and underwent overnight polysomnography, cardiopulmonary exercise testing, and nuclear cardiac examinations to evaluate AHI, exercise capacity according to the specific activity scale and oxygen uptake at anaerobic threshold and peak exercise (peak VO2). Cardiac function according to 99mTc-methoxyisobutylisonitrile (MIBI) QGS, and the total defect score (TDS), H/M ratio and the washout rate (WR) on 123I-metaiodobenzylguanidine (MIBG) imaging were calculated for all patients. As compared with the non-HOT group, the HOT group demonstrated a greater reduction in AHI (26.1±9.1 to 5.1±3.4), 123I-MIBG TDS (31±8 to 25±9), and 123I-MIBG WR (48±8% to 41±5%) and a greater increase in the specific activity scale (4.0±0.9 to 5.8±1.2 Mets), peak VO2 (16.0±3.8 to 18.3±4.7 ml·min-1·kg-1), and LVEF (27±9% to 37±10%). HOT improves exercise capacity, cardiac function, and cardiac sympathetic nerve activity in patients with CHF and central sleep apnea. (author)

  10. Iyengar Yoga Increases Cardiac Parasympathetic Nervous Modulation among Healthy Yoga Practitioners

    Directory of Open Access Journals (Sweden)

    Kerstin Khattab

    2007-01-01

    Full Text Available Relaxation techniques are established in managing of cardiac patients during rehabilitation aiming to reduce future adverse cardiac events. It has been hypothesized that relaxation-training programs may significantly improve cardiac autonomic nervous tone. However, this has not been proven for all available relaxation techniques. We tested this assumption by investigating cardiac vagal modulation during yoga.We examined 11 healthy yoga practitioners (7 women and 4 men, mean age: 43 ± 11; range: 26–58 years. Each individual was subjected to training units of 90 min once a week over five successive weeks. During two sessions, they practiced a yoga program developed for cardiac patients by B.K.S. Iyengar. On three sessions, they practiced a placebo program of relaxation. On each training day they underwent ambulatory 24 h Holter monitoring. The group of yoga practitioners was compared to a matched group of healthy individuals not practicing any relaxation techniques. Parameters of heart rate variability (HRV were determined hourly by a blinded observer. Mean RR interval (interval between two R-waves of the ECG was significantly higher during the time of yoga intervention compared to placebo and to control (P < 0.001 for both. The increase in HRV parameters was significantly higher during yoga exercise than during placebo and control especially for the parameters associated with vagal tone, i.e. mean standard deviation of NN (Normal Beat to Normal Beat of the ECG intervals for all 5-min intervals (SDNNi, P < 0.001 for both and root mean square successive difference (rMSSD, P < 0.01 for both. In conclusion, relaxation by yoga training is associated with a significant increase of cardiac vagal modulation. Since this method is easy to apply with no side effects, it could be a suitable intervention in cardiac rehabilitation programs.

  11. Regional heterogeneity in cardiac sympathetic innervation in acute myocardial infarction: relationship with myocardial oedema on magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Gimelli, Alessia; Masci, Pier Giorgio; Pasanisi, Emilio Maria; Lombardi, Massimo [Fondazione CNR/Regione Toscana, Pisa (Italy); Liga, Riccardo; Grigoratos, Chrysanthos [University Hospital of Pisa, Pisa (Italy); Marzullo, Paolo [Fondazione CNR/Regione Toscana, Pisa (Italy); Institute of Clinical Physiology, CNR, Pisa (Italy)

    2014-09-15

    To assess the relationships between myocardial structure and function on cardiac magnetic resonance (CMR) imaging and sympathetic tone on {sup 123}I-metaiodobenzylguanidine ({sup 123}I-MIBG) scintigraphy early after myocardial infarction (MI). Ten patients underwent {sup 123}I-MIBG and {sup 99m}Tc-tetrofosmin rest cadmium zinc telluride scintigraphy 4 ± 1 days after MI. The segmental left ventricular (LV) relative radiotracer uptake of both {sup 99m}Tc-tetrofosmin and early {sup 123}I-MIBG was calculated. The day after scintigraphy, on CMR imaging, the extent of ischaemia-related oedema and of myocardial fibrosis (late gadolinium enhancement, LGE) was assessed. Accordingly, the extent of oedema and LGE was evaluated for each segment and segmental wall thickening determined. Based on LGE distribution, LV segments were categorized as ''infarcted'' (56 segments), ''adjacent'' (66 segments) or ''remote'' (48 segments). Infarcted segments showed a more depressed systolic wall thickening and greater extent of oedema than adjacent segments (p < 0.001) and remote segments (p < 0.001). Interestingly, while uptake of {sup 99m}Tc-tetrofosmin was significantly depressed only in infarcted segments (p < 0.001 vs. both adjacent and remote segments), uptake of {sup 123}I-MIBG was impaired not only in infarcted segments (p < 0.001 vs. remote) but also in adjacent segments (p = 0.024 vs. remote segments). At the regional level, after correction for {sup 99m}Tc-tetrofosmin and LGE distribution, segmental {sup 123}I-MIBG uptake (p < 0.001) remained an independent predictor of ischaemia-related oedema. After acute MI the regional impairment of sympathetic tone extends beyond the area of altered myocardial perfusion and is associated with myocardial oedema. (orig.)

  12. Cerebral ischemia increases bone marrow CD4+CD25+FoxP3+ regulatory T cells in mice via signals from sympathetic nervous system.

    Science.gov (United States)

    Wang, Jianping; Yu, Lie; Jiang, Chao; Fu, Xiaojie; Liu, Xi; Wang, Menghan; Ou, Chunying; Cui, Xiaobing; Zhou, Chengguang; Wang, Jian

    2015-01-01

    Recent evidence has shown that an increase in CD4(+)CD25(+)FoxP3(+) regulatory T (Treg) cells may contribute to stroke-induced immunosuppression. However, the molecular mechanisms that underlie this increase in Treg cells remain unclear. Here, we used a transient middle cerebral artery occlusion model in mice and specific pathway inhibitors to demonstrate that stroke activates the sympathetic nervous system, which was abolished by 6-OHDA. The consequent activation of β2-adrenergic receptor (AR) signaling increased prostaglandin E2 (PGE2) level in bone marrow. β2-AR antagonist prevented the upregulation of PGE2. PGE2, which acts on prostaglandin E receptor subtype 4 (EP4), upregulated the expression of receptor activator for NF-κB ligand (RANKL) in CD4(+) T cells and mediated the increase in Treg cells in bone marrow. Treatment of MCAO mice with RANKL antagonist OPG inhibited the increase in percent of bone marrow Treg cells. PGE2 also elevated the expression of indoleamine 2,3 dioxygenase in CD11C(+) dendritic cells and promoted the development of functional Treg cells. The effect was neutralized by treatment with indomethacin. Concurrently, stroke reduced production of stromal cell-derived factor-1 (SDF-1) via β3-AR signals in bone marrow but increased the expression of C-X-C chemokine receptor (CXCR) 4 in Treg and other bone marrow cells. Treatment of MCAO mice with β3-AR antagonist SR-59230A reduced the percent of Treg cells in peripheral blood after stroke. The disruption of the CXCR4-SDF-1 axis may facilitate mobilization of Treg cells and other CXCR4(+) cells into peripheral blood. This mechanism could account for the increase in Treg cells, hematopoietic stem cells, and progenitor cells in peripheral blood after stroke. We conclude that cerebral ischemia can increase bone marrow CD4(+)CD25(+)FoxP3(+) regulatory T cells via signals from the sympathetic nervous system. PMID:25110149

  13. Changes in cardiac performance and sympathetic stimulation during and after fractionated radiotherapy in a rat model

    International Nuclear Information System (INIS)

    The consequences of fractionated irradiation on the number of cardiac α- and β-adrenergic receptors, myocardial norepinephrine concentration and in vitro assessed heart function were studied in Sprague-Dawley rats. Animals were locally irradiated on the thorax with a total dose of 50 Gy, in 5 weeks, using two different fractionation schemes (5 x 2.0 Gy/week and 3 x 3.3 Gy/week). Functional and biochemical assays were performed during treatment and at 6 months after initiation of treatment. During fractionated irradiation, the numbers of α- and β-adrenergic receptors tended to rise. During this period, myocardial norepinephrine concentration remained fairly constant and no decrease in cardiac output was observed. At 6 months, a significant increase of the numbers of α- and β-adrenergic receptors was observed in the 3.3 Gy/fraction group compared to age-matched controls, p = 0.012 and p = 0.02, respectively. At this time point, the myocardial norepinephrine concentration had decreased below control levels (p = 0.008 for the 3.3. Gy/fraction schedule, and p = 0.03 for the 2.0 Gy/fraction schedule). At 6 months, the cardiac output declined to 61% (p = 0.009) and 69% (p = 0.04) of control values for the 3.3 and 2.0 Gy/fraction schedules, respectively. The present data clearly show development of late cardiac sequelae caused by fractionated thorax irradiation with a total dose of 50 Gy. Moreover, this study lends support to the importance of fraction size with regard to the severity of the radiation-induced cardiac damage

  14. Alterations of left ventricular deformation and cardiac sympathetic derangement in patients with systolic heart failure: a 3D speckle tracking echocardiography and cardiac {sup 123}I-MIBG study

    Energy Technology Data Exchange (ETDEWEB)

    Leosco, Dario; Parisi, Valentina; Pagano, Gennaro; Femminella, Grazia Daniela; Bevilacqua, Agnese; Formisano, Roberto; Ferro, Gaetana; De Lucia, Claudio; Ferrara, Nicola [University Federico II, Department of Translational Medical Science, Naples (Italy); Pellegrino, Teresa [Italian National Research Council (CNR), Institute of Biostructure and Bioimaging, Naples (Italy); University Federico II, Department of Advanced Biomedical Science, Naples (Italy); Paolillo, Stefania [University Federico II, Department of Advanced Biomedical Science, Naples (Italy); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples (Italy); Prastaro, Maria; Filardi, Pasquale Perrone; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Science, Naples (Italy); Rengo, Giuseppe [University Federico II, Department of Translational Medical Science, Naples (Italy); Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, BN (Italy)

    2015-09-15

    Myocardial contractile function is under the control of cardiac sympathetic activity. Three-dimensional speckle tracking echocardiography (3D-STE) and cardiac imaging with {sup 123}I-metaiodobenzylguanidine ({sup 123}I-MIBG) are two sophisticated techniques for the assessment of left ventricular (LV) deformation and sympathetic innervation, respectively, which offer important prognostic information in patients with heart failure (HF). The purpose of this investigation was to explore, in patients with systolic HF, the relationship between LV deformation assessed by 3D-STE and cardiac sympathetic derangement evaluated by {sup 123}I-MIBG imaging. We prospectively studied 75 patients with systolic HF. All patients underwent a 3D-STE study (longitudinal, circumferential, area and radial) and {sup 123}I-MIBG planar and SPECT cardiac imaging. 3D-STE longitudinal, circumferential and area strain values were correlated with {sup 123}I-MIBG late heart to mediastinum (H/M) ratio and late SPECT total defect score. After stratification of the patients according to ischaemic or nonischaemic HF aetiology, we observed a good correlation of all 3D-STE measurements with late H/M ratio and SPECT data in the ischaemic group, but in patients with HF of nonischaemic aetiology, no correlation was found between LV deformation and cardiac sympathetic activity. At the regional level, the strongest correlation between LV deformation and adrenergic innervation was found for the left anterior descending coronary artery distribution territory for all four 3D-STE values. In multivariate linear regression analyses, including age, gender, LV ejection fraction, NYHA class, body mass index, heart rate and HF aetiology, only 3D-STE area and radial strain values significantly predicted cardiac sympathetic derangement on {sup 123}I-MIBG late SPECT. This study indicated that 3D-STE measurements are correlated with {sup 123}I-MIBG planar and SPECT data. Furthermore, 3D-STE area and radial strain values

  15. Aldehyde dehydrogenase type 2 activation by adenosine and histamine inhibits ischemic norepinephrine release in cardiac sympathetic neurons: mediation by protein kinase Cε.

    Science.gov (United States)

    Robador, Pablo A; Seyedi, Nahid; Chan, Noel Yan-Ki; Koda, Kenichiro; Levi, Roberto

    2012-10-01

    During myocardial ischemia/reperfusion, lipid peroxidation leads to the formation of toxic aldehydes that contribute to ischemic dysfunction. Mitochondrial aldehyde dehydrogenase type 2 (ALDH2) alleviates ischemic heart damage and reperfusion arrhythmias via aldehyde detoxification. Because excessive norepinephrine release in the heart is a pivotal arrhythmogenic mechanism, we hypothesized that neuronal ALDH2 activation might diminish ischemic norepinephrine release. Incubation of cardiac sympathetic nerve endings with acetaldehyde, at concentrations achieved in myocardial ischemia, caused a concentration-dependent increase in norepinephrine release. A major increase in norepinephrine release also occurred when sympathetic nerve endings were incubated in hypoxic conditions. ALDH2 activation substantially reduced acetaldehyde- and hypoxia-induced norepinephrine release, an action prevented by inhibition of ALDH2 or protein kinase Cε (PKCε). Selective activation of G(i/o)-coupled adenosine A(1), A(3), or histamine H(3) receptors markedly inhibited both acetaldehyde- and hypoxia-induced norepinephrine release. These effects were also abolished by PKCε and/or ALDH2 inhibition. Moreover, A(1)-, A(3)-, or H(3)-receptor activation increased ALDH2 activity in a sympathetic neuron model (differentiated PC12 cells stably transfected with H(3) receptors). This action was prevented by the inhibition of PKCε and ALDH2. Our findings suggest the existence in sympathetic neurons of a protective pathway initiated by A(1)-, A(3)-, and H(3)-receptor activation by adenosine and histamine released in close proximity of these terminals. This pathway comprises the sequential activation of PKCε and ALDH2, culminating in aldehyde detoxification and inhibition of hypoxic norepinephrine release. Thus, pharmacological activation of PKCε and ALDH2 in cardiac sympathetic nerves may have significant protective effects by alleviating norepinephrine-induced life-threatening arrhythmias that

  16. Quantification of cardiac autonomic nervous activities in ambulatory dogs by eliminating cardiac electric activities using cubic smoothing spline

    International Nuclear Information System (INIS)

    With the development of an implantable radio transmitter system, direct measurement of cardiac autonomic nervous activities (CANAs) became possible for ambulatory animals for a couple of months. However, measured CANAs include not only CANA but also cardiac electric activity (CEA) that can affect the quantification of CANAs. In this study, we propose a novel CEA removal method using moving standard deviation and cubic smoothing spline. This method consisted of two steps of detecting CEA segments and eliminating CEAs in detected segments. Using implanted devices, we recorded stellate ganglion nerve activity (SGNA), vagal nerve activity (VNA) and superior left ganglionated plexi nerve activity (SLGPNA) directly from four ambulatory dogs. The CEA-removal performance of the proposed method was evaluated and compared with commonly used high-pass filtration (HPF) for various heart rates and CANA amplitudes. Results tested with simulated CEA and simulated true CANA revealed stable and excellent performance of the suggested method compared to the HPF method. The averaged relative error percentages of the proposed method were less than 0.67%, 0.65% and 1.76% for SGNA, VNA and SLGPNA, respectively. (paper)

  17. Evaluation of the acute cardiac and central nervous system effects of the fluorocarbon trifluoromethane in baboons

    Energy Technology Data Exchange (ETDEWEB)

    Branch, C.A.; Goldberg, D.A.; Ewing, J.R.; Butt, S.S.; Gayner, J. [Henry Ford Hospital, Detroit, MI (United States); Fagan, S.C. [Wayne State Univ., Detroit, MI (United States)

    1994-12-31

    The gaseous fluorocarbon trifluoromethane has recently been investigated for its potential as an in vivo gaseous indicator for nuclear magnetic resonance studies of brain perfusion. Trifluoromethane may also have significant value as a replacement for chlorofluorocarbon fire retardants. Because of possible species-specific cardiotoxic and anesthetic properties, the toxicological evaluation of trifluoromethane in primates (Papio anubis) is necessary prior to its evaluation in humans. We report the acute cardiac and central nervous system effects of trifluoromethane in eight anesthetized baboons. A dose-response effect was established for respiratory rate, electroencephalogram, and cardiac sinus rate, which exhibited a stepwise decrease from 10% trifluoromethane. No spontaneous arrhythmias were noted, and arterial blood pressure remained unchanged at any inspired level. Intravenous epinephrine infusions (1 {mu}g/kg) induced transient cardiac arrhythmia in 1 animal only at 70% FC-23 (v/v) trifluoromethane. Trifluoromethane appears to induce mild dose-related physiological changes at inspired levels of 30% or more, indicative of an anesthetic effect. These data suggest that trifluoromethane may be safe to use in humans, without significant adverse acute effects, at an inspired level of 30%. 23 refs., 3 figs., 3 tabs.

  18. Role of adenosine A2A receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control

    International Nuclear Information System (INIS)

    Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16 μg/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100 μg/kg i.v.) dose-dependently reduced BRSSNP in contrast to no effect on BRSPE. BRSSNP was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRSSNP were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRSSNP was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A2A antagonist), or VUF5574 (A3 antagonist). In contrast, BRSSNP was preserved after blockade of A1 (DPCPX) or A2B (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRSSNP depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A2A receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms. - Research highlights: → The role of central adenosinergic sites in the nicotine

  19. 肥胖相关高血压交感神经系统过度激活机制研究进展%Research progress of overactivation mechanism of sympathetic nervous system in obesity-related hyper-tension

    Institute of Scientific and Technical Information of China (English)

    刘敏

    2015-01-01

    Obesity is an independent risk factor for hypertension.Overactivation of sympathetic nervous system caused by obesity is an important path inducing hypertension.This article made following overview on research pro-gress of overactivation mechanism of sympathetic nervous system in obesity-related hypertension.%肥胖是高血压的独立危险因素。肥胖引起交感神经系统过度激活是诱发高血压的一种重要途径,本文就肥胖相关高血压交感神经系统过度激活机制研究进展作以下综述。

  20. Effects of perindopril on cardiac sympathetic nerve activity in patients with congestive heart failure: comparison with enalapril

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu; Toyama, Takuji; Suzuki, Tadashi; Kurabayashi, Masahiko [Gunma University School of Medicine, Department of Cardiovascular Medicine, Maebashi, Gunma (Japan); Kumakura, Hisao; Takayama, Yoshiaki; Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan, Department of Internal Medicine, Gunma (Japan)

    2005-08-01

    The production of aldosterone in the heart is suppressed by the angiotensin-converting enzyme (ACE) inhibitor perindopril in patients with congestive heart failure (CHF). Moreover, perindopril has been reported to have more cardioprotective effects than enalapril. Forty patients with CHF [left ventricular ejection fraction (LVEF) <45%; mean 33{+-}7%] were randomly assigned to perindopril (2 mg/day; n=20) or enalapril (5 mg/day; n=20). All patients were also treated with diuretics. The delayed heart/mediastinum count (H/M) ratio, delayed total defect score (TDS) and washout rate (WR) were determined from {sup 123}I-meta-iodobenzylguanidine (MIBG) images, and plasma brain natriuretic peptide (BNP) concentrations were measured before and 6 months after treatment. The left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV) and LVEF were also determined by echocardiography. After treatment, in patients receiving perindopril, TDS decreased from 39{+-}10 to 34{+-}9 (P<0.01), H/M ratios increased from 1.62{+-}0.27 to 1.76{+-}0.29 (P<0.01), WR decreased from 50{+-}14% to 42{+-}14% (P<0.05) and plasma BNP concentrations decreased from 226{+-}155 to 141{+-}90 pg/ml (P<0.0005). In addition, the LVEDV decreased from 180{+-}30 to 161{+-}30 ml (P<0.05) and the LVESV decreased from 122{+-}35 to 105{+-}36 ml (P<0.05). Although the LVEF tended to increase, the change was not statistically significant (from 33{+-}8% to 36{+-}12%; P=NS). On the other hand, there were no significant changes in these parameters in patients receiving enalapril. Plasma BNP concentrations, {sup 123}I-MIBG scintigraphic and echocardiographic parameters improved after 6 months of perindopril treatment. These findings indicate that perindopril treatment can ameliorate the cardiac sympathetic nerve activity and the left ventricular performance in patients with CHF. (orig.)

  1. Changes in Sympathetic Nervous System Activity are Associated with Changes in Sexual Wellbeing in Women with a History of Childhood Sexual Abuse

    Science.gov (United States)

    Lorenz, Tierney K.; Harte, Christopher B.; Meston, Cindy M.

    2015-01-01

    Introduction Women with histories of childhood sexual abuse (CSA) have higher rates of sexual difficulties, as well as high sympathetic nervous system (SNS) response to sexual stimuli. Aim To examine whether treatment-related changes in autonomic balance, as indexed by heart rate variability (HRV), were associated with changes in sexual arousal and orgasm function. Methods In Study 1, we measured HRV while writing a sexual essay in 42 healthy, sexually functional women without any history of sexual trauma. These data, along with demographics, were used to develop HRV norms equations. In Study 2, 136 women with a history of CSA were randomized to one of three active expressive writing treatments that focused on their trauma, sexuality, or daily life (control condition). We recorded HRV while writing a sexual essay at pre-treatment, post-treatment, and 2 week, 1 month, and 6 month follow-ups; we also calculated the expected HRV for each participant based on the norms equations from Study 1. Main Outcome Measures Heart rate variability, Female Sexual Function Index (FSFI), Sexual Satisfaction Scale – Women (SSS-W) Results The difference between expected and observed HRV decreased over time, indicating that, post-treatment, CSA survivors displayed HRV closer to the expected HRV of a demographics-matched woman with no history of sexual trauma. Also, over time, participants whose HRV became less dysregulated showed the biggest gains in sexual arousal and orgasm function. These effects were consistent across condition. Conclusions Treatments that reduce autonomic imbalance may improve sexual wellbeing among CSA populations. PMID:25963394

  2. Two-week stimulation or blockade of the sympathetic nervous system in man: influence on body weight, body composition, and twenty four-hour energy expenditure.

    Science.gov (United States)

    Acheson, K J; Ravussin, E; Schoeller, D A; Christin, L; Bourquin, L; Baertschi, P; Danforth, E; Jéquier, E

    1988-01-01

    Seven lean healthy young men were studied for 6 weeks during exposure to pharmacologic inhibition or stimulation of the sympathetic nervous system. For a period of 2 weeks their beta-adrenergic receptors were either blocked with propranolol hydrochloride (160 mg/d) or stimulated with terbutaline sulphate (15 mg/d). After a further 2 weeks of placebo administration (500 mg lactose/d), the subjects crossed over to the drug they had not been taking at the beginning of the experiment for another 14 days. During the last five days of each 2-week period, the subjects consumed a weight-maintaining diet, composed of 12% protein, 48% carbohydrate, and 40% fat. They consumed exactly the same menus on the same days during the subsequent study periods. Body weight and physical activity were measured every day for 6 weeks. Daily heart rate and nitrogen excretion were measured continuously for days at the end of each 2-week period, the last two days of which were spent in a respiration chamber where energy expenditure and a variety of metabolic parameters were measured. In the respiration chamber on the propranolol, placebo, and terbutaline treatments, respectively, significant differences were observed in mean daily heart rate (65 +/- 3, 75 +/- 4, and 84 +/- 4 beats/min), mean sleeping heart rate (51 +/- 2, 56 +/- 3, and 62 +/- 3 beats/min), nitrogen excretion (13.6 +/- 0.7, 12.6 +/- 0.6, and 11.9 +/- 0.6 g/d), fat oxidation (+1,045 +/- 95, +1,243 +/- 148, and +1,278 +/- 84 kcal/d) and thyroid hormones (12.0 +/- 0.7, 15.7 +/- 0.9, and 17.2 +/- 1.0 T3/T4 ratio).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3275861

  3. Fetal heart rate variability reveals differential dynamics in the intrauterine development of the sympathetic and parasympathetic branches of the autonomic nervous system

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the hypothesis that fetal beat-to-beat heart rate variability (fHRV) displays the different time scales of sympatho-vagal development prior to and after 32 weeks of gestation (wks GA). Ninety-two magnetocardiograms of singletons with normal courses of pregnancy between 24 + 1 and 41 + 6 wks GA were studied. Heart rate patterns were either quiet/non-accelerative (fHRP I) or active/accelerative (fHRP II) and recording quality sufficient for fHRV. The sample was divided into the GA groups 32 wks GA. Linear parameters of fHRV were calculated: mean heart rate (mHR), SDNN and RMSSD of normal-to-normal interbeat intervals, power in the low (0.04–0.15 Hz) and high frequency range (0.15–0.4 Hz) and the ratios SDNN/RMSSD and LF/HF as markers for sympatho-vagal balance. fHRP I is characterized by decreasing SDNN/RMSSD, LF/HF and mHR. The decrease is more pronounced 32 wks GA. LF/HF increases in fHRP II during the first half of the third trimester. Non-accelerative fHRP are indicative of parasympathetic dominance >32 wks GA. In contrast, the sympathetic accentuation during accelerative fHRP is displayed in the interrelations between mHR, SDNN and SDNN/RMSSD. Prior to 32 wks GA, fHRV reveals the increasing activity of the respective branches of the autonomic nervous system differentiating the types of fHRP

  4. Exercise training can prevent cardiac hypertrophy induced by sympathetic hyperactivity with modulation of kallikrein-kinin pathway and angiogenesis.

    Directory of Open Access Journals (Sweden)

    José Antônio Silva

    Full Text Available Sympathetic hyperactivity induces adverse effects in myocardial. Recent studies have shown that exercise training induces cardioprotection against sympathetic overload; however, relevant mechanisms of this issue remain unclear. We analyzed whether exercise can prevent pathological hypertrophy induced by sympathetic hyperactivity with modulation of the kallikrein-kinin and angiogenesis pathways. Male Wistar rats were assigned to non-trained group that received vehicle; non-trained isoproterenol treated group (Iso, 0.3 mg kg(-1 day-(1; and trained group (Iso+Exe which was subjected to sympathetic hyperactivity with isoproterenol. The Iso rats showed hypertrophy and myocardial dysfunction with reduced force development and relaxation of muscle. The isoproterenol induced severe fibrosis, apoptosis and reduced myocardial capillary. Interestingly, exercise blunted hypertrophy, myocardial dysfunction, fibrosis, apoptosis and capillary decreases. The sympathetic hyperactivity was associated with high abundance of ANF mRNA and β-MHC mRNA, which was significantly attenuated by exercise. The tissue kallikrein was augmented in the Iso+Exe group, and kinin B1 receptor mRNA was increased in the Iso group. Moreover, exercise induced an increase of kinin B2 receptor mRNA in myocardial. The myocardial content of eNOS, VEGF, VEGF receptor 2, pAkt and Bcl-2 were increased in the Iso+Exe group. Likewise, increased expression of pro-apoptotic Bad in the Iso rats was prevented by prior exercise. Our results represent the first demonstration that exercise can modulate kallikrein-kinin and angiogenesis pathways in the myocardial on sympathetic hyperactivity. These findings suggest that kallikrein-kinin and angiogenesis may have a key role in protecting the heart.

  5. Discrimination of the Healthy and Sick Cardiac Autonomic Nervous System by a New Wavelet Analysis of Heartbeat Intervals

    OpenAIRE

    Ashkenazy, Y.; Lewkowicz, M.; Levitan, J.; Moelgaard, H.; Thomsen, P. E. Bloch; Saermark, K.

    1998-01-01

    We demonstrate that it is possible to distinguish with a complete certainty between healthy subjects and patients with various dysfunctions of the cardiac nervous system by way of multiresolutional wavelet transform of RR intervals. We repeated the study of Thurner et al on different ensemble of subjects. We show that reconstructed series using a filter which discards wavelet coefficients related with higher scales enables one to classify individuals for which the method otherwise is inconclu...

  6. Pet measurements of presynaptic sympathetic nerve terminals in the heart

    International Nuclear Information System (INIS)

    [18F]Metaraminol (FMR) and [11C]hydroxyephedrine (HED) are catecholamine analogues that have been developed at the University of Michigan for the noninvasive characterization of the sympathetic nervous system of the heart using positron emission tomography (PET). Pharmacological studies employing neurotoxins and uptake inhibitors have demonstrated that both FMR and HED specifically trace the uptake and storage of catecholamines in sympathetic nerve terminals with little nonspecific tracer accumulation. These compounds exhibit excellent qualitative imaging characteristics with heart-to-blood ratios exceeding 6:1 as early as 15 min after intravenous injection in both animals (HED and FMR) and humans (HED). Tracer kinetic modeling techniques have been employed for the quantitative assessment of neuronal catecholamine uptake and storage. Indices of neuronal function, such as the volume of tracer distribution derived from the kinetic models, have been employed in preliminary human studies. Comparison of the tissue distribution volume of HED between normal (control subjects) and denervated (recent transplant patients) cardiac tissue demonstrates a dynamic range of approximately 5:1. This distribution volume is reduced by 60% from normal in patients with dilated cardiomyopathy, indicating dysfunction of the sympathetic system. These results show that HED used in combination with PET provides a sophisticated quantitative approach for studying the sympathetic nervous system of the normal and diseased human heart

  7. Use of iodine-123 metaiodobenzylguanidine scintigraphy to assess cardiac sympathetic denervation and the impact of hypertension in patients with non-insulin-dependent diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Koji; Nakatani, Yuko; Onishi, Satoshi [Dept. of Internal Medicine, Keihanna Hospital, Hirakata City, Osaka (Japan); Utsunomiya, Keita; Saika, Yoshinori [Dept. of Radiology, Keihanna Hospital, Hirakata City (Japan); Iwasaka, Toshiji [Cardiovascular Center, Kansai Medical University, Osaka (Japan)

    1999-10-01

    The objectives of this clinical study using iodine-123 metaiodobenzylguanidine (MIBG) scintigraphy were (a) to evaluate cardiac sympathetic denervation in non-insulin-dependent diabetes mellitus (NIDDM) patients with and without hypertension and (b) to investigate the relation between cardiac sympathetic denervation and prognosis in NIDDM patients. We compared clinical characteristics and MIBG data [heart to mediastinum (H/M) ratio and % washout rate (WR)] in a control group and NIDDM patients with and without hypertension. MIBG scintigraphy was performed in 11 controls and 82 NIDDM patients without overt cardiovascular disease except for hypertension (systolic blood pressure {>=}140 and/or diastolic blood pressure {>=}90 mmHg). After MIBG examination, blood pressure was measured regularly in all NIDDM patients. There were significant differences between 65 normotensive and 17 hypertensive NIDDM patients with respect to age (55{+-}11 vs 63{+-}12 years, respectively, P<0.05), prevalence of diabetic retinopathy (12% vs 35%, respectively, P<0.05) and systolic blood pressure (120{+-}12 vs 145{+-}16 mmHg, respectively, P<0.001). The H/M ratio in hypertensive NIDDM patients was significantly lower than in the control group (1.81{+-}0.29 vs 2.27{+-}0.20, respectively, P<0.01). During the follow-up period (18{+-} 12 months), 17 NIDDM patients newly developed hypertension after MIBG examination. There were no significant differences in their clinical characteristics compared with persistently normotensive or hypertensive NIDDM patients. %WR in patients with new onset hypertension was significantly higher than in the control group (30.88%{+-}16.87% vs 12.89%{+-}11.94%, respectively, P<0.05). Moreover, in these patients %WR correlated with duration from the date of MIBG scintigraphy to the onset of hypertension (r=-0.512, P<0.05). Five NIDDM patients died during the follow-up period (four newly hypertensive patients and one normotensive patient). There were significant

  8. Angiotensin II--nitric oxide interactions in the control of sympathetic outflow in heart failure.

    Science.gov (United States)

    Zucker, I H; Liu, J L

    2000-03-01

    Activation of the sympathetic nervous system is a compensatory mechanism which initially provides support for the circulation in the face of a falling cardiac output. It has been recognized for some time that chronic elevation of sympathetic outflow with the consequent increase in plasma norepinephrine, is counterproductive to improving cardiac function. Indeed, therapeutic targeting to block excessive sympathetic activation in heart failure is becoming a more accepted modality. The mechanism(s) by which sympathetic excitation occurs in the heart failure state are not completely understood. Components of abnormal cardiovascular reflex regulation most likely contribute to this sympatho-excitation. However, central mechanisms which relate to the elaboration of angiotensin II (Ang II) and nitric oxide (NO) may also play an important role. Ang II has been shown to be a sympatho-excitatory peptide in the central nervous system while NO is sympatho-inhibitory. Recent studies have demonstrated that blockade of Ang II receptors of the AT(1) subtype augments arterial baroreflex control of sympathetic nerve activity in the heart failure state, thereby predisposing to a reduction in sympathetic tone. Ang II and NO interact to regulate sympathetic outflow. Blockade of NO production in normal conscious rabbits was only capable of increasing sympathetic outflow when accompanied by a background infusion of Ang II. Conversely, providing a source of NO to rabbits with heart failure reduced sympathetic nerve activity when accompanied by blockade of AT(1) receptors. Chronic heart failure is also associated with a decrease in NO synthesis in the brain as indicated by a reduction in the mRNA for the neuronal isoform (nNOS). Chronic blockade of Ang II receptors can up regulate nNOS expression. In addition, exercise training of rabbits with developing heart failure has been shown to reduce sympathetic tone, decrease plasma Ang II, improve arterial baroreflex function and increase n

  9. Usefulness of biventricular pacing to improve cardiac symptoms, exercise capacity and sympathetic nerve activity in patients with moderate to severe chronic heart failure

    International Nuclear Information System (INIS)

    Although cardiac resynchronization using biventricular pacing (BVP) results in significant clinical improvement in patients with chronic heart failure (CHF), there is no evidence of improvement in sympathetic nerve activity (SNA). Eighteen patients with CHF (dilated cardiomyopathy/ischemic cardiomyopathy=14/4) and left ventricular (LV) ejection fraction 160 ms and dyssynchronous LV wall motion were classified into 2 groups based on the findings of 99mTc-methoxyisobutyl isonitrile (MIBI) quantitative gated single-photon emission computed tomography (SPECT) (QGS). Resynchronization was considered to be present when the difference between the QGS frame number for end-systole for the LV septal and lateral walls (dyssynchrony index) disappeared. Group A achieved resynchronization after BVP, but not Group B. In group A, New York Heart Association functional class (p=0.0002), specific activity scale (p=0.0001), total defect score (p123I-metaiodobenzylguanidine imaging (p<0.05) were significantly improved after resynchronization. However, there was no significant change in group B. Cardiac resynchronization after BVP can improve cardiac symptoms, exercise capacity, and SNA in patients with moderate to severe CHF. (author)

  10. Excitation of afferent fibres in the cardiac sympathetic nerves induced by coronary occlusion and injection of bradykinin. The influence of acetylsalicylic acid and dipyron.

    Science.gov (United States)

    Vogt, A; Vetterlein, F; dal Ri, H; Schmidt, G

    1979-05-01

    Afferent impulse activity was recorded in single fibres of the inferior cardiac sympathetic nerve of the cat. When the descending branch of the left coronary artery was ligated for 60 sec an enhancement of afferent impulses was recorded. Elevations in discharge frequency were also induced by injecting bradykinin, epinephrine, and isoprenaline or by general hypoxia due to interruption of the artificial ventilation. When these procedures were after pretreatment with the analgesic agents, acetylsalicylic acid or dipyron a reduction in spike discharge was observed only with bradykinin after application of acetylsalicylic acid. No influence of these pretreatments on the effects of coronary occlusion, general hypoxia and injection of epinephrine and isoprenaline could be observed. These results suggest that bradykinin does not predominate as mediator substance in eliciting ischemic heart pain. PMID:485722

  11. Sympathetic reinnervation in cardiac transplants: {sup 123}I-MIBG and {sup 201}Tl/{sup 99m}Tc-MIBI scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Oh, S. J.; Son, M. S.; Son, J. W.; Choi, I. S.; Shin, E. K.; Park, C. H. [Gachon Medical School, Gil Heart Cener, Inchon (Korea, Republic of)

    2000-07-01

    The purpose was to evaluate cardiac sympathetic reinnervation and hemodynamic changes after orthotopic heart transplantation (TPL). We performed 24 serial or followup cardiac 123I-MIBG imaging and rest 201Tl/99mTc-MIBI dipyridamole stress gated myocardial perfusion SPECT (g-MPS) in 15 patients (M:F=10:5;mean ages=34.5{+-}13.0 yr; idiopathic:rheumatic=14:1; one heart lung TPL)(10.80 {+-}11.88 (1-48) mo) after TPL 123I-MIBG imagings were performed in anterior position 15 minutes, 4 and 24 hours after i.v. injection of 148 MBq 123I MIBG. Image quantitation was based on the ratio of heart to mediastinal MIBG uptake (HMR) Compared to HMR on 15 min images (1.48 {+-} 0.28), neither four nor 24 hour delayed images (1.26 {+-} 0.23 vs. 1.06 {+-} 0.26: p<0.05, respectively, ANOVA) showed definite delayed localization of MIBG. 12 subjects with <13 (4.9 {+-}3.7) months after TPL had no visible 123I-MIBG uptake on early 15 min imaging however, 12 subjects with 13 to 48(28.6{+-}12.8) months had visible cardiac 123I-MIBG uptake (HMR: 1.65{+-}0.21 vs. 1.32{+-}0.26; p=0.002). One-year followup 123I-MIBG scintigraphy in nine pts showed significantly increased HMR(1.40{+-}0.31 to 1.61{+-}0.16, p<0.05) but a plateau was reached at HMR value of 2.0, which was still lower than 3.0 in normal controls. Plasma NE was increased according to I-123 MIBG myocardial uptake. Annual G-MPS detected an allograft atherosclerosis in one pt and showed progressive normalization of tachycardia and significant deterioration of LVEF and cardiac indices according to severity of rejection. To dipyridamole stress, transplant heats showed significant subnormal hemodynamic responses. Partial sympathetic late reinnervation can occur <1 year after TPL, and reached a plateau of two-third of normal value. G-MPS seems to be a useful screening test for the detection of allograft atherosclerosis and rejection.

  12. Cardiovascular and autonomic modulation by the central nervous system after aerobic exercise training

    Directory of Open Access Journals (Sweden)

    M.C. Martins-Pinge

    2011-09-01

    Full Text Available The autonomic nervous system plays a key role in maintaining homeostasis under normal and pathological conditions. The sympathetic tone, particularly for the cardiovascular system, is generated by sympathetic discharges originating in specific areas of the brainstem. Aerobic exercise training promotes several cardiovascular adjustments that are influenced by the central areas involved in the output of the autonomic nervous system. In this review, we emphasize the studies that investigate aerobic exercise training protocols to identify the cardiovascular adaptations that may be the result of central nervous system plasticity due to chronic exercise. The focus of our study is on some groups of neurons involved in sympathetic regulation. They include the nucleus tractus solitarii, caudal ventrolateral medulla and the rostral ventrolateral medulla that maintain and regulate the cardiac and vascular autonomic tonus. We also discuss studies that demonstrate the involvement of supramedullary areas in exercise training modulation, with emphasis on the paraventricular nucleus of the hypothalamus, an important area of integration for autonomic and neuroendocrine responses. The results of these studies suggest that the beneficial effects of physical activity may be due, at least in part, to reductions in sympathetic nervous system activity. Conversely, with the recent association of physical inactivity with chronic disease, these data may also suggest that increases in sympathetic nervous system activity contribute to the increased incidence of cardiovascular diseases associated with a sedentary lifestyle.

  13. Discrimination of the Healthy and Sick Cardiac Autonomic Nervous System by a New Wavelet Analysis of Heartbeat Intervals

    CERN Document Server

    Ashkenazy, Yu; Levitan, J; Moelgaard, H; Bloch-Thomsen, P E; Saermark, K

    1998-01-01

    We demonstrate that it is possible to distinguish with a complete certainty between healthy subjects and patients with various dysfunctions of the cardiac nervous system by way of multiresolutional wavelet transform of RR intervals. We repeated the study of Thurner et al on different ensemble of subjects. We show that reconstructed series using a filter which discards wavelet coefficients related with higher scales enables one to classify individuals for which the method otherwise is inconclusive. We suggest a delimiting diagnostic value of the standard deviation of the filtered, reconstructed RR interval time series in the range of $\\sim 0.035$ (for the above mentioned filter), below which individuals are at risk.

  14. Arrhythmogenic Effect of Sympathetic Histamine in Mouse Hearts Subjected to Acute Ischemia

    OpenAIRE

    He, Gonghao; HU, JING; Li, Teng; Ma, Xue; Meng, Jingru; Jia, Min; Lu, Jun; Ohtsu, Hiroshi; Chen, Zhong; Luo, Xiaoxing

    2011-01-01

    The role of histamine as a newly recognized sympathetic neurotransmitter has been presented previously, and its postsynaptic effects greatly depended on the activities of sympathetic nerves. Cardiac sympathetic nerves become overactivated under acute myocardial ischemic conditions and release neurotransmitters in large amounts, inducing ventricular arrhythmia. Therefore, it is proposed that cardiac sympathetic histamine, in addition to norepinephrine, may have a significant arrhythmogenic eff...

  15. Use of iodine-123 metaiodobenzylguanidine scintigraphy to assess cardiac sympathetic denervation and the impact of hypertension in patients with non-insulin-dependent diabetes mellitus

    International Nuclear Information System (INIS)

    The objectives of this clinical study using iodine-123 metaiodobenzylguanidine (MIBG) scintigraphy were (a) to evaluate cardiac sympathetic denervation in non-insulin-dependent diabetes mellitus (NIDDM) patients with and without hypertension and (b) to investigate the relation between cardiac sympathetic denervation and prognosis in NIDDM patients. We compared clinical characteristics and MIBG data [heart to mediastinum (H/M) ratio and % washout rate (WR)] in a control group and NIDDM patients with and without hypertension. MIBG scintigraphy was performed in 11 controls and 82 NIDDM patients without overt cardiovascular disease except for hypertension (systolic blood pressure ≥140 and/or diastolic blood pressure ≥90 mmHg). After MIBG examination, blood pressure was measured regularly in all NIDDM patients. There were significant differences between 65 normotensive and 17 hypertensive NIDDM patients with respect to age (55±11 vs 63±12 years, respectively, P<0.05), prevalence of diabetic retinopathy (12% vs 35%, respectively, P<0.05) and systolic blood pressure (120±12 vs 145±16 mmHg, respectively, P<0.001). The H/M ratio in hypertensive NIDDM patients was significantly lower than in the control group (1.81±0.29 vs 2.27±0.20, respectively, P<0.01). During the follow-up period (18± 12 months), 17 NIDDM patients newly developed hypertension after MIBG examination. There were no significant differences in their clinical characteristics compared with persistently normotensive or hypertensive NIDDM patients. %WR in patients with new onset hypertension was significantly higher than in the control group (30.88%±16.87% vs 12.89%±11.94%, respectively, P<0.05). Moreover, in these patients %WR correlated with duration from the date of MIBG scintigraphy to the onset of hypertension (r=-0.512, P<0.05). Five NIDDM patients died during the follow-up period (four newly hypertensive patients and one normotensive patient). There were significant statistical differences

  16. Evaluation of cardiac sympathetic nerve activity and aldosterone suppression in patients with acute decompensated heart failure on treatment containing intravenous atrial natriuretic peptide

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Toyama, Takuji; Kurabayashi, Masahiko [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Iwasaki, Toshiya; Sumino, Hiroyuki; Kumakura, Hisao; Minami, Kazutomo; Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Matsumoto, Naoya [Nihon University School of Medicine, Department of Cardiology, Tokyo (Japan); Nakata, Tomoaki [Sapporo Medical University School of Medicine, Second (Cardiology) Department of Internal Medicine, Sapporo, Hokkaido (Japan)

    2014-09-15

    Aldosterone prevents the uptake of norepinephrine in the myocardium. Atrial natriuretic peptide (ANP), a circulating hormone of cardiac origin, inhibits aldosterone synthase gene expression in cultured cardiocytes. We evaluated the effects of intravenous ANP on cardiac sympathetic nerve activity (CSNA) and aldosterone suppression in patients with acute decompensated heart failure (ADHF). We studied 182 patients with moderate nonischemic ADHF requiring hospitalization and treated with standard therapy containing intravenous ANP and 10 age-matched normal control subjects. ANP was continuously infused for >96 h. In all subjects, delayed total defect score (TDS), heart to mediastinum ratio, and washout rate were determined by {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy. Left ventricular (LV) end-diastolic volume, end-systolic volume, and ejection fraction were determined by echocardiography. All patients with acute heart failure (AHF) were examined once within 3 days and then 4 weeks after admission, while the control subjects were examined only once (when their hemodynamics were normal). Moreover, for 62 AHF patients, plasma aldosterone concentrations were measured at admission and 1 h before stopping ANP infusion. {sup 123}I-MIBG scintigraphic and echocardiographic parameters in normal subjects were more favorable than those in patients with AHF (all p < 0.001). After treatment, all these parameters improved significantly in AHF patients (all p < 0.001). We also found significant correlation between percent changes of TDS and aldosterone concentrations (r = 0.539, p < 0.001) in 62 AHF patients. The CSNA and LV performance were all improved in AHF patients. Furthermore, norepinephrine uptake of myocardium may be ameliorated by suppressing aldosterone production after standard treatment containing intravenous ANP. (orig.)

  17. Evaluation of cardiac sympathetic nerve activity and aldosterone suppression in patients with acute decompensated heart failure on treatment containing intravenous atrial natriuretic peptide

    International Nuclear Information System (INIS)

    Aldosterone prevents the uptake of norepinephrine in the myocardium. Atrial natriuretic peptide (ANP), a circulating hormone of cardiac origin, inhibits aldosterone synthase gene expression in cultured cardiocytes. We evaluated the effects of intravenous ANP on cardiac sympathetic nerve activity (CSNA) and aldosterone suppression in patients with acute decompensated heart failure (ADHF). We studied 182 patients with moderate nonischemic ADHF requiring hospitalization and treated with standard therapy containing intravenous ANP and 10 age-matched normal control subjects. ANP was continuously infused for >96 h. In all subjects, delayed total defect score (TDS), heart to mediastinum ratio, and washout rate were determined by 123I-metaiodobenzylguanidine (MIBG) scintigraphy. Left ventricular (LV) end-diastolic volume, end-systolic volume, and ejection fraction were determined by echocardiography. All patients with acute heart failure (AHF) were examined once within 3 days and then 4 weeks after admission, while the control subjects were examined only once (when their hemodynamics were normal). Moreover, for 62 AHF patients, plasma aldosterone concentrations were measured at admission and 1 h before stopping ANP infusion. 123I-MIBG scintigraphic and echocardiographic parameters in normal subjects were more favorable than those in patients with AHF (all p < 0.001). After treatment, all these parameters improved significantly in AHF patients (all p < 0.001). We also found significant correlation between percent changes of TDS and aldosterone concentrations (r = 0.539, p < 0.001) in 62 AHF patients. The CSNA and LV performance were all improved in AHF patients. Furthermore, norepinephrine uptake of myocardium may be ameliorated by suppressing aldosterone production after standard treatment containing intravenous ANP. (orig.)

  18. elPBN neurons regulate rVLM activity through elPBN-rVLM projections during activation of cardiac sympathetic afferent nerves.

    Science.gov (United States)

    Guo, Zhi-Ling; Longhurst, John C; Tjen-A-Looi, Stephanie C; Fu, Liang-Wu

    2016-08-01

    The external lateral parabrachial nucleus (elPBN) within the pons and rostral ventrolateral medulla (rVLM) contributes to central processing of excitatory cardiovascular reflexes during stimulation of cardiac sympathetic afferent nerves (CSAN). However, the importance of elPBN cardiovascular neurons in regulation of rVLM activity during CSAN activation remains unclear. We hypothesized that CSAN stimulation excites the elPBN cardiovascular neurons and, in turn, increases rVLM activity through elPBN-rVLM projections. Compared with controls, in rats subjected to microinjection of retrograde tracer into the rVLM, the numbers of elPBN neurons double-labeled with c-Fos (an immediate early gene) and the tracer were increased after CSAN stimulation (P stimulation of CSAN increased the activity of elPBN cardiovascular neurons, which was attenuated (n = 6, P stimulation (n = 5, P stimulation activates cardiovascular neurons in the elPBN and rVLM sequentially through a monosynaptic (glutamatergic) excitatory elPBN-rVLM pathway. PMID:27225950

  19. Autonomic Modulation by Electrical Stimulation of the Parasympathetic Nervous System: An Emerging Intervention for Cardiovascular Diseases.

    Science.gov (United States)

    He, Bo; Lu, Zhibing; He, Wenbo; Huang, Bing; Jiang, Hong

    2016-06-01

    The cardiac autonomic nervous system has been known to play an important role in the development and progression of cardiovascular diseases. Autonomic modulation by electrical stimulation of the parasympathetic nervous system, which increases the parasympathetic activity and suppresses the sympathetic activity, is emerging as a therapeutic strategy for the treatment of cardiovascular diseases. Here, we review the recent literature on autonomic modulation by electrical stimulation of the parasympathetic nervous system, including vagus nerve stimulation, transcutaneous auricular vagal stimulation, spinal cord stimulation, and ganglionated plexi stimulation, in the treatment of heart failure, atrial fibrillation, and ventricular arrhythmias. PMID:26914959

  20. Clinical performance and radiation dosimetry of no-carrier-added vs carrier-added 123I-metaiodobenzylguanidine (MIBG) for the assessment of cardiac sympathetic nerve activity

    International Nuclear Information System (INIS)

    We hypothesized that assessment of myocardial sympathetic activity with no-carrier-added (nca) 123I-meta-iodobenzylguanidine (MIBG) compared to carrier-added (ca) 123I-MIBG would lead to an improvement of clinical performance without major differences in radiation dosimetry. In nine healthy volunteers, 15 min and 4 h planar thoracic scintigrams and conjugate whole-body scans were performed up to 48 h following intravenous injection of 185 MBq 123I-MIBG. The subjects were given both nca and ca 123I-MIBG. Early heart/mediastinal ratios (H/M), late H/M ratios and myocardial washout were calculated. The fraction of administered activity in ten source organs was quantified from the attenuation-corrected geometric mean counts in conjugate views. Radiation-absorbed doses were estimated with OLINDA/EXM software. Both early and late H/M were higher for nca 123I-MIBG (ca 123I-MIBG early H/M 2.46 ± 0.15 vs nca 123I-MIBG 2.84 ± 0.15, p 0.001 and ca 123I-MIBG late H/M 2.69 ± 0.14 vs nca 123I-MIBG 3.34 ± 0.18, p = 0.002). Myocardial washout showed a longer retention time for nca 123I-MIBG (p 123I-MIBG was similar to that for ca 123I-MIBG (0.025 ± 0.002 mSv/MBq vs 0.026 ± 0.002 mSv/MBq, p = 0.055, respectively). No-carrier-added 123I-MIBG yields a higher relative myocardial uptake and is associated with a higher myocardial retention. This difference between nca 123I-MIBG and ca 123I-MIBG in myocardial uptake did not result in major differences in estimated absorbed doses. Therefore, nca 123I-MIBG is to be preferred over ca 123I-MIBG for the assessment of cardiac sympathetic activity. (orig.)

  1. Nicotine and sympathetic neurotransmission.

    Science.gov (United States)

    Haass, M; Kübler, W

    1997-01-01

    Nicotine increases heart rate, myocardial contractility, and blood pressure. These nicotine-induced cardiovascular effects are mainly due to stimulation of sympathetic neurotransmission, as nicotine stimulates catecholamine release by an activation of nicotine acetylcholine receptors localized on peripheral postganglionic sympathetic nerve endings and the adrenal medulla. The nicotinic acetylcholine receptor is a ligand-gated cation channel with a pentameric structure and a central pore with a cation gate, which is essential for ion selectivity and permeability. Binding of nicotine to its extracellular binding site leads to a conformational change of the central pore, which results in the influx of sodium and calcium ions. The resulting depolarization of the sympathetic nerve ending stimulates calcium influx through voltage-dependent N-type calcium channels, which triggers the nicotine-evoked exocytotic catecholamine release. In the isolated perfused guinea-pig heart, cardiac energy depletion sensitizes cardiac sympathetic nerves to the norepinephrine-releasing effect of nicotine, as indicated by a leftward shift of the concentration-response curve, a potentiation of maximum transmitter release, and a delay of the tachyphylaxis of nicotine-evoked catecholamine release. This sensitization was also shown to occur in the human heart under in vitro conditions. Through the intracardiac release of norepinephrine, nicotine induces a beta-adrenoceptor-mediated increase in heart rate and contractility, and an alpha-adrenoceptor-mediated increase in coronary vasomotor tone. The resulting simultaneous increase in oxygen demand and coronary resistance has a detrimental effect on the oxygen balance of the heart, especially in patients with coronary artery disease. Sensitization of the ischemic heart to the norepinephrine-releasing effect of nicotine may be a trigger for acute cardiovascular events in humans, such as acute myocardial infarction and/or life

  2. Fibromyalgia: When Distress Becomes (Un)sympathetic Pain

    OpenAIRE

    Manuel Martinez-Lavin

    2012-01-01

    Fibromyalgia is a painful stress-related disorder. A key issue in fibromyalgia research is to investigate how distress could be converted into pain. The sympathetic nervous system is the main element of the stress response system. In animal models, physical trauma, infection, or distressing noise can induce abnormal connections between the sympathetic nervous system and the nociceptive system. Dorsal root ganglia sodium channels facilitate this type of sympathetic pain. Similar mechanisms may...

  3. Complex Nonlinear Autonomic Nervous System Modulation Link Cardiac Autonomic Neuropathy and Peripheral Vascular Disease

    Directory of Open Access Journals (Sweden)

    Kinda eKhalaf

    2015-03-01

    Full Text Available Background: Physiological interactions are abundant within, and between, body systems. These interactions may evolve into discrete states during pathophysiological processes resulting from common mechanisms. An association between arterial stenosis, identified by low ankle-brachial pressure index (ABPI and cardiovascular disease (CVD as been reported. Whether an association between vascular calcification - characterized by high ABPI and a different pathophysiology - is similarly associated with CVD, has not been established. The current study aims to investigate the association between ABPI, and cardiac rhythm, as an indicator of cardiovascular health and functionality, utilising heart rate variability (HRV.Methods and Results: Two hundred and thirty six patients underwent ABPI assessment. Standard time and frequency domain, and non-linear HRV measures were determined from 5-minute electrocardiogram. ABPI data were divided into normal (n=101, low (n=67 and high (n=66 and compared to HRV measures.(DFAα1 and SampEn were significantly different between the low ABPI, high ABPI and control groups (p<0.05.Conclusion: A possible coupling between arterial stenosis and vascular calcification with decreased and increased HRV respectively was observed. Our results suggest a model for interpreting the relationship between vascular pathophysiology and cardiac rhythm. The cardiovascular system may be viewed as a complex system comprising a number of interacting subsystems. These cardiac and vascular subsystems/networks may be coupled and undergo transitions in response to internal or external perturbations. From a clinical perspective, the significantly increased sample entropy compared to the normal ABPI group and the decreased and increased complex correlation properties measured by DFA for the low and high ABPI groups respectively, may be useful indicators that a more holistic treatment approach in line with this more complex clinical picture is required.

