WorldWideScience

Sample records for cardiac sympathetic innervation

  1. Imaging of the autonomic nervous system: focus on cardiac sympathetic innervation.

    Science.gov (United States)

    Goldstein, David S

    2003-12-01

    Symptoms or signs of abnormal autonomic nervous system function occur commonly in several neurological disorders. Clinical evaluations have depended on physiological, pharmacological, and neurochemical approaches. Recently, imaging of sympathetic noradrenergic innervation has been introduced and applied especially in the heart. Most studies have used the radiolabeled sympathomimetic amine, (123)I-metaiodobenzylguanidine. Decreased uptake or increased "washout" of (123)I-metaiodobenzylguanidine-derived radioactivity is associated with worse prognosis or more severe disease in hypertension, congestive heart failure, arrhythmias, and diabetes mellitus. This pattern may reflect a high rate of postganglionic sympathetic nerve traffic to the heart. Many recent studies have agreed on the remarkable finding that all patients with Parkinson's disease and orthostatic hypotension have a loss of cardiac sympathetic innervation, whereas all patients with multiple system atrophy, often difficult to distinguish clinically from Parkinson's disease, have intact cardiac sympathetic innervation. Because Parkinson's disease entails a postganglionic sympathetic noradrenergic lesion, the disease appears to be not only a movement disorder, with dopamine loss in the nigrostriatal system of the brain, but also a dysautonomia, with noradrenaline loss in the sympathetic nervous system of the heart. As new ligands are developed, one may predict further discoveries of involvement of components of the autonomic nervous system in neurological diseases.

  2. Impaired cardiac sympathetic innervation in symptomatic patients with long QT syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kies, Peter; Stegger, Lars; Schober, Otmar [University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); Paul, Matthias; Moennig, Gerold [University Hospital Muenster, Department for Cardiology and Angiology, Muenster (Germany); Gerss, Joachim [University of Muenster, Institute of Biostatistics and Clinical Research, Muenster (Germany); Wichter, Thomas [Marienhospital Osnabrueck, Department of Cardiology, Niels-Stensen-Kliniken, Osnabrueck (Germany); Schaefers, Michael [University of Muenster, European Institute of Molecular Imaging - EIMI, Muenster (Germany); Schulze-Bahr, Eric [University Hospital Muenster, Department for Cardiology and Angiology, Muenster (Germany); University Hospital Muenster, Institute for Genetics of Heart Diseases, Muenster (Germany)

    2011-10-15

    Increased sympathetic activation is a key modifier for arrhythmogenesis in patients with long QT syndrome (LQTS), a congenital channelopathy. Therefore, we investigated cardiac sympathetic function using {sup 123}I-metaiodobenzylguanidine (MIBG) single photon emission computed tomography (SPECT) in a cohort of symptomatic LQTS patients and correlated these findings with the underlying genotype. [{sup 123}I]MIBG SPECT was performed in 28 LQTS patients. Among these, 18 patients (64%) had a previous syncope and 10 patients (36%) survived sudden cardiac arrest. Patients were characterized in terms of genetic subtypes and QTc interval on surface ECGs. SPECT images were analysed for regional [{sup 123}I]MIBG uptake in a 33-segment bullseye scheme and compared to those obtained from 10 age-matched healthy control subjects (43 {+-} 12 years). An abnormal {sup 123}I-MIBG scan was found in 17 of 28 LQTS patients (61%) with a tracer reduction mainly located in the anteroseptal segments of the left ventricle. This finding was independent of the genetic LQTS subtype. In addition, no differences were found between LQTS patients with a QTc >500 ms vs <500 ms or those suffering from syncope vs VF (p > 0.05). A distinct regional pattern of impaired cardiac sympathetic function was identified in the majority of symptomatic LQTS patients. This innervation defect was independent of the underlying genotype and clinical disease expression. (orig.)

  3. Impaired cardiac sympathetic innervation in symptomatic patients with long QT syndrome

    International Nuclear Information System (INIS)

    Increased sympathetic activation is a key modifier for arrhythmogenesis in patients with long QT syndrome (LQTS), a congenital channelopathy. Therefore, we investigated cardiac sympathetic function using 123I-metaiodobenzylguanidine (MIBG) single photon emission computed tomography (SPECT) in a cohort of symptomatic LQTS patients and correlated these findings with the underlying genotype. [123I]MIBG SPECT was performed in 28 LQTS patients. Among these, 18 patients (64%) had a previous syncope and 10 patients (36%) survived sudden cardiac arrest. Patients were characterized in terms of genetic subtypes and QTc interval on surface ECGs. SPECT images were analysed for regional [123I]MIBG uptake in a 33-segment bullseye scheme and compared to those obtained from 10 age-matched healthy control subjects (43 ± 12 years). An abnormal 123I-MIBG scan was found in 17 of 28 LQTS patients (61%) with a tracer reduction mainly located in the anteroseptal segments of the left ventricle. This finding was independent of the genetic LQTS subtype. In addition, no differences were found between LQTS patients with a QTc >500 ms vs 0.05). A distinct regional pattern of impaired cardiac sympathetic function was identified in the majority of symptomatic LQTS patients. This innervation defect was independent of the underlying genotype and clinical disease expression. (orig.)

  4. Scintigraphic assessment of cardiac sympathetic innervation with I-123-metaiodobenzylguanidine in cardiomyopathy. Special reference to cardiac arrhythmia

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Takahisa; Otsuka, Nobuaki; Sone, Teruki; Mimura, Hiroaki; Yanagimoto, Shinichi; Tomomitsu, Tatsushi; Fukunaga, Masao [Kawasaki Medical School, Kurashiki, Okayama (Japan); Morita, Koichi

    1999-07-01

    Cardiac sympathetic imagings with I-123-metaiodobenzylguanidine (MIBG) were carried out in 5 cases with dilated cardiomyopathy (DCM), 26 cases with hypertrophic cardiomyopathy (HCM), and 4 cases without cardiac disease as a control to assess cardiac sympathetic innervation qualitatively and quantitatively, and to clarify the relation of MIBG accumulation to arrhythmia. MIBG scintigraphy was performed at 15 min. (early image) and 4 hr. (delayed image) after intravenous injection of MIBG 111 MBq. The MIBG uptake ratio of mediastinum (H/M) and the cardiac washout rate (WR) from early to delayed images were calculated. On both early and delayed SPECTs, MIBG uptake was assessed by defect scores (DSs). Regarding the cases with HCM, the MIBG uptake ratio, WR, and DS were also compared in cases with and without arrhythmia. In DCM, the MIBG uptake on delayed SPECT was markedly low, the H/M ratio was significantly lower, and the DS was significantly higher than in the control (all p<0.05). As for the WR, there was no significant difference between HCM, DCM and the control. In HCM, significantly reduced MIBG uptake was observed in cases with ventricular techycardia (VT) and in cases with atrial fibrillation (Af), as compared with cases without arrhythmia (all p<0.05). There results suggest that MIBG scintigraphy might be a useful tool in the assessment of cardiac sympathetic abnormalities in cardiomyopathy, especially in cases with arrhythmia. (author)

  5. Prognostic value of sympathetic innervation and cardiac asynchrony in dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Manrique, Alain; Hitzel, Anne; Vera, Pierre [Rouen University Hospital - Henri Becquerel Center, Nuclear Medicine, Rouen (France); Bernard, Mathieu; Bauer, Fabrice [Rouen University Hospital, Cardiology, Rouen (France); Menard, Jean-Francois [Rouen University Hospital, Biostatistics, Rouen (France); Sabatier, Remi [Caen University Hospital, Cardiology, Caen (France); Jacobson, Arnold [GE Healthcare, Princeton, NJ (United States); Agostini, Denis [Caen University Hospital, Nuclear Medicine, Caen (France)

    2008-11-15

    The purpose of the study is to examine prognostic values of cardiac I-123 metaiodobenzylguanidine (MIBG) uptake and cardiac dyssynchrony in patients with dilated cardiomyopathy (DCM). Ninety-four patients with non-ischemic DCM underwent I-123 MIBG imaging for assessing cardiac sympathetic innervation and equilibrium radionuclide angiography. Mean phase angles and SD of the phase histogram were computed for both right ventricular (RV) and left ventricular (LV). Phase measures of interventricular (RV-LV) and intraventricular (SD-RV and SD-LV) asynchrony were computed. Most patients were receiving beta-blockers (89%) and angiotensin-converting enzyme inhibitors (88%). One patient (1%) was lost to follow-up, six had cardiac death (6.4%), eight had heart transplantation (8.6%), and seven had unplanned hospitalization for heart failure (7.5%; mean follow-up: 37 {+-} 16 months). Patients with poor clinical outcome were older, had higher The New York Heart Association functional class, impaired right ventricular ejection fraction and left ventricular ejection fraction, and impaired cardiac I-123 MIBG uptake. On multivariate analysis, I-123 MIBG heart-to-mediastinum (H/M) uptake ratio <1.6 was the only predictor of both primary (cardiac death or heart transplantation, RR = 7.02, p < 0.01) and secondary (cardiac death, heart transplantation, or recurrent heart failure, RR = 8.10, p = 0.0008) end points. In patients receiving modern medical therapy involving beta-blockers, I-123 MIBG uptake, but not intra-LV asynchrony, was predictive of clinical outcome. The impact of beta-blockers on the prognostic value of ventricular asynchrony remains to be clarified. (orig.)

  6. Non-invasive assessment of the effect of cardiac sympathetic innervation on metabolism of the human heart

    Energy Technology Data Exchange (ETDEWEB)

    Bengel, F.M.; Ziegler, S.I.; Nekolla, S.G.; Odaka, K.; Schwaiger, M. [Muenchen Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin; Ueberfuhr, P.; Reichart, B. [Muenchen Univ. (Germany). Herzchirurgische Klinik

    2000-11-01

    The role of cardiac sympathetic nerves in the regulation of myocardial metabolism is not well defined. Owing to the presence of incomplete reinnervation, heart transplant recipients provide a unique model to study the effects of efferent sympathetic innervation. Using this model, we sought to determine the influence of cardiac sympathetic signals on substrate utilisation and overall oxidative metabolism. In 21 transplant recipients, positron emission tomography was applied to determine sympathetic innervation with the noradrenaline analogue carbon-11 hydroxyephedrine, oxidative metabolism with carbon-11 acetate (n=14), and glucose utilisation with fluorine-18 fluorodeoxyglucose (n=7). The reinnervated area comprised 22%{+-}20% of the left ventricle. Oxidative metabolism was similar in denervated and reinnervated myocardium [0.06{+-}0.01 vs 0.06{+-}0.01/min for k(mono)], while glucose uptake was significantly higher in denervated myocardium (6.9{+-}6.6 vs 6.0{+-}6.2 {mu}mol/min/100 g; P=0.03). Reinnervation mainly occurred in the territory of the left anterior descending artery, where retention of {sup 11}C-hydroxyephedrine (6.8{+-}2.7%/min) was higher compared with territories of the left circumflex (4.1{+-}1.7%/min; P<0.01) and right coronary (3.8{+-}1.1%/min; P<0.01) arteries. Oxidative metabolism was similar in all three territories, but compared with the reinnervated territory of the left anterior descending artery (53%{+-}16% of maximum), relative FDG uptake was higher in territories of the left circumflex (76%{+-}6%, P<0.01) and right coronary (67%{+-}10%, P<0.05) arteries. Similar degrees of regional heterogeneity were not observed in normals. Thus, while overall energy production through oxidative metabolism remains unaffected, cardiac utilisation of glucose in the fasting state is increased in the absence of catecholamine uptake sites. Innervated myocardium, however, may preferentially utilise free fatty acids, suggesting a role for sympathetic tone in

  7. Assessment of cardiac sympathetic nerve integrity with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raffel, David M. E-mail: raffel@umich.edu; Wieland, Donald M

    2001-07-01

    The autonomic nervous system plays a critical role in the regulation of cardiac function. Abnormalities of cardiac innervation have been implicated in the pathophysiology of many heart diseases, including sudden cardiac death and congestive heart failure. In an effort to provide clinicians with the ability to regionally map cardiac innervation, several radiotracers for imaging cardiac sympathetic neurons have been developed. This paper reviews the development of neuronal imaging agents and discusses their emerging role in the noninvasive assessment of cardiac sympathetic innervation.

  8. Regional heterogeneity in cardiac sympathetic innervation in acute myocardial infarction: relationship with myocardial oedema on magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Gimelli, Alessia; Masci, Pier Giorgio; Pasanisi, Emilio Maria; Lombardi, Massimo [Fondazione CNR/Regione Toscana, Pisa (Italy); Liga, Riccardo; Grigoratos, Chrysanthos [University Hospital of Pisa, Pisa (Italy); Marzullo, Paolo [Fondazione CNR/Regione Toscana, Pisa (Italy); Institute of Clinical Physiology, CNR, Pisa (Italy)

    2014-09-15

    To assess the relationships between myocardial structure and function on cardiac magnetic resonance (CMR) imaging and sympathetic tone on {sup 123}I-metaiodobenzylguanidine ({sup 123}I-MIBG) scintigraphy early after myocardial infarction (MI). Ten patients underwent {sup 123}I-MIBG and {sup 99m}Tc-tetrofosmin rest cadmium zinc telluride scintigraphy 4 ± 1 days after MI. The segmental left ventricular (LV) relative radiotracer uptake of both {sup 99m}Tc-tetrofosmin and early {sup 123}I-MIBG was calculated. The day after scintigraphy, on CMR imaging, the extent of ischaemia-related oedema and of myocardial fibrosis (late gadolinium enhancement, LGE) was assessed. Accordingly, the extent of oedema and LGE was evaluated for each segment and segmental wall thickening determined. Based on LGE distribution, LV segments were categorized as ''infarcted'' (56 segments), ''adjacent'' (66 segments) or ''remote'' (48 segments). Infarcted segments showed a more depressed systolic wall thickening and greater extent of oedema than adjacent segments (p < 0.001) and remote segments (p < 0.001). Interestingly, while uptake of {sup 99m}Tc-tetrofosmin was significantly depressed only in infarcted segments (p < 0.001 vs. both adjacent and remote segments), uptake of {sup 123}I-MIBG was impaired not only in infarcted segments (p < 0.001 vs. remote) but also in adjacent segments (p = 0.024 vs. remote segments). At the regional level, after correction for {sup 99m}Tc-tetrofosmin and LGE distribution, segmental {sup 123}I-MIBG uptake (p < 0.001) remained an independent predictor of ischaemia-related oedema. After acute MI the regional impairment of sympathetic tone extends beyond the area of altered myocardial perfusion and is associated with myocardial oedema. (orig.)

  9. Sympathetic and sensory innervation of brown adipose tissue

    OpenAIRE

    Bartness, TJ; Vaughan, CH; Song, CK

    2010-01-01

    The innervation of brown adipose tissue (BAT) by the sympathetic nervous system (SNS) is incontrovertible and, with its activation, functions as the principal, if not exclusive, stimulator of BAT thermogenesis. The parasympathetic innervation of BAT only appears in two minor BAT depots, but not in the major interscapular BAT (IBAT) depot. BAT thermogenesis is triggered by the release of norepinephrine from its sympathetic nerve terminals, stimulating β3-adrenoceptors that turns on a cascade o...

  10. Adrenergic innervation of the developing chick heart: neural crest ablations to produce sympathetically aneural hearts

    International Nuclear Information System (INIS)

    Ablation of various regions of premigratory trunk neural crest which gives rise to the sympathetic trunks was used to remove sympathetic cardiac innervation. Neuronal uptake of [3H]-norepinephrine was used as an index of neuronal development in the chick atrium. Following ablation of neural crest over somites 10-15 or 15-20, uptake was significantly decreased in the atrium at 16 and 17 days of development. Ablation of neural crest over somites 5-10 and 20-25 caused no decrease in [3H]-norepinephrine uptake. Removal of neural crest over somites 5-25 or 10-20 caused approximately equal depletions of [3H]-norepinephrine uptake in the atrium. Cardiac norepinephrine concentration was significantly depressed following ablation of neural crest over somites 5-25 but not over somites 10-20. Light-microscopic and histofluorescent preparations confirmed the absence of sympathetic trunks in the region of the normal origin of the sympathetic cardiac nerves following neural crest ablation over somites 10-20. The neural tube and dorsal root ganglia were damaged in the area of the neural-crest ablation; however, all of these structures were normal cranial and caudal to the lesioned area. Development of most of the embryos as well as the morphology of all of the hearts was normal following the lesion. These results indicate that it is possible to produce sympathetically aneural hearts by neural-crest ablation; however, sympathetic cardiac nerves account for an insignificant amount of cardiac norepinephrine

  11. Role of sympathetic innervation in obesity

    OpenAIRE

    Pereira, Mafalda Maria Robalo de Azevedo Aleixo

    2015-01-01

    Part of the results presented in this thesis were published in the following reference (DOI 10.1016/j.cell.2015.08.055): Wenwen Zeng*, Roksana M. Pirzgalska*, Mafalda M.A. Pereira, Nadiya Kubasova, Andreia Barateiro, Elsa Seixas, Yi-Hsueh Lu, Albina Kozlova, Henning Voss, Gabriel G. Martins, Jeffrey M. Friedman and Ana I. Domingos. Sympathetic Neuro-adipose Connections Mediate Leptin-Driven Lipolysis. Cell 163, 84-94 (2015). The work was also presented through poster presentations at iMED Con...

  12. Sympathetic re-innervation after heart transplantation: dual-isotope neurotransmitter scintigraphy, norepinephrine content and historical examination

    International Nuclear Information System (INIS)

    Cardiac transplantation entails surgical disruption of the sympathetic nerve fibres from their somata, resulting in sympathetic denervation. In order to investigate the occurrence of sympathetic re-innervation, neurotransmitter scintigraphy using the norepinephrine analogue iodine-123 metaiodobenzylguanidine (MIBG) was performed in 15 patients 2-69 months after transplantation. In addition, norepinephrine content and immunohistochemical reactions of antibodies to Schwann cell-associated S100 protein, to neuron-specific enolase (NSE) and to norepinephrine were examined in 34 endomyocardial biopsies of 29 patients 1-88 months after transplantation. Anterobasal 123I-MIBG uptake indicating partial sympathetic re-innervation could be shown in 40% of the scintigraphically investigated patients 37-69 months after transplantation. In immunohistochemical studies 83% of the patients investigated 1-72 Months after transplantation showed nerve fibres in their biopsies but not positive reaction to norepinephrine. Significant norepinephrine content indicating re-innervation could not be detected in any biopsy. It was concluded that in spite of the lack of norepinephrine content there seemed to be immunohistological and scintigraphic evidence of sympathetic re-innervation. An explanation for this contradictory finding may be the reduced or missing norepinephrine storage ability compared to the restored uptake ability of regenerated sympathetic nerve fibres. (orig.)

  13. Egr3 dependent sympathetic target tissue innervation in the absence of neuron death.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available Nerve Growth Factor (NGF is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS development. Egr3 is a transcription factor regulated by NGF signaling in sympathetic neurons that is essential for normal SNS development. Germline Egr3-deficient mice have physiologic dysautonomia characterized by apoptotic sympathetic neuron death and abnormal innervation to many target tissues. The extent to which sympathetic innervation abnormalities in the absence of Egr3 is caused by altered innervation or by neuron death during development is unknown. Using Bax-deficient mice to abrogate apoptotic sympathetic neuron death in vivo, we show that Egr3 has an essential role in target tissue innervation in the absence of neuron death. Sympathetic target tissue innervation is abnormal in many target tissues in the absence of neuron death, and like NGF, Egr3 also appears to effect target tissue innervation heterogeneously. In some tissues, such as heart, spleen, bowel, kidney, pineal gland and the eye, Egr3 is essential for normal innervation, whereas in other tissues such as lung, stomach, pancreas and liver, Egr3 appears to have little role in innervation. Moreover, in salivary glands and heart, two tissues where Egr3 has an essential role in sympathetic innervation, NGF and NT-3 are expressed normally in the absence of Egr3 indicating that abnormal target tissue innervation is not due to deregulation of these neurotrophins in target tissues. Taken together, these results clearly demonstrate a role for Egr3 in mediating sympathetic target tissue innervation that is independent of neuron survival or neurotrophin deregulation.

  14. Sensory and sympathetic innervation of cervical facet joint in rats

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hai-yu; CHEN An-min; GUO Feng-jing; LIAO Guang-jun; XIAO Wei-dong

    2006-01-01

    Objective: To explore the patterns of innervation of cervical facet joints and determine the pathways from facet joints to dorsal root ganglions (DRGs) in order to clarify the causes of diffuse neck pain, headache, and shoulder pain.Methods: Forty-two male Sprague-Dawley rats,weighing 250-300 g, were randomly divided into three groups: Group A ( n = 18), Group B ( n = 18), and Group C (n = 6 ). Under anesthesia with intraperitoneal pentobarbital sodium (45 mg/kg body weight), a midline dorsal longitudinal incision was made over the cervical spine to expose the left cervical facet joint capsule of all the rats under a microscope. The rats in Group A underwent sympathectomy, but the rats in Group B and Group C did not undergo sympathectomy. Then 0.6 μl 5 % bisbenzimide (Bb) were injected into the C1-2, C3-4 and C5-6 facet joints of 6 rats respectively in Group A and Group B. The holes were immediately sealed with mineral wax to prevent leakage of Bb and the fascia and skin were closed. But in Group C, 0.9% normal saline was injected into the corresponding joint capsules. Then under deep reanesthesia with intraperitoneal pentobarbital sodium (45 mg/kg body weight), C1-C8 left DRGs in all rats and the sympathetic ganglions in Group B were obtained and the number of the labeled neurons was determined.Results: Neurons labeled with Bb were present in C1-C8 DRGs in both Group A and Group B, and sympathetic ganglions in Group B. In the C1-2 and C3-4 subgroups,labeled neurons were present from C1 to C8 DRGs, while in C5-6 subgroups they were from C, to C8. The number of Bb ( + ) neurons after sympathectomy was not significantly different in the injected level from that without sympathectomy. But in the other levels, the number of Bb ( + ) neurons after sympathectomy was significantly less than that without sympathectomy.Conclusions: The innervation of the cervical facet joints is derived from both sensory and sympathetic nervous system, and DRGs are associated with

  15. Sympathetic re-innervation of myocardium after liver transplant in the hereditary amyloid neuropathy

    International Nuclear Information System (INIS)

    The hereditary amyloid neuropathy (HAN) is characterized by a progressive sensory-motor poly-neuropathy and a dysautonomia with myocardium sympathetic denervation. This is established by MIBL scintigraphy and may enhance the troubles of conduction and of cardiac rhythm. The amyloid deposits are constituted of anomalous pre-albumin fabricated by liver. The hepatic transplant (HT) is the only known treatment. Four patients (GI: 39 ± 5 years) have been studied by MIBG scintigraphy, 2.2 ± 0.7 years after HT, and compared with 12 patients (GII: 39 ± 12 years) studied before HT. The left ventricular function, the coronary arteries and the at-rest scintigraphy with thallium were normal for all of them. The cardiac capture of MIBG, evaluated by the cardio-mediastinal activity ratio (C/M), measured on an anterior thoracic planar acquisition performed 4 hours after the intravenous injection of 300 MBq, was higher for GI than for GII (1.49 ± 0.12 vs 1.29 ± 0.13, p 0.02). The washouts (4 h / 20 min) were not different. In tomography, the patients of GI presented focal anomalies with a more-or-less extended apical defect, a satisfying fixation of the basal half of the anterior wall, more-or-less overflowing the septal and lateral walls, and for 2 patients, a satisfying inferior fixation. On the contrary, 9/12 patients of GII have had a diffuse absence of fixation, the other three heaving a satisfying antero-basal fixation (χ2, p = 0.05). The results are not explained by difference of severity or evolution duration of HAN. Thus, it appears that there exists a sympathetic re-innervation of myocardium after HT in the HAN, debuting by the heart base, similarly with the effect of anatomic interruption of innervation in cardiac transplants

  16. Sympathetic Innervation Induced in Engrafted Engineered Cardiomyocyte Sheets by Glial Cell Line Derived Neurotrophic Factor In Vivo

    Directory of Open Access Journals (Sweden)

    Xian-ming Fu

    2013-01-01

    Full Text Available The aim of myocardial tissue engineering is to repair or regenerate damaged myocardium with engineered cardiac tissue. However, this strategy has been hampered by lack of functional integration of grafts with native myocardium. Autonomic innervation may be crucial for grafts to function properly with host myocardium. In this study, we explored the feasibility of in vivo induction of autonomic innervation to engineered myocardial tissue using genetic modulation by adenovirus encoding glial cell line derived neurotrophic factor (GDNF. GFP-transgene (control group or GDNF overexpressing (GDNF group engineered cardiomyocyte sheets were transplanted on cryoinjured hearts in rats. Nerve fibers in the grafts were examined by immunohistochemistry at 1, 2, and 4 weeks postoperatively. Growth associated protein-43 positive growing nerves and tyrosine hydroxylase positive sympathetic nerves were first detected in the grafts at 2 weeks postoperatively in control group and 1 week in GDNF group. The densities of growing nerve and sympathetic nerve in grafts were significantly increased in GDNF group. No choline acetyltransferase immunopositive parasympathetic nerves were observed in grafts. In conclusion, sympathetic innervation could be effectively induced into engrafted engineered cardiomyocyte sheets using GDNF.

  17. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin

    OpenAIRE

    Zhang, Shujuan; Feng ZHANG; Sun, Haijian; Zhou, Yebo; Han, Ying

    2012-01-01

    Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sym...

  18. Regulation of Autocrine Signaling in Subsets of Sympathetic Neurons Has Regional Effects on Tissue Innervation

    OpenAIRE

    Thomas G. McWilliams; Laura Howard; Sean Wyatt; Alun M. Davies

    2015-01-01

    Summary The regulation of innervation by target-derived factors like nerve growth factor (NGF) is the cornerstone of neurotrophic theory. Whereas autocrine signaling in neurons affecting survival and axon growth has been described, it is difficult to reconcile autocrine signaling with the idea that targets control their innervation. Here, we report that an autocrine signaling loop in developing mouse sympathetic neurons involving CD40L (TNFSF5) and CD40 (TNFRSF5) selectively enhances NGF-prom...

  19. Localization of sympathetic postganglionic neurons innervating mesenteric artery and vein in rats.

    Science.gov (United States)

    Hsieh, N K; Liu, J C; Chen, H I

    2000-04-12

    Physiological and histochemical studies have demonstrated the control and innervation of sympathetic nerves to the artery and vein vessels of splanchnic circulation. In our laboratory, we first used the technique of retrograde transport of horseradish peroxidase to identify the origin of sympathetic neurons innervating the mesenteric vein. In this study, double fluorescence staining technique was used for a simultaneous localization of the sympathetic postganglionic neurons supplying the mesenteric artery and vein in rats. First-order branches of mesenteric artery (A) and vein (V) in the vicinity of ileo-cecal junction were isolated for application of fluorescent dyes (Fast Blue, FB and Diamidino Yellow, DY). The application of FB and DY on A and V was alternated in the next animal to minimize the difference in dye uptake. The animal was allowed to recover for 6-7 days assuring a complete uptake of FB and DY into the cytoplasm and nucleus, respectively. The number of FB, DY and double staining neurons in the prevertebral and paravertebral ganglia were counted under a fluorescent microscope after animal fixation and serial frozen section (30 microm) of the sympathetic ganglia. Our study revealed the following findings: (1) Distribution of the fluorescence-staining neurons in the sympathetic ganglia was as follows: right celiac ganglion (39%), superior mesenteric ganglion (30%), left celiac ganglion (26%), inferior mesenteric ganglion (1%) and paravertebral ganglia (4%). (2) Double staining neurons that dually innervate A and V amounted to 54% of total staining neurons. There were 41% neurons singly innervating A and 5% innervating V. (3) The ratio of neurons supplying the A and V ranged from 1.41 to 1.75 (average 1.61). (4) There was no distinct topographical distribution with respect to the neuron location innervating A and V. The distribution of neurons appeared in a scattering pattern.

  20. Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease.

    Science.gov (United States)

    Khan, Muzamil Majid; Lustrino, Danilo; Silveira, Willian A; Wild, Franziska; Straka, Tatjana; Issop, Yasmin; O'Connor, Emily; Cox, Dan; Reischl, Markus; Marquardt, Till; Labeit, Dittmar; Labeit, Siegfried; Benoit, Evelyne; Molgó, Jordi; Lochmüller, Hanns; Witzemann, Veit; Kettelhut, Isis C; Navegantes, Luiz C C; Pozzan, Tullio; Rudolf, Rüdiger

    2016-01-19

    The distribution and function of sympathetic innervation in skeletal muscle have largely remained elusive. Here we demonstrate that sympathetic neurons make close contact with neuromuscular junctions and form a network in skeletal muscle that may functionally couple different targets including blood vessels, motor neurons, and muscle fibers. Direct stimulation of sympathetic neurons led to activation of muscle postsynaptic β2-adrenoreceptor (ADRB2), cAMP production, and import of the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PPARGC1A) into myonuclei. Electrophysiological and morphological deficits of neuromuscular junctions upon sympathectomy and in myasthenic mice were rescued by sympathicomimetic treatment. In conclusion, this study identifies the neuromuscular junction as a target of the sympathetic nervous system and shows that sympathetic input is crucial for synapse maintenance and function. PMID:26733679

  1. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin.

    Science.gov (United States)

    Zhang, Shujuan; Zhang, Feng; Sun, Haijian; Zhou, Yebo; Han, Ying

    2012-11-01

    Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sympathetic afferent reflex. Heart failure was induced by intraperitoneal injection of adriamycin for six times during 2 weeks (15 mg/kg). Six weeks after the first injection, the rats underwent anesthesia with urethane and α-chloralose. After vagotomy and baroreceptor denervation, cardiac sympathetic afferent reflex was evaluated by renal sympathetic nerve activity and mean arterial pressure (MAP) response to epicardial application of capsaicin (1.0 nmol). The response of MAP to ganglionic blockade with hexamethonium in conscious rats was performed to evaluate sympathetic activity. The renal sympathetic nerve activity and cardiac sympathetic afferent reflex were enhanced in adriamycin rats and the maximum depressor response of MAP induced by hexamethonium was significantly greater in adriamycin rats than that in control rats. Bilateral PVN microinjection of angiotensin II (Ang II) caused larger responses of the cardiac sympathetic afferent reflex, baseline renal sympathetic nerve activity and MAP in adriamycin rats than control rats. These results indicated that both sympathetic activity and cardiac sympathetic afferent reflex were enhanced and Ang II in the PVN was involved in the enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with adriamycin-induced heart failure. PMID:23554781

  2. Regulation of Autocrine Signaling in Subsets of Sympathetic Neurons Has Regional Effects on Tissue Innervation

    Directory of Open Access Journals (Sweden)

    Thomas G. McWilliams

    2015-03-01

    Full Text Available The regulation of innervation by target-derived factors like nerve growth factor (NGF is the cornerstone of neurotrophic theory. Whereas autocrine signaling in neurons affecting survival and axon growth has been described, it is difficult to reconcile autocrine signaling with the idea that targets control their innervation. Here, we report that an autocrine signaling loop in developing mouse sympathetic neurons involving CD40L (TNFSF5 and CD40 (TNFRSF5 selectively enhances NGF-promoted axon growth and branching, but not survival, via CD40L reverse signaling. Because NGF negatively regulates CD40L and CD40 expression, this signaling loop operates only in neurons exposed to low levels of NGF. Consequently, the sympathetic innervation density of tissues expressing low NGF is significantly reduced in CD40-deficient mice, whereas the innervation density of tissues expressing high levels of NGF is unaffected. Our findings reveal how differential regulation of autocrine signaling in neurons has region-specific effects on axon growth and tissue innervation.

  3. Norepinephrine-induced nerve growth factor depletion causes cardiac sympathetic denervation in severe heart failure.

    Science.gov (United States)

    Kimura, Kensuke; Kanazawa, Hideaki; Ieda, Masaki; Kawaguchi-Manabe, Haruko; Miyake, Yoshiko; Yagi, Takashi; Arai, Takahide; Sano, Motoaki; Fukuda, Keiichi

    2010-08-25

    In severe congestive heart failure (CHF), sympathetic overactivity correlates with the exacerbation of cardiac performance. To test the hypothesis that the cardiac sympathetic nerve density dramatically changes with the acceleration of circulating norepinephrine (NE) concentration, we investigated the temporal association of nerve growth factor (NGF) expression in the heart and cardiac sympathetic nerve density during the development of CHF in the continuous NE-infused rats. The animals were analyzed at 0-, 1-, 3-, 7-, 14-, and 28-day after implantation of osmotic pump at a rate of 0.05 mg/kg/hr. The cardiac performance was temporally facilitated in NE-exposed rats at 3-day in accordance with the sympathetic hyper-innervation induced by the augmentation of NGF mRNA expression in the heart. In NE-treated rats, left ventricular end-diastolic pressure was significantly increased after 7-day and marked left ventricular hypertrophy and systemic fluid retention were observed at 28-day. CHF-induced sympathetic overactivity further increased plasma NE concentration in NE-treated rats and finally reached to 16.1+/-5.6 ng/ml at 28-day (control level was 0.39+/-0.1 ng/ml, pcardiac performance. The cardiac sympathetic fiber loss was also confirmed in NE-exposed DBH (dopamine beta-hydroxylase)-Cre/Floxed-EGFP (enhanced green fluorescent protein) mice with severe CHF, in which sympathetic nerve could be traced by EGFP. Our results suggest that the cardiac sympathetic nerve density is strictly regulated by the NGF expression in the heart and long-exposure of high plasma NE concentration caused myocardial NGF reduction, following sympathetic fiber loss in severe CHF animals.

  4. Cardiac sympathetic neuronal imaging using PET

    Energy Technology Data Exchange (ETDEWEB)

    Lautamaeki, Riikka; Tipre, Dnyanesh [Johns Hopkins University, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Bengel, Frank M. [Johns Hopkins University, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Cardiovascular Nuclear Medicine, Baltimore, MD (United States)

    2007-06-15

    Balance of the autonomic nervous system is essential for adequate cardiac performance, and alterations seem to play a key role in the development and progression of various cardiac diseases. PET imaging of the cardiac autonomic nervous system has advanced extensively in recent years, and multiple pre- and postsynaptic tracers have been introduced. The high spatial and temporal resolution of PET enables noninvasive quantification of neurophysiologic processes at the tissue level. Ligands for catecholamine receptors, along with radiolabeled catecholamines and catecholamine analogs, have been applied to determine involvement of sympathetic dysinnervation at different stages of heart diseases such as ischemia, heart failure, and arrhythmia. This review summarizes the recent findings in neurocardiological PET imaging. Experimental studies with several radioligands and clinical findings in cardiac dysautonomias are discussed. (orig.)

  5. The role of nuclear imaging in the failing heart: myocardial blood flow, sympathetic innervation, and future applications

    OpenAIRE

    Boogers, Mark J.; Fukushima, Kenji; Bengel, Frank M.; Bax, Jeroen J.

    2010-01-01

    Heart failure represents a common disease affecting approximately 5 million patients in the United States. Several conditions play an important role in the development and progression of heart failure, including abnormalities in myocardial blood flow and sympathetic innervation. Nuclear imaging represents the only imaging modality with sufficient sensitivity to assess myocardial blood flow and sympathetic innervation of the failing heart. Although nuclear imaging with single-photon emission c...

  6. Analysis and measurement of the sympathetic and sensory innervation of white and brown adipose tissue.

    Science.gov (United States)

    Vaughan, Cheryl H; Zarebidaki, Eleen; Ehlen, J Christopher; Bartness, Timothy J

    2014-01-01

    Here, we provide a detailed account of how to denervate white and brown adipose tissue (WAT and BAT) and how to measure sympathetic nervous system (SNS) activity to these and other tissues neurochemically. The brain controls many of the functions of WAT and BAT via the SNS innervation of the tissues, especially lipolysis and thermogenesis, respectively. There is no clearly demonstrated parasympathetic innervation of WAT or the major interscapular BAT (IBAT) depot. WAT and BAT communicate with the brain neurally via sensory nerves. We detail the surgical denervation (eliminating both innervations) of several WAT pads and IBAT. We also detail more selective chemical denervation of the SNS innervation via intra-WAT/IBAT 6-hydroxy-dopamine (a catecholaminergic neurotoxin) injections and selective chemical sensory denervation via intra-WAT/IBAT capsaicin (a sensory nerve neurotoxin) injections. Verifications of the denervations are provided (HPLC-EC detection for SNS, ELIA for calcitonin gene-related peptide (proven sensory nerve marker)). Finally, assessment of the SNS drive to WAT/BAT or other tissues is described using the alpha-methyl-para-tyrosine method combined with HPLC-EC, a direct neurochemical measure of SNS activity. These methods have proven useful for us and for other investigators interested in innervation of adipose tissues. The chemical denervation approach has been extended to nonadipose tissues as well.

  7. Innervation of the rabbit cardiac ventricles.

    Science.gov (United States)

    Pauziene, Neringa; Alaburda, Paulius; Rysevaite-Kyguoliene, Kristina; Pauza, Audrys G; Inokaitis, Hermanas; Masaityte, Aiste; Rudokaite, Gabriele; Saburkina, Inga; Plisiene, Jurgita; Pauza, Dainius H

    2016-01-01

    The rabbit is widely used in experimental cardiac physiology, but the neuroanatomy of the rabbit heart remains insufficiently examined. This study aimed to ascertain the architecture of the intrinsic nerve plexus in the walls and septum of rabbit cardiac ventricles. In 51 rabbit hearts, a combined approach involving: (i) histochemical acetylcholinesterase staining of intrinsic neural structures in total cardiac ventricles; (ii) immunofluorescent labelling of intrinsic nerves, nerve fibres (NFs) and neuronal somata (NS); and (iii) transmission electron microscopy of intrinsic ventricular nerves and NFs was used. Mediastinal nerves access the ventral and lateral surfaces of both ventricles at a restricted site between the root of the ascending aorta and the pulmonary trunk. The dorsal surface of both ventricles is supplied by several epicardial nerves extending from the left dorsal ganglionated nerve subplexus on the dorsal left atrium. Ventral accessing nerves are thicker and more numerous than dorsal nerves. Intrinsic ventricular NS are rare on the conus arteriosus and the root of the pulmonary trunk. The number of ventricular NS ranged from 11 to 220 per heart. Four chemical phenotypes of NS within ventricular ganglia were identified, i.e. ganglionic cells positive for choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), and biphenotypic, i.e. positive for both ChAT/nNOS and for ChAT/tyrosine hydroxylase. Clusters of small intensely fluorescent cells are distributed within or close to ganglia on the root of the pulmonary trunk, but not on the conus arteriosus. The largest and most numerous intrinsic nerves proceed within the epicardium. Scarce nerves were found near myocardial blood vessels, but the myocardium contained only a scarce meshwork of NFs. In the endocardium, large numbers of thin nerves and NFs proceed along the bundle of His and both its branches up to the apex of the ventricles. The endocardial meshwork of fine NFs was

  8. Is reduced myocardial sympathetic innervation associated with clinical symptoms of autonomic impairment in idiopathic Parkinson's disease?

    Science.gov (United States)

    Guidez, Daniel; Behnke, Stefanie; Halmer, Ramona; Dillmann, Ulrich; Faßbender, Klaus; Kirsch, Carl M; Hellwig, Dirk; Spiegel, Jörg

    2014-01-01

    Patients with idiopathic Parkinson's disease (IPD) have a reduced myocardial MIBG uptake in MIBG scintigraphy, indicating myocardial sympathetic denervation. We were interested whether this myocardial sympathetic denervation coincides with clinical symptoms of autonomic impairment in IPD patients. We performed MIBG scintigraphy, the SCOPA-AUT scale, a standardized medical history (developed in our clinic) and autonomic nervous system testing in 47 IPD patients (21 female, 26 male patients). We correlated myocardial MIBG uptake with the results of the SCOPA-AUT scale, the standardized medical history and the autonomic nervous system testing through the use of Spearman's correlation. Myocardial MIBG uptake correlated significantly (p autonomic nervous system testing (all patients: sum score, Ewing orthostasis test). Remarkably, we found more significant correlations in male than in female patients. Reduced myocardial sympathetic innervation-as revealed by MIBG scintigraphy-is associated with clinical symptoms of autonomic impairment. This association is more pronounced in male than in female patients. The cause for this gender-specific phenomenon is unclear.

  9. Peptidergic innervation of human esophageal and cardiac carcinoma

    Institute of Scientific and Technical Information of China (English)

    Shuang-Hong Lü; Yan Zhou; Hai-Ping Que; Shao-Jun Liu

    2003-01-01

    AIM: To investigate the distribution of neuropeptideimmunoreactive nerve fibers in esophageal and cardiac carcinoma as well as their relationship with tumor cells so as to explore if there is nerve innervation in esophageal and cardiac carcinoma.METHODS: Esophageal and cardiac carcinoma specimens were collected from surgical operation. One part of them were fixed immediately with 4 % paraformaldehyde and then cut with a cryostat into 40-pm-thick sections to perform immunohistochemical analysis. Antibodies of ten kinds of neuropeptide including calcitonin gene-related peptide (CGRP), galanin (GAL), substance P (SP), etc. were used for immunostaining of nerve fibers. The other part of the tumor specimens were cut into little blocks (1 mm3) and cocultured with chick embryo dorsal root ganglia (DRG) to investigate if the tumor blocks could induce the neurons of DRG to extend processes, so as to probe into the possiblereasons for the nerve fibers growing into tumors. RESULTS: Substantial amounts of neuropeptide including GAL-, NPY-, SP-immunoreactive nerve bundles and scattered nerve fibers were distributed in esophageal and cardiac carcinomas. The scattered nerve fibers waved their way among tumor cells and contacted with tumor cells closely. Some of them even encircled tumor cells. There were many varicosities aligned on the nerve fibers like beads. They were also closely related to tumor cells. In the co-culture group, about 63 %and 67 % of DRG co-cultured with esophageal and cardiac tumor blocks respectively extended enormous processes,especially on the side adjacent to the tumor, whereas in the control group (without tumor blocks), no processes grew out.CONCLUSION: Esophageal and cardiac carcinomas may be innervated by peptidergic nerve fibers, and they can induce neurons of DRG to extend processes in vitro.

  10. Imaging of cardiac innervation: when will it reach clinical value?; Bildgebung der kardialen Innervation: Wann gelingt der Sprung in die Klinik?

    Energy Technology Data Exchange (ETDEWEB)

    Schaefers, M. [Klinik und Poliklinik fuer Nuklearmedizin, Universitaetsklinikum Muenster (Germany); Inst. fuer Arterioskleroseforschung, Westfaelische Wilhelms-Univ., Muenster (Germany); Schober, O. [Klinik und Poliklinik fuer Nuklearmedizin, Universitaetsklinikum Muenster (Germany)

    2004-09-01

    The autonomic nervous system is involved in the regulation of the majority of basic cardiac and vascular functions, e.g. the control of perfusion, rhythm, metabolism and contraction. This results in an involvement of the autonomic nervous system in many pathophysiologic processes affecting the heart. Furthermore, in clinical medicine the autonomic nervous system is a target of specific pharmacological treatment such as {beta}-blockade. Imaging of the autonomic nervous system in a clinical context should therefore proof useful in clinical decision making and therapy control of cardiovascular diseases. Today, scintigraphic techniques are a unique mean to image and quantify sympathetic and parasympathetic cardiac innervation non-invasively in vivo. Although these technologies are already available, these are not yet implemented in clinical algorithms. (orig.)

  11. 123I-MIBG Myocardial sympathetic innervation scintigraphy and Parkinson's disease

    International Nuclear Information System (INIS)

    Aim: Dysfunction of the autonomic nervous system is an under-recognised but important aspect of the aetiological and clinical manifestation of primary degenerative dysautonomias such as Parkinson's disease (PD). Functional imaging studies suggest that selective cardiac sympathetic denervation may occur early in PD but not in other parkinsonian syndromes. The clinical implication of this apparently disease specific peripheral dysautonomia is unknown and would be the subject of much interest in future years. Scintigraphy with radiolabeled metaiodobenzylguanidine (123I-MIBG) enables the visualization and quantification of cardiac sympathetic function. Materials and Methods: We prospectively performed 73 123I-MIBG myocardial studies in two groups of patients: 61 patients (30 male/31 female) diagnosed of PD without any autonomic dysfunction (PD group) and 12 patients (7 male/4 female) were studied for a suspicion of pheochromocytoma (nonPD group). Severity of PD was evaluated by Hoehn-Yahr scale. Myocardial imaging with 123I-MIBG was performed to evaluate cardiac sympathetic function. Early and delayed images of the anterior view were obtained 15min and 4h after injection of 111 MBq iv of 123I-MIBG. Quantification of 123I-MIBG uptake using a heart-to-mediastinum ratio (H/M) and washout ratio (W) and comparison between groups were carried out. Results: The 123I-MIBG heart uptake was: a) reduced in 16 PD patients (26.2% of PD), b) absent in 42 PD patients (62.8% of PD) and c) normal in 3 PD (4.9% of PD) and in all of the 12 nonPD patients. H/M was significantly smaller in PD patients than nonPD patients (P 123I-MIBG uptake is a valuable and sensitive tool to identify early cardiac sympathetic dysfunction in patients with PD. As this finding could be characteristic of PD patients, the 123I-MIBG myocardial scintigraphy would be useful to discriminate them from other neurodegenerative disorders early in the course of the disease

  12. The articulo-cardiac sympathetic reflex in spinalized, anesthetized rats.

    Science.gov (United States)

    Nakayama, Tomohiro; Suzuki, Atsuko; Ito, Ryuzo

    2006-04-01

    Somatic afferent regulation of heart rate by noxious knee joint stimulation has been proven in anesthetized cats to be a reflex response whose reflex center is in the brain and whose efferent arc is a cardiac sympathetic nerve. In the present study we examined whether articular stimulation could influence heart rate by this efferent sympathetic pathway in spinalized rats. In central nervous system (CNS)-intact rats, noxious articular movement of either the knee or elbow joint resulted in an increase in cardiac sympathetic nerve activity and heart rate. However, although in acutely spinalized rats a noxious movement of the elbow joint resulted in a significant increase in cardiac sympathetic nerve activity and heart rate, a noxious movement of the knee joint had no such effect and resulted in only a marginal increase in heart rate. Because this marginal increase was abolished by adrenalectomy suggests that it was due to the release of adrenal catecholamines. In conclusion, the spinal cord appears to be capable of mediating, by way of cardiac sympathetic nerves, the propriospinally induced reflex increase in heart rate that follows noxious stimulation of the elbow joint, but not the knee joint.

  13. Sympathetic re-innervation of myocardium after liver transplant in the hereditary amyloid neuropathy; Reinnervation sympathique du myocarde apres transplantation hepatique dans la neuropathie amyloide hereditaire

    Energy Technology Data Exchange (ETDEWEB)

    Delahaye, N.; Le Guludec, D. [Medecine Nucleaire, Hopital Bichat, Paris (France); Slama, M. [Cardiologie, Hopital A.Beclere, Paris (France); Guyen, C.N. [SHFJ, DSV-CEA, Orsay (France); Dinanian, S. [Cardiologie, Hopital A.Beclere, Paris (France); Merlet, P. [SHFJ, DSV-CEA, Orsay (France)

    1997-12-31

    The hereditary amyloid neuropathy (HAN) is characterized by a progressive sensory-motor poly-neuropathy and a dysautonomia with myocardium sympathetic denervation. This is established by MIBL scintigraphy and may enhance the troubles of conduction and of cardiac rhythm. The amyloid deposits are constituted of anomalous pre-albumin fabricated by liver. The hepatic transplant (HT) is the only known treatment. Four patients (GI: 39 {+-} 5 years) have been studied by MIBG scintigraphy, 2.2 {+-} 0.7 years after HT, and compared with 12 patients (GII: 39 {+-} 12 years) studied before HT. The left ventricular function, the coronary arteries and the at-rest scintigraphy with thallium were normal for all of them. The cardiac capture of MIBG, evaluated by the cardio-mediastinal activity ratio (C/M), measured on an anterior thoracic planar acquisition performed 4 hours after the intravenous injection of 300 MBq, was higher for GI than for GII (1.49 {+-} 0.12 vs 1.29 {+-} 0.13, p 0.02). The washouts (4 h / 20 min) were not different. In tomography, the patients of GI presented focal anomalies with a more-or-less extended apical defect, a satisfying fixation of the basal half of the anterior wall, more-or-less overflowing the septal and lateral walls, and for 2 patients, a satisfying inferior fixation. On the contrary, 9/12 patients of GII have had a diffuse absence of fixation, the other three heaving a satisfying antero-basal fixation ({chi}{sup 2}, p = 0.05). The results are not explained by difference of severity or evolution duration of HAN. Thus, it appears that there exists a sympathetic re-innervation of myocardium after HT in the HAN, debuting by the heart base, similarly with the effect of anatomic interruption of innervation in cardiac transplants

  14. Cardiac sympathetic nerve terminal function in congestive heart failure

    Institute of Scientific and Technical Information of China (English)

    Chang-seng LIANG

    2007-01-01

    Increased cardiac release of norepinephrine (NE) and depleted cardiac stores of NE are two salient features of the human failing heart. Researches from my labo-ratory have shown that these changes are accompanied by a functional defect of NE uptake in the cardiac sympathetic nerve terminals. Our studies have shown that the decrease of NE uptake is caused by reduction of NE transporter density in the sympathetic nerve endings, and this change is responsible, at least in part, for the increased myocardial interstitial NE, decreased myocardial adrenoceptor density, and increased myocyte apoptosis in experimental cardiomyopathies. We have also provided evidence in both intact animals and cultured PC12 cells that the decrease of NE transporter is induced by the actions of oxidative metabolites of exogenous NE, involving endoplasmic reticulum stress and impaired N-glycosylation of the NE transporter. This change in the cardiac sympathetic NE uptake function, as demonstrated by [123I] metaiodobenzylguanidine in human studies, may not only serve as an important prognostic variable in patients with congestive heart failure, but also be used as a surrogate for the efficacies of various therapeutic interventions for heart failure. Finally, increasing evidence suggests and further studies are needed to show that the cardiac sympathetic nerve terminal function may be a direct target for pharmacologic treatment of congestive heart failure.

  15. Cardiac sympathetic denervation in 6-OHDA-treated nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Valerie Joers

    Full Text Available Cardiac sympathetic neurodegeneration and dysautonomia affect patients with sporadic and familial Parkinson's disease (PD and are currently proposed as prodromal signs of PD. We have recently developed a nonhuman primate model of cardiac dysautonomia by iv 6-hydroxydopamine (6-OHDA. Our in vivo findings included decreased cardiac uptake of a sympathetic radioligand and circulating catecholamines; here we report the postmortem characterization of the model. Ten adult rhesus monkeys (5-17 yrs old were used in this study. Five animals received 6-OHDA (50 mg/kg i.v. and five were age-matched controls. Three months post-neurotoxin the animals were euthanized; hearts and adrenal glands were processed for immunohistochemistry. Quantification of immunoreactivity (ir of stainings was performed by an investigator blind to the treatment group using NIH ImageJ software (for cardiac bundles and adrenals, area above threshold and optical density and MBF StereoInvestigator (for cardiac fibers, area fraction fractionator probe. Sympathetic cardiac nerve bundle analysis and fiber area density showed a significant reduction in global cardiac tyrosine hydroxylase-ir (TH; catecholaminergic marker in 6-OHDA animals compared to controls. Quantification of protein gene protein 9.5 (pan-neuronal marker positive cardiac fibers showed a significant deficit in 6-OHDA monkeys compared to controls and correlated with TH-ir fiber area. Semi-quantitative evaluation of human leukocyte antigen-ir (inflammatory marker and nitrotyrosine-ir (oxidative stress marker did not show significant changes 3 months post-neurotoxin. Cardiac nerve bundle α-synuclein-ir (presynaptic protein was reduced (trend in 6-OHDA treated monkeys; insoluble proteinase-K resistant α-synuclein (typical of PD pathology was not observed. In the adrenal medulla, 6-OHDA monkeys had significantly reduced TH-ir and aminoacid decarboxylase-ir. Our results confirm that systemic 6-OHDA dosing to nonhuman primates

  16. Impact of sympathetic innervation on recurrent life-threatening arrhythmias in the follow-up of patients with idiopathic ventricular fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Matthias; Acil, Tayfun; Breithardt, Guenter; Wichter, Thomas [Hospital of the University of Muenster, Department of Cardiology and Angiology, Muenster (Germany); Schaefers, Michael; Kies, Peter; Schaefers, Klaus; Schober, Otmar [Hospital of the University of Muenster, Department of Nuclear Medicine, Muenster (Germany)

    2006-08-15

    Idiopathic ventricular fibrillation (IVF) is defined as VF in the absence of any identifiable structural or functional cardiac disease. The underlying pathophysiological mechanisms are unknown. This study was performed to investigate the potential impact of sympathetic dysfunction, assessed by {sup 123}I-meta-iodo-benzylguanidine scintigraphy ({sup 123}I-MIBG SPECT), on the long-term prognosis of patients with IVF. {sup 123}I-MIBG SPECT was performed in 20 patients (mean age 37{+-}13 years) with IVF. Mean follow-up of patients after study entry was 7.2{+-}1.5 years (range 4.9-10.5 years). Ten patients (five men, five women; mean age 43{+-}12 years; p=NS versus study group) with medullary carcinoma of the thyroid gland served as an age-matched control group. Abnormal {sup 123}I-MIBG uptake was observed in 13 patients (65%). During follow-up, 18 episodes of VF/fast polymorphic ventricular tachycardias occurred in four IVF patients with abnormal {sup 123}I-MIBG uptake whereas only two episodes of monomorphic ventricular tachycardia (and no VF) occurred in a single IVF patient with normal {sup 123}I-MIBG uptake. Impairment of sympathetic innervation may indicate a higher risk of future recurrent episodes of life-threatening ventricular tachyarrhythmias in patients with IVF. Studies in larger cohorts are required to validate the significance of {sup 123}I-MIBG SPECT during the long-term follow-up of these patients. (orig.)

  17. Cardiac Sympathetic Hyperactivity after Chemotherapy: Early Sign of Cardiotoxicity?

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, Sarita Lígia Pessoa de Melo Machado [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Hospital Agamenon Magalhães (HAM), Recife, PE (Brazil); Brandão, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Andrade, Luciana Raposo [Hospital Santa Joana, Recife, PE (Brazil); Maia, Rafael José Coelho [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Hospital Agamenon Magalhães (HAM), Recife, PE (Brazil); Markman Filho, Brivaldo [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil)

    2015-09-15

    Chemotherapy with anthracyclines and trastuzumab can cause cardiotoxicity. Alteration of cardiac adrenergic function assessed by metaiodobenzylguanidine labeled with iodine-123 ({sup 123}I-mIBG) seems to precede the drop in left ventricular ejection fraction. To evaluate and to compare the presence of cardiovascular abnormalities among patients with breast cancer undergoing chemotherapy with anthracyclines and trastuzumab, and only with anthracycline. Patients with breast cancer were analyzed clinical, laboratory, electrocardiographic and echocardiographic and cardiac sympathetic activity. In scintigraphic images, the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum, and the washout rate were calculated. The variables were compared between patients who received anthracyclines and trastuzumab (Group 1) and only anthracyclines (Group 2). Twenty patients, with mean age 57 ± 14 years, were studied. The mean left ventricular ejection fraction by echocardiography was 67.8 ± 4.0%. Mean washout rate was 28.39 ± 9.23% and the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum was 2.07 ± 0.28. Of the patients, 82% showed an increased in washout rate, and the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum decreased in 25%. Concerning the groups, the mean washout rate of Group 1 was 32.68 ± 9.30% and of Group 2 was 24.56 ± 7.72% (p = 0,06). The ratio of {sup 123}I-mIBG uptake between the heart and mediastinum was normal in all patients in Group 2, however, the Group 1, showed 50% the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum ≤ 1.8 (p = 0.02). In women with breast cancer undergoing chemotherapy, assessment of cardiac sympathetic activity with {sup 123}I-mIBG appears to be an early marker of cardiotoxicity. The combination of chemotherapy showed higher risk of cardiac adrenergic hyperactivity.

  18. Double labelling immunohistochemical characterization of autonomic sympathetic neurons innervating the sow retractor clitoridis muscle

    Directory of Open Access Journals (Sweden)

    L Ragionieri

    2009-08-01

    Full Text Available Retrograde neuronal tracing and immunohistochemical methods were used to define the neurochemical content of sympathetic neurons projecting to the sow retractor clitoridis muscle (RCM. Differently from the other smooth muscles of genital organs, the RCM is an isolated muscle that is tonically contracted in the rest phase and relaxed in the active phase. This peculiarity makes it an interesting experimental model. The fluorescent tracer fast blue was injected into the RCM of three 50 kg subjects. After a one-week survival period, the ipsilateral paravertebral ganglion S1, that in a preliminary study showed the greatest number of cells projecting to the muscle, was collected from each animal. The co-existence of tyrosine hydroxylase with choline acetyltransferase, neuronal nitric oxide synthase, calcitonin gene-related peptide, leuenkephalin, neuropeptide Y, substance P and vasoactive intestinal polypeptide was studied under a fluorescent microscope on cryostat sections. Tyrosine hydroxylase was present in about 58% of the neurons projecting to the muscle and was found to be co-localized with each of the other tested substances.Within fast blue-labelled cells negative to the adrenergic marker, small populations of neurons singularly containing each of the other enzymatic markers or peptides were also observed. The present study documents the complexity of the neurochemical interactions that regulate the activity of the smooth myocytes of the RCM and their vascular components.

  19. Differential effects of cardiac sympathetic afferent stimulation on neurons in the nucleus tractus solitarius

    OpenAIRE

    Wang, Wei-zhong; Gao, Lie; Pan, Yan-Xia; Zucker, Irving H.; Wang, Wei

    2006-01-01

    Activation of the cardiacsympathetic afferent” reflex (CSAR) has been reported to depress the arterial baroreflex and enhance the arterial chemoreflex via a central mechanism. In the present study, we used single-unit extracellular recording techniques to examine the effects of stimulation of cardiac sympathetic afferents on baro- or chemosensitive neurons in the nucleus tractus solitarius (NTS) in anesthetized rats. Of 54 barosensitive NTS neurons tested for their response to epicardial ap...

  20. Alterations of left ventricular deformation and cardiac sympathetic derangement in patients with systolic heart failure: a 3D speckle tracking echocardiography and cardiac {sup 123}I-MIBG study

    Energy Technology Data Exchange (ETDEWEB)

    Leosco, Dario; Parisi, Valentina; Pagano, Gennaro; Femminella, Grazia Daniela; Bevilacqua, Agnese; Formisano, Roberto; Ferro, Gaetana; De Lucia, Claudio; Ferrara, Nicola [University Federico II, Department of Translational Medical Science, Naples (Italy); Pellegrino, Teresa [Italian National Research Council (CNR), Institute of Biostructure and Bioimaging, Naples (Italy); University Federico II, Department of Advanced Biomedical Science, Naples (Italy); Paolillo, Stefania [University Federico II, Department of Advanced Biomedical Science, Naples (Italy); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples (Italy); Prastaro, Maria; Filardi, Pasquale Perrone; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Science, Naples (Italy); Rengo, Giuseppe [University Federico II, Department of Translational Medical Science, Naples (Italy); Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, BN (Italy)

    2015-09-15

    Myocardial contractile function is under the control of cardiac sympathetic activity. Three-dimensional speckle tracking echocardiography (3D-STE) and cardiac imaging with {sup 123}I-metaiodobenzylguanidine ({sup 123}I-MIBG) are two sophisticated techniques for the assessment of left ventricular (LV) deformation and sympathetic innervation, respectively, which offer important prognostic information in patients with heart failure (HF). The purpose of this investigation was to explore, in patients with systolic HF, the relationship between LV deformation assessed by 3D-STE and cardiac sympathetic derangement evaluated by {sup 123}I-MIBG imaging. We prospectively studied 75 patients with systolic HF. All patients underwent a 3D-STE study (longitudinal, circumferential, area and radial) and {sup 123}I-MIBG planar and SPECT cardiac imaging. 3D-STE longitudinal, circumferential and area strain values were correlated with {sup 123}I-MIBG late heart to mediastinum (H/M) ratio and late SPECT total defect score. After stratification of the patients according to ischaemic or nonischaemic HF aetiology, we observed a good correlation of all 3D-STE measurements with late H/M ratio and SPECT data in the ischaemic group, but in patients with HF of nonischaemic aetiology, no correlation was found between LV deformation and cardiac sympathetic activity. At the regional level, the strongest correlation between LV deformation and adrenergic innervation was found for the left anterior descending coronary artery distribution territory for all four 3D-STE values. In multivariate linear regression analyses, including age, gender, LV ejection fraction, NYHA class, body mass index, heart rate and HF aetiology, only 3D-STE area and radial strain values significantly predicted cardiac sympathetic derangement on {sup 123}I-MIBG late SPECT. This study indicated that 3D-STE measurements are correlated with {sup 123}I-MIBG planar and SPECT data. Furthermore, 3D-STE area and radial strain values

  1. Inhibition of cardiac sympathetic afferent reflex and sympathetic activity by baroreceptor and vagal afferent inputs in chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Xian-Bing Gan

    Full Text Available BACKGROUND: Cardiac sympathetic afferent reflex (CSAR contributes to sympathetic activation and angiotensin II (Ang II in paraventricular nucleus (PVN augments the CSAR in vagotomized (VT and baroreceptor denervated (BD rats with chronic heart failure (CHF. This study was designed to determine whether it is true in intact (INT rats with CHF and to determine the effects of cardiac and baroreceptor afferents on the CSAR and sympathetic activity in CHF. METHODOLOGY/PRINCIPAL FINDINGS: Sham-operated (Sham or coronary ligation-induced CHF rats were respectively subjected to BD+VT, VT, cardiac sympathetic denervation (CSD or INT. Under anesthesia, renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were recorded, and the CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Either CSAR or the responses of RSNA, MAP and CSAR to Ang II in PVN were enhanced in CHF rats treated with BD+VT, VT or INT. Treatment with VT or BD+VT potentiated the CSAR and the CSAR responses to Ang II in both Sham and CHF rats. Treatment with CSD reversed the capsaicin-induced RSNA and MAP changes and the CSAR responses to Ang II in both Sham and CHF rats, and reduced the RSNA and MAP responses to Ang II only in CHF rats. CONCLUSIONS: The CSAR and the CSAR responses to Ang II in PVN are enhanced in intact CHF rats. Baroreceptor and vagal afferent activities inhibit CSAR and the CSAR responses to Ang II in intact Sham and CHF rats.

  2. {sup 123}I-Labelled metaiodobenzylguanidine for the evaluation of cardiac sympathetic denervation in early stage amyloidosis

    Energy Technology Data Exchange (ETDEWEB)

    Noordzij, Walter; Glaudemans, Andor W.J.M.; Rheenen, Ronald W.J. van; Dierckx, Rudi A.J.O.; Slart, Riemer H.J.A. [University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, PO Box 30.001, Groningen (Netherlands); Hazenberg, Bouke P.C. [University of Groningen, Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [University of Groningen, Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands)

    2012-10-15

    Cardiac amyloidosis is a rare disorder, but it may lead to potentially life-threatening restrictive cardiomyopathy. Cardiac manifestations frequently occur in primary amyloidosis (AL) and familial amyloidosis (ATTR), but are uncommon in secondary amyloidosis (AA). Echocardiography is the method of choice for assessing cardiac amyloidosis. Amyloid deposits impair the function of sympathetic nerve endings. Disturbance of myocardial sympathetic innervations may play an important role in the remodelling process. {sup 123}I-MIBG can detect these innervation changes. Patients with biopsy-proven amyloidosis underwent general work-up, echocardiography and {sup 123}I-MIBG scintigraphy. Left ventricular internal dimensions and wall thickness were measured, and highly refractile cardiac echoes (sparkling) were analysed. Early (15 min) and late (4 h) heart-to-mediastinum ratio (HMR) and wash-out rate were determined after administration of MIBG. Included in the study were 61 patients (30 women and 31 men; mean age 62 years; 39 AL, 11 AA, 11 ATTR). Echocardiographic parameters were not significantly different between the groups. Sparkling was present in 72 % of ATTR patients, in 54 % of AL patients and in 45 % of AA patients. Mean late HMR in all patients was 2.3 {+-} 0.75, and the mean wash-out rate was 8.6 {+-} 14 % (the latter not significantly different between the patient groups). Late HMR was significantly lower in patients with echocardiographic signs of amyloidosis than in patients without (2.0 {+-} 0.70 versus 2.8 {+-} 0.58, p < 0.001). Wash-out rates were significantly higher in these patients (-3.3 {+-} 9.9 % vs. 17 {+-} 10 %, p < 0.001). In ATTR patients without echocardiographic signs of amyloidosis, HMR was lower than in patients with the other types (2.0 {+-} 0.59 vs. 2.9 {+-} 0.50, p = 0.007). MIBG HMR is lower and wash-out rate is higher in patients with echocardiographic signs of amyloidosis. Also, {sup 123}I-MIBG scintigraphy can detect cardiac denervation in

  3. Perinatal exposure to a high-fat diet is associated with reduced hepatic sympathetic innervation in one-year old male Japanese macaques.

    Directory of Open Access Journals (Sweden)

    Wilmon F Grant

    Full Text Available Our group recently demonstrated that maternal high-fat diet (HFD consumption is associated with non-alcoholic fatty liver disease, increased apoptosis, and changes in gluconeogenic gene expression and chromatin structure in fetal nonhuman primate (NHP liver. However, little is known about the long-term effects that a HFD has on hepatic nervous system development in offspring, a system that plays an important role in regulating hepatic metabolism. Utilizing immunohistochemistry and Real-Time PCR, we quantified sympathetic nerve fiber density, apoptosis, inflammation, and other autonomic components in the livers of fetal and one-year old Japanese macaques chronically exposed to a HFD. We found that HFD exposure in-utero and throughout the postnatal period (HFD/HFD, when compared to animals receiving a CTR diet for the same developmental period (CTR/CTR, is associated with a 1.7 fold decrease in periportal sympathetic innervation, a 5 fold decrease in parenchymal sympathetic innervation, and a 2.5 fold increase in hepatic apoptosis in the livers of one-year old male animals. Additionally, we observed an increase in hepatic inflammation and a decrease in a key component of the cholinergic anti-inflammatory pathway in one-year old HFD/HFD offspring. Taken together, these findings reinforce the impact that continuous exposure to a HFD has in the development of long-term hepatic pathologies in offspring and highlights a potential neuroanatomical basis for hepatic metabolic dysfunction.

  4. Association between left ventricular regional sympathetic denervation and mechanical dyssynchrony in phase analysis: a cardiac CZT study

    Energy Technology Data Exchange (ETDEWEB)

    Gimelli, Alessia; Genovesi, Dario; Giorgetti, Assuero; Kusch, Annette [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Liga, Riccardo [Scuola Superiore Sant' Anna, Pisa (Italy); Marzullo, Paolo [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); CNR, Institute of Clinical Physiology, Pisa (Italy)

    2014-05-15

    To evaluate the relationships among myocardial sympathetic innervation, perfusion and mechanical synchronicity assessed with cardiac cadmium-zinc-telluride (CZT) scintigraphy. A group of 29 patients underwent an evaluation of myocardial perfusion with {sup 99m}Tc-tetrofosmin CZT scintigraphy and adrenergic innervation with {sup 123}I-metaiodobenzylguanidine (MIBG) CZT scintigraphy. The summed rest score (SRS), motion score (SMS) and thickening score (STS), as well as the summed {sup 123}I-MIBG defect score (SS-MIBG), were determined. Regional tracer uptake for both {sup 99m}Tc-tetrofosmin and {sup 123}I-MIBG was also calculated. Finally, the presence of significant myocardial mechanical dyssynchrony was evaluated in phase analysis on gated CZT images and the region of latest mechanical activation identified. Significant mechanical dyssynchrony was present in 17 patients (59 %) and associated with higher SRS (P = 0.030), SMS (P < 0.001), STS (P = 0.003) and early SS-MIBG (P = 0.037) as well as greater impairments in left ventricular ejection fraction (P < 0.001) and end-diastolic volume (P < 0.001). In multivariate analysis a higher end-diastolic volume remained the only predictor of mechanical dyssynchrony (P = 0.047). Interestingly, while in the whole population regional myocardial perfusion and adrenergic activity were strongly correlated (R = 0.68), in patients with mechanical dyssynchrony the region of latest mechanical activation was predicted only by greater impairment in regional {sup 123}I-MIBG uptake (P = 0.012) that overwhelmed the effect of depressed regional perfusion. Left ventricular mechanical dyssynchrony is associated with greater depression in contractile function and greater impairments in regional myocardial perfusion and sympathetic activity. In patients with dyssynchrony, the region of latest mechanical activation is characterized by a significantly altered adrenergic tone. (orig.)

  5. Angiotensin-(1-7 in paraventricular nucleus modulates sympathetic activity and cardiac sympathetic afferent reflex in renovascular hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Ying Han

    Full Text Available BACKGROUND: Excessive sympathetic activity contributes to the pathogenesis and progression of hypertension. Enhanced cardiac sympathetic afferent reflex (CSAR is involved in sympathetic activation. This study was designed to determine the roles of angiotensin (Ang-(1-7 in paraventricular nucleus (PVN in modulating sympathetic activity and CSAR and its signal pathway in renovascular hypertension. METHODOLOGY/PRINCIPAL FINDINGS: Renovascular hypertension was induced with two-kidney, one-clip method. Renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were recorded in sinoaortic-denervated and cervical-vagotomized rats with anesthesia. CSAR was evaluated with the RSNA and MAP responses to epicardial application of capsaicin. PVN microinjection of Ang-(1-7 and cAMP analogue db-cAMP caused greater increases in RSNA and MAP, and enhancement in CSAR in hypertensive rats than in sham-operated rats, while Mas receptor antagonist A-779 produced opposite effects. There was no significant difference in the angiotensin-converting enzyme 2 (ACE2 activity and Ang-(1-7 level in the PVN between sham-operated rats and hypertensive rats, but the Mas receptor protein expression in the PVN was increased in hypertensive rats. The effects of Ang-(1-7 were abolished by A-779, adenylyl cyclase inhibitor SQ22536 or protein kinase A (PKA inhibitor Rp-cAMP. SQ22536 or Rp-cAMP reduced RSNA and MAP in hypertensive rats, and attenuated the CSAR in both sham-operated and hypertensive rats. CONCLUSIONS: Ang-(1-7 in the PVN increases RSNA and MAP and enhances the CSAR, which is mediated by Mas receptors. Endogenous Ang-(1-7 and Mas receptors contribute to the enhanced sympathetic outflow and CSAR in renovascular hypertension. A cAMP-PKA pathway is involved in the effects of Ang-(1-7 in the PVN.

  6. Effects of short-term carvedilol on the cardiac sympathetic activity assessed by {sup 123}I-MIBG scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Sandra Marina Ribeiro de; Mesquita, Evandro Tinoco; Freire, Fabiano de Lima; Ribeiro, Mario Luiz; Nobrega, Antonio Claudio Lucas da; Mesquita, Claudio Tinoco, E-mail: sandramarina@cardiol.b [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Azevedo, Jader Cunha; Barbirato, Gustavo Borges; Coimbra, Alexandro [Hospital Pro-Cardiaco, Rio de Janeiro, RJ (Brazil); Dohmann, Hans Fernando da Rocha [Centro de Ensino e Pesquisa do Pro-Cardiaco (PROCEP), Rio de Janeiro, RJ (Brazil)

    2010-03-15

    Background: autonomic alterations in heart failure are associated with an increase in morbimortality. Several noninvasive methods have been employed to evaluate the sympathetic function, including the Meta-Iodobenzylguanidine ({sup 123}I-MIBG) scintigraphy imaging of the heart. Objective: to evaluate the cardiac sympathetic activity through {sup 123}I-MIBG scintigraphy, before and after three months of carvedilol therapy in patients with heart failure and left ventricular ejection fraction (LVEF) < 45%. Patients and methods: sixteen patients, aged 56.3 +- 12.6 years (11 males), with a mean LVEF of 28% +- 8% and no previous use of beta-blockers were recruited for the study. Images of the heart innervation were acquired with {sup 123}I-MIBG, and the serum levels of catecholamines (epinephrine, dopamine and norepinephrine) were measured; the radioisotope ventriculography (RIV) was performed before and after a three-month therapy with carvedilol. Results: patients' functional class showed improvement: before the treatment, 50% of the patients were FC II and 50% were FC III. After 3 months, 7 patients were FC I (43.8%) and 9 were FC II (56.2%), (rho = 0.0001). The mean LVEF assessed by RIV increased from 29% to 33% (rho = 0.017). There was no significant variation in cardiac adrenergic activity assessed by {sup 123}I-MIBG (early and late resting images and washout rate). No significant variation was observed regarding the measurement of catecholamines. Conclusion: the short-term treatment with carvedilol promoted the clinical and LVEF improvement. However, this was not associated to an improvement in the cardiac adrenergic activity, assessed by {sup 123}I-MIBG scintigraphy, as well as the measurement of circulating catecholamines. (author)

  7. Expressions of cardiac sympathetic norepinephrine transporter and β1-adrenergic receptor decreased in aged rats

    Institute of Scientific and Technical Information of China (English)

    He LI; Xiao-qing MA; Fan YE; Jing ZHANG; Xin ZHOU; Zhi-hong WANG; Yu-ming LI; Guo-yuan ZHANG

    2009-01-01

    Evidence suggests that the deterioration of communication between the sympathetic nervous system and cardiovas-cular system always accompanies the aging of human and animals. Cardiac sympathetic norepinephrine (NE) transporter (NET) on presynaptic membrane is a predominant component to eliminate released NE in the synaptic cleff and maintains the sensitivity of the β-adrenergic receptor (β-AR). In the present study, we investigated NET and β1-AR mRNA levels and sympathetic nerve density in cardiac sympathetic ganglion and leff ventricular myocardium in 2- and 16-month-old rats with Northern blot analysis and immunohistochemistry. The expression levels of NET mRNA, NET protein and β1-AR mRNA in the ganglia or myocardia of 16-month-old rats were markedly reduced by 67%, 26%, and 43%, respectively, in comparison with those in 2-month-old rats. Our results also show that aging induces a strong decrease of the catecholaminergic nerve fiber density.

  8. Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents.

    Science.gov (United States)

    Kanazawa, Hideaki; Ieda, Masaki; Kimura, Kensuke; Arai, Takahide; Kawaguchi-Manabe, Haruko; Matsuhashi, Tomohiro; Endo, Jin; Sano, Motoaki; Kawakami, Takashi; Kimura, Tokuhiro; Monkawa, Toshiaki; Hayashi, Matsuhiko; Iwanami, Akio; Okano, Hideyuki; Okada, Yasunori; Ishibashi-Ueda, Hatsue; Ogawa, Satoshi; Fukuda, Keiichi

    2010-02-01

    Although several cytokines and neurotrophic factors induce sympathetic neurons to transdifferentiate into cholinergic neurons in vitro, the physiological and pathophysiological roles of this remain unknown. During congestive heart failure (CHF), sympathetic neural tone is upregulated, but there is a paradoxical reduction in norepinephrine synthesis and reuptake in the cardiac sympathetic nervous system (SNS). Here we examined whether cholinergic transdifferentiation can occur in the cardiac SNS in rodent models of CHF and investigated the underlying molecular mechanism(s) using genetically modified mice. We used Dahl salt-sensitive rats to model CHF and found that, upon CHF induction, the cardiac SNS clearly acquired cholinergic characteristics. Of the various cholinergic differentiation factors, leukemia inhibitory factor (LIF) and cardiotrophin-1 were strongly upregulated in the ventricles of rats with CHF. Further, LIF and cardiotrophin-1 secreted from cultured failing rat cardiomyocytes induced cholinergic transdifferentiation in cultured sympathetic neurons, and this process was reversed by siRNAs targeting Lif and cardiotrophin-1. Consistent with the data in rats, heart-specific overexpression of LIF in mice caused cholinergic transdifferentiation in the cardiac SNS. Further, SNS-specific targeting of the gene encoding the gp130 subunit of the receptor for LIF and cardiotrophin-1 in mice prevented CHF-induced cholinergic transdifferentiation. Cholinergic transdifferentiation was also observed in the cardiac SNS of autopsied patients with CHF. Thus, CHF causes target-dependent cholinergic transdifferentiation of the cardiac SNS via gp130-signaling cytokines secreted from the failing myocardium.

