WorldWideScience

Sample records for cardiac sympathetic activity

  1. Pacemaker current inhibition in experimental human cardiac sympathetic activation: a double-blind, randomized, crossover study

    NARCIS (Netherlands)

    Schroeder, C.; Heusser, K.; Zoerner, A.A.; Grosshennig, A.; Wenzel, D.; May, M.; Sweep, F.C.; Mehling, H.; Luft, F.C.; Tank, J.; Jordan, J.

    2014-01-01

    Hyperpolarization-activated, cyclic nucleotide-gated 4 (HCN4) channels comprise the final pathway for autonomic heart rate (HR) regulation. We hypothesized that HCN4 inhibition could reverse autonomic imbalance in a human model of cardiac sympathetic activation. Nineteen healthy men ingested oral me

  2. Quantifying cardiac sympathetic and parasympathetic nervous activities using principal dynamic modes analysis of heart rate variability.

    Science.gov (United States)

    Zhong, Yuru; Jan, Kung-Ming; Ju, Ki Hwan; Chon, Ki H

    2006-09-01

    The ratio between low-frequency (LF) and high-frequency (HF) spectral power of heart rate has been used as an approximate index for determining the autonomic nervous system (ANS) balance. An accurate assessment of the ANS balance can only be achieved if clear separation of the dynamics of the sympathetic and parasympathetic nervous activities can be obtained, which is a daunting task because they are nonlinear and have overlapping dynamics. In this study, a promising nonlinear method, termed the principal dynamic mode (PDM) method, is used to separate dynamic components of the sympathetic and parasympathetic nervous activities on the basis of ECG signal, and the results are compared with the power spectral approach to assessing the ANS balance. The PDM analysis based on the 28 subjects consistently resulted in a clear separation of the two nervous systems, which have similar frequency characteristics for parasympathetic and sympathetic activities as those reported in the literature. With the application of atropine, in 13 of 15 supine subjects there was an increase in the sympathetic-to-parasympathetic ratio (SPR) due to a greater decrease of parasympathetic than sympathetic activity (P=0.003), and all 13 subjects in the upright position had a decrease in SPR due to a greater decrease of sympathetic than parasympathetic activity (Pparasympathetic and sympathetic nervous systems. The culprit is equivalent decreases in both the sympathetic and parasympathetic activities irrespective of the pharmacological blockades. These findings suggest that the PDM shows promise as a noninvasive and quantitative marker of ANS imbalance, which has been shown to be a factor in many cardiac and stress-related diseases.

  3. Cardiac-locked bursts of muscle sympathetic nerve activity are absent in familial dysautonomia.

    Science.gov (United States)

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Axelrod, Felicia B; Kaufmann, Horacio

    2013-02-01

    Familial dysautonomia (Riley-Day syndrome) is an hereditary sensory and autonomic neuropathy (HSAN type III), expressed at birth, that is associated with reduced pain and temperature sensibilities and absent baroreflexes, causing orthostatic hypotension as well as labile blood pressure that increases markedly during emotional excitement. Given the apparent absence of functional baroreceptor afferents, we tested the hypothesis that the normal cardiac-locked bursts of muscle sympathetic nerve activity (MSNA) are absent in patients with familial dysautonomia. Tungsten microelectrodes were inserted percutaneously into muscle or cutaneous fascicles of the common peroneal nerve in 12 patients with familial dysautonomia. Spontaneous bursts of MSNA were absent in all patients, but in five patients we found evidence of tonically firing sympathetic neurones, with no cardiac rhythmicity, that increased their spontaneous discharge during emotional arousal but not during a manoeuvre that unloads the baroreceptors. Conversely, skin sympathetic nerve activity (SSNA), recorded in four patients, appeared normal. We conclude that the loss of phasic bursts of MSNA and the loss of baroreflex modulation of muscle vasoconstrictor drive contributes to the poor control of blood pressure in familial dysautonomia, and that the increase in tonic firing of muscle vasoconstrictor neurones contributes to the increase in blood pressure during emotional excitement.