  4. A Comparative Study of Gender Differences in Age Associated Changes in Autonomic Nervous System

    Directory of Open Access Journals (Sweden)

    Kiran D Thorat

    2013-06-01

    Full Text Available There is much clinical evidence to suggest that cardiovascular functions vary both in males and females and the activity of autonomic nervous system varies with age and gender. The cardiovascular responses of blood pressure, cardiac output, heart rate and other variables to change in posture differ between the sexes. This study evaluated the gender differences in age-associated changes in cardiac sympathetic activity. This was a prospective study with the Primary Data which was collected from Pravara Rural Hospital Loni, Maharashtra, India. Total 80 completely healthy male and female subjects were selected for the study and divided into three groups according to their age. All the subjects were evaluated using CANWIN cardiac autonomic neuropathy analyzer; a windows based cardiac autonomic neuropathy analysis system with interpretation.Descriptive statistics was done using “unpaired t” test and one way ANOVA results were used to compare between the three study groups. Comparison of outcome parameters was calculated with significance test. This study suggests that gender differences exist in age-related changes in cardiac sympathetic activity. There is marked influence of age on sympathetic nervous system activation due to impaired sensitivity of baroreceptors in women than in men of the same age group

  5. Sympathetic Activation Does Not Affect the Cardiac and Respiratory Contribution to the Relationship between Blood Pressure and Pial Artery Pulsation Oscillations in Healthy Subjects.

    Directory of Open Access Journals (Sweden)

    Pawel J Winklewski

    Full Text Available Using a novel method called near-infrared transillumination backscattering sounding (NIR-T/BSS that allows for the non-invasive measurement of pial artery pulsation (cc-TQ and subarachnoid width (sas-TQ in humans, we assessed the influence of sympathetic activation on the cardiac and respiratory contribution to blood pressure (BP cc-TQ oscillations in healthy subjects.The pial artery and subarachnoid width response to handgrip (HGT and cold test (CT were studied in 20 healthy subjects. The cc-TQ and sas-TQ were measured using NIR-T/BSS; cerebral blood flow velocity (CBFV was measured using Doppler ultrasound of the left internal carotid artery; heart rate (HR and beat-to-beat mean BP were recorded using a continuous finger-pulse photoplethysmography; respiratory rate (RR, minute ventilation (MV, end-tidal CO2 (EtCO2 and end-tidal O2 (EtO2 were measured using a metabolic and spirometry module of the medical monitoring system. Wavelet transform analysis was used to assess the relationship between BP and cc-TQ oscillations.HGT evoked an increase in BP (+15.9%; P<0.001, HR (14.7; P<0.001, SaO2 (+0.5; P<0.001 EtO2 (+2.1; P<0.05 RR (+9.2%; P = 0.05 and MV (+15.5%; P<0.001, while sas-TQ was diminished (-8.12%; P<0.001, and a clear trend toward cc-TQ decline was observed (-11.0%; NS. CBFV (+2.9%; NS and EtCO2 (-0.7; NS did not change during HGT. CT evoked an increase in BP (+7.4%; P<0.001, sas-TQ (+3.5%; P<0.05 and SaO2(+0.3%; P<0.05. HR (+2.3%; NS, CBFV (+2.0%; NS, EtO2 (-0.7%; NS and EtCO2 (+0.9%; NS remained unchanged. A trend toward decreased cc-TQ was observed (-5.1%; NS. The sas-TQ response was biphasic with elevation during the first 40 seconds (+8.8% vs. baseline; P<0.001 and subsequent decline (+4.1% vs. baseline; P<0.05. No change with respect to wavelet coherence and wavelet phase coherence was found between the BP and cc-TQ oscillations.Short sympathetic activation does not affect the cardiac and respiratory contribution to the relationship

  6. Sympathetic activation in rats with L-NAME-induced hypertension

    Directory of Open Access Journals (Sweden)

    V.C. Biancardi

    2007-03-01

    Full Text Available We evaluated the hemodynamic pattern and the contribution of the sympathetic nervous system in conscious and anesthetized (1.4 g/kg urethane, iv Wistar rats with L-NAME-induced hypertension (20 mg/kg daily. The basal hemodynamic profile was similar for hypertensive animals, conscious (N = 12 or anesthetized (N = 12 treated with L-NAME for 2 or 7 days: increase of total peripheral resistance associated with a decrease of cardiac output (CO compared to normotensive animals, conscious (N = 14 or anesthetized (N = 14. Sympathetic blockade with hexamethonium essentially caused a decrease in total peripheral resistance in hypertensive animals (conscious, 2 days: from (means ± SEM 2.47 ± 0.08 to 2.14 ± 0.07; conscious, 7 days: from 2.85 ± 0.13 to 2.07 ± 0.33; anesthetized, 2 days: from 3.00 ± 0.09 to 1.83 ± 0.25 and anesthetized, 7 days: from 3.56 ± 0.11 to 1.53 ± 0.10 mmHg mL-1 min-1 with no change in CO in either group. However, in the normotensive group a fall in CO (conscious: from 125 ± 4.5 to 96 ± 4; anesthetized: from 118 ± 1.5 to 104 ± 5.5 mL/min was observed. The responses after hexamethonium were more prominent in the hypertensive anesthetized group. However, no difference was observed between conscious and anesthetized normotensive rats in response to sympathetic blockade. The present study shows that the vasoconstriction in response to L-NAME was mediated by the sympathetic drive. The sympathetic tone plays an important role in the initiation and maintenance of hypertension.

  7. Evaluation of Sympathetic Innervation in Cardiomyopathy with 123I-MIBG

    International Nuclear Information System (INIS)

    123I-Iodine-metaiodobenzylguanidine(MIBG) which is a norepinephrine analogue, can be used to evaluate the sympathetic innervation of the heart. In this study, cardiac imaging with 123I-MIBG was performed in patients with 9 dilated cardiomyopathy, 2 ischemic cardiomyopathy and 1 acute myocardial infarction to evaluate the sympathetic nervous function. 123I-MIBG imaging showed multifocal defects (8), diffuse defect (2), near non-visualization (2). The defects of MIBG scans were found to be larger and more severe on 4 hours image than 30 minutes. Heart to lung, heart to mediastinum ratios were decreased at 4 hours than those at 30 minutes. Measured LVEF values were not correlated with the severity of MIBG uptake. 99mTc-MIBI imaging was also performed in all patients to find the relationship with 123I-MIBG scan. 99mTc-MIBI scan showed multifocal defects in 9 patients, diffuse defects in 1 patient and no defect in 2 patients. The defects are similar in size, severity and extent, but more larger and severe on 123I-MIBG imaging. Therefore, cardiac 123I-MIBG imaging is a useful method to evaluate the sympathetic nervous function in cardiomyopathy.

  8. Impaired cardiac uptake of meta-[123I]iodobenzylguanidine in Parkinson's disease with autonomic failure

    International Nuclear Information System (INIS)

    Objective - To selectively investigate postganglionic sympathetic cardiac neurons in patients with Parkinson's disease and autonomic failure. Material and methods - Metaiodobenzylguanidine (MIBG) is a pharmacologically inactive analogue of noradrenaline, which is similarly metabolized in noradrenergic neurons. Therefore the uptake of radiolabelled MIBG represents not only the localization of postganglionic sympathetic neurons but also their functional integrity. Ten patients with Parkinson's disease and autonomic failure underwent standardized autonomic testing, assessment of catecholamine plasma levels and scintigraphy with [123I]MIGB. Results - The cardiac uptake of MIBG, as demonstrated by the heart/mediastinum ratio, was significantly lower in patients in comparison with controls. Scintigraphy with MIBG allowed the selective in-vivo investigation of postganglionic sympathetic cardiac efferent in patients with autonomic failure, a procedure which was previously confined to post-mortem examination. Conclusion - These findings point to a relevant postganglionic pattern of involvement of the autonomic nervous system (ANS) in Parkinson's disease and autonomic failure. (au)

  9. Different patterns of cardiac sympathetic denervation in tremor-type compared to akinetic-rigid-type Parkinson's disease: molecular imaging with ¹²³I-MIBG.

    Science.gov (United States)

    Chiaravalloti, A; Stefani, A; Tavolozza, M; Pierantozzi, M; Di Biagio, D; Olivola, E; Di Pietro, B; Stampanoni, M; Danieli, R; Simonetti, G; Stanzione, P; Schillaci, O

    2012-12-01

    The aim of this study was to evaluate the correlation between the clinical motor phenotypes of Parkinson's disease (PD) and ¹²³I-MIBG myocardial uptake. In total, 53 patients with PD [31 males and 22 females, mean age 62±10 years; 19 Hoehn & Yahr (H&Y) stage 1, 9 stage 1.5, 15 stage 2 and 10 at stage 3] were examined and subdivided into different clinical forms on the basis of dominance of resting tremor (n=19, TDT) and bradykinesia plus rigidity (n=34, ART). This status was correlated with the semi-quantitative analysis of ¹²³I-MIBG myocardial uptake. An age-matched control group of 18 patients was recruited (8 males and 10 females, mean age 62.4±16.3 years). ¹²³I-MIBG myocardial uptake significantly correlated with disease duration in early (r²=0.1894; P=0.0028) and delayed images (r²=0.1795; P=0.0037) in PD patients, while no correlation was found when considering age at examination, UPDRS III motor examination section score and H&Y score. PD patients showed a reduced ¹²³I-MIBG myocardial uptake compared to the control group in early (P=0.0026) and delayed images (P=0.0040), and ¹²³I-MIBG myocardial uptake was significantly lower in delayed images in TDT patients compared with ART patients (P=0.0167). A decrease was detected in the heart-to-mediastinum (H/M) ratio in delayed images compared to that of the early images in TDT patients (P=0.0040) and in the whole PD population (P=0.0012), while no differences were found in ART patients (P=0.1043). The results of the present study revealed that the cardiac sympathetic system is more severely impaired in TDT than in ART patients and ¹²³I-MIBG molecular imaging has the potential help in improving therapeutic planning in these patients. PMID:23023866

  10. Effects of adding intravenous nicorandil to standard therapy on cardiac sympathetic nerve activity and myocyte dysfunction in patients with acute decompensated heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Toyama, Takuji; Funada, Ryuichi; Takama, Noriaki; Koitabashi, Norimichi; Kurabayashi, Masahiko [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Suzuki, Yasuyuki; Matsumoto, Naoya [Nihon University School of Medicine, Department of Cardiology, Tokyo (Japan); Sato, Yuichi [Health Park Clinic, Department of Imaging, Takasaki, Gunma (Japan)

    2015-04-01

    Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, improves cardiac sympathetic nerve activity (CSNA) in ischemic heart disease or chronic heart failure. However, its effects on CSNA and myocyte dysfunction in acute heart failure (AHF) remain unclear. We investigated the effects of adding intravenous nicorandil to standard therapy on CSNA and myocyte dysfunction in AHF. We selected 70 patients with mild to moderate nonischemic AHF who were treated with standard conventional therapy soon after admission. Thirty-five patients were assigned to additionally receive intravenous nicorandil (4-12 mg/h; group A), whereas the remaining patients continued their current drug regimen (group B). Delayed total defect score (TDS), delayed heart to mediastinum count (H/M) ratio, and washout rate (WR) were determined by {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy within 3 days of admission and 4 weeks later. High sensitivity troponin T (hs-TnT) level was also measured at the same time points. After treatment, MIBG scintigraphic parameters significantly improved in both groups. However, the extent of the changes in these parameters in group A significantly exceeded the extent of the changes in group B [TDS -11.3 ± 4.3 in group A vs -4.0 ± 6.0 in group B (p < 0.01); H/M ratio 0.31 ± 0.16 vs 0.14 ± 0.16 (p < 0.01); WR -13.8 ± 7.8 % vs -6.1 ± 8.9 % (p < 0.01)]. The hs-TnT level decreased significantly from 0.052 ± 0.043 to 0.041 ± 0.033 ng/ml (p < 0.05) in group A, but showed no significant change in group B. Moreover, in both groups, no relationships between the extent of changes in MIBG parameters and hs-TnT level were observed. Adding intravenous nicorandil to standard therapy provides additional benefits for CSNA and myocyte dysfunction over conventional therapy alone in AHF patients. Furthermore, the mechanisms of improvement in CSNA and myocyte dysfunction after nicorandil treatment in AHF patients were distinct. (orig.)

  11. Effects of adding intravenous nicorandil to standard therapy on cardiac sympathetic nerve activity and myocyte dysfunction in patients with acute decompensated heart failure

    International Nuclear Information System (INIS)

    Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, improves cardiac sympathetic nerve activity (CSNA) in ischemic heart disease or chronic heart failure. However, its effects on CSNA and myocyte dysfunction in acute heart failure (AHF) remain unclear. We investigated the effects of adding intravenous nicorandil to standard therapy on CSNA and myocyte dysfunction in AHF. We selected 70 patients with mild to moderate nonischemic AHF who were treated with standard conventional therapy soon after admission. Thirty-five patients were assigned to additionally receive intravenous nicorandil (4-12 mg/h; group A), whereas the remaining patients continued their current drug regimen (group B). Delayed total defect score (TDS), delayed heart to mediastinum count (H/M) ratio, and washout rate (WR) were determined by 123I-metaiodobenzylguanidine (MIBG) scintigraphy within 3 days of admission and 4 weeks later. High sensitivity troponin T (hs-TnT) level was also measured at the same time points. After treatment, MIBG scintigraphic parameters significantly improved in both groups. However, the extent of the changes in these parameters in group A significantly exceeded the extent of the changes in group B [TDS -11.3 ± 4.3 in group A vs -4.0 ± 6.0 in group B (p < 0.01); H/M ratio 0.31 ± 0.16 vs 0.14 ± 0.16 (p < 0.01); WR -13.8 ± 7.8 % vs -6.1 ± 8.9 % (p < 0.01)]. The hs-TnT level decreased significantly from 0.052 ± 0.043 to 0.041 ± 0.033 ng/ml (p < 0.05) in group A, but showed no significant change in group B. Moreover, in both groups, no relationships between the extent of changes in MIBG parameters and hs-TnT level were observed. Adding intravenous nicorandil to standard therapy provides additional benefits for CSNA and myocyte dysfunction over conventional therapy alone in AHF patients. Furthermore, the mechanisms of improvement in CSNA and myocyte dysfunction after nicorandil treatment in AHF patients were distinct. (orig.)

  12. Sympathetic Modulation of Immunity: Relevance to Disease

    OpenAIRE

    Bellinger, Denise L.; Millar, Brooke A.; Perez, Sam; Carter, Jeff; Wood, Carlo; ThyagaRajan, Srinivasan; Molinaro, Christine; Lubahn, Cheri; Lorton, Dianne

    2008-01-01

    Optimal host defense against pathogens requires cross-talk between the nervous and immune systems. This paper reviews sympathetic-immune interaction, one major communication pathway, and its importance for health and disease. Sympathetic innervation of primary and secondary immune organs is described, as well as evidence for neurotransmission with cells of the immune system as targets. Most research thus far as focused on neural-immune modulation in secondary lymphoid organs, and have reveale...

  13. Assessment of myocardial perfusion and cardiac sympathetic nerve dysfunction in patients with sick sinus syndrome. Evaluation of coronary hemodynamics and 201TlCl/123I-MIBG myocardial SPECT

    International Nuclear Information System (INIS)

    To clarify the coronary hemodynamics, myocardial perfusion and cardiac sympathetic nerve function in patients with sick sinus syndrome (SSS), we performed left coronary digital subtraction angiography (DSA) in 41 patients, exercise 201TlCl-myocardial scintigraphy (planar and SPECT) in 69 patients, and 201TlCl/123I-MIBG myocardial dual SPECT in 13 patients without significant organic coronary stenosis. Coronary artery spasm was documented on coronary angiography in 25/43 (58%) patients with SSS by ergonovine provocation test. Compared with normals, patients with SSS demonstrated prolongation of left coronary circulation time (CCT) on own heart beats and right atrial pacing. We suspected that prolonged CCT may be induced by increased peripheral coronary vascular resistance and impaired coronary micro-circulation in patients with SSS. Forty-two patients (60.9%) developed exercise-induced 201Tl-myocardial perfusion defect on SPECT images. On myocardial dual SPECT images, 11/13 (85%) patients showed localized myocardial low uptake in 123I-MIBG-SPECT images. In eight patients with normal findings on 201Tl-SPECT, six patients showed abnormality on 123I-MIBG-SPECT. We suspected that coronary vasospasm, impaired coronary micro-circulation and cardiac sympathetic nerve dysfunction are taken a part of pathophysiology in SSS (decreased β-adrenergic receptor of peripheral coronary arteries?). (author)

  14. Sympathetic reinnervation following heart transplantation: a double-tracer study with 123I-MIBG and 201Tl

    International Nuclear Information System (INIS)

    Sympathetic reinnervation was evaluated in 15 patients 2-69 months after heart transplantation using a double-tracer technique with 123I-MIBG and 201Tl. Since MIBG is accumulated in the same manner as norepinephrine it may serve as a tracer of the integrity and function of the sympathetic nervous system. 201Tl was used for landmarking. Planar anterior imaging was performed 15 min and 4 h after i.v. injection of 220 MBq 123I-MIBG and 37 MBq 201Tl. Image quantitation was based on the ratio of myocardial to mediastinal MIBG-uptake. Cardiac regions of interest were defined according to the 201Tl uptake. There was no evidence of sympathetic reinnervation in 8 patients 2-34 months after transplantation. Increased MIBG-uptake could be observed in the anterior basal region in 6 long-term cardiac transplants (37-69 months). One patient with a 59-month-old transplanted heart did not reinnervate. Increased MIBG-uptake in the anterior basal region indicating partial sympathetic reinnervation could be shown in 40% of the investigated patients with an average organ age of 51 months. (orig.)

  15. High Frequency Yoga Breathing: A Review of Nervous System Effects and Adjunctive Therapeutic and Premeditation Potential

    Directory of Open Access Journals (Sweden)

    Anna Andaházy

    2016-05-01

    Full Text Available High frequency yoga breathing (HFYB results in a shifting of the autonomic nervous system balance towards sympathetic nervous system dominance. In an effort to more fully understand the complex effects of this form of yogic breath-work, tests are being conducted on practitioners’ physiological and neurological response processes. Studies on heart rate variability (HRV indicating cardiac autonomic control have shown a resulting reduction of vagal activity following HFYB, leading to passive sympathetic dominance without overt excitation or exhaustion. Comparative cognitive tests taken after the practice have shown that HFYB results in reduced auditory and visual reaction times, and a decrease in optical illusion. The vigilant, wakeful, yet relaxed state induced by HFYB has been associated with improvements in attention, memory, sensorimotor performance, and mood. As breathing bridges conscious and unconscious functions, the potential role of HFYB as an adjunctive therapeutic intervention as well as its possible application in preparation for meditation is considered.

  16. Comparing the accuracy of ES-BC, EIS-GS, and ES Oxi on body composition, autonomic nervous system activity, and cardiac output to standardized assessments

    Directory of Open Access Journals (Sweden)

    Lewis JE

    2011-09-01

    Full Text Available John E Lewis1, Stacey L Tannenbaum1, Jinrun Gao3, Angelica B Melillo1, Evan G Long1, Yaima Alonso2, Janet Konefal1, Judi M Woolger2, Susanna Leonard1, Prabjot K Singh1, Lawrence Chen1, Eduard Tiozzo1 1Department of Psychiatry and Behavioral Sciences, 2Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 3State Farm Insurance, Bloomington, IL, USA Background and purpose: The Electro Sensor Complex (ESC is software that combines three devices using bioelectrical impedance, galvanic skin response, and spectrophotometry: (1 ES-BC (Electro Sensor-Body Composition; LD Technology, Miami, FL to assess body composition, (2 EIS-GS (Electro Interstitial Scan-Galvanic Skin; LD Technology to predict autonomic nervous system activity, and (3 ES Oxi (Electro Sensor Oxi; LD Technology to assess cardiac output. The objective of this study was to compare each to a standardized assessment: ES-BC to dual-energy X-ray absorptiometry (DXA, EIS-GS to heart rate variability, and ES Oxi to BioZ Dx Diagnostic System (BioZ Dx; SonoSite Inc, Bothell, WA. Patients and methods: The study was conducted in two waves. Fifty subjects were assessed for body composition and autonomic nervous system activity. Fifty-one subjects were assessed for cardiac output. Results: We found adequate relative and absolute agreement between ES-BC and DXA for fat mass (r = 0.97, P < 0.001 with ES-BC overestimating fat mass by 0.1 kg and for body fat percentage (r = 0.92, P < 0.001 with overestimation of fat percentage by 0.4%. For autonomic nervous system activity, we found marginal relative agreement between EIS-GS and heart rate variability by using EIS-GS as the predictor in a linear regression equation (adjusted R2 = 0.56, P = 0.03. For cardiac output, adequate relative and absolute agreement was found between ES Oxi and BioZ Dx at baseline (r = 0.60, P < 0.001, after the first exercise stage (r = 0.79, P < 0.001, and after the second exercise stage (r = 0.86, P

  17. Stunned myocardium and sympathetic denervation

    International Nuclear Information System (INIS)

    To evaluate the clinical relationship between stunned myocardium and the sympathetic nervous system, 6 patients who had stunned myocardium accompanied by T wave inversion underwent simultaneous 123I-metaiodobenzyl guanidine (MIGB) scintigraphy and thallium scintigraphy. All patients showed abnormal filling defects on the MIBG scintigrams in the areas with stunned myocardium, but the thallium scintigrams were almost normal. The extent of the defects in these 6 patients was determined on the MIBG scintigrams using a Bull's eye display. The defects were found to be larger than those in 4 patients with angina pectoris, and those in 4 patients who had previously shown T wave inversion but had a normal electrocardiogram at the time of examination. Thus, it is suggested that sympathetic denervation is one of the mechanisms causing stunned myocardium. (author)

  18. REVERSAL OF GENETIC SALT-SENSITIVE HYPERTENSION BY TARGETED SYMPATHETIC ABLATION

    OpenAIRE

    Foss, Jason; Fink, Gregory D; Osborn, John W.

    2013-01-01

    The sympathetic nervous system plays an important role in some forms of human hypertension as well as the Dahl salt-sensitive rat model of hypertension; however, the sympathetic targets involved remain unclear. To address this, we examined the role of the renal and splanchnic sympathetic nerves in Dahl hypertension by performing either sham surgery (n = 10) or targeted sympathetic ablation of the renal nerves (renal denervation, n = 11), the splanchnic nerves (celiac ganglionectomy, n = 11) o...

  19. Abnormal cardiac autonomic regulation in mice lacking ASIC3.

    Science.gov (United States)

    Cheng, Ching-Feng; Kuo, Terry B J; Chen, Wei-Nan; Lin, Chao-Chieh; Chen, Chih-Cheng

    2014-01-01

    Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3(-/-) mice. Asic3(-/-) mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3(-/-) mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3(-/-) mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases. PMID:24804235

  20. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    Directory of Open Access Journals (Sweden)

    Ching-Feng Cheng

    2014-01-01

    Full Text Available Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3 is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  1. Neurohumoral indicators of efficacy radiofrequency cardiac denervation

    Science.gov (United States)

    Evtushenko, A. V.; Evtushenko, V. V.; Saushkina, Yu. V.; Lishmanov, Yu. B.; Pokushalov, E. A.; Sergeevichev, D. S.; Gusakova, A. M.; Suslova, T. E.; Dymbrylova, O. N.; Bykov, A. N.; Syryamkin, V. I.; Kistenev, Yu. V.; Anfinogenova, Ya. D.; Smyshlyaev, K. A.; Lotkov, A. I.; Kurlov, I. O.

    2015-11-01

    In this study, we compared pre- and postoperative parameters of the cardiac sympathetic innervation. The aim of the study was to examine the approaches to evaluating the quality of radiofrequency (RF)-induced cardiac denervation by using non-invasive and laboratory methods. The study included 32 people with long-lasting persistent atrial fibrillation (AF). The patients were divided into 2 groups according to the objectives of the study: group 1 (main) - 21 patients with mitral valve diseases, which simultaneously with radiofrequency ablation (RFA) AF carried out on the effects of the paraganglionic nervous plexuses by C. Pappone (2004) and N. Doll (2008) schemes. The second group (control) contained 11 patients with heart diseases in sinus rhythm (the RF denervation not been performed). All patients, who underwent surgical treatment, were received examination of cardiac sympathetic tone by using 123I-MIBG. All of them made blood analysis from ascending aorta and coronary sinus to determine the level of norepinephrine and its metabolites before and after cardiac denervation. Data of radionuclide examination are correlating with laboratory data.

  2. Neurohumoral indicators of efficacy radiofrequency cardiac denervation

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, A. V., E-mail: ave@cardio-tomsk.ru; Evtushenko, V. V. [National Research Tomsk State University, Tomsk (Russian Federation); Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Saushkina, Yu. V.; Gusakova, A. M.; Suslova, T. E.; Dymbrylova, O. N.; Smyshlyaev, K. A.; Kurlov, I. O. [Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Lishmanov, Yu. B.; Anfinogenova, Ya. D. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Sergeevichev, D. S. [Academician E.N. Meshalkin State Research Institute of Circulation Pathology, Novosibirsk (Russian Federation); Bykov, A. N.; Syryamkin, V. I.; Kistenev, Yu. V. [National Research Tomsk State University, Tomsk (Russian Federation); Lotkov, A. I. [Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS, Tomsk (Russian Federation); Pokushalov, E. A.

    2015-11-17

    In this study, we compared pre- and postoperative parameters of the cardiac sympathetic innervation. The aim of the study was to examine the approaches to evaluating the quality of radiofrequency (RF)-induced cardiac denervation by using non-invasive and laboratory methods. The study included 32 people with long-lasting persistent atrial fibrillation (AF). The patients were divided into 2 groups according to the objectives of the study: group 1 (main) - 21 patients with mitral valve diseases, which simultaneously with radiofrequency ablation (RFA) AF carried out on the effects of the paraganglionic nervous plexuses by C. Pappone (2004) and N. Doll (2008) schemes. The second group (control) contained 11 patients with heart diseases in sinus rhythm (the RF denervation not been performed). All patients, who underwent surgical treatment, were received examination of cardiac sympathetic tone by using {sup 123}I-MIBG. All of them made blood analysis from ascending aorta and coronary sinus to determine the level of norepinephrine and its metabolites before and after cardiac denervation. Data of radionuclide examination are correlating with laboratory data.

  3. Aldehyde Dehydrogenase Type 2 Activation by Adenosine and Histamine Inhibits Ischemic Norepinephrine Release in Cardiac Sympathetic Neurons: Mediation by Protein Kinase Cε

    OpenAIRE

    Robador, Pablo A.; Seyedi, Nahid; Chan, Noel Yan-Ki; Koda, Kenichiro; Levi, Roberto

    2012-01-01

    During myocardial ischemia/reperfusion, lipid peroxidation leads to the formation of toxic aldehydes that contribute to ischemic dysfunction. Mitochondrial aldehyde dehydrogenase type 2 (ALDH2) alleviates ischemic heart damage and reperfusion arrhythmias via aldehyde detoxification. Because excessive norepinephrine release in the heart is a pivotal arrhythmogenic mechanism, we hypothesized that neuronal ALDH2 activation might diminish ischemic norepinephrine release. Incubation of cardiac sym...

  4. Evaluation of cardiac blood blow, metabolism and sympathetic nerve function in patients with cardiac failure using PET and SPECT. Prognostic diagnosis based on the analysis of aggravating factors of the disease

    International Nuclear Information System (INIS)

    Focusing on the failure of energy metabolism, which is assumed to be attributed to the cardiac muscle disorder of a patient with cardiac failure, the characteristics and diagnostic significance of the metabolic disorders of cadiac muscles were investigated in those patients. The diagnostic efficacy of β-methyl iodophenyl pentadecanoic acid (BMIPP) which is a imaging agent for lipid metabolism in the cardiac muscle was assessed in the clinical states of cardiac failure due to pulmonary hypertension. Even if there was a considerable increase in the mean pulmonary arterial pressure (mPAP), the initial accumulation of BMIPP linearly increased, similarly to the increase in the accumulation of MIBI, a blood flow agent. The initial accumulation of BMIPP was thought to reflect a thicken cardiac muscle and/or increased blood flow. Also, its washing-out rate was suggested to be usable as an clinical indicator to estimate the loading of ventricular pressure. (M.N.)

  5. Evaluation of cardiac blood blow, metabolism and sympathetic nerve function in patients with cardiac failure using PET and SPECT. Prognostic diagnosis based on the analysis of aggravating factors of the disease

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Yoshio; Shimozu, Junko; Yasumura, Yoshio; Nagatani, Kenzo; Miyatake, Kunio [National Cardiovascular Center, Suita, Osaka (Japan)

    1998-02-01

    Focusing on the failure of energy metabolism, which is assumed to be attributed to the cardiac muscle disorder of a patient with cardiac failure, the characteristics and diagnostic significance of the metabolic disorders of cadiac muscles were investigated in those patients. The diagnostic efficacy of {beta}-methyl iodophenyl pentadecanoic acid (BMIPP) which is a imaging agent for lipid metabolism in the cardiac muscle was assessed in the clinical states of cardiac failure due to pulmonary hypertension. Even if there was a considerable increase in the mean pulmonary arterial pressure (mPAP), the initial accumulation of BMIPP linearly increased, similarly to the increase in the accumulation of MIBI, a blood flow agent. The initial accumulation of BMIPP was thought to reflect a thicken cardiac muscle and/or increased blood flow. Also, its washing-out rate was suggested to be usable as an clinical indicator to estimate the loading of ventricular pressure. (M.N.)

  6. Reduced cardiac 123I-metaiodobenzylguanidine uptake in patients with spinocerebellar ataxia type 2: a comparative study with Parkinson's disease

    International Nuclear Information System (INIS)

    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disorder characterized by cerebellar ataxia, supranuclear ophthalmoplegia, and peripheral neuropathy. Autonomic nervous system dysfunction is often present. This study evaluated the cardiac sympathetic function in patients with SCA2 using 123I-metaiodobenzylguanidine (MIBG) in comparison with patients with Parkinson's disease (PD) and control subjects. Nine patients with SCA2, nine patients with PD, and nine control subjects underwent 123I-MIBG imaging studies from which early and late heart-to-mediastinum (H/M) ratios and myocardial washout rates were calculated. Early (F = 12.3, p 123I-MIBG myocardial scintigraphy demonstrated an impairment of cardiac sympathetic function in patients with SCA2, which was less marked than in PD patients. These results suggest that 123I-MIBG cardiac imaging could become a useful tool for analysing the pathophysiology of SCA2. (orig.)

  7. Obesity-Related Metabolic Syndrome: Mechanisms of Sympathetic Overactivity

    Directory of Open Access Journals (Sweden)

    Maria Paola Canale

    2013-01-01

    Full Text Available The prevalence of the metabolic syndrome has increased worldwide over the past few years. Sympathetic nervous system overactivity is a key mechanism leading to hypertension in patients with the metabolic syndrome. Sympathetic activation can be triggered by reflex mechanisms as arterial baroreceptor impairment, by metabolic factors as insulin resistance, and by dysregulated adipokine production and secretion from visceral fat with a mainly permissive role of leptin and antagonist role of adiponectin. Chronic sympathetic nervous system overactivity contributes to a further decline of insulin sensitivity and creates a vicious circle that may contribute to the development of hypertension and of the metabolic syndrome and favor cardiovascular and kidney disease. Selective renal denervation is an emerging area of interest in the clinical management of obesity-related hypertension. This review focuses on current understanding of some mechanisms through which sympathetic overactivity may be interlaced to the metabolic syndrome, with particular regard to the role of insulin resistance and of some adipokines.

  8. Obesity-Related Metabolic Syndrome: Mechanisms of Sympathetic Overactivity

    OpenAIRE

    Maria Paola Canale; Simone Manca di Villahermosa; Giuliana Martino; Valentina Rovella; Annalisa Noce; Antonino De Lorenzo; Nicola Di Daniele

    2013-01-01

    The prevalence of the metabolic syndrome has increased worldwide over the past few years. Sympathetic nervous system overactivity is a key mechanism leading to hypertension in patients with the metabolic syndrome. Sympathetic activation can be triggered by reflex mechanisms as arterial baroreceptor impairment, by metabolic factors as insulin resistance, and by dysregulated adipokine production and secretion from visceral fat with a mainly permissive role of leptin and antagonist role of adipo...

  9. Sympathetic and sensory innervation of brown adipose tissue

    OpenAIRE

    Bartness, TJ; Vaughan, CH; Song, CK

    2010-01-01

    The innervation of brown adipose tissue (BAT) by the sympathetic nervous system (SNS) is incontrovertible and, with its activation, functions as the principal, if not exclusive, stimulator of BAT thermogenesis. The parasympathetic innervation of BAT only appears in two minor BAT depots, but not in the major interscapular BAT (IBAT) depot. BAT thermogenesis is triggered by the release of norepinephrine from its sympathetic nerve terminals, stimulating β3-adrenoceptors that turns on a cascade o...

  10. 123I-MIBG Myocardial sympathetic innervation scintigraphy and Parkinson's disease

    International Nuclear Information System (INIS)

    Aim: Dysfunction of the autonomic nervous system is an under-recognised but important aspect of the aetiological and clinical manifestation of primary degenerative dysautonomias such as Parkinson's disease (PD). Functional imaging studies suggest that selective cardiac sympathetic denervation may occur early in PD but not in other parkinsonian syndromes. The clinical implication of this apparently disease specific peripheral dysautonomia is unknown and would be the subject of much interest in future years. Scintigraphy with radiolabeled metaiodobenzylguanidine (123I-MIBG) enables the visualization and quantification of cardiac sympathetic function. Materials and Methods: We prospectively performed 73 123I-MIBG myocardial studies in two groups of patients: 61 patients (30 male/31 female) diagnosed of PD without any autonomic dysfunction (PD group) and 12 patients (7 male/4 female) were studied for a suspicion of pheochromocytoma (nonPD group). Severity of PD was evaluated by Hoehn-Yahr scale. Myocardial imaging with 123I-MIBG was performed to evaluate cardiac sympathetic function. Early and delayed images of the anterior view were obtained 15min and 4h after injection of 111 MBq iv of 123I-MIBG. Quantification of 123I-MIBG uptake using a heart-to-mediastinum ratio (H/M) and washout ratio (W) and comparison between groups were carried out. Results: The 123I-MIBG heart uptake was: a) reduced in 16 PD patients (26.2% of PD), b) absent in 42 PD patients (62.8% of PD) and c) normal in 3 PD (4.9% of PD) and in all of the 12 nonPD patients. H/M was significantly smaller in PD patients than nonPD patients (P 123I-MIBG uptake is a valuable and sensitive tool to identify early cardiac sympathetic dysfunction in patients with PD. As this finding could be characteristic of PD patients, the 123I-MIBG myocardial scintigraphy would be useful to discriminate them from other neurodegenerative disorders early in the course of the disease

  11. Measurement of the effect of Isha Yoga on cardiac autonomic nervous system using short-term heart rate variability

    Directory of Open Access Journals (Sweden)

    Krishnan Muralikrishnan

    2012-01-01

    Full Text Available Background: Beneficial effects of Yoga have been postulated to be due to modulation of the autonomic nervous system. Objective: To assess the effect of Isha Yoga practices on cardiovascular autonomic nervous system through short-term heart rate variability (HRV. Design of the Study: Short-term HRV of long-term regular healthy 14 (12 males and 2 females Isha Yoga practitioners was compared with that of age- and gender-matched 14 (12 males and 2 females non-Yoga practitioners. Methods and Materials: ECG Lead II and respiratory movements were recorded in both groups using Polyrite during supine rest for 5 min and controlled deep breathing for 1 minute. Frequency domain analysis [RR interval is the mean of distance between subsequent R wave peaks in ECG], low frequency (LF power, high frequency (HF power, LF normalized units (nu, HF nu, LF/HF ratio] and time domain analysis [Standard Deviation of normal to normal interval (SDNN, square of mean squared difference of successive normal to normal intervals (RMSSD, normal to normal intervals which are differing by 50 ms (NN50, and percentage of NN50 (pNN50] of HRV variables were analyzed for supine rest. Time domain analysis was recorded for deep breathing. Results: Results showed statistically significant differences between Isha Yoga practitioners and controls in both frequency and time domain analyses of HRV indices, with no difference in resting heart rate between the groups. Conclusions: Practitioners of Isha Yoga showed well-balanced beneficial activity of vagal efferents, an overall increased HRV, and sympathovagal balance, compared to non-Yoga practitioners during supine rest and deep breathing.

  12. 3H-digoxin distribution in the nervous system in ventricular tachycardia

    International Nuclear Information System (INIS)

    The distribution of 3H-digoxin has been measured in a large number of tissues from the central, autonomic, and peripheral nervous system after the induction of ventricular tachycardia by infusing digoxin into anesthetized dogs. In most parts of the nervous system the tissue digoxin concentration was close to that in the cerebrospinal fluid. Digoxin accumulation in the choroid plexus probably represented a labeling of adenosine triphosphatase. There was a markedly higher concentration of digoxin in the neurohypophysis than in the adenohypophysis, and the very high levels in the neurohypophysis are hard to explain. There may be a relationship between the pituitary and the hypothalamic digoxin levels, although the concentration in the latter was unimpressive. The fornix showed a modest increase in 3H-digoxin concentration and may play a role, as its efferent discharge goes to the hypothalamus. The high concentration of digoxin in the area postrema suggests that this central nervous system structure is responsible, at least in part, for producing digoxin-induced cardiac arrhythmias. It may act as a sensing organ sensitive to blood digoxin concentration. Either it is the only central nervous structure implicated, or it is involved together with the fornix-hypothalamus-hypophysis pathways. Further proof is given for the importance of the autonomic nervous system in cardiac arrhythmias by the high digoxin levels in the superior cervical sympathetic ganglion and adrenal medulla

  13. 3H-digoxin distribution in the nervous system in ventricular tachycardia. [Dogs

    Energy Technology Data Exchange (ETDEWEB)

    Frazer, G.; Binnion, P.

    The distribution of 3H-digoxin has been measured in a large number of tissues from the central, autonomic, and peripheral nervous system after the induction of ventricular tachycardia by infusing digoxin into anesthetized dogs. In most parts of the nervous system the tissue digoxin concentration was close to that in the cerebrospinal fluid. Digoxin accumulation in the choroid plexus probably represented a labeling of adenosine triphosphatase. There was a markedly higher concentration of digoxin in the neurohypophysis than in the adenohypophysis, and the very high levels in the neurohypophysis are hard to explain. There may be a relationship between the pituitary and the hypothalamic digoxin levels, although the concentration in the latter was unimpressive. The fornix showed a modest increase in 3H-digoxin concentration and may play a role, as its efferent discharge goes to the hypothalamus. The high concentration of digoxin in the area postrema suggests that this central nervous system structure is responsible, at least in part, for producing digoxin-induced cardiac arrhythmias. It may act as a sensing organ sensitive to blood digoxin concentration. Either it is the only central nervous structure implicated, or it is involved together with the fornix-hypothalamus-hypophysis pathways. Further proof is given for the importance of the autonomic nervous system in cardiac arrhythmias by the high digoxin levels in the superior cervical sympathetic ganglion and adrenal medulla.

  14. Macrophage depletion suppresses sympathetic hyperinnervation following myocardial infarction

    OpenAIRE

    Wernli, G.; Hasan, W.; Bhattacherjee, A.; Rooijen, van, J.; Smith, P K

    2009-01-01

    Myocardial infarction induces sympathetic axon sprouting adjacent to the necrotic region, and this has been implicated in the etiology of arrhythmias resulting in sudden cardiac death. Previous studies show that nerve growth factor (NGF) is essential for enhanced post-infarct sympathetic sprouting, but the cell types necessary to supply this neurotrophic protein are unknown. The objective of the present study was to determine whether macrophages, which are known to synthesize NGF, are necessa...

  15. Evidence and Consequences of the Central Role of the Kidneys in the Pathophysiology of Sympathetic Hyperactivity

    OpenAIRE

    Vink, Eva E.; Blankestijn, Peter J.

    2012-01-01

    Chronic elevation of the sympathetic nervous system has been identified as a major contributor to the complex pathophysiology of hypertension, states of volume overload – such as heart failure – and progressive kidney disease. It is also a strong determinant for clinical outcome. This review focuses on the central role of the kidneys in the pathogenesis of sympathetic hyperactivity. As a consequence, renal denervation may be an attractive option to treat sympathetic hyperactivity. The review ...

  16. Sympathetic neural adaptation to hypocaloric diet with or without exercise training in obese metabolic syndrome subjects

    DEFF Research Database (Denmark)

    Straznicky, Nora E; Lambert, Elisabeth A; Nestel, Paul J;

    2010-01-01

    Sympathetic nervous system (SNS) overactivity contributes to the pathogenesis and target organ complications of obesity. This study was conducted to examine the effects of lifestyle interventions (weight loss alone or together with exercise) on SNS function....

  17. Sympathetic Neural and Hemodynamic Responses During Cold Pressor Test in Elderly Blacks and Whites.

    Science.gov (United States)

    Okada, Yoshiyuki; Jarvis, Sara S; Best, Stuart A; Edwards, Jeffrey G; Hendrix, Joseph M; Adams-Huet, Beverley; Vongpatanasin, Wanpen; Levine, Benjamin D; Fu, Qi

    2016-05-01

    The sympathetic response during the cold pressor test (CPT) has been reported to be greater in young blacks than whites, especially in those with a family history of hypertension. Because blood pressure (BP) increases with age, we evaluated whether elderly blacks have greater sympathetic activation during CPT than age-matched whites. BP, heart rate, cardiac output, and muscle sympathetic nerve activity were measured during supine baseline, 2-minute CPT, and 3-minute recovery in 47 elderly (68±7 [SD] years) volunteers (12 blacks and 35 whites). Baseline BP, heart rate, cardiac output, or muscle sympathetic nerve activity did not differ between races. Systolic and diastolic BP and heart rate increased during CPT (allP0.05). Cardiac output increased during CPT and ≤30 s of recovery in both groups, but was lower in blacks than whites. Muscle sympathetic nerve activity increased during CPT in both groups (bothPvasoconstriction in elderly blacks. PMID:27021009

  18. Relationship between left ventricular diastolic function and myocardial sympathetic denervation measured by 123I-meta-iodobenzylguanidine imaging in Anderson-Fabry disease

    International Nuclear Information System (INIS)

    Whether cardiac sympathetic nervous function abnormalities may be present in patients with Anderson-Fabry disease (AFD) remains unexplored. We investigated the relationship between left ventricular (LV) function and cardiac sympathetic nervous function in patients with AFD. Twenty-five patients (12 men, mean age 43 ± 13 years) with genetically proved AFD and preserved LV ejection fraction and ten age and gender-matched control subjects underwent speckle tracking echocardiography and 123I-meta-iodobenzylguanidine (MIBG) imaging from which early and late heart to mediastinum (H/M) ratios and myocardial washout rate values were calculated. In AFD patients, a significant correlation between late H/M ratio and LV mass index (r = -61, p = 0.001), left atrial volume (r = -0.72, p < 0.001), systolic pulmonary artery pressure (r = -0.75, p < 0.001), and early diastolic untwisting rate (r = -0.66, p < 0.001) was found. Ten AFD patients exhibited a late H/M ratio below two fold standard deviation of control subjects (≤1.75). Patients showing late H/M ratio ≤ 1.75 had significantly higher LV mass index, relative wall thickness, left atrial volume and systolic pulmonary artery pressure, lower systolic longitudinal strain and an early diastolic untwisting rate compared to patients with late H/M ratio > 1.75. At multivariable linear regression analysis, early diastolic untwisting rate was the only independent predictor of late H/M ratio ≤ 1.75 (odds ratio 1.15, 95 % confidence interval 1.07-1.31, p < 0.05). The present findings provide the first demonstration of a cardiac sympathetic derangement in AFD patients with preserved LV ejection fraction, which is mostly related to LV diastolic dysfunction. (orig.)

  19. Relationship between left ventricular diastolic function and myocardial sympathetic denervation measured by {sup 123}I-meta-iodobenzylguanidine imaging in Anderson-Fabry disease

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Letizia; Giudice, Caterina Anna; Imbriaco, Massimo; Trimarco, Bruno; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy); Pellegrino, Teresa [Institute of Biostructure and Bioimaging, National Council of Research, Naples (Italy); Pisani, Antonio; Riccio, Eleonora [University Federico II, Department of Public Health, Naples (Italy); Salvatore, Marco [IRCCS SDN, Naples (Italy)

    2016-04-15

    Whether cardiac sympathetic nervous function abnormalities may be present in patients with Anderson-Fabry disease (AFD) remains unexplored. We investigated the relationship between left ventricular (LV) function and cardiac sympathetic nervous function in patients with AFD. Twenty-five patients (12 men, mean age 43 ± 13 years) with genetically proved AFD and preserved LV ejection fraction and ten age and gender-matched control subjects underwent speckle tracking echocardiography and {sup 123}I-meta-iodobenzylguanidine (MIBG) imaging from which early and late heart to mediastinum (H/M) ratios and myocardial washout rate values were calculated. In AFD patients, a significant correlation between late H/M ratio and LV mass index (r = -61, p = 0.001), left atrial volume (r = -0.72, p < 0.001), systolic pulmonary artery pressure (r = -0.75, p < 0.001), and early diastolic untwisting rate (r = -0.66, p < 0.001) was found. Ten AFD patients exhibited a late H/M ratio below two fold standard deviation of control subjects (≤1.75). Patients showing late H/M ratio ≤ 1.75 had significantly higher LV mass index, relative wall thickness, left atrial volume and systolic pulmonary artery pressure, lower systolic longitudinal strain and an early diastolic untwisting rate compared to patients with late H/M ratio > 1.75. At multivariable linear regression analysis, early diastolic untwisting rate was the only independent predictor of late H/M ratio ≤ 1.75 (odds ratio 1.15, 95 % confidence interval 1.07-1.31, p < 0.05). The present findings provide the first demonstration of a cardiac sympathetic derangement in AFD patients with preserved LV ejection fraction, which is mostly related to LV diastolic dysfunction. (orig.)

  20. Age-Related Differences in the Sympathetic-Hemodynamic Balance in Men

    OpenAIRE

    Hart, Emma C.; Joyner, Michael J.; Wallin, B. Gunnar; Johnson, Christopher P.; Curry, Timothy B.; Eisenach, John H.; Charkoudian, Nisha

    2009-01-01

    As humans age, the tonic level of activity in sympathetic vasoconstrictor nerves increases and may contribute to age-related increases in blood pressure. In previous studies in normotensive young men with varying levels of resting sympathetic nerve activity, we observed a balance among factors contributing to blood pressure regulation, such that higher sympathetic activity was associated with lower cardiac output and lesser vascular responsiveness to α-adrenergic agonists, which limited the i...

  1. Investigation of Sleep Bruxism Relating to Micro-arousals and Cardiac Sympathetic Activities%夜磨牙与微觉醒及心脏交感神经活动的关系

    Institute of Scientific and Technical Information of China (English)

    刘伟才; 王海波; 陈威; 李强

    2012-01-01

    Objective: To investigate whether rhythmic masticatory muscle activity (RMMA) is associated with sleep micro- arousals (MA), and analyze the association between RMMA of sleep bruxism patients (RMMA/SB) and autonomic cardiac activity. Methods: Thirty SB subjects and thirty control subjects for two consecutive nights were performed by polygraphic recordings. MA index and RMMA index were scored. The mean heart rate from a series of 10 cardiac cycles was calculated at 60, 40, 20 and 5 sec before RMMA onset respectively. To assess a transient beat-to-beat heart rate change in relation to the RMMA onset, heart rate from 5 cardiac cycles before and 5 cycles after the onset were also calculated. Results: Sleep bruxism (SB) subjects showed a higher incidence of rhythmic masticatory muscle activity (RMMA) than control subjects (6.10±1.05 vs. 1.81 ±0.39, P<0.0001). However, no difference was found in according to their micro-arousal index(7.72±1.21 vs.7.53±1.33, P=0.5641). RMMA/SB was associated with sleep micro-arousals. In both groups, transient heart rate acceleration was observed in relation to the onset of RMMA episodes. Conclusion: RMMA is associated with sleep micro-arousals. In SB subjects, a clear increase in sympathetic activity precedes SB onset.%目的:研究夜磨牙(sleep bruxism,SB)患者睡眠期咀嚼肌节律性运动(RMMA)发生的微觉醒机制.方法:对30名夜磨牙患者、30名正常人进行连续2夜的多导睡眠监测,研究RMMA事件与微觉醒(MA)的时间相关性;比较2组间RMMA指数及MA指数的差异;RMMA事件发生前60 s、前40 s、前20 s、前5s,共5个时间点的各连续10个心动周期的平均心率,以及RMMA事件发生前后各5个心动周期的心率变化.结果:夜磨牙症患者微觉醒指数(7.72±1.21)与正常对照相似(7.53±1.33,P=0.5641);但咀嚼肌节律性运动频率,即磨牙指数[(6.10±1.05)次/h]约3倍于正常对照组[(1.81±0.39)次/h,P<0.0001)].RMMA事件与MA存在高度时间相关

  2. Putting together the clues of the everlasting neuro-cardiac liaison.

    Science.gov (United States)

    Franzoso, Mauro; Zaglia, Tania; Mongillo, Marco

    2016-07-01

    Starting from the late embryonic development, the sympathetic nervous system extensively innervates the heart and modulates its activity during the entire lifespan. The distribution of myocardial sympathetic processes is finely regulated by the secretion of limiting amounts of pro-survival neurotrophic factors by cardiac cells. Norepinephrine release by the neurons rapidly modulates myocardial electrophysiology, and increases the rate and force of cardiomyocyte contractions. Sympathetic processes establish direct interaction with cardiomyocytes, characterized by the presence of neurotransmitter vesicles and reduced cell-cell distance. Whether such contacts have a functional role in both neurotrophin- and catecholamine-dependent communication between the two cell types, is poorly understood. In this review we will address the effects of the sympathetic neuron activity on the myocardium and the hypothesis that the direct neuro-cardiac contact might have a key role both in norepinephrine and neurotrophin mediated signaling. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26778332

  3. Nitric oxide and the autonomic regulation of cardiac excitability. The G.L. Brown Prize Lecture.

    Science.gov (United States)

    Paterson, D

    2001-01-01

    Cardiac sympathetic imbalance and arrhythmia; Nitric oxide-cGMP pathway and the cholinergic modulation of cardiac excitability; Nitric oxide-cGMP pathway and the sympathetic modulation of cardiac excitability; Functional significance of nitric oxide in the autonomic regulation of cardiac excitability; Summary; References. Experimental Physiology (2001) 86.1, 1-12. PMID:11429613

  4. Leptin as a mediator between obesity and cardiac dysfunction

    Directory of Open Access Journals (Sweden)

    Joanna Karbowska

    2012-05-01

    Full Text Available  Obesity is now recognised as one of the most important risk factors for heart disease. Obese individuals have high circulating levels of leptin, a hormone secreted by adipose tissue and in­volved in energy homeostasis. Growing evidence suggests that leptin may contribute to the development of cardiac dysfunction. In a large prospective study leptin has been shown to be an independent risk factor for coronary heart disease. An independent positive association has also been found between plasma leptin levels and heart rate in hypertensive patients and heart transplant recipients. In animal studies chronic leptin infusion increased heart rate and blood pressure. It has also been demonstrated that circulating leptin levels are elevated in patients with heart failure. The level of plasma leptin was associated with increased myocardial wall thickness and correlated with left ventricular mass, suggesting a role for this hormone in mediating left ventricular hypertrophy in humans. Moreover, leptin directly induced hypertrophy and hyperplasia in human and rodent cardiomyocytes, accompanied by cardiac extracellular matrix remodelling. Leptin may also influence energy substrate utilisation in cardiac tissue.These findings suggest that leptin acting directly or through the sympathetic nervous system may have adverse effects on cardiac structure and function, and that chronic hyperleptinaemia may greatly increase the risk of cardiac disorders. Additional studies are needed to define the role of leptin in cardiac physiology and pathophysiology, nevertheless the reduction in plasma leptin levels with caloric restriction and weight loss may prevent cardiac dysfunction in obese patients.

  5. Role of perivascular sympathetic nerves and regional differences in the features of sympathetic innervation of the vascular system.