  9. LMI1195 PET imaging in evaluation of regional cardiac sympathetic denervation and its potential role in antiarrhythmic drug treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ming; Bozek, Jody; Lamoy, Melanie; Kagan, Mikhail; Benites, Pedro; Onthank, David; Robinson, Simon P. [Lantheus Medical Imaging, Discovery Research, N. Billerica, MA (United States)

    2012-12-15

    Regional cardiac sympathetic denervation (RCSD) associated with reduced noradrenaline transporter (NAT) function has been linked to cardiac arrhythmia. This study examined the association of LMI1195, an {sup 18}F-labeled NAT substrate developed for positron emission tomography (PET) imaging, with NAT in vitro, and its imaging to detect RCSD and guide antiarrhythmic drug treatment in vivo. LMI1195 association with NAT was assessed in comparison with other substrates, noradrenaline (NA) and {sup 123}I-metaiodobenzylguanidine (MIBG), in NAT-expressing cells. LMI1195 cardiac imaging was performed for evaluation of RCSD in a rabbit model surgically developed by regional phenol application on the left ventricular (LV) wall. The normal LV areas in images were quantified as regions with radioactivity {>=}50 % maximum. Potential impact of RCSD on dofetilide, an antiarrhythmic drug, induced ECG changes was assessed. NAT blockade with desipramine reduced LMI1195 cell uptake by 90 {+-} 3 %, similar to NA and MIBG. NA, MIBG, or self inhibited LMI1195 cell uptake concentration-dependently with comparable IC{sub 50} values (1.09, 0.21, and 0.90 {mu}M). LMI1195 cardiac imaging differentiated innervated and denervated areas in RCSD rabbits. The surgery resulted in a large denervated LV area at 2 weeks which was partially recovered at 12 weeks. Myocardial perfusion imaging with flurpiridaz F 18 showed normal perfusion in RCSD areas. Dofetilide induced more prominent QTc prolongation in RCSD than control animals. However, changes in heart rate were comparable. LMI1195 exhibits high association with NAT and can be used for imaging RCSD. The detected RCSD increases cardiac risks to the antiarrhythmic drug, dofetilide, by inducing more QTc prolongation. (orig.)

  10. Magnitude of Morning Surge in Blood Pressure Is Associated with Sympathetic but Not Cardiac Baroreflex Sensitivity

    Science.gov (United States)

    Johnson, Aaron W.; Hissen, Sarah L.; Macefield, Vaughan G.; Brown, Rachael; Taylor, Chloe E.

    2016-01-01

    The ability of the arterial baroreflex to regulate blood pressure may influence the magnitude of the morning surge in blood pressure (MSBP). The aim was to investigate the relationships between sympathetic and cardiac baroreflex sensitivity (BRS) and the morning surge. Twenty-four hour ambulatory blood pressure was recorded in 14 young individuals. The morning surge was defined via the pre-awakening method, which is calculated as the difference between mean blood pressure values 2 h before and 2 h after rising from sleep. The mean systolic morning surge, diastolic morning surge, and morning surge in mean arterial pressures were 15 ± 2, 13 ± 1, and 11 ± 1 mmHg, respectively. During the laboratory protocol, continuous measurements of blood pressure, heart rate, and muscle sympathetic nerve activity (MSNA) were made over a 10-min period of rest. Sympathetic BRS was quantified by plotting MSNA burst incidence against diastolic pressure (sympathetic BRSinc), and by plotting total MSNA against diastolic pressure (sympathetic BRStotal). Cardiac BRS was quantified using the sequence method. The mean values for sympathetic BRSinc, sympathetic BRStotal and cardiac BRS were −1.26 ± 0.26 bursts/100 hb/mmHg, −1.60 ± 0.37 AU/beat/mmHg, and 13.1 ± 1.5 ms/mmHg respectively. Significant relationships were identified between sympathetic BRSinc and the diastolic morning surge (r = 0.62, p = 0.02) and the morning surge in mean arterial pressure (r = 0.57, p = 0.03). Low sympathetic BRS was associated with a larger morning surge in mean arterial and diastolic blood pressure. Trends for relationships were identified between sympathetic BRStotal and the diastolic morning surge (r = 0.52, p = 0.066) and the morning surge in mean arterial pressure (r = 0.48, p = 0.095) but these did not reach significance. There were no significant relationships between cardiac BRS and the morning surge. These findings indicate that the ability of the baroreflex to buffer increases in blood

  11. The clinical value of cardiac sympathetic imaging in heart failure

    DEFF Research Database (Denmark)

    Christensen, Thomas Emil; Kjaer, Andreas; Hasbak, Philip

    2014-01-01

    The autonomic nervous system plays an important role in the pathology of heart failure. The single-photon emission computed tomography tracer iodine-123-metaiodobenzylguanidine ((123) I-MIBG) can be used to investigate the activity of the predominant neurotransmitter of the sympathetic nervous...

  12. Co-localization of histamine and norepinephrine in sympathetic ganglia and exocytosis of endogenous histamine from cardiac sympathetic nerve endings of macaca mulatto monkey

    Institute of Scientific and Technical Information of China (English)

    Ming-kaiLI; Xiao-xingLUO; Liang-weiCHEN; ZhongCHEN; JiaMENG; JingHU; Yu-meiWU; Jing-ruMENG; ZhengHOU; XueMA

    2005-01-01

    AIM To provide the evidence about localization, biosynthesis, metabolism and release of histamine from the cardiac sympathetic nerve terminals, and endogenous sympathetic histamine could inhibit itsel frelease from the nerve terminal through the presynaptic histamine H3 receptor. METHODS Using double-labeled immunohistochemistry to observe the co-localization of histamine and NE in the superior cer-vical ganglia (SCG) of macaca mulatto monkey; Different-speed centrifugation to obtain the cardiac sympathetic nerve terminal model (the cardiac synaptosomes), spectrofluorometer and ELISA techniques to detect the release of histamine from the cardiacsynaptosomes. RESULTS ( 1 ) The coexistence of histamine and norepinephrine immunoreactivities was identified in the same neuron within SCG of macaca mulatto monkey. (2) Depolarization of macaca mulatto monkey cardiac synaptosomes with 50 mmol/L potassium caused the release of endogenous histamine,

  13. Cardiac sympathetic modulation in response to apneas/hypopneas through heart rate variability analysis.

    Directory of Open Access Journals (Sweden)

    Florian Chouchou

    Full Text Available Autonomic dysfunction is recognized to contribute to cardiovascular consequences in obstructive sleep apnea/hypopnea syndrome (OSAHS patients who present predominant cardiovascular sympathetic activity that persists during wakefulness. Here, we examined 1 the factors that influence sympathetic cardiac modulation in response to apneas/hypopneas; and 2 the influence of autonomic activity during apneas/hypopneas on CA. Sixteen OSAHS patients underwent in-hospital polysomnography. RR interval (RR and RR spectral analysis using wavelet transform were used to study parasympathetic (high frequency power: HF(WV and sympathetic (low frequency power: LF(WV and LF(WV/HF(WV ratio activity before and after apnea/hypopnea termination. Autonomic cardiac modulations were compared according to sleep stage, apnea/hypopnea type and duration, arterial oxygen saturation, and presence of CA. At apnea/hypopnea termination, RR decreased (p<0.001 while LF(WV (p = 0.001 and LF(WV/HF(WV ratio (p = 0.001 increased. Only RR and LF(WV/HF(WV ratio changes were higher when apneas/hypopneas produced CA (p = 0.030 and p = 0.035, respectively or deep hypoxia (p = 0.023 and p = 0.046, respectively. Multivariate statistical analysis showed that elevated LF(WV (p = 0.006 and LF(WV/HF(WV ratio (p = 0.029 during apneas/hypopneas were independently related to higher CA occurrence. Both the arousal and hypoxia processes may contribute to sympathetic cardiovascular overactivity by recurrent cardiac sympathetic modulation in response to apneas/hypopneas. Sympathetic overactivity also may play an important role in the acute central response to apneas/hypopneas, and in the sleep fragmentation.

  14. Dynamic molecular imaging of cardiac innervation using a dual headpinhole SPECT system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jicun; Boutchko, Rostyslav; Sitek, Arkadiusz; Reutter, BryanW.; Huesman, Ronald H.; Gullberg, Grant T.

    2008-03-29

    Typically 123I-MIBG is used for the study of innervation andfunction of the sympathetic nervous system in heart failure. The protocolinvolves two studies: first a planar or SPECT scan is performed tomeasure initial uptake of the tracer, followed some 3-4 hours later byanother study measuring the wash-out of the tracer from the heart. A fastwash-out is indicative of a compromised heart. In this work, a dual headpinhole SPECT system was used for imaging the distribution and kineticsof 123I-MIBG in the myocardium of spontaneous hypertensive rats (SHR) andnormotensive Wistar Kyoto (WKY) rats. The system geometry was calibratedbased on a nonlinear point projection fitting method using a three-pointsource phantom. The angle variation effect of the parameters was modeledwith a sinusoidal function. A dynamic acquisition was performed byinjecting 123I-MIBG into rats immediately after starting the dataacquisition. The detectors rotated continuously performing a 360o dataacquisition every 90 seconds. We applied the factor analysis (FA)methodand region of interest (ROI) sampling method to obtain time activitycurves (TACs)in the blood pool and myocardium and then appliedtwo-compartment modeling to estimate the kinetic parameters. Since theinitial injection bolus is too fast for obtaining a consistenttomographic data set in the first few minutes of the study, we appliedthe FA method directly to projections during the first rotation. Then thetime active curves for blood and myocardial tissue were obtained from ROIsampling. The method was applied to determine if there were differencesin the kinetics between SHR and WKY rats and requires less time byreplacing the delayed scan at 3-4 hours after injection with a dynamicacquisition over 90 to 120 minutes. The results of a faster washout and asmaller distribution volume of 123IMIBG near the end of life in the SHRmodel of hypertrophic cardiomyopthy may be indicative of a failing heartin late stages of heart failure.

  15. Functional coupling with cardiac muscle promotes maturation of hPSC-derived sympathetic neurons

    Science.gov (United States)

    Oh, Yohan; Cho, Gun-Sik; Li, Zhe; Hong, Ingie; Zhu, Renjun; Kim, Min-Jeong; Kim, Yong Jun; Tampakakis, Emmanouil; Tung, Leslie; Huganir, Richard; Dong, Xinzhong; Kwon, Chulan; Lee, Gabsang

    2016-01-01

    Summary Neurons derived from human pluripotent stem cells (hPSCs) are powerful tools for studying human neural development and diseases. Robust functional coupling of hPSC-derived neurons with target tissues in vitro is essential for modeling intercellular physiology in a dish and to further translational studies, but has proven difficult to achieve. Here, we derive sympathetic neurons from hPSCs and show they can form physical and functional connections with cardiac muscle cells. Using multiple hPSC reporter lines, we recapitulated human autonomic neuron development in vitro and successfully isolated PHOX2B:eGFP+ neurons that exhibit sympathetic marker expression and electrophysiological properties, and norepinephrine secretion. Upon pharmacologic and optogenetic manipulation, PHOX:eGFP+ neurons controlled beating rates of cardiomyocytes, and the physical interactions between these cells increased neuronal maturation. This study provides a foundation for human sympathetic neuron specification and for hPSC-based neuronal control of organs in a dish. PMID:27320040

  16. Chronic central leptin infusion restores cardiac sympathetic-vagal balance and baroreflex sensitivity in diabetic rats

    OpenAIRE

    do Carmo, Jussara M.; Hall, John E.; da Silva, Alexandre A.

    2008-01-01

    This study tested whether leptin restores sympathetic-vagal balance, heart rate (HR) variability, and cardiac baroreflex sensitivity (BRS) in streptozotocin (STZ)-induced diabetes. Sprague-Dawley rats were instrumented with arterial and venous catheters, and a cannula was placed in the lateral ventricle for intracerebroventricular (ICV) leptin infusion. Blood pressure (BP) and HR were monitored by telemetry. BRS and HR variability were estimated by linear regression between HR and BP response...

  17. A neuron autonomous role for the familial dysautonomia gene ELP1 in sympathetic and sensory target tissue innervation

    OpenAIRE

    Jackson, Marisa Z.; Gruner, Katherine A.; Qin, Charles; Tourtellotte, Warren G.

    2014-01-01

    Familial dysautonomia (FD) is characterized by severe and progressive sympathetic and sensory neuron loss caused by a highly conserved germline point mutation of the human ELP1/IKBKAP gene. Elp1 is a subunit of the hetero-hexameric transcriptional elongator complex, but how it functions in disease-vulnerable neurons is unknown. Conditional knockout mice were generated to characterize the role of Elp1 in migration, differentiation and survival of migratory neural crest (NC) progenitors that gi...

  18. Cardiac sympathetic denervation preceding motor signs in Parkinson disease

    OpenAIRE

    Goldstein, David S.; Sharabi, Yehonatan; Karp, Barbara I.; Bentho, Oladi; Saleem, Ahmed; Pacak, Karel; Eisenhofer, Graeme

    2007-01-01

    There is substantial interest in identifying biomarkers to detect early Parkinson disease (PD). Cardiac noradrenergic denervation and attenuated baroreflex-cardiovagal function occur in de novo PD, but whether these abnormalities can precede PD has been unknown. Here we report the case of a patient who had profoundly decreased left ventricular myocardial 6-[18F]fluorodopamine-derived radioactivity and low baroreflex-cardiovagal gain, 4 years before the onset of symptoms and signs of PD. The r...

  19. Differential effects of defibrillation on systemic and cardiac sympathetic activity

    OpenAIRE

    Bode, F; U. Wiegand; Raasch, W; Richardt, G.; Potratz, J

    1998-01-01

    Objective—To assess the effect of defibrillation shocks on cardiac and circulating catecholamines.
Design—Prospective examination of myocardial catecholamine balance during dc shock by simultaneous determination of arterial and coronary sinus plasma concentrations. Internal countershocks (10-34 J) were applied in 30 patients after initiation of ventricular fibrillation for a routine implantable cardioverter defibrillator test. Another 10 patients were externally cardioverted (50-360 J) for at...

  20. Dynamic molecular imaging of cardiac innervation using a dual head pinhole SPECT system

    International Nuclear Information System (INIS)

    Typically 123I-MIBG is used for the study of innervation and function of the sympathetic nervous system in heart failure. The protocol involves two studies: first a planar or SPECT scan is performed to measure initial uptake of the tracer, followed some 3-4 hours later by another study measuring the wash-out of the tracer from the heart. A fast wash-out is indicative of a compromised heart. In this work, a dual head pinhole SPECT system was used for imaging the distribution and kinetics of 123I-MIBG in the myocardium of spontaneous hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats. The system geometry was calibrated based on a nonlinear point projection fitting method using a three-point source phantom. The angle variation effect of the parameters was modeled with a sinusoidal function. A dynamic acquisition was performed by injecting 123I-MIBG into rats immediately after starting the data acquisition. The detectors rotated continuously performing a 360o data acquisition every 90 seconds. We applied the factor analysis (FA)method and region of interest (ROI) sampling method to obtain time activity curves (TACs)in the blood pool and myocardium and then applied two-compartment modeling to estimate the kinetic parameters. Since the initial injection bolus is too fast for obtaining a consistent tomographic data set in the first few minutes of the study, we applied the FA method directly to projections during the first rotation. Then the time active curves for blood and myocardial tissue were obtained from ROI sampling. The method was applied to determine if there were differences in the kinetics between SHR and WKY rats and requires less time by replacing the delayed scan at 3-4 hours after injection with a dynamic acquisition over 90 to 120 minutes. The results of a faster washout and a smaller distribution volume of 123I-MIBG near the end of life in the SHR model of hypertrophic cardiomyopthy may be indicative of a failing heart in late stages of heart

  1. Usefulness of Cardiac Sympathetic Nerve Imaging Using (123)Iodine-Metaiodobenzylguanidine Scintigraphy for Predicting Sudden Cardiac Death in Patients With Heart Failure.

    Science.gov (United States)

    Kasama, Shu; Toyama, Takuji; Kurabayashi, Masahiko

    2016-01-01

    The autonomic nervous system plays an important role in the human heart. Activation of the cardiac sympathetic nervous system is a cardinal pathophysiological abnormality associated with the failing human heart. Myocardial imaging using (123)I-metaiodobenzylguanidine (MIBG), an analog of norepinephrine, can be used to investigate the activity of norepinephrine, the predominant neurotransmitter of the sympathetic nervous system. Many clinical trials have demonstrated that (123)I-MIBG scintigraphic parameters predict cardiac adverse events, especially sudden cardiac death, in patients with heart failure. In this review, we summarize results from published studies that have focused on the use of cardiac sympathetic nerve imaging using (123)I-MIBG scintigraphy for risk stratification of sudden cardiac death in patients with heart failure.

  2. Tonic arterial chemoreceptor activity contributes to cardiac sympathetic activation in mild ovine heart failure.

    Science.gov (United States)

    Xing, Daniel T; May, Clive N; Booth, Lindsea C; Ramchandra, Rohit

    2014-08-01

    Heart failure (HF) is associated with a large increase in cardiac sympathetic nerve activity (CSNA), which has detrimental effects on the heart and promotes arrhythmias and sudden death. There is increasing evidence that arterial chemoreceptor activation plays an important role in stimulating renal sympathetic nerve activity (RSNA) and muscle sympathetic nerve activity in HF. Given that sympathetic nerve activity to individual organs is differentially controlled, we investigated whether tonic arterial chemoreceptor activation contributes to the increased CSNA in HF. We recorded CSNA and RSNA in conscious normal sheep and in sheep with mild HF induced by rapid ventricular pacing (ejection fraction chemoreceptor function was evaluated by supplementing room air with 100% intranasal oxygen (2-3 l min(-1)) for 20 min, thereby deactivating chemoreceptors. The effects of hyperoxia on resting levels and baroreflex control of heart rate, CSNA and RSNA were determined. In HF, chemoreceptor deactivation induced by hyperoxia significantly reduced CSNA [90 ± 2 versus 75 ± 5 bursts (100 heart beats)(-1), P chemoreceptor deactivation reduced heart rate without a significant effect on CSNA or RSNA. In summary, deactivation of peripheral chemoreceptors during HF reduced the elevated levels of CSNA, indicating that tonic arterial chemoreceptor activation plays a critical role in stimulating the elevated CSNA in HF.

  3. Increased cardiac sympathetic activity in patients with hypothyroidism as determined by iodine-123 metaiodobenzylguanidine scintigraphy

    International Nuclear Information System (INIS)

    Clinical manifestations of hypothyroidism, such as bradycardia, suggest decreased sympathetic tone. However, previous studies in patients with hypothyroidism have suggested that increased plasma noradrenaline (NA) levels represent enhanced general sympathetic activity. As yet, cardiac sympathetic activity (CSA) in hypothyroidism has not been clarified. To evaluate CSA in patients with hypothyroidism, iodine-123 metaiodobenzylguanidine (MIBG) scintigraphy was performed in eight patients with hypothyroidism before therapy and in ten normal control patients. Planar images were obtained at 15 min and 4 h after injection of MIBG. The ratio of early myocardial uptake to the total injected dose (MU) and myocardial clearance of MIBG within 4 h p.i. (MC) were calculated. Plasma NA was also measured, and echocardiography was performed in all patients. Those patients with hypothyroidism in the euthyroid state after medical therapy were also evaluated in a similar manner. Left ventricular ejection fraction, measured by echocardiography, did not differ significantly between the groups. NA, MU and MC were significantly higher in patients with hypothyroidism than in controls, and all parameters were decreased after therapy. MC was well correlated with NA in hypothyroidism (r=0.86) before therapy. We conclude that CSA is increased in patients with hypothyroidism, in parallel with the enhanced general sympathetic activity. (orig.). With 4 figs., 2 tabs

  4. Sympathetic restraint of respiratory sinus arrhythmia: implications for vagal-cardiac tone assessment in humans

    Science.gov (United States)

    Taylor, J. A.; Myers, C. W.; Halliwill, J. R.; Seidel, H.; Eckberg, D. L.

    2001-01-01

    Clinicians and experimentalists routinely estimate vagal-cardiac nerve traffic from respiratory sinus arrhythmia. However, evidence suggests that sympathetic mechanisms may also modulate respiratory sinus arrhythmia. Our study examined modulation of respiratory sinus arrhythmia by sympathetic outflow. We measured R-R interval spectral power in 10 volunteers that breathed sequentially at 13 frequencies, from 15 to 3 breaths/min, before and after beta-adrenergic blockade. We fitted changes of respiratory frequency R-R interval spectral power with a damped oscillator model: frequency-dependent oscillations with a resonant frequency, generated by driving forces and modified by damping influences. beta-Adrenergic blockade enhanced respiratory sinus arrhythmia at all frequencies (at some, fourfold). The damped oscillator model fit experimental data well (39 of 40 ramps; r = 0.86 +/- 0.02). beta-Adrenergic blockade increased respiratory sinus arrhythmia by amplifying respiration-related driving forces (P arrhythmia is mediated simply by vagal-cardiac nerve activity. These results have important implications for clinical and experimental estimation of human vagal cardiac tone.

  5. Renal sympathetic denervation prevents the development of pulmonary arterial hypertension and cardiac dysfunction in dogs.

    Science.gov (United States)

    Hu, Wei; Yu, Sheng-Bo; Chen, Liao; Guo, Rui-Qiang; Zhao, Qing-Yan

    2015-08-01

    The renin-angiotensin-aldosterone system is activated in pulmonary arterial hypertension (PAH) patients, and this activation may have long-term negative effects on the progression of PAH. The purpose of this study was to evaluate the effects of transcatheter renal sympathetic denervation (RSD) on the development of pulmonary arterial hypertension and cardiac dysfunction in dogs using two-dimensional speckle tracking imaging. Twenty-two dogs were randomly divided into three groups: control group (n = 7), PAH group (n = 8), and PAH + RSD group (n = 7). All dogs were assessed using two-dimensional speckle tracking imaging. The ventricular strain, ventricular synchrony, left ventricular (LV) twist, and torsion rate were analyzed to evaluate cardiac function. After 8 weeks, the right ventricular lateral longitudinal strain and the septum longitudinal strain were reduced in the PAH group compared with the control group (p dogs.

  6. Localization of peripheral autonomic neurons innervating the boar urinary bladder trigone and neurochemical features of the sympathetic component

    Directory of Open Access Journals (Sweden)

    L. Ragionieri

    2013-05-01

    Full Text Available The urinary bladder trigone (UBT is a limited area through which the majority of vessels and nerve fibers penetrate into the urinary bladder and where nerve fibers and intramural neurons are more concentrated. We localized the extramural post-ganglionic autonomic neurons supplying the porcine UBT by means of retrograde tracing (Fast Blue, FB. Moreover, we investigated the phenotype of sympathetic trunk ganglion (STG and caudal mesenteric ganglion (CMG neurons positive to FB (FB+ by coupling retrograde tracing and double-labeling immunofluorescence methods. A mean number of 1845.1±259.3 FB+ neurons were localized bilaterally in the L1-S3 STG, which appeared as small pericarya (465.6±82.7 µm2 mainly localized along an edge of the ganglion. A large number (4287.5±1450.6 of small (476.1±103.9 µm2 FB+ neurons were localized mainly along a border of both CMG. The largest number (4793.3±1990.8 of FB+ neurons was observed in the pelvic plexus (PP, where labeled neurons were often clustered within different microganglia and had smaller soma cross-sectional area (374.9±85.4 µm2. STG and CMG FB+ neurons were immunoreactive (IR for tyrosine hydroxylase (TH (66±10.1% and 52.7±8.2%, respectively, dopamine beta-hydroxylase (DβH (62±6.2% and 52±6.2%, respectively, neuropeptide Y (NPY (59±8.2% and 65.8±7.3%, respectively, calcitonin-gene-related peptide (CGRP (24.1±3.3% and 22.1±3.3%, respectively, substance P (SP (21.6±2.4% and 37.7±7.5%, respectively, vasoactive intestinal polypeptide (VIP (18.9±2.3% and 35.4±4.4%, respectively, neuronal nitric oxide synthase (nNOS (15.3±2% and 32.9±7.7%, respectively, vesicular acetylcholine transporter (VAChT (15±2% and 34.7±4.5%, respectively, leu-enkephalin (LENK (14.3±7.1% and 25.9±8.9%, respectively, and somatostatin (SOM (12.4±3% and 31.8±7.3%, respectively. UBT-projecting neurons were also surrounded by VAChT-, CGRP-, LENK-, and nNOS-IR fibers. The possible role of these neurons and fibers

  7. Norepinephrine transporter (NET) is expressed in cardiac sympathetic ganglia of adult rat

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The sympathetic nervous system plays a cardinal role in regulating cardiac function through releasing the neurotransmitter norepinephrine (NE). In comparison with central nervous system, the molecular mechanism of NE uptake in myocardium is not clear. In present study, we proved that in rat the CNS type of NE transporter (NET) was also expressed in middle cervical-stellate ganglion complex (MC-SG complex) which is considered to control the activity of heart, but not expressed in myocardium. The results also showed that NET expression level in right ganglion was significantly higher than in the left, rendering the greater capacity of NE uptake in right ventricle, a fact which may contribute to the maintenance of right ventricular function under pathologic state.

  8. Prognostic value of coronary anatomy and myocardial innervation imaging in cardiac disease

    NARCIS (Netherlands)

    Veltman, Caroline Emma

    2016-01-01

    Over the last decade, there has been an exponential development in cardiac imaging technology. Currently, cardiac imaging plays a central role in clinical management and decision making in the diverse and growing population of patients encountered in daily cardiology practice. Important outcome-rela

  9. Effects of renal sympathetic denervation on post-myocardial infarction cardiac remodeling in rats.

    Directory of Open Access Journals (Sweden)

    Jialu Hu

    Full Text Available OBJECTIVE: To investigate the therapeutic effects of renal denervation (RD on post- myocardial infarction (MI cardiac remodeling in rats, the most optimal time for intervention and the sustainability of these effects. METHODS: One hundred SPF male Wistar rats were randomly assigned to N group (Normal, n=10, MI group(MI, n=20,RD group (RD, n=10, RD3+MI (MI three days after RD, n=20, MI1+RD (RD one day after MI, n=20, MI7+RD (RD seven days after MI, n=20. MI was produced through thoracotomic ligation of the anterior descending artery. RD was performed through laparotomic stripping of the renal arteriovenous adventitial sympathetic nerve. Left ventricular function, hemodynamics, plasma BNP, urine volume, urine sodium excretion and other indicators were measured four weeks after MI. RESULTS: (1 The left ventricular function of the MI group significantly declined (EF<40%, plasma BNP was elevated, urine output was significantly reduced, and 24-hour urine sodium excretion was significantly reduced. (2 Denervation can be achieved by surgically stripping the arteriovenous adventitia, approximately 3 mm from the abdominal aorta. (3 In rats with RD3+MI, MI1+RD and MI7+RD, compared with MI rats respectively, the LVEF was significantly improved (75 ± 8.4%,69 ± 3.8%,73 ± 5.5%, hemodynamic indicators were significantly improved, plasma BNP was significantly decreased, and the urine output was significantly increased (21.3 ± 5 ml,23.8 ± 5.4 ml,25.2 ± 8.7 ml. However, the urinary sodium excretion also increased but without significant difference. CONCLUSIONS: RD has preventive and therapeutic effects on post-MI cardiac remodeling.These effects can be sustained for at least four weeks, but there were no significant differences between denervation procedures performed at different times in the course of illness. Cardiac function, hemodynamics, urine volume and urine sodium excretion in normal rats were not affected by RD.

  10. Proposal for standardization of I-123-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology

    NARCIS (Netherlands)

    A. Flotats; I. Carrio; D. Agostini; D. Le Guludec; C. Marcassa; M. Schaffers; G.A. Somsen; M. Unlu; H.J. Verberne

    2010-01-01

    This proposal for standardization of I-123-metaiodobenzylguanidine (iobenguane, MIBG) cardiac sympathetic imaging includes recommendations for patient information and preparation, radiopharmaceutical, injected activities and dosimetry, image acquisition, quality control, reconstruction methods, atte

  11. Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: Intermediate and long-term follow-up

    OpenAIRE

    Vaseghi, M; Gima, J; Kanaan, C; Ajijola, OA; Marmureanu, A; Mahajan, A.; Shivkumar, K

    2014-01-01

    Background Left and bilateral cardiac sympathetic denervation (CSD) have been shown to reduce burden of ventricular arrhythmias acutely in a small number of patients with ventricular tachyarrhythmia (VT) storm. The effects of this procedure beyond the acute setting are unknown. Objective The purpose of this study was to evaluate the intermediate and long-term effects of left and bilateral CSD in patients with cardiomyopathy and refractory VT or VT storm. Methods Retrospective analysis of medi...

  12. Reactive oxygen species in paraventricular nucleus involved in cardiac sympathetic afferent reflex in rats

    Institute of Scientific and Technical Information of China (English)

    Feng Zhang; Yang Yu; Ying Zhang; Yingchun Li; Luqing Zhang; Lingling Fan; Yingya Gao; Guoqing Zhu

    2005-01-01

    Objective: The present study was designed to determine if reactive oxygen species (ROS) in the paraventricularnucleus (PVN) were involved in modulating cardiac sympathetic afferent reflex (CSAR) in anesthetized rats. Methods: Malondialdehyde(MDA), the end product of lipid peroxidation, in the PVN, was determined by thiobarbituric acid (TBA) spectrometric method. Renalsympathetic nerve activity (RSNA) and arterial pressure were recorded in sinoaortic-denervated and cervical-vagotomized rats. The CSARwas evaluated by the response of the RSNA evoked by epicardial application of bradykinin (BK, 0.4 μg). Results: The MDA in the PVNwas significantly increased after epicardial application of BK compared with control (2.0 + 0.3 vs 0.8 + 0.1 nmol/mg protein, P < 0.01 ).Microinjectionof a superoxide anion scavenger, tiron (20 nmol) into the PVN significantly inhibited the CSAR evoked by BK (12.3 ± 1.9vs 4.2+ 1.2%, P < 0.01) and decreased MDA level (1.9±0.3 vs 0.6+0.1 nmol/mg protein, P <0.01) compared with control.Conclusion: The ROS in the PVN is involved in modulating the CSAR in rats.

  13. Clinical usefulness of {sup 123}I-metaiodobenzylguanidine myocardial scintigraphy in diabetic patients with cardiac sympathetic nerve dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Miyanaga, Hajime; Yoneyama, Satoshi; Kamitani, Tadaaki; Kawasaki, Shingo; Takahashi, Toru; Kunishige, Hiroshi [Matsushita Memorial Hospital, Osaka (Japan)

    1995-09-01

    To assess the clinical utility of {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy in evaluating cardiac sympathetic nerve disturbance in diabetic patients, we performed MIBG scintigraphy in 18 diabetic patients and 11 normal controls. Diabetic patients with symptomatic neuropathy (DM2) had a significantly lower heart to mediastinum uptake ratio than did those without neuropathy or normal controls in initial and delayed images (initial image, 1.90{+-}0.27 vs 2.32{+-}0.38, 2.41{+-}0.40, p<0.01; delayed image, 1.80{+-}0.31 vs 2.48{+-}0.35, 2.56{+-}0.28, p<001, respectively). Defect score, assessed visually, were higher in DM2 patients than in patients in the other two groups (initial image, 7{+-}2.6 vs 1.5{+-}1.9, 0.7{+-}0.9; delayed image 10.6{+-}3.3 vs 4.0{+-}2.5, 1.7{+-}1.6 p<0.01, respectively). The maximum washout rate in DM2 patients was also higher than those in patients in the other two groups. The findings of these indices obtained from MIBG scintigraphy coincided with the % low-frequency power extracted from heart rate fluctuations using a power spectral analysis and the results of the Schellong test, which were used to evaluate sympathetic function. These results suggest that MIBG scintigraphy may be useful for evaluating cardiac sympathetic nerve disturbance in patients with diabetes. (author).

  14. Effects of Antidepressants, but not Psychopathology, on Cardiac Sympathetic Control : A Longitudinal Study

    NARCIS (Netherlands)

    Licht, Carmilla M. M.; Penninx, Brenda W. J. H.; de Geus, Eco J. C.

    2012-01-01

    Increased sympathetic activity has been hypothesized to have a role in the elevated somatic disease risk in persons with depressive or anxiety disorders. However, it remains unclear whether increased sympathetic activity reflects a direct effect of anxiety or depression or an indirect effect of anti

  15. Interaction between cardiac sympathetic afferent reflex and chemoreflex is mediated by the NTS AT1 receptors in heart failure.

    Science.gov (United States)

    Wang, Wei-Zhong; Gao, Lie; Wang, Han-Jun; Zucker, Irving H; Wang, Wei

    2008-09-01

    Several sympathoexcitatory reflexes, such as the cardiac sympathetic afferent reflex (CSAR) and arterial chemoreflex, are significantly augmented and contribute to elevated sympathetic outflow in chronic heart failure (CHF). This study was undertaken to investigate the interaction between the CSAR and the chemoreflex in CHF and to further identify the involvement of angiotensin II type 1 receptors (AT1Rs) in the nucleus of the tractus solitarius (NTS) in this interaction. CHF was induced in rats by coronary ligation. Acute experiments were performed in anesthetized rats. The chemoreflex-induced increase in cardiovascular responses was significantly greater in CHF than in sham-operated rats after either chemical or electrical activation of the CSAR. The inhibition of the CSAR by epicardial lidocaine reduced the chemoreflex-induced effects in CHF rats but not in sham-operated rats. Bilateral NTS injection of the AT1R antagonist losartan (10 and 100 pmol) dose-dependently decreased basal sympathetic nerve activity in CHF but not in sham-operated rats. This procedure also abolished the CSAR-induced enhancement of the chemoreflex. The discharge and chemosensitivity of NTS chemosensitive neurons were significantly increased following the stimulation of the CSAR in sham-operated and CHF rats, whereas CSAR inhibition by epicardial lidocaine significantly attenuated chemosensitivity of NTS neurons in CHF but not in sham-operated rats. Finally, the protein expression of AT1R in the NTS was significantly higher in CHF than in sham-operated rats. These results demonstrate that the enhanced cardiac sympathetic afferent input contributes to an excitatory effect of chemoreflex function in CHF, which is mediated by an NTS-AT1R-dependent mechanism.

  16. Angiotensin II and angiotensin-(1-7 in paraventricular nucleus modulate cardiac sympathetic afferent reflex in renovascular hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Hai-Jian Sun

    Full Text Available BACKGROUND: The enhanced cardiac sympathetic afferent reflex (CSAR is involved in the sympathetic activation that contributes to the pathogenesis and progression of hypertension. Activation of AT(1 receptors by angiotension (Ang II in the paraventricular nucleus (PVN augments the enhanced CSAR and sympathetic outflow in hypertension. The present study is designed to determine whether Ang-(1-7 in PVN plays the similar roles as Ang II and the interaction between Ang-(1-7 and Ang II on CSAR in renovascular hypertension. METHODOLOGY/PRINCIPAL FINDINGS: The two-kidney, one-clip (2K1C method was used to induce renovascular hypertension. The CSAR was evaluated by the renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP responses to epicardial application of capsaicin in sinoaortic-denervated and cervical-vagotomized rats with urethane and α-chloralose anesthesia. Either Ang II or Ang-(1-7 in PVN caused greater increases in RSNA and MAP, and enhancement in CSAR in 2K1C rats than in sham-operated (Sham rats. Mas receptor antagonist A-779 and AT(1 receptor antagonist losartan induced opposite effects to Ang-(1-7 or Ang II respectively in 2K1C rats, but losartan had no effects in Sham rats. Losartan but not the A-779 abolished the effects of Ang II, while A-779 but not the losartan blocked the effects of Ang-(1-7. PVN pretreatment with Ang-(1-7 dose-dependently augmented the RSNA, MAP, and CSAR responses to the Ang II in 2K1C rats. Ang II level, AT(1 receptor and Mas receptor protein expression in PVN increased in 2K1C rats compared with Sham rats but Ang-(1-7 level did not. CONCLUSIONS: Ang-(1-7 in PVN is as effective as Ang II in enhancing the CSAR and increasing sympathetic outflow and both endogenous Ang-(1-7 and Ang II in PVN contribute to the enhanced CSAR and sympathetic outflow in renovascular hypertension. Ang-(1-7 in PVN potentiates the effects of Ang II in renovascular hypertension.

  17. Assessment of central chemosensitivity and cardiac sympathetic nerve activity using I-123 MIBG imaging in central sleep apnea syndrome in patients with dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Iodine-123 m-iodobenzylguanidine (MIBG) imaging has been used to study cardiac sympathetic function in various cardiac diseases. Central sleep apnea syndrome (CSAS) occurs frequently in patients with chronic heart failure (CHF) and is reported to be associated with a poor prognosis. One of the mechanisms of its poor prognosis may be related to impaired cardiac sympathetic activity. However, the relationship between chemosensitivity to carbon dioxide, which is reported to correlate with the severity of CSAS, and cardiac sympathetic activity has not been investigated. Therefore, this study was undertaken to assess cardiac sympathetic function and chemosensitivity to carbon dioxide in CHF patients. The oxygen desaturation index (ODI) was evaluated in 21 patients with dilated cardiomyopathy (male/female: 19/2, left ventricular ejection fraction (LVEF)5 times/h underwent polysomnography. Patients with an apnea hypopnea index >15/h but without evidence of obstructive apnea were defined as having CSAS. Early (15 min) and delayed (4 hr) planar MIBG images were obtained from these patients. The mean counts in the whole heart and the mediastinum were obtained. The heart-to-mediastinum count ratio of the delayed image (H/M) and the corrected myocardial washout rate (WR) were also calculated. The central chemoreflex was assessed with the rebreathing method using a hypercapnic gas mixture (7% CO2 and 93% O2). Ten of the 21 patients had CSAS. The H/M ratio was similar in patients both with and without CSAS (1.57±0.18 vs. 1.59±0.14, p=0.82). However, the WR was higher in patients with CSAS than in patients without CSAS (40±8% vs. 30±12%, p<0.05). ODI significantly correlated with central chemosensitivity to carbon dioxide. Moreover, there was a highly significant correlation between WR and central chemosensitivity (r=0.65, p<0.05). However, there was no correlation between ODI and the WR (r=0.36, p=0.11). Cardiac sympathetic nerve activity in patients with CHF and CSAS is

  18. Sympathetic reinnervation in cardiac transplants: 123I-MIBG and 201Tl/99mTc-MIBI scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Oh, S. J.; Son, M. S.; Son, J. W.; Koh, K. K.; Choi, I. S.; Shin, E. K.; Park, K. Y. [Gachon Medical College, Gil Heart Center, Inchon (Korea, Republic of)

    1998-07-01

    Iodine-123 metaiodobenzylguanidine (123I-MIBG) is a norepinephrine (NE) analogue and taken up by myocardial sympathetic nerves. To determine whether cardiac sympathetic reinnervation occurs after orthotopic heart transplantation (TPL). We performed 24 serial or followup cardiac 123I-MIBG imaging and 201T1/99mTc-MIBI dipyridamole stress gated myocardial perfusion SPECT (g-MPS) in 15 pts(M : F =10 : 5; mean ages = 34.67{+-}12.92 yr; idiopathic: rheumatic=14:1) (10.80{+-}11.88 (1-48) mo) after TPL. 123I-MIBG imagins were performed in anterior position 15 minutes, 4 and 24 hours after i.v. injection of 148 MBq 123I MIBG. Image quantitation was based on the ratio of heart to mediastinal MIBG uptake (HMR). 12 subjects with < 13 (4.91{+-}3.67) months after TPL had no visible 123I-MIBG uptake on early 15 min imaging however, 12 subjects with 13 to 48(28.58{+-}12.77) months had visible cardiac 123I-MIBG uptake (HMR: 1.65 {+-}0.21 vs. 1.32{+-}0.26 p=0.002). Correlation was found between plasma NE concentration and HMR ( r=0.80: p<0.05). Compared to HMR on 15 min images (1.48{+-}0.28), neither four nor 24 hour delayed images (1.26{+-}0.23 vs. 1.06{+-}0.10 : p<0.05, respectively, ANOVA) showed definite delayed localization of MIBG. To dipyridamole stress, transplant hearts showed significant subnormal hemodynamic responses of HR, s-BP, d-BP, and rate pressure product (90.9{+-}14.9 to 102.2{+-}15.3, 136.5{+-}17.3 to 124.9{+-}13.3, 83.3{+-}12.5 to 74.7{+-}15.6, 123.2{+-}19.4 to 127.4{+-}21.8 p<0.05, respectively). One-year followup 123I-MIBG scintigraphy in nine pts showed increased HMR (1.50{+-}0,37 to 1.61{+-}0.15, p=ns) but couldnt reach the statistical significance. Out of nine followup patients, five showed increased HMR but four didnt. gMPS performed at post-TPL 48 months in one patient complaining vague chest pain whose HMR value 1.73 to 1.62 showed an apicoanterior wall reversible perfusion defect which confirmed as 90% distal left anterior descending artery stenosis by

  19. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF.

    Directory of Open Access Journals (Sweden)

    Keiko Miwa

    Full Text Available Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs and sympathetic neurons (SNs isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml or nerve growth factor (50 ng/ml. As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts.

  20. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF).

    Science.gov (United States)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Hirabayashi, Masumi; Watabe, Kazuhiko; Jimbo, Yasuhiko; Kodama, Itsuo; Komuro, Issei

    2013-01-01

    Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF) promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs) and sympathetic neurons (SNs) isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml) or nerve growth factor (50 ng/ml). As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR) with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs) attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts.

  1. Sympathetic innervation loss affects osteogenic chemokine PDGF expression in distraction osteogenesis%失交感神经支配对骨牵张中成骨趋化因子PDGF影响的研究

    Institute of Scientific and Technical Information of China (English)

    刘鹏; 雷德林; 王磊; 杜兆杰; 隋健夫; 张雅博

    2013-01-01

    目的:探究失交感神经支配对大鼠牵张成骨骨痂内趋化因子PDGF表达的影响.方法:雄性SD大鼠18只随机分为对照组和实验组(n=9),对照组行右侧下颌骨牵张成骨术;实验组行右侧下颌骨牵张成骨术及双侧颈交感干离断术.术后分别于固定期1、14、28 d每组取材3只动物进行免疫组织化学染色评价PDGF的表达情况,并运用IPP6.0软件分析骨小梁周围、未成骨区域及血管内皮细胞周围平均吸光度值,所得结果用SPSS 13.0进行两样本t检验.结果:实验组骨小梁周围、未成骨区域PDGF表达量高于对照组(P<0.05),而血管内皮细胞周围PDGF表达量明显低于对照组(P<0.05).结论:在牵张成骨中,PDGF在血管周围和成骨区表达具有时空变化受到交感神经的调控.%Objective: To investigate the effects of sympathetic innervation loss on the expression of chemokine PDGF in bone callus in rat mandibular distraction osteogenesis. Methods: 18 male SD rats were divided into control and experimental groups (re =9) randomly. The rats in control group underwent right mandibular distraction osteogenesis, those in experimental group underwent right mandibular distraction osteogenesis and then bilateral transection of cervical sympathetic trunk. 3 rats were sacrificed at consolidation time of 1,14 and 28th day respectively in each group, and specimens were prepared for immunohistochemical staining of PDGF. IPP6.0 was used for the analysis of average optical density values around trabecular bone and vascular endothelial cells and none ossification area. A two-sample t test was performed using SPSS 13.0 software package. Results: PDGF expression around trabecular bone and none ossification area in experimental group was significantly higher than that in control group (P <0.05) , while PDGF expression around vascular endothelial cells in experimental group was significantly lower than that in control group(P <0. 05). Conclusion

  2. Effects of alpha-adrenoceptor and of combined sympathetic and parasympathetic blockade on cardiac performance and vascular resistance

    DEFF Research Database (Denmark)

    Kelbaek, H; Frandsen, Henrik Lund; Hilsted, J;

    1992-01-01

    ) blockade. 2. During alpha-adrenoceptor blockade heart rate and cardiac output increased considerably and left ventricular ejection fraction increased because of increased contractility. Systemic vascular resistance fell both during alpha-adrenoceptor blockade alone and during combined blockade. The...... increase in calf blood flow was of the same magnitude after combined blockade and after alpha-adrenoceptor blockade alone, and was considerably higher than the fall in systemic vascular resistance. Plasma catecholamine concentrations increased after phentolamine, but the changes were blunted when...... propranolol and atropine were added. 3. These results indicate that peripheral vasoconstriction especially that exerted by alpha-adrenoceptor nervous tone in skeletal muscle restricts left ventricular emptying of the intact heart. During pharmacologic blockade of the sympathetic and parasympathetic nervous...

  3. Cardiac Neurotransmission Imaging with 123I-Meta-iodobenzylguanidine in Postural Tachycardia Syndrome.

    OpenAIRE

    Haensch, Carl-Albrecht; Lerch, Hartmut; Schlemmer, Hans; Jigalin, Anna; Isenmann, Stefan

    2010-01-01

    Abstract Background: Postural orthostatic tachycardia syndrome (POTS) is a disorder of orthostatic intolerance characterized by excessive tachycardia of unknown etiology. Whether this condition involves abnormal cardiac sympathetic innervation or function remains elusive. Metaiodobenzylguanidine (MIBG) resembles guanethidine and is a pharmacologically inactive analogue of norepinephrine, which is similarly metabolized in noradrenergic neurons. MIBG myocardial scintigraphy is clinic...

  4. EFFECT OF ELECTROACUPUNCTURE ON MYOCARDIAL ISCHEMIA INDUCED CHANGES OF CARDIAC SYMPATHETIC ACTIVITY AND INVOLVEMENT OF SPINIAL δ-OPIOID,NMDA-AND NON-NMDA RECEPTORS IN THE RABBIT

    Institute of Scientific and Technical Information of China (English)

    刘俊岭; 高永辉; 陈淑萍

    2003-01-01

    Aim: To observe the effect of electroacupuncture (EA) on acute myocardial ischemia (AMI) induced changes of cardiac sympathetic discharges and the effects of some related receptors in the spinal cord. Methods: A total of 53 rabbits anesthetized with mixture solution of 25% urethane (420 mg/kg) and 1.5% chloralose (50 mg/kg)were used in this study. AMI was induced by occlusion of the ventricular branch of the left coronary artery. Discharges of the left cardiac sympathetic nerve were recorded by using a bipolar platinum electrode. Bilateral "Ximen"(PC 40)and "Kongzhui"(LU 6) were stimulated electrically by using an EA therapeutic apparatus or an electrical stimulator.DPDPE δ-opiate receptor agonist, 20 nmol, 10 μL, n= 8), Naltrindole Hydrochloride (δ-opiate receptor antagonist, 20nmol, 10 μL, n=8), DAP5 (NMDA receptor antagonist, 5 nmol, 10 μL, n=9) and CNQX (non-NMDA receptor antagonist, 5 nmol, 10 μL, n=8) were respectively injected into the thoracic subarachnoid space of the spinal cord in different groups, followed by observing their effects on changes of sympathetic activity evoked by EA of the abovementioned acupoints. Results: ① After AMI, sympathetic discharges increased (200.56± 79.89%) in 10 cases and decreased (- 59.34 ±7.06% ) in other 9 cases in comparison with their individual basal values. After EA of "Ximen" (PC 4)and "Kongzhui" (Lu 6), AMI-induced increase and decrease changes of the sympathetic activity were suppressed significantly, but the effect of EA of LU-6 was weaker than that of EA of PC-4.②Following EA of PC-4 and LU-6, sympathetic discharges increased significantly in 2 and 4 cases, decreased apparently in 7 and 3 cases, and had no striking changes in 1 and 3 cases respectively. The mean reaction threshold of sympathetic activity after EA of PC-4 and LU-6were 2.1 ± 0.65 mA and 3.28± 1.13 mA separately.③ After pre-treatment with DPDPE, the reaction threshold of the cardiac sympathetic activity to EA of PC-4 elevated

  5. Using Lorenz plot and Cardiac Sympathetic Index of heart rate variability for detecting seizures for patients with epilepsy.

    Science.gov (United States)

    Jeppesen, Jesper; Beniczky, Sandor; Johansen, Peter; Sidenius, Per; Fuglsang-Frederiksen, Anders

    2014-01-01

    Tachycardia is often seen during epileptic seizures, but it also occurs during physical exercise. In order to assess whether focal epileptic seizures can be detected by short term moving window Heart Rate Variability (HRV) analysis, we modified the geometric HRV method, Lorenz plot, to consist of only 30, 50 or 100 R-R intervals per analyzed window. From each window we calculated the longitudinal (L) and transverse (T) variability of Lorenz plot to retrieve the Cardiac Sympathetic Index (CSI) as (L/T) and "Modified CSI" (described in methods), and compared the maximum during the patient's epileptic seizures with that during the patient's own exercise and non-seizure sessions as control. All five analyzed patients had complex partial seizures (CPS) originating in the temporal lobe (11 seizures) during their 1-5 days long term video-EEG monitoring. All CPS with electroencephalographic correlation were selected for the HRV analysis. The CSI and Modified CSI were correspondently calculated after each heart beat depicting the prior 30, 50 and 100 R-R intervals at the time. CSI (30, 50 and 100) and Modified CSI (100) showed a higher maximum peak during seizures than exercise/non-seizure (121-296%) for 4 of the 5 patients within 4 seconds before till 60 seconds after seizure onset time even though exercise maximum HR exceeded that of the seizures. The results indicate a detectable, sudden and inordinate shift towards sympathetic overdrive in the sympathovagal balance of the autonomic nervous system just around seizure-onset for certain patients. This new modified moving window Lorenz plot method seems promising way of constructing a portable ECG-based epilepsy alarm for certain patients with epilepsy who needs aid during seizure.

  6. Tendon Innervation.

    Science.gov (United States)

    Ackermann, Paul W; Salo, Paul; Hart, David A

    2016-01-01

    The regulation of tendon metabolism including the responses to loading is far from being well understood. During the last decade, however, accumulating data show that tendon innervation in addition to afferent functions, via efferent pathways has a regulatory role in tendon homeostasis via a wide range of neuromediators, which coordinate metabolic and neuro-inflammatory pathways.Innervation of intact healthy tendons is localized in the surrounding structures, i.e paratenon, endotenon and epitenon, whereas the tendon proper is practically devoid of neuronal supply. This anatomical finding reflects that the tendon metabolism is regulated from the tendon envelope, i.e. interfascicular matrix (see Chap. 1 ).Tendon innervation after injury and during repair, however, is found as extensive nerve ingrowth into the tendon proper, followed by a time-dependent emergence of different neuronal mediators, which amplify and fine-tune inflammatory and metabolic pathways in tendon regeneration. After healing nerve fibers retract to the tendon envelope.In tendinopathy innervation has been identified to consist of excessive and protracted nerve ingrowth in the tendon proper, suggesting pro-inflammatory, nociceptive and hypertrophic (degenerative) tissue responses.In metabolic disorders such as eg. diabetes impaired tendon healing has been established to be related to dysregulation of neuronal growth factors.Targeted approaches to the peripheral nervous system including neuronal mediators and their receptors may prove to be effective therapies for painful, degenerative and traumatic tendon disorders. PMID:27535247

  7. Modeling and imaging cardiac sympathetic neurodegeneration in Parkinson’s disease

    OpenAIRE

    Joers, Valerie; Emborg, Marina E.

    2014-01-01

    Parkinson’s disease (PD) is currently recognized as a multisystem disorder affecting several components of the central and peripheral nervous system. This new understanding of PD helps explain the complexity of the patients’ symptoms while challenges researchers to identify new diagnostic and therapeutic strategies. Cardiac neurodegeneration and dysautonomia affect PD patients and are associated with orthostatic hypotension, fatigue, and abnormal control of electrical heart activity. They can...

  8. A case of cardiac sudden death related to abnormality of sympathetic nervous disturbance detected by {sup 123}I-metaiodobenzylguanidine (MIBG)

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Masaki; Matsukawa, Seishirou; Morishita, Takeshi [Toho Univ., Tokyo (Japan). School of Medicine

    1996-11-01

    A case of cardiac sudden death was reported. A female, 64 years old patient with multiple myeloma had been treated with total dose of 790 mg of adriamycin. Although treadmill examination, dobutamine-loaded cardiac echography and thallium-loaded myocardial scintigraphy gave normal findings, Holter ECG revealed bigeminy and discontinuous ventricular tachycardia. Mexiletine was not tolerated. {sup 123}I-MIBG image gave deficit of lateral to posterior wall and increased washing rate of 65%. At 36 days after hospitalization, the ventricular tachycardia changed to fatal fibrillation. The sympathetic nervous disturbance detected by the enhanced washing rate of {sup 123}I-MIBG might have participated in the death. (K.H.)

  9. 去肾上腺素能交感神经支配对大鼠良性增生前列腺的影响%Damage induced by losing innervation of sympathetic nerve in rats' benign hyperplastic prostate

    Institute of Scientific and Technical Information of China (English)

    蔡建良; 辛殿祺; 何群; 汤秀琴; 那彦群

    2008-01-01

    目的 探索去除肾上腺素能交感神经支配后大鼠良性增生前列腺的组织、细胞病理学变化.方法 30周龄雄性自发性高血压大鼠65只,随机分配为手术组、手术对照组和正常对照组.手术组切断双侧盆腔主要神经节的交感腹下神经来源支,然后行膀胱造口术;手术对照组仅行膀胱造口术.分别于术后3、7、11、15、≥21 d分批处死大鼠,观察各组大鼠前列腺大体形态学、组织学和细胞超微结构改变.结果 大鼠实验模型均制作成功.手术组大鼠前列腺在后期(手术15 d后)出现轻微的质地变硬,颜色和形状变化不明显,前列腺湿重/大鼠体重比值随术后时间的延长有下降趋势,前列腺组织干重/湿重比值在手术15 d后逐渐升高,但与手术对照组比较差异均无统计学意义.镜下观:手术组大鼠前列腺早期出现腺腔明显扩张、前列腺液积存和凝块形成,平滑肌拉长变薄,但后期病变逐步缓解,腺上皮层无变化.透射电镜:手术组大鼠前列腺腺细胞、基底膜无明显变化,但平滑肌术后3 d出现肌膜皱缩,肌丝、密体和密斑结构不清晰等改变,术后11 d后,病变逐步好转.手术对照组无上述变化.结论 彻底去除肾上腺素能交感神经支配后,大鼠良性增生前列腺的平滑肌出现短时间的结构受损和功能障碍,后期能自行部分恢复.%Objective To study the pathologic change of rats' benign hyperplastic prostate after losing the innervation of sympathetic nerve. Methods A total of 65 male spontaneous hypertension rats (SHR) aged 30 weeks old were randomly assigned into treatment group, sham surgery control group and normal control group. In treatment group, the originating branches of sympathetic hypngastric nerve of the bilateral major pelvic ganglions were truncated following the performance of eystostomy. The rata were sac-rificed at day 3,7,11,15 and≥21 post-operation respectively. The gross

  10. [The state of sympathetic-adrenal system in patients with chronic cardiac insufficiency].

    Science.gov (United States)

    Nigmatullin, R R; Kirillova, V V; Dzhordzhikiia, R K; Kudrin, V S; Klodt, P M

    2009-01-01

    Activation of sympato-adrenal system plays an important role in the development of chronic cardiac failure (CCF). However, its relation to morpho-functional state of myocardium in CCF patients is virtually unknown. HPLC with electrochemical detection was used to determine plasma noradrenalin, adrenalin, and their precursors, 3,4-dioxyphenylalanine (DOPA) and dopamine, in patients with different morpho-functional changes in myocardium. The study demonstrated enhanced activity of sympato-adrenal system in patients with CCF. It showed for the first time that activity of sympato-adrenal system in CCF patients depends on the morpho-functional status of myocardium.

  11. Role of endothelin-1 in mediating changes in cardiac sympathetic nerve activity in heart failure.

    Science.gov (United States)

    Abukar, Yonis; May, Clive N; Ramchandra, Rohit

    2016-01-01

    Heart failure (HF) is associated with increased sympathetic nerve activity to the heart (CSNA), which is directly linked to mortality in HF patients. Previous studies indicate that HF is associated with high levels of plasma endothelin-1 (ET-1), which correlates with the severity of the disease. We hypothesized that blockade of endothelin receptors would decrease CSNA. The effects of intravenous tezosentan (a nonselective ETA and ETB receptor antagonist) (8 mg·kg(-1)·h(-1)) on resting levels of CSNA, arterial pressure, and heart rate were determined in conscious normal sheep (n = 6) and sheep with pacing-induced HF (n = 7). HF was associated with a significant decrease in ejection fraction (from 74 ± 2% to 38 ± 1%, P < 0.001) and a significant increase in resting levels of CSNA burst incidence (from 56 ± 11 to 87 ± 2 bursts/100 heartbeats, P < 0.01). Infusion of tezosentan for 60 min significantly decreased resting mean aterial pressure (MAP) in both normal and HF sheep (-8 ± 4 mmHg and -4 ± 3 mmHg, respectively; P < 0.05). This was associated with a significant decrease in CSNA (by 25 ± 26% of control) in normal sheep, but there was no change in CSNA in HF sheep. Calculation of spontaneous baroreflex gain indicated significant impairment of the baroreflex control of HR after intravenous tezosentan infusion in normal animals but no change in HF animals. These data suggest that endogenous levels of ET-1 contribute to the baseline levels of CSNA in normal animals, but this effect is absent in HF.

  12. Reflex Sympathetic Dystrophy in Children

    OpenAIRE

    Adnan Ayvaz

    2013-01-01

       Reflex sympathetic dystrophy (chronic regional pain syndrome) isn’t frequently encountered in practical pediatrics and childhood. Reflex sympathetic dystrophy syndrome (RSD) is a disorder characterized by widespread localized pain, often along with swelling, discoloration, trophic changes and autonomic abnormalities such as vasomotor disorders. Its etio-pathogenesis hasn’t been completely determined.The disease can form in an area innerved by a partially damaged nerve...

  13. Evaluation of cardiac sympathetic neuronal integrity in diabetic patients using iodine-123 metaiodobenzylguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Jung [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Lee, Jong Doo [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Ryu, Young Hoon [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Jeon, Pyoung [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Shim, Yong Woon [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Yoo, Hyung Sik [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Park, Chang Yun [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Lim, Seung Gil [Department of Endocrinology, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of)

    1996-04-01

    Autonomic dysfunction is associated with increased mortality in diabetic patients. To evaluate the cardiac autonomic dysfunction in these patients, a prospective study was undertaken using iodine-123 metaiodobenzylguanidine (MIBG) single-photon emission tomography (SPET). The study groups consisted of ten diabetic patients with cardiac autonomic neuropathy (group I) and six without autonomic neuropathy (group II). Autonomic nervous function tests, thallium scan, radionuclide ventriculographic data including ejection fraction and wall motion study, and 24-h urine catecholamine levels were evaluated. {sup 123}I-MIBG SPET was performed at 30 min and 4 h following injection of 3 mCi of {sup 123}I-MIBG in groups I and II and in normal subjects (n=4). On planar images, the heart to mediastinum (H/M) ratio was measured. Defect pattern and severity of MIBG uptake were qualitatively analysed on SPET. Compared with control subjects, diabetic patients had a reduced H/M ratio regardless of the presence of clinical autonomic neuropathy. There was no difference in H/M ratio between groups I and II. On SPET images, focal or diffuse defects were demonstrated in all patients in group I, and in five of the six patients in group II. The extent of defects tended to be more pronounced in group I than in group II. In conclusion, {sup 123}I-MIBG scan was found to be a more sensitive method than clinical autonomic nervous function tests for the detection of autonomic neuropathy in diabetes. (orig.). With 3 figs., 1 tab.

  14. Glial cell line-derived neurotrophic factor (GDNF) enhances sympathetic neurite growth in rat hearts at early developmental stages.

    Science.gov (United States)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Kodama, Itsuo

    2010-12-01

    Molecular signaling of sympathetic innervation of myocardium is an unresolved issue. The purpose of this study was to investigate the effect of neurotrophic factors on sympathetic neurite growth towards cardiomyocytes. Cardiomyocytes (CMs) and sympathetic neurons (SNs) were isolated from neonatal rat hearts and superior cervical ganglia, and were co-cultured, either in a random or localized way. Neurite growth from SNs toward CMs was assessed by immunohistochemistry for neurofilament M and α-actinin in response to neurotrophic factors-nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF) and a chemical repellent, semaphorin 3A. As a result, GDNF as well as NGF and BDNF stimulated neurite growth. GDNF enhanced neurite outgrowth even under the NGF-depleted culture condition, excluding an indirect effect of GDNF via NGF. Quantification of mRNA and protein by real-time PCR and immunohistochemistry at different developmental stages revealed that GDNF is abundantly expressed in the hearts of embryos and neonates, but not in adult hearts. GDNF plays an important role in inducing cardiac sympathetic innervation at the early developmental stages. A possible role in (re)innervation of injured or transplanted or cultured and transplanted myocardium may deserve investigation.

  15. Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction.

    Science.gov (United States)

    Lymperopoulos, Anastasios; Rengo, Giuseppe; Gao, Erhe; Ebert, Steven N; Dorn, Gerald W; Koch, Walter J

    2010-05-21

    Chronic heart failure (HF) is characterized by sympathetic overactivity and enhanced circulating catecholamines (CAs), which significantly increase HF morbidity and mortality. We recently reported that adrenal G protein-coupled receptor kinase 2 (GRK2) is up-regulated in chronic HF, leading to enhanced CA release via desensitization/down-regulation of the chromaffin cell alpha(2)-adrenergic receptors that normally inhibit CA secretion. We also showed that adrenal GRK2 inhibition decreases circulating CAs and improves cardiac inotropic reserve and function. Herein, we hypothesized that adrenal-targeted GRK2 gene deletion before the onset of HF might be beneficial by reducing sympathetic activation. To specifically delete GRK2 in the chromaffin cells of the adrenal gland, we crossed PNMTCre mice, expressing Cre recombinase under the chromaffin cell-specific phenylethanolamine N-methyltransferase (PNMT) gene promoter, with floxedGRK2 mice. After confirming a significant ( approximately 50%) reduction of adrenal GRK2 mRNA and protein levels, the PNMT-driven GRK2 knock-out (KO) offspring underwent myocardial infarction (MI) to induce HF. At 4 weeks post-MI, plasma levels of both norepinephrine and epinephrine were reduced in PNMT-driven GRK2 KO, compared with control mice, suggesting markedly reduced post-MI sympathetic activation. This translated in PNMT-driven GRK2 KO mice into improved cardiac function and dimensions as well as amelioration of abnormal cardiac beta-adrenergic receptor signaling at 4 weeks post-MI. Thus, adrenal-targeted GRK2 gene KO decreases circulating CAs, leading to improved cardiac function and beta-adrenergic reserve in post-MI HF. GRK2 inhibition in the adrenal gland might represent a novel sympatholytic strategy that can aid in blocking HF progression.

  16. Impaired cardiac adrenergic innervation assessed by MIBG imaging as a predictor of treatment response in childhood dilated cardiomyopathy

    OpenAIRE

    Acar, P; Merlet, P.; Iserin, L; Bonnet, D.; Sidi, D; Syrota, A; Kachaner, J

    2001-01-01

    OBJECTIVE—To evaluate the prognostic value of metaiodobenzylguanidine (MIBG) imaging in childhood cardiomyopathy.
DESIGN—Prospective cohort study.
SETTING—Tertiary referral centre.
PATIENTS—40 children (21 boys, 19 girls; mean (SD) age, 7.0 (5.6) years) with heart failure resulting from idiopathic dilated cardiomyopathy (n = 23) or various other disorders (n = 17).
METHODS—At the initial examination, cardiac 123I-MIBG uptake and release, circulating noradrenaline (norepinephrine) concentratio...

  17. Significance of cardiac sympathetic nervous system abnormality for predicting vascular events in patients with idiopathic paroxysmal atrial fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Akutsu, Yasushi; Kaneko, Kyouichi; Kodama, Yusuke; Li, Hui-Ling; Kawamura, Mitsuharu; Asano, Taku; Hamazaki, Yuji; Tanno, Kaoru; Kobayashi, Youichi [Showa University School of Medicine, Division of Cardiology, Department of Medicine, Tokyo (Japan); Suyama, Jumpei; Shinozuka, Akira; Gokan, Takehiko [Showa University School of Medicine, Department of Radiology, Tokyo (Japan)

    2010-04-15

    Neuronal system activity plays an important role for the prognosis of patients with atrial fibrillation (AF). Using {sup 123}I metaiodobenzylguanidine ({sup 123}I-MIBG) scintigraphy, we investigated whether a cardiac sympathetic nervous system (SNS) abnormality would be associated with an increased risk of vascular events in patients with paroxysmal AF. {sup 123}I-MIBG scintigraphy was performed in 69 consecutive patients (67 {+-} 13 years, 62% men) with paroxysmal AF who did not have structural heart disease. SNS integrity was assessed from the heart to mediastinum (H/M) ratio on delayed imaging. Serum concentration of C-reactive protein (CRP) was measured before {sup 123}I-MIBG study. During a mean of 4.5 {+-} 3.6 years follow-up, 19 patients had myocardial infarction, stroke or heart failure (range: 0.2-11.5 years). SNS abnormality (H/M ratio <2.7) and high CRP ({>=}0.3 mg/dl) were associated with the vascular events (58.3% in 14 of 24 patients with SNS abnormality vs 11.1% in 5 of 45 patients without SNS abnormality, p < 0.0001, 52.4% in 11 of 21 patients with high CRP vs 16.7% in 8 of 48 patients without high CRP, p < 0.0001). After adjustment for potential confounding variables such as age, left atrial dimension and left ventricular function, SNS abnormality was an independent predictor of vascular events with a hazard ratio of 4.1 [95% confidence interval (CI): 1.3-12.6, p = 0.014]. Further, SNS abnormality had an incremental and additive prognostic power in combination with high CRP with an adjusted hazard ratio of 4.1 (95% CI: 1.5-10.9, p = 0.006). SNS abnormality is predictive of vascular events in patients with idiopathic paroxysmal AF. (orig.)

  18. Significance of cardiac sympathetic nervous system abnormality for predicting vascular events in patients with idiopathic paroxysmal atrial fibrillation

    International Nuclear Information System (INIS)

    Neuronal system activity plays an important role for the prognosis of patients with atrial fibrillation (AF). Using 123I metaiodobenzylguanidine (123I-MIBG) scintigraphy, we investigated whether a cardiac sympathetic nervous system (SNS) abnormality would be associated with an increased risk of vascular events in patients with paroxysmal AF. 123I-MIBG scintigraphy was performed in 69 consecutive patients (67 ± 13 years, 62% men) with paroxysmal AF who did not have structural heart disease. SNS integrity was assessed from the heart to mediastinum (H/M) ratio on delayed imaging. Serum concentration of C-reactive protein (CRP) was measured before 123I-MIBG study. During a mean of 4.5 ± 3.6 years follow-up, 19 patients had myocardial infarction, stroke or heart failure (range: 0.2-11.5 years). SNS abnormality (H/M ratio <2.7) and high CRP (≥0.3 mg/dl) were associated with the vascular events (58.3% in 14 of 24 patients with SNS abnormality vs 11.1% in 5 of 45 patients without SNS abnormality, p < 0.0001, 52.4% in 11 of 21 patients with high CRP vs 16.7% in 8 of 48 patients without high CRP, p < 0.0001). After adjustment for potential confounding variables such as age, left atrial dimension and left ventricular function, SNS abnormality was an independent predictor of vascular events with a hazard ratio of 4.1 [95% confidence interval (CI): 1.3-12.6, p = 0.014]. Further, SNS abnormality had an incremental and additive prognostic power in combination with high CRP with an adjusted hazard ratio of 4.1 (95% CI: 1.5-10.9, p = 0.006). SNS abnormality is predictive of vascular events in patients with idiopathic paroxysmal AF. (orig.)

  19. Effects of perindopril on cardiac sympathetic nerve activity in patients with congestive heart failure: comparison with enalapril

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu; Toyama, Takuji; Suzuki, Tadashi; Kurabayashi, Masahiko [Gunma University School of Medicine, Department of Cardiovascular Medicine, Maebashi, Gunma (Japan); Kumakura, Hisao; Takayama, Yoshiaki; Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan, Department of Internal Medicine, Gunma (Japan)

    2005-08-01

    The production of aldosterone in the heart is suppressed by the angiotensin-converting enzyme (ACE) inhibitor perindopril in patients with congestive heart failure (CHF). Moreover, perindopril has been reported to have more cardioprotective effects than enalapril. Forty patients with CHF [left ventricular ejection fraction (LVEF) <45%; mean 33{+-}7%] were randomly assigned to perindopril (2 mg/day; n=20) or enalapril (5 mg/day; n=20). All patients were also treated with diuretics. The delayed heart/mediastinum count (H/M) ratio, delayed total defect score (TDS) and washout rate (WR) were determined from {sup 123}I-meta-iodobenzylguanidine (MIBG) images, and plasma brain natriuretic peptide (BNP) concentrations were measured before and 6 months after treatment. The left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV) and LVEF were also determined by echocardiography. After treatment, in patients receiving perindopril, TDS decreased from 39{+-}10 to 34{+-}9 (P<0.01), H/M ratios increased from 1.62{+-}0.27 to 1.76{+-}0.29 (P<0.01), WR decreased from 50{+-}14% to 42{+-}14% (P<0.05) and plasma BNP concentrations decreased from 226{+-}155 to 141{+-}90 pg/ml (P<0.0005). In addition, the LVEDV decreased from 180{+-}30 to 161{+-}30 ml (P<0.05) and the LVESV decreased from 122{+-}35 to 105{+-}36 ml (P<0.05). Although the LVEF tended to increase, the change was not statistically significant (from 33{+-}8% to 36{+-}12%; P=NS). On the other hand, there were no significant changes in these parameters in patients receiving enalapril. Plasma BNP concentrations, {sup 123}I-MIBG scintigraphic and echocardiographic parameters improved after 6 months of perindopril treatment. These findings indicate that perindopril treatment can ameliorate the cardiac sympathetic nerve activity and the left ventricular performance in patients with CHF. (orig.)

  20. Evaluation of cardiac sympathetic nervous function by {sup 123}I-metaiodobenzylguanidine scintigraphy in insulin-treated non-insulin dependent diabetics with hypoglycemia unawareness

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Tomio; Toyama, Takuji; Hoshizaki, Hiroshi [Gunma Prefectural Cardiovascular Center, Maebashi (Japan)] [and others

    1996-02-01

    The association between the lack of adrenergic symptoms during hypoglycemia and myocardial {sup 123}I-metaiodobenzylguanidine (MIBG) accumulation was investigated in 12 insulin-treated non-insulin-dependent diabetes mellitus (NIDDM) patients who had no evidence of heart disease. These patients were divided into 2 groups according to the presence (group A) or absence (group B) of adrenergic symptoms during hypoglycemia. Autonomic function tests revealed significantly severe autonomic dysfunction in group B compared to that in group A. Insulin infusion test indicated no significant difference in the catecholamine response between the two groups. {sup 123}I-MIBG scintigraphy showed that the heart/mediastinum ratio of MIBG uptake was significantly lower, and scintigraphic defect was greater in group B than in group A. There were no significant differences in the washout rate between the two groups. These results suggested that the lack of adrenergic symptoms during hypoglycemia may be associated with cardiac sympathetic nervous dysfunction in insulin-treated NIDDM patients, and this dysfunction is mainly due to cardiac sympathetic denervation. (author).

  1. Evaluation of cardiac sympathetic nervous function by 123I-metaiodobenzylguanidine scintigraphy in insulin-treated non-insulin dependent diabetics with hypoglycemia unawareness

    International Nuclear Information System (INIS)

    The association between the lack of adrenergic symptoms during hypoglycemia and myocardial 123I-metaiodobenzylguanidine (MIBG) accumulation was investigated in 12 insulin-treated non-insulin-dependent diabetes mellitus (NIDDM) patients who had no evidence of heart disease. These patients were divided into 2 groups according to the presence (group A) or absence (group B) of adrenergic symptoms during hypoglycemia. Autonomic function tests revealed significantly severe autonomic dysfunction in group B compared to that in group A. Insulin infusion test indicated no significant difference in the catecholamine response between the two groups. 123I-MIBG scintigraphy showed that the heart/mediastinum ratio of MIBG uptake was significantly lower, and scintigraphic defect was greater in group B than in group A. There were no significant differences in the washout rate between the two groups. These results suggested that the lack of adrenergic symptoms during hypoglycemia may be associated with cardiac sympathetic nervous dysfunction in insulin-treated NIDDM patients, and this dysfunction is mainly due to cardiac sympathetic denervation. (author)

  2. Cross-talk between sympathetic neurons and adipocytes in coculture

    OpenAIRE

    Turtzo, L. Christine; Marx, Ruth; Lane, M. Daniel

    2001-01-01

    White adipose tissue plays an integral role in energy metabolism and is governed by endocrine, autocrine, and neural signals. Neural control of adipose metabolism is mediated by sympathetic neurons that innervate the tissue. To investigate the effects of this innervation, an ex vivo system was developed in which 3T3-L1 adipocytes are cocultured with sympathetic neurons isolated from the superior cervical ganglia of newborn rats. In coculture, both adipocytes and neurons exhibit appropriate mo...

  3. Use of iodine-123 metaiodobenzylguanidine scintigraphy to assess cardiac sympathetic denervation and the impact of hypertension in patients with non-insulin-dependent diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Koji; Nakatani, Yuko; Onishi, Satoshi [Dept. of Internal Medicine, Keihanna Hospital, Hirakata City, Osaka (Japan); Utsunomiya, Keita; Saika, Yoshinori [Dept. of Radiology, Keihanna Hospital, Hirakata City (Japan); Iwasaka, Toshiji [Cardiovascular Center, Kansai Medical University, Osaka (Japan)

    1999-10-01

    The objectives of this clinical study using iodine-123 metaiodobenzylguanidine (MIBG) scintigraphy were (a) to evaluate cardiac sympathetic denervation in non-insulin-dependent diabetes mellitus (NIDDM) patients with and without hypertension and (b) to investigate the relation between cardiac sympathetic denervation and prognosis in NIDDM patients. We compared clinical characteristics and MIBG data [heart to mediastinum (H/M) ratio and % washout rate (WR)] in a control group and NIDDM patients with and without hypertension. MIBG scintigraphy was performed in 11 controls and 82 NIDDM patients without overt cardiovascular disease except for hypertension (systolic blood pressure {>=}140 and/or diastolic blood pressure {>=}90 mmHg). After MIBG examination, blood pressure was measured regularly in all NIDDM patients. There were significant differences between 65 normotensive and 17 hypertensive NIDDM patients with respect to age (55{+-}11 vs 63{+-}12 years, respectively, P<0.05), prevalence of diabetic retinopathy (12% vs 35%, respectively, P<0.05) and systolic blood pressure (120{+-}12 vs 145{+-}16 mmHg, respectively, P<0.001). The H/M ratio in hypertensive NIDDM patients was significantly lower than in the control group (1.81{+-}0.29 vs 2.27{+-}0.20, respectively, P<0.01). During the follow-up period (18{+-} 12 months), 17 NIDDM patients newly developed hypertension after MIBG examination. There were no significant differences in their clinical characteristics compared with persistently normotensive or hypertensive NIDDM patients. %WR in patients with new onset hypertension was significantly higher than in the control group (30.88%{+-}16.87% vs 12.89%{+-}11.94%, respectively, P<0.05). Moreover, in these patients %WR correlated with duration from the date of MIBG scintigraphy to the onset of hypertension (r=-0.512, P<0.05). Five NIDDM patients died during the follow-up period (four newly hypertensive patients and one normotensive patient). There were significant

  4. Sympathetic Modulation of Immunity: Relevance to Disease

    OpenAIRE

    Bellinger, Denise L.; Millar, Brooke A.; Perez, Sam; Carter, Jeff; Wood, Carlo; ThyagaRajan, Srinivasan; Molinaro, Christine; Lubahn, Cheri; Lorton, Dianne

    2008-01-01

    Optimal host defense against pathogens requires cross-talk between the nervous and immune systems. This paper reviews sympathetic-immune interaction, one major communication pathway, and its importance for health and disease. Sympathetic innervation of primary and secondary immune organs is described, as well as evidence for neurotransmission with cells of the immune system as targets. Most research thus far as focused on neural-immune modulation in secondary lymphoid organs, and have reveale...