  4. Heart Rate Changes in Response to Mechanical Pressure Stimulation of Skeletal Muscles Are Mediated by Cardiac Sympathetic Nerve Activity

    Science.gov (United States)

    Watanabe, Nobuhiro; Hotta, Harumi

    2017-01-01

    Stimulation of mechanoreceptors in skeletal muscles such as contraction and stretch elicits reflexive autonomic nervous system changes which impact cardiovascular control. There are pressure-sensitive mechanoreceptors in skeletal muscles. Mechanical pressure stimulation of skeletal muscles can induce reflex changes in heart rate (HR) and blood pressure, although the neural mechanisms underlying this effect are unclear. We examined the contribution of cardiac autonomic nerves to HR responses induced by mechanical pressure stimulation (30 s, ~10 N/cm2) of calf muscles in isoflurane-anesthetized rats. Animals were artificially ventilated and kept warm using a heating pad and lamp, and respiration and core body temperature were maintained within physiological ranges. Mechanical stimulation was applied using a stimulation probe 6 mm in diameter with a flat surface. Cardiac sympathetic and vagus nerves were blocked to test the contribution of the autonomic nerves. For sympathetic nerve block, bilateral stellate ganglia, and cervical sympathetic nerves were surgically sectioned, and for vagus nerve block, the nerve was bilaterally severed. In addition, mass discharges of cardiac sympathetic efferent nerve were electrophysiologically recorded. Mechanical stimulation increased or decreased HR in autonomic nerve-intact rats (range: −56 to +10 bpm), and the responses were negatively correlated with pre-stimulus HR (r = −0.65, p = 0.001). Stimulation-induced HR responses were markedly attenuated by blocking the cardiac sympathetic nerve (range: −9 to +3 bpm, p mechanical stimulation increased, or decreased the frequency of sympathetic nerve activity in parallel with HR (r = 0.77, p = 0.0004). Furthermore, the changes in sympathetic nerve activity were negatively correlated with its tonic level (r = −0.62, p = 0.0066). These results suggest that cardiac sympathetic nerve activity regulates HR responses to muscle mechanical pressure stimulation and the direction of HR

  5. Cardiac sympathetic activity in chronic heart failure: cardiac (123)I-mIBG scintigraphy to improve patient selection for ICD implantation.

    Science.gov (United States)

    Verschure, D O; van Eck-Smit, B L F; Somsen, G A; Knol, R J J; Verberne, H J

    2016-12-01

    Heart failure is a life-threatening disease with a growing incidence in the Netherlands. This growing incidence is related to increased life expectancy, improvement of survival after myocardial infarction and better treatment options for heart failure. As a consequence, the costs related to heart failure care will increase. Despite huge improvements in treatment, the prognosis remains unfavourable with high one-year mortality rates. The introduction of implantable devices such as implantable cardioverter defibrillators (ICD) and cardiac resynchronisation therapy (CRT) has improved the overall survival of patients with chronic heart failure. However, after ICD implantation for primary prevention in heart failure a high percentage of patients never have appropriate ICD discharges. In addition 25-50 % of CRT patients have no therapeutic effect. Moreover, both ICDs and CRTs are associated with malfunction and complications (e. g. inappropriate shocks, infection). Last but not least is the relatively high cost of these devices. Therefore, it is essential, not only from a clinical but also from a socioeconomic point of view, to optimise the current selection criteria for ICD and CRT. This review focusses on the role of cardiac sympathetic hyperactivity in optimising ICD selection criteria. Cardiac sympathetic hyperactivity is related to fatal arrhythmias and can be non-invasively assessed with (123)I-meta-iodobenzylguanide ((123)I-mIBG) scintigraphy. We conclude that cardiac sympathetic activity assessed with (123)I-mIBG scintigraphy is a promising tool to better identify patients who will benefit from ICD implantation.