    Science.gov (United States)

    Tsuru, Hiromichi; Tanimitsu, Noriaki; Hirai, Tomohisa

    2002-01-01

    Maintenance of blood pressure is mostly dependent on sympathetic "tone", and the sympathetic nerve innervates the entire vascular bed, excepting the capillaries. Although norepinephrine (NE) is the principal neurotransmitter released upon sympathetic nerve stimulation, neuropeptide Y and ATP are cotransmitters in various vascular tissues. In addition, dopamine and epinephrine, as well as acetylcholine, have been shown to be sympathetic neurotransmitters in specific vasculatures. Transmitter NE release is modified by a number of endogenous substances including the transmitter itself. Chronic denervation of the preganglionic fiber induces an increase in NE release per pulse, indicating postganglionic neuronal supersensitivity. So far, three main adrenoceptor types have been shown, alpha1, alpha2 and beta, each of which is further divided into at least three subtypes, as well as the alpha1L-adrenoceptor, a phenotype of the cloned alpha1a-adrenoceptor, in the blood vessel. Thus, the response of vessels with different receptor types to a transmitter varies quantitatively and even qualitatively from one vessel to another. The remarkable diversity in the sympathetic innervation mechanism in the vascular system may play an important role in regional variations in the regulation of blood flow. The sympathetic nerve also exerts long-term trophic action on the blood vessel. In conclusion, the sympathetic nervous system plays an important role not only in the regulation of cardiovascular dynamics but in the maintenance of the vessel structure, as well. PMID:11855682

  6. Sympathetic Activation in Chronic Heart Failure: Potential Benefits of Interventional Therapies.

    Science.gov (United States)

    Lachowska, Kamila; Gruchała, Marcin; Narkiewicz, Krzysztof; Hering, Dagmara

    2016-07-01

    Heart failure (HF) is a major and growing public health problem. This condition is associated with poor prognosis, a high rate of mortality, frequent hospitalization and increasing costs to health care systems. Pharmacological approaches aimed at reducing morbidity and mortality in HF have primarily focused on inhibition of the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system (SNS), both of which have been associated with disease development, progression and adverse cardiovascular (CV) outcomes. The increasing number of hospitalizations for HF decompensation suggests the failure of available treatment options, indicating the necessity for alternative therapeutic approaches. Alongside pharmacological and cardiac resynchronization therapies in selected patients with arrhythmia, recent advancements in the management of HF have been directed at inhibiting relevant neurogenic pathways underlying disease development and progression. Initial evidence regarding the safety and effectiveness of interventional procedures suggests that HF patients may benefit from novel adjunctive therapies. Here we review the critical role of sympathetic activation in HF and the rationale for therapeutic interventions including device-based and interventional approaches aimed at restoring autonomic neural balance in this condition. PMID:27193773

  7. Cardiac sympathetic-parasympathetic balance in rats with experimentally-induced acute chagasic myocarditis O balanço autonômico cardíaco nas ratas com miocardite chagásica aguda experimental

    Directory of Open Access Journals (Sweden)

    Diego F. Davila

    1995-04-01

    Full Text Available To clarify the mechanism responsible for the transient sinus tachycardia in rats with acute chagasic myocarditis, we have examined the cardiac sympathetic-parasympathetic balance of 29 rats inoculated with 200,000 parasites (Trypanosoma cruzi. Sixteen infected animals and 8 controls were studied between days 18 and 21 after inoculation (acute stage. The remaining 13 infected animals and 9 controls were studied between days 60 and 70 after inoculation (sub-acute stage. Under anesthesia (urethane 1.25 g/kg, all animals received intravenous atenolol (5 mg/kg and atropine (10 mg/kg. Acute stage: The baseline heart rate of the infected animals was significantly higher than that of the controls (P Com a finalidade de pesquisar o mecanismo responsável pela taquicardia sinusal transitória que ocorre nas ratas com miocardite chagásica aguda, foi estudado o balanço autonômico cardíaco em 16 ratas inoculadas com Trypanosoma cruzi por via intraperitoneal. Oito animais foram estudados aos 18 e 21 dias após-inoculação (Estádio agudo; os oito animais restantes foram estudados entre os dias 60 a 70 após inoculação (Estádio sub-agudo. Todos os animais em estudo bem como os controles receberam atenolol e atropina. No estádio agudo, a frequência cardíaca basal dos animais infectados foi significativamente maior que a dos controles. A resposta cronotrópica negativa pela administração de atenolol foi quatro vezes maior nos animais infectados. No estádio sub-agudo, a frequência cardíaca basal e a resposta cronotrópica ao atenolol e atropina foi similar nos dois grupos do estudo. Os nossos resultados sugerem que no estádio agudo da miocardite chagásica experimental, a atividade simpática encontra-se periodicamente aumentada.

  8. Sympathetic Blocks Provided Sustained Pain Relief in a Patient with Refractory Painful Diabetic Neuropathy

    Directory of Open Access Journals (Sweden)

    Jianguo Cheng

    2012-01-01

    Full Text Available The sympathetic nervous system has been implicated in pain associated with painful diabetic neuropathy. However, therapeutic intervention targeted at the sympathetic nervous system has not been established. We thus tested the hypothesis that sympathetic nerve blocks significantly reduce pain in a patient with painful diabetic neuropathy who has failed multiple pharmacological treatments. The diagnosis of small fiber sensory neuropathy was based on clinical presentations and confirmed by skin biopsies. A series of 9 lumbar sympathetic blocks over a 26-month period provided sustained pain relief in his legs. Additional thoracic paravertebral blocks further provided control of the pain in the trunk which can occasionally be seen in severe diabetic neuropathy cases, consequent to extensive involvement of the intercostal nerves. These blocks provided sustained and significant pain relief and improvement of quality of life over a period of more than two years. We thus provided the first clinical evidence supporting the notion that sympathetic nervous system plays a critical role in painful diabetic neuropathy and sympathetic blocks can be an effective management modality of painful diabetic neuropathy. We concluded that the sympathetic nervous system is a valuable therapeutic target of pharmacological and interventional modalities of treatments in painful diabetic neuropathy patients.

  9. Reduced nitric oxide in the rostral ventrolateral medulla enhances cardiac sympathetic afferent reflex in rats with chronic heart failure%延髓头端腹外侧区一氧化氮与慢性心力衰竭大鼠心交感传入反射的关系

    Institute of Scientific and Technical Information of China (English)

    朱国庆; 高兴亚; 张枫; 王玮

    2004-01-01

    The purpose of this study was to determine the effect of nitric oxide (NO) in the rostral ventrolateral medulla (RVLM)on the central integration of the cardiac sympathetic afferent reflex (CSAR) in normal rats and in rats with coronary ligationinduced chronic heart failure (CHF). Under α-chloralose and urethane anesthesia, mean arterial pressure, heart rate and renal sympathetic nerve activity (RSNA) were recorded at baseline and during elicitation of the CSAR evoked by electrical stimulation of the cardiac afferent sympathetic nerves in sino-aortic denervated and cervical vagotomized rats. A cannula was inserted into the left RVLM for microinjection of NO synthase inhibitor, S-methyl-L-thiocitruline (MeTC) or NO donor, S-nitroso-N-acetyl-penicillamine (SNAP). The CSAR was tested by electrical stimulation (5, 10, 20 and 30 Hz at 10 V for 1 ms) of the afferent cardiac sympathetic nerves. It was observed that (1) the responses of RSNA to stimulation were enhanced in rats with CHF; (2) MeTC (80nmol) potentiated the responses of RSNA to stimulation in sham rats but not in rats with CHF; (3) SNAP (50 nmol) depressed the enhanced RSNA response to stimulation in CHF rats but had no effect in sham rats; and (4) MeTC increased the baseline RSNA and MAP only in sham rats, but SNAP inhibited the baseline RSNA and MAP in both sham and CHF rats. These results indicate that reductance of NO in the RVLM is involved in the augmentation of CSAR in CHF rats.%为观察延髓头端腹外侧区(rostral ventrolateral medulla,RVLM)一氧化氮(NO)在慢性心力衰竭(chronic heartfailure,CHF)大鼠增强的心交感传入反射(cardiac sympathetic afferent reflex,CSAR)中的作用,实验在去压力感受器神经支配的结扎冠状动脉诱发的CHF大鼠和假手术SD大鼠进行,记录电刺激心交感传入神经中枢端前后的血压和肾交感神经活动(renal sympathetic nerve activity,RSNA)变化以评价CSAR.结果显示:(1)CHF大鼠的CSAR显著增强;(2)RVLM微量注

  10. Decreased sympathetic vasomotor tone in diabetic orthostatic hypotension

    DEFF Research Database (Denmark)

    Hilsted, J

    1979-01-01

    In normals, subcutaneous blood flow in the ankle region, measured by means of the 133Xe washout technique, decreases about 45% when the position of the ankle is changed from cardiac level to 50 cm below the heart. A sympathetic vascular axon reflex is responsible for this flow reduction. A normal...

  11. Forearm training attenuates sympathetic responses to prolonged rhythmic forearm exercise

    Science.gov (United States)

    Sinoway, L.; Shenberger, J.; Leaman, G.; Zelis, R.; Gray, K.; Baily, R.; Leuenberger, U.

    1996-01-01

    We previously demonstrated that nonfatiguing rhythmic forearm exercise at 25% maximal voluntary contraction (12 2-s contractions/min) evokes sympathoexcitation without significant engagement of metabolite-sensitive muscle afferents (B.A. Batman, J.C. Hardy, U.A. Leuenberger, M.B. Smith, Q.X. Yang and L.I. Sinoway. J. Appl. Physiol. 76: 1077-1081, 1994). This is in contrast to the sympathetic nervous system responses observed during fatiguing static forearm exercise where metabolite-sensitive afferents are the key determinants of sympathetic activation. In this report we examined whether forearm exercise training would attenuate sympathetic nervous system responses to rhythmic forearm exercise. We measured heart rate, mean arterial blood pressure (MAP), muscle sympathetic nerve activity (microneurography), plasma norepinephrine (NE), and NE spillover and clearance (tritiated NE kinetics) during nonfatiguing rhythmic forearm exercise before and after a 4-wk unilateral forearm training paradigm. Training had no effect on forearm mass, maximal voluntary contraction, or heart rate but did attenuate the increase in MAP (increase in MAP: from 15.2 +/- 1.8 before training to 11.4 +/- 1.4 mmHg after training; P forearm. Thus forearm training reduces sympathetic responses during a nonfatiguing rhythmic handgrip paradigm that does not engage muscle metaboreceptors. We speculate that this effect is due to a conditioning-induced reduction in mechanically sensitive muscle afferent discharge.

  12. Cardiac lesions in patients with lethal central nervous system trauma Daño cardíaco en pacientes con trauma mortal del sistema nervioso central

    Directory of Open Access Journals (Sweden)

    María E. Cardona

    1991-03-01

    Full Text Available

    Fifteen men with lethal central nervous system trauma were studied to look for the presence of cardiac lesions. They were between 16 and 60 years of age with an average of 32. There were five gunshot wounds and nine central nervous system contusions; four of these occurred in traffic accidents. The remaining patient was wounded with a machete. AII patients were adequately treated since the beginning of their hospital stay and 14 were surgically managed. Average survival after trauma was 6.6 days. In every case there were ECG alterations, the most frequent being sinusal tachycardia. Creatine phosphokinase levels were high in all and the MB fraction was above normal levels in three patients in whom heart damage was confirmed at autopsy. In 40% of cases heart lesions were found and the most common was subendocardial hemorrhage. In an era of increasing need of organs for transplantation potential donors have to be thoroughly studied to determine if heart lesions have occurred and to decide if they are suitable as transplant organs.

    Analizamos los casos de 15 hombres con trauma mortal del sistema nervioso central. Sus edades fluctuaron entre 16 y 60 años con un promedio de 32. Las lesiones más frecuentes fueron por proyectil de arma de fuego (5 casos y por contusión (9 casos, cuatro de ellos en accidente de tránsito. El paciente restante fue lesionado con arma corto contundente. En todos los pacientes el manejo fue adecuado desde el principio de la hospitalización ya 14 se les hizo tratamiento quirúrgico. El promedio de sobrevida después del trauma fue 6.6 días. Sin excepción el estudio electrocardiográfico mostró alteraciones; la taquicardia sinusal fue la más frecuente. La CPK estuvo elevada en todos los pacientes; en 3 de ellos, con da

  13. Role of sympathetic nerve activity in the process of fainting

    Directory of Open Access Journals (Sweden)

    Satoshi eIwase

    2014-09-01

    Full Text Available Syncope is defined as a transient loss of consciousness and postural tone, characterized by rapid onset, short duration, and spontaneous recovery, and the process of syncope progression will be described with two types of sympathetic change. Simultaneous recordings of microneurographically recorded MSNA and continuous and noninvasive blood pressure measurement have disclose what is going on in the course of progression of the syncope. Vasovagal or neurally mediated syncope, three stages are identified in the course of syncope onset, oscillation, imbalance, and catastrophe phases. The vasovagal syncope is characterized by the sympathoexcitation, followed by vagal overcome via the Bezold-Jarisch reflex. Orthostatic syncope is caused by the response failure or lack of sympathetic nerve activity toward the orthostatic challenge followed by the fluid shift, and subsequent cerebral low perfusion. Four causes are considered for the compensatory failure, which triggers the orthostatic syncope; hypovolemia, increased pooling in the lower body, failure to activate the sympathetic activity, and failure of vasoconstriction against sympathetic vasoconstrictive stimulation. Many pathophysiological conditions were described in the viewpoint of 1 exaggerated sympathoexcitation and 2 failure to activate the sympathetic nerve. We conclude that the sympathetic nervous system can control the cardiovascular function, and its failure resulted syncope, however, responses of the system by microneurographically recorded MSNA would determine the pathophysiology of the onset and progression of syncope, explaining the treatment effect that could be achieved by the analysis of this mechanism.

  14. Auditory stimulation and cardiac autonomic regulation

    Directory of Open Access Journals (Sweden)

    Vitor E. Valenti

    2012-08-01

    Full Text Available Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: "auditory stimulation", "autonomic nervous system", "music" and "heart rate variability". The selected studies indicated that there is a strong correlation between noise intensity and vagal-sympathetic balance. Additionally, it was reported that music therapy improved heart rate variability in anthracycline-treated breast cancer patients. It was hypothesized that dopamine release in the striatal system induced by pleasurable songs is involved in cardiac autonomic regulation. Musical auditory stimulation influences heart rate variability through a neural mechanism that is not well understood. Further studies are necessary to develop new therapies to treat cardiovascular disorders.

  15. Adrenergic innervation of the developing chick heart: neural crest ablations to produce sympathetically aneural hearts

    International Nuclear Information System (INIS)

    Ablation of various regions of premigratory trunk neural crest which gives rise to the sympathetic trunks was used to remove sympathetic cardiac innervation. Neuronal uptake of [3H]-norepinephrine was used as an index of neuronal development in the chick atrium. Following ablation of neural crest over somites 10-15 or 15-20, uptake was significantly decreased in the atrium at 16 and 17 days of development. Ablation of neural crest over somites 5-10 and 20-25 caused no decrease in [3H]-norepinephrine uptake. Removal of neural crest over somites 5-25 or 10-20 caused approximately equal depletions of [3H]-norepinephrine uptake in the atrium. Cardiac norepinephrine concentration was significantly depressed following ablation of neural crest over somites 5-25 but not over somites 10-20. Light-microscopic and histofluorescent preparations confirmed the absence of sympathetic trunks in the region of the normal origin of the sympathetic cardiac nerves following neural crest ablation over somites 10-20. The neural tube and dorsal root ganglia were damaged in the area of the neural-crest ablation; however, all of these structures were normal cranial and caudal to the lesioned area. Development of most of the embryos as well as the morphology of all of the hearts was normal following the lesion. These results indicate that it is possible to produce sympathetically aneural hearts by neural-crest ablation; however, sympathetic cardiac nerves account for an insignificant amount of cardiac norepinephrine

  16. [The structure of the initial inputs into the metasympathetic nervous system of the rat uterus].

    Science.gov (United States)

    Kucheriavykh, L E; Skopichev, V G; Nozdrachev, A D

    1999-01-01

    Different populations of sympathetic neurons exerting modulating influence on neurons of nervous plexuses of proper metasympathetic nervous system of the uterus in albino laboratory rats were detected using the method on retrograde transport of fluorescent marker primulin. Following the injection of the marker into uterovaginal plexus, labelled neurons were found as aggregations in caudal mesenterial sympathetic ganglia, ganglia of coeliac plexus, renal ganglia and ganglia of coeliac trunk. The structure of nervous paths of external control of uterus functioning was analysed. PMID:10709194

  17. Is There Anything "Autonomous" in the Nervous System?

    Science.gov (United States)

    Rasia-Filho, Alberto A.

    2006-01-01

    The terms "autonomous" or "vegetative" are currently used to identify one part of the nervous system composed of sympathetic, parasympathetic, and gastrointestinal divisions. However, the concepts that are under the literal meaning of these words can lead to misconceptions about the actual nervous organization. Some clear-cut examples indicate…

  18. Effects of autonomic balance and fluid and electrolyte changes on cardiac function in infarcted rats: A serial study of sexual dimorphism.

    Science.gov (United States)

    Souza, N S; Dos-Santos, R C; Silveira, Anderson Luiz Bezerra da; R, Sonoda-Côrtes; Gantus, Michel Alexandre Villani; Fortes, F S; Olivares, Emerson Lopes

    2016-04-01

    Premenopausal women are known to show lower incidence of cardiovascular disease than men. During myocardial infarction (MI), homeostatic responses are activated, including the sympathetic autonomic nervous system and the rennin-angiotensin-aldosterone system, which is related to the fluid and electrolyte balance, both aiming to maintain cardiac output. This study sought to perform a serial evaluation of sexual dimorphism in cardiac autonomic control and fluid and electrolyte balance during the development of MI-induced heart failure in rats. Experimental MI was induced in male (M) and female (F) adult (7-9 weeks of age) Wistar rats. The animals were placed in metabolic cages to assess fluid intake and urine volume 1 and 4 weeks after inducing MI (male myocardial infarction (MMI) and female myocardial infarction (FMI) groups). They subsequently underwent echocardiographic evaluation and spectral analysis of heart rate variability. After completing each protocol, the animals were killed for postmortem evaluation and histology. The MMI group showed earlier and more intense cardiac morphological and functional changes than the FMI group, although the extent of MI did not differ between groups (P > 0.05). The MMI group showed higher sympathetic modulation and sodium and water retention than the FMI group (P < 0.05), which may partly explain both the echocardiographic and pathological findings. Females subjected to infarction seem to show attenuation of sympathetic modulation, more favourable fluid and electrolyte balances, and better preserved cardiac function compared to males subjected to the same infarction model. PMID:26748814

  19. [The influence of aging on autonomic nervous system activity and gastric myoelectric activity in humans].

    Science.gov (United States)

    Thor, P J; Kolasińska-Kloch, W; Pitala, A; Janik, A; Kopp, B; Sibiga, W

    1999-01-01

    The study was performed on 84 healthy volunteers (33 women, 52 men) of age 20-71 years with no history of the circulatory or gastrointestinal system disease. The gastric myoelectrical activity (EGG) was recorded with the cutaneous electrodes--electrogastrography Synectics (Sweden). The activity of the cardiac autonomic nervous system was measured by HRV (heart rate variability) recorded with EGG and computer assisted programme Proster (Poland). Subject were divided into 5 groups according to the decade of age (20-70). Percentage of basal electrical rhythm (BER) dysrhythmias increased (1.9 +/- 0.5% vs 21.1 +/- 3.2% in fasting and 2.4 +/- 1.2% vs 24.6 +/- 5% postprandially but decrease of the EGG amplitude after the meal was observed (270 +/- 20% vs 90 +/- 7%) in youngest and oldest group respectively. With the ageing the cardiac sympathetic and parasympathetic activity (LF and HF) decreased in first and last group respectively. In the forth decade in man and women the sympathetic activity system prevalence expressed by the LF/HF rate increased (1.09 +/- 0.2 vs. 2.14 +/- 0.5) (p < 0.05). The results of our study suggest the deleterious influence of the ageing on the of autonomic system activity as shown by changes in HRV and dysrhythmia of the gastric slow waves in EGG. PMID:10909474

  20. Renal sympathetic denervation for the treatment of refractory hypertension.

    Science.gov (United States)

    Leong, Kui Toh Gerard; Walton, Antony; Krum, Henry

    2014-01-01

    Resistant hypertension poses significant health concerns. There are strong demands for new and safe therapies to control resistant hypertension while addressing its common causes, specifically poor compliance to lifelong polypharmacy, lifestyle modifications, and physician inertia. The sympathetic nervous system plays a significant pathophysiological role in hypertension. Surgical sympathectomy for blood pressure reduction is an old but extremely efficacious therapeutic concept, now abandoned with the dawn of a safer contemporary pharmacology era. Recently, clinical studies have revealed promising results for safe and sustained blood pressure reduction with percutaneous renal sympathetic denervation. This is a novel, minimally invasive, device-based therapy, specifically targeting and ablating the renal artery nerves with radiofrequency waves without permanent implantation. There are also reported additional benefits in related comorbidities, such as impaired glucose metabolism, renal impairment, left ventricular hypertrophy, heart failure, and others. This review focuses on how selective renal sympathetic denervation works, its present and potential therapeutic indications, and its future directions. PMID:24422574

  1. Propranolol for Paroxysmal Sympathetic Hyperactivity with Lateralizing Hyperhidrosis after Stroke

    Directory of Open Access Journals (Sweden)

    Jason W. Siefferman

    2015-01-01

    Full Text Available Brain injury can lead to impaired cortical inhibition of the hypothalamus, resulting in increased sympathetic nervous system activation. Symptoms of paroxysmal sympathetic hyperactivity may include hyperthermia, tachycardia, tachypnea, vasodilation, and hyperhidrosis. We report the case of a 41-year-old man who suffered from a left middle cerebral artery stroke and subsequently developed central fever, contralateral temperature change, and hyperhidrosis. His symptoms abated with low-dose propranolol and then returned upon discontinuation. Restarting propranolol again stopped his symptoms. This represents the first report of propranolol being used for unilateral dysautonomia after stroke. Propranolol is a lipophilic nonselective beta-blocker which easily crosses the blood-brain barrier and may be used to treat paroxysmal sympathetic hyperactivity.

  2. Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease.

    Science.gov (United States)

    Khan, Muzamil Majid; Lustrino, Danilo; Silveira, Willian A; Wild, Franziska; Straka, Tatjana; Issop, Yasmin; O'Connor, Emily; Cox, Dan; Reischl, Markus; Marquardt, Till; Labeit, Dittmar; Labeit, Siegfried; Benoit, Evelyne; Molgó, Jordi; Lochmüller, Hanns; Witzemann, Veit; Kettelhut, Isis C; Navegantes, Luiz C C; Pozzan, Tullio; Rudolf, Rüdiger

    2016-01-19

    The distribution and function of sympathetic innervation in skeletal muscle have largely remained elusive. Here we demonstrate that sympathetic neurons make close contact with neuromuscular junctions and form a network in skeletal muscle that may functionally couple different targets including blood vessels, motor neurons, and muscle fibers. Direct stimulation of sympathetic neurons led to activation of muscle postsynaptic β2-adrenoreceptor (ADRB2), cAMP production, and import of the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PPARGC1A) into myonuclei. Electrophysiological and morphological deficits of neuromuscular junctions upon sympathectomy and in myasthenic mice were rescued by sympathicomimetic treatment. In conclusion, this study identifies the neuromuscular junction as a target of the sympathetic nervous system and shows that sympathetic input is crucial for synapse maintenance and function. PMID:26733679

  3. Involvement of Hypothalamic AMP-Activated Protein Kinase in Leptin-Induced Sympathetic Nerve Activation

    OpenAIRE

    Mamoru Tanida; Naoki Yamamoto; Toshishige Shibamoto; Kamal Rahmouni

    2013-01-01

    In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK) is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb). We investigated the potential of AMPKα2 in the sympathetic effec...

  4. Effect of nitric oxide on rostral ventrolateral medulla modulating cardiac sympathetic afferent reflex in rats with chronic heart failure%延髓头端腹外侧区一氧化氮对慢性心力衰竭大鼠心交感传入反射的影响

    Institute of Scientific and Technical Information of China (English)

    高兴亚; 郭瑞; 王玮; 张枫; 朱国庆

    2005-01-01

    大变化速率明显降低,左室舒张末压明显增加.②与假手术大鼠相比,慢性心力衰竭大鼠的心交感传入反射显著增强.③延髓头端腹外侧区微量注射MeTC(80 nmol)仅增强假手术大鼠的心交感传入反射,对慢性心力衰竭大鼠的心交感传入反射无显著影响.④延髓头端腹外侧区微量注射SNAP(50 nmol)同时抑制假手术和慢性心力衰竭大鼠的心交感传入反射.⑤心室前壁表面用利多卡因预处理可完全抑制心室前壁表面应用缓激肽所引起的肾交感神经活动增加.结论:延髓头端腹外侧区的一氧化氮抑制正常大鼠和慢性心力衰竭大鼠心室表面应用缓激肽引起的心交感传入反射,慢性心力衰竭大鼠心交感传入反射增强与延髓头端腹外侧区中内源性一氧化氮减少有关.%BACKGROUND: Nitric oxide in the central nervous system is involved in controlling the sympathetic outflow. The authors' recent data show that the reduction of nitric oxide in the rostral ventrolateral medulla (RVLM)enhanced the cardiac sympathetic afferent reflex (CSAR) evoked by stimulating the cardiac sympathetic afferent nerves in rats with chronic heart failure (CHF).OBJECTIVE: To further investigate the effect of nitric oxide in the RVLM on modulating the CSAR evoked by epicardial chemical stimulation in rats with CHF.DESIGN: Randomized controlled experiment.SETTING: Department of Physiology, Nanjing Medical University, and Department of Cellular and Integrative Physiology, University of Nebraska College of Medicine.MATERIALS: This study was carried out in the Department of Physiology, Nanjing Medical University from July 2003 to May 2004. A total of 52male Sprague-Dawley rats weighing 360-420 g were used, and were randomly divided into chronic heart failure group and control group with 23 in each group.METHODS: The rats were carried out either sham surgery or the left coronary artery ligation. Six to eight weeks later, all rats were

  5. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, G.L.; Palma, R.K.; Brito, J.O.; Sanches, I.C. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil); Irigoyen, M.C. [Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); De Angelis, K. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil)

    2015-03-27

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation.

  6. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation

  7. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    Directory of Open Access Journals (Sweden)

    G.L. Shimojo

    2015-06-01

    Full Text Available The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC, sedentary hypertensive (SH, sedentary hypertensive ovariectomized (SHO, and resistance-trained hypertensive ovariectomized (RTHO. Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR responses to methylatropine (3 mg/kg, iv and propranolol (4 mg/kg, iv. Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg, as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm. Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05. The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation.

  8. Potential Autonomic Nervous System Effects of Statins in Heart Failure

    OpenAIRE

    Horwich, Tamara; Middlekauff, Holly

    2008-01-01

    Sympathetic nervous system activation in heart failure, as indexed by elevated norepinephrine levels, higher muscle sympathetic nerve activity and reduced heart rate variability, is associated with pathologic ventricular remodeling, increased arrhythmias, sudden death, and increased mortality. Recent evidence suggests that HMG-CoA reductase inhibitor (statin) therapy may provide survival benefit in heart failure of both ischemic and non-ischemic etiology, and one potential mechanism of benefi...

  9. Sympathetic Denervation-Induced MSC Mobilization in Distraction Osteogenesis Associates with Inhibition of MSC Migration and Osteogenesis by Norepinephrine/adrb3

    OpenAIRE

    Du, Zhaojie; Wang, Lei; Zhao, Yinghua; Cao, Jian; Tao WANG; Liu, Peng; Zhang, Yabo; Yang, Xinjie; Cheng, Xiaobing; Liu, Baolin; Lei, Delin

    2014-01-01

    The sympathetic nervous system regulates bone formation and resorption under physiological conditions. However, it is still unclear how the sympathetic nerves affect stem cell migration and differentiation in bone regeneration. Distraction osteogenesis is an ideal model of bone regeneration due to its special nature as a self-engineering tissue. In this study, a rat model of mandibular distraction osteogenesis with transection of cervical sympathetic trunk was used to demonstrate that sympath...

  10. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Stanton, M.S.; Tuli, M.M.; Radtke, N.L.; Heger, J.J.; Miles, W.M.; Mock, B.H.; Burt, R.W.; Wellman, H.N.; Zipes, D.P. (Indiana Univ. School of Medicine, IN (USA))

    1989-11-15

    Transmural myocardial infarction in dogs produces denervation of sympathetic nerves in viable myocardium apical to the infarct that may be arrhythmogenic. It is unknown whether sympathetic denervation occurs in humans. The purpose of this study was to use iodine-123-metaiodobenzylguanidine (MIBG), a radiolabeled guanethidine analog that is actively taken up by sympathetic nerve terminals, to image noninvasively the cardiac sympathetic nerves in patients with and without ventricular arrhythmias after myocardial infarction. Results showed that 10 of 12 patients with spontaneous ventricular tachyarrhythmias after myocardial infarction exhibited regions of thallium-201 uptake indicating viable perfused myocardium, with no MIBG uptake. Such a finding is consistent with sympathetic denervation. One patient had frequent episodes of nonsustained ventricular tachycardia induced at exercise testing that was eliminated by beta-adrenoceptor blockade. Eleven of the 12 patients had ventricular tachycardia induced at electrophysiologic study and metoprolol never prevented induction. Sympathetic denervation was also detected in two of seven postinfarction patients without ventricular arrhythmias. Normal control subjects had no regions lacking MIBG uptake. This study provides evidence that regional sympathetic denervation occurs in humans after myocardial infarction and can be detected noninvasively by comparing MIBG and thallium-201 images. Although the presence of sympathetic denervation may be related to the onset of spontaneous ventricular tachyarrhythmias in some patients, it does not appear to be related to sustained ventricular tachycardia induced at electrophysiologic study.

  11. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine

    International Nuclear Information System (INIS)

    Transmural myocardial infarction in dogs produces denervation of sympathetic nerves in viable myocardium apical to the infarct that may be arrhythmogenic. It is unknown whether sympathetic denervation occurs in humans. The purpose of this study was to use iodine-123-metaiodobenzylguanidine (MIBG), a radiolabeled guanethidine analog that is actively taken up by sympathetic nerve terminals, to image noninvasively the cardiac sympathetic nerves in patients with and without ventricular arrhythmias after myocardial infarction. Results showed that 10 of 12 patients with spontaneous ventricular tachyarrhythmias after myocardial infarction exhibited regions of thallium-201 uptake indicating viable perfused myocardium, with no MIBG uptake. Such a finding is consistent with sympathetic denervation. One patient had frequent episodes of nonsustained ventricular tachycardia induced at exercise testing that was eliminated by beta-adrenoceptor blockade. Eleven of the 12 patients had ventricular tachycardia induced at electrophysiologic study and metoprolol never prevented induction. Sympathetic denervation was also detected in two of seven postinfarction patients without ventricular arrhythmias. Normal control subjects had no regions lacking MIBG uptake. This study provides evidence that regional sympathetic denervation occurs in humans after myocardial infarction and can be detected noninvasively by comparing MIBG and thallium-201 images. Although the presence of sympathetic denervation may be related to the onset of spontaneous ventricular tachyarrhythmias in some patients, it does not appear to be related to sustained ventricular tachycardia induced at electrophysiologic study

  12. 心理应激的免疫抑制作用及其与神经内分泌反应的相关性%THE EFFECT OF EMOTIONAL STRESS ON THE PRIMARY HUMORAL IMMUNITY OF RATS: INTERACTION WITH THE SYMPATHETIC NERVOUS SYSTEM

    Institute of Scientific and Technical Information of China (English)

    邵枫; 林文娟; 王玮雯

    2001-01-01

    以给予经定时喂水训练大鼠空瓶刺激为情绪性心理应激源,研究了此情绪应激对大鼠特异性原发体液免疫反应的影响及其可能的作用机制。结果表明每次10分钟,共14次的情绪应激显著低大鼠抗特异性抗原OVA的抗体水平及脾脏指数,而显著增高血肾上腺素、去甲肾上腺素和皮质酮水平。研究还发现去甲肾上腺素与抗特异性抗原OVA的抗体水平呈显著负相关。该研究证实了情绪性心理应激对大鼠体液免疫功能的抑制作用,并提示交感神经系统可能参与了此免疫调节作用。%The effect of exposure to emotional stress on the primary humoral immune function(antiovallum antibody level and spleen index), the endocrine response (corticosterone level, epinephrine and norepinephrine levels), the behavioral changes (exploring, grooming and attacking behavior) was studied in adult male Wistar rats. Emotional stress was induced by randomly giving empty water bottles to rats trained to drink water at two set times each day. Emotional stress were given 14 times, ten minutes per each time during experimental period. Results showed that firstly, empty water bottles induced significant attacking behavior (biting the empty water bottle and cage shed) in rats of emotional stress group, secondly emotional stress decreased the weight of the spleen and the level of specific anti-OVA IgG antibody and increased the levels of epinephrine, norepinephrine and corticosterone. A negative correlation between antibody levels and level of norepinephrine was also found. Together with the previous work in our laboratory, the results demonstrated that emotional stress suppressed the specific primary humoral immunity of rats. The sympathetic nervous system may be involved in this immunomodulation.

  13. Insights into the clinical and functional significance of cardiac autonomic dysfunction in Chagas disease

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Junqueira Junior

    2012-04-01

    Full Text Available INTRODUCTION: Exclusive or associated lesions in various structures of the autonomic nervous system occur in the chronic forms of Chagas disease. In the indeterminate form, the lesions are absent or mild, whereas in the exclusive or combined heart and digestive disease forms, they are often more pronounced. Depending on their severity these lesions can result mainly in cardiac parasympathetic dysfunction but also in sympathetic dysfunction of variable degrees. Despite the key autonomic effect on cardiovascular functioning, the pathophysiological and clinical significance of the cardiac autonomic dysfunction in Chagas disease remains unknown. METHODS: Review of data on the cardiac autonomic dysfunction in Chagas disease and their potential consequences, and considerations supporting the possible relationship between this disturbance and general or cardiovascular clinical and functional adverse outcomes. RESULTS: We hypothesise that possible consequences that cardiac dysautonomia might variably occasion or predispose in Chagas disease include: transient or sustained arrhythmias, sudden cardiac death, adverse overall and cardiovascular prognosis with enhanced morbidity and mortality, an inability of the cardiovascular system to adjust to functional demands and/or respond to internal or external stimuli by adjusting heart rate and other hemodynamic variables, and immunomodulatory and cognitive disturbances. CONCLUSIONS: Impaired cardiac autonomic modulation in Chagas disease might not be a mere epiphenomenon without significance. Indirect evidences point for a likely important role of this alteration as a primary predisposing or triggering cause or mediator favouring the development of subtle or evident secondary cardiovascular functional disturbances and clinical consequences, and influencing adverse outcomes.

  14. Gyrosonics a Novel Stimulant for Autonomic Nervous System

    CERN Document Server

    Ghatak, S K; Choudhuri, R; Banerjee, S

    2009-01-01

    Gyrosonics refers to novel audio binaural stimulus that produces rotational perceptions of sound movement in head at a particular predetermined frequency. Therapeutic effect observed with this is considered to be associated with modification of arousal of autonomic nervous system. The heart rate variability (HRV), non-invasive measure of autonomic nervous system, has been measured for group of 30 subjects for pre- and post- gyrosonic installation. The time- and frequency- domain analysis of HRV results show overall decrease in sympathetic response and increase in para- sympathetic response due to listening of gyro sonics.

  15. Reflex Sympathetic Dystrophy in Children

    OpenAIRE

    Adnan Ayvaz

    2013-01-01

       Reflex sympathetic dystrophy (chronic regional pain syndrome) isn’t frequently encountered in practical pediatrics and childhood. Reflex sympathetic dystrophy syndrome (RSD) is a disorder characterized by widespread localized pain, often along with swelling, discoloration, trophic changes and autonomic abnormalities such as vasomotor disorders. Its etio-pathogenesis hasn’t been completely determined.The disease can form in an area innerved by a partially damaged nerve...

  16. Research on the features of cardiac autonomic nervous activity of divers under simulated stressors with computer games%电脑游戏模拟应激条件下潜水员心脏自主神经活动特点的研究

    Institute of Scientific and Technical Information of China (English)

    马海鹰; 经冥; 邓光辉; 江楠楠; 解汝庆

    2013-01-01

    marked [F(2,110) =20.774,P < 0.01)],the main effect on HF was also marked [(F (2,110) =5.647,P <0.05)],the main effects on LF/HF could be significantly noted [(F(2,110) =6.101,P < 0.05)],and the main effect on Lfnu was significant [(F (2,110) =6.184,P < 0.05)] and the main effect of Hfnu was also significant [(F (2,110) =6.735,P < 0.05)].(3) No significant differences could be seen,when comparisons were made between the groups,and interactions were quite obvious in LF/HF between the 2 groups and at different stages [F (2,110) =4.285,P < 0.05].Conclusions (1) Under simulated stressful conditions,cardiac autonomic nervous activity of divers had the following features:sympathetic nerve strain increased at the anticipation period,and parasympathetic nerve strain decreased.However,at the coping period,both sympathetic nerve and parasympathetic nerve strain all decreased,with the parasympathetie nerve strain decreased only with a small margin.(2) Better vagus nerve function in divers could down-regulate the intensity of negative emotion and at the same time incoordination of vagus nerve also had some effect on sensitivity of negative emotion.

  17. Sympathetically evoked Ca2+ signaling in arterial smooth muscle

    Institute of Scientific and Technical Information of China (English)

    Wei-jin ZANG; Joseph ZACHARIA; Christine LAMONT; Withrow Gil WIER

    2006-01-01

    The sympathetic nervous system plays an essential role in the control of total peripheral vascular resistance and blood flow, by controlling the contraction of small arteries. Perivascular sympathetic nerves release ATP, norepinephrine (NE) and neuropeptide Y. This review summarizes our knowledge of the intracellular Ca2+ signals that are activated by ATP and NE, acting respectively on P2X1 and α1 adrenoceptors in arterial smooth muscle. Each neurotransmitter produces a unique type of post-synaptic Ca2+ signal and associated contraction. The neural release of ATP and NE is thought to vary markedly with the pattern of nerve activity, probably reflecting both pre- and post-synaptic mechanisms. Finally, we show that Ca2+ signaling during neurogenic contractions activated by trains of sympathetic nerve fiber action potentials are in fact significantly different from that elicited by simple bath application of exogenous neurotransmitters to isolated arteries (a common experimental technique), and end by identifying important questions remaining in our understanding of sympathetic neurotransmission and the physiological regulation of contraction of small arteries.

  18. Sympathetic Responses to Noxious Stimulation of Muscle and Skin.

    Science.gov (United States)

    Burton, Alexander R; Fazalbhoy, Azharuddin; Macefield, Vaughan G

    2016-01-01

    Acute pain triggers adaptive physiological responses that serve as protective mechanisms that prevent continuing damage to tissues and cause the individual to react to remove or escape the painful stimulus. However, an extension of the pain response beyond signaling tissue damage and healing, such as in chronic pain states, serves no particular biological function; it is maladaptive. The increasing number of chronic pain sufferers is concerning, and the associated disease burden is putting healthcare systems around the world under significant pressure. The incapacitating effects of long-lasting pain are not just psychological - reflexes driven by nociceptors during the establishment of chronic pain may cause serious physiological consequences on regulation of other body systems. The sympathetic nervous system is inherently involved in a host of physiological responses evoked by noxious stimulation. Experimental animal and human models demonstrate a diverse array of heterogeneous reactions to nociception. The purpose of this review is to understand how pain affects the sympathetic nervous system by investigating the reflex cardiovascular and neural responses to acute pain and the long-lasting physiological responses to prolonged (tonic) pain. By observing the sympathetic responses to long-lasting pain, we can begin to understand the physiological consequences of long-term pain on cardiovascular regulation. PMID:27445972

  19. Egr3 dependent sympathetic target tissue innervation in the absence of neuron death.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available Nerve Growth Factor (NGF is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS development. Egr3 is a transcription factor regulated by NGF signaling in sympathetic neurons that is essential for normal SNS development. Germline Egr3-deficient mice have physiologic dysautonomia characterized by apoptotic sympathetic neuron death and abnormal innervation to many target tissues. The extent to which sympathetic innervation abnormalities in the absence of Egr3 is caused by altered innervation or by neuron death during development is unknown. Using Bax-deficient mice to abrogate apoptotic sympathetic neuron death in vivo, we show that Egr3 has an essential role in target tissue innervation in the absence of neuron death. Sympathetic target tissue innervation is abnormal in many target tissues in the absence of neuron death, and like NGF, Egr3 also appears to effect target tissue innervation heterogeneously. In some tissues, such as heart, spleen, bowel, kidney, pineal gland and the eye, Egr3 is essential for normal innervation, whereas in other tissues such as lung, stomach, pancreas and liver, Egr3 appears to have little role in innervation. Moreover, in salivary glands and heart, two tissues where Egr3 has an essential role in sympathetic innervation, NGF and NT-3 are expressed normally in the absence of Egr3 indicating that abnormal target tissue innervation is not due to deregulation of these neurotrophins in target tissues. Taken together, these results clearly demonstrate a role for Egr3 in mediating sympathetic target tissue innervation that is independent of neuron survival or neurotrophin deregulation.

  20. [Reflex sympathetic dystrophy].

    Science.gov (United States)

    Oliveira, Marta; Manuela, Manuela; Cantinho, Guilhermina

    2011-01-01

    Reflex Sympathetic Dystrophy is rare in pediatrics. It is a complex regional pain syndrome, of unknown etiology, usually post-traumatic, characterized by dysfunctions of the musculoskeletal, vascular and skin systems: severe persistent pain of a limb, sensory and vascular alterations, associated disability and psychosocial dysfunction. The diagnosis is based in high clinical suspection. In children and adolescents there are aspects that are different from the adult ones. Excessive tests may result in worsening of the clinical symptoms. Bone scintigraphy can help. Pain treatment is difficult, not specific. Physical therapies and relaxation technics give some relief. Depression must be treated. This syndrome includes fibromyalgia and complex regional pain syndrome type I. We present a clinical report of an adolescent girl, referred for pain, cold temperature, pallor and functional disability of an inferior limb, all signals disclosed by a minor trauma. She had been diagnosed depression the year before. The bone scintigraphy was a decisive test. The treatment with gabapentin, C vitamin, physiotherapy and pshycotherapy has been effective. PMID:22713207

  1. Physiology of the Autonomic Nervous System

    OpenAIRE

    McCorry, Laurie Kelly

    2007-01-01

    This manuscript discusses the physiology of the autonomic nervous system (ANS). The following topics are presented: regulation of activity; efferent pathways; sympathetic and parasympathetic divisions; neurotransmitters, their receptors and the termination of their activity; functions of the ANS; and the adrenal medullae. In addition, the application of this material to the practice of pharmacy is of special interest. Two case studies regarding insecticide poisoning and pheochromocytoma are i...

  2. Of Scaredy Cats and Cold Fish: The autonomic nervous system and behaviour in young children

    OpenAIRE

    Dierckx, Bram

    2014-01-01

    markdownabstract__Abstract__ The autonomic nervous system regulates the body’s internal functions. The goal of this regulation is to maintain bodily homeostasis in a changing external environment. The autonomic nervous system acts largely independent of volition and controls heart rate, respiratory rate, digestion, and perspiration. It is divided into two partially antagonistic systems: the sympathetic nervous system and the parasympathetic or vagal nervous system. In general, the vagal syste...

  3. Sympathetic neural modulation of the immune system

    International Nuclear Information System (INIS)

    One route by which the central nervous system communicates with lymphoid organs in the periphery is through the sympathetic nervous system (SNS). To study SNS regulation of immune activity in vivo, selective removal of peripheral noradrenergic nerve fibers was achieved by administration of the neurotoxic drug, 6-hydroxydopamine (6-OHDA), to adult mice. To assess SNS influence on lymphocyte proliferation in vitro, uptake of 125iododeoxyuridine (125IUdR), a DNA precursor, was measured following 6-OHDA treatment. Sympathectomy prior to epicutaneous immunization with TNCB did not alter draining lymph nodes (LN) cell proliferation, whereas 6-OHDA treatment before footpad immunization with KLH reduced DNA synthesis in popliteal LN by 50%. In mice which were not deliberately immunized, sympathectomy stimulated 125IUdR uptake inguinal and axillary LN, spleen, and bone marrow. In vitro, these LN and spleen cells exhibited decreased proliferation responses to the T cell mitogen, concanavalin A (Con A), whereas lipopolysaccharide (LPS)-stimulated IgG secretion was enhanced. Studies examining 51Cr-labeled lymphocyte trafficking to LN suggested that altered cell migration may play a part in sympathectomy-induced changes in LN cell function

  4. Early atherosclerosis and cardiac autonomic responses to mental stress: a population-based study of the moderating influence of impaired endothelial function

    Directory of Open Access Journals (Sweden)

    Juonala Markus

    2010-03-01

    Full Text Available Abstract Background Acute mental stress may contribute to the cardiovascular disease progression via autonomic nervous system controlled negative effects on the endothelium. The joint effects of stress-induced sympathetic or parasympathetic activity and endothelial function on atherosclerosis development have not been investigated. The present study aims to examine the interactive effect of acute mental stress-induced cardiac reactivity/recovery and endothelial function on the prevalence of carotid atherosclerosis. Methods Participants were 81 healthy young adults aged 24-39 years. Preclinical atherosclerosis was assessed by carotid intima-media thickness (IMT and endothelial function was measured as flow-mediated dilatation (FMD using ultrasound techniques. We also measured heart rate, respiratory sinus arrhythmia (RSA, and pre-ejection period (PEP in response to the mental arithmetic and speech tasks. Results We found a significant interaction of FMD and cardiac RSA recovery for IMT (p = 0.037, and a significant interaction of FMD and PEP recovery for IMT (p = 0.006. Among participants with low FMD, slower PEP recovery was related to higher IMT. Among individuals with high FMD, slow RSA recovery predicted higher IMT. No significant interactions of FMD and cardiac reactivity for IMT were found. Conclusions Cardiac recovery plays a role in atherosclerosis development in persons with high and low FMD. The role of sympathetically mediated cardiac activity seems to be more important in those with impaired FMD, and parasympathetically mediated in those with relatively high FMD. The development of endothelial dysfunction may be one possible mechanism linking slow cardiac recovery and atherosclerosis via autonomic nervous system mediated effect.

  5. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  6. The anemia of microgravity and recumbency. Role of sympathetic neural control of erythropoietin production

    Science.gov (United States)

    Robertson, David; Krantz, Sanford B.; Biaggioni, Italo

    We hypothesize that reduced sympathetic stimulation of erythropoietin production may maintain the anemia which develops in virtually all space travellers. We tested this hypothesis in a human model of reduced sympathetic activity. Thirty-three patients with the Bradbury-Eggleston syndrome were divided into three groups according to their hemoglobin (Hgb) level. Patients with low Hgb had lower upright norepinephrine and lower upright renin. Patients with anemia also had inappropriately low plasma erythropoietin levels. We administered recombinant erythropoietin (Epogen) 25-50 units/kg s.c. 3 times per week and found that the anemia seen in autonomic failure could be reversed by this treatment. These results support the hypothesis that erythropoiesis is modulated by the sympathetic nervous system and that such mechanisms may also operate in the microgravity environment where sympathetic activity is reduced.

  7. Forearm training attenuates sympathetic responses to prolonged rhythmic forearm exercise

    Science.gov (United States)

    Sinoway, L.; Shenberger, J.; Leaman, G.; Zelis, R.; Gray, K.; Baily, R.; Leuenberger, U.

    1996-01-01

    We previously demonstrated that nonfatiguing rhythmic forearm exercise at 25% maximal voluntary contraction (12 2-s contractions/min) evokes sympathoexcitation without significant engagement of metabolite-sensitive muscle afferents (B.A. Batman, J.C. Hardy, U.A. Leuenberger, M.B. Smith, Q.X. Yang and L.I. Sinoway. J. Appl. Physiol. 76: 1077-1081, 1994). This is in contrast to the sympathetic nervous system responses observed during fatiguing static forearm exercise where metabolite-sensitive afferents are the key determinants of sympathetic activation. In this report we examined whether forearm exercise training would attenuate sympathetic nervous system responses to rhythmic forearm exercise. We measured heart rate, mean arterial blood pressure (MAP), muscle sympathetic nerve activity (microneurography), plasma norepinephrine (NE), and NE spillover and clearance (tritiated NE kinetics) during nonfatiguing rhythmic forearm exercise before and after a 4-wk unilateral forearm training paradigm. Training had no effect on forearm mass, maximal voluntary contraction, or heart rate but did attenuate the increase in MAP (increase in MAP: from 15.2 +/- 1.8 before training to 11.4 +/- 1.4 mmHg after training; P < 0.017), muscle sympathetic nerve activity (increase in bursts: from 10.8 +/- 1.4 before training to 6.2 +/- 1.1 bursts/min after training; P < 0.030), and the NE spillover (increases in arterial spillover: from 1.3 +/- 0.2 before training to 0.6 +/- 0.2 nmol.min-1.m-2 after training, P < 0.014; increase in venous spillover: from 2.0 +/- 0.6 before training to 1.0 +/- 0.5 nmol.min-1.m-2 after training, P < 0.037) seen in response to exercise performed by the trained forearm. Thus forearm training reduces sympathetic responses during a nonfatiguing rhythmic handgrip paradigm that does not engage muscle metaboreceptors. We speculate that this effect is due to a conditioning-induced reduction in mechanically sensitive muscle afferent discharge.

  8. Clinical efficacy of efonidipine hydrochloride, a T-type calcium channel inhibitor, on sympathetic activities. Examination using spectral analysis of heart rate/blood pressure variabilities and 123I-Metaiodobenzylguanidine myocardial scintigraphy

    International Nuclear Information System (INIS)

    Dihydropyridine Ca antagonists cause reflex tachycardia related to their hypotensive effects. Efonidipine hydrochloride has inhibitory effects on T-type Ca channels, even as it inhibits reflex tachycardia. In the present study, the influence of efonidipine hydrochloride on heart rate and autonomic nervous function was investigated. Using an electrocardiogram and a tonometric blood pressure measurement, autonomic nervous activity was evaluated using spectral analysis of heart rate/systolic blood pressure variability. Three protocols were used: a single dose of efonidipine hydrochloride was administered orally to healthy subjects with resting heart rate values of 75 beats/min or more (high-heart rate (HR) group) and to healthy subjects with resting heart rate values less than 75 beats/min (low-HR group); efonidipine hydrochloride was newly administered to untreated patients with essential hypertension, and autonomic nervous activity was investigated after a 4-week treatment period; and patients with high heart rate values (≥75 beats/min) who had been treated with a dihydropyridine L-type Ca channel inhibitor for 1 month or more were switched to efonidipine hydrochloride and any changes in autonomic nervous activity were investigated. In all protocols, administration of efonidipine hydrochloride decreased the heart rate in patients with a high heart rate, reduced sympathetic nervous activity, and enhanced parasympathetic nervous activity. In addition, myocardial scintigraphy with 123I-metaiodobenzylguanidine showed significant improvement in the washout rate and heart to mediastinum (H/M) ratio of patients who were switched from other dihydropyridine Ca antagonists to efonidipine hydrochloride. Efonidipine hydrochloride inhibits increases in heart rate and has effects on the autonomic nervous system. It may be useful for treating hypertension and angina pectoris, and may also have a cardiac protective function. (author)

  9. Effect of acute systemic hypoxia on human cutaneous microcirculation and endothelial, sympathetic and myogenic activity.

    Science.gov (United States)

    Paparde, Artūrs; Plakane, Līga; Circenis, Kristaps; Aivars, Juris Imants

    2015-11-01

    The regulation of cutaneous vascular tone impacts vascular vasomotion and blood volume distribution as a challenge to hypoxia, but the regulatory mechanisms yet remain poorly understood. A skin has a very compliant circulation, an increase in skin blood flow results in large peripheral displacement of blood volume, which could be controlled by local and systemic regulatory factors. The aim of this study was to determine the acute systemic hypoxia influence on blood flow in skin, local regulatory mechanism fluctuations and changes of systemic hemodynamic parameters. Healthy subjects (n=11; 24.9±3.7years old) participated in this study and procedures were performed in siting position. After 20min of acclimatization 15min of basal resting period in normoxia (pO2=21%) was recorded, followed by 20min in acute systemic hypoxia (pO2=12%), and after 15min of recovery period in normoxia (pO2=21%). HRV was used to evaluate autonomic nervous system activity to heart from systemic hemodynamic parameters which continuously evaluated cardiac output, total peripheral resistance and mean arterial blood pressure. Regional blood flow was evaluated by venous occlusion plethysmography and skin blood flow by laser-Doppler flowmetry. To evaluate local factor influences to cutaneous circulation wavelet analysis was used; fluctuations in the frequency intervals of 0.0095-0.021, 0.021-0.052, and 0.052-0.145Hz correspondingly represent endothelial, sympathetic, and myogenic activities. Our results from HRV data suggest that acute systemic hypoxia causes statistically significant increase of sympathetic (LF/HF; N1=0.46±0.25 vs. H=0.67±0.36; P=0.027) and decrease of parasympathetic (RMSSD; 80.0±43.1 vs. H=69.9±40.4, ms; P=0.009) outflow to heart. Acute hypoxia causes statistically significant increase of heart rate (RR interval; N1=960.3±174.5 vs. H=864.7±134.6, ms; P=0.001) and cardiac output (CO; N1=5.4 (5.2; 7.9) vs. H=6.7±1.4, l/min; P=0.020). Regional blood flow and vascular

  10. Electrocardiographic abnormalities and cardiac arrhythmias in structural brain lesions.

    Science.gov (United States)

    Katsanos, Aristeidis H; Korantzopoulos, Panagiotis; Tsivgoulis, Georgios; Kyritsis, Athanassios P; Kosmidou, Maria; Giannopoulos, Sotirios

    2013-07-31

    Cardiac arrhythmias and electrocardiographic abnormalities are frequently observed after acute cerebrovascular events. The precise mechanism that leads to the development of these arrhythmias is still uncertain, though increasing evidence suggests that it is mainly due to autonomic nervous system dysregulation. In massive brain lesions sympathetic predominance and parasympathetic withdrawal during the first 72 h are associated with the occurrence of severe secondary complications in the first week. Right insular cortex lesions are also related with sympathetic overactivation and with a higher incidence of electrocardiographic abnormalities, mostly QT prolongation, in patients with ischemic stroke. Additionally, female sex and hypokalemia are independent risk factors for severe prolongation of the QT interval which subsequently results in malignant arrhythmias and poor outcome. The prognostic value of repolarization changes commonly seen after aneurysmal subarachnoid hemorrhage, such as ST segment, T wave, and U wave abnormalities, still remains controversial. In patients with traumatic brain injury both intracranial hypertension and cerebral hypoperfusion correlate with low heart rate variability and increased mortality. Given that there are no firm guidelines for the prevention or treatment of the arrhythmias that appear after cerebral incidents this review aims to highlight important issues on this topic. Selected patients with the aforementioned risk factors could benefit from electrocardiographic monitoring, reassessment of the medications that prolong QTc interval, and administration of antiadrenergic agents. Further research is required in order to validate these assumptions and to establish specific therapeutic strategies. PMID:22809542

  11. Marital Conflict and Growth in Children's Internalizing Symptoms: The Role of Autonomic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Keiley, Margaret; Erath, Stephen; Dyer, W. Justin

    2013-01-01

    We assessed trajectories of children's internalizing symptoms, indexed through anxiety and depression, with a focus on the role of interactions between interparental marital conflict, children's sympathetic nervous system activity indexed by skin conductance level (SCL), and parasympathetic nervous system activity indexed by respiratory sinus…

  12. Effects of renal sympathetic denervation on cardiac remodeling following myocardial infarction in rats%去肾交感神经术对大鼠急性心肌梗死后心室重构的影响

    Institute of Scientific and Technical Information of China (English)

    刘夙璇; 王国坤; 丁雪燕; 董斐斐; 安丽娜; 赵仙先; 秦永文

    2014-01-01

    目的 对急性心肌梗死(myocardial infarction,MI)大鼠进行双侧肾交感神经切除,探讨去肾交感神经术(renal sympathetic denervation,RDN)能否缓解MI后心室重构并进行可能的机制探讨.方法 结扎大鼠左冠状动脉前降支构建MI模型,实验分组为:MI组(n=10)、MI+ RDN组(MI建模1周后进行RDN,n=10)和假手术组(n=10).MI建模4周后对各组大鼠进行超声心动图检查测定心室重构程度和左心功能,对梗死边缘区心肌进行Masson染色观察心肌纤维化程度,免疫组化检测Ⅰ型胶原、Ⅲ型胶原和转化生长因子β1 (transforming growth factor β1,TGF-β1)的表达.结果 与MI组相比,MI+ RDN组的左室射血分数(ejection fraction,EF)和短轴缩短率(fractional shortening,FS)升高,左室收缩末期内径(left ventricular internal dimensions at end systole,LVIDS)和左室舒张末期内径(left ventricular internal dimensions at end diastole, LVIDD)减少(P均<0.05).心肌Masson染色结果显示,MI+ RDN组大鼠梗死边缘区的心肌纤维化程度较MI组减轻.免疫组化检测显示,与MI组相比,MI+RDN组大鼠梗死边缘区的Ⅰ型胶原、Ⅲ型胶原和TGF-β1表达减少(P均<o.05).结论 RDN可以改善Mt大鼠心室重构,提高左心收缩功能,其机制可能与局部下调心肌TGF-β1表达进而减少Ⅰ型胶原和Ⅲ型胶原沉积有关.