  5. Usefulness of 123I-Meta-iodobenzylguanidine (MIBG) myocardial scintigraphy for evaluation of cardiac sympathetic nervous system function in diabetic patients

    International Nuclear Information System (INIS)

    The cardiac sympathetic nervous system function of diabetic patients with no definite cardiovascular complications other than hypertension was evaluated by 123I -MIBG myocardial scintigraphy. The subjects consisted of 82 diabetic patients, 59 men, 23 women, mean age 57 years, 17 with hypertension and 65 with normal blood pressure, and they were compared with normal controls (8 men and 3 women, mean age 54 years). Myocardial scintigraphy was performed 10 minutes and 4 hours after administration of MIBG. The superior mediastinum and whole myocardium were set as regions of interest, and the heart-to-mediastinum ratio (H/M ratio) and the washout rate (%WR) were calculated. The mean observation period was 18±12 months, and 17 of the 65 diabetic patients with normal blood pressure before the study developed hypertension during the observation period. There were significant differences in H/M ratio and %WR between the diabetic patients and normal controls (H/M ratio; 1.96±0.34 vs 2.27±0.20, %WR; 24.71±16.99% vs 12.89±11.94). The diabetic patients with hypertension had higher morbidity with diabetic retinopathy and a lower H/M ratio. The 17 patients who developed hypertension during the observation period showed an increase in %WR and a reduction in the H/M ratio. Five patients who died during the observation period had a reduced H/M ratio and increased of %WR. 123I-MIBG myocardial scintigraphy in diabetic patients was shown to be useful for detecting cardiac sympathetic nervous system dysfunction, predicting the development of hypertension, and identifying patients who had a poor outcome. Diabetic patients with abnormal signals on MIBG myocardial scintigraphy need to be monitored much more carefully. (K.H.)

  6. Usefulness of {sup 123}I-Meta-iodobenzylguanidine (MIBG) myocardial scintigraphy for evaluation of cardiac sympathetic nervous system function in diabetic patients.

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Koji; Nakatani, Yuko; Doi, Kenji; Adachi, Gakuji; Takada, Kou

    2001-11-01

    The cardiac sympathetic nervous system function of diabetic patients with no definite cardiovascular complications other than hypertension was evaluated by {sup 123}I -MIBG myocardial scintigraphy. The subjects consisted of 82 diabetic patients, 59 men, 23 women, mean age 57 years, 17 with hypertension and 65 with normal blood pressure, and they were compared with normal controls (8 men and 3 women, mean age 54 years). Myocardial scintigraphy was performed 10 minutes and 4 hours after administration of MIBG. The superior mediastinum and whole myocardium were set as regions of interest, and the heart-to-mediastinum ratio (H/M ratio) and the washout rate (%WR) were calculated. The mean observation period was 18{+-}12 months, and 17 of the 65 diabetic patients with normal blood pressure before the study developed hypertension during the observation period. There were significant differences in H/M ratio and %WR between the diabetic patients and normal controls (H/M ratio; 1.96{+-}0.34 vs 2.27{+-}0.20, %WR; 24.71{+-}16.99% vs 12.89{+-}11.94). The diabetic patients with hypertension had higher morbidity with diabetic retinopathy and a lower H/M ratio. The 17 patients who developed hypertension during the observation period showed an increase in %WR and a reduction in the H/M ratio. Five patients who died during the observation period had a reduced H/M ratio and increased of %WR. {sup 123}I-MIBG myocardial scintigraphy in diabetic patients was shown to be useful for detecting cardiac sympathetic nervous system dysfunction, predicting the development of hypertension, and identifying patients who had a poor outcome. Diabetic patients with abnormal signals on MIBG myocardial scintigraphy need to be monitored much more carefully. (K.H.)

  7. Sympathetic reinnervation in cardiac transplants: {sup 123}I-MIBG and {sup 201}Tl/{sup 99m}Tc-MIBI scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Oh, S. J.; Son, M. S.; Son, J. W.; Choi, I. S.; Shin, E. K.; Park, C. H. [Gachon Medical School, Gil Heart Cener, Inchon (Korea, Republic of)

    2000-07-01

    The purpose was to evaluate cardiac sympathetic reinnervation and hemodynamic changes after orthotopic heart transplantation (TPL). We performed 24 serial or followup cardiac 123I-MIBG imaging and rest 201Tl/99mTc-MIBI dipyridamole stress gated myocardial perfusion SPECT (g-MPS) in 15 patients (M:F=10:5;mean ages=34.5{+-}13.0 yr; idiopathic:rheumatic=14:1; one heart lung TPL)(10.80 {+-}11.88 (1-48) mo) after TPL 123I-MIBG imagings were performed in anterior position 15 minutes, 4 and 24 hours after i.v. injection of 148 MBq 123I MIBG. Image quantitation was based on the ratio of heart to mediastinal MIBG uptake (HMR) Compared to HMR on 15 min images (1.48 {+-} 0.28), neither four nor 24 hour delayed images (1.26 {+-} 0.23 vs. 1.06 {+-} 0.26: p<0.05, respectively, ANOVA) showed definite delayed localization of MIBG. 12 subjects with <13 (4.9 {+-}3.7) months after TPL had no visible 123I-MIBG uptake on early 15 min imaging however, 12 subjects with 13 to 48(28.6{+-}12.8) months had visible cardiac 123I-MIBG uptake (HMR: 1.65{+-}0.21 vs. 1.32{+-}0.26; p=0.002). One-year followup 123I-MIBG scintigraphy in nine pts showed significantly increased HMR(1.40{+-}0.31 to 1.61{+-}0.16, p<0.05) but a plateau was reached at HMR value of 2.0, which was still lower than 3.0 in normal controls. Plasma NE was increased according to I-123 MIBG myocardial uptake. Annual G-MPS detected an allograft atherosclerosis in one pt and showed progressive normalization of tachycardia and significant deterioration of LVEF and cardiac indices according to severity of rejection. To dipyridamole stress, transplant heats showed significant subnormal hemodynamic responses. Partial sympathetic late reinnervation can occur <1 year after TPL, and reached a plateau of two-third of normal value. G-MPS seems to be a useful screening test for the detection of allograft atherosclerosis and rejection.

  8. Catheter Ablation of Atrial Fibrillation Raises the Plasma Level of NGF-β Which Is Associated with Sympathetic Nerve Activity

    OpenAIRE

    Park, Jae Hyung; Hong, Sung Yu; Wi, Jin; Lee, Da Lyung; Joung, Boyoung; Lee, Moon Hyoung; Pak, Hui-Nam

    2015-01-01

    Purpose The expression of nerve growth factor-β (NGF-β) is related to cardiac nerve sprouting and sympathetic hyper innervation. We investigated the changes of plasma levels of NGF-β and the relationship to follow-up heart rate variability (HRV) after radiofrequency catheter ablation (RFCA) of atrial fibrillation (AF). Materials and Methods This study included 147 patients with AF (117 men, 55.8±11.5 years, 106 paroxysmal AF) who underwent RFCA. The plasma levels of NGF-β were quantified usin...

  9. Co-expression pattern of dopamine beta-hydroxylase (DβH) and neuropeptide Y (NPY) within sympathetic innervation of ovary and umbilical cord of the European bison (Bison bonasus L.).

    Science.gov (United States)

    Skobowiat, Cezary; Panasiewicz, Grzegorz; Gizejewski, Zygmunt; Szafranska, Bozena

    2013-12-01

    Co-expression of dopamine β-hydroxylase (DβH) and neuropeptide Y (NPY) has never been examined in ovary (OV) and umbilical cord (UC) of the European bison (Eb), the endangered wild species. The OV and UC samples were harvested from seasonally eliminated Eb females (45-120 days post coitum). Frozen histological sections were examined by double fluorescent immunohistochemistry (dF-IHC), using the primary mouse anti-DβH monoclonals and rabbit anti-NPY polyclonals and then the immunocomplexes were visualized with FITC and CY3 fluorophores, respectively. Numerous DβH immunoreactive nerve fibers (DβH-IRs) and a little less frequent NPY-IRs were found in the bundle-like structures, innervating mainly perivascular regions of the OV. The NPY-IRs constantly co-expressed DβH, while some DβH-IRs did not express NPY. This specific pattern of innervation was observed both in the stromal and cortical regions of the OV. The simultaneous co-expression of DβH and NPY were also detected in the UC, in which specific single or bundle-like structures ran along the smooth muscles of blood vessels. The spatial-specific co-expression of DβH and NPY in OV and UC, may suggest that these markers are involved in the control of vascularization that regulates nourishing blood circulation required for proper pregnancy maintenance and efficient embryo/fetus development in the Eb.

  10. Efeito do carvedilol a curto prazo na atividade simpática cardíaca pela cintilografia com 123I-MIBG Effects of short-term carvedilol on the cardiac sympathetic activity assessed by 123I-MIBG scintigraphy

    Directory of Open Access Journals (Sweden)

    Sandra Marina Ribeiro de Miranda

    2010-03-01

    Full Text Available FUNDAMENTO: Alterações autonômicas na insuficiência cardíaca estão associadas a um aumento da morbimortalidade. Vários métodos não invasivos têm sido empregados para avaliar a função simpática, incluindo a imagem cardíaca com 123I-MIBG. OBJETIVO: Avaliar a atividade simpática cardíaca, por meio da cintilografia com 123I-MIBG, antes e após três meses de terapia com carvedilol em pacientes com insuficiência cardíaca com fração de ejeção do VE BACKGROUND: Autonomic alterations in heart failure are associated with an increase in morbimortality. Several noninvasive methods have been employed to evaluate the sympathetic function, including the Meta-Iodobenzylguanidine (123I-MIBG scintigraphy imaging of the heart. OBJECTIVE: to evaluate the cardiac sympathetic activity through 123I-MIBG scintigraphy, before and after three months of carvedilol therapy in patients with heart failure and left ventricular ejection fraction (LVEF < 45%. PATIENTS AND METHODS: Sixteen patients, aged 56.3 ± 12.6 years (11 males, with a mean LVEF of 28% ± 8% and no previous use of beta-blockers were recruited for the study. Images of the heart innervation were acquired with 123I-MIBG, and the serum levels of catecholamines (epinephrine, dopamine and norepinephrine were measured; the radioisotope ventriculography (RIV was performed before and after a three-month therapy with carvedilol. RESULTS: Patients' functional class showed improvement: before the treatment, 50% of the patients were FC II and 50% were FC III. After 3 months, 7 patients were FC I (43.8% and 9 were FC II (56.2%, (p = 0.0001. The mean LVEF assessed by RIV increased from 29% to 33% (p = 0.017. There was no significant variation in cardiac adrenergic activity assessed by 123I-MIBG (early and late resting images and washout rate. No significant variation was observed regarding the measurement of catecholamines. CONCLUSION: The short-term treatment with carvedilol promoted the clinical

  11. Use of iodine-123 metaiodobenzylguanidine scintigraphy to assess cardiac sympathetic denervation and the impact of hypertension in patients with non-insulin-dependent diabetes mellitus

    International Nuclear Information System (INIS)

    The objectives of this clinical study using iodine-123 metaiodobenzylguanidine (MIBG) scintigraphy were (a) to evaluate cardiac sympathetic denervation in non-insulin-dependent diabetes mellitus (NIDDM) patients with and without hypertension and (b) to investigate the relation between cardiac sympathetic denervation and prognosis in NIDDM patients. We compared clinical characteristics and MIBG data [heart to mediastinum (H/M) ratio and % washout rate (WR)] in a control group and NIDDM patients with and without hypertension. MIBG scintigraphy was performed in 11 controls and 82 NIDDM patients without overt cardiovascular disease except for hypertension (systolic blood pressure ≥140 and/or diastolic blood pressure ≥90 mmHg). After MIBG examination, blood pressure was measured regularly in all NIDDM patients. There were significant differences between 65 normotensive and 17 hypertensive NIDDM patients with respect to age (55±11 vs 63±12 years, respectively, P<0.05), prevalence of diabetic retinopathy (12% vs 35%, respectively, P<0.05) and systolic blood pressure (120±12 vs 145±16 mmHg, respectively, P<0.001). The H/M ratio in hypertensive NIDDM patients was significantly lower than in the control group (1.81±0.29 vs 2.27±0.20, respectively, P<0.01). During the follow-up period (18± 12 months), 17 NIDDM patients newly developed hypertension after MIBG examination. There were no significant differences in their clinical characteristics compared with persistently normotensive or hypertensive NIDDM patients. %WR in patients with new onset hypertension was significantly higher than in the control group (30.88%±16.87% vs 12.89%±11.94%, respectively, P<0.05). Moreover, in these patients %WR correlated with duration from the date of MIBG scintigraphy to the onset of hypertension (r=-0.512, P<0.05). Five NIDDM patients died during the follow-up period (four newly hypertensive patients and one normotensive patient). There were significant statistical differences

  12. Sympathetic reinnervation in cardiac transplants : preliminary results {sup 123}I-MIBG and {sup 201}Tl/{sup 99m}Tc-MIBI scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joug Ho; Oh, Se Jin; Son, Min Soo; Son, Ji Won; Choi, In Seok; Shin, Euk Kyun; Park, Kuk Yang; Kim, Ju E. [International Medicine and Thoraic Surgery, Inchon (Korea, Republic of)

    1997-07-01

    Iodine-123 metaiodobenzylguanidine ({sup 123}I-MIBG) is a norepinephrine (NE) analogue. To determine whether cardiac sympathetic reinnervation occurs after orthotopic heart transplantation (TPL). Nine patients (M : F=7 :2; mean ages=34{+-}24.1 yr; idiopathic:rheumatic = 8: 1) within 197.{+-}14.3 (4-36) months after TPL performed both {sup 123}I-MIBG scintigraphy and {sup 201}Tl/{sup 99m}Tc-MIBI dipyridamole stress gated myocardial perfusion SPECT (g-MPS). {sup 23}I-MIBG imagings were performed in anterior position 15 minutes, 4 and 24 hours after i.v. injection of 148 MBq {sup 123}I MIBG. Image quantitation was based on the ratio of hear to mediastinal MIBG uptake (HMR). Six subjects with <14 (4.3{+-}1.4) months after TPL had no visible {sup 123}I-MIBG uptake on early 15. min imaging however, three subjects with 26 to 36(32.0{+-}5.3) months had visible cardiac {sup 123}I-MIBG uptake (HMR:1.24{+-}0.09 vs. 1.8{+-}0.2). Correlation was found between plasma NE concentration and HMR(r=0.80: p<0.05). Compared to HMR on 15 min images (1.5{+-}0.3), neither four nor 24 hour delayed images (1.3{+-}0.3 vs. 1.1{+-}0.1 : p<0.05, respectively, ANOVA) showed definite delayed localization of MIBG. The uptakes in the liver, lung, salivary glands and spleen were present. To dipyridamole stress, transplant hearts showed significant subnormal hemodynamic responses of HR, s-BP, d-BP, and rate pressure product (95.4{+-}13.8 to 107.4{+-}14.6, 131.0{+-}16.7 to 123.6{+-}13.4, 79.1{+-}12.7 to 72.2{+-}12.7, 124.5{+-}19.6 to 133.0{+-}23.6 p<0.05, respectively). G-MPS of one patient shod an apicoanterior wall reversible perfusion defect which was confirmed as 90% distal left anterior descending artery stenosis by coronary angiography. MIBG uptake seems to involve mainly the specific sodium and energy dependent uptake-1 pathway, and the non-neuronal uptake-2 involving simple diffusion is not significant. Conclusively, partial sympathetic late reinnervation of the transplant human hearts can

  13. Cardiac Iodine-123-Meta-Iodo-Benzylguanidine Uptake in Carotid Sinus Hypersensitivity.

    Directory of Open Access Journals (Sweden)

    Maw Pin Tan

    Full Text Available Carotid sinus syndrome is the association of carotid sinus hypersensitivity with syncope, unexplained falls and drop attacks in generally older people. We evaluated cardiac sympathetic innervation in this disorder in individuals with carotid sinus syndrome, asymptomatic carotid sinus hypersensitivity and controls without carotid sinus hypersensitivity.Consecutive patients diagnosed with carotid sinus syndrome at a specialist falls and syncope unit were recruited. Asymptomatic carotid sinus hypersensitivity and non-carotid sinus hypersensitivity control participants recruited from a community-dwelling cohort. Cardiac sympathetic innervation was determined using Iodine-123-metaiodobenzylguanidine (123-I-MIBG scanning. Heart to mediastinal uptake ratio (H:M were determined for early and late uptake on planar scintigraphy at 20 minutes and 3 hours following intravenous injection of 123-I-MIBG.Forty-two subjects: carotid sinus syndrome (n = 21, asymptomatic carotid sinus hypersensitivity (n = 12 and no carotid sinus hypersensitivity (n = 9 were included. Compared to the non- carotid sinus hypersensitivity control group, the carotid sinus syndrome group had significantly higher early H:M (estimated mean difference, B = 0.40; 95% confidence interval, CI = 0.13 to 0.67, p = 0.005 and late H:M (B = 0.32; 95%CI = 0.03 to 0.62, p = 0.032. There was, however, no significant difference in early H:M (p = 0.326 or late H:M (p = 0.351 between the asymptomatic carotid sinus hypersensitivity group and non- carotid sinus hypersensitivity controls.Cardiac sympathetic neuronal activity is increased relative to age-matched controls in individuals with carotid sinus syndrome but not those with asymptomatic carotid sinus hypersensitivity. Blood pressure and heart rate measurements alone may therefore represent an over simplification in the assessment for carotid sinus syndrome and the relative increase in cardiac sympathetic innervation provides additional clues to

  14. elPBN neurons regulate rVLM activity through elPBN-rVLM projections during activation of cardiac sympathetic afferent nerves.

    Science.gov (United States)

    Guo, Zhi-Ling; Longhurst, John C; Tjen-A-Looi, Stephanie C; Fu, Liang-Wu

    2016-08-01

    The external lateral parabrachial nucleus (elPBN) within the pons and rostral ventrolateral medulla (rVLM) contributes to central processing of excitatory cardiovascular reflexes during stimulation of cardiac sympathetic afferent nerves (CSAN). However, the importance of elPBN cardiovascular neurons in regulation of rVLM activity during CSAN activation remains unclear. We hypothesized that CSAN stimulation excites the elPBN cardiovascular neurons and, in turn, increases rVLM activity through elPBN-rVLM projections. Compared with controls, in rats subjected to microinjection of retrograde tracer into the rVLM, the numbers of elPBN neurons double-labeled with c-Fos (an immediate early gene) and the tracer were increased after CSAN stimulation (P stimulation of CSAN increased the activity of elPBN cardiovascular neurons, which was attenuated (n = 6, P stimulation (n = 5, P stimulation activates cardiovascular neurons in the elPBN and rVLM sequentially through a monosynaptic (glutamatergic) excitatory elPBN-rVLM pathway. PMID:27225950

  15. Glial cell line-derived neurotrophic factor (GDNF) enhances sympathetic neurite growth in rat hearts at early developmental stages

    NARCIS (Netherlands)

    K. Miwa; J.K. Lee; Y. Takagishi; T. Opthof; X. Fu; I. Kodama

    2010-01-01

    Molecular signaling of sympathetic innervation of myocardium is an unresolved issue. The purpose of this study was to investigate the effect of neurotrophic factors on sympathetic neurite growth towards cardiomyocytes. Cardiomyocytes (CMs) and sympathetic neurons (SNs) were isolated from neonatal ra

  16. Nicotine and sympathetic neurotransmission.

    Science.gov (United States)

    Haass, M; Kübler, W

    1997-01-01

    Nicotine increases heart rate, myocardial contractility, and blood pressure. These nicotine-induced cardiovascular effects are mainly due to stimulation of sympathetic neurotransmission, as nicotine stimulates catecholamine release by an activation of nicotine acetylcholine receptors localized on peripheral postganglionic sympathetic nerve endings and the adrenal medulla. The nicotinic acetylcholine receptor is a ligand-gated cation channel with a pentameric structure and a central pore with a cation gate, which is essential for ion selectivity and permeability. Binding of nicotine to its extracellular binding site leads to a conformational change of the central pore, which results in the influx of sodium and calcium ions. The resulting depolarization of the sympathetic nerve ending stimulates calcium influx through voltage-dependent N-type calcium channels, which triggers the nicotine-evoked exocytotic catecholamine release. In the isolated perfused guinea-pig heart, cardiac energy depletion sensitizes cardiac sympathetic nerves to the norepinephrine-releasing effect of nicotine, as indicated by a leftward shift of the concentration-response curve, a potentiation of maximum transmitter release, and a delay of the tachyphylaxis of nicotine-evoked catecholamine release. This sensitization was also shown to occur in the human heart under in vitro conditions. Through the intracardiac release of norepinephrine, nicotine induces a beta-adrenoceptor-mediated increase in heart rate and contractility, and an alpha-adrenoceptor-mediated increase in coronary vasomotor tone. The resulting simultaneous increase in oxygen demand and coronary resistance has a detrimental effect on the oxygen balance of the heart, especially in patients with coronary artery disease. Sensitization of the ischemic heart to the norepinephrine-releasing effect of nicotine may be a trigger for acute cardiovascular events in humans, such as acute myocardial infarction and/or life

  17. Sympathetic Activation Does Not Affect the Cardiac and Respiratory Contribution to the Relationship between Blood Pressure and Pial Artery Pulsation Oscillations in Healthy Subjects.

    Directory of Open Access Journals (Sweden)

    Pawel J Winklewski

    Full Text Available Using a novel method called near-infrared transillumination backscattering sounding (NIR-T/BSS that allows for the non-invasive measurement of pial artery pulsation (cc-TQ and subarachnoid width (sas-TQ in humans, we assessed the influence of sympathetic activation on the cardiac and respiratory contribution to blood pressure (BP cc-TQ oscillations in healthy subjects.The pial artery and subarachnoid width response to handgrip (HGT and cold test (CT were studied in 20 healthy subjects. The cc-TQ and sas-TQ were measured using NIR-T/BSS; cerebral blood flow velocity (CBFV was measured using Doppler ultrasound of the left internal carotid artery; heart rate (HR and beat-to-beat mean BP were recorded using a continuous finger-pulse photoplethysmography; respiratory rate (RR, minute ventilation (MV, end-tidal CO2 (EtCO2 and end-tidal O2 (EtO2 were measured using a metabolic and spirometry module of the medical monitoring system. Wavelet transform analysis was used to assess the relationship between BP and cc-TQ oscillations.HGT evoked an increase in BP (+15.9%; P<0.001, HR (14.7; P<0.001, SaO2 (+0.5; P<0.001 EtO2 (+2.1; P<0.05 RR (+9.2%; P = 0.05 and MV (+15.5%; P<0.001, while sas-TQ was diminished (-8.12%; P<0.001, and a clear trend toward cc-TQ decline was observed (-11.0%; NS. CBFV (+2.9%; NS and EtCO2 (-0.7; NS did not change during HGT. CT evoked an increase in BP (+7.4%; P<0.001, sas-TQ (+3.5%; P<0.05 and SaO2(+0.3%; P<0.05. HR (+2.3%; NS, CBFV (+2.0%; NS, EtO2 (-0.7%; NS and EtCO2 (+0.9%; NS remained unchanged. A trend toward decreased cc-TQ was observed (-5.1%; NS. The sas-TQ response was biphasic with elevation during the first 40 seconds (+8.8% vs. baseline; P<0.001 and subsequent decline (+4.1% vs. baseline; P<0.05. No change with respect to wavelet coherence and wavelet phase coherence was found between the BP and cc-TQ oscillations.Short sympathetic activation does not affect the cardiac and respiratory contribution to the relationship

  18. Innervation changes induced by inflammation of the rat thoracolumbar fascia.

    Science.gov (United States)

    Hoheisel, U; Rosner, J; Mense, S

    2015-08-01

    Recently, the fascia innervation has become an important issue, particularly the existence of nociceptive fibers. Fascia can be a source of pain in several disorders such as fasciitis and non-specific low back pain. However, nothing is known about possible changes of the fascia innervation under pathological circumstances. This question is important, because theoretically pain from the fascia cannot only be due to increased nociceptor discharges, but also to a denser innervation of the fascia by nociceptive endings. In this histological study, an inflammation was induced in the thoracolumbar fascia (TLF) of rats and the innervation by various fiber types compared between the inflamed and intact TLF. Although the TLF is generally considered to have proprioceptive functions, no corpuscular proprioceptors (Pacini and Ruffini corpuscles) were found. To obtain quantitative data, the length of fibers and free nerve endings were determined in the three layers of the rat TLF: inner layer (IL, adjacent to the multifidus muscle), middle layer (ML) and outer layer (OL). The main results were that the overall innervation density showed little change; however, there were significant changes in some of the layers. The innervation density was significantly decreased in the OL, but this change was partly compensated for by an increase in the IL. The density of substance P (SP)-positive - presumably nociceptive - fibers was significantly increased. In contrast, the postganglionic sympathetic fibers were significantly decreased. In conclusion, the inflamed TLF showed an increase of presumably nociceptive fibers, which may explain the pain from a pathologically altered fascia. The meaning of the decreased innervation by sympathetic fibers is obscure at present. The lack of proprioceptive corpuscular receptors within the TLF does not preclude its role as a proprioceptive structure, because some of the free nerve endings may function as proprioceptors.

  19. PET and SPET tracers for mapping the cardiac nervous system

    International Nuclear Information System (INIS)

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[18F]fluorodopamine, (-)-6-[18F]fluoronorepinephrine and (-)-[11C]epinephrine, and radiolabelled catecholamine analogues, such as [123I]meta-iodobenzylguanidine, [11C]meta-hydroxyephedrine, [18F]fluorometaraminol, [11C]phenylephrine and meta-[76Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[18F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility for cardiac neuronal imaging. (orig.)

  20. PET and SPET tracers for mapping the cardiac nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Oliver; Halldin, Christer [Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institute, Karolinska Hospital, 17176 Stockholm (Sweden)

    2002-03-01

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[{sup 18}F]fluorodopamine, (-)-6-[{sup 18}F]fluoronorepinephrine and (-)-[{sup 11}C]epinephrine, and radiolabelled catecholamine analogues, such as [{sup 123}I]meta-iodobenzylguanidine, [{sup 11}C]meta-hydroxyephedrine, [{sup 18}F]fluorometaraminol, [{sup 11}C]phenylephrine and meta-[{sup 76}Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[{sup 18}F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility

  1. Neurohumoral indicators of efficacy radiofrequency cardiac denervation

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, A. V., E-mail: ave@cardio-tomsk.ru; Evtushenko, V. V. [National Research Tomsk State University, Tomsk (Russian Federation); Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Saushkina, Yu. V.; Gusakova, A. M.; Suslova, T. E.; Dymbrylova, O. N.; Smyshlyaev, K. A.; Kurlov, I. O. [Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Lishmanov, Yu. B.; Anfinogenova, Ya. D. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Sergeevichev, D. S. [Academician E.N. Meshalkin State Research Institute of Circulation Pathology, Novosibirsk (Russian Federation); Bykov, A. N.; Syryamkin, V. I.; Kistenev, Yu. V. [National Research Tomsk State University, Tomsk (Russian Federation); Lotkov, A. I. [Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS, Tomsk (Russian Federation); Pokushalov, E. A.

    2015-11-17

    In this study, we compared pre- and postoperative parameters of the cardiac sympathetic innervation. The aim of the study was to examine the approaches to evaluating the quality of radiofrequency (RF)-induced cardiac denervation by using non-invasive and laboratory methods. The study included 32 people with long-lasting persistent atrial fibrillation (AF). The patients were divided into 2 groups according to the objectives of the study: group 1 (main) - 21 patients with mitral valve diseases, which simultaneously with radiofrequency ablation (RFA) AF carried out on the effects of the paraganglionic nervous plexuses by C. Pappone (2004) and N. Doll (2008) schemes. The second group (control) contained 11 patients with heart diseases in sinus rhythm (the RF denervation not been performed). All patients, who underwent surgical treatment, were received examination of cardiac sympathetic tone by using {sup 123}I-MIBG. All of them made blood analysis from ascending aorta and coronary sinus to determine the level of norepinephrine and its metabolites before and after cardiac denervation. Data of radionuclide examination are correlating with laboratory data.

  2. Neurohumoral indicators of efficacy radiofrequency cardiac denervation

    Science.gov (United States)

    Evtushenko, A. V.; Evtushenko, V. V.; Saushkina, Yu. V.; Lishmanov, Yu. B.; Pokushalov, E. A.; Sergeevichev, D. S.; Gusakova, A. M.; Suslova, T. E.; Dymbrylova, O. N.; Bykov, A. N.; Syryamkin, V. I.; Kistenev, Yu. V.; Anfinogenova, Ya. D.; Smyshlyaev, K. A.; Lotkov, A. I.; Kurlov, I. O.

    2015-11-01

    In this study, we compared pre- and postoperative parameters of the cardiac sympathetic innervation. The aim of the study was to examine the approaches to evaluating the quality of radiofrequency (RF)-induced cardiac denervation by using non-invasive and laboratory methods. The study included 32 people with long-lasting persistent atrial fibrillation (AF). The patients were divided into 2 groups according to the objectives of the study: group 1 (main) - 21 patients with mitral valve diseases, which simultaneously with radiofrequency ablation (RFA) AF carried out on the effects of the paraganglionic nervous plexuses by C. Pappone (2004) and N. Doll (2008) schemes. The second group (control) contained 11 patients with heart diseases in sinus rhythm (the RF denervation not been performed). All patients, who underwent surgical treatment, were received examination of cardiac sympathetic tone by using 123I-MIBG. All of them made blood analysis from ascending aorta and coronary sinus to determine the level of norepinephrine and its metabolites before and after cardiac denervation. Data of radionuclide examination are correlating with laboratory data.

  3. 射频消融改良心脏自主神经治疗缓慢型心律失常%Radiofrequency Ablation of Bradyarrhythmia by Modification of Cardiac Autonomic Innervation

    Institute of Scientific and Technical Information of China (English)

    方芳

    2012-01-01

    心脏神经消融是治疗迷走神经介导的缓慢型心律失常的新方法.射频消融可选择性地造成迷走神经的损伤,改良窦房结和房室结的神经支配.对于部分间歇性高度房室传导阻滞、功能性窦房结功能障碍、神经心源性晕厥等患者,有可能作为起搏器和药物治疗的替代治疗手段.%Radiofrequency catheter ablation is a new technique for management of patients with dominantly adverse parasympathetic autonomic influence. Catheter ablation may inflict the vagal innervation of the sinus and atrioventricular nodes selectively. Cardiac vagal den-ervation may prevent pacemaker implantation in some patients with functional atrioventricular block, sinus dysfunction, and neurocardiogenic syncope.

  4. Cardiac sympathetic dysfunction in Parkinson's disease. Relationship between results of 123I-MIBG scintigraphy and autonomic nervous function evaluated by the Valsalva maneuver

    International Nuclear Information System (INIS)

    We examined whether the results of 123I-MIBG scintigraphy reflect cardiac sympathetic nerve function in patients with Parkinson's disease (PD). The subjects were 62 patients with PD (age, 65.4±6.3 years) and 53 controls (65.2±7.1 years). All subjects underwent 123I-MIBG scintigraphy and QTc interval measurement on electrocardiogram (ECG). Hemodynamic autonomic function was estimated by the Valsalva maneuver in 37 subjects (63.9±5.2 years) randomly selected from the patients with PD. As control, the Valsalva maneuver was also done in 20 randomly selected controls (64.1±5.0 years), and 123I-MIBG scintigraphy was performed in 21 controls (67.7±5.3 years old). The subjects rested in a supine position for 20 min and were given an intravenous injection of 111 MBq 123I-MIBG. Relative organ uptake was determined by the region of interest (ROI) in the anterior view and the ratio of average pixel count in the heart (H) to that in the mediastinum (M) was calculated (H/M ratio) for early (after 15 min) and delayed (after 3 hrs) periods. The Valsalva maneuver was done by having the subjects exhale into a mouthpiece at an expiratory pressure of 40 mmHg for 15 seconds. Blood pressure and RR intervals were measured during the Valsalva maneuver by tonometry, using a noninvasive blood pressure monitoring system (ANS 508, Nihon Colin Co., Ltd.). Baroreceptor reflex sensitivities (BRS) of the second phase (BRS II) and fourth phase (BRS IV) of the Valsalva maneuver were calculated, and blood pressure elevations during the late second phase (IIp) and fourth phase (IVp) were measured. QTc was greater in the patients with PD (417 ms) than in the control subjects (409 ms). The H/M ratios of the early and delayed images in the patients with PD (1.76, 1.61) were significantly lower than those in the control subjects (2.56, 2.45). The early and delayed H/M ratios significantly correlated with the severity of disease according to Hoehn-Yahr stage. QTc interval and IVp significantly

  5. Mechanism of relation among heart meridian, referred cardiac pain and heart

    Institute of Scientific and Technical Information of China (English)

    RONG; Peijing(荣培晶); ZHU; Bing(朱兵)

    2002-01-01

    It has been demonstrated that an important clinical phenomenon often associated with visceral diseases is the referred pain to somatic structures, especially to the body areaof homo-segmental innervation. It is interesting that the somatic foci of cardiac referred pain wereoften and mainly distributed along the heart meridian (HM), whereas the acupoints of HM havebeen applied to treat cardiac disease since ancient times. The purpose of this study was to inves-tigate the neural relationship between the cardiac referred pain and the heart meridian.Fluorescent triple-labeling was injected into the pericardium, some acupoints of HM and lung me-ridian (LM, for control). The responses of the left cardiac sympathetic nerve and of the EMG in left HM and LM were electrophysiologically studied, when the electrical stimuli were applied to the acupoints of left HM and to the left cardiac sympathetic nerve. More double-labeled neurons in HM-heart, not in LM-heart, were observed in the ipsilateral dorsal root ganglia of the spinal segments C8-T3. Electric stimulation of the acupoints of left HM was able to elicit more responses of left cardiac sympathetic nerve than that of the LM-acupoints. Electric stimulation of the left cardiac sympathetic nerve resulted in stronger activities of EMG-response in the acupoints of left HM than in LM-acupoints. We conclude that double-labeling study has provided direct evidence for the existence of dichotomizing afferent fibers that supply both the pericardium and HM. Electrophysiological results show that HM is more closely related functionally to heart. These findings provide a possible morphological and physiological explanation for the referred cardiac pain and HM-heart interrelation.

  6. Iodine-123 metaiodobenzylguanidine imaging of the heart in idiopathic congestive cardiomyopathy and cardiac transplants

    Energy Technology Data Exchange (ETDEWEB)

    Glowniak, J.V.; Turner, F.E.; Gray, L.L.; Palac, R.T.; Lagunas-Solar, M.C.; Woodward, W.R.

    1989-07-01

    Iodine-123 metaiodobenzylguanidine ((/sup 123/I)MIBG) is a norepinephrine analog which can be used to image the sympathetic innervation of the heart. In this study, cardiac imaging with (/sup 123/I)MIBG was performed in patients with idiopathic congestive cardiomyopathy and compared to normal controls. Initial uptake, half-time of tracer within the heart, and heart to lung ratios were all significantly reduced in patients compared to normals. Uptake in lungs, liver, salivary glands, and spleen was similar in controls and patients with cardiomyopathy indicating that decreased MIBG uptake was not a generalized abnormality in these patients. Iodine-123 MIBG imaging was also performed in cardiac transplant patients to determine cardiac nonneuronal uptake. Uptake in transplants was less than 10% of normals in the first 2 hr and nearly undetectable after 16 hr. The decreased uptake of MIBG suggests cardiac sympathetic nerve dysfunction while the rapid washout of MIBG from the heart suggests increased cardiac sympathetic nerve activity in idiopathic congestive cardiomyopathy.

  7. Different patterns of cardiac sympathetic denervation in tremor-type compared to akinetic-rigid-type Parkinson's disease: molecular imaging with ¹²³I-MIBG.

    Science.gov (United States)

    Chiaravalloti, A; Stefani, A; Tavolozza, M; Pierantozzi, M; Di Biagio, D; Olivola, E; Di Pietro, B; Stampanoni, M; Danieli, R; Simonetti, G; Stanzione, P; Schillaci, O

    2012-12-01

    The aim of this study was to evaluate the correlation between the clinical motor phenotypes of Parkinson's disease (PD) and ¹²³I-MIBG myocardial uptake. In total, 53 patients with PD [31 males and 22 females, mean age 62±10 years; 19 Hoehn & Yahr (H&Y) stage 1, 9 stage 1.5, 15 stage 2 and 10 at stage 3] were examined and subdivided into different clinical forms on the basis of dominance of resting tremor (n=19, TDT) and bradykinesia plus rigidity (n=34, ART). This status was correlated with the semi-quantitative analysis of ¹²³I-MIBG myocardial uptake. An age-matched control group of 18 patients was recruited (8 males and 10 females, mean age 62.4±16.3 years). ¹²³I-MIBG myocardial uptake significantly correlated with disease duration in early (r²=0.1894; P=0.0028) and delayed images (r²=0.1795; P=0.0037) in PD patients, while no correlation was found when considering age at examination, UPDRS III motor examination section score and H&Y score. PD patients showed a reduced ¹²³I-MIBG myocardial uptake compared to the control group in early (P=0.0026) and delayed images (P=0.0040), and ¹²³I-MIBG myocardial uptake was significantly lower in delayed images in TDT patients compared with ART patients (P=0.0167). A decrease was detected in the heart-to-mediastinum (H/M) ratio in delayed images compared to that of the early images in TDT patients (P=0.0040) and in the whole PD population (P=0.0012), while no differences were found in ART patients (P=0.1043). The results of the present study revealed that the cardiac sympathetic system is more severely impaired in TDT than in ART patients and ¹²³I-MIBG molecular imaging has the potential help in improving therapeutic planning in these patients. PMID:23023866

  8. Effects of adding intravenous nicorandil to standard therapy on cardiac sympathetic nerve activity and myocyte dysfunction in patients with acute decompensated heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Toyama, Takuji; Funada, Ryuichi; Takama, Noriaki; Koitabashi, Norimichi; Kurabayashi, Masahiko [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Suzuki, Yasuyuki; Matsumoto, Naoya [Nihon University School of Medicine, Department of Cardiology, Tokyo (Japan); Sato, Yuichi [Health Park Clinic, Department of Imaging, Takasaki, Gunma (Japan)

    2015-04-01

    Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, improves cardiac sympathetic nerve activity (CSNA) in ischemic heart disease or chronic heart failure. However, its effects on CSNA and myocyte dysfunction in acute heart failure (AHF) remain unclear. We investigated the effects of adding intravenous nicorandil to standard therapy on CSNA and myocyte dysfunction in AHF. We selected 70 patients with mild to moderate nonischemic AHF who were treated with standard conventional therapy soon after admission. Thirty-five patients were assigned to additionally receive intravenous nicorandil (4-12 mg/h; group A), whereas the remaining patients continued their current drug regimen (group B). Delayed total defect score (TDS), delayed heart to mediastinum count (H/M) ratio, and washout rate (WR) were determined by {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy within 3 days of admission and 4 weeks later. High sensitivity troponin T (hs-TnT) level was also measured at the same time points. After treatment, MIBG scintigraphic parameters significantly improved in both groups. However, the extent of the changes in these parameters in group A significantly exceeded the extent of the changes in group B [TDS -11.3 ± 4.3 in group A vs -4.0 ± 6.0 in group B (p < 0.01); H/M ratio 0.31 ± 0.16 vs 0.14 ± 0.16 (p < 0.01); WR -13.8 ± 7.8 % vs -6.1 ± 8.9 % (p < 0.01)]. The hs-TnT level decreased significantly from 0.052 ± 0.043 to 0.041 ± 0.033 ng/ml (p < 0.05) in group A, but showed no significant change in group B. Moreover, in both groups, no relationships between the extent of changes in MIBG parameters and hs-TnT level were observed. Adding intravenous nicorandil to standard therapy provides additional benefits for CSNA and myocyte dysfunction over conventional therapy alone in AHF patients. Furthermore, the mechanisms of improvement in CSNA and myocyte dysfunction after nicorandil treatment in AHF patients were distinct. (orig.)

  9. Sympathetic nerve damage and restoration after ischemia-reperfusion injury as assessed by {sup 11}C-hydroxyephedrine

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Rudolf A.; Higuchi, Takahiro [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); University of Wuerzburg, Comprehensive Heart Failure Center, Wuerzburg (Germany); Maya, Yoshifumi [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Nihon Medi-Physics Co., Ltd., Research Centre, Chiba (Japan); Rischpler, Christoph [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Muenchen (Germany); Javadi, Mehrbod S. [Johns Hopkins University, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, Baltimore, MD (United States); Fukushima, Kazuhito [Hyogo College of Medicine, Department of Radiology, Hyogo (Japan); Lapa, Constantin [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Herrmann, Ken [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); David Geffen School of Medicine at UCLA, Department of Molecular and Medical Pharmacology, Los Angeles, CA (United States)

    2016-02-15

    An altered state of the cardiac sympathetic nerves is an important prognostic factor in patients with coronary artery disease. The aim of this study was to investigate regional sympathetic nerve damage and restoration utilizing a rat model of myocardial transient ischemia and a catecholamine analog PET tracer, {sup 11}C-hydroxyephedrine ({sup 11}C-HED). Transient myocardial ischemia was induced by coronary occlusion for 20 min and reperfusion in male Wistar rats. Dual-tracer autoradiography was performed subacutely (7 days) and chronically (2 months) after ischemia, and in control rats without ischemia using {sup 11}C-HED as a marker of sympathetic innervation and {sup 201}TI for perfusion. Additional serial in vivo cardiac {sup 11}C-HED and {sup 18}F-FDG PET scans were performed in the subacute and chronic phases after ischemia. After transient ischemia, the {sup 11}C-HED uptake defect areas in both the subacute and chronic phases were clearly larger than the perfusion defect areas in the midventricular wall. The subacute {sup 11}C-HED uptake defect showed a transmural pattern, whereas uptake recovered in the subepicardial portion in the chronic phase. Tyrosine hydroxylase antibody nerve staining confirmed regional denervation corresponding to areas of decreased {sup 11}C-HED uptake. Serial in vivo PET imaging visualized reductions in the area of the {sup 11}C-HED uptake defects in the chronic phase consistent with autoradiography and histology. Higher susceptibility of sympathetic neurons compared to myocytes was confirmed by a larger {sup 11}C-HED defect with a corresponding histologically identified region of denervation. Furthermore, partial reinnervation was observed in the chronic phase as shown by recovery of subepicardial {sup 11}C-HED uptake. (orig.)

  10. Scintigraphic differentiation between two forms of primary dysautonomia early after onset of autonomic dysfunction: value of cardiac and pulmonary iodine-123 MIBG uptake

    International Nuclear Information System (INIS)

    Primary dysfunction of the autonomic nervous system can be observed in patients with Parkinson's disease and those with multiple system atrophy. However, the fate of the two diseases differs considerably and leads to different strategies for patient management. Differentiation of the two diseases currently requires a combination of several clinical and electrophysiological tests. First studies of myocardial innervation using iodine-123 metaiodobenzylguanidine (MIBG) indicated a possible role of scintigraphy for this purpose. An increase in the pulmonary uptake of 123I-MIBG has been reported in secondary dysautonomias. Whether sympathetic innervation of the lung is affected in primary dysautonomias is currently unknown. Therefore, cardiac and pulmonary uptake of 123I-MIBG was studied in 21 patients with Parkinson's disease, 7 patients with multiple system atrophy and 13 age- and sex-matched controls. Thoracic images were obtained in the anterior view 4 h after intravenous injection of 185 MBq 123I-MIBG, at which time the maximum neuronal uptake is reached. All patients with Parkinson's disease had significantly lower cardiac uptake of 123I-MIBG than patients with multiple system atrophy and controls. Sympathetic innervation of the lung was not affected in either disease. It is concluded that scintigraphy with 123I-MIBG appears to be a useful tool for differentiation between Parkinson's disease and multiple system atrophy early after onset of autonomic dysfunction. (orig.)

  11. Scintigraphic differentiation between two forms of primary dysautonomia early after onset of autonomic dysfunction: value of cardiac and pulmonary iodine-123 MIBG uptake

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, M.J.; Juengling, F.D.; Krause, T.M. [Dept. of Nuclear Medicine, Freiburg University Hospital (Germany); Braune, S. [Dept. of Neurology, Freiburg University Hospital (Germany)

    2000-05-01

    Primary dysfunction of the autonomic nervous system can be observed in patients with Parkinson's disease and those with multiple system atrophy. However, the fate of the two diseases differs considerably and leads to different strategies for patient management. Differentiation of the two diseases currently requires a combination of several clinical and electrophysiological tests. First studies of myocardial innervation using iodine-123 metaiodobenzylguanidine (MIBG) indicated a possible role of scintigraphy for this purpose. An increase in the pulmonary uptake of {sup 123}I-MIBG has been reported in secondary dysautonomias. Whether sympathetic innervation of the lung is affected in primary dysautonomias is currently unknown. Therefore, cardiac and pulmonary uptake of {sup 123}I-MIBG was studied in 21 patients with Parkinson's disease, 7 patients with multiple system atrophy and 13 age- and sex-matched controls. Thoracic images were obtained in the anterior view 4 h after intravenous injection of 185 MBq {sup 123}I-MIBG, at which time the maximum neuronal uptake is reached. All patients with Parkinson's disease had significantly lower cardiac uptake of {sup 123}I-MIBG than patients with multiple system atrophy and controls. Sympathetic innervation of the lung was not affected in either disease. It is concluded that scintigraphy with {sup 123}I-MIBG appears to be a useful tool for differentiation between Parkinson's disease and multiple system atrophy early after onset of autonomic dysfunction. (orig.)

  12. Autonomic innervation of the heart. Role of molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Slart, Riemer H.J.A; Elsinga, Philip H. [Univ. Medical Center Groningen (Netherlands). Nuclear Medicine and Molecular Imaging; Tio, Rene A. [Univ. Medical Center Groningen (Netherlands). Thorax Center Cardiology; Schwaiger, Markus (ed.) [Technische Univ. Muenchen Klinikum Rechts der Isar (Germany). Nuklearmedizinische Klinik

    2015-03-01

    Reviews in detail the value of SPECT-CT and PET-CT in the imaging of cardiac innervation. Details the role of imaging in a range of conditions and diseases. Includes important background on pathophysiology, tracers, radiopharmaceutical production, and kinetic modeling software. This book explains in detail the potential value of the hybrid modalities, SPECT-CT and PET-CT, in the imaging of cardiac innervation in a wide range of conditions and diseases, including ischemic heart disease, diabetes mellitus, heart failure, amyloidosis, heart transplantation, and ventricular arrhythmias. Imaging of the brain-heart axis in neurodegenerative disease and stress and of cardiotoxicity is also discussed. The roles of the various available tracers are fully considered, and individual chapters address radiopharmaceutical development under GMP, imaging physics, and kinetic modeling software. Highly relevant background information is included on the autonomic nervous system of the heart and its pathophysiology, and in addition future perspectives are discussed. Awareness of the importance of autonomic innervation of the heart for the optimal management of cardiac patients is growing, and there is an evident need for objective measurement techniques or imaging modalities. In this context, Autonomic Innervation of the Heart will be of wide interest to clinicians, researchers, and industry.

  13. Autonomic innervation of the heart. Role of molecular imaging

    International Nuclear Information System (INIS)

    Reviews in detail the value of SPECT-CT and PET-CT in the imaging of cardiac innervation. Details the role of imaging in a range of conditions and diseases. Includes important background on pathophysiology, tracers, radiopharmaceutical production, and kinetic modeling software. This book explains in detail the potential value of the hybrid modalities, SPECT-CT and PET-CT, in the imaging of cardiac innervation in a wide range of conditions and diseases, including ischemic heart disease, diabetes mellitus, heart failure, amyloidosis, heart transplantation, and ventricular arrhythmias. Imaging of the brain-heart axis in neurodegenerative disease and stress and of cardiotoxicity is also discussed. The roles of the various available tracers are fully considered, and individual chapters address radiopharmaceutical development under GMP, imaging physics, and kinetic modeling software. Highly relevant background information is included on the autonomic nervous system of the heart and its pathophysiology, and in addition future perspectives are discussed. Awareness of the importance of autonomic innervation of the heart for the optimal management of cardiac patients is growing, and there is an evident need for objective measurement techniques or imaging modalities. In this context, Autonomic Innervation of the Heart will be of wide interest to clinicians, researchers, and industry.

  14. Innervation of ''painful'' lumbar discs

    NARCIS (Netherlands)

    Coppes, MH; Marani, E; Thomeer, RTWM; Groen, GJ

    1997-01-01

    Study Design. The authors investigated the innervation of discographically confirmed degenerated and ''painful'' human intervertebral discs. Objective. To determine the type and distribution patterns of nerve fibers present in degenerated human intervertebral discs. Summary of Background Data. The i

  15. Catecholamine-induced excitation of nociceptors in sympathetically maintained pain.

    Science.gov (United States)

    Jørum, Ellen; Ørstavik, Kristin; Schmidt, Roland; Namer, Barbara; Carr, Richard W; Kvarstein, Gunnvald; Hilliges, Marita; Handwerker, Hermann; Torebjörk, Erik; Schmelz, Martin

    2007-02-01

    Sympathetically maintained pain could either be mediated by ephaptic interactions between sympathetic efferent and afferent nociceptive fibers or by catecholamine-induced activation of nociceptive nerve endings. We report here single fiber recordings from C nociceptors in a patient with sympathetically maintained pain, in whom sympathetic blockade had repeatedly eliminated the ongoing pain in both legs. We classified eight C-fibers as mechano-responsive and six as mechano-insensitive nociceptors according to their mechanical responsiveness and activity-dependent slowing of conduction velocity (latency increase of 0.5+/-1.1 vs. 7.1+/-2.0 ms for 20 pulses at 0.125 Hz). Two C-fibers were activated with a delay of several seconds following strong endogenous sympathetic bursts; they were also excited for about 3 min following the injection of norepinephrine (10 microl, 0.05%) into their innervation territory. In these two fibers, a prolonged activation by injection of low pH solution (phosphate buffer, pH 6.0, 10 microl) and sensitization of their heat response following prostaglandin E2 injection were recorded, evidencing their afferent nature. Moreover, their activity-dependent slowing was typical for mechano-insensitive nociceptors. We conclude that sensitized mechano-insensitive nociceptors can be activated by endogenously released catecholamines and thereby may contribute to sympathetically maintained pain. No evidence for ephaptic interaction between sympathetic efferent and nociceptive afferent fibers was found. PMID:16997471

  16. Evaluation of cardiac blood blow, metabolism and sympathetic nerve function in patients with cardiac failure using PET and SPECT. Prognostic diagnosis based on the analysis of aggravating factors of the disease

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Yoshio; Shimozu, Junko; Yasumura, Yoshio; Nagatani, Kenzo; Miyatake, Kunio [National Cardiovascular Center, Suita, Osaka (Japan)

    1998-02-01

    Focusing on the failure of energy metabolism, which is assumed to be attributed to the cardiac muscle disorder of a patient with cardiac failure, the characteristics and diagnostic significance of the metabolic disorders of cadiac muscles were investigated in those patients. The diagnostic efficacy of {beta}-methyl iodophenyl pentadecanoic acid (BMIPP) which is a imaging agent for lipid metabolism in the cardiac muscle was assessed in the clinical states of cardiac failure due to pulmonary hypertension. Even if there was a considerable increase in the mean pulmonary arterial pressure (mPAP), the initial accumulation of BMIPP linearly increased, similarly to the increase in the accumulation of MIBI, a blood flow agent. The initial accumulation of BMIPP was thought to reflect a thicken cardiac muscle and/or increased blood flow. Also, its washing-out rate was suggested to be usable as an clinical indicator to estimate the loading of ventricular pressure. (M.N.)

  17. Involvement of Hypothalamic AMP-Activated Protein Kinase in Leptin-Induced Sympathetic Nerve Activation

    OpenAIRE

    Mamoru Tanida; Naoki Yamamoto; Toshishige Shibamoto; Kamal Rahmouni

    2013-01-01

    In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK) is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb). We investigated the potential of AMPKα2 in the sympathetic effec...

  18. Abnormal sympathetic nervous system development and physiologic dysautonomia in Egr3-deficient mice

    OpenAIRE

    Eldredge, Laurie C.; Gao, Xiaoguang M.; Quach, David; LI, Lin; Han, Xiaoqiang; Lomasney, Jon; Tourtellotte, Warren G.

    2008-01-01

    Sympathetic nervous system development depends upon many factors that mediate neuron migration, differentiation and survival. Target tissue-derived nerve growth factor (NGF) signaling-induced gene expression is required for survival, differentiation and target tissue innervation of post-migratory sympathetic neurons. However, the transcriptional regulatory mechanisms mediated by NGF signaling are very poorly defined. Here, we identify Egr3, a member of the early growth response (Egr) family o...

  19. Ovarian innervation develops before initiation of folliculogenesis in the rat.

    Science.gov (United States)

    Malamed, S; Gibney, J A; Ojeda, S R

    1992-10-01

    Sympathetic neurotransmitters have been shown to be present in the ovary of the rat during early postnatal development and to affect steroidogenesis before the ovary becomes responsive to gonadotropins, and before the first primordial follicles are formed. This study was undertaken to determine if development of the ovarian innervation is an event that antedates the initiation of folliculogenesis in the rat, Rattus norvegicus. Serial sections of postnatal ovaries revealed a negligible frequency of follicles 24 h after birth (about 1 primordial follicle per ovary). Twelve hours later there were about 500 follicles per ovary, a number that more than doubled to about 1300 during the subsequent 12 h, indicating that an explosive period of follicular differentiation occurs between the end of postnatal days 1 and 2. Electron microscopy demonstrated that before birth the ovaries are already innervated by fibers containing clear and dense-core vesicles. Immunohistochemistry performed on either fetal (day 19) or newborn (less than 15h after birth) ovaries showed the presence of catecholaminergic nerves, identified by their content of immunoreactive tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis. While some of these fibers innervate blood vessels, others are associated with primordial ovarian cells, thereby suggesting their participation in non-vascular functions. Since prefollicular ovaries are insensitive to gonadotropins, the results suggest that the developing ovary becomes subjected to direct neurogenic influences before it acquires responsiveness to gonadotropins.

  20. Chronic cardiac pressure overload induces adrenal medulla hypertrophy and increased catecholamine synthesis.

    Science.gov (United States)

    Schneider, Johanna; Lother, Achim; Hein, Lutz; Gilsbach, Ralf

    2011-06-01

    Increased activity of the sympathetic system is an important feature contributing to the pathogenesis and progression of chronic heart failure. While the mechanisms and consequences of enhanced norepinephrine release from sympathetic nerves have been intensely studied, the role of the adrenal gland in the development of cardiac hypertrophy and progression of heart failure is less well known. Thus, the aim of the present study was to determine the effect of chronic cardiac pressure overload in mice on adrenal medulla structure and function. Cardiac hypertrophy was induced in wild-type mice by transverse aortic constriction (TAC) for 8 weeks. After TAC, the degree of cardiac hypertrophy correlated significantly with adrenal weight and adrenal catecholamine storage. In the medulla, TAC caused an increase in chromaffin cell size but did not result in chromaffin cell proliferation. Ablation of chromaffin α(2C)-adrenoceptors did not affect adrenal weight or epinephrine synthesis. However, unilateral denervation of the adrenal gland completely prevented adrenal hypertrophy and increased catecholamine synthesis. Transcriptome analysis of microdissected adrenal medulla identified 483 up- and 231 downregulated, well-annotated genes after TAC. Among these genes, G protein-coupled receptor kinases 2 (Grk2) and 6 and phenylethanolamine N-methyltransferase (Pnmt) were significantly upregulated by TAC. In vitro, acetylcholine-induced Pnmt and Grk2 expression as well as enhanced epinephrine content was prevented by inhibition of nicotinic acetylcholine receptors and Ca(2+)/calmodulin-dependent signaling. Thus, activation of preganglionic sympathetic nerves innervating the adrenal medulla plays an essential role in inducing adrenal hypertrophy, enhanced catecholamine synthesis and induction of Grk2 expression after cardiac pressure overload.

  1. Exogenous nerve growth factor supplementation elevates myocardial immunoreactivity and attenuates cardiac remodeling in pressure-overload rats

    Institute of Scientific and Technical Information of China (English)

    Bing He; and Yuming Li; Fan Ye; Xin Zhou; He Li; Xiaoqing Xun; Xiaoqing Ma; Xudong Liu; Zhihong Wang; Pengxiao Xu

    2012-01-01

    It is postulated that supplementation of exogenous nerve growth factor (NGF) might mediate improvement of the cardiac sympathetic nerve function in heart failure (HF).Local intramuscular injection of NGF near the cardiac sympathetic ganglia could influence the innervation pattern,norepinephrine transporter (NET) gene expression,and improve the cardiac remodeling in experimental HF animals.In this study,we injected NGF into the scalenus medius muscles of Sprague-Dawley rats with abdominal aortic constriction (AC).The nerve innervated pattern,left ventricular morphology,and function following injection in rats with AC were investigated respectively by immunohistochemistry and echocardiography.Levels of mRNA expression of NET,growth associated protein 43 (GAP 43),NGF and its receptors TrkA and p75NTR,and brain natriuretic peptide (BNP) were measured by realtime polymerase chain reaction.The results showed that myocardial NGF mRNA levels were comparable in rats with AC.Short-term supplementation of exogenous NGF raised the myocardial NGF immunoreactivity,but did not cause hyperinnervation and NET mRNA upregulation in the AC rats.Furthermore,myocardial TrkA mRNA was found to be remarkably decreased and p75NTR mRNA was increased.Myocardial TrkA downregulation may play a beneficial effect for avoiding the hyperinnervation,and it is reasonable to postulate that p75NTR can function as an NGF receptor in the absence of TrkA.Interestingly,local NGF administration into the neck muscles near the ganglia could attenuate cardiac remodeling and downregulate BNP mRNA.These results suggest that exogenous NGF can reach the target tissue along the axons anterogradely,and improve the cardiac remodeling.

  2. Regulation of bile duct motility by vagus and sympathetic nerves in the pigeon.

    Directory of Open Access Journals (Sweden)

    Neya,Toshiaki

    1990-04-01

    Full Text Available Effects of stimulation of the vagus and sympathetic nerves on bile duct peristalses were studied in pigeons anesthetized with urethane. Vagus stimulation increased the frequency of peristalses. Atropine, hexamethonium and tetrodotoxin abolished this excitatory effect. After atropine, inhibition of peristalses sensitive to tetrodotoxin was produced. Stimulation of sympathetic area in the spinal cord inhibited peristalses. Propranolol converted this effect into an excitatory one, which was abolished by phentolamine. The results suggest that vagal and sympathetic innervations of the bile duct in pigeons are similar to those of the sphincter of Oddi in mammalian species.

  3. Sodium channel Nav1.7 in vascular myocytes, endothelium, and innervating axons in human skin

    OpenAIRE

    Rice, Frank L.; Albrecht, Phillip J.; Wymer, James P.; Black, Joel A; Merkies, Ingemar SJ; Faber, Catharina G; WAXMAN, STEPHEN G.

    2015-01-01

    Background The skin is a morphologically complex organ that serves multiple complementary functions, including an important role in thermoregulation, which is mediated by a rich vasculature that is innervated by sympathetic and sensory endings. Two autosomal dominant disorders characterized by episodes of severe pain, inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD) have been directly linked to mutations that enhance the function of sodium channel Nav1.7. Pain attac...

  4. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.

    Science.gov (United States)

    Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne

    2015-06-23

    The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation.

  5. Macrophage depletion suppresses sympathetic hyperinnervation following myocardial infarction

    OpenAIRE

    Wernli, G.; Hasan, W.; Bhattacherjee, A.; Rooijen, van, J.; Smith, P K

    2009-01-01

    Myocardial infarction induces sympathetic axon sprouting adjacent to the necrotic region, and this has been implicated in the etiology of arrhythmias resulting in sudden cardiac death. Previous studies show that nerve growth factor (NGF) is essential for enhanced post-infarct sympathetic sprouting, but the cell types necessary to supply this neurotrophic protein are unknown. The objective of the present study was to determine whether macrophages, which are known to synthesize NGF, are necessa...

  6. α2A-adrenoceptors, but not nitric oxide, mediate the peripheral cardiac sympatho-inhibition of moxonidine.

    Science.gov (United States)

    Cobos-Puc, Luis E; Aguayo-Morales, Hilda; Silva-Belmares, Yesenia; González-Zavala, Maria A; Centurión, David

    2016-07-01

    Moxonidine centrally inhibits the sympathetic activity through the I1-imidazoline receptor and nitric oxide. In addition, inhibits the peripheral cardiac sympathetic outflow by α2-adrenoceptors/I1-imidazoline receptors, although the role of α2-adrenoceptor subtypes or nitric oxide in the cardiac sympatho-inhibition induced by moxonidine are unknown. Therefore, the cardiac sympatho-inhibition induced by moxonidine (10μg/kgmin) was evaluated before and after of the treatment with the following antagonists/inhibitor: (1) BRL 44408, (300μg/kg, α2A), imiloxan, (3000μg/kg, α2B), and JP-1302, (300μg/kg, α2C), in animals pretreated with AGN 192403 (3000μg/kg, I1 antagonist); (2) N(ω)-nitro-l-arginine methyl ester (l-NAME; 34, 100, and 340μg/kgmin); and (3) the combinations of the highest dose of l-NAME plus AGN 192403 or BRL 44408. Additionally, the expression of the neuronal (nNOS) and inducible (iNOS) nitric oxide synthase in the stellate ganglion was determined after treatment with moxonidine (i.p. 0.56mg/kg daily, during one week). The cardiac sympatho-inhibition of 10μg/kgmin moxonidine was: (1) unaffected by imiloxan and JP-1302, under pretreatment with AGN 192403, or l-NAME (34, 100 and 340μg/kgmin) given alone; (2) partially antagonized by the combination of 340 μg/kgmin l-NAME plus BRL 44408; and (3) abolished by BRL 44408 under treatment with AGN 192403. Furthermore, moxonidine did not modify the nNOS or iNOS protein expression in the stellate ganglion, the main source of postganglionic sympathetic neurons innervating the heart. In conclusion, our results suggest that the peripheral cardiac sympatho-inhibition induced by moxonidine is mediated by α2A-adrenoceptor subtype but not by nitric oxide. PMID:27112661

  7. α2A-adrenoceptors, but not nitric oxide, mediate the peripheral cardiac sympatho-inhibition of moxonidine.

    Science.gov (United States)

    Cobos-Puc, Luis E; Aguayo-Morales, Hilda; Silva-Belmares, Yesenia; González-Zavala, Maria A; Centurión, David

    2016-07-01

    Moxonidine centrally inhibits the sympathetic activity through the I1-imidazoline receptor and nitric oxide. In addition, inhibits the peripheral cardiac sympathetic outflow by α2-adrenoceptors/I1-imidazoline receptors, although the role of α2-adrenoceptor subtypes or nitric oxide in the cardiac sympatho-inhibition induced by moxonidine are unknown. Therefore, the cardiac sympatho-inhibition induced by moxonidine (10μg/kgmin) was evaluated before and after of the treatment with the following antagonists/inhibitor: (1) BRL 44408, (300μg/kg, α2A), imiloxan, (3000μg/kg, α2B), and JP-1302, (300μg/kg, α2C), in animals pretreated with AGN 192403 (3000μg/kg, I1 antagonist); (2) N(ω)-nitro-l-arginine methyl ester (l-NAME; 34, 100, and 340μg/kgmin); and (3) the combinations of the highest dose of l-NAME plus AGN 192403 or BRL 44408. Additionally, the expression of the neuronal (nNOS) and inducible (iNOS) nitric oxide synthase in the stellate ganglion was determined after treatment with moxonidine (i.p. 0.56mg/kg daily, during one week). The cardiac sympatho-inhibition of 10μg/kgmin moxonidine was: (1) unaffected by imiloxan and JP-1302, under pretreatment with AGN 192403, or l-NAME (34, 100 and 340μg/kgmin) given alone; (2) partially antagonized by the combination of 340 μg/kgmin l-NAME plus BRL 44408; and (3) abolished by BRL 44408 under treatment with AGN 192403. Furthermore, moxonidine did not modify the nNOS or iNOS protein expression in the stellate ganglion, the main source of postganglionic sympathetic neurons innervating the heart. In conclusion, our results suggest that the peripheral cardiac sympatho-inhibition induced by moxonidine is mediated by α2A-adrenoceptor subtype but not by nitric oxide.

  8. Involvement of catecholaminergic neurons in motor innervation of striated muscle in the mouse esophagus.

    Science.gov (United States)

    van der Keylen, Piet; Garreis, Fabian; Steigleder, Ruth; Sommer, Daniel; Neuhuber, Winfried L; Wörl, Jürgen

    2016-05-01

    Enteric co-innervation is a peculiar innervation pattern of striated esophageal musculature. Both anatomical and functional data on enteric co-innervation related to various transmitters have been collected in different species, although its function remains enigmatic. However, it is unclear whether catecholaminergic components are involved in such a co-innervation. Thus, we examined to identify catecholaminergic neuronal elements and clarify their relationship to other innervation components in the esophagus, using immunohistochemistry with antibodies against tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT), choline acetyltransferase (ChAT) and protein gene product 9.5 (PGP 9.5), α-bungarotoxin (α-BT) and PCR with primers for amplification of cDNA encoding TH and dopamine-β-hydroxylase (DBH). TH-positive nerve fibers were abundant throughout the myenteric plexus and localized on about 14% of α-BT-labelled motor endplates differing from VAChT-positive vagal nerve terminals. TH-positive perikarya represented a subpopulation of only about 2.8% of all PGP 9.5-positive myenteric neurons. Analysis of mRNA showed both TH and DBH transcripts in the mouse esophagus. As ChAT-positive neurons in the compact formation of the nucleus ambiguus were negative for TH, the TH-positive nerve varicosities on motor endplates are presumably of enteric origin, although a sympathetic origin cannot be excluded. In the medulla oblongata, the cholinergic ambiguus neurons were densely supplied with TH-positive varicosities. Thus, catecholamines may modulate vagal motor innervation of esophageal-striated muscles not only at the peripheral level via enteric co-innervation but also at the central level via projections to the nucleus ambiguus. As Parkinson's disease, with a loss of central dopaminergic neurons, also affects the enteric nervous system and dysphagia is prevalent in patients with this disease, investigation of intrinsic catecholamines in the esophagus may

  9. Investigation of Sleep Bruxism Relating to Micro-arousals and Cardiac Sympathetic Activities%夜磨牙与微觉醒及心脏交感神经活动的关系

    Institute of Scientific and Technical Information of China (English)

    刘伟才; 王海波; 陈威; 李强

    2012-01-01

    Objective: To investigate whether rhythmic masticatory muscle activity (RMMA) is associated with sleep micro- arousals (MA), and analyze the association between RMMA of sleep bruxism patients (RMMA/SB) and autonomic cardiac activity. Methods: Thirty SB subjects and thirty control subjects for two consecutive nights were performed by polygraphic recordings. MA index and RMMA index were scored. The mean heart rate from a series of 10 cardiac cycles was calculated at 60, 40, 20 and 5 sec before RMMA onset respectively. To assess a transient beat-to-beat heart rate change in relation to the RMMA onset, heart rate from 5 cardiac cycles before and 5 cycles after the onset were also calculated. Results: Sleep bruxism (SB) subjects showed a higher incidence of rhythmic masticatory muscle activity (RMMA) than control subjects (6.10±1.05 vs. 1.81 ±0.39, P<0.0001). However, no difference was found in according to their micro-arousal index(7.72±1.21 vs.7.53±1.33, P=0.5641). RMMA/SB was associated with sleep micro-arousals. In both groups, transient heart rate acceleration was observed in relation to the onset of RMMA episodes. Conclusion: RMMA is associated with sleep micro-arousals. In SB subjects, a clear increase in sympathetic activity precedes SB onset.%目的:研究夜磨牙(sleep bruxism,SB)患者睡眠期咀嚼肌节律性运动(RMMA)发生的微觉醒机制.方法:对30名夜磨牙患者、30名正常人进行连续2夜的多导睡眠监测,研究RMMA事件与微觉醒(MA)的时间相关性;比较2组间RMMA指数及MA指数的差异;RMMA事件发生前60 s、前40 s、前20 s、前5s,共5个时间点的各连续10个心动周期的平均心率,以及RMMA事件发生前后各5个心动周期的心率变化.结果:夜磨牙症患者微觉醒指数(7.72±1.21)与正常对照相似(7.53±1.33,P=0.5641);但咀嚼肌节律性运动频率,即磨牙指数[(6.10±1.05)次/h]约3倍于正常对照组[(1.81±0.39)次/h,P<0.0001)].RMMA事件与MA存在高度时间相关

  10. Nitric oxide and the autonomic regulation of cardiac excitability. The G.L. Brown Prize Lecture.

    Science.gov (United States)

    Paterson, D

    2001-01-01

    Cardiac sympathetic imbalance and arrhythmia; Nitric oxide-cGMP pathway and the cholinergic modulation of cardiac excitability; Nitric oxide-cGMP pathway and the sympathetic modulation of cardiac excitability; Functional significance of nitric oxide in the autonomic regulation of cardiac excitability; Summary; References. Experimental Physiology (2001) 86.1, 1-12. PMID:11429613

  11. Nitric oxide and the autonomic regulation of cardiac excitability. The G.L. Brown Prize Lecture.

    Science.gov (United States)

    Paterson, D

    2001-01-01

    Cardiac sympathetic imbalance and arrhythmia; Nitric oxide-cGMP pathway and the cholinergic modulation of cardiac excitability; Nitric oxide-cGMP pathway and the sympathetic modulation of cardiac excitability; Functional significance of nitric oxide in the autonomic regulation of cardiac excitability; Summary; References. Experimental Physiology (2001) 86.1, 1-12.

  12. Cardiac sympathetic-parasympathetic balance in rats with experimentally-induced acute chagasic myocarditis O balanço autonômico cardíaco nas ratas com miocardite chagásica aguda experimental

    Directory of Open Access Journals (Sweden)

    Diego F. Davila

    1995-04-01

    Full Text Available To clarify the mechanism responsible for the transient sinus tachycardia in rats with acute chagasic myocarditis, we have examined the cardiac sympathetic-parasympathetic balance of 29 rats inoculated with 200,000 parasites (Trypanosoma cruzi. Sixteen infected animals and 8 controls were studied between days 18 and 21 after inoculation (acute stage. The remaining 13 infected animals and 9 controls were studied between days 60 and 70 after inoculation (sub-acute stage. Under anesthesia (urethane 1.25 g/kg, all animals received intravenous atenolol (5 mg/kg and atropine (10 mg/kg. Acute stage: The baseline heart rate of the infected animals was significantly higher than that of the controls (P Com a finalidade de pesquisar o mecanismo responsável pela taquicardia sinusal transitória que ocorre nas ratas com miocardite chagásica aguda, foi estudado o balanço autonômico cardíaco em 16 ratas inoculadas com Trypanosoma cruzi por via intraperitoneal. Oito animais foram estudados aos 18 e 21 dias após-inoculação (Estádio agudo; os oito animais restantes foram estudados entre os dias 60 a 70 após inoculação (Estádio sub-agudo. Todos os animais em estudo bem como os controles receberam atenolol e atropina. No estádio agudo, a frequência cardíaca basal dos animais infectados foi significativamente maior que a dos controles. A resposta cronotrópica negativa pela administração de atenolol foi quatro vezes maior nos animais infectados. No estádio sub-agudo, a frequência cardíaca basal e a resposta cronotrópica ao atenolol e atropina foi similar nos dois grupos do estudo. Os nossos resultados sugerem que no estádio agudo da miocardite chagásica experimental, a atividade simpática encontra-se periodicamente aumentada.

  13. Auditory hair cell innervational patterns in lizards.

    Science.gov (United States)

    Miller, M R; Beck, J

    1988-05-22

    The pattern of afferent and efferent innervation of two to four unidirectional (UHC) and two to nine bidirectional (BHC) hair cells of five different types of lizard auditory papillae was determined by reconstruction of serial TEM sections. The species studies were Crotaphytus wislizeni (iguanid), Podarcis (Lacerta) sicula and P. muralis (lacertids), Ameiva ameiva (teiid), Coleonyx variegatus (gekkonid), and Mabuya multifasciata (scincid). The main object was to determine in which species and in which hair cell types the nerve fibers were innervating only one (exclusive innervation), or two or more hair cells (nonexclusive innervation); how many nerve fibers were supplying each hair cell; how many synapses were made by the innervating fibers; and the total number of synapses on each hair cell. In the species studies, efferent innervation was limited to the UHC, and except for the iguanid, C. wislizeni, it was nonexclusive, each fiber supplying two or more hair cells. Afferent innervation varied both with the species and the hair cell types. In Crotaphytus, both the UHC and the BHC were exclusively innervated. In Podarcis and Ameiva, the UHC were innervated exclusively by some fibers but nonexclusively by others (mixed pattern). In Coleonyx, the UHC were exclusively innervated but the BHC were nonexclusively innervated. In Mabuya, both the UHC and BHC were nonexclusively innervated. The number of afferent nerve fibers and the number of afferent synapses were always larger in the UHC than in the BHC. In Ameiva, Podarcis, and Mabuya, groups of bidirectionally oriented hair cells occur in regions of cytologically distinct UHC, and in Ameiva, unidirectionally oriented hair cells occur in cytologically distinct BHC regions. PMID:3385019

  14. Reduced nitric oxide in the rostral ventrolateral medulla enhances cardiac sympathetic afferent reflex in rats with chronic heart failure%延髓头端腹外侧区一氧化氮与慢性心力衰竭大鼠心交感传入反射的关系

    Institute of Scientific and Technical Information of China (English)

    朱国庆; 高兴亚; 张枫; 王玮

    2004-01-01

    The purpose of this study was to determine the effect of nitric oxide (NO) in the rostral ventrolateral medulla (RVLM)on the central integration of the cardiac sympathetic afferent reflex (CSAR) in normal rats and in rats with coronary ligationinduced chronic heart failure (CHF). Under α-chloralose and urethane anesthesia, mean arterial pressure, heart rate and renal sympathetic nerve activity (RSNA) were recorded at baseline and during elicitation of the CSAR evoked by electrical stimulation of the cardiac afferent sympathetic nerves in sino-aortic denervated and cervical vagotomized rats. A cannula was inserted into the left RVLM for microinjection of NO synthase inhibitor, S-methyl-L-thiocitruline (MeTC) or NO donor, S-nitroso-N-acetyl-penicillamine (SNAP). The CSAR was tested by electrical stimulation (5, 10, 20 and 30 Hz at 10 V for 1 ms) of the afferent cardiac sympathetic nerves. It was observed that (1) the responses of RSNA to stimulation were enhanced in rats with CHF; (2) MeTC (80nmol) potentiated the responses of RSNA to stimulation in sham rats but not in rats with CHF; (3) SNAP (50 nmol) depressed the enhanced RSNA response to stimulation in CHF rats but had no effect in sham rats; and (4) MeTC increased the baseline RSNA and MAP only in sham rats, but SNAP inhibited the baseline RSNA and MAP in both sham and CHF rats. These results indicate that reductance of NO in the RVLM is involved in the augmentation of CSAR in CHF rats.%为观察延髓头端腹外侧区(rostral ventrolateral medulla,RVLM)一氧化氮(NO)在慢性心力衰竭(chronic heartfailure,CHF)大鼠增强的心交感传入反射(cardiac sympathetic afferent reflex,CSAR)中的作用,实验在去压力感受器神经支配的结扎冠状动脉诱发的CHF大鼠和假手术SD大鼠进行,记录电刺激心交感传入神经中枢端前后的血压和肾交感神经活动(renal sympathetic nerve activity,RSNA)变化以评价CSAR.结果显示:(1)CHF大鼠的CSAR显著增强;(2)RVLM微量注

  15. Control and Physiological Determinants of Sympathetically Mediated Brown Adipose Tissue Thermogenesis

    OpenAIRE

    DenisRichard; ÉricTurcotte

    2012-01-01

    Brown adipose tissue (BAT) represents a remarkable heat-producing tissue. The thermogenic potential of BAT is conferred by uncoupling protein 1, a protein found uniquely in the brown adipocytes. The physiological control of BAT activity and capacity is ensured by the sympathetic nervous system (SNS), which densely innervates brown fat depots. SNS-mediated BAT thermogenesis is essentially governed by hypothalamic and brainstem neurons. BAT is not only controlled by the brain thermoregulatory c...

