WorldWideScience

Sample records for cardiac sympathetic innervation

  1. Impaired cardiac sympathetic innervation in symptomatic patients with long QT syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kies, Peter; Stegger, Lars; Schober, Otmar [University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); Paul, Matthias; Moennig, Gerold [University Hospital Muenster, Department for Cardiology and Angiology, Muenster (Germany); Gerss, Joachim [University of Muenster, Institute of Biostatistics and Clinical Research, Muenster (Germany); Wichter, Thomas [Marienhospital Osnabrueck, Department of Cardiology, Niels-Stensen-Kliniken, Osnabrueck (Germany); Schaefers, Michael [University of Muenster, European Institute of Molecular Imaging - EIMI, Muenster (Germany); Schulze-Bahr, Eric [University Hospital Muenster, Department for Cardiology and Angiology, Muenster (Germany); University Hospital Muenster, Institute for Genetics of Heart Diseases, Muenster (Germany)

    2011-10-15

    Increased sympathetic activation is a key modifier for arrhythmogenesis in patients with long QT syndrome (LQTS), a congenital channelopathy. Therefore, we investigated cardiac sympathetic function using {sup 123}I-metaiodobenzylguanidine (MIBG) single photon emission computed tomography (SPECT) in a cohort of symptomatic LQTS patients and correlated these findings with the underlying genotype. [{sup 123}I]MIBG SPECT was performed in 28 LQTS patients. Among these, 18 patients (64%) had a previous syncope and 10 patients (36%) survived sudden cardiac arrest. Patients were characterized in terms of genetic subtypes and QTc interval on surface ECGs. SPECT images were analysed for regional [{sup 123}I]MIBG uptake in a 33-segment bullseye scheme and compared to those obtained from 10 age-matched healthy control subjects (43 {+-} 12 years). An abnormal {sup 123}I-MIBG scan was found in 17 of 28 LQTS patients (61%) with a tracer reduction mainly located in the anteroseptal segments of the left ventricle. This finding was independent of the genetic LQTS subtype. In addition, no differences were found between LQTS patients with a QTc >500 ms vs <500 ms or those suffering from syncope vs VF (p > 0.05). A distinct regional pattern of impaired cardiac sympathetic function was identified in the majority of symptomatic LQTS patients. This innervation defect was independent of the underlying genotype and clinical disease expression. (orig.)

  2. Impaired cardiac sympathetic innervation in symptomatic patients with long QT syndrome

    International Nuclear Information System (INIS)

    Increased sympathetic activation is a key modifier for arrhythmogenesis in patients with long QT syndrome (LQTS), a congenital channelopathy. Therefore, we investigated cardiac sympathetic function using 123I-metaiodobenzylguanidine (MIBG) single photon emission computed tomography (SPECT) in a cohort of symptomatic LQTS patients and correlated these findings with the underlying genotype. [123I]MIBG SPECT was performed in 28 LQTS patients. Among these, 18 patients (64%) had a previous syncope and 10 patients (36%) survived sudden cardiac arrest. Patients were characterized in terms of genetic subtypes and QTc interval on surface ECGs. SPECT images were analysed for regional [123I]MIBG uptake in a 33-segment bullseye scheme and compared to those obtained from 10 age-matched healthy control subjects (43 ± 12 years). An abnormal 123I-MIBG scan was found in 17 of 28 LQTS patients (61%) with a tracer reduction mainly located in the anteroseptal segments of the left ventricle. This finding was independent of the genetic LQTS subtype. In addition, no differences were found between LQTS patients with a QTc >500 ms vs 0.05). A distinct regional pattern of impaired cardiac sympathetic function was identified in the majority of symptomatic LQTS patients. This innervation defect was independent of the underlying genotype and clinical disease expression. (orig.)

  3. Scintigraphic assessment of cardiac sympathetic innervation with I-123-metaiodobenzylguanidine in cardiomyopathy. Special reference to cardiac arrhythmia

    International Nuclear Information System (INIS)

    Cardiac sympathetic imagings with I-123-metaiodobenzylguanidine (MIBG) were carried out in 5 cases with dilated cardiomyopathy (DCM), 26 cases with hypertrophic cardiomyopathy (HCM), and 4 cases without cardiac disease as a control to assess cardiac sympathetic innervation qualitatively and quantitatively, and to clarify the relation of MIBG accumulation to arrhythmia. MIBG scintigraphy was performed at 15 min. (early image) and 4 hr. (delayed image) after intravenous injection of MIBG 111 MBq. The MIBG uptake ratio of mediastinum (H/M) and the cardiac washout rate (WR) from early to delayed images were calculated. On both early and delayed SPECTs, MIBG uptake was assessed by defect scores (DSs). Regarding the cases with HCM, the MIBG uptake ratio, WR, and DS were also compared in cases with and without arrhythmia. In DCM, the MIBG uptake on delayed SPECT was markedly low, the H/M ratio was significantly lower, and the DS was significantly higher than in the control (all p<0.05). As for the WR, there was no significant difference between HCM, DCM and the control. In HCM, significantly reduced MIBG uptake was observed in cases with ventricular techycardia (VT) and in cases with atrial fibrillation (Af), as compared with cases without arrhythmia (all p<0.05). There results suggest that MIBG scintigraphy might be a useful tool in the assessment of cardiac sympathetic abnormalities in cardiomyopathy, especially in cases with arrhythmia. (author)

  4. Scintigraphic assessment of cardiac sympathetic innervation with I-123-metaiodobenzylguanidine in cardiomyopathy. Special reference to cardiac arrhythmia

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Takahisa; Otsuka, Nobuaki; Sone, Teruki; Mimura, Hiroaki; Yanagimoto, Shinichi; Tomomitsu, Tatsushi; Fukunaga, Masao [Kawasaki Medical School, Kurashiki, Okayama (Japan); Morita, Koichi

    1999-07-01

    Cardiac sympathetic imagings with I-123-metaiodobenzylguanidine (MIBG) were carried out in 5 cases with dilated cardiomyopathy (DCM), 26 cases with hypertrophic cardiomyopathy (HCM), and 4 cases without cardiac disease as a control to assess cardiac sympathetic innervation qualitatively and quantitatively, and to clarify the relation of MIBG accumulation to arrhythmia. MIBG scintigraphy was performed at 15 min. (early image) and 4 hr. (delayed image) after intravenous injection of MIBG 111 MBq. The MIBG uptake ratio of mediastinum (H/M) and the cardiac washout rate (WR) from early to delayed images were calculated. On both early and delayed SPECTs, MIBG uptake was assessed by defect scores (DSs). Regarding the cases with HCM, the MIBG uptake ratio, WR, and DS were also compared in cases with and without arrhythmia. In DCM, the MIBG uptake on delayed SPECT was markedly low, the H/M ratio was significantly lower, and the DS was significantly higher than in the control (all p<0.05). As for the WR, there was no significant difference between HCM, DCM and the control. In HCM, significantly reduced MIBG uptake was observed in cases with ventricular techycardia (VT) and in cases with atrial fibrillation (Af), as compared with cases without arrhythmia (all p<0.05). There results suggest that MIBG scintigraphy might be a useful tool in the assessment of cardiac sympathetic abnormalities in cardiomyopathy, especially in cases with arrhythmia. (author)

  5. Prognostic value of sympathetic innervation and cardiac asynchrony in dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Manrique, Alain; Hitzel, Anne; Vera, Pierre [Rouen University Hospital - Henri Becquerel Center, Nuclear Medicine, Rouen (France); Bernard, Mathieu; Bauer, Fabrice [Rouen University Hospital, Cardiology, Rouen (France); Menard, Jean-Francois [Rouen University Hospital, Biostatistics, Rouen (France); Sabatier, Remi [Caen University Hospital, Cardiology, Caen (France); Jacobson, Arnold [GE Healthcare, Princeton, NJ (United States); Agostini, Denis [Caen University Hospital, Nuclear Medicine, Caen (France)

    2008-11-15

    The purpose of the study is to examine prognostic values of cardiac I-123 metaiodobenzylguanidine (MIBG) uptake and cardiac dyssynchrony in patients with dilated cardiomyopathy (DCM). Ninety-four patients with non-ischemic DCM underwent I-123 MIBG imaging for assessing cardiac sympathetic innervation and equilibrium radionuclide angiography. Mean phase angles and SD of the phase histogram were computed for both right ventricular (RV) and left ventricular (LV). Phase measures of interventricular (RV-LV) and intraventricular (SD-RV and SD-LV) asynchrony were computed. Most patients were receiving beta-blockers (89%) and angiotensin-converting enzyme inhibitors (88%). One patient (1%) was lost to follow-up, six had cardiac death (6.4%), eight had heart transplantation (8.6%), and seven had unplanned hospitalization for heart failure (7.5%; mean follow-up: 37 {+-} 16 months). Patients with poor clinical outcome were older, had higher The New York Heart Association functional class, impaired right ventricular ejection fraction and left ventricular ejection fraction, and impaired cardiac I-123 MIBG uptake. On multivariate analysis, I-123 MIBG heart-to-mediastinum (H/M) uptake ratio <1.6 was the only predictor of both primary (cardiac death or heart transplantation, RR = 7.02, p < 0.01) and secondary (cardiac death, heart transplantation, or recurrent heart failure, RR = 8.10, p = 0.0008) end points. In patients receiving modern medical therapy involving beta-blockers, I-123 MIBG uptake, but not intra-LV asynchrony, was predictive of clinical outcome. The impact of beta-blockers on the prognostic value of ventricular asynchrony remains to be clarified. (orig.)

  6. Non-invasive assessment of the effect of cardiac sympathetic innervation on metabolism of the human heart

    Energy Technology Data Exchange (ETDEWEB)

    Bengel, F.M.; Ziegler, S.I.; Nekolla, S.G.; Odaka, K.; Schwaiger, M. [Muenchen Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin; Ueberfuhr, P.; Reichart, B. [Muenchen Univ. (Germany). Herzchirurgische Klinik

    2000-11-01

    The role of cardiac sympathetic nerves in the regulation of myocardial metabolism is not well defined. Owing to the presence of incomplete reinnervation, heart transplant recipients provide a unique model to study the effects of efferent sympathetic innervation. Using this model, we sought to determine the influence of cardiac sympathetic signals on substrate utilisation and overall oxidative metabolism. In 21 transplant recipients, positron emission tomography was applied to determine sympathetic innervation with the noradrenaline analogue carbon-11 hydroxyephedrine, oxidative metabolism with carbon-11 acetate (n=14), and glucose utilisation with fluorine-18 fluorodeoxyglucose (n=7). The reinnervated area comprised 22%{+-}20% of the left ventricle. Oxidative metabolism was similar in denervated and reinnervated myocardium [0.06{+-}0.01 vs 0.06{+-}0.01/min for k(mono)], while glucose uptake was significantly higher in denervated myocardium (6.9{+-}6.6 vs 6.0{+-}6.2 {mu}mol/min/100 g; P=0.03). Reinnervation mainly occurred in the territory of the left anterior descending artery, where retention of {sup 11}C-hydroxyephedrine (6.8{+-}2.7%/min) was higher compared with territories of the left circumflex (4.1{+-}1.7%/min; P<0.01) and right coronary (3.8{+-}1.1%/min; P<0.01) arteries. Oxidative metabolism was similar in all three territories, but compared with the reinnervated territory of the left anterior descending artery (53%{+-}16% of maximum), relative FDG uptake was higher in territories of the left circumflex (76%{+-}6%, P<0.01) and right coronary (67%{+-}10%, P<0.05) arteries. Similar degrees of regional heterogeneity were not observed in normals. Thus, while overall energy production through oxidative metabolism remains unaffected, cardiac utilisation of glucose in the fasting state is increased in the absence of catecholamine uptake sites. Innervated myocardium, however, may preferentially utilise free fatty acids, suggesting a role for sympathetic tone in

  7. Non-invasive assessment of the effect of cardiac sympathetic innervation on metabolism of the human heart

    International Nuclear Information System (INIS)

    The role of cardiac sympathetic nerves in the regulation of myocardial metabolism is not well defined. Owing to the presence of incomplete reinnervation, heart transplant recipients provide a unique model to study the effects of efferent sympathetic innervation. Using this model, we sought to determine the influence of cardiac sympathetic signals on substrate utilisation and overall oxidative metabolism. In 21 transplant recipients, positron emission tomography was applied to determine sympathetic innervation with the noradrenaline analogue carbon-11 hydroxyephedrine, oxidative metabolism with carbon-11 acetate (n=14), and glucose utilisation with fluorine-18 fluorodeoxyglucose (n=7). The reinnervated area comprised 22%±20% of the left ventricle. Oxidative metabolism was similar in denervated and reinnervated myocardium [0.06±0.01 vs 0.06±0.01/min for k(mono)], while glucose uptake was significantly higher in denervated myocardium (6.9±6.6 vs 6.0±6.2 μmol/min/100 g; P=0.03). Reinnervation mainly occurred in the territory of the left anterior descending artery, where retention of 11C-hydroxyephedrine (6.8±2.7%/min) was higher compared with territories of the left circumflex (4.1±1.7%/min; P<0.01) and right coronary (3.8±1.1%/min; P<0.01) arteries. Oxidative metabolism was similar in all three territories, but compared with the reinnervated territory of the left anterior descending artery (53%±16% of maximum), relative FDG uptake was higher in territories of the left circumflex (76%±6%, P<0.01) and right coronary (67%±10%, P<0.05) arteries. Similar degrees of regional heterogeneity were not observed in normals. Thus, while overall energy production through oxidative metabolism remains unaffected, cardiac utilisation of glucose in the fasting state is increased in the absence of catecholamine uptake sites. Innervated myocardium, however, may preferentially utilise free fatty acids, suggesting a role for sympathetic tone in substrate utilisation. (orig.)

  8. Assessment of cardiac sympathetic nerve integrity with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raffel, David M. E-mail: raffel@umich.edu; Wieland, Donald M

    2001-07-01

    The autonomic nervous system plays a critical role in the regulation of cardiac function. Abnormalities of cardiac innervation have been implicated in the pathophysiology of many heart diseases, including sudden cardiac death and congestive heart failure. In an effort to provide clinicians with the ability to regionally map cardiac innervation, several radiotracers for imaging cardiac sympathetic neurons have been developed. This paper reviews the development of neuronal imaging agents and discusses their emerging role in the noninvasive assessment of cardiac sympathetic innervation.

  9. Physiological changes in human cardiac sympathetic innervation and activity assessed by 123I-metaiodobenzylguanidine (MIBG) imaging

    International Nuclear Information System (INIS)

    Physiologic changes in the human sympathetic nervous system (SNS) may be associated with cardiovascular diseases, so the present study assessed the age and gender differences in global cardiac SNS in normal subjects. The 163 subjects (74 men, 89 women; age range 40-89 years) whose coronary arteriogram was normal, and who had no other cardiac or neurohormonal diseases, and no medication affecting the autonomic nervous system were included. All study subjects underwent metaiodobenzylguanidine imaging. Both initial and delayed heart-to-mediastinum (H/M) ratios had a significant gender difference and showed a progressive decrease with aging. In addition, the initial H/M ratio had a significant positive correlation with the delayed H/M ratio (r=0.89, P<0.0001). Females (50-59 years) demonstrated significantly higher delayed H/M ratio than males of the same age. After the age of 60, the delayed H/M ratio in females progressively decreased with aging, similar to males. As for the washout rate, both genders had a significantly progressive increase with aging. In addition, there was a significant decrease in the delayed H/M ratio in 10 females with surgical menopause compared with 15 age-matched females without surgical menopause. Cardiac SNS appears to be regulated by various physiological factors. (author)

  10. Regional heterogeneity in cardiac sympathetic innervation in acute myocardial infarction: relationship with myocardial oedema on magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Gimelli, Alessia; Masci, Pier Giorgio; Pasanisi, Emilio Maria; Lombardi, Massimo [Fondazione CNR/Regione Toscana, Pisa (Italy); Liga, Riccardo; Grigoratos, Chrysanthos [University Hospital of Pisa, Pisa (Italy); Marzullo, Paolo [Fondazione CNR/Regione Toscana, Pisa (Italy); Institute of Clinical Physiology, CNR, Pisa (Italy)

    2014-09-15

    To assess the relationships between myocardial structure and function on cardiac magnetic resonance (CMR) imaging and sympathetic tone on {sup 123}I-metaiodobenzylguanidine ({sup 123}I-MIBG) scintigraphy early after myocardial infarction (MI). Ten patients underwent {sup 123}I-MIBG and {sup 99m}Tc-tetrofosmin rest cadmium zinc telluride scintigraphy 4 ± 1 days after MI. The segmental left ventricular (LV) relative radiotracer uptake of both {sup 99m}Tc-tetrofosmin and early {sup 123}I-MIBG was calculated. The day after scintigraphy, on CMR imaging, the extent of ischaemia-related oedema and of myocardial fibrosis (late gadolinium enhancement, LGE) was assessed. Accordingly, the extent of oedema and LGE was evaluated for each segment and segmental wall thickening determined. Based on LGE distribution, LV segments were categorized as ''infarcted'' (56 segments), ''adjacent'' (66 segments) or ''remote'' (48 segments). Infarcted segments showed a more depressed systolic wall thickening and greater extent of oedema than adjacent segments (p < 0.001) and remote segments (p < 0.001). Interestingly, while uptake of {sup 99m}Tc-tetrofosmin was significantly depressed only in infarcted segments (p < 0.001 vs. both adjacent and remote segments), uptake of {sup 123}I-MIBG was impaired not only in infarcted segments (p < 0.001 vs. remote) but also in adjacent segments (p = 0.024 vs. remote segments). At the regional level, after correction for {sup 99m}Tc-tetrofosmin and LGE distribution, segmental {sup 123}I-MIBG uptake (p < 0.001) remained an independent predictor of ischaemia-related oedema. After acute MI the regional impairment of sympathetic tone extends beyond the area of altered myocardial perfusion and is associated with myocardial oedema. (orig.)

  11. Sympathetic and sensory innervation of brown adipose tissue

    OpenAIRE

    Bartness, TJ; Vaughan, CH; Song, CK

    2010-01-01

    The innervation of brown adipose tissue (BAT) by the sympathetic nervous system (SNS) is incontrovertible and, with its activation, functions as the principal, if not exclusive, stimulator of BAT thermogenesis. The parasympathetic innervation of BAT only appears in two minor BAT depots, but not in the major interscapular BAT (IBAT) depot. BAT thermogenesis is triggered by the release of norepinephrine from its sympathetic nerve terminals, stimulating β3-adrenoceptors that turns on a cascade o...

  12. Remodelling sympathetic innervation in rat pancreatic islets ontogeny

    Directory of Open Access Journals (Sweden)

    Hiriart Marcia

    2009-06-01

    Full Text Available Abstract Background Pancreatic islets are not fully developed at birth and it is not clear how they are vascularised and innervated. Nerve Growth Factor (NGF is required to guide sympathetic neurons that innervate peripheral organs and also in cardiovascular system and ovary angiogenesis. Pancreatic beta cells of a transgenic mouse that over-expressed NGF in attracts sympathetic hyper-innervation towards them. Moreover, we have previously demonstrated that adult beta cells synthesize and secrete NGF; however, we do not know how is NGF secreted during development, nor if it might be trophic for sympathetic innervation and survival in the pancreas. We analyzed sympathetic innervation and vasculature development in rat pancreatic islets at different developmental stages; foetal (F19, early postnatal (P1, weaning period (P20 and adults. We temporarily correlated these events to NGF secretion by islet cells. Results Sympathetic fibres reached pancreatic islets in the early postnatal period, apparently following blood vessels. The maximal number of sympathetic fibres (TH immunopositive in the periphery of the islets was observed at P20, and then fibres entered the islets and reached the core where beta cells are mainly located. The number of fibres decreased from that stage to adulthood. At all stages studied, islet cells secreted NGF and also expressed the high affinity receptor TrkA. Foetal and neonatal isolated islet cells secreted more NGF than adults. TrkA receptors were expressed at all stages in pancreatic sympathetic fibres and blood vessels. These last structures were NGF–immunoreactive only at early stages (foetal and P0. Conclusion The results suggest that NGF signalling play an important role in the guidance of blood vessels and sympathetic fibres toward the islets during foetal and neonatal stages and could also preserve innervation at later stages of life.

  13. Innervation territories of single sympathetic C fibers in human skin.

    Science.gov (United States)

    Schmelz, M; Schmidt, R; Bickel, A; Torebjörk, H E; Handwerker, H O

    1998-04-01

    Microneurography techniques were used to record action potentials from unmyelinated nerve fibers (C fibers) in the cutaneous fascicles of the peroneal nerve in healthy volunteers. C units were identified by their long latency responses to electrical stimulation of their terminals in the skin. Their responsiveness to mechanical or heat stimuli applied to the skin or to sympathetic reflex provocation tests was determined by transient slowing of conduction velocity following activation (marking technique). In a sample of 381 C units, 59 were unresponsive to mechanical and thermal stimulation of their endings, but responded to sympathetic reflex provocation tests, e.g., arousal or deep inspiration. They were classified as sympathetic efferent units. On average, conduction velocities of sympathetic units were lower (0.78 +/- 0.12 m/s, mean +/- SD) than those of mechano-heat (CMH) or mechanoresponsive (CM) afferent C units (0.91 +/- 0.14 m/s). Endings of most of the sympathetic units were located in the skin of toes or in the foot dorsum. Innervation territories of 16 sympathetic units were mapped by means of conditioning transcutaneous electrical stimuli. Twelve units had one continuous skin territory, whereas two units had two and two other units had three and five separate territories, respectively. The mean innervated area was 128 mm2 (range: 24-350 mm2). Innervation territories of sympathetic units were of approximately the same size in different skin regions on the lower leg, foot, or toes. Based on responses to whole body cooling and warming, two units were tentatively classified as vasoconstrictor and sudomotor units, respectively. Eleven units were tested for responsiveness to iontophoresis of acetylcholine in their innervation territories. In five of them, activity was induced that was not due to central reflex activity but instead due to antidromic activation from the peripheral terminals. Iontophoresis of saline or histamine was ineffective. These findings

  14. Adrenergic innervation of the developing chick heart: neural crest ablations to produce sympathetically aneural hearts

    International Nuclear Information System (INIS)

    Ablation of various regions of premigratory trunk neural crest which gives rise to the sympathetic trunks was used to remove sympathetic cardiac innervation. Neuronal uptake of [3H]-norepinephrine was used as an index of neuronal development in the chick atrium. Following ablation of neural crest over somites 10-15 or 15-20, uptake was significantly decreased in the atrium at 16 and 17 days of development. Ablation of neural crest over somites 5-10 and 20-25 caused no decrease in [3H]-norepinephrine uptake. Removal of neural crest over somites 5-25 or 10-20 caused approximately equal depletions of [3H]-norepinephrine uptake in the atrium. Cardiac norepinephrine concentration was significantly depressed following ablation of neural crest over somites 5-25 but not over somites 10-20. Light-microscopic and histofluorescent preparations confirmed the absence of sympathetic trunks in the region of the normal origin of the sympathetic cardiac nerves following neural crest ablation over somites 10-20. The neural tube and dorsal root ganglia were damaged in the area of the neural-crest ablation; however, all of these structures were normal cranial and caudal to the lesioned area. Development of most of the embryos as well as the morphology of all of the hearts was normal following the lesion. These results indicate that it is possible to produce sympathetically aneural hearts by neural-crest ablation; however, sympathetic cardiac nerves account for an insignificant amount of cardiac norepinephrine

  15. Role of sympathetic innervation in obesity

    OpenAIRE

    Pereira, Mafalda Maria Robalo de Azevedo Aleixo

    2015-01-01

    Part of the results presented in this thesis were published in the following reference (DOI 10.1016/j.cell.2015.08.055): Wenwen Zeng*, Roksana M. Pirzgalska*, Mafalda M.A. Pereira, Nadiya Kubasova, Andreia Barateiro, Elsa Seixas, Yi-Hsueh Lu, Albina Kozlova, Henning Voss, Gabriel G. Martins, Jeffrey M. Friedman and Ana I. Domingos. Sympathetic Neuro-adipose Connections Mediate Leptin-Driven Lipolysis. Cell 163, 84-94 (2015). The work was also presented through poster presentations at iMED Con...

  16. Sympathetic re-innervation after heart transplantation: dual-isotope neurotransmitter scintigraphy, norepinephrine content and historical examination

    International Nuclear Information System (INIS)

    Cardiac transplantation entails surgical disruption of the sympathetic nerve fibres from their somata, resulting in sympathetic denervation. In order to investigate the occurrence of sympathetic re-innervation, neurotransmitter scintigraphy using the norepinephrine analogue iodine-123 metaiodobenzylguanidine (MIBG) was performed in 15 patients 2-69 months after transplantation. In addition, norepinephrine content and immunohistochemical reactions of antibodies to Schwann cell-associated S100 protein, to neuron-specific enolase (NSE) and to norepinephrine were examined in 34 endomyocardial biopsies of 29 patients 1-88 months after transplantation. Anterobasal 123I-MIBG uptake indicating partial sympathetic re-innervation could be shown in 40% of the scintigraphically investigated patients 37-69 months after transplantation. In immunohistochemical studies 83% of the patients investigated 1-72 Months after transplantation showed nerve fibres in their biopsies but not positive reaction to norepinephrine. Significant norepinephrine content indicating re-innervation could not be detected in any biopsy. It was concluded that in spite of the lack of norepinephrine content there seemed to be immunohistological and scintigraphic evidence of sympathetic re-innervation. An explanation for this contradictory finding may be the reduced or missing norepinephrine storage ability compared to the restored uptake ability of regenerated sympathetic nerve fibres. (orig.)

  17. Egr3 dependent sympathetic target tissue innervation in the absence of neuron death.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available Nerve Growth Factor (NGF is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS development. Egr3 is a transcription factor regulated by NGF signaling in sympathetic neurons that is essential for normal SNS development. Germline Egr3-deficient mice have physiologic dysautonomia characterized by apoptotic sympathetic neuron death and abnormal innervation to many target tissues. The extent to which sympathetic innervation abnormalities in the absence of Egr3 is caused by altered innervation or by neuron death during development is unknown. Using Bax-deficient mice to abrogate apoptotic sympathetic neuron death in vivo, we show that Egr3 has an essential role in target tissue innervation in the absence of neuron death. Sympathetic target tissue innervation is abnormal in many target tissues in the absence of neuron death, and like NGF, Egr3 also appears to effect target tissue innervation heterogeneously. In some tissues, such as heart, spleen, bowel, kidney, pineal gland and the eye, Egr3 is essential for normal innervation, whereas in other tissues such as lung, stomach, pancreas and liver, Egr3 appears to have little role in innervation. Moreover, in salivary glands and heart, two tissues where Egr3 has an essential role in sympathetic innervation, NGF and NT-3 are expressed normally in the absence of Egr3 indicating that abnormal target tissue innervation is not due to deregulation of these neurotrophins in target tissues. Taken together, these results clearly demonstrate a role for Egr3 in mediating sympathetic target tissue innervation that is independent of neuron survival or neurotrophin deregulation.

  18. Histomorphometric and sympathetic innervation of the human superficial temporal artery

    Directory of Open Access Journals (Sweden)

    Sreenivasulu Reddy

    2011-01-01

    Full Text Available Context: Following microvascular surgeries, stenosis and spasm of the arterial graft or the recipient vessel are serious complications which are often caused by intimal hyperplasia and perivascular nerves, respectively. Aims: The purpose of this study was to understand the characteristics of arterial wall and sympathetic innervation of the human superficial temporal artery (STA and also, the effect of aging on STA. Methods and Materials: Fifty-two fresh human STA (frontal branch samples were obtained from 26 cadavers (19 males and 7 females between the ages of 19 and 83 years. Samples were divided into three age groups: G1, 19-40 years; G2, 41-60 years; G3, over 61 years. 5μm-thin sections of each sample were taken and stained with haematoxylin-eosin, Verhoff′s and tyrosine hydroxylase (TH immunostaining. Results: The well-defined internal elastic lamina (IEL was observed in all samples of STA, whereas external elastic lamina (EEL was not prominent in almost all cases or absent in few cases. This might be the important factor in the process of intimal and medial hyperplasia in the frontal branch of STA. Notably, intimal thickening appeared from second decade of life. Sympathetic fibres are located mainly in tunica adventitia and outer media. Mean adventitial and sympathetic areas were found to be 0.080 and 0.010mm 2 , respectively. Statistical analysis used: One-way ANOVA followed by Tukey HSD post hoc test by using the SPSS 11.5 software. Conclusions: STA is prone to age related pathological changes. Sympathetic index may be used for analysis of sympathetic fibre-related problems (vasospasm, migraine of the STA.

  19. Sensory and sympathetic innervation of cervical facet joint in rats

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hai-yu; CHEN An-min; GUO Feng-jing; LIAO Guang-jun; XIAO Wei-dong

    2006-01-01

    Objective: To explore the patterns of innervation of cervical facet joints and determine the pathways from facet joints to dorsal root ganglions (DRGs) in order to clarify the causes of diffuse neck pain, headache, and shoulder pain.Methods: Forty-two male Sprague-Dawley rats,weighing 250-300 g, were randomly divided into three groups: Group A ( n = 18), Group B ( n = 18), and Group C (n = 6 ). Under anesthesia with intraperitoneal pentobarbital sodium (45 mg/kg body weight), a midline dorsal longitudinal incision was made over the cervical spine to expose the left cervical facet joint capsule of all the rats under a microscope. The rats in Group A underwent sympathectomy, but the rats in Group B and Group C did not undergo sympathectomy. Then 0.6 μl 5 % bisbenzimide (Bb) were injected into the C1-2, C3-4 and C5-6 facet joints of 6 rats respectively in Group A and Group B. The holes were immediately sealed with mineral wax to prevent leakage of Bb and the fascia and skin were closed. But in Group C, 0.9% normal saline was injected into the corresponding joint capsules. Then under deep reanesthesia with intraperitoneal pentobarbital sodium (45 mg/kg body weight), C1-C8 left DRGs in all rats and the sympathetic ganglions in Group B were obtained and the number of the labeled neurons was determined.Results: Neurons labeled with Bb were present in C1-C8 DRGs in both Group A and Group B, and sympathetic ganglions in Group B. In the C1-2 and C3-4 subgroups,labeled neurons were present from C1 to C8 DRGs, while in C5-6 subgroups they were from C, to C8. The number of Bb ( + ) neurons after sympathectomy was not significantly different in the injected level from that without sympathectomy. But in the other levels, the number of Bb ( + ) neurons after sympathectomy was significantly less than that without sympathectomy.Conclusions: The innervation of the cervical facet joints is derived from both sensory and sympathetic nervous system, and DRGs are associated with

  20. 123I-Labelled metaiodobenzylguanidine for the evaluation of cardiac sympathetic denervation in early stage amyloidosis

    OpenAIRE

    Noordzij, Walter; Glaudemans, Andor W. J. M.; van Rheenen, Ronald W. J.; Hazenberg, Bouke P. C.; Tio, René A; Dierckx, Rudi A. J. O.; Slart, Riemer H.J.A.

    2012-01-01

    Purpose Cardiac amyloidosis is a rare disorder, but it may lead to potentially life-threatening restrictive cardiomyopathy. Cardiac manifestations frequently occur in primary amyloidosis (AL) and familial amyloidosis (ATTR), but are uncommon in secondary amyloidosis (AA). Echocardiography is the method of choice for assessing cardiac amyloidosis. Amyloid deposits impair the function of sympathetic nerve endings. Disturbance of myocardial sympathetic innervations may play an important role in ...

  1. Evaluation of Sympathetic Innervation in Cardiomyopathy with 123I-MIBG

    International Nuclear Information System (INIS)

    123I-Iodine-metaiodobenzylguanidine(MIBG) which is a norepinephrine analogue, can be used to evaluate the sympathetic innervation of the heart. In this study, cardiac imaging with 123I-MIBG was performed in patients with 9 dilated cardiomyopathy, 2 ischemic cardiomyopathy and 1 acute myocardial infarction to evaluate the sympathetic nervous function. 123I-MIBG imaging showed multifocal defects (8), diffuse defect (2), near non-visualization (2). The defects of MIBG scans were found to be larger and more severe on 4 hours image than 30 minutes. Heart to lung, heart to mediastinum ratios were decreased at 4 hours than those at 30 minutes. Measured LVEF values were not correlated with the severity of MIBG uptake. 99mTc-MIBI imaging was also performed in all patients to find the relationship with 123I-MIBG scan. 99mTc-MIBI scan showed multifocal defects in 9 patients, diffuse defects in 1 patient and no defect in 2 patients. The defects are similar in size, severity and extent, but more larger and severe on 123I-MIBG imaging. Therefore, cardiac 123I-MIBG imaging is a useful method to evaluate the sympathetic nervous function in cardiomyopathy.

  2. Sympathetic re-innervation of myocardium after liver transplant in the hereditary amyloid neuropathy

    International Nuclear Information System (INIS)

    The hereditary amyloid neuropathy (HAN) is characterized by a progressive sensory-motor poly-neuropathy and a dysautonomia with myocardium sympathetic denervation. This is established by MIBL scintigraphy and may enhance the troubles of conduction and of cardiac rhythm. The amyloid deposits are constituted of anomalous pre-albumin fabricated by liver. The hepatic transplant (HT) is the only known treatment. Four patients (GI: 39 ± 5 years) have been studied by MIBG scintigraphy, 2.2 ± 0.7 years after HT, and compared with 12 patients (GII: 39 ± 12 years) studied before HT. The left ventricular function, the coronary arteries and the at-rest scintigraphy with thallium were normal for all of them. The cardiac capture of MIBG, evaluated by the cardio-mediastinal activity ratio (C/M), measured on an anterior thoracic planar acquisition performed 4 hours after the intravenous injection of 300 MBq, was higher for GI than for GII (1.49 ± 0.12 vs 1.29 ± 0.13, p 0.02). The washouts (4 h / 20 min) were not different. In tomography, the patients of GI presented focal anomalies with a more-or-less extended apical defect, a satisfying fixation of the basal half of the anterior wall, more-or-less overflowing the septal and lateral walls, and for 2 patients, a satisfying inferior fixation. On the contrary, 9/12 patients of GII have had a diffuse absence of fixation, the other three heaving a satisfying antero-basal fixation (χ2, p = 0.05). The results are not explained by difference of severity or evolution duration of HAN. Thus, it appears that there exists a sympathetic re-innervation of myocardium after HT in the HAN, debuting by the heart base, similarly with the effect of anatomic interruption of innervation in cardiac transplants

  3. Sympathetic Innervation Induced in Engrafted Engineered Cardiomyocyte Sheets by Glial Cell Line Derived Neurotrophic Factor In Vivo

    Directory of Open Access Journals (Sweden)

    Xian-ming Fu

    2013-01-01

    Full Text Available The aim of myocardial tissue engineering is to repair or regenerate damaged myocardium with engineered cardiac tissue. However, this strategy has been hampered by lack of functional integration of grafts with native myocardium. Autonomic innervation may be crucial for grafts to function properly with host myocardium. In this study, we explored the feasibility of in vivo induction of autonomic innervation to engineered myocardial tissue using genetic modulation by adenovirus encoding glial cell line derived neurotrophic factor (GDNF. GFP-transgene (control group or GDNF overexpressing (GDNF group engineered cardiomyocyte sheets were transplanted on cryoinjured hearts in rats. Nerve fibers in the grafts were examined by immunohistochemistry at 1, 2, and 4 weeks postoperatively. Growth associated protein-43 positive growing nerves and tyrosine hydroxylase positive sympathetic nerves were first detected in the grafts at 2 weeks postoperatively in control group and 1 week in GDNF group. The densities of growing nerve and sympathetic nerve in grafts were significantly increased in GDNF group. No choline acetyltransferase immunopositive parasympathetic nerves were observed in grafts. In conclusion, sympathetic innervation could be effectively induced into engrafted engineered cardiomyocyte sheets using GDNF.

  4. Role of perivascular sympathetic nerves and regional differences in the features of sympathetic innervation of the vascular system.

    Science.gov (United States)

    Tsuru, Hiromichi; Tanimitsu, Noriaki; Hirai, Tomohisa

    2002-01-01

    Maintenance of blood pressure is mostly dependent on sympathetic "tone", and the sympathetic nerve innervates the entire vascular bed, excepting the capillaries. Although norepinephrine (NE) is the principal neurotransmitter released upon sympathetic nerve stimulation, neuropeptide Y and ATP are cotransmitters in various vascular tissues. In addition, dopamine and epinephrine, as well as acetylcholine, have been shown to be sympathetic neurotransmitters in specific vasculatures. Transmitter NE release is modified by a number of endogenous substances including the transmitter itself. Chronic denervation of the preganglionic fiber induces an increase in NE release per pulse, indicating postganglionic neuronal supersensitivity. So far, three main adrenoceptor types have been shown, alpha1, alpha2 and beta, each of which is further divided into at least three subtypes, as well as the alpha1L-adrenoceptor, a phenotype of the cloned alpha1a-adrenoceptor, in the blood vessel. Thus, the response of vessels with different receptor types to a transmitter varies quantitatively and even qualitatively from one vessel to another. The remarkable diversity in the sympathetic innervation mechanism in the vascular system may play an important role in regional variations in the regulation of blood flow. The sympathetic nerve also exerts long-term trophic action on the blood vessel. In conclusion, the sympathetic nervous system plays an important role not only in the regulation of cardiovascular dynamics but in the maintenance of the vessel structure, as well. PMID:11855682

  5. Regulation of Autocrine Signaling in Subsets of Sympathetic Neurons Has Regional Effects on Tissue Innervation

    OpenAIRE

    Thomas G. McWilliams; Laura Howard; Sean Wyatt; Alun M. Davies

    2015-01-01

    Summary The regulation of innervation by target-derived factors like nerve growth factor (NGF) is the cornerstone of neurotrophic theory. Whereas autocrine signaling in neurons affecting survival and axon growth has been described, it is difficult to reconcile autocrine signaling with the idea that targets control their innervation. Here, we report that an autocrine signaling loop in developing mouse sympathetic neurons involving CD40L (TNFSF5) and CD40 (TNFRSF5) selectively enhances NGF-prom...

  6. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin

    OpenAIRE

    Zhang, Shujuan; Feng ZHANG; Sun, Haijian; Zhou, Yebo; Han, Ying

    2012-01-01

    Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sym...

  7. Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease.

    Science.gov (United States)

    Khan, Muzamil Majid; Lustrino, Danilo; Silveira, Willian A; Wild, Franziska; Straka, Tatjana; Issop, Yasmin; O'Connor, Emily; Cox, Dan; Reischl, Markus; Marquardt, Till; Labeit, Dittmar; Labeit, Siegfried; Benoit, Evelyne; Molgó, Jordi; Lochmüller, Hanns; Witzemann, Veit; Kettelhut, Isis C; Navegantes, Luiz C C; Pozzan, Tullio; Rudolf, Rüdiger

    2016-01-19

    The distribution and function of sympathetic innervation in skeletal muscle have largely remained elusive. Here we demonstrate that sympathetic neurons make close contact with neuromuscular junctions and form a network in skeletal muscle that may functionally couple different targets including blood vessels, motor neurons, and muscle fibers. Direct stimulation of sympathetic neurons led to activation of muscle postsynaptic β2-adrenoreceptor (ADRB2), cAMP production, and import of the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PPARGC1A) into myonuclei. Electrophysiological and morphological deficits of neuromuscular junctions upon sympathectomy and in myasthenic mice were rescued by sympathicomimetic treatment. In conclusion, this study identifies the neuromuscular junction as a target of the sympathetic nervous system and shows that sympathetic input is crucial for synapse maintenance and function. PMID:26733679

  8. Diabetic cardiac autonomic dysfunction. Parasympathetic versus sympathetic

    International Nuclear Information System (INIS)

    Diabetic cardiac autonomic dysfunction often causes lethal arrhythmia and sudden cardiac death. 123I-Metaiodobenzylguanidine (MIBG) can evaluate cardiac sympathetic dysfunction, and analysis of heart rate variability (HRV) can reflect cardiac parasympathetic activity. We examined whether cardiac parasympathetic dysfunction assessed by HRV may correlate with sympathetic dysfunction assessed by MIBG in diabetic patients. In 24-hour electrocardiography, we analyzed 4 HRV parameters: high-frequency power (HF), HF in the early morning (EMHF), rMSSD and pNN50. MIBG planar images and SPECT were obtained 15 minutes (early) and 150 minutes (late) after injection and the heart washout rate was calculated. The defect score in 9 left ventricular regions was scored on a 4 point scale (0=normal - 3=severe defect). In 20 selected diabetic patients without congestive heart failure, coronary artery disease and renal failure, parasympathetic HRV parameters had a negative correlation with the sum of defect scores (DS) in the late images (R=-0.47 to -0.59, p<0.05) and some parameters had a negative correlation with the washout rate (R=-0.50 to -0.55, p<0.05). In a total of 64 diabetic patients also, these parameters had a negative correlation with late DS (R=-0.28 to -0.35, p<0.05) and early DS (R=-0.27 to -0.32, p<0.05). The progress of diabetic cardiac parasympathetic dysfunction may parallel the sympathetic one. (author)

  9. Regulation of Autocrine Signaling in Subsets of Sympathetic Neurons Has Regional Effects on Tissue Innervation

    Directory of Open Access Journals (Sweden)

    Thomas G. McWilliams

    2015-03-01

    Full Text Available The regulation of innervation by target-derived factors like nerve growth factor (NGF is the cornerstone of neurotrophic theory. Whereas autocrine signaling in neurons affecting survival and axon growth has been described, it is difficult to reconcile autocrine signaling with the idea that targets control their innervation. Here, we report that an autocrine signaling loop in developing mouse sympathetic neurons involving CD40L (TNFSF5 and CD40 (TNFRSF5 selectively enhances NGF-promoted axon growth and branching, but not survival, via CD40L reverse signaling. Because NGF negatively regulates CD40L and CD40 expression, this signaling loop operates only in neurons exposed to low levels of NGF. Consequently, the sympathetic innervation density of tissues expressing low NGF is significantly reduced in CD40-deficient mice, whereas the innervation density of tissues expressing high levels of NGF is unaffected. Our findings reveal how differential regulation of autocrine signaling in neurons has region-specific effects on axon growth and tissue innervation.

  10. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin.

    Science.gov (United States)

    Zhang, Shujuan; Zhang, Feng; Sun, Haijian; Zhou, Yebo; Han, Ying

    2012-11-01

    Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sympathetic afferent reflex. Heart failure was induced by intraperitoneal injection of adriamycin for six times during 2 weeks (15 mg/kg). Six weeks after the first injection, the rats underwent anesthesia with urethane and α-chloralose. After vagotomy and baroreceptor denervation, cardiac sympathetic afferent reflex was evaluated by renal sympathetic nerve activity and mean arterial pressure (MAP) response to epicardial application of capsaicin (1.0 nmol). The response of MAP to ganglionic blockade with hexamethonium in conscious rats was performed to evaluate sympathetic activity. The renal sympathetic nerve activity and cardiac sympathetic afferent reflex were enhanced in adriamycin rats and the maximum depressor response of MAP induced by hexamethonium was significantly greater in adriamycin rats than that in control rats. Bilateral PVN microinjection of angiotensin II (Ang II) caused larger responses of the cardiac sympathetic afferent reflex, baseline renal sympathetic nerve activity and MAP in adriamycin rats than control rats. These results indicated that both sympathetic activity and cardiac sympathetic afferent reflex were enhanced and Ang II in the PVN was involved in the enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with adriamycin-induced heart failure. PMID:23554781

  11. The role of nuclear imaging in the failing heart: myocardial blood flow, sympathetic innervation, and future applications

    OpenAIRE

    Boogers, Mark J.; Fukushima, Kenji; Bengel, Frank M.; Bax, Jeroen J.

    2010-01-01

    Heart failure represents a common disease affecting approximately 5 million patients in the United States. Several conditions play an important role in the development and progression of heart failure, including abnormalities in myocardial blood flow and sympathetic innervation. Nuclear imaging represents the only imaging modality with sufficient sensitivity to assess myocardial blood flow and sympathetic innervation of the failing heart. Although nuclear imaging with single-photon emission c...

  12. Influence of exercise rehabilitation on myocardial perfusion and sympathetic heart innervation in ischaemic heart disease

    International Nuclear Information System (INIS)

    The purpose of this study was to assess the influence of exercise rehabilitation on myocardial perfusion and sympathetic heart innervation. Sixteen patients with ischaemic heart disease and previous myocardial infarction were investigated by means of exercise/rest tetrofosmin and MIBG exercise/rest SPET studies, before and 6 months after starting an exercise rehabilitation programme. Tomograms were divided into 15 segments, and these were grouped into five myocardial anatomical regions. Regional uptake of both tracers was quantified and expressed as a percentage of maximum peak activity. The percentage ≤55% was chosen to evaluate defect size, and the results were expressed as a percentage of left ventricular mass. Areas with perfused and denervated myocardium and areas with ischaemic myocardium were calculated. In addition, regions with 10% (representing reversible regional defects) or an increase of <10% (representing fixed regional defects) in the rest study. These percentages were compared with the percentages obtained in the innervation study, and with the percentages obtained in exercise/rest perfusion and innervation studies performed 6 months after starting rehabilitation. Myocardial perfusion defects were significantly smaller than myocardial innervation defects before and 6 months after starting exercise rehabilitation. The area of ischaemia 6 months after starting exercise rehabilitation was significantly smaller than that before rehabilitation (0.31%± 1.4% vs 1.4%±1.6%, P<0.01). The size of innervation defects and the area of perfused and denervated myocardium did not show significant differences between the two studies performed before and 6 months after starting exercise rehabilitation. In reversible regional defects the percentage of peak activity was significantly increased 6 months after starting exercise rehabilitation in exercise and rest studies (P<0.001), while in fixed regional defects it was significantly increased only in exercise studies

  13. Innervation of the rabbit cardiac ventricles.

    Science.gov (United States)

    Pauziene, Neringa; Alaburda, Paulius; Rysevaite-Kyguoliene, Kristina; Pauza, Audrys G; Inokaitis, Hermanas; Masaityte, Aiste; Rudokaite, Gabriele; Saburkina, Inga; Plisiene, Jurgita; Pauza, Dainius H

    2016-01-01

    The rabbit is widely used in experimental cardiac physiology, but the neuroanatomy of the rabbit heart remains insufficiently examined. This study aimed to ascertain the architecture of the intrinsic nerve plexus in the walls and septum of rabbit cardiac ventricles. In 51 rabbit hearts, a combined approach involving: (i) histochemical acetylcholinesterase staining of intrinsic neural structures in total cardiac ventricles; (ii) immunofluorescent labelling of intrinsic nerves, nerve fibres (NFs) and neuronal somata (NS); and (iii) transmission electron microscopy of intrinsic ventricular nerves and NFs was used. Mediastinal nerves access the ventral and lateral surfaces of both ventricles at a restricted site between the root of the ascending aorta and the pulmonary trunk. The dorsal surface of both ventricles is supplied by several epicardial nerves extending from the left dorsal ganglionated nerve subplexus on the dorsal left atrium. Ventral accessing nerves are thicker and more numerous than dorsal nerves. Intrinsic ventricular NS are rare on the conus arteriosus and the root of the pulmonary trunk. The number of ventricular NS ranged from 11 to 220 per heart. Four chemical phenotypes of NS within ventricular ganglia were identified, i.e. ganglionic cells positive for choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), and biphenotypic, i.e. positive for both ChAT/nNOS and for ChAT/tyrosine hydroxylase. Clusters of small intensely fluorescent cells are distributed within or close to ganglia on the root of the pulmonary trunk, but not on the conus arteriosus. The largest and most numerous intrinsic nerves proceed within the epicardium. Scarce nerves were found near myocardial blood vessels, but the myocardium contained only a scarce meshwork of NFs. In the endocardium, large numbers of thin nerves and NFs proceed along the bundle of His and both its branches up to the apex of the ventricles. The endocardial meshwork of fine NFs was

  14. A Contractile Network of Interstitial Cells of Cajal in the Supratarsal Mueller's Smooth Muscle Fibers With Sparse Sympathetic Innervation

    OpenAIRE

    Yuzuriha, Shunsuke; Matsuo, Kiyoshi; Ban, Ryokuya; Yano, Shiharu; Moriizumi, Tetsuji

    2012-01-01

    Background: We previously reported that the supratarsal Mueller's muscle is innervated by both sympathetic efferent fibers and trigeminal proprioceptive afferent fibers, which function as mechanoreceptors-inducing reflexive contractions of both the levator and frontalis muscles. Controversy still persists regarding the role of the mechanoreceptors in Mueller's muscle; therefore, we clinically and histologically investigated Mueller's muscle. Methods: We evaluated the role of phenylephrine adm...

  15. Alterations of left ventricular deformation and cardiac sympathetic derangement in patients with systolic heart failure: a 3D speckle tracking echocardiography and cardiac 123I-MIBG study

    International Nuclear Information System (INIS)

    Myocardial contractile function is under the control of cardiac sympathetic activity. Three-dimensional speckle tracking echocardiography (3D-STE) and cardiac imaging with 123I-metaiodobenzylguanidine (123I-MIBG) are two sophisticated techniques for the assessment of left ventricular (LV) deformation and sympathetic innervation, respectively, which offer important prognostic information in patients with heart failure (HF). The purpose of this investigation was to explore, in patients with systolic HF, the relationship between LV deformation assessed by 3D-STE and cardiac sympathetic derangement evaluated by 123I-MIBG imaging. We prospectively studied 75 patients with systolic HF. All patients underwent a 3D-STE study (longitudinal, circumferential, area and radial) and 123I-MIBG planar and SPECT cardiac imaging. 3D-STE longitudinal, circumferential and area strain values were correlated with 123I-MIBG late heart to mediastinum (H/M) ratio and late SPECT total defect score. After stratification of the patients according to ischaemic or nonischaemic HF aetiology, we observed a good correlation of all 3D-STE measurements with late H/M ratio and SPECT data in the ischaemic group, but in patients with HF of nonischaemic aetiology, no correlation was found between LV deformation and cardiac sympathetic activity. At the regional level, the strongest correlation between LV deformation and adrenergic innervation was found for the left anterior descending coronary artery distribution territory for all four 3D-STE values. In multivariate linear regression analyses, including age, gender, LV ejection fraction, NYHA class, body mass index, heart rate and HF aetiology, only 3D-STE area and radial strain values significantly predicted cardiac sympathetic derangement on 123I-MIBG late SPECT. This study indicated that 3D-STE measurements are correlated with 123I-MIBG planar and SPECT data. Furthermore, 3D-STE area and radial strain values, but not LVEF, predict cardiac sympathetic

  16. 123I-MIBG Myocardial sympathetic innervation scintigraphy and Parkinson's disease

    International Nuclear Information System (INIS)

    Aim: Dysfunction of the autonomic nervous system is an under-recognised but important aspect of the aetiological and clinical manifestation of primary degenerative dysautonomias such as Parkinson's disease (PD). Functional imaging studies suggest that selective cardiac sympathetic denervation may occur early in PD but not in other parkinsonian syndromes. The clinical implication of this apparently disease specific peripheral dysautonomia is unknown and would be the subject of much interest in future years. Scintigraphy with radiolabeled metaiodobenzylguanidine (123I-MIBG) enables the visualization and quantification of cardiac sympathetic function. Materials and Methods: We prospectively performed 73 123I-MIBG myocardial studies in two groups of patients: 61 patients (30 male/31 female) diagnosed of PD without any autonomic dysfunction (PD group) and 12 patients (7 male/4 female) were studied for a suspicion of pheochromocytoma (nonPD group). Severity of PD was evaluated by Hoehn-Yahr scale. Myocardial imaging with 123I-MIBG was performed to evaluate cardiac sympathetic function. Early and delayed images of the anterior view were obtained 15min and 4h after injection of 111 MBq iv of 123I-MIBG. Quantification of 123I-MIBG uptake using a heart-to-mediastinum ratio (H/M) and washout ratio (W) and comparison between groups were carried out. Results: The 123I-MIBG heart uptake was: a) reduced in 16 PD patients (26.2% of PD), b) absent in 42 PD patients (62.8% of PD) and c) normal in 3 PD (4.9% of PD) and in all of the 12 nonPD patients. H/M was significantly smaller in PD patients than nonPD patients (P 123I-MIBG uptake is a valuable and sensitive tool to identify early cardiac sympathetic dysfunction in patients with PD. As this finding could be characteristic of PD patients, the 123I-MIBG myocardial scintigraphy would be useful to discriminate them from other neurodegenerative disorders early in the course of the disease

  17. The clinical value of cardiac sympathetic imaging in heart failure

    DEFF Research Database (Denmark)

    Christensen, Thomas Emil; Kjaer, Andreas; Hasbak, Philip

    2014-01-01

    The autonomic nervous system plays an important role in the pathology of heart failure. The single-photon emission computed tomography tracer iodine-123-metaiodobenzylguanidine ((123) I-MIBG) can be used to investigate the activity of the predominant neurotransmitter of the sympathetic nervous...... system, norepinephrine. Also, positron emission tomography tracers are being developed for the same purpose. With (123) I-MIBG as a starting point, this brief review introduces the modalities used for cardiac sympathetic imaging....

  18. Sympathetic re-innervation of myocardium after liver transplant in the hereditary amyloid neuropathy; Reinnervation sympathique du myocarde apres transplantation hepatique dans la neuropathie amyloide hereditaire

    Energy Technology Data Exchange (ETDEWEB)

    Delahaye, N.; Le Guludec, D. [Medecine Nucleaire, Hopital Bichat, Paris (France); Slama, M. [Cardiologie, Hopital A.Beclere, Paris (France); Guyen, C.N. [SHFJ, DSV-CEA, Orsay (France); Dinanian, S. [Cardiologie, Hopital A.Beclere, Paris (France); Merlet, P. [SHFJ, DSV-CEA, Orsay (France)

    1997-12-31

    The hereditary amyloid neuropathy (HAN) is characterized by a progressive sensory-motor poly-neuropathy and a dysautonomia with myocardium sympathetic denervation. This is established by MIBL scintigraphy and may enhance the troubles of conduction and of cardiac rhythm. The amyloid deposits are constituted of anomalous pre-albumin fabricated by liver. The hepatic transplant (HT) is the only known treatment. Four patients (GI: 39 {+-} 5 years) have been studied by MIBG scintigraphy, 2.2 {+-} 0.7 years after HT, and compared with 12 patients (GII: 39 {+-} 12 years) studied before HT. The left ventricular function, the coronary arteries and the at-rest scintigraphy with thallium were normal for all of them. The cardiac capture of MIBG, evaluated by the cardio-mediastinal activity ratio (C/M), measured on an anterior thoracic planar acquisition performed 4 hours after the intravenous injection of 300 MBq, was higher for GI than for GII (1.49 {+-} 0.12 vs 1.29 {+-} 0.13, p 0.02). The washouts (4 h / 20 min) were not different. In tomography, the patients of GI presented focal anomalies with a more-or-less extended apical defect, a satisfying fixation of the basal half of the anterior wall, more-or-less overflowing the septal and lateral walls, and for 2 patients, a satisfying inferior fixation. On the contrary, 9/12 patients of GII have had a diffuse absence of fixation, the other three heaving a satisfying antero-basal fixation ({chi}{sup 2}, p = 0.05). The results are not explained by difference of severity or evolution duration of HAN. Thus, it appears that there exists a sympathetic re-innervation of myocardium after HT in the HAN, debuting by the heart base, similarly with the effect of anatomic interruption of innervation in cardiac transplants

  19. 123I-Labelled metaiodobenzylguanidine for the evaluation of cardiac sympathetic denervation in early stage amyloidosis

    International Nuclear Information System (INIS)

    Cardiac amyloidosis is a rare disorder, but it may lead to potentially life-threatening restrictive cardiomyopathy. Cardiac manifestations frequently occur in primary amyloidosis (AL) and familial amyloidosis (ATTR), but are uncommon in secondary amyloidosis (AA). Echocardiography is the method of choice for assessing cardiac amyloidosis. Amyloid deposits impair the function of sympathetic nerve endings. Disturbance of myocardial sympathetic innervations may play an important role in the remodelling process. 123I-MIBG can detect these innervation changes. Patients with biopsy-proven amyloidosis underwent general work-up, echocardiography and 123I-MIBG scintigraphy. Left ventricular internal dimensions and wall thickness were measured, and highly refractile cardiac echoes (sparkling) were analysed. Early (15 min) and late (4 h) heart-to-mediastinum ratio (HMR) and wash-out rate were determined after administration of MIBG. Included in the study were 61 patients (30 women and 31 men; mean age 62 years; 39 AL, 11 AA, 11 ATTR). Echocardiographic parameters were not significantly different between the groups. Sparkling was present in 72 % of ATTR patients, in 54 % of AL patients and in 45 % of AA patients. Mean late HMR in all patients was 2.3 ± 0.75, and the mean wash-out rate was 8.6 ± 14 % (the latter not significantly different between the patient groups). Late HMR was significantly lower in patients with echocardiographic signs of amyloidosis than in patients without (2.0 ± 0.70 versus 2.8 ± 0.58, p 123I-MIBG scintigraphy can detect cardiac denervation in ATTR patients before signs of amyloidosis are evident on echocardiography. (orig.)

  20. Impact of sympathetic innervation on recurrent life-threatening arrhythmias in the follow-up of patients with idiopathic ventricular fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Matthias; Acil, Tayfun; Breithardt, Guenter; Wichter, Thomas [Hospital of the University of Muenster, Department of Cardiology and Angiology, Muenster (Germany); Schaefers, Michael; Kies, Peter; Schaefers, Klaus; Schober, Otmar [Hospital of the University of Muenster, Department of Nuclear Medicine, Muenster (Germany)

    2006-08-15

    Idiopathic ventricular fibrillation (IVF) is defined as VF in the absence of any identifiable structural or functional cardiac disease. The underlying pathophysiological mechanisms are unknown. This study was performed to investigate the potential impact of sympathetic dysfunction, assessed by {sup 123}I-meta-iodo-benzylguanidine scintigraphy ({sup 123}I-MIBG SPECT), on the long-term prognosis of patients with IVF. {sup 123}I-MIBG SPECT was performed in 20 patients (mean age 37{+-}13 years) with IVF. Mean follow-up of patients after study entry was 7.2{+-}1.5 years (range 4.9-10.5 years). Ten patients (five men, five women; mean age 43{+-}12 years; p=NS versus study group) with medullary carcinoma of the thyroid gland served as an age-matched control group. Abnormal {sup 123}I-MIBG uptake was observed in 13 patients (65%). During follow-up, 18 episodes of VF/fast polymorphic ventricular tachycardias occurred in four IVF patients with abnormal {sup 123}I-MIBG uptake whereas only two episodes of monomorphic ventricular tachycardia (and no VF) occurred in a single IVF patient with normal {sup 123}I-MIBG uptake. Impairment of sympathetic innervation may indicate a higher risk of future recurrent episodes of life-threatening ventricular tachyarrhythmias in patients with IVF. Studies in larger cohorts are required to validate the significance of {sup 123}I-MIBG SPECT during the long-term follow-up of these patients. (orig.)

  1. Impact of sympathetic innervation on recurrent life-threatening arrhythmias in the follow-up of patients with idiopathic ventricular fibrillation

    International Nuclear Information System (INIS)

    Idiopathic ventricular fibrillation (IVF) is defined as VF in the absence of any identifiable structural or functional cardiac disease. The underlying pathophysiological mechanisms are unknown. This study was performed to investigate the potential impact of sympathetic dysfunction, assessed by 123I-meta-iodo-benzylguanidine scintigraphy (123I-MIBG SPECT), on the long-term prognosis of patients with IVF. 123I-MIBG SPECT was performed in 20 patients (mean age 37±13 years) with IVF. Mean follow-up of patients after study entry was 7.2±1.5 years (range 4.9-10.5 years). Ten patients (five men, five women; mean age 43±12 years; p=NS versus study group) with medullary carcinoma of the thyroid gland served as an age-matched control group. Abnormal 123I-MIBG uptake was observed in 13 patients (65%). During follow-up, 18 episodes of VF/fast polymorphic ventricular tachycardias occurred in four IVF patients with abnormal 123I-MIBG uptake whereas only two episodes of monomorphic ventricular tachycardia (and no VF) occurred in a single IVF patient with normal 123I-MIBG uptake. Impairment of sympathetic innervation may indicate a higher risk of future recurrent episodes of life-threatening ventricular tachyarrhythmias in patients with IVF. Studies in larger cohorts are required to validate the significance of 123I-MIBG SPECT during the long-term follow-up of these patients. (orig.)

  2. Cardiac sympathetic denervation in 6-OHDA-treated nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Valerie Joers

    Full Text Available Cardiac sympathetic neurodegeneration and dysautonomia affect patients with sporadic and familial Parkinson's disease (PD and are currently proposed as prodromal signs of PD. We have recently developed a nonhuman primate model of cardiac dysautonomia by iv 6-hydroxydopamine (6-OHDA. Our in vivo findings included decreased cardiac uptake of a sympathetic radioligand and circulating catecholamines; here we report the postmortem characterization of the model. Ten adult rhesus monkeys (5-17 yrs old were used in this study. Five animals received 6-OHDA (50 mg/kg i.v. and five were age-matched controls. Three months post-neurotoxin the animals were euthanized; hearts and adrenal glands were processed for immunohistochemistry. Quantification of immunoreactivity (ir of stainings was performed by an investigator blind to the treatment group using NIH ImageJ software (for cardiac bundles and adrenals, area above threshold and optical density and MBF StereoInvestigator (for cardiac fibers, area fraction fractionator probe. Sympathetic cardiac nerve bundle analysis and fiber area density showed a significant reduction in global cardiac tyrosine hydroxylase-ir (TH; catecholaminergic marker in 6-OHDA animals compared to controls. Quantification of protein gene protein 9.5 (pan-neuronal marker positive cardiac fibers showed a significant deficit in 6-OHDA monkeys compared to controls and correlated with TH-ir fiber area. Semi-quantitative evaluation of human leukocyte antigen-ir (inflammatory marker and nitrotyrosine-ir (oxidative stress marker did not show significant changes 3 months post-neurotoxin. Cardiac nerve bundle α-synuclein-ir (presynaptic protein was reduced (trend in 6-OHDA treated monkeys; insoluble proteinase-K resistant α-synuclein (typical of PD pathology was not observed. In the adrenal medulla, 6-OHDA monkeys had significantly reduced TH-ir and aminoacid decarboxylase-ir. Our results confirm that systemic 6-OHDA dosing to nonhuman primates

  3. Cardiac Sympathetic Hyperactivity after Chemotherapy: Early Sign of Cardiotoxicity?

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, Sarita Lígia Pessoa de Melo Machado [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Hospital Agamenon Magalhães (HAM), Recife, PE (Brazil); Brandão, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Andrade, Luciana Raposo [Hospital Santa Joana, Recife, PE (Brazil); Maia, Rafael José Coelho [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Hospital Agamenon Magalhães (HAM), Recife, PE (Brazil); Markman Filho, Brivaldo [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil)

    2015-09-15

    Chemotherapy with anthracyclines and trastuzumab can cause cardiotoxicity. Alteration of cardiac adrenergic function assessed by metaiodobenzylguanidine labeled with iodine-123 ({sup 123}I-mIBG) seems to precede the drop in left ventricular ejection fraction. To evaluate and to compare the presence of cardiovascular abnormalities among patients with breast cancer undergoing chemotherapy with anthracyclines and trastuzumab, and only with anthracycline. Patients with breast cancer were analyzed clinical, laboratory, electrocardiographic and echocardiographic and cardiac sympathetic activity. In scintigraphic images, the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum, and the washout rate were calculated. The variables were compared between patients who received anthracyclines and trastuzumab (Group 1) and only anthracyclines (Group 2). Twenty patients, with mean age 57 ± 14 years, were studied. The mean left ventricular ejection fraction by echocardiography was 67.8 ± 4.0%. Mean washout rate was 28.39 ± 9.23% and the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum was 2.07 ± 0.28. Of the patients, 82% showed an increased in washout rate, and the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum decreased in 25%. Concerning the groups, the mean washout rate of Group 1 was 32.68 ± 9.30% and of Group 2 was 24.56 ± 7.72% (p = 0,06). The ratio of {sup 123}I-mIBG uptake between the heart and mediastinum was normal in all patients in Group 2, however, the Group 1, showed 50% the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum ≤ 1.8 (p = 0.02). In women with breast cancer undergoing chemotherapy, assessment of cardiac sympathetic activity with {sup 123}I-mIBG appears to be an early marker of cardiotoxicity. The combination of chemotherapy showed higher risk of cardiac adrenergic hyperactivity.

  4. Cardiac Sympathetic Hyperactivity after Chemotherapy: Early Sign of Cardiotoxicity?

    International Nuclear Information System (INIS)

    Chemotherapy with anthracyclines and trastuzumab can cause cardiotoxicity. Alteration of cardiac adrenergic function assessed by metaiodobenzylguanidine labeled with iodine-123 (123I-mIBG) seems to precede the drop in left ventricular ejection fraction. To evaluate and to compare the presence of cardiovascular abnormalities among patients with breast cancer undergoing chemotherapy with anthracyclines and trastuzumab, and only with anthracycline. Patients with breast cancer were analyzed clinical, laboratory, electrocardiographic and echocardiographic and cardiac sympathetic activity. In scintigraphic images, the ratio of 123I-mIBG uptake between the heart and mediastinum, and the washout rate were calculated. The variables were compared between patients who received anthracyclines and trastuzumab (Group 1) and only anthracyclines (Group 2). Twenty patients, with mean age 57 ± 14 years, were studied. The mean left ventricular ejection fraction by echocardiography was 67.8 ± 4.0%. Mean washout rate was 28.39 ± 9.23% and the ratio of 123I-mIBG uptake between the heart and mediastinum was 2.07 ± 0.28. Of the patients, 82% showed an increased in washout rate, and the ratio of 123I-mIBG uptake between the heart and mediastinum decreased in 25%. Concerning the groups, the mean washout rate of Group 1 was 32.68 ± 9.30% and of Group 2 was 24.56 ± 7.72% (p = 0,06). The ratio of 123I-mIBG uptake between the heart and mediastinum was normal in all patients in Group 2, however, the Group 1, showed 50% the ratio of 123I-mIBG uptake between the heart and mediastinum ≤ 1.8 (p = 0.02). In women with breast cancer undergoing chemotherapy, assessment of cardiac sympathetic activity with 123I-mIBG appears to be an early marker of cardiotoxicity. The combination of chemotherapy showed higher risk of cardiac adrenergic hyperactivity

  5. Double labelling immunohistochemical characterization of autonomic sympathetic neurons innervating the sow retractor clitoridis muscle

    Directory of Open Access Journals (Sweden)

    L Ragionieri

    2009-08-01

    Full Text Available Retrograde neuronal tracing and immunohistochemical methods were used to define the neurochemical content of sympathetic neurons projecting to the sow retractor clitoridis muscle (RCM. Differently from the other smooth muscles of genital organs, the RCM is an isolated muscle that is tonically contracted in the rest phase and relaxed in the active phase. This peculiarity makes it an interesting experimental model. The fluorescent tracer fast blue was injected into the RCM of three 50 kg subjects. After a one-week survival period, the ipsilateral paravertebral ganglion S1, that in a preliminary study showed the greatest number of cells projecting to the muscle, was collected from each animal. The co-existence of tyrosine hydroxylase with choline acetyltransferase, neuronal nitric oxide synthase, calcitonin gene-related peptide, leuenkephalin, neuropeptide Y, substance P and vasoactive intestinal polypeptide was studied under a fluorescent microscope on cryostat sections. Tyrosine hydroxylase was present in about 58% of the neurons projecting to the muscle and was found to be co-localized with each of the other tested substances.Within fast blue-labelled cells negative to the adrenergic marker, small populations of neurons singularly containing each of the other enzymatic markers or peptides were also observed. The present study documents the complexity of the neurochemical interactions that regulate the activity of the smooth myocytes of the RCM and their vascular components.

  6. Differential effects of cardiac sympathetic afferent stimulation on neurons in the nucleus tractus solitarius

    OpenAIRE

    Wang, Wei-zhong; Gao, Lie; Pan, Yan-Xia; Zucker, Irving H.; Wang, Wei

    2006-01-01

    Activation of the cardiacsympathetic afferent” reflex (CSAR) has been reported to depress the arterial baroreflex and enhance the arterial chemoreflex via a central mechanism. In the present study, we used single-unit extracellular recording techniques to examine the effects of stimulation of cardiac sympathetic afferents on baro- or chemosensitive neurons in the nucleus tractus solitarius (NTS) in anesthetized rats. Of 54 barosensitive NTS neurons tested for their response to epicardial ap...

  7. Natriuretic peptides in relation to the cardiac innervation and conduction system.

    Science.gov (United States)

    Hansson, Magnus

    2002-09-01

    During the past two decades, the heart has been known to undergo endocrine action, harbouring peptides with hormonal activities. These, termed "atrial natriuretic peptide (ANP)," "brain natriuretic peptide (BNP)," and "C-type natriuretic peptide (CNP)," are polypeptides mainly produced in the cardiac myocardium, where they are released into the circulation, producing profound hypotensive effects due to their diuretic, natriuretic, and vascular dilatory properties. It is, furthermore, well established that cardiac disorders such as congestive heart failure and different forms of cardiomyopathy are combined with increased expression of ANP and BNP, leading to elevated levels of these peptides in the plasma. Besides the occurrence of natriuretic peptides (NPs) in the ordinary myocardium, the presence of ANP in the cardiac conduction system has been described. There is also evidence of ANP gene expression in nervous tissue such as the nodose ganglion and the superior cervical ganglion of the rat, ganglia known to be involved in the neuronal regulation of the heart. Furthermore, in the mammalian heart, ANP appears to affect the cardiac autonomic nervous system by sympathoinhibitory and vagoexcitatory actions. This article provides an overview of the relationship between the cardiac conduction system, the cardiac innervation and NPs in the mammalian heart and provides data for the concept that ANP is also involved in neuronal cardiac regulation. PMID:12226807

  8. Alterations of left ventricular deformation and cardiac sympathetic derangement in patients with systolic heart failure: a 3D speckle tracking echocardiography and cardiac {sup 123}I-MIBG study

    Energy Technology Data Exchange (ETDEWEB)

    Leosco, Dario; Parisi, Valentina; Pagano, Gennaro; Femminella, Grazia Daniela; Bevilacqua, Agnese; Formisano, Roberto; Ferro, Gaetana; De Lucia, Claudio; Ferrara, Nicola [University Federico II, Department of Translational Medical Science, Naples (Italy); Pellegrino, Teresa [Italian National Research Council (CNR), Institute of Biostructure and Bioimaging, Naples (Italy); University Federico II, Department of Advanced Biomedical Science, Naples (Italy); Paolillo, Stefania [University Federico II, Department of Advanced Biomedical Science, Naples (Italy); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples (Italy); Prastaro, Maria; Filardi, Pasquale Perrone; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Science, Naples (Italy); Rengo, Giuseppe [University Federico II, Department of Translational Medical Science, Naples (Italy); Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, BN (Italy)

    2015-09-15

    Myocardial contractile function is under the control of cardiac sympathetic activity. Three-dimensional speckle tracking echocardiography (3D-STE) and cardiac imaging with {sup 123}I-metaiodobenzylguanidine ({sup 123}I-MIBG) are two sophisticated techniques for the assessment of left ventricular (LV) deformation and sympathetic innervation, respectively, which offer important prognostic information in patients with heart failure (HF). The purpose of this investigation was to explore, in patients with systolic HF, the relationship between LV deformation assessed by 3D-STE and cardiac sympathetic derangement evaluated by {sup 123}I-MIBG imaging. We prospectively studied 75 patients with systolic HF. All patients underwent a 3D-STE study (longitudinal, circumferential, area and radial) and {sup 123}I-MIBG planar and SPECT cardiac imaging. 3D-STE longitudinal, circumferential and area strain values were correlated with {sup 123}I-MIBG late heart to mediastinum (H/M) ratio and late SPECT total defect score. After stratification of the patients according to ischaemic or nonischaemic HF aetiology, we observed a good correlation of all 3D-STE measurements with late H/M ratio and SPECT data in the ischaemic group, but in patients with HF of nonischaemic aetiology, no correlation was found between LV deformation and cardiac sympathetic activity. At the regional level, the strongest correlation between LV deformation and adrenergic innervation was found for the left anterior descending coronary artery distribution territory for all four 3D-STE values. In multivariate linear regression analyses, including age, gender, LV ejection fraction, NYHA class, body mass index, heart rate and HF aetiology, only 3D-STE area and radial strain values significantly predicted cardiac sympathetic derangement on {sup 123}I-MIBG late SPECT. This study indicated that 3D-STE measurements are correlated with {sup 123}I-MIBG planar and SPECT data. Furthermore, 3D-STE area and radial strain values

  9. Inhibition of cardiac sympathetic afferent reflex and sympathetic activity by baroreceptor and vagal afferent inputs in chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Xian-Bing Gan

    Full Text Available BACKGROUND: Cardiac sympathetic afferent reflex (CSAR contributes to sympathetic activation and angiotensin II (Ang II in paraventricular nucleus (PVN augments the CSAR in vagotomized (VT and baroreceptor denervated (BD rats with chronic heart failure (CHF. This study was designed to determine whether it is true in intact (INT rats with CHF and to determine the effects of cardiac and baroreceptor afferents on the CSAR and sympathetic activity in CHF. METHODOLOGY/PRINCIPAL FINDINGS: Sham-operated (Sham or coronary ligation-induced CHF rats were respectively subjected to BD+VT, VT, cardiac sympathetic denervation (CSD or INT. Under anesthesia, renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were recorded, and the CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Either CSAR or the responses of RSNA, MAP and CSAR to Ang II in PVN were enhanced in CHF rats treated with BD+VT, VT or INT. Treatment with VT or BD+VT potentiated the CSAR and the CSAR responses to Ang II in both Sham and CHF rats. Treatment with CSD reversed the capsaicin-induced RSNA and MAP changes and the CSAR responses to Ang II in both Sham and CHF rats, and reduced the RSNA and MAP responses to Ang II only in CHF rats. CONCLUSIONS: The CSAR and the CSAR responses to Ang II in PVN are enhanced in intact CHF rats. Baroreceptor and vagal afferent activities inhibit CSAR and the CSAR responses to Ang II in intact Sham and CHF rats.

  10. Perinatal exposure to a high-fat diet is associated with reduced hepatic sympathetic innervation in one-year old male Japanese macaques.

    Directory of Open Access Journals (Sweden)

    Wilmon F Grant

    Full Text Available Our group recently demonstrated that maternal high-fat diet (HFD consumption is associated with non-alcoholic fatty liver disease, increased apoptosis, and changes in gluconeogenic gene expression and chromatin structure in fetal nonhuman primate (NHP liver. However, little is known about the long-term effects that a HFD has on hepatic nervous system development in offspring, a system that plays an important role in regulating hepatic metabolism. Utilizing immunohistochemistry and Real-Time PCR, we quantified sympathetic nerve fiber density, apoptosis, inflammation, and other autonomic components in the livers of fetal and one-year old Japanese macaques chronically exposed to a HFD. We found that HFD exposure in-utero and throughout the postnatal period (HFD/HFD, when compared to animals receiving a CTR diet for the same developmental period (CTR/CTR, is associated with a 1.7 fold decrease in periportal sympathetic innervation, a 5 fold decrease in parenchymal sympathetic innervation, and a 2.5 fold increase in hepatic apoptosis in the livers of one-year old male animals. Additionally, we observed an increase in hepatic inflammation and a decrease in a key component of the cholinergic anti-inflammatory pathway in one-year old HFD/HFD offspring. Taken together, these findings reinforce the impact that continuous exposure to a HFD has in the development of long-term hepatic pathologies in offspring and highlights a potential neuroanatomical basis for hepatic metabolic dysfunction.