  13. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation.

    Directory of Open Access Journals (Sweden)

    Mamoru Tanida

    Full Text Available In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb. We investigated the potential of AMPKα2 in the sympathetic effects of leptin using in vivo siRNA injection to knockdown AMPKα2 in rats, to produce reduced hypothalamic AMPKα2 expression. Leptin effects on body weight, food intake, and blood FFA levels were eliminated in AMPKα2 siRNA-treated rats. Leptin-evoked enhancements of the sympathetic nerve outflows to the kidney, brown and white adipose tissues were attenuated in AMPKα2 siRNA-treated rats. To check whether AMPKα2 was specific to sympathetic changes induced by leptin, we examined the effects of injecting MT-II, a melanocortin-3 and -4 receptor agonist, on the sympathetic nerve outflows to the kidney and adipose tissue. MT-II-induced sympatho-excitation in the kidney was unchanged in AMPKα2 siRNA-treated rats. However, responses of neural activities involving adipose tissue to MT-II were attenuated in AMPKα2 siRNA-treated rats. These results suggest that hypothalamic AMPKα2 is involved not only in appetite and body weight regulation but also in the regulation of sympathetic nerve discharges to the kidney and adipose tissue. Thus, AMPK might function not only as an energy sensor, but as a key molecule in the cardiovascular, thermogenic, and lipolytic effects of leptin through the sympathetic nervous system.

  14. Multiple hemodynamic effects of endogenous hydrogen sulfide on central nervous system in rats

    Institute of Scientific and Technical Information of China (English)

    REN Yong-sheng; WU Sheng-ying; WANG Xing-jun; YU Fang; ZHAO Jing; TANG Chao-shu; OUYANG Jing-ping; GENG Bin

    2011-01-01

    Background Endogenous hydrogen sulfide is a new neuromodulator which takes part in the regulation of central nervous system physiology and diseases.Whether endogenous hydrogen sulfide in the central nervous system regulates cardiovascular activity is not known.In the present study,we observed the hemodynamic changes of hydrogen sulfide or its precursor by intracerebroventricular injection,and investigate the possible roles of endogenous digitalis like factors and sympathetic activity in the regulation.Methods Ninety-four Sprague-Dawley rats underwent a right cerebroventricular puncture,then the hydrogen sulfide saturation buffer or its precursor injected by intrcerebroventricular catheter.A heperin-filled catheter was inserted into the right femoral artery or into the left ventricle,and changes of blood pressure or cardiac function recorded by a Powerlab/4S instrument.Phentolamine or metoprolol were pre-injected to observe the possible role in autonomic nerve activity.After rats were sacrificed,plasma was collected and endogenous digitalis-like factors were measured with a commercial radioimmunoassay kit.The aortic,cardiac sarcolemmal vesicles were isolated and the activity of Na+-K+-ATPase was measured as ouabain-sensitive ATP hydrolysis under maximal velocity conditions by measuring the release of inorganic phosphate from ATP.Unpaired Student's ttest for two groups or analysis of variances (ANOVA) for multiple groups were used to compare the differences of the changes.Results Intracerebroventricular injection of hydrogen sulfide induced a transient hypotension,then dramatic hypertenive effects in a dose-dependent manner.Bolus injection of L-cysteine or beta-mercaptopyruvate also increased mean arterial pressure (P <0.01),whereas hydroxylamine-a cystathionine beta synthase inhibitor decreased the arterial pressure (P <0.01).Hydrogen sulfide and L-cysteine increased mean arterial pressure,left ventricular develop pressure and left-ventricle maximal rate of

  15. Methods and considerations for the analysis and standardization of assessing muscle sympathetic nerve activity in humans.

    Science.gov (United States)

    White, Daniel W; Shoemaker, J Kevin; Raven, Peter B

    2015-12-01

    The technique of microneurography and the assessment of muscle sympathetic nerve activity (MSNA) are used in laboratories throughout the world. The variables used to describe MSNA, and the criteria by which these variables are quantified from the integrated neurogram, vary among studies and laboratories and, therefore, can become confusing to those starting to learn the technique. Therefore, the purpose of this educational review is to discuss guidelines and standards for the assessment of sympathetic nervous activity through the collection and analysis of MSNA. This review will reiterate common practices in the collection of MSNA, but will also introduce considerations for the evaluation and physiological inference using MSNA. PMID:26299824

  16. Leptin into the rostral ventral lateral medulla (RVLM augments renal sympathetic nerve activity and blood pressure

    Directory of Open Access Journals (Sweden)

    Maria J Barnes

    2014-08-01

    Full Text Available Leptin is a hormone released from adipose tissue. While this hormone normally acts to reduce feeding behavior and increase energy expenditure, in obesity, resistance to these effects occurs even though the hormone is released in large amounts. Although leptin no longer works to suppress feeding in the obese, leptin retains its potent effects on other autonomic functions such as blood pressure regulation. Leptin has been associated with hypertension and increased sympathetic autonomic activity. Therefore, leptin is emerging as a major contributor to the hypertensive state observed in obesity. Sympathetic control of blood pressure is maintained principally by autonomic reflex control circuits in the caudal brainstem. The rostral ventral-lateral medulla (RVLM is the primary regulator of the sympathetic nervous system, sending excitatory fibers to sympathetic preganglionic neurons to regulate sympathetic control over resistance vessels and blood pressure. Previous studies from our laboratory have shown that neurons in the ventral lateral medulla express leptin receptors (ObRb. Our present study using pseudo-rabies multi-synaptic retrograde tract tracing and immunohistochemical methods revealed that neurons within the RVLM that send sympathetic projections to the kidney express leptin receptors. Acute microinjection of leptin (1 and 3µg; 40nL into the RVLM evoked a significant increase in Mean Arterial Pressure (MAP and renal sympathetic nerve activity (RSNA. When the 3µg dose of leptin was preceded with a leptin antagonist, (SLAN-4; 1ng, it attenuated the cardiovascular response of leptin. Taken together, these data suggest that leptin’s actions within the RVLM may influence blood pressure and renal sympathetic nerve activity.

  17. Central and cerebrovascular effects of leg crossing in humans with sympathetic failure

    DEFF Research Database (Denmark)

    Harms, Mark P M; Wieling, Wouter; Colier, Willy N J M; Lenders, Jacques W M; Secher, Niels H; van Lieshout, Johannes J

    2010-01-01

    Leg crossing increases arterial pressure and combats symptomatic orthostatic hypotension in patients with sympathetic failure. This study compared the central and cerebrovascular effects of leg crossing in patients with sympathetic failure and healthy controls. We addressed the relationship between...... MCA Vmean (middle cerebral artery blood velocity; using transcranial Doppler ultrasound), frontal lobe oxygenation [O2Hb (oxyhaemoglobin)] and MAP (mean arterial pressure), CO (cardiac output) and TPR (total peripheral resistance) in six patients (aged 37-67 years; three women) and age- and gender...

  18. Evaluation of acceleration and deceleration cardiac processes using phase-rectified signal averaging in healthy and idiopathic dilated cardiomyopathy subjects.

    Science.gov (United States)

    Bas, Rosana; Vallverdú, Montserrat; Valencia, Jose F; Voss, Andreas; de Luna, Antonio Bayés; Caminal, Pere

    2015-02-01

    The aim of the present study was to investigate the suitability of the Phase-Rectified Signal Averaging (PRSA) method for improved risk prediction in cardiac patients. Moreover, this technique, which separately evaluates acceleration and deceleration processes of cardiac rhythm, allows the effect of sympathetic and vagal modulations of beat-to-beat intervals to be characterized. Holter recordings of idiopathic dilated cardiomyopathy (IDC) patients were analyzed: high-risk (HR), who suffered sudden cardiac death (SCD) during the follow-up; and low-risk (LR), without any kind of cardiac-related death. Moreover, a control group of healthy subjects was analyzed. PRSA indexes were analyzed, for different time scales T and wavelet scales s, from RR series of 24 h-ECG recordings, awake periods and sleep periods. Also, the behavior of these indexes from simulated data was analyzed and compared with real data results. Outcomes demonstrated the PRSA capacity to significantly discriminate healthy subjects from IDC patients and HR from LR patients on a higher level than traditional temporal and spectral measures. The behavior of PRSA indexes agrees with experimental evidences related to cardiac autonomic modulations. Also, these parameters reflect more regularity of the autonomic nervous system (ANS) in HR patients. PMID:25585858

  19. Evaluation of sympathetic activity by 123I-metaiodobenzylguanidine myocardial scintigraphy in dilated cardiomyopathy patients with sleep breathing disorder

    International Nuclear Information System (INIS)

    Because increased sympathetic nervous activity (SNA) in patients with dilated cardiomyopathy (DCM) associated with sleep breathing disorder (SBD) is known to deteriorate the prognosis of cardiac failure, 123I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy was used as the investigative tool in the present study. The study group comprised 53 patients (47 men, 6 women; mean age 56±3 years) with chronic stable DCM. Patients were divided into SBD(+) or SBD(-) group according to 24-h pulse oximetry results. SBD(+) was defined when the 3% oxygen desaturation index was more than 15/h during sleep. In total, 32 patients were SBD(-) and 21 were SBD(+). In both groups, pulse oximetry were performed during sleep and awakening pulse rate, and measurement of the blood levels of catecholamines and B-type natriuretic peptide was performed. MIBG myocardial scintigraphy and echocardiography were performed at the same time. No significant difference was found between the 2 groups in catecholamine levels or left ventricular ejection fraction. However, MIBG had a significantly increased washout rate and a significantly decreased delayed heart to mediastinum ratio in the SBD(+) group compared with the SBD(-) group. SNA is increased in DCM patients when associated with SBD. MIBG myocardial scintigraphy may be a sensitive method of detecting increased SNA. (author)

  20. The relationship between the sympathetic skin response and event-related brain potentials in sensorimotor control of human voluntary movements

    OpenAIRE

    Shimoda, Masahiro

    2000-01-01

    The autonomic nervous syste m (ANS) maintains the internal environment of the human body. It has recently been suggested that the ANS also contributes to the control of voluntary movements. Especially, the sympathetic nervous system in the ANS plays an important role in subserving voluntary movements. Many researchers have become to be interested in the neuro-behavioral relationship between the ANS and the cortical motor areas, such as the primary motor area, supplementary motor area, and cin...

  1. Sympathetic vasoconstriction takes an unexpected pannexin detour

    DEFF Research Database (Denmark)

    Nielsen, Morten Schak

    2015-01-01

    Sympathetic vasoconstriction plays an important role in the control of blood pressure and the distribution of blood flow. In this issue of Science Signaling, Billaud et al. show that sympathetic vasoconstriction occurs through a complex scheme involving the activation of large-pore pannexin 1...... abrogates sympathetic vasoconstriction in skeletal muscle. Because pannexin 1 channels are inhibited by nitric oxide, they may function as a switch to turn off adrenergic signaling in skeletal muscle during exercise....

  2. Brain and Nervous System

    Science.gov (United States)

    ... to Know About Zika & Pregnancy Brain and Nervous System KidsHealth > For Parents > Brain and Nervous System Print ... is quite the juggler. Anatomy of the Nervous System If you think of the brain as a ...

  3. Autonomic Nervous System Disorders

    Science.gov (United States)

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  4. Effects of nitric oxide synthase inhibition on sympathetically-mediated tachycardia

    Science.gov (United States)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The aim of the present study was to determine whether inhibition of nitric oxide (NO) synthesis directly alters the tachycardia produced by sympathetically-derived norepinephrine. The NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME; 50 micromol/kg, i.v.), produced a marked rise in mean arterial blood pressure. This pressor response was associated with a fall in heart rate which involved the withdrawal of cardiac sympathetic nerve activity. The NO-donor, sodium nitroprusside (5 microg/kg, i.v.), produced a pronounced fall in mean arterial blood pressure but only a minor increase in heart rate. The beta-adrenoceptor agonist, isoproterenol (0.5 micromol/kg, i.v.), and the membrane-permeable cAMP analogue, 8-(4-chlorophenylthiol)-cAMP (10 micromol/kg, i.v.), produced falls in mean arterial blood pressure and pronounced increases in heart rate. The indirectly acting sympathomimetic agent, tyramine (0.5 mg/kg, i.v.), produced a pressor response and a tachycardia. The effects of sodium nitroprusside, tyramine, isoproterenol and 8-(4-chlorophenylthiol)-cAMP on mean arterial blood pressure were not markedly affected by L-NAME. However, the tachycardia produced by these agents was considerably exaggerated in the presence of this NO synthesis inhibitor. These findings suggest that L-NAME potentiates the tachycardia produced by sympathetically-derived norepinephrine. The increased responsiveness to norepinephrine may involve (i) a rapid up-regulation of cardiac beta1-adrenoceptors and cAMP signaling in cardiac pacemaker cells due to the loss of the inhibitory influence of cardiac NO, and (ii) the up-regulation of beta1-adrenoceptor-mediated signal transduction processes in response to the L-NAME-induced withdrawal of cardiac sympathetic nerve activity.

  5. ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function.

    Directory of Open Access Journals (Sweden)

    Huijing Xia

    Full Text Available Oxidative stress in the central nervous system mediates the increase in sympathetic tone that precedes the development of hypertension. We hypothesized that by transforming Angiotensin-II (AngII into Ang-(1-7, ACE2 might reduce AngII-mediated oxidative stress in the brain and prevent autonomic dysfunction. To test this hypothesis, a relationship between ACE2 and oxidative stress was first confirmed in a mouse neuroblastoma cell line (Neuro2A cells treated with AngII and infected with Ad-hACE2. ACE2 overexpression resulted in a reduction of reactive oxygen species (ROS formation. In vivo, ACE2 knockout (ACE2(-/y mice and non-transgenic (NT littermates were infused with AngII (10 days and infected with Ad-hACE2 in the paraventricular nucleus (PVN. Baseline blood pressure (BP, AngII and brain ROS levels were not different between young mice (12 weeks. However, cardiac sympathetic tone, brain NADPH oxidase and SOD activities were significantly increased in ACE2(-/y. Post infusion, plasma and brain AngII levels were also significantly higher in ACE2(-/y, although BP was similarly increased in both genotypes. ROS formation in the PVN and RVLM was significantly higher in ACE2(-/y mice following AngII infusion. Similar phenotypes, i.e. increased oxidative stress, exacerbated dysautonomia and hypertension, were also observed on baseline in mature ACE2(-/y mice (48 weeks. ACE2 gene therapy to the PVN reduced AngII-mediated increase in NADPH oxidase activity and normalized cardiac dysautonomia in ACE2(-/y mice. Altogether, these data indicate that ACE2 gene deletion promotes age-dependent oxidative stress, autonomic dysfunction and hypertension, while PVN-targeted ACE2 gene therapy decreases ROS formation via NADPH oxidase inhibition and improves autonomic function. Accordingly, ACE2 could represent a new target for the treatment of hypertension-associated dysautonomia and oxidative stress.

  6. Pmch-Deficiency in Rats Is Associated with Normal Adipocyte Differentiation and Lower Sympathetic Adipose Drive

    OpenAIRE

    Mul, Joram D.; Eoghan O'Duibhir; Shrestha, Yogendra B.; Arjen Koppen; Peter Vargoviç; Toonen, Pim W; Eleen Zarebidaki; Richard Kvetnansky; Eric Kalkhoven; Edwin Cuppen; Bartness, Timothy J.

    2013-01-01

    The orexigenic neuropeptide melanin-concentrating hormone (MCH), a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS) drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively). MCH binds to MCH receptor 1 (MCH1R), which is present on adipocytes. ...

  7. Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue

    OpenAIRE

    Nakamura, Kazuhiro; Morrison, Shaun F.

    2006-01-01

    Control of thermoregulatory effectors by the autonomic nervous system is a critical component of rapid cold-defense responses, which are triggered by thermal information from the skin. However, the central autonomic mechanism driving thermoregulatory effector responses to skin thermal signals remains to be determined. Here, we examined the involvement of several autonomic brain regions in sympathetic thermogenic responses in brown adipose tissue (BAT) to skin cooling in urethane-chloralose-an...

  8. Control and Physiological Determinants of Sympathetically Mediated Brown Adipose Tissue Thermogenesis

    OpenAIRE

    DenisRichard; ÉricTurcotte

    2012-01-01

    Brown adipose tissue (BAT) represents a remarkable heat-producing tissue. The thermogenic potential of BAT is conferred by uncoupling protein 1, a protein found uniquely in the brown adipocytes. The physiological control of BAT activity and capacity is ensured by the sympathetic nervous system (SNS), which densely innervates brown fat depots. SNS-mediated BAT thermogenesis is essentially governed by hypothalamic and brainstem neurons. BAT is not only controlled by the brain thermoregulatory c...

  9. Sympathetic activity of S-(+)-ketamine low doses in the epidural space

    OpenAIRE

    2014-01-01

    BACKGROUND AND OBJECTIVES: S-(+)-ketamine is an intravenous anaesthetic and sympathomimetic with properties of local anaesthetic. It has an effect of an analgetic and local anaesthetic when administered epidurally, but there are no data whether low doses of S-(+)-ketamine have sympathomimetic effects. The aim of this study was to determine whether low doses of S-(+)-ketamine, given epidurally together with local anaesthetic, have any effect on sympathetic nervous system, both systemic and be...

  10. Pharmacological characterization of ergotamine-induced inhibition of the cardioaccelerator sympathetic outflow in pithed rats.

    Science.gov (United States)

    Cobos-Puc, Luis E; Villalón, Carlos M; Sánchez-López, Araceli; Ramírez-Rosas, Martha B; Lozano-Cuenca, Jair; Pertz, Heinz H; Görnemann, Tilo; Centurión, David

    2009-02-01

    Ergotamine inhibits the sympathetically-induced tachycardia in pithed rats. The present study identified the pharmacological profile of this response. Male Wistar rats were pithed and prepared to stimulate the preganglionic (C(7)-T(1)) cardiac sympathetic outflow. Intravenous continuous infusions of ergotamine dose-dependently inhibited the tachycardic responses to sympathetic stimulation, but not those to exogenous noradrenaline. Using several antagonists, the sympatho-inhibition to ergotamine was: (1) partially blocked by rauwolscine (alpha(2)), haloperidol (D(1/2)-like) or rauwolscine plus GR127935 (5-HT(1B/1D)); (2) abolished by rauwolscine plus haloperidol; and (3) unaffected by either saline or GR127935. In animals systematically pretreated with haloperidol, this sympatho-inhibition was: (1) unaffected by BRL44408 (alpha(2A)), partially antagonized by MK912 (alpha(2C)); and (3) abolished by BRL44408 plus MK912. These antagonists failed to modify the sympathetically induced tachycardic responses per se. Thus, the cardiac sympatho-inhibition by ergotamine may be mainly mediated by alpha(2A)/alpha(2C)-adrenoceptors, D(2)-like receptors and, to a lesser extent, by 5-HT(1B/1D) receptors. PMID:18779954

  11. Mechanisms of sympathetic regulation in orthostatic intolerance

    OpenAIRE

    Stewart, Julian M.

    2012-01-01

    Sympathetic circulatory control is key to the rapid cardiovascular adjustments that occur within seconds of standing upright (orthostasis) and which are required for bipedal stance. Indeed, patients with ineffective sympathetic adrenergic vasoconstriction rapidly develop orthostatic hypotension, prohibiting effective upright activities. One speaks of orthostatic intolerance (OI) when signs, such as hypotension, and symptoms, such as lightheadedness, occur when upright and are relieved by recu...

  12. Hypothalamic Nesfatin-1 Stimulates Sympathetic Nerve Activity via Hypothalamic ERK Signaling.

    Science.gov (United States)

    Tanida, Mamoru; Gotoh, Hitoshi; Yamamoto, Naoki; Wang, Mofei; Kuda, Yuhichi; Kurata, Yasutaka; Mori, Masatomo; Shibamoto, Toshishige

    2015-11-01

    Nesfatin-1 acts on the hypothalamus and regulates the autonomic nervous system. However, the hypothalamic mechanisms of nesfatin-1 on the autonomic nervous system are not well understood. In this study, we found that intracerebroventricular (ICV) administration of nesfatin-1 increased the extracellular signal-regulated kinase (ERK) activity in rats. Furthermore, the activity of sympathetic nerves, in the kidneys, liver, and white adipose tissue (WAT), and blood pressure was stimulated by the ICV injection of nesfatin-1, and these effects were abolished owing to pharmacological inhibition of ERK. Renal sympathoexcitatory and hypertensive effects were also observed with nesfatin-1 microinjection into the paraventricular hypothalamic nucleus (PVN). Moreover, nesfatin-1 increased the number of phospho (p)-ERK1/2-positive neurons in the PVN and coexpression of the protein in neurons expressing corticotropin-releasing hormone (CRH). Pharmacological blockade of CRH signaling inhibited renal sympathetic and hypertensive responses to nesfatin-1. Finally, sympathetic stimulation of WAT and increased p-ERK1/2 levels in response to nesfatin-1 were preserved in obese animals such as rats that were fed a high-fat diet and leptin receptor-deficient Zucker fatty rats. These findings indicate that nesfatin-1 regulates the autonomic nervous system through ERK signaling in PVN-CRH neurons to maintain cardiovascular function and that the antiobesity effect of nesfatin-1 is mediated by hypothalamic ERK-dependent sympathoexcitation in obese animals. PMID:26310564

  13. Relationship between cardiac {sup 123}I-Metaiodobenzylguanidine imaging and the transcardiac gradient of neurohumoral factors in patients with dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Toshiki; Tsutamoto, Takayoshi; Kinoshita, Masahiko [Shiga Univ. of Medical Science, Otsu (Japan)

    2001-12-01

    Cardiac sympathetic nervous function is altered in congestive heart failure (CHF) and the uptake and washout rate of cardiac {sup 123}I-metaiodobenzylguanidine (MIBG) are useful markers for evaluating the severity of it. To assess what parameters predict decreased uptake or increased washout rate of MIBG, the concentrations of neurohumoral factor in both the aorta (Ao) and coronary sinus (CS) were measured, as well as hemodynamic parameters by catheterization, in patients with dilated cardiomyopathy (DCM). MIBG imaging was performed within 1 week of cardiac catheterization. Regarding MIBG parameters, the correlation with the transcardiac gradient of norepinephrine (NE), brain natriuretic peptide (BNP) and hemodynamics was investigated. Stepwise multivariate regression analysis was used to determine which variables closely correlated with cardiac MIBG parameters. There was a significant increase in the NE level between the Ao (446 pg/ml) and the CS (727 pg/ml). According to stepwise multivariate regression analysis, the heart/mediastinum (H/M) ratio independently correlated with the transcardiac gradient of BNP (r=-0.480, p<0.01), and the washout rate independently correlated with the transcardiac gradient of NE (r=0.481, p<0.01). These findings indicate that the H/M ratio may reflect the transcardiac gradient of BNP, which implies the degree of left ventricular dysfunction and/or damage and the washout rate may reflect altered cardiac sympathetic nerve terminal in DCM patients with CHF, suggesting that both the H/M ratio and washout rate provide important information about the failing ventricle. (author)

  14. Determinación de la eficacia analgésica de los bloqueos del ganglio estrellado en el síndrome doloroso regional complejo con dolor mediado por el sistema nervioso simpático: estudio preliminar Study of the analgesic efficacy of stellate ganglion blockade in the management of the complex regional pain syndrome in patients with pain mediated by sympathetic nervous system: preliminary study

    Directory of Open Access Journals (Sweden)

    R. F. Rodríguez

    2006-05-01

    Full Text Available Objetivo: Este estudio fue realizado con el propósito de determinar la eficacia analgésica de los bloqueos del ganglio estrellado, en el alivio del dolor mediado por el sistema nervioso simpático, en pacientes con síndrome doloroso regional complejo. Pacientes y métodos: Se realizó un ensayo clínico controlado con asignación aleatoria y enmascaramiento simple. Treinta y nueve pacientes fueron tratados con una serie de bloqueos de ganglio estrellado, terapia física y tratamiento farmacológico, mientras que treinta y dos pacientes fueron tratados con fisioterapia y el mismo esquema farmacológico. Para determinar la asociación entre las variables se utilizó el riesgo relativo con sus respectivos intervalos de confianza. Resultados: En la evaluación clínica realizada un mes postratamiento se encontró alivio del dolor en 84,6% de los pacientes del grupo de intervención y en 78,1% de los controles (RR= 1,08; I.C. 95%=0,8-1,4; p=0.48, sin encontrarse diferencias estadísticamente significativas. No se encontró asociación entre la eficacia analgésica y tabaquismo, dominancia, género, tipo de SDRC, causa desencadenante y nivel educativo.Objective: The purpose of this study was to determine the analgesic efficacy of stellate ganglion blockade in pain mediated by the sympathetic nervous system in patients with Complex Regional Pain Syndrome (CRPS. Patients and methods: A randomized, simple-blinded controlled clinical trial was conducted. Thirty nine patients were randomly assigned to an intervention group which was treated with a series of stellate ganglion blockades, physical therapy and pharmacological treatment, and thirty two to a control group which was treated with physical therapy and the same pharmacological treatment. Risk ratio was used to evaluate outcome and determine association with predictor variables. Results: At the end of the first month post treatment, it was found that 84.6% of patients in the intervention group had

  15. Carotid body chemoreceptors, sympathetic neural activation, and cardiometabolic disease.

    Science.gov (United States)

    Iturriaga, Rodrigo; Del Rio, Rodrigo; Idiaquez, Juan; Somers, Virend K

    2016-01-01

    The carotid body (CB) is the main peripheral chemoreceptor that senses the arterial PO2, PCO2 and pH. In response to hypoxemia, hypercapnia and acidosis, carotid chemosensory discharge elicits reflex respiratory, autonomic and cardiovascular adjustments. The classical construct considers the CB as the main peripheral oxygen sensor, triggering reflex physiological responses to acute hypoxemia and facilitating the ventilatory acclimation to chronic hypoxemia at high altitude. However, a growing body of experimental evidence supports the novel concept that an abnormally enhanced CB chemosensory input to the brainstem contributes to overactivation of the sympathetic nervous system, and consequent pathology. Indeed, the CB has been implicated in several diseases associated with increases in central sympathetic outflow. These include hypertension, heart failure, sleep apnea, chronic obstructive pulmonary disease and metabolic syndrome. Indeed, ablation of the CB has been proposed for the treatment of severe and resistant hypertension in humans. In this review, we will analyze and discuss new evidence supporting an important role for the CB chemoreceptor in the progression of autonomic and cardiorespiratory alterations induced by heart failure, obstructive sleep apnea, chronic obstructive pulmonary disease and metabolic syndrome. PMID:26920146

  16. A Demonstration of Sympathetic Cotransmission

    Science.gov (United States)

    Johnson, Christopher D.

    2010-01-01

    Currently, most undergraduate textbooks that cover the autonomic nervous system retain the concept that autonomic nerves release either acetylcholine or norepinephrine. However, in recent years, a large volume of research has superseded this concept with one in which autonomic nerves normally release at least one cotransmitter along with a…

  17. Cardiac Autonomic Nerve Stimulation in the Treatment of Heart Failure

    OpenAIRE

    Kobayashi, Mariko; Massiello, Alex; Karimov, Jamshid H.; Van Wagoner, David R.; Fukamachi, Kiyotaka

    2013-01-01

    Research on the therapeutic modulation of cardiac autonomic tone by electrical stimulation has yielded encouraging early clinical results. Vagus nerve stimulation has reduced the rates of morbidity and sudden death from heart failure, but therapeutic vagus nerve stimulation is limited by side effects of hypotension and bradycardia. Sympathetic nerve stimulation that has been implemented in the experiment may exacerbate the sympathetic-dominated autonomic imbalance. In contrast, concurrent sti...

  18. Sympathetic vasoconstrictor nerve function in alcoholic neuropathy

    DEFF Research Database (Denmark)

    Jensen, K; Andersen, K; Smith, T;

    1984-01-01

    The peripheral sympathetic vasomotor nerve function was investigated in 18 male chronic alcoholics admitted for intellectual impairment or polyneuropathy. By means of the local 133Xenon washout technique, the sympathetic veno-arteriolar axon-reflex was studied. This normally is responsible for a 50...... (18% and 48% decrease respectively). However, in three patients with moderate neuropathy, and in one patient with no signs of neuropathy, this veno-arteriolar reflex was absent, indicating dysfunction of the peripheral sympathetic adrenergic nerve fibres. The three patients also showed a lesser degree...... alcohol comprise not only the peripheral sensory and motor nerve fibres, but also the thin pseudomotor and vasomotor nerves....

  19. Scintigraphic differentiation between two forms of primary dysautonomia early after onset of autonomic dysfunction: value of cardiac and pulmonary iodine-123 MIBG uptake

    International Nuclear Information System (INIS)

    Primary dysfunction of the autonomic nervous system can be observed in patients with Parkinson's disease and those with multiple system atrophy. However, the fate of the two diseases differs considerably and leads to different strategies for patient management. Differentiation of the two diseases currently requires a combination of several clinical and electrophysiological tests. First studies of myocardial innervation using iodine-123 metaiodobenzylguanidine (MIBG) indicated a possible role of scintigraphy for this purpose. An increase in the pulmonary uptake of 123I-MIBG has been reported in secondary dysautonomias. Whether sympathetic innervation of the lung is affected in primary dysautonomias is currently unknown. Therefore, cardiac and pulmonary uptake of 123I-MIBG was studied in 21 patients with Parkinson's disease, 7 patients with multiple system atrophy and 13 age- and sex-matched controls. Thoracic images were obtained in the anterior view 4 h after intravenous injection of 185 MBq 123I-MIBG, at which time the maximum neuronal uptake is reached. All patients with Parkinson's disease had significantly lower cardiac uptake of 123I-MIBG than patients with multiple system atrophy and controls. Sympathetic innervation of the lung was not affected in either disease. It is concluded that scintigraphy with 123I-MIBG appears to be a useful tool for differentiation between Parkinson's disease and multiple system atrophy early after onset of autonomic dysfunction. (orig.)

  20. Scintigraphic differentiation between two forms of primary dysautonomia early after onset of autonomic dysfunction: value of cardiac and pulmonary iodine-123 MIBG uptake

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, M.J.; Juengling, F.D.; Krause, T.M. [Dept. of Nuclear Medicine, Freiburg University Hospital (Germany); Braune, S. [Dept. of Neurology, Freiburg University Hospital (Germany)

    2000-05-01

    Primary dysfunction of the autonomic nervous system can be observed in patients with Parkinson's disease and those with multiple system atrophy. However, the fate of the two diseases differs considerably and leads to different strategies for patient management. Differentiation of the two diseases currently requires a combination of several clinical and electrophysiological tests. First studies of myocardial innervation using iodine-123 metaiodobenzylguanidine (MIBG) indicated a possible role of scintigraphy for this purpose. An increase in the pulmonary uptake of {sup 123}I-MIBG has been reported in secondary dysautonomias. Whether sympathetic innervation of the lung is affected in primary dysautonomias is currently unknown. Therefore, cardiac and pulmonary uptake of {sup 123}I-MIBG was studied in 21 patients with Parkinson's disease, 7 patients with multiple system atrophy and 13 age- and sex-matched controls. Thoracic images were obtained in the anterior view 4 h after intravenous injection of 185 MBq {sup 123}I-MIBG, at which time the maximum neuronal uptake is reached. All patients with Parkinson's disease had significantly lower cardiac uptake of {sup 123}I-MIBG than patients with multiple system atrophy and controls. Sympathetic innervation of the lung was not affected in either disease. It is concluded that scintigraphy with {sup 123}I-MIBG appears to be a useful tool for differentiation between Parkinson's disease and multiple system atrophy early after onset of autonomic dysfunction. (orig.)

  1. Novel heart rate parameters for the assessment of autonomic nervous system function in premature infants.

    Science.gov (United States)

    Lucchini, M; Fifer, W P; Sahni, R; Signorini, M G

    2016-09-01

    Autonomic nervous system (ANS) balance is a key factor in homeostatic control of cardiac activity, breathing and certain reflex reactions such as coughing, sneezing and swallowing and thus plays a crucial role for survival. ANS impairment has been related to many neonatal pathologies, including sudden infant death syndrome (SIDS). Moreover, some conditions have been identified as risk factors for SIDS, such as prone sleep position. There is an urgent need for timely and non-invasive assessment of ANS function in at-risk infants. Systematic measurement of heart rate variability (HRV) offers an optimal approach to access indirectly both sympathetic and parasympathetic influences on ANS functioning. In this paper, data from premature infants collected in a sleep physiology laboratory in the NICU are presented: traditional and novel approaches to HRV analyses are applied and compared in order to evaluate their relative merits in the assessment of ANS activity and the influence of sleep position. Indices from time domain and nonlinear approaches contributed as markers of physiological development in premature infants. Moreover, significant differences were observed as a function of sleep position. PMID:27480495

  2. Sympathetic re-innervation after heart transplantation: dual-isotope neurotransmitter scintigraphy, norepinephrine content and historical examination

    International Nuclear Information System (INIS)

    Cardiac transplantation entails surgical disruption of the sympathetic nerve fibres from their somata, resulting in sympathetic denervation. In order to investigate the occurrence of sympathetic re-innervation, neurotransmitter scintigraphy using the norepinephrine analogue iodine-123 metaiodobenzylguanidine (MIBG) was performed in 15 patients 2-69 months after transplantation. In addition, norepinephrine content and immunohistochemical reactions of antibodies to Schwann cell-associated S100 protein, to neuron-specific enolase (NSE) and to norepinephrine were examined in 34 endomyocardial biopsies of 29 patients 1-88 months after transplantation. Anterobasal 123I-MIBG uptake indicating partial sympathetic re-innervation could be shown in 40% of the scintigraphically investigated patients 37-69 months after transplantation. In immunohistochemical studies 83% of the patients investigated 1-72 Months after transplantation showed nerve fibres in their biopsies but not positive reaction to norepinephrine. Significant norepinephrine content indicating re-innervation could not be detected in any biopsy. It was concluded that in spite of the lack of norepinephrine content there seemed to be immunohistological and scintigraphic evidence of sympathetic re-innervation. An explanation for this contradictory finding may be the reduced or missing norepinephrine storage ability compared to the restored uptake ability of regenerated sympathetic nerve fibres. (orig.)

  3. Sensory and sympathetic innervation of cervical facet joint in rats

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hai-yu; CHEN An-min; GUO Feng-jing; LIAO Guang-jun; XIAO Wei-dong

    2006-01-01

    Objective: To explore the patterns of innervation of cervical facet joints and determine the pathways from facet joints to dorsal root ganglions (DRGs) in order to clarify the causes of diffuse neck pain, headache, and shoulder pain.Methods: Forty-two male Sprague-Dawley rats,weighing 250-300 g, were randomly divided into three groups: Group A ( n = 18), Group B ( n = 18), and Group C (n = 6 ). Under anesthesia with intraperitoneal pentobarbital sodium (45 mg/kg body weight), a midline dorsal longitudinal incision was made over the cervical spine to expose the left cervical facet joint capsule of all the rats under a microscope. The rats in Group A underwent sympathectomy, but the rats in Group B and Group C did not undergo sympathectomy. Then 0.6 μl 5 % bisbenzimide (Bb) were injected into the C1-2, C3-4 and C5-6 facet joints of 6 rats respectively in Group A and Group B. The holes were immediately sealed with mineral wax to prevent leakage of Bb and the fascia and skin were closed. But in Group C, 0.9% normal saline was injected into the corresponding joint capsules. Then under deep reanesthesia with intraperitoneal pentobarbital sodium (45 mg/kg body weight), C1-C8 left DRGs in all rats and the sympathetic ganglions in Group B were obtained and the number of the labeled neurons was determined.Results: Neurons labeled with Bb were present in C1-C8 DRGs in both Group A and Group B, and sympathetic ganglions in Group B. In the C1-2 and C3-4 subgroups,labeled neurons were present from C1 to C8 DRGs, while in C5-6 subgroups they were from C, to C8. The number of Bb ( + ) neurons after sympathectomy was not significantly different in the injected level from that without sympathectomy. But in the other levels, the number of Bb ( + ) neurons after sympathectomy was significantly less than that without sympathectomy.Conclusions: The innervation of the cervical facet joints is derived from both sensory and sympathetic nervous system, and DRGs are associated with

  4. Impact of Six-Month Caloric Restriction on Autonomic Nervous System Activity in Healthy, Overweight, Individuals

    OpenAIRE

    de Jonge, Lillian; Moreira, Emilia AM; Martin, Corby K.; Ravussin, Eric

    2009-01-01

    Caloric restriction (CR) increases maximum lifespan but the mechanisms are unclear. Dominance of the sympathetic nervous System (SNS) over the Parasympathetic Nervous System (PNS) has been shown to be a strong risk factor for cardiovascular disease. Obesity and aging are associated with increased SNS activity and weight loss and/or exercise seem to have positive effects on this balance. We therefore evaluated the effect of different approaches of CR on autonomic function in 48 overweight indi...

  5. Central nervous system

    Science.gov (United States)

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  6. The role of the autonomic nervous system in Tourette Syndrome

    Directory of Open Access Journals (Sweden)

    Jack eHawksley

    2015-05-01

    Full Text Available Tourette Syndrome (TS is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics and one or more vocal (phonic tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS. Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an

  7. Anorexia nervosa depends on adrenal sympathetic hyperactivity: opposite neuroautonomic profile of hyperinsulinism syndrome

    Directory of Open Access Journals (Sweden)

    Fuad Lechin

    2010-09-01

    Full Text Available Fuad Lechin1,2, Bertha van der Dijs1,2, Betty Pardey-Maldonado1, Jairo E Rivera1, Scarlet Baez1, Marcel E Lechin31Department of Pathophysiology, Sections of Neuroendocrinology, Neuropharmacology, and Neurochemistry, Instituto de Medicina Experimental, Faculty of Medicine, Universidad Central de Venezuela, Caracas; 2Instituto de Vias Digestivas Caracas, Centro Clínico Profesional, Caracas, Venezuela; 3Department of Internal Medicine, Texas A and M Health Science Center, College of Medicine, Texas, USAObjective: The aim of our study was to determine the central and peripheral autonomic nervous system profiles underlying anorexia nervosa (AN syndrome, given that affected patients present with the opposite clinical profile to that seen in the hyperinsulinism syndrome.Design: We measured blood pressure and heart rate, as well as circulating neurotransmitters (noradrenaline, adrenaline, dopamine, plasma serotonin, and platelet serotonin, using high-performance liquid chromatography with electrochemical detection, during supine resting, one minute of orthostasis, and after five minutes of exercise. In total, 22 AN patients (12 binge-eating/purging type and 10 restricting type and age-, gender-, and race-matched controls (70 ± 10.1% versus 98 ± 3.0% of ideal body weight were recruited.Results: We found that patients with AN had adrenal sympathetic overactivity and neural sympathetic underactivity, demonstrated by a predominance of circulating adrenaline over noradrenaline levels, not only during the supine resting state (52 ± 2 versus 29 ± 1 pg/mL but also during orthostasis (67 ± 3 versus 32 ± 2 pg/mL, P < 0.05 and after exercise challenge (84 ± 4 versus 30 ± 3 pg/mL, P < 0.01.Conclusion: Considering that this peripheral autonomic nervous system disorder depends on the absolute predominance of adrenomedullary C1 adrenergic nuclei over A5 noradrenergic pontine nucleus, let us ratify the abovementioned findings. The AN syndrome depends on the

  8. Neuroaxonal dystrophy in aging human sympathetic ganglia.

    OpenAIRE

    Schmidt, R.E.; Chae, H. Y.; Parvin, C. A.; Roth, K A

    1990-01-01

    Autonomic dysfunction is an increasingly recognized problem in aging animals and man. The pathologic changes that produce autonomic dysfunction in human aging are largely unknown; however, in experimental animal models specific pathologic changes have been found in selected sympathetic ganglia. To address whether similar neuropathologic changes occur in aging humans, the authors have examined paravertebral and prevertebral sympathetic ganglia from a series of 56 adult autopsied nondiabetic pa...

  9. Autonomic nervous system function in patients with functional abdominal pain. An experimental study

    DEFF Research Database (Denmark)

    Jørgensen, L S; Christiansen, P; Raundahl, U;

    1993-01-01

    Functional abdominal pain--that is, pain without demonstrable organic abnormalities--has often been associated with psychologic stress. The aim of the present study was to investigate whether sympathetic nervous system response to laboratory stress and basal parasympathetic neural activity were...

  10. Emotion Regulation via the Autonomic Nervous System in Children with Attention-Deficit/Hyperactivity Disorder (ADHD)

    Science.gov (United States)

    Musser, Erica D.; Backs, Richard W.; Schmitt, Colleen F.; Ablow, Jennifer C.; Measelle, Jeffery R.; Nigg, Joel T.

    2011-01-01

    Despite growing interest in conceptualizing ADHD as involving disrupted emotion regulation, few studies have examined the physiological mechanisms related to emotion regulation in children with this disorder. This study examined parasympathetic and sympathetic nervous system reactivity via measures of respiratory sinus arrhythmia (RSA) and cardiac…

  11. Cohort Profile: Sympathetic activity and Ambulatory Blood Pressure in Africans (SABPA) prospective cohort study.

    Science.gov (United States)

    Malan, Leoné; Hamer, Mark; Frasure-Smith, Nancy; Steyn, Hendrik S; Malan, Nicolaas T

    2015-12-01

    Adapting to an over-demanding stressful urban environment may exhaust the psychophysiological resources to cope with these demands, and lead to sympathetic nervous system dysfunction. The evidence that an urban-dwelling lifestyle may be detrimental to the cardiometabolic health of Africans motivated the design of the Sympathetic activity and Ambulatory Blood Pressure in African Prospective cohort study. We aimed to determine neural mechanistic pathways involved in emotional distress and vascular remodelling. The baseline sample included 409 teachers representing a bi-ethnic sex cohort from South Africa. The study was conducted in 2008-09 and repeated after 3-year follow-up in 2011-12, with an 87.8% successful follow-up rate. Seasonal changes were avoided and extensive clinical assessments were performed in a well-controlled setting. Data collection included sociodemographics, lifestyle habits, psychosocial battery and genetic analysis, mental stress responses mimicking daily life stress (blood pressure and haemostatic, cardiometabolic, endothelial and stress hormones). Target organ damage was assessed in the brain, heart, kidney, blood vessels and retina. A unique highly phenotyped cohort is presented that can address the role of a hyperactive sympathetic nervous system and neural response pathways contributing to the burden of cardiometabolic diseases in Africans. PMID:25344943

  12. Pmch-deficiency in rats is associated with normal adipocyte differentiation and lower sympathetic adipose drive.

    Directory of Open Access Journals (Sweden)

    Joram D Mul

    Full Text Available The orexigenic neuropeptide melanin-concentrating hormone (MCH, a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively. MCH binds to MCH receptor 1 (MCH1R, which is present on adipocytes. Currently it is unknown if Pmch-ablation changes adipocyte differentiation or sympathetic adipose drive. Using Pmch-deficient and wild-type rats on a standard low-fat diet, we analyzed dorsal subcutaneous and perirenal WAT mass and adipocyte morphology (size and number throughout development, and indices of sympathetic activation in WAT and iBAT during adulthood. Moreover, using an in vitro approach we investigated the ability of MCH to modulate 3T3-L1 adipocyte differentiation. Pmch-deficiency decreased dorsal subcutaneous and perirenal WAT mass by reducing adipocyte size, but not number. In line with this, in vitro 3T3-L1 adipocyte differentiation was unaffected by MCH. Finally, adult Pmch-deficient rats had lower norepinephrine turnover (an index of sympathetic adipose drive in WAT and iBAT than wild-type rats. Collectively, our data indicate that MCH/MCH1R-pathway does not modify adipocyte differentiation, whereas Pmch-deficiency in laboratory rats lowers adiposity throughout development and sympathetic adipose drive during adulthood.

  13. Molecular reconstruction of mGluR5a-mediated endocannabinoid signaling cascade in single rat sympathetic neurons

    OpenAIRE

    Won, Yu-Jin; Puhl, Henry L.; Ikeda, Stephen R.

    2009-01-01

    Endocannabinoids (eCB) such as 2-arachidonylglycerol (2-AG) are lipid metabolites that are synthesized in a postsynaptic neurons and act upon CB1 cannabinoid receptors (CB1R) in presynaptic nerve terminals. This retrograde transmission underlies several forms of short and long term synaptic plasticity within the central nervous system. Here, we constructed a model system based on isolated rat sympathetic neurons in which an eCB signaling cascade could be studied in a reduced, spatially compac...

  14. Quantitative thermal sensory testing and sympathetic skin response in primary Restless legs syndrome - A prospective study on 57 Indian patients

    OpenAIRE

    Garima Shukla; Vinay Goyal; Achal Srivastava; Madhuri Behari

    2012-01-01

    Patients with restless leg syndrome present with sensory symptoms similar to peripheral neuropathy. While there is evidence of abnormalities of dopaminergic pathways, the peripheral nervous system has been studied infrequently. We studied conventional nerve conduction studies, quantitative thermal sensory testing and sympathetic skin response in 57 patients with primary restless leg syndrome. Almost two third patients demonstrated abnormalities in the detailed testing of the peripheral nervou...

  15. Pharmacological profile of the inhibition by dihydroergotamine and methysergide on the cardioaccelerator sympathetic outflow in pithed rats.

    Science.gov (United States)

    Lozano-Cuenca, Jair; Muñoz-Islas, Enriqueta; González-Hernández, Abimael; Centurión, David; Cobos-Puc, Luis E; Sánchez-López, Araceli; Pertz, Heinz H; Villalón, Carlos M

    2009-06-10

    The present study set out to analyse the pharmacological profile of the inhibitory responses induced by the antimigraine agents dihydroergotamine (DHE) and methysergide on the tachycardic responses to preganglionic sympathetic stimulation in pithed rats. For this purpose, 132 male Wistar normotensive rats were pithed and prepared to: (i) selectively stimulate the preganglionic (C(7)-T(1)) cardiac sympathetic outflow; or (ii) receive intravenous (i.v.) bolus injections of exogenous noradrenaline. Electrical sympathetic stimulation or exogenous noradrenaline produced, respectively, frequency-dependent and dose-dependent tachycardic responses. Moreover, i.v. continuous infusions of DHE (1.8, 3.1 and 5.6 microg/kg x min) or methysergide (100, 300 and 1000 microg/kg x min) dose-dependently inhibited the tachycardic responses to sympathetic stimulation, but not those to exogenous noradrenaline. Using physiological saline or antagonists (given as i.v. bolus injections), the cardiac sympatho-inhibition induced by either DHE (3.1 microg/kg x min) or methysergide (300 microg/kg x min) was: (1) unaffected by saline (1 ml/kg); (2) partially blocked by the antagonists rauwolscine (300 microg/kg; alpha(2)) or N-[4-methoxy-3-(4-methyl-1-piperazinyl) phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl) [1,1,-biphenyl]-4-carboxamide hydrochloride monohydrate (GR127935, 300 microg/kg; 5-HT(1B/1D)); and (3) completely antagonised by the combination rauwolscine plus GR127935. These antagonists, at doses high enough to completely block their respective receptors, failed to modify the sympathetically-induced tachycardic responses per se. The above results, taken together, suggest that the cardiac sympatho-inhibition induced by DHE (3.1 microg/kg x min) and methysergide (300 microg/kg x min) may be mainly mediated by stimulation of both alpha(2)-adrenoceptors and 5-HT(1B/1D) receptors. PMID:19356724

  16. Renal denervation mitigates cardiac remodeling and renal damage in Dahl rats: a comparison with β-receptor blockade.

    Science.gov (United States)

    Watanabe, Heitaro; Iwanaga, Yoshitaka; Miyaji, Yuki; Yamamoto, Hiromi; Miyazaki, Shunichi

    2016-04-01

    Chronic activation of the sympathetic nervous system (SNS) contributes to cardiac remodeling and the transition to heart failure (HF). Renal sympathetic denervation (RDN) may ameliorate this damage by improving renal function and sympathetic cardioregulation in hypertensive HF patients with renal injury. The efficacy may be comparable to that of chronic β-blocker treatment. Dahl salt-sensitive hypertensive rats were subjected to RDN in the hypertrophic stage. Another group of Dahl rats were subjected to sham operations and treated chronically with vehicle (CONT) or β-blocker bisoprolol (BISO). Neither RDN nor BISO altered the blood pressure; however, BISO significantly reduced the heart rate (HR). Both RDN and BISO significantly prolonged survival (22.2 and 22.4 weeks, respectively) compared with CONT (18.3 weeks). Echocardiography revealed reduced left ventricular (LV) hypertrophy and improved LV function, and histological analysis demonstrated the amelioration of LV myocyte hypertrophy and fibrosis in the RDN and BISO rats at the HF stage. Tyrosine hydroxylase and β1-adrenergic receptor (ADR) expression levels in the LV myocardium significantly increased only in the RDN rats, whereas the α1b-, α1d- and α2c-ADR expression levels increased only in the BISO rats. In both groups, renal damage and dysfunction were also reduced, and this reduction was accompanied by the suppression of endothelin-1, renin and angiotensin-converting enzyme mRNAs. RDN ameliorated the progression of both myocardial and renal damage in the hypertensive rats independent of blood pressure changes. The overall effects were similar to those of β-receptor blockade with favorable effects on HR and α-ADR expression. These findings may be associated with the restoration of the myocardial SNS and renal protection. PMID:26631854

  17. Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. II. The peripheral nervous system.

    Science.gov (United States)

    Schäfer, M K; Eiden, L E; Weihe, E

    1998-05-01

    The peripheral sympathetic and parasympathetic cholinergic innervation was investigated with antibodies directed against the C-terminus of the rat vesicular acetylcholine transporter. Immunohistochemistry for the vesicular acetylcholine transporter resulted in considerably more detailed visualization of cholinergic terminal fields in the peripheral nervous system than reported previously and was well suited to also identify cholinergic perikarya. Vesicular acetylcholine transporter immunoreactivity completely delineated the preganglionic sympathetic terminals in pre- and paravertebral sympathetic ganglia, and in the adrenal medulla as well as postganglionic cholinergic neurons in the paravertebral chain. Cholinergic terminals of sudomotor and vasomotor nerves of skeletal muscle were optimally visualized. Mixed peripheral ganglia, including periprostatic and uterovaginal ganglia, exhibited extensive preganglionic cholinergic innervation of both noradrenergic and cholinergic postganglionic principal neurons which were intermingled in these ganglia. Varicose vesicular acetylcholine transporter-positive fibres and terminals, representing the cranial parasympathetic innervation of the cerebral vasculature, of salivary and lacrimal glands, of the eye, of the respiratory tract and of the upper digestive tract innervated various target structures including seromucous gland epithelium and myoepithelium, respiratory epithelium, and smooth muscle of the tracheobronchial tree. The only macrovascular elements receiving vesicular acetylcholine transporter-positive innervation were the cerebral arteries. The microvasculature throughout the viscera, with the exception of lymphoid tissues, the liver and kidney, received vesicular acetylcholine transporter-positive innervation while the microvasculature of limb and trunk skeletal muscle appeared to be the only relevant somatic target of vesicular acetylcholine transporter innervation. Vesicular acetylcholine transporter

  18. Sympathetic Ophthalmia: Mangement and Role of Immunosuppressants

    OpenAIRE

    R.Kapoor, A.K.Sharma,Subash Bhardwaj

    2000-01-01

    Presented here is a case of sympathetic ophthalmia that provided us an oppotunity to evaluate theefficacy bfimmunosuppressive drugs with steroids in reduced doses and their outcome in improvingthe visual loss in a young patient who had fast deterioration in his visual acuity.

  19. Sympathetic Ophthalmia: Mangement and Role of Immunosuppressants

    Directory of Open Access Journals (Sweden)

    R.Kapoor, A.K.Sharma,Subash Bhardwaj

    2000-04-01

    Full Text Available Presented here is a case of sympathetic ophthalmia that provided us an oppotunity to evaluate theefficacy bfimmunosuppressive drugs with steroids in reduced doses and their outcome in improvingthe visual loss in a young patient who had fast deterioration in his visual acuity.