  16. Cutting Edge: Sympathetic Nervous System Increases Proinflammatory Cytokines and Exacerbates Influenza A Virus Pathogenesis

    OpenAIRE

    Grebe, Kristie M.; Takeda, Kazuyo; Hickman, Heather D.; Bailey, Adam M.; Embry, Alan C.; Bennink, Jack R.; Yewdell, Jonathan W.

    2009-01-01

    Although the sympathetic nervous system innervates the lung, little is known about its participation in host immunity to pulmonary pathogens. In this study, we show that peripheral sympathectomy reduces mouse morbidity and mortality from influenza A virus-induced pneumonia due to reduced inflammatory influx of monocytes, neutrophils, and NK cells. Mortality was also delayed by treating mice with an α-adrenergic antagonist. Sympathectomy diminished the immediate innate cytokine responses, part...

  17. Convergent cortical innervation of striatal projection neurons

    OpenAIRE

    Kress, Geraldine J.; Yamawaki, Naoki; Wokosin, David L.; Wickersham, Ian R.; Gordon M. G Shepherd; Surmeier, D. James

    2013-01-01

    Anatomical studies have led to the assertion that intratelencephalic (IT) and pyramidal tract (PT) cortical neurons innervate different striatal projection neurons. To test this hypothesis, the responses of mouse striatal neurons to optogenetic activation of IT and PT axons were measured. Contrary to expectation, direct and indirect pathway striatal spiny projection neurons (SPNs) responded to both IT and PT activation, arguing that these cortical networks innervate both striatal projection n...

  18. Do sympathetic nerves release noradrenaline in "quanta"?

    Science.gov (United States)

    Stjärne, L

    2000-07-01

    The discovery of excitatory junction potentials (EJPs) in guinea-pig vas deferens by Burnstock and Holman (1960) showed for the first time that a sympathetic transmitter, now known to be ATP, is secreted in "quanta". As it was assumed at the time that EJPS are triggered by noradrenaline, this discovery led to attempts to use the fractional overflow of noradrenaline from sympathetically innervated tissues to assess, indirectly, the number of noradrenaline molecules in the average "quantum". The basic finding was that each pulse released 1/50000 of the tissue content of noradrenaline, when reuptake was blocked and prejunctional alpha(2)-adrenoceptors were intact. This provided the constraints, two extreme alternatives: (i) each pulse releases 0.2-3% of the content of a vesicle from all varicosities, or (ii) each pulse releases the whole content of a vesicle from 0.2 to 3% of the varicosities. New techniques have made it possible to address questions about the release probability in individual sites, or the "quantal" size, more directly. Results by optical (comparison of the labelling of SV2 and synaptotagmin, proteins in the membrane of transmitter vesicles), electrophysiological (excitatory junction currents, EJCs, at single visualized varicosities) and amperometric (the noradrenaline oxidation current at a carbon fibre electrode) methods reveal that transmitter exocytosis in varicosities is intermittent. The EJC and noradrenaline oxidation current responses (in rat arteries) to a train of single pulses were observed to be similar in intermittency and amplitude fluctuation. This suggests that they are caused by exocytosis of single or very few "quanta" of ATP and noradrenaline, respectively, equal to the contents of single vesicles, from a small population of release sites. These findings support, but do not conclusively prove the validity of the "intermittent" model of noradrenaline release. The question if noradrenaline is always secreted in packets of preset size

  19. Anatomical evidence for ileal Peyer's patches innervation by enteric nervous system: a potential route for prion neuroinvasion?

    Science.gov (United States)

    Chiocchetti, Roberto; Mazzuoli, Gemma; Albanese, Valeria; Mazzoni, Maurizio; Clavenzani, Paolo; Lalatta-Costerbosa, Giovanna; Lucchi, Maria L; Di Guardo, Giovanni; Marruchella, Giuseppe; Furness, John B

    2008-05-01

    We have examined the innervation of the gut-associated lymphoid system of the sheep ileum, with a view to identifying potential sites for neuroinvasion by pathogens, such as prions (PrP(Sc)). Special attention has been paid to the follicles of Peyer's patches (PPs), which are major sites of PrP(Sc) accumulation during infection. Evidence exists that the enteric nervous system, together with the parasympathetic and sympathetic pathways projecting to the intestine, are important for PrP(Sc) entry into the central nervous system. Thus, PrP(Sc) might move from PPs to the neurons and nerve fibres that innervate them. We investigated, by immunohistochemistry and retrograde tracing (DiI) from the follicles, the distribution and phenotype of enteric neurons innervating the follicles. Antibodies against protein gene product 9.5, tyrosine hydroxylase, dopamine beta hydroxylase, choline acetyltransferase, calbindin (CALB), calcitonin gene-related peptide (CGRP), and nitric oxide synthase were used to characterise the neurons. Immunoreactivity for each of these was observed in fibres around and inside PP follicles. CGRP-immunoreactive fibres were mainly seen at the follicular dome. Retrograde tracing revealed submucosal neurons that contributed to the innervation of PPs, including Dogiel type II neurons and neurons immunoreactive for CALB and CGRP. The major source of the adrenergic fibres are the sympathetic ganglia. Our results thus suggest that enteric and sympathetic neurons are involved during the first stage of neuroinvasion, with neurons connecting to them acting as potential carriers of PrP(Sc) to the central nervous system. PMID:18317812

  20. Sympathetic neural control of indoleamine metabolism in the rat pineal gland

    Science.gov (United States)

    Lynch, H. J.; Hsuan, M.; Wurtman, R. J.

    1975-01-01

    The mechanisms responsible for the acceleration in rat pineal biosynthetic activity in response to prolonged exposure to darkness or to immobilization were investigated in animals whose pineals were surgically denervated. Some animals were adrenalectomized to remove one potential source of circulating catecholamines, and some were subjected to a partial chemical sympathectomy accomplished by a series of intravenous injections of 6-hydroxydopamine. Results suggest that N-acetyltransferase (NAT) activity can be enhanced either by release of norepinephrine from sympathetic terminals within the pineal or from sympathetic nerve terminals elsewhere. The stress of immobilization stimulates the pineal by increasing circulating catecholamines. Photic control of pineal function requires intact pineal sympathetic innervation, since the onset of darkness apparently does not cause a sufficient rise in circulating catecholamines to stimulate the pineal. The present studies suggest that nonspecific stress triggers increased biosynthesis and secretion of melatonin; it is possible that this hormone may participate in mechanisms of adaptation.

  1. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus

    Science.gov (United States)

    Baird, Richard A.; Schuff, N. R.

    1994-01-01

    Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into media and lateral parts. Utiricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrstriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. moast afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have perviously been classified into four types based on hair bundle morphology. Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely

  2. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, G.L.; Palma, R.K.; Brito, J.O.; Sanches, I.C. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil); Irigoyen, M.C. [Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); De Angelis, K. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil)

    2015-03-27

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation.

  3. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    Directory of Open Access Journals (Sweden)

    G.L. Shimojo

    2015-06-01

    Full Text Available The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC, sedentary hypertensive (SH, sedentary hypertensive ovariectomized (SHO, and resistance-trained hypertensive ovariectomized (RTHO. Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR responses to methylatropine (3 mg/kg, iv and propranolol (4 mg/kg, iv. Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg, as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm. Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05. The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation.

  4. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation

  5. A prediction model for 5-year cardiac mortality in patients with chronic heart failure using {sup 123}I-metaiodobenzylguanidine imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Kenichi; Matsuo, Shinro [Kanazawa University Hospital, Department of Nuclear Medicine, Kanazawa (Japan); Nakata, Tomoaki [Sapporo Medical University School of Medicine, Second Department of Internal Medicine (Cardiology), Sapporo (Japan); Hakodate-Goryoukaku Hospital, Department of Cardiology, Hakodate (Japan); Yamada, Takahisa [Osaka Prefectural General Medical Center, Department of Cardiology, Osaka (Japan); Yamashina, Shohei [Toho University Omori Medical Center, Department of Cardiovascular Medicine, Tokyo (Japan); Momose, Mitsuru [Tokyo Women' s Medical University, Department of Nuclear Medicine, Tokyo (Japan); Kasama, Shu [Cardiovascular Hospital of Central Japan, Department of Cardiology, Shibukawa (Japan); Matsui, Toshiki [Social Insurance Shiga General Hospital, Department of Cardiology, Otsu (Japan); Travin, Mark I. [Albert Einstein Medical College, Department of Cardiology and Nuclear Medicine, Montefiore Medical Center, Bronx, NY (United States); Jacobson, Arnold F. [GE Healthcare, Medical Diagnostics, Princeton, NJ (United States)

    2014-09-15

    Prediction of mortality risk is important in the management of chronic heart failure (CHF). The aim of this study was to create a prediction model for 5-year cardiac death including assessment of cardiac sympathetic innervation using data from a multicenter cohort study in Japan. The original pooled database consisted of cohort studies from six sites in Japan. A total of 933 CHF patients who underwent {sup 123}I-metaiodobenzylguanidine (MIBG) imaging and whose 5-year outcomes were known were selected from this database. The late MIBG heart-to-mediastinum ratio (HMR) was used for quantification of cardiac uptake. Cox proportional hazard and logistic regression analyses were used to select appropriate variables for predicting 5-year cardiac mortality. The formula for predicting 5-year mortality was created using a logistic regression model. During the 5-year follow-up, 205 patients (22 %) died of a cardiac event including heart failure death, sudden cardiac death and fatal acute myocardial infarction (64 %, 30 % and 6 %, respectively). Multivariate logistic analysis selected four parameters, including New York Heart Association (NYHA) functional class, age, gender and left ventricular ejection fraction, without HMR (model 1) and five parameters with the addition of HMR (model 2). The net reclassification improvement analysis for all subjects was 13.8 % (p < 0.0001) by including HMR and its inclusion was most effective in the downward reclassification of low-risk patients. Nomograms for predicting 5-year cardiac mortality were created from the five-parameter regression model. Cardiac MIBG imaging had a significant additive value for predicting cardiac mortality. The prediction formula and nomograms can be used for risk stratifying in patients with CHF. (orig.)

  6. What can we learn about neural control of the cardiovascular system by studying rhythms in sympathetic nerve activity?

    Science.gov (United States)

    Barman, Susan M

    2016-05-01

    Since the first recordings of sympathetic nerve activity in the 1930s, it was very clear that the activity was organized into bursts synchronized to the respiratory and cardiac cycles. Since the early studies, evidence has accumulated showing that sympathetic neural networks are quite complex and generate a variety of periodicities that range between ~0.04 and 10Hz, depending on the physiological state, type of nerve being analyzed, age of the subject, and the species. Despite the ubiquity of sympathetic rhythms, many investigators have failed to consider this oscillatory characteristic of sympathetic nerve activity and instead rely on simply quantifying changes in the level of activity to make decisions about the role of the sympathetic nervous system in mediating certain behaviors. This review highlights work that shows the importance of including an assessment of the frequency characteristics of sympathetic nerve activity. PMID:25681532

  7. Bursting into space: alterations of sympathetic control by space travel

    Science.gov (United States)

    Eckberg, D. L.

    2003-01-01

    AIM: Astronauts return to Earth with reduced red cell masses and hypovolaemia. Not surprisingly, when they stand, their heart rates may speed inordinately, their blood pressures may fall, and some may experience frank syncope. We studied autonomic function in six male astronauts (average +/- SEM age: 40 +/- 2 years) before, during, and after the 16-day Neurolab space shuttle mission. METHOD: We recorded electrocardiograms, finger photoplethysmographic arterial pressures, respiration, peroneal nerve muscle sympathetic activity, plasma noradrenaline and noradrenaline kinetics, and cardiac output, and we calculated stroke volume and total peripheral resistance. We perturbed autonomic function before and during spaceflight with graded Valsalva manoeuvres and lower body suction, and before and after the mission with passive upright tilt. RESULTS: In-flight baseline sympathetic nerve activity was increased above pre-flight levels (by 10-33%) in three subjects, in whom noradrenaline spillover and clearance also were increased. Valsalva straining provoked greater reductions of arterial pressure, and proportionally greater sympathetic responses in space than on Earth. Lower body suction elicited greater increases of sympathetic nerve activity, plasma noradrenaline, and noradrenaline spillover in space than on Earth. After the Neurolab mission, left ventricular stroke volume was lower and heart rate was higher during tilt, than before spaceflight. No astronaut experienced orthostatic hypotension or pre-syncope during 10 min of post-flight tilting. CONCLUSION: We conclude that baseline sympathetic outflow, however measured, is higher in space than on earth, and that augmented sympathetic nerve responses to Valsalva straining, lower body suction, and post-flight upright tilt represent normal adjustments to greater haemodynamic stresses associated with hypovolaemia.

  8. Preganglionic innervation of the pancreas islet cells in the rat

    NARCIS (Netherlands)

    LUITEN, PGM; TERHORST, GJ; KOOPMANS, SJ; RIETBERG, M; STEFFENS, AB

    1984-01-01

    The position and number of preganglionic somata innervating the insulin-secreting β-cells of the endocrine pancreas were investigated in Wistar rats. This question was approached by comparing the innervation of the pancreas of normal rats with the innervation of the pancreas in alloxan-induced diabe

  9. Connections of Barrington's nucleus to the sympathetic nervous system in rats.

    Science.gov (United States)

    Cano, G; Card, J P; Rinaman, L; Sved, A F

    2000-03-15

    Barrington's nucleus (BN) has been considered a pontine center related exclusively to the control of pelvic parasympathetic activity. The present study demonstrates an anatomical linkage between BN and autonomic outflow to visceral targets innervated exclusively by the sympathetic division of the autonomic nervous system. Temporal analysis of infection after injection of pseudorabies virus (PRV), a retrograde transynaptic tracer, into two sympathetically innervated organs, the spleen and the kidney, revealed the presence of infected neurons in BN at early post-inoculation survival intervals. Immunohistochemical localization of PRV after spleen injections showed that a small subpopulation of BN neurons became labeled in a time frame coincident with the appearance of infected neurons in other brain regions known to project to sympathetic preganglionic neurons (SPNs) in the thoracic spinal cord; a larger number of infected neurons appeared in BN at intermediate intervals after PRV injections into the spleen or kidney. Coinjection of the retrograde tracer Fluoro-Gold i.p. and PRV into the spleen demonstrated that parasympathetic preganglionic neurons in the caudal medulla or lumbo-sacral spinal cord were not infected, indicating that infected BN neurons were not infected via a parasympathetic route. Thus, BN neurons become infected after PRV injections into the spleen or kidney either directly through BN projections to SPNs, or secondarily via BN projections to infected pre-preganglionic neurons. These results demonstrate an anatomical linkage, either direct or indirect, between BN and sympathetic activity. Because BN receives numerous inputs from diverse brain regions, the relation of BN with both branches of the autonomic nervous system suggests that this nucleus might play a role in the integration of supraspinal inputs relevant to the central coordination of sympathetic and parasympathetic activity.

  10. [Reflex sympathetic dystrophy].

    Science.gov (United States)

    Oliveira, Marta; Manuela, Manuela; Cantinho, Guilhermina

    2011-01-01

    Reflex Sympathetic Dystrophy is rare in pediatrics. It is a complex regional pain syndrome, of unknown etiology, usually post-traumatic, characterized by dysfunctions of the musculoskeletal, vascular and skin systems: severe persistent pain of a limb, sensory and vascular alterations, associated disability and psychosocial dysfunction. The diagnosis is based in high clinical suspection. In children and adolescents there are aspects that are different from the adult ones. Excessive tests may result in worsening of the clinical symptoms. Bone scintigraphy can help. Pain treatment is difficult, not specific. Physical therapies and relaxation technics give some relief. Depression must be treated. This syndrome includes fibromyalgia and complex regional pain syndrome type I. We present a clinical report of an adolescent girl, referred for pain, cold temperature, pallor and functional disability of an inferior limb, all signals disclosed by a minor trauma. She had been diagnosed depression the year before. The bone scintigraphy was a decisive test. The treatment with gabapentin, C vitamin, physiotherapy and pshycotherapy has been effective. PMID:22713207

  11. Regulation of sympathetic nervous system function after cardiovascular deconditioning

    Science.gov (United States)

    Hasser, E. M.; Moffitt, J. A.

    2001-01-01

    Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently

  12. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation.

    Directory of Open Access Journals (Sweden)

    Mamoru Tanida

    Full Text Available In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb. We investigated the potential of AMPKα2 in the sympathetic effects of leptin using in vivo siRNA injection to knockdown AMPKα2 in rats, to produce reduced hypothalamic AMPKα2 expression. Leptin effects on body weight, food intake, and blood FFA levels were eliminated in AMPKα2 siRNA-treated rats. Leptin-evoked enhancements of the sympathetic nerve outflows to the kidney, brown and white adipose tissues were attenuated in AMPKα2 siRNA-treated rats. To check whether AMPKα2 was specific to sympathetic changes induced by leptin, we examined the effects of injecting MT-II, a melanocortin-3 and -4 receptor agonist, on the sympathetic nerve outflows to the kidney and adipose tissue. MT-II-induced sympatho-excitation in the kidney was unchanged in AMPKα2 siRNA-treated rats. However, responses of neural activities involving adipose tissue to MT-II were attenuated in AMPKα2 siRNA-treated rats. These results suggest that hypothalamic AMPKα2 is involved not only in appetite and body weight regulation but also in the regulation of sympathetic nerve discharges to the kidney and adipose tissue. Thus, AMPK might function not only as an energy sensor, but as a key molecule in the cardiovascular, thermogenic, and lipolytic effects of leptin through the sympathetic nervous system.

  13. (Non-invasive evaluation of the cardiac autonomic nervous system by PET)

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The proposed research addresses the development, validation and application of cardiac PET imaging techniques to characterize the autonomic nervous system of the heart. PET technology has significantly matured over the last two decades. Instrument design, image processing and production of radiochemical compounds have formed an integrative approach to provide a powerful and novel imaging modality for the quantitative in vivo evaluation of the autonomic nervous system of the heart. Animal studies using novel tracers for the sympathetic and parasympathetic nerve terminals will be employed to characterize the functional integrity of nerve terminals. This work will be complemented by the development of agents which bind to postsynaptic receptor sites. The combined evaluation of presynaptic and postsynaptic neuronal function will allow a unique characterization of neuronal function. Initial development in animal studies will be followed by feasibility studies in humans. These studies are designed to test sophisticated imaging protocols in the human heart and validate the scintigraphic findings with independent markers of autonomic innervation. Subsequent clinical application in various cardiac diseases is expected to provide new insights into the neuropathophysiology of the heart.

  14. The human thoracic duct is functionally innervated by adrenergic nerves

    DEFF Research Database (Denmark)

    Telinius, Niklas; Baandrup, Ulrik; Rumessen, Jüri;

    2014-01-01

    Lymphatic vessels from animals have been shown to be innervated. While morphological studies have confirmed human lymphatic vessels are innervated, functional studies supporting this are lacking. The present study demonstrates a functional innervation of the human thoracic duct (TD) that is predo......Lymphatic vessels from animals have been shown to be innervated. While morphological studies have confirmed human lymphatic vessels are innervated, functional studies supporting this are lacking. The present study demonstrates a functional innervation of the human thoracic duct (TD......) that is predominantly adrenergic. TDs harvested from 51 patients undergoing esophageal and cardia cancer surgery were either fixed for structural investigations or maintained in vitro for the functional assessment of innervation by isometric force measurements and electrical field stimulation (EFS). Electron microscopy...

  15. Vagal postganglionic innervation of the canine sinoatrial node.

    Science.gov (United States)

    Randall, W C; Ardell, J L; Wurster, R D; Milosavljevic, M

    1987-07-01

    Differential, selective distribution of parasympathetic, postganglionic innervation to the atrioventricular nodal (AVN) region of the canine heart was recently described. Ablation of parasympathetic pathways to the AVN by disruption of the epicardial fat pad at the junction of the inferior vena cava and inferior left atrium did not interfere with normal vagal control of the sinoatrial node (SAN) function. In sharp contrast, surgical dissection of the fat pad overlying the right pulmonary vein-left atrial junction interrupted the major right and left vagal inputs to the SAN region. The pulmonary vein fat pad (PVFP) in the dog heart is triangular in shape with roughly equilateral dimensions of approximately 1 cm, its base extending from superior to inferior veins, and its apex extending nearly to the sinus nodal artery as it courses rostrally in the sulcus terminalis. Careful dissection of smaller fat pads around the circumference of the pulmonary veins and particularly over the rostral-dorsal surfaces of the right superior pulmonary vein and adjacent right atrium, completed SAN parasympathetic denervation. Care in making these dissections left the vagal supply to the AVN region essentially intact, and preserved the sympathetic supplies to both SAN and AVN regions. Autonomic ganglia, varying in size from 1 or 2 cells to 80-100 cells, were found scattered throughout the ventral PVFP (overlying and surrounding the right pulmonary vein-left atrial junction). The ganglia were generally imbedded in fatty connective tissue, although they commonly rested very close to, or were loosely surrounded by epicardial muscle. Ganglia were also found in smaller fat pads on the dorsal surfaces of the atrium between the azygos and the right superior pulmonary vein. PMID:3655182

  16. Cervical sympathetic chain schwannoma masquerading as a carotid body tumour with a postoperative complication of first-bite syndrome.

    LENUS (Irish Health Repository)

    Casserly, Paula

    2012-01-31

    Carotid body tumours (CBT) are the most common tumours at the carotid bifurcation. Widening of the bifurcation is usually demonstrated on conventional angiography. This sign may also be produced by a schwannoma of the cervical sympathetic plexus. A 45-year-old patient presented with a neck mass. Investigations included contrast-enhanced CT, MRI and magnetic resonance arteriography with contrast enhancement. Radiologically, the mass was considered to be a CBT due to vascular enhancement and splaying of the internal and external carotid arteries. Intraoperatively, it was determined to be a cervical sympathetic chain schwannoma (CSCS). The patient had a postoperative complication of first-bite syndrome (FBS).Although rare, CSCS should be considered in the differential diagnosis for tumours at the carotid bifurcation. Damage to the sympathetic innervation to the parotid gland can result in severe postoperative pain characterised by FBS and should be considered in all patients undergoing surgery involving the parapharyngeal space.

  17. The human sympathetic nervous system: its relevance in hypertension and heart failure.

    Science.gov (United States)

    Parati, Gianfranco; Esler, Murray

    2012-05-01

    Evidence assembled in this review indicates that sympathetic nervous system dysfunction is crucial in the development of heart failure and essential hypertension. This takes the form of persistent and adverse activation of sympathetic outflows to the heart and kidneys in both conditions. An important goal for clinical scientists is translation of the knowledge of pathophysiology, such as this, into better treatment for patients. The achievement of this 'mechanisms to management' transition is at different stages of development with regard to the two disorders. Clinical translation is mature in cardiac failure, knowledge of cardiac neural pathophysiology having led to the introduction of beta-adrenergic blockers, an effective therapy. With essential hypertension perhaps we are on the cusp of effective translation, with recent successful testing of selective catheter-based renal sympathetic nerve ablation in patients with resistant hypertension, an intervention firmly based on the demonstration of activation of the renal sympathetic outflow. Additional evidence in this regard is provided by the results of pilot studies exploring the possibility to reduce blood pressure in resistant hypertensives through electrical stimulation of the area of carotid baroreceptors. Despite the general importance of the sympathetic nervous system in blood pressure regulation, and the specific demonstration that the blood pressure elevation in essential hypertension is commonly initiated and sustained by sympathetic nervous activation, drugs antagonizing this system are currently underutilized in the care of patients with hypertension. Use of beta-adrenergic blocking drugs is waning, given the propensity of this drug class to have adverse metabolic effects, including predisposition to diabetes development. The blood pressure lowering achieved with carotid baroreceptor stimulation and with the renal denervation device affirms the importance of the sympathetic nervous system in

  18. Vagal innervation of the rat duodenum.

    Science.gov (United States)

    Zhang, X; Renehan, W E; Fogel, R

    2000-02-14

    Electrophysiologic and anterograde tract tracing studies have demonstrated that the vagus nerve innervates the duodenum. These studies, however, have provided little information regarding the finer anatomic topography within the vagal complex. In this study, the retrograde neuronal tracers WGA-HRP or DiI, applied to the duodenum, were used to characterize the vagal afferent and efferent innervation of this portion of the gastrointestinal tract. This approach labeled a substantial number of motor neurons in both the medial and lateral columns of the dorsal motor nucleus of the vagus (DMNV). Vagal motor neurons innervating the duodenum were seen across the medial-lateral extent of the DMNV and between 600 microm rostral to obex and 1600 microm caudal to obex. The three branches of the vagus nerve contained efferent fibers to the duodenum. The gastric branch of the vagus nerve was the pathway that connected the majority of DMNV neurons with the duodenum. These neurons were located in the medial and middle thirds of the DMNV. The celiac branch to the duodenum was composed of axons from the majority of lateral column neurons but also contained axons from neurons in the medial column. The hepatic branch of the vagus nerve contained only a small number of cell axons. Some neurons were located medially whereas others were in the lateral third of the duodenum. Although central terminations of vagal primary afferents from the duodenum were not found in previous tract tracing studies, we observed a large number of terminals in the subpostremal/commissural region of the nucleus of the solitary tract. Similar to the motor fibers, most afferent fibers from the duodenum were located in the gastric branch of the vagus nerve, although the hepatic and celiac branches also contained afferent neurons. These results demonstrate that the vagal innervation of the duodenum is unique, being an amalgam of what would be expected following labeling of more proximal and distal portions of the

  19. Effects of renal sympathetic denervation on cardiac remodeling following myocardial infarction in rats%去肾交感神经术对大鼠急性心肌梗死后心室重构的影响

    Institute of Scientific and Technical Information of China (English)

    刘夙璇; 王国坤; 丁雪燕; 董斐斐; 安丽娜; 赵仙先; 秦永文

    2014-01-01

    目的 对急性心肌梗死(myocardial infarction,MI)大鼠进行双侧肾交感神经切除,探讨去肾交感神经术(renal sympathetic denervation,RDN)能否缓解MI后心室重构并进行可能的机制探讨.方法 结扎大鼠左冠状动脉前降支构建MI模型,实验分组为:MI组(n=10)、MI+ RDN组(MI建模1周后进行RDN,n=10)和假手术组(n=10).MI建模4周后对各组大鼠进行超声心动图检查测定心室重构程度和左心功能,对梗死边缘区心肌进行Masson染色观察心肌纤维化程度,免疫组化检测Ⅰ型胶原、Ⅲ型胶原和转化生长因子β1 (transforming growth factor β1,TGF-β1)的表达.结果 与MI组相比,MI+ RDN组的左室射血分数(ejection fraction,EF)和短轴缩短率(fractional shortening,FS)升高,左室收缩末期内径(left ventricular internal dimensions at end systole,LVIDS)和左室舒张末期内径(left ventricular internal dimensions at end diastole, LVIDD)减少(P均<0.05).心肌Masson染色结果显示,MI+ RDN组大鼠梗死边缘区的心肌纤维化程度较MI组减轻.免疫组化检测显示,与MI组相比,MI+RDN组大鼠梗死边缘区的Ⅰ型胶原、Ⅲ型胶原和TGF-β1表达减少(P均<o.05).结论 RDN可以改善Mt大鼠心室重构,提高左心收缩功能,其机制可能与局部下调心肌TGF-β1表达进而减少Ⅰ型胶原和Ⅲ型胶原沉积有关.

  20. Simultaneous Tc-99m/I-123 Dual Radionuclide Myocardial Perfusion/Innervation Imaging Using Siemens IQ-SPECT with SMARTZOOM Collimator

    OpenAIRE

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric C.

    2014-01-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region compared to a typical parallel-hole low-energy high-resolution collimator but without the data truncation that can result with conventional converging-beam collimators. Th...

  1. The Role of Neuromediators and Innervation in Cutaneous Wound Healing.

    Science.gov (United States)

    Ashrafi, Mohammed; Baguneid, Mohamed; Bayat, Ardeshir

    2016-06-15

    The skin is densely innervated with an intricate network of cutaneous nerves, neuromediators and specific receptors which influence a variety of physiological and disease processes. There is emerging evidence that cutaneous innervation may play an important role in mediating wound healing. This review aims to comprehensively examine the evidence that signifies the role of innervation during the overlapping stages of cutaneous wound healing. Numerous neuropeptides that are secreted by the sensory and autonomic nerve fibres play an essential part during the distinct phases of wound healing. Delayed wound healing in diabetes and fetal cutaneous regeneration following wounding further highlights the pivotal role skin innervation and its associated neuromediators play in wound healing. Understanding the mechanisms via which cutaneous innervation modulates wound healing in both the adult and fetus will provide opportunities to develop therapeutic devices which could manipulate skin innervation to aid wound healing. PMID:26676806

  2. Angiotensin II--nitric oxide interactions in the control of sympathetic outflow in heart failure.

    Science.gov (United States)

    Zucker, I H; Liu, J L

    2000-03-01

    Activation of the sympathetic nervous system is a compensatory mechanism which initially provides support for the circulation in the face of a falling cardiac output. It has been recognized for some time that chronic elevation of sympathetic outflow with the consequent increase in plasma norepinephrine, is counterproductive to improving cardiac function. Indeed, therapeutic targeting to block excessive sympathetic activation in heart failure is becoming a more accepted modality. The mechanism(s) by which sympathetic excitation occurs in the heart failure state are not completely understood. Components of abnormal cardiovascular reflex regulation most likely contribute to this sympatho-excitation. However, central mechanisms which relate to the elaboration of angiotensin II (Ang II) and nitric oxide (NO) may also play an important role. Ang II has been shown to be a sympatho-excitatory peptide in the central nervous system while NO is sympatho-inhibitory. Recent studies have demonstrated that blockade of Ang II receptors of the AT(1) subtype augments arterial baroreflex control of sympathetic nerve activity in the heart failure state, thereby predisposing to a reduction in sympathetic tone. Ang II and NO interact to regulate sympathetic outflow. Blockade of NO production in normal conscious rabbits was only capable of increasing sympathetic outflow when accompanied by a background infusion of Ang II. Conversely, providing a source of NO to rabbits with heart failure reduced sympathetic nerve activity when accompanied by blockade of AT(1) receptors. Chronic heart failure is also associated with a decrease in NO synthesis in the brain as indicated by a reduction in the mRNA for the neuronal isoform (nNOS). Chronic blockade of Ang II receptors can up regulate nNOS expression. In addition, exercise training of rabbits with developing heart failure has been shown to reduce sympathetic tone, decrease plasma Ang II, improve arterial baroreflex function and increase n

  3. SOLITARY CHEMORECEPTOR CELL SURVIVAL IS INDEPENDENT OF INTACT TRIGEMINAL INNERVATION

    OpenAIRE

    Gulbransen, Brian; Silver, Wayne; Finger, Tom

    2008-01-01

    Nasal solitary chemoreceptor cells (SCCs) are a population of specialized chemosensory epithelial cells presumed to broaden trigeminal chemoreceptivity in mammals (Finger et al., 2003). SCCs are innervated by peptidergic trigeminal nerve fibers (Finger et al., 2003) but it is currently unknown if intact innervation is necessary for SCC development or survival. We tested the dependence of SCCs on innervation by eliminating trigeminal nerve fibers during development with neurogenin-1 knockout m...

  4. Locus coeruleus noradrenergic innervation of the amygdala facilitates alerting-induced constriction of the rat tail artery.

    Science.gov (United States)

    Mohammed, Mazher; Kulasekara, Keerthi; Ootsuka, Youichirou; Blessing, William W

    2016-06-01

    The amygdala, innervated by the noradrenergic locus coeruleus, processes salient environmental events. α2-adrenoceptor-stimulating drugs (clonidine-like agents) suppress the behavioral and physiological components of the response to salient events. Activation of sympathetic outflow to the cutaneous vascular bed is part of the physiological response to salience-mediated activation of the amygdala. We have determined whether acute systemic and intra-amygdala administration of clonidine, and chronic immunotoxin-mediated destruction of the noradrenergic innervation of the amygdala, impairs salience-related vasoconstrictor episodes in the tail artery of conscious freely moving Sprague-Dawley rats. After acute intraperitoneal injection of clonidine (10, 50, and 100 μg/kg), there was a dose-related decrease in the reduction in tail blood flow elicited by alerting stimuli, an effect prevented by prior administration of the α2-adrenergic blocking drug idazoxan (1 mg/kg ip or 75 nmol bilateral intra-amygdala). A dose-related decrease in alerting-induced tail artery vasoconstriction was also observed after bilateral intra-amygdala injection of clonidine (5, 10, and 20 nmol in 200 nl), an effect substantially prevented by prior bilateral intra-amygdala injection of idazoxan. Intra-amygdala injection of idazoxan by itself did not alter tail artery vasoconstriction elicited by alerting stimuli. Intra-amygdala injection of saporin coupled to antibodies to dopamine-β-hydroxylase (immunotoxin) destroyed the noradrenergic innervation of the amygdala and the parent noradrenergic neurons in the locus coeruleus. The reduction in tail blood flow elicited by standardized alerting stimuli was substantially reduced in immunotoxin-treated rats. Thus, inhibiting the release of noradrenaline within the amygdala reduces activation of the sympathetic outflow to the vascular beds elicited by salient events. PMID:27101292

  5. [Non-invasive evaluation of the cardiac autonomic nervous system by PET]. Progress report, September 1991--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The proposed research addresses the development, validation and application of cardiac PET imaging techniques to characterize the autonomic nervous system of the heart. PET technology has significantly matured over the last two decades. Instrument design, image processing and production of radiochemical compounds have formed an integrative approach to provide a powerful and novel imaging modality for the quantitative in vivo evaluation of the autonomic nervous system of the heart. Animal studies using novel tracers for the sympathetic and parasympathetic nerve terminals will be employed to characterize the functional integrity of nerve terminals. This work will be complemented by the development of agents which bind to postsynaptic receptor sites. The combined evaluation of presynaptic and postsynaptic neuronal function will allow a unique characterization of neuronal function. Initial development in animal studies will be followed by feasibility studies in humans. These studies are designed to test sophisticated imaging protocols in the human heart and validate the scintigraphic findings with independent markers of autonomic innervation. Subsequent clinical application in various cardiac diseases is expected to provide new insights into the neuropathophysiology of the heart.

  6. Intrinsic innervation and dopaminergic markers after experimental denervation in rat thymus

    Directory of Open Access Journals (Sweden)

    F. Mignini

    2010-04-01

    Full Text Available The aim of this study was to examine rat thymus innervation using denervation techniques and to explore the related micro-anatomical localization of dopamine, D1, D2 receptors and dopamine membrane transporter (DAT. In the thymus subcapsular region, the parenchymal cholinergic fibers belong exclusively to phrenic nerve branching. No somatic phrenic nerve branching was detected in any other analysed thymus lobule regions. In rats subjected to sympathetic or parasympathetic ablation, it was observed that catecholaminergic and cholinergic nerve fibers respectively contributed to forming plexuses along vessel walls. In the subcapsular and septal region, no parenchymal nerve branching, belonging to sympathetic or parasympathetic nervous system was noted. Instead, in the deep cortical region, cortico-medullary junction (CM-j and medulla, catecholaminergic and cholinergic nerve fibers were detected along the vessels and parenchyma. Dopamine and dopamine receptors were widely diffused in the lobular cortico-medullary junction region and in the medulla, where the final steps of thymocyte maturation and their trafficking take place. No variation in dopamine and DAT immune reaction was observed following total or partial parasympathectomy or phrenic nerve cutting. After chemical or surgical sympathectomy however, neither dopamine nor DAT immune reaction was noted again. Instead, D1 and D2 dopamine receptor expression was not affected by thymus denervation. In rats subjected to specific denervation, it was observed the direct intraparenchymal branching of the phrenic nerve and sympathetic and parasympathetic fibers into thymus parenchyma along vessels. These findings on the dopaminergic system highlight the importance of neurotransmitter receptor expression in the homeostasis of neuroimmune modulation.

  7. Cartography of human diaphragmatic innervation: preliminary data.

    Science.gov (United States)

    Verin, Eric; Marie, Jean-Paul; Similowski, Thomas

    2011-04-30

    In humans, anatomy indicates that the phrenic nerve mainly arises from the C4 cervical root, with variable C3 and C5 contributions. How this translates into functional innervation is unknown. The diaphragm response to electrical stimulation of C3, C4 and C5 was described in three patients undergoing surgical laryngeal reinnervation with an upper phrenic root (surface chest electrodes at anterior, lateral and posterior sites; oesophageal and gastric pressures (Pes and Pga) to derive transdiaphragmatic pressure (Pdi)). Anatomically, the phrenic nerve predominantly originated from C4. Phrenic stimulation elicited motor responses at the three sites in the three patients, as did C4 stimulation. It produced Pdi values of 9, 11, and 14cmH(2)O in the three patients, respectively, vs. 9, 9, and 7cmH(2)O for C4. C3 stimulation produced modest Pdi responses, whereas C5 stimulation could produce Pdi responses close to those observed with C4 stimulation. These singular observations confirm the dominance of C4 in diaphragm innervation but suggest than C5 can be of importance.

  8. The role of NGF in pregnancy-induced degeneration and regeneration of sympathetic nerves in the guinea pig uterus.

    Science.gov (United States)

    Brauer, M M; Shockley, K P; Chávez, R; Richeri, A; Cowen, T; Crutcher, K A

    2000-02-14

    In the guinea pig, pregnancy is associated with a generalised depletion of noradrenaline in uterine sympathetic nerves and, in the areas of the uterus surrounding the foetus, by a complete degeneration of sympathetic nerve fibres. These pregnancy-induced changes have been interpreted as a selective effect of placental hormones on the system of short sympathetic fibres arising from the paracervical ganglia. An alternative explanation is that pregnancy affects the neurotrophic capacity of the uterus. We measured NGF-protein levels in the guinea pig uterine horn, tubal end and cervix at early pregnancy, late pregnancy and early postpartum, using a two-site enzyme-linked immunosorbent assay. For comparative purposes the distribution and relative density of noradrenaline-containing sympathetic nerve fibres were assessed histochemically, and tissue levels of noradrenaline were measured biochemically, using high-performance liquid chromatography with electrochemical detection. In all the uterine regions analysed, NGF-protein levels showed a decline at term pregnancy, but in no case was this change statistically significant. After delivery, NGF-protein levels showed a marked increase in the cervix as well as in both the fertile and empty horns. These results suggest that alterations in NGF-protein do not account for the impairment of uterine sympathetic innervation during pregnancy, but may contribute to their recovery after delivery.

  9. Innervation of the human middle meningeal artery

    DEFF Research Database (Denmark)

    Edvinsson, L; Gulbenkian, S; Barroso, C P;

    1998-01-01

    The majority of nerve fibers in the middle meningeal artery and branching arterioles are sympathetic, storing norepinephrine and neuropeptide Y (NPY). A sparse supply of fibers contain acetylcholinesterase activity and immunoreactivity toward vasoactive intestinal peptide (VIP), peptidine histidine...... methionine (PHM), and calcitonin gene-related peptide (CGRP). Only few substance P and neuropeptide K immunoreactive fibers are noted. Electronmicroscopy shows axons and terminals at the adventitial medial border of the human middle meningeal artery, with a fairly large distance to the smooth muscle cells...

  10. An Autonomic Link Between Inhaled Diesel Exhaust and Impaired Cardiac Performance: Insight From Treadmill and Doubutamine Challenges in Heart Failure-Prone Rats

    Science.gov (United States)

    Background: Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) is an ubiquitous air pollutant believed to provoke cardiac events partly through imbalance of the sympathetic and parasympathetic branches of the autonomic nervo...

  11. INNERVATED RECTUS-ABDOMINIS MYOFASCIAL FLAP FOR DYNAMIC CARDIOMYOPLASTY

    NARCIS (Netherlands)

    WIJNBERG, DS; EBELS, T; ROBINSON, PH

    1994-01-01

    This study examined the rectus abdominis myofascial flap as an innervated nap for dynamic cardiomyoplastic purposes. It is common to use the latissimus dorsi to wrap or patch around or in the heart, but there is a need for more innervated skeletal muscle for a variety of reasons. The rectus abdomini

  12. Dual innervation of neonatal Merkel cells in mouse touch domes.

    Directory of Open Access Journals (Sweden)

    Jingwen Niu

    Full Text Available Merkel cell-neurite complexes are specialized mechanosensory end organs that mediate discriminative touch sensation. It is well established that type I slowly adapting (SAI mechanoreceptors, which express neural filament heavy chain (NFH, innervate Merkel cells. It was previously shown that neurotrophic factor NT3 and its receptor TrkC play crucial roles in controlling touch dome Merkel cell innervation of NFH+ fibers. In addition, nerve fibers expressing another neurotrophic tyrosine receptor kinase (NTRK, Ret, innervate touch dome Merkel cells as well. However, the relationship between afferents responsive to NT3/TrkC signaling and those expressing Ret is unclear. It is also controversial if these Ret+ fibers belong to the early or late Ret+ DRG neurons, which are defined based on the co-expression and developmental dependence of TrkA. To address these questions, we genetically traced Ret+ and TrkC+ fibers and analyzed their developmental dependence on TrkA. We found that Merkel cells in neonatal mouse touch domes receive innervation of two types of fibers: one group is Ret+, while the other subset expresses TrkC and NFH. In addition, Ret+ fibers depend on TrkA for their survival and normal innervation whereas NFH+ Merkel cell innervating fibers are almost unaltered in TrkA mutant mice, supporting that Ret+ and NFH+/TrkC+ afferents are two distinct groups. Ret signaling, on the other hand, plays a minor role for the innervation of neonatal touch domes. In contrast, Merkel cells in the glabrous skin are mainly contacted by NFH+/TrkC+ afferents. Taken together, our results suggest that neonatal Merkel cells around hair follicles receive dual innervation while Merkel cells in the glabrous skin are mainly innervated by only SAI mechanoreceptors. In addition, our results suggest that neonatal Ret+ Merkel cell innervating fibers most likely belong to the late but not early Ret+ DRG neurons.

  13. Relationship between quantitative cardiac neuronal imaging with {sup 123}I-meta-iodobenzylguanidine and hospitalization in patients with heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Matthew W.; Sood, Nitesh [University of Connecticut, School of Medicine Department of Medicine, Farmington, CT (United States); Hartford Hospital, Division of Cardiology, Hartford, CT (United States); Ahlberg, Alan W. [Hartford Hospital, Division of Cardiology, Hartford, CT (United States); Jacobson, Arnold F. [GE Healthcare, Princeton, NJ (United States); Heller, Gary V. [The Intersocietal Accreditation Commission, Ellicott City, MD (United States); Lundbye, Justin B. [University of Connecticut, School of Medicine Department of Medicine, Farmington, CT (United States); The Hospital of Central Connecticut, Division of Cardiology, New Britain, CT (United States)

    2014-09-15

    Hospitalization in patients with systolic heart failure is associated with morbidity, mortality, and cost. Myocardial sympathetic innervation, imaged by {sup 123}I-meta-iodobenzylguanidine ({sup 123}I-mIBG), has been associated with cardiac events in a recent multicenter study. The present analysis explored the relationship between {sup 123}I-mIBG imaging findings and hospitalization. Source documents from the ADMIRE-HF trial were reviewed to identify hospitalization events in patients with systolic heart failure following cardiac neuronal imaging using {sup 123}I-mIBG. Time to hospitalization was analyzed with the Kaplan-Meier method and compared to the mIBG heart-to-mediastinum (H/M) ratio using multiple-failure Cox regression. During 1.4 years of median follow-up, 362 end-point hospitalizations occurred in 207 of 961 subjects, 79 % of whom had H/M ratio <1.6. Among subjects hospitalized for any cause, 88 % had H/M ratio <1.6 and subjects with H/M ratio <1.6 experienced hospitalization earlier than subjects with higher H/M ratios (log-rank p = 0.003). After adjusting for elevated brain natriuretic peptide (BNP) and time since heart failure diagnosis, a low mIBG H/M ratio was associated with cardiac-related hospitalization (HR 1.48, 95 % CI 1.05 - 2.0; p = 0.02). The mIBG H/M ratio may risk-stratify patients with heart failure for cardiac-related hospitalization, especially when used in conjunction with BNP. Further studies are warranted to examine these relationships. (orig.)

  14. Afferent innervation of the utricular macula in pigeons

    Science.gov (United States)

    Si, Xiaohong; Zakir, Mridha Md; Dickman, J. David

    2003-01-01

    Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were

  15. Effects of nitric oxide synthase inhibition on sympathetically-mediated tachycardia

    Science.gov (United States)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The aim of the present study was to determine whether inhibition of nitric oxide (NO) synthesis directly alters the tachycardia produced by sympathetically-derived norepinephrine. The NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME; 50 micromol/kg, i.v.), produced a marked rise in mean arterial blood pressure. This pressor response was associated with a fall in heart rate which involved the withdrawal of cardiac sympathetic nerve activity. The NO-donor, sodium nitroprusside (5 microg/kg, i.v.), produced a pronounced fall in mean arterial blood pressure but only a minor increase in heart rate. The beta-adrenoceptor agonist, isoproterenol (0.5 micromol/kg, i.v.), and the membrane-permeable cAMP analogue, 8-(4-chlorophenylthiol)-cAMP (10 micromol/kg, i.v.), produced falls in mean arterial blood pressure and pronounced increases in heart rate. The indirectly acting sympathomimetic agent, tyramine (0.5 mg/kg, i.v.), produced a pressor response and a tachycardia. The effects of sodium nitroprusside, tyramine, isoproterenol and 8-(4-chlorophenylthiol)-cAMP on mean arterial blood pressure were not markedly affected by L-NAME. However, the tachycardia produced by these agents was considerably exaggerated in the presence of this NO synthesis inhibitor. These findings suggest that L-NAME potentiates the tachycardia produced by sympathetically-derived norepinephrine. The increased responsiveness to norepinephrine may involve (i) a rapid up-regulation of cardiac beta1-adrenoceptors and cAMP signaling in cardiac pacemaker cells due to the loss of the inhibitory influence of cardiac NO, and (ii) the up-regulation of beta1-adrenoceptor-mediated signal transduction processes in response to the L-NAME-induced withdrawal of cardiac sympathetic nerve activity.

  16. Afferent innervation patterns of the saccule in pigeons

    Science.gov (United States)

    Zakir, M.; Huss, D.; Dickman, J. D.

    2003-01-01

    The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.

  17. Innervation of the thick ascending limb of Henle

    Energy Technology Data Exchange (ETDEWEB)

    Barajas, L.; Powers, K.V.

    1988-08-01

    The overlap of accumulations of autoradiographic grains (AAGs) on profiles of the thick ascending limb of Henle (TALH) was measured in autoradiograms of sections from rat kidneys with monoaminergic nerves labeled by means of tritiated norepinephrine. The amount of AAG overlap was used as an indirect means of quantifying innervation along the TALHs of superficial, mid-cortical, and juxtamedullary nephrons. The density of innervation along the TALH showed nephron heterogeneity; the juxtamedullary nephrons with a high pre- and postjuxtaglomerular apparatus (JGA) TALH density of innervation and the upper and midcortical nephrons with high TALH innervation densities at the level of the JGA. The pre-JGA TALH of the juxtamedullary nephrons had a significantly higher (P less than 0.001) density of innervation than the midcortical or superficial nephrons. The TALHs of juxtamedullary nephrons were found to have substantially more innervation than the TALHs of the other nephrons. For all three populations of nephrons, the pre-JGA TALH had the greatest amount of innervation. Neural regulation of TALH function would occur mainly along the pre-JGA and level of the JGA TALH. This regulation would increase TALH NaCl reabsorption (decrease luminal NaCl concentration) and therefore influence 1) the urinary concentrating mechanism, and 2) renin secretion via the macula densa mechanism. The innervation of the TALH was predominantly associated with the vasculature of the TALH's own nephron. However, innervation associated with medullary ray capillary beds from deeper nephrons was observed on pre-JGA TALHs from superficial and midcortical nephrons.

  18. Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia

    Directory of Open Access Journals (Sweden)

    Suuronen Erik J

    2011-08-01

    Full Text Available Abstract Background Diabetes mellitus is strongly associated with cardiovascular dysfunction, derived in part from impairment of sympathetic nervous system signaling. Glucose, insulin, and non-esterified fatty acids are potent stimulants of sympathetic activity and norepinephrine (NE release. We hypothesized that sustained hyperglycemia in the high fat diet-fed streptozotocin (STZ rat model of sustained hyperglycemia with insulin resistance would exhibit progressive sympathetic nervous dysfunction in parallel with deteriorating myocardial systolic and/or diastolic function. Methods Cardiac sympathetic nervous integrity was investigated in vivo via biodistribution of the positron emission tomography radiotracer and NE analogue [11C]meta-hydroxyephedrine ([11C]HED. Cardiac systolic and diastolic function was evaluated by echocardiography. Plasma and cardiac NE levels and NE reuptake transporter (NET expression were evaluated as correlative measurements. Results The animal model displays insulin resistance, sustained hyperglycemia, and progressive hypoinsulinemia. After 8 weeks of persistent hyperglycemia, there was a significant 13-25% reduction in [11C]HED retention in myocardium of STZ-treated hyperglycemic but not euglycemic rats as compared to controls. There was a parallel 17% reduction in immunoblot density for NE reuptake transporter, a 1.2 fold and 2.5 fold elevation of cardiac and plasma NE respectively, and no change in sympathetic nerve density. No change in ejection fraction or fractional area change was detected by echocardiography. Reduced heart rate, prolonged mitral valve deceleration time, and elevated transmitral early to atrial flow velocity ratio measured by pulse-wave Doppler in hyperglycemic rats suggest diastolic impairment of the left ventricle. Conclusions Taken together, these data suggest that sustained hyperglycemia is associated with elevated myocardial NE content and dysregulation of sympathetic nervous system

  19. A histological study of the innervation of developing mouse teeth.

    OpenAIRE

    Mohamed, S. S.; Atkinson, M E

    1983-01-01

    The innervation of developing mouse teeth between initial formation and crown formation was investigated using silver-stained serial sections. The developing innervation correlated with the stage of development of individual teeth rather than the chronological age of the mice. Nerves approached the developing dental papilla during the bud stage and formed a basal plexus below the dental papilla in the early cap stage. Nerve fibres from this plexus spread into the dental follicle as it began t...

  20. Hypotensive effect of taurine. Possible involvement of the sympathetic nervous system and endogenous opiates.

    OpenAIRE

    Fujita, T.; Sato, Y.

    1988-01-01

    We studied the role of diminished sympathetic nervous system (SNS) activity and endogenous opiate activation in the hypotensive action of taurine, a sulfur amino acid, in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Supplementation of taurine could prevent the development of DOCA-salt hypertension in rats, but failed to change blood pressure in vehicle-treated control rats. Cardiac NE turnover, which was determined from the rate of decline of tissue NE concentration after the ad...

  1. Partial sympathetic denervation of the rat epididymis permits fertilization but inhibits embryo development.

    Science.gov (United States)

    Ricker, D D; Crone, J K; Chamness, S L; Klinefelter, G R; Chang, T S

    1997-01-01

    The rat cauda epididymidis receives sympathetic innervation from the inferior mesenteric ganglion (IMG). We have previously demonstrated that surgical removal of the IMG and proximal hypogastric nerves (IMG denervation) results in significant and cauda-specific changes in epididymal sperm transport, sperm motility, luminal fluid protein composition, and tissue histology. In the present study we used natural mating trials and intrauterine insemination (IUI) techniques to determine whether or not IMG denervation affects male fertility and reproductive capacity. For the initial studies, adult male Sprague Dawley rats were mated with estrous females 1 and 4 weeks following IMG denervation. Nine days after mating, uterine implantation sites and corpora lutea (CL) were counted. In females mated with sham-operated control males, 85.8% of ovulated oocytes were fertilized and subsequently implanted. In contrast, females mated with IMG-denervated males 1 or 4 weeks following surgery had 0% and 3.5%, respectively, of ovulated oocytes fertilized and implanted. For rats maintained 21 days after mating, an average of 13 +/- 1 pups were delivered by each of nine females mated with sham-operated control male rats; whereas, only seven morphologically normal pups were delivered by one of 14 females mated with IMG-denervated male rats. Additional experiments demonstrated that the decrement in offspring was, in part, due to a significant decrease in the number of spermatozoa in the female uterus following mating with IMG-denervated males. To determine whether IMG denervation exerted an additional effect directly on the fertilizing ability of spermatozoa, IUI experiments were performed. Six million cauda epididymal spermatozoa from 1- or 4-week IMG-denervated males were inseminated into the uterine horns of luteinzing hormone-releasing hormone (LHRH)-synchronized females and 9 days later implantation sites and CL were counted. Implantations were observed for 78%, 28%, and 25% of

  2. Effect of nitric oxide on rostral ventrolateral medulla modulating cardiac sympathetic afferent reflex in rats with chronic heart failure%延髓头端腹外侧区一氧化氮对慢性心力衰竭大鼠心交感传入反射的影响

    Institute of Scientific and Technical Information of China (English)

    高兴亚; 郭瑞; 王玮; 张枫; 朱国庆

    2005-01-01

    大变化速率明显降低,左室舒张末压明显增加.②与假手术大鼠相比,慢性心力衰竭大鼠的心交感传入反射显著增强.③延髓头端腹外侧区微量注射MeTC(80 nmol)仅增强假手术大鼠的心交感传入反射,对慢性心力衰竭大鼠的心交感传入反射无显著影响.④延髓头端腹外侧区微量注射SNAP(50 nmol)同时抑制假手术和慢性心力衰竭大鼠的心交感传入反射.⑤心室前壁表面用利多卡因预处理可完全抑制心室前壁表面应用缓激肽所引起的肾交感神经活动增加.结论:延髓头端腹外侧区的一氧化氮抑制正常大鼠和慢性心力衰竭大鼠心室表面应用缓激肽引起的心交感传入反射,慢性心力衰竭大鼠心交感传入反射增强与延髓头端腹外侧区中内源性一氧化氮减少有关.%BACKGROUND: Nitric oxide in the central nervous system is involved in controlling the sympathetic outflow. The authors' recent data show that the reduction of nitric oxide in the rostral ventrolateral medulla (RVLM)enhanced the cardiac sympathetic afferent reflex (CSAR) evoked by stimulating the cardiac sympathetic afferent nerves in rats with chronic heart failure (CHF).OBJECTIVE: To further investigate the effect of nitric oxide in the RVLM on modulating the CSAR evoked by epicardial chemical stimulation in rats with CHF.DESIGN: Randomized controlled experiment.SETTING: Department of Physiology, Nanjing Medical University, and Department of Cellular and Integrative Physiology, University of Nebraska College of Medicine.MATERIALS: This study was carried out in the Department of Physiology, Nanjing Medical University from July 2003 to May 2004. A total of 52male Sprague-Dawley rats weighing 360-420 g were used, and were randomly divided into chronic heart failure group and control group with 23 in each group.METHODS: The rats were carried out either sham surgery or the left coronary artery ligation. Six to eight weeks later, all rats were

  3. Sympathetic vasoconstrictor nerve function in alcoholic neuropathy

    DEFF Research Database (Denmark)

    Jensen, K; Andersen, K; Smith, T;

    1984-01-01

    The peripheral sympathetic vasomotor nerve function was investigated in 18 male chronic alcoholics admitted for intellectual impairment or polyneuropathy. By means of the local 133Xenon washout technique, the sympathetic veno-arteriolar axon-reflex was studied. This normally is responsible for a 50...... (18% and 48% decrease respectively). However, in three patients with moderate neuropathy, and in one patient with no signs of neuropathy, this veno-arteriolar reflex was absent, indicating dysfunction of the peripheral sympathetic adrenergic nerve fibres. The three patients also showed a lesser degree...

  4. Cardiovascular Response Patterns to Sympathetic Stimulation by Central Hypovolemia.

    Science.gov (United States)

    Bronzwaer, Anne-Sophie G T; Verbree, Jasper; Stok, Wim J; van Buchem, Mark A; Daemen, Mat J A P; van Osch, Matthias J P; van Lieshout, Johannes J

    2016-01-01

    In healthy subjects, variation in cardiovascular responses to sympathetic stimulation evoked by submaximal lower body negative pressure (LBNP) is considerable. This study addressed the question whether inter-subject variation in cardiovascular responses coincides with consistent and reproducible responses in an individual subject. In 10 healthy subjects (5 female, median age 22 years), continuous hemodynamic parameters (finger plethysmography; Nexfin, Edwards Lifesciences), and time-domain baroreflex sensitivity (BRS) were quantified during three consecutive 5-min runs of LBNP at -50 mmHg. The protocol was repeated after 1 week to establish intra-subject reproducibility. In response to LBNP, 5 subjects (3 females) showed a prominent increase in heart rate (HR; 54 ± 14%, p = 0.001) with no change in total peripheral resistance (TPR; p = 0.25) whereas the other 5 subjects (2 females) demonstrated a significant rise in TPR (7 ± 3%, p = 0.017) with a moderate increase in HR (21 ± 9%, p = 0.004). These different reflex responses coincided with differences in resting BRS (22 ± 8 vs. 11 ± 3 ms/mmHg, p = 0.049) and resting HR (57 ± 8 vs. 71 ± 12 bpm, p = 0.047) and were highly reproducible over time. In conclusion, we found distinct cardiovascular response patterns to sympathetic stimulation by LBNP in young healthy individuals. These patterns of preferential autonomic blood pressure control appeared related to resting cardiac BRS and HR and were consistent over time. PMID:27378944

  5. Immunomodulation stimulates the innervation of engineered tooth organ.

    Directory of Open Access Journals (Sweden)

    Tunay Kökten

    Full Text Available The sensory innervation of the dental mesenchyme is essential for tooth function and protection. Sensory innervation of the dental pulp is mediated by axons originating from the trigeminal ganglia and is strictly regulated in time. Teeth can develop from cultured re-associations between dissociated dental epithelial and mesenchymal cells from Embryonic Day 14 mouse molars, after implantation under the skin of adult ICR mice. In these conditions however, the innervation of the dental mesenchyme did not occur spontaneously. In order to go further with this question, complementary experimental approaches were designed. Cultured cell re-associations were implanted together with trigeminal ganglia for one or two weeks. Although axonal growth was regularly observed extending from the trigeminal ganglia to all around the forming teeth, the presence of axons in the dental mesenchyme was detected in less than 2.5% of samples after two weeks, demonstrating a specific impairment of their entering the dental mesenchyme. In clinical context, immunosuppressive therapy using cyclosporin A was found to accelerate the innervation of transplanted tissues. Indeed, when cultured cell re-associations and trigeminal ganglia were co-implanted in cyclosporin A-treated ICR mice, nerve fibers were detected in the dental pulp, even reaching odontoblasts after one week. However, cyclosporin A shows multiple effects, including direct ones on nerve growth. To test whether there may be a direct functional relationship between immunomodulation and innervation, cell re-associations and trigeminal ganglia were co-implanted in immunocompromised Nude mice. In these conditions as well, the innervation of the dental mesenchyme was observed already after one week of implantation, but axons reached the odontoblast layer after two weeks only. This study demonstrated that immunodepression per se does stimulate the innervation of the dental mesenchyme.

  6. Human nasociliary nerve with special reference to its unique parasympathetic cutaneous innervation.

    Science.gov (United States)

    Hosaka, Fumio; Yamamoto, Masahito; Cho, Kwang Ho; Jang, Hyung Suk; Murakami, Gen; Abe, Shin-Ichi

    2016-06-01

    The frontal nerve is characterized by its great content of sympathetic nerve fibers in contrast to cutaneous branches of the maxillary and mandibular nerves. However, we needed to add information about composite fibers of cutaneous branches of the nasociliary nerve. Using cadaveric specimens from 20 donated cadavers (mean age, 85), we performed immunohistochemistry of tyrosine hydroxylase (TH), neuronal nitric oxide synthase (nNOS), and vasoactive intestinal polypeptide (VIP). The nasocilliary nerve contained abundant nNOS-positive fibers in contrast to few TH- and VIP-positive fibers. The short ciliary nerves also contained nNOS-positive fibers, but TH-positive fibers were more numerous than nNOS-positive ones. Parasympathetic innervation to the sweat gland is well known, but the original nerve course seemed not to be demonstrated yet. The present study may be the first report on a skin nerve containing abundant nNOS-positive fibers. The unique parasympathetic contents in the nasocilliary nerve seemed to supply the forehead sweat glands as well as glands in the eyelid and nasal epithelium. PMID:27382515

  7. Development and validation of a direct-comparison method for cardiac {sup 123}I-metaiodobenzylguanidine washout rates derived from late 3-hour and 4-hour imaging

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Koichi; Hashimoto, Mitsumasa [Kanazawa Medical University, Department of Physics, Kahoku, Ishikawa (Japan); Nakajima, Kenichi; Matsuo, Shinro; Taki, Junichi; Kinuya, Seigo [Kanazawa University Hospital, Department of Nuclear Medicine, Kanazawa, Ishikawa (Japan); Sugino, Shuichi [Okayama Kyokuto Hospital, Department of Radiology, Okayama, Okayama (Japan); Kirihara, Yumiko [FUJIFILM RI Pharma Co., Ltd., Chuo-Ku, Tokyo (Japan)

    2016-02-15

    The washout rate (WR) has been used in {sup 123}I-metaiodobenzylguanidine (MIBG) imaging to evaluate cardiac sympathetic innervation. However, WR varies depending on the time between the early and late MIBG scans. Late scans are performed at either 3 or 4 hours after injection of MIBG. The aim of this study was to directly compare the WR at 3 hours (WR{sub 3h}) with the WR at 4 hours (WR{sub 4h}). We hypothesized that the cardiac count would reduce linearly between the 3-hour and 4-hour scans. A linear regression model for cardiac counts at two time-points was generated. We enrolled a total of 96 patients who underwent planar {sup 123}I-MIBG scintigraphy early (15 min) and during the late phase at both 3 and 4 hours. Patients were randomly divided into two groups: a model-creation group (group 1) and a clinical validation group (group 2). Cardiac counts at 15 minutes (count{sub early}), 3 hours (count{sub 3h}) and 4 hours (count{sub 4h}) were measured. Cardiac count{sub 4h} was mathematically estimated using the linear regression model from count{sub early} and count{sub 3h}. In group 1, the actual cardiac count{sub 4h}/count{sub early} was highly significantly correlated with count{sub 3h}/count{sub early} (r = 0.979). In group 2, the average estimated count{sub 4h} was 92.8 ± 31.9, and there was no significant difference between this value and the actual count{sub 4h} (91.9 ± 31.9). Bland-Altman analysis revealed a small bias of -0.9 with 95 % limits of agreement of -6.2 and +4.3. WR{sub 4h} calculated using the estimated cardiac count{sub 4h} was comparable to the actual WR{sub 4h} (24.3 ± 9.6 % vs. 25.1 ± 9.7 %, p = ns). Bland-Altman analysis and the intraclass correlation coefficient showed that there was excellent agreement between the estimated and actual WR{sub 4h}. The linear regression model that we used accurately estimated cardiac count{sub 4h} using count{sub early} and count{sub 3h}. Moreover, WR{sub 4h} that was mathematically calculated using

  8. Neuroaxonal dystrophy in aging human sympathetic ganglia.

    OpenAIRE

    Schmidt, R.E.; Chae, H. Y.; Parvin, C. A.; Roth, K A

    1990-01-01

    Autonomic dysfunction is an increasingly recognized problem in aging animals and man. The pathologic changes that produce autonomic dysfunction in human aging are largely unknown; however, in experimental animal models specific pathologic changes have been found in selected sympathetic ganglia. To address whether similar neuropathologic changes occur in aging humans, the authors have examined paravertebral and prevertebral sympathetic ganglia from a series of 56 adult autopsied nondiabetic pa...

  9. The Lesser Palatine Nerve Innervates the Levator Veli Palatini Muscle

    Science.gov (United States)

    Matsuura, Yoshitaka; Kawai, Katsuya; Yamada, Shigehito; Suzuki, Shigehiko

    2016-01-01

    Summary: When the lesser palatine nerve (LPN) is supposed to be a branch of the trigeminal nerve and innervate sensation of the soft palate, whether the LPN contains motor fibers is unclear. In this study, we monitored the electromyogram of the levator veli palatini (LVP) muscle on stimulating the LPN during palatoplasty in 3 patients. The electromyogram of the muscles showed the myogenic potential induced by electrostimulation of the LPN. Taken together with the finding from our previous anatomical study that the motor fibers come from the facial nerve, this result supports the double innervation theory of the LVP, which posits that both the pharyngeal plexus and the facial nerve innervate it. Identifying and preserving the LPN during palatoplasty might improve postoperative speech results. PMID:27757354

  10. Function and innervation of the involuntary m. retroauricularis.

    Science.gov (United States)

    Heuser, M

    1976-10-01

    Beside the automatic, obligatory and tonic coinnervation of the involuntary m. retroauricularis in conjugate lateral gaze (oculoauricular phenomenon, nystagmus) several other physiological ways of accidental coinnervation are described. In talking, chewing, swallowing and during involuntary inspiration irregular bursts of innervation may be registered. In sleep regular rhythmic inspiratory innervation is demonstrated as well as myoclonic jerks. With reservation, an allusion is made to rem-sleep. In "nervous subjects" irregular involuntary innervation of the m. retroauricularis might serve as a measurement instrument for the involuntary somatomotor nervous system, i.e. the degree of neurotic tensity. An early myasthenic reaction is gained from the M. retroauricularis in patients with ocular forms of the disease. A common motor nucleus of abducens and facial nerve is discussed. Complementary studies are announced on the various forms of facial paralysis, strabismus and nystagmus. A further diagnostic use is presumed.

  11. The innervation of the zebrafish pharyngeal jaws and teeth.

    Science.gov (United States)

    Crucke, Jeroen; Van de Kelft, Annelore; Huysseune, Ann

    2015-07-01

    Zebrafish (Danio rerio) teeth are increasingly used as a model to study odontogenesis in non-mammalians. Using serial semi-thin section histology and immunohistochemistry, the nerves innervating the pharyngeal jaws and teeth have been identified. The last pair of branchial arches, which are non-gill bearing but which carry the teeth, are innervated by an internal branch of a post-trematic ramus of the vagal nerve. Another, external, branch is probably responsible for the motor innervation of the branchiomeric musculature. Nerve fibres appear in the pulp cavity of the teeth only late during cytodifferentiation, and are therefore likely not involved in early steps of tooth formation. The precise role of the nervous system during continuous tooth replacement remains to be determined. Nonetheless, this study provides the necessary morphological background information to address this question. PMID:26018453

  12. Autonomic innervation of the pancreas in diabetic and non-diabetic rats. A new view on intramural sympathetic structural organization

    NARCIS (Netherlands)

    Luiten, P.G.M.; Horst, G.J. ter; Steffens, A.B.

    1986-01-01

    Using histochemical and immunocytochemical methods the intramural neural tissue of the pancreas was investigated in non-diabetic and in alloxan-diabetic rats. It was demonstrated that the non-diabetic pancreas contains an average of 2.71 cells/mm3 tissue that react positive for activity of acetylcho

  13. The Involvement of Parasympathetic and Sympathetic Nerve in the Inflammatory Reflex.

    Science.gov (United States)

    Pereira, Mariana Rodrigues; Leite, Paulo Emílio Corrêa

    2016-09-01

    Production of inflammatory cytokines plays important roles in the response against tissue injury and in host defense. Alterations in the production of inflammatory cytokines may cause local or systemic inflammatory imbalance, culminating in organ failure or lethal systemic inflammation. The cholinergic anti-inflammatory pathway has been implicated as an important mechanism to regulate inflammation of targeted tissue. In this review, we discuss important advances, conflicting and controversial findings regarding the involvement of parasympathetic vagus and sympathetic splenic nerve through acetylcholine (ACh) release and α7 nicotinic acetylcholine receptor (nAChRα7) activation in the spleen. In addition, we address the involvement of cholinergic control of inflammation in other organs innerved by the vagus nerve such as gut, liver, kidney and lung, and independent of parasympathetic innervations such as skin and skeletal muscle. Then, other structures and mechanisms independent of vagus or splenic nerve may be involved in this process, such as local cells and motor neurons producing ACh. Altogether, the convergence of these findings may contribute to current anti-inflammatory strategies involving selective drug-targeting and electrical nerve stimulation. J. Cell. Physiol. 231: 1862-1869, 2016. © 2016 Wiley Periodicals, Inc.

  14. The Involvement of Parasympathetic and Sympathetic Nerve in the Inflammatory Reflex.

    Science.gov (United States)

    Pereira, Mariana Rodrigues; Leite, Paulo Emílio Corrêa

    2016-09-01

    Production of inflammatory cytokines plays important roles in the response against tissue injury and in host defense. Alterations in the production of inflammatory cytokines may cause local or systemic inflammatory imbalance, culminating in organ failure or lethal systemic inflammation. The cholinergic anti-inflammatory pathway has been implicated as an important mechanism to regulate inflammation of targeted tissue. In this review, we discuss important advances, conflicting and controversial findings regarding the involvement of parasympathetic vagus and sympathetic splenic nerve through acetylcholine (ACh) release and α7 nicotinic acetylcholine receptor (nAChRα7) activation in the spleen. In addition, we address the involvement of cholinergic control of inflammation in other organs innerved by the vagus nerve such as gut, liver, kidney and lung, and independent of parasympathetic innervations such as skin and skeletal muscle. Then, other structures and mechanisms independent of vagus or splenic nerve may be involved in this process, such as local cells and motor neurons producing ACh. Altogether, the convergence of these findings may contribute to current anti-inflammatory strategies involving selective drug-targeting and electrical nerve stimulation. J. Cell. Physiol. 231: 1862-1869, 2016. © 2016 Wiley Periodicals, Inc. PMID:26754950

  15. Connexin 43 Mediates White Adipose Tissue Beiging by Facilitating the Propagation of Sympathetic Neuronal Signals.

    Science.gov (United States)

    Zhu, Yi; Gao, Yong; Tao, Caroline; Shao, Mengle; Zhao, Shangang; Huang, Wei; Yao, Ting; Johnson, Joshua A; Liu, Tiemin; Cypess, Aaron M; Gupta, Olga; Holland, William L; Gupta, Rana K; Spray, David C; Tanowitz, Herbert B; Cao, Lei; Lynes, Matthew D; Tseng, Yu-Hua; Elmquist, Joel K; Williams, Kevin W; Lin, Hua V; Scherer, Philipp E

    2016-09-13

    "Beige" adipocytes reside in white adipose tissue (WAT) and dissipate energy as heat. Several studies have shown that cold temperature can activate pro-opiomelanocortin-expressing (POMC) neurons and increase sympathetic neuronal tone to regulate WAT beiging. WAT, however, is traditionally known to be sparsely innervated. Details regarding the neuronal innervation and, more importantly, the propagation of the signal within the population of "beige" adipocytes are sparse. Here, we demonstrate that beige adipocytes display an increased cell-to-cell coupling via connexin 43 (Cx43) gap junction channels. Blocking of Cx43 channels by 18α-glycyrrhetinic acid decreases POMC-activation-induced adipose tissue beiging. Adipocyte-specific deletion of Cx43 reduces WAT beiging to a level similar to that observed in denervated fat pads. In contrast, overexpression of Cx43 is sufficient to promote beiging even with mild cold stimuli. These data reveal the importance of cell-to-cell communication, effective in cold-induced WAT beiging, for the propagation of limited neuronal inputs in adipose tissue. PMID:27626200

  16. Cardiac arrhythmias

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008407 Effects of sympathetic nerve stimulation on connexin43 and ventricular arrhythmias during acute myocardial ischemia: experiment with rats. HU Xiaorong(胡笑容), et al. Dept Cardiol, Renmin Hosp, Wuhan Univ, Wuhan 430060. Natl Med J China 2008;88(24):1707-1710. Objective To investigate the effects of sympathetic nerve stimulation (SNS) on connexin43 (Cx43) and ventricular arrhythmias during acute myocardial ischemia (MI).

  17. Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure.

    Science.gov (United States)

    Lymperopoulos, Anastasios; Rengo, Giuseppe; Funakoshi, Hajime; Eckhart, Andrea D; Koch, Walter J

    2007-03-01

    Cardiac overstimulation by the sympathetic nervous system (SNS) is a salient characteristic of heart failure, reflected by elevated circulating levels of catecholamines. The success of beta-adrenergic receptor (betaAR) antagonists in heart failure argues for SNS hyperactivity being pathogenic; however, sympatholytic agents targeting alpha2AR-mediated catecholamine inhibition have been unsuccessful. By investigating adrenal adrenergic receptor signaling in heart failure models, we found molecular mechanisms to explain the failure of sympatholytic agents and discovered a new strategy to lower SNS activity. During heart failure, there is substantial alpha2AR dysregulation in the adrenal gland, triggered by increased expression and activity of G protein-coupled receptor kinase 2 (GRK2). Adrenal gland-specific GRK2 inhibition reversed alpha2AR dysregulation in heart failure, resulting in lowered plasma catecholamine levels, improved cardiac betaAR signaling and function, and increased sympatholytic efficacy of a alpha2AR agonist. This is the first demonstration, to our knowledge, of a molecular mechanism for SNS hyperactivity in heart failure, and our study identifies adrenal GRK2 activity as a new sympatholytic target.

  18. Innervation of the hard palate of the rat

    NARCIS (Netherlands)

    Liem, Swie Bing

    1989-01-01

    This study is undertaken to gain more insight into the pattern of innervation of the hard palate of the rat and into the morphology of the sensory structures found there. Since the main research project of the Department of Neurobiology and Oral Physiology is dedicated to the formulation of a model

  19. Part and Parcel of the Cardiac Autonomic Nerve System: Unravelling Its Cellular Building Blocks during Development

    Directory of Open Access Journals (Sweden)

    Anna M. D. Végh

    2016-09-01

    Full Text Available The autonomic nervous system (cANS is essential for proper heart function, and complications such as heart failure, arrhythmias and even sudden cardiac death are associated with an altered cANS function. A changed innervation state may underlie (part of the atrial and ventricular arrhythmias observed after myocardial infarction. In other cardiac diseases, such as congenital heart disease, autonomic dysfunction may be related to disease outcome. This is also the case after heart transplantation, when the heart is denervated. Interest in the origin of the autonomic nerve system has renewed since the role of autonomic function in disease progression was recognized, and some plasticity in autonomic regeneration is evident. As with many pathological processes, autonomic dysfunction based on pathological innervation may be a partial recapitulation of the early development of innervation. As such, insight into the development of cardiac innervation and an understanding of the cellular background contributing to cardiac innervation during different phases of development is required. This review describes the development of the cANS and focuses on the cellular contributions, either directly by delivering cells or indirectly by secretion of necessary factors or cell-derivatives.