  11. {sup 123}I-Labelled metaiodobenzylguanidine for the evaluation of cardiac sympathetic denervation in early stage amyloidosis

    Energy Technology Data Exchange (ETDEWEB)

    Noordzij, Walter; Glaudemans, Andor W.J.M.; Rheenen, Ronald W.J. van; Dierckx, Rudi A.J.O.; Slart, Riemer H.J.A. [University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, PO Box 30.001, Groningen (Netherlands); Hazenberg, Bouke P.C. [University of Groningen, Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [University of Groningen, Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands)

    2012-10-15

    Cardiac amyloidosis is a rare disorder, but it may lead to potentially life-threatening restrictive cardiomyopathy. Cardiac manifestations frequently occur in primary amyloidosis (AL) and familial amyloidosis (ATTR), but are uncommon in secondary amyloidosis (AA). Echocardiography is the method of choice for assessing cardiac amyloidosis. Amyloid deposits impair the function of sympathetic nerve endings. Disturbance of myocardial sympathetic innervations may play an important role in the remodelling process. {sup 123}I-MIBG can detect these innervation changes. Patients with biopsy-proven amyloidosis underwent general work-up, echocardiography and {sup 123}I-MIBG scintigraphy. Left ventricular internal dimensions and wall thickness were measured, and highly refractile cardiac echoes (sparkling) were analysed. Early (15 min) and late (4 h) heart-to-mediastinum ratio (HMR) and wash-out rate were determined after administration of MIBG. Included in the study were 61 patients (30 women and 31 men; mean age 62 years; 39 AL, 11 AA, 11 ATTR). Echocardiographic parameters were not significantly different between the groups. Sparkling was present in 72 % of ATTR patients, in 54 % of AL patients and in 45 % of AA patients. Mean late HMR in all patients was 2.3 {+-} 0.75, and the mean wash-out rate was 8.6 {+-} 14 % (the latter not significantly different between the patient groups). Late HMR was significantly lower in patients with echocardiographic signs of amyloidosis than in patients without (2.0 {+-} 0.70 versus 2.8 {+-} 0.58, p < 0.001). Wash-out rates were significantly higher in these patients (-3.3 {+-} 9.9 % vs. 17 {+-} 10 %, p < 0.001). In ATTR patients without echocardiographic signs of amyloidosis, HMR was lower than in patients with the other types (2.0 {+-} 0.59 vs. 2.9 {+-} 0.50, p = 0.007). MIBG HMR is lower and wash-out rate is higher in patients with echocardiographic signs of amyloidosis. Also, {sup 123}I-MIBG scintigraphy can detect cardiac denervation in

  12. Angiotensin-(1-7 in paraventricular nucleus modulates sympathetic activity and cardiac sympathetic afferent reflex in renovascular hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Ying Han

    Full Text Available BACKGROUND: Excessive sympathetic activity contributes to the pathogenesis and progression of hypertension. Enhanced cardiac sympathetic afferent reflex (CSAR is involved in sympathetic activation. This study was designed to determine the roles of angiotensin (Ang-(1-7 in paraventricular nucleus (PVN in modulating sympathetic activity and CSAR and its signal pathway in renovascular hypertension. METHODOLOGY/PRINCIPAL FINDINGS: Renovascular hypertension was induced with two-kidney, one-clip method. Renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were recorded in sinoaortic-denervated and cervical-vagotomized rats with anesthesia. CSAR was evaluated with the RSNA and MAP responses to epicardial application of capsaicin. PVN microinjection of Ang-(1-7 and cAMP analogue db-cAMP caused greater increases in RSNA and MAP, and enhancement in CSAR in hypertensive rats than in sham-operated rats, while Mas receptor antagonist A-779 produced opposite effects. There was no significant difference in the angiotensin-converting enzyme 2 (ACE2 activity and Ang-(1-7 level in the PVN between sham-operated rats and hypertensive rats, but the Mas receptor protein expression in the PVN was increased in hypertensive rats. The effects of Ang-(1-7 were abolished by A-779, adenylyl cyclase inhibitor SQ22536 or protein kinase A (PKA inhibitor Rp-cAMP. SQ22536 or Rp-cAMP reduced RSNA and MAP in hypertensive rats, and attenuated the CSAR in both sham-operated and hypertensive rats. CONCLUSIONS: Ang-(1-7 in the PVN increases RSNA and MAP and enhances the CSAR, which is mediated by Mas receptors. Endogenous Ang-(1-7 and Mas receptors contribute to the enhanced sympathetic outflow and CSAR in renovascular hypertension. A cAMP-PKA pathway is involved in the effects of Ang-(1-7 in the PVN.

  13. Effects of short-term carvedilol on the cardiac sympathetic activity assessed by {sup 123}I-MIBG scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Sandra Marina Ribeiro de; Mesquita, Evandro Tinoco; Freire, Fabiano de Lima; Ribeiro, Mario Luiz; Nobrega, Antonio Claudio Lucas da; Mesquita, Claudio Tinoco, E-mail: sandramarina@cardiol.b [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Azevedo, Jader Cunha; Barbirato, Gustavo Borges; Coimbra, Alexandro [Hospital Pro-Cardiaco, Rio de Janeiro, RJ (Brazil); Dohmann, Hans Fernando da Rocha [Centro de Ensino e Pesquisa do Pro-Cardiaco (PROCEP), Rio de Janeiro, RJ (Brazil)

    2010-03-15

    Background: autonomic alterations in heart failure are associated with an increase in morbimortality. Several noninvasive methods have been employed to evaluate the sympathetic function, including the Meta-Iodobenzylguanidine ({sup 123}I-MIBG) scintigraphy imaging of the heart. Objective: to evaluate the cardiac sympathetic activity through {sup 123}I-MIBG scintigraphy, before and after three months of carvedilol therapy in patients with heart failure and left ventricular ejection fraction (LVEF) < 45%. Patients and methods: sixteen patients, aged 56.3 +- 12.6 years (11 males), with a mean LVEF of 28% +- 8% and no previous use of beta-blockers were recruited for the study. Images of the heart innervation were acquired with {sup 123}I-MIBG, and the serum levels of catecholamines (epinephrine, dopamine and norepinephrine) were measured; the radioisotope ventriculography (RIV) was performed before and after a three-month therapy with carvedilol. Results: patients' functional class showed improvement: before the treatment, 50% of the patients were FC II and 50% were FC III. After 3 months, 7 patients were FC I (43.8%) and 9 were FC II (56.2%), (rho = 0.0001). The mean LVEF assessed by RIV increased from 29% to 33% (rho = 0.017). There was no significant variation in cardiac adrenergic activity assessed by {sup 123}I-MIBG (early and late resting images and washout rate). No significant variation was observed regarding the measurement of catecholamines. Conclusion: the short-term treatment with carvedilol promoted the clinical and LVEF improvement. However, this was not associated to an improvement in the cardiac adrenergic activity, assessed by {sup 123}I-MIBG scintigraphy, as well as the measurement of circulating catecholamines. (author)

  14. Expressions of cardiac sympathetic norepinephrine transporter and β1-adrenergic receptor decreased in aged rats

    Institute of Scientific and Technical Information of China (English)

    He LI; Xiao-qing MA; Fan YE; Jing ZHANG; Xin ZHOU; Zhi-hong WANG; Yu-ming LI; Guo-yuan ZHANG

    2009-01-01

    Evidence suggests that the deterioration of communication between the sympathetic nervous system and cardiovas-cular system always accompanies the aging of human and animals. Cardiac sympathetic norepinephrine (NE) transporter (NET) on presynaptic membrane is a predominant component to eliminate released NE in the synaptic cleff and maintains the sensitivity of the β-adrenergic receptor (β-AR). In the present study, we investigated NET and β1-AR mRNA levels and sympathetic nerve density in cardiac sympathetic ganglion and leff ventricular myocardium in 2- and 16-month-old rats with Northern blot analysis and immunohistochemistry. The expression levels of NET mRNA, NET protein and β1-AR mRNA in the ganglia or myocardia of 16-month-old rats were markedly reduced by 67%, 26%, and 43%, respectively, in comparison with those in 2-month-old rats. Our results also show that aging induces a strong decrease of the catecholaminergic nerve fiber density.

  15. Cardiac sympathetic modulation in response to apneas/hypopneas through heart rate variability analysis.

    Directory of Open Access Journals (Sweden)

    Florian Chouchou

    Full Text Available Autonomic dysfunction is recognized to contribute to cardiovascular consequences in obstructive sleep apnea/hypopnea syndrome (OSAHS patients who present predominant cardiovascular sympathetic activity that persists during wakefulness. Here, we examined 1 the factors that influence sympathetic cardiac modulation in response to apneas/hypopneas; and 2 the influence of autonomic activity during apneas/hypopneas on CA. Sixteen OSAHS patients underwent in-hospital polysomnography. RR interval (RR and RR spectral analysis using wavelet transform were used to study parasympathetic (high frequency power: HF(WV and sympathetic (low frequency power: LF(WV and LF(WV/HF(WV ratio activity before and after apnea/hypopnea termination. Autonomic cardiac modulations were compared according to sleep stage, apnea/hypopnea type and duration, arterial oxygen saturation, and presence of CA. At apnea/hypopnea termination, RR decreased (p<0.001 while LF(WV (p = 0.001 and LF(WV/HF(WV ratio (p = 0.001 increased. Only RR and LF(WV/HF(WV ratio changes were higher when apneas/hypopneas produced CA (p = 0.030 and p = 0.035, respectively or deep hypoxia (p = 0.023 and p = 0.046, respectively. Multivariate statistical analysis showed that elevated LF(WV (p = 0.006 and LF(WV/HF(WV ratio (p = 0.029 during apneas/hypopneas were independently related to higher CA occurrence. Both the arousal and hypoxia processes may contribute to sympathetic cardiovascular overactivity by recurrent cardiac sympathetic modulation in response to apneas/hypopneas. Sympathetic overactivity also may play an important role in the acute central response to apneas/hypopneas, and in the sleep fragmentation.

  16. Dynamic molecular imaging of cardiac innervation using a dual headpinhole SPECT system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jicun; Boutchko, Rostyslav; Sitek, Arkadiusz; Reutter, BryanW.; Huesman, Ronald H.; Gullberg, Grant T.

    2008-03-29

    Typically 123I-MIBG is used for the study of innervation andfunction of the sympathetic nervous system in heart failure. The protocolinvolves two studies: first a planar or SPECT scan is performed tomeasure initial uptake of the tracer, followed some 3-4 hours later byanother study measuring the wash-out of the tracer from the heart. A fastwash-out is indicative of a compromised heart. In this work, a dual headpinhole SPECT system was used for imaging the distribution and kineticsof 123I-MIBG in the myocardium of spontaneous hypertensive rats (SHR) andnormotensive Wistar Kyoto (WKY) rats. The system geometry was calibratedbased on a nonlinear point projection fitting method using a three-pointsource phantom. The angle variation effect of the parameters was modeledwith a sinusoidal function. A dynamic acquisition was performed byinjecting 123I-MIBG into rats immediately after starting the dataacquisition. The detectors rotated continuously performing a 360o dataacquisition every 90 seconds. We applied the factor analysis (FA)methodand region of interest (ROI) sampling method to obtain time activitycurves (TACs)in the blood pool and myocardium and then appliedtwo-compartment modeling to estimate the kinetic parameters. Since theinitial injection bolus is too fast for obtaining a consistenttomographic data set in the first few minutes of the study, we appliedthe FA method directly to projections during the first rotation. Then thetime active curves for blood and myocardial tissue were obtained from ROIsampling. The method was applied to determine if there were differencesin the kinetics between SHR and WKY rats and requires less time byreplacing the delayed scan at 3-4 hours after injection with a dynamicacquisition over 90 to 120 minutes. The results of a faster washout and asmaller distribution volume of 123IMIBG near the end of life in the SHRmodel of hypertrophic cardiomyopthy may be indicative of a failing heartin late stages of heart failure.

  17. Central Sympathetic Inhibition: a Neglected Approach for Treatment of Cardiac Arrhythmias?

    Science.gov (United States)

    Cagnoni, Francesca; Destro, Maurizio; Bontempelli, Erika; Locatelli, Giovanni; Hering, Dagmara; Schlaich, Markus P

    2016-02-01

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Overactivation of the sympathetic nervous system (SNS) plays an important role in the pathogenesis of comorbidities related to AF such as hypertension, congestive heart failure, obesity, insulin resistance, and obstructive sleep apnea. Methods that reduce sympathetic drive, such as centrally acting sympatho-inhibitory agents, have been shown to reduce the incidence of spontaneous or induced atrial arrhythmias, suggesting that neuromodulation may be helpful in controlling AF. Moxonidine acts centrally to reduce activity of the SNS, and clinical trials indicate that this is associated with a decreased AF burden in hypertensive patients with paroxysmal AF and reduced post-ablation recurrence of AF in patients with hypertension who underwent pulmonary vein isolation (PVI). Furthermore, device-based approaches to reduce sympathetic drive, such as renal denervation, have yielded promising results in the prevention and treatment of cardiac arrhythmias. In light of these recent findings, targeting elevated sympathetic drive with either pharmacological or device-based approaches has become a focus of clinical research. Here, we review the data currently available to explore the potential utility of sympatho-inhibitory therapies in the prevention and treatment of cardiac arrhythmias. PMID:26781253

  18. Usefulness of cardiac 125I-metaiodobenzylguanidine uptake for evaluation of cardiac sympathetic nerve abnormalities in diabetic rats

    International Nuclear Information System (INIS)

    We investigated cardiac sympathetic nerve abnormalities in streptozocin-induced diabetic rats using 125I-metaiodobenzylguanidine (MIBG). The radioactivity ratio of cardiac tissue to 1 ml blood (H/B) was used as an index of cardiac MIBG uptake. Cardiac 125I-MIBG uptake (H/B) in 4-, 8- and 20-wk diabetic rats was 48% lower than that in control rats. Similar results were obtained even when the data were corrected for g wet tissue weight. Although there was no improvement in H/B following 2-wk insulin treatment, the H/B ratio increased significantly, to 85% of control levels, following 4 wk insulin treatment indicating the reversibility of impaired MIBG uptake in diabetic rats. In vivo reserpine treatment resulted in a 50% reduction in the H/B value in control rats. However, the treatment did not significantly suppress uptake in diabetic rats. Cardiac norepinephrine content in both *4- and **8-wk diabetic rats was significantly (*p**p125I-MIBG in diabetic rats is significantly impaired due to cardiac sympathetic nerve abnormalities. These abnormalities are reversible, however, dependent on the diabetic state. (author)

  19. Functional coupling with cardiac muscle promotes maturation of hPSC-derived sympathetic neurons

    Science.gov (United States)

    Oh, Yohan; Cho, Gun-Sik; Li, Zhe; Hong, Ingie; Zhu, Renjun; Kim, Min-Jeong; Kim, Yong Jun; Tampakakis, Emmanouil; Tung, Leslie; Huganir, Richard; Dong, Xinzhong; Kwon, Chulan; Lee, Gabsang

    2016-01-01

    Summary Neurons derived from human pluripotent stem cells (hPSCs) are powerful tools for studying human neural development and diseases. Robust functional coupling of hPSC-derived neurons with target tissues in vitro is essential for modeling intercellular physiology in a dish and to further translational studies, but has proven difficult to achieve. Here, we derive sympathetic neurons from hPSCs and show they can form physical and functional connections with cardiac muscle cells. Using multiple hPSC reporter lines, we recapitulated human autonomic neuron development in vitro and successfully isolated PHOX2B:eGFP+ neurons that exhibit sympathetic marker expression and electrophysiological properties, and norepinephrine secretion. Upon pharmacologic and optogenetic manipulation, PHOX:eGFP+ neurons controlled beating rates of cardiomyocytes, and the physical interactions between these cells increased neuronal maturation. This study provides a foundation for human sympathetic neuron specification and for hPSC-based neuronal control of organs in a dish. PMID:27320040

  20. Cutaneous overexpression of NT-3 increases sensory and sympathetic neuron number and enhances touch dome and hair follicle innervation

    OpenAIRE

    1996-01-01

    Target-derived influences of nerve growth factor on neuronal survival and differentiation are well documented, though effects of other neurotrophins are less clear. To examine the influence of NT-3 neurotrophin overexpression in a target tissue of sensory and sympathetic neurons, transgenic mice were isolated that overexpress NT- 3 in the epidermis. Overexpression of NT-3 led to a 42% increase in the number of dorsal root ganglia sensory neurons, a 70% increase in the number of trigeminal sen...

  1. A neuron autonomous role for the familial dysautonomia gene ELP1 in sympathetic and sensory target tissue innervation

    OpenAIRE

    Jackson, Marisa Z.; Gruner, Katherine A.; Qin, Charles; Tourtellotte, Warren G.

    2014-01-01

    Familial dysautonomia (FD) is characterized by severe and progressive sympathetic and sensory neuron loss caused by a highly conserved germline point mutation of the human ELP1/IKBKAP gene. Elp1 is a subunit of the hetero-hexameric transcriptional elongator complex, but how it functions in disease-vulnerable neurons is unknown. Conditional knockout mice were generated to characterize the role of Elp1 in migration, differentiation and survival of migratory neural crest (NC) progenitors that gi...

  2. Effects of cardiac sympathetic nervous system on the stunned myocardium

    International Nuclear Information System (INIS)

    123I-Metaiodobenzylguanidine (123I-MIBG) uptake in the stunned myocardium was investigated in open chest dogs. 123I-MIBG is a tracer taken up in presynaptic adrenergic vesicles and reflects the function of the myocardial sympathetic nervous system. This study revealed that in the stunned myocardium without infarct, 123I-MIBG uptake was normal up to 40 minutes of ischemia and that exogenous noradrenaline improved deteriolated regional wall motion with increased uptake of 123I-MIBG. However, uptake of 123I-MIBG per flow decreased with infarct in ischemic areas, and it showed a linear relation with regional wall motion. Thus, in the absence of infarction 123I-MIBG is a tracer to differentiate stunning from more severe ischemia with persistent wall motion abnormality. Normal uptake and storage of 123I-MIBG in the stunned condition suggests that catecholamine release or second effector mechanism may relate to the mechanism. (author)

  3. Chronic central leptin infusion restores cardiac sympathetic-vagal balance and baroreflex sensitivity in diabetic rats

    OpenAIRE

    do Carmo, Jussara M.; Hall, John E.; da Silva, Alexandre A.

    2008-01-01

    This study tested whether leptin restores sympathetic-vagal balance, heart rate (HR) variability, and cardiac baroreflex sensitivity (BRS) in streptozotocin (STZ)-induced diabetes. Sprague-Dawley rats were instrumented with arterial and venous catheters, and a cannula was placed in the lateral ventricle for intracerebroventricular (ICV) leptin infusion. Blood pressure (BP) and HR were monitored by telemetry. BRS and HR variability were estimated by linear regression between HR and BP response...

  4. Induction of chronic non-inflammatory widespread pain increases cardiac sympathetic modulation in rats

    OpenAIRE

    Oliveira, Larissa Resende; de Melo, Vitor Ulisses; Macedo, Fabricio Nunes; Barreto, Andre Sales; Badaue-Passos, Daniel; Viana dos Santos, Marcio Roberto; Dias, Daniel Penteado Martins; Sluka, Kathleen A.; DeSantana, Josimari M.; Valter J. Santana-Filho

    2012-01-01

    Fibromyalgia (FM) is characterized by chronic non-inflammatory widespread pain (CWP) and changes in sympathetic function. In attempt to elucidate the pathophysiological mechanisms of FM we used a well-established CWP animal model. We aimed to evaluate changes in cardiac autonomic balance and baroreflex function in response to CWP induction in rats. CWP was induced by two injections of acidic saline (pH 4.0, n=8) five days apart into the left gastrocnemius muscle. Control animals were injected...

  5. Dynamic molecular imaging of cardiac innervation using a dual head pinhole SPECT system

    International Nuclear Information System (INIS)

    Typically 123I-MIBG is used for the study of innervation and function of the sympathetic nervous system in heart failure. The protocol involves two studies: first a planar or SPECT scan is performed to measure initial uptake of the tracer, followed some 3-4 hours later by another study measuring the wash-out of the tracer from the heart. A fast wash-out is indicative of a compromised heart. In this work, a dual head pinhole SPECT system was used for imaging the distribution and kinetics of 123I-MIBG in the myocardium of spontaneous hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats. The system geometry was calibrated based on a nonlinear point projection fitting method using a three-point source phantom. The angle variation effect of the parameters was modeled with a sinusoidal function. A dynamic acquisition was performed by injecting 123I-MIBG into rats immediately after starting the data acquisition. The detectors rotated continuously performing a 360o data acquisition every 90 seconds. We applied the factor analysis (FA)method and region of interest (ROI) sampling method to obtain time activity curves (TACs)in the blood pool and myocardium and then applied two-compartment modeling to estimate the kinetic parameters. Since the initial injection bolus is too fast for obtaining a consistent tomographic data set in the first few minutes of the study, we applied the FA method directly to projections during the first rotation. Then the time active curves for blood and myocardial tissue were obtained from ROI sampling. The method was applied to determine if there were differences in the kinetics between SHR and WKY rats and requires less time by replacing the delayed scan at 3-4 hours after injection with a dynamic acquisition over 90 to 120 minutes. The results of a faster washout and a smaller distribution volume of 123I-MIBG near the end of life in the SHR model of hypertrophic cardiomyopthy may be indicative of a failing heart in late stages of heart

  6. Differential effects of defibrillation on systemic and cardiac sympathetic activity

    OpenAIRE

    Bode, F; U. Wiegand; Raasch, W; Richardt, G.; Potratz, J

    1998-01-01

    Objective—To assess the effect of defibrillation shocks on cardiac and circulating catecholamines.
Design—Prospective examination of myocardial catecholamine balance during dc shock by simultaneous determination of arterial and coronary sinus plasma concentrations. Internal countershocks (10-34 J) were applied in 30 patients after initiation of ventricular fibrillation for a routine implantable cardioverter defibrillator test. Another 10 patients were externally cardioverted (50-360 J) for at...

  7. Cardiac sympathetic denervation preceding motor signs in Parkinson disease

    OpenAIRE

    Goldstein, David S.; Sharabi, Yehonatan; Karp, Barbara I.; Bentho, Oladi; Saleem, Ahmed; Pacak, Karel; Eisenhofer, Graeme

    2007-01-01

    There is substantial interest in identifying biomarkers to detect early Parkinson disease (PD). Cardiac noradrenergic denervation and attenuated baroreflex-cardiovagal function occur in de novo PD, but whether these abnormalities can precede PD has been unknown. Here we report the case of a patient who had profoundly decreased left ventricular myocardial 6-[18F]fluorodopamine-derived radioactivity and low baroreflex-cardiovagal gain, 4 years before the onset of symptoms and signs of PD. The r...

  8. Fluvastatin attenuates diabetes-induced cardiac sympathetic neuropathy in association with a decrease in oxidative stress

    International Nuclear Information System (INIS)

    Increased oxidative stress might contribute to diabetic (DM) neuropathy, so the effects of long-term treatment with fluvastatin (FL) on myocardial oxidative stress and cardiac sympathetic neural function were investigated in diabetic rats. FL (10 mg·kg-1·day-1, DM-FL) or vehicle (DM-VE) was orally administered for 2 weeks to streptozotocin-induced DM rats. Cardiac oxidative stress was determined by myocardial 8-iso-prostaglandin F2α (PGF2α) and nicotinamide adenine dinucleotide (NADPH) oxidase subunit p22phox mRNA expression. Sympathetic neural function was quantified by autoradiography using 131I- and 125I-metaiodobenzylguanidine (MIBG). FL did not affect plasma glucose levels but remarkably decreased PGF2α levels compared with DM-VE rats (13.8±9.2 vs 175.0±93.9 ng/g tissue), although PGF2α levels were below the detection limit in non-DM rats. FL significantly reduced myocardial p22phox mRNA expression. Cardiac 131I-MIBG uptake was lower in DM-VE rats than in non-DM rats, but the decrease was attenuated in DM-FL rats (1.31±0.08, 1.88±0.22, and 1.58±0.18%kg dose/g, respectively, P<0.01). Cardiac MIBG clearance was not affected by the induction of DM or by FL, indicating that the reduced MIBG uptake in DM rats might result from impaired neural function. FL ameliorates cardiac sympathetic neural dysfunction in DM rats in association with attenuation of increased myocardial oxidative stress. (author)

  9. Increased cardiac sympathetic activity in patients with hypothyroidism as determined by iodine-123 metaiodobenzylguanidine scintigraphy

    International Nuclear Information System (INIS)

    Clinical manifestations of hypothyroidism, such as bradycardia, suggest decreased sympathetic tone. However, previous studies in patients with hypothyroidism have suggested that increased plasma noradrenaline (NA) levels represent enhanced general sympathetic activity. As yet, cardiac sympathetic activity (CSA) in hypothyroidism has not been clarified. To evaluate CSA in patients with hypothyroidism, iodine-123 metaiodobenzylguanidine (MIBG) scintigraphy was performed in eight patients with hypothyroidism before therapy and in ten normal control patients. Planar images were obtained at 15 min and 4 h after injection of MIBG. The ratio of early myocardial uptake to the total injected dose (MU) and myocardial clearance of MIBG within 4 h p.i. (MC) were calculated. Plasma NA was also measured, and echocardiography was performed in all patients. Those patients with hypothyroidism in the euthyroid state after medical therapy were also evaluated in a similar manner. Left ventricular ejection fraction, measured by echocardiography, did not differ significantly between the groups. NA, MU and MC were significantly higher in patients with hypothyroidism than in controls, and all parameters were decreased after therapy. MC was well correlated with NA in hypothyroidism (r=0.86) before therapy. We conclude that CSA is increased in patients with hypothyroidism, in parallel with the enhanced general sympathetic activity. (orig.). With 4 figs., 2 tabs

  10. Cardiac Dysregulation and Myocardial Injury in a 6-Hydroxydopamine-Induced Rat Model of Sympathetic Denervation.

    Directory of Open Access Journals (Sweden)

    Yue-Hua Jiang

    Full Text Available Cardiac sympathetic denervation is found in various cardiac pathologies; however, its relationship with myocardial injury has not been thoroughly investigated.Twenty-four rats were assigned to the normal control group (NC, sympathectomy control group (SC, and a sympathectomy plus mecobalamin group (SM. Sympathectomy was induced by injection of 6-OHDA, after which, the destruction and distribution of sympathetic and vagal nerve in the left ventricle (LV myocardial tissue were determined by immunofluorescence and ELISA. Heart rate variability (HRV, ECG and echocardiography, and assays for myocardial enzymes in serum before and after sympathectomy were examined. Morphologic changes in the LV by HE staining and transmission electron microscope were used to estimate levels of myocardial injury and concentrations of inflammatory cytokines were used to reflect the inflammatory reaction.Injection of 6-OHDA decreased NE (933.1 ± 179 ng/L for SC vs. 3418.1± 443.6 ng/L for NC, P < 0.01 and increased NGF (479.4± 56.5 ng/mL for SC vs. 315.85 ± 28.6 ng/mL for NC, P < 0.01 concentrations. TH expression was reduced, while ChAT expression showed no change. Sympathectomy caused decreased HRV and abnormal ECG and echocardiography results, and histopathologic examinations showed myocardial injury and increased collagen deposition as well as inflammatory cell infiltration in the cardiac tissue of rats in the SC and SM groups. However, all pathologic changes in the SM group were less severe compared to those in the SC group.Chemical sympathectomy with administration of 6-OHDA caused dysregulation of the cardiac autonomic nervous system and myocardial injuries. Mecobalamin alleviated inflammatory and myocardial damage by protecting myocardial sympathetic nerves.

  11. Localization of peripheral autonomic neurons innervating the boar urinary bladder trigone and neurochemical features of the sympathetic component

    Directory of Open Access Journals (Sweden)

    L. Ragionieri

    2013-05-01

    Full Text Available The urinary bladder trigone (UBT is a limited area through which the majority of vessels and nerve fibers penetrate into the urinary bladder and where nerve fibers and intramural neurons are more concentrated. We localized the extramural post-ganglionic autonomic neurons supplying the porcine UBT by means of retrograde tracing (Fast Blue, FB. Moreover, we investigated the phenotype of sympathetic trunk ganglion (STG and caudal mesenteric ganglion (CMG neurons positive to FB (FB+ by coupling retrograde tracing and double-labeling immunofluorescence methods. A mean number of 1845.1±259.3 FB+ neurons were localized bilaterally in the L1-S3 STG, which appeared as small pericarya (465.6±82.7 µm2 mainly localized along an edge of the ganglion. A large number (4287.5±1450.6 of small (476.1±103.9 µm2 FB+ neurons were localized mainly along a border of both CMG. The largest number (4793.3±1990.8 of FB+ neurons was observed in the pelvic plexus (PP, where labeled neurons were often clustered within different microganglia and had smaller soma cross-sectional area (374.9±85.4 µm2. STG and CMG FB+ neurons were immunoreactive (IR for tyrosine hydroxylase (TH (66±10.1% and 52.7±8.2%, respectively, dopamine beta-hydroxylase (DβH (62±6.2% and 52±6.2%, respectively, neuropeptide Y (NPY (59±8.2% and 65.8±7.3%, respectively, calcitonin-gene-related peptide (CGRP (24.1±3.3% and 22.1±3.3%, respectively, substance P (SP (21.6±2.4% and 37.7±7.5%, respectively, vasoactive intestinal polypeptide (VIP (18.9±2.3% and 35.4±4.4%, respectively, neuronal nitric oxide synthase (nNOS (15.3±2% and 32.9±7.7%, respectively, vesicular acetylcholine transporter (VAChT (15±2% and 34.7±4.5%, respectively, leu-enkephalin (LENK (14.3±7.1% and 25.9±8.9%, respectively, and somatostatin (SOM (12.4±3% and 31.8±7.3%, respectively. UBT-projecting neurons were also surrounded by VAChT-, CGRP-, LENK-, and nNOS-IR fibers. The possible role of these neurons and fibers

  12. Effect of Atorvastatin vs. Rosuvastatin on cardiac sympathetic nerve activity in non-diabetic patients with dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Effects of statin therapy on cardiac sympathetic nerve activity in patients with chronic heart failure (CHF) have not previously been evaluated. To compare the effects of lipophilic atorvastatin and hydrophilic rosuvastatin on cardiac sympathetic nerve activity in CHF patients with dilated cardiomyopathy (DCM), 63 stable outpatients with DCM, who were already receiving standard therapy for CHF, were randomized to atorvastatin (n=32) or rosuvastatin (n=31). We evaluated cardiac sympathetic nerve activity by cardiac 123I-metaiodobenzylguanidine (MIBG) scintigraphy, hemodynamic parameters and neurohumoral factors before and after 6 months of treatment. There were no differences in the baseline characteristics of the 2 groups. In the rosuvastatin group, there were no changes in MIBG parameters, left ventricular ejection fraction or plasma levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP) after 6 months of treatment. In contrast, the atorvastatin group showed a significant increase in the delayed heart/mediastinum count ratio (2.18±0.4 vs. 2.36±0.4, P<0.0001), and the washout rate was significantly decreased (34.8±5.7 vs. 32.6±6.3%, P=0.0001) after 6 months of treatment compared with the baseline values. The plasma NT-proBNP level was also significantly decreased (729±858 vs. 558±747 pg/ml, P=0.0139). Lipophilic atorvastatin but not hydrophilic rosuvastatin improves cardiac sympathetic nerve activity in CHF patients with DCM. (author)

  13. Effect of left ventricular dyssynchrony on cardiac sympathetic activity in heart failure patients with wide QRS duration

    International Nuclear Information System (INIS)

    Dyssynchrony has various detrimental effects on cardiac function, but its effect on cardiac sympathetic activity is not fully understood. We studied 50 heart failure patients who underwent cardiac resynchronization therapy (CRT). Cardiac sympathetic activity was assessed by (123I-metaiodobenzylguanidine (123I-MIBG) scintigraphy as the delayed heart-to-mediastinum ratio (H/M ratio). Echocardiography was performed before and 7 months after CRT, and response was defined as a ≥15% decrease in end-systolic volume. Dyssynchrony was determined by the time difference between the anteroseptal-to-posterior wall using speckle-tracking radial strain (≥130 ms predefined as significant). H/M ratio in patients with dyssynchrony was less than that in patients without dyssynchrony (1.62±0.31 vs. 1.82±0.36, P123I-MIBG scintigraphy may be valuable for predicting the response to CRT. (author)

  14. Norepinephrine transporter (NET) is expressed in cardiac sympathetic ganglia of adult rat

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The sympathetic nervous system plays a cardinal role in regulating cardiac function through releasing the neurotransmitter norepinephrine (NE). In comparison with central nervous system, the molecular mechanism of NE uptake in myocardium is not clear. In present study, we proved that in rat the CNS type of NE transporter (NET) was also expressed in middle cervical-stellate ganglion complex (MC-SG complex) which is considered to control the activity of heart, but not expressed in myocardium. The results also showed that NET expression level in right ganglion was significantly higher than in the left, rendering the greater capacity of NE uptake in right ventricle, a fact which may contribute to the maintenance of right ventricular function under pathologic state.

  15. Sympathetic reinnervation in cardiac transplants: 123I-MIBG and 201Tl/99mTc-MIBI scintigraphy

    International Nuclear Information System (INIS)

    Iodine-123 metaiodobenzylguanidine (123I-MIBG) is a norepinephrine (NE) analogue and taken up by myocardial sympathetic nerves. To determine whether cardiac sympathetic reinnervation occurs after orthotopic heart transplantation (TPL). We performed 24 serial or followup cardiac 123I-MIBG imaging and 201T1/99mTc-MIBI dipyridamole stress gated myocardial perfusion SPECT (g-MPS) in 15 pts(M : F =10 : 5; mean ages = 34.67±12.92 yr; idiopathic: rheumatic=14:1) (10.80±11.88 (1-48) mo) after TPL. 123I-MIBG imagins were performed in anterior position 15 minutes, 4 and 24 hours after i.v. injection of 148 MBq 123I MIBG. Image quantitation was based on the ratio of heart to mediastinal MIBG uptake (HMR). 12 subjects with 1 year after TPL whereas reinnervation is less likely to occur in pts with a pretransplantation diagnosis idiopathic cardiomyopathy

  16. Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: Intermediate and long-term follow-up

    OpenAIRE

    Vaseghi, M; Gima, J; Kanaan, C; Ajijola, OA; Marmureanu, A; Mahajan, A.; Shivkumar, K

    2014-01-01

    Background Left and bilateral cardiac sympathetic denervation (CSD) have been shown to reduce burden of ventricular arrhythmias acutely in a small number of patients with ventricular tachyarrhythmia (VT) storm. The effects of this procedure beyond the acute setting are unknown. Objective The purpose of this study was to evaluate the intermediate and long-term effects of left and bilateral CSD in patients with cardiomyopathy and refractory VT or VT storm. Methods Retrospective analysis of medi...

  17. A case of cardiac sudden death related to abnormality of sympathetic nervous disturbance detected by 123I-metaiodobenzylguanidine (MIBG)

    International Nuclear Information System (INIS)

    A case of cardiac sudden death was reported. A female, 64 years old patient with multiple myeloma had been treated with total dose of 790 mg of adriamycin. Although treadmill examination, dobutamine-loaded cardiac echography and thallium-loaded myocardial scintigraphy gave normal findings, Holter ECG revealed bigeminy and discontinuous ventricular tachycardia. Mexiletine was not tolerated. 123I-MIBG image gave deficit of lateral to posterior wall and increased washing rate of 65%. At 36 days after hospitalization, the ventricular tachycardia changed to fatal fibrillation. The sympathetic nervous disturbance detected by the enhanced washing rate of 123I-MIBG might have participated in the death. (K.H.)

  18. Reactive oxygen species in paraventricular nucleus involved in cardiac sympathetic afferent reflex in rats

    Institute of Scientific and Technical Information of China (English)

    Feng Zhang; Yang Yu; Ying Zhang; Yingchun Li; Luqing Zhang; Lingling Fan; Yingya Gao; Guoqing Zhu

    2005-01-01

    Objective: The present study was designed to determine if reactive oxygen species (ROS) in the paraventricularnucleus (PVN) were involved in modulating cardiac sympathetic afferent reflex (CSAR) in anesthetized rats. Methods: Malondialdehyde(MDA), the end product of lipid peroxidation, in the PVN, was determined by thiobarbituric acid (TBA) spectrometric method. Renalsympathetic nerve activity (RSNA) and arterial pressure were recorded in sinoaortic-denervated and cervical-vagotomized rats. The CSARwas evaluated by the response of the RSNA evoked by epicardial application of bradykinin (BK, 0.4 μg). Results: The MDA in the PVNwas significantly increased after epicardial application of BK compared with control (2.0 + 0.3 vs 0.8 + 0.1 nmol/mg protein, P < 0.01 ).Microinjectionof a superoxide anion scavenger, tiron (20 nmol) into the PVN significantly inhibited the CSAR evoked by BK (12.3 ± 1.9vs 4.2+ 1.2%, P < 0.01) and decreased MDA level (1.9±0.3 vs 0.6+0.1 nmol/mg protein, P <0.01) compared with control.Conclusion: The ROS in the PVN is involved in modulating the CSAR in rats.

  19. Cardiac sympathetic dysfunction in an athlete's heart detected by 1''2''3I-metaiodobenzylguanidine scintigraphy

    International Nuclear Information System (INIS)

    The athlete's heart is commonly characterized by an increase in left ventricular mass because of an increase in the left ventricular diastolic cavity dimensions or wall thickness or both. Endurance exercise also induces numerous cardiovascular adaptations, including increased vagal tone. However, the sympathetic function has not yet been precisely elucidated, so the present study evaluated cardiac sympathetic nerve function from metaiodobenzylguanidine (MIBG) images obtained 15 and 180 min after the injection of 123I-MIBG at a dose of 111MBq. The ratio of heart/mediastinum count (H/M) and the washout rates of 123I-MIBG (WR) were calculated in 25 consecutive patients who were athletes (aged 52±13 years) and 23 normal subjects. There was a significant difference in the H/M between the athletic and normal hearts (2.3±0.3 vs 2.6±0.3, p<0.01, Scheffe's test). An increased WR was observed in the athletes group when compared with the normal group (34±4 vs 28±3, p<0.01), and there was a significant correlation between WR and the left ventricular mass index (r=0.578, p<0.01). Prolonged exercise training may alter cardiac sympathetic nerve function, which can be detected by MIBG imaging. (author)

  20. Angiotensin II and angiotensin-(1-7 in paraventricular nucleus modulate cardiac sympathetic afferent reflex in renovascular hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Hai-Jian Sun

    Full Text Available BACKGROUND: The enhanced cardiac sympathetic afferent reflex (CSAR is involved in the sympathetic activation that contributes to the pathogenesis and progression of hypertension. Activation of AT(1 receptors by angiotension (Ang II in the paraventricular nucleus (PVN augments the enhanced CSAR and sympathetic outflow in hypertension. The present study is designed to determine whether Ang-(1-7 in PVN plays the similar roles as Ang II and the interaction between Ang-(1-7 and Ang II on CSAR in renovascular hypertension. METHODOLOGY/PRINCIPAL FINDINGS: The two-kidney, one-clip (2K1C method was used to induce renovascular hypertension. The CSAR was evaluated by the renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP responses to epicardial application of capsaicin in sinoaortic-denervated and cervical-vagotomized rats with urethane and α-chloralose anesthesia. Either Ang II or Ang-(1-7 in PVN caused greater increases in RSNA and MAP, and enhancement in CSAR in 2K1C rats than in sham-operated (Sham rats. Mas receptor antagonist A-779 and AT(1 receptor antagonist losartan induced opposite effects to Ang-(1-7 or Ang II respectively in 2K1C rats, but losartan had no effects in Sham rats. Losartan but not the A-779 abolished the effects of Ang II, while A-779 but not the losartan blocked the effects of Ang-(1-7. PVN pretreatment with Ang-(1-7 dose-dependently augmented the RSNA, MAP, and CSAR responses to the Ang II in 2K1C rats. Ang II level, AT(1 receptor and Mas receptor protein expression in PVN increased in 2K1C rats compared with Sham rats but Ang-(1-7 level did not. CONCLUSIONS: Ang-(1-7 in PVN is as effective as Ang II in enhancing the CSAR and increasing sympathetic outflow and both endogenous Ang-(1-7 and Ang II in PVN contribute to the enhanced CSAR and sympathetic outflow in renovascular hypertension. Ang-(1-7 in PVN potentiates the effects of Ang II in renovascular hypertension.

  1. Assessment of cardiac sympathetic nerve activity in children with chronic heart failure using quantitative iodine-123 metaiodobenzylguanidine imaging

    International Nuclear Information System (INIS)

    Cardiac sympathetic nerve activity in children with chronic heart failure was examined by quantitative iodine-123 metaiodobenzylguanidine (MIBG) myocardial imaging in 33 patients aged 7.5±6.1 years (range 0-18 years), including 8 with cardiomyopathy, 15 with congenital heart disease, 3 with anthracycrine cardiotoxicity, 3 with myocarditis, 3 with primary pulmonary hypertension and 1 with Pompe's disease. Anterior planar images were obtained 15 min and 3 hr after the injection of iodine-123 MIBG. The cardiac iodine-123 MIBG uptake was assessed as the heart to upper mediastinum uptake activity ratio of the delayed image (H/M) and the cardiac percentage washout rate (%WR). The severity of chronic heart failure was class I (no medication) in 8 patients, class II (no symptom with medication) in 9, class III (symptom even with medication) in 10 and class IV (late cardiac death) in 6. H/M was 2.33±0.22 in chronic heart failure class I, 2.50±0.34 in class II, 1.95±0.61 in class III, and 1.39±0.29 in class IV (p<0.05). %WR was 24.8±12.8% in chronic heart failure class I, 23.3±10.2% in class II, 49.2±24.5% in class III, and 66.3±26.5% in class IV (p<0.05). The low H/M and high %WR were proportionate to the severity of chronic heart failure. Cardiac iodine-123 MIBG showed cardiac adrenergic neuronal dysfunction in children with severe chronic heart failure. Quantitative iodine-123 MIBG myocardial imaging is clinically useful as a predictor of therapeutic outcome and mortality in children with chronic heart failure. (author)

  2. Assessment of central chemosensitivity and cardiac sympathetic nerve activity using I-123 MIBG imaging in central sleep apnea syndrome in patients with dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Iodine-123 m-iodobenzylguanidine (MIBG) imaging has been used to study cardiac sympathetic function in various cardiac diseases. Central sleep apnea syndrome (CSAS) occurs frequently in patients with chronic heart failure (CHF) and is reported to be associated with a poor prognosis. One of the mechanisms of its poor prognosis may be related to impaired cardiac sympathetic activity. However, the relationship between chemosensitivity to carbon dioxide, which is reported to correlate with the severity of CSAS, and cardiac sympathetic activity has not been investigated. Therefore, this study was undertaken to assess cardiac sympathetic function and chemosensitivity to carbon dioxide in CHF patients. The oxygen desaturation index (ODI) was evaluated in 21 patients with dilated cardiomyopathy (male/female: 19/2, left ventricular ejection fraction (LVEF)5 times/h underwent polysomnography. Patients with an apnea hypopnea index >15/h but without evidence of obstructive apnea were defined as having CSAS. Early (15 min) and delayed (4 hr) planar MIBG images were obtained from these patients. The mean counts in the whole heart and the mediastinum were obtained. The heart-to-mediastinum count ratio of the delayed image (H/M) and the corrected myocardial washout rate (WR) were also calculated. The central chemoreflex was assessed with the rebreathing method using a hypercapnic gas mixture (7% CO2 and 93% O2). Ten of the 21 patients had CSAS. The H/M ratio was similar in patients both with and without CSAS (1.57±0.18 vs. 1.59±0.14, p=0.82). However, the WR was higher in patients with CSAS than in patients without CSAS (40±8% vs. 30±12%, p<0.05). ODI significantly correlated with central chemosensitivity to carbon dioxide. Moreover, there was a highly significant correlation between WR and central chemosensitivity (r=0.65, p<0.05). However, there was no correlation between ODI and the WR (r=0.36, p=0.11). Cardiac sympathetic nerve activity in patients with CHF and CSAS is

  3. Sympathetic reinnervation in cardiac transplants: 123I-MIBG and 201Tl/99mTc-MIBI scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Oh, S. J.; Son, M. S.; Son, J. W.; Koh, K. K.; Choi, I. S.; Shin, E. K.; Park, K. Y. [Gachon Medical College, Gil Heart Center, Inchon (Korea, Republic of)

    1998-07-01

    Iodine-123 metaiodobenzylguanidine (123I-MIBG) is a norepinephrine (NE) analogue and taken up by myocardial sympathetic nerves. To determine whether cardiac sympathetic reinnervation occurs after orthotopic heart transplantation (TPL). We performed 24 serial or followup cardiac 123I-MIBG imaging and 201T1/99mTc-MIBI dipyridamole stress gated myocardial perfusion SPECT (g-MPS) in 15 pts(M : F =10 : 5; mean ages = 34.67{+-}12.92 yr; idiopathic: rheumatic=14:1) (10.80{+-}11.88 (1-48) mo) after TPL. 123I-MIBG imagins were performed in anterior position 15 minutes, 4 and 24 hours after i.v. injection of 148 MBq 123I MIBG. Image quantitation was based on the ratio of heart to mediastinal MIBG uptake (HMR). 12 subjects with < 13 (4.91{+-}3.67) months after TPL had no visible 123I-MIBG uptake on early 15 min imaging however, 12 subjects with 13 to 48(28.58{+-}12.77) months had visible cardiac 123I-MIBG uptake (HMR: 1.65 {+-}0.21 vs. 1.32{+-}0.26 p=0.002). Correlation was found between plasma NE concentration and HMR ( r=0.80: p<0.05). Compared to HMR on 15 min images (1.48{+-}0.28), neither four nor 24 hour delayed images (1.26{+-}0.23 vs. 1.06{+-}0.10 : p<0.05, respectively, ANOVA) showed definite delayed localization of MIBG. To dipyridamole stress, transplant hearts showed significant subnormal hemodynamic responses of HR, s-BP, d-BP, and rate pressure product (90.9{+-}14.9 to 102.2{+-}15.3, 136.5{+-}17.3 to 124.9{+-}13.3, 83.3{+-}12.5 to 74.7{+-}15.6, 123.2{+-}19.4 to 127.4{+-}21.8 p<0.05, respectively). One-year followup 123I-MIBG scintigraphy in nine pts showed increased HMR (1.50{+-}0,37 to 1.61{+-}0.15, p=ns) but couldnt reach the statistical significance. Out of nine followup patients, five showed increased HMR but four didnt. gMPS performed at post-TPL 48 months in one patient complaining vague chest pain whose HMR value 1.73 to 1.62 showed an apicoanterior wall reversible perfusion defect which confirmed as 90% distal left anterior descending artery stenosis by

  4. Electrocardiographically gated 11C-hydroxyephedrine PET for the simultaneous assessment of cardiac sympathetic and contractile functions

    International Nuclear Information System (INIS)

    Application of the electrocardiographically (ECG) gated positron emission tomography (PET) technique with 11C-hydroxyephedrine (HED) would allow the simultaneous assessment of cardiac sympathetic and contractile functions. However, there are uncertainties regarding the diagnostic accuracy of left ventricular (LV) volume measurements using ECG-gated HED-PET. The purpose of this study was to clarify the minimal requirement of count statistics to measure LV volumes with ECG-gated HED-PET and to investigate the reliability of the measurements. Five healthy volunteers and 11 patients with heart failure underwent a 40-min list-mode PET scan after an injection of HED (197 ± 35 MBq). The list-mode data were histogrammed into multiple sets of acquisition periods at 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 12.0 Mcount/bin and reconstructed into corresponding gated images using an iterative algorithm. The LV end-diastolic volume (LVEDV), the LV end-systolic volume (LVESV), and the LV ejection fraction (LVEF) were calculated in each acquisition period. These values were compared with those obtained by cardiac magnetic resonance imaging (MRI). Possible effects of HED retention on the accuracy of the volume measurements were investigated. Collecting less than 4.0 Mcount/bin resulted in noisy cardiac images. The lower counts resulted in underestimation in the volume measurements. Reasonably accurate volume measurements required equal to or greater than 6.0 Mcount/bin. This corresponded to 7.0 ± 1.9 min (range, 4.0-10.3 min) for the acquisition period. Volumetric results using the 6.0 Mcount/bin data highly correlated with cardiac MRI (LVEDV: r=0.85, p < 0.0001; LVESV: r=0.89, p < 0.0001; LVEF: r=0.77, p < 0.01). The HED retention did not affect the volumetric results compared to the MRI volumetry. The volumetric accuracy with ECG-gated HED-PET was affected by the count statistics rather than the HED retention. LV volume measurements were feasible with 10-min acquisition period for most of

  5. Effects of alpha-adrenoceptor and of combined sympathetic and parasympathetic blockade on cardiac performance and vascular resistance

    DEFF Research Database (Denmark)

    Kelbaek, H; Frandsen, Henrik Lund; Hilsted, J;

    1992-01-01

    ) blockade. 2. During alpha-adrenoceptor blockade heart rate and cardiac output increased considerably and left ventricular ejection fraction increased because of increased contractility. Systemic vascular resistance fell both during alpha-adrenoceptor blockade alone and during combined blockade. The...... increase in calf blood flow was of the same magnitude after combined blockade and after alpha-adrenoceptor blockade alone, and was considerably higher than the fall in systemic vascular resistance. Plasma catecholamine concentrations increased after phentolamine, but the changes were blunted when...... propranolol and atropine were added. 3. These results indicate that peripheral vasoconstriction especially that exerted by alpha-adrenoceptor nervous tone in skeletal muscle restricts left ventricular emptying of the intact heart. During pharmacologic blockade of the sympathetic and parasympathetic nervous...

  6. Cardiac Neurotransmission Imaging with 123I-Meta-iodobenzylguanidine in Postural Tachycardia Syndrome.

    OpenAIRE

    Haensch, Carl-Albrecht; Lerch, Hartmut; Schlemmer, Hans; Jigalin, Anna; Isenmann, Stefan

    2010-01-01

    Abstract Background: Postural orthostatic tachycardia syndrome (POTS) is a disorder of orthostatic intolerance characterized by excessive tachycardia of unknown etiology. Whether this condition involves abnormal cardiac sympathetic innervation or function remains elusive. Metaiodobenzylguanidine (MIBG) resembles guanethidine and is a pharmacologically inactive analogue of norepinephrine, which is similarly metabolized in noradrenergic neurons. MIBG myocardial scintigraphy is clinic...

  7. EFFECT OF ELECTROACUPUNCTURE ON MYOCARDIAL ISCHEMIA INDUCED CHANGES OF CARDIAC SYMPATHETIC ACTIVITY AND INVOLVEMENT OF SPINIAL δ-OPIOID,NMDA-AND NON-NMDA RECEPTORS IN THE RABBIT

    Institute of Scientific and Technical Information of China (English)

    刘俊岭; 高永辉; 陈淑萍

    2003-01-01

    Aim: To observe the effect of electroacupuncture (EA) on acute myocardial ischemia (AMI) induced changes of cardiac sympathetic discharges and the effects of some related receptors in the spinal cord. Methods: A total of 53 rabbits anesthetized with mixture solution of 25% urethane (420 mg/kg) and 1.5% chloralose (50 mg/kg)were used in this study. AMI was induced by occlusion of the ventricular branch of the left coronary artery. Discharges of the left cardiac sympathetic nerve were recorded by using a bipolar platinum electrode. Bilateral "Ximen"(PC 40)and "Kongzhui"(LU 6) were stimulated electrically by using an EA therapeutic apparatus or an electrical stimulator.DPDPE δ-opiate receptor agonist, 20 nmol, 10 μL, n= 8), Naltrindole Hydrochloride (δ-opiate receptor antagonist, 20nmol, 10 μL, n=8), DAP5 (NMDA receptor antagonist, 5 nmol, 10 μL, n=9) and CNQX (non-NMDA receptor antagonist, 5 nmol, 10 μL, n=8) were respectively injected into the thoracic subarachnoid space of the spinal cord in different groups, followed by observing their effects on changes of sympathetic activity evoked by EA of the abovementioned acupoints. Results: ① After AMI, sympathetic discharges increased (200.56± 79.89%) in 10 cases and decreased (- 59.34 ±7.06% ) in other 9 cases in comparison with their individual basal values. After EA of "Ximen" (PC 4)and "Kongzhui" (Lu 6), AMI-induced increase and decrease changes of the sympathetic activity were suppressed significantly, but the effect of EA of LU-6 was weaker than that of EA of PC-4.②Following EA of PC-4 and LU-6, sympathetic discharges increased significantly in 2 and 4 cases, decreased apparently in 7 and 3 cases, and had no striking changes in 1 and 3 cases respectively. The mean reaction threshold of sympathetic activity after EA of PC-4 and LU-6were 2.1 ± 0.65 mA and 3.28± 1.13 mA separately.③ After pre-treatment with DPDPE, the reaction threshold of the cardiac sympathetic activity to EA of PC-4 elevated

  8. Sympathetic reinnervation in cardiac transplants: 123I-MIBG and 201Tl/99mTc-MIBI scintigraphy

    International Nuclear Information System (INIS)

    The purpose was to evaluate cardiac sympathetic reinnervation and hemodynamic changes after orthotopic heart transplantation (TPL). We performed 24 serial or followup cardiac 123I-MIBG imaging and rest 201Tl/99mTc-MIBI dipyridamole stress gated myocardial perfusion SPECT (g-MPS) in 15 patients (M:F=10:5;mean ages=34.5±13.0 yr; idiopathic:rheumatic=14:1; one heart lung TPL)(10.80 ±11.88 (1-48) mo) after TPL 123I-MIBG imagings were performed in anterior position 15 minutes, 4 and 24 hours after i.v. injection of 148 MBq 123I MIBG. Image quantitation was based on the ratio of heart to mediastinal MIBG uptake (HMR) Compared to HMR on 15 min images (1.48 ± 0.28), neither four nor 24 hour delayed images (1.26 ± 0.23 vs. 1.06 ± 0.26: p<0.05, respectively, ANOVA) showed definite delayed localization of MIBG. 12 subjects with <13 (4.9 ±3.7) months after TPL had no visible 123I-MIBG uptake on early 15 min imaging however, 12 subjects with 13 to 48(28.6±12.8) months had visible cardiac 123I-MIBG uptake (HMR: 1.65±0.21 vs. 1.32±0.26; p=0.002). One-year followup 123I-MIBG scintigraphy in nine pts showed significantly increased HMR(1.40±0.31 to 1.61±0.16, p<0.05) but a plateau was reached at HMR value of 2.0, which was still lower than 3.0 in normal controls. Plasma NE was increased according to I-123 MIBG myocardial uptake. Annual G-MPS detected an allograft atherosclerosis in one pt and showed progressive normalization of tachycardia and significant deterioration of LVEF and cardiac indices according to severity of rejection. To dipyridamole stress, transplant heats showed significant subnormal hemodynamic responses. Partial sympathetic late reinnervation can occur <1 year after TPL, and reached a plateau of two-third of normal value. G-MPS seems to be a useful screening test for the detection of allograft atherosclerosis and rejection

  9. Tendon Innervation.

    Science.gov (United States)

    Ackermann, Paul W; Salo, Paul; Hart, David A

    2016-01-01

    The regulation of tendon metabolism including the responses to loading is far from being well understood. During the last decade, however, accumulating data show that tendon innervation in addition to afferent functions, via efferent pathways has a regulatory role in tendon homeostasis via a wide range of neuromediators, which coordinate metabolic and neuro-inflammatory pathways.Innervation of intact healthy tendons is localized in the surrounding structures, i.e paratenon, endotenon and epitenon, whereas the tendon proper is practically devoid of neuronal supply. This anatomical finding reflects that the tendon metabolism is regulated from the tendon envelope, i.e. interfascicular matrix (see Chap. 1 ).Tendon innervation after injury and during repair, however, is found as extensive nerve ingrowth into the tendon proper, followed by a time-dependent emergence of different neuronal mediators, which amplify and fine-tune inflammatory and metabolic pathways in tendon regeneration. After healing nerve fibers retract to the tendon envelope.In tendinopathy innervation has been identified to consist of excessive and protracted nerve ingrowth in the tendon proper, suggesting pro-inflammatory, nociceptive and hypertrophic (degenerative) tissue responses.In metabolic disorders such as eg. diabetes impaired tendon healing has been established to be related to dysregulation of neuronal growth factors.Targeted approaches to the peripheral nervous system including neuronal mediators and their receptors may prove to be effective therapies for painful, degenerative and traumatic tendon disorders. PMID:27535247

  10. Effectiveness of nocturnal home oxygen therapy to improve exercise capacity, cardiac function and cardiac sympathetic nerve activity in patients with chronic heart failure and central sleep apnea

    International Nuclear Information System (INIS)

    Central sleep apnea, often found in patients with chronic heart failure (CHF), has a high risk of poor prognosis. This study involved 20 patients with CHF (left ventricular ejection fraction (LVEF) 5 times/h who were divided into 2 groups: 10 patients treated with nocturnal home oxygen therapy (HOT) and 10 patients without HOT (non-HOT). All patients had dilated cardiomyopathy and underwent overnight polysomnography, cardiopulmonary exercise testing, and nuclear cardiac examinations to evaluate AHI, exercise capacity according to the specific activity scale and oxygen uptake at anaerobic threshold and peak exercise (peak VO2). Cardiac function according to 99mTc-methoxyisobutylisonitrile (MIBI) QGS, and the total defect score (TDS), H/M ratio and the washout rate (WR) on 123I-metaiodobenzylguanidine (MIBG) imaging were calculated for all patients. As compared with the non-HOT group, the HOT group demonstrated a greater reduction in AHI (26.1±9.1 to 5.1±3.4), 123I-MIBG TDS (31±8 to 25±9), and 123I-MIBG WR (48±8% to 41±5%) and a greater increase in the specific activity scale (4.0±0.9 to 5.8±1.2 Mets), peak VO2 (16.0±3.8 to 18.3±4.7 ml·min-1·kg-1), and LVEF (27±9% to 37±10%). HOT improves exercise capacity, cardiac function, and cardiac sympathetic nerve activity in patients with CHF and central sleep apnea. (author)

  11. Changes in cardiac performance and sympathetic stimulation during and after fractionated radiotherapy in a rat model

    International Nuclear Information System (INIS)

    The consequences of fractionated irradiation on the number of cardiac α- and β-adrenergic receptors, myocardial norepinephrine concentration and in vitro assessed heart function were studied in Sprague-Dawley rats. Animals were locally irradiated on the thorax with a total dose of 50 Gy, in 5 weeks, using two different fractionation schemes (5 x 2.0 Gy/week and 3 x 3.3 Gy/week). Functional and biochemical assays were performed during treatment and at 6 months after initiation of treatment. During fractionated irradiation, the numbers of α- and β-adrenergic receptors tended to rise. During this period, myocardial norepinephrine concentration remained fairly constant and no decrease in cardiac output was observed. At 6 months, a significant increase of the numbers of α- and β-adrenergic receptors was observed in the 3.3 Gy/fraction group compared to age-matched controls, p = 0.012 and p = 0.02, respectively. At this time point, the myocardial norepinephrine concentration had decreased below control levels (p = 0.008 for the 3.3. Gy/fraction schedule, and p = 0.03 for the 2.0 Gy/fraction schedule). At 6 months, the cardiac output declined to 61% (p = 0.009) and 69% (p = 0.04) of control values for the 3.3 and 2.0 Gy/fraction schedules, respectively. The present data clearly show development of late cardiac sequelae caused by fractionated thorax irradiation with a total dose of 50 Gy. Moreover, this study lends support to the importance of fraction size with regard to the severity of the radiation-induced cardiac damage

  12. Modeling and imaging cardiac sympathetic neurodegeneration in Parkinson’s disease

    OpenAIRE

    Joers, Valerie; Emborg, Marina E.

    2014-01-01

    Parkinson’s disease (PD) is currently recognized as a multisystem disorder affecting several components of the central and peripheral nervous system. This new understanding of PD helps explain the complexity of the patients’ symptoms while challenges researchers to identify new diagnostic and therapeutic strategies. Cardiac neurodegeneration and dysautonomia affect PD patients and are associated with orthostatic hypotension, fatigue, and abnormal control of electrical heart activity. They can...

  13. Reflex Sympathetic Dystrophy in Children

    OpenAIRE

    Adnan Ayvaz

    2013-01-01

       Reflex sympathetic dystrophy (chronic regional pain syndrome) isn’t frequently encountered in practical pediatrics and childhood. Reflex sympathetic dystrophy syndrome (RSD) is a disorder characterized by widespread localized pain, often along with swelling, discoloration, trophic changes and autonomic abnormalities such as vasomotor disorders. Its etio-pathogenesis hasn’t been completely determined.The disease can form in an area innerved by a partially damaged nerve...

  14. Aldehyde dehydrogenase type 2 activation by adenosine and histamine inhibits ischemic norepinephrine release in cardiac sympathetic neurons: mediation by protein kinase Cε.

    Science.gov (United States)

    Robador, Pablo A; Seyedi, Nahid; Chan, Noel Yan-Ki; Koda, Kenichiro; Levi, Roberto

    2012-10-01

    During myocardial ischemia/reperfusion, lipid peroxidation leads to the formation of toxic aldehydes that contribute to ischemic dysfunction. Mitochondrial aldehyde dehydrogenase type 2 (ALDH2) alleviates ischemic heart damage and reperfusion arrhythmias via aldehyde detoxification. Because excessive norepinephrine release in the heart is a pivotal arrhythmogenic mechanism, we hypothesized that neuronal ALDH2 activation might diminish ischemic norepinephrine release. Incubation of cardiac sympathetic nerve endings with acetaldehyde, at concentrations achieved in myocardial ischemia, caused a concentration-dependent increase in norepinephrine release. A major increase in norepinephrine release also occurred when sympathetic nerve endings were incubated in hypoxic conditions. ALDH2 activation substantially reduced acetaldehyde- and hypoxia-induced norepinephrine release, an action prevented by inhibition of ALDH2 or protein kinase Cε (PKCε). Selective activation of G(i/o)-coupled adenosine A(1), A(3), or histamine H(3) receptors markedly inhibited both acetaldehyde- and hypoxia-induced norepinephrine release. These effects were also abolished by PKCε and/or ALDH2 inhibition. Moreover, A(1)-, A(3)-, or H(3)-receptor activation increased ALDH2 activity in a sympathetic neuron model (differentiated PC12 cells stably transfected with H(3) receptors). This action was prevented by the inhibition of PKCε and ALDH2. Our findings suggest the existence in sympathetic neurons of a protective pathway initiated by A(1)-, A(3)-, and H(3)-receptor activation by adenosine and histamine released in close proximity of these terminals. This pathway comprises the sequential activation of PKCε and ALDH2, culminating in aldehyde detoxification and inhibition of hypoxic norepinephrine release. Thus, pharmacological activation of PKCε and ALDH2 in cardiac sympathetic nerves may have significant protective effects by alleviating norepinephrine-induced life-threatening arrhythmias that

  15. Impaired cardiac adrenergic innervation assessed by MIBG imaging as a predictor of treatment response in childhood dilated cardiomyopathy

    OpenAIRE

    Acar, P; Merlet, P.; Iserin, L; Bonnet, D.; Sidi, D; Syrota, A; Kachaner, J

    2001-01-01

    OBJECTIVE—To evaluate the prognostic value of metaiodobenzylguanidine (MIBG) imaging in childhood cardiomyopathy.
DESIGN—Prospective cohort study.
SETTING—Tertiary referral centre.
PATIENTS—40 children (21 boys, 19 girls; mean (SD) age, 7.0 (5.6) years) with heart failure resulting from idiopathic dilated cardiomyopathy (n = 23) or various other disorders (n = 17).
METHODS—At the initial examination, cardiac 123I-MIBG uptake and release, circulating noradrenaline (norepinephrine) concentratio...

  16. Significance of cardiac sympathetic nervous system abnormality for predicting vascular events in patients with idiopathic paroxysmal atrial fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Akutsu, Yasushi; Kaneko, Kyouichi; Kodama, Yusuke; Li, Hui-Ling; Kawamura, Mitsuharu; Asano, Taku; Hamazaki, Yuji; Tanno, Kaoru; Kobayashi, Youichi [Showa University School of Medicine, Division of Cardiology, Department of Medicine, Tokyo (Japan); Suyama, Jumpei; Shinozuka, Akira; Gokan, Takehiko [Showa University School of Medicine, Department of Radiology, Tokyo (Japan)

    2010-04-15

    Neuronal system activity plays an important role for the prognosis of patients with atrial fibrillation (AF). Using {sup 123}I metaiodobenzylguanidine ({sup 123}I-MIBG) scintigraphy, we investigated whether a cardiac sympathetic nervous system (SNS) abnormality would be associated with an increased risk of vascular events in patients with paroxysmal AF. {sup 123}I-MIBG scintigraphy was performed in 69 consecutive patients (67 {+-} 13 years, 62% men) with paroxysmal AF who did not have structural heart disease. SNS integrity was assessed from the heart to mediastinum (H/M) ratio on delayed imaging. Serum concentration of C-reactive protein (CRP) was measured before {sup 123}I-MIBG study. During a mean of 4.5 {+-} 3.6 years follow-up, 19 patients had myocardial infarction, stroke or heart failure (range: 0.2-11.5 years). SNS abnormality (H/M ratio <2.7) and high CRP ({>=}0.3 mg/dl) were associated with the vascular events (58.3% in 14 of 24 patients with SNS abnormality vs 11.1% in 5 of 45 patients without SNS abnormality, p < 0.0001, 52.4% in 11 of 21 patients with high CRP vs 16.7% in 8 of 48 patients without high CRP, p < 0.0001). After adjustment for potential confounding variables such as age, left atrial dimension and left ventricular function, SNS abnormality was an independent predictor of vascular events with a hazard ratio of 4.1 [95% confidence interval (CI): 1.3-12.6, p = 0.014]. Further, SNS abnormality had an incremental and additive prognostic power in combination with high CRP with an adjusted hazard ratio of 4.1 (95% CI: 1.5-10.9, p = 0.006). SNS abnormality is predictive of vascular events in patients with idiopathic paroxysmal AF. (orig.)

  17. Significance of cardiac sympathetic nervous system abnormality for predicting vascular events in patients with idiopathic paroxysmal atrial fibrillation

    International Nuclear Information System (INIS)

    Neuronal system activity plays an important role for the prognosis of patients with atrial fibrillation (AF). Using 123I metaiodobenzylguanidine (123I-MIBG) scintigraphy, we investigated whether a cardiac sympathetic nervous system (SNS) abnormality would be associated with an increased risk of vascular events in patients with paroxysmal AF. 123I-MIBG scintigraphy was performed in 69 consecutive patients (67 ± 13 years, 62% men) with paroxysmal AF who did not have structural heart disease. SNS integrity was assessed from the heart to mediastinum (H/M) ratio on delayed imaging. Serum concentration of C-reactive protein (CRP) was measured before 123I-MIBG study. During a mean of 4.5 ± 3.6 years follow-up, 19 patients had myocardial infarction, stroke or heart failure (range: 0.2-11.5 years). SNS abnormality (H/M ratio <2.7) and high CRP (≥0.3 mg/dl) were associated with the vascular events (58.3% in 14 of 24 patients with SNS abnormality vs 11.1% in 5 of 45 patients without SNS abnormality, p < 0.0001, 52.4% in 11 of 21 patients with high CRP vs 16.7% in 8 of 48 patients without high CRP, p < 0.0001). After adjustment for potential confounding variables such as age, left atrial dimension and left ventricular function, SNS abnormality was an independent predictor of vascular events with a hazard ratio of 4.1 [95% confidence interval (CI): 1.3-12.6, p = 0.014]. Further, SNS abnormality had an incremental and additive prognostic power in combination with high CRP with an adjusted hazard ratio of 4.1 (95% CI: 1.5-10.9, p = 0.006). SNS abnormality is predictive of vascular events in patients with idiopathic paroxysmal AF. (orig.)

  18. Role of adenosine A2A receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control

    International Nuclear Information System (INIS)

    Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16 μg/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100 μg/kg i.v.) dose-dependently reduced BRSSNP in contrast to no effect on BRSPE. BRSSNP was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRSSNP were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRSSNP was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A2A antagonist), or VUF5574 (A3 antagonist). In contrast, BRSSNP was preserved after blockade of A1 (DPCPX) or A2B (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRSSNP depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A2A receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms. - Research highlights: → The role of central adenosinergic sites in the nicotine

  19. Effects of perindopril on cardiac sympathetic nerve activity in patients with congestive heart failure: comparison with enalapril

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu; Toyama, Takuji; Suzuki, Tadashi; Kurabayashi, Masahiko [Gunma University School of Medicine, Department of Cardiovascular Medicine, Maebashi, Gunma (Japan); Kumakura, Hisao; Takayama, Yoshiaki; Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan, Department of Internal Medicine, Gunma (Japan)

    2005-08-01

    The production of aldosterone in the heart is suppressed by the angiotensin-converting enzyme (ACE) inhibitor perindopril in patients with congestive heart failure (CHF). Moreover, perindopril has been reported to have more cardioprotective effects than enalapril. Forty patients with CHF [left ventricular ejection fraction (LVEF) <45%; mean 33{+-}7%] were randomly assigned to perindopril (2 mg/day; n=20) or enalapril (5 mg/day; n=20). All patients were also treated with diuretics. The delayed heart/mediastinum count (H/M) ratio, delayed total defect score (TDS) and washout rate (WR) were determined from {sup 123}I-meta-iodobenzylguanidine (MIBG) images, and plasma brain natriuretic peptide (BNP) concentrations were measured before and 6 months after treatment. The left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV) and LVEF were also determined by echocardiography. After treatment, in patients receiving perindopril, TDS decreased from 39{+-}10 to 34{+-}9 (P<0.01), H/M ratios increased from 1.62{+-}0.27 to 1.76{+-}0.29 (P<0.01), WR decreased from 50{+-}14% to 42{+-}14% (P<0.05) and plasma BNP concentrations decreased from 226{+-}155 to 141{+-}90 pg/ml (P<0.0005). In addition, the LVEDV decreased from 180{+-}30 to 161{+-}30 ml (P<0.05) and the LVESV decreased from 122{+-}35 to 105{+-}36 ml (P<0.05). Although the LVEF tended to increase, the change was not statistically significant (from 33{+-}8% to 36{+-}12%; P=NS). On the other hand, there were no significant changes in these parameters in patients receiving enalapril. Plasma BNP concentrations, {sup 123}I-MIBG scintigraphic and echocardiographic parameters improved after 6 months of perindopril treatment. These findings indicate that perindopril treatment can ameliorate the cardiac sympathetic nerve activity and the left ventricular performance in patients with CHF. (orig.)

  20. Evaluation of cardiac sympathetic nervous function by 123I-metaiodobenzylguanidine scintigraphy in insulin-treated non-insulin dependent diabetics with hypoglycemia unawareness

    International Nuclear Information System (INIS)

    The association between the lack of adrenergic symptoms during hypoglycemia and myocardial 123I-metaiodobenzylguanidine (MIBG) accumulation was investigated in 12 insulin-treated non-insulin-dependent diabetes mellitus (NIDDM) patients who had no evidence of heart disease. These patients were divided into 2 groups according to the presence (group A) or absence (group B) of adrenergic symptoms during hypoglycemia. Autonomic function tests revealed significantly severe autonomic dysfunction in group B compared to that in group A. Insulin infusion test indicated no significant difference in the catecholamine response between the two groups. 123I-MIBG scintigraphy showed that the heart/mediastinum ratio of MIBG uptake was significantly lower, and scintigraphic defect was greater in group B than in group A. There were no significant differences in the washout rate between the two groups. These results suggested that the lack of adrenergic symptoms during hypoglycemia may be associated with cardiac sympathetic nervous dysfunction in insulin-treated NIDDM patients, and this dysfunction is mainly due to cardiac sympathetic denervation. (author)

  1. Evaluation of cardiac sympathetic nervous function by {sup 123}I-metaiodobenzylguanidine scintigraphy in insulin-treated non-insulin dependent diabetics with hypoglycemia unawareness

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Tomio; Toyama, Takuji; Hoshizaki, Hiroshi [Gunma Prefectural Cardiovascular Center, Maebashi (Japan)] [and others

    1996-02-01

    The association between the lack of adrenergic symptoms during hypoglycemia and myocardial {sup 123}I-metaiodobenzylguanidine (MIBG) accumulation was investigated in 12 insulin-treated non-insulin-dependent diabetes mellitus (NIDDM) patients who had no evidence of heart disease. These patients were divided into 2 groups according to the presence (group A) or absence (group B) of adrenergic symptoms during hypoglycemia. Autonomic function tests revealed significantly severe autonomic dysfunction in group B compared to that in group A. Insulin infusion test indicated no significant difference in the catecholamine response between the two groups. {sup 123}I-MIBG scintigraphy showed that the heart/mediastinum ratio of MIBG uptake was significantly lower, and scintigraphic defect was greater in group B than in group A. There were no significant differences in the washout rate between the two groups. These results suggested that the lack of adrenergic symptoms during hypoglycemia may be associated with cardiac sympathetic nervous dysfunction in insulin-treated NIDDM patients, and this dysfunction is mainly due to cardiac sympathetic denervation. (author).

  2. Exercise training can prevent cardiac hypertrophy induced by sympathetic hyperactivity with modulation of kallikrein-kinin pathway and angiogenesis.

    Directory of Open Access Journals (Sweden)

    José Antônio Silva

    Full Text Available Sympathetic hyperactivity induces adverse effects in myocardial. Recent studies have shown that exercise training induces cardioprotection against sympathetic overload; however, relevant mechanisms of this issue remain unclear. We analyzed whether exercise can prevent pathological hypertrophy induced by sympathetic hyperactivity with modulation of the kallikrein-kinin and angiogenesis pathways. Male Wistar rats were assigned to non-trained group that received vehicle; non-trained isoproterenol treated group (Iso, 0.3 mg kg(-1 day-(1; and trained group (Iso+Exe which was subjected to sympathetic hyperactivity with isoproterenol. The Iso rats showed hypertrophy and myocardial dysfunction with reduced force development and relaxation of muscle. The isoproterenol induced severe fibrosis, apoptosis and reduced myocardial capillary. Interestingly, exercise blunted hypertrophy, myocardial dysfunction, fibrosis, apoptosis and capillary decreases. The sympathetic hyperactivity was associated with high abundance of ANF mRNA and β-MHC mRNA, which was significantly attenuated by exercise. The tissue kallikrein was augmented in the Iso+Exe group, and kinin B1 receptor mRNA was increased in the Iso group. Moreover, exercise induced an increase of kinin B2 receptor mRNA in myocardial. The myocardial content of eNOS, VEGF, VEGF receptor 2, pAkt and Bcl-2 were increased in the Iso+Exe group. Likewise, increased expression of pro-apoptotic Bad in the Iso rats was prevented by prior exercise. Our results represent the first demonstration that exercise can modulate kallikrein-kinin and angiogenesis pathways in the myocardial on sympathetic hyperactivity. These findings suggest that kallikrein-kinin and angiogenesis may have a key role in protecting the heart.