  20. Vitamin D Levels Are Associated with Cardiac Autonomic Activity in Healthy Humans

    Directory of Open Access Journals (Sweden)

    Linda Ellis

    2013-06-01

    Full Text Available Vitamin D deficiency (≤50nmol/L 25-hydroxy vitamin D is a cardiovascular (CV risk factor that affects approximately one billion people worldwide, particularly those affected by chronic kidney disease (CKD. Individuals with CKD demonstrate abnormal cardiac autonomic nervous system activity, which has been linked to the significant rates of CV-related mortality in this population. Whether vitamin D deficiency has a direct association with regulation of cardiac autonomic activity has never been explored in humans. Methods: Thirty-four (34 healthy, normotensive subjects were studied and categorized based on 25-hydroxy vitamin D deficiency (deficient vs. non-deficient, n = 7 vs. 27, as well as 1,25-dihydroxy vitamin D levels (above vs. below 25th percentile, n = 8 vs. 26. Power spectral analysis of electrocardiogram recordings provided measures of cardiac autonomic activity across low frequency (LF and high frequency (HF, representative of vagal contribution bands, representative of the sympathetic and vagal limbs of the autonomic nervous system when transformed to normalized units (nu, respectively, as well as overall cardiosympathovagal balance (LF:HF during graded angiotensin II (AngII challenge (3 ng/kg/min × 30 min, 6 ng/kg/min × 30 min. Results: At baseline, significant suppression of sympathovagal balance was observed in the 25-hydroxy vitamin D-deficient participants (LF:HF, p = 0.02 vs. non-deficient, although no other differences were observed throughout AngII challenge. Participants in the lowest 1,25-dihydroxy VD quartile experienced significant withdrawal of inhibitory vagal control, as well as altered overall sympathovagal balance throughout AngII challenge (HF, mean difference = −6.98 ± 3 nu, p = 0.05; LF:HF, mean difference = 0.34 ± 0.1, p = 0.043 vs. above 25th percentile. Conclusions: Vitamin D deficiency is associated with suppression of resting cardiac autonomic activity, while low 1,25-dihydroxy vitamin D levels are

  1. Dealing with nervousness

    OpenAIRE

    Lofnes, Ingrid

    2010-01-01

    This thesis examines stage fright among musicians, and the reason that some musicians apparently never bother with this issue, while others suffer so much from nervousness that it is making them sick. I have tried to figure out how one can get control over the nerves and how to be able to live as a musician in spite of nervousness. Nervousness is often strongly connected with our personality and how we see ourselves, and the psychological aspects of stage fright is therefore devoted quite muc...

  2. Individual differences in adolescents' sympathetic and parasympathetic functioning moderate associations between family environment and psychosocial adjustment.

    Science.gov (United States)

    Diamond, Lisa M; Fagundes, Christopher P; Cribbet, Matthew R

    2012-07-01

    The present study tested whether individual differences in autonomic nervous system functioning interact with environmental risk factors to predict adolescents' psychosocial functioning. The authors assessed skin conductance and respiratory sinus arrhythmia at rest and during laboratory stressors in 110 14-year-olds. Subsequently, adolescents and their mothers provided both questionnaire and daily diary data (over 10 days) on emotional and interpersonal functioning. The authors found stronger associations between environmental risk factors (having a single-mother household or a mother with high internalizing problems) and psychosocial outcomes (externalizing problems, daily negative affect, and daily interaction quality) among youths with specific patterns of tonic and stress-induced sympathetic and parasympathetic nervous system activity, but the pattern of moderating effects differed between boys and girls. The findings support the notion that individual differences in autonomic functioning index variation in youth's susceptibility to environmental risk factors. PMID:22268602

  3. Sympathetic and Catecholaminergic Alterations in Sleep Apnea with Particular Emphasis on Children.

    Directory of Open Access Journals (Sweden)

    Fahed eHakim

    2012-01-01

    Full Text Available Sleep is involved in the regulation of major organ functions in the human body, and disruption of sleep potentially can elicit organ dysfunction. Obstructive sleep apnea (OSA is the most prevalent sleep disorder of breathing in adults and children, and its manifestations reflect the interactions between intermittent hypoxia (IH, intermittent hypercapnia, increased intra-thoracic pressure swings, and sleep fragmentation, as elicited by the episodic changes in upper airway resistance during sleep. The sympathetic nervous system is an important modulator of the cardiovascular, immune, endocrine and metabolic systems, and alterations in autonomic activity may lead to metabolic imbalance and organ dysfunction. Here we review how OSA and its constitutive components can lead to perturbation of the autonomic nervous system in general, and to altered regulation of catecholamines, both of which then playing an important role in some of the mechanisms underlying OSA-induced morbidities.

  4. Sympathetic and hypothalamic-pituitary-adrenal asymmetry in generalized anxiety disorder.

    Science.gov (United States)

    Reeves, Jonathan W; Fisher, Aaron J; Newman, Michelle G; Granger, Douglas A

    2016-06-01

    Physiologic investigations of generalized anxiety disorder (GAD) have skewed toward assessment of the autonomic nervous system, largely neglecting hypothalamic-pituitary-adrenal (HPA) axis variables. Although these systems coordinate-suggesting a degree of symmetry-to promote adaptive functioning, most studies opt to monitor either one system or the other. Using a ratio of salivary alpha-amylase (sAA) over salivary cortisol, the present study examined symmetry between the sympathetic nervous system (SNS) and HPA axis in individuals with GAD (n = 71) and healthy controls (n = 37). Compared to healthy controls, individuals with GAD exhibited greater baseline ratios of sAA/cortisol and smaller ratios of sAA/cortisol following a mental arithmetic challenge. We propose that the present study provides evidence for SNS-HPA asymmetry in GAD. Further, these results suggest that increased SNS suppression in GAD may be partially mediated by cortisol activity. PMID:26934635

  5. Novel nervous system mechanisms in visceral pain.

    Science.gov (United States)

    De Winter, B Y; Deiteren, A; De Man, J G

    2016-03-01

    Visceral hypersensitivity is an important factor underlying abdominal pain in functional gastrointestinal disorders such as irritable bowel syndrome (IBS) and can result from aberrant signaling from the gut to the brain or vice versa. Over the last two decades, research has identified several selective, intertwining pathways that underlie IBS-related visceral nociception, including specific receptors on afferent and efferent nerve fibers such as transient receptor potential channels (TRP) channels, opioid, and cannabinoid receptors. In this issue of Neurogastroenterology and Motility Gil et al. demonstrate that in an animal model with reduced descending inhibitory control, the sympathetic nervous system outflow is enhanced, contributing to visceral and somatic hypersensitivity. They also provide evidence that interfering with the activation of adrenergic receptors on sensory nerves can be an interesting new strategy to treat visceral pain in IBS. This mini-review places these findings in a broader perspective by providing an overview of promising novel mechanisms to alter the nervous control of visceral pain interfering with afferent or efferent neuronal signaling. PMID:26891060

  6. Central nervous system resuscitation

    DEFF Research Database (Denmark)

    McIntosh, T K; Garde, E; Saatman, K E;

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities...

  7. Bypassing damaged nervous tissue

    CERN Document Server

    Shneider, M N

    2016-01-01

    We show the principal ability of bypassing damaged demyelinated portions of nervous tissue, thereby restoring its normal function for the passage of action potentials. We carry out a theoretical analysis on the basis of the synchronization mechanism of action potential propagation along a bundle of neurons, proposed recently in [1]. And we discuss the feasibility of implement a bypass to restore damaged nervous tissue and creating an artificial neuron network.

  8. Sympathetic Tone Induced by High Acoustic Tempo Requires Fast Respiration.

    Science.gov (United States)

    Watanabe, Ken; Ooishi, Yuuki; Kashino, Makio

    2015-01-01

    Many studies have revealed the influences of music, and particularly its tempo, on the autonomic nervous system (ANS) and respiration patterns. Since there is the interaction between the ANS and the respiratory system, namely sympatho-respiratory coupling, it is possible that the effect of musical tempo on the ANS is modulated by the respiratory system. Therefore, we investigated the effects of the relationship between musical tempo and respiratory rate on the ANS. Fifty-two healthy people aged 18-35 years participated in this study. Their respiratory rates were controlled by using a silent electronic metronome and they listened to simple drum sounds with a constant tempo. We varied the respiratory rate-acoustic tempo combination. The respiratory rate was controlled at 15 or 20 cycles per minute (CPM) and the acoustic tempo was 60 or 80 beats per minute (BPM) or the environment was silent. Electrocardiograms and an elastic chest band were used to measure the heart rate and respiratory rate, respectively. The mean heart rate and heart rate variability (HRV) were regarded as indices of ANS activity. We observed a significant increase in the mean heart rate and the low (0.04-0.15 Hz) to high (0.15-0.40 Hz) frequency ratio of HRV, only when the respiratory rate was controlled at 20 CPM and the acoustic tempo was 80 BPM. We suggest that the effect of acoustic tempo on the sympathetic tone is modulated by the respiratory system. PMID:26284521

  9. Sympathetic Tone Induced by High Acoustic Tempo Requires Fast Respiration.

    Directory of Open Access Journals (Sweden)

    Ken Watanabe

    Full Text Available Many studies have revealed the influences of music, and particularly its tempo, on the autonomic nervous system (ANS and respiration patterns. Since there is the interaction between the ANS and the respiratory system, namely sympatho-respiratory coupling, it is possible that the effect of musical tempo on the ANS is modulated by the respiratory system. Therefore, we investigated the effects of the relationship between musical tempo and respiratory rate on the ANS. Fifty-two healthy people aged 18-35 years participated in this study. Their respiratory rates were controlled by using a silent electronic metronome and they listened to simple drum sounds with a constant tempo. We varied the respiratory rate-acoustic tempo combination. The respiratory rate was controlled at 15 or 20 cycles per minute (CPM and the acoustic tempo was 60 or 80 beats per minute (BPM or the environment was silent. Electrocardiograms and an elastic chest band were used to measure the heart rate and respiratory rate, respectively. The mean heart rate and heart rate variability (HRV were regarded as indices of ANS activity. We observed a significant increase in the mean heart rate and the low (0.04-0.15 Hz to high (0.15-0.40 Hz frequency ratio of HRV, only when the respiratory rate was controlled at 20 CPM and the acoustic tempo was 80 BPM. We suggest that the effect of acoustic tempo on the sympathetic tone is modulated by the respiratory system.

  10. Sympathetic activity of S-(+-ketamine low doses in the epidural space

    Directory of Open Access Journals (Sweden)

    Slobodan Mihaljevic

    2014-07-01

    Full Text Available BACKGROUND AND OBJECTIVES: S-(+-ketamine is an intravenous anaesthetic and sympathomimetic with properties of local anaesthetic. It has an effect of an analgetic and local anaesthetic when administered epidurally, but there are no data whether low doses of S-(+-ketamine have sympathomimetic effects. The aim of this study was to determine whether low doses of S-(+-ketamine, given epidurally together with local anaesthetic, have any effect on sympathetic nervous system, both systemic and below the level of anaesthetic block. METHODS: The study was conducted on two groups of patients to whom epidural anaesthesia was administered to. Local anaesthesia (0.5% bupivacaine was given to one group (control group while local anaesthesia and S-(+-ketamine were given to other group. Age, height, weight, systolic, diastolic and mean arterial blood pressure were measured. Non-competitive enzyme immunochemistry method (Cat Combi ELISA was used to determine the concentrations of catecholamines (adrenaline and noradrenaline. Immunoenzymometric determination with luminescent substrate on a machine called Vitros Eci was used to determine the concentration of cortisol. Pulse transit time was measured using photoplethysmography. Mann-Whitney U-test, Wilcoxon test and Friedman ANOVA were the statistical tests. Blood pressure, pulse, adrenaline, noradrenaline and cortisol concentrations were measured in order to estimate systemic sympathetic effects. RESULTS: 40 patients in the control group were given 0.5% bupivacaine and 40 patients in the test group were given 0.5% bupivacaine with S-(+-ketamine. Value p < 0.05 has been taken as a limit of statistical significance. CONCLUSIONS: Low dose of S-(+-ketamine administered epidurally had no sympathomimetic effects; it did not change blood pressure, pulse, serum hormones or pulse transit time. Low dose of S-(+-ketamine administered epidurally did not deepen sympathetic block. Adding 25 mg of S-(+-ketamine to 0

  11. Highly abnormal thermotests in familial dysautonomia suggest increased cardiac autonomic risk

    OpenAIRE

    Hilz, M; Kolodny, E.; Neuner, I; Stemper, B; Axelrod, F

    1998-01-01

    OBJECTIVE—Patients with familial dysautonomia have an increased risk of sudden death. In some patients with familial dysautonomia, sympathetic cardiac dysfunction is indicated by prolongation of corrected QT (QTc) interval, especially during stress tests. As many patients do not tolerate physical stress, additional indices are needed to predict autonomic risk. In familial dysautonomia there is a reduction of both sympathetic neurons and peripheral small nerve fibres which...

  12. Release of NPY in pig pancreas: Dual parasympathetic and sympathetic regulation

    International Nuclear Information System (INIS)

    Several lines of evidence have connected neuropeptide Y (NPY), a 36-residue polypeptide, to the sympathetic division of the autonomic nervous system. The authors studied the localization, the molecular characteristics, and the release of NPY and norepinephrine (NE) in the porcine pancreas. Immunohistochemical investigations revealed that NPY nerves around blood vessels were likely to be of adrenergic nature, whereas NPY-immunoreactive fibers close to exocrine and endocrine cells may originate from local ganglia also containing VIP (vasoactive intestinal peptide) and PHI (peptide histidine isoleucine). Electrical stimulation of the splanchnic nerve supply to the isolated perfused pig pancreas resulted in a corelease of NPY and NE into the venous effluent. Stimulation of the vagal nerves caused a sevenfold larger release of NPY without affecting the NE secretion. Characterization of the NPY immunoreactivity in the pancreatic tissue and in the venous effluent by gel filtration, high-performance liquid chromatography, and isoelectric focusing shoed that the immunoreactive NPY was indistinguishable from synthetic porcine NPY. It is concluded that, although NPY is associated with sympathetic perivascular neurons, the majority of the pancreatic NPY-containing nerve fibers are likely to belong to the parasympathetic division of the autonomic nervous system

  13. Sympathetic blocks for visceral cancer pain management

    DEFF Research Database (Denmark)

    Mercadante, Sebastiano; Klepstad, Pal; Kurita, Geana Paula; Sjogren, Per; Giarratano, Antonino

    2015-01-01

    The neurolytic blocks of sympathetic pathways, including celiac plexus block (CPB) and superior hypogastric plexus block (SHPB) , have been used for years. The aim of this review was to assess the evidence to support the performance of sympathetic blocks in cancer patients with abdominal visceral...... effects in comparison with a conventional analgesic treatment. In one study patients treated with superior hypogastric plexus block (SHPB) had a decrease in pain intensity and a less morphine consumption, while no statistical differences in adverse effects were found. The quality of these studies was...... generally poor due to several limitations, including sample size calculation, allocation concealment, no intention to treat analysis. However, at least two CPB studies were of good quality. Data regarding the comparison of techniques or other issues were sparse and of poor quality, and evidence could not be...

  14. Increased Feeding Speed Is Associated with Higher Subsequent Sympathetic Activity in Dogs.

    Directory of Open Access Journals (Sweden)

    Nobuyo Ohtani

    Full Text Available Although the domestication process has altered the feeding behavior of dogs, some breeds still demonstrate a remarkable ability to gorge, and will eat exceptionally large quantities of food whenever it is available. Lesions in the ventromedial hypothalamus increase appetite and lead to obesity, suggesting that the autonomic nervous system plays an important role in feeding. Focusing on the autonomic activities closely involved in food intake, we investigated sympathetic activities before and after feeding in dogs. The subjects were 56 healthy dogs of 21 different breeds (29 males and 27 females. Based on feeding habits, the 56 dogs were divided into three groups: Fast (n = 19, Slow (n = 24 and Leftover (n = 13. The feeding speed and the amount of food per mouthful of the Fast dogs were significantly greater than those of the Slow and the Leftover dogs. The plasma norepinephrine level in dogs of the Fast group was significantly increased after feeding, while those in the Slow and Leftover groups were significantly decreased after feeding, compared with the pre-feeding concentrations. The low frequency/high frequency ratio of heart rate variability is a good indicator of sympathetic activity and was also significantly higher in the Fast group than in the other groups. Delayed feeding using automatic feeding equipment decreased the plasma norepinephrine concentration and low frequency/high frequency ratio observed after feeding in dogs of the Fast group. In conclusion, dogs eating rapidly with less chewing, which indicates increased sympathetic activity during feeding, may benefit from delayed feeding. The slow eating may activate the parasympathetic nervous system after feeding, which could enhance the activity of the digestive system.

  15. Effects of mildly increasing dialysis sodium removal on renin and sympathetic system in hemodialysis patients

    Institute of Scientific and Technical Information of China (English)

    Shen Yang; Sun Fang; Liu Jing; Ma Lijie; Huang Jing; Zhou Yilun; Liu Wenhu

    2014-01-01

    Background It has been argued that the benefits of reducing sodium loading may be offset by increased activation of the renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system.This study aimed to investigate the long-term effects of an increase in dialysis sodium removal on circulating RAAS and sympathetic system in hypertensive hemodialysis (HD) patients with "normal" post-HD volume status.Methods Thirty hypertensive HD patients were enrolled in this pilot trial.After one month period of dialysis with standard dialysate sodium of 138 mmol/L,the patients were followed up for a four months period with dialysate sodium set at 136 mmol/L,without changes in instructions regarding dietary sodium control.During the period of study,the dry weight was adjusted monthly under the guidance of bioimpedance spectroscopy to maintain post-HD volume status in a steady state; 44-hour ambulatory blood pressure,plasma renin,angiotensin Ⅱ (Ang Ⅱ),aldosterone,and norepinephrine (NE) were measured.Results After four months of HD with low dialysate sodium of 136 mmol/L,44-hour systolic and diastolic blood pressures (BPs) were significantly lower (-10 and-6 mmHg),in the absence of changes in antihypertensive medications.No significant changes were observed in plasma renin,Ang Ⅱ,aldosterone,and NE concentrations.The post-HD volume parameters were kept constant.Conclusion Mildly increasing dialysis sodium removal over 4 months can significantly improve BP control and does not activate circulating RAAS and sympathetic nervous system in hypertensive HD patients.

  16. Cervical sympathetic chain schwannoma: a case report

    OpenAIRE

    Inès Nacef; Skander Kedous; Zied Attia; Slim Touati; Said Gritli

    2012-01-01

    Nerve tumors arising from the sympathetic chain are uncommon slow-growing tumors and represent a diagnosis challenge. Their malignant degeneration is rare. Definitive pre-operative diagnosis may be difficult as investigations are not usually helpful. We report the case of a 23-year old woman who presented with an asymptomatic solitary left cervical swelling. She was evaluated with sonography and computed tomography. Complete surgical excision of the lesion was carried out and histologic exami...

  17. Sympathetic hyperactivity syndrome following cerebral fat embolization

    OpenAIRE

    2013-01-01

    To date, there have been no reports of paroxysmal sympathetic hyperactivity syndrome (PSHS) associated with cerebral fat embolization. We describe the case of a young male who developed acute brain injury and acute hypoxemic respiratory failure secondary to significant fat embolization following a traumatic femur injury. Our patient demonstrated episodes of significant hypertension, tachycardia, fever and extensor posturing. Extensive evaluation lead to the diagnosis and appropriate ...

  18. Decreased uptake on bone scans in reflex sympathetic dystrophy. Sixteen personal cases with a review of the literature

    International Nuclear Information System (INIS)

    Until recently, reflex sympathetic dystrophy was thought to be a disease that necessarily involved the bones, with significant, homogeneous or heterogeneous bone loss, and consistently increased uptake on bone scans using technetium 99m diphosphonates. Actually, recent studies have focused on the great variability of findings in this disease, which is always responsible for pain in one or more joints, due to vasomotor disorders originating in autonomic nervous system dysfuncion, and for a very broad spectrum of functional manifestations. Among the many clinical patterns found in reflex sympathetic dystrophy, forms with ischemic manifestations at onset, including hypothermia and decreased uptake on bone scans have been described. In some instances, the clinical picture is reminiscent of ischemic arterial disease. Although these cold-onset forms seem fairly rare in adults, they appear to be more frequent than hot-onset forms in children. Decreased isotope uptake is found in more than 63% of reflex sympathetic dystrophies in children. As concerns course and management, these cold-onset forms are not very different from habitual forms. Decreased isotope uptake shoul now be listed with increased uptake among the findings suggestive of reflex sympathetic dystrophy, especially, through not exclusively, in young adults and above all children

  19. Prognostic value of myocardial sympathetic activity in patients with asymptomatic myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Michihiro; Kurihara, Tadashi; Sindoh, Takashi; Sawada, Yoshihiro [Sumitomo Hospital, Osaka (Japan)

    1999-04-01

    To clarify the significance of myocardial sympathetic activity in patients with asymptomatic myocardial infarction (MI), we performed {sup 123}I-metaiodobenzyl-guanidine (MIBG) and {sup 201}Tl imaging at rest. We calculated the ratio of cardiac uptake of the isotope to the total injected dose (%Uptake), percent washout of MIBG over 3 hours and the Uptake Ratio (UR, %Uptake of MIBG divided by %Uptake of {sup 201}Tl). We compared these indices with clinical findings, exercise stress-rest myocardial perfusion imaging with {sup 99}Tc-methoxy-2-isobutyl isonitrile, coronary angiography, echocardiography and neurohumoral findings. During the follow-up period of 19.9{+-}10.3 months in 32 patients, events (heart failure or cardiac death) developed in 10 (31%). In univariate analysis, diabetes mellitus, atrial fibrillation, left ventricular end-diastolic dimension (LVDd) greater than 54 mm, and the %Uptake of MIBG and UR differed significantly between event and event-free groups. Cox proportional hazard model showed that the UR was a predictor of events (p=0.0007). In patients with UR less than 0.58, the relative risk of events was 19.1 times greater than in patients with an UR greater than 0.58. UR was closely correlated to LVDd (r=-0.578, p=0.01) suggesting that myocardial sympathetic activity is related to LV remodeling after MI. MIBG imaging provides important information regarding the prognosis and the pathophysiologic process of asymptomatic MI. (author)

  20. Prognostic value of myocardial sympathetic activity in patients with asymptomatic myocardial infarction

    International Nuclear Information System (INIS)

    To clarify the significance of myocardial sympathetic activity in patients with asymptomatic myocardial infarction (MI), we performed 123I-metaiodobenzyl-guanidine (MIBG) and 201Tl imaging at rest. We calculated the ratio of cardiac uptake of the isotope to the total injected dose (%Uptake), percent washout of MIBG over 3 hours and the Uptake Ratio (UR, %Uptake of MIBG divided by %Uptake of 201Tl). We compared these indices with clinical findings, exercise stress-rest myocardial perfusion imaging with 99Tc-methoxy-2-isobutyl isonitrile, coronary angiography, echocardiography and neurohumoral findings. During the follow-up period of 19.9±10.3 months in 32 patients, events (heart failure or cardiac death) developed in 10 (31%). In univariate analysis, diabetes mellitus, atrial fibrillation, left ventricular end-diastolic dimension (LVDd) greater than 54 mm, and the %Uptake of MIBG and UR differed significantly between event and event-free groups. Cox proportional hazard model showed that the UR was a predictor of events (p=0.0007). In patients with UR less than 0.58, the relative risk of events was 19.1 times greater than in patients with an UR greater than 0.58. UR was closely correlated to LVDd (r=-0.578, p=0.01) suggesting that myocardial sympathetic activity is related to LV remodeling after MI. MIBG imaging provides important information regarding the prognosis and the pathophysiologic process of asymptomatic MI. (author)

  1. Increased sympathetic tone in forearm subcutaneous tissue in primary hypothyroidism

    DEFF Research Database (Denmark)

    Vagn Nielsen, H; Hasselström, K; Feldt-Rasmussen, U;

    1987-01-01

    Sympathetic reflex regulation of subcutaneous blood flow (SBF) in the forearm was studied in eight patients with primary hypothyroidism. Diastolic arterial pressure was greater than or equal to 95 mmHg in five patients. SBF was determined by local clearance of Na99mTcO4. Sympathetic vasoconstrict......Sympathetic reflex regulation of subcutaneous blood flow (SBF) in the forearm was studied in eight patients with primary hypothyroidism. Diastolic arterial pressure was greater than or equal to 95 mmHg in five patients. SBF was determined by local clearance of Na99mTcO4. Sympathetic.......02)). In conclusion sympathetic vasoconstrictor activity in adipose tissue is markedly increased in primary hypothyroidism. Sympathetic tone and arterial pressure are reduced during treatment....

  2. Hibernating myocardium results in partial sympathetic denervation and nerve sprouting

    OpenAIRE

    Stanley F. Fernandez; Ovchinnikov, Vladislav; Canty, John M.; Fallavollita, James A.

    2012-01-01

    Hibernating myocardium due to chronic repetitive ischemia is associated with regional sympathetic nerve dysfunction and spontaneous arrhythmic death in the absence of infarction. Although inhomogeneity in regional sympathetic innervation is an acknowledged substrate for sudden death, the mechanism(s) responsible for these abnormalities in viable, dysfunctional myocardium (i.e., neural stunning vs. sympathetic denervation) and their association with nerve sprouting are unknown. Accordingly, ma...

  3. Sympathetic denervation-induced MSC mobilization in distraction osteogenesis associates with inhibition of MSC migration and osteogenesis by norepinephrine/adrb3.

    Science.gov (United States)

    Du, Zhaojie; Wang, Lei; Zhao, Yinghua; Cao, Jian; Wang, Tao; Liu, Peng; Zhang, Yabo; Yang, Xinjie; Cheng, Xiaobing; Liu, Baolin; Lei, Delin

    2014-01-01

    The sympathetic nervous system regulates bone formation and resorption under physiological conditions. However, it is still unclear how the sympathetic nerves affect stem cell migration and differentiation in bone regeneration. Distraction osteogenesis is an ideal model of bone regeneration due to its special nature as a self-engineering tissue. In this study, a rat model of mandibular distraction osteogenesis with transection of cervical sympathetic trunk was used to demonstrate that sympathetic denervation can deplete norepinephrine (NE) in distraction-induced bone callus, down-regulate β3-adrenergic receptor (adrb3) in bone marrow mesenchymal stem cells (MSCs), and promote MSC migration from perivascular regions to bone-forming units. An in vitro Transwell assay was here used to demonstrate that NE can inhibit stroma-derived factor-1 (SDF-1)-induced MSC migration and expression of the migration-related gene matrix metalloproteinase-2 (MMP-2) and downregulate that of the anti-migration gene tissue inhibitor of metalloproteinase-3 (TIMP-3). Knockdown of adrb3 using siRNA abolishes inhibition of MSC migration. An in vitro osteogenic assay was used to show that NE can inhibit the formation of MSC bone nodules and expression of the osteogenic marker genes alkaline phosphatase (ALP), osteocalcin (OCN), and runt-related transcription factor-2 (RUNX2), but knockdown of adrb3 by siRNA can abolish such inhibition of the osteogenic differentiation of MSCs. It is here concluded that sympathetic denervation-induced MSC mobilization in rat mandibular distraction osteogenesis is associated with inhibition of MSC migration and osteogenic differentiation by NE/adrb3 in vitro. These findings may facilitate understanding of the relationship of MSC mobilization and sympathetic nervous system across a wide spectrum of tissue regeneration processes. PMID:25144690

  4. Sympathetic denervation-induced MSC mobilization in distraction osteogenesis associates with inhibition of MSC migration and osteogenesis by norepinephrine/adrb3.

    Directory of Open Access Journals (Sweden)

    Zhaojie Du

    Full Text Available The sympathetic nervous system regulates bone formation and resorption under physiological conditions. However, it is still unclear how the sympathetic nerves affect stem cell migration and differentiation in bone regeneration. Distraction osteogenesis is an ideal model of bone regeneration due to its special nature as a self-engineering tissue. In this study, a rat model of mandibular distraction osteogenesis with transection of cervical sympathetic trunk was used to demonstrate that sympathetic denervation can deplete norepinephrine (NE in distraction-induced bone callus, down-regulate β3-adrenergic receptor (adrb3 in bone marrow mesenchymal stem cells (MSCs, and promote MSC migration from perivascular regions to bone-forming units. An in vitro Transwell assay was here used to demonstrate that NE can inhibit stroma-derived factor-1 (SDF-1-induced MSC migration and expression of the migration-related gene matrix metalloproteinase-2 (MMP-2 and downregulate that of the anti-migration gene tissue inhibitor of metalloproteinase-3 (TIMP-3. Knockdown of adrb3 using siRNA abolishes inhibition of MSC migration. An in vitro osteogenic assay was used to show that NE can inhibit the formation of MSC bone nodules and expression of the osteogenic marker genes alkaline phosphatase (ALP, osteocalcin (OCN, and runt-related transcription factor-2 (RUNX2, but knockdown of adrb3 by siRNA can abolish such inhibition of the osteogenic differentiation of MSCs. It is here concluded that sympathetic denervation-induced MSC mobilization in rat mandibular distraction osteogenesis is associated with inhibition of MSC migration and osteogenic differentiation by NE/adrb3 in vitro. These findings may facilitate understanding of the relationship of MSC mobilization and sympathetic nervous system across a wide spectrum of tissue regeneration processes.

  5. Um modelo experimental de ablação do Sistema Nervoso Intrínseco Cardíaco reduz a contratilidade do coração de ratos A new experimental model of chemical ablation of the Intrinsic Cardiac Nervous System reduces heart contractility and causes a type of dilated cardiopathy in rats

    Directory of Open Access Journals (Sweden)

    Adilson Scorzoni Filho

    2004-09-01

    Full Text Available OBJETIVO: A função do Sistema Nervoso Intrínseco Cardíaco e o seu papel na doença cardíaca permanecem pobremente compreendidos. Sabe-se que o cloreto de benzalcônio (CB induz a desnervação intrínseca do tubo digestivo. O objetivo deste estudo foi tentar produzir um modelo experimental de desnervação intrínseca do coração utilizando o CB. MÉTODO: Trinta ratos Wistar foram submetidos à aplicação intrapericárdica de CB (0,3% e trinta animais controle receberam a solução salina. Após 15 dias, os animais foram divididos em três grupos, com 10 animais tratados e 10 controles em cada. Os animais do grupo I foram submetidos a estudo radiológico e histopatológico. A área cardíaca e o índice cardiotorácico (ICT foram medidos nas radiografias. Os animais do grupo II foram submetidos a estudo hemodinâmico com registro da pressão arterial, freqüência cardíaca e débito cardíaco. No grupo III, a integridade da inervação parassimpática extrínseca do coração foi avaliada por estimulação vagal direita. O sistema de condução foi avaliado pelo ECG basal. RESULTADOS: A aplicação de CB acarretou aumento do ICT, da área cardíaca, pressão arterial e débito cardíaco, bem como do peso ponderal e do fígado. Nestes animais, a análise histopatológica mostrou redução do número de neurônios atriais e congestão passiva crônica do fígado. A estimulação vagal não mostrou diferenças entre os grupos experimentais. CONCLUSÃO: A ablação do sistema nervoso intrínseco propiciou o aparecimento de cardiopatia dilatada com insuficiência cardíaca direita e esquerda. Esse modelo experimental inédito deverá nortear futuros estudos na tentativa da elucidação da relação entre lesão neuronal e miocardiopatia.OBJECTIVE: The function of Intrinsic Cardiac Nervous System is largely unknown, as is its role in heart disease. In the digestive system, a topic aplication of Benzalkonium chloride (BC leads to intrinsic

  6. Depression induces bone loss through stimulation of the sympathetic nervous system

    OpenAIRE

    Yirmiya, Raz; Goshen, Inbal; Bajayo, Alon; Kreisel, Tirzah; Feldman, Sharon; Tam, Joseph; Trembovler, Victoria; Csernus, Valér; Shohami, Esther; Bab, Itai

    2006-01-01

    Major depression is associated with low bone mass and increased incidence of osteoporotic fractures. However, causality between depression and bone loss has not been established. Here, we show that mice subjected to chronic mild stress (CMS), an established model of depression in rodents, display behavioral depression accompanied by impaired bone mass and structure, as portrayed by decreases in trabecular bone volume density, trabecular number, and trabecular connectivity density assessed in ...

  7. The Nervous System Game

    Science.gov (United States)

    Corbitt, Cynthia; Carpenter, Molly

    2006-01-01

    For many children, especially those with reading difficulties, a motor-kinesthetic learning activity may be an effective tool to teach complex concepts. With this in mind, the authors developed and tested a game designed to teach fourth- to sixth-grade children some basic principles of nervous system function by allowing the children themselves to…

  8. Role of the autonomic nervous system in activation of human brown adipose tissue: A review of the literature.

    Science.gov (United States)

    Bahler, L; Molenaars, R J; Verberne, H J; Holleman, F

    2015-12-01

    Brown adipose tissue (BAT) is able to convert calories into heat rather than storing them. Therefore, activated BAT could be a potential target in the battle against obesity and type 2 diabetes. This review focuses on the role of the autonomic nervous system in the activation of human BAT. Although the number of studies focusing on BAT in humans is limited, involvement of the sympathetic nervous system (SNS) in BAT activation is evident. Metabolic BAT activity can be visualized with (18)F-fluorodeoxyglucose, whereas sympathetic activation of BAT can be visualized with nuclear-medicine techniques using different radiopharmaceuticals. Also, interruption of the sympathetic nerves leading to BAT activation diminishes sympathetic stimulation, resulting in reduced metabolic BAT activity. Furthermore, both β- and α-adrenoceptors might be important in the stimulation process of BAT, as pretreatment with propranolol or α-adrenoceptor blockade also diminishes BAT activity. In contrast, high catecholamine levels are known to activate and recruit BAT. There are several interventional studies in which BAT was successfully inhibited, whereas only one interventional study aiming to activate BAT resulted in the intended outcome. Most studies have focused on the SNS for activating BAT, although the parasympathetic nervous system might also be a target of interest. To better define the possible role of BAT in strategies to combat the obesity epidemic, it seems likely that future studies focusing on both histology and imaging are essential for identifying the factors and receptors critical for activation of human BAT. PMID:26404650

  9. Cervical sympathetic chain schwannoma: A case report

    Directory of Open Access Journals (Sweden)

    Inès Nacef

    2014-07-01

    Full Text Available Nerve tumors arising from the sympathetic chain are uncommon slow-growing tumors and represent a diagnosis challenge. Their malignant degeneration is rare. Definitive pre-operative diagnosis may be difficult as investigations are not usually helpful. We report the case of a 23-year old woman who presented with an asymptomatic solitary left cervical swelling. She was evaluated with sonography and computed tomography. Complete surgical excision of the lesion was carried out and histologic examination revealed a schwannoma. Post-operatively, the patient showed clinical findings of Horner’s syndrome. Pathologic and radiological evaluation, differential diagnosis of this neoplasm and its management are discussed.

  10. Role of sympathetic innervation in obesity

    OpenAIRE

    Pereira, Mafalda Maria Robalo de Azevedo Aleixo

    2015-01-01

    Part of the results presented in this thesis were published in the following reference (DOI 10.1016/j.cell.2015.08.055): Wenwen Zeng*, Roksana M. Pirzgalska*, Mafalda M.A. Pereira, Nadiya Kubasova, Andreia Barateiro, Elsa Seixas, Yi-Hsueh Lu, Albina Kozlova, Henning Voss, Gabriel G. Martins, Jeffrey M. Friedman and Ana I. Domingos. Sympathetic Neuro-adipose Connections Mediate Leptin-Driven Lipolysis. Cell 163, 84-94 (2015). The work was also presented through poster presentations at iMED Con...

  11. HIF2A and IGF2 Expression Correlates in Human Neuroblastoma Cells and Normal Immature Sympathetic Neuroblasts

    Directory of Open Access Journals (Sweden)

    Sofie Mohlin

    2013-03-01

    Full Text Available During normal sympathetic nervous system (SNS development, cells of the ganglionic lineage can malignantly transform and develop into the childhood tumor neuroblastoma. Hypoxia-inducible transcription factors (HIFs mediate cellular responses during normal development and are central in the adaptation to oxygen shortage. HIFs are also implicated in the progression of several cancer forms, and high HIF-2α expression correlates with disseminated disease and poor outcome in neuroblastoma. During normal SNS development, HIF2A is transiently expressed in neuroblasts and chromaffin cells. SNS cells can, during development, be distinguished by distinct gene expression patterns, and insulin-like growth factor 2 (IGF2 is a marker of sympathetic chromaffin cells, whereas sympathetic neuroblasts lack IGF2 expression. Despite the neuronal derivation of neuroblastomas, we show that neuroblastoma cell lines and specimens express IGF2 and that expression of HIF2A and IGF2 correlates, with the strongest correlation in high-stage tumors. In neuroblastoma, both IGF2 and HIF2A are hypoxia-driven and knocking down IGF2 at hypoxia resulted in downregulated HIF2A levels. HIF-2α and IGF2 were strongly expressed in subsets of immature neuroblastoma cells, suggesting that these two genes could be co-expressed also at early stages of SNS development. We show that IGF2 is indeed expressed in sympathetic chain ganglia at embryonic week 6.5, a developmental stage when HIF-2α is present. These findings provide a rationale for the unexpected IGF2 expression in neuroblastomas and might suggest that IGF2 and HIF2A positive neuroblastoma cells are arrested at an embryonic differentiation stage corresponding to the stage when sympathetic chain ganglia begins to coalesce.

  12. The orphan nuclear receptor Nr4a1 couples sympathetic and inflammatory cues in CNS-recruited macrophages to limit neuroinflammation

    OpenAIRE

    Shaked, Iftach; Hanna, Richard N.; Shaked, Helena; Chodaczek, Grzegorz; Nowyhed, Heba N.; Tweet, George; Tacke, Robert; Basat, Alp Bugra; Mikulski, Zbigniew; Togher, Susan; Miller, Jacqueline; Blatchley, Amy; Salek-Ardakani, Shahram; Darvas, Martin; Kaikkonen, Minna U.

    2015-01-01

    Molecular mechanisms linking the sympathetic stress response and inflammation remain enigmatic. Here we demonstrate that the transcription factor Nr4a1 regulates production of norepinephrine (NE) in macrophages, thereby limiting experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Lack of Nr4a1 in myeloid cells led to enhanced NE production, accelerated leukocyte infiltration to the central nervous system (CNS) and disease exacerbation in vivo. In contrast, my...

  13. Sympathetic re-innervation of myocardium after liver transplant in the hereditary amyloid neuropathy

    International Nuclear Information System (INIS)

    The hereditary amyloid neuropathy (HAN) is characterized by a progressive sensory-motor poly-neuropathy and a dysautonomia with myocardium sympathetic denervation. This is established by MIBL scintigraphy and may enhance the troubles of conduction and of cardiac rhythm. The amyloid deposits are constituted of anomalous pre-albumin fabricated by liver. The hepatic transplant (HT) is the only known treatment. Four patients (GI: 39 ± 5 years) have been studied by MIBG scintigraphy, 2.2 ± 0.7 years after HT, and compared with 12 patients (GII: 39 ± 12 years) studied before HT. The left ventricular function, the coronary arteries and the at-rest scintigraphy with thallium were normal for all of them. The cardiac capture of MIBG, evaluated by the cardio-mediastinal activity ratio (C/M), measured on an anterior thoracic planar acquisition performed 4 hours after the intravenous injection of 300 MBq, was higher for GI than for GII (1.49 ± 0.12 vs 1.29 ± 0.13, p 0.02). The washouts (4 h / 20 min) were not different. In tomography, the patients of GI presented focal anomalies with a more-or-less extended apical defect, a satisfying fixation of the basal half of the anterior wall, more-or-less overflowing the septal and lateral walls, and for 2 patients, a satisfying inferior fixation. On the contrary, 9/12 patients of GII have had a diffuse absence of fixation, the other three heaving a satisfying antero-basal fixation (χ2, p = 0.05). The results are not explained by difference of severity or evolution duration of HAN. Thus, it appears that there exists a sympathetic re-innervation of myocardium after HT in the HAN, debuting by the heart base, similarly with the effect of anatomic interruption of innervation in cardiac transplants

  14. Renal sympathetic denervation: MDCT evaluation of the renal arteries.

    LENUS (Irish Health Repository)

    Hutchinson, Barry D

    2013-08-01

    Percutaneous transluminal renal sympathetic denervation is a new treatment of refractory systemic hypertension. The purpose of this study was to assess the clinical utility of MDCT to evaluate the anatomic configuration of the renal arteries in the context of renal sympathetic denervation.

  15. Sympathetic nerve damage and restoration after ischemia-reperfusion injury as assessed by 11C-hydroxyephedrine

    International Nuclear Information System (INIS)

    An altered state of the cardiac sympathetic nerves is an important prognostic factor in patients with coronary artery disease. The aim of this study was to investigate regional sympathetic nerve damage and restoration utilizing a rat model of myocardial transient ischemia and a catecholamine analog PET tracer, 11C-hydroxyephedrine (11C-HED). Transient myocardial ischemia was induced by coronary occlusion for 20 min and reperfusion in male Wistar rats. Dual-tracer autoradiography was performed subacutely (7 days) and chronically (2 months) after ischemia, and in control rats without ischemia using 11C-HED as a marker of sympathetic innervation and 201TI for perfusion. Additional serial in vivo cardiac 11C-HED and 18F-FDG PET scans were performed in the subacute and chronic phases after ischemia. After transient ischemia, the 11C-HED uptake defect areas in both the subacute and chronic phases were clearly larger than the perfusion defect areas in the midventricular wall. The subacute 11C-HED uptake defect showed a transmural pattern, whereas uptake recovered in the subepicardial portion in the chronic phase. Tyrosine hydroxylase antibody nerve staining confirmed regional denervation corresponding to areas of decreased 11C-HED uptake. Serial in vivo PET imaging visualized reductions in the area of the 11C-HED uptake defects in the chronic phase consistent with autoradiography and histology. Higher susceptibility of sympathetic neurons compared to myocytes was confirmed by a larger 11C-HED defect with a corresponding histologically identified region of denervation. Furthermore, partial reinnervation was observed in the chronic phase as shown by recovery of subepicardial 11C-HED uptake. (orig.)

  16. Sympathetic nerve damage and restoration after ischemia-reperfusion injury as assessed by {sup 11}C-hydroxyephedrine

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Rudolf A.; Higuchi, Takahiro [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); University of Wuerzburg, Comprehensive Heart Failure Center, Wuerzburg (Germany); Maya, Yoshifumi [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Nihon Medi-Physics Co., Ltd., Research Centre, Chiba (Japan); Rischpler, Christoph [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Muenchen (Germany); Javadi, Mehrbod S. [Johns Hopkins University, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, Baltimore, MD (United States); Fukushima, Kazuhito [Hyogo College of Medicine, Department of Radiology, Hyogo (Japan); Lapa, Constantin [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Herrmann, Ken [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); David Geffen School of Medicine at UCLA, Department of Molecular and Medical Pharmacology, Los Angeles, CA (United States)

    2016-02-15

    An altered state of the cardiac sympathetic nerves is an important prognostic factor in patients with coronary artery disease. The aim of this study was to investigate regional sympathetic nerve damage and restoration utilizing a rat model of myocardial transient ischemia and a catecholamine analog PET tracer, {sup 11}C-hydroxyephedrine ({sup 11}C-HED). Transient myocardial ischemia was induced by coronary occlusion for 20 min and reperfusion in male Wistar rats. Dual-tracer autoradiography was performed subacutely (7 days) and chronically (2 months) after ischemia, and in control rats without ischemia using {sup 11}C-HED as a marker of sympathetic innervation and {sup 201}TI for perfusion. Additional serial in vivo cardiac {sup 11}C-HED and {sup 18}F-FDG PET scans were performed in the subacute and chronic phases after ischemia. After transient ischemia, the {sup 11}C-HED uptake defect areas in both the subacute and chronic phases were clearly larger than the perfusion defect areas in the midventricular wall. The subacute {sup 11}C-HED uptake defect showed a transmural pattern, whereas uptake recovered in the subepicardial portion in the chronic phase. Tyrosine hydroxylase antibody nerve staining confirmed regional denervation corresponding to areas of decreased {sup 11}C-HED uptake. Serial in vivo PET imaging visualized reductions in the area of the {sup 11}C-HED uptake defects in the chronic phase consistent with autoradiography and histology. Higher susceptibility of sympathetic neurons compared to myocytes was confirmed by a larger {sup 11}C-HED defect with a corresponding histologically identified region of denervation. Furthermore, partial reinnervation was observed in the chronic phase as shown by recovery of subepicardial {sup 11}C-HED uptake. (orig.)

  17. [Cardiac amyloidosis. General review].

    Science.gov (United States)

    Laraki, R

    1994-04-01

    Cardiac amyloidosis, most often of AL type, is a non-exceptional disease as it represents 5 to 10% of non-ischemic cardiomyopathies. It realizes typically a restrictive cardiomyopathy. Nevertheless the wide diversity of possible presentation makes it a "big shammer" which must be evoked in front of every unexplained cardiopathy after the age of forty. If some associated manifestations can rapidly suggest the diagnosis, as a peripheric neuropathy especially a carpal tunnel syndrome or palpebral ecchymosis, cardiac involvement can also evolve in an apparently isolated way. The most suggestive paraclinic elements for the diagnosis are, in one hand, the increased myocardial echogenicity with a "granular sparkling" appearance seen throughout all walls of the left ventricle and, in the other hand, the association of a thickened left ventricle and a low voltage (electrocardiogram could also show pseudo-infarct Q waves). In front of such aspects, the proof of amyloidosis is brought by an extra-cardiac biopsy or by scintigraphy with labelled serum amyloid P component, so that the indications of endomyocardial biopsy are very limited today. The identification of the amyloid nature of a cardiopathy has an direct therapeutic implication: it contra-indicates the use of digitalis, calcium channel blockers and beta-blockers. The treatment of AL amyloidosis (chemotherapy with alkylant agents) remains very unsatisfactory especially in the cardiac involvement which is the most frequent cause of death (in AL amyloidosis). Last, cardiac amyloidosis is a bad indication for transplantation which results are burden by rapid progression of deposits especially in the gastro-intestinal tract and the nervous system. PMID:8059146

  18. Nervous System Problems and Dementia

    Science.gov (United States)

    ... Language: Fact Sheet 505 Nervous System Problems and Dementia WHAT ARE NERVOUS SYSTEM PROBLEMS? WHAT ARE THE ... of AIDS these were all called “HIV-Associated Dementia.” However, a broader range of problems is showing ...

  19. Chain Reconnections observed in Sympathetic Eruptions

    CERN Document Server

    Joshi, Navin Chandra; Magara, Tetsuya; Guo, Yang; Aulanier, Guillaume

    2016-01-01

    The nature of various plausible causal links between sympathetic events is still a controversial issue. In this work, we present multi-wavelength observations of sympathetic eruptions, associated flares and coronal mass ejections (CMEs) occurring on 2013 November 17 in two close-by active regions. Two filaments i.e., F1 and F2 are observed in between the active regions. Successive magnetic reconnections, caused by different reasons (flux cancellation, shear and expansion) have been identified during the whole event. The first reconnection occurred during the first eruption via flux cancellation between the sheared arcades overlying filament F2, creating a flux rope and leading to the first double ribbon solar flare. During this phase we observed the eruption of overlaying arcades and coronal loops, which leads to the first CME. The second reconnection is believed to occur between the expanding flux rope of F2 and the overlying arcades of the filament F1. We suggest that this reconnection destabilized the equi...

  20. [A case of prolonged paroxysmal sympathetic hyperactivity].

    Science.gov (United States)

    Yamamoto, Akiko; Ide, Shuhei; Iwasaki, Yuji; Kaga, Makiko; Arima, Masataka

    2016-03-01

    We report the case of a 4-year-old girl who presented with paroxysmal sympathetic hyperactivity (PSH), after developing severe hypoxic-ischemic-encephalopathy because of cardiopulmonary arrest. She showed dramatic paroxysmal sympathetic activity with dystonia. She was treated with wide variety of medications against PSH, which were found to be effective in previous studies. Among them, morphine, bromocriptine, propranolol, and clonidine were effective in reducing the frequency of her attacks while gabapentin, baclofen, dantrolene, and benzodiazepine were ineffective. Though the paroxysms decreased markedly after the treatment, they could not be completely controlled beyond 500 days. Following the treatment, levels of plasma catecholamines and their urinary metabolites decreased to normal during inter- paroxysms. However, once a paroxysm had recurred, these levels were again very high. This case study is considered significant for two rea- sons. One is that PSH among children have been rarely reported, and the other is that this case of prolonged PSH delineated the transition of plasma catecholamines during the treatment. The excitatory: inhibitory ratio (EIR) model proposed by Baguley was considered while dis- cussing drug sensitivity in this case. Accumulation of similar case studies will help establish more effective treatment strategies and elucidate the pathophysiology of PSH. PMID:27149743

  1. Cardiac function and hypertension in patients with obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Bertolami A

    2014-08-01

    Full Text Available Adriana Bertolami, Carolina Gonzaga, Celso AmodeoSleep Laboratory of Dante Pazzanese Institute of Cardiology, Sao Paulo, BrazilAbstract: Cardiovascular disease is one of the major causes of death worldwide. Among its risk factors, obstructive sleep apnea (OSA is a common but still underestimated condition. OSA often coexists and interacts with obesity, sharing multiple pathophysiological mechanisms and subsequent cardiovascular risk factors, such as type 2 diabetes, dyslipidemia, systemic inflammation, and in particular hypertension. There is also evidence suggesting an increased risk of arrhythmia, heart failure, renal failure, acute myocardial infarction, stroke, and death. OSA is characterized by recurrent episodes of partial (hypopnea or complete interruption (apnea of breathing during sleep due to airway collapse in the pharyngeal region. The main mechanisms linking OSA to impaired cardiovascular function are secondary to hypoxemia and reoxygenation, arousals, and negative intrathoracic pressure. Consequently, the sympathetic nervous and the renin-angiotensin-aldosterone systems may be overestimulated, and blood pressure increased. Resistance to treatment for hypertension represents a growing issue, and given that OSA has been recognized as the major secondary cause of resistant hypertension, clinical investigation for apnea is mandatory in this population. Standard diagnosis includes polysomnography, and treatment for OSA should include control of risk factors for cardiovascular disease, including obesity. So far, continuous positive airway pressure is the treatment of choice for OSA, impacting positively on blood pressure goals; however, the impact on long-term follow-up and on cardiovascular disease should be better assessed.Keywords: obstructive sleep apnea, hypertension, cardiac function

  2. Central nervous system diseases

    International Nuclear Information System (INIS)

    It is shown that roentgenological examination plays an important role in diagnosis of central nervous system diseases in children. The methods of roentgenological examinations are divided into 3 groups: roentgenography without contrast media (conventional roentgenography), roentgenography with artificial contrasting of liquor space (ventriculopneumoencelography, myelography) and contrasting of brain and spinal blood vessels (angiography). Conventional contrastless roentgenography of skull and vertebral column occupies leadership in diagnosis of brain neoplasms and some vascular diseases

  3. Your Brain and Nervous System

    Science.gov (United States)

    ... Help White House Lunch Recipes Your Brain & Nervous System KidsHealth > For Kids > Your Brain & Nervous System Print A A A Text Size What's in ... spinal cord and nerves — known as the nervous system — that let messages flow back and forth between ...

  4. Role of Nuclear Medicine in the cardiac resinchronization therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Giorgi, Maria Clementina Pinto; D' Orio, Silvana Angelina; Meneghetti, Jose Claudio [Instituto do Coracao (InCor/FM/USP), Sao Paulo, SP (Brazil)

    2011-10-15

    Cardiac resynchronization therapy (CRT) emerged as one of the most promising approaches in the treatment of cardiac dyssynchrony in heart failure patients' refractory to medical treatment. However, despite very promising clinical and functional results, individual response analyses show that a significant number of patients do not respond to treatment. The role of nuclear medicine and molecular imaging in the selection of CRT candidates by the assessment of cardiac dyssynchrony, myocardial viability, myocardial perfusion and blood flow and sympathetic cardiac activity has been discussed in this review. The potential utilization of this tool to improve the comprehension of detrimental effects of dyssynchrony on cardiac function and the evaluation and monitoring of the response to CRT were also considered. Other molecular targets that characterize glucose and fatty acid metabolism, apoptosis, angiotensin converting enzyme activity and angiogenesis that can be evaluated with this technique were described. (author)

  5. Role of Nuclear Medicine in the cardiac resinchronization therapy

    International Nuclear Information System (INIS)

    Cardiac resynchronization therapy (CRT) emerged as one of the most promising approaches in the treatment of cardiac dyssynchrony in heart failure patients' refractory to medical treatment. However, despite very promising clinical and functional results, individual response analyses show that a significant number of patients do not respond to treatment. The role of nuclear medicine and molecular imaging in the selection of CRT candidates by the assessment of cardiac dyssynchrony, myocardial viability, myocardial perfusion and blood flow and sympathetic cardiac activity has been discussed in this review. The potential utilization of this tool to improve the comprehension of detrimental effects of dyssynchrony on cardiac function and the evaluation and monitoring of the response to CRT were also considered. Other molecular targets that characterize glucose and fatty acid metabolism, apoptosis, angiotensin converting enzyme activity and angiogenesis that can be evaluated with this technique were described. (author)

  6. Effects of β-Adrenoceptor Subtypes on Cardiac Function in Myocardial Infarction Rats Exposed to Fine Particulate Matter (PM2.5

    Directory of Open Access Journals (Sweden)

    Yuping Gao

    2014-01-01

    Full Text Available The pathophysiological mechanisms of heart failure (HF stems were mainly from longstanding overactivation of the sympathetic nervous system and renin-angiotensin-aldosterone system. Recent studies highlighted the potential benefits of β1-adrenoceptor (β1-AR blocker combined with β2-adrenergic receptor (β2-AR agonist in patients with HF. Long-term exposure to fine particulate air pollution, such as particulate matter ≤ 2.5 μm in diameter (PM2.5, has been found associated with acute myocardial infarction (AMI which is the most common cause of congestive HF. In this study, we have investigated the effect of combined metoprolol and terbutaline on cardiac function in a rat model of AMI exposed to PM2.5. Our results demonstrated that short-term exposure to PM2.5 contributes to aggravate cardiac function in rats with myocardial infarction. The combined use of β1-AR blocker and β2-AR agonist is superior to β1-AR blocker alone for the treatment of AMI rats exposed to PM2.5. The combination of β1-AR blocker and β2-AR agonist may decrease the mortality of patients with myocardial infarction who have been exposed to PM2.5.