  20. The Role of Lumbar Sympathetic Nerves in Regulation of Blood Flow to Skeletal Muscle during Anaphylactic Hypotension in Anesthetized Rats.

    Directory of Open Access Journals (Sweden)

    Jie Song

    Full Text Available During hypovolemic shock, skeletal muscle blood flow could be redistributed to vital organs via vasoconstriction in part evoked by activation of the innervating sympathetic nerve activity. However, it is not well known whether this mechanism operates during anaphylactic shock. We determined the femoral artery blood flow (FBF and lumbar sympathetic nerve activity (LSNA mainly regulating the hindquater muscle blood flow during anaphylactic hypotension in anesthetized rats. Anesthetized Sprague-Dawley rats were randomly allocated to the following groups (n = 7/group: (1 non-sensitized, (2 anaphylaxis, (3 anaphylaxis-lumbar sympathectomy (LS and (4 anaphylaxis-sinoaortic denervation (SAD groups. Anaphylaxis was induced by an intravenous injection of the ovalbumin antigen to the sensitized rats. The systemic arterial pressure (SAP, heart rate (HR, central venous pressure (CVP, FBF and LSNA were continuously measured. In the anaphylaxis group, LSNA and HR increased, while SAP and FBF decreased after antigen injection. In the anaphylaxis-SAD group, LSNA did not significantly change during the early phase, but the responses of SAP and FBF were similar to those in the anaphylaxis group. In the anaphylaxis-LS group, both FBF and SAP decreased similarly to the anaphylaxis group during anaphylactic hypotension. These results indicated that LSNA increased via baroreceptor reflex, but this sympathoexcitation or LS did not affect antigen-induced decreases in FBF or SAP. Lumbar sympathetic nerves are not involved in regulation of the blood flow to the hindlimb or systemic blood pressure during anaphylactic hypotension in anesthetized rats.

  1. Central and cerebrovascular effects of leg crossing in humans with sympathetic failure

    DEFF Research Database (Denmark)

    Harms, Mark P M; Wieling, Wouter; Colier, Willy N J M;

    2010-01-01

    MCA Vmean (middle cerebral artery blood velocity; using transcranial Doppler ultrasound), frontal lobe oxygenation [O2Hb (oxyhaemoglobin)] and MAP (mean arterial pressure), CO (cardiac output) and TPR (total peripheral resistance) in six patients (aged 37-67 years; three women) and age- and gender.......12 (0.52-3.27)] in the patients compared with the controls [0.83 (-0.11 to 2.04) micromol/l]. In the control subjects, CO increased 11% (PTPR. By contrast, in the patients, CO increased 9% (PTPR increased by 13% (P... cerebral perfusion and oxygenation both in patients with sympathetic failure and in healthy subjects. However, in healthy subjects, cerebral perfusion and oxygenation were improved by a rise in CO without significant changes in TPR or MAP, whereas in patients with sympathetic failure, cerebral perfusion...

  2. SYMPATHETIC SKIN RESPONSE AND GALVANIC SKIN RESISTANCE IN MALES WITH TYPE 2 DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    Saravanan Mohanraj

    2016-06-01

    Full Text Available BACKGROUND Diabetes mellitus, a metabolic disorder affects the nervous system due to alteration in various metabolic pathways. As neuropathy manifests in longstanding diabetes mellitus, autonomic nervous system also gets affected. The study was started based on the hypothesis that the sweat glands innervated by autonomic nervous system will be affected in patients with type 2 diabetes mellitus patients with clinical features of neuropathy. This study was undertaken to compare the sympathetic skin response (SSR and galvanic skin resistance (GSR in males with type 2 diabetes mellitus and in controls. METHODS Thirty males in the age group of 45-55 years, known to have diabetes mellitus and having a history of neuropathic symptoms served as subjects and thirty males in the same age group with no history of diabetes mellitus and neuropathy served as controls. SSR and GSR were recorded using Recorders and Medicare Systems 4 channel polygraph in the noise and light reduced research laboratory, Department of Physiology. All the recordings were done between 10-12 noon at ambient temperature. SSR was measured by deep inspiration and the GSR was measured in the supine and standing response. Comparison of latency and amplitude of the sympathetic skin response and the percentage of decrease in galvanic skin resistance was done. RESULT A statistically significant delay in the latency and a reduction in the amplitude of sympathetic skin response was observed in the diabetes patients. There was a lesser percentage of decrease in GSR in the diabetic patients. CONCLUSION This study shows that the SSR and GSR responses are significantly reduced in diabetic individuals and can be used as a diagnostic tool in the detection of diabetic autonomic neuropathy.

  3. Burnout versus work engagement in their effects on 24-hour ambulatory monitored cardiac autonomic function

    NARCIS (Netherlands)

    L.J.P. van Doornen (Lorenz); J.H. Houtveen (Jan); S. Langelaan (Saar); A.B. Bakker (Arnold); W. van Rhenen (Willem); W.B. Schaufeli (Wilmar)

    2009-01-01

    textabstractBurnout has been associated with increased risk of cardiovascular disease. This relationship may be mediated by a stress-related disruption in cardiac autonomic activity. The aim of the present study was to assess cardiac autonomic activity (sympathetic and parasympathetic) during a work

  4. [Effectiveness of sympathetic block using various technics].

    Science.gov (United States)

    Weissenberg, W

    1987-07-01

    Blocking of sympathetic conduction aims at permanent or temporary elimination of those pain pathways conducted by the sympathetic nervous system. In order to provide an objective evaluation of sufficient blocking effect, earlier inquiries referred to parameters such as: (1) observation of clinical signs such as Horner's syndrome, Guttman's sign, anhidrosis, extended venous filling; (2) difference in skin temperature of at least 1.5 degrees C between blocked and unblocked side; (3) increase in amplitude of the pulse wave; and (4) depression of the psychogalvanic reflex (PGR) on the blocked side (Fig. 1). In clinical practice, these control parameters are effective because they are time-saving, technically simple, and highly evidential. Further parameters for evaluating sympathetic blockade are examination of hydrosis by means of color indicators such as bromocresol and ninhydrin, oscillometry, and plethysmography. The effectiveness of sympathetic blockade after stellate ganglion and sympathetic trunk blocks has been verified by various authors. In a clinical study, 16 patients were divided into four groups in order to test the effectiveness of sympathetic blockade after spinal anesthesia with 3 ml 0.75% bupivacaine (group I) and 4 ml 0.75% bupivacaine (group II) and after peridural anesthesia with 15 ml 0.75% bupivacaine (group III) and 20 ml 0.75% bupivacaine (group IV) by means of temperature difference, response of pulse wave amplitude and PGR between blocked lower and unblocked upper extremity, and sensory levels of block. The patients were classified as ASA I and II; their ages varied from 20 to 63 years.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice.

    Science.gov (United States)

    Nohara, Kazunari; Waraich, Rizwana S; Liu, Suhuan; Ferron, Mathieu; Waget, Aurélie; Meyers, Matthew S; Karsenty, Gérard; Burcelin, Rémy; Mauvais-Jarvis, Franck

    2013-06-15

    Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension.

  6. Sympathetic reflex control of blood flow in human peripheral tissues

    DEFF Research Database (Denmark)

    Henriksen, O

    1991-01-01

    Sympathetic vasoconstrictor reflexes are essential for the maintenance of arterial blood pressure in upright position. It has been generally believed that supraspinal sympathetic vasoconstrictor reflexes elicited by changes in baroreceptor activity play an important role. Recent studies on human ...... to collision of normodromically and antidromically conducted impulses in efferent sympathetic vasoconstrictor fibers. The evidence obtained suggests that sympathetic vasoconstrictor reflexes to postural changes are complex and highly differentiated....

  7. Periodic Repolarisation Dynamics: A Natural Probe of the Ventricular Response to Sympathetic Activation

    Science.gov (United States)

    Rizas, Konstantinos D; Hamm, Wolfgang; Kääb, Stefan; Schmidt, Georg; Bauer, Axel

    2016-01-01

    Periodic repolarisation dynamics (PRD) refers to low-frequency (≤0.1Hz) modulations of cardiac repolarisation instability. Spontaneous PRD can be assessed non-invasively from 3D high-resolution resting ECGs. Physiological and experimental studies have indicated that PRD correlates with efferent sympathetic nerve activity, which clusters in low-frequency bursts. PRD is increased by physiological provocations that lead to an enhancement of sympathetic activity, whereas it is suppressed by pharmacological β-blockade. Electrophysiological studies revealed that PRD occurs independently from heart rate variability. Increased PRD under resting conditions is a strong predictor of mortality in post-myocardial infarction (post-MI) patients, yielding independent prognostic value from left-ventricular ejection fraction (LVEF), heart rate variability, the Global Registry of Acute Coronary Events score and other established risk markers. The predictive value of PRD is particularly strong in post-MI patients with preserved LVEF (>35 %) in whom it identifies a new high-risk group of patients. The upcoming Implantable Cardiac Monitors in High-Risk Post-Infarction Patients with Cardiac Autonomic Dysfunction and Moderately Reduced Left Ventricular Ejection Fraction (SMART-MI) trial will test prophylactic strategies in high-risk post-MI patients with LVEF 36–50 % identified by PRD and deceleration capacity of heart rate (NCT02594488). PMID:27403291

  8. Clinical application of l-123 MlBG cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young [College of Medicine, Donga Univ., Busan (Korea, Republic of)

    2004-10-01

    Cardiac neurotransmission imaging allows in vivo assessment of presynaptic reuptake, neurotransmitter storage and postsynaptic receptors. Among the various neurotransmitter, I-123 MlBG is most available and relatively well-established. Metaiodobenzylguanidine (MIBG) is an analogue of the false neurotransmitter guanethidine. It is taken up to adrenergic neurons by uptake-1 mechanism as same as norepinephrine. As tagged with I-123, it can be used to image sympathetic function in various organs including heart with planar or SPECT techniques. I-123 MIBG imaging has a unique advantage to evaluate myocardial neuronal activity in which the heart has no significant structural abnormality or even no functional derangement measured with other conventional examination. In patients with cardiomyopathy and heart failure, this imaging has most sensitive technique to predict prognosis and treatment response of betablocker or ACE inhibitor. In diabetic patients, it allow very early detection of autonomic neuropathy. In patients with dangerous arrhythmia such as ventricular tachycardia or fibrillation, MIBG imaging may be only an abnormal result among various exams. In patients with ischemic heart disease, sympathetic derangement may be used as the method of risk stratification. In heart transplanted patients, sympathetic reinnervation is well evaluated. Adriamycin-induced cardiotoxicity is detected earlier than ventricular dysfunction with sympathetic dysfunction. Neurodegenerative disorder such as Parkinson's disease or dementia with Lewy bodies has also cardiac sympathetic dysfunction. Noninvasive assessment of cardiac sympathetic nerve activity with l-123 MlBG imaging may be improve understanding of the pathophysiology of cardiac disease and make a contribution to predict survival and therapy efficacy.

  9. Trapping and Sympathetic Cooling of Boron Ions

    CERN Document Server

    Rugango, Rene; Shu, Gang; Brown, Kenneth R

    2016-01-01

    We demonstrate the trapping and sympathetic cooling of B$^{+}$ ions in a Coulomb crystal of laser-cooled Ca$^{+}$, We non-destructively confirm the presence of the both B$^+$ isotopes by resonant excitation of the secular motion. The B$^{+}$ ions are loaded by ablation of boron and the secular excitation spectrum also reveals features consistent with ions of the form B$_{n}^{+}$.

  10. Sympathetic Ophthalmia: Mangement and Role of Immunosuppressants

    OpenAIRE

    R.Kapoor, A.K.Sharma,Subash Bhardwaj

    2000-01-01

    Presented here is a case of sympathetic ophthalmia that provided us an oppotunity to evaluate theefficacy bfimmunosuppressive drugs with steroids in reduced doses and their outcome in improvingthe visual loss in a young patient who had fast deterioration in his visual acuity.

  11. Sympathetic Ophthalmia: Mangement and Role of Immunosuppressants

    Directory of Open Access Journals (Sweden)

    R.Kapoor, A.K.Sharma,Subash Bhardwaj

    2000-04-01

    Full Text Available Presented here is a case of sympathetic ophthalmia that provided us an oppotunity to evaluate theefficacy bfimmunosuppressive drugs with steroids in reduced doses and their outcome in improvingthe visual loss in a young patient who had fast deterioration in his visual acuity.

  12. Characterisation of the primary afferent spinal innervation of mouse uterus

    Directory of Open Access Journals (Sweden)

    Geraldine eHerweijer

    2014-07-01

    Full Text Available The primary afferent innervation of the uterus is incompletely understood. The aim of this study was to identify the location and characteristics of primary afferent neurons that innervate the uterine horn of mice and correlate the different morphological types of putative primary afferent nerve endings, immunoreactive to the sensory marker, calcitonin gene related peptide (CGRP. Using retrograde tracing, injection of 5-10µL of 1,1'-didodecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI into discrete single sites in each uterine horn revealed a biomodal distribution of sensory neurons in dorsal root ganglia (DRG with peak labelling occurring between T13-L3 and a second smaller peak between L6-S1. The mean cross sectional area of labelled cells was 463 µm2 +/- SEM. A significantly greater proportion of labelled neurons consisted of small cell bodies (<300 µm2 in the sacral spinal cord (S2 compared with peak labelling at the lumbar (L2 region. In both sections and whole mount preparations, immunohistochemical staining for CGRP revealed substantial innervation of the uterus by CGRP-positive nerve fibres located primarily at the border between the circular and longitudinal muscle layers (N=4. The nerve endings were classified into three distinct types: single, branching or complex, that often aligned preferentially in either the circular or longitudinal axis of the smooth muscles. Complex endings were often associated with mesenteric vessels. We have identified that the cell bodies of primary afferent neurons innervating the mouse uterus lie primarily in DRG at L2 and S1 spinal levels. Also, the greatest density of CGRP immunoreactivity lies within the myometrium, with at least three different morphological types of nerve endings identified. These findings will facilitate further investigations into the mechanisms underlying sensory transduction in mouse uterus.

  13. Reciprocal Innervation of Outer Hair Cells in a Human Infant

    OpenAIRE

    Thiers, Fabio A.; Burgess, Barbara J.; Nadol, Joseph B.

    2002-01-01

    Reciprocal synapses are characterized by the presence of both afferent and efferent types of synaptic specializations between two cells. They have been described at the neural poles of outer hair cells (OHCs) in humans with advanced age and two monkey species. Our objective was to study the innervation of the OHCs and determine if reciprocal synapses were present in a young (8-month-old infant) human subject. We studied the synaptic and cytoplasmic morphology of 162 nerve terminals innervatin...

  14. Cardiac autonomic nerve distribution and arrhythmia

    Institute of Scientific and Technical Information of China (English)

    Quan Liu; Dongmei Chen; Yonggang Wang; Xin Zhao; Yang Zheng

    2012-01-01

    OBJECTIVE: To analyze the distribution characteristics of cardiac autonomic nerves and to explore the correlation between cardiac autonomic nerve distribution and arrhythmia.DATA RETRIEVAL: A computer-based retrieval was performed for papers examining the distribution of cardiac autonomic nerves, using "heart, autonomic nerve, sympathetic nerve, vagus nerve, nerve distribution, rhythm and atrial fibrillation" as the key words.SELECTION CRITERIA: A total of 165 studies examining the distribution of cardiac autonomic nerve were screened, and 46 of them were eventually included.MAIN OUTCOME MEASURES: The distribution and characteristics of cardiac autonomic nerves were observed, and immunohistochemical staining was applied to determine the levels of tyrosine hydroxylase and acetylcholine transferase (main markers of cardiac autonomic nerve distribution). In addition, the correlation between cardiac autonomic nerve distribution and cardiac arrhythmia was investigated.RESULTS: Cardiac autonomic nerves were reported to exhibit a disordered distribution in different sites, mainly at the surface of the cardiac atrium and pulmonary vein, forming a ganglia plexus. The distribution of the pulmonary vein autonomic nerve was prominent at the proximal end rather than the distal end, at the upper left rather than the lower right, at the epicardial membrane rather than the endocardial membrane, at the left atrium rather than the right atrium, and at the posterior wall rather than the anterior wall. The main markers used for cardiac autonomic nerves were tyrosine hydroxylase and acetylcholine transferase. Protein gene product 9.5 was used to label the immunoreactive nerve distribution, and the distribution density of autonomic nerves was determined using a computer-aided morphometric analysis system.CONCLUSION: The uneven distribution of the cardiac autonomic nerves is the leading cause of the occurrence of arrhythmia, and the cardiac autonomic nerves play an important role in the

  15. Cardiac arrest

    Science.gov (United States)

    ... Article.jsp. Accessed June 16, 2014. Myerburg RJ, Castellanos A. Approach to cardiac arrest and life-threatening ... PA: Elsevier Saunders; 2011:chap 63. Myerburg RJ, Castellanos A. Cardiac arrest and audden aardiac death. In: ...

  16. Highly abnormal thermotests in familial dysautonomia suggest increased cardiac autonomic risk

    OpenAIRE

    Hilz, M; Kolodny, E.; Neuner, I; Stemper, B; Axelrod, F

    1998-01-01

    OBJECTIVE—Patients with familial dysautonomia have an increased risk of sudden death. In some patients with familial dysautonomia, sympathetic cardiac dysfunction is indicated by prolongation of corrected QT (QTc) interval, especially during stress tests. As many patients do not tolerate physical stress, additional indices are needed to predict autonomic risk. In familial dysautonomia there is a reduction of both sympathetic neurons and peripheral small nerve fibres which...

  17. Effect of percutaneous renal sympathetic nerve radiofrequency ablation in patients with severe heart failure.

    Science.gov (United States)

    Dai, Qiming; Lu, Jing; Wang, Benwen; Ma, Genshan

    2015-01-01

    This study aimed to investigate the clinical feasibility and effects of percutaneous renal sympathetic nerve radiofrequency ablation in patients with heart failure. A total of 20 patients with heart failure were enrolled, aged from 47 to 75 years (63±10 years). They were divided into the standard therapy (n = 10), and renal nerve radiofrequency ablation groups (n = 10). There were 15 males and 5 female patients, including 8 ischemic cardiomyopathy, 8 dilated cardiomyopathy, and 8 hypertensive cardiopathy. All of the patients met the criteria of New York Heart Association classes III-IV cardiac function. Patients with diabetes and renal failure were excluded. Percutaneous renal sympathetic nerve radiofrequency ablation was performed on the renal artery wall under X-ray guidance. Serum electrolytes, neurohormones, and 24 h urine volume were recorded 24 h before and after the operation. Echocardiograms were performed to obtain left ventricular ejection fraction at baseline and 6 months. Heart rate, blood pressure, symptoms of dyspnea and edema were also monitored. After renal nerve ablation, 24 h urine volume was increased, while neurohormone levels were decreased compared with those of pre-operation and standard therapy. No obvious change in heart rate or blood pressure was recorded. Symptoms of heart failure were improved in patients after the operation. No complications were recorded in the study. Percutaneous renal sympathetic nerve radiofrequency ablation may be a feasible, safe, and effective treatment for the patients with severe congestive heart failure.

  18. Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats

    Directory of Open Access Journals (Sweden)

    A. Medeiros

    2004-12-01

    Full Text Available The effect of swimming training (ST on vagal and sympathetic cardiac effects was investigated in sedentary (S, N = 12 and trained (T, N = 12 male Wistar rats (200-220 g. ST consisted of 60-min swimming sessions 5 days/week for 8 weeks, with a 5% body weight load attached to the tail. The effect of the autonomic nervous system in generating training-induced resting bradycardia (RB was examined indirectly after cardiac muscarinic and adrenergic receptor blockade. Cardiac hypertrophy was evaluated by cardiac weight and myocyte morphometry. Plasma catecholamine concentrations and citrate synthase activity in soleus muscle were also determined in both groups. Resting heart rate was significantly reduced in T rats (355 ± 16 vs 330 ± 20 bpm. RB was associated with a significantly increased cardiac vagal effect in T rats (103 ± 25 vs 158 ± 40 bpm, since the sympathetic cardiac effect and intrinsic heart rate were similar for the two groups. Likewise, no significant difference was observed for plasma catecholamine concentrations between S and T rats. In T rats, left ventricle weight (13% and myocyte dimension (21% were significantly increased, suggesting cardiac hypertrophy. Skeletal muscle citrate synthase activity was significantly increased by 52% in T rats, indicating endurance conditioning. These data suggest that RB induced by ST is mainly mediated parasympathetically and differs from other training modes, like running, that seems to mainly decrease intrinsic heart rate in rats. The increased cardiac vagal activity associated with ST is of clinical relevance, since both are related to increased life expectancy and prevention of cardiac events.

  19. Phenotypic alterations of neuropeptide Y and calcitonin gene-related peptide-containing neurons innervating the rat temporomandibular joint during carrageenan-induced arthritis

    Directory of Open Access Journals (Sweden)

    J.P. Damico

    2012-10-01

    Full Text Available The aim of this study was to identify immunoreactive neuropeptide Y (NPY and calcitonin gene-related peptide (CGRP neurons in the autonomic and sensory ganglia, specifically neurons that innervate the rat temporomandibular joint (TMJ. A possible variation between the percentages of these neurons in acute and chronic phases of carrageenan-induced arthritis was examined. Retrograde neuronal tracing was combined with indirect immunofluorescence to identify NPY-immunoreactive (NPY-IR and CGRP- immunoreactive (CGRP-IR neurons that send nerve fibers to the normal and arthritic temporomandibular joint. In normal joints, NPY-IR neurons constitute 78±3%, 77±6% and 10±4% of double-labeled nucleated neuronal profile originated from the superior cervical, stellate and otic ganglia, respectively. These percentages in the autonomic ganglia were significantly decreased in acute (58±2% to superior cervical ganglion and 58±8% to stellate ganglion and chronic (60±2% to superior cervical ganglion and 59±15% to stellate ganglion phases of arthritis, while in the otic ganglion these percentages were significantly increased to 19±5% and 13±3%, respectively. In the trigeminal ganglion, CGRP-IR neurons innervating the joint significantly increased from 31±3% in normal animals to 54±2% and 49±3% in the acute and chronic phases of arthritis, respectively. It can be concluded that NPY neurons that send nerve fibers to the rat temporomandibular joint are located mainly in the superior cervical, stellate and otic ganglia. Acute and chronic phases of carrageenan-induced arthritis lead to an increase in the percentage of NPY-IR parasympathetic and CGRP-IR sensory neurons and decrease in the percentage of NPY-IR sympathetic neurons related to TMJ innervation.

  20. Cervical sympathetic chain schwannoma: a case report

    OpenAIRE

    Inès Nacef; Skander Kedous; Zied Attia; Slim Touati; Said Gritli

    2012-01-01

    Nerve tumors arising from the sympathetic chain are uncommon slow-growing tumors and represent a diagnosis challenge. Their malignant degeneration is rare. Definitive pre-operative diagnosis may be difficult as investigations are not usually helpful. We report the case of a 23-year old woman who presented with an asymptomatic solitary left cervical swelling. She was evaluated with sonography and computed tomography. Complete surgical excision of the lesion was carried out and histologic exami...

  1. Sympathetic hyperactivity syndrome following cerebral fat embolization

    OpenAIRE

    2013-01-01

    To date, there have been no reports of paroxysmal sympathetic hyperactivity syndrome (PSHS) associated with cerebral fat embolization. We describe the case of a young male who developed acute brain injury and acute hypoxemic respiratory failure secondary to significant fat embolization following a traumatic femur injury. Our patient demonstrated episodes of significant hypertension, tachycardia, fever and extensor posturing. Extensive evaluation lead to the diagnosis and appropriate ...

  2. [Cardiac reserve in Parkinson's disease and exercise therapy].

    Science.gov (United States)

    Hirayama, Masaaki; Nakamura, Tomohiko; Sobue, Gen

    2013-01-01

    The clinical feature of Parkinson's disease (PD) is not based on the identification of the extrapyramidal symptom such as bradykinesia, restinbg tremor, rigidity, but also other non-motor symptom (REM sleep disorder, autonomic dysfunction, hyposmia etc). According to the cardio-sympathetic dysfunction, it is well known abnormal MIBG and orthostatic hypotension finding was seen in early disease stage. Furthermore denervation supersensitivity using β1 stimulant correlates the severity of MIBG image, so that this abnormal cardiac function induces inadequate cardiac capacity for exercise. Inadequate cardiac capacity makes easy fatigability, which correlates the abnormal MIBG image and cardio-sympathetic damage. So it is difficult to prescribe a specific exercise program to meet individual PD patients needs. Music therapy and trunk exercise (for example Tai-Chi exercise) are better suited for PD patients. PMID:24291996

  3. Cardiac neuronal imaging with {sup 123}I-meta-iodobenzylguanidine in heart failure: implications of endpoint selection and quantitative analysis on clinical decisions

    Energy Technology Data Exchange (ETDEWEB)

    Petretta, Mario [University Federico II, Department of Translational Medicine, Naples (Italy); Pellegrino, Teresa [National Council of Research, Institute of Biostructure and Bioimaging, Naples (Italy); Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy)

    2014-09-15

    There are a number of radiopharmaceuticals that can be used to investigate autonomic neuronal functions. Among these, the norepinephrine analogue meta-iodobenzylguanidine (MIBG) labelled with {sup 123}I has been widely used and validated as a marker of adrenergic neuron function. The first study addressing the prognostic value of {sup 123}I-MIBG imaging in heart failure (HF) was that of Merlet et al. in 90 patients suffering from either ischaemic or idiopathic cardiomyopathy. After publication of this study, more recent studies have indicated that patients with HF and decreased late heart-to-mediastinum (H/M) ratio or increased myocardial MIBG washout have a worse prognosis than those with normal quantitative myocardial MIBG parameters. However, MIBG scintigraphy has still to reach widespread clinical application mainly because of the value of other cheaper variables such as left ventricular (LV) ejection fraction and brain natriuretic peptide (BNP) plasma levels. The possibility that the detection of mechanical dyssynchrony by innervation imaging might identify patients who would benefit from resynchronization pacing is another area of research interest. In 2010, the landmark AdreView Myocardial Imaging for Risk Evaluation in Heart Failure (ADMIRE-HF) study was published. This trial consisted of two identical open-label phase III studies enrolling patients in 96 sites in North America and Europe to provide prospective validation of the prognostic role of quantitation of sympathetic cardiac innervation using MIBG. The primary endpoint was the relationship between late HIM ratio and time-to-occurrence of the first event among a combination of HF progression, potentially life-threatening arrhythmic event, and cardiac death. The authors found that a HIM ratio <1.6 provided prognostic information beyond LV ejection fraction, BNP, and New York Heart Association (NYHA) functional class at the time of enrolment. In a recent article in this journal, Parker et al. present

  4. Part and Parcel of the Cardiac Autonomic Nerve System: Unravelling Its Cellular Building Blocks during Development

    OpenAIRE

    Végh, Anna M D; Duim, Sjoerd N; Smits, Anke M; Robert E Poelmann; Arend D. J. ten Harkel; DeRuiter, Marco C; Marie José Goumans; Monique R M Jongbloed

    2016-01-01

    The autonomic nervous system (cANS) is essential for proper heart function, and complications such as heart failure, arrhythmias and even sudden cardiac death are associated with an altered cANS function. A changed innervation state may underlie (part of) the atrial and ventricular arrhythmias observed after myocardial infarction. In other cardiac diseases, such as congenital heart disease, autonomic dysfunction may be related to disease outcome. This is also the case after heart transplantat...

  5. Innervation of the hard palate of the rat

    OpenAIRE

    Liem, Swie Bing

    1989-01-01

    This study is undertaken to gain more insight into the pattern of innervation of the hard palate of the rat and into the morphology of the sensory structures found there. Since the main research project of the Department of Neurobiology and Oral Physiology is dedicated to the formulation of a model of the chewing system of the rat, the Wistar rat is choosen as an experimental animal. A total number of 113 adult rats, and 61 tat embryos is studied histologically and electron microscopically. ....

  6. Prognostic value of myocardial sympathetic activity in patients with asymptomatic myocardial infarction

    International Nuclear Information System (INIS)

    To clarify the significance of myocardial sympathetic activity in patients with asymptomatic myocardial infarction (MI), we performed 123I-metaiodobenzyl-guanidine (MIBG) and 201Tl imaging at rest. We calculated the ratio of cardiac uptake of the isotope to the total injected dose (%Uptake), percent washout of MIBG over 3 hours and the Uptake Ratio (UR, %Uptake of MIBG divided by %Uptake of 201Tl). We compared these indices with clinical findings, exercise stress-rest myocardial perfusion imaging with 99Tc-methoxy-2-isobutyl isonitrile, coronary angiography, echocardiography and neurohumoral findings. During the follow-up period of 19.9±10.3 months in 32 patients, events (heart failure or cardiac death) developed in 10 (31%). In univariate analysis, diabetes mellitus, atrial fibrillation, left ventricular end-diastolic dimension (LVDd) greater than 54 mm, and the %Uptake of MIBG and UR differed significantly between event and event-free groups. Cox proportional hazard model showed that the UR was a predictor of events (p=0.0007). In patients with UR less than 0.58, the relative risk of events was 19.1 times greater than in patients with an UR greater than 0.58. UR was closely correlated to LVDd (r=-0.578, p=0.01) suggesting that myocardial sympathetic activity is related to LV remodeling after MI. MIBG imaging provides important information regarding the prognosis and the pathophysiologic process of asymptomatic MI. (author)

  7. Prognostic value of myocardial sympathetic activity in patients with asymptomatic myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Michihiro; Kurihara, Tadashi; Sindoh, Takashi; Sawada, Yoshihiro [Sumitomo Hospital, Osaka (Japan)

    1999-04-01

    To clarify the significance of myocardial sympathetic activity in patients with asymptomatic myocardial infarction (MI), we performed {sup 123}I-metaiodobenzyl-guanidine (MIBG) and {sup 201}Tl imaging at rest. We calculated the ratio of cardiac uptake of the isotope to the total injected dose (%Uptake), percent washout of MIBG over 3 hours and the Uptake Ratio (UR, %Uptake of MIBG divided by %Uptake of {sup 201}Tl). We compared these indices with clinical findings, exercise stress-rest myocardial perfusion imaging with {sup 99}Tc-methoxy-2-isobutyl isonitrile, coronary angiography, echocardiography and neurohumoral findings. During the follow-up period of 19.9{+-}10.3 months in 32 patients, events (heart failure or cardiac death) developed in 10 (31%). In univariate analysis, diabetes mellitus, atrial fibrillation, left ventricular end-diastolic dimension (LVDd) greater than 54 mm, and the %Uptake of MIBG and UR differed significantly between event and event-free groups. Cox proportional hazard model showed that the UR was a predictor of events (p=0.0007). In patients with UR less than 0.58, the relative risk of events was 19.1 times greater than in patients with an UR greater than 0.58. UR was closely correlated to LVDd (r=-0.578, p=0.01) suggesting that myocardial sympathetic activity is related to LV remodeling after MI. MIBG imaging provides important information regarding the prognosis and the pathophysiologic process of asymptomatic MI. (author)

  8. Increased sympathetic tone in forearm subcutaneous tissue in primary hypothyroidism

    DEFF Research Database (Denmark)

    Vagn Nielsen, H; Hasselström, K; Feldt-Rasmussen, U;

    1987-01-01

    Sympathetic reflex regulation of subcutaneous blood flow (SBF) in the forearm was studied in eight patients with primary hypothyroidism. Diastolic arterial pressure was greater than or equal to 95 mmHg in five patients. SBF was determined by local clearance of Na99mTcO4. Sympathetic vasoconstrict......Sympathetic reflex regulation of subcutaneous blood flow (SBF) in the forearm was studied in eight patients with primary hypothyroidism. Diastolic arterial pressure was greater than or equal to 95 mmHg in five patients. SBF was determined by local clearance of Na99mTcO4. Sympathetic.......02)). In conclusion sympathetic vasoconstrictor activity in adipose tissue is markedly increased in primary hypothyroidism. Sympathetic tone and arterial pressure are reduced during treatment....

  9. Fibromyalgia: When Distress Becomes (Un)sympathetic Pain

    OpenAIRE

    Manuel Martinez-Lavin

    2012-01-01

    Fibromyalgia is a painful stress-related disorder. A key issue in fibromyalgia research is to investigate how distress could be converted into pain. The sympathetic nervous system is the main element of the stress response system. In animal models, physical trauma, infection, or distressing noise can induce abnormal connections between the sympathetic nervous system and the nociceptive system. Dorsal root ganglia sodium channels facilitate this type of sympathetic pain. Similar mechanisms may...

  10. Abnormal cardiac autonomic regulation in mice lacking ASIC3.

    Science.gov (United States)

    Cheng, Ching-Feng; Kuo, Terry B J; Chen, Wei-Nan; Lin, Chao-Chieh; Chen, Chih-Cheng

    2014-01-01

    Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3(-/-) mice. Asic3(-/-) mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3(-/-) mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3(-/-) mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases. PMID:24804235

  11. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    Directory of Open Access Journals (Sweden)

    Ching-Feng Cheng

    2014-01-01

    Full Text Available Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3 is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  12. Impact of right upper pulmonary vein isolation on atrial vagal innervation and vulnerability to atrial fibrillation

    Institute of Scientific and Technical Information of China (English)

    LIU Yuan; ZHANG Shu-long; DONG Ying-xue; ZHAO Hong-wei; GAO Lian-jun; YIN Xiao-meng; LI Shi-jun; LIN Zhi-hu; YANG Yan-zong

    2006-01-01

    Background Based on the hypothesis that pulmonary vein isolation could result in the damage of the epicardial fat pads, this study aimed to investigated the impact of right upper pulmonary vein (RUPV) isolation on vagal innervation to atria.Methods Bilateral cervical sympathovagal trunks were decentralized in 6 dogs. Metoprolol was given to block sympathetic effects. Multipolar catheters were placed into the right atrium (RA) and coronary sinus (CS). RUPV isolation was performed via transseptal procedure. Atrial effective refractory period (ERP), vulnerability window (VW) of atrial fibrillation (AF), and sinus rhythm cycle length (SCL) were measured at RA and distal coronary sinus (CSd) at baseline and vagal stimulation before and after RUPV isolation. Serial sections of underlying tissues before and after ablation were stained with haematoxylin and eosin.Results SCL decreased significantly during vagal stimulation before RUPV isolation (197 ± 21 vs 13 ±32 beats per minute, P<0.001), but remained unchanged after RUPV isolation (162±29 vs 140±39 beats per minute,P>0.05). ERP increased significantly before RUPV isolation compared with that during vagal stimulation [(85.00±24.29) ms vs (21.67±9.83) ms at RA, P<0.001; (90.00± 15.49) ms vs (33.33±25.03) ms at CSd P<0.005],but ERP at baseline hardly changed after RUPV isolation compared with that during vagal stimulation [(103.33 ±22.50) vs (95.00± 16.43) ms at RA, P = 0.09; (98.33±24.83) vs (75.00±29.50) ms at CSd, P=0.009]. The ERP shortening during vagal stimulation after RUPV isolation decreased significantly [(63.33 ± 22.51) ms vs (8.33 ±9.83) ms at RA, P<0.005; (56.67±20.66) ms vs (23.33± 13.66) ms at CSd, P<0.05]. AF was rarely induced at baseline before and after RUPV isolation (VW close to 0), while VW of AF to vagal stimulation significantly decreased after RUPV isolation [(40.00± 10.95) vs 0 ms at RA, P<0.001; (45.00±32.09) vs (15.00±23.45) ms at CS, P <0.05]. The

  13. Cervical sympathetic chain schwannoma: A case report

    Directory of Open Access Journals (Sweden)

    Inès Nacef

    2014-07-01

    Full Text Available Nerve tumors arising from the sympathetic chain are uncommon slow-growing tumors and represent a diagnosis challenge. Their malignant degeneration is rare. Definitive pre-operative diagnosis may be difficult as investigations are not usually helpful. We report the case of a 23-year old woman who presented with an asymptomatic solitary left cervical swelling. She was evaluated with sonography and computed tomography. Complete surgical excision of the lesion was carried out and histologic examination revealed a schwannoma. Post-operatively, the patient showed clinical findings of Horner’s syndrome. Pathologic and radiological evaluation, differential diagnosis of this neoplasm and its management are discussed.

  14. The Human Sympathetic Nervous System Response to Spaceflight

    Science.gov (United States)

    Ertl, Andrew C.; Diedrich, Andre; Paranjape, Sachin Y.; Biaggioni, Italo; Robertson, Rose Marie; Lane, Lynda D.; Shiavi, Richard; Robertson, David

    2003-01-01

    The sympathetic nervous system is an important part of the autonomic (or automatic) nervous system. When an individual stands up, the sympathetic nervous system speeds the heart and constricts blood vessels to prevent a drop in blood pressure. A significant number of astronauts experience a drop in blood pressure when standing for prolonged periods after they return from spaceflight. Difficulty maintaining blood pressure with standing is also a daily problem for many patients. Indirect evidence available before the Neurolab mission suggested the problem in astronauts while in space might be due partially to reduced sympathetic nervous system activity. The purpose of this experiment was to identify whether sympathetic activity was reduced during spaceflight. Sympathetic nervous system activity can be determined in part by measuring heart rate, nerve activity going to blood vessels, and the release of the hormone norepinephrine into the blood. Norepinephrine is a neurotransmitter discharged from active sympathetic nerve terminals, so its rate of release can serve as a marker of sympathetic nervous system action. In addition to standard cardiovascular measurements (heart rate, blood pressure), we determined sympathetic nerve activity as well as norepinephrine release and clearance on four crewmembers on the Neurolab mission. Contrary to our expectation, the results demonstrated that the astronauts had mildly elevated resting sympathetic nervous system activity in space. Sympathetic nervous system responses to stresses that simulated the cardiovascular effects of standing (lower body negative pressure) were brisk both during and after spaceflight. We concluded that, in the astronauts tested, the activity and response of the sympathetic nervous system to cardiovascular stresses appeared intact and mildly elevated both during and after spaceflight. These changes returned to normal within a few days.

  15. Renal Sympathetic Denervation by CT-Guided Ethanol Injection: A Phase II Pilot Trial of a Novel Technique

    International Nuclear Information System (INIS)

    ObjectivesCT-guided ethanol-mediated renal sympathetic denervation in treatment of therapy-resistant hypertension was performed to assess patient safety and collect preliminary data on treatment efficacy.Materials and MethodsEleven patients with therapy-resistant hypertension (blood pressure of >160 mmHg despite three different antihypertensive drugs including a diuretic) and following screening for secondary causes were enrolled in a phase II single arm open label pilot trial of CT-guided neurolysis of sympathetic renal innervation. Primary endpoint was safety, and secondary endpoint was a decrease of the mean office as well as 24-h systolic blood pressure in follow-up. Follow-up visits at 4 weeks, 3, and 6 months included 24-h blood pressure assessments, office blood pressure, laboratory values, as well as full clinical and quality of life assessments.ResultsNo toxicities ≥3° occurred. Three patients exhibited worsened kidney function in follow-up analyses. When accounting all patients, office systolic blood pressure decreased significantly at all follow-up visits (maximal mean decrease −41.2 mmHg at 3 months). The mean 24-h systolic blood pressure values decreased significantly at 3 months, but not at 6 months (mean: −9.7 and −6.3 mmHg, respectively). Exclusion of five patients who had failed catheter-based endovascular denervation and/or were incompliant for antihypertensive drug intake revealed a more pronounced decrease of 24-h systolic blood pressure (mean: −18.3 and −15.2 mmHg at 3 and 6 months, p = 0.03 and 0.06).ConclusionCT-guided sympathetic denervation proved to be safe and applicable under various anatomical conditions with more renal arteries and such of small diameter

  16. Renal Sympathetic Denervation by CT-Guided Ethanol Injection: A Phase II Pilot Trial of a Novel Technique

    Energy Technology Data Exchange (ETDEWEB)

    Ricke, J., E-mail: jens.ricke@med.ovgu.de; Seidensticker, M.; Becker, S. [Otto-von-Guericke University Magdeburg, Department of Radiology and Nuclear Medicine, Universitätsklinikum Magdeburg AöR (Germany); Schiefer, J. [Universitätsklinikum Magdeburg AöR, Department of Nephrology and Hypertension, Diabetes and Endocrinology (Germany); Adamchic, I.; Lohfink, K. [Otto-von-Guericke University Magdeburg, Department of Radiology and Nuclear Medicine, Universitätsklinikum Magdeburg AöR (Germany); Kandulski, M.; Heller, A.; Mertens, P. R. [Universitätsklinikum Magdeburg AöR, Department of Nephrology and Hypertension, Diabetes and Endocrinology (Germany)

    2016-02-15

    ObjectivesCT-guided ethanol-mediated renal sympathetic denervation in treatment of therapy-resistant hypertension was performed to assess patient safety and collect preliminary data on treatment efficacy.Materials and MethodsEleven patients with therapy-resistant hypertension (blood pressure of >160 mmHg despite three different antihypertensive drugs including a diuretic) and following screening for secondary causes were enrolled in a phase II single arm open label pilot trial of CT-guided neurolysis of sympathetic renal innervation. Primary endpoint was safety, and secondary endpoint was a decrease of the mean office as well as 24-h systolic blood pressure in follow-up. Follow-up visits at 4 weeks, 3, and 6 months included 24-h blood pressure assessments, office blood pressure, laboratory values, as well as full clinical and quality of life assessments.ResultsNo toxicities ≥3° occurred. Three patients exhibited worsened kidney function in follow-up analyses. When accounting all patients, office systolic blood pressure decreased significantly at all follow-up visits (maximal mean decrease −41.2 mmHg at 3 months). The mean 24-h systolic blood pressure values decreased significantly at 3 months, but not at 6 months (mean: −9.7 and −6.3 mmHg, respectively). Exclusion of five patients who had failed catheter-based endovascular denervation and/or were incompliant for antihypertensive drug intake revealed a more pronounced decrease of 24-h systolic blood pressure (mean: −18.3 and −15.2 mmHg at 3 and 6 months, p = 0.03 and 0.06).ConclusionCT-guided sympathetic denervation proved to be safe and applicable under various anatomical conditions with more renal arteries and such of small diameter.

  17. Cardiac Malpositions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Shi Joon; Im, Chung Gie; Yeon, Kyung Mo; Hasn, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    Cardiac Malposition refers to any position of the heart other than a left-sided heart in a situs solitus individual. Associated cardiac malformations are so complex that even angiocardiographic and autopsy studies may not afford an accurate information. Although the terms and classifications used to describe the internal cardiac anatomy and their arterial connections in cardiac malpositions differ and tend to be confusing, common agreement exists on the need for a segmental approach to diagnosis. Authors present 18 cases of cardiac malpositions in which cardiac catheterization and angiocardiography were done at the Department of Radiology, Seoul National University Hospital between 1971 and 1979. Authors analyzed the clinical, radiographic, operative and autopsy findings with the emphasis on the angiocardiographic findings. The results are as follows: 1. Among 18 cases with cardiac malpositions, 6 cases had dextrocardia with situs inversus, 9 cases had dextrocardia with situs solitus and 3 cases had levocardia with situs inversus. 2. There was no genuine exception to visceroatrial concordance rule. 3. Associated cardiac malpositions were variable and complex with a tendency of high association of transposition and double outlet varieties with dextrocardia in situs solitus and levocardia in situs inversus. Only one in 6 cases of dextrocardia with situs inversus had pure transposition. 4. In two cases associated pulmonary atresia was found at surgery which was not predicted by angiocardiography. 5. Because many of the associated complex lesions can be corrected surgically provided the diagnosis is accurate, the selective biplane angiocardiography with or without cineradiography is essential.

  18. Role of Nuclear Medicine in the cardiac resinchronization therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Giorgi, Maria Clementina Pinto; D' Orio, Silvana Angelina; Meneghetti, Jose Claudio [Instituto do Coracao (InCor/FM/USP), Sao Paulo, SP (Brazil)

    2011-10-15

    Cardiac resynchronization therapy (CRT) emerged as one of the most promising approaches in the treatment of cardiac dyssynchrony in heart failure patients' refractory to medical treatment. However, despite very promising clinical and functional results, individual response analyses show that a significant number of patients do not respond to treatment. The role of nuclear medicine and molecular imaging in the selection of CRT candidates by the assessment of cardiac dyssynchrony, myocardial viability, myocardial perfusion and blood flow and sympathetic cardiac activity has been discussed in this review. The potential utilization of this tool to improve the comprehension of detrimental effects of dyssynchrony on cardiac function and the evaluation and monitoring of the response to CRT were also considered. Other molecular targets that characterize glucose and fatty acid metabolism, apoptosis, angiotensin converting enzyme activity and angiogenesis that can be evaluated with this technique were described. (author)

  19. Role of Nuclear Medicine in the cardiac resinchronization therapy

    International Nuclear Information System (INIS)

    Cardiac resynchronization therapy (CRT) emerged as one of the most promising approaches in the treatment of cardiac dyssynchrony in heart failure patients' refractory to medical treatment. However, despite very promising clinical and functional results, individual response analyses show that a significant number of patients do not respond to treatment. The role of nuclear medicine and molecular imaging in the selection of CRT candidates by the assessment of cardiac dyssynchrony, myocardial viability, myocardial perfusion and blood flow and sympathetic cardiac activity has been discussed in this review. The potential utilization of this tool to improve the comprehension of detrimental effects of dyssynchrony on cardiac function and the evaluation and monitoring of the response to CRT were also considered. Other molecular targets that characterize glucose and fatty acid metabolism, apoptosis, angiotensin converting enzyme activity and angiogenesis that can be evaluated with this technique were described. (author)

  20. Control and physiological determinants of sympathetically-mediated brown adipose tissue thermogenesis

    Directory of Open Access Journals (Sweden)

    Denis eRichard

    2012-02-01

    Full Text Available Brown adipose tissue (BAT represents a remarkable heat-producing tissue. The thermogenic potential of BAT is conferred by uncoupling protein 1, a protein found uniquely in the brown adipocytes. The physiological control of BAT activity and capacity is ensured by the sympathetic nervous system (SNS, which densely innervates brown fat depots. SNS-mediated BAT thermogenesis is essentially governed by hypothalamic and brainstem neurons. BAT is not only controlled by the brain thermoregulatory circuits but also by brain energy balance pathways including the very significant brain melanocortin system, which speaks in favor of the genuine involvement of SNS-mediated BAT thermogenesis in energy homeostasis. The use of positron emission tomography/computed tomography (PET/CT scanning has further revealed the presence of well-defined BAT depots in the cervical, clavicular, and paraspinal areas in adult humans. The prevalence of these depots was reported to be higher in subjects exposed to low temperature and was also higher in women than men. Moreover, the prevalence of BAT was shown to decrease with age and body fat mass, which suggests that BAT could not only be involved in cold-induced non shivering thermogenesis but also in the energy balance regulation and obesity in humans. This short review summarizes recent progress made in our understanding of the control of SNS-mediated BAT thermogenesis and of the determinants of BAT prevalence or detection in humans.

  1. Reflex sympathetic dystrophy: Early treatment and psychological aspects

    NARCIS (Netherlands)

    Geertzen, J.H.B.; De Bruijn, H.; De Bruijn-Kofman, A.T.; Arendzen, J.H.

    1994-01-01

    We report the results of two prospective studies of early treatment and psychological aspects in a series of 26 patients with sympathetic reflex dystrophy of the hand in which treatment was started within 3 months after diagnosis. Ismelin blocks is an often used therapy in sympathetic reflex dystrop

  2. Renal sympathetic denervation: MDCT evaluation of the renal arteries.

    LENUS (Irish Health Repository)

    Hutchinson, Barry D

    2013-08-01

    Percutaneous transluminal renal sympathetic denervation is a new treatment of refractory systemic hypertension. The purpose of this study was to assess the clinical utility of MDCT to evaluate the anatomic configuration of the renal arteries in the context of renal sympathetic denervation.

  3. Lower limb pain in sympathetic-sensory coupling

    Institute of Scientific and Technical Information of China (English)

    Hongjun Yang; Kairun Peng; Sanjue Hu; Li Xuan

    2011-01-01

    Previous studies have shown that sympathetic nerves are related to certain types of pain, and this phenomenon is referred to as sympathetic-sensory coupling. Chronic pain resulting from nerve injury can be exacerbated by sympathetic stimulation or relieved by sympathetic inhibition. In the present study, the correlation between pain and sympathetic nerves was analyzed in patients with severe pain in lower limbs, as well as in a chronically compressed dorsal root ganglion (CCD) rat model (model of low back pain and sciatica). Patients with severe pain in the lower limbs underwent chemical lumbar sympathectomy (CLS), and the analgesic effects of CLS were compared with painkillers. Results demonstrated significantly relieved lower limb pain following CLS, and the analgesic effects of CLS were superior to those seen with painkillers. In the CCD rat model, dorsal root ganglion neuronal activity significantly increased as a result of electrical stimulation to the sympathetic nerves. These results suggest that sympathetic nerves are closely associated with pain and sympathetic-sensory coupling is likely in lower limb pain in both patients and rat models of CCD.

  4. A Case Report of Renal Sympathetic Denervation for the Treatment of Polymorphic Ventricular Premature Complexes

    Science.gov (United States)

    Kiuchi, Márcio Galindo; Vitorio, Frederico Puppim; da Silva, Gustavo Ramalho; Paz, Luis Marcelo Rodrigues; Souto, Gladyston Luiz Lima

    2015-01-01

    Abstract Premature ventricular complexes are very common, appearing most frequently in patients with hypertension, obesity, sleep apnea, and structural heart disease. Sympathetic hyperactivity plays a critical role in the development, maintenance, and aggravation of ventricular arrhythmias. Recently, Armaganijan et al reported the relevance of sympathetic activation in patients with ventricular arrhythmias and suggested a potential role for catheter-based renal sympathetic denervation in reducing the arrhythmic burden. In this report, we describe a 32-year-old hypertensive male patient presenting with a high incidence of polymorphic premature ventricular complexes on a 24 hour Holter monitor. Beginning 1 year prior, the patient experienced episodes of presyncope, syncope, and tachycardia palpitations. The patient was taking losartan 100 mg/day, which kept his blood pressure (BP) under control, and sotalol 160 mg twice daily. Bisoprolol 10 mg/day was used previously but was not successful for controlling the episodes. The 24 hour Holter performed after the onset of sotalol 160 mg twice daily showed a heart rate ranging between 48 (minimum)–78 (average)–119 (maximum) bpm; 14,286 polymorphic premature ventricular complexes; 3 episodes of nonsustained ventricular tachycardia, the largest composed of 4 beats at a rate of 197 bpm; and 14 isolated atrial ectopic beats. Cardiac magnetic resonance imaging with gadolinium perfusion performed at rest and under pharmacological stress with dipyridamole showed increased left atrial internal volume, preserved systolic global biventricular function, and an absence of infarcted or ischemic areas. The patient underwent bilateral renal sympathetic denervation. The only drug used postprocedure was losartan 25 mg/day. Three months after the patient underwent renal sympathetic denervation, the mean BP value dropped to 132/86 mmHg, the mean systolic/diastolic 24 hour ambulatory BP measurement was reduced to 128/83

  5. Chain Reconnections observed in Sympathetic Eruptions

    CERN Document Server

    Joshi, Navin Chandra; Magara, Tetsuya; Guo, Yang; Aulanier, Guillaume

    2016-01-01

    The nature of various plausible causal links between sympathetic events is still a controversial issue. In this work, we present multi-wavelength observations of sympathetic eruptions, associated flares and coronal mass ejections (CMEs) occurring on 2013 November 17 in two close-by active regions. Two filaments i.e., F1 and F2 are observed in between the active regions. Successive magnetic reconnections, caused by different reasons (flux cancellation, shear and expansion) have been identified during the whole event. The first reconnection occurred during the first eruption via flux cancellation between the sheared arcades overlying filament F2, creating a flux rope and leading to the first double ribbon solar flare. During this phase we observed the eruption of overlaying arcades and coronal loops, which leads to the first CME. The second reconnection is believed to occur between the expanding flux rope of F2 and the overlying arcades of the filament F1. We suggest that this reconnection destabilized the equi...

  6. Sympathetic adaptations to one-legged training

    Science.gov (United States)

    Ray, C. A.

    1999-01-01

    The purpose of the present study was to determine the effect of leg exercise training on sympathetic nerve responses at rest and during dynamic exercise. Six men were trained by using high-intensity interval and prolonged continuous one-legged cycling 4 day/wk, 40 min/day, for 6 wk. Heart rate, mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA; peroneal nerve) were measured during 3 min of upright dynamic one-legged knee extensions at 40 W before and after training. After training, peak oxygen uptake in the trained leg increased 19 +/- 2% (P training (108 +/- 5 to 96 +/- 5 beats/min and 132 +/- 8 to 119 +/- 4 mmHg, respectively, during the third minute of exercise; P training. However, MSNA was significantly less during the third minute of exercise after training (32 +/- 2 to 22 +/- 3 bursts/min; P training effect on MSNA remained when MSNA was expressed as bursts per 100 heartbeats. Responses to exercise in five untrained control subjects were not different at 0 and 6 wk. These results demonstrate that exercise training prolongs the decrease in MSNA during upright leg exercise and indicates that attenuation of MSNA to exercise reported with forearm training also occurs with leg training.

  7. [A case of prolonged paroxysmal sympathetic hyperactivity].

    Science.gov (United States)

    Yamamoto, Akiko; Ide, Shuhei; Iwasaki, Yuji; Kaga, Makiko; Arima, Masataka

    2016-03-01

    We report the case of a 4-year-old girl who presented with paroxysmal sympathetic hyperactivity (PSH), after developing severe hypoxic-ischemic-encephalopathy because of cardiopulmonary arrest. She showed dramatic paroxysmal sympathetic activity with dystonia. She was treated with wide variety of medications against PSH, which were found to be effective in previous studies. Among them, morphine, bromocriptine, propranolol, and clonidine were effective in reducing the frequency of her attacks while gabapentin, baclofen, dantrolene, and benzodiazepine were ineffective. Though the paroxysms decreased markedly after the treatment, they could not be completely controlled beyond 500 days. Following the treatment, levels of plasma catecholamines and their urinary metabolites decreased to normal during inter- paroxysms. However, once a paroxysm had recurred, these levels were again very high. This case study is considered significant for two rea- sons. One is that PSH among children have been rarely reported, and the other is that this case of prolonged PSH delineated the transition of plasma catecholamines during the treatment. The excitatory: inhibitory ratio (EIR) model proposed by Baguley was considered while dis- cussing drug sensitivity in this case. Accumulation of similar case studies will help establish more effective treatment strategies and elucidate the pathophysiology of PSH. PMID:27149743

  8. Sympathetic block by metal clips may be a reversible operation

    DEFF Research Database (Denmark)

    Thomsen, Lars L; Mikkelsen, Rasmus T; Derejko, Miroslawa;

    2014-01-01

    the sympathetic chain vary tremendously. Most surgeons transect or resect the sympathetic chain, but application of a metal clip that blocks transmission of nerve impulses in the sympathetic chain is used increasingly worldwide. This approach offers potential reversibility if patients regret surgery......, but the question of reversibility remains controversial. Two recent experimental studies found severe histological signs of nerve damage 4-6 weeks after clip removal, but they only used conventional histopathological staining methods. METHODS: Thoracoscopic clipping of the sympathetic trunk was performed in adult...... sheep, and the clip was removed thoracoscopically after 7 days. Following another 4 weeks (n = 6) or 12 weeks (n = 3), the sympathetic trunks were harvested and analysed by conventional and specific nerve tissue immunohistochemical stains (S100, neurofilament protein and synaptophysin...

  9. Origin of primary sensory neurons innervating the buccal stretch receptor.

    Science.gov (United States)

    Yamamoto, T; Onozuka, M; Nagasaki, S; Watanabe, K; Ozono, S

    1999-01-01

    The primary sensory neurons innervating mechanoreceptors in oro-facial regions have their cell bodies in either the trigeminal ganglion or the mesencephalic nucleus of the trigeminal nerve. The buccal stretch receptor (BSR), a type of mechanoreceptor in the jaw of rodents, has recently been recognized as signaling the position of the mandible. The location of the primary afferent neurons innervating this receptor is unknown. To investigate the cell bodies of the BSR afferent neurons in rats, we applied wheat germ agglutinin-horseradish peroxidase (WGA-HRP) to the proximal stump of the severed nerve branch of the buccal nerve that supplied the BSR. HRP-labeled cell bodies were observed in the posterolateral portion of the ipsilateral trigeminal ganglion. None was found in the contralateral trigeminal ganglion or in the brainstem. All labeled cell bodies were oval or round and closely resembled pseudo-unipolar neurons. The mean diameter of the labeled somata ranged between 25.5 and 52.5 microm, with small ( or = 41 microm) accounting for 8.8%, 54.9%, and 36.3%, respectively. Among the myelinated nerve fibers in the branch in which WGA-HRP was applied, 78.5% terminated in the BSR and had larger fiber diameters than the rest, indicating that most of the medium and large HRP-labeled cell bodies were BSR afferents. From these results and the ontogenetic origin of this receptor, it is suggested that the BSR differentiated from the mechanoreceptors in the oral mucosa or the fascia of masticatory muscles. PMID:10065945

  10. Macaque cardiac physiology is sensitive to the valence of passively viewed sensory stimuli.

    Directory of Open Access Journals (Sweden)

    Eliza Bliss-Moreau

    Full Text Available Autonomic nervous system activity is an important component of affective experience. We demonstrate in the rhesus monkey that both the sympathetic and parasympathetic branches of the autonomic nervous system respond differentially to the affective valence of passively viewed video stimuli. We recorded cardiac impedance and an electrocardiogram while adult macaques watched a series of 300 30-second videos that varied in their affective content. We found that sympathetic activity (as measured by cardiac pre-ejection period increased and parasympathetic activity (as measured by respiratory sinus arrhythmia decreased as video content changes from positive to negative. These findings parallel the relationship between autonomic nervous system responsivity and valence of stimuli in humans. Given the relationship between human cardiac physiology and affective processing, these findings suggest that macaque cardiac physiology may be an index of affect in nonverbal animals.

  11. Cardiac rehabilitation

    Science.gov (United States)

    ... attack or other heart problem. You might consider cardiac rehab if you have had: Heart attack Coronary heart disease (CHD) Heart failure Angina (chest pain) Heart or heart valve surgery Heart transplant Procedures such as angioplasty and stenting In some ...

  12. A new predisposing factor for trigemino-cardiac reflex during subdural empyema drainage: a case report

    OpenAIRE

    Arasho Belachew; Sandu Nora; Spiriev Toma; Kondoff Slavomir; Tzekov Christo; Schaller Bernhard

    2010-01-01

    Abstract Introduction The trigemino-cardiac reflex is defined as the sudden onset of parasympathetic dysrhythmia, sympathetic hypotension, apnea, or gastric hypermotility during stimulation of any of the sensory branches of the trigeminal nerve. Clinically, trigemino-cardiac reflex has been reported to occur during neurosurgical skull-base surgery. Apart from the few clinical reports, the physiological function of this brainstem reflex has not yet been fully explored. Little is known regardin...

  13. Antihypertensive drugs and the sympathetic nervous system.

    Science.gov (United States)

    Del Colle, Sara; Morello, Fulvio; Rabbia, Franco; Milan, Alberto; Naso, Diego; Puglisi, Elisabetta; Mulatero, Paolo; Veglio, Franco

    2007-11-01

    Hypertension has been associated with several modifications in the function and regulation of the sympathetic nervous system (SNS). Although it is unclear whether this dysfunction is primary or secondary to the development of hypertension, these alterations are considered to play an important role in the evolution, maintenance, and development of hypertension and its target organ damage. Several pharmacological antihypertensive classes are currently available. The main drugs that have been clearly shown to affect SNS function are beta-blockers, alpha-blockers, and centrally acting drugs. On the contrary, the effects of ACE inhibitors (ACE-Is), AT1 receptor blockers (ARBs), calcium channel blockers (CCBs), and diuretics on SNS function remain controversial. These properties are pharmacologically and pathophysiologically relevant and should be considered in the choice of antihypertensive treatments and combination therapies in order to achieve, beyond optimal blood pressure control, a normalization of SNS physiology and the most effective prevention of target organ damage. PMID:18030057

  14. Myocardial pre-synaptic sympathetic function correlates with glucose uptake in the failing human heart

    International Nuclear Information System (INIS)

    We have previously shown that the myocardium of patients with heart failure (HF) is insulin resistant. Chronic β-adrenergic stimulation has been implicated in insulin resistance in cultured cardiomyocytes in vitro, where sustained noradrenaline stimulation inhibited insulin-modulated glucose uptake. As the failing heart is characterized by increased sympathetic drive, we hypothesized that there is a correlation between pre-synaptic sympathetic function and insulin sensitivity in the myocardium of patients with HF. Eight patients (aged 67 ± 7 years) with coronary artery disease and left ventricular dysfunction (ejection fraction 44 ± 10%) underwent function and viability assessment with cardiovascular magnetic resonance. Myocardial glucose utilization (MGU) was measured using positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG). Pre-synaptic noradrenaline re-uptake was measured by calculating [11C]meta-hydroxy-ephedrine (HED) volume of distribution (Vd) with PET. Two groups of healthy volunteers served as controls for the FDG (n = 8, aged 52 ± 4 years, p -1.g-1) and dysfunctional (0.49 ± 0.14 μmol.min-1.g-1) segments compared with controls (0.61 ± 0.7 μmol.min-1.g-1; p d was reduced in dysfunctional segments of patients (38.9 ± 21.2 ml.g-1) compared with normal segments (52.2 ± 19.6 ml.g-1) and compared with controls (62.7 ± 11.3 ml.g-1). In patients, regional MGU was correlated with HED Vd. The results of this study provide novel evidence of a correlation between cardiac sympathetic function and insulin sensitivity, which may represent one of the mechanisms contributing to insulin resistance in failing human hearts. (orig.)

  15. CHAIN RECONNECTIONS OBSERVED IN SYMPATHETIC ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Navin Chandra; Magara, Tetsuya [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do, 446-701 (Korea, Republic of); Schmieder, Brigitte; Aulanier, Guillaume [LESIA, Observatoire de Paris, PSL Research University, CNRS Sarbonne Universités, Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Jansson, F-92195 Meudon (France); Guo, Yang, E-mail: navin@khu.ac.kr, E-mail: njoshi98@gmail.com [School of Astronomy and Space Science, Nanjing University, 210023 Nanjing (China)

    2016-04-01

    The nature of various plausible causal links between sympathetic events is still a controversial issue. In this work, we present multiwavelength observations of sympathetic eruptions, associated flares, and coronal mass ejections (CMEs) occurring on 2013 November 17 in two close active regions. Two filaments, i.e., F1 and F2, are observed in between the active regions. Successive magnetic reconnections, caused for different reasons (flux cancellation, shear, and expansion) have been identified during the whole event. The first reconnection occurred during the first eruption via flux cancellation between the sheared arcades overlying filament F2, creating a flux rope and leading to the first double-ribbon solar flare. During this phase, we observed the eruption of overlying arcades and coronal loops, which leads to the first CME. The second reconnection is believed to occur between the expanding flux rope of F2 and the overlying arcades of filament F1. We suggest that this reconnection destabilized the equilibrium of filament F1, which further facilitated its eruption. The third stage of reconnection occurred in the wake of the erupting filament F1 between the legs of the overlying arcades. This may create a flux rope and the second double-ribbon flare and a second CME. The fourth reconnection was between the expanding arcades of the erupting filament F1 and the nearby ambient field, which produced the bi-directional plasma flows both upward and downward. Observations and a nonlinear force-free field extrapolation confirm the possibility of reconnection and the causal link between the magnetic systems.

  16. [Clinical application of skin sympathetic nerve activity].

    Science.gov (United States)

    Iwase, Satoshi

    2009-03-01

    Skin sympathetic nerve activity (SSNA) is microneurographically recorded from the skin nerve fascicle in the peripheral nerves. It is characterized by the following features: 1) irregular, pulse asynchronous, burst activity with respiratory variation, 2) burst activity followed by vasoconstriction and/or sweating, 3) elicited by mental stress and arousal stimuli, e.g., sound, pain, electric stimulation, 4) burst with longer duration as compared with sympathetic outflow to muscles, and 5) burst activity following sudden inspiratory action. It comprises vasoconstrictor (VC) and sudomotor(SM) activity, as well as vasodilator (VD) activity. VC and SM discharge independently, whereas VD is the same activity with different neurotransmission. The VC and SM are differentiated by effector response, e.g., laser Doppler flowmetry and skin potential changes. SSNA function in thermoregulation in the human body; however it is also elicited by mental stress. SSNA is the lowest at thermoneutral ambient temperature (approximately 27 degrees C), and is enhanced in the pressence of ambient warm and cool air. The burst amplitude is well-correlated to both skin blood flow reduction rate or sweat rate change. The clinical application of SSNA comprises the following: 1) clarification of sweating phenomenon, 2) clarification and diagnosis of anhidrosis, 3) clarification and diagnosis of hyperhidrosis, 4) clarification of thermoregulatory function and diagnosis of thermoregulatory disorder, 5) clarification of pathophysiology and diagnosis of vascular diseases, e.g., Raynaud and Buerger diseases. 6) clarification of the relation between cognitive function and SSNA and 7) determination of pharmacological effect attributable to change in neuroeffector responses. PMID:19301594

  17. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  18. (123)I-Meta-iodobenzylguanidine Sympathetic Imaging: Standardization and Application to Neurological Diseases.

    Science.gov (United States)

    Nakajima, Kenichi; Yamada, Masahito

    2016-09-01

    (123)I-meta-iodobenzylguanidine (MIBG) has become widely applied in Japan since its introduction to clinical cardiology and neurology practice in the 1990s. Neurological studies found decreased cardiac uptake of (123)I-MIBG in Lewy-body diseases including Parkinson's disease and dementia with Lewy bodies. Thus, cardiac MIBG uptake is now considered a biomarker of Lewy body diseases. Although scintigraphic images of (123)I-MIBG can be visually interpreted, an average count ratio of heart-to-mediastinum (H/M) has commonly served as a semi-quantitative marker of sympathetic activity. Since H/M ratios significantly vary according to acquisition and processing conditions, quality control should be appropriate, and quantitation should be standardized. The threshold H/M ratio for differentiating Lewy-body disease is 2.0-2.1, and was based on standardized H/M ratios to comparable values of medium-energy collimators. Parkinson's disease can be separated from various types of parkinsonian syndromes using cardiac (123)I-MIBG, whereas activity is decreased on images of Lewy-body diseases using both (123)I-ioflupane for the striatum and (123)I-MIBG. Despite being a simple index, the H/M ratio of (123)I-MIBG uptake is reproducible and can serve as an effective tool to support a diagnosis of Lewy-body diseases in neurological practice. PMID:27689024

  19. 123I-Meta-iodobenzylguanidine Sympathetic Imaging: Standardization and Application to Neurological Diseases

    Science.gov (United States)

    Yamada, Masahito

    2016-01-01

    123I-meta-iodobenzylguanidine (MIBG) has become widely applied in Japan since its introduction to clinical cardiology and neurology practice in the 1990s. Neurological studies found decreased cardiac uptake of 123I-MIBG in Lewy-body diseases including Parkinson's disease and dementia with Lewy bodies. Thus, cardiac MIBG uptake is now considered a biomarker of Lewy body diseases. Although scintigraphic images of 123I-MIBG can be visually interpreted, an average count ratio of heart-to-mediastinum (H/M) has commonly served as a semi-quantitative marker of sympathetic activity. Since H/M ratios significantly vary according to acquisition and processing conditions, quality control should be appropriate, and quantitation should be standardized. The threshold H/M ratio for differentiating Lewy-body disease is 2.0-2.1, and was based on standardized H/M ratios to comparable values of medium-energy collimators. Parkinson's disease can be separated from various types of parkinsonian syndromes using cardiac 123I-MIBG, whereas activity is decreased on images of Lewy-body diseases using both 123I-ioflupane for the striatum and 123I-MIBG. Despite being a simple index, the H/M ratio of 123I-MIBG uptake is reproducible and can serve as an effective tool to support a diagnosis of Lewy-body diseases in neurological practice. PMID:27689024

  20. Effect of Yoga on migraine: A comprehensive study using clinical profile and cardiac autonomic functions

    Directory of Open Access Journals (Sweden)

    Ravikiran Kisan

    2014-01-01

    Conclusions: Intervention showed significant clinical improvement in both groups. Headache frequency and intensity were reduced more in Yoga with conventional care than the conventional care group alone. Furthermore, Yoga therapy enhanced the vagal tone and decreased the sympathetic drive, hence improving the cardiac autonomic balance. Thus, Yoga therapy can be effectively incorporated as an adjuvant therapy in migraine patients.

  1. Role of the Sympathetic Nervous System in Stress-Mediated Cardiovascular Disease.

    Science.gov (United States)

    Hering, Dagmara; Lachowska, Kamila; Schlaich, Markus

    2015-10-01

    A high incidence of acute cardiovascular events and sudden cardiac death following unexpected acute emotional stress or a natural catastrophic disaster has been well-documented over the past decades. Chronic psychosocial factors have been shown to be directly linked to the development of hypertension, cardiovascular disease and stroke. Activation of various neurogenic pathways is an important mediator of acute and chronic stress-induced hypertension and heart disease. Heightened sympathetic activation has been shown to be a critical contributor linking psychogenic effects on cardiovascular regulation to serious and often fatal CV outcomes. Accordingly, several therapeutic approaches that attenuate autonomic imbalance via modulation of increased sympathetic outflow by either non-pharmacological or interventional means have been shown to alleviate clinical symptoms. Likewise stress reduction per se achieved with transcendental medicine has been linked to improved patient outcomes. Therapies that oppose adrenergic activity and/or have the potential to attenuate negative emotions are likely to reduce cardiovascular risk and its adverse consequences attributable to chronic mental stress. PMID:26318888

  2. Role of the Sympathetic Nervous System in Stress-Mediated Cardiovascular Disease.

    Science.gov (United States)

    Hering, Dagmara; Lachowska, Kamila; Schlaich, Markus

    2015-10-01

    A high incidence of acute cardiovascular events and sudden cardiac death following unexpected acute emotional stress or a natural catastrophic disaster has been well-documented over the past decades. Chronic psychosocial factors have been shown to be directly linked to the development of hypertension, cardiovascular disease and stroke. Activation of various neurogenic pathways is an important mediator of acute and chronic stress-induced hypertension and heart disease. Heightened sympathetic activation has been shown to be a critical contributor linking psychogenic effects on cardiovascular regulation to serious and often fatal CV outcomes. Accordingly, several therapeutic approaches that attenuate autonomic imbalance via modulation of increased sympathetic outflow by either non-pharmacological or interventional means have been shown to alleviate clinical symptoms. Likewise stress reduction per se achieved with transcendental medicine has been linked to improved patient outcomes. Therapies that oppose adrenergic activity and/or have the potential to attenuate negative emotions are likely to reduce cardiovascular risk and its adverse consequences attributable to chronic mental stress.

  3. The paradox of systemic vasodilatation and sympathetic nervous stimulation in space

    DEFF Research Database (Denmark)

    Norsk, Peter; Christensen, Niels Juel

    2009-01-01

    Cardiac output is increased by some 18% by weightlessness during the initial week of spaceflight compared to upright standing or sitting on the ground and more so during the initial days of flight than at the end. In addition, mean 24-h diastolic, but not systolic pressure, is significantly...... decreased by 5mmHg. This is in accordance with observations that very acute weightlessness during parabolic airplane flights and a week of weightlessness in space leads to a decrease in systemic vascular resistance. That the arterial resistance vessels are dilated in space is in contrast to the augmented...... sympathetic nervous activity and decreased urine production, which have consistently been observed in astronauts in space. These contrasting observations require further investigation....

  4. Extrinsic Sensory Innervation of the Gut: Structure and Function.

    Science.gov (United States)

    Brookes, Simon; Chen, Nan; Humenick, Adam; Spencer, Nick J; Costa, Marcello

    2016-01-01

    Extrinsic sensory neurons play a key role in the function of the gastrointestinal tract. They are responsible for the sensations that arise in the gut and can initiate automatic reflexes. In some cases, disordered sensation is clinically problematic-pain, bloating, excessive urgency and nausea are well-known examples. Major advances have been made in understanding the function of somatic sensory neurons in the last 50 years. However, the sensory neurons that mediate sensations from the viscera remain less well understood. This is partly because viscera receive a dense autonomic innervation that can be difficult to separate from extrinsic sensory neurons. A key requirement to understand the genesis of sensation is to distinguish the different classes of sensory neurons and the types of stimuli which they encode. The aim of this short paper is to summarise what was known about these matters 30 years ago and highlight some of the major advances in the understanding of the types of extrinsic sensory neurons to the gut. Necessarily, the choice of papers is somewhat idiosyncratic, but they illustrate the range of advances that have been made in distinguishing the different classes of gastrointestinal afferent nerves. PMID:27379635

  5. Innervation of sinoatrial nodal cells in the rabbit.

    Science.gov (United States)

    Inokaitis, Hermanas; Pauziene, Neringa; Rysevaite-Kyguoliene, Kristina; Pauza, Dainius H

    2016-05-01

    In spite of the fact that the rabbit is being widely used as a laboratory animal in experimental neurocardiology, neural control of SAN cells in the rabbit heart has been insufficiently examined thus far. This study analyzes the distribution of SAN cells and their innervation pattern employing fluorescent immunohistochemistry on rabbit whole mount atrial preparations. A dense network of adrenergic (positive for TH), cholinergic (positive for ChAT), nitrergic (positive for nNOS) and possibly sensory (positive for SP) NFs together with numerous neuronal somata were identified on the RRCV where the main mass of SAN cells positive for HCN4 were distributed as well. In general, the area occupied by SAN cells comprised nearly the entire RRCV and possessed a three to four times denser network of NFs compared with adjacent atrial walls. Adrenergic NFs predominated noticeably in-between SAN cells. Solitary neuronal somata or somata gathered into small clusters were positive solely for ChAT or nNOS, respectively or simultaneously for both neuronal markers (ChAT and nNOS). Neuronal somata positive for nNOS were more frequent than those positive for ChAT. In conclusion, findings of the present study demonstrate a dense and complex ganglionated neural network of both autonomic and sensory NFs, closely related to SAN cells which spread widely on the RRCV and extend as sleeves of these cells toward the walls of the rabbit RA. PMID:27045595

  6. Correlation between automated writing movements and striatal dopaminergic innervation in patients with Wilson's disease.

    Science.gov (United States)

    Hermann, Wieland; Eggers, Birk; Barthel, Henryk; Clark, Daniel; Villmann, Thomas; Hesse, Swen; Grahmann, Friedrich; Kühn, Hans-Jürgen; Sabri, Osama; Wagner, Armin

    2002-08-01

    Handwriting defects are an early sign of motor impairment in patients with Wilson's disease. The basal ganglia being the primary site of copper accumulation in the brain suggests a correlation with lesions in the nigrostiatal dopaminergic system. We have analysed and correlated striatal dopaminergic innervation using [(123)I]beta-CIT-SPECT and automated handwriting movements in 37 patients with Wilson's disease. There was a significant correlation of putaminal dopaminergic innervation with fine motor ability (p < 0,05 for NIV [number of inversion in velocity], NIA [number of inversion in acceleration], frequency). These data suggest that loss of dorsolateral striatal dopaminergic innervation has a pathophysiological function for decreased automated motor control in Wilson's disease. Furthermore analysis of automated handwriting movements could be useful for therapy monitoring and evaluation of striatal dopaminergic innervation. PMID:12195459

  7. Obesity-Related Metabolic Syndrome: Mechanisms of Sympathetic Overactivity

    Directory of Open Access Journals (Sweden)

    Maria Paola Canale

    2013-01-01

    Full Text Available The prevalence of the metabolic syndrome has increased worldwide over the past few years. Sympathetic nervous system overactivity is a key mechanism leading to hypertension in patients with the metabolic syndrome. Sympathetic activation can be triggered by reflex mechanisms as arterial baroreceptor impairment, by metabolic factors as insulin resistance, and by dysregulated adipokine production and secretion from visceral fat with a mainly permissive role of leptin and antagonist role of adiponectin. Chronic sympathetic nervous system overactivity contributes to a further decline of insulin sensitivity and creates a vicious circle that may contribute to the development of hypertension and of the metabolic syndrome and favor cardiovascular and kidney disease. Selective renal denervation is an emerging area of interest in the clinical management of obesity-related hypertension. This review focuses on current understanding of some mechanisms through which sympathetic overactivity may be interlaced to the metabolic syndrome, with particular regard to the role of insulin resistance and of some adipokines.