  3. Cross-talk between sympathetic neurons and adipocytes in coculture

    OpenAIRE

    Turtzo, L. Christine; Marx, Ruth; Lane, M. Daniel

    2001-01-01

    White adipose tissue plays an integral role in energy metabolism and is governed by endocrine, autocrine, and neural signals. Neural control of adipose metabolism is mediated by sympathetic neurons that innervate the tissue. To investigate the effects of this innervation, an ex vivo system was developed in which 3T3-L1 adipocytes are cocultured with sympathetic neurons isolated from the superior cervical ganglia of newborn rats. In coculture, both adipocytes and neurons exhibit appropriate mo...

  4. Use of iodine-123 metaiodobenzylguanidine scintigraphy to assess cardiac sympathetic denervation and the impact of hypertension in patients with non-insulin-dependent diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Koji; Nakatani, Yuko; Onishi, Satoshi [Dept. of Internal Medicine, Keihanna Hospital, Hirakata City, Osaka (Japan); Utsunomiya, Keita; Saika, Yoshinori [Dept. of Radiology, Keihanna Hospital, Hirakata City (Japan); Iwasaka, Toshiji [Cardiovascular Center, Kansai Medical University, Osaka (Japan)

    1999-10-01

    The objectives of this clinical study using iodine-123 metaiodobenzylguanidine (MIBG) scintigraphy were (a) to evaluate cardiac sympathetic denervation in non-insulin-dependent diabetes mellitus (NIDDM) patients with and without hypertension and (b) to investigate the relation between cardiac sympathetic denervation and prognosis in NIDDM patients. We compared clinical characteristics and MIBG data [heart to mediastinum (H/M) ratio and % washout rate (WR)] in a control group and NIDDM patients with and without hypertension. MIBG scintigraphy was performed in 11 controls and 82 NIDDM patients without overt cardiovascular disease except for hypertension (systolic blood pressure {>=}140 and/or diastolic blood pressure {>=}90 mmHg). After MIBG examination, blood pressure was measured regularly in all NIDDM patients. There were significant differences between 65 normotensive and 17 hypertensive NIDDM patients with respect to age (55{+-}11 vs 63{+-}12 years, respectively, P<0.05), prevalence of diabetic retinopathy (12% vs 35%, respectively, P<0.05) and systolic blood pressure (120{+-}12 vs 145{+-}16 mmHg, respectively, P<0.001). The H/M ratio in hypertensive NIDDM patients was significantly lower than in the control group (1.81{+-}0.29 vs 2.27{+-}0.20, respectively, P<0.01). During the follow-up period (18{+-} 12 months), 17 NIDDM patients newly developed hypertension after MIBG examination. There were no significant differences in their clinical characteristics compared with persistently normotensive or hypertensive NIDDM patients. %WR in patients with new onset hypertension was significantly higher than in the control group (30.88%{+-}16.87% vs 12.89%{+-}11.94%, respectively, P<0.05). Moreover, in these patients %WR correlated with duration from the date of MIBG scintigraphy to the onset of hypertension (r=-0.512, P<0.05). Five NIDDM patients died during the follow-up period (four newly hypertensive patients and one normotensive patient). There were significant

  5. Usefulness of biventricular pacing to improve cardiac symptoms, exercise capacity and sympathetic nerve activity in patients with moderate to severe chronic heart failure

    International Nuclear Information System (INIS)

    Although cardiac resynchronization using biventricular pacing (BVP) results in significant clinical improvement in patients with chronic heart failure (CHF), there is no evidence of improvement in sympathetic nerve activity (SNA). Eighteen patients with CHF (dilated cardiomyopathy/ischemic cardiomyopathy=14/4) and left ventricular (LV) ejection fraction 160 ms and dyssynchronous LV wall motion were classified into 2 groups based on the findings of 99mTc-methoxyisobutyl isonitrile (MIBI) quantitative gated single-photon emission computed tomography (SPECT) (QGS). Resynchronization was considered to be present when the difference between the QGS frame number for end-systole for the LV septal and lateral walls (dyssynchrony index) disappeared. Group A achieved resynchronization after BVP, but not Group B. In group A, New York Heart Association functional class (p=0.0002), specific activity scale (p=0.0001), total defect score (p123I-metaiodobenzylguanidine imaging (p<0.05) were significantly improved after resynchronization. However, there was no significant change in group B. Cardiac resynchronization after BVP can improve cardiac symptoms, exercise capacity, and SNA in patients with moderate to severe CHF. (author)

  6. Sympathetic Modulation of Immunity: Relevance to Disease

    OpenAIRE

    Bellinger, Denise L.; Millar, Brooke A.; Perez, Sam; Carter, Jeff; Wood, Carlo; ThyagaRajan, Srinivasan; Molinaro, Christine; Lubahn, Cheri; Lorton, Dianne

    2008-01-01

    Optimal host defense against pathogens requires cross-talk between the nervous and immune systems. This paper reviews sympathetic-immune interaction, one major communication pathway, and its importance for health and disease. Sympathetic innervation of primary and secondary immune organs is described, as well as evidence for neurotransmission with cells of the immune system as targets. Most research thus far as focused on neural-immune modulation in secondary lymphoid organs, and have reveale...

  7. Neural Innervation of White Adipose Tissue and the Control of Lipolysis

    OpenAIRE

    Bartness, Timothy J.; Liu, Yang; Shrestha, Yogendra B.; Ryu, Vitaly

    2014-01-01

    White adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS) and its activation is necessary for lipolysis. WAT parasympathetic innervation is not supported. Fully-executed SNS-norepinephrine (NE)-mediated WAT lipolysis is dependent on β-adrenoceptor stimulation ultimately hinging on hormone sensitive lipase and perilipin A phosphorylation. WAT sympathetic drive is appropriately measured by electrophysiological and neurochemical (NE turnover) in non-human animals and this ...

  8. Excitation of afferent fibres in the cardiac sympathetic nerves induced by coronary occlusion and injection of bradykinin. The influence of acetylsalicylic acid and dipyron.

    Science.gov (United States)

    Vogt, A; Vetterlein, F; dal Ri, H; Schmidt, G

    1979-05-01

    Afferent impulse activity was recorded in single fibres of the inferior cardiac sympathetic nerve of the cat. When the descending branch of the left coronary artery was ligated for 60 sec an enhancement of afferent impulses was recorded. Elevations in discharge frequency were also induced by injecting bradykinin, epinephrine, and isoprenaline or by general hypoxia due to interruption of the artificial ventilation. When these procedures were after pretreatment with the analgesic agents, acetylsalicylic acid or dipyron a reduction in spike discharge was observed only with bradykinin after application of acetylsalicylic acid. No influence of these pretreatments on the effects of coronary occlusion, general hypoxia and injection of epinephrine and isoprenaline could be observed. These results suggest that bradykinin does not predominate as mediator substance in eliciting ischemic heart pain. PMID:485722

  9. Usefulness of 123I-Meta-iodobenzylguanidine (MIBG) myocardial scintigraphy for evaluation of cardiac sympathetic nervous system function in diabetic patients

    International Nuclear Information System (INIS)

    The cardiac sympathetic nervous system function of diabetic patients with no definite cardiovascular complications other than hypertension was evaluated by 123I -MIBG myocardial scintigraphy. The subjects consisted of 82 diabetic patients, 59 men, 23 women, mean age 57 years, 17 with hypertension and 65 with normal blood pressure, and they were compared with normal controls (8 men and 3 women, mean age 54 years). Myocardial scintigraphy was performed 10 minutes and 4 hours after administration of MIBG. The superior mediastinum and whole myocardium were set as regions of interest, and the heart-to-mediastinum ratio (H/M ratio) and the washout rate (%WR) were calculated. The mean observation period was 18±12 months, and 17 of the 65 diabetic patients with normal blood pressure before the study developed hypertension during the observation period. There were significant differences in H/M ratio and %WR between the diabetic patients and normal controls (H/M ratio; 1.96±0.34 vs 2.27±0.20, %WR; 24.71±16.99% vs 12.89±11.94). The diabetic patients with hypertension had higher morbidity with diabetic retinopathy and a lower H/M ratio. The 17 patients who developed hypertension during the observation period showed an increase in %WR and a reduction in the H/M ratio. Five patients who died during the observation period had a reduced H/M ratio and increased of %WR. 123I-MIBG myocardial scintigraphy in diabetic patients was shown to be useful for detecting cardiac sympathetic nervous system dysfunction, predicting the development of hypertension, and identifying patients who had a poor outcome. Diabetic patients with abnormal signals on MIBG myocardial scintigraphy need to be monitored much more carefully. (K.H.)

  10. Usefulness of {sup 123}I-Meta-iodobenzylguanidine (MIBG) myocardial scintigraphy for evaluation of cardiac sympathetic nervous system function in diabetic patients.

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Koji; Nakatani, Yuko; Doi, Kenji; Adachi, Gakuji; Takada, Kou

    2001-11-01

    The cardiac sympathetic nervous system function of diabetic patients with no definite cardiovascular complications other than hypertension was evaluated by {sup 123}I -MIBG myocardial scintigraphy. The subjects consisted of 82 diabetic patients, 59 men, 23 women, mean age 57 years, 17 with hypertension and 65 with normal blood pressure, and they were compared with normal controls (8 men and 3 women, mean age 54 years). Myocardial scintigraphy was performed 10 minutes and 4 hours after administration of MIBG. The superior mediastinum and whole myocardium were set as regions of interest, and the heart-to-mediastinum ratio (H/M ratio) and the washout rate (%WR) were calculated. The mean observation period was 18{+-}12 months, and 17 of the 65 diabetic patients with normal blood pressure before the study developed hypertension during the observation period. There were significant differences in H/M ratio and %WR between the diabetic patients and normal controls (H/M ratio; 1.96{+-}0.34 vs 2.27{+-}0.20, %WR; 24.71{+-}16.99% vs 12.89{+-}11.94). The diabetic patients with hypertension had higher morbidity with diabetic retinopathy and a lower H/M ratio. The 17 patients who developed hypertension during the observation period showed an increase in %WR and a reduction in the H/M ratio. Five patients who died during the observation period had a reduced H/M ratio and increased of %WR. {sup 123}I-MIBG myocardial scintigraphy in diabetic patients was shown to be useful for detecting cardiac sympathetic nervous system dysfunction, predicting the development of hypertension, and identifying patients who had a poor outcome. Diabetic patients with abnormal signals on MIBG myocardial scintigraphy need to be monitored much more carefully. (K.H.)

  11. Sympathetic reinnervation in cardiac transplants: {sup 123}I-MIBG and {sup 201}Tl/{sup 99m}Tc-MIBI scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Oh, S. J.; Son, M. S.; Son, J. W.; Choi, I. S.; Shin, E. K.; Park, C. H. [Gachon Medical School, Gil Heart Cener, Inchon (Korea, Republic of)

    2000-07-01

    The purpose was to evaluate cardiac sympathetic reinnervation and hemodynamic changes after orthotopic heart transplantation (TPL). We performed 24 serial or followup cardiac 123I-MIBG imaging and rest 201Tl/99mTc-MIBI dipyridamole stress gated myocardial perfusion SPECT (g-MPS) in 15 patients (M:F=10:5;mean ages=34.5{+-}13.0 yr; idiopathic:rheumatic=14:1; one heart lung TPL)(10.80 {+-}11.88 (1-48) mo) after TPL 123I-MIBG imagings were performed in anterior position 15 minutes, 4 and 24 hours after i.v. injection of 148 MBq 123I MIBG. Image quantitation was based on the ratio of heart to mediastinal MIBG uptake (HMR) Compared to HMR on 15 min images (1.48 {+-} 0.28), neither four nor 24 hour delayed images (1.26 {+-} 0.23 vs. 1.06 {+-} 0.26: p<0.05, respectively, ANOVA) showed definite delayed localization of MIBG. 12 subjects with <13 (4.9 {+-}3.7) months after TPL had no visible 123I-MIBG uptake on early 15 min imaging however, 12 subjects with 13 to 48(28.6{+-}12.8) months had visible cardiac 123I-MIBG uptake (HMR: 1.65{+-}0.21 vs. 1.32{+-}0.26; p=0.002). One-year followup 123I-MIBG scintigraphy in nine pts showed significantly increased HMR(1.40{+-}0.31 to 1.61{+-}0.16, p<0.05) but a plateau was reached at HMR value of 2.0, which was still lower than 3.0 in normal controls. Plasma NE was increased according to I-123 MIBG myocardial uptake. Annual G-MPS detected an allograft atherosclerosis in one pt and showed progressive normalization of tachycardia and significant deterioration of LVEF and cardiac indices according to severity of rejection. To dipyridamole stress, transplant heats showed significant subnormal hemodynamic responses. Partial sympathetic late reinnervation can occur <1 year after TPL, and reached a plateau of two-third of normal value. G-MPS seems to be a useful screening test for the detection of allograft atherosclerosis and rejection.

  12. Catheter Ablation of Atrial Fibrillation Raises the Plasma Level of NGF-β Which Is Associated with Sympathetic Nerve Activity

    OpenAIRE

    Park, Jae Hyung; Hong, Sung Yu; Wi, Jin; Lee, Da Lyung; Joung, Boyoung; Lee, Moon Hyoung; Pak, Hui-Nam

    2015-01-01

    Purpose The expression of nerve growth factor-β (NGF-β) is related to cardiac nerve sprouting and sympathetic hyper innervation. We investigated the changes of plasma levels of NGF-β and the relationship to follow-up heart rate variability (HRV) after radiofrequency catheter ablation (RFCA) of atrial fibrillation (AF). Materials and Methods This study included 147 patients with AF (117 men, 55.8±11.5 years, 106 paroxysmal AF) who underwent RFCA. The plasma levels of NGF-β were quantified usin...

  13. Hibernating myocardium results in partial sympathetic denervation and nerve sprouting

    OpenAIRE

    Stanley F. Fernandez; Ovchinnikov, Vladislav; Canty, John M.; Fallavollita, James A.

    2012-01-01

    Hibernating myocardium due to chronic repetitive ischemia is associated with regional sympathetic nerve dysfunction and spontaneous arrhythmic death in the absence of infarction. Although inhomogeneity in regional sympathetic innervation is an acknowledged substrate for sudden death, the mechanism(s) responsible for these abnormalities in viable, dysfunctional myocardium (i.e., neural stunning vs. sympathetic denervation) and their association with nerve sprouting are unknown. Accordingly, ma...

  14. Arrhythmogenic Effect of Sympathetic Histamine in Mouse Hearts Subjected to Acute Ischemia

    OpenAIRE

    He, Gonghao; HU, JING; Li, Teng; Ma, Xue; Meng, Jingru; Jia, Min; Lu, Jun; Ohtsu, Hiroshi; Chen, Zhong; Luo, Xiaoxing

    2011-01-01

    The role of histamine as a newly recognized sympathetic neurotransmitter has been presented previously, and its postsynaptic effects greatly depended on the activities of sympathetic nerves. Cardiac sympathetic nerves become overactivated under acute myocardial ischemic conditions and release neurotransmitters in large amounts, inducing ventricular arrhythmia. Therefore, it is proposed that cardiac sympathetic histamine, in addition to norepinephrine, may have a significant arrhythmogenic eff...

  15. Use of iodine-123 metaiodobenzylguanidine scintigraphy to assess cardiac sympathetic denervation and the impact of hypertension in patients with non-insulin-dependent diabetes mellitus

    International Nuclear Information System (INIS)

    The objectives of this clinical study using iodine-123 metaiodobenzylguanidine (MIBG) scintigraphy were (a) to evaluate cardiac sympathetic denervation in non-insulin-dependent diabetes mellitus (NIDDM) patients with and without hypertension and (b) to investigate the relation between cardiac sympathetic denervation and prognosis in NIDDM patients. We compared clinical characteristics and MIBG data [heart to mediastinum (H/M) ratio and % washout rate (WR)] in a control group and NIDDM patients with and without hypertension. MIBG scintigraphy was performed in 11 controls and 82 NIDDM patients without overt cardiovascular disease except for hypertension (systolic blood pressure ≥140 and/or diastolic blood pressure ≥90 mmHg). After MIBG examination, blood pressure was measured regularly in all NIDDM patients. There were significant differences between 65 normotensive and 17 hypertensive NIDDM patients with respect to age (55±11 vs 63±12 years, respectively, P<0.05), prevalence of diabetic retinopathy (12% vs 35%, respectively, P<0.05) and systolic blood pressure (120±12 vs 145±16 mmHg, respectively, P<0.001). The H/M ratio in hypertensive NIDDM patients was significantly lower than in the control group (1.81±0.29 vs 2.27±0.20, respectively, P<0.01). During the follow-up period (18± 12 months), 17 NIDDM patients newly developed hypertension after MIBG examination. There were no significant differences in their clinical characteristics compared with persistently normotensive or hypertensive NIDDM patients. %WR in patients with new onset hypertension was significantly higher than in the control group (30.88%±16.87% vs 12.89%±11.94%, respectively, P<0.05). Moreover, in these patients %WR correlated with duration from the date of MIBG scintigraphy to the onset of hypertension (r=-0.512, P<0.05). Five NIDDM patients died during the follow-up period (four newly hypertensive patients and one normotensive patient). There were significant statistical differences

  16. Evaluation of cardiac sympathetic nerve activity and aldosterone suppression in patients with acute decompensated heart failure on treatment containing intravenous atrial natriuretic peptide

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Toyama, Takuji; Kurabayashi, Masahiko [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Iwasaki, Toshiya; Sumino, Hiroyuki; Kumakura, Hisao; Minami, Kazutomo; Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Matsumoto, Naoya [Nihon University School of Medicine, Department of Cardiology, Tokyo (Japan); Nakata, Tomoaki [Sapporo Medical University School of Medicine, Second (Cardiology) Department of Internal Medicine, Sapporo, Hokkaido (Japan)

    2014-09-15

    Aldosterone prevents the uptake of norepinephrine in the myocardium. Atrial natriuretic peptide (ANP), a circulating hormone of cardiac origin, inhibits aldosterone synthase gene expression in cultured cardiocytes. We evaluated the effects of intravenous ANP on cardiac sympathetic nerve activity (CSNA) and aldosterone suppression in patients with acute decompensated heart failure (ADHF). We studied 182 patients with moderate nonischemic ADHF requiring hospitalization and treated with standard therapy containing intravenous ANP and 10 age-matched normal control subjects. ANP was continuously infused for >96 h. In all subjects, delayed total defect score (TDS), heart to mediastinum ratio, and washout rate were determined by {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy. Left ventricular (LV) end-diastolic volume, end-systolic volume, and ejection fraction were determined by echocardiography. All patients with acute heart failure (AHF) were examined once within 3 days and then 4 weeks after admission, while the control subjects were examined only once (when their hemodynamics were normal). Moreover, for 62 AHF patients, plasma aldosterone concentrations were measured at admission and 1 h before stopping ANP infusion. {sup 123}I-MIBG scintigraphic and echocardiographic parameters in normal subjects were more favorable than those in patients with AHF (all p < 0.001). After treatment, all these parameters improved significantly in AHF patients (all p < 0.001). We also found significant correlation between percent changes of TDS and aldosterone concentrations (r = 0.539, p < 0.001) in 62 AHF patients. The CSNA and LV performance were all improved in AHF patients. Furthermore, norepinephrine uptake of myocardium may be ameliorated by suppressing aldosterone production after standard treatment containing intravenous ANP. (orig.)

  17. Evaluation of cardiac sympathetic nerve activity and aldosterone suppression in patients with acute decompensated heart failure on treatment containing intravenous atrial natriuretic peptide

    International Nuclear Information System (INIS)

    Aldosterone prevents the uptake of norepinephrine in the myocardium. Atrial natriuretic peptide (ANP), a circulating hormone of cardiac origin, inhibits aldosterone synthase gene expression in cultured cardiocytes. We evaluated the effects of intravenous ANP on cardiac sympathetic nerve activity (CSNA) and aldosterone suppression in patients with acute decompensated heart failure (ADHF). We studied 182 patients with moderate nonischemic ADHF requiring hospitalization and treated with standard therapy containing intravenous ANP and 10 age-matched normal control subjects. ANP was continuously infused for >96 h. In all subjects, delayed total defect score (TDS), heart to mediastinum ratio, and washout rate were determined by 123I-metaiodobenzylguanidine (MIBG) scintigraphy. Left ventricular (LV) end-diastolic volume, end-systolic volume, and ejection fraction were determined by echocardiography. All patients with acute heart failure (AHF) were examined once within 3 days and then 4 weeks after admission, while the control subjects were examined only once (when their hemodynamics were normal). Moreover, for 62 AHF patients, plasma aldosterone concentrations were measured at admission and 1 h before stopping ANP infusion. 123I-MIBG scintigraphic and echocardiographic parameters in normal subjects were more favorable than those in patients with AHF (all p < 0.001). After treatment, all these parameters improved significantly in AHF patients (all p < 0.001). We also found significant correlation between percent changes of TDS and aldosterone concentrations (r = 0.539, p < 0.001) in 62 AHF patients. The CSNA and LV performance were all improved in AHF patients. Furthermore, norepinephrine uptake of myocardium may be ameliorated by suppressing aldosterone production after standard treatment containing intravenous ANP. (orig.)

  18. elPBN neurons regulate rVLM activity through elPBN-rVLM projections during activation of cardiac sympathetic afferent nerves.

    Science.gov (United States)

    Guo, Zhi-Ling; Longhurst, John C; Tjen-A-Looi, Stephanie C; Fu, Liang-Wu

    2016-08-01

    The external lateral parabrachial nucleus (elPBN) within the pons and rostral ventrolateral medulla (rVLM) contributes to central processing of excitatory cardiovascular reflexes during stimulation of cardiac sympathetic afferent nerves (CSAN). However, the importance of elPBN cardiovascular neurons in regulation of rVLM activity during CSAN activation remains unclear. We hypothesized that CSAN stimulation excites the elPBN cardiovascular neurons and, in turn, increases rVLM activity through elPBN-rVLM projections. Compared with controls, in rats subjected to microinjection of retrograde tracer into the rVLM, the numbers of elPBN neurons double-labeled with c-Fos (an immediate early gene) and the tracer were increased after CSAN stimulation (P stimulation of CSAN increased the activity of elPBN cardiovascular neurons, which was attenuated (n = 6, P stimulation (n = 5, P stimulation activates cardiovascular neurons in the elPBN and rVLM sequentially through a monosynaptic (glutamatergic) excitatory elPBN-rVLM pathway. PMID:27225950

  19. Clinical performance and radiation dosimetry of no-carrier-added vs carrier-added 123I-metaiodobenzylguanidine (MIBG) for the assessment of cardiac sympathetic nerve activity

    International Nuclear Information System (INIS)

    We hypothesized that assessment of myocardial sympathetic activity with no-carrier-added (nca) 123I-meta-iodobenzylguanidine (MIBG) compared to carrier-added (ca) 123I-MIBG would lead to an improvement of clinical performance without major differences in radiation dosimetry. In nine healthy volunteers, 15 min and 4 h planar thoracic scintigrams and conjugate whole-body scans were performed up to 48 h following intravenous injection of 185 MBq 123I-MIBG. The subjects were given both nca and ca 123I-MIBG. Early heart/mediastinal ratios (H/M), late H/M ratios and myocardial washout were calculated. The fraction of administered activity in ten source organs was quantified from the attenuation-corrected geometric mean counts in conjugate views. Radiation-absorbed doses were estimated with OLINDA/EXM software. Both early and late H/M were higher for nca 123I-MIBG (ca 123I-MIBG early H/M 2.46 ± 0.15 vs nca 123I-MIBG 2.84 ± 0.15, p 0.001 and ca 123I-MIBG late H/M 2.69 ± 0.14 vs nca 123I-MIBG 3.34 ± 0.18, p = 0.002). Myocardial washout showed a longer retention time for nca 123I-MIBG (p 123I-MIBG was similar to that for ca 123I-MIBG (0.025 ± 0.002 mSv/MBq vs 0.026 ± 0.002 mSv/MBq, p = 0.055, respectively). No-carrier-added 123I-MIBG yields a higher relative myocardial uptake and is associated with a higher myocardial retention. This difference between nca 123I-MIBG and ca 123I-MIBG in myocardial uptake did not result in major differences in estimated absorbed doses. Therefore, nca 123I-MIBG is to be preferred over ca 123I-MIBG for the assessment of cardiac sympathetic activity. (orig.)

  20. Nicotine and sympathetic neurotransmission.

    Science.gov (United States)

    Haass, M; Kübler, W

    1997-01-01

    Nicotine increases heart rate, myocardial contractility, and blood pressure. These nicotine-induced cardiovascular effects are mainly due to stimulation of sympathetic neurotransmission, as nicotine stimulates catecholamine release by an activation of nicotine acetylcholine receptors localized on peripheral postganglionic sympathetic nerve endings and the adrenal medulla. The nicotinic acetylcholine receptor is a ligand-gated cation channel with a pentameric structure and a central pore with a cation gate, which is essential for ion selectivity and permeability. Binding of nicotine to its extracellular binding site leads to a conformational change of the central pore, which results in the influx of sodium and calcium ions. The resulting depolarization of the sympathetic nerve ending stimulates calcium influx through voltage-dependent N-type calcium channels, which triggers the nicotine-evoked exocytotic catecholamine release. In the isolated perfused guinea-pig heart, cardiac energy depletion sensitizes cardiac sympathetic nerves to the norepinephrine-releasing effect of nicotine, as indicated by a leftward shift of the concentration-response curve, a potentiation of maximum transmitter release, and a delay of the tachyphylaxis of nicotine-evoked catecholamine release. This sensitization was also shown to occur in the human heart under in vitro conditions. Through the intracardiac release of norepinephrine, nicotine induces a beta-adrenoceptor-mediated increase in heart rate and contractility, and an alpha-adrenoceptor-mediated increase in coronary vasomotor tone. The resulting simultaneous increase in oxygen demand and coronary resistance has a detrimental effect on the oxygen balance of the heart, especially in patients with coronary artery disease. Sensitization of the ischemic heart to the norepinephrine-releasing effect of nicotine may be a trigger for acute cardiovascular events in humans, such as acute myocardial infarction and/or life

  1. Sympathetic Activation Does Not Affect the Cardiac and Respiratory Contribution to the Relationship between Blood Pressure and Pial Artery Pulsation Oscillations in Healthy Subjects.

    Directory of Open Access Journals (Sweden)

    Pawel J Winklewski

    Full Text Available Using a novel method called near-infrared transillumination backscattering sounding (NIR-T/BSS that allows for the non-invasive measurement of pial artery pulsation (cc-TQ and subarachnoid width (sas-TQ in humans, we assessed the influence of sympathetic activation on the cardiac and respiratory contribution to blood pressure (BP cc-TQ oscillations in healthy subjects.The pial artery and subarachnoid width response to handgrip (HGT and cold test (CT were studied in 20 healthy subjects. The cc-TQ and sas-TQ were measured using NIR-T/BSS; cerebral blood flow velocity (CBFV was measured using Doppler ultrasound of the left internal carotid artery; heart rate (HR and beat-to-beat mean BP were recorded using a continuous finger-pulse photoplethysmography; respiratory rate (RR, minute ventilation (MV, end-tidal CO2 (EtCO2 and end-tidal O2 (EtO2 were measured using a metabolic and spirometry module of the medical monitoring system. Wavelet transform analysis was used to assess the relationship between BP and cc-TQ oscillations.HGT evoked an increase in BP (+15.9%; P<0.001, HR (14.7; P<0.001, SaO2 (+0.5; P<0.001 EtO2 (+2.1; P<0.05 RR (+9.2%; P = 0.05 and MV (+15.5%; P<0.001, while sas-TQ was diminished (-8.12%; P<0.001, and a clear trend toward cc-TQ decline was observed (-11.0%; NS. CBFV (+2.9%; NS and EtCO2 (-0.7; NS did not change during HGT. CT evoked an increase in BP (+7.4%; P<0.001, sas-TQ (+3.5%; P<0.05 and SaO2(+0.3%; P<0.05. HR (+2.3%; NS, CBFV (+2.0%; NS, EtO2 (-0.7%; NS and EtCO2 (+0.9%; NS remained unchanged. A trend toward decreased cc-TQ was observed (-5.1%; NS. The sas-TQ response was biphasic with elevation during the first 40 seconds (+8.8% vs. baseline; P<0.001 and subsequent decline (+4.1% vs. baseline; P<0.05. No change with respect to wavelet coherence and wavelet phase coherence was found between the BP and cc-TQ oscillations.Short sympathetic activation does not affect the cardiac and respiratory contribution to the relationship

  2. PET and SPET tracers for mapping the cardiac nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Oliver; Halldin, Christer [Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institute, Karolinska Hospital, 17176 Stockholm (Sweden)

    2002-03-01

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[{sup 18}F]fluorodopamine, (-)-6-[{sup 18}F]fluoronorepinephrine and (-)-[{sup 11}C]epinephrine, and radiolabelled catecholamine analogues, such as [{sup 123}I]meta-iodobenzylguanidine, [{sup 11}C]meta-hydroxyephedrine, [{sup 18}F]fluorometaraminol, [{sup 11}C]phenylephrine and meta-[{sup 76}Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[{sup 18}F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility

  3. PET and SPET tracers for mapping the cardiac nervous system

    International Nuclear Information System (INIS)

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[18F]fluorodopamine, (-)-6-[18F]fluoronorepinephrine and (-)-[11C]epinephrine, and radiolabelled catecholamine analogues, such as [123I]meta-iodobenzylguanidine, [11C]meta-hydroxyephedrine, [18F]fluorometaraminol, [11C]phenylephrine and meta-[76Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[18F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility for cardiac neuronal imaging. (orig.)

  4. Neurohumoral indicators of efficacy radiofrequency cardiac denervation

    Science.gov (United States)

    Evtushenko, A. V.; Evtushenko, V. V.; Saushkina, Yu. V.; Lishmanov, Yu. B.; Pokushalov, E. A.; Sergeevichev, D. S.; Gusakova, A. M.; Suslova, T. E.; Dymbrylova, O. N.; Bykov, A. N.; Syryamkin, V. I.; Kistenev, Yu. V.; Anfinogenova, Ya. D.; Smyshlyaev, K. A.; Lotkov, A. I.; Kurlov, I. O.

    2015-11-01

    In this study, we compared pre- and postoperative parameters of the cardiac sympathetic innervation. The aim of the study was to examine the approaches to evaluating the quality of radiofrequency (RF)-induced cardiac denervation by using non-invasive and laboratory methods. The study included 32 people with long-lasting persistent atrial fibrillation (AF). The patients were divided into 2 groups according to the objectives of the study: group 1 (main) - 21 patients with mitral valve diseases, which simultaneously with radiofrequency ablation (RFA) AF carried out on the effects of the paraganglionic nervous plexuses by C. Pappone (2004) and N. Doll (2008) schemes. The second group (control) contained 11 patients with heart diseases in sinus rhythm (the RF denervation not been performed). All patients, who underwent surgical treatment, were received examination of cardiac sympathetic tone by using 123I-MIBG. All of them made blood analysis from ascending aorta and coronary sinus to determine the level of norepinephrine and its metabolites before and after cardiac denervation. Data of radionuclide examination are correlating with laboratory data.

  5. Neurohumoral indicators of efficacy radiofrequency cardiac denervation

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, A. V., E-mail: ave@cardio-tomsk.ru; Evtushenko, V. V. [National Research Tomsk State University, Tomsk (Russian Federation); Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Saushkina, Yu. V.; Gusakova, A. M.; Suslova, T. E.; Dymbrylova, O. N.; Smyshlyaev, K. A.; Kurlov, I. O. [Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Lishmanov, Yu. B.; Anfinogenova, Ya. D. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Sergeevichev, D. S. [Academician E.N. Meshalkin State Research Institute of Circulation Pathology, Novosibirsk (Russian Federation); Bykov, A. N.; Syryamkin, V. I.; Kistenev, Yu. V. [National Research Tomsk State University, Tomsk (Russian Federation); Lotkov, A. I. [Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS, Tomsk (Russian Federation); Pokushalov, E. A.

    2015-11-17

    In this study, we compared pre- and postoperative parameters of the cardiac sympathetic innervation. The aim of the study was to examine the approaches to evaluating the quality of radiofrequency (RF)-induced cardiac denervation by using non-invasive and laboratory methods. The study included 32 people with long-lasting persistent atrial fibrillation (AF). The patients were divided into 2 groups according to the objectives of the study: group 1 (main) - 21 patients with mitral valve diseases, which simultaneously with radiofrequency ablation (RFA) AF carried out on the effects of the paraganglionic nervous plexuses by C. Pappone (2004) and N. Doll (2008) schemes. The second group (control) contained 11 patients with heart diseases in sinus rhythm (the RF denervation not been performed). All patients, who underwent surgical treatment, were received examination of cardiac sympathetic tone by using {sup 123}I-MIBG. All of them made blood analysis from ascending aorta and coronary sinus to determine the level of norepinephrine and its metabolites before and after cardiac denervation. Data of radionuclide examination are correlating with laboratory data.

  6. Cardiac sympathetic dysfunction in Parkinson's disease. Relationship between results of 123I-MIBG scintigraphy and autonomic nervous function evaluated by the Valsalva maneuver

    International Nuclear Information System (INIS)

    We examined whether the results of 123I-MIBG scintigraphy reflect cardiac sympathetic nerve function in patients with Parkinson's disease (PD). The subjects were 62 patients with PD (age, 65.4±6.3 years) and 53 controls (65.2±7.1 years). All subjects underwent 123I-MIBG scintigraphy and QTc interval measurement on electrocardiogram (ECG). Hemodynamic autonomic function was estimated by the Valsalva maneuver in 37 subjects (63.9±5.2 years) randomly selected from the patients with PD. As control, the Valsalva maneuver was also done in 20 randomly selected controls (64.1±5.0 years), and 123I-MIBG scintigraphy was performed in 21 controls (67.7±5.3 years old). The subjects rested in a supine position for 20 min and were given an intravenous injection of 111 MBq 123I-MIBG. Relative organ uptake was determined by the region of interest (ROI) in the anterior view and the ratio of average pixel count in the heart (H) to that in the mediastinum (M) was calculated (H/M ratio) for early (after 15 min) and delayed (after 3 hrs) periods. The Valsalva maneuver was done by having the subjects exhale into a mouthpiece at an expiratory pressure of 40 mmHg for 15 seconds. Blood pressure and RR intervals were measured during the Valsalva maneuver by tonometry, using a noninvasive blood pressure monitoring system (ANS 508, Nihon Colin Co., Ltd.). Baroreceptor reflex sensitivities (BRS) of the second phase (BRS II) and fourth phase (BRS IV) of the Valsalva maneuver were calculated, and blood pressure elevations during the late second phase (IIp) and fourth phase (IVp) were measured. QTc was greater in the patients with PD (417 ms) than in the control subjects (409 ms). The H/M ratios of the early and delayed images in the patients with PD (1.76, 1.61) were significantly lower than those in the control subjects (2.56, 2.45). The early and delayed H/M ratios significantly correlated with the severity of disease according to Hoehn-Yahr stage. QTc interval and IVp significantly

  7. Mechanism of relation among heart meridian, referred cardiac pain and heart

    Institute of Scientific and Technical Information of China (English)

    RONG; Peijing(荣培晶); ZHU; Bing(朱兵)

    2002-01-01

    It has been demonstrated that an important clinical phenomenon often associated with visceral diseases is the referred pain to somatic structures, especially to the body areaof homo-segmental innervation. It is interesting that the somatic foci of cardiac referred pain wereoften and mainly distributed along the heart meridian (HM), whereas the acupoints of HM havebeen applied to treat cardiac disease since ancient times. The purpose of this study was to inves-tigate the neural relationship between the cardiac referred pain and the heart meridian.Fluorescent triple-labeling was injected into the pericardium, some acupoints of HM and lung me-ridian (LM, for control). The responses of the left cardiac sympathetic nerve and of the EMG in left HM and LM were electrophysiologically studied, when the electrical stimuli were applied to the acupoints of left HM and to the left cardiac sympathetic nerve. More double-labeled neurons in HM-heart, not in LM-heart, were observed in the ipsilateral dorsal root ganglia of the spinal segments C8-T3. Electric stimulation of the acupoints of left HM was able to elicit more responses of left cardiac sympathetic nerve than that of the LM-acupoints. Electric stimulation of the left cardiac sympathetic nerve resulted in stronger activities of EMG-response in the acupoints of left HM than in LM-acupoints. We conclude that double-labeling study has provided direct evidence for the existence of dichotomizing afferent fibers that supply both the pericardium and HM. Electrophysiological results show that HM is more closely related functionally to heart. These findings provide a possible morphological and physiological explanation for the referred cardiac pain and HM-heart interrelation.

  8. Iodine-123 metaiodobenzylguanidine imaging of the heart in idiopathic congestive cardiomyopathy and cardiac transplants

    International Nuclear Information System (INIS)

    Iodine-123 metaiodobenzylguanidine ([123I]MIBG) is a norepinephrine analog which can be used to image the sympathetic innervation of the heart. In this study, cardiac imaging with [123I]MIBG was performed in patients with idiopathic congestive cardiomyopathy and compared to normal controls. Initial uptake, half-time of tracer within the heart, and heart to lung ratios were all significantly reduced in patients compared to normals. Uptake in lungs, liver, salivary glands, and spleen was similar in controls and patients with cardiomyopathy indicating that decreased MIBG uptake was not a generalized abnormality in these patients. Iodine-123 MIBG imaging was also performed in cardiac transplant patients to determine cardiac nonneuronal uptake. Uptake in transplants was less than 10% of normals in the first 2 hr and nearly undetectable after 16 hr. The decreased uptake of MIBG suggests cardiac sympathetic nerve dysfunction while the rapid washout of MIBG from the heart suggests increased cardiac sympathetic nerve activity in idiopathic congestive cardiomyopathy

  9. Different patterns of cardiac sympathetic denervation in tremor-type compared to akinetic-rigid-type Parkinson's disease: molecular imaging with ¹²³I-MIBG.

    Science.gov (United States)

    Chiaravalloti, A; Stefani, A; Tavolozza, M; Pierantozzi, M; Di Biagio, D; Olivola, E; Di Pietro, B; Stampanoni, M; Danieli, R; Simonetti, G; Stanzione, P; Schillaci, O

    2012-12-01

    The aim of this study was to evaluate the correlation between the clinical motor phenotypes of Parkinson's disease (PD) and ¹²³I-MIBG myocardial uptake. In total, 53 patients with PD [31 males and 22 females, mean age 62±10 years; 19 Hoehn & Yahr (H&Y) stage 1, 9 stage 1.5, 15 stage 2 and 10 at stage 3] were examined and subdivided into different clinical forms on the basis of dominance of resting tremor (n=19, TDT) and bradykinesia plus rigidity (n=34, ART). This status was correlated with the semi-quantitative analysis of ¹²³I-MIBG myocardial uptake. An age-matched control group of 18 patients was recruited (8 males and 10 females, mean age 62.4±16.3 years). ¹²³I-MIBG myocardial uptake significantly correlated with disease duration in early (r²=0.1894; P=0.0028) and delayed images (r²=0.1795; P=0.0037) in PD patients, while no correlation was found when considering age at examination, UPDRS III motor examination section score and H&Y score. PD patients showed a reduced ¹²³I-MIBG myocardial uptake compared to the control group in early (P=0.0026) and delayed images (P=0.0040), and ¹²³I-MIBG myocardial uptake was significantly lower in delayed images in TDT patients compared with ART patients (P=0.0167). A decrease was detected in the heart-to-mediastinum (H/M) ratio in delayed images compared to that of the early images in TDT patients (P=0.0040) and in the whole PD population (P=0.0012), while no differences were found in ART patients (P=0.1043). The results of the present study revealed that the cardiac sympathetic system is more severely impaired in TDT than in ART patients and ¹²³I-MIBG molecular imaging has the potential help in improving therapeutic planning in these patients. PMID:23023866

  10. Effects of adding intravenous nicorandil to standard therapy on cardiac sympathetic nerve activity and myocyte dysfunction in patients with acute decompensated heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Toyama, Takuji; Funada, Ryuichi; Takama, Noriaki; Koitabashi, Norimichi; Kurabayashi, Masahiko [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Suzuki, Yasuyuki; Matsumoto, Naoya [Nihon University School of Medicine, Department of Cardiology, Tokyo (Japan); Sato, Yuichi [Health Park Clinic, Department of Imaging, Takasaki, Gunma (Japan)

    2015-04-01

    Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, improves cardiac sympathetic nerve activity (CSNA) in ischemic heart disease or chronic heart failure. However, its effects on CSNA and myocyte dysfunction in acute heart failure (AHF) remain unclear. We investigated the effects of adding intravenous nicorandil to standard therapy on CSNA and myocyte dysfunction in AHF. We selected 70 patients with mild to moderate nonischemic AHF who were treated with standard conventional therapy soon after admission. Thirty-five patients were assigned to additionally receive intravenous nicorandil (4-12 mg/h; group A), whereas the remaining patients continued their current drug regimen (group B). Delayed total defect score (TDS), delayed heart to mediastinum count (H/M) ratio, and washout rate (WR) were determined by {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy within 3 days of admission and 4 weeks later. High sensitivity troponin T (hs-TnT) level was also measured at the same time points. After treatment, MIBG scintigraphic parameters significantly improved in both groups. However, the extent of the changes in these parameters in group A significantly exceeded the extent of the changes in group B [TDS -11.3 ± 4.3 in group A vs -4.0 ± 6.0 in group B (p < 0.01); H/M ratio 0.31 ± 0.16 vs 0.14 ± 0.16 (p < 0.01); WR -13.8 ± 7.8 % vs -6.1 ± 8.9 % (p < 0.01)]. The hs-TnT level decreased significantly from 0.052 ± 0.043 to 0.041 ± 0.033 ng/ml (p < 0.05) in group A, but showed no significant change in group B. Moreover, in both groups, no relationships between the extent of changes in MIBG parameters and hs-TnT level were observed. Adding intravenous nicorandil to standard therapy provides additional benefits for CSNA and myocyte dysfunction over conventional therapy alone in AHF patients. Furthermore, the mechanisms of improvement in CSNA and myocyte dysfunction after nicorandil treatment in AHF patients were distinct. (orig.)

  11. Effects of adding intravenous nicorandil to standard therapy on cardiac sympathetic nerve activity and myocyte dysfunction in patients with acute decompensated heart failure

    International Nuclear Information System (INIS)

    Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, improves cardiac sympathetic nerve activity (CSNA) in ischemic heart disease or chronic heart failure. However, its effects on CSNA and myocyte dysfunction in acute heart failure (AHF) remain unclear. We investigated the effects of adding intravenous nicorandil to standard therapy on CSNA and myocyte dysfunction in AHF. We selected 70 patients with mild to moderate nonischemic AHF who were treated with standard conventional therapy soon after admission. Thirty-five patients were assigned to additionally receive intravenous nicorandil (4-12 mg/h; group A), whereas the remaining patients continued their current drug regimen (group B). Delayed total defect score (TDS), delayed heart to mediastinum count (H/M) ratio, and washout rate (WR) were determined by 123I-metaiodobenzylguanidine (MIBG) scintigraphy within 3 days of admission and 4 weeks later. High sensitivity troponin T (hs-TnT) level was also measured at the same time points. After treatment, MIBG scintigraphic parameters significantly improved in both groups. However, the extent of the changes in these parameters in group A significantly exceeded the extent of the changes in group B [TDS -11.3 ± 4.3 in group A vs -4.0 ± 6.0 in group B (p < 0.01); H/M ratio 0.31 ± 0.16 vs 0.14 ± 0.16 (p < 0.01); WR -13.8 ± 7.8 % vs -6.1 ± 8.9 % (p < 0.01)]. The hs-TnT level decreased significantly from 0.052 ± 0.043 to 0.041 ± 0.033 ng/ml (p < 0.05) in group A, but showed no significant change in group B. Moreover, in both groups, no relationships between the extent of changes in MIBG parameters and hs-TnT level were observed. Adding intravenous nicorandil to standard therapy provides additional benefits for CSNA and myocyte dysfunction over conventional therapy alone in AHF patients. Furthermore, the mechanisms of improvement in CSNA and myocyte dysfunction after nicorandil treatment in AHF patients were distinct. (orig.)

  12. Assessment of myocardial perfusion and cardiac sympathetic nerve dysfunction in patients with sick sinus syndrome. Evaluation of coronary hemodynamics and 201TlCl/123I-MIBG myocardial SPECT

    International Nuclear Information System (INIS)

    To clarify the coronary hemodynamics, myocardial perfusion and cardiac sympathetic nerve function in patients with sick sinus syndrome (SSS), we performed left coronary digital subtraction angiography (DSA) in 41 patients, exercise 201TlCl-myocardial scintigraphy (planar and SPECT) in 69 patients, and 201TlCl/123I-MIBG myocardial dual SPECT in 13 patients without significant organic coronary stenosis. Coronary artery spasm was documented on coronary angiography in 25/43 (58%) patients with SSS by ergonovine provocation test. Compared with normals, patients with SSS demonstrated prolongation of left coronary circulation time (CCT) on own heart beats and right atrial pacing. We suspected that prolonged CCT may be induced by increased peripheral coronary vascular resistance and impaired coronary micro-circulation in patients with SSS. Forty-two patients (60.9%) developed exercise-induced 201Tl-myocardial perfusion defect on SPECT images. On myocardial dual SPECT images, 11/13 (85%) patients showed localized myocardial low uptake in 123I-MIBG-SPECT images. In eight patients with normal findings on 201Tl-SPECT, six patients showed abnormality on 123I-MIBG-SPECT. We suspected that coronary vasospasm, impaired coronary micro-circulation and cardiac sympathetic nerve dysfunction are taken a part of pathophysiology in SSS (decreased β-adrenergic receptor of peripheral coronary arteries?). (author)

  13. Peptidergic and non-peptidergic innervation and vasomotor responses of human lenticulostriate and posterior cerebral arteries

    DEFF Research Database (Denmark)

    Jansen-Olesen, Inger; Gulbenkian, Sergio; Engel, Ulla;

    2004-01-01

    The aim of the present study was to compare in man the innervation pattern and the functional responses to neuronal messengers in medium sized lenticulostriate and branches of the posterior cerebral arteries (PCA). The majority of the nerve fibers found were sympathetic and displayed specific imm...

  14. Sympathetic nerve damage and restoration after ischemia-reperfusion injury as assessed by 11C-hydroxyephedrine

    International Nuclear Information System (INIS)

    An altered state of the cardiac sympathetic nerves is an important prognostic factor in patients with coronary artery disease. The aim of this study was to investigate regional sympathetic nerve damage and restoration utilizing a rat model of myocardial transient ischemia and a catecholamine analog PET tracer, 11C-hydroxyephedrine (11C-HED). Transient myocardial ischemia was induced by coronary occlusion for 20 min and reperfusion in male Wistar rats. Dual-tracer autoradiography was performed subacutely (7 days) and chronically (2 months) after ischemia, and in control rats without ischemia using 11C-HED as a marker of sympathetic innervation and 201TI for perfusion. Additional serial in vivo cardiac 11C-HED and 18F-FDG PET scans were performed in the subacute and chronic phases after ischemia. After transient ischemia, the 11C-HED uptake defect areas in both the subacute and chronic phases were clearly larger than the perfusion defect areas in the midventricular wall. The subacute 11C-HED uptake defect showed a transmural pattern, whereas uptake recovered in the subepicardial portion in the chronic phase. Tyrosine hydroxylase antibody nerve staining confirmed regional denervation corresponding to areas of decreased 11C-HED uptake. Serial in vivo PET imaging visualized reductions in the area of the 11C-HED uptake defects in the chronic phase consistent with autoradiography and histology. Higher susceptibility of sympathetic neurons compared to myocytes was confirmed by a larger 11C-HED defect with a corresponding histologically identified region of denervation. Furthermore, partial reinnervation was observed in the chronic phase as shown by recovery of subepicardial 11C-HED uptake. (orig.)

  15. Sympathetic nerve damage and restoration after ischemia-reperfusion injury as assessed by {sup 11}C-hydroxyephedrine

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Rudolf A.; Higuchi, Takahiro [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); University of Wuerzburg, Comprehensive Heart Failure Center, Wuerzburg (Germany); Maya, Yoshifumi [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Nihon Medi-Physics Co., Ltd., Research Centre, Chiba (Japan); Rischpler, Christoph [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Muenchen (Germany); Javadi, Mehrbod S. [Johns Hopkins University, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, Baltimore, MD (United States); Fukushima, Kazuhito [Hyogo College of Medicine, Department of Radiology, Hyogo (Japan); Lapa, Constantin [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Herrmann, Ken [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); David Geffen School of Medicine at UCLA, Department of Molecular and Medical Pharmacology, Los Angeles, CA (United States)

    2016-02-15

    An altered state of the cardiac sympathetic nerves is an important prognostic factor in patients with coronary artery disease. The aim of this study was to investigate regional sympathetic nerve damage and restoration utilizing a rat model of myocardial transient ischemia and a catecholamine analog PET tracer, {sup 11}C-hydroxyephedrine ({sup 11}C-HED). Transient myocardial ischemia was induced by coronary occlusion for 20 min and reperfusion in male Wistar rats. Dual-tracer autoradiography was performed subacutely (7 days) and chronically (2 months) after ischemia, and in control rats without ischemia using {sup 11}C-HED as a marker of sympathetic innervation and {sup 201}TI for perfusion. Additional serial in vivo cardiac {sup 11}C-HED and {sup 18}F-FDG PET scans were performed in the subacute and chronic phases after ischemia. After transient ischemia, the {sup 11}C-HED uptake defect areas in both the subacute and chronic phases were clearly larger than the perfusion defect areas in the midventricular wall. The subacute {sup 11}C-HED uptake defect showed a transmural pattern, whereas uptake recovered in the subepicardial portion in the chronic phase. Tyrosine hydroxylase antibody nerve staining confirmed regional denervation corresponding to areas of decreased {sup 11}C-HED uptake. Serial in vivo PET imaging visualized reductions in the area of the {sup 11}C-HED uptake defects in the chronic phase consistent with autoradiography and histology. Higher susceptibility of sympathetic neurons compared to myocytes was confirmed by a larger {sup 11}C-HED defect with a corresponding histologically identified region of denervation. Furthermore, partial reinnervation was observed in the chronic phase as shown by recovery of subepicardial {sup 11}C-HED uptake. (orig.)

  16. Cardiac function, perfusion, metabolism and innervation following autologous stem cell therapy for acute ST-elevation myocardial infarction. A FINCELL-INSIGHT sub-study with PET and MRI

    Directory of Open Access Journals (Sweden)

    JuhaW.Koskenvuo

    2012-01-01

    Full Text Available Purpose: Beneficial mechanisms of bone marrow cell (BMC therapy for acute ST-segment elevation myocardial infarct (STEMI are largely unknown in humans. Therefore, we evaluated the feasibility of serial positron emission tomography (PET and MRI studies to provide insight into the effects of BMCs on the healing process of ischemic myocardial damage. Methods: Nineteen patients with successful primary reteplase thrombolysis (mean 2.4 hours after symptoms for STEMI were randomized for BMC therapy (2.9 x 106 CD34+ cells or placebo after bone marrow aspiration in a double-blind, multi-center study. Three days post-MI, coronary angioplasty and paclitaxel eluting stent implantation preceded either BMC or placebo therapy. Cardiac PET and MRI studies were performed 7-12 days after therapies and repeated after six months, and images were analyzed at a central core laboratory. Results: In BMC treated patients, there was a decrease in [11C]-HED defect size (-4.9±4.0% vs. -1.6±2.2%, p=0.08 and an increase in [18F]-FDG uptake in the infarct area at risk (0.06±0.09 vs. -0.05±0.16, p=0.07 compared to controls, as well as less left ventricular dilatation (-4.4±13.3 mL/m2 vs. 8.0±16.7 mL/m2, p=0.12 at six-months follow-up. However, BMC treatment was inferior to placebo in terms of changes in rest perfusion in the area at risk (-0.09±0.17 vs. 0.10±0.17, p=0.03 and infarct size (0.4±4.2 g vs. -5.1±5.9 g, p=0.047, and no effect was observed on ejection fraction (EF (p=0.37. Conclusions: After the acute phase of STEMI, BMC therapy showed only minor trends of long-term benefit in patients with rapid successful thrombolysis. There was a trend of more decrease in innervation defect size and enhanced glucose metabolism in the infarct related myocardium and also a trend of less ventricular dilatation in the BMC treated group compared to placebo. However, no consistently better outcome was observed in the BMC treated group compared to placebo.

  17. Putting together the clues of the everlasting neuro-cardiac liaison.

    Science.gov (United States)

    Franzoso, Mauro; Zaglia, Tania; Mongillo, Marco

    2016-07-01

    Starting from the late embryonic development, the sympathetic nervous system extensively innervates the heart and modulates its activity during the entire lifespan. The distribution of myocardial sympathetic processes is finely regulated by the secretion of limiting amounts of pro-survival neurotrophic factors by cardiac cells. Norepinephrine release by the neurons rapidly modulates myocardial electrophysiology, and increases the rate and force of cardiomyocyte contractions. Sympathetic processes establish direct interaction with cardiomyocytes, characterized by the presence of neurotransmitter vesicles and reduced cell-cell distance. Whether such contacts have a functional role in both neurotrophin- and catecholamine-dependent communication between the two cell types, is poorly understood. In this review we will address the effects of the sympathetic neuron activity on the myocardium and the hypothesis that the direct neuro-cardiac contact might have a key role both in norepinephrine and neurotrophin mediated signaling. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26778332

  18. Autonomic innervation of the heart. Role of molecular imaging

    International Nuclear Information System (INIS)

    Reviews in detail the value of SPECT-CT and PET-CT in the imaging of cardiac innervation. Details the role of imaging in a range of conditions and diseases. Includes important background on pathophysiology, tracers, radiopharmaceutical production, and kinetic modeling software. This book explains in detail the potential value of the hybrid modalities, SPECT-CT and PET-CT, in the imaging of cardiac innervation in a wide range of conditions and diseases, including ischemic heart disease, diabetes mellitus, heart failure, amyloidosis, heart transplantation, and ventricular arrhythmias. Imaging of the brain-heart axis in neurodegenerative disease and stress and of cardiotoxicity is also discussed. The roles of the various available tracers are fully considered, and individual chapters address radiopharmaceutical development under GMP, imaging physics, and kinetic modeling software. Highly relevant background information is included on the autonomic nervous system of the heart and its pathophysiology, and in addition future perspectives are discussed. Awareness of the importance of autonomic innervation of the heart for the optimal management of cardiac patients is growing, and there is an evident need for objective measurement techniques or imaging modalities. In this context, Autonomic Innervation of the Heart will be of wide interest to clinicians, researchers, and industry.

  19. Autonomic innervation of the heart. Role of molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Slart, Riemer H.J.A; Elsinga, Philip H. [Univ. Medical Center Groningen (Netherlands). Nuclear Medicine and Molecular Imaging; Tio, Rene A. [Univ. Medical Center Groningen (Netherlands). Thorax Center Cardiology; Schwaiger, Markus (ed.) [Technische Univ. Muenchen Klinikum Rechts der Isar (Germany). Nuklearmedizinische Klinik

    2015-03-01

    Reviews in detail the value of SPECT-CT and PET-CT in the imaging of cardiac innervation. Details the role of imaging in a range of conditions and diseases. Includes important background on pathophysiology, tracers, radiopharmaceutical production, and kinetic modeling software. This book explains in detail the potential value of the hybrid modalities, SPECT-CT and PET-CT, in the imaging of cardiac innervation in a wide range of conditions and diseases, including ischemic heart disease, diabetes mellitus, heart failure, amyloidosis, heart transplantation, and ventricular arrhythmias. Imaging of the brain-heart axis in neurodegenerative disease and stress and of cardiotoxicity is also discussed. The roles of the various available tracers are fully considered, and individual chapters address radiopharmaceutical development under GMP, imaging physics, and kinetic modeling software. Highly relevant background information is included on the autonomic nervous system of the heart and its pathophysiology, and in addition future perspectives are discussed. Awareness of the importance of autonomic innervation of the heart for the optimal management of cardiac patients is growing, and there is an evident need for objective measurement techniques or imaging modalities. In this context, Autonomic Innervation of the Heart will be of wide interest to clinicians, researchers, and industry.

  20. Scintigraphic differentiation between two forms of primary dysautonomia early after onset of autonomic dysfunction: value of cardiac and pulmonary iodine-123 MIBG uptake

    International Nuclear Information System (INIS)

    Primary dysfunction of the autonomic nervous system can be observed in patients with Parkinson's disease and those with multiple system atrophy. However, the fate of the two diseases differs considerably and leads to different strategies for patient management. Differentiation of the two diseases currently requires a combination of several clinical and electrophysiological tests. First studies of myocardial innervation using iodine-123 metaiodobenzylguanidine (MIBG) indicated a possible role of scintigraphy for this purpose. An increase in the pulmonary uptake of 123I-MIBG has been reported in secondary dysautonomias. Whether sympathetic innervation of the lung is affected in primary dysautonomias is currently unknown. Therefore, cardiac and pulmonary uptake of 123I-MIBG was studied in 21 patients with Parkinson's disease, 7 patients with multiple system atrophy and 13 age- and sex-matched controls. Thoracic images were obtained in the anterior view 4 h after intravenous injection of 185 MBq 123I-MIBG, at which time the maximum neuronal uptake is reached. All patients with Parkinson's disease had significantly lower cardiac uptake of 123I-MIBG than patients with multiple system atrophy and controls. Sympathetic innervation of the lung was not affected in either disease. It is concluded that scintigraphy with 123I-MIBG appears to be a useful tool for differentiation between Parkinson's disease and multiple system atrophy early after onset of autonomic dysfunction. (orig.)

  1. Scintigraphic differentiation between two forms of primary dysautonomia early after onset of autonomic dysfunction: value of cardiac and pulmonary iodine-123 MIBG uptake

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, M.J.; Juengling, F.D.; Krause, T.M. [Dept. of Nuclear Medicine, Freiburg University Hospital (Germany); Braune, S. [Dept. of Neurology, Freiburg University Hospital (Germany)

    2000-05-01

    Primary dysfunction of the autonomic nervous system can be observed in patients with Parkinson's disease and those with multiple system atrophy. However, the fate of the two diseases differs considerably and leads to different strategies for patient management. Differentiation of the two diseases currently requires a combination of several clinical and electrophysiological tests. First studies of myocardial innervation using iodine-123 metaiodobenzylguanidine (MIBG) indicated a possible role of scintigraphy for this purpose. An increase in the pulmonary uptake of {sup 123}I-MIBG has been reported in secondary dysautonomias. Whether sympathetic innervation of the lung is affected in primary dysautonomias is currently unknown. Therefore, cardiac and pulmonary uptake of {sup 123}I-MIBG was studied in 21 patients with Parkinson's disease, 7 patients with multiple system atrophy and 13 age- and sex-matched controls. Thoracic images were obtained in the anterior view 4 h after intravenous injection of 185 MBq {sup 123}I-MIBG, at which time the maximum neuronal uptake is reached. All patients with Parkinson's disease had significantly lower cardiac uptake of {sup 123}I-MIBG than patients with multiple system atrophy and controls. Sympathetic innervation of the lung was not affected in either disease. It is concluded that scintigraphy with {sup 123}I-MIBG appears to be a useful tool for differentiation between Parkinson's disease and multiple system atrophy early after onset of autonomic dysfunction. (orig.)

  2. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography

    International Nuclear Information System (INIS)

    The noninvasive functional characterization of the cardiac sympathetic nervous system by imaging techniques may provide important pathophysiological information in various cardiac disease states. Hydroxyephedrine labeled with carbon 11 has been developed as a new catecholamine analogue to be used in the in vivo evaluation of presynaptic adrenergic nerve terminals by positron emission tomography (PET). To determine the feasibility of this imaging approach in the human heart, six normal volunteers and five patients with recent cardiac transplants underwent dynamic PET imaging after intravenous injection of 20 mCi [11C]hydroxyephedrine. Blood and myocardial tracer kinetics were assessed using a regions-of-interest approach. In normal volunteers, blood 11C activity cleared rapidly, whereas myocardium retained 11C activity with a long tissue half-life. Relative tracer retention in the myocardium averaged 79 +/- 31% of peak activity at 60 minutes after tracer injection. The heart-to-blood 11C activity ratio exceeded 6:1 as soon as 30 minutes after tracer injection, yielding excellent image quality. Little regional variation of tracer retention was observed, indicating homogeneous sympathetic innervation throughout the left ventricle. In the transplant recipients, myocardial [11C]hydroxyephedrine retention at 60 minutes was significantly less (-82%) than that of normal volunteers, indicating only little non-neuronal binding of the tracer in the denervated human heart. Thus, [11C]hydroxyephedrine, in combination with dynamic PET imaging, allows the noninvasive delineation of myocardial adrenergic nerve terminals. Tracer kinetic modeling may permit quantitative assessment of myocardial catecholamine uptake, which will in turn provide insights into the effects of various disease processes on the neuronal integrity of the heart

  3. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schwaiger, M.; Kalff, V.; Rosenspire, K.; Haka, M.S.; Molina, E.; Hutchins, G.D.; Deeb, M.; Wolfe, E. Jr.; Wieland, D.M. (Univ. of Michigan Medical Center, Ann Arbor (USA))

    1990-08-01

    The noninvasive functional characterization of the cardiac sympathetic nervous system by imaging techniques may provide important pathophysiological information in various cardiac disease states. Hydroxyephedrine labeled with carbon 11 has been developed as a new catecholamine analogue to be used in the in vivo evaluation of presynaptic adrenergic nerve terminals by positron emission tomography (PET). To determine the feasibility of this imaging approach in the human heart, six normal volunteers and five patients with recent cardiac transplants underwent dynamic PET imaging after intravenous injection of 20 mCi (11C)hydroxyephedrine. Blood and myocardial tracer kinetics were assessed using a regions-of-interest approach. In normal volunteers, blood 11C activity cleared rapidly, whereas myocardium retained 11C activity with a long tissue half-life. Relative tracer retention in the myocardium averaged 79 +/- 31% of peak activity at 60 minutes after tracer injection. The heart-to-blood 11C activity ratio exceeded 6:1 as soon as 30 minutes after tracer injection, yielding excellent image quality. Little regional variation of tracer retention was observed, indicating homogeneous sympathetic innervation throughout the left ventricle. In the transplant recipients, myocardial (11C)hydroxyephedrine retention at 60 minutes was significantly less (-82%) than that of normal volunteers, indicating only little non-neuronal binding of the tracer in the denervated human heart. Thus, (11C)hydroxyephedrine, in combination with dynamic PET imaging, allows the noninvasive delineation of myocardial adrenergic nerve terminals. Tracer kinetic modeling may permit quantitative assessment of myocardial catecholamine uptake, which will in turn provide insights into the effects of various disease processes on the neuronal integrity of the heart.

  4. Catecholamine-induced excitation of nociceptors in sympathetically maintained pain.

    Science.gov (United States)

    Jørum, Ellen; Ørstavik, Kristin; Schmidt, Roland; Namer, Barbara; Carr, Richard W; Kvarstein, Gunnvald; Hilliges, Marita; Handwerker, Hermann; Torebjörk, Erik; Schmelz, Martin

    2007-02-01

    Sympathetically maintained pain could either be mediated by ephaptic interactions between sympathetic efferent and afferent nociceptive fibers or by catecholamine-induced activation of nociceptive nerve endings. We report here single fiber recordings from C nociceptors in a patient with sympathetically maintained pain, in whom sympathetic blockade had repeatedly eliminated the ongoing pain in both legs. We classified eight C-fibers as mechano-responsive and six as mechano-insensitive nociceptors according to their mechanical responsiveness and activity-dependent slowing of conduction velocity (latency increase of 0.5+/-1.1 vs. 7.1+/-2.0 ms for 20 pulses at 0.125 Hz). Two C-fibers were activated with a delay of several seconds following strong endogenous sympathetic bursts; they were also excited for about 3 min following the injection of norepinephrine (10 microl, 0.05%) into their innervation territory. In these two fibers, a prolonged activation by injection of low pH solution (phosphate buffer, pH 6.0, 10 microl) and sensitization of their heat response following prostaglandin E2 injection were recorded, evidencing their afferent nature. Moreover, their activity-dependent slowing was typical for mechano-insensitive nociceptors. We conclude that sensitized mechano-insensitive nociceptors can be activated by endogenously released catecholamines and thereby may contribute to sympathetically maintained pain. No evidence for ephaptic interaction between sympathetic efferent and nociceptive afferent fibers was found. PMID:16997471

  5. Involvement of Hypothalamic AMP-Activated Protein Kinase in Leptin-Induced Sympathetic Nerve Activation

    OpenAIRE

    Mamoru Tanida; Naoki Yamamoto; Toshishige Shibamoto; Kamal Rahmouni

    2013-01-01

    In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK) is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb). We investigated the potential of AMPKα2 in the sympathetic effec...

  6. Sympathetic activity controls fat-induced OEA signaling in small intestine

    OpenAIRE

    Fu, Jin; DiPatrizio, Nicholas V.; Guijarro, Ana; Schwartz, Gary J.; Li, Xiaosong; Gaetani, Silvana; Astarita, Giuseppe; Piomelli, Daniele

    2011-01-01

    Ingestion of dietary fat stimulates production of the small-intestinal satiety factors oleoylethanolamide (OEA) and N-palmitoyl-phosphatidylethanolamine (NPPE), which reduce food intake through a combination of local (OEA) and systemic (NPPE) actions. Previous studies have shown that sympathetic innervation of the gut is necessary for duodenal infusions of fat to induce satiety, suggesting that sympathetic activity may engage small-intestinal satiety signals such as OEA and NPPE. In the prese...

  7. Abnormal sympathetic nervous system development and physiologic dysautonomia in Egr3-deficient mice

    OpenAIRE

    Eldredge, Laurie C.; Gao, Xiaoguang M.; Quach, David; LI, Lin; Han, Xiaoqiang; Lomasney, Jon; Tourtellotte, Warren G.

    2008-01-01

    Sympathetic nervous system development depends upon many factors that mediate neuron migration, differentiation and survival. Target tissue-derived nerve growth factor (NGF) signaling-induced gene expression is required for survival, differentiation and target tissue innervation of post-migratory sympathetic neurons. However, the transcriptional regulatory mechanisms mediated by NGF signaling are very poorly defined. Here, we identify Egr3, a member of the early growth response (Egr) family o...

  8. Aldehyde Dehydrogenase Type 2 Activation by Adenosine and Histamine Inhibits Ischemic Norepinephrine Release in Cardiac Sympathetic Neurons: Mediation by Protein Kinase Cε

    OpenAIRE

    Robador, Pablo A.; Seyedi, Nahid; Chan, Noel Yan-Ki; Koda, Kenichiro; Levi, Roberto

    2012-01-01

    During myocardial ischemia/reperfusion, lipid peroxidation leads to the formation of toxic aldehydes that contribute to ischemic dysfunction. Mitochondrial aldehyde dehydrogenase type 2 (ALDH2) alleviates ischemic heart damage and reperfusion arrhythmias via aldehyde detoxification. Because excessive norepinephrine release in the heart is a pivotal arrhythmogenic mechanism, we hypothesized that neuronal ALDH2 activation might diminish ischemic norepinephrine release. Incubation of cardiac sym...

  9. Evaluation of cardiac blood blow, metabolism and sympathetic nerve function in patients with cardiac failure using PET and SPECT. Prognostic diagnosis based on the analysis of aggravating factors of the disease

    International Nuclear Information System (INIS)

    Focusing on the failure of energy metabolism, which is assumed to be attributed to the cardiac muscle disorder of a patient with cardiac failure, the characteristics and diagnostic significance of the metabolic disorders of cadiac muscles were investigated in those patients. The diagnostic efficacy of β-methyl iodophenyl pentadecanoic acid (BMIPP) which is a imaging agent for lipid metabolism in the cardiac muscle was assessed in the clinical states of cardiac failure due to pulmonary hypertension. Even if there was a considerable increase in the mean pulmonary arterial pressure (mPAP), the initial accumulation of BMIPP linearly increased, similarly to the increase in the accumulation of MIBI, a blood flow agent. The initial accumulation of BMIPP was thought to reflect a thicken cardiac muscle and/or increased blood flow. Also, its washing-out rate was suggested to be usable as an clinical indicator to estimate the loading of ventricular pressure. (M.N.)

  10. Evaluation of cardiac blood blow, metabolism and sympathetic nerve function in patients with cardiac failure using PET and SPECT. Prognostic diagnosis based on the analysis of aggravating factors of the disease

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Yoshio; Shimozu, Junko; Yasumura, Yoshio; Nagatani, Kenzo; Miyatake, Kunio [National Cardiovascular Center, Suita, Osaka (Japan)

    1998-02-01

    Focusing on the failure of energy metabolism, which is assumed to be attributed to the cardiac muscle disorder of a patient with cardiac failure, the characteristics and diagnostic significance of the metabolic disorders of cadiac muscles were investigated in those patients. The diagnostic efficacy of {beta}-methyl iodophenyl pentadecanoic acid (BMIPP) which is a imaging agent for lipid metabolism in the cardiac muscle was assessed in the clinical states of cardiac failure due to pulmonary hypertension. Even if there was a considerable increase in the mean pulmonary arterial pressure (mPAP), the initial accumulation of BMIPP linearly increased, similarly to the increase in the accumulation of MIBI, a blood flow agent. The initial accumulation of BMIPP was thought to reflect a thicken cardiac muscle and/or increased blood flow. Also, its washing-out rate was suggested to be usable as an clinical indicator to estimate the loading of ventricular pressure. (M.N.)

  11. Innervation of amphibian reproductive system. Histological and ultrastructural studies.

    Science.gov (United States)

    Cisint, Susana; Crespo, Claudia A; Medina, Marcela F; Iruzubieta Villagra, Lucrecia; Fernández, Silvia N; Ramos, Inés

    2014-10-01

    In the present study we describe for the first time in anuran amphibians the histological and ultrastructural characteristics of innervation in the female reproductive organs. The observations in Rhinella arenarum revealed the presence of nerve fibers located predominantly in the ovarian hilium and in the oviduct wall. In both organs the nerves fibers are placed near blood vessels and smooth muscles fibers. In the present study the histological observations were confirmed using antibodies against peripherin and neurofilament 200 proteins. Ultrastructural analyses demonstrated that the innervation of the reproductive organs is constituted by unmyelinated nerve fibers surrounded by Schwann cells. Axon terminals contain a population of small, clear, translucent vesicles that coexist with a few dense cored vesicles. The ultrastructural characteristics together with the immunopositive reaction to tyrosine hydroxylase of the nerve fibers and the type of synaptic vesicles present in the axon terminal would indicate that the reproductive organs of R. arenarum females are innervated by the sympathetic division of the autonomic nervous system. PMID:24882461

  12. In Vivo Demonstration of Nonadrenergic Inhibitory Innervation of the Guinea Pig Trachea

    OpenAIRE

    Chesrown, Sarah E.; Venugopalan, C. S.; Warren M Gold; Drazen, Jeffrey M.

    1980-01-01

    To determine if electrical stimulation of autonomic nerves could excite nonadrenergic inhibitory motor pathways in the guinea pig respiratory system in vivo, we studied the effects of electrical stimulation of the cervical vagi and sympathetic nerve trunks on pressure changes (Pp) within an isolated, fluid-filled cervical tracheal segment which reflected changes in trachealis muscle tone. We preserved the innervation and circulation of the segment as evidenced by a rise in Pp with vagus nerve...

  13. Role of intrahepatic innervation in regulating the activity of liver cells

    OpenAIRE

    Streba, Letitia Adela Maria; Vere, Cristin Constantin; Ionescu, Alin Gabriel; Streba, Costin Teodor; Rogoveanu, Ion

    2014-01-01

    Liver innervation comprises sympathetic, parasympathetic and peptidergic nerve fibers, organized as either afferent or efferent nerves with different origins and roles. Their anatomy and physiology have been studied in the past 30 years, with different results published over time. Hepatocytes are the main cell population of the liver, making up almost 80% of the total liver volume. The interaction between hepatocytes and nerve fibers is accomplished through a wealth of neurotransmitters and s...

  14. Sodium channel Nav1.7 in vascular myocytes, endothelium, and innervating axons in human skin

    OpenAIRE

    Rice, Frank L.; Albrecht, Phillip J.; Wymer, James P.; Black, Joel A; Merkies, Ingemar SJ; Faber, Catharina G; WAXMAN, STEPHEN G.

    2015-01-01

    Background The skin is a morphologically complex organ that serves multiple complementary functions, including an important role in thermoregulation, which is mediated by a rich vasculature that is innervated by sympathetic and sensory endings. Two autosomal dominant disorders characterized by episodes of severe pain, inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD) have been directly linked to mutations that enhance the function of sodium channel Nav1.7. Pain attac...

  15. Regulation of bile duct motility by vagus and sympathetic nerves in the pigeon.

    Directory of Open Access Journals (Sweden)

    Neya,Toshiaki

    1990-04-01

    Full Text Available Effects of stimulation of the vagus and sympathetic nerves on bile duct peristalses were studied in pigeons anesthetized with urethane. Vagus stimulation increased the frequency of peristalses. Atropine, hexamethonium and tetrodotoxin abolished this excitatory effect. After atropine, inhibition of peristalses sensitive to tetrodotoxin was produced. Stimulation of sympathetic area in the spinal cord inhibited peristalses. Propranolol converted this effect into an excitatory one, which was abolished by phentolamine. The results suggest that vagal and sympathetic innervations of the bile duct in pigeons are similar to those of the sphincter of Oddi in mammalian species.

  16. Exogenous nerve growth factor supplementation elevates myocardial immunoreactivity and attenuates cardiac remodeling in pressure-overload rats

    Institute of Scientific and Technical Information of China (English)

    Bing He; and Yuming Li; Fan Ye; Xin Zhou; He Li; Xiaoqing Xun; Xiaoqing Ma; Xudong Liu; Zhihong Wang; Pengxiao Xu

    2012-01-01

    It is postulated that supplementation of exogenous nerve growth factor (NGF) might mediate improvement of the cardiac sympathetic nerve function in heart failure (HF).Local intramuscular injection of NGF near the cardiac sympathetic ganglia could influence the innervation pattern,norepinephrine transporter (NET) gene expression,and improve the cardiac remodeling in experimental HF animals.In this study,we injected NGF into the scalenus medius muscles of Sprague-Dawley rats with abdominal aortic constriction (AC).The nerve innervated pattern,left ventricular morphology,and function following injection in rats with AC were investigated respectively by immunohistochemistry and echocardiography.Levels of mRNA expression of NET,growth associated protein 43 (GAP 43),NGF and its receptors TrkA and p75NTR,and brain natriuretic peptide (BNP) were measured by realtime polymerase chain reaction.The results showed that myocardial NGF mRNA levels were comparable in rats with AC.Short-term supplementation of exogenous NGF raised the myocardial NGF immunoreactivity,but did not cause hyperinnervation and NET mRNA upregulation in the AC rats.Furthermore,myocardial TrkA mRNA was found to be remarkably decreased and p75NTR mRNA was increased.Myocardial TrkA downregulation may play a beneficial effect for avoiding the hyperinnervation,and it is reasonable to postulate that p75NTR can function as an NGF receptor in the absence of TrkA.Interestingly,local NGF administration into the neck muscles near the ganglia could attenuate cardiac remodeling and downregulate BNP mRNA.These results suggest that exogenous NGF can reach the target tissue along the axons anterogradely,and improve the cardiac remodeling.