  7. Cardiac Muscarinic Receptor Overexpression in Sudden Infant Death Syndrome

    OpenAIRE

    Livolsi, Angelo; Niederhoffer, Nathalie; Dali-Youcef, Nassim; Rambaud, Caroline; Olexa, Catherine; Mokni, Walid; Gies, Jean-Pierre; Bousquet, Pascal

    2010-01-01

    Background Sudden infant death syndrome (SIDS) remains the leading cause of death among infants less than 1 year of age. Disturbed expression of some neurotransmitters and their receptors has been shown in the central nervous system of SIDS victims but no biological abnormality of the peripheral vago-cardiac system has been demonstrated to date. The present study aimed to seek vago-cardiac abnormalities in SIDS victims. The cardiac level of expression of muscarinic receptors, as well as acety...

  8. Effect of Autonomic Nervous System on the Transmurai Dispersion of Ventricular Repolarization in Intact Canine

    Institute of Scientific and Technical Information of China (English)

    张存泰; 徐大文; 李泱; 刘念; 王琳; 陆再英

    2004-01-01

    Summary: The effect of the autonomic nerves on the transmural dispersion of ventricular repolarization in intact canine was investigated. By using the monophasic action potential (MAP) recording technique, monophasic action potentials (MAPs) of the epicardium (Epi), midmyocardium (Mid)and endocardium (Endo) were recorded simultaneously by specially designed plunge-needle electrodes at the left ventricular free wall in 12 open-chest dogs. MAPD90 and transmural dispersion of repolarization among three myocardial layers as well as the incidence of the EAD before autonomic nervous stimulation and during autonomic nervous stimulation were compared. The results showed that the MAPD90 of Epi, Mid and Endo before autonomic nervous stimulation were 278±11 ms,316± 16 ms and 270± 12 ms respectively, the MAPD90of Mid was significantly longer than that of Epi or Endo (P<0.01). MAPD90 of Epi, Mid and Endo were shortened by 19±4 ms, 45±6 ms,18± 3 ms respectively during sympathetic stimulation. Compared with that of the control, the transmural dispersion of repolarization during sympathetic stimulation was shortened from 44 ± 4 ms to 15±3 ms (P<0. 01), but early afterdepolarizations were elicited in the Mid of 5 dogs (41 0%)during sympathetic stimulation. Parasympathetic stimulation did not significantly affect the MAPD90 in the three layers. It is concluded that there is the transmural dispersion of ventricular repolarization in intact canine. Sympathetic stimulation can reduce transmural dispersion of repolarization, but it can produce early afterdepolarizations in the Mid. Parasympathetic stimulation does not significantly affect the transmural dispersion of ventricular repolarization.

  9. Sensory–sympathetic coupling in superior cervical ganglia after myocardial ischemic injury facilitates sympathoexcitatory action via P2X7 receptor

    OpenAIRE

    LIU Jun; Li, Guilin; Peng, Haiying; Tu, Guihua; Kong, Fanjun; Liu, Shuangmei; Gao, Yun; Xu, Hong; Qiu, Shuyi; Fan, Bo; Zhu, Qicheng; Yu, Shicheng; Zheng, Chaoran; Wu, Bing; Peng, Lichao

    2013-01-01

    P2X receptors participate in cardiovascular regulation and disease. After myocardial ischemic injury, sensory–sympathetic coupling between rat cervical DRG nerves and superior cervical ganglia (SCG) facilitated sympathoexcitatory action via P2X7 receptor. The results showed that after myocardial ischemic injury, the systolic blood pressure, heart rate, serum cardiac enzymes, IL-6, and TNF-α were increased, while the levels of P2X7 mRNA and protein in SCG were also upregulated. However, these ...

  10. Muscle afferent receptors engaged in augmented sympathetic responsiveness in peripheral artery disease

    Directory of Open Access Journals (Sweden)

    Jianhua eLi

    2012-07-01

    Full Text Available The exercise pressor reflex (EPR is a neural control mechanism responsible for the cardiovascular responses to exercise. As exercise is initiated, thin fiber muscle afferent nerves are activated by mechanical and metabolic stimuli arising in the contracting muscles. This leads to reflex increases in arterial blood pressure and heart rate primarily through activation of sympathetic nerve activity (SNA. Studies of humans and animals have indicated that the EPR is exaggerated in a number of cardiovascular diseases. For the last several years, studies have specifically employed a rodent model to examine the mechanisms at receptor and cellular levels by which responses of SNA and blood pressure to static exercise are heightened in peripheral artery disease (PAD, one of the most common cardiovascular disorders. A rat model of this disease has well been established. Specifically, femoral artery occlusion is used to study intermittent claudication that is observed in human PAD. The receptors on thin fiber muscle afferents that are engaged in this disease include transient receptor potential vanilloid type 1 (TRPV1, purinergic P2X and acid sensing ion channel (ASIC. The role played by nerve growth factor (NGF in regulating those sensory receptors in the processing of amplified EPR was also investigated. The purpose of this review is to focus on a theme namely that PAD accentuates autonomic reflex responses to exercise and further address regulatory mechanisms leading to abnormal sympathetic responsiveness. This review will present some of recent results in regard with several receptors in muscle sensory neurons in contribution to augmented autonomic reflex responses in PAD. Review of the findings from recent studies would lead to a better understanding in integrated processing of sympathetic nervous system in PAD.

  11. Leptin differentially increases sympathetic nerve activity and its baroreflex regulation in female rats: role of oestrogen.

    Science.gov (United States)

    Shi, Zhigang; Brooks, Virginia L

    2015-04-01

    Obesity and hypertension are commonly associated, and activation of the sympathetic nervous system is considered to be a major contributor, at least in part due to the central actions of leptin. However, while leptin increases sympathetic nerve activity (SNA) in males, whether leptin is equally effective in females is unknown. Here, we show that intracerebroventricular (i.c.v.) leptin increases lumbar (LSNA) and renal (RSNA) SNA and baroreflex control of LSNA and RSNA in α-chloralose anaesthetized female rats, but only during pro-oestrus. In contrast, i.c.v. leptin increased basal and baroreflex control of splanchnic SNA (SSNA) and heart rate (HR) in rats in both the pro-oestrus and dioestrus states. The effects of leptin on basal LSNA, RSNA, SSNA and HR were similar in males and pro-oestrus females; however, i.c.v. leptin increased mean arterial pressure (MAP) only in males. Leptin did not alter LSNA or HR in ovariectomized rats, but its effects were normalized with 4 days of oestrogen treatment. Bilateral nanoinjection of SHU9119 into the paraventricular nucleus of the hypothalamus (PVN), to block α-melanocyte-stimulating hormone (α-MSH) type 3 and 4 receptors, decreased LSNA in leptin-treated pro-oestrus but not dioestrus rats. Unlike leptin, i.c.v. insulin infusion increased basal and baroreflex control of LSNA and HR similarly in pro-oestrus and dioestrus rats; these responses did not differ from those in male rats. We conclude that, in female rats, leptin's stimulatory effects on SNA are differentially enhanced by oestrogen, at least in part via an increase in α-MSH activity in the PVN. These data further suggest that the actions of leptin and insulin to increase the activity of various sympathetic nerves occur via different neuronal pathways or cellular mechanisms. These results may explain the poor correlation in females of SNA with adiposity, or of MAP with leptin. PMID:25398524

  12. Sympathetic dysfunction in vasovagal syncope and the postural orthostatic tachycardia syndrome

    Directory of Open Access Journals (Sweden)

    Elisabeth eLambert

    2014-07-01

    Full Text Available Orthostatic intolerance is the inability to tolerate the upright posture and is relieved by recumbence. It most commonly affects young women and has a major impact on quality of life and psychosocial well being. Several forms of orthostatic intolerance have been described. The most common one is the recurrent vasovagal syncope (VVS phenotype which presents as a transient and abrupt loss of consciousness and postural tone that is followed by rapid recovery. Another common type of orthostatic intolerance is the postural orthostatic tachycardia syndrome (POTS which is characterized by an excessive rise in heart rate upon standing and is associated with symptoms of presyncope such as light-headedness, fatigue, palpitations and nausea. Maintenance of arterial pressure under condition of reduced central blood volume during the orthostasis is accomplished in large part through sympathetic efferent nerve traffic to the peripheral vasculature. Therefore sympathetic nervous system (SNS dysfunction is high on the list of possible contributors to the pathophysiology of orthostatic intolerance. Investigations into the role of the SNS in orthostatic intolerance have yielded mixed results. This review outlines the current knowledge of the function of the SNS in both VVS and POTS.

  13. Effect of cortisol on muscle sympathetic nerve activity in Pima Indians and Caucasians

    DEFF Research Database (Denmark)

    Vozarova, Barbora; Weyer, Christian; Snitker, Soren;

    2003-01-01

    tonic inhibitory effect of cortisol. However, an acute release of cortisol is likely to more effectively contain sympathoexcitation during stress in Pima Indians than in Caucasians, which may be an important mechanism of cardioprotection in this Native American population.......The hypothalamo-pituitary-adrenal axis and sympathetic nervous system (SNS) interact to maintain cardiovascular and metabolic homeostasis, especially during stress. Pima Indians have a low SNS activity, which may contribute to both their increased risk of obesity and reduced risk of hypertension....... Although glucocorticoids inhibit SNS activity, Pima Indians are not hypercortisolemic compared with Caucasians. This does not exclude the possibility that the SNS is more responsive to an inhibitory effect of cortisol in the former than in the latter group. We measured fasting plasma ACTH and cortisol and...

  14. Alterations in electrodermal activity and cardiac parasympathetic tone during hypnosis.

    Science.gov (United States)

    Kekecs, Zoltán; Szekely, Anna; Varga, Katalin

    2016-02-01

    Exploring autonomic nervous system (ANS) changes during hypnosis is critical for understanding the nature and extent of the hypnotic phenomenon and for identifying the mechanisms underlying the effects of hypnosis in different medical conditions. To assess ANS changes during hypnosis, electrodermal activity and pulse rate variability (PRV) were measured in 121 young adults. Participants either received hypnotic induction (hypnosis condition) or listened to music (control condition), and both groups were exposed to test suggestions. Blocks of silence and experimental sound stimuli were presented at baseline, after induction, and after de-induction. Skin conductance level (SCL) and high frequency (HF) power of PRV measured at each phase were compared between groups. Hypnosis decreased SCL compared to the control condition; however, there were no group differences in HF power. Furthermore, hypnotic suggestibility did not moderate ANS changes in the hypnosis group. These findings indicate that hypnosis reduces tonic sympathetic nervous system activity, which might explain why hypnosis is effective in the treatment of disorders with strong sympathetic nervous system involvement, such as rheumatoid arthritis, hot flashes, hypertension, and chronic pain. Further studies with different control conditions are required to examine the specificity of the sympathetic effects of hypnosis. PMID:26488759

  15. Overview of the Autonomic Nervous System

    Science.gov (United States)

    ... reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...

  16. Catecholamine-induced excitation of nociceptors in sympathetically maintained pain.

    Science.gov (United States)

    Jørum, Ellen; Ørstavik, Kristin; Schmidt, Roland; Namer, Barbara; Carr, Richard W; Kvarstein, Gunnvald; Hilliges, Marita; Handwerker, Hermann; Torebjörk, Erik; Schmelz, Martin

    2007-02-01

    Sympathetically maintained pain could either be mediated by ephaptic interactions between sympathetic efferent and afferent nociceptive fibers or by catecholamine-induced activation of nociceptive nerve endings. We report here single fiber recordings from C nociceptors in a patient with sympathetically maintained pain, in whom sympathetic blockade had repeatedly eliminated the ongoing pain in both legs. We classified eight C-fibers as mechano-responsive and six as mechano-insensitive nociceptors according to their mechanical responsiveness and activity-dependent slowing of conduction velocity (latency increase of 0.5+/-1.1 vs. 7.1+/-2.0 ms for 20 pulses at 0.125 Hz). Two C-fibers were activated with a delay of several seconds following strong endogenous sympathetic bursts; they were also excited for about 3 min following the injection of norepinephrine (10 microl, 0.05%) into their innervation territory. In these two fibers, a prolonged activation by injection of low pH solution (phosphate buffer, pH 6.0, 10 microl) and sensitization of their heat response following prostaglandin E2 injection were recorded, evidencing their afferent nature. Moreover, their activity-dependent slowing was typical for mechano-insensitive nociceptors. We conclude that sensitized mechano-insensitive nociceptors can be activated by endogenously released catecholamines and thereby may contribute to sympathetically maintained pain. No evidence for ephaptic interaction between sympathetic efferent and nociceptive afferent fibers was found. PMID:16997471

  17. [Clinical application of skin sympathetic nerve activity].

    Science.gov (United States)

    Iwase, Satoshi

    2009-03-01

    Skin sympathetic nerve activity (SSNA) is microneurographically recorded from the skin nerve fascicle in the peripheral nerves. It is characterized by the following features: 1) irregular, pulse asynchronous, burst activity with respiratory variation, 2) burst activity followed by vasoconstriction and/or sweating, 3) elicited by mental stress and arousal stimuli, e.g., sound, pain, electric stimulation, 4) burst with longer duration as compared with sympathetic outflow to muscles, and 5) burst activity following sudden inspiratory action. It comprises vasoconstrictor (VC) and sudomotor(SM) activity, as well as vasodilator (VD) activity. VC and SM discharge independently, whereas VD is the same activity with different neurotransmission. The VC and SM are differentiated by effector response, e.g., laser Doppler flowmetry and skin potential changes. SSNA function in thermoregulation in the human body; however it is also elicited by mental stress. SSNA is the lowest at thermoneutral ambient temperature (approximately 27 degrees C), and is enhanced in the pressence of ambient warm and cool air. The burst amplitude is well-correlated to both skin blood flow reduction rate or sweat rate change. The clinical application of SSNA comprises the following: 1) clarification of sweating phenomenon, 2) clarification and diagnosis of anhidrosis, 3) clarification and diagnosis of hyperhidrosis, 4) clarification of thermoregulatory function and diagnosis of thermoregulatory disorder, 5) clarification of pathophysiology and diagnosis of vascular diseases, e.g., Raynaud and Buerger diseases. 6) clarification of the relation between cognitive function and SSNA and 7) determination of pharmacological effect attributable to change in neuroeffector responses. PMID:19301594

  18. Myocardial pre-synaptic sympathetic function correlates with glucose uptake in the failing human heart

    International Nuclear Information System (INIS)

    We have previously shown that the myocardium of patients with heart failure (HF) is insulin resistant. Chronic β-adrenergic stimulation has been implicated in insulin resistance in cultured cardiomyocytes in vitro, where sustained noradrenaline stimulation inhibited insulin-modulated glucose uptake. As the failing heart is characterized by increased sympathetic drive, we hypothesized that there is a correlation between pre-synaptic sympathetic function and insulin sensitivity in the myocardium of patients with HF. Eight patients (aged 67 ± 7 years) with coronary artery disease and left ventricular dysfunction (ejection fraction 44 ± 10%) underwent function and viability assessment with cardiovascular magnetic resonance. Myocardial glucose utilization (MGU) was measured using positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG). Pre-synaptic noradrenaline re-uptake was measured by calculating [11C]meta-hydroxy-ephedrine (HED) volume of distribution (Vd) with PET. Two groups of healthy volunteers served as controls for the FDG (n = 8, aged 52 ± 4 years, p -1.g-1) and dysfunctional (0.49 ± 0.14 μmol.min-1.g-1) segments compared with controls (0.61 ± 0.7 μmol.min-1.g-1; p d was reduced in dysfunctional segments of patients (38.9 ± 21.2 ml.g-1) compared with normal segments (52.2 ± 19.6 ml.g-1) and compared with controls (62.7 ± 11.3 ml.g-1). In patients, regional MGU was correlated with HED Vd. The results of this study provide novel evidence of a correlation between cardiac sympathetic function and insulin sensitivity, which may represent one of the mechanisms contributing to insulin resistance in failing human hearts. (orig.)

  19. Catheter Ablation of Atrial Fibrillation Raises the Plasma Level of NGF-β Which Is Associated with Sympathetic Nerve Activity

    OpenAIRE

    Park, Jae Hyung; Hong, Sung Yu; Wi, Jin; Lee, Da Lyung; Joung, Boyoung; Lee, Moon Hyoung; Pak, Hui-Nam

    2015-01-01

    Purpose The expression of nerve growth factor-β (NGF-β) is related to cardiac nerve sprouting and sympathetic hyper innervation. We investigated the changes of plasma levels of NGF-β and the relationship to follow-up heart rate variability (HRV) after radiofrequency catheter ablation (RFCA) of atrial fibrillation (AF). Materials and Methods This study included 147 patients with AF (117 men, 55.8±11.5 years, 106 paroxysmal AF) who underwent RFCA. The plasma levels of NGF-β were quantified usin...

  20. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  1. Autonomic nervous system:its response and adaptation to exercises%自主神经系统对运动反应、适应的研究与进展

    Institute of Scientific and Technical Information of China (English)

    邵连杰

    2015-01-01

    1997 to March 2015 using the keywords of “autonomic nervous system, heart rate variability, HRV, exercise intervention, exercise training” in English. RESULTS AND CONCLUSION:Totaly 405 articles were retrieved, and finaly 79 articles were included in result analysis. We can assess aerobic capacity and make individual intervention program through observing the changes of cardiac autonomic nervous system during a one-time exercise. Response and adaptation of the cardiac autonomic nervous system to exercise depend on exercise intensity and duration, but there is a great inter-individual difference. The long-term inhibition and excitement of the sympathetic nerve and vagus nerve may indicate overtraining.

  2. Molecular Mechanisms Underlying β-Adrenergic Receptor-Mediated Cross-Talk between Sympathetic Neurons and Immune Cells

    Directory of Open Access Journals (Sweden)

    Dianne Lorton

    2015-03-01

    Full Text Available Cross-talk between the sympathetic nervous system (SNS and immune system is vital for health and well-being. Infection, tissue injury and inflammation raise firing rates of sympathetic nerves, increasing their release of norepinephrine (NE in lymphoid organs and tissues. NE stimulation of β2-adrenergic receptors (ARs in immune cells activates the cAMP-protein kinase A (PKA intracellular signaling pathway, a pathway that interfaces with other signaling pathways that regulate proliferation, differentiation, maturation and effector functions in immune cells. Immune–SNS cross-talk is required to maintain homeostasis under normal conditions, to develop an immune response of appropriate magnitude after injury or immune challenge, and subsequently restore homeostasis. Typically, β2-AR-induced cAMP is immunosuppressive. However, many studies report actions of β2-AR stimulation in immune cells that are inconsistent with typical cAMP–PKA signal transduction. Research during the last decade in non-immune organs, has unveiled novel alternative signaling mechanisms induced by β2-AR activation, such as a signaling switch from cAMP–PKA to mitogen-activated protein kinase (MAPK pathways. If alternative signaling occurs in immune cells, it may explain inconsistent findings of sympathetic regulation of immune function. Here, we review β2-AR signaling, assess the available evidence for alternative signaling in immune cells, and provide insight into the circumstances necessary for “signal switching” in immune cells.

  3. Investigation of close interactions between sympathetic neural fibres and the follicular dendritic cells network in the mouse spleen

    Directory of Open Access Journals (Sweden)

    C Demonceau

    2009-08-01

    Full Text Available In this study, co-localization between sympathetic neural fibres and the follicular dendritic cells (FDCs network was observed within the mouse spleen by confocal technology. Immunohistochemical techniques were used to reveal the rare interactions between the FDCs network and sympathetic neural fibres.We estimated the frequency of three kinds of close interactions which could be defined as overlaps, contacts or neural fibres closer than 10 ?m from a FDCs network. Using these estimates, a comparison was made between five uninfected mouse strains exhibiting the same Prnpa genotype but showing different incubation periods when inoculated with primary bovine spongiform encephalopathy (BSE-infected brain. In prion disease, infectivity is generally detected in the spleen much earlier than in the brain, especially after peripheral inoculation. The way by which the infectious agent reaches the central nervous system is still unclear. From the five mouse strains, we obtained differences in the proportion of splenic FDCs networks with close interactions. Our work suggests that the percentage of splenic FDCs networks with at least one sympathetic neural fibre in close vicinity may influence the length of incubation period.

  4. Investigation of close interactions between sympathetic neural fibres and the follicular dendritic cells network in the mouse spleen.

    Science.gov (United States)

    Demonceau, Caroline; Marshall, A S; Sales, J; Heinen, E

    2008-01-01

    In this study, co-localization between sympathetic neural fibres and the follicular dendritic cells (FDCs) network was observed within the mouse spleen by confocal technology. Immunohistochemical techniques were used to reveal the rare interactions between the FDCs network and sympathetic neural fibres. We estimated the frequency of three kinds of close interactions which could be defined as overlaps, contacts or neural fibres closer than 10 microm from a FDCs network. Using these estimates, a comparison was made between five uninfected mouse strains exhibiting the same Prnpa genotype but showing different incubation periods when inoculated with primary bovine spongiform encephalopathy (BSE)-infected brain. In prion disease, infectivity is generally detected in the spleen much earlier than in the brain, especially after peripheral inoculation. The way by which the infectious agent reaches the central nervous system is still unclear. From the five mouse strains, we obtained differences in the proportion of splenic FDCs networks with close interactions. Our work suggests that the percentage of splenic FDCs networks with at least one sympathetic neural fibre in close vicinity may influence the length of incubation period. PMID:18591154

  5. A new predisposing factor for trigemino-cardiac reflex during subdural empyema drainage: a case report

    OpenAIRE

    Arasho Belachew; Sandu Nora; Spiriev Toma; Kondoff Slavomir; Tzekov Christo; Schaller Bernhard

    2010-01-01

    Abstract Introduction The trigemino-cardiac reflex is defined as the sudden onset of parasympathetic dysrhythmia, sympathetic hypotension, apnea, or gastric hypermotility during stimulation of any of the sensory branches of the trigeminal nerve. Clinically, trigemino-cardiac reflex has been reported to occur during neurosurgical skull-base surgery. Apart from the few clinical reports, the physiological function of this brainstem reflex has not yet been fully explored. Little is known regardin...

  6. Mechanism of relation among heart meridian, referred cardiac pain and heart

    Institute of Scientific and Technical Information of China (English)

    RONG; Peijing(荣培晶); ZHU; Bing(朱兵)

    2002-01-01

    It has been demonstrated that an important clinical phenomenon often associated with visceral diseases is the referred pain to somatic structures, especially to the body areaof homo-segmental innervation. It is interesting that the somatic foci of cardiac referred pain wereoften and mainly distributed along the heart meridian (HM), whereas the acupoints of HM havebeen applied to treat cardiac disease since ancient times. The purpose of this study was to inves-tigate the neural relationship between the cardiac referred pain and the heart meridian.Fluorescent triple-labeling was injected into the pericardium, some acupoints of HM and lung me-ridian (LM, for control). The responses of the left cardiac sympathetic nerve and of the EMG in left HM and LM were electrophysiologically studied, when the electrical stimuli were applied to the acupoints of left HM and to the left cardiac sympathetic nerve. More double-labeled neurons in HM-heart, not in LM-heart, were observed in the ipsilateral dorsal root ganglia of the spinal segments C8-T3. Electric stimulation of the acupoints of left HM was able to elicit more responses of left cardiac sympathetic nerve than that of the LM-acupoints. Electric stimulation of the left cardiac sympathetic nerve resulted in stronger activities of EMG-response in the acupoints of left HM than in LM-acupoints. We conclude that double-labeling study has provided direct evidence for the existence of dichotomizing afferent fibers that supply both the pericardium and HM. Electrophysiological results show that HM is more closely related functionally to heart. These findings provide a possible morphological and physiological explanation for the referred cardiac pain and HM-heart interrelation.

  7. Baroreflex failure in a patient with central nervous system lesions involving the nucleus tractus solitarii

    Science.gov (United States)

    Biaggioni, I.; Whetsell, W. O.; Jobe, J.; Nadeau, J. H.

    1994-01-01

    Animal studies have shown the importance of the nucleus tractus solitarii, a collection of neurons in the brain stem, in the acute regulation of blood pressure. Impulses arising from the carotid and aortic baroreceptors converge in this center, where the first synapse of the baroreflex is located. Stimulation of the nucleus tractus solitarii provides an inhibitory signal to other brain stem structures, particularly the rostral ventrolateral medulla, resulting in a reduction in sympathetic outflow and a decrease in blood pressure. Conversely, experimental lesions of the nucleus tractus solitarii lead to loss of baroreflex control of blood pressure, sympathetic activation, and severe hypertension in animals. In humans, baroreflex failure due to deafferentation of baroreceptors has been previously reported and is characterized by episodes of severe hypertension and tachycardia. We present a patient with an undetermined process of the central nervous system characterized pathologically by ubiquitous infarctions that were particularly prominent in the nucleus tractus solitarii bilaterally but spared the rostral ventrolateral medulla. Absence of a functioning baroreflex was evidenced by the lack of reflex tachycardia to the hypotensive effects of sodium nitroprusside, exaggerated pressor responses to handgrip and cold pressor test, and exaggerated depressor responses to meals and centrally acting alpha 2-agonists. This clinicopathological correlate suggests that the patient's baroreflex failure can be explained by the unique combination of the destruction of sympathetic inhibitory centers (ie, the nucleus tractus solitarii) and preservation of centers that exert a positive modulation on sympathetic tone (ie, the rostral ventrolateral medulla).

  8. Prevalence of cardiac arrhythmia in obstructive sleep apnea syndrome

    OpenAIRE

    Bayram, Nihal Akar; ÇİFTÇİ, Bülent; GÜVEN, Selma FIRAT; Bayram, Hüseyin; DİKER, Hasbi Erdem; Durmaz, Tahir; KELEŞ, TELAT; Bozkurt, Engin

    2010-01-01

    Repetitive transient activation of the parasympathetic and sympathetic systems in obstructive sleep apnea syndrome (OSAS) constitutes the basis for development of cardiac arrhythmias. We aimed to examine the prevalence of arrhythmias in OSAS. Materials and methods: Eighty-eight patients with suspected OSAS were included in the study. Polysomnography was performed overnight in all patients. Patients with apnea-hypopnea index (AHI) < 5 were considered OSAS negative, while patients with AHI ...

  9. Control of the Cutaneous Circulation by the Central Nervous System.

    Science.gov (United States)

    Blessing, William; McAllen, Robin; McKinley, Michael

    2016-01-01

    The central nervous system (CNS), via its control of sympathetic outflow, regulates blood flow to the acral cutaneous beds (containing arteriovenous anastomoses) as part of the homeostatic thermoregulatory process, as part of the febrile response, and as part of cognitive-emotional processes associated with purposeful interactions with the external environment, including those initiated by salient or threatening events (we go pale with fright). Inputs to the CNS for the thermoregulatory process include cutaneous sensory neurons, and neurons in the preoptic area sensitive to the temperature of the blood in the internal carotid artery. Inputs for cognitive-emotional control from the exteroceptive sense organs (touch, vision, sound, smell, etc.) are integrated in forebrain centers including the amygdala. Psychoactive drugs have major effects on the acral cutaneous circulation. Interoceptors, chemoreceptors more than baroreceptors, also influence cutaneous sympathetic outflow. A major advance has been the discovery of a lower brainstem control center in the rostral medullary raphé, regulating outflow to both brown adipose tissue (BAT) and to the acral cutaneous beds. Neurons in the medullary raphé, via their descending axonal projections, increase the discharge of spinal sympathetic preganglionic neurons controlling the cutaneous vasculature, utilizing glutamate, and serotonin as neurotransmitters. Present evidence suggests that both thermoregulatory and cognitive-emotional control of the cutaneous beds from preoptic, hypothalamic, and forebrain centers is channeled via the medullary raphé. Future studies will no doubt further unravel the details of neurotransmitter pathways connecting these rostral control centers with the medullary raphé, and those operative within the raphé itself. © 2016 American Physiological Society. Compr Physiol 6:1161-1197, 2016. PMID:27347889

  10. Pediatric central nervous system vascular malformations

    International Nuclear Information System (INIS)

    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  11. Pediatric central nervous system vascular malformations

    Energy Technology Data Exchange (ETDEWEB)

    Burch, Ezra A. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Orbach, Darren B. [Boston Children' s Hospital, Neurointerventional Radiology, Boston, MA (United States)

    2015-09-15

    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  12. Cardiac Neurotransmission Imaging with 123I-Meta-iodobenzylguanidine in Postural Tachycardia Syndrome.

    OpenAIRE

    Haensch, Carl-Albrecht; Lerch, Hartmut; Schlemmer, Hans; Jigalin, Anna; Isenmann, Stefan

    2010-01-01

    Abstract Background: Postural orthostatic tachycardia syndrome (POTS) is a disorder of orthostatic intolerance characterized by excessive tachycardia of unknown etiology. Whether this condition involves abnormal cardiac sympathetic innervation or function remains elusive. Metaiodobenzylguanidine (MIBG) resembles guanethidine and is a pharmacologically inactive analogue of norepinephrine, which is similarly metabolized in noradrenergic neurons. MIBG myocardial scintigraphy is clinic...

  13. Cardiac rehabilitation

    Science.gov (United States)

    ... attack or other heart problem. You might consider cardiac rehab if you have had: Heart attack Coronary heart disease (CHD) Heart failure Angina (chest pain) Heart or heart valve surgery Heart transplant Procedures such as angioplasty and stenting In some ...

  14. Cardiac Rehabilitation

    Science.gov (United States)

    Cardiac rehabilitation (rehab) is a medically supervised program to help people who have A heart attack Angioplasty or coronary artery bypass grafting for coronary heart disease A heart valve repair or replacement A ...

  15. Cardiac sarcoidosis

    OpenAIRE

    Costello BT; Nadel J.; Taylor AJ

    2016-01-01

    Benedict T Costello,1,2 James Nadel,3 Andrew J Taylor,1,21Department of Cardiovascular Medicine, The Alfred Hospital, 2Baker IDI Heart and Diabetes Research Institute, Melbourne, VIC, 3School of Medicine, University of Notre Dame, Sydney, NSW, Australia Abstract: Cardiac sarcoidosis is a rare but life-threatening condition, requiring a high degree of clinical suspicion and low threshold for investigation to make the diagnosis. The cardiac manifestations include heart failure, conducting syst...

  16. Sympathetic Innervation Induced in Engrafted Engineered Cardiomyocyte Sheets by Glial Cell Line Derived Neurotrophic Factor In Vivo

    Directory of Open Access Journals (Sweden)

    Xian-ming Fu

    2013-01-01

    Full Text Available The aim of myocardial tissue engineering is to repair or regenerate damaged myocardium with engineered cardiac tissue. However, this strategy has been hampered by lack of functional integration of grafts with native myocardium. Autonomic innervation may be crucial for grafts to function properly with host myocardium. In this study, we explored the feasibility of in vivo induction of autonomic innervation to engineered myocardial tissue using genetic modulation by adenovirus encoding glial cell line derived neurotrophic factor (GDNF. GFP-transgene (control group or GDNF overexpressing (GDNF group engineered cardiomyocyte sheets were transplanted on cryoinjured hearts in rats. Nerve fibers in the grafts were examined by immunohistochemistry at 1, 2, and 4 weeks postoperatively. Growth associated protein-43 positive growing nerves and tyrosine hydroxylase positive sympathetic nerves were first detected in the grafts at 2 weeks postoperatively in control group and 1 week in GDNF group. The densities of growing nerve and sympathetic nerve in grafts were significantly increased in GDNF group. No choline acetyltransferase immunopositive parasympathetic nerves were observed in grafts. In conclusion, sympathetic innervation could be effectively induced into engrafted engineered cardiomyocyte sheets using GDNF.

  17. Noise in the nervous system

    OpenAIRE

    Faisal, A. Aldo; Selen, Luc P.J.; Wolpert, Daniel M

    2008-01-01

    Random disturbances of signals, termed ‘noise’, pose a fundamental problem for information processing and affect all aspects of nervous-system function. However, the nature, amount and impact of noise in the nervous system have only recently been addressed in a quantitative manner. Experimental and computational methods have shown that multiple noise sources contribute to cellular and behavioural trial-to-trial variability. We review the sources of noise in the nervous system, from the molecu...

  18. Catheter based renal sympathetic denervaton: treatment option for resistant hypertension

    Directory of Open Access Journals (Sweden)

    BM Dhital

    2012-09-01

    Full Text Available Essential hypertension being a major public health problem with an atrocious toll. Furthermore resistant hypertension has increased morbidity and mortality in spite of using three or more antihypertensive medication, including one diuretic at their optimal doses to achieve the target blood pressure. Renal artery with its sympathetic afferent and efferent nerve signaling has substantial role in elevating and sustaining blood pressure. Blunting the overt sympathetic activity, catheter based renal sympathetic nerve denervation has become new treatment approach for the treatment of resistant hypertension. So in this review we address the current aspect and development of renal sympathetic denervation in the management of difficult to control hypertension. Journal of College of Medical Sciences-Nepal,2012,Vol-8,No-2, 58-63 DOI: http://dx.doi.org/10.3126/jcmsn.v8i2.6841

  19. Maneuvering in Nervous Times

    DEFF Research Database (Denmark)

    Veel, Kristin Eva Albrechtsen

    2012-01-01

    is a strong example of how hyperlinks can work in a printed literary environment as a vehicle for a discussion of reading practices, linearity, and narrative structures. The novel engages with the theoretical debates about digital hyperlinks from the 1990s onwards, and it elegantly uses the link...... structure to challenge the format of the traditional, printed book. However, this article also shows how the novel is very much a part of a generation of literary interest in digital information structures, which not only uses the hyperlinks as a way of subverting the physical medium of the book, but also...... uses the links as an enhancement of the plot and the story it wants to tell. The hyperlinks are thus not merely a formal feature, but an integrated part of the novel's depiction of contemporary conditions of life in the “nervous times” it portrays....

  20. Pharmacological evidence that alpha2A- and alpha2C-adrenoceptors mediate the inhibition of cardioaccelerator sympathetic outflow in pithed rats.

    Science.gov (United States)

    Cobos-Puc, Luis E; Villalón, Carlos M; Sánchez-López, Araceli; Lozano-Cuenca, Jair; Pertz, Heinz H; Görnemann, Tilo; Centurión, David

    2007-01-12

    It has been suggested that the alpha(2)-adrenoceptors mediating cardiac sympatho-inhibition in pithed rats closely resemble the pharmacological profile of the alpha(2A)-adrenoceptor subtype. However, several lines of evidence suggest that more than one subtype may be involved. Thus, the present study has pharmacologically re-evaluated the receptor subtype(s) involved in the inhibitory effect of the alpha(2)-adrenoceptor agonist, B-HT 933, on the tachycardic responses elicited by selective cardiac sympathetic stimulation (0.03, 0.1, 0.3, 1 and 3 Hz) in desipramine-pretreated pithed rats. I.v. continuous infusions of B-HT 933 (30 microg/kg min), which failed to modify the tachycardic responses to exogenous noradrenaline, inhibited those induced by preganglionic (C(7)-T(1)) stimulation of the cardiac sympathetic outflow at all frequencies of stimulation (0.03-3 Hz). This cardiac sympatho-inhibitory response to B-HT 933 was: (1) unaltered by saline (1 ml/kg) or the antagonists BRL44408 (100 microg/kg; alpha(2A)) or imiloxan (3000 and 10,000 microg/kg; alpha(2B)); (2) partially antagonized by BRL44408 (300 microg/kg) or MK912 (10 microg/kg; alpha(2C)) given separately; and (3) completely antagonized by rauwolscine (300 microg/kg; alpha(2)), MK912 (30 microg/kg) or the combination of BRL44408 (300 microg/kg) plus MK912 (10 microg/kg). Moreover, the above doses of antagonists, which are high enough to block their respective receptors, failed to block per se the tachycardic responses to sympathetic stimulation. These results suggest that the cardiac sympatho-inhibition induced by B-HT 933 in pithed rats is mainly mediated by stimulation of alpha(2A)- and alpha(2C)-adrenoceptors. PMID:17109851

  1. Region-specific changes in sympathetic nerve activity in angiotensin II-salt hypertension in the rat.

    Science.gov (United States)

    Osborn, John W; Fink, Gregory D

    2010-01-01

    It is now well accepted that many forms of experimental hypertension and human essential hypertension are caused by increased activity of the sympathetic nervous system. However, the role of region-specific changes in sympathetic nerve activity (SNA) in the pathogenesis of hypertension has been difficult to determine because methods for chronic measurement of SNA in conscious animals have not been available. We have recently combined indirect, and continuous and chronic direct, assessment of region-specific SNA to characterize hypertension produced by administration of angiotensin II (Ang II) to rats consuming a high-salt diet (Ang II-salt hypertension). Angiotensin II increases whole-body noradrenaline (NA) spillover and depressor responses to ganglionic blockade in rats consuming a high-salt diet, but not in rats on a normal-salt diet. Despite this evidence for increased 'whole-body SNA' in Ang II-salt hypertensive rats, renal SNA is decreased in this model and renal denervation does not attenuate the steady-state level of arterial pressure. In addition, neither lumbar SNA, which largely targets skeletal muscle, nor hindlimb NA spillover is changed from control levels in Ang II-salt hypertensive rats. However, surgical denervation of the splanchnic vascular bed attenuates/abolishes the increase in arterial pressure and total peripheral resistance, as well as the decrease in vascular capacitance, observed in Ang II-salt hypertensive rats. We hypothesize that the 'sympathetic signature' of Ang II-salt hypertension is characterized by increased splanchnic SNA, no change in skeletal muscle SNA and decreased renal SNA, and this sympathetic signature creates unique haemodynamic changes capable of producing sustained hypertension. PMID:19717492

  2. Turo (Qi Dance Training Attenuates Psychological Symptoms and Sympathetic Activation Induced by Mental Stress in Healthy Women

    Directory of Open Access Journals (Sweden)

    Hwa-Jin Lee

    2009-01-01

    Full Text Available Vagal withdrawal and sympathetic overactivity accompany various types of stress. Qi training is reported to reduce sympathetic hyper-reactivity in a stressful situation. Turo, which is a type of dance that uses the Meridian Qi System, may reduce the psychological symptoms induced by an imbalance of the autonomic nervous system (ANS. We observed whether Turo training alters psychopathological and psychological symptoms using the Symptom Checklist 90-Revision (SCL-90-R and examined whether it attenuates the stress response to mental stress in healthy adolescent females using the power spectrum analysis of heart rate variability (HRV. Twenty-one subjects received Turo training and 27 subjects were trained with mimicking movements. The SCL-90-R was measured before and after the 2-month training period. Heart rate (HR, total power (TP and the LF/HF ratio of HRV were compared between the Turo and control groups during and after mental stress. The somatization and hostility subscales of the SCL-90-R of the Turo group were significantly lower than those of the control group after 2 months. The increases in HR and the LF/HF ratio of HRV induced by the stress test were significantly lower in the Turo group than in the control group. The TP of the Turo group was significantly higher than that of the control group. The psychological symptoms and sympathetic activation induced by the artificial stress were significantly reduced by the Turo training. These findings suggest that Turo training can play a critical role in attenuating psychological symptoms and stress-induced sympathetic activation.

  3. Involvement of the autonomic nervous system in the in vivo memory to glucose of pancreatic beta cell in rats.

    OpenAIRE

    N'Guyen, J M; C. Magnan; Laury, M C; Thibault, C.; Leveteau, J; Gilbert, M.; Pénicaud, L.; Ktorza, A

    1994-01-01

    The fact that the potentiating effect of prolonged hyperglycemia on the subsequent insulin secretion is observed in vivo but not in vitro suggests the involvement of extrapancreatic factors in the in vivo memory of pancreatic beta cells to glucose. We have investigated the possible role of the autonomic nervous system. Rats were made hyperglycemic by a 48-h infusion with glucose (HG rats). At the end of glucose infusion as well as 6 h postinfusion, both parasympathetic and sympathetic nerve a...

  4. Effects of leptin on sympathetic nerve activity in conscious mice

    OpenAIRE

    Morgan, Donald A.; Despas, Fabien; Rahmouni, Kamal

    2015-01-01

    The adipocyte-derived hormone, leptin, has emerged as an important regulator of regional sympathetic nerve activity (SNA) with pathophysiological implications in obesity. Genetically engineered mice are useful to understand the molecular pathways underlying the SNA responses evoked by leptin. However, so far the effect of leptin on direct SNA in mice has been studied under general anesthesia. Here, we examined the sympathetic responses evoked by leptin in conscious mice. Mice were instrumente...

  5. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons

    OpenAIRE

    Holstein, Gay R.; Friedrich, Victor L. Jr.; Martinelli, Giorgio P.

    2016-01-01

    The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and ...

  6. Innervation territories of single sympathetic C fibers in human skin.

    Science.gov (United States)

    Schmelz, M; Schmidt, R; Bickel, A; Torebjörk, H E; Handwerker, H O

    1998-04-01

    Microneurography techniques were used to record action potentials from unmyelinated nerve fibers (C fibers) in the cutaneous fascicles of the peroneal nerve in healthy volunteers. C units were identified by their long latency responses to electrical stimulation of their terminals in the skin. Their responsiveness to mechanical or heat stimuli applied to the skin or to sympathetic reflex provocation tests was determined by transient slowing of conduction velocity following activation (marking technique). In a sample of 381 C units, 59 were unresponsive to mechanical and thermal stimulation of their endings, but responded to sympathetic reflex provocation tests, e.g., arousal or deep inspiration. They were classified as sympathetic efferent units. On average, conduction velocities of sympathetic units were lower (0.78 +/- 0.12 m/s, mean +/- SD) than those of mechano-heat (CMH) or mechanoresponsive (CM) afferent C units (0.91 +/- 0.14 m/s). Endings of most of the sympathetic units were located in the skin of toes or in the foot dorsum. Innervation territories of 16 sympathetic units were mapped by means of conditioning transcutaneous electrical stimuli. Twelve units had one continuous skin territory, whereas two units had two and two other units had three and five separate territories, respectively. The mean innervated area was 128 mm2 (range: 24-350 mm2). Innervation territories of sympathetic units were of approximately the same size in different skin regions on the lower leg, foot, or toes. Based on responses to whole body cooling and warming, two units were tentatively classified as vasoconstrictor and sudomotor units, respectively. Eleven units were tested for responsiveness to iontophoresis of acetylcholine in their innervation territories. In five of them, activity was induced that was not due to central reflex activity but instead due to antidromic activation from the peripheral terminals. Iontophoresis of saline or histamine was ineffective. These findings

  7. Schwanomma From Cervical Sympathetic Chain Ganglion - A Rare Presentation.

    Science.gov (United States)

    Asma, A Affee; Kannah, E

    2015-10-01

    Schwanommas arising from cervical sympathetic chain are tumours that are rare in occurrence. These lesions are usually difficult to differentiate from a vagal schwanomma and a carotid body tumour during the initial workup. In this report, a rarely seen huge cervical sympathetic chain schwanomma case with partial Horner's syndrome is being presented in detail, which to our known knowledge, is one of the few cases reported in literature. PMID:26557566

  8. Axon Count and Sympathetic Skin Responses in Lumbosacral Radiculopathy

    OpenAIRE

    Erdem Tilki, Hacer; Coşkun, Melek; Ünal Akdemir, Neslihan; İncesu, Lütfi

    2014-01-01

    Background and Purpose Electrodiagnostic studies can be used to confirm the diagnosis of lumbosacral radiculopathies, but more sensitive diagnostic methods are often needed to measure the ensuing motor neuronal loss and sympathetic failure. Methods Twenty-six patients with lumbar radiculopathy and 30 controls were investigated using nerve conduction studies, motor unit number estimation (MUNE), testing of the sympathetic skin response (SSR), quantitative electromyography (QEMG), and magnetic ...

  9. Receptor-mediated regional sympathetic nerve activation by leptin.

    OpenAIRE

    Haynes, W G; Morgan, D A; Walsh, S A; Mark, A L; Sivitz, W I

    1997-01-01

    Leptin is a peptide hormone produced by adipose tissue which acts centrally to decrease appetite and increase energy expenditure. Although leptin increases norepinephrine turnover in thermogenic tissues, the effects of leptin on directly measured sympathetic nerve activity to thermogenic and other tissues are not known. We examined the effects of intravenous leptin and vehicle on sympathetic nerve activity to brown adipose tissue, kidney, hindlimb, and adrenal gland in anesthetized Sprague-Da...

  10. Remodelling sympathetic innervation in rat pancreatic islets ontogeny

    Directory of Open Access Journals (Sweden)

    Hiriart Marcia

    2009-06-01

    Full Text Available Abstract Background Pancreatic islets are not fully developed at birth and it is not clear how they are vascularised and innervated. Nerve Growth Factor (NGF is required to guide sympathetic neurons that innervate peripheral organs and also in cardiovascular system and ovary angiogenesis. Pancreatic beta cells of a transgenic mouse that over-expressed NGF in attracts sympathetic hyper-innervation towards them. Moreover, we have previously demonstrated that adult beta cells synthesize and secrete NGF; however, we do not know how is NGF secreted during development, nor if it might be trophic for sympathetic innervation and survival in the pancreas. We analyzed sympathetic innervation and vasculature development in rat pancreatic islets at different developmental stages; foetal (F19, early postnatal (P1, weaning period (P20 and adults. We temporarily correlated these events to NGF secretion by islet cells. Results Sympathetic fibres reached pancreatic islets in the early postnatal period, apparently following blood vessels. The maximal number of sympathetic fibres (TH immunopositive in the periphery of the islets was observed at P20, and then fibres entered the islets and reached the core where beta cells are mainly located. The number of fibres decreased from that stage to adulthood. At all stages studied, islet cells secreted NGF and also expressed the high affinity receptor TrkA. Foetal and neonatal isolated islet cells secreted more NGF than adults. TrkA receptors were expressed at all stages in pancreatic sympathetic fibres and blood vessels. These last structures were NGF–immunoreactive only at early stages (foetal and P0. Conclusion The results suggest that NGF signalling play an important role in the guidance of blood vessels and sympathetic fibres toward the islets during foetal and neonatal stages and could also preserve innervation at later stages of life.

  11. Cross-talk between sympathetic neurons and adipocytes in coculture

    OpenAIRE

    Turtzo, L. Christine; Marx, Ruth; Lane, M. Daniel

    2001-01-01

    White adipose tissue plays an integral role in energy metabolism and is governed by endocrine, autocrine, and neural signals. Neural control of adipose metabolism is mediated by sympathetic neurons that innervate the tissue. To investigate the effects of this innervation, an ex vivo system was developed in which 3T3-L1 adipocytes are cocultured with sympathetic neurons isolated from the superior cervical ganglia of newborn rats. In coculture, both adipocytes and neurons exhibit appropriate mo...

  12. Centrally administered glucagon stimulates sympathetic nerve activity in rat.

    Science.gov (United States)

    Krzeski, R; Czyzyk-Krzeska, M F; Trzebski, A; Millhorn, D E

    1989-12-18

    The effect of pancreatic glucagon given intravenously, intracerebroventricularly and microinjected into the nucleus of the solitary tract on sympathetic activity in the cervical trunk and adrenal nerve was examined in rat. In each case glucagon caused a relatively long-lasting substantial increase in discharge of both nerves. This finding shows that glucagon can act centrally to stimulate sympathetic activity. The most probable site for the sympathoexcitatory effect of glucagon is the nucleus of the solitary tract. PMID:2598031

  13. Assessment of Fetal Autonomic Nervous System Activity by Fetal Magnetocardiography

    Directory of Open Access Journals (Sweden)

    Akimune Fukushima

    2008-01-01

    Full Text Available Aim: To clarify the significance of heart rate variability for the evaluation of an autonomic nervous system (ANS in the normal fetus using fetal magnetocardiography (FMCG.Methods: Subjects consisted of normal pregnancy (n = 35 at 28–39 weeks gestation. FMCG was recorded using 64-channel magnetocardiography (MCG in a magnetically shielded room. The QRS interval was derived from signal-averaged MCG. The R–R interval variability induced by an R-wave trigger was eventually adopted to calculate for time-domain and frequency domain analysis. The power spectrum in the frequency domain was derived from frequency-field components using the maximum entropy method of fetal heart rate variability. Based on frequency analysis, the ranges of the LF and HF domains were defined as 0.01–0.15 and 0.15–0.4 Hz, respectively. We defined a coeffi cient of variance (CVRR as an index of parasympathetic activity, and defined a low frequency/high frequency (LF/HF ratio as a sympathetic activity.Results: The value of CVRR in the normal pregnancy group displayed a slight increasing trend with gestational age (y = 1.77 + 0.10x; r = 0.32. In contrast, the LF/HF ratio in the normal pregnancy group clearly increased over the gestational period (one-way ANOVA: P = 0.003.Conclusions: Analyses based on the time and frequency domains of heart rate variability using FMCG enable an evaluation of fetal ANS activity. Sympathetic nervous activity increased with gestational age in the normal pregnancy group.

  14. Cardiovascular sympathetic arousal in response to different mental stressors.

    Science.gov (United States)

    Mestanik, M; Mestanikova, A; Visnovcova, Z; Calkovska, A; Tonhajzerova, I

    2016-01-01

    The altered regulation of autonomic response to mental stress can result in increased cardiovascular risk. The laboratory tests used to simulate the autonomic responses to real-life stressors do not necessarily induce generalized sympathetic activation; therefore, the assessment of regulatory outputs to different effector organs could be important. We aimed to study the cardiovascular sympathetic arousal in response to different mental stressors (Stroop test, mental arithmetic test) in 20 healthy students. The conceivable sympathetic vascular index - spectral power of low frequency band of systolic arterial pressure variability (LF-SAP) and novel potential cardio-sympathetic index - symbolic dynamics heart rate variability index 0V% were evaluated. The heart and vessels responded differently to mental stress - while Stroop test induced increase of both 0V% and LF-SAP indices suggesting complex sympathetic arousal, mental arithmetic test evoked only 0V% increase compared to baseline (pStroop test compared to mental arithmetic test potentially indicating the effect of different central processing (0V%, LF-SAP: p<0.001; HR, MAP: p<0.01). The different effectors' sympathetic responses to cognitive stressors could provide novel important information regarding potential pathomechanisms of stress-related diseases. PMID:26674281

  15. Iodine-123-metaiodobenzylguanidine imaging can predict future cardiac events in heart failure patients with preserved ejection fraction

    International Nuclear Information System (INIS)

    Iodine-123-metaiodobenzylguanidine (123I-MIBG) has been used to assess the function of the cardiac sympathetic nervous system in patients with chronic heart failure (HF). The usefulness of 123I-MIBG imaging for evaluating patients with heart failure with preserved ejection fraction (HFPEF) has not been established. We performed 123I-MIBG scintigraphy and echocardiography and measured the plasma brain natriuretic peptide (BNP) levels of 117 consecutive HF patients (64 men, mean age 66±14 years) with a left ventricular ejection fraction (LVEF) of ≥50% who were admitted to our hospital. Patients were divided into 2 groups according to the New York Heart Association (NYHA) functional class. The 123I-MIBG delayed heart-to-mediastinum (H/M) ratio was significantly lower, and the washout rate (WR) was higher in patients with HFPEF with advanced NYHA functional class (NYHA functional class I and II vs. III: 1.90±0.34 vs. 1.49±0.32, p123I-MIBG WR was not correlated with LVEF and had a weak correlation with plasma BNP levels (R=0.207, p=0.0346). Moreover, patients with a high 123I-MIBG WR showed a poor clinical outcome (p=0.0033). 123I-MIBG imaging provides independent prognostic information in patients with HFPEF. (author)

  16. A comparison of sympathoadrenal activity and cardiac performance at rest and during exercise in patients with ventricular demand or atrial synchronous pacing.

    OpenAIRE

    Pehrsson, S K; Hjemdahl, P; Nordlander, R; Aström, H

    1988-01-01

    Cardiac sympathetic function was assessed by measuring the coronary sinus overflow of noradrenaline and dopamine at rest and during supine exercise in eight patients with high degree atrioventricular block treated with dual chamber pacemakers (DDD). Patients exercised (30-60 W) during both ventricular inhibited (VVI) and atrial synchronous (VAT) pacing. During exercise cardiac output increased less markedly in the VVI mode than in the VAT mode. The cardiac output response was entirely stroke ...

  17. Characteristics of renal sympathetic nerve single units in rabbits with angiotensin-induced hypertension.

    Science.gov (United States)

    Burke, Sandra L; Lukoshkova, Elena V; Head, Geoffrey A

    2016-01-01

    We examined the effect of chronic angiotensin (Ang II)-induced hypertension on activity of postganglionic renal sympathetic units to determine whether altered whole renal nerve activity is due to recruitment or changes in firing frequency. Rabbits were treated with a low (20 ng kg(-1) min(-1), 8 weeks) or high dose (50 ng kg(-1) min(-1), 4 weeks) of Ang II before the experiment under chloralose-urethane anaesthesia. Spontaneously active units were detected from multiunit recordings using an algorithm that separated units by action potential shape using templates that matched spikes within a prescribed standard deviation. Multiunit sympathetic nerve activity was 40% higher in rabbits treated with low-dose Ang II than in sham (P = 0.012) but not different in high-dose Ang II. Resting firing frequency was similar in sham rabbits (1.00 ± 0.09 spikes s(-1), n = 144) and in those treated with high-dose Ang II (1.10 ± 0.08 spikes s(-1), n = 112) but was lower with low-dose Ang II (0.65 ± 0.08 spikes s(-1), n = 149, P < 0.05). Unit firing rhythmicity was linked to the cardiac cycle and was similar in sham and low-dose Ang II groups but 29-32% lower in rabbits treated with high-dose Ang II (P < 0.001). Cardiac linkage followed a similar pattern during hypoxia. All units showed baroreceptor dependency. Baroreflex gain and range were reduced and curves shifted to the right in Ang II groups. Firing frequency during hypoxia increased by +39% in low-dose Ang II and +82% in shams, but the greatest increase was in the high-dose Ang II group (+103%, P(dose) = 0.001). Responses to hypercapnia were similar in all groups. Increases in sympathetic outflow in hypertension caused by low-dose chronic Ang II administration are due to recruitment of neurons, but high-dose Ang II increases firing frequency in response to chemoreceptor stimuli independently of the arterial baroreceptors. PMID:26467849

  18. Pharmacological characterization of the inhibition by moxonidine and agmatine on the cardioaccelerator sympathetic outflow in pithed rats.