  8. Adipose afferent reflex: sympathetic activation and obesity hypertension.

    Science.gov (United States)

    Xiong, X-Q; Chen, W-W; Zhu, G-Q

    2014-03-01

    Excessive sympathetic activity contributes to the pathogenesis of hypertension and the progression of the related organ damage. Adipose afferent reflex (AAR) is a sympatho-excitatory reflex that the afferent activity from white adipose tissue (WAT) increases sympathetic outflow and blood pressure. Hypothalamic paraventricular nucleus (PVN or PVH) is one of the central sites in the control of the AAR, and ionotropic glutamate receptors in the nucleus mediate the AAR. The AAR is enhanced in obesity and obesity hypertension. Enhanced WAT afferent activity and AAR contribute to the excessive sympathetic activation and hypertension in obesity. Blockage of the AAR attenuates the excessive sympathetic activity and hypertension. Leptin may be one of sensors in the WAT for the AAR, and is involved in the enhanced AAR in obesity and hypertension. This review focuses on the neuroanatomical basis and physiological functions of the AAR, and the important role of the enhanced AAR in the pathogenesis of obesity hypertension.

  9. A comparison of sympathoadrenal activity and cardiac performance at rest and during exercise in patients with ventricular demand or atrial synchronous pacing.

    OpenAIRE

    Pehrsson, S K; Hjemdahl, P; Nordlander, R; Aström, H

    1988-01-01

    Cardiac sympathetic function was assessed by measuring the coronary sinus overflow of noradrenaline and dopamine at rest and during supine exercise in eight patients with high degree atrioventricular block treated with dual chamber pacemakers (DDD). Patients exercised (30-60 W) during both ventricular inhibited (VVI) and atrial synchronous (VAT) pacing. During exercise cardiac output increased less markedly in the VVI mode than in the VAT mode. The cardiac output response was entirely stroke ...

  10. Factors influencing the cardiac MIBG accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Takatsu, Hisato; Fujiwara, Hisayoshi [Gifu Univ. (Japan). School of Medicine

    1997-02-01

    Following factors possibly influencing the cardiac MIBG accumulation were examined mainly in mice. 1. The specific activity of the MIBG (meta-iodo-benzyl guanidine) on the neuronal and non-neuronal fractions. 2. Motor restriction stress on MIBG accumulation and washout. 3. Loading and restriction of sodium chloride on the accumulation and effect of suppression of renin-angiotensin system. 4. Examinations in Dahl rats. 125I- or 131I-MIBG was intravenously administered to mice at 74 kBq. At 30 min or 4 hr after administration, mice were sacrificed and their left ventricles were dissected out for measurement of radioactivity in a liquid scintillation counter. Salt-sensitive and -resistant Dahl rats were given with 37 MBq of 123I-MIBG and cardiac radioactivity was measured externally for calculation of washout. Factors examined were found highly correlated with the accumulation of MIBG and measurement of its washout was considered useful for evaluating sympathetic activity. (K.H.)

  11. Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie

    2011-07-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  12. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  13. Bilaterally evoked monosynaptic EPSPs, NMDA receptors and potentiation in rat sympathetic preganglionic neurones in vitro.

    Science.gov (United States)

    Spanswick, D; Renaud, L P; Logan, S D

    1998-05-15

    1. Whole-cell patch clamp and intracellular recordings were obtained from 190 sympathetic preganglionic neurones (SPNs) in spinal cord slices of neonatal rats. Fifty-two of these SPNs were identified histologically as innervating the superior cervical ganglion (SCG) by the presence of Lucifer Yellow introduced from the patch pipette and the appearance of retrograde labelling following the injection of rhodamine-dextran-lysine into the SCG. 2. Electrical stimulation of the ipsilateral (n = 71) or contralateral (n = 32) lateral funiculi (iLF and cLF, respectively), contralateral intermediolateral nucleus (cIML, n = 41) or ipsilateral dorsal horn (DH, n = 34) evoked EPSPs or EPSCs that showed a constant latency and rise time, graded response to increased stimulus intensity, and no failures, suggesting a monosynaptic origin. 3. In all neurones tested (n = 60), fast rising and decaying components of EPSPs or EPSCs evoked from the iLF, cLF, cIML and DH in response to low-frequency stimulation (0.03-0.1 Hz) were sensitive to non-NMDA receptor antagonists. 4. In approximately 50 % of neurones tested (n = 29 of 60), EPSPs and EPSCs evoked from the iLF, cLF, cIML and DH during low-frequency stimulation were reduced by NMDA receptor antagonists. In the remaining neurones, an NMDA receptor antagonist-sensitive EPSP or EPSC was revealed only in magnesium-free bathing medium, or following high-frequency stimulation. 5. EPSPs evoked by stimulation of the iLF exhibited a sustained potentiation of the peak amplitude (25.3 +/- 11.4 %) in six of fourteen SPNs tested following a brief high-frequency stimulus (10-20 Hz, 0.1-2 s). 6. These results indicate that SPNs, including SPNs innervating the SCG, receive monosynaptic connections from both sides of the spinal cord. The neurotransmitter mediating transmission in some of the pathways activated by stimulation of iLF, cLF, cIML and DH is glutamate acting via both NMDA and non-NMDA receptors. Synaptic plasticity is a feature of

  14. Effects of leptin on sympathetic nerve activity in conscious mice

    OpenAIRE

    Morgan, Donald A.; Despas, Fabien; Rahmouni, Kamal

    2015-01-01

    The adipocyte-derived hormone, leptin, has emerged as an important regulator of regional sympathetic nerve activity (SNA) with pathophysiological implications in obesity. Genetically engineered mice are useful to understand the molecular pathways underlying the SNA responses evoked by leptin. However, so far the effect of leptin on direct SNA in mice has been studied under general anesthesia. Here, we examined the sympathetic responses evoked by leptin in conscious mice. Mice were instrumente...

  15. Obesity-Related Metabolic Syndrome: Mechanisms of Sympathetic Overactivity

    OpenAIRE

    Maria Paola Canale; Simone Manca di Villahermosa; Giuliana Martino; Valentina Rovella; Annalisa Noce; Antonino De Lorenzo; Nicola Di Daniele

    2013-01-01

    The prevalence of the metabolic syndrome has increased worldwide over the past few years. Sympathetic nervous system overactivity is a key mechanism leading to hypertension in patients with the metabolic syndrome. Sympathetic activation can be triggered by reflex mechanisms as arterial baroreceptor impairment, by metabolic factors as insulin resistance, and by dysregulated adipokine production and secretion from visceral fat with a mainly permissive role of leptin and antagonist role of adipo...

  16. Receptor-mediated regional sympathetic nerve activation by leptin.

    OpenAIRE

    Haynes, W G; Morgan, D A; Walsh, S A; Mark, A L; Sivitz, W I

    1997-01-01

    Leptin is a peptide hormone produced by adipose tissue which acts centrally to decrease appetite and increase energy expenditure. Although leptin increases norepinephrine turnover in thermogenic tissues, the effects of leptin on directly measured sympathetic nerve activity to thermogenic and other tissues are not known. We examined the effects of intravenous leptin and vehicle on sympathetic nerve activity to brown adipose tissue, kidney, hindlimb, and adrenal gland in anesthetized Sprague-Da...

  17. Centrally administered glucagon stimulates sympathetic nerve activity in rat.

    Science.gov (United States)

    Krzeski, R; Czyzyk-Krzeska, M F; Trzebski, A; Millhorn, D E

    1989-12-18

    The effect of pancreatic glucagon given intravenously, intracerebroventricularly and microinjected into the nucleus of the solitary tract on sympathetic activity in the cervical trunk and adrenal nerve was examined in rat. In each case glucagon caused a relatively long-lasting substantial increase in discharge of both nerves. This finding shows that glucagon can act centrally to stimulate sympathetic activity. The most probable site for the sympathoexcitatory effect of glucagon is the nucleus of the solitary tract. PMID:2598031

  18. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons

    OpenAIRE

    Holstein, Gay R.; Friedrich, Victor L. Jr.; Martinelli, Giorgio P.

    2016-01-01

    The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and ...

  19. Role of sympathetic nerve activity in the process of fainting

    Directory of Open Access Journals (Sweden)

    Satoshi eIwase

    2014-09-01

    Full Text Available Syncope is defined as a transient loss of consciousness and postural tone, characterized by rapid onset, short duration, and spontaneous recovery, and the process of syncope progression will be described with two types of sympathetic change. Simultaneous recordings of microneurographically recorded MSNA and continuous and noninvasive blood pressure measurement have disclose what is going on in the course of progression of the syncope. Vasovagal or neurally mediated syncope, three stages are identified in the course of syncope onset, oscillation, imbalance, and catastrophe phases. The vasovagal syncope is characterized by the sympathoexcitation, followed by vagal overcome via the Bezold-Jarisch reflex. Orthostatic syncope is caused by the response failure or lack of sympathetic nerve activity toward the orthostatic challenge followed by the fluid shift, and subsequent cerebral low perfusion. Four causes are considered for the compensatory failure, which triggers the orthostatic syncope; hypovolemia, increased pooling in the lower body, failure to activate the sympathetic activity, and failure of vasoconstriction against sympathetic vasoconstrictive stimulation. Many pathophysiological conditions were described in the viewpoint of 1 exaggerated sympathoexcitation and 2 failure to activate the sympathetic nerve. We conclude that the sympathetic nervous system can control the cardiovascular function, and its failure resulted syncope, however, responses of the system by microneurographically recorded MSNA would determine the pathophysiology of the onset and progression of syncope, explaining the treatment effect that could be achieved by the analysis of this mechanism.

  20. Interaction among cardiac, respiratory, and locomotor rhythms during cardiolocomotor synchronization.

    Science.gov (United States)

    Niizeki, K; Kawahara, K; Miyamoto, Y

    1993-10-01

    The nature of entrainment between cardiac and locomotor rhythms was investigated while normal human subjects walked or ran on a treadmill. To detect the incidence of entrainment occurrence, the phase relationships among cardiac, respiratory, and locomotor rhythms were analyzed. The phase relationship between heartbeats and gait signals showed that entrainment of cardiac rhythm to locomotor rhythm occurred in all subjects at one or more treadmill speeds. To elucidate interactions among cardiac, respiratory, and locomotor rhythms during the cardiolocomotor synchronization, spectral and coherence analyses were done for these three rhythms. Spectral and coherence analyses on fluctuations in the heart period and respiratory rhythms revealed that the strength of coupling between cardiac and respiratory rhythms decreased in the presence of cardiolocomotor synchronization. In addition, the coupling of cardiac and locomotor rhythms appeared to induce dissociation of coupling between respiratory and locomotor rhythms. These results were similar to those observed when stepping was voluntarily synchronized with cardiac rhythm. Possible mechanisms to explain coordination and interaction among the neural oscillators innervating these three rhythms are discussed.

  1. Characteristics of renal sympathetic nerve single units in rabbits with angiotensin-induced hypertension.

    Science.gov (United States)

    Burke, Sandra L; Lukoshkova, Elena V; Head, Geoffrey A

    2016-01-01

    We examined the effect of chronic angiotensin (Ang II)-induced hypertension on activity of postganglionic renal sympathetic units to determine whether altered whole renal nerve activity is due to recruitment or changes in firing frequency. Rabbits were treated with a low (20 ng kg(-1) min(-1), 8 weeks) or high dose (50 ng kg(-1) min(-1), 4 weeks) of Ang II before the experiment under chloralose-urethane anaesthesia. Spontaneously active units were detected from multiunit recordings using an algorithm that separated units by action potential shape using templates that matched spikes within a prescribed standard deviation. Multiunit sympathetic nerve activity was 40% higher in rabbits treated with low-dose Ang II than in sham (P = 0.012) but not different in high-dose Ang II. Resting firing frequency was similar in sham rabbits (1.00 ± 0.09 spikes s(-1), n = 144) and in those treated with high-dose Ang II (1.10 ± 0.08 spikes s(-1), n = 112) but was lower with low-dose Ang II (0.65 ± 0.08 spikes s(-1), n = 149, P < 0.05). Unit firing rhythmicity was linked to the cardiac cycle and was similar in sham and low-dose Ang II groups but 29-32% lower in rabbits treated with high-dose Ang II (P < 0.001). Cardiac linkage followed a similar pattern during hypoxia. All units showed baroreceptor dependency. Baroreflex gain and range were reduced and curves shifted to the right in Ang II groups. Firing frequency during hypoxia increased by +39% in low-dose Ang II and +82% in shams, but the greatest increase was in the high-dose Ang II group (+103%, P(dose) = 0.001). Responses to hypercapnia were similar in all groups. Increases in sympathetic outflow in hypertension caused by low-dose chronic Ang II administration are due to recruitment of neurons, but high-dose Ang II increases firing frequency in response to chemoreceptor stimuli independently of the arterial baroreceptors. PMID:26467849

  2. Paroxysmal sympathetic hyperactivity in neurological critical care

    Directory of Open Access Journals (Sweden)

    Rajesh Verma

    2015-01-01

    Full Text Available Introduction: Paroxysmal sympathetic hyperactivity (PSH is a clinical disorder mainly caused by traumatic brain injury, stroke, encephalitis and other types of brain injury. The clinical features are episodes of hypertension, tachycardia, tachypnea, fever and dystonic postures. In this study, we described clinical profile and outcome of six patients of PSH admitted in neurocritical care unit. Materials and Methods: This was a prospective observational study conducted at neurology critical care unit of a tertiary care center. All patients admitted at neurology critical unit during 6-month period from August 2013 to January 2014 were screened for the occurrence of PSH. The clinical details and outcome was documented. Results: PSH was observed in 6 patients. Male to female ratio was 5:1. Mean age ± SD was 36.67 ± 15.19 years. The leading causes were traumatic brain injury (two patients, stroke (two patients and Japanese encephalitis (JE (one patient and tuberculous meningitis (one patient. Conclusion: PSH is an unusual complication in neurocritical care. It prolonged the hospitalization and hampers recovery. The other life-threatening conditions that mimic PSH should be excluded. The association with JE and tuberculous meningitis was not previously described in literature.

  3. [Cardiac amyloidosis].

    Science.gov (United States)

    Hoyer, Caroline; Angermann, Christiane E; Knop, Stefan; Ertl, Georg; Störk, Stefan

    2008-03-15

    Amyloidoses are a heterogeneous group of multisystem disorders, which are characterized by an extracellular deposition of amyloid fibrils. Typically affected are the heart, liver, kidneys, and nervous system. More than half of the patients die due to cardiac involvement. Clinical signs of cardiac amyloidosis are edema of the lower limbs, hepatomegaly, ascites and elevated jugular vein pressure, frequently in combination with dyspnea. There can also be chest pain, probably due to microvessel disease. Dysfunction of the autonomous nervous system or arrhythmias may cause low blood pressure, dizziness, or recurrent syncope. The AL amyloidosis caused by the deposition of immunoglobulin light chains is the most common form. It can be performed by monoclonal gammopathy. The desirable treatment therapy consists of high-dose melphalan therapy twice followed by autologous stem cell transplantation. Due to the high peritransplantation mortality, selection of appropriate patients is mandatory. The ATTR amyloidosis is an autosomal dominant disorder caused by the amyloidogenic form of transthyretin, a plasmaprotein that is synthesized in the liver. Therefore, liver transplantation is the only curative therapy. The symptomatic treatment of cardiac amyloidosis is based on the current guidelines for chronic heart failure according to the patient's New York Heart Association (NYHA) state. Further types of amyloidosis with possible cardiac involvement comprise the senile systemic amyloidosis caused by the wild-type transthyretin, secondary amyloidosis after chronic systemic inflammation, and the beta(2)-microglobulin amyloidosis after long-term dialysis treatment. PMID:18344065

  4. Nitrergic innervation of trigeminal and hypoglossal motoneurons in the cat.

    Science.gov (United States)

    Pose, Ines; Fung, Simon; Sampogna, Sharon; Chase, Michael H; Morales, Francisco R

    2005-04-11

    The present study was undertaken to determine the location of trigeminal and hypoglossal premotor neurons that express neuronal nitric oxide synthase (nNOS) in the cat. Cholera toxin subunit b (CTb) was injected into the trigeminal (mV) or the hypoglossal (mXII) motor nuclei in order to label the corresponding premotor neurons. CTb immunocytochemistry was combined with NADPH-d histochemistry or nNOS immunocytochemistry to identify premotor nitrergic (NADPH-d(+)/CTb(+) or nNOS(+)/ CTb(+) double-labeled) neurons. Premotor trigeminal as well as premotor hypoglossal neurons were located in the ventro-medial medullary reticular formation in a region corresponding to the nucleus magnocellularis (Mc) and the ventral aspect of the nucleus reticularis gigantocellularis (NRGc). Following the injection of CTb into the mV, this region was found to contain a total of 60 +/- 15 double-labeled neurons on the ipsilateral side and 33 +/- 14 on the contralateral side. CTb injections into the mXII resulted in 40 +/- 17 double-labeled neurons in this region on the ipsilateral side and 16 +/- 5 on the contralateral side. Thus, we conclude that premotor trigeminal and premotor hypoglossal nitrergic cells coexist in the same medullary region. They are colocalized with a larger population of nitrergic cells (7200 +/- 23). Premotor neurons in other locations did not express nNOS. The present data demonstrate that a population of neurons within the Mc and the NRGc are the source of the nitrergic innervation of trigeminal and hypoglossal motoneurons. Based on the characteristics of nitric oxide actions and its diffusibility, we postulate that these neurons may serve to synchronize the activity of mV and mXII motoneurons. PMID:15804497

  5. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity.

    Directory of Open Access Journals (Sweden)

    Yumie Morimoto-Kobayashi

    Full Text Available Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1 expression in brown adipose tissue (BAT was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA. Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional

  6. Sympathetic cooling of ytterbium with rubidium

    International Nuclear Information System (INIS)

    Within the scope of this thesis, a mixture of ultracold ytterbium and rubidium atoms was experimentally realized and investigated. For these experiments, a novel trap geometry was developed which allows simultaneous trapping and cooling of diamagnetic and paramagnetic atomic species. The main focus was put on the investigation of the interspecies scattering properties, where sympathetic cooling of ytterbium through elastic collisions with rubidium could be demonstrated. In addition, the interspecies scattering length could be determined. In the current configuration the combined trap allows the preparation of up to 2.105 atoms of 170Yb, 171Yb, 172Yb, 174Yb or 176Yb at a temperature of 40..60 μK and a density in the range of 1012 cm-3, and of about 10787Rb atoms at a temperature of 25 μK and a density in the range of 5.1011 cm-3. Detailed studies of the thermalization of bosonic 170Yb, 172Yb, 174Yb and 176Yb and of fermionic 171Yb each with 87Rb were performed under varying experimental conditions. The deduced total scattering cross section was clearly found to increase with higher mass of the ytterbium isotope. In general, a mass scaling of the scattering properties is in agreement with theoretical models and former experimental work. With the assumption of pure s-wave scattering, which is approximately fulfilled for the given experimental parameters, the interspecies scattering length could be derived from the measured thermalization data and was found to be (in units of the Bohr radius a0): 170Yb-87Rb:(18+12-4)a0, 171Yb-87Rb:(25+14-7)a0, 172Yb-87Rb:(33+23-7)a0, 174Yb-87Rb:(83+89-25)a0, 176Yb-87Rb:(127+245-45)a0. (orig./HSI)

  7. Development of sympathetic ophthalmia following globe injury

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; ZHANG Mao-nian; JIANG Cai-hui; YAO Yi

    2009-01-01

    Background Sympathetic ophthalmia (SO), a rare, bilateral, diffuse granulomatous uveitis, usually occurs after open globe injury or intraocular surgery. We sought to identify the risk factors for the development of SO after open globe injury and describe their demographic and clinical features and outcomes of treatments.Methods A retrospective study of inpatients with globe injury in 15 tertiary referral hospitals of China from January 2001 to December 2005 was conducted. The information of demography, nature and mechanism of injury, time and ways of treatments and outcomes was reviewed. Diagnosis of SO was made based on a history of ocular trauma or surgery and subsequent development of bilateral or contralateral uveitis consistent with SO. Any association between related parameters and development of SO was analyzed.Results Among 9103 patients (9776 eyes) of globe injury, SO occurred after open globe injury in 18 cases with an occurrence rate of 0.37%, vitrectomy of closed globe injury in 2 (0.37%) and perforation of burned eyes in another 2. For open globe injury, the median age ((36.72±13.59) years, P=0.01) was higher in patients with SO; there were no significant effects of sexes, injury type, uvea proplaps, once or multi-intraocular surgery, once or multi-vitrectomy and endophthalmitis on incidence of SO; 0.70% endophthalmitis concurred with SO; 83.33% of SO occurred within 1 year after injury or last ocular surgery. SO developed in a fellow eye one week after evisceration of the perforating burned eye. Good final visual acuity was obtained in sympathizing eyes with prompt treatment.Conclusions For open globe injuries, SO sufferers were relatively older and any injury type could induce SO with equal possibility. The initial open globe injury was more likely to be the trigger of SO than subsequent intraocular surgeries including vitrectomy. Prophylactic enucleation after injury is not recommended.

  8. Central nervous system neuropeptide Y regulates mediators of hepatic phospholipid remodeling and very low-density lipoprotein triglyceride secretion via sympathetic innervation

    NARCIS (Netherlands)

    Rojas, Jennifer M; Bruinstroop, E.; Printz, Richard L; Alijagic-Boers, Aldijana; Foppen, E.; Turney, Maxine K; George, Leena; Beck-Sickinger, Annette G; Kalsbeek, A.; Niswender, Kevin D

    2015-01-01

    OBJECTIVE: Elevated very low-density lipoprotein (VLDL)-triglyceride (TG) secretion from the liver contributes to an atherogenic dyslipidemia that is associated with obesity, diabetes and the metabolic syndrome. Numerous models of obesity and diabetes are characterized by increased central nervous s

  9. Cardiac rhabdomyosarcoma

    OpenAIRE

    Chlumský, Jaromír; Holá, Dana; Hlaváček, Karel; Michal, Michal; Švec, Alexander; Špatenka, Jaroslav; Dušek, Jan

    2001-01-01

    Cardiac sarcoma is a very rare neoplasm and is difficult to diagnose. The case of a 51-year-old man with a left atrial tumour, locally recurrent three months after its surgical removal, is presented. Computed tomography showed metastatic spread to the lung parenchyma. On revised histology, the mass extirpated was a sarcoma. Because of the metastatic spread, further therapy was symptomatic only; the patient died 15 months after the first manifestation of his problems. Immunohistochemical stain...

  10. Bilateral tectal innervation by regenerating optic nerve fibers in goldfish: a radioautographic, electrophysiological and behavioral study.

    Science.gov (United States)

    Springer, A D; Heacock, A M; Schmidt, J T; Agranoff, B W

    1977-06-17

    Following unilateral enucleation and optic nerve crush in goldfish, the remaining nerve regenerates and innervates both optic tecta. Approximately 5% of the nerve fibers reach the ipsilateral optic tectum (IOT) via the ipsilateral tract at the chiasma. Comparable debris in both tracts was not sufficient to result in an IOT projection since when both nerves were crushed simultaneously the usual pattern was seen, i.e., each nerve innervated a contralateral optic tectum (COT). When the arrival of one nerve at the chiasma was delayed by staggering the nerve crushes, the nerve that first arrived at the chiasma partially innervated the Iot. In most instances the entire IOT was innervated, however, the stratigraphic distribution of fibers in the various tectal lamina was atypical. Electrophysiological analysis indicated that fibers from each area of the retina innervated the IOT visuotopically. The COT was ablated in order to determine whether the IOT projection could mediate behavior. All fish failed to respond to changes in illumination as measured by respiration and failed to swim with or against the stripes in an optomotor drum. Thus, the IOT input, possibly because of its sparseness, could not be shown to be behaviorally functional. PMID:69466

  11. Leptin as a mediator between obesity and cardiac dysfunction

    Directory of Open Access Journals (Sweden)

    Joanna Karbowska

    2012-05-01

    Full Text Available  Obesity is now recognised as one of the most important risk factors for heart disease. Obese individuals have high circulating levels of leptin, a hormone secreted by adipose tissue and in­volved in energy homeostasis. Growing evidence suggests that leptin may contribute to the development of cardiac dysfunction. In a large prospective study leptin has been shown to be an independent risk factor for coronary heart disease. An independent positive association has also been found between plasma leptin levels and heart rate in hypertensive patients and heart transplant recipients. In animal studies chronic leptin infusion increased heart rate and blood pressure. It has also been demonstrated that circulating leptin levels are elevated in patients with heart failure. The level of plasma leptin was associated with increased myocardial wall thickness and correlated with left ventricular mass, suggesting a role for this hormone in mediating left ventricular hypertrophy in humans. Moreover, leptin directly induced hypertrophy and hyperplasia in human and rodent cardiomyocytes, accompanied by cardiac extracellular matrix remodelling. Leptin may also influence energy substrate utilisation in cardiac tissue.These findings suggest that leptin acting directly or through the sympathetic nervous system may have adverse effects on cardiac structure and function, and that chronic hyperleptinaemia may greatly increase the risk of cardiac disorders. Additional studies are needed to define the role of leptin in cardiac physiology and pathophysiology, nevertheless the reduction in plasma leptin levels with caloric restriction and weight loss may prevent cardiac dysfunction in obese patients.

  12. Systematic morphology and evolutionary anatomy of the autonomic cardiac nervous system in the lesser apes, gibbons (hylobatidae).

    Science.gov (United States)

    Kawashima, Tomokazu; Thorington, Richard W; Kunimatsu, Yutaka; Whatton, James F

    2008-08-01

    We examined the morphology of the autonomic cardiac nervous system (ACNS) on 20 sides of 10 gibbons (Hylobatidae) of three genera, and we have inferred the evolution of the anatomy of the primate ACNS. We report the following. (1) Several trivial intraspecific and interspecific variations are present in gibbons, but the general arrangement of the ACNS in gibbons is consistent. (2) Although the parasympathetic vagal cardiac nervous system is extremely consistent, the sympathetic cardiac nervous system, such as the composition of the sympathetic ganglia and the range of origin of the sympathetic cardiac nerves, exhibit topographical differences among primates. (3) The vertebral ganglion, seldom observed in the Old World monkeys (Cercopithecidae), was consistently present in gibbons as well as in humans. (4) There are fewer thoracic ganglia contributing to the cervicothoracic ganglion in humans than in gibbons and in gibbons than in Old World monkeys. (5) The superior cardiac nerve originating from the superior cervical ganglion, rarely observed in Old World monkeys but commonly observed in humans, was present in 13 of 20 sides (65%), mostly on the left. Accordingly, the ACNS morphology exhibits evolutionary changes within the primate lineage. These evolutionary differences between Old World monkeys, gibbons, and humans are most parsimoniously interpreted as resulting from regular changes in the lineages leading from their common ancestor to the extant species that we dissected. They include the reduction in the number of thoracic ganglia contributing to the cervicothoracic ganglion and the expansion of the range of the cardiac nervous origin.

  13. Renal sympathetic denervation for the treatment of refractory hypertension.

    Science.gov (United States)

    Leong, Kui Toh Gerard; Walton, Antony; Krum, Henry

    2014-01-01

    Resistant hypertension poses significant health concerns. There are strong demands for new and safe therapies to control resistant hypertension while addressing its common causes, specifically poor compliance to lifelong polypharmacy, lifestyle modifications, and physician inertia. The sympathetic nervous system plays a significant pathophysiological role in hypertension. Surgical sympathectomy for blood pressure reduction is an old but extremely efficacious therapeutic concept, now abandoned with the dawn of a safer contemporary pharmacology era. Recently, clinical studies have revealed promising results for safe and sustained blood pressure reduction with percutaneous renal sympathetic denervation. This is a novel, minimally invasive, device-based therapy, specifically targeting and ablating the renal artery nerves with radiofrequency waves without permanent implantation. There are also reported additional benefits in related comorbidities, such as impaired glucose metabolism, renal impairment, left ventricular hypertrophy, heart failure, and others. This review focuses on how selective renal sympathetic denervation works, its present and potential therapeutic indications, and its future directions. PMID:24422574

  14. Propranolol for Paroxysmal Sympathetic Hyperactivity with Lateralizing Hyperhidrosis after Stroke

    Directory of Open Access Journals (Sweden)

    Jason W. Siefferman

    2015-01-01

    Full Text Available Brain injury can lead to impaired cortical inhibition of the hypothalamus, resulting in increased sympathetic nervous system activation. Symptoms of paroxysmal sympathetic hyperactivity may include hyperthermia, tachycardia, tachypnea, vasodilation, and hyperhidrosis. We report the case of a 41-year-old man who suffered from a left middle cerebral artery stroke and subsequently developed central fever, contralateral temperature change, and hyperhidrosis. His symptoms abated with low-dose propranolol and then returned upon discontinuation. Restarting propranolol again stopped his symptoms. This represents the first report of propranolol being used for unilateral dysautonomia after stroke. Propranolol is a lipophilic nonselective beta-blocker which easily crosses the blood-brain barrier and may be used to treat paroxysmal sympathetic hyperactivity.

  15. Role of sympathetic nervous system and neuropeptides in obesity hypertension

    Directory of Open Access Journals (Sweden)

    Hall J.E.

    2000-01-01

    Full Text Available Obesity is the most common cause of human essential hypertension in most industrialized countries. Although the precise mechanisms of obesity hypertension are not fully understood, considerable evidence suggests that excess renal sodium reabsorption and a hypertensive shift of pressure natriuresis play a major role. Sympathetic activation appears to mediate at least part of the obesity-induced sodium retention and hypertension since adrenergic blockade or renal denervation markedly attenuates these changes. Recent observations suggest that leptin and its multiple interactions with neuropeptides in the hypothalamus may link excess weight gain with increased sympathetic activity. Leptin is produced mainly in adipocytes and is believed to regulate energy balance by acting on the hypothalamus to reduce food intake and to increase energy expenditure via sympathetic activation. Short-term administration of leptin into the cerebral ventricles increases renal sympathetic activity, and long-term leptin infusion at rates that mimic plasma concentrations found in obesity raises arterial pressure and heart rate via adrenergic activation in non-obese rodents. Transgenic mice overexpressing leptin also develop hypertension. Acute studies suggest that the renal sympathetic effects of leptin may depend on interactions with other neurochemical pathways in the hypothalamus, including the melanocortin-4 receptor (MC4-R. However, the role of this pathway in mediating the long-term effects of leptin on blood pressure is unclear. Also, it is uncertain whether there is resistance to the chronic renal sympathetic and blood pressure effects of leptin in obese subjects. In addition, leptin also has other cardiovascular and renal actions, such as stimulation of nitric oxide formation and improvement of insulin sensitivity, which may tend to reduce blood pressure in some conditions. Although the role of these mechanisms in human obesity has not been elucidated, this

  16. Functional and morphological assessment of diaphragm innervation by phrenic motor neurons.

    Science.gov (United States)

    Martin, Melanie; Li, Ke; Wright, Megan C; Lepore, Angelo C

    2015-01-01

    This protocol specifically focuses on tools for assessing phrenic motor neuron (PhMN) innervation of the diaphragm at both the electrophysiological and morphological levels. Compound muscle action potential (CMAP) recording following phrenic nerve stimulation can be used to quantitatively assess functional diaphragm innervation by PhMNs of the cervical spinal cord in vivo in anesthetized rats and mice. Because CMAPs represent simultaneous recording of all myofibers of the whole hemi-diaphragm, it is useful to also examine the phenotypes of individual motor axons and myofibers at the diaphragm NMJ in order to track disease- and therapy-relevant morphological changes such as partial and complete denervation, regenerative sprouting and reinnervation. This can be accomplished via whole-mount immunohistochemistry (IHC) of the diaphragm, followed by detailed morphological assessment of individual NMJs throughout the muscle. Combining CMAPs and NMJ analysis provides a powerful approach for quantitatively studying diaphragmatic innervation in rodent models of CNS and PNS disease. PMID:26066371

  17. Pharmacological evidence that 5-HT1A/1B/1D, α2-adrenoceptors and D2-like receptors mediate ergotamine-induced inhibition of the vasopressor sympathetic outflow in pithed rats.

    Science.gov (United States)

    Villamil-Hernández, Ma Trinidad; Alcántara-Vázquez, Oscar; Sánchez-López, Araceli; Gutiérrez-Lara, Erika J; Centurión, David

    2014-10-01

    The sympathetic nervous system that innervates the peripheral circulation is regulated by several mechanisms/receptors. It has been reported that prejunctional 5-HT1A, 5-HT1B, 5-HT1D, D2-like receptors and α2-adrenoceptors mediate the inhibition of the vasopressor sympathetic outflow in pithed rats. In addition, ergotamine, an antimigraine drug, displays affinity at the above receptors and may explain some of its adverse/therapeutic effects. Thus, the aims of this study were to investigate in pithed rats: (i) whether ergotamine produces inhibition of the vasopressor sympathetic outflow; and (ii) the major receptors involved in this effect. For this purpose, male Wistar pithed rats were pre-treated with gallamine (25 mg/kg; i.v.) and desipramine (50 µg/kg) and prepared to stimulate the vasopressor sympathetic outflow (T7-T9; 0.03-3 Hz) or to receive i.v. bolus of exogenous noradrenaline (0.03-3 µg/kg). I.v. continuous infusions of ergotamine (1 and 1.8 μg/kgmin) dose-dependently inhibited the vasopressor responses to sympathetic stimulation but not those to exogenous noradrenaline. The sympatho-inhibition elicited by 1.8 μg/kg min ergotamine was (i) unaffected by saline (1 ml/kg); (ii) partially antagonised by WAY 100635 (5-HT1A; 30 μg/kg) and rauwolscine (α2-adrenoceptor; 300 μg/kg), and (iii) dose-dependently blocked by GR 127935 (5-HT1B/1D; 100 and 300 μg/kg) or raclopride (D2-like; 300 and 1000 μg/kg), The above doses of antagonists did not modify per se the sympathetically-induced vasopressor responses. The above results suggest that ergotamine induces inhibition of the vasopressor sympathetic outflow by activation of prejunctional 5-HT1A, 5-HT1B/1D, α2-adrenoceptors and D2-like receptors in pithed rats. PMID:24975101

  18. Effect of acute ozone induced airway inflammation on human sympathetic nerve traffic: a randomized, placebo controlled, crossover study.

    Directory of Open Access Journals (Sweden)

    Jens Tank

    Full Text Available BACKGROUND: Ozone concentrations in ambient air are related to cardiopulmonary perturbations in the aging population. Increased central sympathetic nerve activity induced by local airway inflammation may be one possible mechanism. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate this issue further, we performed a randomized, double-blind, cross-over study, including 14 healthy subjects (3 females, age 22-47 years, who underwent a 3 h exposure with intermittent exercise to either ozone (250 ppb or clean air. Induced sputum was collected 3 h after exposure. Nineteen to 22 hours after exposure, we recorded ECG, finger blood pressure, brachial blood pressure, respiration, cardiac output, and muscle sympathetic nerve activity (MSNA at rest, during deep breathing, maximum-inspiratory breath hold, and a Valsalva maneuver. While the ozone exposure induced the expected airway inflammation, as indicated by a significant increase in sputum neutrophils, we did not detect a significant estimated treatment effect adjusted for period on cardiovascular measurements. Resting heart rate (clean air: 59±2, ozone 60±2 bpm, blood pressure (clean air: 121±3/71±2 mmHg; ozone: 121±2/71±2 mmHg, cardiac output (clean air: 7.42±0.29 mmHg; ozone: 7.98±0.60 l/min, and plasma norepinephrine levels (clean air: 213±21 pg/ml; ozone: 202±16 pg/ml, were similar on both study days. No difference of resting MSNA was observed between ozone and air exposure (air: 23±2, ozone: 23±2 bursts/min. Maximum MSNA obtained at the end of apnea (air: 44±4, ozone: 48±4 bursts/min and during the phase II of the Valsalva maneuver (air: 64±5, ozone: 57±6 bursts/min was similar. CONCLUSIONS/SIGNIFICANCE: Our study suggests that acute ozone-induced airway inflammation does not increase resting sympathetic nerve traffic in healthy subjects, an observation that is relevant for environmental health. However, we can not exclude that chronic airway inflammation may contribute to sympathetic

  19. Central and cerebrovascular effects of leg crossing in humans with sympathetic failure

    NARCIS (Netherlands)

    M.P. Harms; W. Wieling; W.N. Colier; J.W. Lenders; N.H. Secher; J.J. van Lieshout

    2010-01-01

    Leg crossing increases arterial pressure and combats symptomatic orthostatic hypotension in patients with sympathetic failure This study compared the central and cerebrovascular effects of leg crossing in patients with sympathetic failure and healthy controls. We addressed the relationship between M

  20. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients.

    NARCIS (Netherlands)

    Heusser, K.; Tank, J.; Engeli, S.; Diedrich, A.; Menne, J.; Eckert, S.; Peters, T.; Sweep, F.C.; Haller, H.; Pichlmaier, A.M.; Luft, F.C.; Jordan, J.

    2010-01-01

    In animals, electric field stimulation of carotid baroreceptors elicits a depressor response through sympathetic inhibition. We tested the hypothesis that the stimulation acutely reduces sympathetic vasomotor tone and blood pressure in patients with drug treatment-resistant arterial hypertension. Fu

  1. Cardiac contractility, central haemodynamics and blood pressure regulation during semistarvation

    DEFF Research Database (Denmark)

    Stokholm, K H; Breum, L; Astrup, A

    1991-01-01

    pressure (BP) declined. The fall in BP was caused by the reduction in cardiac output as the total peripheral resistance was unchanged. Finally, the decline in total blood volume was not significant. These findings together with a reduction in heart rate indicated that a reduced sympathetic tone via......Eight obese patients were studied before and after 2 weeks of treatment by a very-low-calorie diet (VLCD). Cardiac output and central blood volume (pulmonary blood volume and left atrial volume) were determined by indicator dilution (125I-albumin) and radionuclide angiocardiography (first pass...... and equilibrium technique by [99Tcm]red blood cells). Cardiac output decreased concomitantly with the reduction in oxygen uptake as the calculated systemic arteriovenous difference of oxygen was unaltered. There were no significant decreases in left ventricular contractility indices, i.e. the ejection fraction...

  2. Cardiac arrest after anesthetic management in a patient with hereditary sensory autonomic neuropathy type IV

    Directory of Open Access Journals (Sweden)

    Ergül Yakup

    2011-01-01

    Full Text Available Hereditary sensory autonomic neuropathy type IV is a rare disorder with an autosomal recessive transmission and characterized by self-mutilation due to a lack in pain and heat sensation. Recurrent hyperpyrexia and anhydrosis are seen in patients as a result of a lack of sweat gland innervation. Self-mutilation and insensitivity to pain result in orthopedic complications and patients undergone recurrent surgical interventions with anesthesia. However, these patients are prone to perioperative complications such as hyperthermia, hypothermia, and cardiac complications like bradycardia and hypotension. We report a 5-year-old boy with hereditary sensory autonomic neuropathy type IV, developing hyperpyrexia and cardiac arrest after anesthesia.

  3. The Sympathetic Nervous System in the Pathogenesis of Takotsubo Syndrome.

    Science.gov (United States)

    Wittstein, Ilan S

    2016-10-01

    Takotsubo syndrome is a unique clinical condition of acute heart failure and reversible left ventricular dysfunction frequently precipitated by sudden emotional or physical stress. There is growing evidence that exaggerated sympathetic stimulation is central to the pathogenesis of this syndrome. Precisely how catecholamines mediate myocardial stunning in takotsubo syndrome remains incompletely understood; but possible mechanisms include epicardial spasm, microvascular dysfunction, direct adrenergic-receptor-mediated myocyte injury, and systemic vascular effects that alter ventricular-arterial coupling. Risk factors that increase sympathetic tone and/or catecholamine sensitivity may render individuals particularly susceptible to takotsubo syndrome during episodes of acute stress. PMID:27638019

  4. Localization of Biogenic Amines in the Foregut of Aplysia californica: Catecholaminergic and Serotonergic Innervation

    Science.gov (United States)

    Martínez-Rubio, Clarissa; Serrano, Geidy E.; Miller, Mark W.

    2009-01-01

    This study examined the catecholaminergic and serotonergic innervation of the foregut of Aplysia californica, a model system in which the control of feeding behaviors can be investigated at the cellular level. Similar numbers (15-25) of serotonin-like-immunoreactive (5HTli) and tyrosine hydroxylase-like-immunoreactive (THli) fibers were present in each (bilateral) esophageal nerve (En), the major source of pregastric neural innervation in this system. The majority of En 5HTli and THli fibers originated from the anterior branch (En2), which innervates the pharynx and the anterior esophagus. Fewer fibers were present in the posterior branch (En1), which innervates the majority of the esophagus and the crop. Backfills of the two En branches toward the central nervous system (CNS) labeled a single, centrifugally projecting serotonergic fiber, originating from the metacerebral cell (MCC). The MCC fiber projected only to En2. No central THli neurons were found to project to the En. Surveys of the pharynx and esophagus revealed major differences between their patterns of catecholaminergic (CA) and serotonergic innervation. Whereas THli fibers and cell bodies were distributed throughout the foregut, 5HTli fibers were present in restricted plexi, and no 5HTli somata were detected. Double-labeling experiments in the periphery revealed THli neurons projecting toward the buccal ganglion via En2. Other afferents received dense perisomatic serotonergic innervation. Finally, qualitative and quantitative differences were observed between the buccal motor programs (BMPs) produced by stimulation of the two En branches. These observations increase our understanding of aminergic contributions to the pregastric regulation of Aplysia feeding behaviors. PMID:19330814

  5. Innervation pattern of the suprascapular nerve within supraspinatus: a three-dimensional computer modeling study.

    Science.gov (United States)

    Hermenegildo, J A; Roberts, S L; Kim, S Y

    2014-05-01

    The relationship between the innervation pattern of the suprascapular nerve (SSN) and the muscle architecture of supraspinatus has not been thoroughly investigated. The supraspinatus is composed of two architecturally distinct regions: anterior and posterior. Each of these regions is further subdivided into three parts: superficial, middle and deep. The purpose of this study was to investigate the course of the SSN throughout the volume of supraspinatus and to relate the intramuscular branches to the distinct regions and parts of the supraspinatus. The SSN was dissected in thirty formalin embalmed cadaveric specimens and digitized throughout the muscle volume in six of those specimens. The digitized data were modeled using Autodesk(®) Maya(®) 2011. The three-dimensional (3D) models were used to relate the intramuscular innervation pattern to the muscle and tendon architecture defined by Kim et al. (2007, Clin Anat 20:648-655). The SSN bifurcated into two main trunks: medial and lateral. All parts of the anterior region were predominantly innervated by the medial trunk and its proximal and medial branches, whereas all parts of the posterior region predominantly by the lateral trunk and its posterolateral and/or posteromedial branches. The posterior region also received innervation from the proximal branch of the medial trunk in half of the specimens. These findings provide evidence that the anterior and posterior regions are distinct with respect to their innervation. The 3D map of the innervation pattern will aid in planning future clinical studies investigating muscle activation patterns and provide insight into possible injury of the nerve with supraspinatus pathology and surgical techniques.

  6. Vasomotor sympathetic outflow in the muscle metaboreflex in low birth weight young adults

    Directory of Open Access Journals (Sweden)

    Chifamba J

    2015-05-01

    Full Text Available Jephat Chifamba,1 Brilliant Mbangani,1 Casper Chimhete,1 Lenon Gwaunza,1 Larry A Allen,2 Herbert Mapfumo Chinyanga1 1Department of Physiology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe; 2Section of Advanced Heart Failure and Transplantation, University of Colorado School of Medicine, Aurora, CO, USA Abstract: A growing body of evidence suggests that low birth weight (LBW offspring are associated with long-term structural and functional changes in cardiovascular and neuroendocrine systems. We tested the hypothesis that muscle metaboreflex activation produces exaggerated responses in cardiac autonomic tone (represented by heart rate variability ratio and cutaneous vascular sympathetic tone (represented by plethysmography pulse wave amplitude in LBW compared to normal birth weight (NBW young adults. We recruited 23 LBW (18 females and five males and 23 NBW (14 females and nine males University of Zimbabwe students with neonatal clinical cards as proof of birth weight at term. Resting electrocardiogram, pulse waves, and blood pressures were recorded. Participants then underwent a static/isometric handgrip exercise until fatigue and a post-exercise circulatory arrest period of 2 minutes. We observed (results mean ± standard deviation a greater mean increase in heart rate variability ratio from baseline to exercise for LBW compared to NBW individuals (1.015±1.034 versus [vs] 0.119±0.789, respectively; P<0.05. We also observed a greater mean decrease in plethysmography pulse wave amplitude from baseline to exercise (-1.32±1.064 vs -0.735±0.63; P<0.05 and from baseline to post-exercise circulatory arrest (-0.932±0.998 vs -0.389±0.563; P<0.05 for LBW compared to NBW individuals. We conclude that LBW may be associated with an exaggerated sympathetic discharge in response to muscle metaboreflex. Keywords: blood pressure, heart rate variability, plethysmography pulse

  7. Deficient Vasoactive Intestinal Peptide Innervation in the Sweat Glands of Cystic Fibrosis Patients

    Science.gov (United States)

    Heinz-Erian, Peter; Dey, Richard D.; Flux, Marinus; Said, Sami I.

    1985-09-01

    The innervation of acini and ducts of eccrine sweat glands by immunoreactive, vasoactive intestinal peptide--containing nerve fibers was sharply reduced in seven patients with cystic fibrosis compared to eight normal subjects. The decrease in innervation by this neuropeptide, which has been shown to promote blood flow and the movement of water and chloride across epithelial surfaces in other systems, may be a basic mechanism for the decreased water content and relative impermeability of the epithelium to chloride and other ions that characterize cystic fibrosis.

  8. Three-dimensional analysis of vestibular efferent neurons innervating semicircular canals of the gerbil

    Science.gov (United States)

    Purcell, I. M.; Perachio, A. A.

    1997-01-01

    Anterograde labeling techniques were used to examine peripheral innervation patterns of vestibular efferent neurons in the crista ampullares of the gerbil. Vestibular efferent neurons were labeled by extracellular injections of biocytin or biotinylated dextran amine into the contralateral or ipsilateral dorsal subgroup of efferent cell bodies (group e) located dorsolateral to the facial nerve genu. Anterogradely labeled efferent terminal field varicosities consist mainly of boutons en passant with fewer of the terminal type. The bouton swellings are located predominately in apposition to the basolateral borders of the afferent calyces and type II hair cells, but several boutons were identified close to the hair cell apical border on both types. Three-dimensional reconstruction and morphological analysis of the terminal fields from these cells located in the sensory neuroepithelium of the anterior, horizontal, and posterior cristae were performed. We show that efferent neurons densely innervate each end organ in widespread terminal fields. Subepithelial bifurcations of parent axons were minimal, with extensive collateralization occurring after the axons penetrated the basement membrane of the neuroepithelium. Axonal branching ranged between the 6th and 27th orders and terminal field collecting area far exceeds that of the peripheral terminals of primary afferent neurons. The terminal fields of the efferent neurons display three morphologically heterogeneous types: central, peripheral, and planum. All cell types possess terminal fields displaying a high degree of anisotropy with orientations typically parallel to or within +/-45 degrees of the longitudinal axis if the crista. Terminal fields of the central and planum zones predominately project medially toward the transverse axis from the more laterally located penetration of the basement membrane by the parent axon. Peripheral zone terminal fields extend predominately toward the planum semilunatum. The innervation

  9. Mechanisms mediating renal sympathetic nerve activation in obesity-related hypertension.

    Science.gov (United States)

    Chen, W; Leo, S; Weng, C; Yang, X; Wu, Y; Tang, X

    2015-04-01

    Excessive renal sympathetic nerve activation may be one of the mechanisms underlying obesity-related hypertension. Impaired baroreflex sensitivity, adipokine disorders-such as leptin, adiponectin, and resistin-activation of the renin-angiotensin system, hyperinsulinemia, insulin resistance, and renal sodium retention present in obesity increase renal sympathetic nerve activity, thus contributing to the development of hypertension. Renal sympathetic denervation reduces both renal sympathetic activity and blood pressure in patients with obesity-related hypertension. PMID:24609799

  10. REVERSAL OF GENETIC SALT-SENSITIVE HYPERTENSION BY TARGETED SYMPATHETIC ABLATION

    OpenAIRE

    Foss, Jason; Fink, Gregory D; Osborn, John W.

    2013-01-01

    The sympathetic nervous system plays an important role in some forms of human hypertension as well as the Dahl salt-sensitive rat model of hypertension; however, the sympathetic targets involved remain unclear. To address this, we examined the role of the renal and splanchnic sympathetic nerves in Dahl hypertension by performing either sham surgery (n = 10) or targeted sympathetic ablation of the renal nerves (renal denervation, n = 11), the splanchnic nerves (celiac ganglionectomy, n = 11) o...

  11. A comparison of sympathetic and conventional training methods on responses to initial horse training

    NARCIS (Netherlands)

    Visser, E.K.; Dierendonck, van M.; Ellis, A.D.; Rijksen, C.; Reenen, van C.G.

    2009-01-01

    In `sympathetic horsemanship¿ the importance of the natural behaviour of the horse and the use of body language in communication is emphasised. However, it is unclear what effect sympathetic horsemanship has on the welfare of horses. During a 5-week starting period the effect of a sympathetic (ST) v

  12. Rescue of NGF-deficient mice II: basal forebrain cholinergic projections require NGF for target innervation but not guidance.

    Science.gov (United States)

    Phillips, Heidi S; Nishimura, Merry; Armanini, Mark P; Chen, Karen; Albers, Kathryn M; Davis, Brian M

    2004-04-29

    Basal forebrain cholinergic (BFC) neurons are an important substrate of cognitive function and are hypothesized to require the presence of nerve growth factor (NGF) for survival and target innervation. NGF-deficient mice develop BFC neurons that extend projections into telencephalic targets, but the mice perish before innervation is fully established. Rescue of NGF-deficient mice by transgenic expression of NGF under the keratin promoter yields viable mice with disrupted CNS expression of NGF. In the current study, rescued NGF-deficient mice contain normal numbers of septal cholinergic neurons yet reveal severe compromise of cholinergic innervation of both cortex and hippocampus. Surprisingly, intracerebroventricular infusion of NGF into juvenile mice can induce an essentially normal pattern of cholinergic innervation of the hippocampus. These results indicate that NGF is required for induction of proper innervation by BFC neurons, but that the cellular pattern of expression of this factor is not critical for specifying the distribution of axon terminals. PMID:15093680

  13. Effects of leptin on sympathetic nerve activity in conscious mice.

    Science.gov (United States)

    Morgan, Donald A; Despas, Fabien; Rahmouni, Kamal

    2015-09-01

    The adipocyte-derived hormone, leptin, has emerged as an important regulator of regional sympathetic nerve activity (SNA) with pathophysiological implications in obesity. Genetically engineered mice are useful to understand the molecular pathways underlying the SNA responses evoked by leptin. However, so far the effect of leptin on direct SNA in mice has been studied under general anesthesia. Here, we examined the sympathetic responses evoked by leptin in conscious mice. Mice were instrumented, under ketamine/xylazine anesthesia, with renal or lumbar SNA recordings using a thin (40 gauge) bipolar platinum-iridium wire. The electrodes were exteriorized at the nape of the neck and mice were allowed (5 h) to recover from anesthesia. Interestingly, the reflex increases in renal and lumbar SNA caused by sodium nitroprusside (SNP)-induced hypotension was higher in the conscious phase versus the anesthetized state, whereas the increase in both renal and lumbar SNA evoked by leptin did not differ between anesthetized or conscious mice. Next, we assessed whether isoflurane anesthesia would yield a better outcome. Again, the SNP-induced increase in renal SNA and baroreceptor-renal SNA reflex were significantly elevated in the conscious states relative to isoflurane-anesthetized phase, but the renal SNA response induced by leptin in the conscious states were qualitatively comparable to those evoked above. Thus, despite improvement in sympathetic reflexes in conscious mice the sympathetic responses evoked by leptin mimic those induced during anesthesia. PMID:26381017

  14. Axillary Brachial Plexus Blockade for the Reflex Sympathetic Dystrophy Syndrome.

    Science.gov (United States)

    Ribbers, G. M.; Geurts, A. C. H.; Rijken, R. A. J.; Kerkkamp, H. E. M.

    1997-01-01

    Reflex sympathetic dystrophy syndrome (RSD) is a neurogenic pain syndrome characterized by pain, vasomotor and dystrophic changes, and often motor impairments. This study evaluated the effectiveness of brachial plexus blockade with local anaesthetic drugs as a treatment for this condition. Three patients responded well; three did not. (DB)

  15. Baroreflex control of sympathetic activity in experimental hypertension

    Directory of Open Access Journals (Sweden)

    M.C.C. Irigoyen

    1998-09-01

    Full Text Available The arterial baroreceptor reflex system is one of the most powerful and rapidly acting mechanisms for controlling arterial pressure. The purpose of the present review is to discuss data relating sympathetic activity to the baroreflex control of arterial pressure in two different experimental models: neurogenic hypertension by sinoaortic denervation (SAD and high-renin hypertension by total aortic ligation between the renal arteries in the rat. SAD depresses baroreflex regulation of renal sympathetic activity in both the acute and chronic phases. However, increased sympathetic activity (100% was found only in the acute phase of sinoaortic denervation. In the chronic phase of SAD average discharge normalized but the pattern of discharges was different from that found in controls. High-renin hypertensive rats showed overactivity of the renin angiotensin system and a great depression of the baroreflexes, comparable to the depression observed in chronic sinoaortic denervated rats. However, there were no differences in the average tonic sympathetic activity or changes in the pattern of discharges in high-renin rats. We suggest that the difference in the pattern of discharges may contribute to the increase in arterial pressure lability observed in chronic sinoaortic denervated rats.

  16. Prolonged Paroxysmal Sympathetic Storming Associated with Spontaneous Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2013-01-01

    Full Text Available Paroxysmal sympathetic storming (PSS is a rare disorder characterized by acute onset of nonstimulated tachycardia, hypertension, tachypnea, hyperthermia, external posturing, and diaphoresis. It is most frequently associated with severe traumatic brain injuries and has been reported in intracranial tumors, hydrocephalous, severe hypoxic brain injury, and intracerebral hemorrhage. Although excessive release of catecholamine and therefore increased sympathetic activities have been reported in subarachnoid hemorrhage (SAH, there is no descriptive report of PSS primarily caused by spontaneous SAH up to date. Here, we report a case of prolonged PSS in a patient with spontaneous subarachnoid hemorrhage and consequent vasospasm. The sympathetic storming started shortly after patient was rewarmed from hypothermia protocol and symptoms responded to Labetalol, but intermittent recurrence did not resolve until 3 weeks later with treatment involving Midazolam, Fentanyl, Dexmedetomidine, Propofol, Bromocriptine, and minimizing frequency of neurological and vital checks. In conclusion, prolonged sympathetic storming can also be caused by spontaneous SAH. In this case, vasospasm might be a precipitating factor. Paralytics and hypothermia could mask the manifestations of PSS. The treatment of the refractory case will need both timely adjustment of medications and minimization of exogenous stressors or stimuli.

  17. Sympathetically evoked Ca2+ signaling in arterial smooth muscle

    Institute of Scientific and Technical Information of China (English)

    Wei-jin ZANG; Joseph ZACHARIA; Christine LAMONT; Withrow Gil WIER

    2006-01-01

    The sympathetic nervous system plays an essential role in the control of total peripheral vascular resistance and blood flow, by controlling the contraction of small arteries. Perivascular sympathetic nerves release ATP, norepinephrine (NE) and neuropeptide Y. This review summarizes our knowledge of the intracellular Ca2+ signals that are activated by ATP and NE, acting respectively on P2X1 and α1 adrenoceptors in arterial smooth muscle. Each neurotransmitter produces a unique type of post-synaptic Ca2+ signal and associated contraction. The neural release of ATP and NE is thought to vary markedly with the pattern of nerve activity, probably reflecting both pre- and post-synaptic mechanisms. Finally, we show that Ca2+ signaling during neurogenic contractions activated by trains of sympathetic nerve fiber action potentials are in fact significantly different from that elicited by simple bath application of exogenous neurotransmitters to isolated arteries (a common experimental technique), and end by identifying important questions remaining in our understanding of sympathetic neurotransmission and the physiological regulation of contraction of small arteries.

  18. Relationship between left ventricular diastolic function and myocardial sympathetic denervation measured by {sup 123}I-meta-iodobenzylguanidine imaging in Anderson-Fabry disease

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Letizia; Giudice, Caterina Anna; Imbriaco, Massimo; Trimarco, Bruno; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy); Pellegrino, Teresa [Institute of Biostructure and Bioimaging, National Council of Research, Naples (Italy); Pisani, Antonio; Riccio, Eleonora [University Federico II, Department of Public Health, Naples (Italy); Salvatore, Marco [IRCCS SDN, Naples (Italy)

    2016-04-15

    Whether cardiac sympathetic nervous function abnormalities may be present in patients with Anderson-Fabry disease (AFD) remains unexplored. We investigated the relationship between left ventricular (LV) function and cardiac sympathetic nervous function in patients with AFD. Twenty-five patients (12 men, mean age 43 ± 13 years) with genetically proved AFD and preserved LV ejection fraction and ten age and gender-matched control subjects underwent speckle tracking echocardiography and {sup 123}I-meta-iodobenzylguanidine (MIBG) imaging from which early and late heart to mediastinum (H/M) ratios and myocardial washout rate values were calculated. In AFD patients, a significant correlation between late H/M ratio and LV mass index (r = -61, p = 0.001), left atrial volume (r = -0.72, p < 0.001), systolic pulmonary artery pressure (r = -0.75, p < 0.001), and early diastolic untwisting rate (r = -0.66, p < 0.001) was found. Ten AFD patients exhibited a late H/M ratio below two fold standard deviation of control subjects (≤1.75). Patients showing late H/M ratio ≤ 1.75 had significantly higher LV mass index, relative wall thickness, left atrial volume and systolic pulmonary artery pressure, lower systolic longitudinal strain and an early diastolic untwisting rate compared to patients with late H/M ratio > 1.75. At multivariable linear regression analysis, early diastolic untwisting rate was the only independent predictor of late H/M ratio ≤ 1.75 (odds ratio 1.15, 95 % confidence interval 1.07-1.31, p < 0.05). The present findings provide the first demonstration of a cardiac sympathetic derangement in AFD patients with preserved LV ejection fraction, which is mostly related to LV diastolic dysfunction. (orig.)

  19. Relationship between left ventricular diastolic function and myocardial sympathetic denervation measured by 123I-meta-iodobenzylguanidine imaging in Anderson-Fabry disease

    International Nuclear Information System (INIS)

    Whether cardiac sympathetic nervous function abnormalities may be present in patients with Anderson-Fabry disease (AFD) remains unexplored. We investigated the relationship between left ventricular (LV) function and cardiac sympathetic nervous function in patients with AFD. Twenty-five patients (12 men, mean age 43 ± 13 years) with genetically proved AFD and preserved LV ejection fraction and ten age and gender-matched control subjects underwent speckle tracking echocardiography and 123I-meta-iodobenzylguanidine (MIBG) imaging from which early and late heart to mediastinum (H/M) ratios and myocardial washout rate values were calculated. In AFD patients, a significant correlation between late H/M ratio and LV mass index (r = -61, p = 0.001), left atrial volume (r = -0.72, p < 0.001), systolic pulmonary artery pressure (r = -0.75, p < 0.001), and early diastolic untwisting rate (r = -0.66, p < 0.001) was found. Ten AFD patients exhibited a late H/M ratio below two fold standard deviation of control subjects (≤1.75). Patients showing late H/M ratio ≤ 1.75 had significantly higher LV mass index, relative wall thickness, left atrial volume and systolic pulmonary artery pressure, lower systolic longitudinal strain and an early diastolic untwisting rate compared to patients with late H/M ratio > 1.75. At multivariable linear regression analysis, early diastolic untwisting rate was the only independent predictor of late H/M ratio ≤ 1.75 (odds ratio 1.15, 95 % confidence interval 1.07-1.31, p < 0.05). The present findings provide the first demonstration of a cardiac sympathetic derangement in AFD patients with preserved LV ejection fraction, which is mostly related to LV diastolic dysfunction. (orig.)

  20. Innervation Patterns of Sea Otter (Enhydra lutris Mystacial Follicle-Sinus Complexes

    Directory of Open Access Journals (Sweden)

    Christopher Douglas Marshall

    2014-10-01

    Full Text Available Sea otters (Enhydra lutris are the most recent group of mammals to return to the sea, and may exemplify divergent somatosensory tactile systems among mammals. Therefore, we quantified the mystacial vibrissal array of sea otters and histologically processed follicle-sinus complexes (F-SCs to test the hypotheses that the number of myelinated axons per F-SC is greater than that found for terrestrial mammalian vibrissae and that their organization and microstructure converge with those of pinniped vibrissae. A mean of 120.5 vibrissae were arranged rostrally on a broad, blunt muzzle in 7-8 rows and 9-13 columns. The F-SCs of sea otters are tripartite in their organization and similar in microstructure to pinnipeds rather than terrestrial species. Each F-SC was innervated by a mean 1339±408.3 axons. Innervation to the entire mystacial vibrissal array was estimated at 161,313 axons. Our data support the hypothesis that the disproportionate expansion of the coronal gyrus in somatosensory cortex of sea otters is related to the high innervation investment of the mystacial vibrissal array, and that quantifying innervation investment is a good proxy for tactile sensitivity. We predict that the tactile performance of sea otter mystacial vibrissae is comparable to that of harbor seals, sea lions and walruses¬.

  1. GAD67-mediated GABA Synthesis and Signaling Regulate Inhibitory Synaptic Innervation in the Visual Cortex

    Science.gov (United States)

    Chattopadhyaya, Bidisha; Di Cristo, Graziella; Wu, Cai Zhi; Knott, Graham; Kuhlman, Sandra; Fu, Yu; Palmiter, Richard D.; Huang, Z. Josh

    2007-01-01

    The development of GABAergic inhibitory circuits is shaped by neural activity, but the underlying mechanisms are unclear. we demonstrate a novel function of GABA in regulating GABAergic innervation in the adolescent brain, when GABA is mainly known as an inhibitory transmitter. Conditional knockdown of the rate-limiting synthetic enzyme GAD67 in basket interneurons in adolescent visual cortex resulted in cell autonomous deficits in axon branching, perisomatic synapse formation around pyramidal neurons, and complexity of the innervation fields; the same manipulation had little influence on the subsequent maintenance of perisomatic synapses. These effects of GABA deficiency were rescued by suppressing GABA re-uptake and by GABA receptor agonists. Germ-line knockdown of GAD67 but not GAD65 showed similar deficits, suggesting a specific role of GAD67 in the maturation of perisomatic innervation. Since intracellular GABA levels are modulated by neuronal activity, our results implicate GAD67-mediated GABA synthesis in activity-dependent regulation of inhibitory innervation patterns. PMID:17582330

  2. BDNF promotes target innervation of Xenopus mandibular trigeminal axons in vivo

    Directory of Open Access Journals (Sweden)

    Ishibashi Shoko

    2007-05-01

    Full Text Available Abstract Background Trigeminal nerves consist of ophthalmic, maxillary, and mandibular branches that project to distinct regions of the facial epidermis. In Xenopus embryos, the mandibular branch of the trigeminal nerve extends toward and innervates the cement gland in the anterior facial epithelium. The cement gland has previously been proposed to provide a short-range chemoattractive signal to promote target innervation by mandibular trigeminal axons. Brain derived neurotrophic factor, BDNF is known to stimulate axon outgrowth and branching. The goal of this study is to determine whether BDNF functions as the proposed target recognition signal in the Xenopus cement gland. Results We found that the cement gland is enriched in BDNF mRNA transcripts compared to the other neurotrophins NT3 and NT4 during mandibular trigeminal nerve innervation. BDNF knockdown in Xenopus embryos or specifically in cement glands resulted in the failure of mandibular trigeminal axons to arborise or grow into the cement gland. BDNF expressed ectodermal grafts, when positioned in place of the cement gland, promoted local trigeminal axon arborisation in vivo. Conclusion BDNF is necessary locally to promote end stage target innervation of trigeminal axons in vivo, suggesting that BDNF functions as a short-range signal that stimulates mandibular trigeminal axon arborisation and growth into the cement gland.

  3. Developmental Corneal Innervation: Interactions between Nerves and Specialized Apical Corneal Epithelial Cells

    OpenAIRE

    Kubilus, James K.; Linsenmayer, Thomas F.

    2010-01-01

    During developmental innervation of the chicken cornea, nerves interact with apical corneal epithelial cells to form synapse-like structures. In addition, these apical epithelial cells express class III β-tubulin, an isoform of β-tubulin generally thought to be neuron specific.

  4. The role of Sema3–Npn-1 signaling during diaphragm innervation and muscle development

    Science.gov (United States)

    Huettl, Rosa-Eva; Hanuschick, Philipp; Amend, Anna-Lena; Alberton, Paolo; Aszodi, Attila; Huber, Andrea B.

    2016-01-01

    ABSTRACT Correct innervation of the main respiratory muscle in mammals, namely the thoracic diaphragm, is a crucial pre-requisite for the functionality of this muscle and the viability of the entire organism. Systemic impairment of Sema3A–Npn-1 (Npn-1 is also known as NRP1) signaling causes excessive branching of phrenic nerves in the diaphragm and into the central tendon region, where the majority of misguided axons innervate ectopic musculature. To elucidate whether these ectopic muscles are a result of misguidance of myoblast precursors due to the loss of Sema3A–Npn-1 signaling, we conditionally ablated Npn-1 in somatic motor neurons, which led to a similar phenotype of phrenic nerve defasciculation and, intriguingly, also formation of innervated ectopic muscles. We therefore hypothesize that ectopic myocyte fusion is caused by additional factors released by misprojecting growth cones. Slit2 and its Robo receptors are expressed by phrenic motor axons and migrating myoblasts, respectively, during innervation of the diaphragm. In vitro analyses revealed a chemoattractant effect of Slit2 on primary diaphragm myoblasts. Thus, we postulate that factors released by motor neuron growth cones have an influence on the migration properties of myoblasts during establishment of the diaphragm. PMID:27466379

  5. P2 receptors in the central and peripheral nervous systems modulating sympathetic vasomotor tone.

    Science.gov (United States)

    Ralevic, V

    2000-07-01

    Arterial pressure depends on the level of activity of sympathetic vasoconstrictor outflow to blood vessels. This activity is generated in the central nervous system, and involves inputs from a variety of brain regions projecting to sympathetic preganglionic neurones. Of especial interest are a group of neurones in the rostral ventrolateral medulla (RVLM), as they have been demonstrated to have a fundamental role in reflex regulation of the cardiovascular system, and in generation of tonic drive to sympathetic outflow. Sympathetic outflow to blood vessels is additionally modulated at sympathetic ganglia, and at the peripheral terminals of sympathetic nerves. This review considers the role of P2 purine receptors in this neural pathway. Ionotropic P2X receptors are expressed in the RVLM, in sympathetic ganglia, and at the sympathetic neuromuscular junction, and mediate fast excitatory neurotransmission, indicating a general role for ATP as a regulator of sympathetic vasomotor tone. P2Y receptors couple to G proteins and mediate slower signalling to ATP; they have been reported to inhibit prejunctionally neurotransmission at the peripheral terminals of sympathetic nerves, but little is known about their possible role in the central nervous system and in sympathetic ganglia.

  6. Cardiac MRI in Athletes

    NARCIS (Netherlands)

    Luijkx, T.

    2012-01-01

    Cardiac magnetic resonance imaging (CMR) is often used in athletes to image cardiac anatomy and function and is increasingly requested in the context of screening for pathology that can cause sudden cardiac death (SCD). In this thesis, patterns of cardiac adaptation to sports are investigated with C

  7. Prostate innervation and local anesthesia in prostate procedures Inervação prostática e anestesia local em procedimentos prostáticos

    Directory of Open Access Journals (Sweden)

    Alexandre Oliveira Rodrigues

    2002-01-01

    Full Text Available The nerve supply of the human prostate is very abundant, and knowledge of the anatomy contributes to successful administration of local anesthesia. However, the exact anatomy of extrinsic neuronal cell bodies of the autonomic and sensory innervation of the prostate is not clear, except in other animals. Branches of pelvic ganglia composed of pelvic (parasympathetic and hypogastric (sympathetic nerves innervate the prostate. The autonomic nervous system plays an important role in the growth, maturation, and secretory function of this gland. Prostate procedures under local anesthesia, such as transurethral prostatic resections or transrectal ultrasound-guided prostatic biopsy, are safe, simple, and effective. Local anesthesia can be feasible for many special conditions including uncomplicated prostate surgery and may be particularly useful for the high-risk group of patients for whom inhalation or spinal anesthesia is inadvisable.A prostáta, uma das glândulas sexuais acessórias masculinas, possui inervação muito rica. A anatomia detalhada dos corpos neuronais extrínsecos responsáveis pela inervação autonômica e sensorial da próstata não está totalmente esclarecida, exceto em animais. A próstata é inervada pelos nervos pélvico (parassimpático e hipogástrico (simpático, ramos dos gânglios nervosos pélvicos. O sistema nervoso autonômico possui importante papel no crescimento, maturação e na função secretora desta glândula. Alguns procedimentos prostáticos, como resecção transuretral ou biópsia transretal guiada por ultra-sonografia, são simples, eficazes e seguros com o uso de anestesia local. Esta opção pode ser factível frente à várias condições especiais, como cirurgias prostáticas simples, sendo particularmente útil no grupo de pacientes de alto risco cirúrgico, onde a anestesia inalatória ou espinhal não é aconselhável.

  8. A new method of assessing cardiac autonomic function and its comparison with spectral analysis and coefficient of variation of R-R interval.

    Science.gov (United States)

    Toichi, M; Sugiura, T; Murai, T; Sengoku, A

    1997-01-12

    A new non-linear method of assessing cardiac autonomic function was examined in a pharmacological experiment in ten healthy volunteers. The R-R interval data obtained under a control condition and in autonomic blockade by atropine and by propranolol were analyzed by each of the new methods employing Lorenz plot, spectral analysis and the coefficient of variation. With our method we derived two measures, the cardiac vagal index and the cardiac sympathetic index, which indicate vagal and sympathetic function separately. These two indices were found to be more reliable than those obtained by the other two methods. We anticipate that the non-invasive assessment of short-term cardiac autonomic function will come to be performed more reliably and conveniently by this method.

  9. Macrophage populations and cardiac sympathetic denervation during L-NAME-induced hypertension in rats

    DEFF Research Database (Denmark)

    Neves, S R S; Machado, C R S; Pinto, A M T;

    2006-01-01

    ventricle, the hypertrophic cardiomyocytes were restricted to damaged areas. Significant reduction of the noradrenergic nerve terminals occurred from day 3 to 28. The area occupied by ED1+ (hematogenous) macrophages increased until day 7, and dropped to control levels by day 10. ED2+ (resident) macrophages...... and macrophage infiltration at day 7. No denervation was detectable at day 14 of double treatment, using subcutaneous AG. Our findings favor a role for ED1+ macrophages and iNOS in the hypertension-induced denervation process....

  10. Auditory stimulation and cardiac autonomic regulation

    Directory of Open Access Journals (Sweden)

    Vitor E. Valenti

    2012-08-01

    Full Text Available Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: "auditory stimulation", "autonomic nervous system", "music" and "heart rate variability". The selected studies indicated that there is a strong correlation between noise intensity and vagal-sympathetic balance. Additionally, it was reported that music therapy improved heart rate variability in anthracycline-treated breast cancer patients. It was hypothesized that dopamine release in the striatal system induced by pleasurable songs is involved in cardiac autonomic regulation. Musical auditory stimulation influences heart rate variability through a neural mechanism that is not well understood. Further studies are necessary to develop new therapies to treat cardiovascular disorders.

  11. School burnout: increased sympathetic vasomotor tone and attenuated ambulatory diurnal blood pressure variability in young adult women.

    Science.gov (United States)

    May, Ross W; Sanchez-Gonzalez, Marcos A; Fincham, Frank D

    2015-01-01

    Two studies examined autonomic and cardiovascular functioning that may link school burnout to cardiovascular risk factors in young healthy adult females. Study 1 (N = 136) investigated whether school burnout was related to resting values of blood pressure (BP) and blood pressure variability (BPV) through laboratory beat-to-beat BP assessment. Study 2 (N = 94) examined the link between school burnout and diurnal BPV through ambulatory BP monitoring. Controlling for anxiety and depressive symptomatology, school burnout demonstrated strong positive relationships with indices of cardiac sympathovagal tone, sympathetic vasomotor tone, inefficient myocardial oxygen consumption, increased 24-h ambulatory heart rate and BP, blunted BP diurnal variability, and increased arterial stiffness. These studies establish cardiovascular biomarkers of school burnout and suggest that even in a seemingly healthy sample school burnout may predispose females to increased cardiovascular risk. Several future lines of research are outlined.

  12. Cardiac Autonomic Drive during Arterial Hypertension and Metabolic Disturbances.

    Science.gov (United States)

    Kseneva, S I; Borodulina, E V; Trifonova, O Yu; Udut, V V

    2016-06-01

    ANS support of the cardiac work was assessed with analysis of heart rate variability in representative samples of patients with arterial hypertension and metabolic disturbances manifested by overweight, classes I-II obesity, compromised glucose tolerance, and type II diabetes. Initially enhanced sympathetic effects on the heart rate demonstrated no further increase during the orthostatic test in contrast to suprasegmentary influences enhanced by this test. The pronouncedness of revealed peculiarities in ANS drive to the heart correlated with metabolic disturbances, and these peculiarities attained maximum in patients with type II diabetes. PMID:27383176

  13. Relationship between duration of illness and cardiac autonomic nervous activity in anorexia nervosa

    OpenAIRE

    Nakai, Yoshikatsu; Fujita, Masatoshi; Nin, Kazuko; Noma, Shun’ichi; Teramukai, Satoshi

    2015-01-01

    Background The mortality rate associated with anorexia nervosa (AN) is high, and death is mainly attributable to cardiac events. A wide range of autonomic nervous system disturbances may be mechanisms underlying the increased cardiovascular mortality and sudden death of patients with AN. Heart rate variability (HRV) has been proven to be a reliable noninvasive method for quantitative assessment of sympathetic and parasympathetic regulation of heart rate (HR). The longer the duration of illnes...

  14. Relationship between duration of illness and cardiac autonomic nervous activity in anorexia nervosa

    OpenAIRE

    Nakai, Yoshikatsu; Fujita, Masatoshi; Nin, Kazuko; Noma, Shun'ichi; Teramukai, Satoshi

    2015-01-01

    Background: The mortality rate associated with anorexia nervosa (AN) is high, and death is mainly attributable to cardiac events. A wide range of autonomic nervous system disturbances may be mechanisms underlying the increased cardiovascular mortality and sudden death of patients with AN. Heart rate variability (HRV) has been proven to be a reliable noninvasive method for quantitative assessment of sympathetic and parasympathetic regulation of heart rate (HR). The longer the duration of illne...

  15. High sugar intake exacerbates cardiac reperfusion injury in perinatal taurine depleted adult rats

    OpenAIRE

    Kulthinee Supaporn; Wyss J Michael; Jirakulsomchok Dusit; Roysommuti Sanya

    2010-01-01

    Abstract Perinatal taurine depletion and high sugar diets blunted baroreflex function and heightens sympathetic nerve activity in adult rats. Cardiac ischemia/reperfusion also produces these disorders and taurine treatment appears to improve these effects. This study tests the hypothesis that perinatal taurine exposure predisposes recovery from reperfusion injury in rats on either a basal or high sugar diet. Female Sprague-Dawley rats were fed normal rat chow with 3% beta-alanine (taurine dep...