  17. GABA and enkephalin tonically alter sympathetic outflows in the rat spinal cord.

    Science.gov (United States)

    Bowman, Belinda R; Goodchild, Ann K

    2015-12-01

    GABA and enkephalin provide significant innervation of sympathetic preganglionic neurons. Despite some investigation as to the identity of premotor sources of these innervations no comprehensive analyses have been conducted. Similarly, although data describing the cardiovascular effects of blockade of GABAA receptors in the spinal cord is available, the effects at other sympathetic outflows are unknown. In contrast the sympathetic effects of opioid blockade in the spinal cord are unclear. The aims of this study were to identify potential sympathetic premotor sources of GABAergic and enkephalinergic input to the spinal cord and to describe the sympathetic and cardiovascular effects of spinal GABAA receptor and delta/mu opioid receptor blockade in urethane anaesthetised rats. Glutamic acid decarboxylase (GAD67) and preproenkephalin (PPE) mRNA were found in all regions containing sympathetic premotor neurons, with the medullary raphe and RVMM providing the major GABAergic projections, while the PVN, RVMM and medullary raphe provided the major enkephalinergic projections. Intrathecal injection of bicuculline, a GABAA antagonist, elicited large and prolonged increases in all outflows measured, confirming previous work describing a tonic GABAergic influence on vasomotor tone, and revealing a tonic GABAergic inhibition of interscapular brown adipose tissue temperature. Intrathecal naloxone elicited transient small inhibitory effects only on MAP and HR. Thus GABA acting in the spinal cord plays an important role in the tonic suppression of sympathetic outflows while enkephalin appears to play only a minor role. PMID:26329875

  18. Macrophage depletion suppresses sympathetic hyperinnervation following myocardial infarction

    OpenAIRE

    Wernli, G.; Hasan, W.; Bhattacherjee, A.; Rooijen, van, J.; Smith, P K

    2009-01-01

    Myocardial infarction induces sympathetic axon sprouting adjacent to the necrotic region, and this has been implicated in the etiology of arrhythmias resulting in sudden cardiac death. Previous studies show that nerve growth factor (NGF) is essential for enhanced post-infarct sympathetic sprouting, but the cell types necessary to supply this neurotrophic protein are unknown. The objective of the present study was to determine whether macrophages, which are known to synthesize NGF, are necessa...

  19. Sympathetic nerve-derived ATP regulates renal medullary blood flow via vasa recta pericytes

    Directory of Open Access Journals (Sweden)

    ScottSWildman

    2013-10-01

    Full Text Available Pericyte cells are now known to be a novel locus of blood flow control, being able to regulate capillary diameter via their unique morphology and expression of contractile proteins. We have previously shown that exogenous ATP causes constriction of vasa recta via renal pericytes, acting at a variety of membrane bound P2 receptors on descending vasa recta, and therefore may be able to regulate medullary blood flow (MBF. Regulation of MBF is essential for appropriate urine concentration and providing essential oxygen and nutrients to this region of high, and variable, metabolic demand. Various sources of endogenous ATP have been proposed, including from epithelial, endothelial and red blood cells in response to stimuli such as mechanical stimulation, local acidosis, hypoxia, and exposure to various hormones. Extensive sympathetic innervation of the nephron has previously been shown, however the innervation reported has focused around the proximal and distal tubules, and ascending loop of Henle. We hypothesise that sympathetic nerves are an additional source of ATP acting at renal pericytes and therefore regulate MBF. Using a rat live kidney slice model in combination with video imaging and confocal microscopy techniques we firstly show sympathetic nerves in close proximity to vasa recta pericytes in both the outer and inner medulla. Secondly, we demonstrate pharmacological stimulation of sympathetic nerves in situ (by tyramine evokes pericyte-mediated vasoconstriction of vasa recta capillaries; inhibited by the application of the P2 receptor antagonist suramin. Lastly, tyramine-evoked vasoconstriction of vasa recta by pericytes is significantly less than ATP-evoked vasoconstriction. Sympathetic innervation may provide an additional level of functional regulation in the renal medulla that is highly localized. It now needs to be determined under which physiological/pathophysiological circumstances that sympathetic innervation of renal pericytes is

  20. Sympathetic Nervous System Control of Carbon Tetrachloride-Induced Oxidative Stress in Liver through α-Adrenergic Signaling

    OpenAIRE

    Jung-Chun Lin; Yi-Jen Peng; Shih-Yu Wang; Mei-Ju Lai; Ton-Ho Young; Salter, Donald M.; Herng-Sheng Lee

    2015-01-01

    In addition to being the primary organ involved in redox cycling, the liver is one of the most highly innervated tissues in mammals. The interaction between hepatocytes and sympathetic, parasympathetic, and peptidergic nerve fibers through a variety of neurotransmitters and signaling pathways is recognized as being important in the regulation of hepatocyte function, liver regeneration, and hepatic fibrosis. However, less is known regarding the role of the sympathetic nervous system (SNS) in m...

  1. Sympathetic Nervous System Control of Carbon Tetrachloride-Induced Oxidative Stress in Liver through a-Adrenergic Signaling

    OpenAIRE

    Lin, Jung-Chun; Peng, Yi-Jen; Wang, Shih-Yu; Lai, Mei-Ju; Young, Ton-Ho; Salter, Donald; Lee, Herng-Sheng

    2016-01-01

    In addition to being the primary organ involved in redox cycling, the liver is one of the most highly innervated tissues in mammals. The interaction between hepatocytes and sympathetic, parasympathetic, and peptidergic nerve fibers through a variety of neurotransmitters and signaling pathways is recognized as being important in the regulation of hepatocyte function, liver regeneration, and hepatic fibrosis. However, less is known regarding the role of the sympathetic nervous system (SNS) in m...

  2. Sympathetic Neural and Hemodynamic Responses During Cold Pressor Test in Elderly Blacks and Whites.

    Science.gov (United States)

    Okada, Yoshiyuki; Jarvis, Sara S; Best, Stuart A; Edwards, Jeffrey G; Hendrix, Joseph M; Adams-Huet, Beverley; Vongpatanasin, Wanpen; Levine, Benjamin D; Fu, Qi

    2016-05-01

    The sympathetic response during the cold pressor test (CPT) has been reported to be greater in young blacks than whites, especially in those with a family history of hypertension. Because blood pressure (BP) increases with age, we evaluated whether elderly blacks have greater sympathetic activation during CPT than age-matched whites. BP, heart rate, cardiac output, and muscle sympathetic nerve activity were measured during supine baseline, 2-minute CPT, and 3-minute recovery in 47 elderly (68±7 [SD] years) volunteers (12 blacks and 35 whites). Baseline BP, heart rate, cardiac output, or muscle sympathetic nerve activity did not differ between races. Systolic and diastolic BP and heart rate increased during CPT (allP0.05). Cardiac output increased during CPT and ≤30 s of recovery in both groups, but was lower in blacks than whites. Muscle sympathetic nerve activity increased during CPT in both groups (bothPvasoconstriction in elderly blacks. PMID:27021009

  3. α2A-adrenoceptors, but not nitric oxide, mediate the peripheral cardiac sympatho-inhibition of moxonidine.

    Science.gov (United States)

    Cobos-Puc, Luis E; Aguayo-Morales, Hilda; Silva-Belmares, Yesenia; González-Zavala, Maria A; Centurión, David

    2016-07-01

    Moxonidine centrally inhibits the sympathetic activity through the I1-imidazoline receptor and nitric oxide. In addition, inhibits the peripheral cardiac sympathetic outflow by α2-adrenoceptors/I1-imidazoline receptors, although the role of α2-adrenoceptor subtypes or nitric oxide in the cardiac sympatho-inhibition induced by moxonidine are unknown. Therefore, the cardiac sympatho-inhibition induced by moxonidine (10μg/kgmin) was evaluated before and after of the treatment with the following antagonists/inhibitor: (1) BRL 44408, (300μg/kg, α2A), imiloxan, (3000μg/kg, α2B), and JP-1302, (300μg/kg, α2C), in animals pretreated with AGN 192403 (3000μg/kg, I1 antagonist); (2) N(ω)-nitro-l-arginine methyl ester (l-NAME; 34, 100, and 340μg/kgmin); and (3) the combinations of the highest dose of l-NAME plus AGN 192403 or BRL 44408. Additionally, the expression of the neuronal (nNOS) and inducible (iNOS) nitric oxide synthase in the stellate ganglion was determined after treatment with moxonidine (i.p. 0.56mg/kg daily, during one week). The cardiac sympatho-inhibition of 10μg/kgmin moxonidine was: (1) unaffected by imiloxan and JP-1302, under pretreatment with AGN 192403, or l-NAME (34, 100 and 340μg/kgmin) given alone; (2) partially antagonized by the combination of 340 μg/kgmin l-NAME plus BRL 44408; and (3) abolished by BRL 44408 under treatment with AGN 192403. Furthermore, moxonidine did not modify the nNOS or iNOS protein expression in the stellate ganglion, the main source of postganglionic sympathetic neurons innervating the heart. In conclusion, our results suggest that the peripheral cardiac sympatho-inhibition induced by moxonidine is mediated by α2A-adrenoceptor subtype but not by nitric oxide. PMID:27112661

  4. Age-Related Differences in the Sympathetic-Hemodynamic Balance in Men

    OpenAIRE

    Hart, Emma C.; Joyner, Michael J.; Wallin, B. Gunnar; Johnson, Christopher P.; Curry, Timothy B.; Eisenach, John H.; Charkoudian, Nisha

    2009-01-01

    As humans age, the tonic level of activity in sympathetic vasoconstrictor nerves increases and may contribute to age-related increases in blood pressure. In previous studies in normotensive young men with varying levels of resting sympathetic nerve activity, we observed a balance among factors contributing to blood pressure regulation, such that higher sympathetic activity was associated with lower cardiac output and lesser vascular responsiveness to α-adrenergic agonists, which limited the i...

  5. Involvement of catecholaminergic neurons in motor innervation of striated muscle in the mouse esophagus.

    Science.gov (United States)

    van der Keylen, Piet; Garreis, Fabian; Steigleder, Ruth; Sommer, Daniel; Neuhuber, Winfried L; Wörl, Jürgen

    2016-05-01

    Enteric co-innervation is a peculiar innervation pattern of striated esophageal musculature. Both anatomical and functional data on enteric co-innervation related to various transmitters have been collected in different species, although its function remains enigmatic. However, it is unclear whether catecholaminergic components are involved in such a co-innervation. Thus, we examined to identify catecholaminergic neuronal elements and clarify their relationship to other innervation components in the esophagus, using immunohistochemistry with antibodies against tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT), choline acetyltransferase (ChAT) and protein gene product 9.5 (PGP 9.5), α-bungarotoxin (α-BT) and PCR with primers for amplification of cDNA encoding TH and dopamine-β-hydroxylase (DBH). TH-positive nerve fibers were abundant throughout the myenteric plexus and localized on about 14% of α-BT-labelled motor endplates differing from VAChT-positive vagal nerve terminals. TH-positive perikarya represented a subpopulation of only about 2.8% of all PGP 9.5-positive myenteric neurons. Analysis of mRNA showed both TH and DBH transcripts in the mouse esophagus. As ChAT-positive neurons in the compact formation of the nucleus ambiguus were negative for TH, the TH-positive nerve varicosities on motor endplates are presumably of enteric origin, although a sympathetic origin cannot be excluded. In the medulla oblongata, the cholinergic ambiguus neurons were densely supplied with TH-positive varicosities. Thus, catecholamines may modulate vagal motor innervation of esophageal-striated muscles not only at the peripheral level via enteric co-innervation but also at the central level via projections to the nucleus ambiguus. As Parkinson's disease, with a loss of central dopaminergic neurons, also affects the enteric nervous system and dysphagia is prevalent in patients with this disease, investigation of intrinsic catecholamines in the esophagus may

  6. Skin innervation: important roles during normal and pathological cutaneous repair.

    Science.gov (United States)

    Laverdet, Betty; Danigo, Aurore; Girard, Dorothée; Magy, Laurent; Demiot, Claire; Desmoulière, Alexis

    2015-08-01

    The skin is a highly sensitive organ. It is densely innervated with different types of sensory nerve endings, which discriminate between pain, temperature and touch. Autonomic nerve fibres which completely derive from sympathetic (cholinergic) neurons are also present. During all the phases of skin wound healing (inflammatory, proliferative and remodelling phases), neuromediators are involved. Several clinical observations indicate that damage to the peripheral nervous system influences wound healing, resulting in chronic wounds within the affected area. Patients with cutaneous sensory defects due to lepromatous leprosy, spinal cord injury and diabetic neuropathy develop ulcers that fail to heal. In addition, numerous experimental observations suggest that neurogenic stimuli profoundly affect wound repair after injury and that delayed wound healing is observed in animal models after surgical resection of cutaneous nerves. All these observations clearly suggest that innervation and neuromediators play a major role in wound healing. Interactions between neuromediators and different skin cells are certainly crucial in the healing process and ultimately the restoration of pain, temperature, and touch perceptions is a major challenge to solve in order to improve patients' quality of life. PMID:25799052

  7. Investigation of Sleep Bruxism Relating to Micro-arousals and Cardiac Sympathetic Activities%夜磨牙与微觉醒及心脏交感神经活动的关系

    Institute of Scientific and Technical Information of China (English)

    刘伟才; 王海波; 陈威; 李强

    2012-01-01

    Objective: To investigate whether rhythmic masticatory muscle activity (RMMA) is associated with sleep micro- arousals (MA), and analyze the association between RMMA of sleep bruxism patients (RMMA/SB) and autonomic cardiac activity. Methods: Thirty SB subjects and thirty control subjects for two consecutive nights were performed by polygraphic recordings. MA index and RMMA index were scored. The mean heart rate from a series of 10 cardiac cycles was calculated at 60, 40, 20 and 5 sec before RMMA onset respectively. To assess a transient beat-to-beat heart rate change in relation to the RMMA onset, heart rate from 5 cardiac cycles before and 5 cycles after the onset were also calculated. Results: Sleep bruxism (SB) subjects showed a higher incidence of rhythmic masticatory muscle activity (RMMA) than control subjects (6.10±1.05 vs. 1.81 ±0.39, P<0.0001). However, no difference was found in according to their micro-arousal index(7.72±1.21 vs.7.53±1.33, P=0.5641). RMMA/SB was associated with sleep micro-arousals. In both groups, transient heart rate acceleration was observed in relation to the onset of RMMA episodes. Conclusion: RMMA is associated with sleep micro-arousals. In SB subjects, a clear increase in sympathetic activity precedes SB onset.%目的:研究夜磨牙(sleep bruxism,SB)患者睡眠期咀嚼肌节律性运动(RMMA)发生的微觉醒机制.方法:对30名夜磨牙患者、30名正常人进行连续2夜的多导睡眠监测,研究RMMA事件与微觉醒(MA)的时间相关性;比较2组间RMMA指数及MA指数的差异;RMMA事件发生前60 s、前40 s、前20 s、前5s,共5个时间点的各连续10个心动周期的平均心率,以及RMMA事件发生前后各5个心动周期的心率变化.结果:夜磨牙症患者微觉醒指数(7.72±1.21)与正常对照相似(7.53±1.33,P=0.5641);但咀嚼肌节律性运动频率,即磨牙指数[(6.10±1.05)次/h]约3倍于正常对照组[(1.81±0.39)次/h,P<0.0001)].RMMA事件与MA存在高度时间相关

  8. Nitric oxide and the autonomic regulation of cardiac excitability. The G.L. Brown Prize Lecture.

    Science.gov (United States)

    Paterson, D

    2001-01-01

    Cardiac sympathetic imbalance and arrhythmia; Nitric oxide-cGMP pathway and the cholinergic modulation of cardiac excitability; Nitric oxide-cGMP pathway and the sympathetic modulation of cardiac excitability; Functional significance of nitric oxide in the autonomic regulation of cardiac excitability; Summary; References. Experimental Physiology (2001) 86.1, 1-12. PMID:11429613

  9. Cardiac sympathetic-parasympathetic balance in rats with experimentally-induced acute chagasic myocarditis O balanço autonômico cardíaco nas ratas com miocardite chagásica aguda experimental

    Directory of Open Access Journals (Sweden)

    Diego F. Davila

    1995-04-01

    Full Text Available To clarify the mechanism responsible for the transient sinus tachycardia in rats with acute chagasic myocarditis, we have examined the cardiac sympathetic-parasympathetic balance of 29 rats inoculated with 200,000 parasites (Trypanosoma cruzi. Sixteen infected animals and 8 controls were studied between days 18 and 21 after inoculation (acute stage. The remaining 13 infected animals and 9 controls were studied between days 60 and 70 after inoculation (sub-acute stage. Under anesthesia (urethane 1.25 g/kg, all animals received intravenous atenolol (5 mg/kg and atropine (10 mg/kg. Acute stage: The baseline heart rate of the infected animals was significantly higher than that of the controls (P Com a finalidade de pesquisar o mecanismo responsável pela taquicardia sinusal transitória que ocorre nas ratas com miocardite chagásica aguda, foi estudado o balanço autonômico cardíaco em 16 ratas inoculadas com Trypanosoma cruzi por via intraperitoneal. Oito animais foram estudados aos 18 e 21 dias após-inoculação (Estádio agudo; os oito animais restantes foram estudados entre os dias 60 a 70 após inoculação (Estádio sub-agudo. Todos os animais em estudo bem como os controles receberam atenolol e atropina. No estádio agudo, a frequência cardíaca basal dos animais infectados foi significativamente maior que a dos controles. A resposta cronotrópica negativa pela administração de atenolol foi quatro vezes maior nos animais infectados. No estádio sub-agudo, a frequência cardíaca basal e a resposta cronotrópica ao atenolol e atropina foi similar nos dois grupos do estudo. Os nossos resultados sugerem que no estádio agudo da miocardite chagásica experimental, a atividade simpática encontra-se periodicamente aumentada.

  10. The effect of altering the activation sequence with right ventricular apical pacing. Evaluation of myocardial perfusion and adrenergic innervation in patients with right bundle branch block and left anterior fascicular block

    International Nuclear Information System (INIS)

    Aim: Intraventricular conduction disturbances are associated with asynchrony of ventricular function and uncoordinated ventricular wall motion. Specifically, patients with left bundle branch block (LBBB), who have been studied the most, have revealed left ventricular dyssynergy, asymmetry of left ventricular thickness, abnormalities in glucose uptake and in myocardial perfusion even in the absence of coronary disease. The aim of the study was to investigate myocardial perfusion and adrenergic innervation in patients with intraventricular conduction disturbances and to detect any changes caused by alteration of the ventricular activation sequence as a result of right ventricular apical pacing. Materials-methods: We studied 20 patients (11 men, 9 women, age 65.16 ± 5.79 years) with right bundle branch block (RBBB) and left anterior fascicular block (LAFB), while 15 healthy individuals served as controls. All patients underwent planar and myocardial tomography (SPECT) imaging after intravenous infusion of 5mCi 123I-metaiodobenzylguanidine (123I-MIBG) and a SPECT Thallium201 myocardial perfusion study before and 3 months after pacemaker implantation. Results: The heart to mediastinum ratio was calculated during the 123I-MIBG study in order to assess the global cardiac sympathetic activity and was significantly lower in patients than in controls (p 123I-MIBG study was performed in order to investigate the regional distribution of Adrenergic innervation. Patients with RBBB and LAFB revealed regional adrenergic innervation defects, mostly in the inferior and posterior walls. After a medium-term pacing period, a redistribution of 123I-MIBG uptake was detected, with aggravation of adrenergic innervation defects in the apical and posterior walls and amelioration in septal and anterior walls. Five patients showed perfusion defects that remained unchanged after pacing. Two others displayed mild myocardial perfusion defects that did not exist before pacing. Conclusions

  11. Reduced nitric oxide in the rostral ventrolateral medulla enhances cardiac sympathetic afferent reflex in rats with chronic heart failure%延髓头端腹外侧区一氧化氮与慢性心力衰竭大鼠心交感传入反射的关系

    Institute of Scientific and Technical Information of China (English)

    朱国庆; 高兴亚; 张枫; 王玮

    2004-01-01

    The purpose of this study was to determine the effect of nitric oxide (NO) in the rostral ventrolateral medulla (RVLM)on the central integration of the cardiac sympathetic afferent reflex (CSAR) in normal rats and in rats with coronary ligationinduced chronic heart failure (CHF). Under α-chloralose and urethane anesthesia, mean arterial pressure, heart rate and renal sympathetic nerve activity (RSNA) were recorded at baseline and during elicitation of the CSAR evoked by electrical stimulation of the cardiac afferent sympathetic nerves in sino-aortic denervated and cervical vagotomized rats. A cannula was inserted into the left RVLM for microinjection of NO synthase inhibitor, S-methyl-L-thiocitruline (MeTC) or NO donor, S-nitroso-N-acetyl-penicillamine (SNAP). The CSAR was tested by electrical stimulation (5, 10, 20 and 30 Hz at 10 V for 1 ms) of the afferent cardiac sympathetic nerves. It was observed that (1) the responses of RSNA to stimulation were enhanced in rats with CHF; (2) MeTC (80nmol) potentiated the responses of RSNA to stimulation in sham rats but not in rats with CHF; (3) SNAP (50 nmol) depressed the enhanced RSNA response to stimulation in CHF rats but had no effect in sham rats; and (4) MeTC increased the baseline RSNA and MAP only in sham rats, but SNAP inhibited the baseline RSNA and MAP in both sham and CHF rats. These results indicate that reductance of NO in the RVLM is involved in the augmentation of CSAR in CHF rats.%为观察延髓头端腹外侧区(rostral ventrolateral medulla,RVLM)一氧化氮(NO)在慢性心力衰竭(chronic heartfailure,CHF)大鼠增强的心交感传入反射(cardiac sympathetic afferent reflex,CSAR)中的作用,实验在去压力感受器神经支配的结扎冠状动脉诱发的CHF大鼠和假手术SD大鼠进行,记录电刺激心交感传入神经中枢端前后的血压和肾交感神经活动(renal sympathetic nerve activity,RSNA)变化以评价CSAR.结果显示:(1)CHF大鼠的CSAR显著增强;(2)RVLM微量注

  12. Decreased sympathetic vasomotor tone in diabetic orthostatic hypotension

    DEFF Research Database (Denmark)

    Hilsted, J

    1979-01-01

    In normals, subcutaneous blood flow in the ankle region, measured by means of the 133Xe washout technique, decreases about 45% when the position of the ankle is changed from cardiac level to 50 cm below the heart. A sympathetic vascular axon reflex is responsible for this flow reduction. A normal...

  13. The anatomy and innervation of the mammalian pineal gland

    DEFF Research Database (Denmark)

    Møller, Morten; Baeres, Florian Martin Moesgaard

    Neurobiology, superior cervical ganglion, sphenopalatine ganglion, otic ganglion, trigeminal ganglion, central innervation......Neurobiology, superior cervical ganglion, sphenopalatine ganglion, otic ganglion, trigeminal ganglion, central innervation...

  14. Cutting Edge: Sympathetic Nervous System Increases Proinflammatory Cytokines and Exacerbates Influenza A Virus Pathogenesis

    OpenAIRE

    Grebe, Kristie M.; Takeda, Kazuyo; Hickman, Heather D.; Bailey, Adam M.; Embry, Alan C.; Bennink, Jack R.; Yewdell, Jonathan W.

    2009-01-01

    Although the sympathetic nervous system innervates the lung, little is known about its participation in host immunity to pulmonary pathogens. In this study, we show that peripheral sympathectomy reduces mouse morbidity and mortality from influenza A virus-induced pneumonia due to reduced inflammatory influx of monocytes, neutrophils, and NK cells. Mortality was also delayed by treating mice with an α-adrenergic antagonist. Sympathectomy diminished the immediate innate cytokine responses, part...

  15. Control and Physiological Determinants of Sympathetically Mediated Brown Adipose Tissue Thermogenesis

    OpenAIRE

    DenisRichard; ÉricTurcotte

    2012-01-01

    Brown adipose tissue (BAT) represents a remarkable heat-producing tissue. The thermogenic potential of BAT is conferred by uncoupling protein 1, a protein found uniquely in the brown adipocytes. The physiological control of BAT activity and capacity is ensured by the sympathetic nervous system (SNS), which densely innervates brown fat depots. SNS-mediated BAT thermogenesis is essentially governed by hypothalamic and brainstem neurons. BAT is not only controlled by the brain thermoregulatory c...

  16. A prediction model for 5-year cardiac mortality in patients with chronic heart failure using 123I-metaiodobenzylguanidine imaging

    International Nuclear Information System (INIS)

    Prediction of mortality risk is important in the management of chronic heart failure (CHF). The aim of this study was to create a prediction model for 5-year cardiac death including assessment of cardiac sympathetic innervation using data from a multicenter cohort study in Japan. The original pooled database consisted of cohort studies from six sites in Japan. A total of 933 CHF patients who underwent 123I-metaiodobenzylguanidine (MIBG) imaging and whose 5-year outcomes were known were selected from this database. The late MIBG heart-to-mediastinum ratio (HMR) was used for quantification of cardiac uptake. Cox proportional hazard and logistic regression analyses were used to select appropriate variables for predicting 5-year cardiac mortality. The formula for predicting 5-year mortality was created using a logistic regression model. During the 5-year follow-up, 205 patients (22 %) died of a cardiac event including heart failure death, sudden cardiac death and fatal acute myocardial infarction (64 %, 30 % and 6 %, respectively). Multivariate logistic analysis selected four parameters, including New York Heart Association (NYHA) functional class, age, gender and left ventricular ejection fraction, without HMR (model 1) and five parameters with the addition of HMR (model 2). The net reclassification improvement analysis for all subjects was 13.8 % (p < 0.0001) by including HMR and its inclusion was most effective in the downward reclassification of low-risk patients. Nomograms for predicting 5-year cardiac mortality were created from the five-parameter regression model. Cardiac MIBG imaging had a significant additive value for predicting cardiac mortality. The prediction formula and nomograms can be used for risk stratifying in patients with CHF. (orig.)

  17. Convergent cortical innervation of striatal projection neurons

    OpenAIRE

    Kress, Geraldine J.; Yamawaki, Naoki; Wokosin, David L.; Wickersham, Ian R.; Gordon M. G Shepherd; Surmeier, D. James

    2013-01-01

    Anatomical studies have led to the assertion that intratelencephalic (IT) and pyramidal tract (PT) cortical neurons innervate different striatal projection neurons. To test this hypothesis, the responses of mouse striatal neurons to optogenetic activation of IT and PT axons were measured. Contrary to expectation, direct and indirect pathway striatal spiny projection neurons (SPNs) responded to both IT and PT activation, arguing that these cortical networks innervate both striatal projection n...

  18. Anatomical evidence for ileal Peyer's patches innervation by enteric nervous system: a potential route for prion neuroinvasion?

    Science.gov (United States)

    Chiocchetti, Roberto; Mazzuoli, Gemma; Albanese, Valeria; Mazzoni, Maurizio; Clavenzani, Paolo; Lalatta-Costerbosa, Giovanna; Lucchi, Maria L; Di Guardo, Giovanni; Marruchella, Giuseppe; Furness, John B

    2008-05-01

    We have examined the innervation of the gut-associated lymphoid system of the sheep ileum, with a view to identifying potential sites for neuroinvasion by pathogens, such as prions (PrP(Sc)). Special attention has been paid to the follicles of Peyer's patches (PPs), which are major sites of PrP(Sc) accumulation during infection. Evidence exists that the enteric nervous system, together with the parasympathetic and sympathetic pathways projecting to the intestine, are important for PrP(Sc) entry into the central nervous system. Thus, PrP(Sc) might move from PPs to the neurons and nerve fibres that innervate them. We investigated, by immunohistochemistry and retrograde tracing (DiI) from the follicles, the distribution and phenotype of enteric neurons innervating the follicles. Antibodies against protein gene product 9.5, tyrosine hydroxylase, dopamine beta hydroxylase, choline acetyltransferase, calbindin (CALB), calcitonin gene-related peptide (CGRP), and nitric oxide synthase were used to characterise the neurons. Immunoreactivity for each of these was observed in fibres around and inside PP follicles. CGRP-immunoreactive fibres were mainly seen at the follicular dome. Retrograde tracing revealed submucosal neurons that contributed to the innervation of PPs, including Dogiel type II neurons and neurons immunoreactive for CALB and CGRP. The major source of the adrenergic fibres are the sympathetic ganglia. Our results thus suggest that enteric and sympathetic neurons are involved during the first stage of neuroinvasion, with neurons connecting to them acting as potential carriers of PrP(Sc) to the central nervous system. PMID:18317812

  19. Sympathetic neural control of indoleamine metabolism in the rat pineal gland

    Science.gov (United States)

    Lynch, H. J.; Hsuan, M.; Wurtman, R. J.

    1975-01-01

    The mechanisms responsible for the acceleration in rat pineal biosynthetic activity in response to prolonged exposure to darkness or to immobilization were investigated in animals whose pineals were surgically denervated. Some animals were adrenalectomized to remove one potential source of circulating catecholamines, and some were subjected to a partial chemical sympathectomy accomplished by a series of intravenous injections of 6-hydroxydopamine. Results suggest that N-acetyltransferase (NAT) activity can be enhanced either by release of norepinephrine from sympathetic terminals within the pineal or from sympathetic nerve terminals elsewhere. The stress of immobilization stimulates the pineal by increasing circulating catecholamines. Photic control of pineal function requires intact pineal sympathetic innervation, since the onset of darkness apparently does not cause a sufficient rise in circulating catecholamines to stimulate the pineal. The present studies suggest that nonspecific stress triggers increased biosynthesis and secretion of melatonin; it is possible that this hormone may participate in mechanisms of adaptation.

  20. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus

    Science.gov (United States)

    Baird, Richard A.; Schuff, N. R.

    1994-01-01

    Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into media and lateral parts. Utiricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrstriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. moast afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have perviously been classified into four types based on hair bundle morphology. Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely

  1. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, G.L.; Palma, R.K.; Brito, J.O.; Sanches, I.C. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil); Irigoyen, M.C. [Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); De Angelis, K. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil)

    2015-03-27

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation.

  2. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation

  3. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    Directory of Open Access Journals (Sweden)

    G.L. Shimojo

    2015-06-01

    Full Text Available The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC, sedentary hypertensive (SH, sedentary hypertensive ovariectomized (SHO, and resistance-trained hypertensive ovariectomized (RTHO. Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR responses to methylatropine (3 mg/kg, iv and propranolol (4 mg/kg, iv. Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg, as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm. Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05. The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation.

  4. A prediction model for 5-year cardiac mortality in patients with chronic heart failure using {sup 123}I-metaiodobenzylguanidine imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Kenichi; Matsuo, Shinro [Kanazawa University Hospital, Department of Nuclear Medicine, Kanazawa (Japan); Nakata, Tomoaki [Sapporo Medical University School of Medicine, Second Department of Internal Medicine (Cardiology), Sapporo (Japan); Hakodate-Goryoukaku Hospital, Department of Cardiology, Hakodate (Japan); Yamada, Takahisa [Osaka Prefectural General Medical Center, Department of Cardiology, Osaka (Japan); Yamashina, Shohei [Toho University Omori Medical Center, Department of Cardiovascular Medicine, Tokyo (Japan); Momose, Mitsuru [Tokyo Women' s Medical University, Department of Nuclear Medicine, Tokyo (Japan); Kasama, Shu [Cardiovascular Hospital of Central Japan, Department of Cardiology, Shibukawa (Japan); Matsui, Toshiki [Social Insurance Shiga General Hospital, Department of Cardiology, Otsu (Japan); Travin, Mark I. [Albert Einstein Medical College, Department of Cardiology and Nuclear Medicine, Montefiore Medical Center, Bronx, NY (United States); Jacobson, Arnold F. [GE Healthcare, Medical Diagnostics, Princeton, NJ (United States)

    2014-09-15

    Prediction of mortality risk is important in the management of chronic heart failure (CHF). The aim of this study was to create a prediction model for 5-year cardiac death including assessment of cardiac sympathetic innervation using data from a multicenter cohort study in Japan. The original pooled database consisted of cohort studies from six sites in Japan. A total of 933 CHF patients who underwent {sup 123}I-metaiodobenzylguanidine (MIBG) imaging and whose 5-year outcomes were known were selected from this database. The late MIBG heart-to-mediastinum ratio (HMR) was used for quantification of cardiac uptake. Cox proportional hazard and logistic regression analyses were used to select appropriate variables for predicting 5-year cardiac mortality. The formula for predicting 5-year mortality was created using a logistic regression model. During the 5-year follow-up, 205 patients (22 %) died of a cardiac event including heart failure death, sudden cardiac death and fatal acute myocardial infarction (64 %, 30 % and 6 %, respectively). Multivariate logistic analysis selected four parameters, including New York Heart Association (NYHA) functional class, age, gender and left ventricular ejection fraction, without HMR (model 1) and five parameters with the addition of HMR (model 2). The net reclassification improvement analysis for all subjects was 13.8 % (p < 0.0001) by including HMR and its inclusion was most effective in the downward reclassification of low-risk patients. Nomograms for predicting 5-year cardiac mortality were created from the five-parameter regression model. Cardiac MIBG imaging had a significant additive value for predicting cardiac mortality. The prediction formula and nomograms can be used for risk stratifying in patients with CHF. (orig.)

  5. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Stanton, M.S.; Tuli, M.M.; Radtke, N.L.; Heger, J.J.; Miles, W.M.; Mock, B.H.; Burt, R.W.; Wellman, H.N.; Zipes, D.P. (Indiana Univ. School of Medicine, IN (USA))

    1989-11-15

    Transmural myocardial infarction in dogs produces denervation of sympathetic nerves in viable myocardium apical to the infarct that may be arrhythmogenic. It is unknown whether sympathetic denervation occurs in humans. The purpose of this study was to use iodine-123-metaiodobenzylguanidine (MIBG), a radiolabeled guanethidine analog that is actively taken up by sympathetic nerve terminals, to image noninvasively the cardiac sympathetic nerves in patients with and without ventricular arrhythmias after myocardial infarction. Results showed that 10 of 12 patients with spontaneous ventricular tachyarrhythmias after myocardial infarction exhibited regions of thallium-201 uptake indicating viable perfused myocardium, with no MIBG uptake. Such a finding is consistent with sympathetic denervation. One patient had frequent episodes of nonsustained ventricular tachycardia induced at exercise testing that was eliminated by beta-adrenoceptor blockade. Eleven of the 12 patients had ventricular tachycardia induced at electrophysiologic study and metoprolol never prevented induction. Sympathetic denervation was also detected in two of seven postinfarction patients without ventricular arrhythmias. Normal control subjects had no regions lacking MIBG uptake. This study provides evidence that regional sympathetic denervation occurs in humans after myocardial infarction and can be detected noninvasively by comparing MIBG and thallium-201 images. Although the presence of sympathetic denervation may be related to the onset of spontaneous ventricular tachyarrhythmias in some patients, it does not appear to be related to sustained ventricular tachycardia induced at electrophysiologic study.

  6. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine

    International Nuclear Information System (INIS)

    Transmural myocardial infarction in dogs produces denervation of sympathetic nerves in viable myocardium apical to the infarct that may be arrhythmogenic. It is unknown whether sympathetic denervation occurs in humans. The purpose of this study was to use iodine-123-metaiodobenzylguanidine (MIBG), a radiolabeled guanethidine analog that is actively taken up by sympathetic nerve terminals, to image noninvasively the cardiac sympathetic nerves in patients with and without ventricular arrhythmias after myocardial infarction. Results showed that 10 of 12 patients with spontaneous ventricular tachyarrhythmias after myocardial infarction exhibited regions of thallium-201 uptake indicating viable perfused myocardium, with no MIBG uptake. Such a finding is consistent with sympathetic denervation. One patient had frequent episodes of nonsustained ventricular tachycardia induced at exercise testing that was eliminated by beta-adrenoceptor blockade. Eleven of the 12 patients had ventricular tachycardia induced at electrophysiologic study and metoprolol never prevented induction. Sympathetic denervation was also detected in two of seven postinfarction patients without ventricular arrhythmias. Normal control subjects had no regions lacking MIBG uptake. This study provides evidence that regional sympathetic denervation occurs in humans after myocardial infarction and can be detected noninvasively by comparing MIBG and thallium-201 images. Although the presence of sympathetic denervation may be related to the onset of spontaneous ventricular tachyarrhythmias in some patients, it does not appear to be related to sustained ventricular tachycardia induced at electrophysiologic study

  7. The human thoracic duct is functionally innervated by adrenergic nerves

    DEFF Research Database (Denmark)

    Telinius, Niklas; Baandrup, Ulrik; Rumessen, Jüri;

    2014-01-01

    Lymphatic vessels from animals have been shown to be innervated. While morphological studies have confirmed human lymphatic vessels are innervated, functional studies supporting this are lacking. The present study demonstrates a functional innervation of the human thoracic duct (TD) that is......, acetylcholine, and methacholine was demonstrated by exogenous application to human TD ring segments. Norepinephrine provided the most consistent responses, whereas responses to the other agonists varied. We conclude that the human TD is functionally innervated with both cholinergic and adrenergic components...

  8. [Reflex sympathetic dystrophy].

    Science.gov (United States)

    Oliveira, Marta; Manuela, Manuela; Cantinho, Guilhermina

    2011-01-01

    Reflex Sympathetic Dystrophy is rare in pediatrics. It is a complex regional pain syndrome, of unknown etiology, usually post-traumatic, characterized by dysfunctions of the musculoskeletal, vascular and skin systems: severe persistent pain of a limb, sensory and vascular alterations, associated disability and psychosocial dysfunction. The diagnosis is based in high clinical suspection. In children and adolescents there are aspects that are different from the adult ones. Excessive tests may result in worsening of the clinical symptoms. Bone scintigraphy can help. Pain treatment is difficult, not specific. Physical therapies and relaxation technics give some relief. Depression must be treated. This syndrome includes fibromyalgia and complex regional pain syndrome type I. We present a clinical report of an adolescent girl, referred for pain, cold temperature, pallor and functional disability of an inferior limb, all signals disclosed by a minor trauma. She had been diagnosed depression the year before. The bone scintigraphy was a decisive test. The treatment with gabapentin, C vitamin, physiotherapy and pshycotherapy has been effective. PMID:22713207

  9. Regulation of sympathetic nervous system function after cardiovascular deconditioning

    Science.gov (United States)

    Hasser, E. M.; Moffitt, J. A.

    2001-01-01

    Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently

  10. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation.

    Directory of Open Access Journals (Sweden)

    Mamoru Tanida

    Full Text Available In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb. We investigated the potential of AMPKα2 in the sympathetic effects of leptin using in vivo siRNA injection to knockdown AMPKα2 in rats, to produce reduced hypothalamic AMPKα2 expression. Leptin effects on body weight, food intake, and blood FFA levels were eliminated in AMPKα2 siRNA-treated rats. Leptin-evoked enhancements of the sympathetic nerve outflows to the kidney, brown and white adipose tissues were attenuated in AMPKα2 siRNA-treated rats. To check whether AMPKα2 was specific to sympathetic changes induced by leptin, we examined the effects of injecting MT-II, a melanocortin-3 and -4 receptor agonist, on the sympathetic nerve outflows to the kidney and adipose tissue. MT-II-induced sympatho-excitation in the kidney was unchanged in AMPKα2 siRNA-treated rats. However, responses of neural activities involving adipose tissue to MT-II were attenuated in AMPKα2 siRNA-treated rats. These results suggest that hypothalamic AMPKα2 is involved not only in appetite and body weight regulation but also in the regulation of sympathetic nerve discharges to the kidney and adipose tissue. Thus, AMPK might function not only as an energy sensor, but as a key molecule in the cardiovascular, thermogenic, and lipolytic effects of leptin through the sympathetic nervous system.

  11. Vagal postganglionic innervation of the canine sinoatrial node.

    Science.gov (United States)

    Randall, W C; Ardell, J L; Wurster, R D; Milosavljevic, M

    1987-07-01

    Differential, selective distribution of parasympathetic, postganglionic innervation to the atrioventricular nodal (AVN) region of the canine heart was recently described. Ablation of parasympathetic pathways to the AVN by disruption of the epicardial fat pad at the junction of the inferior vena cava and inferior left atrium did not interfere with normal vagal control of the sinoatrial node (SAN) function. In sharp contrast, surgical dissection of the fat pad overlying the right pulmonary vein-left atrial junction interrupted the major right and left vagal inputs to the SAN region. The pulmonary vein fat pad (PVFP) in the dog heart is triangular in shape with roughly equilateral dimensions of approximately 1 cm, its base extending from superior to inferior veins, and its apex extending nearly to the sinus nodal artery as it courses rostrally in the sulcus terminalis. Careful dissection of smaller fat pads around the circumference of the pulmonary veins and particularly over the rostral-dorsal surfaces of the right superior pulmonary vein and adjacent right atrium, completed SAN parasympathetic denervation. Care in making these dissections left the vagal supply to the AVN region essentially intact, and preserved the sympathetic supplies to both SAN and AVN regions. Autonomic ganglia, varying in size from 1 or 2 cells to 80-100 cells, were found scattered throughout the ventral PVFP (overlying and surrounding the right pulmonary vein-left atrial junction). The ganglia were generally imbedded in fatty connective tissue, although they commonly rested very close to, or were loosely surrounded by epicardial muscle. Ganglia were also found in smaller fat pads on the dorsal surfaces of the atrium between the azygos and the right superior pulmonary vein. PMID:3655182

  12. Pet measurements of presynaptic sympathetic nerve terminals in the heart

    International Nuclear Information System (INIS)

    [18F]Metaraminol (FMR) and [11C]hydroxyephedrine (HED) are catecholamine analogues that have been developed at the University of Michigan for the noninvasive characterization of the sympathetic nervous system of the heart using positron emission tomography (PET). Pharmacological studies employing neurotoxins and uptake inhibitors have demonstrated that both FMR and HED specifically trace the uptake and storage of catecholamines in sympathetic nerve terminals with little nonspecific tracer accumulation. These compounds exhibit excellent qualitative imaging characteristics with heart-to-blood ratios exceeding 6:1 as early as 15 min after intravenous injection in both animals (HED and FMR) and humans (HED). Tracer kinetic modeling techniques have been employed for the quantitative assessment of neuronal catecholamine uptake and storage. Indices of neuronal function, such as the volume of tracer distribution derived from the kinetic models, have been employed in preliminary human studies. Comparison of the tissue distribution volume of HED between normal (control subjects) and denervated (recent transplant patients) cardiac tissue demonstrates a dynamic range of approximately 5:1. This distribution volume is reduced by 60% from normal in patients with dilated cardiomyopathy, indicating dysfunction of the sympathetic system. These results show that HED used in combination with PET provides a sophisticated quantitative approach for studying the sympathetic nervous system of the normal and diseased human heart

  13. Cervical sympathetic chain schwannoma masquerading as a carotid body tumour with a postoperative complication of first-bite syndrome.

    LENUS (Irish Health Repository)

    Casserly, Paula

    2012-01-31

    Carotid body tumours (CBT) are the most common tumours at the carotid bifurcation. Widening of the bifurcation is usually demonstrated on conventional angiography. This sign may also be produced by a schwannoma of the cervical sympathetic plexus. A 45-year-old patient presented with a neck mass. Investigations included contrast-enhanced CT, MRI and magnetic resonance arteriography with contrast enhancement. Radiologically, the mass was considered to be a CBT due to vascular enhancement and splaying of the internal and external carotid arteries. Intraoperatively, it was determined to be a cervical sympathetic chain schwannoma (CSCS). The patient had a postoperative complication of first-bite syndrome (FBS).Although rare, CSCS should be considered in the differential diagnosis for tumours at the carotid bifurcation. Damage to the sympathetic innervation to the parotid gland can result in severe postoperative pain characterised by FBS and should be considered in all patients undergoing surgery involving the parapharyngeal space.

  14. Sympathetic activation in rats with L-NAME-induced hypertension

    Directory of Open Access Journals (Sweden)

    V.C. Biancardi

    2007-03-01

    Full Text Available We evaluated the hemodynamic pattern and the contribution of the sympathetic nervous system in conscious and anesthetized (1.4 g/kg urethane, iv Wistar rats with L-NAME-induced hypertension (20 mg/kg daily. The basal hemodynamic profile was similar for hypertensive animals, conscious (N = 12 or anesthetized (N = 12 treated with L-NAME for 2 or 7 days: increase of total peripheral resistance associated with a decrease of cardiac output (CO compared to normotensive animals, conscious (N = 14 or anesthetized (N = 14. Sympathetic blockade with hexamethonium essentially caused a decrease in total peripheral resistance in hypertensive animals (conscious, 2 days: from (means ± SEM 2.47 ± 0.08 to 2.14 ± 0.07; conscious, 7 days: from 2.85 ± 0.13 to 2.07 ± 0.33; anesthetized, 2 days: from 3.00 ± 0.09 to 1.83 ± 0.25 and anesthetized, 7 days: from 3.56 ± 0.11 to 1.53 ± 0.10 mmHg mL-1 min-1 with no change in CO in either group. However, in the normotensive group a fall in CO (conscious: from 125 ± 4.5 to 96 ± 4; anesthetized: from 118 ± 1.5 to 104 ± 5.5 mL/min was observed. The responses after hexamethonium were more prominent in the hypertensive anesthetized group. However, no difference was observed between conscious and anesthetized normotensive rats in response to sympathetic blockade. The present study shows that the vasoconstriction in response to L-NAME was mediated by the sympathetic drive. The sympathetic tone plays an important role in the initiation and maintenance of hypertension.

  15. Sympathetic denervation impairs responses of brown adipose tissue to VMH stimulation

    International Nuclear Information System (INIS)

    Effects of unilateral surgical denervation of the interscapular brown adipose tissue (IBAT) on its thermogenic and lipogenic responses to electrical stimulation of the ventromedial hypothalamic (VMH) nucleus were studied in anesthetized rats. The rapid rise in IBAT temperature in response to VMH stimulation was greatly suppressed in the denervated IBAT, whereas the temperature response was not impaired in the contralateral innervated IBAT in the same animals. Similarly, the increased rates of conversion of [14C] glucose and [3H]H2O to fatty acids and glyceride glycerol in vivo in IBAT after VMH stimulation were almost completely inhibited by sympathetic denervation. These results indicate clearly that the increases in lipogenic and thermogenic activities in IBAT in response to VMH stimulation are mediated by the sympathetic nerve supply of this tissue

  16. The Role of Neuromediators and Innervation in Cutaneous Wound Healing.

    Science.gov (United States)

    Ashrafi, Mohammed; Baguneid, Mohamed; Bayat, Ardeshir

    2016-06-15

    The skin is densely innervated with an intricate network of cutaneous nerves, neuromediators and specific receptors which influence a variety of physiological and disease processes. There is emerging evidence that cutaneous innervation may play an important role in mediating wound healing. This review aims to comprehensively examine the evidence that signifies the role of innervation during the overlapping stages of cutaneous wound healing. Numerous neuropeptides that are secreted by the sensory and autonomic nerve fibres play an essential part during the distinct phases of wound healing. Delayed wound healing in diabetes and fetal cutaneous regeneration following wounding further highlights the pivotal role skin innervation and its associated neuromediators play in wound healing. Understanding the mechanisms via which cutaneous innervation modulates wound healing in both the adult and fetus will provide opportunities to develop therapeutic devices which could manipulate skin innervation to aid wound healing. PMID:26676806

  17. Simultaneous Tc-99m/I-123 Dual Radionuclide Myocardial Perfusion/Innervation Imaging Using Siemens IQ-SPECT with SMARTZOOM Collimator

    OpenAIRE

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric C.

    2014-01-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region compared to a typical parallel-hole low-energy high-resolution collimator but without the data truncation that can result with conventional converging-beam collimators. Th...

  18. SOLITARY CHEMORECEPTOR CELL SURVIVAL IS INDEPENDENT OF INTACT TRIGEMINAL INNERVATION

    OpenAIRE

    Gulbransen, Brian; Silver, Wayne; Finger, Tom

    2008-01-01

    Nasal solitary chemoreceptor cells (SCCs) are a population of specialized chemosensory epithelial cells presumed to broaden trigeminal chemoreceptivity in mammals (Finger et al., 2003). SCCs are innervated by peptidergic trigeminal nerve fibers (Finger et al., 2003) but it is currently unknown if intact innervation is necessary for SCC development or survival. We tested the dependence of SCCs on innervation by eliminating trigeminal nerve fibers during development with neurogenin-1 knockout m...

  19. Effects of renal sympathetic denervation on cardiac remodeling following myocardial infarction in rats%去肾交感神经术对大鼠急性心肌梗死后心室重构的影响

    Institute of Scientific and Technical Information of China (English)

    刘夙璇; 王国坤; 丁雪燕; 董斐斐; 安丽娜; 赵仙先; 秦永文

    2014-01-01

    目的 对急性心肌梗死(myocardial infarction,MI)大鼠进行双侧肾交感神经切除,探讨去肾交感神经术(renal sympathetic denervation,RDN)能否缓解MI后心室重构并进行可能的机制探讨.方法 结扎大鼠左冠状动脉前降支构建MI模型,实验分组为:MI组(n=10)、MI+ RDN组(MI建模1周后进行RDN,n=10)和假手术组(n=10).MI建模4周后对各组大鼠进行超声心动图检查测定心室重构程度和左心功能,对梗死边缘区心肌进行Masson染色观察心肌纤维化程度,免疫组化检测Ⅰ型胶原、Ⅲ型胶原和转化生长因子β1 (transforming growth factor β1,TGF-β1)的表达.结果 与MI组相比,MI+ RDN组的左室射血分数(ejection fraction,EF)和短轴缩短率(fractional shortening,FS)升高,左室收缩末期内径(left ventricular internal dimensions at end systole,LVIDS)和左室舒张末期内径(left ventricular internal dimensions at end diastole, LVIDD)减少(P均<0.05).心肌Masson染色结果显示,MI+ RDN组大鼠梗死边缘区的心肌纤维化程度较MI组减轻.免疫组化检测显示,与MI组相比,MI+RDN组大鼠梗死边缘区的Ⅰ型胶原、Ⅲ型胶原和TGF-β1表达减少(P均<o.05).结论 RDN可以改善Mt大鼠心室重构,提高左心收缩功能,其机制可能与局部下调心肌TGF-β1表达进而减少Ⅰ型胶原和Ⅲ型胶原沉积有关.

  20. Angiotensin II--nitric oxide interactions in the control of sympathetic outflow in heart failure.

    Science.gov (United States)

    Zucker, I H; Liu, J L

    2000-03-01

    Activation of the sympathetic nervous system is a compensatory mechanism which initially provides support for the circulation in the face of a falling cardiac output. It has been recognized for some time that chronic elevation of sympathetic outflow with the consequent increase in plasma norepinephrine, is counterproductive to improving cardiac function. Indeed, therapeutic targeting to block excessive sympathetic activation in heart failure is becoming a more accepted modality. The mechanism(s) by which sympathetic excitation occurs in the heart failure state are not completely understood. Components of abnormal cardiovascular reflex regulation most likely contribute to this sympatho-excitation. However, central mechanisms which relate to the elaboration of angiotensin II (Ang II) and nitric oxide (NO) may also play an important role. Ang II has been shown to be a sympatho-excitatory peptide in the central nervous system while NO is sympatho-inhibitory. Recent studies have demonstrated that blockade of Ang II receptors of the AT(1) subtype augments arterial baroreflex control of sympathetic nerve activity in the heart failure state, thereby predisposing to a reduction in sympathetic tone. Ang II and NO interact to regulate sympathetic outflow. Blockade of NO production in normal conscious rabbits was only capable of increasing sympathetic outflow when accompanied by a background infusion of Ang II. Conversely, providing a source of NO to rabbits with heart failure reduced sympathetic nerve activity when accompanied by blockade of AT(1) receptors. Chronic heart failure is also associated with a decrease in NO synthesis in the brain as indicated by a reduction in the mRNA for the neuronal isoform (nNOS). Chronic blockade of Ang II receptors can up regulate nNOS expression. In addition, exercise training of rabbits with developing heart failure has been shown to reduce sympathetic tone, decrease plasma Ang II, improve arterial baroreflex function and increase n

  1. Locus coeruleus noradrenergic innervation of the amygdala facilitates alerting-induced constriction of the rat tail artery.

    Science.gov (United States)

    Mohammed, Mazher; Kulasekara, Keerthi; Ootsuka, Youichirou; Blessing, William W

    2016-06-01

    The amygdala, innervated by the noradrenergic locus coeruleus, processes salient environmental events. α2-adrenoceptor-stimulating drugs (clonidine-like agents) suppress the behavioral and physiological components of the response to salient events. Activation of sympathetic outflow to the cutaneous vascular bed is part of the physiological response to salience-mediated activation of the amygdala. We have determined whether acute systemic and intra-amygdala administration of clonidine, and chronic immunotoxin-mediated destruction of the noradrenergic innervation of the amygdala, impairs salience-related vasoconstrictor episodes in the tail artery of conscious freely moving Sprague-Dawley rats. After acute intraperitoneal injection of clonidine (10, 50, and 100 μg/kg), there was a dose-related decrease in the reduction in tail blood flow elicited by alerting stimuli, an effect prevented by prior administration of the α2-adrenergic blocking drug idazoxan (1 mg/kg ip or 75 nmol bilateral intra-amygdala). A dose-related decrease in alerting-induced tail artery vasoconstriction was also observed after bilateral intra-amygdala injection of clonidine (5, 10, and 20 nmol in 200 nl), an effect substantially prevented by prior bilateral intra-amygdala injection of idazoxan. Intra-amygdala injection of idazoxan by itself did not alter tail artery vasoconstriction elicited by alerting stimuli. Intra-amygdala injection of saporin coupled to antibodies to dopamine-β-hydroxylase (immunotoxin) destroyed the noradrenergic innervation of the amygdala and the parent noradrenergic neurons in the locus coeruleus. The reduction in tail blood flow elicited by standardized alerting stimuli was substantially reduced in immunotoxin-treated rats. Thus, inhibiting the release of noradrenaline within the amygdala reduces activation of the sympathetic outflow to the vascular beds elicited by salient events. PMID:27101292

  2. Innervation of the human middle meningeal artery

    DEFF Research Database (Denmark)

    Edvinsson, L; Gulbenkian, S; Barroso, C P;

    1998-01-01

    The majority of nerve fibers in the middle meningeal artery and branching arterioles are sympathetic, storing norepinephrine and neuropeptide Y (NPY). A sparse supply of fibers contain acetylcholinesterase activity and immunoreactivity toward vasoactive intestinal peptide (VIP), peptidine histidine...... methionine (PHM), and calcitonin gene-related peptide (CGRP). Only few substance P and neuropeptide K immunoreactive fibers are noted. Electronmicroscopy shows axons and terminals at the adventitial medial border of the human middle meningeal artery, with a fairly large distance to the smooth muscle cells...

  3. Stunned myocardium and sympathetic denervation

    International Nuclear Information System (INIS)

    To evaluate the clinical relationship between stunned myocardium and the sympathetic nervous system, 6 patients who had stunned myocardium accompanied by T wave inversion underwent simultaneous 123I-metaiodobenzyl guanidine (MIGB) scintigraphy and thallium scintigraphy. All patients showed abnormal filling defects on the MIBG scintigrams in the areas with stunned myocardium, but the thallium scintigrams were almost normal. The extent of the defects in these 6 patients was determined on the MIBG scintigrams using a Bull's eye display. The defects were found to be larger than those in 4 patients with angina pectoris, and those in 4 patients who had previously shown T wave inversion but had a normal electrocardiogram at the time of examination. Thus, it is suggested that sympathetic denervation is one of the mechanisms causing stunned myocardium. (author)

  4. Central and cerebrovascular effects of leg crossing in humans with sympathetic failure

    DEFF Research Database (Denmark)

    Harms, Mark P M; Wieling, Wouter; Colier, Willy N J M; Lenders, Jacques W M; Secher, Niels H; van Lieshout, Johannes J

    2010-01-01

    Leg crossing increases arterial pressure and combats symptomatic orthostatic hypotension in patients with sympathetic failure. This study compared the central and cerebrovascular effects of leg crossing in patients with sympathetic failure and healthy controls. We addressed the relationship between...... MCA Vmean (middle cerebral artery blood velocity; using transcranial Doppler ultrasound), frontal lobe oxygenation [O2Hb (oxyhaemoglobin)] and MAP (mean arterial pressure), CO (cardiac output) and TPR (total peripheral resistance) in six patients (aged 37-67 years; three women) and age- and gender...

  5. Innervation of the sheep pineal gland by nonsympathetic nerve fibers containing NADPH-diaphorase activity

    DEFF Research Database (Denmark)

    López-Figueroa, Manuel O.; Ravault, Jean-Paul; Cozzi, Bruno;

    1997-01-01

    Neuroanatomy, NADPH-diaphorase, nitric oxide, innervation, superior cervical ganglionectomy, neuropeptide Y.......Neuroanatomy, NADPH-diaphorase, nitric oxide, innervation, superior cervical ganglionectomy, neuropeptide Y....

  6. Afferent innervation of the utricular macula in pigeons

    Science.gov (United States)

    Si, Xiaohong; Zakir, Mridha Md; Dickman, J. David

    2003-01-01

    Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were

  7. Sympathetic vasoconstriction takes an unexpected pannexin detour

    DEFF Research Database (Denmark)

    Nielsen, Morten Schak

    2015-01-01

    Sympathetic vasoconstriction plays an important role in the control of blood pressure and the distribution of blood flow. In this issue of Science Signaling, Billaud et al. show that sympathetic vasoconstriction occurs through a complex scheme involving the activation of large-pore pannexin 1...... abrogates sympathetic vasoconstriction in skeletal muscle. Because pannexin 1 channels are inhibited by nitric oxide, they may function as a switch to turn off adrenergic signaling in skeletal muscle during exercise....

  8. Afferent innervation patterns of the saccule in pigeons

    Science.gov (United States)

    Zakir, M.; Huss, D.; Dickman, J. D.

    2003-01-01

    The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.

  9. Relationship between quantitative cardiac neuronal imaging with {sup 123}I-meta-iodobenzylguanidine and hospitalization in patients with heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Matthew W.; Sood, Nitesh [University of Connecticut, School of Medicine Department of Medicine, Farmington, CT (United States); Hartford Hospital, Division of Cardiology, Hartford, CT (United States); Ahlberg, Alan W. [Hartford Hospital, Division of Cardiology, Hartford, CT (United States); Jacobson, Arnold F. [GE Healthcare, Princeton, NJ (United States); Heller, Gary V. [The Intersocietal Accreditation Commission, Ellicott City, MD (United States); Lundbye, Justin B. [University of Connecticut, School of Medicine Department of Medicine, Farmington, CT (United States); The Hospital of Central Connecticut, Division of Cardiology, New Britain, CT (United States)

    2014-09-15

    Hospitalization in patients with systolic heart failure is associated with morbidity, mortality, and cost. Myocardial sympathetic innervation, imaged by {sup 123}I-meta-iodobenzylguanidine ({sup 123}I-mIBG), has been associated with cardiac events in a recent multicenter study. The present analysis explored the relationship between {sup 123}I-mIBG imaging findings and hospitalization. Source documents from the ADMIRE-HF trial were reviewed to identify hospitalization events in patients with systolic heart failure following cardiac neuronal imaging using {sup 123}I-mIBG. Time to hospitalization was analyzed with the Kaplan-Meier method and compared to the mIBG heart-to-mediastinum (H/M) ratio using multiple-failure Cox regression. During 1.4 years of median follow-up, 362 end-point hospitalizations occurred in 207 of 961 subjects, 79 % of whom had H/M ratio <1.6. Among subjects hospitalized for any cause, 88 % had H/M ratio <1.6 and subjects with H/M ratio <1.6 experienced hospitalization earlier than subjects with higher H/M ratios (log-rank p = 0.003). After adjusting for elevated brain natriuretic peptide (BNP) and time since heart failure diagnosis, a low mIBG H/M ratio was associated with cardiac-related hospitalization (HR 1.48, 95 % CI 1.05 - 2.0; p = 0.02). The mIBG H/M ratio may risk-stratify patients with heart failure for cardiac-related hospitalization, especially when used in conjunction with BNP. Further studies are warranted to examine these relationships. (orig.)

  10. Relationship between quantitative cardiac neuronal imaging with 123I-meta-iodobenzylguanidine and hospitalization in patients with heart failure

    International Nuclear Information System (INIS)

    Hospitalization in patients with systolic heart failure is associated with morbidity, mortality, and cost. Myocardial sympathetic innervation, imaged by 123I-meta-iodobenzylguanidine (123I-mIBG), has been associated with cardiac events in a recent multicenter study. The present analysis explored the relationship between 123I-mIBG imaging findings and hospitalization. Source documents from the ADMIRE-HF trial were reviewed to identify hospitalization events in patients with systolic heart failure following cardiac neuronal imaging using 123I-mIBG. Time to hospitalization was analyzed with the Kaplan-Meier method and compared to the mIBG heart-to-mediastinum (H/M) ratio using multiple-failure Cox regression. During 1.4 years of median follow-up, 362 end-point hospitalizations occurred in 207 of 961 subjects, 79 % of whom had H/M ratio <1.6. Among subjects hospitalized for any cause, 88 % had H/M ratio <1.6 and subjects with H/M ratio <1.6 experienced hospitalization earlier than subjects with higher H/M ratios (log-rank p = 0.003). After adjusting for elevated brain natriuretic peptide (BNP) and time since heart failure diagnosis, a low mIBG H/M ratio was associated with cardiac-related hospitalization (HR 1.48, 95 % CI 1.05 - 2.0; p = 0.02). The mIBG H/M ratio may risk-stratify patients with heart failure for cardiac-related hospitalization, especially when used in conjunction with BNP. Further studies are warranted to examine these relationships. (orig.)

  11. Innervation of the thick ascending limb of Henle

    Energy Technology Data Exchange (ETDEWEB)

    Barajas, L.; Powers, K.V.

    1988-08-01

    The overlap of accumulations of autoradiographic grains (AAGs) on profiles of the thick ascending limb of Henle (TALH) was measured in autoradiograms of sections from rat kidneys with monoaminergic nerves labeled by means of tritiated norepinephrine. The amount of AAG overlap was used as an indirect means of quantifying innervation along the TALHs of superficial, mid-cortical, and juxtamedullary nephrons. The density of innervation along the TALH showed nephron heterogeneity; the juxtamedullary nephrons with a high pre- and postjuxtaglomerular apparatus (JGA) TALH density of innervation and the upper and midcortical nephrons with high TALH innervation densities at the level of the JGA. The pre-JGA TALH of the juxtamedullary nephrons had a significantly higher (P less than 0.001) density of innervation than the midcortical or superficial nephrons. The TALHs of juxtamedullary nephrons were found to have substantially more innervation than the TALHs of the other nephrons. For all three populations of nephrons, the pre-JGA TALH had the greatest amount of innervation. Neural regulation of TALH function would occur mainly along the pre-JGA and level of the JGA TALH. This regulation would increase TALH NaCl reabsorption (decrease luminal NaCl concentration) and therefore influence 1) the urinary concentrating mechanism, and 2) renin secretion via the macula densa mechanism. The innervation of the TALH was predominantly associated with the vasculature of the TALH's own nephron. However, innervation associated with medullary ray capillary beds from deeper nephrons was observed on pre-JGA TALHs from superficial and midcortical nephrons.

  12. Effects of nitric oxide synthase inhibition on sympathetically-mediated tachycardia

    Science.gov (United States)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The aim of the present study was to determine whether inhibition of nitric oxide (NO) synthesis directly alters the tachycardia produced by sympathetically-derived norepinephrine. The NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME; 50 micromol/kg, i.v.), produced a marked rise in mean arterial blood pressure. This pressor response was associated with a fall in heart rate which involved the withdrawal of cardiac sympathetic nerve activity. The NO-donor, sodium nitroprusside (5 microg/kg, i.v.), produced a pronounced fall in mean arterial blood pressure but only a minor increase in heart rate. The beta-adrenoceptor agonist, isoproterenol (0.5 micromol/kg, i.v.), and the membrane-permeable cAMP analogue, 8-(4-chlorophenylthiol)-cAMP (10 micromol/kg, i.v.), produced falls in mean arterial blood pressure and pronounced increases in heart rate. The indirectly acting sympathomimetic agent, tyramine (0.5 mg/kg, i.v.), produced a pressor response and a tachycardia. The effects of sodium nitroprusside, tyramine, isoproterenol and 8-(4-chlorophenylthiol)-cAMP on mean arterial blood pressure were not markedly affected by L-NAME. However, the tachycardia produced by these agents was considerably exaggerated in the presence of this NO synthesis inhibitor. These findings suggest that L-NAME potentiates the tachycardia produced by sympathetically-derived norepinephrine. The increased responsiveness to norepinephrine may involve (i) a rapid up-regulation of cardiac beta1-adrenoceptors and cAMP signaling in cardiac pacemaker cells due to the loss of the inhibitory influence of cardiac NO, and (ii) the up-regulation of beta1-adrenoceptor-mediated signal transduction processes in response to the L-NAME-induced withdrawal of cardiac sympathetic nerve activity.

  13. Morphology and neurochemistry of rabbit iris innervation.

    Science.gov (United States)

    He, Jiucheng; Bazan, Haydee E P

    2015-06-01

    The aim of this study was to map the entire nerve architecture and sensory neuropeptide content of the rabbit iris. Irises from New Zealand rabbits were stained with antibodies against neuronal-class βIII-tubulin, calcitonin gene-related peptide (CGRP) and substance P (SP), and whole-mount images were acquired to build a two-dimensional view of the iridal nerve architecture. After taking images in time-lapse mode, we observed thick nerves running in the iris stroma close to the anterior epithelia, forming four to five stromal nerve rings from the iris periphery to the pupillary margin and sub-branches that connected with each other, constituting the stromal nerve plexus. In the anterior side, fine divisions derivated from the stromal nerves, forming a nerve network-like structure to innervate the superficial anterior border layer, with the pupillary margin having the densest innervation. In the posterior side, the nerve bundles ran along with the pupil dilator muscle in a radial pattern. The morphology of the iris nerves on both sides changed with pupil size. To obtain the relative content of the neuropeptides in the iris, the specimens were double stained with βIII-tubulin and CGRP or SP antibodies. Relative nerve fiber densities for each fiber population were assessed quantitatively by computer-assisted analysis. On the anterior side, CGRP-positive nerve fibers constituted about 61%, while SP-positive nerves constitute about 30.5%, of the total nerve content, which was expressed as βIII tubulin-positive fibers. In addition, in the anterior stroma of the collarette region, there were non-neuronal cells that were positive for SP. On the posterior side, CGRP-positive nerve fibers were about 69% of total nerve content, while SP constituted only up to 20%. Similarly, in the trigeminal ganglia (TG), the number of CGRP-positive neurons significantly outnumbered those that were positive for SP. Also, all the SP-positive neurons were labeled with CGRP. This is the

  14. Pharmacological characterization of ergotamine-induced inhibition of the cardioaccelerator sympathetic outflow in pithed rats.

    Science.gov (United States)

    Cobos-Puc, Luis E; Villalón, Carlos M; Sánchez-López, Araceli; Ramírez-Rosas, Martha B; Lozano-Cuenca, Jair; Pertz, Heinz H; Görnemann, Tilo; Centurión, David

    2009-02-01

    Ergotamine inhibits the sympathetically-induced tachycardia in pithed rats. The present study identified the pharmacological profile of this response. Male Wistar rats were pithed and prepared to stimulate the preganglionic (C(7)-T(1)) cardiac sympathetic outflow. Intravenous continuous infusions of ergotamine dose-dependently inhibited the tachycardic responses to sympathetic stimulation, but not those to exogenous noradrenaline. Using several antagonists, the sympatho-inhibition to ergotamine was: (1) partially blocked by rauwolscine (alpha(2)), haloperidol (D(1/2)-like) or rauwolscine plus GR127935 (5-HT(1B/1D)); (2) abolished by rauwolscine plus haloperidol; and (3) unaffected by either saline or GR127935. In animals systematically pretreated with haloperidol, this sympatho-inhibition was: (1) unaffected by BRL44408 (alpha(2A)), partially antagonized by MK912 (alpha(2C)); and (3) abolished by BRL44408 plus MK912. These antagonists failed to modify the sympathetically induced tachycardic responses per se. Thus, the cardiac sympatho-inhibition by ergotamine may be mainly mediated by alpha(2A)/alpha(2C)-adrenoceptors, D(2)-like receptors and, to a lesser extent, by 5-HT(1B/1D) receptors. PMID:18779954

  15. Mechanisms of sympathetic regulation in orthostatic intolerance

    OpenAIRE

    Stewart, Julian M.

    2012-01-01

    Sympathetic circulatory control is key to the rapid cardiovascular adjustments that occur within seconds of standing upright (orthostasis) and which are required for bipedal stance. Indeed, patients with ineffective sympathetic adrenergic vasoconstriction rapidly develop orthostatic hypotension, prohibiting effective upright activities. One speaks of orthostatic intolerance (OI) when signs, such as hypotension, and symptoms, such as lightheadedness, occur when upright and are relieved by recu...

  16. A histological study of the innervation of developing mouse teeth.

    OpenAIRE

    Mohamed, S. S.; Atkinson, M E

    1983-01-01

    The innervation of developing mouse teeth between initial formation and crown formation was investigated using silver-stained serial sections. The developing innervation correlated with the stage of development of individual teeth rather than the chronological age of the mice. Nerves approached the developing dental papilla during the bud stage and formed a basal plexus below the dental papilla in the early cap stage. Nerve fibres from this plexus spread into the dental follicle as it began t...

  17. Development of the peptidergic innervation of human heart.

    OpenAIRE

    Gordon, L.; Polak, J.M.; Moscoso, G J; Smith, A.; Kuhn, D. M.; Wharton, J

    1993-01-01

    The aim of the present investigation was to study the developing peptidergic innervation of the human fetal heart of 7-24 wk gestational age. An immunohistochemical approach was adopted and the total innervation visualised with antisera to general neuronal and Schwann cell markers, while the onset and development of specific neuropeptide-containing subpopulations were investigated using antisera to neuropeptide Y (NPY), somatostatin, vasoactive intestinal polypeptide (VIP), calcitonin gene-re...

  18. Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia

    Directory of Open Access Journals (Sweden)

    Suuronen Erik J

    2011-08-01

    Full Text Available Abstract Background Diabetes mellitus is strongly associated with cardiovascular dysfunction, derived in part from impairment of sympathetic nervous system signaling. Glucose, insulin, and non-esterified fatty acids are potent stimulants of sympathetic activity and norepinephrine (NE release. We hypothesized that sustained hyperglycemia in the high fat diet-fed streptozotocin (STZ rat model of sustained hyperglycemia with insulin resistance would exhibit progressive sympathetic nervous dysfunction in parallel with deteriorating myocardial systolic and/or diastolic function. Methods Cardiac sympathetic nervous integrity was investigated in vivo via biodistribution of the positron emission tomography radiotracer and NE analogue [11C]meta-hydroxyephedrine ([11C]HED. Cardiac systolic and diastolic function was evaluated by echocardiography. Plasma and cardiac NE levels and NE reuptake transporter (NET expression were evaluated as correlative measurements. Results The animal model displays insulin resistance, sustained hyperglycemia, and progressive hypoinsulinemia. After 8 weeks of persistent hyperglycemia, there was a significant 13-25% reduction in [11C]HED retention in myocardium of STZ-treated hyperglycemic but not euglycemic rats as compared to controls. There was a parallel 17% reduction in immunoblot density for NE reuptake transporter, a 1.2 fold and 2.5 fold elevation of cardiac and plasma NE respectively, and no change in sympathetic nerve density. No change in ejection fraction or fractional area change was detected by echocardiography. Reduced heart rate, prolonged mitral valve deceleration time, and elevated transmitral early to atrial flow velocity ratio measured by pulse-wave Doppler in hyperglycemic rats suggest diastolic impairment of the left ventricle. Conclusions Taken together, these data suggest that sustained hyperglycemia is associated with elevated myocardial NE content and dysregulation of sympathetic nervous system

  19. Hypotensive effect of taurine. Possible involvement of the sympathetic nervous system and endogenous opiates.

    OpenAIRE

    Fujita, T.; Sato, Y.

    1988-01-01

    We studied the role of diminished sympathetic nervous system (SNS) activity and endogenous opiate activation in the hypotensive action of taurine, a sulfur amino acid, in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Supplementation of taurine could prevent the development of DOCA-salt hypertension in rats, but failed to change blood pressure in vehicle-treated control rats. Cardiac NE turnover, which was determined from the rate of decline of tissue NE concentration after the ad...

  20. Autonomic markers of emotional processing: skin sympathetic nerve activity in humans during exposure to emotionally-charged images

    Directory of Open Access Journals (Sweden)

    RachaelBrown

    2012-10-01

    Full Text Available The sympathetic innervation of the skin primarily subserves thermoregulation, but the system has also been commandeered as a means of expressing emotion. While it is known that the level of skin sympathetic nerve activity (SSNA is affected by anxiety, the majority of emotional studies have utilized the galvanic skin response as a means of inferring increases in SSNA. The purpose of the present study was to characterize the changes in SSNA when showing subjects neutral or emotionally-charged images from the International Affective Picture System. Skin sympathetic nerve activity was recorded via tungsten microelectrodes inserted into cutaneous fascicles of the common peroneal nerve in ten subjects. Neutral images, positively-charged images (erotica or negatively-charged images (mutilation were presented in blocks of fifteen images of a specific type, each block lasting two minutes. Images of erotica or mutilation were presented in a quasi-random fashion, each block following a block of neutral images. Both images of erotica or images of mutilation caused significant increases in SSNA, but the increases in SSNA were greater for mutilation. The increases in SSNA were often coupled with sweat release and cutaneous vasoconstriction, however, these markers were not always consistent with the SSNA increases. We conclude that SSNA, comprising cutaneous vasoconstrictor and sudomotor activity, increases with both positively-charged and negatively-charged emotional images. Measurement of SSNA provides a more comprehensive assessment of sympathetic outflow to the skin than does the use of sweat release alone as a marker of emotional processing.

  1. Immunomodulation stimulates the innervation of engineered tooth organ.

    Directory of Open Access Journals (Sweden)

    Tunay Kökten

    Full Text Available The sensory innervation of the dental mesenchyme is essential for tooth function and protection. Sensory innervation of the dental pulp is mediated by axons originating from the trigeminal ganglia and is strictly regulated in time. Teeth can develop from cultured re-associations between dissociated dental epithelial and mesenchymal cells from Embryonic Day 14 mouse molars, after implantation under the skin of adult ICR mice. In these conditions however, the innervation of the dental mesenchyme did not occur spontaneously. In order to go further with this question, complementary experimental approaches were designed. Cultured cell re-associations were implanted together with trigeminal ganglia for one or two weeks. Although axonal growth was regularly observed extending from the trigeminal ganglia to all around the forming teeth, the presence of axons in the dental mesenchyme was detected in less than 2.5% of samples after two weeks, demonstrating a specific impairment of their entering the dental mesenchyme. In clinical context, immunosuppressive therapy using cyclosporin A was found to accelerate the innervation of transplanted tissues. Indeed, when cultured cell re-associations and trigeminal ganglia were co-implanted in cyclosporin A-treated ICR mice, nerve fibers were detected in the dental pulp, even reaching odontoblasts after one week. However, cyclosporin A shows multiple effects, including direct ones on nerve growth. To test whether there may be a direct functional relationship between immunomodulation and innervation, cell re-associations and trigeminal ganglia were co-implanted in immunocompromised Nude mice. In these conditions as well, the innervation of the dental mesenchyme was observed already after one week of implantation, but axons reached the odontoblast layer after two weeks only. This study demonstrated that immunodepression per se does stimulate the innervation of the dental mesenchyme.