    Science.gov (United States)

    Cobos-Puc, Luis E; Villalón, Carlos M; Ramírez-Rosas, Martha B; Sánchez-López, Araceli; Lozano-Cuenca, Jair; Gómez-Díaz, Benjamín; MaassenVanDenBrink, Antoinette; Centurión, David

    2009-08-15

    This study analysed the inhibition produced by the agonists moxonidine (imidazoline I(1) receptors>alpha(2)-adrenoceptors) and agmatine (endogenous ligand of imidazoline I(1)/I(2) receptors), using B-HT 933 (6-ethyl-5,6,7,8-tetrahydro-4H-oxazolo[4,5-d]azepin-2-amine dihydrochloride; alpha(2)-adrenoceptors) for comparison, on the rat cardioaccelerator sympathetic outflow. Male Wistar rats were pithed and prepared to stimulate the cardiac sympathetic outflow or to receive i.v. bolus of exogenous noradrenaline. Sympathetic stimulation or noradrenaline produced, respectively, frequency-dependent and dose-dependent tachycardic responses. I.v. continuous infusions of moxonidine (3 and 10 microg/kg min), agmatine (1000 and 3000 microg/kg min) and B-HT 933 (30 and 100 microg/kg min) inhibited the tachycardic responses to sympathetic stimulation, but not those to noradrenaline. The cardiac sympatho-inhibition by either moxonidine (3 microg/kg min) or B-HT 933 (30 microg/kg min) was not modified by i.v. injections of saline or the antagonists AGN192403 [(+/-)-2-endo-Amino-3-exo-isopropylbicyclo[2.2.1]heptane hydrochloride; 3000microg/kg; imidazoline I(1) receptors] or BU224 (2-(4,5-dihydroimidazol-2-yl)quinoline hydrochloride; 300 microg/kg; imidazoline I(2) receptors) and abolished by rauwolscine (300 microg/kg; alpha(2)-adrenoceptors). At the same doses of these compounds, the sympatho-inhibition to moxonidine (10 microg/kg min) and agmatine (1000 microg/kg min) was: (1) not modified by saline, AGN192403 or BU224; (2) partially blocked by rauwolscine or the combination of rauwolscine plus BU224; and (3) abolished by the combination of rauwolscine plus AGN192403. These results demonstrate that the cardiac sympatho-inhibition to: (1) 3 microg/kg min moxonidine or 30 microg/kg min B-HT 933 involves alpha(2)-adrenoceptors; and (2) 10 microg/kg min moxonidine or 1000 microg/kg min agmatine involves alpha(2)-adrenoceptors and imidazoline I(1) receptors. PMID:19527708

  19. Factors influencing the cardiac MIBG accumulation

    International Nuclear Information System (INIS)

    Following factors possibly influencing the cardiac MIBG accumulation were examined mainly in mice. 1. The specific activity of the MIBG (meta-iodo-benzyl guanidine) on the neuronal and non-neuronal fractions. 2. Motor restriction stress on MIBG accumulation and washout. 3. Loading and restriction of sodium chloride on the accumulation and effect of suppression of renin-angiotensin system. 4. Examinations in Dahl rats. 125I- or 131I-MIBG was intravenously administered to mice at 74 kBq. At 30 min or 4 hr after administration, mice were sacrificed and their left ventricles were dissected out for measurement of radioactivity in a liquid scintillation counter. Salt-sensitive and -resistant Dahl rats were given with 37 MBq of 123I-MIBG and cardiac radioactivity was measured externally for calculation of washout. Factors examined were found highly correlated with the accumulation of MIBG and measurement of its washout was considered useful for evaluating sympathetic activity. (K.H.)

  20. Dynamic analysis of mental sweating and the peripheral vessels for the activity of the autonomic nervous system by optical coherence tomography

    Science.gov (United States)

    Ohmi, Masato; Takada, Daisuke; Wada, Yuki; Haruna, Masamitsu

    2012-01-01

    OCT is highly potential for dynamic analysis of physiological functions of mental sweating and peripheral vessels as demonstrated by the authors. Both mental sweating and the peripheral vessels reflect the activity of the sympathetic nerve of the autonomic nervous system (ANS). The sympathetic nerve also exhibits the LF/HF ratio of the heart rate variability (HRV). In this paper, we demonstrate dynamic analysis of mental sweating and the peripheral vessels for the external stimulus by SS-OCT. In the experiment, the Kraepelin test as a continuous stimulus was applied to the volunteer to discuss in detail dynamics of the physiological function of such small organs in response to the HRV.

  1. Recent evidence for activity-dependent initiation of sympathetic sprouting and neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    Jun-Ming ZHANG; Judith A. Strong

    2008-01-01

    Traumatic injury or inflammatory irritation of the peripheral nervous system often leads to persistent pathophysiological pain states. It has been well-documented that, after peripheral nerve injury or inflammation, functional and anatomical alterations sweep over the entire peripheral nervous system including the peripheral nerve endings, the injured or inflamed afferent fibers, the dorsal root ganglion (DRG), and the central afferent terminals in the spinal cord. Among all the changes, ectopic discharge or spontaneous activity of primary sensory neurons is of great clinical interest, as such discharges doubtless contribute to the develop-ment of pathological pain states such as neuropathic pain. Two key sources of abnormal spontaneous activity have been identified following peripheral nerve injury: the injured afferent fibers (neuroma) leading to the DRG, and the DRG somata. The purpose of this review is to provide a global account of the abnormal spontaneous activity in various animal models of pain. Particular attention is focused on the consequence of peripheral nerve injury and localized inflammation. Further, mechanisms involved in the generation of spontaneous activity are also reviewed; evidence of spontaneous activity in contributing to abnormal sympathetic sprouting in the axotomized DRG and to the initiation of neuropathic pain based on new findings from our research group are discussed. An improved understanding of the causes of spontaneous activity and the origins of neuropathic pain should facilitate the development of novel strategies for effective treatment of pathological pain.

  2. Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie

    2011-07-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  3. Cardiac sarcoidosis

    Science.gov (United States)

    Smedema, J.P.; Zondervan, P.E.; van Hagen, P.; ten Cate, F.J.; Bresser, P.; Doubell, A.F.; Pattynama, P.; Hoogsteden, H.C.; Balk, A.H.M.M.

    2002-01-01

    Sarcoidosis is a multi-system granulomatous disorder of unknown aetiology. Symptomatic cardiac involvement occurs in approximately 5% of patients. The prevalence of sarcoidosis in the Netherlands is unknown, but estimated to be approximately 20 per 100,000 population (3200 patients). We report on five patients who presented with different manifestations of cardiac sarcoidosis, and give a brief review on the current management of this condition. Magnetic Resonance Imaging (MRI) can be of great help in diagnosing this condition as well as in the follow-up of the response to therapy. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:25696121

  4. Reduced CGP12177 binding to cardiac β-adrenoceptors in hyperglycemic high-fat-diet-fed, streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Introduction: Abnormal sympathetic nervous system and β-adrenoceptor (β-AR) signaling is associated with diabetes. [3H]CGP12177 is a nonselective β-AR antagonist that can be labeled with carbon-11 for positron emission tomography. The aim of this study was to examine the suitability of this tracer for evaluation of altered β-AR expression in diabetic rat hearts. Methods: Ex vivo biodistribution with [3H]CGP12177 was carried out in normal Sprague-Dawley rats for evaluation of specific binding and response to continuous β-AR stimulation by isoproterenol. In a separate group, high-fat-diet feeding imparted insulin resistance and a single intraperitoneal injection of streptozotocin (STZ) or vehicle evoked hyperglycemia (blood glucose >11 mM). [3H]CGP12177 biodistribution was assessed at 2 and 8 weeks post-STZ to measure β-AR binding in heart, 30 min following tracer injection. Western blotting of β-AR subtypes was completed in parallel. Results: Infusion of isoproterenol over 14 days did not affect cardiac binding of [3H]CGP12177. Approximately half of rats treated with STZ exhibited sustained hyperglycemia and progressive hypoinsulinemia. Myocardial [3H]CGP12177 specific binding was unchanged at 2 weeks post-STZ but significantly reduced by 30%-40% at 8 weeks in hyperglycemic but not euglycemic STZ-treated rats compared with vehicle-treated controls. Western blots supported a significant decrease in β1-AR in hyperglycemic rats. Conclusions: Reduced cardiac [3H]CGP12177 specific binding in the presence of sustained hyperglycemia corresponds to a decrease in relative β1-AR expression. These data indirectly support the use of [11C]CGP12177 for assessment of cardiac dysfunction in diabetes.

  5. Reduced CGP12177 binding to cardiac {beta}-adrenoceptors in hyperglycemic high-fat-diet-fed, streptozotocin-induced diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Thackeray, James T.; Parsa-Nezhad, Maryam; Kenk, Miran; Thorn, Stephanie L. [Molecular Function and Imaging Program, National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y4W7 (Canada); Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Roger Guindon Hall, Ottawa, Ontario, K1H8M5 (Canada); Kolajova, Maria [Molecular Function and Imaging Program, National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y4W7 (Canada); Beanlands, Rob S.B. [Molecular Function and Imaging Program, National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y4W7 (Canada); Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Roger Guindon Hall, Ottawa, Ontario, K1H8M5 (Canada); DaSilva, Jean N., E-mail: jdasilva@ottawaheart.ca [Molecular Function and Imaging Program, National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y4W7 (Canada); Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Roger Guindon Hall, Ottawa, Ontario, K1H8M5 (Canada)

    2011-10-15

    Introduction: Abnormal sympathetic nervous system and {beta}-adrenoceptor ({beta}-AR) signaling is associated with diabetes. [{sup 3}H]CGP12177 is a nonselective {beta}-AR antagonist that can be labeled with carbon-11 for positron emission tomography. The aim of this study was to examine the suitability of this tracer for evaluation of altered {beta}-AR expression in diabetic rat hearts. Methods: Ex vivo biodistribution with [{sup 3}H]CGP12177 was carried out in normal Sprague-Dawley rats for evaluation of specific binding and response to continuous {beta}-AR stimulation by isoproterenol. In a separate group, high-fat-diet feeding imparted insulin resistance and a single intraperitoneal injection of streptozotocin (STZ) or vehicle evoked hyperglycemia (blood glucose >11 mM). [{sup 3}H]CGP12177 biodistribution was assessed at 2 and 8 weeks post-STZ to measure {beta}-AR binding in heart, 30 min following tracer injection. Western blotting of {beta}-AR subtypes was completed in parallel. Results: Infusion of isoproterenol over 14 days did not affect cardiac binding of [{sup 3}H]CGP12177. Approximately half of rats treated with STZ exhibited sustained hyperglycemia and progressive hypoinsulinemia. Myocardial [{sup 3}H]CGP12177 specific binding was unchanged at 2 weeks post-STZ but significantly reduced by 30%-40% at 8 weeks in hyperglycemic but not euglycemic STZ-treated rats compared with vehicle-treated controls. Western blots supported a significant decrease in {beta}{sub 1}-AR in hyperglycemic rats. Conclusions: Reduced cardiac [{sup 3}H]CGP12177 specific binding in the presence of sustained hyperglycemia corresponds to a decrease in relative {beta}{sub 1}-AR expression. These data indirectly support the use of [{sup 11}C]CGP12177 for assessment of cardiac dysfunction in diabetes.

  6. Sympathetic cooling of ytterbium with rubidium

    International Nuclear Information System (INIS)

    Within the scope of this thesis, a mixture of ultracold ytterbium and rubidium atoms was experimentally realized and investigated. For these experiments, a novel trap geometry was developed which allows simultaneous trapping and cooling of diamagnetic and paramagnetic atomic species. The main focus was put on the investigation of the interspecies scattering properties, where sympathetic cooling of ytterbium through elastic collisions with rubidium could be demonstrated. In addition, the interspecies scattering length could be determined. In the current configuration the combined trap allows the preparation of up to 2.105 atoms of 170Yb, 171Yb, 172Yb, 174Yb or 176Yb at a temperature of 40..60 μK and a density in the range of 1012 cm-3, and of about 10787Rb atoms at a temperature of 25 μK and a density in the range of 5.1011 cm-3. Detailed studies of the thermalization of bosonic 170Yb, 172Yb, 174Yb and 176Yb and of fermionic 171Yb each with 87Rb were performed under varying experimental conditions. The deduced total scattering cross section was clearly found to increase with higher mass of the ytterbium isotope. In general, a mass scaling of the scattering properties is in agreement with theoretical models and former experimental work. With the assumption of pure s-wave scattering, which is approximately fulfilled for the given experimental parameters, the interspecies scattering length could be derived from the measured thermalization data and was found to be (in units of the Bohr radius a0): 170Yb-87Rb:(18+12-4)a0, 171Yb-87Rb:(25+14-7)a0, 172Yb-87Rb:(33+23-7)a0, 174Yb-87Rb:(83+89-25)a0, 176Yb-87Rb:(127+245-45)a0. (orig./HSI)

  7. Iodine-123 metaiodobenzylguanidine imaging of the heart in idiopathic congestive cardiomyopathy and cardiac transplants

    International Nuclear Information System (INIS)

    Iodine-123 metaiodobenzylguanidine ([123I]MIBG) is a norepinephrine analog which can be used to image the sympathetic innervation of the heart. In this study, cardiac imaging with [123I]MIBG was performed in patients with idiopathic congestive cardiomyopathy and compared to normal controls. Initial uptake, half-time of tracer within the heart, and heart to lung ratios were all significantly reduced in patients compared to normals. Uptake in lungs, liver, salivary glands, and spleen was similar in controls and patients with cardiomyopathy indicating that decreased MIBG uptake was not a generalized abnormality in these patients. Iodine-123 MIBG imaging was also performed in cardiac transplant patients to determine cardiac nonneuronal uptake. Uptake in transplants was less than 10% of normals in the first 2 hr and nearly undetectable after 16 hr. The decreased uptake of MIBG suggests cardiac sympathetic nerve dysfunction while the rapid washout of MIBG from the heart suggests increased cardiac sympathetic nerve activity in idiopathic congestive cardiomyopathy

  8. Central nervous system tumors

    International Nuclear Information System (INIS)

    Central nervous system (CNS) tumors are relatively common in veterinary medicine, with most diagnoses occurring in the canine and feline species. Numerous tumor types from various cells or origins have been identified with the most common tumors being meningiomas and glial cell tumors. Radiation therapy is often used as an aid to control the clinical signs associated with these neoplasms. In general, these tumors have a very low metastatic potential, such that local control offers substantial benefit. Experience in veterinary radiation oncology would indicate that many patients benefit from radiation treatment. Current practice indicates the need for computed tomography or magnetic resonance imaging studies. These highly beneficial studies are used for diagnosis, treatment planning, and to monitor treatment response. Improvements in treatment planning and radiation delivered to the tumor, while sparing the normal tissues, should improve local control and decrease potential radiation related problems to the CNS. When possible, multiple fractions of 3 Gy or less should be used. The tolerance dose to the normal tissue with this fractionation schedule is 50 to 55 Gy. The most common and serious complications of radiation for CNS tumors is delayed radiation myelopathy and necrosis. Medical management of the patient during radiation therapy requires careful attention to anesthetic protocols, and medications to reduce intracranial pressure that is often elevated in these patients. Canine brain tumors have served as an experimental model to test numerous new treatments. Increased availability of advanced imaging modalities has spawned increased detection of these neoplasms. Early detection of these tumors with appropriate aggressive therapy should prove beneficial to many patients

  9. Reduced cardiac {sup 123}I-metaiodobenzylguanidine uptake in patients with spinocerebellar ataxia type 2: a comparative study with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    De Rosa, Anna; De Leva, Maria Fulvia; Maddaluno, Gennaro; Filla, Alessandro; De Michele, Giuseppe [University Federico II, Department of Neurosciences and Reproductive and Odontostomatologic Sciences, Naples (Italy); Pappata, Sabina; Pellegrino, Teresa [National Council of Research, Institute of Biostructure and Bioimaging, Naples (Italy); Fiumara, Giovanni [Institute of Diagnostic and Nuclear Development, SDN Foundation, Naples (Italy); Carotenuto, Raffaella; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy); Petretta, Mario [University Federico II, Department of Translational Medical Sciences, Naples (Italy)

    2013-12-15

    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disorder characterized by cerebellar ataxia, supranuclear ophthalmoplegia, and peripheral neuropathy. Autonomic nervous system dysfunction is often present. This study evaluated the cardiac sympathetic function in patients with SCA2 using {sup 123}I-metaiodobenzylguanidine (MIBG) in comparison with patients with Parkinson's disease (PD) and control subjects. Nine patients with SCA2, nine patients with PD, and nine control subjects underwent {sup 123}I-MIBG imaging studies from which early and late heart-to-mediastinum (H/M) ratios and myocardial washout rates were calculated. Early (F = 12.3, p < 0.0001) and late (F = 16.8, p < 0.0001) H/M ratios were significantly different among groups. In controls, early and late H/M ratios (2.2 {+-} 0.12 and 2.1 {+-} 0.20) were significantly higher than in patients with SCA2 (1.9 {+-} 0.23 and 1.8 {+-} 0.20, both p < 0.05) and with patients with PD (1.7 {+-} 0.29 and 1.4 {+-} 0.35, both p < 0.001). There was also a significant difference in washout rates among groups (F = 11.7, p < 0.0001). In controls the washout rate (19.9 {+-} 9.6 %) was significantly lower (p < 0.005) than in patients with PD (51.0 {+-} 23.7 %), but not different from that in SCA2 patients (19.5 {+-} 9.4 %). In SCA2 patients, in a multivariable linear regression analysis only the Scale for the Assessment and Rating of Ataxia score was independently associated with early H/M ratio ({beta} = -0.12, p < 0.05). {sup 123}I-MIBG myocardial scintigraphy demonstrated an impairment of cardiac sympathetic function in patients with SCA2, which was less marked than in PD patients. These results suggest that {sup 123}I-MIBG cardiac imaging could become a useful tool for analysing the pathophysiology of SCA2. (orig.)

  10. Cardiac Pacemakers

    International Nuclear Information System (INIS)

    A complete survey of physiological biophysical,clinical and engineering aspects of cardiac facing,including the history and an assessment of possible future developments.Among the topics studied are: pacemakers, energy search, heart stimulating with pacemakers ,mathematical aspects of the electric cardio stimulation chronic, pacemaker implants,proceeding,treatment and control

  11. Activation of the hypothalamic paraventricular nucleus by forebrain hypertonicity selectively increases tonic vasomotor sympathetic nerve activity.

    Science.gov (United States)

    Holbein, Walter W; Toney, Glenn M

    2015-03-01

    We recently reported that mean arterial pressure (MAP) is maintained in water-deprived rats by an irregular tonic component of vasomotor sympathetic nerve activity (SNA) that is driven by neuronal activity in the hypothalamic paraventricular nucleus (PVN). To establish whether generation of tonic SNA requires time-dependent (i.e., hours or days of dehydration) neuroadaptive responses or can be abruptly generated by even acute circuit activation, forebrain sympathoexcitatory osmosensory inputs to PVN were stimulated by infusion (0.1 ml/min, 10 min) of hypertonic saline (HTS; 1.5 M NaCl) through an internal carotid artery (ICA). Whereas isotonic saline (ITS; 0.15 M NaCl) had no effect (n = 5), HTS increased (P phosphonovaleric acid (AP5; n = 6) had similar effects. Analysis of respiratory rhythmic bursting of sSNA revealed that ICA HTS increased mean voltage (P < 0.001) without affecting the amplitude of inspiratory or expiratory bursts. Analysis of cardiac rhythmic sSNA likewise revealed that ICA HTS increased mean voltage. Cardiac rhythmic sSNA oscillation amplitude was also increased, which is consistent with activation of arterial baroreceptor during the accompanying pressor response. Increased mean sSNA voltage by HTS was blocked by prior PVN inhibition (muscimol) and blockade of PVN NMDA receptors (AP5). We conclude that even acute glutamatergic activation of PVN (i.e., by hypertonicity) is sufficient to selectively increase a tonic component of vasomotor SNA. PMID:25519737

  12. [The relationship between the sympathetic nerves and immunocytes in the spleen].

    Science.gov (United States)

    Saito, H

    1991-02-01

    Ever since Galen, the ancient Greek physician, said "Melancholic women develop disease more than sanguine women," it has been said that the mental condition affects the physical condition. However, there is hardly any scientific verification. About half a century ago, Selye (1936) proposed a relationship between stress and immune function, and it is becoming increasingly clear that the nervous system and immune system interact with each other. Also researchers have strongly hoped to demonstrate the existence of specific pathways by which immunocytes can be directly regulated by the nervous elements instead of by the humoral influence of immunomodulators. In this study, the author showed by electron microscopic observation how the immunocytes in the guinea pig spleen are directly innervated. The sustentacular supporting element of the guinea pig spleen is the connective tissue system which includes the capsulo-trabecular, peri-vascular and reticular systems. The latter system is composed of the outer sheath of the reticular cell or its cellular processes which have abundant microfilaments and the inner minute connective tissue space in which lamina densa-like material, collagenous fibrils, elastic fibers and nervous elements are present. The sympathetic adrenergic nerves for the spleen enter the organ, and scatter around the arterial walls. All components of the connective tissue system are continuous with each other, and the nervous elements appearing in the reticular system are the elongated ones from other connective tissue systems, especially peri-vascular connective tissue. Thus, the adrenergic nerves are more abundant in the white pulp, into which the central artery penetrates, than in the red pulp which arterioles or capillaries pass through. The minute connective tissue space of the reticular system may be called the noradrenalin (NA) canal because catecholamine released from the naked adrenergic nerve terminals in this tissue diffuses and is stored in this

  13. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    OpenAIRE

    Fu, Liang-Wu; Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischem...

  14. Brain and nervous system (image)

    Science.gov (United States)

    The nervous system controls the many complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, nerve ...

  15. The evolution of the serotonergic nervous system

    DEFF Research Database (Denmark)

    Hay-Schmidt, Anders

    2000-01-01

    Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion......Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion...

  16. Analisis Sympathetic Trip pada Penyulang Ungasan-Bali Resort, Bali

    Directory of Open Access Journals (Sweden)

    Cakasana Alif Bathamantri

    2012-09-01

    Full Text Available Sistem pengaman dalam tenaga listrik dimaksudkan untuk melokalisir gangguan agar tidak meluas sesuai dengan cakupan daerah pengaman. Salah satu kegagalan pengaman melokalisir gangguan disebut sympathetic trip yaitu kegagalan rele pada penyulang 20 kV di gardu induk dimana penyulang yang tidak terganggu, akan ikut trip dengan penyulang yang terganggu. Dalam tugas akhir ini akan dibahas mengenai analisa penyebab terjadinya peristiwa sympathetic trip pada penyulang Ungasan-Bali Resort 20kV di Bali karena di tempat inilah tercatat sering terjadi gangguan sympathetic trip. Besarnya arus kapasitif, setting ground fault relay dan koordinasi rele pengaman semua akan di analisa pada tugas akhir ini. Untuk analisa koordinasi rele, perhitungan dilakukan menggunakan program ETAP 7.0.

  17. Effect of acute ozone induced airway inflammation on human sympathetic nerve traffic: a randomized, placebo controlled, crossover study.

    Directory of Open Access Journals (Sweden)

    Jens Tank

    Full Text Available BACKGROUND: Ozone concentrations in ambient air are related to cardiopulmonary perturbations in the aging population. Increased central sympathetic nerve activity induced by local airway inflammation may be one possible mechanism. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate this issue further, we performed a randomized, double-blind, cross-over study, including 14 healthy subjects (3 females, age 22-47 years, who underwent a 3 h exposure with intermittent exercise to either ozone (250 ppb or clean air. Induced sputum was collected 3 h after exposure. Nineteen to 22 hours after exposure, we recorded ECG, finger blood pressure, brachial blood pressure, respiration, cardiac output, and muscle sympathetic nerve activity (MSNA at rest, during deep breathing, maximum-inspiratory breath hold, and a Valsalva maneuver. While the ozone exposure induced the expected airway inflammation, as indicated by a significant increase in sputum neutrophils, we did not detect a significant estimated treatment effect adjusted for period on cardiovascular measurements. Resting heart rate (clean air: 59±2, ozone 60±2 bpm, blood pressure (clean air: 121±3/71±2 mmHg; ozone: 121±2/71±2 mmHg, cardiac output (clean air: 7.42±0.29 mmHg; ozone: 7.98±0.60 l/min, and plasma norepinephrine levels (clean air: 213±21 pg/ml; ozone: 202±16 pg/ml, were similar on both study days. No difference of resting MSNA was observed between ozone and air exposure (air: 23±2, ozone: 23±2 bursts/min. Maximum MSNA obtained at the end of apnea (air: 44±4, ozone: 48±4 bursts/min and during the phase II of the Valsalva maneuver (air: 64±5, ozone: 57±6 bursts/min was similar. CONCLUSIONS/SIGNIFICANCE: Our study suggests that acute ozone-induced airway inflammation does not increase resting sympathetic nerve traffic in healthy subjects, an observation that is relevant for environmental health. However, we can not exclude that chronic airway inflammation may contribute to sympathetic

  18. Connection of supreme nervous functioning’s neuro-dynamic characteristics with success of junior sportsmen in sports dances

    Directory of Open Access Journals (Sweden)

    Korobeynikov G.V.

    2016-08-01

    Full Text Available Purpose: to find peculiar features of neuro-dynamic characteristics of 14-15 years’ age sportsmen in sport dances and their influence on successfulness. Material: we tested 32 qualified dancers of 15-16 years’ age. Results: it was found that high workability and reduced anxiety level of dancers with higher successfulness is accompanied by sympathetic adrenalin system’s activation, resulted from mobilization of organism’s adaptation resources. The presence of nervous processes’ high mobility and increase of quickness of information perception and processing are the keys to success in sport dances. It was proved that success in sport dances is connected with nervous processes’ balance and facilitates higher organization of psycho-motor skills. It is also conditioned by concentration on fulfillment of motor skills, accompanied by reduction of nervous processes’ lability. Conclusions: we found connection between individual-typological characteristics of junior dancers’ high nervous functioning. We also determined that high workability and reduced anxiety of sportsmen with high successfulness is accompanied by sympathetic adrenalin system’s activation, resulted from mobilization of organism’s adaptation resources. It follows form mobilization of organism’s adaptation resources. Increase of accuracy and stability of motor skills’ realization reduces the level of junior dancers’ psycho-motor productivity.

  19. Cardiac rhabdomyosarcoma

    OpenAIRE

    Chlumský, Jaromír; Holá, Dana; Hlaváček, Karel; Michal, Michal; Švec, Alexander; Špatenka, Jaroslav; Dušek, Jan

    2001-01-01

    Cardiac sarcoma is a very rare neoplasm and is difficult to diagnose. The case of a 51-year-old man with a left atrial tumour, locally recurrent three months after its surgical removal, is presented. Computed tomography showed metastatic spread to the lung parenchyma. On revised histology, the mass extirpated was a sarcoma. Because of the metastatic spread, further therapy was symptomatic only; the patient died 15 months after the first manifestation of his problems. Immunohistochemical stain...

  20. Cardiac Calcification

    Directory of Open Access Journals (Sweden)

    Morteza Joorabian

    2011-05-01

    Full Text Available There is a spectrum of different types of cardiac"ncalcifications with the importance and significance"nof each type of cardiac calcification, especially"ncoronary artery calcification. Radiologic detection of"ncalcifications within the heart is quite common. The"namount of coronary artery calcification correlates"nwith the severity of coronary artery disease (CAD."nCalcification of the aortic or mitral valve may indicate"nhemodynamically significant valvular stenosis."nMyocardial calcification is a sign of prior infarction,"nwhile pericardial calcification is strongly associated"nwith constrictive pericarditis. A spectrum of different"ntypes of cardiac calcifications (linear, annular,"ncurvilinear,... could be seen in chest radiography and"nother imaging modalities. So a carful inspection for"ndetection and reorganization of these calcifications"nshould be necessary. Numerous modalities exist for"nidentifying coronary calcification, including plain"nradiography, fluoroscopy, intravascular ultrasound,"nMRI, echocardiography, and conventional, helical and"nelectron-beam CT (EBCT. Coronary calcifications"ndetected on EBCT or helical CT can be quantifie,"nand a total calcification score (Cardiac Calcification"nScoring may be calculated. In an asymptomatic"npopulation and/or patients with concomitant risk"nfactors like diabetes mellitus, determination of the"npresence of coronary calcifications identifies the"npatients at risk for future myocardial infarction and"ncoronary artery disease. In patients without coronary"ncalcifications, future cardiovascular events could"nbe excluded. Therefore, detecting and recognizing"ncalcification related to the heart on chest radiography"nand other imaging modalities such as fluoroscopy, CT"nand echocardiography may have important clinical"nimplications.

  1. Mechanisms mediating renal sympathetic nerve activation in obesity-related hypertension.

    Science.gov (United States)

    Chen, W; Leo, S; Weng, C; Yang, X; Wu, Y; Tang, X

    2015-04-01

    Excessive renal sympathetic nerve activation may be one of the mechanisms underlying obesity-related hypertension. Impaired baroreflex sensitivity, adipokine disorders-such as leptin, adiponectin, and resistin-activation of the renin-angiotensin system, hyperinsulinemia, insulin resistance, and renal sodium retention present in obesity increase renal sympathetic nerve activity, thus contributing to the development of hypertension. Renal sympathetic denervation reduces both renal sympathetic activity and blood pressure in patients with obesity-related hypertension. PMID:24609799

  2. Depression and Cardiac Disease: Epidemiology, Mechanisms, and Diagnosis

    OpenAIRE

    Huffman, Jeff C.; Christopher M Celano; Beach, Scott R.; Shweta R. Motiwala; Januzzi, James L.

    2013-01-01

    In patients with cardiovascular disease (CVD), depression is common, persistent, and associated with worse health-related quality of life, recurrent cardiac events, and mortality. Both physiological and behavioral factors—including endothelial dysfunction, platelet abnormalities, inflammation, autonomic nervous system dysfunction, and reduced engagement in health-promoting activities—may link depression with adverse cardiac outcomes. Because of the potential impact of depression on quality of...

  3. Vasomotor sympathetic outflow in the muscle metaboreflex in low birth weight young adults

    Directory of Open Access Journals (Sweden)

    Chifamba J

    2015-05-01

    Full Text Available Jephat Chifamba,1 Brilliant Mbangani,1 Casper Chimhete,1 Lenon Gwaunza,1 Larry A Allen,2 Herbert Mapfumo Chinyanga1 1Department of Physiology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe; 2Section of Advanced Heart Failure and Transplantation, University of Colorado School of Medicine, Aurora, CO, USA Abstract: A growing body of evidence suggests that low birth weight (LBW offspring are associated with long-term structural and functional changes in cardiovascular and neuroendocrine systems. We tested the hypothesis that muscle metaboreflex activation produces exaggerated responses in cardiac autonomic tone (represented by heart rate variability ratio and cutaneous vascular sympathetic tone (represented by plethysmography pulse wave amplitude in LBW compared to normal birth weight (NBW young adults. We recruited 23 LBW (18 females and five males and 23 NBW (14 females and nine males University of Zimbabwe students with neonatal clinical cards as proof of birth weight at term. Resting electrocardiogram, pulse waves, and blood pressures were recorded. Participants then underwent a static/isometric handgrip exercise until fatigue and a post-exercise circulatory arrest period of 2 minutes. We observed (results mean ± standard deviation a greater mean increase in heart rate variability ratio from baseline to exercise for LBW compared to NBW individuals (1.015±1.034 versus [vs] 0.119±0.789, respectively; P<0.05. We also observed a greater mean decrease in plethysmography pulse wave amplitude from baseline to exercise (-1.32±1.064 vs -0.735±0.63; P<0.05 and from baseline to post-exercise circulatory arrest (-0.932±0.998 vs -0.389±0.563; P<0.05 for LBW compared to NBW individuals. We conclude that LBW may be associated with an exaggerated sympathetic discharge in response to muscle metaboreflex. Keywords: blood pressure, heart rate variability, plethysmography pulse

  4. Myocardial pre-synaptic sympathetic function correlates with glucose uptake in the failing human heart

    Energy Technology Data Exchange (ETDEWEB)

    Mongillo, Marco; Leccisotti, Lucia [Hammersmith Hospital, Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, London (United Kingdom); John, Anna S. [Hammersmith Hospital, National Heart and Lung Institute, Imperial College, London (United Kingdom); Pennell, Dudley J. [Royal Brompton Hospital, National Heart and Lung Institute, Imperial College, London (United Kingdom); Camici, Paolo G. [Hammersmith Hospital, Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, London (United Kingdom); Hammersmith Hospital, National Heart and Lung Institute, Imperial College, London (United Kingdom)

    2007-08-15

    We have previously shown that the myocardium of patients with heart failure (HF) is insulin resistant. Chronic {beta}-adrenergic stimulation has been implicated in insulin resistance in cultured cardiomyocytes in vitro, where sustained noradrenaline stimulation inhibited insulin-modulated glucose uptake. As the failing heart is characterized by increased sympathetic drive, we hypothesized that there is a correlation between pre-synaptic sympathetic function and insulin sensitivity in the myocardium of patients with HF. Eight patients (aged 67 {+-} 7 years) with coronary artery disease and left ventricular dysfunction (ejection fraction 44 {+-} 10%) underwent function and viability assessment with cardiovascular magnetic resonance. Myocardial glucose utilization (MGU) was measured using positron emission tomography (PET) with {sup 18}F-fluorodeoxyglucose (FDG). Pre-synaptic noradrenaline re-uptake was measured by calculating [{sup 11}C]meta-hydroxy-ephedrine (HED) volume of distribution (V{sub d}) with PET. Two groups of healthy volunteers served as controls for the FDG (n = 8, aged 52 {+-} 4 years, p < 0.01 vs patients) and HED (n = 8, aged 40 {+-} 6 years, p < 0.01 vs patients) data. MGU in patients was reduced in both normal remote (0.44 {+-} 0.14 {mu}mol.min{sup -1}.g{sup -1}) and dysfunctional (0.49 {+-} 0.14 {mu}mol.min{sup -1}.g{sup -1}) segments compared with controls (0.61 {+-} 0.7 {mu}mol.min{sup -1}.g{sup -1}; p < 0.001 vs both). HED V{sub d} was reduced in dysfunctional segments of patients (38.9 {+-} 21.2 ml.g{sup -1}) compared with normal segments (52.2 {+-} 19.6 ml.g{sup -1}) and compared with controls (62.7 {+-} 11.3 ml.g{sup -1}). In patients, regional MGU was correlated with HED V{sub d}. The results of this study provide novel evidence of a correlation between cardiac sympathetic function and insulin sensitivity, which may represent one of the mechanisms contributing to insulin resistance in failing human hearts. (orig.)

  5. Cardiac contractility, central haemodynamics and blood pressure regulation during semistarvation

    DEFF Research Database (Denmark)

    Stokholm, K H; Breum, L; Astrup, A

    1991-01-01

    pressure (BP) declined. The fall in BP was caused by the reduction in cardiac output as the total peripheral resistance was unchanged. Finally, the decline in total blood volume was not significant. These findings together with a reduction in heart rate indicated that a reduced sympathetic tone via......Eight obese patients were studied before and after 2 weeks of treatment by a very-low-calorie diet (VLCD). Cardiac output and central blood volume (pulmonary blood volume and left atrial volume) were determined by indicator dilution (125I-albumin) and radionuclide angiocardiography (first pass and...... equilibrium technique by [99Tcm]red blood cells). Cardiac output decreased concomitantly with the reduction in oxygen uptake as the calculated systemic arteriovenous difference of oxygen was unaltered. There were no significant decreases in left ventricular contractility indices, i.e. the ejection fraction...

  6. When do the symptoms of autonomic nervous system malfunction appear in patients with Parkinson’s disease?

    Directory of Open Access Journals (Sweden)

    De Luka Silvio R.

    2014-01-01

    Full Text Available Background/Aim. Dysautonomia appears in almost all patients with Parkinson’s disease (PD in a certain stage of their condition. The aim of our study was to detect the development and type of autonomic disorders, find out the factors affecting their manifestation by analyzing the potential association with demographic variables related to clinical presentation, as well as the symptoms of the disease in a PD patient cohort. Methods. The patients with PD treated at the Clinic of Neurology in Belgrade during a 2-year period, divided into 3 groups were studied: 25 de novo patients, 25 patients already treated and had no long-term levodopa therapy-related complications and 22 patients treated with levodopa who manifested levodopa-induced motor complications. Simultaneously, 35 healthy control subjects, matched by age and sex, were also analyzed. Results. Autonomic nervous system malfunction was defined by Ewing diagnostic criteria. The tests, indicators of sympathetic and parasympathetic nervous systems, were significantly different in the PD patients as compared with the controls, suggesting the failure of both systems. However, it was shown, in the selected groups of patients, that the malfunction of both systems was present in two treated groups of PD patients, while de novo group manifested only sympathetic dysfunction. For this reason, the complete autonomic neuropathy was diagnosed only in the treated PD patients, while de novo patients were defined as those with the isolated sympathetic dysfunction. The patients with the complete autonomic neuropathy differed from the subjects without such neuropathy in higher cumulative and motor unified Parkinson’s disease rating score (UPDRS (p < 0.01, activities of daily living scores (p < 0.05, Schwab-England scale (p < 0.001 and Hoehn-Yahr scale. There was no difference between the patients in other clinical-demographic characteristics (sex, age at the time of diagnosis, actual age, duration of

  7. Scintigraphic evaluation of regional myocardial sympathetic activity in patients with hypertrophic cardiomyopathy. Comparison between asymmetrical hypertrophic cardiomyopathy and apical hypertrophy

    International Nuclear Information System (INIS)

    Using 123I-MIBG (metaiodobenzylguanidine) and 201Tl imagings, an examination concerning the relation between the hypertrophic region and its sympathetic nervous function was done. Subjects were 12 normal adults (4 males and 8 females, mean age 61.3 yr), 13 patients with asymmetrical hypertrophic cardiomyopathy (10 males and 3 females, 63.9 yr) and 13 patients with apical hypertrophy (9 males and 4 females, 67.2 yr). The SPECT apparatus was Toshiba two-gated gamma camera GCA 7200A. At 20 min and 3 hr after intravenous injection of 111 MBq of 123I-MIBG, myocardial SPECT and planar images were obtained with collimator LEHR under following conditions: photoelectric peak 159 KeV, window width 20%, matrix size 64 x 64 (256 x 256 for the planar image), step angle 6deg, 40 sec/step and 180deg for 1 camera. In another day, 201Tl SPECT and planar imagings were performed 10 min after intravenous injection of 111 MBq of 201Tl for the photoelectric peak 72 KeV under similar conditions to above. SPECT images were reconstructed using Butterworth filter and Shepp and Logan filter. Images were examined for the defect score, myocardium/mediastinum ratio, whole heart washout rate and regional washout rate. In the asymmetrical hypertrophic myopathy, abnormal sympathetic nerve function was recognized on the regions regardless of their disease severity while in the apical hypertrophy, abnormality was restricted on the apical region. Therefore, the two diseases were found different from each other from the aspect of sympathetic nerve functions. (K.H.)

  8. Evaluation of sympathetic nerve system activity with MIBG. Comparison with heart rate variability

    International Nuclear Information System (INIS)

    Authors attempted to elucidate the relations of plasma concentration of norepinephrine (pNE) and findings of heart rate variability and MIBG myocardial scintigraphy and evaluated cardiac autonomic nervous activity in chronic renal failure. Subjects were 211 patients with various heart diseases (coronary artery lesion, cardiomyopathy, hypertension, diabetes mellitus, renal failure and so on), 60 patients with artificial kidney due to chronic renal failure, 13 of whom were found to have coronary arterial disease by Tl myocardial scintigraphy, and 14 normal volunteers. ECG was recorded with the portable recorder for heart rate variability. Together with collection of blood for pNE measurement, myocardial scintigraphy was done at 15 and 150 min after intravenous administration of 111 MBq of MIBG for acquisition of early and delayed, respectively, images of the frontal breast. Accumulation at and elimination during the time points of MIBG were computed in cps unit. Variability of heart rate was found to have the correlation positive with MIBG delayed accumulation and negative with the elimination, and pNE, negative with heart rate variability and the delayed accumulation and positive with the elimination. Thus cardiac autonomic nervous abnormality was suggested to occur before uremic cardiomyopathy. (K.H.)

  9. The autonomic nervous system at high altitude

    OpenAIRE

    Hainsworth, Roger; Drinkhill, Mark J.; Rivera-Chira, Maria

    2007-01-01

    The effects of hypobaric hypoxia in visitors depend not only on the actual elevation but also on the rate of ascent. Sympathetic activity increases and there are increases in blood pressure and heart rate. Pulmonary vasoconstriction leads to pulmonary hypertension, particularly during exercise. The sympathetic excitation results from hypoxia, partly through chemoreceptor reflexes and partly through altered baroreceptor function. High pulmonary arterial pressures may also cause reflex systemic...

  10. Effects of leptin on sympathetic nerve activity in conscious mice.

    Science.gov (United States)

    Morgan, Donald A; Despas, Fabien; Rahmouni, Kamal

    2015-09-01

    The adipocyte-derived hormone, leptin, has emerged as an important regulator of regional sympathetic nerve activity (SNA) with pathophysiological implications in obesity. Genetically engineered mice are useful to understand the molecular pathways underlying the SNA responses evoked by leptin. However, so far the effect of leptin on direct SNA in mice has been studied under general anesthesia. Here, we examined the sympathetic responses evoked by leptin in conscious mice. Mice were instrumented, under ketamine/xylazine anesthesia, with renal or lumbar SNA recordings using a thin (40 gauge) bipolar platinum-iridium wire. The electrodes were exteriorized at the nape of the neck and mice were allowed (5 h) to recover from anesthesia. Interestingly, the reflex increases in renal and lumbar SNA caused by sodium nitroprusside (SNP)-induced hypotension was higher in the conscious phase versus the anesthetized state, whereas the increase in both renal and lumbar SNA evoked by leptin did not differ between anesthetized or conscious mice. Next, we assessed whether isoflurane anesthesia would yield a better outcome. Again, the SNP-induced increase in renal SNA and baroreceptor-renal SNA reflex were significantly elevated in the conscious states relative to isoflurane-anesthetized phase, but the renal SNA response induced by leptin in the conscious states were qualitatively comparable to those evoked above. Thus, despite improvement in sympathetic reflexes in conscious mice the sympathetic responses evoked by leptin mimic those induced during anesthesia. PMID:26381017

  11. Axillary Brachial Plexus Blockade for the Reflex Sympathetic Dystrophy Syndrome.

    Science.gov (United States)

    Ribbers, G. M.; Geurts, A. C. H.; Rijken, R. A. J.; Kerkkamp, H. E. M.

    1997-01-01

    Reflex sympathetic dystrophy syndrome (RSD) is a neurogenic pain syndrome characterized by pain, vasomotor and dystrophic changes, and often motor impairments. This study evaluated the effectiveness of brachial plexus blockade with local anaesthetic drugs as a treatment for this condition. Three patients responded well; three did not. (DB)

  12. Sympathetic neural responses to smoking are age dependent

    Czech Academy of Sciences Publication Activity Database

    Hering, D.; Somers, V. K.; Kára, T.; Kucharska, W.; Jurák, Pavel; Bieniaszewski, L.; Narkiewicz, K.

    2006-01-01

    Roč. 24, č. 4 (2006), s. 691-695. ISSN 0263-6352 R&D Projects: GA ČR(CZ) GA102/05/0402 Institutional research plan: CEZ:AV0Z20650511 Keywords : sympathetic neural response * blood pressure * heart rate * smoking Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 4.021, year: 2006

  13. Effect of morphine on sympathetic nerve activity in humans

    Science.gov (United States)

    Carter, Jason R.; Sauder, Charity L.; Ray, Chester A.

    2002-01-01

    There are conflicting reports for the role of endogenous opioids on sympathetic and cardiovascular responses to exercise in humans. A number of studies have utilized naloxone (an opioid-receptor antagonist) to investigate the effect of opioids during exercise. In the present study, we examined the effect of morphine (an opioid-receptor agonist) on sympathetic and cardiovascular responses at rest and during isometric handgrip (IHG). Eleven subjects performed 2 min of IHG (30% maximum) followed by 2 min of postexercise muscle ischemia (PEMI) before and after systemic infusion of morphine (0.075 mg/kg loading dose + 1 mg/h maintenance) or placebo (saline) in double-blinded experiments on separate days. Morphine increased resting muscle sympathetic nerve activity (MSNA; 17 +/- 2 to 22 +/- 2 bursts/min; P < 0.01) and increased mean arterial pressure (MAP; 87 +/- 2 to 91 +/- 2 mmHg; P < 0.02), but it decreased heart rate (HR; 61 +/- 4 to 59 +/- 3; P < 0.01). However, IHG elicited similar increases for MSNA, MAP, and HR between the control and morphine trial (drug x exercise interaction = not significant). Moreover, responses to PEMI were not different. Placebo had no effect on resting, IHG, and PEMI responses. We conclude that morphine modulates cardiovascular and sympathetic responses at rest but not during isometric exercise.

  14. Cardiac conduction system

    Science.gov (United States)

    The cardiac conduction system is a group of specialized cardiac muscle cells in the walls of the heart that send signals ... to contract. The main components of the cardiac conduction system are the SA node, AV node, bundle ...

  15. Histomorphometric and sympathetic innervation of the human superficial temporal artery

    Directory of Open Access Journals (Sweden)

    Sreenivasulu Reddy

    2011-01-01

    Full Text Available Context: Following microvascular surgeries, stenosis and spasm of the arterial graft or the recipient vessel are serious complications which are often caused by intimal hyperplasia and perivascular nerves, respectively. Aims: The purpose of this study was to understand the characteristics of arterial wall and sympathetic innervation of the human superficial temporal artery (STA and also, the effect of aging on STA. Methods and Materials: Fifty-two fresh human STA (frontal branch samples were obtained from 26 cadavers (19 males and 7 females between the ages of 19 and 83 years. Samples were divided into three age groups: G1, 19-40 years; G2, 41-60 years; G3, over 61 years. 5μm-thin sections of each sample were taken and stained with haematoxylin-eosin, Verhoff′s and tyrosine hydroxylase (TH immunostaining. Results: The well-defined internal elastic lamina (IEL was observed in all samples of STA, whereas external elastic lamina (EEL was not prominent in almost all cases or absent in few cases. This might be the important factor in the process of intimal and medial hyperplasia in the frontal branch of STA. Notably, intimal thickening appeared from second decade of life. Sympathetic fibres are located mainly in tunica adventitia and outer media. Mean adventitial and sympathetic areas were found to be 0.080 and 0.010mm 2 , respectively. Statistical analysis used: One-way ANOVA followed by Tukey HSD post hoc test by using the SPSS 11.5 software. Conclusions: STA is prone to age related pathological changes. Sympathetic index may be used for analysis of sympathetic fibre-related problems (vasospasm, migraine of the STA.

  16. Transcription factor Nr4a1 couples sympathetic and inflammatory cues in CNS-recruited macrophages to limit neuroinflammation.

    Science.gov (United States)

    Shaked, Iftach; Hanna, Richard N; Shaked, Helena; Chodaczek, Grzegorz; Nowyhed, Heba N; Tweet, George; Tacke, Robert; Basat, Alp Bugra; Mikulski, Zbigniew; Togher, Susan; Miller, Jacqueline; Blatchley, Amy; Salek-Ardakani, Shahram; Darvas, Martin; Kaikkonen, Minna U; Thomas, Graham D; Lai-Wing-Sun, Sonia; Rezk, Ayman; Bar-Or, Amit; Glass, Christopher K; Bandukwala, Hozefa; Hedrick, Catherine C

    2015-12-01

    The molecular mechanisms that link the sympathetic stress response and inflammation remain obscure. Here we found that the transcription factor Nr4a1 regulated the production of norepinephrine (NE) in macrophages and thereby limited experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Lack of Nr4a1 in myeloid cells led to enhanced NE production, accelerated infiltration of leukocytes into the central nervous system (CNS) and disease exacerbation in vivo. In contrast, myeloid-specific deletion of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, protected mice against EAE. Furthermore, we found that Nr4a1 repressed autocrine NE production in macrophages by recruiting the corepressor CoREST to the Th promoter. Our data reveal a new role for macrophages in neuroinflammation and identify Nr4a1 as a key regulator of catecholamine production by macrophages. PMID:26523867

  17. Responses of Six-Weeks Aquatic Exercise on the Autonomic Nervous System, Peak Nasal Inspiratory Flow and Lung Functions in Young Adults with Allergic Rhinitis

    OpenAIRE

    Taweesak Janyacharoen; Narupon Kunbootsri; Preeda Arayawichanon; Seksun Chainansamit; Kittisak Sawanyawisuth

    2015-01-01

    Allergic rhinitis is a chronic respiratory disease. Sympathetic hypofunction is identified in all of the allergic rhinitis patients. Moreover, allergic rhinitis is associated with decreased peak nasal inspiratory flow (PNIF) and impaired lung functions. The aim of this study was to investigate effects of six-week of aquatic exercise on the autonomic nervous system function, PNIF and lung functions in allergic rhinitis patients.Twenty-six allergic rhinitis patients, 12 males and 14 females wer...

  18. Can we Modulate the Autonomic Nervous System to Improve the Life of Patients with Heart Failure? The Case of Vagal Stimulation

    OpenAIRE

    Schwartz, Peter J.

    2014-01-01

    An imbalance of the autonomic nervous system, with reduced vagal and increased sympathetic activity, contributes to pathogenesis and clinical deterioration in heart failure (HF). Experimental studies have demonstrated that vagal stimulation (VS) has an antifibrillatory effect that has proved beneficial in animal models of HF. The potential value of chronic VS in man was first investigated with an implantable neuro-stimulator capable of delivering low current pulses with adjustable parameters ...

  19. Recovery of the cardiac frequency to the minute post effort as early indicator of myocardial ischemia

    International Nuclear Information System (INIS)

    The objective of the work was to evaluate the recovery cardiac frequency like ischemia indicator, due to the immediate reactivity of the parasympathetic nervous system in the post-effort. It is obtained as conclusion that a slow descent of the cardiac frequency to the first minute of the post-effort is a predictor ischemia index when correlating it with the risk evaluated by cardiac SPECT with a high specificity; being this a marker of simple calculating in the daily practice. (Author)

  20. Ang II enhances noradrenaline release from sympathetic nerve endings thus contributing to the up-regulation of metalloprotease-2 in aortic dissection patients' aorta wall.

    Directory of Open Access Journals (Sweden)

    Zhipeng Hu

    Full Text Available OBJECT: To test the hypothesis that angiotensin II (Ang II could enhance noradrenaline (NA release from sympathetic nerve endings of the aorta thus contributing to the up-regulation of matrix metalloproteinase 2 (MMP-2 during the formation of aortic dissection (AD. METHODS: Ang II, NA, MMP-2, MMP-9 of the aorta sample obtained during operation from aortic dissection patients were detected by High Performance Liquid Chromatography and ELISA and compared with controls. Isotope labelling method was used to test the impact of exogenous Ang II and noradrenaline on the NA release and MMP-2, MMP-9 expression on Sprague Dawley (SD rat aorta rings in vitro. Two kidneys, one clip, models were replicated for further check of that impact in SD rats in vivo. RESULTS: The concentration of Ang II, MMP-2, 9 was increased and NA concentration was decreased in aorta samples from AD patients. Exogenous Ang II enhanced while exogenous NA restrained NA release from aortic sympathetic endings. The Ang II stimulated NA release and the following MMP-2 up-regulation could be weakened by Losartan and chemical sympathectomy. Beta blocker did not influence NA release but down-regulated MMP-2. Long term in vivo experiments confirmed that Ang II could enhance NA release and up-regulate MMP-2. CONCLUSIONS: AD is initiated by MMP-2 overexpression as a result of increased NA release from sympathetic nervous endings in response to Ang II. This indicates an interaction of RAS and SAS during the formation of AD.

  1. Perinatal exposure to a high-fat diet is associated with reduced hepatic sympathetic innervation in one-year old male Japanese macaques.

    Directory of Open Access Journals (Sweden)

    Wilmon F Grant

    Full Text Available Our group recently demonstrated that maternal high-fat diet (HFD consumption is associated with non-alcoholic fatty liver disease, increased apoptosis, and changes in gluconeogenic gene expression and chromatin structure in fetal nonhuman primate (NHP liver. However, little is known about the long-term effects that a HFD has on hepatic nervous system development in offspring, a system that plays an important role in regulating hepatic metabolism. Utilizing immunohistochemistry and Real-Time PCR, we quantified sympathetic nerve fiber density, apoptosis, inflammation, and other autonomic components in the livers of fetal and one-year old Japanese macaques chronically exposed to a HFD. We found that HFD exposure in-utero and throughout the postnatal period (HFD/HFD, when compared to animals receiving a CTR diet for the same developmental period (CTR/CTR, is associated with a 1.7 fold decrease in periportal sympathetic innervation, a 5 fold decrease in parenchymal sympathetic innervation, and a 2.5 fold increase in hepatic apoptosis in the livers of one-year old male animals. Additionally, we observed an increase in hepatic inflammation and a decrease in a key component of the cholinergic anti-inflammatory pathway in one-year old HFD/HFD offspring. Taken together, these findings reinforce the impact that continuous exposure to a HFD has in the development of long-term hepatic pathologies in offspring and highlights a potential neuroanatomical basis for hepatic metabolic dysfunction.

  2. Alternating myocardial sympathetic neural function of athlete's heart in professional cycle racers examined with iodine-123-MIBG myocardial scintigraphy

    International Nuclear Information System (INIS)

    Myocardial sympathetic neural function in professional athletes who had the long-term tremendous cardiac load has not been fully investigated by myocardial iodine-123-metaiodobenzylguanidine (MIBG) uptake in comparison with power spectral analysis (PSA) in electrocardiography. Eleven male professional cycle racers and age-matched 11 male healthy volunteers were enrolled in this study. The low frequency components in the power spectral density (LF), the high frequency components in the power spectral density (HF), the LF/HF ratio and mean R-R interval were derived from PSA and time-domain analysis of heart rate variability in electrocardiography. The mean heart-to-mediastinum uptake ratio (H/M ratio) of the MIBG uptake, in professional cycle racers was significantly lower than that in healthy volunteers (p<0.01) and HF power in professional cycle racers was significantly higher than that in healthy volunteers (p<0.05). In the group of professional cycle racers, the H/M ratio showed a significant correlation with the R-R interval, as indices of parasympathetic nerve activity (r=0.80, p<0.01), but not with the LF/HF ratio as an index of sympathetic nerve activity. These results may indicate that parasympathetic nerve activity has an effect on MIBG uptake in a cyclist's heart. (author)

  3. [Sudden cardiac death in diabetes mellitus].