  16. Cardiac autonomic function in patients with diabetes improves with practice of comprehensive yogic breathing program

    Directory of Open Access Journals (Sweden)

    Viveka P Jyotsna

    2013-01-01

    Full Text Available Background: The aim of this study was to observe the effect comprehensive yogic breathing (Sudarshan Kriya Yoga [SKY] and Pranayam had on cardiac autonomic functions in patients with diabetes. Materials and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 64 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program. Standard therapy included dietary advice, brisk walking for 45 min daily, and administration of oral antidiabetic drugs. Comprehensive yogic breathing program was introduced to the participants through a course of 12 h spread over 3 days. It was an interactive session in which SKY, a rhythmic cyclical breathing, preceded by Pranayam is taught under the guidance of a certified teacher. Cardiac autonomic function tests were done before and after 6 months of intervention. Results: In the intervention group, after practicing the breathing techniques for 6 months, the improvement in sympathetic functions was statistically significant (P 0.04. The change in sympathetic functions in the standard therapy group was not significant (P 0.75.Parasympathetic functions did not show any significant change in either group. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P 0.06. In the standard therapy group, no change in cardiac autonomic functions was noted (P 0.99. Conclusion: Cardiac autonomic functions improved in patients with diabetes on standard treatment who followed the comprehensive yogic breathing program compared to patients who were on standard therapy alone.

  17. Gender affects sympathetic neurovascular control during postural stress.

    Science.gov (United States)

    Shoemaker, J K; Hughson, R L; Sinoway, L I

    2002-07-01

    Sympathetic outflow increases during head-up tilt (HUT) to stabilize blood pressure in the presence of decreases in venous return and stroke volume (SV). Otherwise, orthostatic hypotension would develop. Gender differences in orthostatic tolerance have been noted but the mechanisms are still uncertain. More recently, Waters et al. reported in a limited sample, greater susceptibility of women to demonstrate orthostatic intolerance following space flight. Therefore, it is important to understand gender differences in reflex blood pressure regulation. Recently, we reported smaller increments in muscle sympathetic nerve activity (MSNA) in healthy women during graded HUT and a non-baroreflex cold pressor test. The purpose of this report is to examine the hypothesis that gender differences in blood pressure control during HUT are related to important variations in MSNA discharge patterns.

  18. Comparison of compensatory sweating and quality of life following thoracic sympathetic block for palmar hyperhidrosis: electrocautery hook versus titanium clip

    Institute of Scientific and Technical Information of China (English)

    WANG Fei-ge; CHEN Yong-bing; YANG Wen-tao; SHI Li

    2011-01-01

    Background Video-assisted thoracic sympathetic block is an effective,safe,and minimally invasive method fortreatment of primary hyperhidrosis.The purpose of this study was to decide which one of using electrocautery hook and titanium clip is the appropriate procedure for primary palmar hyperhidrosis by assessing the compensatory sweating (CS)and quality of life (QOL) of patients after sympathetic block.Methods Between October 2007 to August 2010,120 patients with primary palmar hyperhidrosis were randomly divided into two groups,electrocautery hook group (60 patients) and titanium clip group (60 patients).All patients were treated by sympathetic block at T4 level.The CS was graded based on severity and location; the QOL was classified to 5 different levels based upon the summed total scores (range from 20 to 100) before and after surgery.The variables were compared.Results The postoperative follow-up period was 2 months.All patients were cured.Three patients in electrocautery hook group and 1 patient in titanium clip group had a unilateral pneumothorax on chest X-ray,but none of them was necessary to have chest drainage.Neither perioperative mortality nor serious complications such as cardiac arrhythmia or arrest were observed during the operation.No bradycardia or Horner's syndrome occured.CS was not more common in patients in titanium clip group than in those in electrocautery hook group (P=0.001).Moderate and severe CS was few in all patients,and there was no significant difference between two groups (P=-0.193).Most of the patients feel a notable improvement of the the QOL; nevertheless,there was no significant difference between the groups (P=0.588).Conclusions Both electrocautery hook and titanium clip used for sympathetic block at the T4 level are effective,safe,and minimally invasive for palmar hyperhidrosis.Because of the lower severity of CS and the similar improvements in the QOL after operation,we prefer to use of titanium clip for treating palmar

  19. MIBG scintigraphy of the heart; MIBG-Szintigrafie des Herzens

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, M.; Weiss, M. [Klinik und Poliklinik fuer Nuklearmedizin, Klinikum der Ludwig-Maximilians-Univ. Muenchen (Germany)

    2009-03-15

    The sympathetic nervous system plays an important role in cardiovascular physiology. Planar MIBG with or without SPECT can be used to visualize the sympathetic innervation of the heart and the abnormalities in innervation caused by, for example, ischemia, heart failure, and arrhythmogenic disorders. Furthermore, cardiac neuronal imaging allows early detection of autonomic neuropathy in diabetes mellitus. Assessment of sympathetic nerve activity in patients with heart failure has been shown to provide important prognostic information, and cardiac neuronal imaging can potentially identify patients who are at increased risk of sudden death. Moreover, therapeutic effects of different treatment strategies can be evaluated by imaging. To establish the clinical utility of cardiac neuronal imaging, it will be necessary to determine the incremental value of innervation imaging to triage heart failure patients to medical therapy, CRT (with or without ICD), or heart transplantation. (orig.)

  20. Role of sympathetic nervous system and neuropeptides in obesity hypertension

    OpenAIRE

    Hall, J. E.; M.W. Brands; D.A. Hildebrandt; Kuo, J.; Fitzgerald, S.

    2000-01-01

    Obesity is the most common cause of human essential hypertension in most industrialized countries. Although the precise mechanisms of obesity hypertension are not fully understood, considerable evidence suggests that excess renal sodium reabsorption and a hypertensive shift of pressure natriuresis play a major role. Sympathetic activation appears to mediate at least part of the obesity-induced sodium retention and hypertension since adrenergic blockade or renal denervation markedly attenuates...

  1. Sympathetic cooling of rovibrationally state-selected molecular ions

    OpenAIRE

    Tong, Xin; Winney, Alexander H.; Willitsch, Stefan

    2010-01-01

    We present a new method for the generation of rotationally and vibrationally state-selected, translationally cold molecular ions in ion traps. Our technique is based on the state-selective threshold photoionization of neutral molecules followed by sympathetic cooling of the resulting ions with laser-cooled calcium ions. Using N$_2^+$ ions as a test system, we achieve > 90 % selectivity in the preparation of the ground rovibrational level and state lifetimes on the order of 15 minutes limited ...

  2. Consolation as possible expression of sympathetic concern among chimpanzees

    OpenAIRE

    Romero, Teresa; Castellanos, Miguel A.; de Waal, Frans B. M.

    2010-01-01

    Chimpanzees are known to spontaneously provide contact comfort to recent victims of aggression, a behavior known as consolation. Similar behavior in human children is attributed to empathic or sympathetic concern. In line with this empathy hypothesis, chimpanzee consolation has been shown to reduce the recipient's state of arousal, hence to likely alleviate distress. Other predictions from the empathy hypothesis have rarely been tested, however, owing to small sample sizes in previous studies...

  3. Thoracoscopic sympathetic clamping in a patient with an azygos fissure.

    Science.gov (United States)

    Moon, Seok Whan; Yoon, Jeong Sub; Jo, Keon Hyeon; Wang, Young Pil; Park, Hyeon Jin

    2005-04-01

    We believe that an azygos fissure may predispose to bleeding during thoracoscopic surgery. An azygos fissure causes important morphologic changes in the superior mediastinum and thereby poses a risk of massive bleeding during thoracoscopic procedures. We report on a successful thoracoscopic procedure conducted in a patient with palmar hyperhidrosis and an azygos fissure and emphasize that the course of the thoracic sympathetic chain runs laterally along the base of the azygos fissure. PMID:15821627

  4. A new concept of the sympathetic pathways to the eye.

    Science.gov (United States)

    Palumbo, L T

    1976-08-01

    The sympathetic pupillociliary pathways controlling the dilatation of the pupil in man have been recorded by many authorities as passing via the first and/or second thoracic (dorsal) rami to the lower part of the stellate (first thoracic) ganglion. It has been stated by these and other authorities that the removal of the lower part of the stellate ganglion and/or resection of the first and/or second thoracic rami would produce a Horner's syndrome. This currently accepted concept of the sympathetic pathways to the eye we believe to be incorrect. Our entire clinical experience has consistently contradicted the findings and reports of other investigators. It is suggested that the ability afforded by a new surgical approach to reach, dissect, and exactly control the line of resection without undue trauma to the stellate ganglion has made possible for the first time a definitive statement concerning the entry of the pupillociliary pathways into the sympathetic chain. It is, therefore, postulated that the preganglionic neurons controlling the pupil enter the upper portion of the stellate ganglion by a separate paravertebral route leaving the ventral roots of the eighth cervical, first and/or second thoracic nerves. Our entire clinical experience refutes the concept that these pathways pass via the first ramus communicans to the first thoracic ganglion. This thesis is based on and supported by the results of new surgical approach originally designed to permit a more direct exposure and to overcome many of the deficiencies of current surgical approaches. The anterior transthoracic, transpleural wound employed allows a more direct approach and a more accurate and complete dissection of this segment of the sympathetic supply to the head, neck, upper extremity, heart, and coronary vessels without incurring the undesirable sequela of a Horner's syndrome in 93% of patients. PMID:962268

  5. Sympathetic neural responses to mental stress during acute simulated microgravity

    OpenAIRE

    Durocher, John J.; Schwartz, Christopher E.; Carter, Jason R.

    2009-01-01

    Neural and cardiovascular responses to mental stress and acute 6° head-down tilt (HDT) were examined separately and combined. We hypothesized sympathoexcitation during mental stress, sympathoinhibition during HDT, and an additive neural interaction during combined mental stress and HDT. Muscle sympathetic nerve activity (MSNA), mean arterial pressure (MAP), and heart rate (HR) were recorded in 16 healthy subjects (8 men, 8 women) in the supine position during three randomized trials: 1) menta...

  6. PROJECTION NEURONS OF THE VESTIBULO-SYMPATHETIC REFLEX PATHWAY

    OpenAIRE

    Holstein, Gay R.; Friedrich, Victor L.; Martinelli, Giorgio P.

    2014-01-01

    Changes in head position and posture are detected by the vestibular system and are normally followed by rapid modifications in blood pressure. These compensatory adjustments, which allow humans to stand up without fainting, are mediated by integration of vestibular system pathways with blood pressure control centers in the ventrolateral medulla. Orthostatic hypotension can reflect altered activity of this neural circuitry. Vestibular sensory input to the vestibulo-sympathetic pathway terminat...

  7. Release of endogenous ATP during sympathetic nerve stimulation.

    OpenAIRE

    Lew, M. J.; White, T. D.

    1987-01-01

    1 Vas deferens from guinea-pig was stimulated with a suction electrode and both contractions and release of endogenous ATP monitored 2 Release of ATP was tetrodotoxin-sensitive and increased when the number of stimuli was increased. 3 Release of ATP was not due to contraction of the muscle and persisted following block of contractions with prazosin and alpha, beta-methylene ATP. 4 These results indicate that stimulation of the sympathetic nerves in the vas deferens releases endogenous ATP pre...

  8. Cardiac perception and cardiac control. A review.

    Science.gov (United States)

    Carroll, D

    1977-12-01

    The evidence regarding specific cardiac perception and discrimination, and its relationship to voluntary cardiac control, is critically reviewed. Studies are considered in three sections, depending on the method used to assess cardiac perception: questionnaire assessment, discrimination procedures, and heartbeat tracking. The heartbeat tracking procedure would appear to suffer least from interpretative difficulties. Recommendations are made regarding the style of analysis used to assess heartbeat perception in such tracking tasks. PMID:348240

  9. Neuronal morphology and the synaptic organisation of sympathetic ganglia.

    Science.gov (United States)

    Gibbins, I L; Jobling, P; Messenger, J P; Teo, E H; Morris, J L

    2000-07-01

    In this article, we provide a short review of the structure and synaptic organisation of the final motor neurons in the sympathetic ganglia of mammals. Combinations of pathway tracing, multiple-labelling immunofluorescence and intracellular dye injection have shown that neurons in different functional pathways differ not only in their patterns of neuropeptide expression, but also in the size of their cell bodies and dendritic fields. Thus, vasoconstrictor neurons consistently are smaller than any other major functional class of neurons. Serial section ultrastructural analysis of dye filled neurons, together with electron microscopic and confocal microscopic analysis of immunolabelled synaptic inputs to sympathetic final motor neurons indicate that synapses are rare and randomly distributed over the surface of the neurons. The total number of synapses is simply proportional to the total surface area of the neurons. Many terminal boutons of peptide-containing preganglionic neurons do not make conventional synapses with target neurons. Furthermore, there is a spatial mismatch in the distribution of peptide-containing terminals and neurons expressing receptors for the corresponding peptides. Together, these results suggest that there are likely to be significant differences in the ways that the final sympathetic motor neurons in distinct functional pathways integrate their synaptic inputs. In at least some pathways, heterosynaptic actions of neuropeptides probably contribute to subtle modulation of ganglionic transmission.

  10. Sympathetic Responses to Noxious Stimulation of Muscle and Skin.

    Science.gov (United States)

    Burton, Alexander R; Fazalbhoy, Azharuddin; Macefield, Vaughan G

    2016-01-01

    Acute pain triggers adaptive physiological responses that serve as protective mechanisms that prevent continuing damage to tissues and cause the individual to react to remove or escape the painful stimulus. However, an extension of the pain response beyond signaling tissue damage and healing, such as in chronic pain states, serves no particular biological function; it is maladaptive. The increasing number of chronic pain sufferers is concerning, and the associated disease burden is putting healthcare systems around the world under significant pressure. The incapacitating effects of long-lasting pain are not just psychological - reflexes driven by nociceptors during the establishment of chronic pain may cause serious physiological consequences on regulation of other body systems. The sympathetic nervous system is inherently involved in a host of physiological responses evoked by noxious stimulation. Experimental animal and human models demonstrate a diverse array of heterogeneous reactions to nociception. The purpose of this review is to understand how pain affects the sympathetic nervous system by investigating the reflex cardiovascular and neural responses to acute pain and the long-lasting physiological responses to prolonged (tonic) pain. By observing the sympathetic responses to long-lasting pain, we can begin to understand the physiological consequences of long-term pain on cardiovascular regulation. PMID:27445972

  11. Understanding paroxysmal sympathetic hyperactivity after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Kimberly S Meyer

    2014-01-01

    Full Text Available Background: Paroxysmal sympathetic hyperactivity (PSH is a condition occurring in a small percentage of patients with severe traumatic brain injury (TBI. It is characterized by a constellation of symptoms associated with excessive adrenergic output, including tachycardia, hypertension, tachypnea, and diaphoresis. Diagnosis is one of exclusion and, therefore, is often delayed. Treatment is aimed at minimizing triggers and pharmacologic management of symptoms. Methods: A literature review using medline and cinahl was conducted to identify articles related to PSH. Search terms included paroxysmal sympathetic hyperactivity, autonomic storming, diencephalic seizures, and sympathetic storming. Reference lists of pertinent articles were also reviewed and these additional papers were included. Results: The literature indicates that the understanding of PSH following TBI is in its infancy. The majority of information is based on small case series. The review revealed treatments that may be useful in treating PSH. Conclusions: Nurses play a critical role in the identification of at-risk patients, symptom complexes, and in the education of family. Early detection and treatment is likely to decrease overall morbidity and facilitate recovery. Further research is needed to establish screening tools and treatment algorithms for PSH.

  12. On the vagal cardiac nerves, with special reference to the early evolution of the head-trunk interface.

    Science.gov (United States)

    Higashiyama, Hiroki; Hirasawa, Tatsuya; Oisi, Yasuhiro; Sugahara, Fumiaki; Hyodo, Susumu; Kanai, Yoshiakira; Kuratani, Shigeru

    2016-09-01

    The vagus nerve, or the tenth cranial nerve, innervates the heart in addition to other visceral organs, including the posterior visceral arches. In amniotes, the anterior and posterior cardiac branches arise from the branchial and intestinal portions of the vagus nerve to innervate the arterial and venous poles of the heart, respectively. The evolution of this innervation pattern has yet to be elucidated, due mainly to the lack of morphological data on the vagus in basal vertebrates. To investigate this topic, we observed the vagus nerves of the lamprey (Lethenteron japonicum), elephant shark (Callorhinchus milii), and mouse (Mus musculus), focusing on the embryonic patterns of the vagal branches in the venous pole. In the lamprey, no vagus branch was found in the venous pole throughout development, whereas the arterial pole was innervated by a branch from the branchial portion. In contrast, the vagus innervated the arterial and venous poles in the mouse and elephant shark. Based on the morphological patterns of these branches, the venous vagal branches of the mouse and elephant shark appear to belong to the intestinal part of the vagus, implying that the cardiac nerve pattern is conserved among crown gnathostomes. Furthermore, we found a topographical shift of the structures adjacent to the venous pole (i.e., the hypoglossal nerve and pronephros) between the extant gnathostomes and lamprey. Phylogenetically, the lamprey morphology is likely to be the ancestral condition for vertebrates, suggesting that the evolution of the venous branch occurred early in the gnathostome lineage, in parallel with the remodeling of the head-trunk interfacial domain during the acquisition of the neck. J. Morphol. 277:1146-1158, 2016. © 2016 Wiley Periodicals, Inc. PMID:27216138

  13. The Roles of Sex, Innervation, and Androgen in Laryngeal Muscle of Xenopus laevis

    OpenAIRE

    Tobias, Martha L.; Marin, Melanie L.; Darcy B Kelley

    1993-01-01

    The relative contributions of innervation and androgen to three muscle fiber properties—twitch type, size, and number—were examined in the sexually dimorphic, androgen-sensitive laryngeal muscle of Xenopus laevis. In adults, the muscle contains all fast-twitch fibers in males and fast- and slow-twitch fibers in females; laryngeal muscle fibers are larger and more numerous in males than in females. Juvenile larynges are female-like in both sexes; male laryngeal muscle is subsequently masculini...

  14. GAD67-mediated GABA Synthesis and Signaling Regulate Inhibitory Synaptic Innervation in the Visual Cortex

    OpenAIRE

    Chattopadhyaya, Bidisha; Di Cristo, Graziella; Wu, Cai Zhi; Knott, Graham; Kuhlman, Sandra; Fu, Yu; Palmiter, Richard D; Huang, Z. Josh

    2007-01-01

    The development of GABAergic inhibitory circuits is shaped by neural activity, but the underlying mechanisms are unclear. we demonstrate a novel function of GABA in regulating GABAergic innervation in the adolescent brain, when GABA is mainly known as an inhibitory transmitter. Conditional knockdown of the rate-limiting synthetic enzyme GAD67 in basket interneurons in adolescent visual cortex resulted in cell autonomous deficits in axon branching, perisomatic synapse formation around pyramida...

  15. Innervation of the human vaginal mucosa as revealed by PGP 9.5 immunohistochemistry.

    Science.gov (United States)

    Hilliges, M; Falconer, C; Ekman-Ordeberg, G; Johansson, O

    1995-01-01

    In order to obtain a description of the innervation of the vaginal wall we employed an antiserum against the general neuronal marker, protein gene product 9.5, on normal human vaginal mucosa. Specimens were taken from the anterior and posterior fornices, from the anterior vaginal wall at the bladder neck level and from the introitus vaginae region, and then processed for indirect immunohistochemistry. All regions studied revealed a profound innervation, although regional differences were noted. The more distal areas of the vaginal wall had more nerve fibers compared to the more proximal parts. Also, biopsies from the anterior wall generally were more densely innervated than the posterior wall. Some large nerve coils were observed in lamina propria of the anterior wall as well as gatherings of thick-walled medium-sized blood vessels. Free intraepithelial nerve endings were only detected in the introitus vaginae region. These fibers were very thin, always varicose and could be observed just a few cell layers from the surface. In this part of the vagina, protein gene product 9.5 antibodies also stained cells within the basal parts of the epithelium. These cells were also neurone-specific enolase positive and resembled, from a morphological point of view, Merkel cells. PMID:8560964

  16. Distribution and innervation of putative arterial chemoreceptors in the bullfrog (Rana catesbeiana).

    Science.gov (United States)

    Reyes, Catalina; Fong, Angelina Y; Brink, Dee L; Milsom, William K

    2014-11-01

    Peripheral arterial chemoreceptors have been located previously in the carotid labyrinth, the aortic arch, and the pulmocutaneous artery of frogs. In the present study we used cholera toxin B neuronal tract tracing and immunohistochemical markers for cholinergic cells (vesicular acetylcholine transporter [VAChT]), tyrosine hydroxylase (TH), and serotonin (5HT) to identify putative O2-sensing cells in Rana catesbeiana. We found potential O2-sensing cells in all three vascular areas innervated by branches of the vagus nerve, whereas only cells in the carotid labyrinth were innervated by the glossopharyngeal nerve. Cells containing either 5HT or TH were found in all three sites, whereas cells containing both neurotransmitters were found only in the carotid labyrinth. Cell bodies containing VAChT were not found at any site. The morphology and innervation of putative O2-sensing cells were similar to those of glomus cells found in other vertebrates. The presence of 5HT- and TH-immunoreactive cells in the aorta, pulmocutaneous artery, and carotid labyrinth appears to reflect a phylogenetic transition between the major neurotransmitter seen in the putative O2-sensing cells of fish (5HT) and those found in the glomus cells of mammals (acetylcholine, adenosine, and catecholamines).

  17. Symptoms of notalgia paresthetica may be explained by increased dermal innervation.

    Science.gov (United States)

    Springall, D R; Karanth, S S; Kirkham, N; Darley, C R; Polak, J M

    1991-09-01

    Notalgia paresthetica is a sensory neuropathy characterized by infrascapular pruritus, burning pain, hyperalgesia, or tenderness. To assess whether the symptoms may be caused by alterations in the cutaneous innervation, skin from the affected area of patients (n = 5) was compared with controls (n = 10) comprising the contralateral unaffected area from the same patients and site-matched biopsies of normals, using immunohistochemistry. Frozen sections were immunostained with antisera to the neuropeptides substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide, and neuropeptide with tyrosine, and to the general neural marker PGP 9.5 and the glial marker S-100 to show the overall innervation and glial cells, respectively. No discernible change in the distribution of neuropeptide-immunoreactive axons was found, but all of the specimens from the affected areas had a significant increase in the number of intradermal PGP 9.5-immunoreactive nerve fibers compared with unaffected areas from the same patients and normal controls. Epidermal dendritic cells immunoreactive for S-100, possibly Langerhans cells, were substantially increased. It is concluded that there is an increase in the sensory epidermal innervation in the affected skin areas in notalgia paresthetica, which could contribute to the symptoms, and that neural immunohistochemistry of skin biopsies could be helpful in the diagnosis of the disease. PMID:1831466

  18. Innervation of Cochlear Hair Cells by Human Induced Pluripotent Stem Cell-Derived Neurons In Vitro

    Science.gov (United States)

    Gunewardene, Niliksha; Crombie, Duncan; Dottori, Mirella; Nayagam, Bryony A.

    2016-01-01

    Induced pluripotent stem cells (iPSCs) may serve as an autologous source of replacement neurons in the injured cochlea, if they can be successfully differentiated and reconnected with residual elements in the damaged auditory system. Here, we explored the potential of hiPSC-derived neurons to innervate early postnatal hair cells, using established in vitro assays. We compared two hiPSC lines against a well-characterized hESC line. After ten days' coculture in vitro, hiPSC-derived neural processes contacted inner and outer hair cells in whole cochlear explant cultures. Neural processes from hiPSC-derived neurons also made contact with hair cells in denervated sensory epithelia explants and expressed synapsin at these points of contact. Interestingly, hiPSC-derived neurons cocultured with hair cells at an early stage of differentiation formed synapses with a higher number of hair cells, compared to hiPSC-derived neurons cocultured at a later stage of differentiation. Notable differences in the innervation potentials of the hiPSC-derived neurons were also observed and variations existed between the hiPSC lines in their innervation efficiencies. Collectively, these data illustrate the promise of hiPSCs for auditory neuron replacement and highlight the need to develop methods to mitigate variabilities observed amongst hiPSC lines, in order to achieve reliable clinical improvements for patients. PMID:26966437

  19. Ontogeny of neuro-insular complexes and islets innervation in the human pancreas.

    Directory of Open Access Journals (Sweden)

    Alexandra E. Proshchina

    2014-04-01

    Full Text Available The ontogeny of the neuro-insular complexes (NIC and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used doublestaining with antibodies specific to pan-neural markers (neuron-specific enolase (NSE and S100 protein and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw 10 onwards. Later the density of S100 and NSE-positive fibers increased. In adults this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onwards. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained neuro-insular complexes and the number of these complexes was reduced in adults. The highest density of neuro-insular complexes is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.

  20. Re-innervation of fast and slow twitch muscle following nerve crush at birth.

    Science.gov (United States)

    McArdle, J J; Sansone, F M

    1977-10-01

    1. The frequency of miniature end-plate potentials (m.e.p.p.s) was significantly greater in the fast twitch extensor digitorum longus muscle (extensor) than in the slow twitch soleus, even though end-plate surface area was greater for fibres in the latter muscle. 2. Crush of the sciatic nerve at birth did not prevent the appearance of this difference in m.e.p.p. frequency. However, the frequency of the potentials in the re-innervated muscles was less than normal, even though the regenerated neuromuscular junction was qualitatively normal in morphology. 3. Though the re-innevated muscles were differentiated with respect to twitch time course, the extensor muscle was more responsive than normal to the contracture-inducing action of caffeine. 4. The Z line of the re-innervated extensor muscle was similar to that of the normal soleus in thickness. 5. Resting potential, passive electrical properties and action potential generating mechanism of the sarcolemma were normal. 6. Since the re-innervated muscles lacked muscle spindles, a role of sensory feed-back in the function of the neuromuscular junction as well as the neutrotrophic regulation of muscle is discussed.

  1. Reflex sympathetic dystrophy: the significance of differing plasma catecholamine concentrations in affected and unaffected limbs.

    Science.gov (United States)

    Drummond, P D; Finch, P M; Smythe, G A

    1991-10-01

    In 26 patients with features of reflex sympathetic dystrophy, venous blood was collected from painful and unaffected limbs. Levels of plasma adrenaline, noradrenaline and its intracellular metabolite, 3,4-dihydroxyphenylethyleneglycol (DHPG), were measured by combined gas chromatography/mass spectrometry. Plasma DHPG was lower on the painful side. Concentration of plasma noradrenaline was also lower on the painful side in patients with widespread allodynia, and in those with hyperhidrosis in the affected hand or foot. These findings do not support the widely held view that autonomic disturbances in reflex sympathetic dystrophy are due to sympathetic overactivity. Rather, they suggest that sweating and changes in peripheral blood flow result from supersensitivity to sympathetic neurotransmitters. After injury, supersensitivity to noradrenaline may also contribute to spontaneous pain and allodynia by disrupting efferent sympathetic modulation of sensation. This would explain why pain and allodynia are relieved by sympathetic blockade, and why noradrenaline rekindles pain in sympathectomized skin. PMID:1933231

  2. Local Sympathetic Denervation of Femoral Artery in a Rabbit Model by Using 6-Hydroxydopamine In Situ

    Directory of Open Access Journals (Sweden)

    Yufei Jin

    2014-01-01

    Full Text Available Both artery bundle and sympathetic nerve were involved with the metabolism of bone tissues. Whether the enhancing effects of artery bundle result from its accompanying sympathetic nerve or blood supply is still unknown. There is no ideal sympathetic nerve-inhibited method for the in situ denervation of artery bundle. Therefore, we dipped the femoral artery in the 6-hydroxydopamine (6-OHDA locally and observed its effect. Compared with control group, the in situ treatment of 6-OHDA did not damage the normal structure of vascular bundle indicated by hematoxylin-eosin (HE staining. However, the functions of sympathetic nerve was completely inhibited for more than 2 weeks, and only a few function of sympathetic nerve resumed 4 weeks later, evidenced by glyoxylic acid staining and the expression of tyrosine hydroxylase (TH and nerve peptide Y (NPY. Thus, 6-OHDA is promising as an ideal reagent for the local denervation of sympathetic nerve from artery system.

  3. The Nucleus of the Solitary Tract and the coordination of respiratory and sympathetic activities

    OpenAIRE

    DanielB.Zoccal

    2014-01-01

    It is well known that breathing introduces rhythmical oscillations in the heart rate and arterial pressure levels. Sympathetic oscillations coupled to the respiratory activity have been suggested as an important homeostatic mechanism optimizing tissue perfusion and blood gas uptake/delivery. This respiratory-sympathetic coupling is strengthened in conditions of blood gas challenges (hypoxia and hypercapnia) as a result of the synchronized activation of brainstem respiratory and sympathetic ne...

  4. The nucleus of the solitary tract and the coordination of respiratory and sympathetic activities

    OpenAIRE

    Zoccal, Daniel B.; Furuya, Werner I.; Bassi, Mirian; Colombari, Débora S. A.; Colombari, Eduardo

    2014-01-01

    It is well known that breathing introduces rhythmical oscillations in the heart rate and arterial pressure levels. Sympathetic oscillations coupled to the respiratory activity have been suggested as an important homeostatic mechanism optimizing tissue perfusion and blood gas uptake/delivery. This respiratory-sympathetic coupling is strengthened in conditions of blood gas challenges (hypoxia and hypercapnia) as a result of the synchronized activation of brainstem respiratory and sympathetic ne...

  5. Leptin-Induced Sympathetic Nerve Activation: Signaling Mechanisms and Cardiovascular Consequences in Obesity

    OpenAIRE

    Rahmouni, Kamal

    2010-01-01

    Obesity increases cardiovascular morbidity and mortality in part by inducing hypertension. One factor linking excess fat mass to cardiovascular diseases may be the sympathetic cardiovascular actions of leptin. Initial studies of leptin showed it regulates appetite and enhances energy expenditure by activating sympathetic nerve activity (SNA) to thermogenic brown adipose tissue. Further study, however, demonstrated leptin also causes sympathetic excitation to the kidney that, in turn, increase...

  6. Cardiac sodium channelopathies

    NARCIS (Netherlands)

    A.S. Amin; A. Asghari-Roodsari; H.L. Tan

    2010-01-01

    Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (I-Na) during phase 0 of the cardiac action potential. The importance of I-Na for normal cardiac electrical activity is reflected by the high incidence of

  7. Diffuse infiltrative cardiac tuberculosis

    International Nuclear Information System (INIS)

    We present the cardiac magnetic resonance images of an unusual form of cardiac tuberculosis. Nodular masses in a sheet-like distribution were seen to infiltrate the outer myocardium and pericardium along most of the cardiac chambers. The lesions showed significant resolution on antitubercular therapy

  8. Advantage of recording single-unit muscle sympathetic nerve activity in heart failure

    Directory of Open Access Journals (Sweden)

    HISAYOSHI eMURAI

    2012-05-01

    Full Text Available Elevated sympathetic activation is a characteristic feature of heart failure (HF. Excessive sympathetic activation under resting conditions has been shown to increase from the early stages of the disease, and is related to prognosis. Direct recording of multiunit efferent muscle sympathetic nerve activity (MSNA by microneurography is the best method for quantifying sympathetic nerve activity in humans. To date, this technique has been used to evaluate the actual central sympathetic outflow to the periphery in HF patients at rest and during exercise; however, because the firing occurrence of sympathetic activation is mainly synchronized by pulse pressure, multiunit MSNA, expressed as burst frequency (bursts/min and burst incidence (bursts/100heartbeats, may have limitations for the quantification of sympathetic nerve activity. In HF, multiunit MSNA is near the maximum level, and cannot increase further than the heartbeat. Single-unit MSNA analysis in humans is technically demanding, but provides more detailed information regarding central sympathetic firing. Although a great deal is known about the response of multiunit MSNA to stress, little information is available regarding the responses of single-unit MSNA to physiological stress and disease. The purposes of this review are to describe the differences between multiunit and single-unit MSNA during stress and to discuss the advantages of single-unit MSNA recording in improving our understanding the pathology of increased sympathetic activity in HF.

  9. Cardiac iodine-123 metaiodobenzylguanidine uptake in animals with diabetes mellitus and/or hypertension

    International Nuclear Information System (INIS)

    The aim of the present study was to evaluate the use of the noradrenaline analogue iodine-123 metaiodobenzylguanidine ([123I]MIBG) for the assessment of cardiac sympathetic activity in the presence of diabetes mellitus and/or hypertension in animal models. One model used Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) rendered diabetic at 12 weeks of age by an intravenous injection of streptozotocin (STZ). The other model used lean and obese Zucker rats. In all groups basic haemodynamic values were established and animals received an intravenous injection of 50 μCi [123I]MIBG. Initial myocardial uptake and washout rates of [123I]MIBG were measured scintigraphically during 4 h. After sacrifice, plasma noradrenaline and left cardiac ventricular β-adrenoceptor density was determined. The diabetic state, both in STZ-treated rats (direct induction) and in obese Zucker rats (genetic induction), appeared to induce a lower cardiac density of β-adrenoceptors, indicative of increased sympathetic activity. Cardiac [123I]MIBG then showed increased washouts, thereby confirming enhanced noradrenergic activity. This parallism of results led to the conclusion that [123I]MIBG wash-out measurements could provide an excellent tool to assess cardiac sympathetic activity noninvasively. However, in hypertension (WKY vs SHR), both parameters failed to show parallelism: no changes in β-adrenoceptor density were found, whereas [123I]MIBG wash-out rate was increased. Thus, either [123I]MIBG washout or β-adrenoceptor density may not be a reliable parameter under all circumstances to detect changes in the release of noradrenaline. (orig./MG)

  10. Cardiac iodine-123 metaiodobenzylguanidine uptake in animals with diabetes mellitus and/or hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, E.A. [Dept. of Nuclear Medicine, Academic Medical Center, Univ. of Amsterdam (Netherlands)]|[Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands); Kam, K.L. [Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands); Somsen, G.A. [Dept. of Cardiology, Academic Medical Center, Univ. of Amsterdam (Netherlands); Boer, G.J. [Dept. of Nuclear Medicine, Academic Medical Center, Univ. of Amsterdam (Netherlands); Bruin, K. de [Dept. of Nuclear Medicine, Academic Medical Center, Univ. of Amsterdam (Netherlands); Batink, H.D. [Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands); Pfaffendorf, M. [Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands); Royen, E.A. van [Dept. of Nuclear Medicine, Academic Medical Center, Univ. of Amsterdam (Netherlands); Zwieten, P.A. van [Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands)]|[Dept. of Cardiology, Academic Medical Center, Univ. of Amsterdam (Netherlands)

    1996-08-01

    The aim of the present study was to evaluate the use of the noradrenaline analogue iodine-123 metaiodobenzylguanidine ([{sup 123}I]MIBG) for the assessment of cardiac sympathetic activity in the presence of diabetes mellitus and/or hypertension in animal models. One model used Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) rendered diabetic at 12 weeks of age by an intravenous injection of streptozotocin (STZ). The other model used lean and obese Zucker rats. In all groups basic haemodynamic values were established and animals received an intravenous injection of 50 {mu}Ci [{sup 123}I]MIBG. Initial myocardial uptake and washout rates of [{sup 123}I]MIBG were measured scintigraphically during 4 h. After sacrifice, plasma noradrenaline and left cardiac ventricular {beta}-adrenoceptor density was determined. The diabetic state, both in STZ-treated rats (direct induction) and in obese Zucker rats (genetic induction), appeared to induce a lower cardiac density of {beta}-adrenoceptors, indicative of increased sympathetic activity. Cardiac [{sup 123}I]MIBG then showed increased washouts, thereby confirming enhanced noradrenergic activity. This parallism of results led to the conclusion that [{sup 123}I]MIBG wash-out measurements could provide an excellent tool to assess cardiac sympathetic activity noninvasively. However, in hypertension (WKY vs SHR), both parameters failed to show parallelism: no changes in {beta}-adrenoceptor density were found, whereas [{sup 123}I]MIBG wash-out rate was increased. Thus, either [{sup 123}I]MIBG washout or {beta}-adrenoceptor density may not be a reliable parameter under all circumstances to detect changes in the release of noradrenaline. (orig./MG)

  11. Brain renin angiotensin system in cardiac hypertrophy and failure

    Directory of Open Access Journals (Sweden)

    Luciana eCampos

    2012-01-01

    Full Text Available Brain renin-angiotensin system (RAS is significantly involved in the roles of the endocrine RAS in cardiovascular regulation. Our studies indicate that the brain RAS participates in the development of cardiac hypertrophy and fibrosis through sympathetic activation. Inhibition of sympathetic hyperactivity after myocardial infarction through suppression of the brain RAS appears beneficial. The brain RAS is involved in the modulation of circadian rhythms of arterial pressure, contributing to nondipping hypertension. We conclude that the brain RAS in pathophysiological states interacts synergistically with the chronically overactive RAS through a positive biofeedback in order to maintain a state of alert diseased conditions, such as cardiac hypertrophy and failure. Therefore, targeting brain RAS with drugs such as angiotensin converting inhibitors or receptor blockers having increased brain penetrability could be of advantage. These RAS-targeting drugs are first-line therapy for all heart failure patients. Since the RAS has both endocrine and local tissue components, RAS drugs are being developed to attain increased tissue penetrability and volume of distribution and consequently an efficient inhibition of both RAS components.

  12. Projection neurons of the vestibulo-sympathetic reflex pathway.

    Science.gov (United States)

    Holstein, Gay R; Friedrich, Victor L; Martinelli, Giorgio P

    2014-06-15

    Changes in head position and posture are detected by the vestibular system and are normally followed by rapid modifications in blood pressure. These compensatory adjustments, which allow humans to stand up without fainting, are mediated by integration of vestibular system pathways with blood pressure control centers in the ventrolateral medulla. Orthostatic hypotension can reflect altered activity of this neural circuitry. Vestibular sensory input to the vestibulo-sympathetic pathway terminates on cells in the vestibular nuclear complex, which in turn project to brainstem sites involved in the regulation of cardiovascular activity, including the rostral and caudal ventrolateral medullary regions (RVLM and CVLM, respectively). In the present study, sinusoidal galvanic vestibular stimulation was used to activate this pathway, and activated neurons were identified through detection of c-Fos protein. The retrograde tracer Fluoro-Gold was injected into the RVLM or CVLM of these animals, and immunofluorescence studies of vestibular neurons were conducted to visualize c-Fos protein and Fluoro-Gold concomitantly. We observed activated projection neurons of the vestibulo-sympathetic reflex pathway in the caudal half of the spinal, medial, and parvocellular medial vestibular nuclei. Approximately two-thirds of the cells were ipsilateral to Fluoro-Gold injection sites in both the RVLM and CVLM, and the remainder were contralateral. As a group, cells projecting to the RVLM were located slightly rostral to those with terminals in the CVLM. Individual activated projection neurons were multipolar, globular, or fusiform in shape. This study provides the first direct demonstration of the central vestibular neurons that mediate the vestibulo-sympathetic reflex. PMID:24323841

  13. Projection neurons of the vestibulo-sympathetic reflex pathway.

    Science.gov (United States)

    Holstein, Gay R; Friedrich, Victor L; Martinelli, Giorgio P

    2014-06-15

    Changes in head position and posture are detected by the vestibular system and are normally followed by rapid modifications in blood pressure. These compensatory adjustments, which allow humans to stand up without fainting, are mediated by integration of vestibular system pathways with blood pressure control centers in the ventrolateral medulla. Orthostatic hypotension can reflect altered activity of this neural circuitry. Vestibular sensory input to the vestibulo-sympathetic pathway terminates on cells in the vestibular nuclear complex, which in turn project to brainstem sites involved in the regulation of cardiovascular activity, including the rostral and caudal ventrolateral medullary regions (RVLM and CVLM, respectively). In the present study, sinusoidal galvanic vestibular stimulation was used to activate this pathway, and activated neurons were identified through detection of c-Fos protein. The retrograde tracer Fluoro-Gold was injected into the RVLM or CVLM of these animals, and immunofluorescence studies of vestibular neurons were conducted to visualize c-Fos protein and Fluoro-Gold concomitantly. We observed activated projection neurons of the vestibulo-sympathetic reflex pathway in the caudal half of the spinal, medial, and parvocellular medial vestibular nuclei. Approximately two-thirds of the cells were ipsilateral to Fluoro-Gold injection sites in both the RVLM and CVLM, and the remainder were contralateral. As a group, cells projecting to the RVLM were located slightly rostral to those with terminals in the CVLM. Individual activated projection neurons were multipolar, globular, or fusiform in shape. This study provides the first direct demonstration of the central vestibular neurons that mediate the vestibulo-sympathetic reflex.

  14. Sympathetic cooling of molecular ion motion to the ground state

    OpenAIRE

    Rugango, Rene; Goeders, James E.; Dixon, Thomas H.; John M. Gray; Khanyile, Ncamiso; Shu, Gang; Clark, Robert J.; Brown, Kenneth R.

    2014-01-01

    We demonstrate sympathetic sideband cooling of a $^{40}$CaH$^{+}$ molecular ion co-trapped with a $^{40}$Ca$^{+}$ atomic ion in a linear Paul trap. Both axial modes of the two-ion chain are simultaneously cooled to near the ground state of motion. The center of mass mode is cooled to an average quanta of harmonic motion $\\overline{n}_{\\mathrm{COM}} = 0.13 \\pm 0.03$, corresponding to a temperature of $12.47 \\pm 0.03 ~\\mu$K. The breathing mode is cooled to $\\overline{n}_{\\mathrm{BM}} = 0.05 \\pm...

  15. Sympathetic Wigner-function tomography of a dark trapped ion

    DEFF Research Database (Denmark)

    Mirkhalaf, Safoura; Mølmer, Klaus

    2012-01-01

    A protocol is provided to reconstruct the Wigner function for the motional state of a trapped ion via fluorescence detection on another ion in the same trap. This “sympathetic tomography” of a dark ion without optical transitions suitable for state measurements is based on the mapping of its...... motional state onto one of the collective modes of the ion pair. The quantum state of this vibrational eigenmode is subsequently measured through sideband excitation of the bright ion. Physical processes to implement the desired state transfer are derived and the accomplishment of the scheme is evaluated...

  16. Cardiac tumours in children

    Directory of Open Access Journals (Sweden)

    Parsons Jonathan M

    2007-03-01

    Full Text Available Abstract Cardiac tumours are benign or malignant neoplasms arising primarily in the inner lining, muscle layer, or the surrounding pericardium of the heart. They can be primary or metastatic. Primary cardiac tumours are rare in paediatric practice with a prevalence of 0.0017 to 0.28 in autopsy series. In contrast, the incidence of cardiac tumours during foetal life has been reported to be approximately 0.14%. The vast majority of primary cardiac tumours in children are benign, whilst approximately 10% are malignant. Secondary malignant tumours are 10–20 times more prevalent than primary malignant tumours. Rhabdomyoma is the most common cardiac tumour during foetal life and childhood. It accounts for more than 60% of all primary cardiac tumours. The frequency and type of cardiac tumours in adults differ from those in children with 75% being benign and 25% being malignant. Myxomas are the most common primary tumours in adults constituting 40% of benign tumours. Sarcomas make up 75% of malignant cardiac masses. Echocardiography, Computing Tomography (CT and Magnetic Resonance Imaging (MRI of the heart are the main non-invasive diagnostic tools. Cardiac catheterisation is seldom necessary. Tumour biopsy with histological assessment remains the gold standard for confirmation of the diagnosis. Surgical resection of primary cardiac tumours should be considered to relieve symptoms and mechanical obstruction to blood flow. The outcome of surgical resection in symptomatic, non-myxomatous benign cardiac tumours is favourable. Patients with primary cardiac malignancies may benefit from palliative surgery but this approach should not be recommended for patients with metastatic cardiac tumours. Surgery, chemotherapy and radiotherapy may prolong survival. The prognosis for malignant primary cardiac tumours is generally extremely poor.

  17. Cardiac 123I-MIBG uptake in de novo Brazilian patients with Parkinson's disease without clinically defined dysautonomia

    Directory of Open Access Journals (Sweden)

    Marco Antonio Araujo Leite

    2014-06-01

    Full Text Available Myocardial scintigraphy with meta-iodo-benzyl-guanidine (123I cMIBG has been studied in Parkinson's disease (PD, especially in Asian countries, but not in Latin America. Most of these studies include individuals with PD associated to a defined dysautonomia. Our goal is to report the cardiac sympathetic neurotransmission in de novo Brazilian patients with sporadic PD, without clinically defined dysautonomia. We evaluated retrospectively a series of 21 consecutive cases with PD without symptoms or signs of dysautonomia assessed by the standard bedside tests. This number was reduced to 14 with the application of exclusion criteria. 123I cMIBG SPECT up-take was low or absent in all of them and the heart/mediastinum ratio was low in 12 of 14. We concluded that 123I cMIBG has been able to identify cardiac sympathetic neurotransmission disorder in Brazilian de novo PD patients without clinically defined dysautonomia.

  18. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator

    Science.gov (United States)

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric C.

    2014-06-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about the mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region, compared to a typical parallel-hole low-energy high-resolution collimator, but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator-detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulations and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single-radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter

  19. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator

    International Nuclear Information System (INIS)

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about the mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region, compared to a typical parallel-hole low-energy high-resolution collimator, but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator-detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulations and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single-radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter

  20. Signs of cardiac autonomic imbalance and proarrhythmic remodeling in FTO deficient mice.

    Directory of Open Access Journals (Sweden)

    Luca Carnevali

    Full Text Available In humans, variants of the fat mass and obesity associated (FTO gene have recently been associated with obesity. However, the physiological function of FTO is not well defined. Previous investigations in mice have linked FTO deficiency to growth retardation, loss of white adipose tissue, increased energy metabolism and enhanced systemic sympathetic activation. In this study we investigated for the first time the effects of global knockout of the mouse FTO gene on cardiac function and its autonomic neural regulation. ECG recordings were acquired via radiotelemetry in homozygous knockout (n = 12 and wild-type (n = 8 mice during resting and stress conditions, and analyzed by means of time- and frequency-domain indexes of heart rate variability. In the same animals, cardiac electrophysiological properties (assessed by epicardial mapping and structural characteristics were investigated. Our data indicate that FTO knockout mice were characterized by (i higher heart rate values during resting and stress conditions, (ii heart rate variability changes (increased LF to HF ratio, (iii larger vulnerability to stress-induced tachyarrhythmias, (iv altered ventricular repolarization, and (v cardiac hypertrophy compared to wild-type counterparts. We conclude that FTO deficiency in mice leads to an imbalance of the autonomic neural modulation of cardiac function in the sympathetic direction and to a potentially proarrhythmic remodeling of electrical and structural properties of the heart.

  1. Reflex sympathetic dystrophy in a child; Wspolczulna dystrofia odruchowa u dziecka

    Energy Technology Data Exchange (ETDEWEB)

    Napiontek, M.; Krasny, I. [Akademia Medyczna, Poznan (Poland)

    1993-12-31

    A case of reflex sympathetic dystrophy in 11 years old girl was described. The acute pain of the left food was preceded by loss of consciousness of unknown origin. Patchy osteopenia, very rare and non characteristic X-ray changes in children`s reflex sympathetic dystrophy, was observed, mimicking osteomyelitis, bone malignant tumor or Sudeck disease. (author). 5 refs, 2 figs.

  2. Sympathetic mediated vasomotion and skin capillary permeability in diabetic patients with peripheral neuropathy

    NARCIS (Netherlands)

    Lefrandt, JD; Hoeven, JH; Roon, AM; Smit, AJ; Hoogenberg, K

    2003-01-01

    Aims/hypothesis. A loss of sympathetic function could lead to changes in capillary fluid filtration in diabetic patients. We investigated whether a decreased sympathetically mediated vasomotion in the skin in diabetic patients with peripheral neuropathy is associated with an abnormal capillary leaka

  3. Sympathetic skin response: simple test for evaluation of autonomic function in patients with diabetes mellitus?

    Institute of Scientific and Technical Information of China (English)

    Srinivasa Jayachandra; Maxim Pinto; Urban J. A. D'Souza

    2005-01-01

    @@ To the Editor: We read with interest the excellent article by Huang YN et al.1 This important and carefully conducted study illustrates the sympathetic skin response (SSR) test can detect early dysfunction of the small sympathetic fibers in people affected by diabetes mellitus.

  4. Sympathetic responses to head-down rotations in humans.

    Science.gov (United States)

    Hume, K M; Ray, C A

    1999-06-01

    Muscle sympathetic nerve activity (MSNA) increases with head-down neck flexion (HDNF). The present study had three aims: 1) to examine sympathetic and vascular responses to two different magnitudes of HDNF; 2) to examine these same responses during prolonged HDNF; and 3) to determine the influence of nonspecific pressure receptors in the head on MSNA. The first experiment tested responses to two static head positions in the vertical axis [HDNF and intermediate HDNF (I-HDNF; approximately 50% of HDNF)]. MSNA increased above baseline during both I-HDNF and HDNF (from 219 +/- 36 to 301 +/- 47 and from 238 +/- 42 to 356 +/- 59 units/min, respectively; P HDNF and HDNF (P HDNF. MSNA increased (from 223 +/- 63 to 315 +/- 79 units/min; P HDNF. These responses were maintained throughout the 30-min period. Mean arterial blood pressure gradually increased during the 30 min of HDNF (from 94 +/- 4 to 105 +/- 3 mmHg; P HDNF, head-down neck extension did not affect MSNA. The results from these studies demonstrate that MSNA: 1) increases in magnitude as the degree of HDNF increases; 2) remains elevated above baseline during prolonged HDNF; and 3) responses during HDNF are not associated with nonspecific receptors in the head activated by increases in cerebral pressure. PMID:10368363

  5. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  6. Increased serotonergic innervation of lumbosacral motoneurons of rolling mouse Nagoya in correlation with abnormal hindlimb extension.

    Science.gov (United States)

    Koyanagi, Y; Sawada, K; Sakata-Haga, H; Jeong, Y-G; Fukui, Y

    2006-12-01

    Rolling Mouse Nagoya (RMN) carries a mutation in a gene encoding for alpha(1A) subunit of P/Q-type Ca(2+) channel (Ca(v)2.1). In addition to ataxia, this mutant mouse exhibits abnormal hindlimb extension, which is characterized by a sustained excessive tone of hindlimb extensor muscles. This study aimed to clarify whether serotonergic (5-HTergic) innervation of the spinal motoneurons was altered in RMN in relation to the abnormal hindlimb extension. The density of 5-HT immunoreactive fibres in the ventral horn of lumbar and sacral regions of spinal cord was significantly greater in RMN than in controls. Retrograde wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) labelling combined with 5-HT immunostaining revealed that the number of 5-HT immunoreactive terminals adjoining femoris quadriceps motoneurons was about 2.5-fold greater in RMN than in controls. Furthermore, 5-HT immunostaining in the lumbar cord ventral horn was examined in three other Ca(v)2.1 mutant mice (tottering, leaner and pogo) as to whether or not they showed the abnormal hindlimb extension. Among these mutants, the increased density of 5-HT immunoreactive fibres was observed in correlation with the presence of the abnormal hindlimb extension. The results suggest an increased 5-HTergic innervation of the lumbosacral motoneurons in correlation with the abnormal hindlimb extension in RMN and other Ca(v)2.1 mutant mice. As 5-HT is known to induce the sustained membrane depolarizations without continuous excitatory synaptic inputs (plateau potentials) in spinal motoneurons, the increased 5-HTergic innervation may cause the sustained excitation of hindlimb extensor motoneurons, resulting in the abnormal hindlimb extension.

  7. Estradiol-dependent catecholaminergic innervation of auditory areas in a seasonally breeding songbird.

    Science.gov (United States)

    Matragrano, Lisa L; Sanford, Sara E; Salvante, Katrina G; Sockman, Keith W; Maney, Donna L

    2011-08-01

    A growing body of evidence suggests that gonadal steroids such as estradiol (E2) alter neural responses not only in brain regions associated with reproductive behavior but also in sensory areas. Because catecholamine systems are involved in sensory processing and selective attention, and because they are sensitive to E2 in many species, they may mediate the neural effects of E2 in sensory areas. Here, we tested the effects of E2 on catecholaminergic innervation, synthesis and activity in the auditory system of white-throated sparrows, a seasonally breeding songbird in which E2 promotes selective auditory responses to song. Non-breeding females with regressed ovaries were held on a winter-like photoperiod and implanted with silastic capsules containing either no hormone or E2. In one hemisphere of the brain, we used immunohistochemistry to quantify fibers immunoreactive for tyrosine hydroxylase or dopamine beta-hydroxylase in the auditory forebrain, thalamus and midbrain. E2 treatment increased catecholaminergic innervation in the same areas of the auditory system in which E2 promotes selectivity for song. In the contralateral hemisphere we quantified dopamine, norepinephrine and their metabolites in tissue punches using HPLC. Norepinephrine increased in the auditory forebrain, but not the midbrain, after E2 treatment. We found that evidence of interhemispheric differences, both in immunoreactivity and catecholamine content that did not depend on E2 treatment. Overall, our results show that increases in plasma E2 typical of the breeding season enhanced catecholaminergic innervation and synthesis in some parts of the auditory system, raising the possibility that catecholamines play a role in E2-dependent auditory plasticity in songbirds.

  8. Cardiac 123I-MIBG uptake in de novo Brazilian patients with Parkinson's disease without clinically defined dysautonomia

    OpenAIRE

    Marco Antonio Araujo Leite; Nascimento, Osvaldo J.M.; João Santos Pereira; Clayton Amaral; Cláudio T. Mesquita; Jader C. Azevedo; Adriana S. X. de Brito; Felipe Villela Pedras

    2014-01-01

    Myocardial scintigraphy with meta-iodo-benzyl-guanidine (123I cMIBG) has been studied in Parkinson's disease (PD), especially in Asian countries, but not in Latin America. Most of these studies include individuals with PD associated to a defined dysautonomia. Our goal is to report the cardiac sympathetic neurotransmission in de novo Brazilian patients with sporadic PD, without clinically defined dysautonomia. We evaluated retrospectively a series of 21 consecutive cases with PD without sympto...

  9. The morphology and innervation of facial vibrissae in the tammar wallaby, Macropus eugenii.

    OpenAIRE

    Marotte, L R; Rice, F.L.; Waite, P M

    1992-01-01

    The morphology of the vibrissal follicles on the mystacial pad of the tammar wallaby is similar to that seen in other species except that the follicles lack a ringwulst or ring sinus. Instead, the mesenchymal sheath is thickened around the central region of the hair shaft. The follicle is innervated by both deep and superficial vibrissal nerves. The deep nerve enters as 4-11 fascicles which can be in close proximity or widely distributed around the hair. C1 follicles received more myelinated ...

  10. Asystole after Orthotopic Lung Transplantation: Examining the Interaction of Cardiac Denervation and Dexmedetomidine

    Directory of Open Access Journals (Sweden)

    Christopher Allen-John Webb

    2012-01-01

    Full Text Available Dexmedetomidine is an α2-receptor agonist commonly used for sedation and analgesia in ICU patients. Dexmedetomidine is known to provide sympatholysis and also to have direct atrioventricular and sinoatrial node inhibitory effects. In rare instances, orthotopic lung transplantation has been associated with disruption of autonomic innervation of the heart. The combination of this autonomic disruption and dexmedetomidine may be associated with severe bradycardia and/or asystole. Since orthotopic lung transplant patients with parasympathetic denervation will not respond with increased heart rate to anticholinergic therapy, bradyarrhythmias must be recognized and promptly treated with direct acting beta agonists to avoid asystolic cardiac events.

  11. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons

    Science.gov (United States)

    Postigo, Antonio; Calella, Anna Maria; Fritzsch, Bernd; Knipper, Marlies; Katz, David; Eilers, Andreas; Schimmang, Thomas; Lewin, Gary R.; Klein, Rudiger; Minichiello, Liliana

    2002-01-01

    Signaling by brain-derived neurotrophic factor (BDNF) via the TrkB receptor, or by neurotrophin-3 (NT3) through the TrkC receptor support distinct populations of sensory neurons. The intracellular signaling pathways activated by Trk (tyrosine kinase) receptors, which in vivo promote neuronal survival and target innervation, are not well understood. Using mice with TrkB or TrkC receptors lacking the docking site for Shc adaptors (trkB(shc/shc) and trkC(shc/shc) mice), we show that TrkB and TrkC promote survival of sensory neurons mainly through Shc site-independent pathways, suggesting that these receptors use similar pathways to prevent apoptosis. In contrast, the regulation of target innervation appears different: in trkB(shc/shc) mice neurons lose target innervation, whereas in trkC(shc/shc) mice the surviving TrkC-dependent neurons maintain target innervation and function. Biochemical analysis indicates that phosphorylation at the Shc site positively regulates autophosphorylation of TrkB, but not of TrkC. Our findings show that although TrkB and TrkC signals mediating survival are largely similar, TrkB and TrkC signals required for maintenance of target innervation in vivo are regulated by distinct mechanisms.

  12. Sympathetic overactivity precedes metabolic dysfunction in a fructose model of glucose intolerance in mice.

    Science.gov (United States)

    De Angelis, Katia; Senador, Danielle D; Mostarda, Cristiano; Irigoyen, Maria C; Morris, Mariana

    2012-04-15

    Consumption of high levels of fructose in humans and animals leads to metabolic and cardiovascular dysfunction. There are questions as to the role of the autonomic changes in the time course of fructose-induced dysfunction. C57/BL male mice were given tap water or fructose water (100 g/l) to drink for up to 2 mo. Groups were control (C), 15-day fructose (F15), and 60-day fructose (F60). Light-dark patterns of arterial pressure (AP) and heart rate (HR), and their respective variabilities were measured. Plasma glucose, lipids, insulin, leptin, resistin, adiponectin, and glucose tolerance were quantified. Fructose increased systolic AP (SAP) at 15 and 60 days during both light (F15: 123 ± 2 and F60: 118 ± 2 mmHg) and dark periods (F15: 136 ± 4 and F60: 136 ± 5 mmHg) compared with controls (light: 111 ± 2 and dark: 117 ± 2 mmHg). SAP variance (VAR) and the low-frequency component (LF) were increased in F15 (>60% and >80%) and F60 (>170% and >140%) compared with C. Cardiac sympatho-vagal balance was enhanced, while baroreflex function was attenuated in fructose groups. Metabolic parameters were unchanged in F15. However, F60 showed significant increases in plasma glucose (26%), cholesterol (44%), triglycerides (22%), insulin (95%), and leptin (63%), as well as glucose intolerance. LF of SAP was positively correlated with SAP. Plasma leptin was correlated with triglycerides, insulin, and glucose tolerance. Results show that increased sympathetic modulation of vessels and heart preceded metabolic dysfunction in fructose-consuming mice. Data suggest that changes in autonomic modulation may be an initiating mechanism underlying the cluster of symptoms associated with cardiometabolic disease.

  13. Sympathetic activity induced by naloxone-precipitated morphine withdrawal is blocked in genetically engineered mice lacking functional CRF1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    García-Carmona, Juan-Antonio; Martínez-Laorden, Elena; Milanés, María-Victoria; Laorden, María-Luisa

    2015-02-15

    There is large body evidence indicating that stress can lead to cardiovascular disease. However, the exact brain areas and the mechanisms involved remain to be revealed. Here, we performed a series of experiments to characterize the role of CRF1 receptor (CRF1R) in the stress response induced by naloxone-precipitated morphine withdrawal. The experiments were performed in the hypothalamic paraventricular nucleus (PVN) ventrolateral medulla (VLM), brain regions involved in the regulation of cardiovascular activity, and in the right ventricle by using genetically engineered mice lacking functional CRF1R levels (KO). Mice were treated with increasing doses of morphine and withdrawal was precipitated by naloxone administration. Noradrenaline (NA) turnover, c-Fos, expression, PKA and TH phosphorylated at serine 40, was evaluated by high-performance liquid chromatography (HPLC), immunohistochemistry and immunoblotting. Morphine withdrawal induced an enhancement of NA turnover in PVN in parallel with an increase in TH neurons expressing c-Fos in VLM in wild-type mice. In addition we have demonstrated an increase in NA turnover, TH phosphorylated at serine 40 and PKA levels in heart. The main finding of the present study was that NA turnover, TH positive neurons that express c-Fos, TH phosphorylated at serine 40 and PKA expression observed during morphine withdrawal were significantly inhibited in CRF1R KO mice. Our results demonstrate that CRF/CRF1R activation may contribute to the adaptive changes induced by naloxone-precipitated withdrawal in the heart and in the brain areas which modulate the cardiac sympathetic function and suggest that CRF/CRF1R pathways could be contributing to cardiovascular disease associated to opioid addiction. - Highlights: • Naloxone-precipitated morphine withdrawal increases sympathetic activity in the PVN and heart. • Co-localization of TH phosphorylated at serine 40/c-Fos in the VLM after morphine withdrawal • Naloxone

  14. Marketing cardiac CT programs.

    Science.gov (United States)

    Scott, Jason

    2010-01-01

    There are two components of cardiac CT discussed in this article: coronary artery calcium scoring (CACS) and coronary computed tomography angiography (CCTA).The distinctive advantages of each CT examination are outlined. In order to ensure a successful cardiac CT program, it is imperative that imaging facilities market their cardiac CT practices effectively in order to gain a competitive advantage in this valuable market share. If patients receive quality care by competent individuals, they are more likely to recommend the facility's cardiac CT program. Satisfied patients will also be more willing to come back for any further testing.

  15. Production and sympathetic cooling of complex molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaobo

    2008-06-24

    This thesis reports on experimental and theoretical studies of the sympathetic cooling of complex molecular ions demonstrating that this general method for cooling atomic and molecular ions is reliable and efficient. For this purpose, complex molecular ions and barium ions have been confined simultaneously in a linear Paul trap. The complex molecular ions are generated in an electrospray ionization system and transferred to the trap via a 2 m long octopole ion guide. These molecular ions are pre-cooled by room temperature helium buffer gas so that they can be captured by the trap. The atomic barium ions are loaded from a barium evaporator oven and are laser-cooled by a 493 nm cooling laser and a 650 nm repumping laser. Due to the mutual Coulomb interaction among these charged particles, the kinetic energy of the complex molecular ions can be reduced significantly. In our experiments we have demonstrated the sympathetic cooling of various molecules (CO{sub 2}, Alexa Fluor 350, glycyrrhetinic acid, cytochrome c) covering a wide mass range from a few tens to 13000 amu. In every case the molecular ions could be cooled down to millikelvin temperatures. Photo-chemical reactions of the {sup 138}Ba{sup +} ions in the ({sup 2}P{sub 1/2}) excited state with gases such as O{sub 2}, CO{sub 2}, or N{sub 2}O, could be observed. If the initial {sup 138}Ba{sup +} ion ensemble is cold, the produced {sup 138}BaO{sup +} ions are cold as well, with a similar temperature as the laser-cooled barium ions (a few tens of millikelvin). The back-reaction of {sup 138}BaO{sup +} ions with neutral CO to {sup 138}Ba{sup +} is possible and was observed in our experiments as well. A powerful molecular dynamics (MD) simulation program has been developed. With this program dynamic properties of ion ensembles, such as sympathetic interactions or heating effects, have been investigated and experimental results have been analyzed to obtain, for example, ion numbers and temperatures. Additionally, the

  16. Associations between xerostomia, histopathological alterations, and autonomic innervation of labial salivary glands in men in late midlife

    DEFF Research Database (Denmark)

    Sørensen, Christiane Elisabeth; Larsen, Jytte Overgaard; Reibel, Jesper;

    2014-01-01

    glands and with quantitative measures of the glandular autonomic innervation. Another aim was to study the relation between the autonomic innervation and loss of secretory acinar cells in these glands. METHODS: Labial salivary gland biopsies were taken from the lower lip from 190 men, born in 1953...... for inflammation, acinar atrophy, fibrosis, and adipocyte infiltration. Sections of labial salivary gland tissue were stained with the panneuronal marker PGP 9.5. In a subsample of 51 participants, the autonomic innervation of the glands was analyzed quantitatively by use of stereology. RESULTS: Labial salivary...... gland tissue samples from 33% of all participants displayed moderate to severe acinar atrophy and fibrosis (31%). Xerostomia was not significantly associated with structural changes of labial salivary glands, but in the subsample it was inversely related to the total nerve length in the glandular...

  17. [Innervation disturbances of the quadriceps muscle in chondropathia patellae. A critical appraisal of the current concept of chondropathia].

    Science.gov (United States)

    Weh, L; Eickhoff, W

    1983-01-01

    In a group of patients with typical histories of chondropathy, but in whom no other criteria of selection were applied, evidence of neurogenic damage in the quadriceps muscle was found. Innervational damage was also found regularly in the corresponding segments of the paravertebral musculature. Only in three cases, in which horn cell damage was suspected, were there no changes in the paravertebral musculature. There were abnormal structural or functional findings in the lumbar spine in all the patients. A disequilibrium between the median and lateral vastus groups, attributable to innervation, was postulated and subsequently confirmed by electromyography. The nature of chondropathia patellae as an insertion tendopathy is discussed, taking the lack of concomitance of chondropathy and chondromalacia into consideration as well as the findings in the group of patients examined. Phenomena associated with chondropathy which have hitherto incongruous may be explained on the basis of an asymmetrical innervation disturbance.

  18. Cross-innervation of the thyroarytenoid muscle by a branch from the external division of the superior laryngeal nerve.

    Science.gov (United States)

    Nasri, S; Beizai, P; Ye, M; Sercarz, J A; Kim, Y M; Berke, G S

    1997-07-01

    The neuroanatomy of the larynx was explored in seven dogs to assess whether there is motor innervation to the thyroarytenoid (TA) muscle from the external division of the superior laryngeal nerve (ExSLN). In 3 animals, such innervation was identified. Electrical stimulation of microelectrodes applied to the ExSLN resulted in contraction of the TA muscle, indicating that this nerve is motor in function. This was confirmed by electromyographic recordings from the TA muscle. Videolaryngostroboscopy revealed improvement in vocal fold vibration following stimulation of the ExSLN compared to without it. Previously, the TA muscle was thought to be innervated solely by the recurrent laryngeal nerve. This additional pathway from the ExSLN to the TA muscle may have important clinical implications in the treatment of neurologic laryngeal disorders such as adductor spasmodic dysphonia. PMID:9228862

  19. [Drug with a high metabolic activity, cocarnit, in the treatment of diabetic cardiac autonomic neuropathy].

    Science.gov (United States)

    Popov, S V; Melekhovets', O K; Demikhova, N V; Vynnychenko, L B

    2012-01-01

    Left ventricular diastolic dysfunction in patients with diabetes is formed in the absence of atherosclerotic changes as a consequence of diabetic cardiac autonomic neuropathy in the early stages of diabetes. Progression of autonomic cardiac neuropathy in cardio-vascular type is associated with the violation of energy supply of cells, protein synthesis, electrolyte exchange, the exchange of trace elements, oxidation reduction processes, oxygen-transport function of blood, so that metabolic therapy is carried out to optimize the processes of formation and energy costs. The drug cocarnit activates processes of aerobic oxidation of glucose, as well as providing regulatory influence on the oxidation of fatty acids. Applying of cocarnit in complex therapy in patients with diabetic cardiac autonomic neuropathy found improvement of left ventricular diastolic function, and positive dynamics in the efferent activity balance of the sympathetic and parasympathetic control of heart rate variability, which provides the regression of clinical symptoms. PMID:23356142

  20. Bifurcations in a nonlinear model of the baroreceptor-cardiac reflex

    Science.gov (United States)

    Seidel, H.; Herzel, H.

    1998-04-01

    We investigate the dynamic properties of a nonlinear model of the human cardio-baroreceptor control loop. As a new feature we use a phase effectiveness curve to describe the experimentally well-known phase dependency of the cardiac pacemaker's sensitivity to neural activity. We show that an increase of sympathetic time delays leads via a Hopf bifurcation to sustained heart rate oscillations. For increasing baroreflex sensitivity or for repetitive vagal stimulation we observe period-doubling, toroidal oscillations, chaos, and entrainment between the rhythms of the heart and the control loop. The bifurcations depend crucially on the involvement of the cardiac pacemaker's phase dependency. We compare the model output with experimental data from electrically stimulated anesthetized dogs and discuss possible implications for cardiac arrhythmias.

  1. Sudden cardiac death and chronic kidney disease: From pathophysiology to treatment strategies.

    Science.gov (United States)

    Di Lullo, L; Rivera, R; Barbera, V; Bellasi, A; Cozzolino, M; Russo, D; De Pascalis, A; Banerjee, D; Floccari, F; Ronco, C

    2016-08-15

    Chronic kidney disease (CKD) patients demonstrate higher rates of cardiovascular mortality and morbidity; and increased incidence of sudden cardiac death (SCD) with declining kidney failure. Coronary artery disease (CAD) associated risk factors are the major determinants of SCD in the general population. However, current evidence suggests that in CKD patients, traditional cardiovascular risk factors may play a lesser role. Complex relationships between CKD-specific risk factors, structural heart disease, and ventricular arrhythmias (VA) contribute to the high risk of SCD. In dialysis patients, the occurrence of VA and SCD could be exacerbated by electrolyte shifts, divalent ion abnormalities, sympathetic overactivity, inflammation and iron toxicity. As outcomes in CKD patients after cardiac arrest are poor, primary and secondary prevention of SCD and cardiac arrest could reduce cardiovascular mortality in patients with CKD. PMID:27174593

  2. Evidence for Competition for Target Innervation in the Medial Prefrontal Cortex.

    Science.gov (United States)

    Guirado, Ramon; Umemori, Juzoh; Sipilä, Pia; Castrén, Eero

    2016-03-01

    Inputs to sensory cortices are known to compete for target innervation through an activity-dependent mechanism during critical periods. To investigate whether this principle also applies to association cortices such as the medial prefrontal cortex (mPFC), we produced a bilateral lesion during early development to the ventral hippocampus (vHC), an input to the mPFC, and analyzed the intensity of the projection from another input, the basolateral amgydala (BLA). We found that axons from the BLA had a higher density of "en passant" boutons in the mPFC of lesioned animals. Furthermore, the density of neurons labeled with retrograde tracers was increased, and neurons projecting from the BLA to the mPFC showed increased expression of FosB. Since neonatal ventral hippocampal lesion has been used as an animal model of schizophrenia, we investigated its effects on behavior and found a negative correlation between the density of retrogradely labeled neurons in the BLA and the reduction of the startle response in the prepulse inhibition test. Our results not only indicate that the inputs from the BLA and the vHC compete for target innervation in the mPFC during postnatal development but also that subsequent abnormal rewiring might underlie the pathophysiology of neuropsychiatric disorders such as schizophrenia. PMID:26637448

  3. Developmental guidance of embryonic corneal innervation: roles of Semaphorin3A and Slit2.

    Science.gov (United States)

    Kubilus, James K; Linsenmayer, Thomas F

    2010-08-01

    The cornea is one of the most densely innervated structures of the body. In the developing chicken embryo, nerves from the ophthalmic trigeminal ganglion (OTG) innervate the cornea in a series of spatially and temporally regulated events. However, little is known concerning the signals that regulate these events. Here we have examined the involvement of the axon guidance molecules Semaphorin3A and Slit2, and their respective receptors, Neuropilin-1 and Robo2. Expression analyses of early corneas suggest an involvement of both Semaphorin3A and Slit2 in preventing nerves from entering the corneal stroma until the proper time (i.e., they serve as negative regulators), and analyses of their receptors support this conclusion. At later stages of development the expression of Semaphorin3A is again consistent with its serving as a negative regulator-this time for nerves entering the corneal epithelium. However, expression analyses of Robo2 at this stage raised the possibility that Slit2 had switched from a negative regulator to a positive regulator. In support of such a switch, functional analyses-by addition of recombinant Slit2 protein or immunoneutralization with a Slit2 antibody-showed that at an early stage Slit2 negatively regulates the outgrowth of nerves from the OTG, whereas at the later stage it positively regulated the growth of nerves by increasing nerve branching within the corneal epithelium.

  4. A Method to Target and Isolate Airway-innervating Sensory Neurons in Mice.

    Science.gov (United States)

    Kaelberer, Melanie Maya; Jordt, Sven-Eric

    2016-01-01

    Somatosensory nerves transduce thermal, mechanical, chemical, and noxious stimuli caused by both endogenous and environmental agents. The cell bodies of these afferent neurons are located within the sensory ganglia. Sensory ganglia innervate a specific organ or portion of the body. For instance, the dorsal root ganglia (DRG) are located in the vertebral column and extend processes throughout the body and limbs. The trigeminal ganglia are located in the skull and innervate the face, and upper airways. Vagal afferents of the nodose ganglia extend throughout the gut, heart, and lungs. The nodose neurons control a diverse array of functions such as: respiratory rate, airway irritation, and cough reflexes. Thus, to understand and manipulate their function, it is critical to identify and isolate airway specific neuronal sub-populations. In the mouse, the airways are exposed to a fluorescent tracer dye, Fast Blue, for retrograde tracing of airway-specific nodose neurons. The nodose ganglia are dissociated and fluorescence activated cell (FAC) sorting is used to collect dye positive cells. Next, high quality ribonucleic acid (RNA) is extracted from dye positive cells for next generation sequencing. Using this method airway specific neuronal gene expression is determined. PMID:27168016

  5. Highly sensitive index of sympathetic activity based on time-frequency spectral analysis of electrodermal activity.

    Science.gov (United States)

    Posada-Quintero, Hugo F; Florian, John P; Orjuela-Cañón, Álvaro D; Chon, Ki H

    2016-09-01

    Time-domain indices of electrodermal activity (EDA) have been used as a marker of sympathetic tone. However, they often show high variation between subjects and low consistency, which has precluded their general use as a marker of sympathetic tone. To examine whether power spectral density analysis of EDA can provide more consistent results, we recently performed a variety of sympathetic tone-evoking experiments (43). We found significant increase in the spectral power in the frequency range of 0.045 to 0.25 Hz when sympathetic tone-evoking stimuli were induced. The sympathetic tone assessed by the power spectral density of EDA was found to have lower variation and more sensitivity for certain, but not all, stimuli compared with the time-domain analysis of EDA. We surmise that this lack of sensitivity in certain sympathetic tone-inducing conditions with time-invariant spectral analysis of EDA may lie in its inability to characterize time-varying dynamics of the sympathetic tone. To overcome the disadvantages of time-domain and time-invariant power spectral indices of EDA, we developed a highly sensitive index of sympathetic tone, based on time-frequency analysis of EDA signals. Its efficacy was tested using experiments designed to elicit sympathetic dynamics. Twelve subjects underwent four tests known to elicit sympathetic tone arousal: cold pressor, tilt table, stand test, and the Stroop task. We hypothesize that a more sensitive measure of sympathetic control can be developed using time-varying spectral analysis. Variable frequency complex demodulation, a recently developed technique for time-frequency analysis, was used to obtain spectral amplitudes associated with EDA. We found that the time-varying spectral frequency band 0.08-0.24 Hz was most responsive to stimulation. Spectral power for frequencies higher than 0.24 Hz were determined to be not related to the sympathetic dynamics because they comprised less than 5% of the total power. The mean value of time

  6. Highly sensitive index of sympathetic activity based on time-frequency spectral analysis of electrodermal activity.

    Science.gov (United States)

    Posada-Quintero, Hugo F; Florian, John P; Orjuela-Cañón, Álvaro D; Chon, Ki H

    2016-09-01

    Time-domain indices of electrodermal activity (EDA) have been used as a marker of sympathetic tone. However, they often show high variation between subjects and low consistency, which has precluded their general use as a marker of sympathetic tone. To examine whether power spectral density analysis of EDA can provide more consistent results, we recently performed a variety of sympathetic tone-evoking experiments (43). We found significant increase in the spectral power in the frequency range of 0.045 to 0.25 Hz when sympathetic tone-evoking stimuli were induced. The sympathetic tone assessed by the power spectral density of EDA was found to have lower variation and more sensitivity for certain, but not all, stimuli compared with the time-domain analysis of EDA. We surmise that this lack of sensitivity in certain sympathetic tone-inducing conditions with time-invariant spectral analysis of EDA may lie in its inability to characterize time-varying dynamics of the sympathetic tone. To overcome the disadvantages of time-domain and time-invariant power spectral indices of EDA, we developed a highly sensitive index of sympathetic tone, based on time-frequency analysis of EDA signals. Its efficacy was tested using experiments designed to elicit sympathetic dynamics. Twelve subjects underwent four tests known to elicit sympathetic tone arousal: cold pressor, tilt table, stand test, and the Stroop task. We hypothesize that a more sensitive measure of sympathetic control can be developed using time-varying spectral analysis. Variable frequency complex demodulation, a recently developed technique for time-frequency analysis, was used to obtain spectral amplitudes associated with EDA. We found that the time-varying spectral frequency band 0.08-0.24 Hz was most responsive to stimulation. Spectral power for frequencies higher than 0.24 Hz were determined to be not related to the sympathetic dynamics because they comprised less than 5% of the total power. The mean value of time

  7. On the number of preganglionic neurones driving human postganglionic sympathetic neurones: a comparison of modelling and empirical data

    Directory of Open Access Journals (Sweden)

    Vaughan G Macefield

    2011-12-01

    Full Text Available Postganglionic sympathetic axons in awake healthy human subjects, regardless of their identity as muscle vasoconstrictor, cutaneous vasoconstrictor or sudomotor neurones, discharge with a low firing probability (~30%, generate low firing rates (~0.5 Hz and typically fire only once per cardiac interval. The purpose of the present study was to use modelling of spike trains in an attempt to define the number of preganglionic neurones that drive an individual postganglionic neurone. Artificial spike trains were generated in 1-3 preganglionic neurones converging onto a single postganglionic neurone. Each preganglionic input fired with a mean interval distribution of either 1000, 1500, 2000, 2500 or 3000 ms and the standard deviation varied between 0.5, 1.0 and 2.0 x the mean interval; the discharge frequency of each preganglionic neurone exhibited positive skewness and kurtosis. Of the 45 patterns examined, the mean discharge properties of the postganglionic neurone could only be explained by it being driven by, on average, two preganglionic neurones firing with a mean interspike interval of 2500 ms and SD of 5000 ms. The mean firing rate resulting from this pattern was 0.22 Hz, comparable to that of spontaneously active muscle vasoconstrictor neurones in healthy subjects (0.40 Hz. Likewise, the distribution of the number of spikes per cardiac interval was similar between the modelled and actual data: 0 spikes (69.5 vs 66.6 %, 1 spike (25.6 vs 21.2 %, 2 spikes (4.3 vs 6.4 %, 3 spikes (0.5 vs 1.7 % and 4 spikes (0.1 vs 0.7 %. Although some features of the firing patterns could be explained by the postganglionic neurone being driven by a single preganglionic neurone, none of the emulated firing patterns generated by the firing of three preganglionic neurones matched the discharge of the real neurones. These modelling data indicate that, on average, human postganglionic sympathetic neurones are driven by two preganglionic inputs.