  2. Evaluation of cardiac adrenergic neuronal damage in rats with doxorubicin-induced cardiomyopathy using iodine-131 MIBG autoradiography and PGP 9.5 immunohistochemistry

    International Nuclear Information System (INIS)

    Doxorubicin is one of the most useful anticancer agents, but its repeated administration can induce irreversible cardiomyopathy as a major complication. The purpose of this study was to investigate doxorubicin toxicity on cardiac sympathetic neurons using iodine-131-metaiodobenzylguanidine (MIBG) and protein gene product (PGP) 9.5 immunohistochemistry, which is a marker of cardiac innervation. Wistar rats were treated with doxorubicin (2 mg/kg, i.v.) once a week for 4 (n=5), 6 (n=6) or 8 (n=7) weeks consecutively. Left ventricular ejection fraction (LVEF), calculated by M-mode echocardiography, was used as an indicator of cardiac function. Plasma noradrenaline (NA) concentration was measured by high-performance liquid chromatography (HPLC). 131I-MIBG uptake of the left ventricular wall (24 ROIs) was measured by autoradiography. 131I-MIBG uptake pattern was compared with histopathological results, the neuronal population on PGP 9.5 immunohistochemistry and the degree of myocyte damage assessed using a visual scoring system on haematoxylin and eosin and Masson's trichrome staining. LVEF was significantly decreased in the 8-week group (P131I-MIBG uptake ratio of subepicardium to subendocardium were significantly increased (P<0.05) in the 8-week group as compared with the control group. It may be concluded that radioiodinated MIBG is a reliable marker for the detection of cardiac adrenergic neuronal damage in doxorubicin-induced cardiomyopathy; it detects such damage earlier than do other clinical parameters and in this study showed a good correlation with the reduction in the neuronal population on PGP 9.5 stain. The subendocardial layer appeared to be more vulnerable to doxorubicin than the subepicardium. (orig.)

  3. Cardiac Autonomic Nerve Stimulation in the Treatment of Heart Failure

    OpenAIRE

    Kobayashi, Mariko; Massiello, Alex; Karimov, Jamshid H.; Van Wagoner, David R.; Fukamachi, Kiyotaka

    2013-01-01

    Research on the therapeutic modulation of cardiac autonomic tone by electrical stimulation has yielded encouraging early clinical results. Vagus nerve stimulation has reduced the rates of morbidity and sudden death from heart failure, but therapeutic vagus nerve stimulation is limited by side effects of hypotension and bradycardia. Sympathetic nerve stimulation that has been implemented in the experiment may exacerbate the sympathetic-dominated autonomic imbalance. In contrast, concurrent sti...

  4. Sympathetic vasoconstrictor nerve function in alcoholic neuropathy

    DEFF Research Database (Denmark)

    Jensen, K; Andersen, K; Smith, T;

    1984-01-01

    The peripheral sympathetic vasomotor nerve function was investigated in 18 male chronic alcoholics admitted for intellectual impairment or polyneuropathy. By means of the local 133Xenon washout technique, the sympathetic veno-arteriolar axon-reflex was studied. This normally is responsible for a 50...... (18% and 48% decrease respectively). However, in three patients with moderate neuropathy, and in one patient with no signs of neuropathy, this veno-arteriolar reflex was absent, indicating dysfunction of the peripheral sympathetic adrenergic nerve fibres. The three patients also showed a lesser degree...... alcohol comprise not only the peripheral sensory and motor nerve fibres, but also the thin pseudomotor and vasomotor nerves....

  5. Effect of nitric oxide on rostral ventrolateral medulla modulating cardiac sympathetic afferent reflex in rats with chronic heart failure%延髓头端腹外侧区一氧化氮对慢性心力衰竭大鼠心交感传入反射的影响

    Institute of Scientific and Technical Information of China (English)

    高兴亚; 郭瑞; 王玮; 张枫; 朱国庆

    2005-01-01

    大变化速率明显降低,左室舒张末压明显增加.②与假手术大鼠相比,慢性心力衰竭大鼠的心交感传入反射显著增强.③延髓头端腹外侧区微量注射MeTC(80 nmol)仅增强假手术大鼠的心交感传入反射,对慢性心力衰竭大鼠的心交感传入反射无显著影响.④延髓头端腹外侧区微量注射SNAP(50 nmol)同时抑制假手术和慢性心力衰竭大鼠的心交感传入反射.⑤心室前壁表面用利多卡因预处理可完全抑制心室前壁表面应用缓激肽所引起的肾交感神经活动增加.结论:延髓头端腹外侧区的一氧化氮抑制正常大鼠和慢性心力衰竭大鼠心室表面应用缓激肽引起的心交感传入反射,慢性心力衰竭大鼠心交感传入反射增强与延髓头端腹外侧区中内源性一氧化氮减少有关.%BACKGROUND: Nitric oxide in the central nervous system is involved in controlling the sympathetic outflow. The authors' recent data show that the reduction of nitric oxide in the rostral ventrolateral medulla (RVLM)enhanced the cardiac sympathetic afferent reflex (CSAR) evoked by stimulating the cardiac sympathetic afferent nerves in rats with chronic heart failure (CHF).OBJECTIVE: To further investigate the effect of nitric oxide in the RVLM on modulating the CSAR evoked by epicardial chemical stimulation in rats with CHF.DESIGN: Randomized controlled experiment.SETTING: Department of Physiology, Nanjing Medical University, and Department of Cellular and Integrative Physiology, University of Nebraska College of Medicine.MATERIALS: This study was carried out in the Department of Physiology, Nanjing Medical University from July 2003 to May 2004. A total of 52male Sprague-Dawley rats weighing 360-420 g were used, and were randomly divided into chronic heart failure group and control group with 23 in each group.METHODS: The rats were carried out either sham surgery or the left coronary artery ligation. Six to eight weeks later, all rats were

  6. Neuroaxonal dystrophy in aging human sympathetic ganglia.

    OpenAIRE

    Schmidt, R.E.; Chae, H. Y.; Parvin, C. A.; Roth, K A

    1990-01-01

    Autonomic dysfunction is an increasingly recognized problem in aging animals and man. The pathologic changes that produce autonomic dysfunction in human aging are largely unknown; however, in experimental animal models specific pathologic changes have been found in selected sympathetic ganglia. To address whether similar neuropathologic changes occur in aging humans, the authors have examined paravertebral and prevertebral sympathetic ganglia from a series of 56 adult autopsied nondiabetic pa...

  7. The innervation of the zebrafish pharyngeal jaws and teeth.

    Science.gov (United States)

    Crucke, Jeroen; Van de Kelft, Annelore; Huysseune, Ann

    2015-07-01

    Zebrafish (Danio rerio) teeth are increasingly used as a model to study odontogenesis in non-mammalians. Using serial semi-thin section histology and immunohistochemistry, the nerves innervating the pharyngeal jaws and teeth have been identified. The last pair of branchial arches, which are non-gill bearing but which carry the teeth, are innervated by an internal branch of a post-trematic ramus of the vagal nerve. Another, external, branch is probably responsible for the motor innervation of the branchiomeric musculature. Nerve fibres appear in the pulp cavity of the teeth only late during cytodifferentiation, and are therefore likely not involved in early steps of tooth formation. The precise role of the nervous system during continuous tooth replacement remains to be determined. Nonetheless, this study provides the necessary morphological background information to address this question. PMID:26018453

  8. Cortical cholinergic innervation: Distribution and source in monkeys

    International Nuclear Information System (INIS)

    In Alzheimer's disease (AD) and its late-life variant, senile dementia of the Alzheimer's type (SDAT), the predominant neurochemical abnormalities are marked decrements in the activities of ChAT and AChE, the high affinity uptake of tritium-choline, and synthesis of acetylcholine. Two studies are undertaken to delineate more clearly the variability of cortical cholinergic innervation and the contribution of the Ch system, particularly the Ch4, to this cholinergic innervation. In the first study, ChAT activity was assessed in multiple samples of neocortex from seven normal cynomolgus monkeys. In the second study, the nbM was lesioned in order to determine the contribution of the Ch system to cortical cholinergic innervation

  9. The innervation of canine hip joint capsule: an anatomic study.

    Science.gov (United States)

    Huang, C H; Hou, S M; Yeh, L S

    2013-12-01

    To clarify the contributions of the nerves supplying the canine hip joint capsule for clinical application, cadaver study of six healthy mongrel dogs was performed. The pelvises and hindlimbs of cadavers were dissected and fixed in formaldehyde. Innervation of the joint capsule was investigated with the aid of an operative microscope. As a result, the canine hip joint capsule receives multiple innervations from articular branches of four nerves. They are articular nerve fibres of femoral, obturator, cranial gluteal and sciatic nerves from the cranioventral, caudoventral, craniolateral and dorsolateral directions of the joint, respectively. No branch originating from the caudal gluteal nerve was observed innervating the hip joint capsule. Our data provides useful information for research on the canine hip joint, including pain analysis with hip disorders and surgical nerve blockade to relieve pain. PMID:23410229

  10. Development and validation of a direct-comparison method for cardiac 123I-metaiodobenzylguanidine washout rates derived from late 3-hour and 4-hour imaging

    International Nuclear Information System (INIS)

    The washout rate (WR) has been used in 123I-metaiodobenzylguanidine (MIBG) imaging to evaluate cardiac sympathetic innervation. However, WR varies depending on the time between the early and late MIBG scans. Late scans are performed at either 3 or 4 hours after injection of MIBG. The aim of this study was to directly compare the WR at 3 hours (WR3h) with the WR at 4 hours (WR4h). We hypothesized that the cardiac count would reduce linearly between the 3-hour and 4-hour scans. A linear regression model for cardiac counts at two time-points was generated. We enrolled a total of 96 patients who underwent planar 123I-MIBG scintigraphy early (15 min) and during the late phase at both 3 and 4 hours. Patients were randomly divided into two groups: a model-creation group (group 1) and a clinical validation group (group 2). Cardiac counts at 15 minutes (countearly), 3 hours (count3h) and 4 hours (count4h) were measured. Cardiac count4h was mathematically estimated using the linear regression model from countearly and count3h. In group 1, the actual cardiac count4h/countearly was highly significantly correlated with count3h/countearly (r = 0.979). In group 2, the average estimated count4h was 92.8 ± 31.9, and there was no significant difference between this value and the actual count4h (91.9 ± 31.9). Bland-Altman analysis revealed a small bias of -0.9 with 95 % limits of agreement of -6.2 and +4.3. WR4h calculated using the estimated cardiac count4h was comparable to the actual WR4h (24.3 ± 9.6 % vs. 25.1 ± 9.7 %, p = ns). Bland-Altman analysis and the intraclass correlation coefficient showed that there was excellent agreement between the estimated and actual WR4h. The linear regression model that we used accurately estimated cardiac count4h using countearly and count3h. Moreover, WR4h that was mathematically calculated using the estimated count4h was comparable to the actual WR4h. (orig.)

  11. Development and validation of a direct-comparison method for cardiac {sup 123}I-metaiodobenzylguanidine washout rates derived from late 3-hour and 4-hour imaging

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Koichi; Hashimoto, Mitsumasa [Kanazawa Medical University, Department of Physics, Kahoku, Ishikawa (Japan); Nakajima, Kenichi; Matsuo, Shinro; Taki, Junichi; Kinuya, Seigo [Kanazawa University Hospital, Department of Nuclear Medicine, Kanazawa, Ishikawa (Japan); Sugino, Shuichi [Okayama Kyokuto Hospital, Department of Radiology, Okayama, Okayama (Japan); Kirihara, Yumiko [FUJIFILM RI Pharma Co., Ltd., Chuo-Ku, Tokyo (Japan)

    2016-02-15

    The washout rate (WR) has been used in {sup 123}I-metaiodobenzylguanidine (MIBG) imaging to evaluate cardiac sympathetic innervation. However, WR varies depending on the time between the early and late MIBG scans. Late scans are performed at either 3 or 4 hours after injection of MIBG. The aim of this study was to directly compare the WR at 3 hours (WR{sub 3h}) with the WR at 4 hours (WR{sub 4h}). We hypothesized that the cardiac count would reduce linearly between the 3-hour and 4-hour scans. A linear regression model for cardiac counts at two time-points was generated. We enrolled a total of 96 patients who underwent planar {sup 123}I-MIBG scintigraphy early (15 min) and during the late phase at both 3 and 4 hours. Patients were randomly divided into two groups: a model-creation group (group 1) and a clinical validation group (group 2). Cardiac counts at 15 minutes (count{sub early}), 3 hours (count{sub 3h}) and 4 hours (count{sub 4h}) were measured. Cardiac count{sub 4h} was mathematically estimated using the linear regression model from count{sub early} and count{sub 3h}. In group 1, the actual cardiac count{sub 4h}/count{sub early} was highly significantly correlated with count{sub 3h}/count{sub early} (r = 0.979). In group 2, the average estimated count{sub 4h} was 92.8 ± 31.9, and there was no significant difference between this value and the actual count{sub 4h} (91.9 ± 31.9). Bland-Altman analysis revealed a small bias of -0.9 with 95 % limits of agreement of -6.2 and +4.3. WR{sub 4h} calculated using the estimated cardiac count{sub 4h} was comparable to the actual WR{sub 4h} (24.3 ± 9.6 % vs. 25.1 ± 9.7 %, p = ns). Bland-Altman analysis and the intraclass correlation coefficient showed that there was excellent agreement between the estimated and actual WR{sub 4h}. The linear regression model that we used accurately estimated cardiac count{sub 4h} using count{sub early} and count{sub 3h}. Moreover, WR{sub 4h} that was mathematically calculated using

  12. The Involvement of Parasympathetic and Sympathetic Nerve in the Inflammatory Reflex.

    Science.gov (United States)

    Pereira, Mariana Rodrigues; Leite, Paulo Emílio Corrêa

    2016-09-01

    Production of inflammatory cytokines plays important roles in the response against tissue injury and in host defense. Alterations in the production of inflammatory cytokines may cause local or systemic inflammatory imbalance, culminating in organ failure or lethal systemic inflammation. The cholinergic anti-inflammatory pathway has been implicated as an important mechanism to regulate inflammation of targeted tissue. In this review, we discuss important advances, conflicting and controversial findings regarding the involvement of parasympathetic vagus and sympathetic splenic nerve through acetylcholine (ACh) release and α7 nicotinic acetylcholine receptor (nAChRα7) activation in the spleen. In addition, we address the involvement of cholinergic control of inflammation in other organs innerved by the vagus nerve such as gut, liver, kidney and lung, and independent of parasympathetic innervations such as skin and skeletal muscle. Then, other structures and mechanisms independent of vagus or splenic nerve may be involved in this process, such as local cells and motor neurons producing ACh. Altogether, the convergence of these findings may contribute to current anti-inflammatory strategies involving selective drug-targeting and electrical nerve stimulation. J. Cell. Physiol. 231: 1862-1869, 2016. © 2016 Wiley Periodicals, Inc. PMID:26754950

  13. Connexin 43 Mediates White Adipose Tissue Beiging by Facilitating the Propagation of Sympathetic Neuronal Signals.

    Science.gov (United States)

    Zhu, Yi; Gao, Yong; Tao, Caroline; Shao, Mengle; Zhao, Shangang; Huang, Wei; Yao, Ting; Johnson, Joshua A; Liu, Tiemin; Cypess, Aaron M; Gupta, Olga; Holland, William L; Gupta, Rana K; Spray, David C; Tanowitz, Herbert B; Cao, Lei; Lynes, Matthew D; Tseng, Yu-Hua; Elmquist, Joel K; Williams, Kevin W; Lin, Hua V; Scherer, Philipp E

    2016-09-13

    "Beige" adipocytes reside in white adipose tissue (WAT) and dissipate energy as heat. Several studies have shown that cold temperature can activate pro-opiomelanocortin-expressing (POMC) neurons and increase sympathetic neuronal tone to regulate WAT beiging. WAT, however, is traditionally known to be sparsely innervated. Details regarding the neuronal innervation and, more importantly, the propagation of the signal within the population of "beige" adipocytes are sparse. Here, we demonstrate that beige adipocytes display an increased cell-to-cell coupling via connexin 43 (Cx43) gap junction channels. Blocking of Cx43 channels by 18α-glycyrrhetinic acid decreases POMC-activation-induced adipose tissue beiging. Adipocyte-specific deletion of Cx43 reduces WAT beiging to a level similar to that observed in denervated fat pads. In contrast, overexpression of Cx43 is sufficient to promote beiging even with mild cold stimuli. These data reveal the importance of cell-to-cell communication, effective in cold-induced WAT beiging, for the propagation of limited neuronal inputs in adipose tissue. PMID:27626200

  14. Innervation of the hard palate of the rat

    NARCIS (Netherlands)

    Liem, Swie Bing

    1989-01-01

    This study is undertaken to gain more insight into the pattern of innervation of the hard palate of the rat and into the morphology of the sensory structures found there. Since the main research project of the Department of Neurobiology and Oral Physiology is dedicated to the formulation of a model

  15. Roles of innervation in developing and regenerating orofacial tissues.

    Science.gov (United States)

    Pagella, Pierfrancesco; Jiménez-Rojo, Lucia; Mitsiadis, Thimios A

    2014-06-01

    The head is innervated by 12 cranial nerves (I-XII) that regulate its sensory and motor functions. Cranial nerves are composed of sensory, motor, or mixed neuronal populations. Sensory neurons perceive generally somatic sensations such as pressure, pain, and temperature. These neurons are also involved in smell, vision, taste, and hearing. Motor neurons ensure the motility of all muscles and glands. Innervation plays an essential role in the development of the various orofacial structures during embryogenesis. Hypoplastic cranial nerves often lead to abnormal development of their target organs and tissues. For example, Möbius syndrome is a congenital disease characterized by defective innervation (i.e., abducens (VI) and facial (VII) nerves), deafness, tooth anomalies, and cleft palate. Hence, it is obvious that the peripheral nervous system is needed for both development and function of orofacial structures. Nerves have a limited capacity to regenerate. However, neural stem cells, which could be used as sources for neural tissue maintenance and repair, have been found in adult neuronal tissues. Similarly, various adult stem cell populations have been isolated from almost all organs of the human body. Stem cells are tightly regulated by their microenvironment, the stem cell niche. Deregulation of adult stem cell behavior results in the development of pathologies such as tumor formation or early tissue senescence. It is thus essential to understand the factors that regulate the functions and maintenance of stem cells. Yet, the potential importance of innervation in the regulation of stem cells and/or their niches in most organs and tissues is largely unexplored. This review focuses on the potential role of innervation in the development and homeostasis of orofacial structures and discusses its possible association with stem cell populations during tissue repair. PMID:24395053

  16. The Role of Lumbar Sympathetic Nerves in Regulation of Blood Flow to Skeletal Muscle during Anaphylactic Hypotension in Anesthetized Rats.

    Directory of Open Access Journals (Sweden)

    Jie Song

    Full Text Available During hypovolemic shock, skeletal muscle blood flow could be redistributed to vital organs via vasoconstriction in part evoked by activation of the innervating sympathetic nerve activity. However, it is not well known whether this mechanism operates during anaphylactic shock. We determined the femoral artery blood flow (FBF and lumbar sympathetic nerve activity (LSNA mainly regulating the hindquater muscle blood flow during anaphylactic hypotension in anesthetized rats. Anesthetized Sprague-Dawley rats were randomly allocated to the following groups (n = 7/group: (1 non-sensitized, (2 anaphylaxis, (3 anaphylaxis-lumbar sympathectomy (LS and (4 anaphylaxis-sinoaortic denervation (SAD groups. Anaphylaxis was induced by an intravenous injection of the ovalbumin antigen to the sensitized rats. The systemic arterial pressure (SAP, heart rate (HR, central venous pressure (CVP, FBF and LSNA were continuously measured. In the anaphylaxis group, LSNA and HR increased, while SAP and FBF decreased after antigen injection. In the anaphylaxis-SAD group, LSNA did not significantly change during the early phase, but the responses of SAP and FBF were similar to those in the anaphylaxis group. In the anaphylaxis-LS group, both FBF and SAP decreased similarly to the anaphylaxis group during anaphylactic hypotension. These results indicated that LSNA increased via baroreceptor reflex, but this sympathoexcitation or LS did not affect antigen-induced decreases in FBF or SAP. Lumbar sympathetic nerves are not involved in regulation of the blood flow to the hindlimb or systemic blood pressure during anaphylactic hypotension in anesthetized rats.

  17. Pharmacological profile of the inhibition by dihydroergotamine and methysergide on the cardioaccelerator sympathetic outflow in pithed rats.

    Science.gov (United States)

    Lozano-Cuenca, Jair; Muñoz-Islas, Enriqueta; González-Hernández, Abimael; Centurión, David; Cobos-Puc, Luis E; Sánchez-López, Araceli; Pertz, Heinz H; Villalón, Carlos M

    2009-06-10

    The present study set out to analyse the pharmacological profile of the inhibitory responses induced by the antimigraine agents dihydroergotamine (DHE) and methysergide on the tachycardic responses to preganglionic sympathetic stimulation in pithed rats. For this purpose, 132 male Wistar normotensive rats were pithed and prepared to: (i) selectively stimulate the preganglionic (C(7)-T(1)) cardiac sympathetic outflow; or (ii) receive intravenous (i.v.) bolus injections of exogenous noradrenaline. Electrical sympathetic stimulation or exogenous noradrenaline produced, respectively, frequency-dependent and dose-dependent tachycardic responses. Moreover, i.v. continuous infusions of DHE (1.8, 3.1 and 5.6 microg/kg x min) or methysergide (100, 300 and 1000 microg/kg x min) dose-dependently inhibited the tachycardic responses to sympathetic stimulation, but not those to exogenous noradrenaline. Using physiological saline or antagonists (given as i.v. bolus injections), the cardiac sympatho-inhibition induced by either DHE (3.1 microg/kg x min) or methysergide (300 microg/kg x min) was: (1) unaffected by saline (1 ml/kg); (2) partially blocked by the antagonists rauwolscine (300 microg/kg; alpha(2)) or N-[4-methoxy-3-(4-methyl-1-piperazinyl) phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl) [1,1,-biphenyl]-4-carboxamide hydrochloride monohydrate (GR127935, 300 microg/kg; 5-HT(1B/1D)); and (3) completely antagonised by the combination rauwolscine plus GR127935. These antagonists, at doses high enough to completely block their respective receptors, failed to modify the sympathetically-induced tachycardic responses per se. The above results, taken together, suggest that the cardiac sympatho-inhibition induced by DHE (3.1 microg/kg x min) and methysergide (300 microg/kg x min) may be mainly mediated by stimulation of both alpha(2)-adrenoceptors and 5-HT(1B/1D) receptors. PMID:19356724

  18. Sympathetic reinnervation following heart transplantation: a double-tracer study with 123I-MIBG and 201Tl

    International Nuclear Information System (INIS)

    Sympathetic reinnervation was evaluated in 15 patients 2-69 months after heart transplantation using a double-tracer technique with 123I-MIBG and 201Tl. Since MIBG is accumulated in the same manner as norepinephrine it may serve as a tracer of the integrity and function of the sympathetic nervous system. 201Tl was used for landmarking. Planar anterior imaging was performed 15 min and 4 h after i.v. injection of 220 MBq 123I-MIBG and 37 MBq 201Tl. Image quantitation was based on the ratio of myocardial to mediastinal MIBG-uptake. Cardiac regions of interest were defined according to the 201Tl uptake. There was no evidence of sympathetic reinnervation in 8 patients 2-34 months after transplantation. Increased MIBG-uptake could be observed in the anterior basal region in 6 long-term cardiac transplants (37-69 months). One patient with a 59-month-old transplanted heart did not reinnervate. Increased MIBG-uptake in the anterior basal region indicating partial sympathetic reinnervation could be shown in 40% of the investigated patients with an average organ age of 51 months. (orig.)

  19. Characterisation of the primary afferent spinal innervation of mouse uterus

    Directory of Open Access Journals (Sweden)

    NickJSpencer

    2014-07-01

    Full Text Available The primary afferent innervation of the uterus is incompletely understood. The aim of this study was to identify the location and characteristics of primary afferent neurons that innervate the uterine horn of mice and correlate the different morphological types of putative primary afferent nerve endings, immunoreactive to the sensory marker, calcitonin gene related peptide (CGRP. Using retrograde tracing, injection of 5-10µL of 1,1'-didodecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI into discrete single sites in each uterine horn revealed a biomodal distribution of sensory neurons in dorsal root ganglia (DRG with peak labelling occurring between T13-L3 and a second smaller peak between L6-S1. The mean cross sectional area of labelled cells was 463 µm2 +/- SEM. A significantly greater proportion of labelled neurons consisted of small cell bodies (<300 µm2 in the sacral spinal cord (S2 compared with peak labelling at the lumbar (L2 region. In both sections and whole mount preparations, immunohistochemical staining for CGRP revealed substantial innervation of the uterus by CGRP-positive nerve fibres located primarily at the border between the circular and longitudinal muscle layers (N=4. The nerve endings were classified into three distinct types: “single”, “branching” or “complex”, that often aligned preferentially in either the circular or longitudinal axis of the smooth muscles. Complex endings were often associated with mesenteric vessels. We have identified that the cell bodies of primary afferent neurons innervating the mouse uterus lie primarily in DRG at L2 and S1 spinal levels. Also, the greatest density of CGRP immunoreactivity lies within the myometrium, with at least three different morphological types of nerve endings identified. These findings will facilitate further investigations into the mechanisms underlying sensory transduction in mouse uterus.

  20. Reciprocal Innervation of Outer Hair Cells in a Human Infant

    OpenAIRE

    Thiers, Fabio A.; Burgess, Barbara J.; Nadol, Joseph B.

    2002-01-01

    Reciprocal synapses are characterized by the presence of both afferent and efferent types of synaptic specializations between two cells. They have been described at the neural poles of outer hair cells (OHCs) in humans with advanced age and two monkey species. Our objective was to study the innervation of the OHCs and determine if reciprocal synapses were present in a young (8-month-old infant) human subject. We studied the synaptic and cytoplasmic morphology of 162 nerve terminals innervatin...

  1. Sympathetic Ophthalmia: Mangement and Role of Immunosuppressants

    OpenAIRE

    R.Kapoor, A.K.Sharma,Subash Bhardwaj

    2000-01-01

    Presented here is a case of sympathetic ophthalmia that provided us an oppotunity to evaluate theefficacy bfimmunosuppressive drugs with steroids in reduced doses and their outcome in improvingthe visual loss in a young patient who had fast deterioration in his visual acuity.

  2. Sympathetic Ophthalmia: Mangement and Role of Immunosuppressants

    Directory of Open Access Journals (Sweden)

    R.Kapoor, A.K.Sharma,Subash Bhardwaj

    2000-04-01

    Full Text Available Presented here is a case of sympathetic ophthalmia that provided us an oppotunity to evaluate theefficacy bfimmunosuppressive drugs with steroids in reduced doses and their outcome in improvingthe visual loss in a young patient who had fast deterioration in his visual acuity.

  3. Approach behavior and sympathetic nervous system reactivity predict substance use in young adults.

    Science.gov (United States)

    Hinnant, J Benjamin; Forman-Alberti, Alissa B; Freedman, Anna; Byrnes, Lindsay; Degnan, Kathryn A

    2016-07-01

    A behavioral measure of approach (performance on a resource gathering task) in combination with sympathetic nervous system (SNS) reactivity was used to predict substance use in a sample of young adults (n=93). Pre-ejection period reactivity (PEP-R), a cardiac index of SNS reactivity, was recorded during the resource gathering task (task PEP - resting PEP). Higher levels of approach behaviors on the task in combination with less PEP-R (blunted SNS reactivity) predicted the highest levels of substance use. Findings are discussed in the context of behavioral and physiological systems of approach and avoidance. PMID:27178723

  4. Is rabbit dentine innervated? A fine-structural study of the pulpal innervation in the cheek teeth of the rabbit.

    OpenAIRE

    Bishop, M A

    1995-01-01

    The pulpal innervation of rabbit premolars and molars has been studied in transverse sections of perfusion-fixed, demineralised specimens using light microscopy and transmission electron microscopy. A mixed population of small myelinated and unmyelinated axons enters the apical foramen to supply the mesial and distal laminae of these continuously growing teeth. The nerve fibres are remote from the preodontoblasts and odontoblasts near the apical end, but in their passage to the occlusal end t...

  5. Phenotypic alterations of neuropeptide Y and calcitonin gene-related peptide-containing neurons innervating the rat temporomandibular joint during carrageenan-induced arthritis

    Directory of Open Access Journals (Sweden)

    J.P. Damico

    2012-10-01

    Full Text Available The aim of this study was to identify immunoreactive neuropeptide Y (NPY and calcitonin gene-related peptide (CGRP neurons in the autonomic and sensory ganglia, specifically neurons that innervate the rat temporomandibular joint (TMJ. A possible variation between the percentages of these neurons in acute and chronic phases of carrageenan-induced arthritis was examined. Retrograde neuronal tracing was combined with indirect immunofluorescence to identify NPY-immunoreactive (NPY-IR and CGRP- immunoreactive (CGRP-IR neurons that send nerve fibers to the normal and arthritic temporomandibular joint. In normal joints, NPY-IR neurons constitute 78±3%, 77±6% and 10±4% of double-labeled nucleated neuronal profile originated from the superior cervical, stellate and otic ganglia, respectively. These percentages in the autonomic ganglia were significantly decreased in acute (58±2% to superior cervical ganglion and 58±8% to stellate ganglion and chronic (60±2% to superior cervical ganglion and 59±15% to stellate ganglion phases of arthritis, while in the otic ganglion these percentages were significantly increased to 19±5% and 13±3%, respectively. In the trigeminal ganglion, CGRP-IR neurons innervating the joint significantly increased from 31±3% in normal animals to 54±2% and 49±3% in the acute and chronic phases of arthritis, respectively. It can be concluded that NPY neurons that send nerve fibers to the rat temporomandibular joint are located mainly in the superior cervical, stellate and otic ganglia. Acute and chronic phases of carrageenan-induced arthritis lead to an increase in the percentage of NPY-IR parasympathetic and CGRP-IR sensory neurons and decrease in the percentage of NPY-IR sympathetic neurons related to TMJ innervation.

  6. Highly abnormal thermotests in familial dysautonomia suggest increased cardiac autonomic risk

    OpenAIRE

    Hilz, M; Kolodny, E.; Neuner, I; Stemper, B; Axelrod, F

    1998-01-01

    OBJECTIVE—Patients with familial dysautonomia have an increased risk of sudden death. In some patients with familial dysautonomia, sympathetic cardiac dysfunction is indicated by prolongation of corrected QT (QTc) interval, especially during stress tests. As many patients do not tolerate physical stress, additional indices are needed to predict autonomic risk. In familial dysautonomia there is a reduction of both sympathetic neurons and peripheral small nerve fibres which...

  7. Sympathetic blocks for visceral cancer pain management

    DEFF Research Database (Denmark)

    Mercadante, Sebastiano; Klepstad, Pal; Kurita, Geana Paula; Sjogren, Per; Giarratano, Antonino

    2015-01-01

    The neurolytic blocks of sympathetic pathways, including celiac plexus block (CPB) and superior hypogastric plexus block (SHPB) , have been used for years. The aim of this review was to assess the evidence to support the performance of sympathetic blocks in cancer patients with abdominal visceral...... effects in comparison with a conventional analgesic treatment. In one study patients treated with superior hypogastric plexus block (SHPB) had a decrease in pain intensity and a less morphine consumption, while no statistical differences in adverse effects were found. The quality of these studies was...... generally poor due to several limitations, including sample size calculation, allocation concealment, no intention to treat analysis. However, at least two CPB studies were of good quality. Data regarding the comparison of techniques or other issues were sparse and of poor quality, and evidence could not be...

  8. Cervical sympathetic chain schwannoma: a case report

    OpenAIRE

    Inès Nacef; Skander Kedous; Zied Attia; Slim Touati; Said Gritli

    2012-01-01

    Nerve tumors arising from the sympathetic chain are uncommon slow-growing tumors and represent a diagnosis challenge. Their malignant degeneration is rare. Definitive pre-operative diagnosis may be difficult as investigations are not usually helpful. We report the case of a 23-year old woman who presented with an asymptomatic solitary left cervical swelling. She was evaluated with sonography and computed tomography. Complete surgical excision of the lesion was carried out and histologic exami...

  9. Sympathetic hyperactivity syndrome following cerebral fat embolization

    OpenAIRE

    2013-01-01

    To date, there have been no reports of paroxysmal sympathetic hyperactivity syndrome (PSHS) associated with cerebral fat embolization. We describe the case of a young male who developed acute brain injury and acute hypoxemic respiratory failure secondary to significant fat embolization following a traumatic femur injury. Our patient demonstrated episodes of significant hypertension, tachycardia, fever and extensor posturing. Extensive evaluation lead to the diagnosis and appropriate ...

  10. Aberrant Innervation of the Sternocleidomastoid Muscle By the Transverse Cervical Nerve: A Case Report

    OpenAIRE

    Paraskevas, George; Lazaridis, Nikolaos; Spyridakis, Ioannis; Koutsouflianiotis, Konstantinos; Kitsoulis, Panagiotis

    2015-01-01

    Two aberrant rami originating from the right transverse cervical nerve and innervated the midportion of the sternocleidomastoid muscle (SM) were detected during routine cadaver dissection. Although SM is commonly innervated by the accessory nerve, as well as by cervical nerves, it is likely to be innervated additionally by other nerves such as hypoglossal nerve, ansa cervicalis, facial or external laryngeal nerve. Some considerations as regards the possible composition of the aberrant rami of...

  11. Innervation of the hard palate of the rat

    OpenAIRE

    Liem, Swie Bing

    1989-01-01

    This study is undertaken to gain more insight into the pattern of innervation of the hard palate of the rat and into the morphology of the sensory structures found there. Since the main research project of the Department of Neurobiology and Oral Physiology is dedicated to the formulation of a model of the chewing system of the rat, the Wistar rat is choosen as an experimental animal. A total number of 113 adult rats, and 61 tat embryos is studied histologically and electron microscopically. ....

  12. Prognostic value of myocardial sympathetic activity in patients with asymptomatic myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Michihiro; Kurihara, Tadashi; Sindoh, Takashi; Sawada, Yoshihiro [Sumitomo Hospital, Osaka (Japan)

    1999-04-01

    To clarify the significance of myocardial sympathetic activity in patients with asymptomatic myocardial infarction (MI), we performed {sup 123}I-metaiodobenzyl-guanidine (MIBG) and {sup 201}Tl imaging at rest. We calculated the ratio of cardiac uptake of the isotope to the total injected dose (%Uptake), percent washout of MIBG over 3 hours and the Uptake Ratio (UR, %Uptake of MIBG divided by %Uptake of {sup 201}Tl). We compared these indices with clinical findings, exercise stress-rest myocardial perfusion imaging with {sup 99}Tc-methoxy-2-isobutyl isonitrile, coronary angiography, echocardiography and neurohumoral findings. During the follow-up period of 19.9{+-}10.3 months in 32 patients, events (heart failure or cardiac death) developed in 10 (31%). In univariate analysis, diabetes mellitus, atrial fibrillation, left ventricular end-diastolic dimension (LVDd) greater than 54 mm, and the %Uptake of MIBG and UR differed significantly between event and event-free groups. Cox proportional hazard model showed that the UR was a predictor of events (p=0.0007). In patients with UR less than 0.58, the relative risk of events was 19.1 times greater than in patients with an UR greater than 0.58. UR was closely correlated to LVDd (r=-0.578, p=0.01) suggesting that myocardial sympathetic activity is related to LV remodeling after MI. MIBG imaging provides important information regarding the prognosis and the pathophysiologic process of asymptomatic MI. (author)

  13. Prognostic value of myocardial sympathetic activity in patients with asymptomatic myocardial infarction

    International Nuclear Information System (INIS)

    To clarify the significance of myocardial sympathetic activity in patients with asymptomatic myocardial infarction (MI), we performed 123I-metaiodobenzyl-guanidine (MIBG) and 201Tl imaging at rest. We calculated the ratio of cardiac uptake of the isotope to the total injected dose (%Uptake), percent washout of MIBG over 3 hours and the Uptake Ratio (UR, %Uptake of MIBG divided by %Uptake of 201Tl). We compared these indices with clinical findings, exercise stress-rest myocardial perfusion imaging with 99Tc-methoxy-2-isobutyl isonitrile, coronary angiography, echocardiography and neurohumoral findings. During the follow-up period of 19.9±10.3 months in 32 patients, events (heart failure or cardiac death) developed in 10 (31%). In univariate analysis, diabetes mellitus, atrial fibrillation, left ventricular end-diastolic dimension (LVDd) greater than 54 mm, and the %Uptake of MIBG and UR differed significantly between event and event-free groups. Cox proportional hazard model showed that the UR was a predictor of events (p=0.0007). In patients with UR less than 0.58, the relative risk of events was 19.1 times greater than in patients with an UR greater than 0.58. UR was closely correlated to LVDd (r=-0.578, p=0.01) suggesting that myocardial sympathetic activity is related to LV remodeling after MI. MIBG imaging provides important information regarding the prognosis and the pathophysiologic process of asymptomatic MI. (author)

  14. Increased sympathetic tone in forearm subcutaneous tissue in primary hypothyroidism

    DEFF Research Database (Denmark)

    Vagn Nielsen, H; Hasselström, K; Feldt-Rasmussen, U;

    1987-01-01

    Sympathetic reflex regulation of subcutaneous blood flow (SBF) in the forearm was studied in eight patients with primary hypothyroidism. Diastolic arterial pressure was greater than or equal to 95 mmHg in five patients. SBF was determined by local clearance of Na99mTcO4. Sympathetic vasoconstrict......Sympathetic reflex regulation of subcutaneous blood flow (SBF) in the forearm was studied in eight patients with primary hypothyroidism. Diastolic arterial pressure was greater than or equal to 95 mmHg in five patients. SBF was determined by local clearance of Na99mTcO4. Sympathetic.......02)). In conclusion sympathetic vasoconstrictor activity in adipose tissue is markedly increased in primary hypothyroidism. Sympathetic tone and arterial pressure are reduced during treatment....

  15. Impaired cardiac uptake of meta-[123I]iodobenzylguanidine in Parkinson's disease with autonomic failure

    International Nuclear Information System (INIS)

    Objective - To selectively investigate postganglionic sympathetic cardiac neurons in patients with Parkinson's disease and autonomic failure. Material and methods - Metaiodobenzylguanidine (MIBG) is a pharmacologically inactive analogue of noradrenaline, which is similarly metabolized in noradrenergic neurons. Therefore the uptake of radiolabelled MIBG represents not only the localization of postganglionic sympathetic neurons but also their functional integrity. Ten patients with Parkinson's disease and autonomic failure underwent standardized autonomic testing, assessment of catecholamine plasma levels and scintigraphy with [123I]MIGB. Results - The cardiac uptake of MIBG, as demonstrated by the heart/mediastinum ratio, was significantly lower in patients in comparison with controls. Scintigraphy with MIBG allowed the selective in-vivo investigation of postganglionic sympathetic cardiac efferent in patients with autonomic failure, a procedure which was previously confined to post-mortem examination. Conclusion - These findings point to a relevant postganglionic pattern of involvement of the autonomic nervous system (ANS) in Parkinson's disease and autonomic failure. (au)

  16. Cardiac neuronal imaging with {sup 123}I-meta-iodobenzylguanidine in heart failure: implications of endpoint selection and quantitative analysis on clinical decisions

    Energy Technology Data Exchange (ETDEWEB)

    Petretta, Mario [University Federico II, Department of Translational Medicine, Naples (Italy); Pellegrino, Teresa [National Council of Research, Institute of Biostructure and Bioimaging, Naples (Italy); Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy)

    2014-09-15

    There are a number of radiopharmaceuticals that can be used to investigate autonomic neuronal functions. Among these, the norepinephrine analogue meta-iodobenzylguanidine (MIBG) labelled with {sup 123}I has been widely used and validated as a marker of adrenergic neuron function. The first study addressing the prognostic value of {sup 123}I-MIBG imaging in heart failure (HF) was that of Merlet et al. in 90 patients suffering from either ischaemic or idiopathic cardiomyopathy. After publication of this study, more recent studies have indicated that patients with HF and decreased late heart-to-mediastinum (H/M) ratio or increased myocardial MIBG washout have a worse prognosis than those with normal quantitative myocardial MIBG parameters. However, MIBG scintigraphy has still to reach widespread clinical application mainly because of the value of other cheaper variables such as left ventricular (LV) ejection fraction and brain natriuretic peptide (BNP) plasma levels. The possibility that the detection of mechanical dyssynchrony by innervation imaging might identify patients who would benefit from resynchronization pacing is another area of research interest. In 2010, the landmark AdreView Myocardial Imaging for Risk Evaluation in Heart Failure (ADMIRE-HF) study was published. This trial consisted of two identical open-label phase III studies enrolling patients in 96 sites in North America and Europe to provide prospective validation of the prognostic role of quantitation of sympathetic cardiac innervation using MIBG. The primary endpoint was the relationship between late HIM ratio and time-to-occurrence of the first event among a combination of HF progression, potentially life-threatening arrhythmic event, and cardiac death. The authors found that a HIM ratio <1.6 provided prognostic information beyond LV ejection fraction, BNP, and New York Heart Association (NYHA) functional class at the time of enrolment. In a recent article in this journal, Parker et al. present

  17. Cardiac neuronal imaging with 123I-meta-iodobenzylguanidine in heart failure: implications of endpoint selection and quantitative analysis on clinical decisions

    International Nuclear Information System (INIS)

    There are a number of radiopharmaceuticals that can be used to investigate autonomic neuronal functions. Among these, the norepinephrine analogue meta-iodobenzylguanidine (MIBG) labelled with 123I has been widely used and validated as a marker of adrenergic neuron function. The first study addressing the prognostic value of 123I-MIBG imaging in heart failure (HF) was that of Merlet et al. in 90 patients suffering from either ischaemic or idiopathic cardiomyopathy. After publication of this study, more recent studies have indicated that patients with HF and decreased late heart-to-mediastinum (H/M) ratio or increased myocardial MIBG washout have a worse prognosis than those with normal quantitative myocardial MIBG parameters. However, MIBG scintigraphy has still to reach widespread clinical application mainly because of the value of other cheaper variables such as left ventricular (LV) ejection fraction and brain natriuretic peptide (BNP) plasma levels. The possibility that the detection of mechanical dyssynchrony by innervation imaging might identify patients who would benefit from resynchronization pacing is another area of research interest. In 2010, the landmark AdreView Myocardial Imaging for Risk Evaluation in Heart Failure (ADMIRE-HF) study was published. This trial consisted of two identical open-label phase III studies enrolling patients in 96 sites in North America and Europe to provide prospective validation of the prognostic role of quantitation of sympathetic cardiac innervation using MIBG. The primary endpoint was the relationship between late HIM ratio and time-to-occurrence of the first event among a combination of HF progression, potentially life-threatening arrhythmic event, and cardiac death. The authors found that a HIM ratio <1.6 provided prognostic information beyond LV ejection fraction, BNP, and New York Heart Association (NYHA) functional class at the time of enrolment. In a recent article in this journal, Parker et al. present the results

  18. Selective Thalamic Innervation of Rat Frontal Cortical Neurons.

    Science.gov (United States)

    Shigematsu, Naoki; Ueta, Yoshifumi; Mohamed, Alsayed A; Hatada, Sayuri; Fukuda, Takaichi; Kubota, Yoshiyuki; Kawaguchi, Yasuo

    2016-06-01

    Most glutamatergic inputs in the neocortex originate from the thalamus or neocortical pyramidal cells. To test whether thalamocortical afferents selectively innervate specific cortical cell subtypes and surface domains, we investigated the distribution patterns of thalamocortical and corticocortical excitatory synaptic inputs in identified postsynaptic cortical cell subtypes using intracellular and immunohistochemical staining combined with confocal laser scanning and electron microscopic observations in 2 thalamorecipient sublayers, lower layer 2/3 (L2/3b) and lower layer 5 (L5b) of rat frontal cortex. The dendrites of GABAergic parvalbumin (PV) cells preferentially received corticocortical inputs in both sublayers. The somata of L2/3b PV cells received thalamic inputs in similar proportions to the basal dendritic spines of L2/3b pyramidal cells, whereas L5b PV somata were mostly innervated by cortical inputs. The basal dendrites of L2/3b pyramidal and L5b corticopontine pyramidal cells received cortical and thalamic glutamatergic inputs in proportion to their local abundance, whereas crossed-corticostriatal pyramidal cells in L5b exhibited a preference for thalamic inputs, particularly in their distal dendrites. Our data demonstrate an exquisite selectivity among thalamocortical afferents in which synaptic connectivity is dependent on the postsynaptic neuron subtype, cortical sublayer, and cell surface domain. PMID:26045568

  19. Differential serotonergic innervation of the amygdala in bonobos and chimpanzees.

    Science.gov (United States)

    Stimpson, Cheryl D; Barger, Nicole; Taglialatela, Jared P; Gendron-Fitzpatrick, Annette; Hof, Patrick R; Hopkins, William D; Sherwood, Chet C

    2016-03-01

    Humans' closest living relatives are bonobos (Pan paniscus) and chimpanzees (Pan troglodytes), yet these great ape species differ considerably from each other in terms of social behavior. Bonobos are more tolerant of conspecifics in competitive contexts and often use sexual behavior to mediate social interactions. Chimpanzees more frequently employ aggression during conflicts and actively patrol territories between communities. Regulation of emotional responses is facilitated by the amygdala, which also modulates social decision-making, memory and attention. Amygdala responsiveness is further regulated by the neurotransmitter serotonin. We hypothesized that the amygdala of bonobos and chimpanzees would differ in its neuroanatomical organization and serotonergic innervation. We measured volumes of regions and the length density of serotonin transporter-containing axons in the whole amygdala and its lateral, basal, accessory basal and central nuclei. Results showed that accessory basal nucleus volume was larger in chimpanzees than in bonobos. Of particular note, the amygdala of bonobos had more than twice the density of serotonergic axons than chimpanzees, with the most pronounced differences in the basal and central nuclei. These findings suggest that variation in serotonergic innervation of the amygdala may contribute to mediating the remarkable differences in social behavior exhibited by bonobos and chimpanzees. PMID:26475872

  20. Fibromyalgia: When Distress Becomes (Un)sympathetic Pain

    OpenAIRE

    Manuel Martinez-Lavin

    2012-01-01

    Fibromyalgia is a painful stress-related disorder. A key issue in fibromyalgia research is to investigate how distress could be converted into pain. The sympathetic nervous system is the main element of the stress response system. In animal models, physical trauma, infection, or distressing noise can induce abnormal connections between the sympathetic nervous system and the nociceptive system. Dorsal root ganglia sodium channels facilitate this type of sympathetic pain. Similar mechanisms may...

  1. Impact of right upper pulmonary vein isolation on atrial vagal innervation and vulnerability to atrial fibrillation

    Institute of Scientific and Technical Information of China (English)

    LIU Yuan; ZHANG Shu-long; DONG Ying-xue; ZHAO Hong-wei; GAO Lian-jun; YIN Xiao-meng; LI Shi-jun; LIN Zhi-hu; YANG Yan-zong

    2006-01-01

    Background Based on the hypothesis that pulmonary vein isolation could result in the damage of the epicardial fat pads, this study aimed to investigated the impact of right upper pulmonary vein (RUPV) isolation on vagal innervation to atria.Methods Bilateral cervical sympathovagal trunks were decentralized in 6 dogs. Metoprolol was given to block sympathetic effects. Multipolar catheters were placed into the right atrium (RA) and coronary sinus (CS). RUPV isolation was performed via transseptal procedure. Atrial effective refractory period (ERP), vulnerability window (VW) of atrial fibrillation (AF), and sinus rhythm cycle length (SCL) were measured at RA and distal coronary sinus (CSd) at baseline and vagal stimulation before and after RUPV isolation. Serial sections of underlying tissues before and after ablation were stained with haematoxylin and eosin.Results SCL decreased significantly during vagal stimulation before RUPV isolation (197 ± 21 vs 13 ±32 beats per minute, P<0.001), but remained unchanged after RUPV isolation (162±29 vs 140±39 beats per minute,P>0.05). ERP increased significantly before RUPV isolation compared with that during vagal stimulation [(85.00±24.29) ms vs (21.67±9.83) ms at RA, P<0.001; (90.00± 15.49) ms vs (33.33±25.03) ms at CSd P<0.005],but ERP at baseline hardly changed after RUPV isolation compared with that during vagal stimulation [(103.33 ±22.50) vs (95.00± 16.43) ms at RA, P = 0.09; (98.33±24.83) vs (75.00±29.50) ms at CSd, P=0.009]. The ERP shortening during vagal stimulation after RUPV isolation decreased significantly [(63.33 ± 22.51) ms vs (8.33 ±9.83) ms at RA, P<0.005; (56.67±20.66) ms vs (23.33± 13.66) ms at CSd, P<0.05]. AF was rarely induced at baseline before and after RUPV isolation (VW close to 0), while VW of AF to vagal stimulation significantly decreased after RUPV isolation [(40.00± 10.95) vs 0 ms at RA, P<0.001; (45.00±32.09) vs (15.00±23.45) ms at CS, P <0.05]. The

  2. Sympathetic Nervous System Control of Carbon Tetrachloride-Induced Oxidative Stress in Liver through α-Adrenergic Signaling

    Directory of Open Access Journals (Sweden)

    Jung-Chun Lin

    2016-01-01

    Full Text Available In addition to being the primary organ involved in redox cycling, the liver is one of the most highly innervated tissues in mammals. The interaction between hepatocytes and sympathetic, parasympathetic, and peptidergic nerve fibers through a variety of neurotransmitters and signaling pathways is recognized as being important in the regulation of hepatocyte function, liver regeneration, and hepatic fibrosis. However, less is known regarding the role of the sympathetic nervous system (SNS in modulating the hepatic response to oxidative stress. Our aim was to investigate the role of the SNS in healthy and oxidatively stressed liver parenchyma. Mice treated with 6-hydroxydopamine hydrobromide were used to realize chemical sympathectomy. Carbon tetrachloride (CCl4 injection was used to induce oxidative liver injury. Sympathectomized animals were protected from CCl4 induced hepatic lipid peroxidation-mediated cytotoxicity and genotoxicity as assessed by 4-hydroxy-2-nonenal levels, morphological features of cell damage, and DNA oxidative damage. Furthermore, sympathectomy modulated hepatic inflammatory response induced by CCl4-mediated lipid peroxidation. CCl4 induced lipid peroxidation and hepatotoxicity were suppressed by administration of an α-adrenergic antagonist. We conclude that the SNS provides a permissive microenvironment for hepatic oxidative stress indicating the possibility that targeting the hepatic α-adrenergic signaling could be a viable strategy for improving outcomes in patients with acute hepatic injury.

  3. Abnormal cardiac autonomic regulation in mice lacking ASIC3.

    Science.gov (United States)

    Cheng, Ching-Feng; Kuo, Terry B J; Chen, Wei-Nan; Lin, Chao-Chieh; Chen, Chih-Cheng

    2014-01-01

    Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3(-/-) mice. Asic3(-/-) mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3(-/-) mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3(-/-) mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases. PMID:24804235

  4. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    Directory of Open Access Journals (Sweden)

    Ching-Feng Cheng

    2014-01-01

    Full Text Available Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3 is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  5. Cervical sympathetic chain schwannoma: A case report

    Directory of Open Access Journals (Sweden)

    Inès Nacef

    2014-07-01

    Full Text Available Nerve tumors arising from the sympathetic chain are uncommon slow-growing tumors and represent a diagnosis challenge. Their malignant degeneration is rare. Definitive pre-operative diagnosis may be difficult as investigations are not usually helpful. We report the case of a 23-year old woman who presented with an asymptomatic solitary left cervical swelling. She was evaluated with sonography and computed tomography. Complete surgical excision of the lesion was carried out and histologic examination revealed a schwannoma. Post-operatively, the patient showed clinical findings of Horner’s syndrome. Pathologic and radiological evaluation, differential diagnosis of this neoplasm and its management are discussed.

  6. Renal Sympathetic Denervation by CT-Guided Ethanol Injection: A Phase II Pilot Trial of a Novel Technique

    International Nuclear Information System (INIS)

    ObjectivesCT-guided ethanol-mediated renal sympathetic denervation in treatment of therapy-resistant hypertension was performed to assess patient safety and collect preliminary data on treatment efficacy.Materials and MethodsEleven patients with therapy-resistant hypertension (blood pressure of >160 mmHg despite three different antihypertensive drugs including a diuretic) and following screening for secondary causes were enrolled in a phase II single arm open label pilot trial of CT-guided neurolysis of sympathetic renal innervation. Primary endpoint was safety, and secondary endpoint was a decrease of the mean office as well as 24-h systolic blood pressure in follow-up. Follow-up visits at 4 weeks, 3, and 6 months included 24-h blood pressure assessments, office blood pressure, laboratory values, as well as full clinical and quality of life assessments.ResultsNo toxicities ≥3° occurred. Three patients exhibited worsened kidney function in follow-up analyses. When accounting all patients, office systolic blood pressure decreased significantly at all follow-up visits (maximal mean decrease −41.2 mmHg at 3 months). The mean 24-h systolic blood pressure values decreased significantly at 3 months, but not at 6 months (mean: −9.7 and −6.3 mmHg, respectively). Exclusion of five patients who had failed catheter-based endovascular denervation and/or were incompliant for antihypertensive drug intake revealed a more pronounced decrease of 24-h systolic blood pressure (mean: −18.3 and −15.2 mmHg at 3 and 6 months, p = 0.03 and 0.06).ConclusionCT-guided sympathetic denervation proved to be safe and applicable under various anatomical conditions with more renal arteries and such of small diameter

  7. Renal Sympathetic Denervation by CT-Guided Ethanol Injection: A Phase II Pilot Trial of a Novel Technique

    Energy Technology Data Exchange (ETDEWEB)

    Ricke, J., E-mail: jens.ricke@med.ovgu.de; Seidensticker, M.; Becker, S. [Otto-von-Guericke University Magdeburg, Department of Radiology and Nuclear Medicine, Universitätsklinikum Magdeburg AöR (Germany); Schiefer, J. [Universitätsklinikum Magdeburg AöR, Department of Nephrology and Hypertension, Diabetes and Endocrinology (Germany); Adamchic, I.; Lohfink, K. [Otto-von-Guericke University Magdeburg, Department of Radiology and Nuclear Medicine, Universitätsklinikum Magdeburg AöR (Germany); Kandulski, M.; Heller, A.; Mertens, P. R. [Universitätsklinikum Magdeburg AöR, Department of Nephrology and Hypertension, Diabetes and Endocrinology (Germany)

    2016-02-15

    ObjectivesCT-guided ethanol-mediated renal sympathetic denervation in treatment of therapy-resistant hypertension was performed to assess patient safety and collect preliminary data on treatment efficacy.Materials and MethodsEleven patients with therapy-resistant hypertension (blood pressure of >160 mmHg despite three different antihypertensive drugs including a diuretic) and following screening for secondary causes were enrolled in a phase II single arm open label pilot trial of CT-guided neurolysis of sympathetic renal innervation. Primary endpoint was safety, and secondary endpoint was a decrease of the mean office as well as 24-h systolic blood pressure in follow-up. Follow-up visits at 4 weeks, 3, and 6 months included 24-h blood pressure assessments, office blood pressure, laboratory values, as well as full clinical and quality of life assessments.ResultsNo toxicities ≥3° occurred. Three patients exhibited worsened kidney function in follow-up analyses. When accounting all patients, office systolic blood pressure decreased significantly at all follow-up visits (maximal mean decrease −41.2 mmHg at 3 months). The mean 24-h systolic blood pressure values decreased significantly at 3 months, but not at 6 months (mean: −9.7 and −6.3 mmHg, respectively). Exclusion of five patients who had failed catheter-based endovascular denervation and/or were incompliant for antihypertensive drug intake revealed a more pronounced decrease of 24-h systolic blood pressure (mean: −18.3 and −15.2 mmHg at 3 and 6 months, p = 0.03 and 0.06).ConclusionCT-guided sympathetic denervation proved to be safe and applicable under various anatomical conditions with more renal arteries and such of small diameter.

  8. Origin of primary sensory neurons innervating the buccal stretch receptor.

    Science.gov (United States)

    Yamamoto, T; Onozuka, M; Nagasaki, S; Watanabe, K; Ozono, S

    1999-01-01

    The primary sensory neurons innervating mechanoreceptors in oro-facial regions have their cell bodies in either the trigeminal ganglion or the mesencephalic nucleus of the trigeminal nerve. The buccal stretch receptor (BSR), a type of mechanoreceptor in the jaw of rodents, has recently been recognized as signaling the position of the mandible. The location of the primary afferent neurons innervating this receptor is unknown. To investigate the cell bodies of the BSR afferent neurons in rats, we applied wheat germ agglutinin-horseradish peroxidase (WGA-HRP) to the proximal stump of the severed nerve branch of the buccal nerve that supplied the BSR. HRP-labeled cell bodies were observed in the posterolateral portion of the ipsilateral trigeminal ganglion. None was found in the contralateral trigeminal ganglion or in the brainstem. All labeled cell bodies were oval or round and closely resembled pseudo-unipolar neurons. The mean diameter of the labeled somata ranged between 25.5 and 52.5 microm, with small ( or = 41 microm) accounting for 8.8%, 54.9%, and 36.3%, respectively. Among the myelinated nerve fibers in the branch in which WGA-HRP was applied, 78.5% terminated in the BSR and had larger fiber diameters than the rest, indicating that most of the medium and large HRP-labeled cell bodies were BSR afferents. From these results and the ontogenetic origin of this receptor, it is suggested that the BSR differentiated from the mechanoreceptors in the oral mucosa or the fascia of masticatory muscles. PMID:10065945

  9. Renal sympathetic denervation: MDCT evaluation of the renal arteries.

    LENUS (Irish Health Repository)

    Hutchinson, Barry D

    2013-08-01

    Percutaneous transluminal renal sympathetic denervation is a new treatment of refractory systemic hypertension. The purpose of this study was to assess the clinical utility of MDCT to evaluate the anatomic configuration of the renal arteries in the context of renal sympathetic denervation.

  10. Control and physiological determinants of sympathetically-mediated brown adipose tissue thermogenesis

    Directory of Open Access Journals (Sweden)

    Denis eRichard

    2012-02-01

    Full Text Available Brown adipose tissue (BAT represents a remarkable heat-producing tissue. The thermogenic potential of BAT is conferred by uncoupling protein 1, a protein found uniquely in the brown adipocytes. The physiological control of BAT activity and capacity is ensured by the sympathetic nervous system (SNS, which densely innervates brown fat depots. SNS-mediated BAT thermogenesis is essentially governed by hypothalamic and brainstem neurons. BAT is not only controlled by the brain thermoregulatory circuits but also by brain energy balance pathways including the very significant brain melanocortin system, which speaks in favor of the genuine involvement of SNS-mediated BAT thermogenesis in energy homeostasis. The use of positron emission tomography/computed tomography (PET/CT scanning has further revealed the presence of well-defined BAT depots in the cervical, clavicular, and paraspinal areas in adult humans. The prevalence of these depots was reported to be higher in subjects exposed to low temperature and was also higher in women than men. Moreover, the prevalence of BAT was shown to decrease with age and body fat mass, which suggests that BAT could not only be involved in cold-induced non shivering thermogenesis but also in the energy balance regulation and obesity in humans. This short review summarizes recent progress made in our understanding of the control of SNS-mediated BAT thermogenesis and of the determinants of BAT prevalence or detection in humans.

  11. Chain Reconnections observed in Sympathetic Eruptions

    CERN Document Server

    Joshi, Navin Chandra; Magara, Tetsuya; Guo, Yang; Aulanier, Guillaume

    2016-01-01

    The nature of various plausible causal links between sympathetic events is still a controversial issue. In this work, we present multi-wavelength observations of sympathetic eruptions, associated flares and coronal mass ejections (CMEs) occurring on 2013 November 17 in two close-by active regions. Two filaments i.e., F1 and F2 are observed in between the active regions. Successive magnetic reconnections, caused by different reasons (flux cancellation, shear and expansion) have been identified during the whole event. The first reconnection occurred during the first eruption via flux cancellation between the sheared arcades overlying filament F2, creating a flux rope and leading to the first double ribbon solar flare. During this phase we observed the eruption of overlaying arcades and coronal loops, which leads to the first CME. The second reconnection is believed to occur between the expanding flux rope of F2 and the overlying arcades of the filament F1. We suggest that this reconnection destabilized the equi...

  12. [A case of prolonged paroxysmal sympathetic hyperactivity].

    Science.gov (United States)

    Yamamoto, Akiko; Ide, Shuhei; Iwasaki, Yuji; Kaga, Makiko; Arima, Masataka

    2016-03-01

    We report the case of a 4-year-old girl who presented with paroxysmal sympathetic hyperactivity (PSH), after developing severe hypoxic-ischemic-encephalopathy because of cardiopulmonary arrest. She showed dramatic paroxysmal sympathetic activity with dystonia. She was treated with wide variety of medications against PSH, which were found to be effective in previous studies. Among them, morphine, bromocriptine, propranolol, and clonidine were effective in reducing the frequency of her attacks while gabapentin, baclofen, dantrolene, and benzodiazepine were ineffective. Though the paroxysms decreased markedly after the treatment, they could not be completely controlled beyond 500 days. Following the treatment, levels of plasma catecholamines and their urinary metabolites decreased to normal during inter- paroxysms. However, once a paroxysm had recurred, these levels were again very high. This case study is considered significant for two rea- sons. One is that PSH among children have been rarely reported, and the other is that this case of prolonged PSH delineated the transition of plasma catecholamines during the treatment. The excitatory: inhibitory ratio (EIR) model proposed by Baguley was considered while dis- cussing drug sensitivity in this case. Accumulation of similar case studies will help establish more effective treatment strategies and elucidate the pathophysiology of PSH. PMID:27149743

  13. Role of Nuclear Medicine in the cardiac resinchronization therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Giorgi, Maria Clementina Pinto; D' Orio, Silvana Angelina; Meneghetti, Jose Claudio [Instituto do Coracao (InCor/FM/USP), Sao Paulo, SP (Brazil)

    2011-10-15

    Cardiac resynchronization therapy (CRT) emerged as one of the most promising approaches in the treatment of cardiac dyssynchrony in heart failure patients' refractory to medical treatment. However, despite very promising clinical and functional results, individual response analyses show that a significant number of patients do not respond to treatment. The role of nuclear medicine and molecular imaging in the selection of CRT candidates by the assessment of cardiac dyssynchrony, myocardial viability, myocardial perfusion and blood flow and sympathetic cardiac activity has been discussed in this review. The potential utilization of this tool to improve the comprehension of detrimental effects of dyssynchrony on cardiac function and the evaluation and monitoring of the response to CRT were also considered. Other molecular targets that characterize glucose and fatty acid metabolism, apoptosis, angiotensin converting enzyme activity and angiogenesis that can be evaluated with this technique were described. (author)

  14. Role of Nuclear Medicine in the cardiac resinchronization therapy

    International Nuclear Information System (INIS)

    Cardiac resynchronization therapy (CRT) emerged as one of the most promising approaches in the treatment of cardiac dyssynchrony in heart failure patients' refractory to medical treatment. However, despite very promising clinical and functional results, individual response analyses show that a significant number of patients do not respond to treatment. The role of nuclear medicine and molecular imaging in the selection of CRT candidates by the assessment of cardiac dyssynchrony, myocardial viability, myocardial perfusion and blood flow and sympathetic cardiac activity has been discussed in this review. The potential utilization of this tool to improve the comprehension of detrimental effects of dyssynchrony on cardiac function and the evaluation and monitoring of the response to CRT were also considered. Other molecular targets that characterize glucose and fatty acid metabolism, apoptosis, angiotensin converting enzyme activity and angiogenesis that can be evaluated with this technique were described. (author)

  15. Interest of the cardiac scintigraphy with {sup 123}I-Mibg in the diagnosis of multi-systematized atrophies; Interet de la scintigraphie cardiaque a l'{sup 123}I-MIBG dans le diagnostic des atrophies multisystematisees

    Energy Technology Data Exchange (ETDEWEB)

    Thelu-Vanysacker, M.; Hossein-Foucher, C.; Semah, F.; Marchandise, H. [CHRU de Lille, Service de medecine nucleaire, hopital Salengro, 59 (France); Defebvre, L. [CHRU de Lille, Service de neurologie, hopital Salengro, 59 (France)

    2010-07-01

    An abnormal cardiac scintigraphy with {sup 123}I-Mibg could exclude the diagnosis of multi-systematized atrophy (M.S.A.) for a patient with a Parkinson syndrome in our preliminary study and could be used as an index of functional integrity of post ganglion cardiac neuronal innervation. (N.C.)

  16. Sensory–sympathetic coupling in superior cervical ganglia after myocardial ischemic injury facilitates sympathoexcitatory action via P2X7 receptor

    OpenAIRE

    LIU Jun; Li, Guilin; Peng, Haiying; Tu, Guihua; Kong, Fanjun; Liu, Shuangmei; Gao, Yun; Xu, Hong; Qiu, Shuyi; Fan, Bo; Zhu, Qicheng; Yu, Shicheng; Zheng, Chaoran; Wu, Bing; Peng, Lichao

    2013-01-01

    P2X receptors participate in cardiovascular regulation and disease. After myocardial ischemic injury, sensory–sympathetic coupling between rat cervical DRG nerves and superior cervical ganglia (SCG) facilitated sympathoexcitatory action via P2X7 receptor. The results showed that after myocardial ischemic injury, the systolic blood pressure, heart rate, serum cardiac enzymes, IL-6, and TNF-α were increased, while the levels of P2X7 mRNA and protein in SCG were also upregulated. However, these ...

  17. Ontogeny of the serotonergic projection to rat neocortex: transient expression of a dense innervation to primary sensory areas

    International Nuclear Information System (INIS)

    The development of serotonergic innervation to rat cerebral cortex was characterized by immunohistochemical localization of serotonin combined with autoradiographic imaging of serotonin-uptake sites. In neonatal rat, a transient, dense, serotonergic innervation appears in all primary sensory areas of cortex. In somatosensory cortex, dense patches of serotonergic innervation are aligned with specialized cellular aggregates called barrels. The dense patches are not apparent after 3 weeks of age, and the serotonergic innervation becomes more uniform in adult neocortex. This precocious neonatal serotonergic innervation may play a transient physiologic role in sensory areas of cortex or may exert a trophic influence on the development of cortical circuitry and thalamocortical connections

  18. Antihypertensive drugs and the sympathetic nervous system.

    Science.gov (United States)

    Del Colle, Sara; Morello, Fulvio; Rabbia, Franco; Milan, Alberto; Naso, Diego; Puglisi, Elisabetta; Mulatero, Paolo; Veglio, Franco

    2007-11-01

    Hypertension has been associated with several modifications in the function and regulation of the sympathetic nervous system (SNS). Although it is unclear whether this dysfunction is primary or secondary to the development of hypertension, these alterations are considered to play an important role in the evolution, maintenance, and development of hypertension and its target organ damage. Several pharmacological antihypertensive classes are currently available. The main drugs that have been clearly shown to affect SNS function are beta-blockers, alpha-blockers, and centrally acting drugs. On the contrary, the effects of ACE inhibitors (ACE-Is), AT1 receptor blockers (ARBs), calcium channel blockers (CCBs), and diuretics on SNS function remain controversial. These properties are pharmacologically and pathophysiologically relevant and should be considered in the choice of antihypertensive treatments and combination therapies in order to achieve, beyond optimal blood pressure control, a normalization of SNS physiology and the most effective prevention of target organ damage. PMID:18030057

  19. [Clinical application of skin sympathetic nerve activity].

    Science.gov (United States)

    Iwase, Satoshi

    2009-03-01

    Skin sympathetic nerve activity (SSNA) is microneurographically recorded from the skin nerve fascicle in the peripheral nerves. It is characterized by the following features: 1) irregular, pulse asynchronous, burst activity with respiratory variation, 2) burst activity followed by vasoconstriction and/or sweating, 3) elicited by mental stress and arousal stimuli, e.g., sound, pain, electric stimulation, 4) burst with longer duration as compared with sympathetic outflow to muscles, and 5) burst activity following sudden inspiratory action. It comprises vasoconstrictor (VC) and sudomotor(SM) activity, as well as vasodilator (VD) activity. VC and SM discharge independently, whereas VD is the same activity with different neurotransmission. The VC and SM are differentiated by effector response, e.g., laser Doppler flowmetry and skin potential changes. SSNA function in thermoregulation in the human body; however it is also elicited by mental stress. SSNA is the lowest at thermoneutral ambient temperature (approximately 27 degrees C), and is enhanced in the pressence of ambient warm and cool air. The burst amplitude is well-correlated to both skin blood flow reduction rate or sweat rate change. The clinical application of SSNA comprises the following: 1) clarification of sweating phenomenon, 2) clarification and diagnosis of anhidrosis, 3) clarification and diagnosis of hyperhidrosis, 4) clarification of thermoregulatory function and diagnosis of thermoregulatory disorder, 5) clarification of pathophysiology and diagnosis of vascular diseases, e.g., Raynaud and Buerger diseases. 6) clarification of the relation between cognitive function and SSNA and 7) determination of pharmacological effect attributable to change in neuroeffector responses. PMID:19301594

  20. Myocardial pre-synaptic sympathetic function correlates with glucose uptake in the failing human heart

    International Nuclear Information System (INIS)

    We have previously shown that the myocardium of patients with heart failure (HF) is insulin resistant. Chronic β-adrenergic stimulation has been implicated in insulin resistance in cultured cardiomyocytes in vitro, where sustained noradrenaline stimulation inhibited insulin-modulated glucose uptake. As the failing heart is characterized by increased sympathetic drive, we hypothesized that there is a correlation between pre-synaptic sympathetic function and insulin sensitivity in the myocardium of patients with HF. Eight patients (aged 67 ± 7 years) with coronary artery disease and left ventricular dysfunction (ejection fraction 44 ± 10%) underwent function and viability assessment with cardiovascular magnetic resonance. Myocardial glucose utilization (MGU) was measured using positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG). Pre-synaptic noradrenaline re-uptake was measured by calculating [11C]meta-hydroxy-ephedrine (HED) volume of distribution (Vd) with PET. Two groups of healthy volunteers served as controls for the FDG (n = 8, aged 52 ± 4 years, p -1.g-1) and dysfunctional (0.49 ± 0.14 μmol.min-1.g-1) segments compared with controls (0.61 ± 0.7 μmol.min-1.g-1; p d was reduced in dysfunctional segments of patients (38.9 ± 21.2 ml.g-1) compared with normal segments (52.2 ± 19.6 ml.g-1) and compared with controls (62.7 ± 11.3 ml.g-1). In patients, regional MGU was correlated with HED Vd. The results of this study provide novel evidence of a correlation between cardiac sympathetic function and insulin sensitivity, which may represent one of the mechanisms contributing to insulin resistance in failing human hearts. (orig.)

  1. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  2. A new predisposing factor for trigemino-cardiac reflex during subdural empyema drainage: a case report

    OpenAIRE

    Arasho Belachew; Sandu Nora; Spiriev Toma; Kondoff Slavomir; Tzekov Christo; Schaller Bernhard

    2010-01-01

    Abstract Introduction The trigemino-cardiac reflex is defined as the sudden onset of parasympathetic dysrhythmia, sympathetic hypotension, apnea, or gastric hypermotility during stimulation of any of the sensory branches of the trigeminal nerve. Clinically, trigemino-cardiac reflex has been reported to occur during neurosurgical skull-base surgery. Apart from the few clinical reports, the physiological function of this brainstem reflex has not yet been fully explored. Little is known regardin...

  3. Sympathetic Activation in Chronic Heart Failure: Potential Benefits of Interventional Therapies.

    Science.gov (United States)

    Lachowska, Kamila; Gruchała, Marcin; Narkiewicz, Krzysztof; Hering, Dagmara

    2016-07-01

    Heart failure (HF) is a major and growing public health problem. This condition is associated with poor prognosis, a high rate of mortality, frequent hospitalization and increasing costs to health care systems. Pharmacological approaches aimed at reducing morbidity and mortality in HF have primarily focused on inhibition of the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system (SNS), both of which have been associated with disease development, progression and adverse cardiovascular (CV) outcomes. The increasing number of hospitalizations for HF decompensation suggests the failure of available treatment options, indicating the necessity for alternative therapeutic approaches. Alongside pharmacological and cardiac resynchronization therapies in selected patients with arrhythmia, recent advancements in the management of HF have been directed at inhibiting relevant neurogenic pathways underlying disease development and progression. Initial evidence regarding the safety and effectiveness of interventional procedures suggests that HF patients may benefit from novel adjunctive therapies. Here we review the critical role of sympathetic activation in HF and the rationale for therapeutic interventions including device-based and interventional approaches aimed at restoring autonomic neural balance in this condition. PMID:27193773

  4. Role of the Sympathetic Nervous System in Stress-Mediated Cardiovascular Disease.

    Science.gov (United States)

    Hering, Dagmara; Lachowska, Kamila; Schlaich, Markus

    2015-10-01

    A high incidence of acute cardiovascular events and sudden cardiac death following unexpected acute emotional stress or a natural catastrophic disaster has been well-documented over the past decades. Chronic psychosocial factors have been shown to be directly linked to the development of hypertension, cardiovascular disease and stroke. Activation of various neurogenic pathways is an important mediator of acute and chronic stress-induced hypertension and heart disease. Heightened sympathetic activation has been shown to be a critical contributor linking psychogenic effects on cardiovascular regulation to serious and often fatal CV outcomes. Accordingly, several therapeutic approaches that attenuate autonomic imbalance via modulation of increased sympathetic outflow by either non-pharmacological or interventional means have been shown to alleviate clinical symptoms. Likewise stress reduction per se achieved with transcendental medicine has been linked to improved patient outcomes. Therapies that oppose adrenergic activity and/or have the potential to attenuate negative emotions are likely to reduce cardiovascular risk and its adverse consequences attributable to chronic mental stress. PMID:26318888

  5. Anatomical study on the innervation of the elbow capsule☆

    Science.gov (United States)

    Cavalheiro, Cristina Schmitt; Filho, Mauro Razuk; Rozas, João; Wey, João; de Andrade, Antonio Marcos; Caetano, Edie Benedito

    2015-01-01

    Objectives To put forward an anatomical description of the innervation of the elbow capsule, illustrated through morphological analysis on dissections. Methods Thirty elbows from fresh fixed adult cadavers aged 32–74 years, of both sexes, were dissected. Results Among the dissected arms, we observed that the median nerve did not have any branches in two arms, while it had one branch in five arms, two branches in two arms, three branches in ten arms, four branches in nine arms and five branches in two arms. The radial nerve did not have any branches in two arms, while it had one branch in two arms, two branches in nine arms, three branches in ten arms, four branches in five arms and five branches in two arms. The ulnar nerve did not have any branches in three arms, while it had one branch in six arms, two branches in four arms, three branches in five arms, four branches in seven arms, five branches in four arms and six branches in one arm. Conclusions We observed branches of the radial, ulnar and medial nerves in the elbow joint, and a close relationship between their capsular and motor branches.