    Science.gov (United States)

    Israel, C W; Lee-Barkey, Y H

    2016-05-01

    Sudden cardiac death (SCD) represents one of the most frequent causes of death in patients with diabetes. In contrast to patients without diabetes it has not been significantly reduced despite improvements in the treatment of acute myocardial infarction and long-term treatment of cardiovascular diseases as well as diabetes mellitus. Several mechanisms can be responsible for the high incidence of SCD in diabetics: 1. arrhythmogenic effects mediated via cardiac autonomic neuropathy, repolarization disturbances or sympathetic tone activation (hypoglycemia), 2. myocardial ischemia due to atherosclerosis, endothelial dysfunction, platelet aggregation or thrombophilic effects, 3. myocardial disease due to inflammation, fibrosis, associated hypertension or uremia and 4. potassium imbalance due to diabetic nephropathy or hypoglycemia. This review introduces concepts of mechanisms that are responsible for SCD in patients with diabetes. Treatment of patients with diabetes should primarily consider a systematic assessment of any deterioration of this chronic disease and of complications at an early stage. Cardiovascular drug treatment corresponds to that of non-diabetics. In antidiabetic treatment drugs with a low risk of hypoglycemia should be preferred. Treatment with implantable cardioverter defibrillators (ICD) also combined with cardiac resynchronization therapy () demonstrated a high life-saving potential particularly in patients with diabetes. PMID:27071967

  4. Control and physiological determinants of sympathetically-mediated brown adipose tissue thermogenesis

    Directory of Open Access Journals (Sweden)

    Denis eRichard

    2012-02-01

    Full Text Available Brown adipose tissue (BAT represents a remarkable heat-producing tissue. The thermogenic potential of BAT is conferred by uncoupling protein 1, a protein found uniquely in the brown adipocytes. The physiological control of BAT activity and capacity is ensured by the sympathetic nervous system (SNS, which densely innervates brown fat depots. SNS-mediated BAT thermogenesis is essentially governed by hypothalamic and brainstem neurons. BAT is not only controlled by the brain thermoregulatory circuits but also by brain energy balance pathways including the very significant brain melanocortin system, which speaks in favor of the genuine involvement of SNS-mediated BAT thermogenesis in energy homeostasis. The use of positron emission tomography/computed tomography (PET/CT scanning has further revealed the presence of well-defined BAT depots in the cervical, clavicular, and paraspinal areas in adult humans. The prevalence of these depots was reported to be higher in subjects exposed to low temperature and was also higher in women than men. Moreover, the prevalence of BAT was shown to decrease with age and body fat mass, which suggests that BAT could not only be involved in cold-induced non shivering thermogenesis but also in the energy balance regulation and obesity in humans. This short review summarizes recent progress made in our understanding of the control of SNS-mediated BAT thermogenesis and of the determinants of BAT prevalence or detection in humans.

  5. Involvement of the autonomic nervous system in Chagas heart disease

    Directory of Open Access Journals (Sweden)

    Edison Reis Lopes

    1983-12-01

    Full Text Available The autonomic nervous system and especially the intracardiac autonomic nervous system is involved in Chagas' disease. Ganglionitis and periganglionitis were noted in three groups ofpatients dying with Chagas'disease: 1 Those in heart failure; 2 Those dying a sudden, non violent death and; 3 Those dying as a consequence ofaccidents or homicide. Hearts in the threegroups also revealed myocarditis and scattered involvement of intramyocardial ganglion cells as well as lesions of myelinic and unmyelinic fibers ascribable to Chagas'disease. In mice with experimentally induced Chagas' disease weobserved more intensive neuronal lesions of the cardiac ganglia in the acute phase of infection. Perhaps neuronal loss has a role in the pathogenesis of Chagas cardiomyopathy. However based on our own experience and on other data from the literature we conclude that the loss of neurones is not the main factor responsible for the manifestations exhibited by chronic chagasic patients. On the other hand the neuronal lesions may have played a role in the sudden death ofone group of patients with Chagas'disease but is difficult to explain the group of patients who did not die sudderly but instead progressed to cardiac failure.

  6. Macrophage populations and cardiac sympathetic denervation during L-NAME-induced hypertension in rats

    DEFF Research Database (Denmark)

    Neves, S R S; Machado, C R S; Pinto, A M T; Borges, Alvaro Humberto Diniz; Cunha, F Q; Camargos, E R S

    2006-01-01

    leukocyte infiltration during L-NAME (40 mg/Kg body weight/day, orally) treatment. The occurrence of cardiomyocyte hypertrophy, a controversial matter, is also addressed. Degenerating cardiomyocytes and focal inflammation occurred one day after treatment. Inflammatory lesions became gradually more frequent...... ventricle, the hypertrophic cardiomyocytes were restricted to damaged areas. Significant reduction of the noradrenergic nerve terminals occurred from day 3 to 28. The area occupied by ED1+ (hematogenous) macrophages increased until day 7, and dropped to control levels by day 10. ED2+ (resident) macrophages...... macrophage infiltration at day 7. No denervation was detectable at day 14 of double treatment, using subcutaneous AG. Our findings favor a role for ED1+ macrophages and iNOS in the hypertension-induced denervation process....

  7. Cardiac MRI in Athletes

    NARCIS (Netherlands)

    Luijkx, T.

    2012-01-01

    Cardiac magnetic resonance imaging (CMR) is often used in athletes to image cardiac anatomy and function and is increasingly requested in the context of screening for pathology that can cause sudden cardiac death (SCD). In this thesis, patterns of cardiac adaptation to sports are investigated with C

  8. Cardiac Autonomic Drive during Arterial Hypertension and Metabolic Disturbances.

    Science.gov (United States)

    Kseneva, S I; Borodulina, E V; Trifonova, O Yu; Udut, V V

    2016-06-01

    ANS support of the cardiac work was assessed with analysis of heart rate variability in representative samples of patients with arterial hypertension and metabolic disturbances manifested by overweight, classes I-II obesity, compromised glucose tolerance, and type II diabetes. Initially enhanced sympathetic effects on the heart rate demonstrated no further increase during the orthostatic test in contrast to suprasegmentary influences enhanced by this test. The pronouncedness of revealed peculiarities in ANS drive to the heart correlated with metabolic disturbances, and these peculiarities attained maximum in patients with type II diabetes. PMID:27383176

  9. Sympathetic vascular transduction is augmented in young normotensive blacks

    Science.gov (United States)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    The purpose of the present study was to determine sympathetic vascular transduction in young normotensive black and white adults. We hypothesized that blacks would demonstrate augmented transduction of muscle sympathetic nerve activity (MSNA) into vascular resistance. To test this hypothesis, MSNA, forearm blood flow, heart rate, and arterial blood pressure were measured during lower body negative pressure (LBNP). At rest, no differences existed in arterial blood pressure, heart rate, forearm blood flow, and forearm vascular resistance (FVR). Likewise, LBNP elicited comparable responses of these variables for blacks and whites. Baseline MSNA did not differ between blacks and whites, but whites demonstrated greater increases during LBNP (28 +/- 7 vs. 55 +/- 18%, 81 +/- 21 vs. 137 +/- 42%, 174 +/- 81 vs. 556 +/- 98% for -5, -15, and -40 mmHg LBNP, respectively; P forearm vasoconstriction than whites. This finding may contribute to augmented blood pressure reactivity in blacks.

  10. Sympathetic vascular transduction is augmented in young normotensive blacks

    Science.gov (United States)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    The purpose of the present study was to determine sympathetic vascular transduction in young normotensive black and white adults. We hypothesized that blacks would demonstrate augmented transduction of muscle sympathetic nerve activity (MSNA) into vascular resistance. To test this hypothesis, MSNA, forearm blood flow, heart rate, and arterial blood pressure were measured during lower body negative pressure (LBNP). At rest, no differences existed in arterial blood pressure, heart rate, forearm blood flow, and forearm vascular resistance (FVR). Likewise, LBNP elicited comparable responses of these variables for blacks and whites. Baseline MSNA did not differ between blacks and whites, but whites demonstrated greater increases during LBNP (28 +/- 7 vs. 55 +/- 18%, 81 +/- 21 vs. 137 +/- 42%, 174 +/- 81 vs. 556 +/- 98% for -5, -15, and -40 mmHg LBNP, respectively; P vasoconstriction than whites. This finding may contribute to augmented blood pressure reactivity in blacks.

  11. Electrodermal activity of professional pianists -Sympathetic arousal in piano performance-

    Directory of Open Access Journals (Sweden)

    Hajime Bando

    2012-07-01

    Full Text Available The purpose of this study is to research sympathetic arousal of professional pianists during musical performance. We measured the electrodermal activities of professional pianists who were performing both an original and an arranged score of the same piece of music by attaching electrodes to their left feet. For the data analysis, normalized skin resistance change per beat was used to analyze the electrodermal activities of the pianists originally. We could show a change in electrodermal activities at the onset of the music and at the motif of the music. Comparing the two performance conditions, we could show significant changes in electrodermal activity in dynamic arranged sections and octave up sections. The sympathetic arousal of the pianists changed dynamically in accordance with musical structure.

  12. Sympathetic dysfunction of central origin in patients with ALS

    DEFF Research Database (Denmark)

    Karlsborg, M; Andersen, E B; Wiinberg, N; Gredal, O; Jørgensen, L; Mehlsen, J

    2003-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe, progressive disease affecting both the central and peripheral parts of the motor nervous system. Some studies have shown unequivocal indications of a more disseminated disease also affecting the autonomic nervous system. We therefore evaluated the ...

  13. Understanding paroxysmal sympathetic hyperactivity after traumatic brain injury

    OpenAIRE

    Meyer, Kimberly S.

    2014-01-01

    Background: Paroxysmal sympathetic hyperactivity (PSH) is a condition occurring in a small percentage of patients with severe traumatic brain injury (TBI). It is characterized by a constellation of symptoms associated with excessive adrenergic output, including tachycardia, hypertension, tachypnea, and diaphoresis. Diagnosis is one of exclusion and, therefore, is often delayed. Treatment is aimed at minimizing triggers and pharmacologic management of symptoms. Methods: A literature review...

  14. PROJECTION NEURONS OF THE VESTIBULO-SYMPATHETIC REFLEX PATHWAY

    OpenAIRE

    Holstein, Gay R.; Friedrich, Victor L.; Martinelli, Giorgio P.

    2014-01-01

    Changes in head position and posture are detected by the vestibular system and are normally followed by rapid modifications in blood pressure. These compensatory adjustments, which allow humans to stand up without fainting, are mediated by integration of vestibular system pathways with blood pressure control centers in the ventrolateral medulla. Orthostatic hypotension can reflect altered activity of this neural circuitry. Vestibular sensory input to the vestibulo-sympathetic pathway terminat...

  15. Consolation as possible expression of sympathetic concern among chimpanzees

    OpenAIRE

    Romero, Teresa; Castellanos, Miguel A.; de Waal, Frans B. M.

    2010-01-01

    Chimpanzees are known to spontaneously provide contact comfort to recent victims of aggression, a behavior known as consolation. Similar behavior in human children is attributed to empathic or sympathetic concern. In line with this empathy hypothesis, chimpanzee consolation has been shown to reduce the recipient's state of arousal, hence to likely alleviate distress. Other predictions from the empathy hypothesis have rarely been tested, however, owing to small sample sizes in previous studies...

  16. A new concept of the sympathetic pathways to the eye.

    Science.gov (United States)

    Palumbo, L T

    1976-08-01

    The sympathetic pupillociliary pathways controlling the dilatation of the pupil in man have been recorded by many authorities as passing via the first and/or second thoracic (dorsal) rami to the lower part of the stellate (first thoracic) ganglion. It has been stated by these and other authorities that the removal of the lower part of the stellate ganglion and/or resection of the first and/or second thoracic rami would produce a Horner's syndrome. This currently accepted concept of the sympathetic pathways to the eye we believe to be incorrect. Our entire clinical experience has consistently contradicted the findings and reports of other investigators. It is suggested that the ability afforded by a new surgical approach to reach, dissect, and exactly control the line of resection without undue trauma to the stellate ganglion has made possible for the first time a definitive statement concerning the entry of the pupillociliary pathways into the sympathetic chain. It is, therefore, postulated that the preganglionic neurons controlling the pupil enter the upper portion of the stellate ganglion by a separate paravertebral route leaving the ventral roots of the eighth cervical, first and/or second thoracic nerves. Our entire clinical experience refutes the concept that these pathways pass via the first ramus communicans to the first thoracic ganglion. This thesis is based on and supported by the results of new surgical approach originally designed to permit a more direct exposure and to overcome many of the deficiencies of current surgical approaches. The anterior transthoracic, transpleural wound employed allows a more direct approach and a more accurate and complete dissection of this segment of the sympathetic supply to the head, neck, upper extremity, heart, and coronary vessels without incurring the undesirable sequela of a Horner's syndrome in 93% of patients. PMID:962268

  17. Sympathetic neural responses to mental stress during acute simulated microgravity

    OpenAIRE

    Durocher, John J.; Schwartz, Christopher E.; Carter, Jason R.

    2009-01-01

    Neural and cardiovascular responses to mental stress and acute 6° head-down tilt (HDT) were examined separately and combined. We hypothesized sympathoexcitation during mental stress, sympathoinhibition during HDT, and an additive neural interaction during combined mental stress and HDT. Muscle sympathetic nerve activity (MSNA), mean arterial pressure (MAP), and heart rate (HR) were recorded in 16 healthy subjects (8 men, 8 women) in the supine position during three randomized trials: 1) menta...

  18. Sympathetic cooling of rovibrationally state-selected molecular ions

    OpenAIRE

    Tong, Xin; Winney, Alexander H.; Willitsch, Stefan

    2010-01-01

    We present a new method for the generation of rotationally and vibrationally state-selected, translationally cold molecular ions in ion traps. Our technique is based on the state-selective threshold photoionization of neutral molecules followed by sympathetic cooling of the resulting ions with laser-cooled calcium ions. Using N$_2^+$ ions as a test system, we achieve > 90 % selectivity in the preparation of the ground rovibrational level and state lifetimes on the order of 15 minutes limited ...

  19. Sympathetic cooling of $^4$He$^+$ ions in a radiofrequency trap

    OpenAIRE

    Roth, B.(Institut für Experimentalphysik I, Ruhr–Universität Bochum, Bochum, 44780, Germany); Fröhlich, U.; S.SCHILLER

    2004-01-01

    We have generated Coulomb crystals of ultracold $^4$He$^+$ ions in a linear radiofrequency trap, by sympathetic cooling via laser--cooled $^9$Be$^+$. Stable crystals containing up to 150 localized He$^+$ ions at $\\sim$20 mK were obtained. Ensembles or single ultracold He$^+$ ions open up interesting perspectives for performing precision tests of QED and measurements of nuclear radii. The present work also indicates the feasibility of cooling and crystallizing highly charged atomic ions using ...

  20. Thoracoscopic sympathetic clamping in a patient with an azygos fissure.

    Science.gov (United States)

    Moon, Seok Whan; Yoon, Jeong Sub; Jo, Keon Hyeon; Wang, Young Pil; Park, Hyeon Jin

    2005-04-01

    We believe that an azygos fissure may predispose to bleeding during thoracoscopic surgery. An azygos fissure causes important morphologic changes in the superior mediastinum and thereby poses a risk of massive bleeding during thoracoscopic procedures. We report on a successful thoracoscopic procedure conducted in a patient with palmar hyperhidrosis and an azygos fissure and emphasize that the course of the thoracic sympathetic chain runs laterally along the base of the azygos fissure. PMID:15821627

  1. Release of endogenous ATP during sympathetic nerve stimulation.

    OpenAIRE

    Lew, M. J.; White, T. D.

    1987-01-01

    1 Vas deferens from guinea-pig was stimulated with a suction electrode and both contractions and release of endogenous ATP monitored 2 Release of ATP was tetrodotoxin-sensitive and increased when the number of stimuli was increased. 3 Release of ATP was not due to contraction of the muscle and persisted following block of contractions with prazosin and alpha, beta-methylene ATP. 4 These results indicate that stimulation of the sympathetic nerves in the vas deferens releases endogenous ATP pre...

  2. High sugar intake exacerbates cardiac reperfusion injury in perinatal taurine depleted adult rats

    OpenAIRE

    Kulthinee Supaporn; Wyss J Michael; Jirakulsomchok Dusit; Roysommuti Sanya

    2010-01-01

    Abstract Perinatal taurine depletion and high sugar diets blunted baroreflex function and heightens sympathetic nerve activity in adult rats. Cardiac ischemia/reperfusion also produces these disorders and taurine treatment appears to improve these effects. This study tests the hypothesis that perinatal taurine exposure predisposes recovery from reperfusion injury in rats on either a basal or high sugar diet. Female Sprague-Dawley rats were fed normal rat chow with 3% beta-alanine (taurine dep...

  3. Cardiac autonomic function in patients with diabetes improves with practice of comprehensive yogic breathing program

    Directory of Open Access Journals (Sweden)

    Viveka P Jyotsna

    2013-01-01

    Full Text Available Background: The aim of this study was to observe the effect comprehensive yogic breathing (Sudarshan Kriya Yoga [SKY] and Pranayam had on cardiac autonomic functions in patients with diabetes. Materials and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 64 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program. Standard therapy included dietary advice, brisk walking for 45 min daily, and administration of oral antidiabetic drugs. Comprehensive yogic breathing program was introduced to the participants through a course of 12 h spread over 3 days. It was an interactive session in which SKY, a rhythmic cyclical breathing, preceded by Pranayam is taught under the guidance of a certified teacher. Cardiac autonomic function tests were done before and after 6 months of intervention. Results: In the intervention group, after practicing the breathing techniques for 6 months, the improvement in sympathetic functions was statistically significant (P 0.04. The change in sympathetic functions in the standard therapy group was not significant (P 0.75.Parasympathetic functions did not show any significant change in either group. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P 0.06. In the standard therapy group, no change in cardiac autonomic functions was noted (P 0.99. Conclusion: Cardiac autonomic functions improved in patients with diabetes on standard treatment who followed the comprehensive yogic breathing program compared to patients who were on standard therapy alone.

  4. Aging changes in the nervous system

    Science.gov (United States)

    ... article/004023.htm Aging changes in the nervous system To use the sharing features on this page, please enable JavaScript. The brain and nervous system are your body's central control center. They control ...

  5. HIV Infection Seems to Affect Nervous System

    Science.gov (United States)

    ... fullstory_159344.html HIV Infection Seems to Affect Nervous System But symptoms tend to subside once antiretroviral drugs ... mild, it is clear that HIV affects the nervous system within days of infection," she said in a ...

  6. An Electerophisioligic Study Of Autonomic Nervous System In Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Noorolahi Moghaddam H

    2003-11-01

    Full Text Available Autonomic nervous system dysfunction in diabetics can occur apart from peripheral sensorimotor polyneuropathy and sometimes leads to complaints which may be diagnosed by electrodiagnostic methods. Moreover glycemic control of these patients may prevent such a complications."nMaterials and Methods: 30 diabetic patients were compared to the same number of age and sex-matched controls regarding to electrophysiologic findings of autonomic nervous system. Symptoms referable to autonomic disorder including nightly diarrhea, dizziness, urinary incontinence, constipation, nausea, and mouth dryness were recorded in all diabetic patients. Palmar and plantar SSR and expiration to inspiration ratio (E: I and Valsalva ratio were recorded in all diabetics and control individuals by electromyography device. In addition NCS was performed on two sensory and two motor nerves in diabetic patients."nResults: There was no relation between age of diabetics and abnormal D: I ratio, Valsalva ratio and degree of electrophysiologic autonomic impairment. Also no relation between peripheral sensorimotor polyneuropathy and electrophysiologic autonomic impairment was found. Plantar SSR was absent in 80% of diabetics with orthostatic hypotension (p~ 0.019. Palmar and plantar SSR were absent in many diabetics in comparison to control group (for palmar SSR p~ 0.00 and for plantar SSR p< 0.015. There was no relation between diabetes duration since diagnosis and electrophysiologic autonomic impairment."nConclusion: According to the above mentioned findings diabetic autonomic neuropathy develops apart from peripheral sensorimotor polyneuropathy and probably with different mechanisms. Remarkable absence of palmar SSR in diabetics with orthostatic hypotension can be due to its sympathetic origin. Absence of any relation between diabetes duration and electrophysiologic autonomic impairment can be due to late diagnosis of type 2 diabetes or no pathophysiologic relation between chronic

  7. Hypothalamic-pituitary-adrenal and cardiac autonomic responses to transrectal examination differ with behavioral reactivity in dairy cows.

    Science.gov (United States)

    Kovács, L; Kézér, F L; Kulcsár-Huszenicza, M; Ruff, F; Szenci, O; Jurkovich, V

    2016-09-01

    Behavior, hypothalamic-pituitary-adrenal axis, and cardiac autonomic nervous system (ANS) activity were evaluated in response to transrectal examination in nonlactating Holstein-Friesian cows with different behavioral reactivity. According to behavioral reactions shown to the procedure of fixing the heart rate (HR) monitors, the 20 cows with the highest and the 20 cows with the lowest behavioral reactivity were involved in the study (high responder, n=20; and low responder, n=20, respectively). Activity of the ANS was assessed by HR and HR variability parameters. Blood and saliva were collected at 5 min before (baseline) and 0, 5 10, 15, 20, 30, 40, 60, and 120 min after the examination to determine cortisol concentrations. The examination lasted for 5 min. Cardiac parameters included HR, the root mean square of successive differences between the consecutive interbeat intervals, the high frequency (HF) component of heart rate variability, and the ratio between the low frequency (LF) and HF parameter (LF/HF). Following the examination, peak plasma and saliva cortisol levels and the amplitude of the plasma and saliva cortisol response were higher in high responder cows than in low responders. Areas under the plasma and saliva cortisol response curves were greater in high responder cows. Plasma and salivary cortisol levels correlated significantly at baseline (r=0.91), right after examination (r=0.98), and at peak levels (r=0.96). Area under the HR response curve was higher in low responder cows; however, maximum HR and the amplitude of the HR response showed no differences between groups. Minimum values of both parameters calculated for the examination were higher in high responders. Following the examination, response parameters of root mean square of successive differences and HF did not differ between groups. The maximum and the amplitude of LF/HF response and area under the LF/HF response curve were lower in low responder cows, suggesting a lower sympathetic

  8. PRIMARY CENTRAL NERVOUS SYSTEM LYMPHOMA

    Directory of Open Access Journals (Sweden)

    S.S. Anvari

    2009-08-01

    Full Text Available ObjectivePrimary central nervous system lymphoma (PCNSL is an extremely rare condition in childhood. We report the first case of PCNSL in a child in Iran.Clinical presentationA nine-year-old boy was referred to Mofid Hospital with the history of headache of four months and seizure of 2 months duration. Magnetic resonance imaging of the brain revealed a hyper-intense lesion in left fronto-parietal area with secondary satellite lesions. Biopsy of the brain mass was performed. Pathologic findings showed brain lymphoma and immunohistochemistry confirmed this diagnosis. The treatment started with intrathecal and systemic chemotherapy in combination with radiotherapy.Keywords:Lymphoma, Primary central nervous system lymphoma (PCNSL, Children

  9. Anatomical evidence for ileal Peyer's patches innervation by enteric nervous system: a potential route for prion neuroinvasion?

    Science.gov (United States)

    Chiocchetti, Roberto; Mazzuoli, Gemma; Albanese, Valeria; Mazzoni, Maurizio; Clavenzani, Paolo; Lalatta-Costerbosa, Giovanna; Lucchi, Maria L; Di Guardo, Giovanni; Marruchella, Giuseppe; Furness, John B

    2008-05-01

    We have examined the innervation of the gut-associated lymphoid system of the sheep ileum, with a view to identifying potential sites for neuroinvasion by pathogens, such as prions (PrP(Sc)). Special attention has been paid to the follicles of Peyer's patches (PPs), which are major sites of PrP(Sc) accumulation during infection. Evidence exists that the enteric nervous system, together with the parasympathetic and sympathetic pathways projecting to the intestine, are important for PrP(Sc) entry into the central nervous system. Thus, PrP(Sc) might move from PPs to the neurons and nerve fibres that innervate them. We investigated, by immunohistochemistry and retrograde tracing (DiI) from the follicles, the distribution and phenotype of enteric neurons innervating the follicles. Antibodies against protein gene product 9.5, tyrosine hydroxylase, dopamine beta hydroxylase, choline acetyltransferase, calbindin (CALB), calcitonin gene-related peptide (CGRP), and nitric oxide synthase were used to characterise the neurons. Immunoreactivity for each of these was observed in fibres around and inside PP follicles. CGRP-immunoreactive fibres were mainly seen at the follicular dome. Retrograde tracing revealed submucosal neurons that contributed to the innervation of PPs, including Dogiel type II neurons and neurons immunoreactive for CALB and CGRP. The major source of the adrenergic fibres are the sympathetic ganglia. Our results thus suggest that enteric and sympathetic neurons are involved during the first stage of neuroinvasion, with neurons connecting to them acting as potential carriers of PrP(Sc) to the central nervous system. PMID:18317812

  10. Hepatic intestinal uptake and release of catecholamines in alcoholic cirrhosis. Evidence of enhanced hepatic intestinal sympathetic nervous activity

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Ring-Larsen, H; Christensen, N J

    1987-01-01

    Hepatic intestinal and whole body plasma clearance and appearance of noradrenaline (NA) was quantified in patients with alcoholic cirrhosis (n = 12) and in controls (n = 6). As NA may be released as well as removed in the same vascular bed, infusion of tritium labelled NA (3H-NA) was carried out...... during hepatic vein catheterisation in order to determine both flux rates. In alcoholic cirrhosis plasma concentrations of endogenous NA and adrenaline (A) were significantly above control values (NA: median 2.4 v 1.7 nmol/l, p less than 0.02; A: 0.38 v 0.19 nmol/l, p less than 0.01). Whole body...

  11. Effects of moxonidine on sympathetic nervous system activity: An update on metabolism, cardio, and other target-organ protection

    Directory of Open Access Journals (Sweden)

    Eleni F Karlafti

    2013-01-01

    Full Text Available Moxonidine is the newest, second-generation, centrally acting antihypertensive agent. It has selective agonist activity at imidazoline I1 receptors and less adverse effects than the other centrally acting drugs. This fact authorizes the frequent use of moxonidine in clinical practice, as monotherapy or in combination with other antihypertensive agents. Also, moxonidine has beneficial effects in obese and metabolic syndrome and in target-organs, such as heart and kidneys.

  12. Characterisation of the sympathetic nervous system of Asian (Elephas maximus) and African (Loxodonta africana) elephants based on urinary catecholamine analyses.

    Science.gov (United States)

    Dehnhard, M

    2007-05-01

    Assessing the welfare status of captive animals using non-invasive measurements of hormones is of growing interest because this can serve as an effective tool to facilitate the optimization of environmental and husbandry conditions. Both the African elephant (Loxodonta africana) and the Asian elephant (Elephas maximus) exhibit extremely low breeding success in captivity, and because elevated levels of stress may negatively influence reproductive functions, this study sought to establish a method for assessing sympathoadrenal activity in captive female elephants. We found a circadian variation in urinary noradrenaline (norepinephrine, NE), adrenaline (epinephrine, Epi) and dopamine (DA) under short day length. Peak activity of noradrenaline and dopamine was noted at 3 a.m. Adrenaline showed a biphasic pattern with a minor peak recorded at 3 a.m. and a major peak 9 a.m. Under long-day photoperiodic conditions, simultaneous peaks of noradrenaline and adrenaline were again noted at 3 a.m. whereas dopamine does not appear to have a distinct circadian pattern under long-day length. A transfer of two elephant cows resulted in a marked increase in urinary adrenaline and noradrenaline levels, confirming that the transfer represented a stressful event. During the peripartal period, noradrenaline concentrations increased and maximum concentrations were obtained at delivery. Daily measurements of urinary dopamine throughout the follicular phase revealed an increase in dopamine secretion close to ovulation. This increase might indicate a role of dopamine in the ovulatory mechanisms. These results suggest that changes in urinary catecholamine excretion reflect fluctuations in sympathoadrenal activity and may be a useful indicator of stress. PMID:17336981

  13. Nanomedicine and the nervous system

    CERN Document Server

    Martin, Colin R; Hunter, Ross J

    2012-01-01

    The nanosciences encompass a variety of technologies ranging from particles to networks and nanostructures. Nanoparticles can be suitable carriers of therapeutic agents, and nanostructures provide suitable platforms and scaffolds for sub-micro bioengineering. This book focuses on nanomedicine and nanotechnology as applied to the nervous system and the brain. It covers nanoparticle-based immunoassays, nanofiber microbrush arrays, nanoelectrodes, protein nanoassemblies, nanoparticles-assisted imaging, nanomaterials, and ion channels. Additional topics include stem cell imaging, neuronal performa

  14. Central nervous system mesenchymal chondrosarcoma

    International Nuclear Information System (INIS)

    Central nervous system mesenchymal chondrosarcomas are rare malignant tumors that constitute a separate entity from the classical chondrosarcoma and myxoid variant. Clinical behaviour of central nervous system chondrosarcomas is still unknown. We describe two rare examples of intracranial mesenchymal chondrosarcoma with a review of the literature, in an attempt to clarify the clinical characteristics, prognosis and treatment of choice of these unusual tumors. Among the 55 reported cases, 23 had postoperative radiotherapy. Although there is no statistical significance according to the Log-Rank test (p=0.7), the patients treated with radiation therapy seem to have a better chance of survival. Patients who had adjuvant chemotherapy (only 5) showed survival times similar to those patients who had none. Although clinical behaviour of central nervous system chondrosarcomas remains to be defined, data from our series as well as literature show that radical removal is the best therapeutic choice. In addition, patients treated with postoperative radiotherapy seem to show a trend toward increased survival

  15. The Nervous System and Gastrointestinal Function

    Science.gov (United States)

    Altaf, Muhammad A.; Sood, Manu R.

    2008-01-01

    The enteric nervous system is an integrative brain with collection of neurons in the gastrointestinal tract which is capable of functioning independently of the central nervous system (CNS). The enteric nervous system modulates motility, secretions, microcirculation, immune and inflammatory responses of the gastrointestinal tract. Dysphagia,…

  16. Optimal Cardiac Resynchronization Therapy Pacing Rate in Non-Ischemic Heart Failure Patients

    DEFF Research Database (Denmark)

    Ghotbi, Adam Ali; Sander, Mikael; Køber, Lars;

    2015-01-01

    BACKGROUND: The optimal pacing rate during cardiac resynchronization therapy (CRT) is unknown. Therefore, we investigated the impact of changing basal pacing frequencies on autonomic nerve function, cardiopulmonary exercise capacity and self-perceived quality of life (QoL). METHODS: Twelve CRT...... by microneurography (MSNA), peak oxygen consumption (pVO2), N-terminal pro-brain natriuretic peptide (p-NT-proBNP), echocardiography and QoL. RESULTS: DDD-80 pacing for 3 months increased the mean heart rate from 77.3 to 86.1 (p = 0.001) and reduced sympathetic activity compared to DDD-60 (51±14 bursts/100 cardiac...

  17. An intact central nervous system is not necessary for insulin-mediated increases in leg blood flow in humans

    DEFF Research Database (Denmark)

    Dela, Flemming; Stallknecht, B.; Biering-Sørensen, Fin

    in turn could be modulated by vasoconstrictive sympathetic nervous activity. Five men with complete motoric lesions of their cervical spinal cord (SCI) and nine healthy (H) men underwent a hyperinsulinemic (480 mU x min(-1) x m(-2)), euglycemic clamp combined with arterio-venous catheterization of...... one leg and microdialysis of the thigh muscle. In response to hyperinsulinemia leg blood flow increased similarly in the two groups. Leg glucose extraction and uptake were significantly lower in SCI compared with H. Two hours post clamp, leg glucose uptake rates had not yet returned to basal values...

  18. ACE2-Mediated Reduction of Oxidative Stress in the Central Nervous System Is Associated with Improvement of Autonomic Function

    OpenAIRE

    Huijing Xia; Sonia Suda; Sharell Bindom; Yumei Feng; Gurley, Susan B.; Dale Seth; L Gabriel Navar; Eric Lazartigues

    2011-01-01

    Oxidative stress in the central nervous system mediates the increase in sympathetic tone that precedes the development of hypertension. We hypothesized that by transforming Angiotensin-II (AngII) into Ang-(1-7), ACE2 might reduce AngII-mediated oxidative stress in the brain and prevent autonomic dysfunction. To test this hypothesis, a relationship between ACE2 and oxidative stress was first confirmed in a mouse neuroblastoma cell line (Neuro2A cells) treated with AngII and infected with Ad-hA...

  19. Bioimpedance harmonic analysis as a tool to simultaneously assess circulation and nervous control

    International Nuclear Information System (INIS)

    Multicycle harmonic (Fourier) analysis of bioimpedance was employed to simultaneously assess circulation and neural activity in visceral (rat urinary bladder) and somatic (human finger) organs. The informative value of the first cardiac harmonic of the bladder impedance as an index of bladder circulation is demonstrated. The individual reactions of normal and obstructive bladders in response to infusion cystometry were recorded. The potency of multicycle harmonic analysis of bioimpedance to assess sympathetic and parasympathetic neural control in urinary bladder is discussed. In the human finger, bioimpedance harmonic analysis revealed three periodic components at the rate of the heart beat, respiration and Mayer wave (0.1 Hz), which were observed under normal conditions and during blood flow arrest in the hand. The revealed spectrum peaks were explained by the changes in systemic blood pressure and in regional vascular tone resulting from neural vasomotor control. During normal respiration and circulation, two side cardiac peaks were revealed in a bioimpedance amplitude spectrum, whose amplitude reflected the depth of amplitude respiratory modulation of the cardiac output. During normal breathing, the peaks corresponding to the second and third cardiac harmonics were split, reflecting frequency respiratory modulation of the heart rate. Multicycle harmonic analysis of bioimpedance is a novel potent tool to examine the interaction between the respiratory and cardiovascular system and to simultaneously assess regional circulation and neural influences in visceral and somatic organs

  20. Impact of aging on cardiac function in a female rat model of menopause: role of autonomic control, inflammation, and oxidative stress

    Directory of Open Access Journals (Sweden)

    Machi JF

    2016-03-01

    groups when compared with young controls, indicating an increased oxidative stress. A negative correlation was found between GSH/GSSG and tumor necrosis factor-α (r=-0.6, P<0.003. Correlations were found between interleukin-6 with adipose tissue (r=0.5, P<0.009 and vagal tonus (r=-0.7, P<0.0002; and among myocardial performance index with interleukin-6 (r=0.65, P<0.0002, sympathetic tonus (r=0.55, P<0.006, and physical capacity (r=-0.55, P<0.003. The findings in this trial showed that ovariectomy aggravated the impairment of cardiac and functional effects of aging in female rats, probably associated with exacerbated autonomic dysfunction, inflammation, and oxidative stress. Keywords: autonomic nervous system, aging, aerobic exercise, female rats

  1. Leptin-Induced Sympathetic Nerve Activation: Signaling Mechanisms and Cardiovascular Consequences in Obesity

    OpenAIRE

    Rahmouni, Kamal

    2010-01-01

    Obesity increases cardiovascular morbidity and mortality in part by inducing hypertension. One factor linking excess fat mass to cardiovascular diseases may be the sympathetic cardiovascular actions of leptin. Initial studies of leptin showed it regulates appetite and enhances energy expenditure by activating sympathetic nerve activity (SNA) to thermogenic brown adipose tissue. Further study, however, demonstrated leptin also causes sympathetic excitation to the kidney that, in turn, increase...

  2. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans.

    OpenAIRE

    Anderson, E A; Hoffman, R P; Balon, T W; Sinkey, C A; Mark, A L

    1991-01-01

    Hyperinsulinemia may contribute to hypertension by increasing sympathetic activity and vascular resistance. We sought to determine if insulin increases central sympathetic neural outflow and vascular resistance in humans. We recorded muscle sympathetic nerve activity (MSNA; microneurography, peroneal nerve), forearm blood flow (plethysmography), heart rate, and blood pressure in 14 normotensive males during 1-h infusions of low (38 mU/m2/min) and high (76 mU/m2/min) doses of insulin while hol...

  3. The Nucleus of the Solitary Tract and the coordination of respiratory and sympathetic activities

    OpenAIRE

    DanielB.Zoccal

    2014-01-01

    It is well known that breathing introduces rhythmical oscillations in the heart rate and arterial pressure levels. Sympathetic oscillations coupled to the respiratory activity have been suggested as an important homeostatic mechanism optimizing tissue perfusion and blood gas uptake/delivery. This respiratory-sympathetic coupling is strengthened in conditions of blood gas challenges (hypoxia and hypercapnia) as a result of the synchronized activation of brainstem respiratory and sympathetic ne...

  4. The nucleus of the solitary tract and the coordination of respiratory and sympathetic activities

    OpenAIRE

    Zoccal, Daniel B.; Furuya, Werner I.; Bassi, Mirian; Colombari, Débora S. A.; Colombari, Eduardo

    2014-01-01

    It is well known that breathing introduces rhythmical oscillations in the heart rate and arterial pressure levels. Sympathetic oscillations coupled to the respiratory activity have been suggested as an important homeostatic mechanism optimizing tissue perfusion and blood gas uptake/delivery. This respiratory-sympathetic coupling is strengthened in conditions of blood gas challenges (hypoxia and hypercapnia) as a result of the synchronized activation of brainstem respiratory and sympathetic ne...

  5. Horner´s Syndrome Post-Excision of a Huge Cervical Sympathetic Chain Schwannoma

    OpenAIRE

    Aydin, Sedat

    2007-01-01

    Schwannoma of the cervical sympathetic chain is a rare nerve tumor. These lesions typically present as an asymptomatic neck mass and are easily mistaken for a carotid body tumor during the initial work-up. In this report, a rarely seen huge cervical sympathetic chain schwannoma case, who experienced partial Horner´s syndrome postoperatively, is presented. We report a case of schwannoma on the cervical sympathetic chain, which to our knowledge is the largest reported in the current literature.

  6. Cardiac perception and cardiac control. A review.

    Science.gov (United States)

    Carroll, D

    1977-12-01

    The evidence regarding specific cardiac perception and discrimination, and its relationship to voluntary cardiac control, is critically reviewed. Studies are considered in three sections, depending on the method used to assess cardiac perception: questionnaire assessment, discrimination procedures, and heartbeat tracking. The heartbeat tracking procedure would appear to suffer least from interpretative difficulties. Recommendations are made regarding the style of analysis used to assess heartbeat perception in such tracking tasks. PMID:348240

  7. Advantage of recording single-unit muscle sympathetic nerve activity in heart failure

    Directory of Open Access Journals (Sweden)

    HISAYOSHI eMURAI

    2012-05-01

    Full Text Available Elevated sympathetic activation is a characteristic feature of heart failure (HF. Excessive sympathetic activation under resting conditions has been shown to increase from the early stages of the disease, and is related to prognosis. Direct recording of multiunit efferent muscle sympathetic nerve activity (MSNA by microneurography is the best method for quantifying sympathetic nerve activity in humans. To date, this technique has been used to evaluate the actual central sympathetic outflow to the periphery in HF patients at rest and during exercise; however, because the firing occurrence of sympathetic activation is mainly synchronized by pulse pressure, multiunit MSNA, expressed as burst frequency (bursts/min and burst incidence (bursts/100heartbeats, may have limitations for the quantification of sympathetic nerve activity. In HF, multiunit MSNA is near the maximum level, and cannot increase further than the heartbeat. Single-unit MSNA analysis in humans is technically demanding, but provides more detailed information regarding central sympathetic firing. Although a great deal is known about the response of multiunit MSNA to stress, little information is available regarding the responses of single-unit MSNA to physiological stress and disease. The purposes of this review are to describe the differences between multiunit and single-unit MSNA during stress and to discuss the advantages of single-unit MSNA recording in improving our understanding the pathology of increased sympathetic activity in HF.

  8. In vitro biocompatibility testing of some synthetic polymers used for the achievement of nervous conduits

    OpenAIRE

    Mihai, R; Florescu, IP; Coroiu, V; Oancea, A; Lungu, M.

    2011-01-01

    Biocompatible synthetic polymers are largely used in the bio–medical domain, tissue engineering and in controlled release of medicines. Polymers can be used in the achievement of cardiac and vascular devices, mammary implants, eye lenses, surgical threads, nervous conduits, adhesives, blood substitutes, etc. Our study was axed on the development of cytotoxicity tests for 3 synthetic polymers, namely polyvinyl alcohol, polyethylene glycol and polyvinyl chloride. These tests targeted to determi...

  9. Glucocorticoids and nervous system plasticity

    Institute of Scientific and Technical Information of China (English)

    Kathryn M Madalena; Jessica K Lerch

    2016-01-01

    Glucocorticoid and glucocorticoid receptor (GC/GR) interactions alter numerous aspects of neuronal function. These consequences (e.g., anti-inlfammatoryvs. pro-inlfammatory) can vary depending on the duration of GC exposure or central nervous system (CNS) injury model. In this review we discuss how GC/GR interactions impact neuronal recovery after a central or peripheral nerve injury and discuss how GC exposure duration can produce divergent CNS neuronal growth responses. Finally we consider how new ifndings on gender speciifc immune cell responses after a nerve injury could intersect with GC/GR interactions to impact pain processing.

  10. What Are the Parts of the Nervous System?

    Science.gov (United States)

    ... main parts: the central nervous system and the peripheral nervous system: The central nervous system is made up of the brain and spinal cord. The peripheral nervous system is made up of the nerve fibers that ...

  11. Cardiac iodine-123 metaiodobenzylguanidine uptake in animals with diabetes mellitus and/or hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, E.A. [Dept. of Nuclear Medicine, Academic Medical Center, Univ. of Amsterdam (Netherlands)]|[Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands); Kam, K.L. [Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands); Somsen, G.A. [Dept. of Cardiology, Academic Medical Center, Univ. of Amsterdam (Netherlands); Boer, G.J. [Dept. of Nuclear Medicine, Academic Medical Center, Univ. of Amsterdam (Netherlands); Bruin, K. de [Dept. of Nuclear Medicine, Academic Medical Center, Univ. of Amsterdam (Netherlands); Batink, H.D. [Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands); Pfaffendorf, M. [Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands); Royen, E.A. van [Dept. of Nuclear Medicine, Academic Medical Center, Univ. of Amsterdam (Netherlands); Zwieten, P.A. van [Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands)]|[Dept. of Cardiology, Academic Medical Center, Univ. of Amsterdam (Netherlands)

    1996-08-01

    The aim of the present study was to evaluate the use of the noradrenaline analogue iodine-123 metaiodobenzylguanidine ([{sup 123}I]MIBG) for the assessment of cardiac sympathetic activity in the presence of diabetes mellitus and/or hypertension in animal models. One model used Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) rendered diabetic at 12 weeks of age by an intravenous injection of streptozotocin (STZ). The other model used lean and obese Zucker rats. In all groups basic haemodynamic values were established and animals received an intravenous injection of 50 {mu}Ci [{sup 123}I]MIBG. Initial myocardial uptake and washout rates of [{sup 123}I]MIBG were measured scintigraphically during 4 h. After sacrifice, plasma noradrenaline and left cardiac ventricular {beta}-adrenoceptor density was determined. The diabetic state, both in STZ-treated rats (direct induction) and in obese Zucker rats (genetic induction), appeared to induce a lower cardiac density of {beta}-adrenoceptors, indicative of increased sympathetic activity. Cardiac [{sup 123}I]MIBG then showed increased washouts, thereby confirming enhanced noradrenergic activity. This parallism of results led to the conclusion that [{sup 123}I]MIBG wash-out measurements could provide an excellent tool to assess cardiac sympathetic activity noninvasively. However, in hypertension (WKY vs SHR), both parameters failed to show parallelism: no changes in {beta}-adrenoceptor density were found, whereas [{sup 123}I]MIBG wash-out rate was increased. Thus, either [{sup 123}I]MIBG washout or {beta}-adrenoceptor density may not be a reliable parameter under all circumstances to detect changes in the release of noradrenaline. (orig./MG)

  12. Cardiac iodine-123 metaiodobenzylguanidine uptake in animals with diabetes mellitus and/or hypertension

    International Nuclear Information System (INIS)

    The aim of the present study was to evaluate the use of the noradrenaline analogue iodine-123 metaiodobenzylguanidine ([123I]MIBG) for the assessment of cardiac sympathetic activity in the presence of diabetes mellitus and/or hypertension in animal models. One model used Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) rendered diabetic at 12 weeks of age by an intravenous injection of streptozotocin (STZ). The other model used lean and obese Zucker rats. In all groups basic haemodynamic values were established and animals received an intravenous injection of 50 μCi [123I]MIBG. Initial myocardial uptake and washout rates of [123I]MIBG were measured scintigraphically during 4 h. After sacrifice, plasma noradrenaline and left cardiac ventricular β-adrenoceptor density was determined. The diabetic state, both in STZ-treated rats (direct induction) and in obese Zucker rats (genetic induction), appeared to induce a lower cardiac density of β-adrenoceptors, indicative of increased sympathetic activity. Cardiac [123I]MIBG then showed increased washouts, thereby confirming enhanced noradrenergic activity. This parallism of results led to the conclusion that [123I]MIBG wash-out measurements could provide an excellent tool to assess cardiac sympathetic activity noninvasively. However, in hypertension (WKY vs SHR), both parameters failed to show parallelism: no changes in β-adrenoceptor density were found, whereas [123I]MIBG wash-out rate was increased. Thus, either [123I]MIBG washout or β-adrenoceptor density may not be a reliable parameter under all circumstances to detect changes in the release of noradrenaline. (orig./MG)

  13. What Is Cardiac Rehabilitation?

    Science.gov (United States)

    ANSWERS by heart Treatments + Tests What Is Cardiac Rehabilitation? A cardiac rehabilitation (rehab) program takes place in a hospital or ... special help in making lifestyle changes. During your rehabilitation program you’ll… • Have a medical evaluation to ...

  14. Projection neurons of the vestibulo-sympathetic reflex pathway.

    Science.gov (United States)

    Holstein, Gay R; Friedrich, Victor L; Martinelli, Giorgio P

    2014-06-15

    Changes in head position and posture are detected by the vestibular system and are normally followed by rapid modifications in blood pressure. These compensatory adjustments, which allow humans to stand up without fainting, are mediated by integration of vestibular system pathways with blood pressure control centers in the ventrolateral medulla. Orthostatic hypotension can reflect altered activity of this neural circuitry. Vestibular sensory input to the vestibulo-sympathetic pathway terminates on cells in the vestibular nuclear complex, which in turn project to brainstem sites involved in the regulation of cardiovascular activity, including the rostral and caudal ventrolateral medullary regions (RVLM and CVLM, respectively). In the present study, sinusoidal galvanic vestibular stimulation was used to activate this pathway, and activated neurons were identified through detection of c-Fos protein. The retrograde tracer Fluoro-Gold was injected into the RVLM or CVLM of these animals, and immunofluorescence studies of vestibular neurons were conducted to visualize c-Fos protein and Fluoro-Gold concomitantly. We observed activated projection neurons of the vestibulo-sympathetic reflex pathway in the caudal half of the spinal, medial, and parvocellular medial vestibular nuclei. Approximately two-thirds of the cells were ipsilateral to Fluoro-Gold injection sites in both the RVLM and CVLM, and the remainder were contralateral. As a group, cells projecting to the RVLM were located slightly rostral to those with terminals in the CVLM. Individual activated projection neurons were multipolar, globular, or fusiform in shape. This study provides the first direct demonstration of the central vestibular neurons that mediate the vestibulo-sympathetic reflex. PMID:24323841

  15. Sympathetic cooling of molecular ion motion to the ground state

    OpenAIRE

    Rugango, Rene; Goeders, James E.; Dixon, Thomas H.; John M. Gray; Khanyile, Ncamiso; Shu, Gang; Clark, Robert J.; Brown, Kenneth R.

    2014-01-01

    We demonstrate sympathetic sideband cooling of a $^{40}$CaH$^{+}$ molecular ion co-trapped with a $^{40}$Ca$^{+}$ atomic ion in a linear Paul trap. Both axial modes of the two-ion chain are simultaneously cooled to near the ground state of motion. The center of mass mode is cooled to an average quanta of harmonic motion $\\overline{n}_{\\mathrm{COM}} = 0.13 \\pm 0.03$, corresponding to a temperature of $12.47 \\pm 0.03 ~\\mu$K. The breathing mode is cooled to $\\overline{n}_{\\mathrm{BM}} = 0.05 \\pm...

  16. Sympathetic Wigner-function tomography of a dark trapped ion

    DEFF Research Database (Denmark)

    Mirkhalaf, Safoura; Mølmer, Klaus

    2012-01-01

    A protocol is provided to reconstruct the Wigner function for the motional state of a trapped ion via fluorescence detection on another ion in the same trap. This “sympathetic tomography” of a dark ion without optical transitions suitable for state measurements is based on the mapping of its...... motional state onto one of the collective modes of the ion pair. The quantum state of this vibrational eigenmode is subsequently measured through sideband excitation of the bright ion. Physical processes to implement the desired state transfer are derived and the accomplishment of the scheme is evaluated...

  17. Brain renin angiotensin system in cardiac hypertrophy and failure

    Directory of Open Access Journals (Sweden)

    MichaelBader

    2012-01-01

    Full Text Available Brain renin-angiotensin system (RAS is significantly involved in the roles of the endocrine RAS in cardiovascular regulation. Our studies indicate that the brain RAS participates in the development of cardiac hypertrophy and fibrosis through sympathetic activation. Inhibition of sympathetic hyperactivity after myocardial infarction through suppression of the brain RAS appears beneficial. The brain RAS is involved in the modulation of circadian rhythms of arterial pressure, contributing to nondipping hypertension. We conclude that the brain RAS in pathophysiological states interacts synergistically with the chronically overactive RAS through a positive biofeedback in order to maintain a state of alert diseased conditions, such as cardiac hypertrophy and failure. Therefore, targeting brain RAS with drugs such as angiotensin converting inhibitors or receptor blockers having increased brain penetrability could be of advantage. These RAS-targeting drugs are first-line therapy for all heart failure patients. Since the RAS has both endocrine and local tissue components, RAS drugs are being developed to attain increased tissue penetrability and volume of distribution and consequently an efficient inhibition of both RAS components.

  18. Relationship between the mismatch of 123I-BMIPP and 201Tl myocardial single-photon emission computed tomography and autonomic nervous system activity in patients with acute myocardial infarction

    International Nuclear Information System (INIS)

    The purpose of this study was to elucidate the relationship between the mismatch of thallium-201 (Tl) and iodine-123-beta-methyl-iodophenyl-pentadecanoic acid (BMIPP) myocardial single-photon emission computed tomography (SPECT) and autonomic nervous system activity in myocardial infarction (MI) patients. The subjects were 40 patients (34 males, 6 females) who underwent examinations by 123I-BMIPP and 201Tl myocardial SPECT imaging and 24-hour Holter monitoring within a 3-day period 3 weeks after the onset of their first MI. R-R intervals were analyzed every hour over a period of 24 hours by fast Fourier transformation (FFT). High frequency (HF) and low frequency (LF) were defined as markers of cardiac vagal activity in the former and the LF/HF ratio as sympathetic activity. Greater or more extensive decreases in the BMIPP image than that in the Tl image were defined as a positive mismatch. Patients were divided into positive and negative mismatch groups of 20 patients each. There were no significant differences between the 2 groups in age, sex, site of infarction, max CK (creatine kinase), max CK-MB, or left ventricular ejection fraction. The incidences of clinical signs suggesting residual myocardial ischemia were significantly greater in the positive than in the negative mismatch group (P123I-BMIPP and 201Tl myocardial SPECT 3 weeks after a first acute myocardial infarction with uncomplicated moderate or severe heart failure and decreased heart rate variability are related to residual myocardial ischemia. A combined assessment of heart rate variability in 24 hour Holter electrocardiogram (ECG) monitoring and perfusion-metabolism mismatch in 123I-BMIPP and 201Tl myocardial SPECT is useful for determining residual myocardial ischemia in the follow-up of those with acute myocardial infarction. (author)

  19. Experimental Study of the Effect of Autonomic Nervous System on the Transmural Dispersion of Ventricular Repolarization under Acute Myocardial Ischemia in Vivo

    Institute of Scientific and Technical Information of China (English)

    张存泰; 徐大文; 李泱; 刘念; 钟江华; 王琳; 陆再英

    2002-01-01

    Summary: The effect of the autonomic nerves on the transmural dispersion of ventricular repolariza tion (TDR) under acute myocardial ischemia in intact canine was investigated. Using the monophasic action potential (MAP) recording technique, MAPs of the epicardium (Epi), midmyocardium (Mid) and endocardium (Endo) were recorded simultaneously by specially designed plunge-needle electrodes at the left ventricular free wall under acute myocardial ischemia in 12 open-chest dogs.MAPD90 and TDR among three myocardial layers as well as the incidence of the early afterdepolar ization (EAD) before autonomic nervous stimulation and during autonomic nervous stimulation were compared. It was found that 10 min after acute myocardial I~hemia, TDR was increased from 55±8.ms to 86± 15 ms during sympathetic stimulation (P<0. 01). The TDR (53± 9 ms) during parasympathetic stimulation was not significantly different from that of the control (55±8 ms) (P>0.05). The EAD was elicited in the Mid of 2 dogs (16 %) 10 min after acute myocardial ischemia,but the EAD were elicited in the Mid of 7 dogs (58 %) during sympathetic stimulation (P<0. 01).It was concluded that: (1) Sympathetic stimulation can increase the transmural dispersion of repolari zation and induce early afterdepolarizations in the Mid under acute myocardial ischemia, which pro-vide the opportunity for the ventricular arrhythmia developing; (2) Parasympathetic stimulation has no significant effect on the transmural dispersion of repolarization under myocardial ischemia.

  20. Diffuse infiltrative cardiac tuberculosis

    International Nuclear Information System (INIS)

    We present the cardiac magnetic resonance images of an unusual form of cardiac tuberculosis. Nodular masses in a sheet-like distribution were seen to infiltrate the outer myocardium and pericardium along most of the cardiac chambers. The lesions showed significant resolution on antitubercular therapy