  8. Pathophysiology of Resistant Hypertension: The Role of Sympathetic Nervous System

    Directory of Open Access Journals (Sweden)

    Costas Tsioufis

    2011-01-01

    Full Text Available Resistant hypertension (RH is a powerful risk factor for cardiovascular morbidity and mortality. Among the characteristics of patients with RH, obesity, obstructive sleep apnea, and aldosterone excess are covering a great area of the mosaic of RH phenotype. Increased sympathetic nervous system (SNS activity is present in all these underlying conditions, supporting its crucial role in the pathophysiology of antihypertensive treatment resistance. Current clinical and experimental knowledge points towards an impact of several factors on SNS activation, namely, insulin resistance, adipokines, endothelial dysfunction, cyclic intermittent hypoxaemia, aldosterone effects on central nervous system, chemoreceptors, and baroreceptors dysregulation. The further investigation and understanding of the mechanisms leading to SNS activation could reveal novel therapeutic targets and expand our treatment options in the challenging management of RH.

  9. Plasma dihydroxyphenylalanine (DOPA) is independent of sympathetic activity in humans

    DEFF Research Database (Denmark)

    Eldrup, E; Christensen, N J; Andreasen, J;

    1989-01-01

    To clarify the origin of plasma DOPA (3,4-Dihydroxyphenylalanine), the relationship between plasma DOPA and acute or chronic changes in sympathetic activity has been studied. Plasma DOPA and noradrenaline (NA) concentrations were measured by reverse-phase high-performance liquid chromatography with...... electrochemical detection. Administration of clonidine to healthy men decreased plasma NE markedly compared to no drug. Plasma DOPA decreased slightly but significantly with time, but values were identical after clonidine compared to no drug. Baseline plasma NE concentrations were significantly reduced in...... diabetic patients with autonomic neuropathy compared to diabetics without neuropathy, whereas baseline plasma DOPA concentrations were similar in the three groups investigated: 6.55 (5.03-7.26, median [interquartile range], n = 8) nmol l-1 in diabetics with neuropathy, 7.41 (5.79-7.97, n = 8) nmol l-1 in...

  10. Leptin regulates bone formation via the sympathetic nervous system

    Science.gov (United States)

    Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard

    2002-01-01

    We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.

  11. Effects of autonomic balance and fluid and electrolyte changes on cardiac function in infarcted rats: A serial study of sexual dimorphism.

    Science.gov (United States)

    Souza, N S; Dos-Santos, R C; Silveira, Anderson Luiz Bezerra da; R, Sonoda-Côrtes; Gantus, Michel Alexandre Villani; Fortes, F S; Olivares, Emerson Lopes

    2016-04-01

    Premenopausal women are known to show lower incidence of cardiovascular disease than men. During myocardial infarction (MI), homeostatic responses are activated, including the sympathetic autonomic nervous system and the rennin-angiotensin-aldosterone system, which is related to the fluid and electrolyte balance, both aiming to maintain cardiac output. This study sought to perform a serial evaluation of sexual dimorphism in cardiac autonomic control and fluid and electrolyte balance during the development of MI-induced heart failure in rats. Experimental MI was induced in male (M) and female (F) adult (7-9 weeks of age) Wistar rats. The animals were placed in metabolic cages to assess fluid intake and urine volume 1 and 4 weeks after inducing MI (male myocardial infarction (MMI) and female myocardial infarction (FMI) groups). They subsequently underwent echocardiographic evaluation and spectral analysis of heart rate variability. After completing each protocol, the animals were killed for postmortem evaluation and histology. The MMI group showed earlier and more intense cardiac morphological and functional changes than the FMI group, although the extent of MI did not differ between groups (P > 0.05). The MMI group showed higher sympathetic modulation and sodium and water retention than the FMI group (P < 0.05), which may partly explain both the echocardiographic and pathological findings. Females subjected to infarction seem to show attenuation of sympathetic modulation, more favourable fluid and electrolyte balances, and better preserved cardiac function compared to males subjected to the same infarction model. PMID:26748814

  12. Effect of weightlessness on sympathetic-adrenomedullary activity of rats

    Science.gov (United States)

    Kvetňanský, R.; Torda, T.; Macho, L.; Tigranian, R. A.; Serova, L.; Genin, A. M.

    Three cosmic experiments were performed in which rats spent 18-20 days in space on board the biosatellites "COSMOS 782", "COSMOS 936" and "COSMOS 1129". The following indicators of the sympathetic-adrenomedullary system (SAS) activity were measured: tissue and plasma catecholamines (CA), CA-synthesizing enzymes—tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH), phenylethanolamine-N-methyltransferase (PNMT)—as well as CA-degrading enzymes—monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT). Adrenal epinephrine (EPI) and norepinephrine (NE) as well as CA-synthesizing and degrading enzymes were not significantly changed in the animals after flight on COSMOS 782. On the other hand, a significant increase was found in heart CA, the indicator which is usually decreased after stress. 26 days after landing all values were at control levels. The results obtained, compared to our previous stress experiments on Earth, suggest that prolonged weightlessness does not appear to be a pronounced stressful stimulus for the SAS. Heart and plasma CA, mainly NE, were increased both in the group living in the state of weightlessness and the group living in a centrifuge and exposed to artificial gravitation 1 g (COSMOS 936), suggesting again that prolonged weightlessness is not an intensive stressful stimulus for the SAS. The animals exposed after space flight on COSMOS 1129 to repeated immobilization stress on Earth showed a significant decrease of adrenal EPI and an expressive increase of adrenal TH activity compared to stressed animals which were not in space. Thus, the results corroborate that prolonged state of weightlessness during space flight though not representing by itself an intensive stressful stimulus for the sympathetic-adrenomedullary system, was found to potentiate the response of "cosmic rats" to stress exposure after return to Earth.

  13. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons.

    Science.gov (United States)

    Holstein, Gay R; Friedrich, Victor L; Martinelli, Giorgio P

    2016-01-01

    The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the VSR pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation (GVS) was employed to activate these pathways. Central vestibular neurons of the VSR were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified VSR pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. VSR pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the GABAergic VSR pathway neurons showed a target preference, projecting predominantly to CVLM. These data provide the first

  14. Comparison of sympathetic nerve activity normalization procedures in conscious rabbits.

    Science.gov (United States)

    Burke, Sandra L; Lim, Kyungjoon; Moretti, John-Luis; Head, Geoffrey A

    2016-05-01

    One of the main constraints associated with recording sympathetic nerve activity (SNA) in both humans and experimental animals is that microvolt values reflect characteristics of the recording conditions and limit comparisons between different experimental groups. The nasopharyngeal response has been validated for normalizing renal SNA (RSNA) in conscious rabbits, and in humans muscle SNA is normalized to the maximum burst in the resting period. We compared these two methods of normalization to determine whether either could detect elevated RSNA in hypertensive rabbits compared with normotensive controls. We also tested whether either method eliminated differences based only on different recording conditions by separating RSNA of control (sham) rabbits into two groups with low or high microvolts. Hypertension was induced by 5 wk of renal clipping (2K1C), 3 wk of high-fat diet (HFD), or 3 mo infusion of a low dose of angiotensin (ANG II). Normalization to the nasopharyngeal response revealed RSNA that was 88, 51, and 34% greater in 2K1C, HFD, and ANG II rabbits, respectively, than shams (P < 0.05), but normalization to the maximum burst showed no differences. The RSNA baroreflex followed a similar pattern whether RSNA was expressed in microvolts or normalized. Both methods abolished the difference between low and high microvolt RSNA. These results suggest that maximum burst amplitude is a useful technique for minimizing differences between recording conditions but is unable to detect real differences between groups. We conclude that the nasopharyngeal reflex is the superior method for normalizing sympathetic recordings in conscious rabbits. PMID:26921439

  15. Sympathetic system activity in obesity and metabolic syndrome.

    Science.gov (United States)

    Tentolouris, N; Liatis, S; Katsilambros, N

    2006-11-01

    Obesity is a very common disease worldwide, resulting from a disturbance in the energy balance. The metabolic syndrome is also a cluster of abnormalities with basic characteristics being insulin resistance and visceral obesity. The major concerns of obesity and metabolic syndrome are the comorbidities, such as type 2 diabetes, cardiovascular disease, stroke, and certain types of cancers. Sympathetic nervous system (SNS) activity is associated with both energy balance and metabolic syndrome. Sympathomimetic medications decrease food intake, increase resting metabolic rate (RMR), and thermogenic responses, whereas blockage of the SNS exerts opposite effects. The contribution of the SNS to the daily energy expenditure, however, is small ( approximately 5%) in normal subjects consuming a weight maintenance diet. Fasting suppresses, whereas meal ingestion induces SNS activity. Most of the data agree that obesity is characterized by SNS predominance in the basal state and reduced SNS responsiveness after various sympathetic stimuli. Weight loss reduces SNS overactivity in obesity. Metabolic syndrome is characterized by enhanced SNS activity. Most of the indices used for the assessment of its activity are better associated with visceral fat than with total fat mass. Visceral fat is prone to lipolysis: this effect is mediated by catecholamine action on the sensitive beta(3)-adrenoceptors found in the intraabdominal fat. In addition, central fat distribution is associated with disturbances in the hypothalamo-pituitary-adrenal axis, suggesting that a disturbed axis may be implicated in the development of the metabolic syndrome. Furthermore, SNS activity induces a proinflammatory state by IL-6 production, which in turn results in an acute phase response. The increased levels of inflammatory markers seen in the metabolic syndrome may be elicited, at least in part, by SNS overactivity. Intervention studies showed that the disturbances of the autonomic nervous system seen in the

  16. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons.

    Science.gov (United States)

    Holstein, Gay R; Friedrich, Victor L; Martinelli, Giorgio P

    2016-01-01

    The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the VSR pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation (GVS) was employed to activate these pathways. Central vestibular neurons of the VSR were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified VSR pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. VSR pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the GABAergic VSR pathway neurons showed a target preference, projecting predominantly to CVLM. These data provide the first

  17. The Nucleus of the Solitary Tract and the coordination of respiratory and sympathetic activities

    Directory of Open Access Journals (Sweden)

    Daniel B. Zoccal

    2014-06-01

    Full Text Available It is well known that breathing introduces rhythmical oscillations in the heart rate and arterial pressure levels. Sympathetic oscillations coupled to the respiratory activity have been suggested as an important homeostatic mechanism optimizing tissue perfusion and blood gas uptake/delivery. This respiratory-sympathetic coupling is strengthened in conditions of blood gas challenges (hypoxia and hypercapnia as a result of the synchronized activation of brainstem respiratory and sympathetic neurons, culminating with the emergence of entrained cardiovascular and respiratory reflex responses. Studies have proposed that the ventrolateral region of the medulla oblongata is a major site of synaptic interaction between respiratory and sympathetic neurons. However, other brainstem regions also play a relevant role in the patterning of respiratory and sympathetic motor outputs. Recent findings suggest that the neurons of the nucleus of the solitary tract (NTS, in the dorsal medulla, are essential for the processing and coordination of respiratory and sympathetic responses to hypoxia. The NTS is the first synaptic station of the cardiorespiratory afferent inputs, including peripheral chemoreceptors, baroreceptors and pulmonary stretch receptors. The synaptic profile of the NTS neurons receiving the excitatory drive from afferent inputs is complex and involves distinct neurotransmitters, including glutamate, ATP and acetylcholine. In the present review we discuss the role of the NTS circuitry in coordinating sympathetic and respiratory reflex responses. We also analyze the neuroplasticity of NTS neurons and their contribution for the development of cardiorespiratory dysfunctions, as observed in neurogenic hypertension, obstructive sleep apnea and metabolic disorders.

  18. Respiratory modulation of sympathetic nerve activity is enhanced in male rat offspring following uteroplacental insufficiency.

    Science.gov (United States)

    Menuet, C; Wlodek, M E; Fong, A Y; Allen, A M

    2016-06-01

    Sympathetic nerve activity to the cardiovascular system displays prominent respiratory-related modulation which leads to the generation of rhythmic oscillations in blood pressure called Traube-Hering waves. An amplification of this respiratory modulation of sympathetic activity is observed in hypertension of both genetic, the spontaneously hypertensive rat, and induced, chronic intermittent hypoxia or maternal protein restriction during gestation, origin. Male offspring of mothers with uteroplacental insufficiency, induced by bilateral uterine vessel ligation at 18 days of gestation, are also hypertensive in adulthood. In this study we examined whether these male offspring display altered respiratory modulation of sympathetic activity at pre-hypertensive ages compared to controls. Respiratory, cardiovascular and sympathetic parameters were examined using the working heart-brainstem preparation in 35 day old male rats that had reduced birth weight due to uteroplacental insufficiency. Whilst all respiratory parameters were not different between groups, we observed an enhanced respiratory-related burst of thoracic sympathetic nerve activity and amplified Traube-Hering waves in the growth-restricted group. This group also showed an increased sympathetic and bradycardic response to activation of peripheral chemoreceptors. The observations add support to the view that altered respiratory modulation of sympathetic activity represents a common mechanism involved in the development of several forms of hypertension. PMID:26593642

  19. Sympathetic Blocks Provided Sustained Pain Relief in a Patient with Refractory Painful Diabetic Neuropathy

    Directory of Open Access Journals (Sweden)

    Jianguo Cheng

    2012-01-01

    Full Text Available The sympathetic nervous system has been implicated in pain associated with painful diabetic neuropathy. However, therapeutic intervention targeted at the sympathetic nervous system has not been established. We thus tested the hypothesis that sympathetic nerve blocks significantly reduce pain in a patient with painful diabetic neuropathy who has failed multiple pharmacological treatments. The diagnosis of small fiber sensory neuropathy was based on clinical presentations and confirmed by skin biopsies. A series of 9 lumbar sympathetic blocks over a 26-month period provided sustained pain relief in his legs. Additional thoracic paravertebral blocks further provided control of the pain in the trunk which can occasionally be seen in severe diabetic neuropathy cases, consequent to extensive involvement of the intercostal nerves. These blocks provided sustained and significant pain relief and improvement of quality of life over a period of more than two years. We thus provided the first clinical evidence supporting the notion that sympathetic nervous system plays a critical role in painful diabetic neuropathy and sympathetic blocks can be an effective management modality of painful diabetic neuropathy. We concluded that the sympathetic nervous system is a valuable therapeutic target of pharmacological and interventional modalities of treatments in painful diabetic neuropathy patients.

  20. Clinical relationship of myocardial sympathetic nervous activity to cardiovascular functions in chronic heart failure: assessment by myocardial scintigraphy with 123I-metaiodobenzylguanidine.

    Science.gov (United States)

    Wada, Yukoh; Miura, Masaetsu; Fujiwara, Satomi; Mori, Shunpei; Seiji, Kazumasa; Kimura, Tokihisa

    2003-12-01

    The aim of this study was to clarify the relationship between cardiac sympathetic nervous activity (SNA) assessed by radioiodinated metaiodobenzylguanidine (123I-MIBG), an analogue of norepinephrine and cardiovascular functions in patients with chronic heart failure (CHF). Subjects were 17 patients with CHF. A dose of 111 MBq of 123I-MIBG was administered intravenously, and 5-minute anterior planar images were obtained 15 minutes (early image) and 3 hours (delayed image) after the injection. The heart/mediastinum (H/M) count ratio was defined to quantify cardiac 123I-MIBG uptake. The washout ratio (WR) of 123I-MIBG from the heart was calculated as follows: (early counts-delayed counts)/early counts x 100 (%). Echocardiography was performed on all patients within 1 week of 123I-MIBG scintigraphy to measure stroke volume index (SVI). Blood pressure and heart rate (HR) in the resting state were also recorded to calculate cardiovascular functions including cardiac output, pulse pressure (PP), and mean blood pressure. Significant linear correlations were found between the early H/M ratio of 123I-MIBG and SVI, and between the delayed H/M ratio of 123I-MIBG and SVI, respectively. WR of 123I-MIBG was correlated with HR, and was inversely correlated with SVI and with PP, respectively. It is likely that a decrease in SVI is associated with enhanced cardiac SNA in severe CHF. 123I-MIBG scintigraphy is effective in assessing the cardiac functional status and SNA in patients with CHF in vivo. Moreover, changes in PP and HR indicate well alteration in SNA. PMID:14690018

  1. Mathematical cardiac electrophysiology

    CERN Document Server

    Colli Franzone, Piero; Scacchi, Simone

    2014-01-01

    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  2. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  3. [Distal post-traumatic edema--symptom of a sympathetic reflex dystrophy (Sudeck's disease)?].

    Science.gov (United States)

    Blumberg, H; Griesser, H J; Hornyak, M

    1992-01-01

    The present paper describes various mechanisms, possibly being involved in the development of the posttraumatic, distally generalized edema. New ideas point to a special importance of the sympathetic vasoconstrictor system for this clinical phenomenon, since this system could induce an enhanced venoconstriction at the exit of the capillary bed, which would result in an edema producing diminished venous return. Since the distally generalized edema is an initially and very commonly occurring symptom of reflex sympathetic dystrophy (M. Sudeck), the observation of such an edema should lead one to look for further symptoms of this disorder, especially for the typical triad of autonomic (sympathetic), motor, and sensory disturbances. PMID:1372460

  4. Control of heart rate variability by cardiac parasympathetic nerve activity during voluntary static exercise in humans with tetraplegia.

    Science.gov (United States)

    Takahashi, Makoto; Matsukawa, Kanji; Nakamoto, Tomoko; Tsuchimochi, Hirotsugu; Sakaguchi, Akihiro; Kawaguchi, Kotaro; Onari, Kiyoshi

    2007-11-01

    Heart rate (HR) is controlled solely by via cardiac parasympathetic outflow in tetraplegic individuals, who lack supraspinal control of sympathetic outflows and circulating catecholamines but have intact vagal pathways. A high-frequency component (HF; at 0.15-0.40 Hz) of the power spectrum of HR variability and its relative value against total power (HF/Total) were assessed using a wavelet transform to identify cardiac parasympathetic outflow. The relative contribution of cardiac parasympathetic and sympathetic outflows to controlling HR was estimated by comparing the HF/Total-HR relationship between age-matched tetraplegic and normal men. Six tetraplegic men with complete cervical spinal cord injury performed static arm exercise at 35% of the maximal voluntary contraction until exhaustion. Although resting cardiac output and arterial blood pressure were lower in tetraplegic than normal subjects, HR, HF, and HF/Total were not statistically different between the two groups. When tetraplegic subjects developed the same force during exercise as normal subjects, HF and HF/Total decreased to 67-90% of the preexercise control and gradually recovered 1.5 min after exercise. The amount and time course of the changes in HF/Total during and after exercise coincided well between both groups. In contrast, the increase in HR at the start of exercise was blunted in tetraplegic compared with normal subjects, and the HR recovery following exercise was also delayed. It is likely that, although the withdrawal response of cardiac parasympathetic outflow is preserved in tetraplegic subjects, sympathetic decentralization impairs the rapid acceleration of HR at the onset of exercise and the rapid deceleration following exercise. PMID:17761788

  5. Experimental american trypanomiasis in rats: sympathetic denervation, parasitism and inflammatory process Desnervação simpática, parasitismo e processo inflamatório durante a doença de Chagas experimental, em ratos

    Directory of Open Access Journals (Sweden)

    Conceição R. S. Machado

    1989-12-01

    Full Text Available Tissue parasitism, inflammatory process (histologic methods and sympathetic denervation (glyoxylic acid-induced histofluorescence for demonstration of catecholamines were studied in the heart (atrium and verntricle and the submandibular gland of rats infected with the Y strain of Trypanosoma cruzi. In the heart paralleling intense parasitism and inflammatory process, the sympathetic denervation started at day 6 of infection and at the end of the acute phase (day 20 practically no varicose nerve terminals were found in both myocardium and vessels. In the submandibular gland, in spite of the rarity of anastigote pseudocysts and the scarcity of inflammatory foci, slight to moderate (days 13-15 of infection or moderate to severe denervation (day 20 was found. At day 120 of infection both organs exhibited normal pattern of sympathetic innervation and only the heart showed some inflammatory foci and rare psudocysts (ventricle. Our data suggest the involvement of circulating factors in the sympathetic denervation phenomena but indicate that local inflammatory process is, at least, an aggravating factor.Parasitismo tecidual, processo inflamatório (métodos histológicos e desnervação simpática (histofluorescência induzida por ácido glioxílico para demosntração de catecolaminas foram estudados no coração (átrio e ventrículo e na glândula submandibular de ratos infectados com cepa Y de Trypanosoma cruzi. No coração, em paralelo com intenso parasitismo e processo inglamatório, a desnervação simpática iniciuo-se no 6º dia de infecção e ao fim da fase aguda (20º dia praticamente nenhuma terminação nervosa varicosa foi encontrada tanto no miocárdio como em vasos. Na glândula submandibular, apesar da raridade de ninhos de amastigotas e da escassez de focos inflamatórios, encontram-se discreta e moderada 13º-15º dia de infeccção ou moderada a severa (20º dia desnervação. Aos 120 dias de infecção, ambos os órgãos exibiram

  6. [Cardiac evaluation before non-cardiac surgery].

    Science.gov (United States)

    Menzenbach, Jan; Boehm, Olaf

    2016-07-01

    Before non-cardiac surgery, evaluation of cardiac function is no frequent part of surgical treatment. European societies of anesthesiology and cardiology published consensus-guidelines in 2014 to present a reasonable approach for preoperative evaluation. This paper intends to differentiate the composite of perioperative risk and to display the guidelines methodical approach to handle it. Features to identify patients at risk from an ageing population with comorbidities, are the classification of surgical risk, functional capacity and risk indices. Application of diagnostic means, should be used adjusted to this risk estimation. Cardiac biomarkers are useful to discover risk of complications or mortality, that cannot be assessed by clinical signs. After preoperative optimization and perioperative cardiac protection, the observation of the postoperative period remains, to prohibit complications or even death. In consideration of limited resources of intensive care department, postoperative ward rounds beyond intensive care units are considered to be an appropriate instrument to avoid or recognize complications early to reduce postoperative mortality. PMID:27479258

  7. Insights into the clinical and functional significance of cardiac autonomic dysfunction in Chagas disease

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Junqueira Junior

    2012-04-01

    Full Text Available INTRODUCTION: Exclusive or associated lesions in various structures of the autonomic nervous system occur in the chronic forms of Chagas disease. In the indeterminate form, the lesions are absent or mild, whereas in the exclusive or combined heart and digestive disease forms, they are often more pronounced. Depending on their severity these lesions can result mainly in cardiac parasympathetic dysfunction but also in sympathetic dysfunction of variable degrees. Despite the key autonomic effect on cardiovascular functioning, the pathophysiological and clinical significance of the cardiac autonomic dysfunction in Chagas disease remains unknown. METHODS: Review of data on the cardiac autonomic dysfunction in Chagas disease and their potential consequences, and considerations supporting the possible relationship between this disturbance and general or cardiovascular clinical and functional adverse outcomes. RESULTS: We hypothesise that possible consequences that cardiac dysautonomia might variably occasion or predispose in Chagas disease include: transient or sustained arrhythmias, sudden cardiac death, adverse overall and cardiovascular prognosis with enhanced morbidity and mortality, an inability of the cardiovascular system to adjust to functional demands and/or respond to internal or external stimuli by adjusting heart rate and other hemodynamic variables, and immunomodulatory and cognitive disturbances. CONCLUSIONS: Impaired cardiac autonomic modulation in Chagas disease might not be a mere epiphenomenon without significance. Indirect evidences point for a likely important role of this alteration as a primary predisposing or triggering cause or mediator favouring the development of subtle or evident secondary cardiovascular functional disturbances and clinical consequences, and influencing adverse outcomes.

  8. CROSSING ANASTOMOSIS OF NERVE BUNDLES NEAR INNERVATED ORGANS TO TREAT IRREPARABLE NERVE INJURIES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To study the therapeutical effects of crossing anastomosis of nerve on the peripheral and central nerve injuries.Methods Twelve kinds of central and peripheral nerve disorders and their complications were treated with 11 kinds of crossing anastomosis of nerve bundles near the innervated organs. After nerve injury and repair, somatosensory evoked potentials (SEPs) and horseradish peroxidase (HRP) retrograde tracing studies were used to investigate the rabbit's nerve function and morphology.Results The ulcers of all patients healed. Sensation, voluntary movement, and joint function recovered. Four weeks after the anastomosis of distal stump of radialis superficialis nerve and median nerve, pain sensation regained and SEPs appeared. HRP retrograde tracing studies demonstrated sensory nerve ending of medial nerve formed new connection with the body of neuron.Conclusion Crossing anastomosis of nerve is an effective method to treat peripheral and central nerve injuries.

  9. MRI-based 3D pelvic autonomous innervation: a first step towards image-guided pelvic surgery

    International Nuclear Information System (INIS)

    To analyse pelvic autonomous innervation with magnetic resonance imaging (MRI) in comparison with anatomical macroscopic dissection on cadavers. Pelvic MRI was performed in eight adult human cadavers (five men and three women) using a total of four sequences each: T1, T1 fat saturation, T2, diffusion weighed. Images were analysed with segmentation software in order to extract nervous tissue. Key height points of the pelvis autonomous innervation were located in every specimen. Standardised pelvis dissections were then performed. Distances between the same key points and the three anatomical references forming a coordinate system were measured on MRIs and dissections. Concordance (Lin's concordance correlation coefficient) between MRI and dissection was calculated. MRI acquisition allowed an adequate visualization of the autonomous innervation. Comparison between 3D MRI images and dissection showed concordant pictures. The statistical analysis showed a mean difference of less than 1 cm between MRI and dissection measures and a correct concordance correlation coefficient on at least two coordinates for each point. Our acquisition and post-processing method demonstrated that MRI is suitable for detection of autonomous pelvic innervations and can offer a preoperative nerve cartography. (orig.)

  10. Central Somatosensory Networks Respond to a De Novo Innervated Penis : A Proof of Concept in Three Spina Bifida Patients

    NARCIS (Netherlands)

    Kortekaas, Rudie; Nanetti, Luca; Overgoor, Max L. E.; de Jong, Bauke M.; Georgiadis, Janniko R.

    2015-01-01

    Introduction. Spina bifida (SB) causes low spinal lesions, and patients often have absent genital sensation and a highly impaired sex life. TOMAX (TO MAX-imize sensation, sexuality and quality of life) is a surgical procedure whereby the penis is newly innervated using a sensory nerve originally tar

  11. Uterine autonomic nerve innervation plays a crucial role in regulating rat uterine mast cell functions during embryo implantation.

    Science.gov (United States)

    Yuan, Xue-Jun; Huang, Li-Bo; Qiao, Hui-Li; Deng, Ze-Pei; Fa, Jing-Jing

    2009-12-01

    To explore the potential mechanism of how uterine innervations would affect the uterine mast cell (MC) population and functions during the periimplantation. We herein first examined the consequence of uterine neurectomy on embryo implantation events. We observed that amputation of autonomic nerves innervating the uterus led to on-time implantation failure in rats. Exploiting MC culture and ELISA approaches, we then further analyzed the effect of neurectomy on cellular histamine levels and its release from uterine MCs, to elucidate the relation of the autonomic nerves and local cellular immunity in the uterine during early pregnancy. We observed that disconnection of autonomic nerve innervation significantly increased the population of uterine MCs. Most interestingly, these increased number of uterine MCs in neuroectomized rats contained a much reduced cellular level of histamine. Our subsequent challenge experiments revealed that uterine MCs in nerve amputated rats exhibited enhanced histamine releasing rate in response to substance P and antiIgE, suggesting loss of nerve innervation in the uterus not only increases the population of uterine MCs, but also facilitates the release of histamine from MCs, thus subsequently interfere with the normal implantation process. Collectively, our findings provide a new line of evidence supporting the concept that immune-neuro-endocrine network plays important role during pregnancy establishment and maintenance. PMID:19765668

  12. Corneal Sulfated Glycosaminoglycans and Their Effects on Trigeminal Nerve Growth Cone Behavior In Vitro: Roles for ECM in Cornea Innervation

    OpenAIRE

    Schwend, Tyler; Deaton, Ryan J.; Zhang, Yuntao; Caterson, Bruce; Conrad, Gary W.

    2012-01-01

    In this investigation, we describe differential spatiotemporal expression patterns of glycosaminoglycans KS, DS, and CSA/C during developmental stages of cornea innervation. We show that purified GAGs have divergent effects on trigeminal neuron behavior using in vitro neuronal explant cultures.

  13. MRI-based 3D pelvic autonomous innervation: a first step towards image-guided pelvic surgery

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, M.M. [University Montpellier I, Laboratory of Experimental Anatomy Faculty of Medicine Montpellier-Nimes, Montpellier (France); Macri, F.; Beregi, J.P. [Nimes University Hospital, University Montpellier 1, Radiology Department, Nimes (France); Mazars, R.; Prudhomme, M. [University Montpellier I, Laboratory of Experimental Anatomy Faculty of Medicine Montpellier-Nimes, Montpellier (France); Nimes University Hospital, University Montpellier 1, Digestive Surgery Department, Nimes (France); Droupy, S. [Nimes University Hospital, University Montpellier 1, Urology-Andrology Department, Nimes (France)

    2014-08-15

    To analyse pelvic autonomous innervation with magnetic resonance imaging (MRI) in comparison with anatomical macroscopic dissection on cadavers. Pelvic MRI was performed in eight adult human cadavers (five men and three women) using a total of four sequences each: T1, T1 fat saturation, T2, diffusion weighed. Images were analysed with segmentation software in order to extract nervous tissue. Key height points of the pelvis autonomous innervation were located in every specimen. Standardised pelvis dissections were then performed. Distances between the same key points and the three anatomical references forming a coordinate system were measured on MRIs and dissections. Concordance (Lin's concordance correlation coefficient) between MRI and dissection was calculated. MRI acquisition allowed an adequate visualization of the autonomous innervation. Comparison between 3D MRI images and dissection showed concordant pictures. The statistical analysis showed a mean difference of less than 1 cm between MRI and dissection measures and a correct concordance correlation coefficient on at least two coordinates for each point. Our acquisition and post-processing method demonstrated that MRI is suitable for detection of autonomous pelvic innervations and can offer a preoperative nerve cartography. (orig.)

  14. The subgenual organ complex in the cave cricket Troglophilus neglectus (Orthoptera: Rhaphidophoridae): comparative innervation and sensory evolution

    Science.gov (United States)

    Strauß, Johannes; Stritih, Nataša; Lakes-Harlan, Reinhard

    2014-01-01

    Comparative studies of the organization of nervous systems and sensory organs can reveal their evolution and specific adaptations. In the forelegs of some Ensifera (including crickets and tettigoniids), tympanal hearing organs are located in close proximity to the mechanosensitive subgenual organ (SGO). In the present study, the SGO complex in the non-hearing cave cricket Troglophilus neglectus (Rhaphidophoridae) is investigated for the neuronal innervation pattern and for organs homologous to the hearing organs in related taxa. We analyse the innervation pattern of the sensory organs (SGO and intermediate organ (IO)) and its variability between individuals. In T. neglectus, the IO consists of two major groups of closely associated sensilla with different positions. While the distal-most sensilla superficially resemble tettigoniid auditory sensilla in location and orientation, the sensory innervation does not show these two groups to be distinct organs. Though variability in the number of sensory nerve branches occurs, usually either organ is supplied by a single nerve branch. Hence, no sensory elements clearly homologous to the auditory organ are evident. In contrast to other non-hearing Ensifera, the cave cricket sensory structures are relatively simple, consistent with a plesiomorphic organization resembling sensory innervation in grasshoppers and stick insects. PMID:26064547

  15. Excitatory and inhibitory innervation of the mouse orofacial motor nuclei: A stereological study.

    Science.gov (United States)

    Faunes, Macarena; Oñate-Ponce, Alejandro; Fernández-Collemann, Sara; Henny, Pablo

    2016-03-01

    Neurons in the trigeminal (Mo5), facial (Mo7), ambiguus (Amb), and hypoglossal (Mo12) motor nuclei innervate jaw, facial, pharynx/larynx/esophagus, and tongue muscles, respectively. They are essential for movements subserving feeding, exploration of the environment, and social communication. These neurons are largely controlled by sensory afferents and premotor neurons of the reticular formation, where central pattern generator circuits controlling orofacial movements are located. To provide a description of the orofacial nuclei of the adult mouse and to ascertain the influence of excitatory and inhibitory afferents upon them, we used stereology to estimate the number of motoneurons as well as of varicosities immunopositive for glutamate (VGluT1+, VGluT2+) and GABA/glycine (known as VIAAT+ or VGAT+) vesicular transporters in the Mo5, Mo7, Amb, and Mo12. Mo5, Mo7, Amb, and Mo12 contain ∼1,000, ∼3,000, ∼600, and ∼1,700 cells, respectively. VGluT1+, VGluT2+, and VIAAT+ varicosities respectively represent: 28%, 41%, and 31% in Mo5; 2%, 49%, and 49% in Mo7; 12%, 42%, and 46% in Amb; and 4%, 54%, and 42% in Mo12. The Mo5 jaw-closing subdivision shows the highest VGluT1+ innervation. Noticeably, the VGluT2+ and VIAAT+ varicosity density in Mo7 is 5-fold higher than in Mo5 and 10-fold higher than in Amb and Mo12. The high density of terminals in Mo7 likely reflects the convergence and integration of numerous inputs to motoneurons subserving the wide range of complex behaviors to which this nucleus contributes. Also, somatic versus neuropil location of varicosities suggests that most of these afferents are integrated in the dendritic trees of Mo7 neurons. PMID:26224546

  16. Controlled ingestion of kaolinite (5%) modulates enteric nitrergic innervation in rats.

    Science.gov (United States)

    Voinot, Florian; Fischer, Caroline; Schmidt, Camille; Ehret-Sabatier, Laurence; Angel, Fabielle

    2014-08-01

    We have previously shown that kaolinite slowed down gastric emptying and intestinal transit and induced changes in enteric mechanical activities. As gastric emptying and intestinal transit have been shown to be regulated by nitric oxide (NO), the effect of an imposed ingestion of kaolinite on enteric nitrergic innervation was determined. Kaolinite has also been shown to increase plasmatic levels of leptin. Therefore, the responses of enteric neurons in the presence of leptin after kaolinite ingestion were determined, and a possible role of nitrergic neurons was evaluated in rats using organ bath technique. Our results showed that kaolinite modulates activities of enteric nerves at 14 days of ingestion. Exogenous l-NNA produced a decrease in nerve stimulation (NS)-induced relaxation in both jejunum and colon of control groups. At 14 days of kaolinite ingestion, this effect of l-NNA was significantly reduced only in the jejunum. Although l-NNA did not affect NS-induced contraction in jejunum and colon of control animals, it increased the amplitude of the NS-induced contraction in the colon of rats at 14 days of kaolinite ingestion. Leptin inhibitory effects on ENS in the jejunum were also altered at 14 days of ingestion. These differences were masked in the presence of l-NNA. Our data give evidence that changes in mechanical activities induced by kaolinite might be due to alterations in inhibitory (nitrergic and/or other) innervation at 14 days of kaolinite ingestion and to modifications of leptin effects on the responses to intramural nerve stimulation. PMID:23799940

  17. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    Directory of Open Access Journals (Sweden)

    Sebastien eParnaudeau

    2014-02-01

    Full Text Available The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs release. GCs bind the glucocorticoid receptor (GR a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While the GR within dopamine-innervated areas drives cocaine’s behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurones is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice.

  18. The anemia of microgravity and recumbency. Role of sympathetic neural control of erythropoietin production

    Science.gov (United States)

    Robertson, David; Krantz, Sanford B.; Biaggioni, Italo

    We hypothesize that reduced sympathetic stimulation of erythropoietin production may maintain the anemia which develops in virtually all space travellers. We tested this hypothesis in a human model of reduced sympathetic activity. Thirty-three patients with the Bradbury-Eggleston syndrome were divided into three groups according to their hemoglobin (Hgb) level. Patients with low Hgb had lower upright norepinephrine and lower upright renin. Patients with anemia also had inappropriately low plasma erythropoietin levels. We administered recombinant erythropoietin (Epogen) 25-50 units/kg s.c. 3 times per week and found that the anemia seen in autonomic failure could be reversed by this treatment. These results support the hypothesis that erythropoiesis is modulated by the sympathetic nervous system and that such mechanisms may also operate in the microgravity environment where sympathetic activity is reduced.

  19. 反射性交感神经营养不良%Reflex sympathetic dystrophy

    Institute of Scientific and Technical Information of China (English)

    马抒音; 张丽苓

    2002-01-01

    @@ Background: Reflex sympathetic dystrophy (RSD),also known as complex regional pain syndrome (CRPS), is a nervous system disorder that often results in severe chronic and burning pain and other symptoms.

  20. The role of carotid chemoreceptors in the sympathetic activation by adenosine in humans.

    NARCIS (Netherlands)

    Timmers, H.J.L.M.; Rongen, G.A.P.J.M.; Karemaker, J.M.; Wieling, W.; Marres, H.A.M.; Lenders, J.W.M.

    2004-01-01

    The direct vasodilatory and negative chronotropic effects of adenosine in humans are counterbalanced by a reflex increase in sympathetic nerve traffic. A suggested mechanism for this reflex includes peripheral chemoreceptor activation. We, therefore, assessed the contribution of carotid chemorecepto

  1. Sympathetic neural adaptation to hypocaloric diet with or without exercise training in obese metabolic syndrome subjects

    DEFF Research Database (Denmark)

    Straznicky, Nora E; Lambert, Elisabeth A; Nestel, Paul J;

    2010-01-01

    Sympathetic nervous system (SNS) overactivity contributes to the pathogenesis and target organ complications of obesity. This study was conducted to examine the effects of lifestyle interventions (weight loss alone or together with exercise) on SNS function....

  2. Effect of sympathetic nerve block on acute inflammatory pain and hyperalgesia

    DEFF Research Database (Denmark)

    Pedersen, J L; Rung, G W; Kehlet, H

    1997-01-01

    . METHODS: The study was made as a randomized, single blinded investigation, in which the volunteers served as their own controls. A lumbar sympathetic nerve block and a contralateral placebo block were performed in 24 persons by injecting 10 ml bupivacaine (0.5%) and 10 ml saline, respectively. The......BACKGROUND: Sympathetic nerve blocks relieve pain in certain chronic pain states, but the role of the sympathetic pathways in acute pain is unclear. Thus the authors wanted to determine whether a sympathetic block could reduce acute pain and hyperalgesia after a heat injury in healthy volunteers...... duration and quality of blocks were evaluated by the sympatogalvanic skin response and skin temperature. Bilateral heat injuries were produced on the medial surfaces of the calves with a 50 x 25 mm thermode (47 degrees C, 7 min) 45 min after the blocks. Pain intensity induced by heat, pain thresholds to...

  3. Cardiac metabolism and arrhythmias

    OpenAIRE

    Barth, Andreas S.; Tomaselli, Gordon F.

    2009-01-01

    Sudden cardiac death remains a leading cause of mortality in the Western world, accounting for up to 20% of all deaths in the U.S.1, 2 The major causes of sudden cardiac death in adults age 35 and older are coronary artery disease (70–80%) and dilated cardiomyopathy (10–15%).3 At the molecular level, a wide variety of mechanisms contribute to arrhythmias that cause sudden cardiac death, ranging from genetic predisposition (rare mutations and common polymorphisms in ion channels and structural...

  4. Comprehensive cardiac rehabilitation

    DEFF Research Database (Denmark)

    Kruse, Marie; Hochstrasser, Stefan; Zwisler, Ann-Dorthe O;

    2006-01-01

    OBJECTIVES: The costs of comprehensive cardiac rehabilitation are established and compared to the corresponding costs of usual care. The effect on health-related quality of life is analyzed. METHODS: An unprecedented and very detailed cost assessment was carried out, as no guidelines existed...... and may be as high as euro 1.877. CONCLUSIONS: Comprehensive cardiac rehabilitation is more costly than usual care, and the higher costs are not outweighed by a quality of life gain. Comprehensive cardiac rehabilitation is, therefore, not cost-effective....

  5. Electrocardiographic abnormalities and cardiac arrhythmias in structural brain lesions.

    Science.gov (United States)

    Katsanos, Aristeidis H; Korantzopoulos, Panagiotis; Tsivgoulis, Georgios; Kyritsis, Athanassios P; Kosmidou, Maria; Giannopoulos, Sotirios

    2013-07-31

    Cardiac arrhythmias and electrocardiographic abnormalities are frequently observed after acute cerebrovascular events. The precise mechanism that leads to the development of these arrhythmias is still uncertain, though increasing evidence suggests that it is mainly due to autonomic nervous system dysregulation. In massive brain lesions sympathetic predominance and parasympathetic withdrawal during the first 72 h are associated with the occurrence of severe secondary complications in the first week. Right insular cortex lesions are also related with sympathetic overactivation and with a higher incidence of electrocardiographic abnormalities, mostly QT prolongation, in patients with ischemic stroke. Additionally, female sex and hypokalemia are independent risk factors for severe prolongation of the QT interval which subsequently results in malignant arrhythmias and poor outcome. The prognostic value of repolarization changes commonly seen after aneurysmal subarachnoid hemorrhage, such as ST segment, T wave, and U wave abnormalities, still remains controversial. In patients with traumatic brain injury both intracranial hypertension and cerebral hypoperfusion correlate with low heart rate variability and increased mortality. Given that there are no firm guidelines for the prevention or treatment of the arrhythmias that appear after cerebral incidents this review aims to highlight important issues on this topic. Selected patients with the aforementioned risk factors could benefit from electrocardiographic monitoring, reassessment of the medications that prolong QTc interval, and administration of antiadrenergic agents. Further research is required in order to validate these assumptions and to establish specific therapeutic strategies.

  6. Cardiac Iodine-123 metaiodobenzylguanidine (123I-MIBG) scintigraphy parameter predicts cardiac and cerebrovascular events in type 2 diabetic patients without structural heart disease

    International Nuclear Information System (INIS)

    Cardiac iodine-123 metaiodobenzylguanidine (123I-MIBG) scintigraphy is an established method of assessment of cardiovascular sympathetic function. The aim of the present study was to investigate the long-term cardiovascular predictive value of cardiac 123I-MIBG scintigraphy parameters in Japanese type 2 diabetic patients without structural heart disease. Cardiac 123I-MIBG scintigraphy in 108 patients with type 2 diabetes who did not have structural heart disease, was evaluated. The washout rate (WR) was considered enhanced if it was ≥40%. Accurate follow-up information for 4.6 years was obtained in 54 enhanced WR patients (27 male; mean age, 61±11 years) and in 54 sex- and age-matched preserved WR patients (27 male; mean age, 61±10 years). Major adverse cardiac and cerebrovascular events (MACCE) were investigated. During follow-up, 10 enhanced WR patients developed MACCE including cardiac death, coronary revascularization, stroke, and congestive heart failure, while MACCE occurred in only 3 male patients. The Kaplan-Meier curves indicated that enhanced WR patients had higher incidence of MACCE than those with preserved WR (P123I-MIBG scintigraphy at baseline has long-term cardiovascular predictive value in Japanese patients with type 2 diabetes without structural heart disease. (author)

  7. Vibration sense and sympathetic vasoconstrictor activity in patients with occlusive arterial disease

    DEFF Research Database (Denmark)

    Bjerre-Jepsen, K; Henriksen, O; Parm, Martin Lehnsbo;

    1983-01-01

    function was studied by the capability of the local sympathetic venoarteriolar reflex (Henriksen 1977) elicited by lowering the leg to induce an arteriolar constriction in subcutaneous tissue at the ankle level. Blood flow was measured by the local isotope washout technique. In only five patients with loss...... of sympathetic vasoconstrictor function. It is suggested that this is studied by a simple postural test as used in the present study....

  8. LEPTIN SIGNALING IN THE NUCLEUS TRACTUS SOLITARII INCREASES SYMPATHETIC NERVE ACTIVITY TO THE KIDNEY

    OpenAIRE

    Mark, Allyn L.; Agassandian, Khristofor; Morgan, Donald A.; Liu, Xuebo; Cassell, Martin D.; Rahmouni, Kamal

    2008-01-01

    The hypothalamic arcuate nucleus was initially regarded as the principal site of leptin action, but there is increasing evidence for functional leptin receptors (Ob-Rb) in extra-hypothalamic sites, including the nucleus tractus solitarii (NTS). We previously demonstrated that arcuate injection of leptin increases sympathetic nerve activity (SNA) to brown adipose tissue (BAT) and kidney. In this study, we tested the hypothesis that leptin signaling in the NTS affects sympathetic neural outflow...

  9. Successful Treatment of Severe Sympathetically Maintained Pain Following Anterior Spine Surgery

    OpenAIRE

    Woo, Jae Hee; Park, Hahck Soo

    2014-01-01

    Sympathetic dysfunction is one of the possible complications of anterior spine surgery; however, it has been underestimated as a cause of complications. We report two successful experiences of treating severe dysesthetic pain occurring after anterior spine surgery, by performing a sympathetic block. The first patient experienced a burning and stabbing pain in the contralateral upper extremity of approach side used in anterior cervical discectomy and fusion, and underwent a stellate ganglion b...

  10. Leptin into the rostral ventral lateral medulla (RVLM augments renal sympathetic nerve activity and blood pressure

    Directory of Open Access Journals (Sweden)

    Maria J Barnes

    2014-08-01

    Full Text Available Leptin is a hormone released from adipose tissue. While this hormone normally acts to reduce feeding behavior and increase energy expenditure, in obesity, resistance to these effects occurs even though the hormone is released in large amounts. Although leptin no longer works to suppress feeding in the obese, leptin retains its potent effects on other autonomic functions such as blood pressure regulation. Leptin has been associated with hypertension and increased sympathetic autonomic activity. Therefore, leptin is emerging as a major contributor to the hypertensive state observed in obesity. Sympathetic control of blood pressure is maintained principally by autonomic reflex control circuits in the caudal brainstem. The rostral ventral-lateral medulla (RVLM is the primary regulator of the sympathetic nervous system, sending excitatory fibers to sympathetic preganglionic neurons to regulate sympathetic control over resistance vessels and blood pressure. Previous studies from our laboratory have shown that neurons in the ventral lateral medulla express leptin receptors (ObRb. Our present study using pseudo-rabies multi-synaptic retrograde tract tracing and immunohistochemical methods revealed that neurons within the RVLM that send sympathetic projections to the kidney express leptin receptors. Acute microinjection of leptin (1 and 3µg; 40nL into the RVLM evoked a significant increase in Mean Arterial Pressure (MAP and renal sympathetic nerve activity (RSNA. When the 3µg dose of leptin was preceded with a leptin antagonist, (SLAN-4; 1ng, it attenuated the cardiovascular response of leptin. Taken together, these data suggest that leptin’s actions within the RVLM may influence blood pressure and renal sympathetic nerve activity.

  11. Leptin‐Induced Endothelial Dysfunction Is Mediated by Sympathetic Nervous System Activity

    OpenAIRE

    Wang, Jintao; Wang, Hui; Luo, Wei; Guo, Chiao; Wang, Julia; Chen, Y.E.; Chang, Lin; Eitzman, Daniel T.

    2013-01-01

    Background The adipocyte‐derived hormone leptin is elevated in obesity and may contribute to vascular risk associated with obesity. The mechanism(s) by which leptin affects vascular disease is unclear, although leptin has been shown to increase sympathetic activity. The aim of this study was to investigate the effect of leptin treatment on endothelial function and the role of the local sympathetic nervous system in mediating these effects. Methods and Results Recombinant leptin was administer...

  12. Enhanced adipose afferent reflex contributes to sympathetic activation in diet-induced obesity hypertension.

    Science.gov (United States)

    Xiong, Xiao-Qing; Chen, Wei-Wei; Han, Ying; Zhou, Ye-Bo; Zhang, Feng; Gao, Xing-Ya; Zhu, Guo-Qing

    2012-11-01

    We recently found that adipose afferent reflex (AAR) induced by chemical stimulation of white adipose tissue (WAT) increased sympathetic outflow and blood pressure in normal rats. The study was designed to test the hypothesis that AAR contributes to sympathetic activation in obesity hypertension. Male rats were fed with a control diet (12% kcal as fat) or high-fat diet (42% kcal as fat) for 12 weeks to induce obesity hypertension. Stimulation of WAT with capsaicin increased renal sympathetic nerve activity and mean arterial pressure. Both AAR and WAT afferent activity were enhanced in obesity hypertension (OH) compared with obesity nonhypertension (ON) and in ON compared with obesity-resistant or control diet rats. WAT sensory denervation induced by resiniferatoxin caused greater decreases in renal sympathetic nerve activity and mean arterial pressure in OH than ON and in ON than obesity-resistant or control. The depressor effect of resiniferatoxin lasted ≥ 3 weeks in OH. Leptin antagonist in WAT reduced renal sympathetic nerve activity and mean arterial pressure in OH. WAT injection of capsaicin increased plasma renin, angiotensin II, and norepinephrine levels in OH and caused more c-fos expression in paraventricular nucleus in OH than ON and in ON than obesity-resistant or control rats. Inhibiting paraventricular nucleus neurons with lidocaine attenuated renal sympathetic nerve activity in OH and ON, decreased mean arterial pressure in OH, and abolished the capsaicin-induced AAR in all groups. The results indicate that enhanced AAR contributes to sympathetic activation in OH, and paraventricular nucleus plays an important role in the enhanced AAR and sympathetic activation in OH.

  13. Microneurographic evidence of sudden sympathetic withdrawal in carotid sinus syncope; treatment with ergotamine

    Science.gov (United States)

    Costa, F.; Biaggioni, I.

    1994-01-01

    A proportion of patients with carotid sinus syncope (CSS) remain symptomatic even after pacemaker implantation because of persistence of a vasodepressor component. We report a patient with CSS whose syncopal episodes could be reproduced by carotid sinus massage and were due to profound hypotension associated with sudden sympathetic withdrawal, based on direct measurements of sympathetic nerve traffic. A double-blind trial with inhaled ergotamine provided significant symptomatic relief.

  14. Sympathetic skin response--a method of assessing unmyelinated axon dysfunction in peripheral neuropathies.

    OpenAIRE

    Shahani, B T; Halperin, J J; Boulu, P; Cohen, J.

    1984-01-01

    The sympathetic skin response (SSR) was measured in 33 patients with peripheral neuropathies and in 30 normal control subjects. Abnormalities of the response were correlated with clinical, pathologic, and EMG observations. The response was usually absent in axonal neuropathies, but present in demyelinating disorders. Abnormalities of the sympathetic skin response did not correlate well with clinical evidence of dysautonomia, but were a reliable indicator of disorders affecting unmyelinated ax...

  15. Catecholaminergic innervation of central and peripheral auditory circuitry varies with reproductive state in female midshipman fish, Porichthys notatus.

    Directory of Open Access Journals (Sweden)

    Paul M Forlano

    Full Text Available In seasonal breeding vertebrates, hormone regulation of catecholamines, which include dopamine and noradrenaline, may function, in part, to modulate behavioral responses to conspecific vocalizations. However, natural seasonal changes in catecholamine innervation of auditory nuclei is largely unexplored, especially in the peripheral auditory system, where encoding of social acoustic stimuli is initiated. The plainfin midshipman fish, Porichthys notatus, has proven to be an excellent model to explore mechanisms underlying seasonal peripheral auditory plasticity related to reproductive social behavior. Recently, we demonstrated robust catecholaminergic (CA innervation throughout the auditory system in midshipman. Most notably, dopaminergic neurons in the diencephalon have widespread projections to auditory circuitry including direct innervation of the saccule, the main endorgan of hearing, and the cholinergic octavolateralis efferent nucleus (OE which also projects to the inner ear. Here, we tested the hypothesis that gravid, reproductive summer females show differential CA innervation of the auditory system compared to non-reproductive winter females. We utilized quantitative immunofluorescence to measure tyrosine hydroxylase immunoreactive (TH-ir fiber density throughout central auditory nuclei and the sensory epithelium of the saccule. Reproductive females exhibited greater density of TH-ir innervation in two forebrain areas including the auditory thalamus and greater density of TH-ir on somata and dendrites of the OE. In contrast, non-reproductive females had greater numbers of TH-ir terminals in the saccule and greater TH-ir fiber density in a region of the auditory hindbrain as well as greater numbers of TH-ir neurons in the preoptic area. These data provide evidence that catecholamines may function, in part, to seasonally modulate the sensitivity of the inner ear and, in turn, the appropriate behavioral response to reproductive acoustic

  16. Evaluation of sympathetic activity by 123I-metaiodobenzylguanidine myocardial scintigraphy in dilated cardiomyopathy patients with sleep breathing disorder

    International Nuclear Information System (INIS)

    Because increased sympathetic nervous activity (SNA) in patients with dilated cardiomyopathy (DCM) associated with sleep breathing disorder (SBD) is known to deteriorate the prognosis of cardiac failure, 123I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy was used as the investigative tool in the present study. The study group comprised 53 patients (47 men, 6 women; mean age 56±3 years) with chronic stable DCM. Patients were divided into SBD(+) or SBD(-) group according to 24-h pulse oximetry results. SBD(+) was defined when the 3% oxygen desaturation index was more than 15/h during sleep. In total, 32 patients were SBD(-) and 21 were SBD(+). In both groups, pulse oximetry were performed during sleep and awakening pulse rate, and measurement of the blood levels of catecholamines and B-type natriuretic peptide was performed. MIBG myocardial scintigraphy and echocardiography were performed at the same time. No significant difference was found between the 2 groups in catecholamine levels or left ventricular ejection fraction. However, MIBG had a significantly increased washout rate and a significantly decreased delayed heart to mediastinum ratio in the SBD(+) group compared with the SBD(-) group. SNA is increased in DCM patients when associated with SBD. MIBG myocardial scintigraphy may be a sensitive method of detecting increased SNA. (author)

  17. Permissive Parenting, Deviant Peer Affiliations, and Delinquent Behavior in Adolescence: the Moderating Role of Sympathetic Nervous System Reactivity.

    Science.gov (United States)

    Hinnant, J Benjamin; Erath, Stephen A; Tu, Kelly M; El-Sheikh, Mona

    2016-08-01

    The present study examined two measures of sympathetic nervous system (SNS) activity as moderators of the indirect path from permissive parenting to deviant peer affiliations to delinquency among a community sample of adolescents. Participants included 252 adolescents (M = 15.79 years; 53 % boys; 66 % European American, 34 % African American). A multi-method design was employed to address the research questions. Two indicators of SNS reactivity, skin conductance level reactivity (SCLR) and cardiac pre-ejection period reactivity (PEPR) were examined. SNS activity was measured during a baseline period and a problem-solving task (star-tracing); reactivity was computed as the difference between the task and baseline periods. Adolescents reported on permissive parenting, deviant peer affiliations, externalizing behaviors, and substance use (alcohol, marijuana). Analyses revealed indirect effects between permissive parenting and delinquency via affiliation with deviant peers. Additionally, links between permissive parenting to affiliation with deviant peers and affiliation with deviant peers to delinquency was moderated by SNS reactivity. Less SNS reactivity (less PEPR and/or less SCLR) were risk factors for externalizing problems and alcohol use. Findings highlight the moderating role of SNS reactivity in parenting and peer pathways that may contribute to adolescent delinquency and point to possibilities of targeted interventions for vulnerable youth. PMID:26667026

  18. Adrenal G protein-coupled receptor kinase-2 in regulation of sympathetic nervous system activity in heart failure

    Institute of Scientific and Technical Information of China (English)

    Katie; A; Mc; Crink; Ava; Brill; Anastasios; Lymperopoulos

    2015-01-01

    Heart failure(HF), the number one cause of death in the western world, is caused by the insufficient performance of the heart leading to tissue underperfusion in response to an injury or insult. It comprises complex interactions between important neurohormonal mechanisms that try but ultimately fail to sustain cardiac output. The most prominent such mechanism is the sympathetic(adrenergic) nervous system(SNS), whose activity and outflow are greatly elevated in HF. SNS hyperactivity confers significant toxicity to the failing heart and markedly increases HF morbidity and mortality via excessive activation of adrenergic receptors, which are G protein-coupled receptors. Thus, ligand binding induces their coupling to heterotrimeric G proteins that transduce intracellular signals. G protein signaling is turned-off by the agonist-bound receptor phosphorylation courtesy of G protein-coupled receptor kinases(GRKs), followed by βarrestin binding, which prevents the GRK-phosphorylated receptor from further interaction with the G proteins and simultaneously leads it inside the cell(receptor sequestration). Recent evidence indicates that adrenal GRK2 and βarrestins can regulate adrenal catecholamine secretion, thereby modulating SNS activity in HF. The present review gives an account of all these studies on adrenal GRKs and βarrestins in HF and discusses the exciting new therapeutic possibilities for chronic HF offered by targeting these proteins pharmacologically.

  19. Lumbar Sympathetic Block with Botulinum Toxin Type B for Complex Regional Pain Syndrome: A Case Study.

    Science.gov (United States)

    Choi, Eunjoo; Cho, Chan Woo; Kim, Hye Young; Lee, Pyung Bok; Nahm, Francis Sahngun

    2015-01-01

    Lumbar sympathetic block (LSB) is an effective method for relief of sympathetically mediated pain in the lower extremities. To prolong the sympathetic blockade, sympathetic destruction with alcohol or radiofrequency has been used. The pre-ganglionic sympathetic nerves are cholinergic, and botulinum toxin (BTX) has been found to inhibit the release of acetylcholine at the cholinergic nerve terminals. Moreover, BTX type B (BTX-B) is more convenient to use than BTX type A. Based on these findings, we performed LSB on the 2 patients with complex regional pain syndrome (CRPS) in the lower extremity. Levobupivacaine 0.25% 5 mL mixed with BTX-B 5,000 IU was given under fluoroscopic guidance. Two months after LSB with BTX-B, pain intensity and the Leeds assessment of neuropathic symptoms and signs (LANSS) score were significantly reduced. Allodynia and coldness disappeared and skin color came back to normal. In conclusion, BTX-B can produce an efficacious and durable sympathetic blocking effect on patients with CRPS.

  20. Skin sympathetic outflow during head-down neck flexion in humans.

    Science.gov (United States)

    Ray, C A; Hume, K M; Shortt, T L

    1997-09-01

    We have previously demonstrated increases in muscle sympathetic nerve activity during head-down neck flexion (HDNF). The purpose of the present study was to determine if HDNF also activates skin sympathetic nerve activity (SSNA). SSNA, heart rate, arterial pressure, skin blood flow, calf blood flow, and calculated calf vascular resistance (mean arterial pressure/calf blood flow) were determined in 12 subjects during 3 min of baseline (lying prone with chin supported) and 3 min of HDNF. There were no significant changes in heart rate and arterial pressures during HDNF; however, diastolic and mean arterial pressure tended to increase slightly. Calf blood flow decreased 22% and calf vascular resistance increased 46% during HDNF. SSNA did not significantly change during HDNF. In three subjects we measured both muscle and skin sympathetic nerve activity during HDNF. In these trials, muscle sympathetic nerve activity consistently increased, but SSNA did not. The results indicate that HDNF in humans activates muscle sympathetic nerve activity, but does not activate SSNA. Thus vestibular stimulation may elicit differential activation of sympathetic outflow in humans. PMID:9321897

  1. Lumbar Sympathetic Block with Botulinum Toxin Type B for Complex Regional Pain Syndrome: A Case Study.

    Science.gov (United States)

    Choi, Eunjoo; Cho, Chan Woo; Kim, Hye Young; Lee, Pyung Bok; Nahm, Francis Sahngun

    2015-01-01

    Lumbar sympathetic block (LSB) is an effective method for relief of sympathetically mediated pain in the lower extremities. To prolong the sympathetic blockade, sympathetic destruction with alcohol or radiofrequency has been used. The pre-ganglionic sympathetic nerves are cholinergic, and botulinum toxin (BTX) has been found to inhibit the release of acetylcholine at the cholinergic nerve terminals. Moreover, BTX type B (BTX-B) is more convenient to use than BTX type A. Based on these findings, we performed LSB on the 2 patients with complex regional pain syndrome (CRPS) in the lower extremity. Levobupivacaine 0.25% 5 mL mixed with BTX-B 5,000 IU was given under fluoroscopic guidance. Two months after LSB with BTX-B, pain intensity and the Leeds assessment of neuropathic symptoms and signs (LANSS) score were significantly reduced. Allodynia and coldness disappeared and skin color came back to normal. In conclusion, BTX-B can produce an efficacious and durable sympathetic blocking effect on patients with CRPS. PMID:26431145

  2. Prospective randomized controlled intervention trial: Comprehensive Yogic Breathing Improves Cardiac autonomic functions and Quality of life in Diabetes

    Directory of Open Access Journals (Sweden)

    V P Jyotsna

    2012-01-01

    Full Text Available Aims and Objectives: To assess the effect of Comprehensive Yogic Breathing Program on glycemic control, quality of life, and cardiac autonomic functions in diabetes. Material and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 120 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes (n = 56 and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program (n = 64. Standard therapy included advice on diet, walk, and oral antidiabetic drugs. Comprehensive yogic breathing program was an interactive session in which Sudarshan kriya yoga, a rhythmic cyclical breathing, preceded by Pranayam was taught under guidance of a certified teacher. Change in fasting, post prandial blood sugars, glycated hemoglobin, and quality of life were assessed. Cardiac autonomic function tests were done before and six months after intervention. Results: There was significant improvement in psychological (P = 0.006 and social domains (P = 0.04 and total quality of life (P = 0.02 in the group practicing comprehensive yogic breathing program as compared to the group following standard therapy alone. In the group following breathing program, the improvement in sympathetic cardiac autonomic functions was statistically significant (P = 0.01, while the change in the standard group was not significant (P = 0.17. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P = 0.07. In the standard therapy group, no change in cardiac autonomic functions was noted (P = 0.76. The parameters of glycemic control were comparable in both groups. Conclusion: There was significant improvement in quality of life and cardiac autonomic functions in the diabetes patients practicing comprehensive yogic breathing

  3. Cardiac Risk Assessment

    Science.gov (United States)

    ... to assess cardiac risk include: High-sensitivity C-reactive protein (hs-CRP) : Studies have shown that measuring ... LDL-C but does not respond to typical strategies to lower LDL-C such as diet, exercise, ...

  4. Sudden Cardiac Arrest

    Science.gov (United States)

    ... Heart Risk Factors & Prevention Heart Diseases & Disorders Atrial Fibrillation (AFib) Sudden Cardiac Arrest (SCA) SCA: Who's At Risk? Prevention of SCA What Causes SCA? SCA Awareness Atrial Flutter Heart Block Heart Failure Sick Sinus Syndrome Substances & Heart Rhythm Disorders Symptoms & ...

  5. Socially differentiated cardiac rehabilitation

    DEFF Research Database (Denmark)

    Meillier, Lucette Kirsten; Nielsen, Kirsten Melgaard; Larsen, Finn Breinholt;

    2012-01-01

    to a standard rehabilitation programme (SRP). If patients were identified as socially vulnerable, they were offered an extended version of the rehabilitation programme (ERP). Excluded patients were offered home visits by a cardiac nurse. Concordance principles were used in the individualised programme elements......%. Patients were equally distributed to the SRP and the ERP. No inequality was found in attendance and adherence among referred patients. Conclusions: It seems possible to overcome unequal referral, attendance, and adherence in cardiac rehabilitation by organisation of systematic screening and social......Aim: The comprehensive cardiac rehabilitation (CR) programme after myocardial infarction (MI) improves quality of life and results in reduced cardiac mortality and recurrence of MI. Hospitals worldwide face problems with low participation rates in rehabilitation programmes. Inequality...

  6. Cardiac arrest - cardiopulmonary resuscitation

    Institute of Scientific and Technical Information of China (English)

    Basri Lenjani; Besnik Elshani; Nehat Baftiu; Kelmend Pallaska; Kadir Hyseni; Njazi Gashi; Nexhbedin Karemani; Ilaz Bunjaku; Taxhidin Zaimi; Arianit Jakupi

    2014-01-01

    Objective:To investigate application of cardiopulmonary resuscitation(CPR) measures within the golden minutes inEurope.Methods:The material was taken from theUniversityClinical Center ofKosovo -EmergencyCentre inPristina, during the two(2) year period(2010-2011).The collected date belong to the patients with cardiac arrest have been recorded in the patients' log book protocol at the emergency clinic.Results:During the2010 to2011 in the emergency center of theCUCK inPristina have been treated a total of269 patients with cardiac arrest, of whom159 or59.1% have been treated in2010, and110 patients or40.9% in2011.Of the269 patients treated in the emergency centre,93 or34.6% have exited lethally in the emergency centre, and176 or 65.4% have been transferred to other clinics.In the total number of patients with cardiac arrest, males have dominated with186 cases, or69.1%.The average age of patients included in the survey was56.7 year oldSD±16.0 years.Of the269 patients with cardiac arrest, defibrillation has been applied for93 or34.6% of patients.In the outpatient settings defibrillation has been applied for3 or3.2% of patients.Patients were defibrillated with application of one to four shocks. Of27 cases with who have survived cardiac arrest, none of them have suffered cardiac arrest at home,3 or11.1% of them have suffered cardiac arrest on the street, and24 or88.9% of them have suffered cardiac arrest in the hospital.5 out of27 patients survived have ended with neurological impairment.Cardiac arrest cases were present during all days of the week, but frequently most reported cases have been onMonday with32.0% of cases, and onFriday with24.5% of cases. Conclusions:All survivors from cardiac arrest have received appropriate medical assistance within10 min from attack, which implies that if cardiac arrest occurs near an institution health care(with an opportunity to provide the emergent health care) the rate of survival is higher.

  7. Evaluation of cardiac modulation in children in response to apnea/hypopnea using the Phone Oximeter(™).

    Science.gov (United States)

    Dehkordi, Parastoo; Garde, Ainara; Karlen, Walter; Petersen, Christian L; Wensley, David; Dumont, Guy A; Mark Ansermino, J

    2016-02-01

    Individuals with sleep disordered breathing (SDB) can experience changes in automatic cardiac regulation as a result of frequent sleep fragmentation and disturbance in normal respiration and oxygenation that accompany most apnea/hypopnea events. In adults, these changes are reflected in enhanced sympathetic and reduced parasympathetic activity. In this study, we examined the autonomic cardiac regulation in children with and without SDB, through spectral and detrended fluctuation analysis (DFA) of pulse rate variability (PRV). PRV was measured from pulse-to-pulse intervals (PPIs) of the photoplethysmogram (PPG) recorded from 160 children using the Phone Oximeter(™) in the standard setting of overnight polysomnography. Spectral analysis of PRV showed the cardiac parasympathetic index (high frequency, HF) was lower (p < 0.01) and cardiac sympathetic indices (low frequency, LF and LF/HF ratio) were higher (p < 0.01) during apnea/hypopnea events for more than 95% of children with SDB. DFA showed the short- and long-range fluctuations of heart rate were more strongly correlated in children with SDB compared to children without SDB. These findings confirm that the analysis of the PPG recorded using the Phone Oximeter(™) could be the basis for a new screening tool for assessing PRV in non-clinical environment. PMID:26732019

  8. Awareness in cardiac anesthesia.

    LENUS (Irish Health Repository)

    Serfontein, Leon

    2010-02-01

    Cardiac surgery represents a sub-group of patients at significantly increased risk of intraoperative awareness. Relatively few recent publications have targeted the topic of awareness in this group. The aim of this review is to identify areas of awareness research that may equally be extrapolated to cardiac anesthesia in the attempt to increase understanding of the nature and significance of this scenario and how to reduce it.

  9. Cardiac rehabilitation in Germany.

    Science.gov (United States)

    Karoff, Marthin; Held, Klaus; Bjarnason-Wehrens, Birna

    2007-02-01

    The purpose of this review is to give an overview of the rehabilitation measures provided for cardiac patients in Germany and to outline its legal basis and outcomes. In Germany the cardiac rehabilitation system is different from rehabilitation measures in other European countries. Cardiac rehabilitation in Germany since 1885 is based on specific laws and the regulations of insurance providers. Cardiac rehabilitation has predominantly been offered as an inpatient service, but has recently been complemented by outpatient services. A general agreement on the different indications for offering these two services has yet to be reached. Cardiac rehabilitation is mainly offered after an acute cardiac event and bypass surgery. It is also indicated in severe heart failure and special cases of percutaneous coronary intervention. Most patients are men (>65%) and the age at which events occur is increasing. The benefits obtained during the 3-4 weeks after an acute event, and confirmed in numerous studies, are often later lost under 'usual care' conditions. Many attempts have been made by rehabilitation institutions to improve this deficit by providing intensive aftercare. One instrument set up to achieve this is the nationwide institution currently comprising more than 6000 heart groups with approximately 120000 outpatients. After coronary artery bypass grafting or acute coronary syndrome cardiac rehabilitation can usually be started within 10 days. The multidisciplinary rehabilitation team consists of cardiologists, psychologists, exercise therapists, social workers, nutritionists and nurses. The positive effects of cardiac rehabilitation are also important economically, for example, for the improvement of secondary prevention and vocational integration. PMID:17301623

  10. Cardiac tumours in infancy

    OpenAIRE

    Yadava, O.P.

    2012-01-01

    Cardiac tumours in infancy are rare and are mostly benign with rhabdomyomas, fibromas and teratomas accounting for the majority. The presentation depends on size and location of the mass as they tend to cause cavity obstruction or arrhythmias. Most rhabdomyomas tend to regress spontaneously but fibromas and teratomas generally require surgical intervention for severe haemodynamic or arrhythmic complications. Other relatively rare cardiac tumours too are discussed along with an Indian perspect...

  11. Infected cardiac hydatid cyst

    OpenAIRE

    Ceviz, M; Becit, N; Kocak, H.

    2001-01-01

    A 24 year old woman presented with chest pain and palpitation. The presence of a semisolid mass—an echinococcal cyst or tumour—in the left ventricular apex was diagnosed by echocardiography, computed tomography, and magnetic resonance imaging. The infected cyst was seen at surgery. The cyst was removed successfully by using cardiopulmonary bypass with cross clamp.


Keywords: cardiac hydatid cyst; infected cardiac hydatid cyst

  12. Sympathetic skin response: a new test to diagnose erectile dysfunction

    Institute of Scientific and Technical Information of China (English)

    Guang-You ZHU; Yan SHEN

    2001-01-01

    Electrophysiological monitoring of the activity of the penile sympathetic skin responses (PSSR) in healthy men and patients with erectile dysfunction (ED). Methods: PSSR were recorded from the skin of penis with disk electrodes at the time of electric stimulation of left median nerves. Results: PSSR were recorded from all the healthy men and almost all the patients. In healthy men the latency of P0, the latency of N1, the duration of N1 and the amplitude of N1 were 1249 ± 111 ms, 2239 ± 286 ms, 1832 ± 505 ms and 470 μV (median), respectively. In ED patients the latency of P0, the latency of N1, the duration of N1 and the amplitude of N1 were 1467 ± 183 ms ( P < 0.01), 2561±453 ms (P <0.05), 2560±861 ms (P <0.01) and 91 μV (P <0.01), respectively. The normal latency of P0 was less than 1471 ms. The normal amplitude of N1 was more than 235 μV. According to this normal value, of 20 patients 11 showed longer latency of P0, and 14 showed lower amplitude of N1 as compared with those of normal subjects.Conclusion: PSSR can be used as an electrophysiological method in assisting the diagnosis of ED.

  13. Sympathetic Tone Induced by High Acoustic Tempo Requires Fast Respiration.

    Science.gov (United States)

    Watanabe, Ken; Ooishi, Yuuki; Kashino, Makio

    2015-01-01

    Many studies have revealed the influences of music, and particularly its tempo, on the autonomic nervous system (ANS) and respiration patterns. Since there is the interaction between the ANS and the respiratory system, namely sympatho-respiratory coupling, it is possible that the effect of musical tempo on the ANS is modulated by the respiratory system. Therefore, we investigated the effects of the relationship between musical tempo and respiratory rate on the ANS. Fifty-two healthy people aged 18-35 years participated in this study. Their respiratory rates were controlled by using a silent electronic metronome and they listened to simple drum sounds with a constant tempo. We varied the respiratory rate-acoustic tempo combination. The respiratory rate was controlled at 15 or 20 cycles per minute (CPM) and the acoustic tempo was 60 or 80 beats per minute (BPM) or the environment was silent. Electrocardiograms and an elastic chest band were used to measure the heart rate and respiratory rate, respectively. The mean heart rate and heart rate variability (HRV) were regarded as indices of ANS activity. We observed a significant increase in the mean heart rate and the low (0.04-0.15 Hz) to high (0.15-0.40 Hz) frequency ratio of HRV, only when the respiratory rate was controlled at 20 CPM and the acoustic tempo was 80 BPM. We suggest that the effect of acoustic tempo on the sympathetic tone is modulated by