  6. Extrinsic Sensory Innervation of the Gut: Structure and Function.

    Science.gov (United States)

    Brookes, Simon; Chen, Nan; Humenick, Adam; Spencer, Nick J; Costa, Marcello

    2016-01-01

    Extrinsic sensory neurons play a key role in the function of the gastrointestinal tract. They are responsible for the sensations that arise in the gut and can initiate automatic reflexes. In some cases, disordered sensation is clinically problematic-pain, bloating, excessive urgency and nausea are well-known examples. Major advances have been made in understanding the function of somatic sensory neurons in the last 50 years. However, the sensory neurons that mediate sensations from the viscera remain less well understood. This is partly because viscera receive a dense autonomic innervation that can be difficult to separate from extrinsic sensory neurons. A key requirement to understand the genesis of sensation is to distinguish the different classes of sensory neurons and the types of stimuli which they encode. The aim of this short paper is to summarise what was known about these matters 30 years ago and highlight some of the major advances in the understanding of the types of extrinsic sensory neurons to the gut. Necessarily, the choice of papers is somewhat idiosyncratic, but they illustrate the range of advances that have been made in distinguishing the different classes of gastrointestinal afferent nerves. PMID:27379635

  7. Prevalence of cardiac arrhythmia in obstructive sleep apnea syndrome

    OpenAIRE

    Bayram, Nihal Akar; ÇİFTÇİ, Bülent; GÜVEN, Selma FIRAT; Bayram, Hüseyin; DİKER, Hasbi Erdem; Durmaz, Tahir; KELEŞ, TELAT; Bozkurt, Engin

    2010-01-01

    Repetitive transient activation of the parasympathetic and sympathetic systems in obstructive sleep apnea syndrome (OSAS) constitutes the basis for development of cardiac arrhythmias. We aimed to examine the prevalence of arrhythmias in OSAS. Materials and methods: Eighty-eight patients with suspected OSAS were included in the study. Polysomnography was performed overnight in all patients. Patients with apnea-hypopnea index (AHI) < 5 were considered OSAS negative, while patients with AHI ...

  8. Correlation between automated writing movements and striatal dopaminergic innervation in patients with Wilson's disease.

    Science.gov (United States)

    Hermann, Wieland; Eggers, Birk; Barthel, Henryk; Clark, Daniel; Villmann, Thomas; Hesse, Swen; Grahmann, Friedrich; Kühn, Hans-Jürgen; Sabri, Osama; Wagner, Armin

    2002-08-01

    Handwriting defects are an early sign of motor impairment in patients with Wilson's disease. The basal ganglia being the primary site of copper accumulation in the brain suggests a correlation with lesions in the nigrostiatal dopaminergic system. We have analysed and correlated striatal dopaminergic innervation using [(123)I]beta-CIT-SPECT and automated handwriting movements in 37 patients with Wilson's disease. There was a significant correlation of putaminal dopaminergic innervation with fine motor ability (p < 0,05 for NIV [number of inversion in velocity], NIA [number of inversion in acceleration], frequency). These data suggest that loss of dorsolateral striatal dopaminergic innervation has a pathophysiological function for decreased automated motor control in Wilson's disease. Furthermore analysis of automated handwriting movements could be useful for therapy monitoring and evaluation of striatal dopaminergic innervation. PMID:12195459

  9. The paradox of systemic vasodilatation and sympathetic nervous stimulation in space

    DEFF Research Database (Denmark)

    Norsk, Peter; Christensen, Niels Juel

    2009-01-01

    Cardiac output is increased by some 18% by weightlessness during the initial week of spaceflight compared to upright standing or sitting on the ground and more so during the initial days of flight than at the end. In addition, mean 24-h diastolic, but not systolic pressure, is significantly...... decreased by 5mmHg. This is in accordance with observations that very acute weightlessness during parabolic airplane flights and a week of weightlessness in space leads to a decrease in systemic vascular resistance. That the arterial resistance vessels are dilated in space is in contrast to the augmented...... sympathetic nervous activity and decreased urine production, which have consistently been observed in astronauts in space. These contrasting observations require further investigation....

  10. Cardiac rehabilitation

    Science.gov (United States)

    ... attack or other heart problem. You might consider cardiac rehab if you have had: Heart attack Coronary heart disease (CHD) Heart failure Angina (chest pain) Heart or heart valve surgery Heart transplant Procedures such as angioplasty and stenting In some ...

  11. Cardiac Rehabilitation

    Science.gov (United States)

    Cardiac rehabilitation (rehab) is a medically supervised program to help people who have A heart attack Angioplasty or coronary artery bypass grafting for coronary heart disease A heart valve repair or replacement A ...

  12. Immunhistochemische Untersuchungen zur Innervation der verschiedenen Regionen des menschlichen Ziliarkörpers

    OpenAIRE

    Kahl, Christine

    2010-01-01

    In der vorliegenden Arbeit wurde die Innervation des Ziliarkörpers im menschlichen Auge von 15 Körperspendern im Alter von 58 bis 94 Jahren immunhistochemisch untersucht. Neben panneuronalen Antikörpern wurden spezifische gegen Tyrosinhydroxylase (TH) und Neuropeptid Y (NPY) verwendet, um Nerven zu erfassen, die wahrscheinlich aus dem Ganglion cervicale superius stammen und somit Aufschlüsse zur sympathischen Innervation geben könnten. Die Neuropeptide vesikulärer Acetylcholintransporter (VAC...

  13. A Cadaveric Study of Ulnar Nerve Innervation of the Medial Head of Triceps Brachii

    OpenAIRE

    Bekler, Halil; Wolfe, Valerie M.; Rosenwasser, Melvin P.

    2008-01-01

    The presence of a separately innervated muscle unit of the triceps may have possible surgical importance and can be used for motor reconstructions. The ulnar nerve is closely situated to the triceps muscle and rarely examined above the elbow. The aim of this cadaveric study was to explore a possible contribution of the ulnar nerve to motor innervation of the medial head of the triceps. We dissected 18 limbs from axillae to midforearm. The path of the ulnar nerve was followed, and examination ...

  14. Cardiac sarcoidosis

    OpenAIRE

    Costello BT; Nadel J.; Taylor AJ

    2016-01-01

    Benedict T Costello,1,2 James Nadel,3 Andrew J Taylor,1,21Department of Cardiovascular Medicine, The Alfred Hospital, 2Baker IDI Heart and Diabetes Research Institute, Melbourne, VIC, 3School of Medicine, University of Notre Dame, Sydney, NSW, Australia Abstract: Cardiac sarcoidosis is a rare but life-threatening condition, requiring a high degree of clinical suspicion and low threshold for investigation to make the diagnosis. The cardiac manifestations include heart failure, conducting syst...

  15. Obesity-Related Metabolic Syndrome: Mechanisms of Sympathetic Overactivity

    Directory of Open Access Journals (Sweden)

    Maria Paola Canale

    2013-01-01

    Full Text Available The prevalence of the metabolic syndrome has increased worldwide over the past few years. Sympathetic nervous system overactivity is a key mechanism leading to hypertension in patients with the metabolic syndrome. Sympathetic activation can be triggered by reflex mechanisms as arterial baroreceptor impairment, by metabolic factors as insulin resistance, and by dysregulated adipokine production and secretion from visceral fat with a mainly permissive role of leptin and antagonist role of adiponectin. Chronic sympathetic nervous system overactivity contributes to a further decline of insulin sensitivity and creates a vicious circle that may contribute to the development of hypertension and of the metabolic syndrome and favor cardiovascular and kidney disease. Selective renal denervation is an emerging area of interest in the clinical management of obesity-related hypertension. This review focuses on current understanding of some mechanisms through which sympathetic overactivity may be interlaced to the metabolic syndrome, with particular regard to the role of insulin resistance and of some adipokines.

  16. Catheter based renal sympathetic denervaton: treatment option for resistant hypertension

    Directory of Open Access Journals (Sweden)

    BM Dhital

    2012-09-01

    Full Text Available Essential hypertension being a major public health problem with an atrocious toll. Furthermore resistant hypertension has increased morbidity and mortality in spite of using three or more antihypertensive medication, including one diuretic at their optimal doses to achieve the target blood pressure. Renal artery with its sympathetic afferent and efferent nerve signaling has substantial role in elevating and sustaining blood pressure. Blunting the overt sympathetic activity, catheter based renal sympathetic nerve denervation has become new treatment approach for the treatment of resistant hypertension. So in this review we address the current aspect and development of renal sympathetic denervation in the management of difficult to control hypertension. Journal of College of Medical Sciences-Nepal,2012,Vol-8,No-2, 58-63 DOI: http://dx.doi.org/10.3126/jcmsn.v8i2.6841

  17. Pharmacological evidence that alpha2A- and alpha2C-adrenoceptors mediate the inhibition of cardioaccelerator sympathetic outflow in pithed rats.

    Science.gov (United States)

    Cobos-Puc, Luis E; Villalón, Carlos M; Sánchez-López, Araceli; Lozano-Cuenca, Jair; Pertz, Heinz H; Görnemann, Tilo; Centurión, David

    2007-01-12

    It has been suggested that the alpha(2)-adrenoceptors mediating cardiac sympatho-inhibition in pithed rats closely resemble the pharmacological profile of the alpha(2A)-adrenoceptor subtype. However, several lines of evidence suggest that more than one subtype may be involved. Thus, the present study has pharmacologically re-evaluated the receptor subtype(s) involved in the inhibitory effect of the alpha(2)-adrenoceptor agonist, B-HT 933, on the tachycardic responses elicited by selective cardiac sympathetic stimulation (0.03, 0.1, 0.3, 1 and 3 Hz) in desipramine-pretreated pithed rats. I.v. continuous infusions of B-HT 933 (30 microg/kg min), which failed to modify the tachycardic responses to exogenous noradrenaline, inhibited those induced by preganglionic (C(7)-T(1)) stimulation of the cardiac sympathetic outflow at all frequencies of stimulation (0.03-3 Hz). This cardiac sympatho-inhibitory response to B-HT 933 was: (1) unaltered by saline (1 ml/kg) or the antagonists BRL44408 (100 microg/kg; alpha(2A)) or imiloxan (3000 and 10,000 microg/kg; alpha(2B)); (2) partially antagonized by BRL44408 (300 microg/kg) or MK912 (10 microg/kg; alpha(2C)) given separately; and (3) completely antagonized by rauwolscine (300 microg/kg; alpha(2)), MK912 (30 microg/kg) or the combination of BRL44408 (300 microg/kg) plus MK912 (10 microg/kg). Moreover, the above doses of antagonists, which are high enough to block their respective receptors, failed to block per se the tachycardic responses to sympathetic stimulation. These results suggest that the cardiac sympatho-inhibition induced by B-HT 933 in pithed rats is mainly mediated by stimulation of alpha(2A)- and alpha(2C)-adrenoceptors. PMID:17109851

  18. The innervation of the human myocardium at birth.

    OpenAIRE

    Chow, L T; Chow, S S; Anderson, R H; Gosling, J A

    1995-01-01

    In order to delineate the type and distribution of autonomic nerves within the atrial and ventricular myocardium of the neonatal human heart, numerous samples of atrial and ventricular myocardium from 4 neonatal human hearts with no cardiac anomaly, freshly obtained at necropsy, were processed and studied using immunohistochemical and enzyme histochemical techniques. The antisera included those used to demonstrate protein gene product (PGP) 9.5 as a general neural marker, dopamine beta-hydrox...

  19. Effects of leptin on sympathetic nerve activity in conscious mice

    OpenAIRE

    Morgan, Donald A.; Despas, Fabien; Rahmouni, Kamal

    2015-01-01

    The adipocyte-derived hormone, leptin, has emerged as an important regulator of regional sympathetic nerve activity (SNA) with pathophysiological implications in obesity. Genetically engineered mice are useful to understand the molecular pathways underlying the SNA responses evoked by leptin. However, so far the effect of leptin on direct SNA in mice has been studied under general anesthesia. Here, we examined the sympathetic responses evoked by leptin in conscious mice. Mice were instrumente...

  20. Obesity-Related Metabolic Syndrome: Mechanisms of Sympathetic Overactivity

    OpenAIRE

    Maria Paola Canale; Simone Manca di Villahermosa; Giuliana Martino; Valentina Rovella; Annalisa Noce; Antonino De Lorenzo; Nicola Di Daniele

    2013-01-01

    The prevalence of the metabolic syndrome has increased worldwide over the past few years. Sympathetic nervous system overactivity is a key mechanism leading to hypertension in patients with the metabolic syndrome. Sympathetic activation can be triggered by reflex mechanisms as arterial baroreceptor impairment, by metabolic factors as insulin resistance, and by dysregulated adipokine production and secretion from visceral fat with a mainly permissive role of leptin and antagonist role of adipo...

  1. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons

    OpenAIRE

    Holstein, Gay R.; Friedrich, Victor L. Jr.; Martinelli, Giorgio P.

    2016-01-01

    The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and ...

  2. Schwanomma From Cervical Sympathetic Chain Ganglion - A Rare Presentation.

    Science.gov (United States)

    Asma, A Affee; Kannah, E

    2015-10-01

    Schwanommas arising from cervical sympathetic chain are tumours that are rare in occurrence. These lesions are usually difficult to differentiate from a vagal schwanomma and a carotid body tumour during the initial workup. In this report, a rarely seen huge cervical sympathetic chain schwanomma case with partial Horner's syndrome is being presented in detail, which to our known knowledge, is one of the few cases reported in literature. PMID:26557566

  3. Axon Count and Sympathetic Skin Responses in Lumbosacral Radiculopathy

    OpenAIRE

    Erdem Tilki, Hacer; Coşkun, Melek; Ünal Akdemir, Neslihan; İncesu, Lütfi

    2014-01-01

    Background and Purpose Electrodiagnostic studies can be used to confirm the diagnosis of lumbosacral radiculopathies, but more sensitive diagnostic methods are often needed to measure the ensuing motor neuronal loss and sympathetic failure. Methods Twenty-six patients with lumbar radiculopathy and 30 controls were investigated using nerve conduction studies, motor unit number estimation (MUNE), testing of the sympathetic skin response (SSR), quantitative electromyography (QEMG), and magnetic ...

  4. Receptor-mediated regional sympathetic nerve activation by leptin.

    OpenAIRE

    Haynes, W G; Morgan, D A; Walsh, S A; Mark, A L; Sivitz, W I

    1997-01-01

    Leptin is a peptide hormone produced by adipose tissue which acts centrally to decrease appetite and increase energy expenditure. Although leptin increases norepinephrine turnover in thermogenic tissues, the effects of leptin on directly measured sympathetic nerve activity to thermogenic and other tissues are not known. We examined the effects of intravenous leptin and vehicle on sympathetic nerve activity to brown adipose tissue, kidney, hindlimb, and adrenal gland in anesthetized Sprague-Da...

  5. Centrally administered glucagon stimulates sympathetic nerve activity in rat.

    Science.gov (United States)

    Krzeski, R; Czyzyk-Krzeska, M F; Trzebski, A; Millhorn, D E

    1989-12-18

    The effect of pancreatic glucagon given intravenously, intracerebroventricularly and microinjected into the nucleus of the solitary tract on sympathetic activity in the cervical trunk and adrenal nerve was examined in rat. In each case glucagon caused a relatively long-lasting substantial increase in discharge of both nerves. This finding shows that glucagon can act centrally to stimulate sympathetic activity. The most probable site for the sympathoexcitatory effect of glucagon is the nucleus of the solitary tract. PMID:2598031

  6. Cardiovascular sympathetic arousal in response to different mental stressors.

    Science.gov (United States)

    Mestanik, M; Mestanikova, A; Visnovcova, Z; Calkovska, A; Tonhajzerova, I

    2016-01-01

    The altered regulation of autonomic response to mental stress can result in increased cardiovascular risk. The laboratory tests used to simulate the autonomic responses to real-life stressors do not necessarily induce generalized sympathetic activation; therefore, the assessment of regulatory outputs to different effector organs could be important. We aimed to study the cardiovascular sympathetic arousal in response to different mental stressors (Stroop test, mental arithmetic test) in 20 healthy students. The conceivable sympathetic vascular index - spectral power of low frequency band of systolic arterial pressure variability (LF-SAP) and novel potential cardio-sympathetic index - symbolic dynamics heart rate variability index 0V% were evaluated. The heart and vessels responded differently to mental stress - while Stroop test induced increase of both 0V% and LF-SAP indices suggesting complex sympathetic arousal, mental arithmetic test evoked only 0V% increase compared to baseline (pStroop test compared to mental arithmetic test potentially indicating the effect of different central processing (0V%, LF-SAP: p<0.001; HR, MAP: p<0.01). The different effectors' sympathetic responses to cognitive stressors could provide novel important information regarding potential pathomechanisms of stress-related diseases. PMID:26674281

  7. Role of sympathetic nerve activity in the process of fainting

    Directory of Open Access Journals (Sweden)

    Satoshi eIwase

    2014-09-01

    Full Text Available Syncope is defined as a transient loss of consciousness and postural tone, characterized by rapid onset, short duration, and spontaneous recovery, and the process of syncope progression will be described with two types of sympathetic change. Simultaneous recordings of microneurographically recorded MSNA and continuous and noninvasive blood pressure measurement have disclose what is going on in the course of progression of the syncope. Vasovagal or neurally mediated syncope, three stages are identified in the course of syncope onset, oscillation, imbalance, and catastrophe phases. The vasovagal syncope is characterized by the sympathoexcitation, followed by vagal overcome via the Bezold-Jarisch reflex. Orthostatic syncope is caused by the response failure or lack of sympathetic nerve activity toward the orthostatic challenge followed by the fluid shift, and subsequent cerebral low perfusion. Four causes are considered for the compensatory failure, which triggers the orthostatic syncope; hypovolemia, increased pooling in the lower body, failure to activate the sympathetic activity, and failure of vasoconstriction against sympathetic vasoconstrictive stimulation. Many pathophysiological conditions were described in the viewpoint of 1 exaggerated sympathoexcitation and 2 failure to activate the sympathetic nerve. We conclude that the sympathetic nervous system can control the cardiovascular function, and its failure resulted syncope, however, responses of the system by microneurographically recorded MSNA would determine the pathophysiology of the onset and progression of syncope, explaining the treatment effect that could be achieved by the analysis of this mechanism.

  8. Nitrergic innervation of trigeminal and hypoglossal motoneurons in the cat.

    Science.gov (United States)

    Pose, Ines; Fung, Simon; Sampogna, Sharon; Chase, Michael H; Morales, Francisco R

    2005-04-11

    The present study was undertaken to determine the location of trigeminal and hypoglossal premotor neurons that express neuronal nitric oxide synthase (nNOS) in the cat. Cholera toxin subunit b (CTb) was injected into the trigeminal (mV) or the hypoglossal (mXII) motor nuclei in order to label the corresponding premotor neurons. CTb immunocytochemistry was combined with NADPH-d histochemistry or nNOS immunocytochemistry to identify premotor nitrergic (NADPH-d(+)/CTb(+) or nNOS(+)/ CTb(+) double-labeled) neurons. Premotor trigeminal as well as premotor hypoglossal neurons were located in the ventro-medial medullary reticular formation in a region corresponding to the nucleus magnocellularis (Mc) and the ventral aspect of the nucleus reticularis gigantocellularis (NRGc). Following the injection of CTb into the mV, this region was found to contain a total of 60 +/- 15 double-labeled neurons on the ipsilateral side and 33 +/- 14 on the contralateral side. CTb injections into the mXII resulted in 40 +/- 17 double-labeled neurons in this region on the ipsilateral side and 16 +/- 5 on the contralateral side. Thus, we conclude that premotor trigeminal and premotor hypoglossal nitrergic cells coexist in the same medullary region. They are colocalized with a larger population of nitrergic cells (7200 +/- 23). Premotor neurons in other locations did not express nNOS. The present data demonstrate that a population of neurons within the Mc and the NRGc are the source of the nitrergic innervation of trigeminal and hypoglossal motoneurons. Based on the characteristics of nitric oxide actions and its diffusibility, we postulate that these neurons may serve to synchronize the activity of mV and mXII motoneurons. PMID:15804497

  9. A comparison of sympathoadrenal activity and cardiac performance at rest and during exercise in patients with ventricular demand or atrial synchronous pacing.

    OpenAIRE

    Pehrsson, S K; Hjemdahl, P; Nordlander, R; Aström, H

    1988-01-01

    Cardiac sympathetic function was assessed by measuring the coronary sinus overflow of noradrenaline and dopamine at rest and during supine exercise in eight patients with high degree atrioventricular block treated with dual chamber pacemakers (DDD). Patients exercised (30-60 W) during both ventricular inhibited (VVI) and atrial synchronous (VAT) pacing. During exercise cardiac output increased less markedly in the VVI mode than in the VAT mode. The cardiac output response was entirely stroke ...

  10. Characteristics of renal sympathetic nerve single units in rabbits with angiotensin-induced hypertension.

    Science.gov (United States)

    Burke, Sandra L; Lukoshkova, Elena V; Head, Geoffrey A

    2016-01-01

    We examined the effect of chronic angiotensin (Ang II)-induced hypertension on activity of postganglionic renal sympathetic units to determine whether altered whole renal nerve activity is due to recruitment or changes in firing frequency. Rabbits were treated with a low (20 ng kg(-1) min(-1), 8 weeks) or high dose (50 ng kg(-1) min(-1), 4 weeks) of Ang II before the experiment under chloralose-urethane anaesthesia. Spontaneously active units were detected from multiunit recordings using an algorithm that separated units by action potential shape using templates that matched spikes within a prescribed standard deviation. Multiunit sympathetic nerve activity was 40% higher in rabbits treated with low-dose Ang II than in sham (P = 0.012) but not different in high-dose Ang II. Resting firing frequency was similar in sham rabbits (1.00 ± 0.09 spikes s(-1), n = 144) and in those treated with high-dose Ang II (1.10 ± 0.08 spikes s(-1), n = 112) but was lower with low-dose Ang II (0.65 ± 0.08 spikes s(-1), n = 149, P < 0.05). Unit firing rhythmicity was linked to the cardiac cycle and was similar in sham and low-dose Ang II groups but 29-32% lower in rabbits treated with high-dose Ang II (P < 0.001). Cardiac linkage followed a similar pattern during hypoxia. All units showed baroreceptor dependency. Baroreflex gain and range were reduced and curves shifted to the right in Ang II groups. Firing frequency during hypoxia increased by +39% in low-dose Ang II and +82% in shams, but the greatest increase was in the high-dose Ang II group (+103%, P(dose) = 0.001). Responses to hypercapnia were similar in all groups. Increases in sympathetic outflow in hypertension caused by low-dose chronic Ang II administration are due to recruitment of neurons, but high-dose Ang II increases firing frequency in response to chemoreceptor stimuli independently of the arterial baroreceptors. PMID:26467849

  11. Sympathetic neural modulation of the immune system

    International Nuclear Information System (INIS)

    One route by which the central nervous system communicates with lymphoid organs in the periphery is through the sympathetic nervous system (SNS). To study SNS regulation of immune activity in vivo, selective removal of peripheral noradrenergic nerve fibers was achieved by administration of the neurotoxic drug, 6-hydroxydopamine (6-OHDA), to adult mice. To assess SNS influence on lymphocyte proliferation in vitro, uptake of 125iododeoxyuridine (125IUdR), a DNA precursor, was measured following 6-OHDA treatment. Sympathectomy prior to epicutaneous immunization with TNCB did not alter draining lymph nodes (LN) cell proliferation, whereas 6-OHDA treatment before footpad immunization with KLH reduced DNA synthesis in popliteal LN by 50%. In mice which were not deliberately immunized, sympathectomy stimulated 125IUdR uptake inguinal and axillary LN, spleen, and bone marrow. In vitro, these LN and spleen cells exhibited decreased proliferation responses to the T cell mitogen, concanavalin A (Con A), whereas lipopolysaccharide (LPS)-stimulated IgG secretion was enhanced. Studies examining 51Cr-labeled lymphocyte trafficking to LN suggested that altered cell migration may play a part in sympathectomy-induced changes in LN cell function

  12. Pharmacological characterization of the inhibition by moxonidine and agmatine on the cardioaccelerator sympathetic outflow in pithed rats.

    Science.gov (United States)

    Cobos-Puc, Luis E; Villalón, Carlos M; Ramírez-Rosas, Martha B; Sánchez-López, Araceli; Lozano-Cuenca, Jair; Gómez-Díaz, Benjamín; MaassenVanDenBrink, Antoinette; Centurión, David

    2009-08-15

    This study analysed the inhibition produced by the agonists moxonidine (imidazoline I(1) receptors>alpha(2)-adrenoceptors) and agmatine (endogenous ligand of imidazoline I(1)/I(2) receptors), using B-HT 933 (6-ethyl-5,6,7,8-tetrahydro-4H-oxazolo[4,5-d]azepin-2-amine dihydrochloride; alpha(2)-adrenoceptors) for comparison, on the rat cardioaccelerator sympathetic outflow. Male Wistar rats were pithed and prepared to stimulate the cardiac sympathetic outflow or to receive i.v. bolus of exogenous noradrenaline. Sympathetic stimulation or noradrenaline produced, respectively, frequency-dependent and dose-dependent tachycardic responses. I.v. continuous infusions of moxonidine (3 and 10 microg/kg min), agmatine (1000 and 3000 microg/kg min) and B-HT 933 (30 and 100 microg/kg min) inhibited the tachycardic responses to sympathetic stimulation, but not those to noradrenaline. The cardiac sympatho-inhibition by either moxonidine (3 microg/kg min) or B-HT 933 (30 microg/kg min) was not modified by i.v. injections of saline or the antagonists AGN192403 [(+/-)-2-endo-Amino-3-exo-isopropylbicyclo[2.2.1]heptane hydrochloride; 3000microg/kg; imidazoline I(1) receptors] or BU224 (2-(4,5-dihydroimidazol-2-yl)quinoline hydrochloride; 300 microg/kg; imidazoline I(2) receptors) and abolished by rauwolscine (300 microg/kg; alpha(2)-adrenoceptors). At the same doses of these compounds, the sympatho-inhibition to moxonidine (10 microg/kg min) and agmatine (1000 microg/kg min) was: (1) not modified by saline, AGN192403 or BU224; (2) partially blocked by rauwolscine or the combination of rauwolscine plus BU224; and (3) abolished by the combination of rauwolscine plus AGN192403. These results demonstrate that the cardiac sympatho-inhibition to: (1) 3 microg/kg min moxonidine or 30 microg/kg min B-HT 933 involves alpha(2)-adrenoceptors; and (2) 10 microg/kg min moxonidine or 1000 microg/kg min agmatine involves alpha(2)-adrenoceptors and imidazoline I(1) receptors. PMID:19527708

  13. Factors influencing the cardiac MIBG accumulation

    International Nuclear Information System (INIS)

    Following factors possibly influencing the cardiac MIBG accumulation were examined mainly in mice. 1. The specific activity of the MIBG (meta-iodo-benzyl guanidine) on the neuronal and non-neuronal fractions. 2. Motor restriction stress on MIBG accumulation and washout. 3. Loading and restriction of sodium chloride on the accumulation and effect of suppression of renin-angiotensin system. 4. Examinations in Dahl rats. 125I- or 131I-MIBG was intravenously administered to mice at 74 kBq. At 30 min or 4 hr after administration, mice were sacrificed and their left ventricles were dissected out for measurement of radioactivity in a liquid scintillation counter. Salt-sensitive and -resistant Dahl rats were given with 37 MBq of 123I-MIBG and cardiac radioactivity was measured externally for calculation of washout. Factors examined were found highly correlated with the accumulation of MIBG and measurement of its washout was considered useful for evaluating sympathetic activity. (K.H.)

  14. Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie

    2011-07-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  15. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  16. Cardiac sarcoidosis

    Science.gov (United States)

    Smedema, J.P.; Zondervan, P.E.; van Hagen, P.; ten Cate, F.J.; Bresser, P.; Doubell, A.F.; Pattynama, P.; Hoogsteden, H.C.; Balk, A.H.M.M.

    2002-01-01

    Sarcoidosis is a multi-system granulomatous disorder of unknown aetiology. Symptomatic cardiac involvement occurs in approximately 5% of patients. The prevalence of sarcoidosis in the Netherlands is unknown, but estimated to be approximately 20 per 100,000 population (3200 patients). We report on five patients who presented with different manifestations of cardiac sarcoidosis, and give a brief review on the current management of this condition. Magnetic Resonance Imaging (MRI) can be of great help in diagnosing this condition as well as in the follow-up of the response to therapy. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:25696121

  17. Expression of muscle-gene-specific isozymes of phosphorylase and creatine kinase in innervated cultured human muscle

    OpenAIRE

    1986-01-01

    Isozymes of creatine kinase and glycogen phosphorylase are excellent markers of skeletal muscle maturation. In adult innervated muscle only the muscle-gene-specific isozymes are present, whereas aneurally cultured human muscle has predominantly the fetal pattern of isozymes. We have studied the isozyme pattern of human muscle cultured in monolayer and innervated by rat embryo spinal cord explants for 20-42 d. In this culture system, large groups of innervated muscle fibers close to the ventra...

  18. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity.

    Directory of Open Access Journals (Sweden)

    Yumie Morimoto-Kobayashi

    Full Text Available Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1 expression in brown adipose tissue (BAT was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA. Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional

  19. Sympathetic cooling of ytterbium with rubidium

    International Nuclear Information System (INIS)

    Within the scope of this thesis, a mixture of ultracold ytterbium and rubidium atoms was experimentally realized and investigated. For these experiments, a novel trap geometry was developed which allows simultaneous trapping and cooling of diamagnetic and paramagnetic atomic species. The main focus was put on the investigation of the interspecies scattering properties, where sympathetic cooling of ytterbium through elastic collisions with rubidium could be demonstrated. In addition, the interspecies scattering length could be determined. In the current configuration the combined trap allows the preparation of up to 2.105 atoms of 170Yb, 171Yb, 172Yb, 174Yb or 176Yb at a temperature of 40..60 μK and a density in the range of 1012 cm-3, and of about 10787Rb atoms at a temperature of 25 μK and a density in the range of 5.1011 cm-3. Detailed studies of the thermalization of bosonic 170Yb, 172Yb, 174Yb and 176Yb and of fermionic 171Yb each with 87Rb were performed under varying experimental conditions. The deduced total scattering cross section was clearly found to increase with higher mass of the ytterbium isotope. In general, a mass scaling of the scattering properties is in agreement with theoretical models and former experimental work. With the assumption of pure s-wave scattering, which is approximately fulfilled for the given experimental parameters, the interspecies scattering length could be derived from the measured thermalization data and was found to be (in units of the Bohr radius a0): 170Yb-87Rb:(18+12-4)a0, 171Yb-87Rb:(25+14-7)a0, 172Yb-87Rb:(33+23-7)a0, 174Yb-87Rb:(83+89-25)a0, 176Yb-87Rb:(127+245-45)a0. (orig./HSI)

  20. Bilateral tectal innervation by regenerating optic nerve fibers in goldfish: a radioautographic, electrophysiological and behavioral study.

    Science.gov (United States)

    Springer, A D; Heacock, A M; Schmidt, J T; Agranoff, B W

    1977-06-17

    Following unilateral enucleation and optic nerve crush in goldfish, the remaining nerve regenerates and innervates both optic tecta. Approximately 5% of the nerve fibers reach the ipsilateral optic tectum (IOT) via the ipsilateral tract at the chiasma. Comparable debris in both tracts was not sufficient to result in an IOT projection since when both nerves were crushed simultaneously the usual pattern was seen, i.e., each nerve innervated a contralateral optic tectum (COT). When the arrival of one nerve at the chiasma was delayed by staggering the nerve crushes, the nerve that first arrived at the chiasma partially innervated the Iot. In most instances the entire IOT was innervated, however, the stratigraphic distribution of fibers in the various tectal lamina was atypical. Electrophysiological analysis indicated that fibers from each area of the retina innervated the IOT visuotopically. The COT was ablated in order to determine whether the IOT projection could mediate behavior. All fish failed to respond to changes in illumination as measured by respiration and failed to swim with or against the stripes in an optomotor drum. Thus, the IOT input, possibly because of its sparseness, could not be shown to be behaviorally functional. PMID:69466

  1. Effect of amine uptake inhibitors on the uptake of 14C-bretylium in intact and degenerating sympathetic nerves of the rat

    International Nuclear Information System (INIS)

    The effect of different amine uptake inhibitors on the accumulation of 14C-bretylium in sympathetically denervated or decentralized salivary glands were studied in vivo in rats 11-14 hours after the surgical intervention. The time period chosen is known to be critical for the delaying effect of bretylium on the degeneration transmitter release in sympathetically innervated organs. Cocaine, desmethylimipramine (DMI), protriptyline or reserpine all depressed the uptake of 14C-bretylium in both denervated and decentralized salivary glands, cocaine being the most efficient one. DMI and protriptyline, but not cocaine inhibit the degeneration delaying effect of bretylium, while all three agents inhibit amine uptake at level of the nerve cell membrane. Apparently, bretylium reaches the critical sites of its degeneration delaying action by the axonal amine pump but only a small fraction of the drug entering the degenerating adrenergic nerve terminal is needed at the critical sites to interact with the degeneration processes. The difference between the tricyclic antidepressants on one hand and cocaine on the other with respect to the effect on the degeneration delaying action of bretylium, must depend on some action different from the axonal membrane uptake inhibition. Reserpine which is known not to interfere with the delaying effect of bretylium on the denervation degeneration did reduce the uptake of 14C-bretylium. This fact seems to indicate that the site of action of bretylium is located outside the adrenergic nerve granules. (author)

  2. Cardiac Pacemakers

    International Nuclear Information System (INIS)

    A complete survey of physiological biophysical,clinical and engineering aspects of cardiac facing,including the history and an assessment of possible future developments.Among the topics studied are: pacemakers, energy search, heart stimulating with pacemakers ,mathematical aspects of the electric cardio stimulation chronic, pacemaker implants,proceeding,treatment and control

  3. Activation of the hypothalamic paraventricular nucleus by forebrain hypertonicity selectively increases tonic vasomotor sympathetic nerve activity.

    Science.gov (United States)

    Holbein, Walter W; Toney, Glenn M

    2015-03-01

    We recently reported that mean arterial pressure (MAP) is maintained in water-deprived rats by an irregular tonic component of vasomotor sympathetic nerve activity (SNA) that is driven by neuronal activity in the hypothalamic paraventricular nucleus (PVN). To establish whether generation of tonic SNA requires time-dependent (i.e., hours or days of dehydration) neuroadaptive responses or can be abruptly generated by even acute circuit activation, forebrain sympathoexcitatory osmosensory inputs to PVN were stimulated by infusion (0.1 ml/min, 10 min) of hypertonic saline (HTS; 1.5 M NaCl) through an internal carotid artery (ICA). Whereas isotonic saline (ITS; 0.15 M NaCl) had no effect (n = 5), HTS increased (P phosphonovaleric acid (AP5; n = 6) had similar effects. Analysis of respiratory rhythmic bursting of sSNA revealed that ICA HTS increased mean voltage (P < 0.001) without affecting the amplitude of inspiratory or expiratory bursts. Analysis of cardiac rhythmic sSNA likewise revealed that ICA HTS increased mean voltage. Cardiac rhythmic sSNA oscillation amplitude was also increased, which is consistent with activation of arterial baroreceptor during the accompanying pressor response. Increased mean sSNA voltage by HTS was blocked by prior PVN inhibition (muscimol) and blockade of PVN NMDA receptors (AP5). We conclude that even acute glutamatergic activation of PVN (i.e., by hypertonicity) is sufficient to selectively increase a tonic component of vasomotor SNA. PMID:25519737

  4. Forearm training attenuates sympathetic responses to prolonged rhythmic forearm exercise

    Science.gov (United States)

    Sinoway, L.; Shenberger, J.; Leaman, G.; Zelis, R.; Gray, K.; Baily, R.; Leuenberger, U.

    1996-01-01

    We previously demonstrated that nonfatiguing rhythmic forearm exercise at 25% maximal voluntary contraction (12 2-s contractions/min) evokes sympathoexcitation without significant engagement of metabolite-sensitive muscle afferents (B.A. Batman, J.C. Hardy, U.A. Leuenberger, M.B. Smith, Q.X. Yang and L.I. Sinoway. J. Appl. Physiol. 76: 1077-1081, 1994). This is in contrast to the sympathetic nervous system responses observed during fatiguing static forearm exercise where metabolite-sensitive afferents are the key determinants of sympathetic activation. In this report we examined whether forearm exercise training would attenuate sympathetic nervous system responses to rhythmic forearm exercise. We measured heart rate, mean arterial blood pressure (MAP), muscle sympathetic nerve activity (microneurography), plasma norepinephrine (NE), and NE spillover and clearance (tritiated NE kinetics) during nonfatiguing rhythmic forearm exercise before and after a 4-wk unilateral forearm training paradigm. Training had no effect on forearm mass, maximal voluntary contraction, or heart rate but did attenuate the increase in MAP (increase in MAP: from 15.2 +/- 1.8 before training to 11.4 +/- 1.4 mmHg after training; P forearm. Thus forearm training reduces sympathetic responses during a nonfatiguing rhythmic handgrip paradigm that does not engage muscle metaboreceptors. We speculate that this effect is due to a conditioning-induced reduction in mechanically sensitive muscle afferent discharge.

  5. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    OpenAIRE

    Fu, Liang-Wu; Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischem...

  6. Functional and morphological assessment of diaphragm innervation by phrenic motor neurons.

    Science.gov (United States)

    Martin, Melanie; Li, Ke; Wright, Megan C; Lepore, Angelo C

    2015-01-01

    This protocol specifically focuses on tools for assessing phrenic motor neuron (PhMN) innervation of the diaphragm at both the electrophysiological and morphological levels. Compound muscle action potential (CMAP) recording following phrenic nerve stimulation can be used to quantitatively assess functional diaphragm innervation by PhMNs of the cervical spinal cord in vivo in anesthetized rats and mice. Because CMAPs represent simultaneous recording of all myofibers of the whole hemi-diaphragm, it is useful to also examine the phenotypes of individual motor axons and myofibers at the diaphragm NMJ in order to track disease- and therapy-relevant morphological changes such as partial and complete denervation, regenerative sprouting and reinnervation. This can be accomplished via whole-mount immunohistochemistry (IHC) of the diaphragm, followed by detailed morphological assessment of individual NMJs throughout the muscle. Combining CMAPs and NMJ analysis provides a powerful approach for quantitatively studying diaphragmatic innervation in rodent models of CNS and PNS disease. PMID:26066371

  7. Renal sympathetic denervation for the treatment of refractory hypertension.

    Science.gov (United States)

    Leong, Kui Toh Gerard; Walton, Antony; Krum, Henry

    2014-01-01

    Resistant hypertension poses significant health concerns. There are strong demands for new and safe therapies to control resistant hypertension while addressing its common causes, specifically poor compliance to lifelong polypharmacy, lifestyle modifications, and physician inertia. The sympathetic nervous system plays a significant pathophysiological role in hypertension. Surgical sympathectomy for blood pressure reduction is an old but extremely efficacious therapeutic concept, now abandoned with the dawn of a safer contemporary pharmacology era. Recently, clinical studies have revealed promising results for safe and sustained blood pressure reduction with percutaneous renal sympathetic denervation. This is a novel, minimally invasive, device-based therapy, specifically targeting and ablating the renal artery nerves with radiofrequency waves without permanent implantation. There are also reported additional benefits in related comorbidities, such as impaired glucose metabolism, renal impairment, left ventricular hypertrophy, heart failure, and others. This review focuses on how selective renal sympathetic denervation works, its present and potential therapeutic indications, and its future directions. PMID:24422574

  8. Analisis Sympathetic Trip pada Penyulang Ungasan-Bali Resort, Bali

    Directory of Open Access Journals (Sweden)

    Cakasana Alif Bathamantri

    2012-09-01

    Full Text Available Sistem pengaman dalam tenaga listrik dimaksudkan untuk melokalisir gangguan agar tidak meluas sesuai dengan cakupan daerah pengaman. Salah satu kegagalan pengaman melokalisir gangguan disebut sympathetic trip yaitu kegagalan rele pada penyulang 20 kV di gardu induk dimana penyulang yang tidak terganggu, akan ikut trip dengan penyulang yang terganggu. Dalam tugas akhir ini akan dibahas mengenai analisa penyebab terjadinya peristiwa sympathetic trip pada penyulang Ungasan-Bali Resort 20kV di Bali karena di tempat inilah tercatat sering terjadi gangguan sympathetic trip. Besarnya arus kapasitif, setting ground fault relay dan koordinasi rele pengaman semua akan di analisa pada tugas akhir ini. Untuk analisa koordinasi rele, perhitungan dilakukan menggunakan program ETAP 7.0.

  9. Propranolol for Paroxysmal Sympathetic Hyperactivity with Lateralizing Hyperhidrosis after Stroke

    Directory of Open Access Journals (Sweden)

    Jason W. Siefferman

    2015-01-01

    Full Text Available Brain injury can lead to impaired cortical inhibition of the hypothalamus, resulting in increased sympathetic nervous system activation. Symptoms of paroxysmal sympathetic hyperactivity may include hyperthermia, tachycardia, tachypnea, vasodilation, and hyperhidrosis. We report the case of a 41-year-old man who suffered from a left middle cerebral artery stroke and subsequently developed central fever, contralateral temperature change, and hyperhidrosis. His symptoms abated with low-dose propranolol and then returned upon discontinuation. Restarting propranolol again stopped his symptoms. This represents the first report of propranolol being used for unilateral dysautonomia after stroke. Propranolol is a lipophilic nonselective beta-blocker which easily crosses the blood-brain barrier and may be used to treat paroxysmal sympathetic hyperactivity.

  10. Quantified distribution of the noradrenaline innervation in the hippocampus of adult rat

    International Nuclear Information System (INIS)

    A recently developed radioautographic technique, based on the uptake labeling of monoamine terminals in vitro, was used to quantify the noradrenaline (NA) innervation in adult rat hippocampus. After incubation of brain slices with 1 microM 3H-NA, the NA varicosities were visualized as small aggregates of silver grains, in light microscope radioautographs prepared at 3 equidistant horizontal levels across the ventral 2/3 of the hippocampus. Using a computer-assisted image analyzer, counts were obtained from the subiculum (SUB), 3 sectors of Ammon's horn (CA1, CA3-a, CA3-b) and 3 sectors of the dentate gyrus (DG-medial blade, crest, and lateral blade), every lamina being sampled in each region. After a double correction for duration of radioautographic exposure and section thickness, and following measurement of varicosity diameter in electron microscope radioautographs, it was possible to express these results in number of terminals per volumetric unit of tissue. It was thus found that the overall density of hippocampal NA innervation averages 2.1 million varicosities/mm3 of tissue, a value almost twice as high as that in cerebral cortex. This innervation is 20% denser ventrally than dorsally and is heterogeneous both in terms of regional and laminar distribution. SUB and DG are more strongly innervated than Ammon's horn, wherein CA1 has the lowest overall density. In SUB and CA1, there is a clear predilection of NA varicosities for the stratum moleculare. In CA3, there is a narrow band of even stronger innervation in the stratum radiatum, near the apical border of the stratum pyramidale, contrasting with a 3 times lower density in this cell layer and the stratum oriens. In DG, the NA innervation is again the weakest in the cell body layer and exhibits an almost 3-fold greater density in the polymorph layer, the highest of all hippocampus

  11. The adductor part of the adductor magnus is innervated by both obturator and sciatic nerves.

    Science.gov (United States)

    Takizawa, Megumi; Suzuki, Daisuke; Ito, Hajime; Fujimiya, Mineko; Uchiyama, Eiichi

    2014-07-01

    The hip adductor group, innervated predominantly by the obturator nerve, occupies a large volume of the lower limb. However, case reports of patients with obturator nerve palsy or denervation have described no more than minimal gait disturbance. Those facts are surprising, given the architectural characteristics of the hip adductors. Our aim was to investigate which regions of the adductor magnus are innervated by the obturator nerve and by which sciatic nerve and to consider the clinical implications. Twenty-one lower limbs were examined from 21 formalin-fixed cadavers, 18 males and 3 females. The adductor magnus was dissected and was divided into four parts (AM1-AM4) based on the locations of the perforating arteries and the adductor hiatus. AM1 was supplied solely by the obturator nerve. AM2, AM3, and AM4 received innervation from both the posterior branch of the obturator nerve and the tibial nerve portion of the sciatic nerve in 2 (9.5%), 20 (95.2%), and 6 (28.6%) of the cadavers, respectively. The double innervation in more than 90% of the AM3s is especially noteworthy. Generally, AM1-AM3 corresponds to the adductor part, traditionally characterized as innervated by the obturator nerve, and AM4 corresponds to the hamstrings part, innervated by the sciatic nerve. Here, we showed that the sciatic nerve supplies not only the hamstrings part but also the adductor part. These two nerves spread more widely than has generally been believed, which could have practical implications for the assessment and treatment of motor disability. PMID:23813615

  12. TRPV1 gene deletion exacerbates inflammation and atypical cardiac remodeling after myocardial infarction

    OpenAIRE

    Huang, Wei; Rubinstein, Jack; Prieto, Alejandro R.; Thang, Loc Vinh; Wang, Donna H.

    2008-01-01

    The transient receptor potential vanilloid (TRPV1) channels expressed in sensory afferent fibers innervating the heart may be activated by proton or endovanilloids released during myocardial ischemia (MI), leading to angina. Although our previous in vitro data indicate that TRPV1 activation may preserve cardiac function after ischemia-reperfusion (I/R) injury, the underlying mechanisms are largely unknown. To test the hypothesis that TRPV1 modulates inflammatory and early remodeling processes...

  13. Role of sympathetic nervous system and neuropeptides in obesity hypertension

    Directory of Open Access Journals (Sweden)

    Hall J.E.

    2000-01-01

    Full Text Available Obesity is the most common cause of human essential hypertension in most industrialized countries. Although the precise mechanisms of obesity hypertension are not fully understood, considerable evidence suggests that excess renal sodium reabsorption and a hypertensive shift of pressure natriuresis play a major role. Sympathetic activation appears to mediate at least part of the obesity-induced sodium retention and hypertension since adrenergic blockade or renal denervation markedly attenuates these changes. Recent observations suggest that leptin and its multiple interactions with neuropeptides in the hypothalamus may link excess weight gain with increased sympathetic activity. Leptin is produced mainly in adipocytes and is believed to regulate energy balance by acting on the hypothalamus to reduce food intake and to increase energy expenditure via sympathetic activation. Short-term administration of leptin into the cerebral ventricles increases renal sympathetic activity, and long-term leptin infusion at rates that mimic plasma concentrations found in obesity raises arterial pressure and heart rate via adrenergic activation in non-obese rodents. Transgenic mice overexpressing leptin also develop hypertension. Acute studies suggest that the renal sympathetic effects of leptin may depend on interactions with other neurochemical pathways in the hypothalamus, including the melanocortin-4 receptor (MC4-R. However, the role of this pathway in mediating the long-term effects of leptin on blood pressure is unclear. Also, it is uncertain whether there is resistance to the chronic renal sympathetic and blood pressure effects of leptin in obese subjects. In addition, leptin also has other cardiovascular and renal actions, such as stimulation of nitric oxide formation and improvement of insulin sensitivity, which may tend to reduce blood pressure in some conditions. Although the role of these mechanisms in human obesity has not been elucidated, this

  14. Pharmacological evidence that 5-HT1A/1B/1D, α2-adrenoceptors and D2-like receptors mediate ergotamine-induced inhibition of the vasopressor sympathetic outflow in pithed rats.

    Science.gov (United States)

    Villamil-Hernández, Ma Trinidad; Alcántara-Vázquez, Oscar; Sánchez-López, Araceli; Gutiérrez-Lara, Erika J; Centurión, David

    2014-10-01

    The sympathetic nervous system that innervates the peripheral circulation is regulated by several mechanisms/receptors. It has been reported that prejunctional 5-HT1A, 5-HT1B, 5-HT1D, D2-like receptors and α2-adrenoceptors mediate the inhibition of the vasopressor sympathetic outflow in pithed rats. In addition, ergotamine, an antimigraine drug, displays affinity at the above receptors and may explain some of its adverse/therapeutic effects. Thus, the aims of this study were to investigate in pithed rats: (i) whether ergotamine produces inhibition of the vasopressor sympathetic outflow; and (ii) the major receptors involved in this effect. For this purpose, male Wistar pithed rats were pre-treated with gallamine (25 mg/kg; i.v.) and desipramine (50 µg/kg) and prepared to stimulate the vasopressor sympathetic outflow (T7-T9; 0.03-3 Hz) or to receive i.v. bolus of exogenous noradrenaline (0.03-3 µg/kg). I.v. continuous infusions of ergotamine (1 and 1.8 μg/kgmin) dose-dependently inhibited the vasopressor responses to sympathetic stimulation but not those to exogenous noradrenaline. The sympatho-inhibition elicited by 1.8 μg/kg min ergotamine was (i) unaffected by saline (1 ml/kg); (ii) partially antagonised by WAY 100635 (5-HT1A; 30 μg/kg) and rauwolscine (α2-adrenoceptor; 300 μg/kg), and (iii) dose-dependently blocked by GR 127935 (5-HT1B/1D; 100 and 300 μg/kg) or raclopride (D2-like; 300 and 1000 μg/kg), The above doses of antagonists did not modify per se the sympathetically-induced vasopressor responses. The above results suggest that ergotamine induces inhibition of the vasopressor sympathetic outflow by activation of prejunctional 5-HT1A, 5-HT1B/1D, α2-adrenoceptors and D2-like receptors in pithed rats. PMID:24975101

  15. Effect of acute ozone induced airway inflammation on human sympathetic nerve traffic: a randomized, placebo controlled, crossover study.

    Directory of Open Access Journals (Sweden)

    Jens Tank

    Full Text Available BACKGROUND: Ozone concentrations in ambient air are related to cardiopulmonary perturbations in the aging population. Increased central sympathetic nerve activity induced by local airway inflammation may be one possible mechanism. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate this issue further, we performed a randomized, double-blind, cross-over study, including 14 healthy subjects (3 females, age 22-47 years, who underwent a 3 h exposure with intermittent exercise to either ozone (250 ppb or clean air. Induced sputum was collected 3 h after exposure. Nineteen to 22 hours after exposure, we recorded ECG, finger blood pressure, brachial blood pressure, respiration, cardiac output, and muscle sympathetic nerve activity (MSNA at rest, during deep breathing, maximum-inspiratory breath hold, and a Valsalva maneuver. While the ozone exposure induced the expected airway inflammation, as indicated by a significant increase in sputum neutrophils, we did not detect a significant estimated treatment effect adjusted for period on cardiovascular measurements. Resting heart rate (clean air: 59±2, ozone 60±2 bpm, blood pressure (clean air: 121±3/71±2 mmHg; ozone: 121±2/71±2 mmHg, cardiac output (clean air: 7.42±0.29 mmHg; ozone: 7.98±0.60 l/min, and plasma norepinephrine levels (clean air: 213±21 pg/ml; ozone: 202±16 pg/ml, were similar on both study days. No difference of resting MSNA was observed between ozone and air exposure (air: 23±2, ozone: 23±2 bursts/min. Maximum MSNA obtained at the end of apnea (air: 44±4, ozone: 48±4 bursts/min and during the phase II of the Valsalva maneuver (air: 64±5, ozone: 57±6 bursts/min was similar. CONCLUSIONS/SIGNIFICANCE: Our study suggests that acute ozone-induced airway inflammation does not increase resting sympathetic nerve traffic in healthy subjects, an observation that is relevant for environmental health. However, we can not exclude that chronic airway inflammation may contribute to sympathetic

  16. Cardiac rhabdomyosarcoma

    OpenAIRE

    Chlumský, Jaromír; Holá, Dana; Hlaváček, Karel; Michal, Michal; Švec, Alexander; Špatenka, Jaroslav; Dušek, Jan

    2001-01-01

    Cardiac sarcoma is a very rare neoplasm and is difficult to diagnose. The case of a 51-year-old man with a left atrial tumour, locally recurrent three months after its surgical removal, is presented. Computed tomography showed metastatic spread to the lung parenchyma. On revised histology, the mass extirpated was a sarcoma. Because of the metastatic spread, further therapy was symptomatic only; the patient died 15 months after the first manifestation of his problems. Immunohistochemical stain...

  17. Cardiac Calcification

    Directory of Open Access Journals (Sweden)

    Morteza Joorabian

    2011-05-01

    Full Text Available There is a spectrum of different types of cardiac"ncalcifications with the importance and significance"nof each type of cardiac calcification, especially"ncoronary artery calcification. Radiologic detection of"ncalcifications within the heart is quite common. The"namount of coronary artery calcification correlates"nwith the severity of coronary artery disease (CAD."nCalcification of the aortic or mitral valve may indicate"nhemodynamically significant valvular stenosis."nMyocardial calcification is a sign of prior infarction,"nwhile pericardial calcification is strongly associated"nwith constrictive pericarditis. A spectrum of different"ntypes of cardiac calcifications (linear, annular,"ncurvilinear,... could be seen in chest radiography and"nother imaging modalities. So a carful inspection for"ndetection and reorganization of these calcifications"nshould be necessary. Numerous modalities exist for"nidentifying coronary calcification, including plain"nradiography, fluoroscopy, intravascular ultrasound,"nMRI, echocardiography, and conventional, helical and"nelectron-beam CT (EBCT. Coronary calcifications"ndetected on EBCT or helical CT can be quantifie,"nand a total calcification score (Cardiac Calcification"nScoring may be calculated. In an asymptomatic"npopulation and/or patients with concomitant risk"nfactors like diabetes mellitus, determination of the"npresence of coronary calcifications identifies the"npatients at risk for future myocardial infarction and"ncoronary artery disease. In patients without coronary"ncalcifications, future cardiovascular events could"nbe excluded. Therefore, detecting and recognizing"ncalcification related to the heart on chest radiography"nand other imaging modalities such as fluoroscopy, CT"nand echocardiography may have important clinical"nimplications.

  18. Leptin as a mediator between obesity and cardiac dysfunction

    Directory of Open Access Journals (Sweden)

    Joanna Karbowska

    2012-05-01

    Full Text Available  Obesity is now recognised as one of the most important risk factors for heart disease. Obese individuals have high circulating levels of leptin, a hormone secreted by adipose tissue and in­volved in energy homeostasis. Growing evidence suggests that leptin may contribute to the development of cardiac dysfunction. In a large prospective study leptin has been shown to be an independent risk factor for coronary heart disease. An independent positive association has also been found between plasma leptin levels and heart rate in hypertensive patients and heart transplant recipients. In animal studies chronic leptin infusion increased heart rate and blood pressure. It has also been demonstrated that circulating leptin levels are elevated in patients with heart failure. The level of plasma leptin was associated with increased myocardial wall thickness and correlated with left ventricular mass, suggesting a role for this hormone in mediating left ventricular hypertrophy in humans. Moreover, leptin directly induced hypertrophy and hyperplasia in human and rodent cardiomyocytes, accompanied by cardiac extracellular matrix remodelling. Leptin may also influence energy substrate utilisation in cardiac tissue.These findings suggest that leptin acting directly or through the sympathetic nervous system may have adverse effects on cardiac structure and function, and that chronic hyperleptinaemia may greatly increase the risk of cardiac disorders. Additional studies are needed to define the role of leptin in cardiac physiology and pathophysiology, nevertheless the reduction in plasma leptin levels with caloric restriction and weight loss may prevent cardiac dysfunction in obese patients.

  19. Mechanisms mediating renal sympathetic nerve activation in obesity-related hypertension.

    Science.gov (United States)

    Chen, W; Leo, S; Weng, C; Yang, X; Wu, Y; Tang, X

    2015-04-01

    Excessive renal sympathetic nerve activation may be one of the mechanisms underlying obesity-related hypertension. Impaired baroreflex sensitivity, adipokine disorders-such as leptin, adiponectin, and resistin-activation of the renin-angiotensin system, hyperinsulinemia, insulin resistance, and renal sodium retention present in obesity increase renal sympathetic nerve activity, thus contributing to the development of hypertension. Renal sympathetic denervation reduces both renal sympathetic activity and blood pressure in patients with obesity-related hypertension. PMID:24609799

  20. REVERSAL OF GENETIC SALT-SENSITIVE HYPERTENSION BY TARGETED SYMPATHETIC ABLATION

    OpenAIRE

    Foss, Jason; Fink, Gregory D; Osborn, John W.

    2013-01-01

    The sympathetic nervous system plays an important role in some forms of human hypertension as well as the Dahl salt-sensitive rat model of hypertension; however, the sympathetic targets involved remain unclear. To address this, we examined the role of the renal and splanchnic sympathetic nerves in Dahl hypertension by performing either sham surgery (n = 10) or targeted sympathetic ablation of the renal nerves (renal denervation, n = 11), the splanchnic nerves (celiac ganglionectomy, n = 11) o...

  1. Vasomotor sympathetic outflow in the muscle metaboreflex in low birth weight young adults

    Directory of Open Access Journals (Sweden)

    Chifamba J

    2015-05-01

    Full Text Available Jephat Chifamba,1 Brilliant Mbangani,1 Casper Chimhete,1 Lenon Gwaunza,1 Larry A Allen,2 Herbert Mapfumo Chinyanga1 1Department of Physiology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe; 2Section of Advanced Heart Failure and Transplantation, University of Colorado School of Medicine, Aurora, CO, USA Abstract: A growing body of evidence suggests that low birth weight (LBW offspring are associated with long-term structural and functional changes in cardiovascular and neuroendocrine systems. We tested the hypothesis that muscle metaboreflex activation produces exaggerated responses in cardiac autonomic tone (represented by heart rate variability ratio and cutaneous vascular sympathetic tone (represented by plethysmography pulse wave amplitude in LBW compared to normal birth weight (NBW young adults. We recruited 23 LBW (18 females and five males and 23 NBW (14 females and nine males University of Zimbabwe students with neonatal clinical cards as proof of birth weight at term. Resting electrocardiogram, pulse waves, and blood pressures were recorded. Participants then underwent a static/isometric handgrip exercise until fatigue and a post-exercise circulatory arrest period of 2 minutes. We observed (results mean ± standard deviation a greater mean increase in heart rate variability ratio from baseline to exercise for LBW compared to NBW individuals (1.015±1.034 versus [vs] 0.119±0.789, respectively; P<0.05. We also observed a greater mean decrease in plethysmography pulse wave amplitude from baseline to exercise (-1.32±1.064 vs -0.735±0.63; P<0.05 and from baseline to post-exercise circulatory arrest (-0.932±0.998 vs -0.389±0.563; P<0.05 for LBW compared to NBW individuals. We conclude that LBW may be associated with an exaggerated sympathetic discharge in response to muscle metaboreflex. Keywords: blood pressure, heart rate variability, plethysmography pulse

  2. Myocardial pre-synaptic sympathetic function correlates with glucose uptake in the failing human heart

    Energy Technology Data Exchange (ETDEWEB)

    Mongillo, Marco; Leccisotti, Lucia [Hammersmith Hospital, Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, London (United Kingdom); John, Anna S. [Hammersmith Hospital, National Heart and Lung Institute, Imperial College, London (United Kingdom); Pennell, Dudley J. [Royal Brompton Hospital, National Heart and Lung Institute, Imperial College, London (United Kingdom); Camici, Paolo G. [Hammersmith Hospital, Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, London (United Kingdom); Hammersmith Hospital, National Heart and Lung Institute, Imperial College, London (United Kingdom)

    2007-08-15

    We have previously shown that the myocardium of patients with heart failure (HF) is insulin resistant. Chronic {beta}-adrenergic stimulation has been implicated in insulin resistance in cultured cardiomyocytes in vitro, where sustained noradrenaline stimulation inhibited insulin-modulated glucose uptake. As the failing heart is characterized by increased sympathetic drive, we hypothesized that there is a correlation between pre-synaptic sympathetic function and insulin sensitivity in the myocardium of patients with HF. Eight patients (aged 67 {+-} 7 years) with coronary artery disease and left ventricular dysfunction (ejection fraction 44 {+-} 10%) underwent function and viability assessment with cardiovascular magnetic resonance. Myocardial glucose utilization (MGU) was measured using positron emission tomography (PET) with {sup 18}F-fluorodeoxyglucose (FDG). Pre-synaptic noradrenaline re-uptake was measured by calculating [{sup 11}C]meta-hydroxy-ephedrine (HED) volume of distribution (V{sub d}) with PET. Two groups of healthy volunteers served as controls for the FDG (n = 8, aged 52 {+-} 4 years, p < 0.01 vs patients) and HED (n = 8, aged 40 {+-} 6 years, p < 0.01 vs patients) data. MGU in patients was reduced in both normal remote (0.44 {+-} 0.14 {mu}mol.min{sup -1}.g{sup -1}) and dysfunctional (0.49 {+-} 0.14 {mu}mol.min{sup -1}.g{sup -1}) segments compared with controls (0.61 {+-} 0.7 {mu}mol.min{sup -1}.g{sup -1}; p < 0.001 vs both). HED V{sub d} was reduced in dysfunctional segments of patients (38.9 {+-} 21.2 ml.g{sup -1}) compared with normal segments (52.2 {+-} 19.6 ml.g{sup -1}) and compared with controls (62.7 {+-} 11.3 ml.g{sup -1}). In patients, regional MGU was correlated with HED V{sub d}. The results of this study provide novel evidence of a correlation between cardiac sympathetic function and insulin sensitivity, which may represent one of the mechanisms contributing to insulin resistance in failing human hearts. (orig.)

  3. Cardiac contractility, central haemodynamics and blood pressure regulation during semistarvation

    DEFF Research Database (Denmark)

    Stokholm, K H; Breum, L; Astrup, A

    1991-01-01

    pressure (BP) declined. The fall in BP was caused by the reduction in cardiac output as the total peripheral resistance was unchanged. Finally, the decline in total blood volume was not significant. These findings together with a reduction in heart rate indicated that a reduced sympathetic tone via......Eight obese patients were studied before and after 2 weeks of treatment by a very-low-calorie diet (VLCD). Cardiac output and central blood volume (pulmonary blood volume and left atrial volume) were determined by indicator dilution (125I-albumin) and radionuclide angiocardiography (first pass and...... equilibrium technique by [99Tcm]red blood cells). Cardiac output decreased concomitantly with the reduction in oxygen uptake as the calculated systemic arteriovenous difference of oxygen was unaltered. There were no significant decreases in left ventricular contractility indices, i.e. the ejection fraction...

  4. Rescue of NGF-deficient mice II: basal forebrain cholinergic projections require NGF for target innervation but not guidance.

    Science.gov (United States)

    Phillips, Heidi S; Nishimura, Merry; Armanini, Mark P; Chen, Karen; Albers, Kathryn M; Davis, Brian M

    2004-04-29

    Basal forebrain cholinergic (BFC) neurons are an important substrate of cognitive function and are hypothesized to require the presence of nerve growth factor (NGF) for survival and target innervation. NGF-deficient mice develop BFC neurons that extend projections into telencephalic targets, but the mice perish before innervation is fully established. Rescue of NGF-deficient mice by transgenic expression of NGF under the keratin promoter yields viable mice with disrupted CNS expression of NGF. In the current study, rescued NGF-deficient mice contain normal numbers of septal cholinergic neurons yet reveal severe compromise of cholinergic innervation of both cortex and hippocampus. Surprisingly, intracerebroventricular infusion of NGF into juvenile mice can induce an essentially normal pattern of cholinergic innervation of the hippocampus. These results indicate that NGF is required for induction of proper innervation by BFC neurons, but that the cellular pattern of expression of this factor is not critical for specifying the distribution of axon terminals. PMID:15093680

  5. Cardiac arrest after anesthetic management in a patient with hereditary sensory autonomic neuropathy type IV

    Directory of Open Access Journals (Sweden)

    Ergül Yakup

    2011-01-01

    Full Text Available Hereditary sensory autonomic neuropathy type IV is a rare disorder with an autosomal recessive transmission and characterized by self-mutilation due to a lack in pain and heat sensation. Recurrent hyperpyrexia and anhydrosis are seen in patients as a result of a lack of sweat gland innervation. Self-mutilation and insensitivity to pain result in orthopedic complications and patients undergone recurrent surgical interventions with anesthesia. However, these patients are prone to perioperative complications such as hyperthermia, hypothermia, and cardiac complications like bradycardia and hypotension. We report a 5-year-old boy with hereditary sensory autonomic neuropathy type IV, developing hyperpyrexia and cardiac arrest after anesthesia.

  6. Effect of acute systemic hypoxia on human cutaneous microcirculation and endothelial, sympathetic and myogenic activity.

    Science.gov (United States)

    Paparde, Artūrs; Plakane, Līga; Circenis, Kristaps; Aivars, Juris Imants

    2015-11-01

    The regulation of cutaneous vascular tone impacts vascular vasomotion and blood volume distribution as a challenge to hypoxia, but the regulatory mechanisms yet remain poorly understood. A skin has a very compliant circulation, an increase in skin blood flow results in large peripheral displacement of blood volume, which could be controlled by local and systemic regulatory factors. The aim of this study was to determine the acute systemic hypoxia influence on blood flow in skin, local regulatory mechanism fluctuations and changes of systemic hemodynamic parameters. Healthy subjects (n=11; 24.9±3.7years old) participated in this study and procedures were performed in siting position. After 20min of acclimatization 15min of basal resting period in normoxia (pO2=21%) was recorded, followed by 20min in acute systemic hypoxia (pO2=12%), and after 15min of recovery period in normoxia (pO2=21%). HRV was used to evaluate autonomic nervous system activity to heart from systemic hemodynamic parameters which continuously evaluated cardiac output, total peripheral resistance and mean arterial blood pressure. Regional blood flow was evaluated by venous occlusion plethysmography and skin blood flow by laser-Doppler flowmetry. To evaluate local factor influences to cutaneous circulation wavelet analysis was used; fluctuations in the frequency intervals of 0.0095-0.021, 0.021-0.052, and 0.052-0.145Hz correspondingly represent endothelial, sympathetic, and myogenic activities. Our results from HRV data suggest that acute systemic hypoxia causes statistically significant increase of sympathetic (LF/HF; N1=0.46±0.25 vs. H=0.67±0.36; P=0.027) and decrease of parasympathetic (RMSSD; 80.0±43.1 vs. H=69.9±40.4, ms; P=0.009) outflow to heart. Acute hypoxia causes statistically significant increase of heart rate (RR interval; N1=960.3±174.5 vs. H=864.7±134.6, ms; P=0.001) and cardiac output (CO; N1=5.4 (5.2; 7.9) vs. H=6.7±1.4, l/min; P=0.020). Regional blood flow and vascular

  7. Effects of leptin on sympathetic nerve activity in conscious mice.

    Science.gov (United States)

    Morgan, Donald A; Despas, Fabien; Rahmouni, Kamal

    2015-09-01

    The adipocyte-derived hormone, leptin, has emerged as an important regulator of regional sympathetic nerve activity (SNA) with pathophysiological implications in obesity. Genetically engineered mice are useful to understand the molecular pathways underlying the SNA responses evoked by leptin. However, so far the effect of leptin on direct SNA in mice has been studied under general anesthesia. Here, we examined the sympathetic responses evoked by leptin in conscious mice. Mice were instrumented, under ketamine/xylazine anesthesia, with renal or lumbar SNA recordings using a thin (40 gauge) bipolar platinum-iridium wire. The electrodes were exteriorized at the nape of the neck and mice were allowed (5 h) to recover from anesthesia. Interestingly, the reflex increases in renal and lumbar SNA caused by sodium nitroprusside (SNP)-induced hypotension was higher in the conscious phase versus the anesthetized state, whereas the increase in both renal and lumbar SNA evoked by leptin did not differ between anesthetized or conscious mice. Next, we assessed whether isoflurane anesthesia would yield a better outcome. Again, the SNP-induced increase in renal SNA and baroreceptor-renal SNA reflex were significantly elevated in the conscious states relative to isoflurane-anesthetized phase, but the renal SNA response induced by leptin in the conscious states were qualitatively comparable to those evoked above. Thus, despite improvement in sympathetic reflexes in conscious mice the sympathetic responses evoked by leptin mimic those induced during anesthesia. PMID:26381017

  8. Axillary Brachial Plexus Blockade for the Reflex Sympathetic Dystrophy Syndrome.

    Science.gov (United States)

    Ribbers, G. M.; Geurts, A. C. H.; Rijken, R. A. J.; Kerkkamp, H. E. M.

    1997-01-01

    Reflex sympathetic dystrophy syndrome (RSD) is a neurogenic pain syndrome characterized by pain, vasomotor and dystrophic changes, and often motor impairments. This study evaluated the effectiveness of brachial plexus blockade with local anaesthetic drugs as a treatment for this condition. Three patients responded well; three did not. (DB)

  9. Sympathetic neural responses to smoking are age dependent

    Czech Academy of Sciences Publication Activity Database

    Hering, D.; Somers, V. K.; Kára, T.; Kucharska, W.; Jurák, Pavel; Bieniaszewski, L.; Narkiewicz, K.

    2006-01-01

    Roč. 24, č. 4 (2006), s. 691-695. ISSN 0263-6352 R&D Projects: GA ČR(CZ) GA102/05/0402 Institutional research plan: CEZ:AV0Z20650511 Keywords : sympathetic neural response * blood pressure * heart rate * smoking Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 4.021, year: 2006

  10. Sympathetically evoked Ca2+ signaling in arterial smooth muscle

    Institute of Scientific and Technical Information of China (English)

    Wei-jin ZANG; Joseph ZACHARIA; Christine LAMONT; Withrow Gil WIER

    2006-01-01

    The sympathetic nervous system plays an essential role in the control of total peripheral vascular resistance and blood flow, by controlling the contraction of small arteries. Perivascular sympathetic nerves release ATP, norepinephrine (NE) and neuropeptide Y. This review summarizes our knowledge of the intracellular Ca2+ signals that are activated by ATP and NE, acting respectively on P2X1 and α1 adrenoceptors in arterial smooth muscle. Each neurotransmitter produces a unique type of post-synaptic Ca2+ signal and associated contraction. The neural release of ATP and NE is thought to vary markedly with the pattern of nerve activity, probably reflecting both pre- and post-synaptic mechanisms. Finally, we show that Ca2+ signaling during neurogenic contractions activated by trains of sympathetic nerve fiber action potentials are in fact significantly different from that elicited by simple bath application of exogenous neurotransmitters to isolated arteries (a common experimental technique), and end by identifying important questions remaining in our understanding of sympathetic neurotransmission and the physiological regulation of contraction of small arteries.

  11. Effect of morphine on sympathetic nerve activity in humans

    Science.gov (United States)

    Carter, Jason R.; Sauder, Charity L.; Ray, Chester A.

    2002-01-01

    There are conflicting reports for the role of endogenous opioids on sympathetic and cardiovascular responses to exercise in humans. A number of studies have utilized naloxone (an opioid-receptor antagonist) to investigate the effect of opioids during exercise. In the present study, we examined the effect of morphine (an opioid-receptor agonist) on sympathetic and cardiovascular responses at rest and during isometric handgrip (IHG). Eleven subjects performed 2 min of IHG (30% maximum) followed by 2 min of postexercise muscle ischemia (PEMI) before and after systemic infusion of morphine (0.075 mg/kg loading dose + 1 mg/h maintenance) or placebo (saline) in double-blinded experiments on separate days. Morphine increased resting muscle sympathetic nerve activity (MSNA; 17 +/- 2 to 22 +/- 2 bursts/min; P < 0.01) and increased mean arterial pressure (MAP; 87 +/- 2 to 91 +/- 2 mmHg; P < 0.02), but it decreased heart rate (HR; 61 +/- 4 to 59 +/- 3; P < 0.01). However, IHG elicited similar increases for MSNA, MAP, and HR between the control and morphine trial (drug x exercise interaction = not significant). Moreover, responses to PEMI were not different. Placebo had no effect on resting, IHG, and PEMI responses. We conclude that morphine modulates cardiovascular and sympathetic responses at rest but not during isometric exercise.

  12. Developmental Corneal Innervation: Interactions between Nerves and Specialized Apical Corneal Epithelial Cells

    OpenAIRE

    Kubilus, James K.; Linsenmayer, Thomas F.

    2010-01-01

    During developmental innervation of the chicken cornea, nerves interact with apical corneal epithelial cells to form synapse-like structures. In addition, these apical epithelial cells express class III β-tubulin, an isoform of β-tubulin generally thought to be neuron specific.

  13. GAD67-mediated GABA Synthesis and Signaling Regulate Inhibitory Synaptic Innervation in the Visual Cortex

    Science.gov (United States)

    Chattopadhyaya, Bidisha; Di Cristo, Graziella; Wu, Cai Zhi; Knott, Graham; Kuhlman, Sandra; Fu, Yu; Palmiter, Richard D.; Huang, Z. Josh

    2007-01-01

    The development of GABAergic inhibitory circuits is shaped by neural activity, but the underlying mechanisms are unclear. we demonstrate a novel function of GABA in regulating GABAergic innervation in the adolescent brain, when GABA is mainly known as an inhibitory transmitter. Conditional knockdown of the rate-limiting synthetic enzyme GAD67 in basket interneurons in adolescent visual cortex resulted in cell autonomous deficits in axon branching, perisomatic synapse formation around pyramidal neurons, and complexity of the innervation fields; the same manipulation had little influence on the subsequent maintenance of perisomatic synapses. These effects of GABA deficiency were rescued by suppressing GABA re-uptake and by GABA receptor agonists. Germ-line knockdown of GAD67 but not GAD65 showed similar deficits, suggesting a specific role of GAD67 in the maturation of perisomatic innervation. Since intracellular GABA levels are modulated by neuronal activity, our results implicate GAD67-mediated GABA synthesis in activity-dependent regulation of inhibitory innervation patterns. PMID:17582330

  14. Innervation Patterns of Sea Otter (Enhydra lutris Mystacial Follicle-Sinus Complexes

    Directory of Open Access Journals (Sweden)

    Christopher Douglas Marshall

    2014-10-01

    Full Text Available Sea otters (Enhydra lutris are the most recent group of mammals to return to the sea, and may exemplify divergent somatosensory tactile systems among mammals. Therefore, we quantified the mystacial vibrissal array of sea otters and histologically processed follicle-sinus complexes (F-SCs to test the hypotheses that the number of myelinated axons per F-SC is greater than that found for terrestrial mammalian vibrissae and that their organization and microstructure converge with those of pinniped vibrissae. A mean of 120.5 vibrissae were arranged rostrally on a broad, blunt muzzle in 7-8 rows and 9-13 columns. The F-SCs of sea otters are tripartite in their organization and similar in microstructure to pinnipeds rather than terrestrial species. Each F-SC was innervated by a mean 1339±408.3 axons. Innervation to the entire mystacial vibrissal array was estimated at 161,313 axons. Our data support the hypothesis that the disproportionate expansion of the coronal gyrus in somatosensory cortex of sea otters is related to the high innervation investment of the mystacial vibrissal array, and that quantifying innervation investment is a good proxy for tactile sensitivity. We predict that the tactile performance of sea otter mystacial vibrissae is comparable to that of harbor seals, sea lions and walruses¬.

  15. Innervation patterns of sea otter (Enhydra lutris) mystacial follicle-sinus complexes.

    Science.gov (United States)

    Marshall, Christopher D; Rozas, Kelly; Kot, Brian; Gill, Verena A

    2014-01-01

    Sea otters (Enhydra lutris) are the most recent group of mammals to return to the sea, and may exemplify divergent somatosensory tactile systems among mammals. Therefore, we quantified the mystacial vibrissal array of sea otters and histologically processed follicle-sinus complexes (F - SCs) to test the hypotheses that the number of myelinated axons per F - SC is greater than that found for terrestrial mammalian vibrissae and that their organization and microstructure converge with those of pinniped vibrissae. A mean of 120.5 vibrissae were arranged rostrally on a broad, blunt muzzle in 7-8 rows and 9-13 columns. The F-SCs of sea otters are tripartite in their organization and similar in microstructure to pinnipeds rather than terrestrial species. Each F-SC was innervated by a mean 1339 ± 408.3 axons. Innervation to the entire mystacial vibrissal array was estimated at 161,313 axons. Our data support the hypothesis that the disproportionate expansion of the coronal gyrus in somatosensory cortex of sea otters is related to the high innervation investment of the mystacial vibrissal array, and that quantifying innervation investment is a good proxy for tactile sensitivity. We predict that the tactile performance of sea otter mystacial vibrissae is comparable to that of harbor seals, sea lions and walruses. PMID:25400554

  16. Relationship between left ventricular diastolic function and myocardial sympathetic denervation measured by 123I-meta-iodobenzylguanidine imaging in Anderson-Fabry disease

    International Nuclear Information System (INIS)

    Whether cardiac sympathetic nervous function abnormalities may be present in patients with Anderson-Fabry disease (AFD) remains unexplored. We investigated the relationship between left ventricular (LV) function and cardiac sympathetic nervous function in patients with AFD. Twenty-five patients (12 men, mean age 43 ± 13 years) with genetically proved AFD and preserved LV ejection fraction and ten age and gender-matched control subjects underwent speckle tracking echocardiography and 123I-meta-iodobenzylguanidine (MIBG) imaging from which early and late heart to mediastinum (H/M) ratios and myocardial washout rate values were calculated. In AFD patients, a significant correlation between late H/M ratio and LV mass index (r = -61, p = 0.001), left atrial volume (r = -0.72, p < 0.001), systolic pulmonary artery pressure (r = -0.75, p < 0.001), and early diastolic untwisting rate (r = -0.66, p < 0.001) was found. Ten AFD patients exhibited a late H/M ratio below two fold standard deviation of control subjects (≤1.75). Patients showing late H/M ratio ≤ 1.75 had significantly higher LV mass index, relative wall thickness, left atrial volume and systolic pulmonary artery pressure, lower systolic longitudinal strain and an early diastolic untwisting rate compared to patients with late H/M ratio > 1.75. At multivariable linear regression analysis, early diastolic untwisting rate was the only independent predictor of late H/M ratio ≤ 1.75 (odds ratio 1.15, 95 % confidence interval 1.07-1.31, p < 0.05). The present findings provide the first demonstration of a cardiac sympathetic derangement in AFD patients with preserved LV ejection fraction, which is mostly related to LV diastolic dysfunction. (orig.)

  17. Relationship between left ventricular diastolic function and myocardial sympathetic denervation measured by {sup 123}I-meta-iodobenzylguanidine imaging in Anderson-Fabry disease

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Letizia; Giudice, Caterina Anna; Imbriaco, Massimo; Trimarco, Bruno; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy); Pellegrino, Teresa [Institute of Biostructure and Bioimaging, National Council of Research, Naples (Italy); Pisani, Antonio; Riccio, Eleonora [University Federico II, Department of Public Health, Naples (Italy); Salvatore, Marco [IRCCS SDN, Naples (Italy)

    2016-04-15

    Whether cardiac sympathetic nervous function abnormalities may be present in patients with Anderson-Fabry disease (AFD) remains unexplored. We investigated the relationship between left ventricular (LV) function and cardiac sympathetic nervous function in patients with AFD. Twenty-five patients (12 men, mean age 43 ± 13 years) with genetically proved AFD and preserved LV ejection fraction and ten age and gender-matched control subjects underwent speckle tracking echocardiography and {sup 123}I-meta-iodobenzylguanidine (MIBG) imaging from which early and late heart to mediastinum (H/M) ratios and myocardial washout rate values were calculated. In AFD patients, a significant correlation between late H/M ratio and LV mass index (r = -61, p = 0.001), left atrial volume (r = -0.72, p < 0.001), systolic pulmonary artery pressure (r = -0.75, p < 0.001), and early diastolic untwisting rate (r = -0.66, p < 0.001) was found. Ten AFD patients exhibited a late H/M ratio below two fold standard deviation of control subjects (≤1.75). Patients showing late H/M ratio ≤ 1.75 had significantly higher LV mass index, relative wall thickness, left atrial volume and systolic pulmonary artery pressure, lower systolic longitudinal strain and an early diastolic untwisting rate compared to patients with late H/M ratio > 1.75. At multivariable linear regression analysis, early diastolic untwisting rate was the only independent predictor of late H/M ratio ≤ 1.75 (odds ratio 1.15, 95 % confidence interval 1.07-1.31, p < 0.05). The present findings provide the first demonstration of a cardiac sympathetic derangement in AFD patients with preserved LV ejection fraction, which is mostly related to LV diastolic dysfunction. (orig.)

  18. Cardiac conduction system

    Science.gov (United States)

    The cardiac conduction system is a group of specialized cardiac muscle cells in the walls of the heart that send signals ... to contract. The main components of the cardiac conduction system are the SA node, AV node, bundle ...

  19. Prostate innervation and local anesthesia in prostate procedures Inervação prostática e anestesia local em procedimentos prostáticos

    Directory of Open Access Journals (Sweden)

    Alexandre Oliveira Rodrigues

    2002-01-01

    Full Text Available The nerve supply of the human prostate is very abundant, and knowledge of the anatomy contributes to successful administration of local anesthesia. However, the exact anatomy of extrinsic neuronal cell bodies of the autonomic and sensory innervation of the prostate is not clear, except in other animals. Branches of pelvic ganglia composed of pelvic (parasympathetic and hypogastric (sympathetic nerves innervate the prostate. The autonomic nervous system plays an important role in the growth, maturation, and secretory function of this gland. Prostate procedures under local anesthesia, such as transurethral prostatic resections or transrectal ultrasound-guided prostatic biopsy, are safe, simple, and effective. Local anesthesia can be feasible for many special conditions including uncomplicated prostate surgery and may be particularly useful for the high-risk group of patients for whom inhalation or spinal anesthesia is inadvisable.A prostáta, uma das glândulas sexuais acessórias masculinas, possui inervação muito rica. A anatomia detalhada dos corpos neuronais extrínsecos responsáveis pela inervação autonômica e sensorial da próstata não está totalmente esclarecida, exceto em animais. A próstata é inervada pelos nervos pélvico (parassimpático e hipogástrico (simpático, ramos dos gânglios nervosos pélvicos. O sistema nervoso autonômico possui importante papel no crescimento, maturação e na função secretora desta glândula. Alguns procedimentos prostáticos, como resecção transuretral ou biópsia transretal guiada por ultra-sonografia, são simples, eficazes e seguros com o uso de anestesia local. Esta opção pode ser factível frente à várias condições especiais, como cirurgias prostáticas simples, sendo particularmente útil no grupo de pacientes de alto risco cirúrgico, onde a anestesia inalatória ou espinhal não é aconselhável.

  20. Alternating myocardial sympathetic neural function of athlete's heart in professional cycle racers examined with iodine-123-MIBG myocardial scintigraphy

    International Nuclear Information System (INIS)

    Myocardial sympathetic neural function in professional athletes who had the long-term tremendous cardiac load has not been fully investigated by myocardial iodine-123-metaiodobenzylguanidine (MIBG) uptake in comparison with power spectral analysis (PSA) in electrocardiography. Eleven male professional cycle racers and age-matched 11 male healthy volunteers were enrolled in this study. The low frequency components in the power spectral density (LF), the high frequency components in the power spectral density (HF), the LF/HF ratio and mean R-R interval were derived from PSA and time-domain analysis of heart rate variability in electrocardiography. The mean heart-to-mediastinum uptake ratio (H/M ratio) of the MIBG uptake, in professional cycle racers was significantly lower than that in healthy volunteers (p<0.01) and HF power in professional cycle racers was significantly higher than that in healthy volunteers (p<0.05). In the group of professional cycle racers, the H/M ratio showed a significant correlation with the R-R interval, as indices of parasympathetic nerve activity (r=0.80, p<0.01), but not with the LF/HF ratio as an index of sympathetic nerve activity. These results may indicate that parasympathetic nerve activity has an effect on MIBG uptake in a cyclist's heart. (author)

  1. Reduced cardiac 123I-metaiodobenzylguanidine uptake in patients with spinocerebellar ataxia type 2: a comparative study with Parkinson's disease

    International Nuclear Information System (INIS)

    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disorder characterized by cerebellar ataxia, supranuclear ophthalmoplegia, and peripheral neuropathy. Autonomic nervous system dysfunction is often present. This study evaluated the cardiac sympathetic function in patients with SCA2 using 123I-metaiodobenzylguanidine (MIBG) in comparison with patients with Parkinson's disease (PD) and control subjects. Nine patients with SCA2, nine patients with PD, and nine control subjects underwent 123I-MIBG imaging studies from which early and late heart-to-mediastinum (H/M) ratios and myocardial washout rates were calculated. Early (F = 12.3, p 123I-MIBG myocardial scintigraphy demonstrated an impairment of cardiac sympathetic function in patients with SCA2, which was less marked than in PD patients. These results suggest that 123I-MIBG cardiac imaging could become a useful tool for analysing the pathophysiology of SCA2. (orig.)

  2. [Sudden cardiac death in diabetes mellitus].

    Science.gov (United States)

    Israel, C W; Lee-Barkey, Y H

    2016-05-01

    Sudden cardiac death (SCD) represents one of the most frequent causes of death in patients with diabetes. In contrast to patients without diabetes it has not been significantly reduced despite improvements in the treatment of acute myocardial infarction and long-term treatment of cardiovascular diseases as well as diabetes mellitus. Several mechanisms can be responsible for the high incidence of SCD in diabetics: 1. arrhythmogenic effects mediated via cardiac autonomic neuropathy, repolarization disturbances or sympathetic tone activation (hypoglycemia), 2. myocardial ischemia due to atherosclerosis, endothelial dysfunction, platelet aggregation or thrombophilic effects, 3. myocardial disease due to inflammation, fibrosis, associated hypertension or uremia and 4. potassium imbalance due to diabetic nephropathy or hypoglycemia. This review introduces concepts of mechanisms that are responsible for SCD in patients with diabetes. Treatment of patients with diabetes should primarily consider a systematic assessment of any deterioration of this chronic disease and of complications at an early stage. Cardiovascular drug treatment corresponds to that of non-diabetics. In antidiabetic treatment drugs with a low risk of hypoglycemia should be preferred. Treatment with implantable cardioverter defibrillators (ICD) also combined with cardiac resynchronization therapy () demonstrated a high life-saving potential particularly in patients with diabetes. PMID:27071967

  3. Macrophage populations and cardiac sympathetic denervation during L-NAME-induced hypertension in rats

    DEFF Research Database (Denmark)

    Neves, S R S; Machado, C R S; Pinto, A M T; Borges, Alvaro Humberto Diniz; Cunha, F Q; Camargos, E R S

    2006-01-01

    leukocyte infiltration during L-NAME (40 mg/Kg body weight/day, orally) treatment. The occurrence of cardiomyocyte hypertrophy, a controversial matter, is also addressed. Degenerating cardiomyocytes and focal inflammation occurred one day after treatment. Inflammatory lesions became gradually more frequent...... ventricle, the hypertrophic cardiomyocytes were restricted to damaged areas. Significant reduction of the noradrenergic nerve terminals occurred from day 3 to 28. The area occupied by ED1+ (hematogenous) macrophages increased until day 7, and dropped to control levels by day 10. ED2+ (resident) macrophages...... macrophage infiltration at day 7. No denervation was detectable at day 14 of double treatment, using subcutaneous AG. Our findings favor a role for ED1+ macrophages and iNOS in the hypertension-induced denervation process....

  4. Forearm training attenuates sympathetic responses to prolonged rhythmic forearm exercise

    Science.gov (United States)

    Sinoway, L.; Shenberger, J.; Leaman, G.; Zelis, R.; Gray, K.; Baily, R.; Leuenberger, U.

    1996-01-01

    We previously demonstrated that nonfatiguing rhythmic forearm exercise at 25% maximal voluntary contraction (12 2-s contractions/min) evokes sympathoexcitation without significant engagement of metabolite-sensitive muscle afferents (B.A. Batman, J.C. Hardy, U.A. Leuenberger, M.B. Smith, Q.X. Yang and L.I. Sinoway. J. Appl. Physiol. 76: 1077-1081, 1994). This is in contrast to the sympathetic nervous system responses observed during fatiguing static forearm exercise where metabolite-sensitive afferents are the key determinants of sympathetic activation. In this report we examined whether forearm exercise training would attenuate sympathetic nervous system responses to rhythmic forearm exercise. We measured heart rate, mean arterial blood pressure (MAP), muscle sympathetic nerve activity (microneurography), plasma norepinephrine (NE), and NE spillover and clearance (tritiated NE kinetics) during nonfatiguing rhythmic forearm exercise before and after a 4-wk unilateral forearm training paradigm. Training had no effect on forearm mass, maximal voluntary contraction, or heart rate but did attenuate the increase in MAP (increase in MAP: from 15.2 +/- 1.8 before training to 11.4 +/- 1.4 mmHg after training; P < 0.017), muscle sympathetic nerve activity (increase in bursts: from 10.8 +/- 1.4 before training to 6.2 +/- 1.1 bursts/min after training; P < 0.030), and the NE spillover (increases in arterial spillover: from 1.3 +/- 0.2 before training to 0.6 +/- 0.2 nmol.min-1.m-2 after training, P < 0.014; increase in venous spillover: from 2.0 +/- 0.6 before training to 1.0 +/- 0.5 nmol.min-1.m-2 after training, P < 0.037) seen in response to exercise performed by the trained forearm. Thus forearm training reduces sympathetic responses during a nonfatiguing rhythmic handgrip paradigm that does not engage muscle metaboreceptors. We speculate that this effect is due to a conditioning-induced reduction in mechanically sensitive muscle afferent discharge.

  5. Characterization of glutamatergic neurons in the rat atrial intrinsic cardiac ganglia that project to the cardiac ventricular wall.

    Science.gov (United States)

    Wang, Ting; Miller, Kenneth E

    2016-08-01

    The intrinsic cardiac nervous system modulates cardiac function by acting as an integration site for regulating autonomic efferent cardiac output. This intrinsic system is proposed to be composed of a short cardio-cardiac feedback control loop within the cardiac innervation hierarchy. For example, electrophysiological studies have postulated the presence of sensory neurons in intrinsic cardiac ganglia (ICG) for regional cardiac control. There is still a knowledge gap, however, about the anatomical location and neurochemical phenotype of sensory neurons inside ICG. In the present study, rat ICG neurons were characterized neurochemically with immunohistochemistry using glutamatergic markers: vesicular glutamate transporters 1 and 2 (VGLUT1; VGLUT2), and glutaminase (GLS), the enzyme essential for glutamate production. Glutamatergic neurons (VGLUT1/VGLUT2/GLS) in the ICG that have axons to the ventricles were identified by retrograde tracing of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected in the ventricular wall. Co-labeling of VGLUT1, VGLUT2, and GLS with the vesicular acetylcholine transporter (VAChT) was used to evaluate the relationship between post-ganglionic autonomic neurons and glutamatergic neurons. Sequential labeling of VGLUT1 and VGLUT2 in adjacent tissue sections was used to evaluate the co-localization of VGLUT1 and VGLUT2 in ICG neurons. Our studies yielded the following results: (1) ICG contain glutamatergic neurons with GLS for glutamate production and VGLUT1 and 2 for transport of glutamate into synaptic vesicles; (2) atrial ICG contain neurons that project to ventricle walls and these neurons are glutamatergic; (3) many glutamatergic ICG neurons also were cholinergic, expressing VAChT; (4) VGLUT1 and VGLUT2 co-localization occurred in ICG neurons with variation of their protein expression level. Investigation of both glutamatergic and cholinergic ICG neurons could help in better understanding the function of the intrinsic cardiac

  6. Auditory stimulation and cardiac autonomic regulation

    Directory of Open Access Journals (Sweden)

    Vitor E. Valenti

    2012-08-01

    Full Text Available Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: "auditory stimulation", "autonomic nervous system", "music" and "heart rate variability". The selected studies indicated that there is a strong correlation between noise intensity and vagal-sympathetic balance. Additionally, it was reported that music therapy improved heart rate variability in anthracycline-treated breast cancer patients. It was hypothesized that dopamine release in the striatal system induced by pleasurable songs is involved in cardiac autonomic regulation. Musical auditory stimulation influences heart rate variability through a neural mechanism that is not well understood. Further studies are necessary to develop new therapies to treat cardiovascular disorders.

  7. Cardiac MRI in Athletes

    NARCIS (Netherlands)

    Luijkx, T.

    2012-01-01

    Cardiac magnetic resonance imaging (CMR) is often used in athletes to image cardiac anatomy and function and is increasingly requested in the context of screening for pathology that can cause sudden cardiac death (SCD). In this thesis, patterns of cardiac adaptation to sports are investigated with C

  8. Cardiac Autonomic Drive during Arterial Hypertension and Metabolic Disturbances.

    Science.gov (United States)

    Kseneva, S I; Borodulina, E V; Trifonova, O Yu; Udut, V V

    2016-06-01

    ANS support of the cardiac work was assessed with analysis of heart rate variability in representative samples of patients with arterial hypertension and metabolic disturbances manifested by overweight, classes I-II obesity, compromised glucose tolerance, and type II diabetes. Initially enhanced sympathetic effects on the heart rate demonstrated no further increase during the orthostatic test in contrast to suprasegmentary influences enhanced by this test. The pronouncedness of revealed peculiarities in ANS drive to the heart correlated with metabolic disturbances, and these peculiarities attained maximum in patients with type II diabetes. PMID:27383176

  9. [The relationship between the sympathetic nerves and immunocytes in the spleen].

    Science.gov (United States)

    Saito, H

    1991-02-01

    Ever since Galen, the ancient Greek physician, said "Melancholic women develop disease more than sanguine women," it has been said that the mental condition affects the physical condition. However, there is hardly any scientific verification. About half a century ago, Selye (1936) proposed a relationship between stress and immune function, and it is becoming increasingly clear that the nervous system and immune system interact with each other. Also researchers have strongly hoped to demonstrate the existence of specific pathways by which immunocytes can be directly regulated by the nervous elements instead of by the humoral influence of immunomodulators. In this study, the author showed by electron microscopic observation how the immunocytes in the guinea pig spleen are directly innervated. The sustentacular supporting element of the guinea pig spleen is the connective tissue system which includes the capsulo-trabecular, peri-vascular and reticular systems. The latter system is composed of the outer sheath of the reticular cell or its cellular processes which have abundant microfilaments and the inner minute connective tissue space in which lamina densa-like material, collagenous fibrils, elastic fibers and nervous elements are present. The sympathetic adrenergic nerves for the spleen enter the organ, and scatter around the arterial walls. All components of the connective tissue system are continuous with each other, and the nervous elements appearing in the reticular system are the elongated ones from other connective tissue systems, especially peri-vascular connective tissue. Thus, the adrenergic nerves are more abundant in the white pulp, into which the central artery penetrates, than in the red pulp which arterioles or capillaries pass through. The minute connective tissue space of the reticular system may be called the noradrenalin (NA) canal because catecholamine released from the naked adrenergic nerve terminals in this tissue diffuses and is stored in this

  10. Sympathetic vascular transduction is augmented in young normotensive blacks

    Science.gov (United States)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    The purpose of the present study was to determine sympathetic vascular transduction in young normotensive black and white adults. We hypothesized that blacks would demonstrate augmented transduction of muscle sympathetic nerve activity (MSNA) into vascular resistance. To test this hypothesis, MSNA, forearm blood flow, heart rate, and arterial blood pressure were measured during lower body negative pressure (LBNP). At rest, no differences existed in arterial blood pressure, heart rate, forearm blood flow, and forearm vascular resistance (FVR). Likewise, LBNP elicited comparable responses of these variables for blacks and whites. Baseline MSNA did not differ between blacks and whites, but whites demonstrated greater increases during LBNP (28 +/- 7 vs. 55 +/- 18%, 81 +/- 21 vs. 137 +/- 42%, 174 +/- 81 vs. 556 +/- 98% for -5, -15, and -40 mmHg LBNP, respectively; P forearm vasoconstriction than whites. This finding may contribute to augmented blood pressure reactivity in blacks.

  11. Sympathetic vascular transduction is augmented in young normotensive blacks

    Science.gov (United States)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    The purpose of the present study was to determine sympathetic vascular transduction in young normotensive black and white adults. We hypothesized that blacks would demonstrate augmented transduction of muscle sympathetic nerve activity (MSNA) into vascular resistance. To test this hypothesis, MSNA, forearm blood flow, heart rate, and arterial blood pressure were measured during lower body negative pressure (LBNP). At rest, no differences existed in arterial blood pressure, heart rate, forearm blood flow, and forearm vascular resistance (FVR). Likewise, LBNP elicited comparable responses of these variables for blacks and whites. Baseline MSNA did not differ between blacks and whites, but whites demonstrated greater increases during LBNP (28 +/- 7 vs. 55 +/- 18%, 81 +/- 21 vs. 137 +/- 42%, 174 +/- 81 vs. 556 +/- 98% for -5, -15, and -40 mmHg LBNP, respectively; P vasoconstriction than whites. This finding may contribute to augmented blood pressure reactivity in blacks.

  12. Electrodermal activity of professional pianists -Sympathetic arousal in piano performance-

    Directory of Open Access Journals (Sweden)

    Hajime Bando

    2012-07-01

    Full Text Available The purpose of this study is to research sympathetic arousal of professional pianists during musical performance. We measured the electrodermal activities of professional pianists who were performing both an original and an arranged score of the same piece of music by attaching electrodes to their left feet. For the data analysis, normalized skin resistance change per beat was used to analyze the electrodermal activities of the pianists originally. We could show a change in electrodermal activities at the onset of the music and at the motif of the music. Comparing the two performance conditions, we could show significant changes in electrodermal activity in dynamic arranged sections and octave up sections. The sympathetic arousal of the pianists changed dynamically in accordance with musical structure.

  13. Role of sympathetic nervous system and neuropeptides in obesity hypertension

    OpenAIRE

    Hall, J. E.; M.W. Brands; D.A. Hildebrandt; Kuo, J.; Fitzgerald, S.

    2000-01-01

    Obesity is the most common cause of human essential hypertension in most industrialized countries. Although the precise mechanisms of obesity hypertension are not fully understood, considerable evidence suggests that excess renal sodium reabsorption and a hypertensive shift of pressure natriuresis play a major role. Sympathetic activation appears to mediate at least part of the obesity-induced sodium retention and hypertension since adrenergic blockade or renal denervation markedly attenuates...

  14. Understanding paroxysmal sympathetic hyperactivity after traumatic brain injury

    OpenAIRE

    Meyer, Kimberly S.

    2014-01-01

    Background: Paroxysmal sympathetic hyperactivity (PSH) is a condition occurring in a small percentage of patients with severe traumatic brain injury (TBI). It is characterized by a constellation of symptoms associated with excessive adrenergic output, including tachycardia, hypertension, tachypnea, and diaphoresis. Diagnosis is one of exclusion and, therefore, is often delayed. Treatment is aimed at minimizing triggers and pharmacologic management of symptoms. Methods: A literature review...

  15. PROJECTION NEURONS OF THE VESTIBULO-SYMPATHETIC REFLEX PATHWAY

    OpenAIRE

    Holstein, Gay R.; Friedrich, Victor L.; Martinelli, Giorgio P.

    2014-01-01

    Changes in head position and posture are detected by the vestibular system and are normally followed by rapid modifications in blood pressure. These compensatory adjustments, which allow humans to stand up without fainting, are mediated by integration of vestibular system pathways with blood pressure control centers in the ventrolateral medulla. Orthostatic hypotension can reflect altered activity of this neural circuitry. Vestibular sensory input to the vestibulo-sympathetic pathway terminat...

  16. Consolation as possible expression of sympathetic concern among chimpanzees

    OpenAIRE

    Romero, Teresa; Castellanos, Miguel A.; de Waal, Frans B. M.

    2010-01-01

    Chimpanzees are known to spontaneously provide contact comfort to recent victims of aggression, a behavior known as consolation. Similar behavior in human children is attributed to empathic or sympathetic concern. In line with this empathy hypothesis, chimpanzee consolation has been shown to reduce the recipient's state of arousal, hence to likely alleviate distress. Other predictions from the empathy hypothesis have rarely been tested, however, owing to small sample sizes in previous studies...

  17. A new concept of the sympathetic pathways to the eye.

    Science.gov (United States)

    Palumbo, L T

    1976-08-01

    The sympathetic pupillociliary pathways controlling the dilatation of the pupil in man have been recorded by many authorities as passing via the first and/or second thoracic (dorsal) rami to the lower part of the stellate (first thoracic) ganglion. It has been stated by these and other authorities that the removal of the lower part of the stellate ganglion and/or resection of the first and/or second thoracic rami would produce a Horner's syndrome. This currently accepted concept of the sympathetic pathways to the eye we believe to be incorrect. Our entire clinical experience has consistently contradicted the findings and reports of other investigators. It is suggested that the ability afforded by a new surgical approach to reach, dissect, and exactly control the line of resection without undue trauma to the stellate ganglion has made possible for the first time a definitive statement concerning the entry of the pupillociliary pathways into the sympathetic chain. It is, therefore, postulated that the preganglionic neurons controlling the pupil enter the upper portion of the stellate ganglion by a separate paravertebral route leaving the ventral roots of the eighth cervical, first and/or second thoracic nerves. Our entire clinical experience refutes the concept that these pathways pass via the first ramus communicans to the first thoracic ganglion. This thesis is based on and supported by the results of new surgical approach originally designed to permit a more direct exposure and to overcome many of the deficiencies of current surgical approaches. The anterior transthoracic, transpleural wound employed allows a more direct approach and a more accurate and complete dissection of this segment of the sympathetic supply to the head, neck, upper extremity, heart, and coronary vessels without incurring the undesirable sequela of a Horner's syndrome in 93% of patients. PMID:962268

  18. Sympathetic neural responses to mental stress during acute simulated microgravity

    OpenAIRE

    Durocher, John J.; Schwartz, Christopher E.; Carter, Jason R.

    2009-01-01

    Neural and cardiovascular responses to mental stress and acute 6° head-down tilt (HDT) were examined separately and combined. We hypothesized sympathoexcitation during mental stress, sympathoinhibition during HDT, and an additive neural interaction during combined mental stress and HDT. Muscle sympathetic nerve activity (MSNA), mean arterial pressure (MAP), and heart rate (HR) were recorded in 16 healthy subjects (8 men, 8 women) in the supine position during three randomized trials: 1) menta...

  19. Sympathetic cooling of rovibrationally state-selected molecular ions

    OpenAIRE

    Tong, Xin; Winney, Alexander H.; Willitsch, Stefan

    2010-01-01

    We present a new method for the generation of rotationally and vibrationally state-selected, translationally cold molecular ions in ion traps. Our technique is based on the state-selective threshold photoionization of neutral molecules followed by sympathetic cooling of the resulting ions with laser-cooled calcium ions. Using N$_2^+$ ions as a test system, we achieve > 90 % selectivity in the preparation of the ground rovibrational level and state lifetimes on the order of 15 minutes limited ...

  20. Sympathetic cooling of $^4$He$^+$ ions in a radiofrequency trap

    OpenAIRE

    Roth, B.(Institut für Experimentalphysik I, Ruhr–Universität Bochum, Bochum, 44780, Germany); Fröhlich, U.; S.SCHILLER

    2004-01-01

    We have generated Coulomb crystals of ultracold $^4$He$^+$ ions in a linear radiofrequency trap, by sympathetic cooling via laser--cooled $^9$Be$^+$. Stable crystals containing up to 150 localized He$^+$ ions at $\\sim$20 mK were obtained. Ensembles or single ultracold He$^+$ ions open up interesting perspectives for performing precision tests of QED and measurements of nuclear radii. The present work also indicates the feasibility of cooling and crystallizing highly charged atomic ions using ...

  1. Thoracoscopic sympathetic clamping in a patient with an azygos fissure.

    Science.gov (United States)

    Moon, Seok Whan; Yoon, Jeong Sub; Jo, Keon Hyeon; Wang, Young Pil; Park, Hyeon Jin

    2005-04-01

    We believe that an azygos fissure may predispose to bleeding during thoracoscopic surgery. An azygos fissure causes important morphologic changes in the superior mediastinum and thereby poses a risk of massive bleeding during thoracoscopic procedures. We report on a successful thoracoscopic procedure conducted in a patient with palmar hyperhidrosis and an azygos fissure and emphasize that the course of the thoracic sympathetic chain runs laterally along the base of the azygos fissure. PMID:15821627

  2. Release of endogenous ATP during sympathetic nerve stimulation.

    OpenAIRE

    Lew, M. J.; White, T. D.

    1987-01-01

    1 Vas deferens from guinea-pig was stimulated with a suction electrode and both contractions and release of endogenous ATP monitored 2 Release of ATP was tetrodotoxin-sensitive and increased when the number of stimuli was increased. 3 Release of ATP was not due to contraction of the muscle and persisted following block of contractions with prazosin and alpha, beta-methylene ATP. 4 These results indicate that stimulation of the sympathetic nerves in the vas deferens releases endogenous ATP pre...

  3. Relationship between duration of illness and cardiac autonomic nervous activity in anorexia nervosa

    OpenAIRE

    Nakai, Yoshikatsu; Fujita, Masatoshi; Nin, Kazuko; Noma, Shun’ichi; Teramukai, Satoshi

    2015-01-01

    Background The mortality rate associated with anorexia nervosa (AN) is high, and death is mainly attributable to cardiac events. A wide range of autonomic nervous system disturbances may be mechanisms underlying the increased cardiovascular mortality and sudden death of patients with AN. Heart rate variability (HRV) has been proven to be a reliable noninvasive method for quantitative assessment of sympathetic and parasympathetic regulation of heart rate (HR). The longer the duration of illnes...

  4. Relationship between duration of illness and cardiac autonomic nervous activity in anorexia nervosa

    OpenAIRE

    Nakai, Yoshikatsu; Fujita, Masatoshi; Nin, Kazuko; Noma, Shun'ichi; Teramukai, Satoshi

    2015-01-01

    Background: The mortality rate associated with anorexia nervosa (AN) is high, and death is mainly attributable to cardiac events. A wide range of autonomic nervous system disturbances may be mechanisms underlying the increased cardiovascular mortality and sudden death of patients with AN. Heart rate variability (HRV) has been proven to be a reliable noninvasive method for quantitative assessment of sympathetic and parasympathetic regulation of heart rate (HR). The longer the duration of illne...

  5. High sugar intake exacerbates cardiac reperfusion injury in perinatal taurine depleted adult rats

    OpenAIRE

    Kulthinee Supaporn; Wyss J Michael; Jirakulsomchok Dusit; Roysommuti Sanya

    2010-01-01

    Abstract Perinatal taurine depletion and high sugar diets blunted baroreflex function and heightens sympathetic nerve activity in adult rats. Cardiac ischemia/reperfusion also produces these disorders and taurine treatment appears to improve these effects. This study tests the hypothesis that perinatal taurine exposure predisposes recovery from reperfusion injury in rats on either a basal or high sugar diet. Female Sprague-Dawley rats were fed normal rat chow with 3% beta-alanine (taurine dep...

  6. Cardiac autonomic function in patients with diabetes improves with practice of comprehensive yogic breathing program

    Directory of Open Access Journals (Sweden)

    Viveka P Jyotsna

    2013-01-01

    Full Text Available Background: The aim of this study was to observe the effect comprehensive yogic breathing (Sudarshan Kriya Yoga [SKY] and Pranayam had on cardiac autonomic functions in patients with diabetes. Materials and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 64 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program. Standard therapy included dietary advice, brisk walking for 45 min daily, and administration of oral antidiabetic drugs. Comprehensive yogic breathing program was introduced to the participants through a course of 12 h spread over 3 days. It was an interactive session in which SKY, a rhythmic cyclical breathing, preceded by Pranayam is taught under the guidance of a certified teacher. Cardiac autonomic function tests were done before and after 6 months of intervention. Results: In the intervention group, after practicing the breathing techniques for 6 months, the improvement in sympathetic functions was statistically significant (P 0.04. The change in sympathetic functions in the standard therapy group was not significant (P 0.75.Parasympathetic functions did not show any significant change in either group. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P 0.06. In the standard therapy group, no change in cardiac autonomic functions was noted (P 0.99. Conclusion: Cardiac autonomic functions improved in patients with diabetes on standard treatment who followed the comprehensive yogic breathing program compared to patients who were on standard therapy alone.

  7. Sympathetic Responses to Noxious Stimulation of Muscle and Skin.

    Science.gov (United States)

    Burton, Alexander R; Fazalbhoy, Azharuddin; Macefield, Vaughan G

    2016-01-01

    Acute pain triggers adaptive physiological responses that serve as protective mechanisms that prevent continuing damage to tissues and cause the individual to react to remove or escape the painful stimulus. However, an extension of the pain response beyond signaling tissue damage and healing, such as in chronic pain states, serves no particular biological function; it is maladaptive. The increasing number of chronic pain sufferers is concerning, and the associated disease burden is putting healthcare systems around the world under significant pressure. The incapacitating effects of long-lasting pain are not just psychological - reflexes driven by nociceptors during the establishment of chronic pain may cause serious physiological consequences on regulation of other body systems. The sympathetic nervous system is inherently involved in a host of physiological responses evoked by noxious stimulation. Experimental animal and human models demonstrate a diverse array of heterogeneous reactions to nociception. The purpose of this review is to understand how pain affects the sympathetic nervous system by investigating the reflex cardiovascular and neural responses to acute pain and the long-lasting physiological responses to prolonged (tonic) pain. By observing the sympathetic responses to long-lasting pain, we can begin to understand the physiological consequences of long-term pain on cardiovascular regulation. PMID:27445972

  8. MIBG scintigraphy of the heart

    International Nuclear Information System (INIS)

    The sympathetic nervous system plays an important role in cardiovascular physiology. Planar MIBG with or without SPECT can be used to visualize the sympathetic innervation of the heart and the abnormalities in innervation caused by, for example, ischemia, heart failure, and arrhythmogenic disorders. Furthermore, cardiac neuronal imaging allows early detection of autonomic neuropathy in diabetes mellitus. Assessment of sympathetic nerve activity in patients with heart failure has been shown to provide important prognostic information, and cardiac neuronal imaging can potentially identify patients who are at increased risk of sudden death. Moreover, therapeutic effects of different treatment strategies can be evaluated by imaging. To establish the clinical utility of cardiac neuronal imaging, it will be necessary to determine the incremental value of innervation imaging to triage heart failure patients to medical therapy, CRT (with or without ICD), or heart transplantation. (orig.)

  9. MIBG scintigraphy of the heart; MIBG-Szintigrafie des Herzens

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, M.; Weiss, M. [Klinik und Poliklinik fuer Nuklearmedizin, Klinikum der Ludwig-Maximilians-Univ. Muenchen (Germany)

    2009-03-15

    The sympathetic nervous system plays an important role in cardiovascular physiology. Planar MIBG with or without SPECT can be used to visualize the sympathetic innervation of the heart and the abnormalities in innervation caused by, for example, ischemia, heart failure, and arrhythmogenic disorders. Furthermore, cardiac neuronal imaging allows early detection of autonomic neuropathy in diabetes mellitus. Assessment of sympathetic nerve activity in patients with heart failure has been shown to provide important prognostic information, and cardiac neuronal imaging can potentially identify patients who are at increased risk of sudden death. Moreover, therapeutic effects of different treatment strategies can be evaluated by imaging. To establish the clinical utility of cardiac neuronal imaging, it will be necessary to determine the incremental value of innervation imaging to triage heart failure patients to medical therapy, CRT (with or without ICD), or heart transplantation. (orig.)

  10. Innervation and immunohistochemical characteristics of epididymis in Alpaca camelid (Vicugna pacos)

    OpenAIRE

    Giovanna Liguori; Salvatore Paino; Caterina Squillacioti; Adriana De Luca; Sabrina Alì; Emilia Langella; Nicola Mirabella

    2013-01-01

    Alpacas (Vicugna pacos) are domesticated camelids indigenous to south America and recently also bred in Europe and Italy for their high quality wool. There is little data available regarding the innervation of the male reproductive tract of this species. In the present study, the distribution of protein gene product 9.5 (PGP 9.5), neuropeptide Y (NPY), tyrosine hydroxilase (TH), calcitonin gene related peptide (CGRP) and substance P (SP) was analyzed in the epididymis by using immunohistochem...

  11. Innervation and anesthesia of the antler pedicle in wapiti and fallow deer.

    OpenAIRE

    Woodbury, M R; Haigh, J C

    1996-01-01

    The heads from 6 mature male wapiti and 8 mature male fallow deer were dissected to provide a description of the nerves supplying the antler pedicles. Innervation in both species was found to resemble that of the red deer, with major contributions coming from the infratrochlear and zygomaticotemporal nerves. All heads displayed a dorsal branch from the auriculopalpebral nerve, but in only 2 wapiti and 3 fallow deer heads was this branch observed travelling to the pedicle. The dorsal branches ...

  12. Congenital innervation dysgenesis syndrome (CID)/congenital cranial dysinnervation disorders (CCDDs)

    OpenAIRE

    Assaf, A A

    2011-01-01

    Congenital loss of innervation to the extra-ocular muscles (EOMs) can have a profound effect on the target muscle. This has been well recognised in Duane's retraction syndrome. However, it has been less emphasised in other congenital oculo-motor disorders. Such congenital ocular motor defects have been expanded to include DRS, congenital fibrosis of EOMs, monocular elevation defect, Möbius syndrome, as well as several other non-ocular muscles supplied by cranial nerves such as facial muscles....

  13. The Roles of Sex, Innervation, and Androgen in Laryngeal Muscle of Xenopus laevis

    OpenAIRE

    Tobias, Martha L.; Marin, Melanie L.; Darcy B Kelley

    1993-01-01

    The relative contributions of innervation and androgen to three muscle fiber properties—twitch type, size, and number—were examined in the sexually dimorphic, androgen-sensitive laryngeal muscle of Xenopus laevis. In adults, the muscle contains all fast-twitch fibers in males and fast- and slow-twitch fibers in females; laryngeal muscle fibers are larger and more numerous in males than in females. Juvenile larynges are female-like in both sexes; male laryngeal muscle is subsequently masculini...

  14. Sources of innervation of the neuromuscular spindles in sternomastoid and trapezius.

    OpenAIRE

    FitzGerald, M J; Comerford, P T; Tuffery, A R

    1982-01-01

    The sources of innervation of neuromuscular spindles in sternomastoid and trapezius have been investigated in rats and mice, by degeneration experiments. The entire motor supply, both extrafusal and intrafusal, to both muscles, was from the spinal accessory nerve. The sensory supply to the spindles in sternomastoid and rostral trapezius was from cervical spinal nerves, and to those in the caudal trapezius was from thoracic spinal nerves.

  15. Structure, innervation and response properties of integumentary sensory organs in crocodilians

    OpenAIRE

    Leitch, Duncan B.; Catania, Kenneth C.

    2012-01-01

    Integumentary sensory organs (ISOs) are densely distributed on the jaws of crocodilians and on body scales of members of the families Crocodilidae and Gavialidae. We examined the distribution, anatomy, innervation and response properties of ISOs on the face and body of crocodilians and documented related behaviors for an alligatorid (Alligator mississippiensis) and a crocodylid (Crocodylus niloticus). Each of the ISOs (roughly 4000 in A. mississippiensis and 9000 in C. niloticus) was innervat...

  16. Noradrenergic innervation of the human adrenal cortex as revealed by dopamine-beta-hydroxylase immunohistochemistry.

    OpenAIRE

    Charlton, B G; McGadey, J; Russell, D; Neal, D E

    1992-01-01

    Noradrenergic innervation of the human adrenal cortex was investigated using immunohistochemistry directed at dopamine-beta-hydroxylase. Nerves were present as slender trunks and individual varicose fibres in the capsule and all cortical zones except the inner zona reticularis. Some fibres were located adjacent to blood vessels and in the muscular tunics of arterioles; others were apparently adjacent to parenchymal cells. These results in the human confirm and extend previous animal studies a...

  17. Structure and Innervation of the Extrahepatic Biliary System in the Australian Possum, Trichosurus Vulpecula

    OpenAIRE

    R. T. A. Padbury; Baker, R. A.; Messenger, J. P.; Toouli, J.; Furness, J B

    1993-01-01

    The morphology, microanatomy and innervation of the biliary tree of the Australian possum, Trichosurus vulpecula, was examined. The gross morphology of the gallbladder, hepatic and cystic ducts, and the course of the common bile duct, conforms to those of other species. The sphincter of Oddi has an extraduodenal segment that extends 15mm from the duodenal wall; within this segment the pancreatic and common bile ducts are ensheathed together by sphincter muscle. Their lumens unite to form a co...

  18. Ontogeny of Neuro-Insular Complexes and Islets Innervation in the Human Pancreas

    OpenAIRE

    AlexandraE.Proshchina

    2014-01-01

    The ontogeny of the neuro-insular complexes (NIC) and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used doublestaining with antibodies specific to pan-neural markers (neuron-specific enolase (NSE) and S100 protein) and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in th...

  19. Conduction in ulnar nerve bundles that innervate the proximal and distal muscles: a clinical trial

    OpenAIRE

    Oğuzhanoğlu Attila; Güler Sibel; Çam Mustafa; Değirmenci Eylem

    2010-01-01

    Abstract Background This study aims to investigate and compare the conduction parameters of nerve bundles in the ulnar nerve that innervates the forearm muscles and hand muscles; routine electromyography study merely evaluates the nerve segment of distal (hand) muscles. Methods An electrophysiological evaluation, consisting of velocities, amplitudes, and durations of ulnar nerve bundles to 2 forearm muscles and the hypothenar muscles was performed on the same humeral segment. Results The velo...

  20. GAD67-mediated GABA Synthesis and Signaling Regulate Inhibitory Synaptic Innervation in the Visual Cortex

    OpenAIRE

    Chattopadhyaya, Bidisha; Di Cristo, Graziella; Wu, Cai Zhi; Knott, Graham; Kuhlman, Sandra; Fu, Yu; Palmiter, Richard D; Huang, Z. Josh

    2007-01-01

    The development of GABAergic inhibitory circuits is shaped by neural activity, but the underlying mechanisms are unclear. we demonstrate a novel function of GABA in regulating GABAergic innervation in the adolescent brain, when GABA is mainly known as an inhibitory transmitter. Conditional knockdown of the rate-limiting synthetic enzyme GAD67 in basket interneurons in adolescent visual cortex resulted in cell autonomous deficits in axon branching, perisomatic synapse formation around pyramida...

  1. Expression of Sex Steroid Hormone Receptors in Vagal Motor Neurons Innervating the Trachea and Esophagus in Mouse

    Science.gov (United States)

    Mukudai, Shigeyuki; Ichi Matsuda, Ken; Bando, Hideki; Takanami, Keiko; Nishio, Takeshi; Sugiyama, Yoichiro; Hisa, Yasuo; Kawata, Mitsuhiro

    2016-01-01

    The medullary vagal motor nuclei, the nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMV), innervate the respiratory and gastrointestinal tracts. We conducted immunohistochemical analysis of expression of the androgen receptor (AR) and estrogen receptor α (ERα), in relation to innervation of the trachea and esophagus via vagal motor nuclei in mice. AR and ERα were expressed in the rostral NA and in part of the DMV. Tracing experiments using cholera toxin B subunit demonstrated that neurons of vagal motor nuclei that innervate the trachea and esophagus express AR and ERα. There was no difference in expression of sex steroid hormone receptors between trachea- and esophagus-innervating neurons. These results suggest that sex steroid hormones may act on vagal motor nuclei via their receptors, thereby regulating functions of the trachea and esophagus. PMID:27006520

  2. Innervation and immunohistochemical characteristics of epididymis in Alpaca camelid (Vicugna pacos

    Directory of Open Access Journals (Sweden)

    Giovanna Liguori

    2013-03-01

    Full Text Available Alpacas (Vicugna pacos are domesticated camelids indigenous to south America and recently also bred in Europe and Italy for their high quality wool. There is little data available regarding the innervation of the male reproductive tract of this species. In the present study, the distribution of protein gene product 9.5 (PGP 9.5, neuropeptide Y (NPY, tyrosine hydroxilase (TH, calcitonin gene related peptide (CGRP and substance P (SP was analyzed in the epididymis by using immunohistochemical methods. Specimens of the caput, corpus and cauda epididymis were fixed in Bouin’s fluid and processed for immunohistochemistry analysis with primary antibodies against PGP 9.5, NPY, TH, CGRP and SP. Immunopositivity to PGP 9.5 and TH and NPY was observed in nerve fibre bundles and in single nerve fibres contained into the peritubular connective tissue. Many TH and NPY immunopositive cells were found to innervate blood vessels. Rare CGRP and SP immunopositive nerves were observed. Several PGP 9,5 and NPY immunopositive epithelial cells were observed in the caput epididymis. The results of the present study suggest a role for the innervations in modulate reproductive functions in the alpaca epididymis.

  3. Innervation of the human vaginal mucosa as revealed by PGP 9.5 immunohistochemistry.

    Science.gov (United States)

    Hilliges, M; Falconer, C; Ekman-Ordeberg, G; Johansson, O

    1995-01-01

    In order to obtain a description of the innervation of the vaginal wall we employed an antiserum against the general neuronal marker, protein gene product 9.5, on normal human vaginal mucosa. Specimens were taken from the anterior and posterior fornices, from the anterior vaginal wall at the bladder neck level and from the introitus vaginae region, and then processed for indirect immunohistochemistry. All regions studied revealed a profound innervation, although regional differences were noted. The more distal areas of the vaginal wall had more nerve fibers compared to the more proximal parts. Also, biopsies from the anterior wall generally were more densely innervated than the posterior wall. Some large nerve coils were observed in lamina propria of the anterior wall as well as gatherings of thick-walled medium-sized blood vessels. Free intraepithelial nerve endings were only detected in the introitus vaginae region. These fibers were very thin, always varicose and could be observed just a few cell layers from the surface. In this part of the vagina, protein gene product 9.5 antibodies also stained cells within the basal parts of the epithelium. These cells were also neurone-specific enolase positive and resembled, from a morphological point of view, Merkel cells. PMID:8560964

  4. Innervation of Cochlear Hair Cells by Human Induced Pluripotent Stem Cell-Derived Neurons In Vitro

    Science.gov (United States)

    Gunewardene, Niliksha; Crombie, Duncan; Dottori, Mirella; Nayagam, Bryony A.

    2016-01-01

    Induced pluripotent stem cells (iPSCs) may serve as an autologous source of replacement neurons in the injured cochlea, if they can be successfully differentiated and reconnected with residual elements in the damaged auditory system. Here, we explored the potential of hiPSC-derived neurons to innervate early postnatal hair cells, using established in vitro assays. We compared two hiPSC lines against a well-characterized hESC line. After ten days' coculture in vitro, hiPSC-derived neural processes contacted inner and outer hair cells in whole cochlear explant cultures. Neural processes from hiPSC-derived neurons also made contact with hair cells in denervated sensory epithelia explants and expressed synapsin at these points of contact. Interestingly, hiPSC-derived neurons cocultured with hair cells at an early stage of differentiation formed synapses with a higher number of hair cells, compared to hiPSC-derived neurons cocultured at a later stage of differentiation. Notable differences in the innervation potentials of the hiPSC-derived neurons were also observed and variations existed between the hiPSC lines in their innervation efficiencies. Collectively, these data illustrate the promise of hiPSCs for auditory neuron replacement and highlight the need to develop methods to mitigate variabilities observed amongst hiPSC lines, in order to achieve reliable clinical improvements for patients. PMID:26966437

  5. Symptoms of notalgia paresthetica may be explained by increased dermal innervation.

    Science.gov (United States)

    Springall, D R; Karanth, S S; Kirkham, N; Darley, C R; Polak, J M

    1991-09-01

    Notalgia paresthetica is a sensory neuropathy characterized by infrascapular pruritus, burning pain, hyperalgesia, or tenderness. To assess whether the symptoms may be caused by alterations in the cutaneous innervation, skin from the affected area of patients (n = 5) was compared with controls (n = 10) comprising the contralateral unaffected area from the same patients and site-matched biopsies of normals, using immunohistochemistry. Frozen sections were immunostained with antisera to the neuropeptides substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide, and neuropeptide with tyrosine, and to the general neural marker PGP 9.5 and the glial marker S-100 to show the overall innervation and glial cells, respectively. No discernible change in the distribution of neuropeptide-immunoreactive axons was found, but all of the specimens from the affected areas had a significant increase in the number of intradermal PGP 9.5-immunoreactive nerve fibers compared with unaffected areas from the same patients and normal controls. Epidermal dendritic cells immunoreactive for S-100, possibly Langerhans cells, were substantially increased. It is concluded that there is an increase in the sensory epidermal innervation in the affected skin areas in notalgia paresthetica, which could contribute to the symptoms, and that neural immunohistochemistry of skin biopsies could be helpful in the diagnosis of the disease. PMID:1831466

  6. Ontogeny of neuro-insular complexes and islets innervation in the human pancreas.

    Directory of Open Access Journals (Sweden)

    Alexandra E. Proshchina

    2014-04-01

    Full Text Available The ontogeny of the neuro-insular complexes (NIC and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used doublestaining with antibodies specific to pan-neural markers (neuron-specific enolase (NSE and S100 protein and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw 10 onwards. Later the density of S100 and NSE-positive fibers increased. In adults this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onwards. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained neuro-insular complexes and the number of these complexes was reduced in adults. The highest density of neuro-insular complexes is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.

  7. Optimal Cardiac Resynchronization Therapy Pacing Rate in Non-Ischemic Heart Failure Patients

    DEFF Research Database (Denmark)

    Ghotbi, Adam Ali; Sander, Mikael; Køber, Lars;

    2015-01-01

    BACKGROUND: The optimal pacing rate during cardiac resynchronization therapy (CRT) is unknown. Therefore, we investigated the impact of changing basal pacing frequencies on autonomic nerve function, cardiopulmonary exercise capacity and self-perceived quality of life (QoL). METHODS: Twelve CRT...... by microneurography (MSNA), peak oxygen consumption (pVO2), N-terminal pro-brain natriuretic peptide (p-NT-proBNP), echocardiography and QoL. RESULTS: DDD-80 pacing for 3 months increased the mean heart rate from 77.3 to 86.1 (p = 0.001) and reduced sympathetic activity compared to DDD-60 (51±14 bursts/100 cardiac...

  8. Increase of TRPV1-Immunoreactivity in Dorsal Root Ganglia Neurons Innervating the Femur in a Rat Model of Osteoporosis

    OpenAIRE

    Yoshino, Kensuke; Suzuki, Miyako; Kawarai, Yuya; Sakuma, Yoshihiro; Inoue, Gen; Orita, Sumihisa; Yamauchi, Kazuyo; Aoki, Yasuchika; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Kamoda, Hiroto; Kubota, Gou; Oikawa, Yasuhiro; Inage, Kazuhide; Sainoh, Takeshi

    2014-01-01

    Purpose Transient receptor potential vanilloid 1 (TRPV1) is a ligand-gated nonselective cation channel, which can be activated by capsaicin and other noxious stimuli. Recently, an association between bone pain and TRPV1 has been reported. However, the influence of osteoporosis on TRPV1 in the sensory system innervating the femur has not been reported. Materials and Methods TRPV1-immunoreactive (ir) in dorsal root ganglia (DRG) neurons labeled with neurotracer [Fluoro-Gold (FG)] innervating th...

  9. Evidence and Consequences of the Central Role of the Kidneys in the Pathophysiology of Sympathetic Hyperactivity

    OpenAIRE

    Vink, Eva E.; Blankestijn, Peter J.

    2012-01-01

    Chronic elevation of the sympathetic nervous system has been identified as a major contributor to the complex pathophysiology of hypertension, states of volume overload – such as heart failure – and progressive kidney disease. It is also a strong determinant for clinical outcome. This review focuses on the central role of the kidneys in the pathogenesis of sympathetic hyperactivity. As a consequence, renal denervation may be an attractive option to treat sympathetic hyperactivity. The review ...

  10. Leptin-Induced Sympathetic Nerve Activation: Signaling Mechanisms and Cardiovascular Consequences in Obesity

    OpenAIRE

    Rahmouni, Kamal

    2010-01-01

    Obesity increases cardiovascular morbidity and mortality in part by inducing hypertension. One factor linking excess fat mass to cardiovascular diseases may be the sympathetic cardiovascular actions of leptin. Initial studies of leptin showed it regulates appetite and enhances energy expenditure by activating sympathetic nerve activity (SNA) to thermogenic brown adipose tissue. Further study, however, demonstrated leptin also causes sympathetic excitation to the kidney that, in turn, increase...

  11. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans.

    OpenAIRE

    Anderson, E A; Hoffman, R P; Balon, T W; Sinkey, C A; Mark, A L

    1991-01-01

    Hyperinsulinemia may contribute to hypertension by increasing sympathetic activity and vascular resistance. We sought to determine if insulin increases central sympathetic neural outflow and vascular resistance in humans. We recorded muscle sympathetic nerve activity (MSNA; microneurography, peroneal nerve), forearm blood flow (plethysmography), heart rate, and blood pressure in 14 normotensive males during 1-h infusions of low (38 mU/m2/min) and high (76 mU/m2/min) doses of insulin while hol...

  12. The Nucleus of the Solitary Tract and the coordination of respiratory and sympathetic activities

    OpenAIRE

    DanielB.Zoccal

    2014-01-01

    It is well known that breathing introduces rhythmical oscillations in the heart rate and arterial pressure levels. Sympathetic oscillations coupled to the respiratory activity have been suggested as an important homeostatic mechanism optimizing tissue perfusion and blood gas uptake/delivery. This respiratory-sympathetic coupling is strengthened in conditions of blood gas challenges (hypoxia and hypercapnia) as a result of the synchronized activation of brainstem respiratory and sympathetic ne...

  13. The nucleus of the solitary tract and the coordination of respiratory and sympathetic activities

    OpenAIRE

    Zoccal, Daniel B.; Furuya, Werner I.; Bassi, Mirian; Colombari, Débora S. A.; Colombari, Eduardo

    2014-01-01

    It is well known that breathing introduces rhythmical oscillations in the heart rate and arterial pressure levels. Sympathetic oscillations coupled to the respiratory activity have been suggested as an important homeostatic mechanism optimizing tissue perfusion and blood gas uptake/delivery. This respiratory-sympathetic coupling is strengthened in conditions of blood gas challenges (hypoxia and hypercapnia) as a result of the synchronized activation of brainstem respiratory and sympathetic ne...

  14. Horner´s Syndrome Post-Excision of a Huge Cervical Sympathetic Chain Schwannoma

    OpenAIRE

    Aydin, Sedat

    2007-01-01

    Schwannoma of the cervical sympathetic chain is a rare nerve tumor. These lesions typically present as an asymptomatic neck mass and are easily mistaken for a carotid body tumor during the initial work-up. In this report, a rarely seen huge cervical sympathetic chain schwannoma case, who experienced partial Horner´s syndrome postoperatively, is presented. We report a case of schwannoma on the cervical sympathetic chain, which to our knowledge is the largest reported in the current literature.

  15. On the vagal cardiac nerves, with special reference to the early evolution of the head-trunk interface.

    Science.gov (United States)

    Higashiyama, Hiroki; Hirasawa, Tatsuya; Oisi, Yasuhiro; Sugahara, Fumiaki; Hyodo, Susumu; Kanai, Yoshiakira; Kuratani, Shigeru

    2016-09-01

    The vagus nerve, or the tenth cranial nerve, innervates the heart in addition to other visceral organs, including the posterior visceral arches. In amniotes, the anterior and posterior cardiac branches arise from the branchial and intestinal portions of the vagus nerve to innervate the arterial and venous poles of the heart, respectively. The evolution of this innervation pattern has yet to be elucidated, due mainly to the lack of morphological data on the vagus in basal vertebrates. To investigate this topic, we observed the vagus nerves of the lamprey (Lethenteron japonicum), elephant shark (Callorhinchus milii), and mouse (Mus musculus), focusing on the embryonic patterns of the vagal branches in the venous pole. In the lamprey, no vagus branch was found in the venous pole throughout development, whereas the arterial pole was innervated by a branch from the branchial portion. In contrast, the vagus innervated the arterial and venous poles in the mouse and elephant shark. Based on the morphological patterns of these branches, the venous vagal branches of the mouse and elephant shark appear to belong to the intestinal part of the vagus, implying that the cardiac nerve pattern is conserved among crown gnathostomes. Furthermore, we found a topographical shift of the structures adjacent to the venous pole (i.e., the hypoglossal nerve and pronephros) between the extant gnathostomes and lamprey. Phylogenetically, the lamprey morphology is likely to be the ancestral condition for vertebrates, suggesting that the evolution of the venous branch occurred early in the gnathostome lineage, in parallel with the remodeling of the head-trunk interfacial domain during the acquisition of the neck. J. Morphol. 277:1146-1158, 2016. © 2016 Wiley Periodicals, Inc. PMID:27216138

  16. Cardiac perception and cardiac control. A review.

    Science.gov (United States)

    Carroll, D

    1977-12-01

    The evidence regarding specific cardiac perception and discrimination, and its relationship to voluntary cardiac control, is critically reviewed. Studies are considered in three sections, depending on the method used to assess cardiac perception: questionnaire assessment, discrimination procedures, and heartbeat tracking. The heartbeat tracking procedure would appear to suffer least from interpretative difficulties. Recommendations are made regarding the style of analysis used to assess heartbeat perception in such tracking tasks. PMID:348240

  17. Advantage of recording single-unit muscle sympathetic nerve activity in heart failure

    Directory of Open Access Journals (Sweden)

    HISAYOSHI eMURAI

    2012-05-01

    Full Text Available Elevated sympathetic activation is a characteristic feature of heart failure (HF. Excessive sympathetic activation under resting conditions has been shown to increase from the early stages of the disease, and is related to prognosis. Direct recording of multiunit efferent muscle sympathetic nerve activity (MSNA by microneurography is the best method for quantifying sympathetic nerve activity in humans. To date, this technique has been used to evaluate the actual central sympathetic outflow to the periphery in HF patients at rest and during exercise; however, because the firing occurrence of sympathetic activation is mainly synchronized by pulse pressure, multiunit MSNA, expressed as burst frequency (bursts/min and burst incidence (bursts/100heartbeats, may have limitations for the quantification of sympathetic nerve activity. In HF, multiunit MSNA is near the maximum level, and cannot increase further than the heartbeat. Single-unit MSNA analysis in humans is technically demanding, but provides more detailed information regarding central sympathetic firing. Although a great deal is known about the response of multiunit MSNA to stress, little information is available regarding the responses of single-unit MSNA to physiological stress and disease. The purposes of this review are to describe the differences between multiunit and single-unit MSNA during stress and to discuss the advantages of single-unit MSNA recording in improving our understanding the pathology of increased sympathetic activity in HF.

  18. Cardiac iodine-123 metaiodobenzylguanidine uptake in animals with diabetes mellitus and/or hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, E.A. [Dept. of Nuclear Medicine, Academic Medical Center, Univ. of Amsterdam (Netherlands)]|[Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands); Kam, K.L. [Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands); Somsen, G.A. [Dept. of Cardiology, Academic Medical Center, Univ. of Amsterdam (Netherlands); Boer, G.J. [Dept. of Nuclear Medicine, Academic Medical Center, Univ. of Amsterdam (Netherlands); Bruin, K. de [Dept. of Nuclear Medicine, Academic Medical Center, Univ. of Amsterdam (Netherlands); Batink, H.D. [Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands); Pfaffendorf, M. [Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands); Royen, E.A. van [Dept. of Nuclear Medicine, Academic Medical Center, Univ. of Amsterdam (Netherlands); Zwieten, P.A. van [Dept. of Pharmacotherapy, Academic Medical Center, Univ. of Amsterdam (Netherlands)]|[Dept. of Cardiology, Academic Medical Center, Univ. of Amsterdam (Netherlands)

    1996-08-01

    The aim of the present study was to evaluate the use of the noradrenaline analogue iodine-123 metaiodobenzylguanidine ([{sup 123}I]MIBG) for the assessment of cardiac sympathetic activity in the presence of diabetes mellitus and/or hypertension in animal models. One model used Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) rendered diabetic at 12 weeks of age by an intravenous injection of streptozotocin (STZ). The other model used lean and obese Zucker rats. In all groups basic haemodynamic values were established and animals received an intravenous injection of 50 {mu}Ci [{sup 123}I]MIBG. Initial myocardial uptake and washout rates of [{sup 123}I]MIBG were measured scintigraphically during 4 h. After sacrifice, plasma noradrenaline and left cardiac ventricular {beta}-adrenoceptor density was determined. The diabetic state, both in STZ-treated rats (direct induction) and in obese Zucker rats (genetic induction), appeared to induce a lower cardiac density of {beta}-adrenoceptors, indicative of increased sympathetic activity. Cardiac [{sup 123}I]MIBG then showed increased washouts, thereby confirming enhanced noradrenergic activity. This parallism of results led to the conclusion that [{sup 123}I]MIBG wash-out measurements could provide an excellent tool to assess cardiac sympathetic activity noninvasively. However, in hypertension (WKY vs SHR), both parameters failed to show parallelism: no changes in {beta}-adrenoceptor density were found, whereas [{sup 123}I]MIBG wash-out rate was increased. Thus, either [{sup 123}I]MIBG washout or {beta}-adrenoceptor density may not be a reliable parameter under all circumstances to detect changes in the release of noradrenaline. (orig./MG)

  19. Cardiac iodine-123 metaiodobenzylguanidine uptake in animals with diabetes mellitus and/or hypertension

    International Nuclear Information System (INIS)

    The aim of the present study was to evaluate the use of the noradrenaline analogue iodine-123 metaiodobenzylguanidine ([123I]MIBG) for the assessment of cardiac sympathetic activity in the presence of diabetes mellitus and/or hypertension in animal models. One model used Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) rendered diabetic at 12 weeks of age by an intravenous injection of streptozotocin (STZ). The other model used lean and obese Zucker rats. In all groups basic haemodynamic values were established and animals received an intravenous injection of 50 μCi [123I]MIBG. Initial myocardial uptake and washout rates of [123I]MIBG were measured scintigraphically during 4 h. After sacrifice, plasma noradrenaline and left cardiac ventricular β-adrenoceptor density was determined. The diabetic state, both in STZ-treated rats (direct induction) and in obese Zucker rats (genetic induction), appeared to induce a lower cardiac density of β-adrenoceptors, indicative of increased sympathetic activity. Cardiac [123I]MIBG then showed increased washouts, thereby confirming enhanced noradrenergic activity. This parallism of results led to the conclusion that [123I]MIBG wash-out measurements could provide an excellent tool to assess cardiac sympathetic activity noninvasively. However, in hypertension (WKY vs SHR), both parameters failed to show parallelism: no changes in β-adrenoceptor density were found, whereas [123I]MIBG wash-out rate was increased. Thus, either [123I]MIBG washout or β-adrenoceptor density may not be a reliable parameter under all circumstances to detect changes in the release of noradrenaline. (orig./MG)

  20. What Is Cardiac Rehabilitation?

    Science.gov (United States)

    ANSWERS by heart Treatments + Tests What Is Cardiac Rehabilitation? A cardiac rehabilitation (rehab) program takes place in a hospital or ... special help in making lifestyle changes. During your rehabilitation program you’ll… • Have a medical evaluation to ...

  1. Projection neurons of the vestibulo-sympathetic reflex pathway.

    Science.gov (United States)

    Holstein, Gay R; Friedrich, Victor L; Martinelli, Giorgio P

    2014-06-15

    Changes in head position and posture are detected by the vestibular system and are normally followed by rapid modifications in blood pressure. These compensatory adjustments, which allow humans to stand up without fainting, are mediated by integration of vestibular system pathways with blood pressure control centers in the ventrolateral medulla. Orthostatic hypotension can reflect altered activity of this neural circuitry. Vestibular sensory input to the vestibulo-sympathetic pathway terminates on cells in the vestibular nuclear complex, which in turn project to brainstem sites involved in the regulation of cardiovascular activity, including the rostral and caudal ventrolateral medullary regions (RVLM and CVLM, respectively). In the present study, sinusoidal galvanic vestibular stimulation was used to activate this pathway, and activated neurons were identified through detection of c-Fos protein. The retrograde tracer Fluoro-Gold was injected into the RVLM or CVLM of these animals, and immunofluorescence studies of vestibular neurons were conducted to visualize c-Fos protein and Fluoro-Gold concomitantly. We observed activated projection neurons of the vestibulo-sympathetic reflex pathway in the caudal half of the spinal, medial, and parvocellular medial vestibular nuclei. Approximately two-thirds of the cells were ipsilateral to Fluoro-Gold injection sites in both the RVLM and CVLM, and the remainder were contralateral. As a group, cells projecting to the RVLM were located slightly rostral to those with terminals in the CVLM. Individual activated projection neurons were multipolar, globular, or fusiform in shape. This study provides the first direct demonstration of the central vestibular neurons that mediate the vestibulo-sympathetic reflex. PMID:24323841

  2. Sympathetic cooling of molecular ion motion to the ground state

    OpenAIRE

    Rugango, Rene; Goeders, James E.; Dixon, Thomas H.; John M. Gray; Khanyile, Ncamiso; Shu, Gang; Clark, Robert J.; Brown, Kenneth R.

    2014-01-01

    We demonstrate sympathetic sideband cooling of a $^{40}$CaH$^{+}$ molecular ion co-trapped with a $^{40}$Ca$^{+}$ atomic ion in a linear Paul trap. Both axial modes of the two-ion chain are simultaneously cooled to near the ground state of motion. The center of mass mode is cooled to an average quanta of harmonic motion $\\overline{n}_{\\mathrm{COM}} = 0.13 \\pm 0.03$, corresponding to a temperature of $12.47 \\pm 0.03 ~\\mu$K. The breathing mode is cooled to $\\overline{n}_{\\mathrm{BM}} = 0.05 \\pm...

  3. Sympathetic Wigner-function tomography of a dark trapped ion

    DEFF Research Database (Denmark)

    Mirkhalaf, Safoura; Mølmer, Klaus

    2012-01-01

    A protocol is provided to reconstruct the Wigner function for the motional state of a trapped ion via fluorescence detection on another ion in the same trap. This “sympathetic tomography” of a dark ion without optical transitions suitable for state measurements is based on the mapping of its...... motional state onto one of the collective modes of the ion pair. The quantum state of this vibrational eigenmode is subsequently measured through sideband excitation of the bright ion. Physical processes to implement the desired state transfer are derived and the accomplishment of the scheme is evaluated...

  4. Brain renin angiotensin system in cardiac hypertrophy and failure

    Directory of Open Access Journals (Sweden)

    MichaelBader

    2012-01-01

    Full Text Available Brain renin-angiotensin system (RAS is significantly involved in the roles of the endocrine RAS in cardiovascular regulation. Our studies indicate that the brain RAS participates in the development of cardiac hypertrophy and fibrosis through sympathetic activation. Inhibition of sympathetic hyperactivity after myocardial infarction through suppression of the brain RAS appears beneficial. The brain RAS is involved in the modulation of circadian rhythms of arterial pressure, contributing to nondipping hypertension. We conclude that the brain RAS in pathophysiological states interacts synergistically with the chronically overactive RAS through a positive biofeedback in order to maintain a state of alert diseased conditions, such as cardiac hypertrophy and failure. Therefore, targeting brain RAS with drugs such as angiotensin converting inhibitors or receptor blockers having increased brain penetrability could be of advantage. These RAS-targeting drugs are first-line therapy for all heart failure patients. Since the RAS has both endocrine and local tissue components, RAS drugs are being developed to attain increased tissue penetrability and volume of distribution and consequently an efficient inhibition of both RAS components.

  5. Diffuse infiltrative cardiac tuberculosis

    International Nuclear Information System (INIS)

    We present the cardiac magnetic resonance images of an unusual form of cardiac tuberculosis. Nodular masses in a sheet-like distribution were seen to infiltrate the outer myocardium and pericardium along most of the cardiac chambers. The lesions showed significant resolution on antitubercular therapy

  6. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator

    Science.gov (United States)

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric C.

    2014-06-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about the mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region, compared to a typical parallel-hole low-energy high-resolution collimator, but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator-detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulations and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single-radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter

  7. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator

    International Nuclear Information System (INIS)

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about the mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region, compared to a typical parallel-hole low-energy high-resolution collimator, but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator-detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulations and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single-radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter

  8. Changes in peripheral innervation and nociception in reticular type and erosive type of oral lichen planus

    Directory of Open Access Journals (Sweden)

    Siriporn Chattipakorn

    2011-01-01

    Full Text Available Background: Oral lichen planus (OLP is a chronic inflammatory lesion in oral mucosa. Reticular (OLP-R and erosive (OLP-E types of OLP are the common forms that have been found in dental clinics. The aim of this investigation is to determine the correlation between neurogenic inflammation and nociception associated with OLP-R and OLP-E. Materials and Methods: The oral mucosal lesions from six patients with OLP-E, four with OLP-R and three with noninflamed oral mucosa, which represent normal mucosa, were identified by morphometric analysis of nerve fibers containing immunoreactive protein gene product (PGP 9.5. The level of inflammation was measured with hematoxylin and eosin staining and the level of nociception was analyzed with visual analog scale measurement. Results: We found that 1 an increase in peripheral innervation was related to the size of the area of inflammatory cell infiltration from both OLP-R and OLP-E; 2 the pattern of PGP 9.5-immunoreactivity among OLP-R and OLP-E was not significantly different (P=0.23; and 3 the correlation between nociception and an increase in PGP 9.5-immunoreactivity was not found in OLP-E and in OLP-R. Conclusions: Our findings suggest that an increase in peripheral innervation may lead to increased inflammation, which is part of the immunopathogenesis of OLP. Differences in nociception between OLP-R and OLP-E arise from the pathogenesis of each lesion, not from the differences in peripheral innervation.

  9. Neurone-specific enolase and S-100: new markers for delineating the innervation of the respiratory tract in man and other mammals.

    OpenAIRE

    Sheppard, M N; Kurian, S S; Henzen-Logmans, S C; Michetti, F; Cocchia, D; Cole , P; Rush, R A; Marangos, P. J.; Bloom, S. R.; Polak, J M

    1983-01-01

    Lung innervation has been studied in the past by methylene blue staining and silver impregnation and more recently by histochemical methods. These techniques give only a partial picture of the total innervation. We have delineated the innervation of the lung in man and three other mammalian species by immunostaining with antibodies to two new markers of nervous tissue. These markers are neurone-specific enolase (NSE), an enzyme present in nerve cells in both the central and the peripheral ner...

  10. Noradrenergic innervation of the human adrenal cortex as revealed by dopamine-beta-hydroxylase immunohistochemistry.

    Science.gov (United States)

    Charlton, B G; McGadey, J; Russell, D; Neal, D E

    1992-06-01

    Noradrenergic innervation of the human adrenal cortex was investigated using immunohistochemistry directed at dopamine-beta-hydroxylase. Nerves were present as slender trunks and individual varicose fibres in the capsule and all cortical zones except the inner zona reticularis. Some fibres were located adjacent to blood vessels and in the muscular tunics of arterioles; others were apparently adjacent to parenchymal cells. These results in the human confirm and extend previous animal studies and suggest a possible anatomical substrate for regulation of adrenal blood flow, and also for the direct action of noradrenaline on zona fasciculata cells to stimulate glucocorticoid secretion via beta-1-adrenoceptors. PMID:1336772

  11. The morphology and innervation of facial vibrissae in the tammar wallaby, Macropus eugenii.

    OpenAIRE

    Marotte, L R; Rice, F.L.; Waite, P M

    1992-01-01

    The morphology of the vibrissal follicles on the mystacial pad of the tammar wallaby is similar to that seen in other species except that the follicles lack a ringwulst or ring sinus. Instead, the mesenchymal sheath is thickened around the central region of the hair shaft. The follicle is innervated by both deep and superficial vibrissal nerves. The deep nerve enters as 4-11 fascicles which can be in close proximity or widely distributed around the hair. C1 follicles received more myelinated ...

  12. Reflex sympathetic dystrophy in a child; Wspolczulna dystrofia odruchowa u dziecka

    Energy Technology Data Exchange (ETDEWEB)

    Napiontek, M.; Krasny, I. [Akademia Medyczna, Poznan (Poland)

    1993-12-31

    A case of reflex sympathetic dystrophy in 11 years old girl was described. The acute pain of the left food was preceded by loss of consciousness of unknown origin. Patchy osteopenia, very rare and non characteristic X-ray changes in children`s reflex sympathetic dystrophy, was observed, mimicking osteomyelitis, bone malignant tumor or Sudeck disease. (author). 5 refs, 2 figs.

  13. Vibration sense and sympathetic vasoconstrictor activity in patients with occlusive arterial disease

    DEFF Research Database (Denmark)

    Bjerre-Jepsen, K; Henriksen, O; Parm, Martin Lehnsbo; Agerskov, K; Tønnesen, K H

    1983-01-01

    The function of sympathetic vasoconstrictor fibres was studied in 18 patients with occlusive arterial disease of the legs and somatic neuropathy, as evidenced as an increased vibration perception threshold. Nine patients suffered from long-term diabetes mellitus. Sympathetic vasoconstrictor funct...

  14. Sympathetic skin response: simple test for evaluation of autonomic function in patients with diabetes mellitus?

    Institute of Scientific and Technical Information of China (English)

    Srinivasa Jayachandra; Maxim Pinto; Urban J. A. D'Souza

    2005-01-01

    @@ To the Editor: We read with interest the excellent article by Huang YN et al.1 This important and carefully conducted study illustrates the sympathetic skin response (SSR) test can detect early dysfunction of the small sympathetic fibers in people affected by diabetes mellitus.

  15. Further evidence for the role of histamine H3, but not H1, H2 or H4, receptors in immepip-induced inhibition of the rat cardioaccelerator sympathetic outflow.

    Science.gov (United States)

    Pinacho-García, Manuel; Marichal-Cancino, Bruno A; Villalón, Carlos M

    2016-02-15

    Since histamine H3 and H4 receptors are coupled to heterotrimeric Gi/o proteins, a signal transduction pathway associated with inhibition of neurotransmitter release, the present study has investigated the inhibition of the rat cardioaccelerator sympathetic outflow induced by the H3/H4 receptor agonist immepip by using antagonists for histamine H1 (ketotifen), H2 (ranitidine), H3 (thioperamide) and H4 (JNJ7777120) receptors. For this purpose, 102 male Wistar rats were pithed, artificially ventilated and prepared for either preganglionic spinal (C7-T1) stimulation of the cardioaccelerator sympathetic outflow (n=90) or i.v. bolus injections of noradrenaline (n=12). This approach resulted in frequency-dependent and dose-dependent tachycardic responses, respectively. I.v. continuous infusions of immepip (3 and 10 μg/kg min), but not of saline (0.02 ml/min), dose-dependently inhibited the sympathetically-induced tachycardic responses. Moreover, the cardiac sympatho-inhibition induced by 10 μg/kg min immepip (which failed to affect the tachycardic responses to i.v. noradrenaline) was: (i) unaltered after i.v. treatment with 1 ml/kg vehicle, 100 μg/kg ketotifen, 3000 μg/kg ranitidine, 30 μg/kg thioperamide or 300 μg/kg JNJ7777120; and (ii) abolished after 100 μg/kg thioperamide (i.v.). These doses of antagonists, which did not affect per se the sympathetically-induced tachycardic responses, were high enough to block their respective receptors. In conclusion, the cardiac sympatho-inhibition induced by 10 μg/kg.min immepip involves histamine H3 receptors, with further pharmacological evidence excluding the involvement of H1, H2 and H4 receptors. PMID:26826593

  16. Gudmundur Finnbogason, "sympathetic understanding," and early Icelandic psychology.

    Science.gov (United States)

    Pind, Jörgen L

    2008-05-01

    Gudmundur Finnbogason (1873-1944) was a pioneer of Icelandic psychology. He was educated at the University of Copenhagen where he finished his M.A. in 1901 in philosophy, specializing in psychology. During the years 1901-1905, Finnbogason played a major role in establishing and shaping the future of primary education in Iceland. He defended his doctoral thesis on "sympathetic understanding" at the University of Copenhagen in 1911. This work deals with the psychology of imitation. In it Finnbogason defends the view that imitation is basically perception so that there is a direct link from perception to motor behavior. Through imitation people tend to assume the countenance and demeanor of other people, thus showing, in Finnbogason's terminology, "sympathetic understanding." Finnbogason's theory of imitation in many respects anticipates contemporary approaches to the psychology of imitation. In 1918 Finnbogason became professor of applied psychology at the recently founded University of Iceland. Here he attempted to establish psychology as an independent discipline. In this he was unsuccessful; his chair was abolished in 1924. PMID:19048969

  17. Sympathetic cooling of fluorine atoms with ultracold atomic hydrogen

    CERN Document Server

    González-Martínez, Maykel L

    2013-01-01

    We consider the prospect of using ultracold hydrogen atoms for sympathetic cooling of fluorine atoms to microkelvin temperatures. We carry out quantum-mechanical calculations on collisions between cold F and H atoms in magnetically trappable states and show that the ratio of elastic to inelastic cross sections remains high across a wide range of temperatures and magnetic fields. For F atoms initially in the spin-stretched state ($^2$P$_{3/2}$, $f=m_f=+2$), sympathetic cooling appears likely to succeed from starting temperatures around 1 K or even higher. This occurs because inelastic collisions are suppressed by p-wave and d-wave barriers that are 600 mK and 3.2 K high, respectively. In combination with recent results on H + NH and H + OH collisions [M. L. Gonz\\'alez-Mart\\'{\\i}nez and J. M. Hutson, arXiv:1305.6282 (2013)], this establishes ultracold H atoms as a very promising and versatile coolant for atoms and molecules that cannot be laser-cooled.

  18. Action of cocaine and chronic sympathetic denervation on vagal escape

    Science.gov (United States)

    Campos, H. A.; Urquilla, P. R.

    1969-01-01

    1. The effect of cocaine has been studied on vagal escape and on the tachycardia due to vagal stimulation in the atropinized dog. All the dogs were submitted to acute cervical section of the spinal cord and acute or chronic sympathetic denervation. 2. Cocaine, 5 mg/kg or 40 μg/kg/min, I.V., induces a significant enhancement of the ventricular escape. The effects of a continuous infusion of cocaine are more reproducible than those of a single injection of the drug. 3. Cocaine, 40 μg/kg/min, I.V., potentiates the tachycardia due to vagal stimulation in the atropinized dog. 4. Chronic thoracic sympathectomy markedly retards the recovery of the ventricular rate from the inhibitory action of the vagus. Under this condition, the infusion of cocaine does not significantly enhance the ventricular escape. 5. These findings suggest that an adrenergic mechanism located at the sympathetic nerves supplying the heart is substantially involved in the phenomenon of vagal escape. PMID:5249864

  19. Sympathetic discharge and vascular resistance after bed rest

    Science.gov (United States)

    Shoemaker, J. K.; Hogeman, C. S.; Leuenberger, U. A.; Herr, M. D.; Gray, K.; Silber, D. H.; Sinoway, L. I.

    1998-01-01

    The effect of -6 degrees head-down-tilt bed rest (HDBR) for 14 days on supine sympathetic discharge and cardiovascular hemodynamics at rest was assessed. Mean arterial pressure, heart rate (n = 25), muscle sympathetic nerve activity (MSNA; n = 16) burst frequency, and forearm blood flow (n = 14) were measured, and forearm vascular resistance (FVR) was calculated. Stroke distance, our index of stroke volume, was derived from measurements of aortic mean blood velocity (Doppler) and R-R interval (n = 7). With these data, an index of total peripheral resistance was determined. Heart rate at rest was greater in the post (71 +/- 2 beats/min)- compared with the pre-HDBR test (66 +/- 2 beats/min; P pressure was unchanged. Aortic stroke distance during post-HDBR (15.5 +/- 1.1 cm/beat) was reduced from pre-HDBR levels (20.0 +/- 1.5 cm/beat) (P forearm blood flow, FVR, or total peripheral resistance. Thus reductions in MSNA with HDBR were not associated with a decrease in FVR.

  20. Carotid body chemoreceptors, sympathetic neural activation, and cardiometabolic disease.

    Science.gov (United States)

    Iturriaga, Rodrigo; Del Rio, Rodrigo; Idiaquez, Juan; Somers, Virend K

    2016-01-01

    The carotid body (CB) is the main peripheral chemoreceptor that senses the arterial PO2, PCO2 and pH. In response to hypoxemia, hypercapnia and acidosis, carotid chemosensory discharge elicits reflex respiratory, autonomic and cardiovascular adjustments. The classical construct considers the CB as the main peripheral oxygen sensor, triggering reflex physiological responses to acute hypoxemia and facilitating the ventilatory acclimation to chronic hypoxemia at high altitude. However, a growing body of experimental evidence supports the novel concept that an abnormally enhanced CB chemosensory input to the brainstem contributes to overactivation of the sympathetic nervous system, and consequent pathology. Indeed, the CB has been implicated in several diseases associated with increases in central sympathetic outflow. These include hypertension, heart failure, sleep apnea, chronic obstructive pulmonary disease and metabolic syndrome. Indeed, ablation of the CB has been proposed for the treatment of severe and resistant hypertension in humans. In this review, we will analyze and discuss new evidence supporting an important role for the CB chemoreceptor in the progression of autonomic and cardiorespiratory alterations induced by heart failure, obstructive sleep apnea, chronic obstructive pulmonary disease and metabolic syndrome. PMID:26920146

  1. Sympathetic responses to head-down rotations in humans.

    Science.gov (United States)

    Hume, K M; Ray, C A

    1999-06-01

    Muscle sympathetic nerve activity (MSNA) increases with head-down neck flexion (HDNF). The present study had three aims: 1) to examine sympathetic and vascular responses to two different magnitudes of HDNF; 2) to examine these same responses during prolonged HDNF; and 3) to determine the influence of nonspecific pressure receptors in the head on MSNA. The first experiment tested responses to two static head positions in the vertical axis [HDNF and intermediate HDNF (I-HDNF; approximately 50% of HDNF)]. MSNA increased above baseline during both I-HDNF and HDNF (from 219 +/- 36 to 301 +/- 47 and from 238 +/- 42 to 356 +/- 59 units/min, respectively; P HDNF and HDNF (P HDNF. MSNA increased (from 223 +/- 63 to 315 +/- 79 units/min; P HDNF. These responses were maintained throughout the 30-min period. Mean arterial blood pressure gradually increased during the 30 min of HDNF (from 94 +/- 4 to 105 +/- 3 mmHg; P HDNF, head-down neck extension did not affect MSNA. The results from these studies demonstrate that MSNA: 1) increases in magnitude as the degree of HDNF increases; 2) remains elevated above baseline during prolonged HDNF; and 3) responses during HDNF are not associated with nonspecific receptors in the head activated by increases in cerebral pressure. PMID:10368363

  2. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons

    Science.gov (United States)

    Postigo, Antonio; Calella, Anna Maria; Fritzsch, Bernd; Knipper, Marlies; Katz, David; Eilers, Andreas; Schimmang, Thomas; Lewin, Gary R.; Klein, Rudiger; Minichiello, Liliana

    2002-01-01

    Signaling by brain-derived neurotrophic factor (BDNF) via the TrkB receptor, or by neurotrophin-3 (NT3) through the TrkC receptor support distinct populations of sensory neurons. The intracellular signaling pathways activated by Trk (tyrosine kinase) receptors, which in vivo promote neuronal survival and target innervation, are not well understood. Using mice with TrkB or TrkC receptors lacking the docking site for Shc adaptors (trkB(shc/shc) and trkC(shc/shc) mice), we show that TrkB and TrkC promote survival of sensory neurons mainly through Shc site-independent pathways, suggesting that these receptors use similar pathways to prevent apoptosis. In contrast, the regulation of target innervation appears different: in trkB(shc/shc) mice neurons lose target innervation, whereas in trkC(shc/shc) mice the surviving TrkC-dependent neurons maintain target innervation and function. Biochemical analysis indicates that phosphorylation at the Shc site positively regulates autophosphorylation of TrkB, but not of TrkC. Our findings show that although TrkB and TrkC signals mediating survival are largely similar, TrkB and TrkC signals required for maintenance of target innervation in vivo are regulated by distinct mechanisms.

  3. Cardiac 123I-MIBG uptake in de novo Brazilian patients with Parkinson's disease without clinically defined dysautonomia

    Directory of Open Access Journals (Sweden)

    Marco Antonio Araujo Leite

    2014-06-01

    Full Text Available Myocardial scintigraphy with meta-iodo-benzyl-guanidine (123I cMIBG has been studied in Parkinson's disease (PD, especially in Asian countries, but not in Latin America. Most of these studies include individuals with PD associated to a defined dysautonomia. Our goal is to report the cardiac sympathetic neurotransmission in de novo Brazilian patients with sporadic PD, without clinically defined dysautonomia. We evaluated retrospectively a series of 21 consecutive cases with PD without symptoms or signs of dysautonomia assessed by the standard bedside tests. This number was reduced to 14 with the application of exclusion criteria. 123I cMIBG SPECT up-take was low or absent in all of them and the heart/mediastinum ratio was low in 12 of 14. We concluded that 123I cMIBG has been able to identify cardiac sympathetic neurotransmission disorder in Brazilian de novo PD patients without clinically defined dysautonomia.

  4. Progenitor cell maintenance and neurogenesis in sympathetic ganglia involves Notch signaling.

    Science.gov (United States)

    Tsarovina, Konstantina; Schellenberger, Jens; Schneider, Carolin; Rohrer, Hermann

    2008-01-01

    Differentiation of noradrenergic neurons from neural crest-derived precursors results in the formation of primary sympathetic ganglia. As sympathetic neurons continue to divide after the acquisition of adrenergic and neuronal properties it was unclear, whether the increase in neuron number during neurogenesis is due to neuron proliferation rather than differentiation of progenitor cells. Here, we demonstrate Sox10-positive neural crest progenitor cells and continuous sympathetic neuron generation from Phox2b-positive autonomic progenitors during early chick sympathetic ganglion development. In vivo activation of Notch signaling resulted in a decreased neuronal population, whereas expression of the Notch signaling inhibitor Su(H)(DBM) increased the proportion of Scg10-positive neurons. Similar results were obtained for sensory dorsal root ganglia (DRG). The effects of Notch gain- and loss-of-function experiments support the notion that progenitor maintenance and neuron differentiation from progenitor cells are essential for neurogenesis also during early sympathetic ganglion development. PMID:17920293

  5. Signs of cardiac autonomic imbalance and proarrhythmic remodeling in FTO deficient mice.

    Directory of Open Access Journals (Sweden)

    Luca Carnevali

    Full Text Available In humans, variants of the fat mass and obesity associated (FTO gene have recently been associated with obesity. However, the physiological function of FTO is not well defined. Previous investigations in mice have linked FTO deficiency to growth retardation, loss of white adipose tissue, increased energy metabolism and enhanced systemic sympathetic activation. In this study we investigated for the first time the effects of global knockout of the mouse FTO gene on cardiac function and its autonomic neural regulation. ECG recordings were acquired via radiotelemetry in homozygous knockout (n = 12 and wild-type (n = 8 mice during resting and stress conditions, and analyzed by means of time- and frequency-domain indexes of heart rate variability. In the same animals, cardiac electrophysiological properties (assessed by epicardial mapping and structural characteristics were investigated. Our data indicate that FTO knockout mice were characterized by (i higher heart rate values during resting and stress conditions, (ii heart rate variability changes (increased LF to HF ratio, (iii larger vulnerability to stress-induced tachyarrhythmias, (iv altered ventricular repolarization, and (v cardiac hypertrophy compared to wild-type counterparts. We conclude that FTO deficiency in mice leads to an imbalance of the autonomic neural modulation of cardiac function in the sympathetic direction and to a potentially proarrhythmic remodeling of electrical and structural properties of the heart.

  6. MIBG scintigraphic assessment of cardiac adrenergic activity in response to altitude hypoxia

    International Nuclear Information System (INIS)

    High altitude hypoxia induces a decrease in the cardiac chronotropic function at maximal exercise or in response to isoproterenol infusion, suggesting an alteration in the cardiac sympathetic activation. Iodine-123 metaiodobenzylguanidine [(123I]MIBG) was used to map scintigraphically the cardiac sympathetic neuronal function in six male subjects (aged 32 ± 7 yr) after an exposure to high altitude that created hypoxic conditions. Results obtained just after return to sea level (RSL) were compared with the normal values obtained after 2 or 3 mo of normoxia (N). A static image was created as the sum of the 16-EKG gated images recorded for 10 min in the anterior view of the chest at 20, 60, 120, and 240 min after injection. Regions of interest were located over the heart (H), lungs (L), and mediastinum (M) regions. There was a significant decrease in the H/M and the L/M ratios in RSL compared to N condition. Plasma norepinephrine concentration was elevated during the stay at altitude but not significantly different in RSL compared to N. In conclusion, cardiac [123I]MIBG uptake is reduced after an exposure to altitude hypoxia, supporting the hypothesis of an hypoxia-induced reduction of adrenergic neurotransmitter reserve in the myocardium. Furthermore, the observed significant decrease in pulmonary MIBG uptake suggests an alteration of endothelial cell function after exposure to chronic hypoxia

  7. Cardiac tumours in children

    Directory of Open Access Journals (Sweden)

    Parsons Jonathan M

    2007-03-01

    Full Text Available Abstract Cardiac tumours are benign or malignant neoplasms arising primarily in the inner lining, muscle layer, or the surrounding pericardium of the heart. They can be primary or metastatic. Primary cardiac tumours are rare in paediatric practice with a prevalence of 0.0017 to 0.28 in autopsy series. In contrast, the incidence of cardiac tumours during foetal life has been reported to be approximately 0.14%. The vast majority of primary cardiac tumours in children are benign, whilst approximately 10% are malignant. Secondary malignant tumours are 10–20 times more prevalent than primary malignant tumours. Rhabdomyoma is the most common cardiac tumour during foetal life and childhood. It accounts for more than 60% of all primary cardiac tumours. The frequency and type of cardiac tumours in adults differ from those in children with 75% being benign and 25% being malignant. Myxomas are the most common primary tumours in adults constituting 40% of benign tumours. Sarcomas make up 75% of malignant cardiac masses. Echocardiography, Computing Tomography (CT and Magnetic Resonance Imaging (MRI of the heart are the main non-invasive diagnostic tools. Cardiac catheterisation is seldom necessary. Tumour biopsy with histological assessment remains the gold standard for confirmation of the diagnosis. Surgical resection of primary cardiac tumours should be considered to relieve symptoms and mechanical obstruction to blood flow. The outcome of surgical resection in symptomatic, non-myxomatous benign cardiac tumours is favourable. Patients with primary cardiac malignancies may benefit from palliative surgery but this approach should not be recommended for patients with metastatic cardiac tumours. Surgery, chemotherapy and radiotherapy may prolong survival. The prognosis for malignant primary cardiac tumours is generally extremely poor.

  8. Sympathetic activity induced by naloxone-precipitated morphine withdrawal is blocked in genetically engineered mice lacking functional CRF1 receptor

    International Nuclear Information System (INIS)

    There is large body evidence indicating that stress can lead to cardiovascular disease. However, the exact brain areas and the mechanisms involved remain to be revealed. Here, we performed a series of experiments to characterize the role of CRF1 receptor (CRF1R) in the stress response induced by naloxone-precipitated morphine withdrawal. The experiments were performed in the hypothalamic paraventricular nucleus (PVN) ventrolateral medulla (VLM), brain regions involved in the regulation of cardiovascular activity, and in the right ventricle by using genetically engineered mice lacking functional CRF1R levels (KO). Mice were treated with increasing doses of morphine and withdrawal was precipitated by naloxone administration. Noradrenaline (NA) turnover, c-Fos, expression, PKA and TH phosphorylated at serine 40, was evaluated by high-performance liquid chromatography (HPLC), immunohistochemistry and immunoblotting. Morphine withdrawal induced an enhancement of NA turnover in PVN in parallel with an increase in TH neurons expressing c-Fos in VLM in wild-type mice. In addition we have demonstrated an increase in NA turnover, TH phosphorylated at serine 40 and PKA levels in heart. The main finding of the present study was that NA turnover, TH positive neurons that express c-Fos, TH phosphorylated at serine 40 and PKA expression observed during morphine withdrawal were significantly inhibited in CRF1R KO mice. Our results demonstrate that CRF/CRF1R activation may contribute to the adaptive changes induced by naloxone-precipitated withdrawal in the heart and in the brain areas which modulate the cardiac sympathetic function and suggest that CRF/CRF1R pathways could be contributing to cardiovascular disease associated to opioid addiction. - Highlights: • Naloxone-precipitated morphine withdrawal increases sympathetic activity in the PVN and heart. • Co-localization of TH phosphorylated at serine 40/c-Fos in the VLM after morphine withdrawal • Naloxone

  9. Sympathetic activity induced by naloxone-precipitated morphine withdrawal is blocked in genetically engineered mice lacking functional CRF1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    García-Carmona, Juan-Antonio; Martínez-Laorden, Elena; Milanés, María-Victoria; Laorden, María-Luisa

    2015-02-15

    There is large body evidence indicating that stress can lead to cardiovascular disease. However, the exact brain areas and the mechanisms involved remain to be revealed. Here, we performed a series of experiments to characterize the role of CRF1 receptor (CRF1R) in the stress response induced by naloxone-precipitated morphine withdrawal. The experiments were performed in the hypothalamic paraventricular nucleus (PVN) ventrolateral medulla (VLM), brain regions involved in the regulation of cardiovascular activity, and in the right ventricle by using genetically engineered mice lacking functional CRF1R levels (KO). Mice were treated with increasing doses of morphine and withdrawal was precipitated by naloxone administration. Noradrenaline (NA) turnover, c-Fos, expression, PKA and TH phosphorylated at serine 40, was evaluated by high-performance liquid chromatography (HPLC), immunohistochemistry and immunoblotting. Morphine withdrawal induced an enhancement of NA turnover in PVN in parallel with an increase in TH neurons expressing c-Fos in VLM in wild-type mice. In addition we have demonstrated an increase in NA turnover, TH phosphorylated at serine 40 and PKA levels in heart. The main finding of the present study was that NA turnover, TH positive neurons that express c-Fos, TH phosphorylated at serine 40 and PKA expression observed during morphine withdrawal were significantly inhibited in CRF1R KO mice. Our results demonstrate that CRF/CRF1R activation may contribute to the adaptive changes induced by naloxone-precipitated withdrawal in the heart and in the brain areas which modulate the cardiac sympathetic function and suggest that CRF/CRF1R pathways could be contributing to cardiovascular disease associated to opioid addiction. - Highlights: • Naloxone-precipitated morphine withdrawal increases sympathetic activity in the PVN and heart. • Co-localization of TH phosphorylated at serine 40/c-Fos in the VLM after morphine withdrawal • Naloxone

  10. Evidence of ancillary trigeminal innervation of levator palpebrae in the general population.

    Science.gov (United States)

    Lehman, A M; Dong, C C; Harries, A M; Patel, A; Honey, C R; Patel, M S

    2014-02-01

    The cranial synkineses are a group of disorders encompassing a variety of involuntary co-contractions of the facial, masticatory, or extraocular muscles that occur during a particular volitional movement. The neuroanatomical pathways for synkineses largely remain undefined. Our studies explored a normal synkinesis long observed in the general population - that of jaw opening during efforts to open the eyelids widely. To document this phenomenon, we observed 186 consecutive participants inserting or removing contact lenses to identify jaw opening. Seeking electrophysiological evidence, in a second study we enrolled individuals undergoing vascular decompression for trigeminal neuralgia or hemifacial spasm, without a history of jaw-winking, ptosis, or strabismus, to record any motor responses in levator palpebrae superioris (LPS) upon stimulation of the trigeminal motor root. Stimulus was applied to the trigeminal motor root while an electrode in levator recorded the response. We found that 37 participants (20%) opened their mouth partially or fully during contact lens manipulation. In the second study, contraction of LPS with trigeminal motor stimulation was documented in two of six patients, both undergoing surgery for trigeminal neuralgia. We speculate these results might provide evidence of an endogenous synkinesis, indicating that trigeminal-derived innervation of levator could exist in a significant minority of the general population. Our observations demonstrate plasticity in the human cranial nerve innervation pattern and may have implications for treating Marcus Gunn jaw-winking. PMID:24120706

  11. Evidence for Competition for Target Innervation in the Medial Prefrontal Cortex.

    Science.gov (United States)

    Guirado, Ramon; Umemori, Juzoh; Sipilä, Pia; Castrén, Eero

    2016-03-01

    Inputs to sensory cortices are known to compete for target innervation through an activity-dependent mechanism during critical periods. To investigate whether this principle also applies to association cortices such as the medial prefrontal cortex (mPFC), we produced a bilateral lesion during early development to the ventral hippocampus (vHC), an input to the mPFC, and analyzed the intensity of the projection from another input, the basolateral amgydala (BLA). We found that axons from the BLA had a higher density of "en passant" boutons in the mPFC of lesioned animals. Furthermore, the density of neurons labeled with retrograde tracers was increased, and neurons projecting from the BLA to the mPFC showed increased expression of FosB. Since neonatal ventral hippocampal lesion has been used as an animal model of schizophrenia, we investigated its effects on behavior and found a negative correlation between the density of retrogradely labeled neurons in the BLA and the reduction of the startle response in the prepulse inhibition test. Our results not only indicate that the inputs from the BLA and the vHC compete for target innervation in the mPFC during postnatal development but also that subsequent abnormal rewiring might underlie the pathophysiology of neuropsychiatric disorders such as schizophrenia. PMID:26637448

  12. Endogenous vagal activation dampens intestinal inflammation independently of splenic innervation in postoperative ileus.

    Science.gov (United States)

    Costes, L M M; van der Vliet, J; van Bree, S H W; Boeckxstaens, G E; Cailotto, C

    2014-10-01

    Postoperative ileus is encountered by patients undergoing open abdominal surgery and is characterized by intestinal inflammation associated with impaired gastrointestinal motility. We recently showed that inflammation of the gut muscularis triggered activation of the vagal efferent pathway mainly targeting the inflamed zone. In the present study we investigate further the modulatory role of endogenous activation of the vagal motor pathway on the innate immune response. Intestinal or splenic denervation was performed two weeks prior to intestinal manipulation (IM) or laparotomy (L). Twenty-four hour post-surgery, the gastrointestinal transit, immune cell influx, and pro-inflammatory cytokine levels were measured in the gut muscularis. Manipulation of the small intestine led to a delay in intestinal transit, an influx of leukocytes and increased pro-inflammatory cytokine expression. Surgical lesion of the vagal branch that selectively innervates the small intestine did not further delay the intestinal transit but significantly enhanced the expression levels of the pro-inflammatory cytokines IL-1β and IL-6 in the gut muscularis. Splenic denervation did not affect intestinal inflammation or gastrointestinal transit after intestinal manipulation. Our study demonstrates that selective vagotomy, leaving the splenic innervation intact, increases surgery-induced intestinal inflammation. These data suggest that endogenous activation of the vagal efferent pathway by intestinal inflammation directly dampens the local immune response triggered by intestinal manipulation independently of the spleen. PMID:25103359

  13. Structure, innervation and response properties of integumentary sensory organs in crocodilians.

    Science.gov (United States)

    Leitch, Duncan B; Catania, Kenneth C

    2012-12-01

    Integumentary sensory organs (ISOs) are densely distributed on the jaws of crocodilians and on body scales of members of the families Crocodilidae and Gavialidae. We examined the distribution, anatomy, innervation and response properties of ISOs on the face and body of crocodilians and documented related behaviors for an alligatorid (Alligator mississippiensis) and a crocodylid (Crocodylus niloticus). Each of the ISOs (roughly 4000 in A. mississippiensis and 9000 in C. niloticus) was innervated by networks of afferents supplying multiple different mechanoreceptors. Electrophysiological recordings from the trigeminal ganglion and peripheral nerves were made to isolate single-unit receptive fields and to test possible osmoreceptive and electroreceptive functions. Multiple small (100 mm(2)) and higher thresholds (13.725 mN). Rapidly adapting, slowly adapting type I and slowly adapting type II responses were identified based on neuronal responses. Several rapidly adapting units responded maximally to vibrations at 20-35 Hz, consistent with reports of the ISOs' role in detecting prey-generated water surface ripples. Despite crocodilians' armored bodies, the ISOs imparted a mechanical sensitivity exceeding that of primate fingertips. We conclude that crocodilian ISOs have diverse functions, including detection of water movements, indicating when to bite based on direct contact of pursued prey, and fine tactile discrimination of items held in the jaws. PMID:23136155

  14. Laser ablation of Drosophila embryonic motoneurons causes ectopic innervation of target muscle fibers

    Science.gov (United States)

    Chang, T. N.; Keshishian, H.

    1996-01-01

    We have tested the effects of neuromuscular denervation in Drosophila by laser-ablating the RP motoneurons in intact embryos before synaptogenesis. We examined the consequences of this ablation on local synaptic connectivity in both 1st and 3rd instar larvae. We find that the partial or complete loss of native innervation correlates with the appearance of alternate inputs from neighboring motor endings and axons. These collateral inputs are found at ectopic sites on the denervated target muscle fibers. The foreign motor endings are electrophysiologically functional and are observed on the denervated muscle fibers by the 1st instar larval stage. Our data are consistent with the existence of a local signal from the target environment, which is regulated by innervation and influences synaptic connectivity. Our results show that, despite the stereotypy of Drosophila neuromuscular connections, denervation can induce local changes in connectivity in wild-type Drosophila, suggesting that mechanisms of synaptic plasticity may also be involved in normal Drosophila neuromuscular development.

  15. A Method to Target and Isolate Airway-innervating Sensory Neurons in Mice.

    Science.gov (United States)

    Kaelberer, Melanie Maya; Jordt, Sven-Eric

    2016-01-01

    Somatosensory nerves transduce thermal, mechanical, chemical, and noxious stimuli caused by both endogenous and environmental agents. The cell bodies of these afferent neurons are located within the sensory ganglia. Sensory ganglia innervate a specific organ or portion of the body. For instance, the dorsal root ganglia (DRG) are located in the vertebral column and extend processes throughout the body and limbs. The trigeminal ganglia are located in the skull and innervate the face, and upper airways. Vagal afferents of the nodose ganglia extend throughout the gut, heart, and lungs. The nodose neurons control a diverse array of functions such as: respiratory rate, airway irritation, and cough reflexes. Thus, to understand and manipulate their function, it is critical to identify and isolate airway specific neuronal sub-populations. In the mouse, the airways are exposed to a fluorescent tracer dye, Fast Blue, for retrograde tracing of airway-specific nodose neurons. The nodose ganglia are dissociated and fluorescence activated cell (FAC) sorting is used to collect dye positive cells. Next, high quality ribonucleic acid (RNA) is extracted from dye positive cells for next generation sequencing. Using this method airway specific neuronal gene expression is determined. PMID:27168016

  16. Cardiac 123I-MIBG uptake in de novo Brazilian patients with Parkinson's disease without clinically defined dysautonomia

    OpenAIRE

    Marco Antonio Araujo Leite; Nascimento, Osvaldo J.M.; João Santos Pereira; Clayton Amaral; Cláudio T. Mesquita; Jader C. Azevedo; Adriana S. X. de Brito; Felipe Villela Pedras

    2014-01-01

    Myocardial scintigraphy with meta-iodo-benzyl-guanidine (123I cMIBG) has been studied in Parkinson's disease (PD), especially in Asian countries, but not in Latin America. Most of these studies include individuals with PD associated to a defined dysautonomia. Our goal is to report the cardiac sympathetic neurotransmission in de novo Brazilian patients with sporadic PD, without clinically defined dysautonomia. We evaluated retrospectively a series of 21 consecutive cases with PD without sympto...

  17. Cross-innervation of the thyroarytenoid muscle by a branch from the external division of the superior laryngeal nerve.

    Science.gov (United States)

    Nasri, S; Beizai, P; Ye, M; Sercarz, J A; Kim, Y M; Berke, G S

    1997-07-01

    The neuroanatomy of the larynx was explored in seven dogs to assess whether there is motor innervation to the thyroarytenoid (TA) muscle from the external division of the superior laryngeal nerve (ExSLN). In 3 animals, such innervation was identified. Electrical stimulation of microelectrodes applied to the ExSLN resulted in contraction of the TA muscle, indicating that this nerve is motor in function. This was confirmed by electromyographic recordings from the TA muscle. Videolaryngostroboscopy revealed improvement in vocal fold vibration following stimulation of the ExSLN compared to without it. Previously, the TA muscle was thought to be innervated solely by the recurrent laryngeal nerve. This additional pathway from the ExSLN to the TA muscle may have important clinical implications in the treatment of neurologic laryngeal disorders such as adductor spasmodic dysphonia. PMID:9228862

  18. Asystole after Orthotopic Lung Transplantation: Examining the Interaction of Cardiac Denervation and Dexmedetomidine

    Directory of Open Access Journals (Sweden)

    Christopher Allen-John Webb

    2012-01-01

    Full Text Available Dexmedetomidine is an α2-receptor agonist commonly used for sedation and analgesia in ICU patients. Dexmedetomidine is known to provide sympatholysis and also to have direct atrioventricular and sinoatrial node inhibitory effects. In rare instances, orthotopic lung transplantation has been associated with disruption of autonomic innervation of the heart. The combination of this autonomic disruption and dexmedetomidine may be associated with severe bradycardia and/or asystole. Since orthotopic lung transplant patients with parasympathetic denervation will not respond with increased heart rate to anticholinergic therapy, bradyarrhythmias must be recognized and promptly treated with direct acting beta agonists to avoid asystolic cardiac events.

  19. Production and sympathetic cooling of complex molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaobo

    2008-06-24

    This thesis reports on experimental and theoretical studies of the sympathetic cooling of complex molecular ions demonstrating that this general method for cooling atomic and molecular ions is reliable and efficient. For this purpose, complex molecular ions and barium ions have been confined simultaneously in a linear Paul trap. The complex molecular ions are generated in an electrospray ionization system and transferred to the trap via a 2 m long octopole ion guide. These molecular ions are pre-cooled by room temperature helium buffer gas so that they can be captured by the trap. The atomic barium ions are loaded from a barium evaporator oven and are laser-cooled by a 493 nm cooling laser and a 650 nm repumping laser. Due to the mutual Coulomb interaction among these charged particles, the kinetic energy of the complex molecular ions can be reduced significantly. In our experiments we have demonstrated the sympathetic cooling of various molecules (CO{sub 2}, Alexa Fluor 350, glycyrrhetinic acid, cytochrome c) covering a wide mass range from a few tens to 13000 amu. In every case the molecular ions could be cooled down to millikelvin temperatures. Photo-chemical reactions of the {sup 138}Ba{sup +} ions in the ({sup 2}P{sub 1/2}) excited state with gases such as O{sub 2}, CO{sub 2}, or N{sub 2}O, could be observed. If the initial {sup 138}Ba{sup +} ion ensemble is cold, the produced {sup 138}BaO{sup +} ions are cold as well, with a similar temperature as the laser-cooled barium ions (a few tens of millikelvin). The back-reaction of {sup 138}BaO{sup +} ions with neutral CO to {sup 138}Ba{sup +} is possible and was observed in our experiments as well. A powerful molecular dynamics (MD) simulation program has been developed. With this program dynamic properties of ion ensembles, such as sympathetic interactions or heating effects, have been investigated and experimental results have been analyzed to obtain, for example, ion numbers and temperatures. Additionally, the

  20. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  1. Noninvasive imaging markers associated with sudden cardiac death.

    Science.gov (United States)

    van der Bijl, Pieter; Delgado, Victoria; Bax, Jeroen J

    2016-05-01

    Sudden cardiac death (SCD) accounts for approximately 15-20% of all deaths worldwide. While the majority of SCDs occur in adults, children, and adults strategy for both primary and secondary prevention of SCD is the implantable cardioverter-defibrillator (ICD). However, identification of patients who will benefit from ICD implantation remains challenging. Left ventricular ejection fraction (LVEF) is the most frequent imaging parameter used to select patients for ICD implantation for primary prevention. However, LVEF has shown to be suboptimal for prediction of benefit. Non-invasive cardiac imaging permits characterization of the arrhythmogenic substrate, including dispersion of electromechanical activation, presence of myocardial scar, and cardiac innervation status. The arrhythmogenic substrate may change across the different underlying diseases. While in ischemic cardiomyopathy, differentiation and characterization of infarct core and peri-infarct zone have been shown to refine the risk stratification of patients, in non-ischemic cardiomyopathies, the substrate may be more heterogeneous and tissue characterization assessing focal and diffuse fibrosis and inflammation processes may be more relevant. Furthermore, in channelopathies, assessment of mechanical dispersion between myocardial layers may identify the patients with increased risk of ventricular arrhythmias. Finally, potential triggers of ventricular arrhythmias such as myocardial ischemia can be evaluated. The role of noninvasive imaging in the risk stratification of SCD and the selection of candidates for ICD will be discussed in this article. PMID:26632012

  2. Plasma dihydroxyphenylalanine (DOPA) is independent of sympathetic activity in humans

    DEFF Research Database (Denmark)

    Eldrup, E; Christensen, N J; Andreasen, J;

    1989-01-01

    To clarify the origin of plasma DOPA (3,4-Dihydroxyphenylalanine), the relationship between plasma DOPA and acute or chronic changes in sympathetic activity has been studied. Plasma DOPA and noradrenaline (NA) concentrations were measured by reverse-phase high-performance liquid chromatography with...... electrochemical detection. Administration of clonidine to healthy men decreased plasma NE markedly compared to no drug. Plasma DOPA decreased slightly but significantly with time, but values were identical after clonidine compared to no drug. Baseline plasma NE concentrations were significantly reduced in...... diabetic patients with autonomic neuropathy compared to diabetics without neuropathy, whereas baseline plasma DOPA concentrations were similar in the three groups investigated: 6.55 (5.03-7.26, median [interquartile range], n = 8) nmol l-1 in diabetics with neuropathy, 7.41 (5.79-7.97, n = 8) nmol l-1 in...

  3. Leptin regulates bone formation via the sympathetic nervous system

    Science.gov (United States)

    Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard

    2002-01-01

    We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.

  4. Heat transfer through dipolar coupling: Sympathetic cooling without contact

    CERN Document Server

    Renklioglu, B; Oktel, M Ö

    2016-01-01

    We consider two parallel layers of dipolar ultracold Fermi gases at different temperatures and calculate the heat transfer between them. The effective interactions describing screening and correlation effects between the dipoles in a single layer are modeled within the Euler-Lagrange Fermi-hypernetted chain approximation. The random-phase approximation is used for the interactions across the layers. We investigate the amount of transferred power between the layers as a function of the temperature difference. Energy transfer arises due to the long-range dipole-dipole interactions. A simple thermal model is established to investigate the feasibility of using the contactless sympathetic cooling of the ultracold polar atoms/molecules. Our calculations indicate that dipolar heat transfer is effective for typical polar molecule experiments and may be utilized as a cooling process.

  5. Pathophysiology of Resistant Hypertension: The Role of Sympathetic Nervous System

    Directory of Open Access Journals (Sweden)

    Costas Tsioufis

    2011-01-01

    Full Text Available Resistant hypertension (RH is a powerful risk factor for cardiovascular morbidity and mortality. Among the characteristics of patients with RH, obesity, obstructive sleep apnea, and aldosterone excess are covering a great area of the mosaic of RH phenotype. Increased sympathetic nervous system (SNS activity is present in all these underlying conditions, supporting its crucial role in the pathophysiology of antihypertensive treatment resistance. Current clinical and experimental knowledge points towards an impact of several factors on SNS activation, namely, insulin resistance, adipokines, endothelial dysfunction, cyclic intermittent hypoxaemia, aldosterone effects on central nervous system, chemoreceptors, and baroreceptors dysregulation. The further investigation and understanding of the mechanisms leading to SNS activation could reveal novel therapeutic targets and expand our treatment options in the challenging management of RH.

  6. Sympathetic cooling of molecular ion motion to the ground state

    CERN Document Server

    Rugango, Rene; Dixon, Thomas H; Gray, John M; Khanyile, Ncamiso; Shu, Gang; Clark, Robert J; Brown, Kenneth R

    2014-01-01

    We demonstrate sympathetic sideband cooling of a $^{40}$CaH$^{+}$ molecular ion co-trapped with a $^{40}$Ca$^{+}$ atomic ion in a linear Paul trap. Both axial modes of the two-ion chain are simultaneously cooled to near the ground state of motion. The center of mass mode is cooled to an average quanta of harmonic motion $\\overline{n}_{\\mathrm{COM}} = 0.13 \\pm 0.03$, corresponding to a temperature of $12.47 \\pm 0.03 ~\\mu$K. The breathing mode is cooled to $\\overline{n}_{\\mathrm{BM}} = 0.05 \\pm 0.02$, corresponding to a temperature of $15.36 \\pm 0.01~\\mu$K.

  7. Sympathetic Blocks Provided Sustained Pain Relief in a Patient with Refractory Painful Diabetic Neuropathy

    Directory of Open Access Journals (Sweden)

    Jianguo Cheng

    2012-01-01

    Full Text Available The sympathetic nervous system has been implicated in pain associated with painful diabetic neuropathy. However, therapeutic intervention targeted at the sympathetic nervous system has not been established. We thus tested the hypothesis that sympathetic nerve blocks significantly reduce pain in a patient with painful diabetic neuropathy who has failed multiple pharmacological treatments. The diagnosis of small fiber sensory neuropathy was based on clinical presentations and confirmed by skin biopsies. A series of 9 lumbar sympathetic blocks over a 26-month period provided sustained pain relief in his legs. Additional thoracic paravertebral blocks further provided control of the pain in the trunk which can occasionally be seen in severe diabetic neuropathy cases, consequent to extensive involvement of the intercostal nerves. These blocks provided sustained and significant pain relief and improvement of quality of life over a period of more than two years. We thus provided the first clinical evidence supporting the notion that sympathetic nervous system plays a critical role in painful diabetic neuropathy and sympathetic blocks can be an effective management modality of painful diabetic neuropathy. We concluded that the sympathetic nervous system is a valuable therapeutic target of pharmacological and interventional modalities of treatments in painful diabetic neuropathy patients.

  8. Respiratory modulation of sympathetic nerve activity is enhanced in male rat offspring following uteroplacental insufficiency.

    Science.gov (United States)

    Menuet, C; Wlodek, M E; Fong, A Y; Allen, A M

    2016-06-01

    Sympathetic nerve activity to the cardiovascular system displays prominent respiratory-related modulation which leads to the generation of rhythmic oscillations in blood pressure called Traube-Hering waves. An amplification of this respiratory modulation of sympathetic activity is observed in hypertension of both genetic, the spontaneously hypertensive rat, and induced, chronic intermittent hypoxia or maternal protein restriction during gestation, origin. Male offspring of mothers with uteroplacental insufficiency, induced by bilateral uterine vessel ligation at 18 days of gestation, are also hypertensive in adulthood. In this study we examined whether these male offspring display altered respiratory modulation of sympathetic activity at pre-hypertensive ages compared to controls. Respiratory, cardiovascular and sympathetic parameters were examined using the working heart-brainstem preparation in 35 day old male rats that had reduced birth weight due to uteroplacental insufficiency. Whilst all respiratory parameters were not different between groups, we observed an enhanced respiratory-related burst of thoracic sympathetic nerve activity and amplified Traube-Hering waves in the growth-restricted group. This group also showed an increased sympathetic and bradycardic response to activation of peripheral chemoreceptors. The observations add support to the view that altered respiratory modulation of sympathetic activity represents a common mechanism involved in the development of several forms of hypertension. PMID:26593642

  9. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons.

    Science.gov (United States)

    Holstein, Gay R; Friedrich, Victor L; Martinelli, Giorgio P

    2016-01-01

    The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the VSR pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation (GVS) was employed to activate these pathways. Central vestibular neurons of the VSR were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified VSR pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. VSR pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the GABAergic VSR pathway neurons showed a target preference, projecting predominantly to CVLM. These data provide the first

  10. Effect of weightlessness on sympathetic-adrenomedullary activity of rats

    Science.gov (United States)

    Kvetňanský, R.; Torda, T.; Macho, L.; Tigranian, R. A.; Serova, L.; Genin, A. M.

    Three cosmic experiments were performed in which rats spent 18-20 days in space on board the biosatellites "COSMOS 782", "COSMOS 936" and "COSMOS 1129". The following indicators of the sympathetic-adrenomedullary system (SAS) activity were measured: tissue and plasma catecholamines (CA), CA-synthesizing enzymes—tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH), phenylethanolamine-N-methyltransferase (PNMT)—as well as CA-degrading enzymes—monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT). Adrenal epinephrine (EPI) and norepinephrine (NE) as well as CA-synthesizing and degrading enzymes were not significantly changed in the animals after flight on COSMOS 782. On the other hand, a significant increase was found in heart CA, the indicator which is usually decreased after stress. 26 days after landing all values were at control levels. The results obtained, compared to our previous stress experiments on Earth, suggest that prolonged weightlessness does not appear to be a pronounced stressful stimulus for the SAS. Heart and plasma CA, mainly NE, were increased both in the group living in the state of weightlessness and the group living in a centrifuge and exposed to artificial gravitation 1 g (COSMOS 936), suggesting again that prolonged weightlessness is not an intensive stressful stimulus for the SAS. The animals exposed after space flight on COSMOS 1129 to repeated immobilization stress on Earth showed a significant decrease of adrenal EPI and an expressive increase of adrenal TH activity compared to stressed animals which were not in space. Thus, the results corroborate that prolonged state of weightlessness during space flight though not representing by itself an intensive stressful stimulus for the sympathetic-adrenomedullary system, was found to potentiate the response of "cosmic rats" to stress exposure after return to Earth.

  11. Comparison of sympathetic nerve activity normalization procedures in conscious rabbits.

    Science.gov (United States)

    Burke, Sandra L; Lim, Kyungjoon; Moretti, John-Luis; Head, Geoffrey A

    2016-05-01

    One of the main constraints associated with recording sympathetic nerve activity (SNA) in both humans and experimental animals is that microvolt values reflect characteristics of the recording conditions and limit comparisons between different experimental groups. The nasopharyngeal response has been validated for normalizing renal SNA (RSNA) in conscious rabbits, and in humans muscle SNA is normalized to the maximum burst in the resting period. We compared these two methods of normalization to determine whether either could detect elevated RSNA in hypertensive rabbits compared with normotensive controls. We also tested whether either method eliminated differences based only on different recording conditions by separating RSNA of control (sham) rabbits into two groups with low or high microvolts. Hypertension was induced by 5 wk of renal clipping (2K1C), 3 wk of high-fat diet (HFD), or 3 mo infusion of a low dose of angiotensin (ANG II). Normalization to the nasopharyngeal response revealed RSNA that was 88, 51, and 34% greater in 2K1C, HFD, and ANG II rabbits, respectively, than shams (P < 0.05), but normalization to the maximum burst showed no differences. The RSNA baroreflex followed a similar pattern whether RSNA was expressed in microvolts or normalized. Both methods abolished the difference between low and high microvolt RSNA. These results suggest that maximum burst amplitude is a useful technique for minimizing differences between recording conditions but is unable to detect real differences between groups. We conclude that the nasopharyngeal reflex is the superior method for normalizing sympathetic recordings in conscious rabbits. PMID:26921439

  12. Sudden cardiac death and chronic kidney disease: From pathophysiology to treatment strategies.

    Science.gov (United States)

    Di Lullo, L; Rivera, R; Barbera, V; Bellasi, A; Cozzolino, M; Russo, D; De Pascalis, A; Banerjee, D; Floccari, F; Ronco, C

    2016-08-15

    Chronic kidney disease (CKD) patients demonstrate higher rates of cardiovascular mortality and morbidity; and increased incidence of sudden cardiac death (SCD) with declining kidney failure. Coronary artery disease (CAD) associated risk factors are the major determinants of SCD in the general population. However, current evidence suggests that in CKD patients, traditional cardiovascular risk factors may play a lesser role. Complex relationships between CKD-specific risk factors, structural heart disease, and ventricular arrhythmias (VA) contribute to the high risk of SCD. In dialysis patients, the occurrence of VA and SCD could be exacerbated by electrolyte shifts, divalent ion abnormalities, sympathetic overactivity, inflammation and iron toxicity. As outcomes in CKD patients after cardiac arrest are poor, primary and secondary prevention of SCD and cardiac arrest could reduce cardiovascular mortality in patients with CKD. PMID:27174593

  13. [Drug with a high metabolic activity, cocarnit, in the treatment of diabetic cardiac autonomic neuropathy].

    Science.gov (United States)

    Popov, S V; Melekhovets', O K; Demikhova, N V; Vynnychenko, L B

    2012-01-01

    Left ventricular diastolic dysfunction in patients with diabetes is formed in the absence of atherosclerotic changes as a consequence of diabetic cardiac autonomic neuropathy in the early stages of diabetes. Progression of autonomic cardiac neuropathy in cardio-vascular type is associated with the violation of energy supply of cells, protein synthesis, electrolyte exchange, the exchange of trace elements, oxidation reduction processes, oxygen-transport function of blood, so that metabolic therapy is carried out to optimize the processes of formation and energy costs. The drug cocarnit activates processes of aerobic oxidation of glucose, as well as providing regulatory influence on the oxidation of fatty acids. Applying of cocarnit in complex therapy in patients with diabetic cardiac autonomic neuropathy found improvement of left ventricular diastolic function, and positive dynamics in the efferent activity balance of the sympathetic and parasympathetic control of heart rate variability, which provides the regression of clinical symptoms. PMID:23356142

  14. Preoperative cardiac risk management

    OpenAIRE

    Vidaković Radosav; Poldermans Don; Nešković Aleksandar N.

    2011-01-01

    Approximately 100 million people undergo noncardiac surgery annually worldwide. It is estimated that around 3% of patients undergoing noncardiac surgery experience a major adverse cardiac event. Although cardiac events, like myocardial infarction, are major cause of perioperative morbidity or mortality, its true incidence is difficult to assess. The risk of perioperative cardiac complications depends mainly on two conditions: 1) identified risk factors, and 2) the type of the surgical p...

  15. Physiological and pathophysiological interactions between the respiratory central pattern generator and the sympathetic nervous system.

    Science.gov (United States)

    Molkov, Yaroslav I; Zoccal, Daniel B; Baekey, David M; Abdala, Ana P L; Machado, Benedito H; Dick, Thomas E; Paton, Julian F R; Rybak, Ilya A

    2014-01-01

    Respiratory modulation seen in the sympathetic nerve activity (SNA) implies that the respiratory and sympathetic networks interact. During hypertension elicited by chronic intermittent hypoxia (CIH), the SNA displays an enhanced respiratory modulation reflecting strengthened interactions between the networks. In this chapter, we review a series of experimental and modeling studies that help elucidate possible mechanisms of sympatho-respiratory coupling. We conclude that this coupling significantly contributes to both the sympathetic baroreflex and the augmented sympathetic activity after exposure to CIH. This conclusion is based on the following findings. (1) Baroreceptor activation results in perturbation of the respiratory pattern via transient activation of postinspiratory neurons in the Bötzinger complex (BötC). The same BötC neurons are involved in the respiratory modulation of SNA, and hence provide an additional pathway for the sympathetic baroreflex. (2) Under hypercapnia, phasic activation of abdominal motor nerves (AbN) is accompanied by synchronous discharges in SNA due to the common source of this rhythmic activity in the retrotrapezoid nucleus (RTN). CIH conditioning increases the CO2 sensitivity of central chemoreceptors in the RTN which results in the emergence of AbN and SNA discharges under normocapnic conditions similar to those observed during hypercapnia in naïve animals. Thus, respiratory-sympathetic interactions play an important role in defining sympathetic output and significantly contribute to the sympathetic activity and hypertension under certain physiological or pathophysiological conditions, and the theoretical framework presented may be instrumental in understanding of malfunctioning control of sympathetic activity in a variety of disease states. PMID:25194190

  16. The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula

    Science.gov (United States)

    Fernandez, C.; Goldberg, J. M.; Baird, R. A.

    1990-01-01

    1. Nerve fibers supplying the utricular macula of the chinchilla were labeled by extracellular injection of horseradish peroxidase into the vestibular nerve. The peripheral terminations of individual fibers were reconstructed and related to the regions of the end organ they innervated and to the sizes of their parent axons. 2. The macula is divided into medial and lateral parts by the striola, a narrow zone that runs for almost the entire length of the sensory epithelium. The striola can be distinguished from the extrastriolar regions to either side of it by the wider spacing of its hair cells. Calyx endings in the striola have especially thick walls, and, unlike similar endings in the extrastriola, many of them innervate more than one hair cell. The striola occupies 10% of the sensory epithelium; the lateral extrastriola, 50%; and the medial extrastriola, 40%. 3. The utricular nerve penetrates the bony labyrinth anterior to the end organ. Axons reaching the anterior part of the sensory epithelium run directly through the connective tissue stroma. Those supplying more posterior regions first enter a fiber layer located at the bottom of the stroma. Approximately one-third of the axons bifurcate below the epithelium, usually within 5-20 microns of the basement membrane. Bifurcations are more common in fibers destined for the extrastriola than for the striola. 4. Both calyx and bouton endings were labeled. Calyces can be simple or complex. Simple calyces innervate individual hair cells, whereas complex calyces supply 2-4 adjacent hair cells. Complex endings are more heavily concentrated in the striola than in the extrastriola. Simple calyces and boutons are found in all parts of the epithelium. Calyces emerge from the parent axon or one of its thick branches. Boutons, whether en passant or terminal, are located on thin collaterals. 5. Fibers can be classified into calyx, bouton, or dimorphic categories. The first type only has calyx endings; the second, only bouton

  17. Effects of the angiotensin-converting enzyme inhibitor enalapril on sympathetic neuronal function and β-adrenergic desensitization in heart failure after myocardial infarction in rats

    International Nuclear Information System (INIS)

    One of the beneficial effects of angiotensin-converting enzyme (ACE) inhibitors in the treatment of heart failure may derive from sympathoinhibition and the prevention of β-adrenergic desensitization. However, the roles of these properties in the overall effects of ACE inhibitor are not clear. We studied the effects of chronic enalapril treatment (20 mg/L in drinking water for 12 weeks) on left ventricular (LV) function, cardiac norepinephrine (NE), sympathetic neuronal function assessed by 131I-metaiodobenzylguanidine (MIBG), β-receptors, and isometric contraction of papillary muscle in rats with myocardial infarction (MI) induced by coronary artery ligation. Decreased LV function in the MI rats was associated with reduced cardiac NE content and MIBG uptake, and severely blunted responses of non-infarcted papillary muscle to isoproterenol, forskolin, and calcium. Enalapril attenuated LV remodeling in association with a reduction of the ventricular loading condition and restored baseline developed tension of non-infarcted papillary muscle to the level of sham-operated rats. However, enalapril did not improve cardiac NE content, MIBG uptake, or inotropic responsiveness to β-agonists. These results suggest that the major effect of the ACE inhibitor enalapril in the treatment of heart failure is not due to sympathoinhibition or restoration of β-adrenergic pathway in this model of heart failure. (author)

  18. [Distal post-traumatic edema--symptom of a sympathetic reflex dystrophy (Sudeck's disease)?].

    Science.gov (United States)

    Blumberg, H; Griesser, H J; Hornyak, M

    1992-01-01

    The present paper describes various mechanisms, possibly being involved in the development of the posttraumatic, distally generalized edema. New ideas point to a special importance of the sympathetic vasoconstrictor system for this clinical phenomenon, since this system could induce an enhanced venoconstriction at the exit of the capillary bed, which would result in an edema producing diminished venous return. Since the distally generalized edema is an initially and very commonly occurring symptom of reflex sympathetic dystrophy (M. Sudeck), the observation of such an edema should lead one to look for further symptoms of this disorder, especially for the typical triad of autonomic (sympathetic), motor, and sensory disturbances. PMID:1372460

  19. Effects of autonomic balance and fluid and electrolyte changes on cardiac function in infarcted rats: A serial study of sexual dimorphism.

    Science.gov (United States)

    Souza, N S; Dos-Santos, R C; Silveira, Anderson Luiz Bezerra da; R, Sonoda-Côrtes; Gantus, Michel Alexandre Villani; Fortes, F S; Olivares, Emerson Lopes

    2016-04-01

    Premenopausal women are known to show lower incidence of cardiovascular disease than men. During myocardial infarction (MI), homeostatic responses are activated, including the sympathetic autonomic nervous system and the rennin-angiotensin-aldosterone system, which is related to the fluid and electrolyte balance, both aiming to maintain cardiac output. This study sought to perform a serial evaluation of sexual dimorphism in cardiac autonomic control and fluid and electrolyte balance during the development of MI-induced heart failure in rats. Experimental MI was induced in male (M) and female (F) adult (7-9 weeks of age) Wistar rats. The animals were placed in metabolic cages to assess fluid intake and urine volume 1 and 4 weeks after inducing MI (male myocardial infarction (MMI) and female myocardial infarction (FMI) groups). They subsequently underwent echocardiographic evaluation and spectral analysis of heart rate variability. After completing each protocol, the animals were killed for postmortem evaluation and histology. The MMI group showed earlier and more intense cardiac morphological and functional changes than the FMI group, although the extent of MI did not differ between groups (P > 0.05). The MMI group showed higher sympathetic modulation and sodium and water retention than the FMI group (P < 0.05), which may partly explain both the echocardiographic and pathological findings. Females subjected to infarction seem to show attenuation of sympathetic modulation, more favourable fluid and electrolyte balances, and better preserved cardiac function compared to males subjected to the same infarction model. PMID:26748814

  20. Low excitatory innervation balances high intrinsic excitability of immature dentate neurons

    Science.gov (United States)

    Dieni, Cristina V.; Panichi, Roberto; Aimone, James B.; Kuo, Chay T.; Wadiche, Jacques I.; Overstreet-Wadiche, Linda

    2016-01-01

    Persistent neurogenesis in the dentate gyrus produces immature neurons with high intrinsic excitability and low levels of inhibition that are predicted to be more broadly responsive to afferent activity than mature neurons. Mounting evidence suggests that these immature neurons are necessary for generating distinct neural representations of similar contexts, but it is unclear how broadly responsive neurons help distinguish between similar patterns of afferent activity. Here we show that stimulation of the entorhinal cortex in mouse brain slices paradoxically generates spiking of mature neurons in the absence of immature neuron spiking. Immature neurons with high intrinsic excitability fail to spike due to insufficient excitatory drive that results from low innervation rather than silent synapses or low release probability. Our results suggest that low synaptic connectivity prevents immature neurons from responding broadly to cortical activity, potentially enabling excitable immature neurons to contribute to sparse and orthogonal dentate representations. PMID:27095423

  1. Neuroglobin expression in the rat suprachiasmatic nucleus: colocalization, innervation, and response to light

    DEFF Research Database (Denmark)

    Hundahl, C A; Hannibal, J; Fahrenkrug, J;

    2010-01-01

    Neuroglobin (Ngb) is a myoglobin-like (Mb) heme-globin, belonging the globin family located only in neuronal tissue of the central nervous system. Ngb has been shown to be upregulated in and to protect neurons from hypoxic and ischemic injury, but the function of Ngb-in particular how Ngb may...... localization, colocalization, innervation, and response to light of Ngb-immunoreactive (IR) cells in the rat suprachiasmatic nucleus (SCN). Our results demonstrate that the majority of Ngb-expressing neurons in the SCN belong to a cell group not previously characterized by neurotransmitter content; only a...... small portion was found to co-store GRP in the ventral SCN. Furthermore, some Ngb-containing neurons were responsive to light stimulation at late night evaluated by the induction of cFOS and only a few cells were found to express the core clock gene PER1 during the 24-hour light/dark cycle. The Ngb...

  2. Innervation Zones of Fasciculating Motor Units: Observations by a Linear Electrode Array

    Directory of Open Access Journals (Sweden)

    Faezeh Jahanmiri-Nezhad

    2015-05-01

    Full Text Available This study examines the innervation zone (IZ in the biceps brachii muscle in normal subjects and those with amyotrophic lateral sclerosis (ALS using a 20-channel linear electromyogram (EMG electrode array. Raster plots of individual waveform potentials were studied to estimate the motor unit IZ. While this work mainly focused on fasciculation potentials (FPs, a limited number of motor unit potentials (MUPs from voluntary activity of 12 healthy and 7 ALS subjects were also examined. Abnormal propagation of MUPs and scattered IZs were observed in fasciculating units, compared with voluntarily activated MUPs in healthy and ALS subjects. These findings can be related to muscle fiber reinnervation following motor neuron degeneration in ALS and the different origin sites of FPs compared with voluntary MUPs.

  3. Reconstructing the population activity of olfactory output neurons that innervate identifiable processing units

    Directory of Open Access Journals (Sweden)

    Shigehiro Namiki

    2008-06-01

    Full Text Available We investigated the functional organization of the moth antennal lobe (AL, the primary olfactory network, using in vivo electrophysiological recordings and anatomical identification. The moth AL contains about 60 processing units called glomeruli that are identifiable from one animal to another. We were able to monitor the output information of the AL by recording the activity of a population of output neurons, each of which innervated a single glomerulus. Using compiled intracellular recordings and staining data from different animals, we mapped the odor-evoked dynamics on a digital atlas of the AL and geometrically reconstructed the population activity. We examined the quantitative relationship between the similarity of olfactory responses and the anatomical distance between glomeruli. Globally, the olfactory response profile was independent of the anatomical distance, although some local features were present.

  4. Central Somatosensory Networks Respond to a De Novo Innervated Penis : A Proof of Concept in Three Spina Bifida Patients

    NARCIS (Netherlands)

    Kortekaas, Rudie; Nanetti, Luca; Overgoor, Max L. E.; de Jong, Bauke M.; Georgiadis, Janniko R.

    2015-01-01

    Introduction. Spina bifida (SB) causes low spinal lesions, and patients often have absent genital sensation and a highly impaired sex life. TOMAX (TO MAX-imize sensation, sexuality and quality of life) is a surgical procedure whereby the penis is newly innervated using a sensory nerve originally tar

  5. An unbiased stereological method for efficiently quantifying the innervation of the heart and other organs based on total length estimations

    DEFF Research Database (Denmark)

    Mühlfeld, Christian; Papadakis, Tamara; Krasteva, Gabriela;

    2010-01-01

    Quantitative information about the innervation is essential to analyze the structure-function relationships of organs. So far, there has been no unbiased stereological tool for this purpose. This study presents a new unbiased and efficient method to quantify the total length of axons in a given r...

  6. Associations between xerostomia, histopathological alterations, and autonomic innervation of labial salivary glands in men in late midlife

    DEFF Research Database (Denmark)

    Sørensen, Christiane Elisabeth; Larsen, Jytte Overgaard; Reibel, Jesper; Lauritzen, Martin; Mortensen, Erik Lykke; Osler, Merete; Pedersen, Anne Marie Lynge

    inflammation, acinar atrophy, fibrosis, and adipocyte infiltration. Sections of labial salivary gland tissue were stained with the panneuronal marker PGP 9.5. In a subsample of 51 participants, the autonomic innervation of the glands was analyzed quantitatively by use of stereology. RESULTS: Labial salivary...

  7. MRI-based 3D pelvic autonomous innervation: a first step towards image-guided pelvic surgery

    International Nuclear Information System (INIS)

    To analyse pelvic autonomous innervation with magnetic resonance imaging (MRI) in comparison with anatomical macroscopic dissection on cadavers. Pelvic MRI was performed in eight adult human cadavers (five men and three women) using a total of four sequences each: T1, T1 fat saturation, T2, diffusion weighed. Images were analysed with segmentation software in order to extract nervous tissue. Key height points of the pelvis autonomous innervation were located in every specimen. Standardised pelvis dissections were then performed. Distances between the same key points and the three anatomical references forming a coordinate system were measured on MRIs and dissections. Concordance (Lin's concordance correlation coefficient) between MRI and dissection was calculated. MRI acquisition allowed an adequate visualization of the autonomous innervation. Comparison between 3D MRI images and dissection showed concordant pictures. The statistical analysis showed a mean difference of less than 1 cm between MRI and dissection measures and a correct concordance correlation coefficient on at least two coordinates for each point. Our acquisition and post-processing method demonstrated that MRI is suitable for detection of autonomous pelvic innervations and can offer a preoperative nerve cartography. (orig.)

  8. MRI-based 3D pelvic autonomous innervation: a first step towards image-guided pelvic surgery

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, M.M. [University Montpellier I, Laboratory of Experimental Anatomy Faculty of Medicine Montpellier-Nimes, Montpellier (France); Macri, F.; Beregi, J.P. [Nimes University Hospital, University Montpellier 1, Radiology Department, Nimes (France); Mazars, R.; Prudhomme, M. [University Montpellier I, Laboratory of Experimental Anatomy Faculty of Medicine Montpellier-Nimes, Montpellier (France); Nimes University Hospital, University Montpellier 1, Digestive Surgery Department, Nimes (France); Droupy, S. [Nimes University Hospital, University Montpellier 1, Urology-Andrology Department, Nimes (France)

    2014-08-15

    To analyse pelvic autonomous innervation with magnetic resonance imaging (MRI) in comparison with anatomical macroscopic dissection on cadavers. Pelvic MRI was performed in eight adult human cadavers (five men and three women) using a total of four sequences each: T1, T1 fat saturation, T2, diffusion weighed. Images were analysed with segmentation software in order to extract nervous tissue. Key height points of the pelvis autonomous innervation were located in every specimen. Standardised pelvis dissections were then performed. Distances between the same key points and the three anatomical references forming a coordinate system were measured on MRIs and dissections. Concordance (Lin's concordance correlation coefficient) between MRI and dissection was calculated. MRI acquisition allowed an adequate visualization of the autonomous innervation. Comparison between 3D MRI images and dissection showed concordant pictures. The statistical analysis showed a mean difference of less than 1 cm between MRI and dissection measures and a correct concordance correlation coefficient on at least two coordinates for each point. Our acquisition and post-processing method demonstrated that MRI is suitable for detection of autonomous pelvic innervations and can offer a preoperative nerve cartography. (orig.)

  9. Uterine autonomic nerve innervation plays a crucial role in regulating rat uterine mast cell functions during embryo implantation.

    Science.gov (United States)

    Yuan, Xue-Jun; Huang, Li-Bo; Qiao, Hui-Li; Deng, Ze-Pei; Fa, Jing-Jing

    2009-12-01

    To explore the potential mechanism of how uterine innervations would affect the uterine mast cell (MC) population and functions during the periimplantation. We herein first examined the consequence of uterine neurectomy on embryo implantation events. We observed that amputation of autonomic nerves innervating the uterus led to on-time implantation failure in rats. Exploiting MC culture and ELISA approaches, we then further analyzed the effect of neurectomy on cellular histamine levels and its release from uterine MCs, to elucidate the relation of the autonomic nerves and local cellular immunity in the uterine during early pregnancy. We observed that disconnection of autonomic nerve innervation significantly increased the population of uterine MCs. Most interestingly, these increased number of uterine MCs in neuroectomized rats contained a much reduced cellular level of histamine. Our subsequent challenge experiments revealed that uterine MCs in nerve amputated rats exhibited enhanced histamine releasing rate in response to substance P and antiIgE, suggesting loss of nerve innervation in the uterus not only increases the population of uterine MCs, but also facilitates the release of histamine from MCs, thus subsequently interfere with the normal implantation process. Collectively, our findings provide a new line of evidence supporting the concept that immune-neuro-endocrine network plays important role during pregnancy establishment and maintenance. PMID:19765668

  10. Innervated Cross-Finger Pulp Flap for Reconstruction of the Fingertip

    Directory of Open Access Journals (Sweden)

    Nae-Ho Lee

    2012-11-01

    Full Text Available Background Fingertip injuries involving subtotal or total loss of the digital pulp are commontypes of hand injuries and require reconstruction that is able to provide stable padding andsensory recovery. There are various techniques used for reconstruction of fingertip injuries,but the most effective method is functionally and aesthetically controversial. Despite somedisadvantages, cross-finger pulp flap is a relatively simple procedure without significantcomplications or requiring special techniques.Methods This study included 90 patients with fingertip defects who underwent cross-fingerpulp flap between September 1998 and March 2010. In 69 cases, neurorrhaphy was performedbetween the pulp branch from the proper digital nerve and the recipient’s sensory nerve forgood sensibility of the injured fingertip. In order to evaluate the outcome of our surgicalmethod, we observed two-point discrimination in the early (3 months and late (12 to 40months postoperative periods.Results Most of the cases had cosmetically and functionally acceptable outcomes. The averagedefect size was 1.7×1.5 cm. Sensory return began 3 months after flap application. The twopointdiscrimination was measured at 4.6 mm (range, 3 to 6 mm in our method and 7.2 mm(range, 4 to 9 mm in non-innervated cross-finger pulp flaps.Conclusions The innervated cross-finger pulp flap is a safe and reliable procedure for lateraloblique, volar oblique, and transverse fingertip amputations. Our procedure is simple to performunder local anesthesia, and is able to provide both mechanical stability and sensory recovery.We recommend this method for reconstruction of fingertip injuries.

  11. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    Directory of Open Access Journals (Sweden)

    Sebastien eParnaudeau

    2014-02-01

    Full Text Available The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs release. GCs bind the glucocorticoid receptor (GR a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While the GR within dopamine-innervated areas drives cocaine’s behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurones is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice.

  12. Efferent innervation of turtle semicircular canal cristae: comparisons with bird and mouse.

    Science.gov (United States)

    Jordan, Paivi M; Fettis, Margaret; Holt, Joseph C

    2015-06-01

    In the vestibular periphery of nearly every vertebrate, cholinergic vestibular efferent neurons give rise to numerous presynaptic varicosities that target hair cells and afferent processes in the sensory neuroepithelium. Although pharmacological studies have described the postsynaptic actions of vestibular efferent stimulation in several species, characterization of efferent innervation patterns and the relative distribution of efferent varicosities among hair cells and afferents are also integral to understanding how efferent synapses operate. Vestibular efferent markers, however, have not been well characterized in the turtle, one of the animal models used by our laboratory. Here we sought to identify reliable efferent neuronal markers in the vestibular periphery of turtle, to use these markers to understand how efferent synapses are organized, and to compare efferent neuronal labeling patterns in turtle with two other amniotes using some of the same markers. Efferent fibers and varicosities were visualized in the semicircular canal of red-eared turtles (Trachemys scripta elegans), zebra finches (Taeniopygia guttata), and mice (Mus musculus) utilizing fluorescent immunohistochemistry with antibodies against choline acetyltransferase (ChAT). Vestibular hair cells and afferents were counterstained using antibodies to myosin VIIa and calretinin. In all species, ChAT labeled a population of small diameter fibers giving rise to numerous spherical varicosities abutting type II hair cells and afferent processes. That these ChAT-positive varicosities represent presynaptic release sites were demonstrated by colabeling with antibodies against the synaptic vesicle proteins synapsin I, SV2, or syntaxin and the neuropeptide calcitonin gene-related peptide. Comparisons of efferent innervation patterns among the three species are discussed. PMID:25560461

  13. Excitatory and inhibitory innervation of the mouse orofacial motor nuclei: A stereological study.

    Science.gov (United States)

    Faunes, Macarena; Oñate-Ponce, Alejandro; Fernández-Collemann, Sara; Henny, Pablo

    2016-03-01

    Neurons in the trigeminal (Mo5), facial (Mo7), ambiguus (Amb), and hypoglossal (Mo12) motor nuclei innervate jaw, facial, pharynx/larynx/esophagus, and tongue muscles, respectively. They are essential for movements subserving feeding, exploration of the environment, and social communication. These neurons are largely controlled by sensory afferents and premotor neurons of the reticular formation, where central pattern generator circuits controlling orofacial movements are located. To provide a description of the orofacial nuclei of the adult mouse and to ascertain the influence of excitatory and inhibitory afferents upon them, we used stereology to estimate the number of motoneurons as well as of varicosities immunopositive for glutamate (VGluT1+, VGluT2+) and GABA/glycine (known as VIAAT+ or VGAT+) vesicular transporters in the Mo5, Mo7, Amb, and Mo12. Mo5, Mo7, Amb, and Mo12 contain ∼1,000, ∼3,000, ∼600, and ∼1,700 cells, respectively. VGluT1+, VGluT2+, and VIAAT+ varicosities respectively represent: 28%, 41%, and 31% in Mo5; 2%, 49%, and 49% in Mo7; 12%, 42%, and 46% in Amb; and 4%, 54%, and 42% in Mo12. The Mo5 jaw-closing subdivision shows the highest VGluT1+ innervation. Noticeably, the VGluT2+ and VIAAT+ varicosity density in Mo7 is 5-fold higher than in Mo5 and 10-fold higher than in Amb and Mo12. The high density of terminals in Mo7 likely reflects the convergence and integration of numerous inputs to motoneurons subserving the wide range of complex behaviors to which this nucleus contributes. Also, somatic versus neuropil location of varicosities suggests that most of these afferents are integrated in the dendritic trees of Mo7 neurons. PMID:26224546

  14. Controlled ingestion of kaolinite (5%) modulates enteric nitrergic innervation in rats.

    Science.gov (United States)

    Voinot, Florian; Fischer, Caroline; Schmidt, Camille; Ehret-Sabatier, Laurence; Angel, Fabielle

    2014-08-01

    We have previously shown that kaolinite slowed down gastric emptying and intestinal transit and induced changes in enteric mechanical activities. As gastric emptying and intestinal transit have been shown to be regulated by nitric oxide (NO), the effect of an imposed ingestion of kaolinite on enteric nitrergic innervation was determined. Kaolinite has also been shown to increase plasmatic levels of leptin. Therefore, the responses of enteric neurons in the presence of leptin after kaolinite ingestion were determined, and a possible role of nitrergic neurons was evaluated in rats using organ bath technique. Our results showed that kaolinite modulates activities of enteric nerves at 14 days of ingestion. Exogenous l-NNA produced a decrease in nerve stimulation (NS)-induced relaxation in both jejunum and colon of control groups. At 14 days of kaolinite ingestion, this effect of l-NNA was significantly reduced only in the jejunum. Although l-NNA did not affect NS-induced contraction in jejunum and colon of control animals, it increased the amplitude of the NS-induced contraction in the colon of rats at 14 days of kaolinite ingestion. Leptin inhibitory effects on ENS in the jejunum were also altered at 14 days of ingestion. These differences were masked in the presence of l-NNA. Our data give evidence that changes in mechanical activities induced by kaolinite might be due to alterations in inhibitory (nitrergic and/or other) innervation at 14 days of kaolinite ingestion and to modifications of leptin effects on the responses to intramural nerve stimulation. PMID:23799940

  15. Blunt cardiac rupture.

    Science.gov (United States)

    Martin, T D; Flynn, T C; Rowlands, B J; Ward, R E; Fischer, R P

    1984-04-01

    Blunt injury to the heart ranges from contusion to disruption. This report comprises 14 patients seen during a 6-year period with cardiac rupture secondary to blunt trauma. Eight patients were injured in automobile accidents, two patients were injured in auto-pedestrian accidents, two were kicked in the chest by ungulates, and two sustained falls. Cardiac tamponade was suspected in ten patients. Five patients presented with prehospital cardiac arrest or arrested shortly after arrival. All underwent emergency department thoracotomy without survival. Two patients expired in the operating room during attempted cardiac repair; both had significant extracardiac injury. Seven patients survived, three had right atrial injuries, three had right ventricular injuries, and one had a left atrial injury. Cardiopulmonary bypass was not required for repair of the surviving patients. There were no significant complications from the cardiac repair. The history of significant force dispersed over a relatively small area of the precordium as in a kicking injury from an animal or steering wheel impact should alert the physician to possible cardiac rupture. Cardiac rupture should be considered in patients who present with signs of cardiac tamponade or persistent thoracic bleeding after blunt trauma. PMID:6708151

  16. The anemia of microgravity and recumbency. Role of sympathetic neural control of erythropoietin production

    Science.gov (United States)

    Robertson, David; Krantz, Sanford B.; Biaggioni, Italo

    We hypothesize that reduced sympathetic stimulation of erythropoietin production may maintain the anemia which develops in virtually all space travellers. We tested this hypothesis in a human model of reduced sympathetic activity. Thirty-three patients with the Bradbury-Eggleston syndrome were divided into three groups according to their hemoglobin (Hgb) level. Patients with low Hgb had lower upright norepinephrine and lower upright renin. Patients with anemia also had inappropriately low plasma erythropoietin levels. We administered recombinant erythropoietin (Epogen) 25-50 units/kg s.c. 3 times per week and found that the anemia seen in autonomic failure could be reversed by this treatment. These results support the hypothesis that erythropoiesis is modulated by the sympathetic nervous system and that such mechanisms may also operate in the microgravity environment where sympathetic activity is reduced.

  17. Sympathetic neural adaptation to hypocaloric diet with or without exercise training in obese metabolic syndrome subjects

    DEFF Research Database (Denmark)

    Straznicky, Nora E; Lambert, Elisabeth A; Nestel, Paul J;

    2010-01-01

    Sympathetic nervous system (SNS) overactivity contributes to the pathogenesis and target organ complications of obesity. This study was conducted to examine the effects of lifestyle interventions (weight loss alone or together with exercise) on SNS function....

  18. Effect of sympathetic nerve block on acute inflammatory pain and hyperalgesia

    DEFF Research Database (Denmark)

    Pedersen, J L; Rung, G W; Kehlet, H

    1997-01-01

    . METHODS: The study was made as a randomized, single blinded investigation, in which the volunteers served as their own controls. A lumbar sympathetic nerve block and a contralateral placebo block were performed in 24 persons by injecting 10 ml bupivacaine (0.5%) and 10 ml saline, respectively. The......BACKGROUND: Sympathetic nerve blocks relieve pain in certain chronic pain states, but the role of the sympathetic pathways in acute pain is unclear. Thus the authors wanted to determine whether a sympathetic block could reduce acute pain and hyperalgesia after a heat injury in healthy volunteers...... duration and quality of blocks were evaluated by the sympatogalvanic skin response and skin temperature. Bilateral heat injuries were produced on the medial surfaces of the calves with a 50 x 25 mm thermode (47 degrees C, 7 min) 45 min after the blocks. Pain intensity induced by heat, pain thresholds to...

  19. LEPTIN REGULATION OF BONE RESORPTION BY THE SYMPATHETIC NERVOUS SYSTEM AND CART

    Science.gov (United States)

    Bone remodelling, the mechanism by which vertebrates regulate bone mass, comprises two phases, namely resorption by osteoclasts and formation by osteoblasts; osteoblasts are multifunctional cells also controlling osteoclast differentiation. Sympathetic signalling via beta2-adrenergic receptors (Adrb...

  20. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...