  6. Cardiac fibroblasts regulate sympathetic nerve sprouting and neurocardiac synapse stability.

    Directory of Open Access Journals (Sweden)

    Céline Mias

    Full Text Available Sympathetic nervous system (SNS plays a key role in cardiac homeostasis and its deregulations always associate with bad clinical outcomes. To date, little is known about molecular mechanisms regulating cardiac sympathetic innervation. The aim of the study was to determine the role of fibroblasts in heart sympathetic innervation. RT-qPCR and western-blots analysis performed in cardiomyocytes and fibroblasts isolated from healthy adult rat hearts revealed that Pro-Nerve growth factor (NGF and pro-differentiating mature NGF were the most abundant neurotrophins expressed in cardiac fibroblasts while barely detectable in cardiomyocytes. When cultured with cardiac fibroblasts or fibroblast-conditioned medium, PC12 cells differentiated into/sympathetic-like neurons expressing axonal marker Tau-1 at neurites in contact with cardiomyocytes. This was prevented by anti-NGF blocking antibodies suggesting a paracrine action of NGF secreted by fibroblasts. When co-cultured with cardiomyocytes to mimic neurocardiac synapse, differentiated PC12 cells exhibited enhanced norepinephrine secretion as quantified by HPLC compared to PC12 cultured alone while co-culture with fibroblasts had no effect. However, when supplemented to PC12-cardiomyocytes co-culture, fibroblasts allowed long-term survival of the neurocardiac synapse. Activated fibroblasts (myofibroblasts isolated from myocardial infarction rat hearts exhibited significantly higher mature NGF expression than normal fibroblasts and also promoted PC12 cells differentiation. Within the ischemic area lacking cardiomyocytes and neurocardiac synapses, tyrosine hydroxylase immunoreactivity was increased and associated with local anarchical and immature sympathetic hyperinnervation but tissue norepinephrine content was similar to that of normal cardiac tissue, suggesting depressed sympathetic function. Collectively, these findings demonstrate for the first time that fibroblasts are essential for the setting of

  7. Effects of short-term carvedilol on the cardiac sympathetic activity assessed by {sup 123}I-MIBG scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Sandra Marina Ribeiro de; Mesquita, Evandro Tinoco; Freire, Fabiano de Lima; Ribeiro, Mario Luiz; Nobrega, Antonio Claudio Lucas da; Mesquita, Claudio Tinoco, E-mail: sandramarina@cardiol.b [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Azevedo, Jader Cunha; Barbirato, Gustavo Borges; Coimbra, Alexandro [Hospital Pro-Cardiaco, Rio de Janeiro, RJ (Brazil); Dohmann, Hans Fernando da Rocha [Centro de Ensino e Pesquisa do Pro-Cardiaco (PROCEP), Rio de Janeiro, RJ (Brazil)

    2010-03-15

    Background: autonomic alterations in heart failure are associated with an increase in morbimortality. Several noninvasive methods have been employed to evaluate the sympathetic function, including the Meta-Iodobenzylguanidine ({sup 123}I-MIBG) scintigraphy imaging of the heart. Objective: to evaluate the cardiac sympathetic activity through {sup 123}I-MIBG scintigraphy, before and after three months of carvedilol therapy in patients with heart failure and left ventricular ejection fraction (LVEF) < 45%. Patients and methods: sixteen patients, aged 56.3 +- 12.6 years (11 males), with a mean LVEF of 28% +- 8% and no previous use of beta-blockers were recruited for the study. Images of the heart innervation were acquired with {sup 123}I-MIBG, and the serum levels of catecholamines (epinephrine, dopamine and norepinephrine) were measured; the radioisotope ventriculography (RIV) was performed before and after a three-month therapy with carvedilol. Results: patients' functional class showed improvement: before the treatment, 50% of the patients were FC II and 50% were FC III. After 3 months, 7 patients were FC I (43.8%) and 9 were FC II (56.2%), (rho = 0.0001). The mean LVEF assessed by RIV increased from 29% to 33% (rho = 0.017). There was no significant variation in cardiac adrenergic activity assessed by {sup 123}I-MIBG (early and late resting images and washout rate). No significant variation was observed regarding the measurement of catecholamines. Conclusion: the short-term treatment with carvedilol promoted the clinical and LVEF improvement. However, this was not associated to an improvement in the cardiac adrenergic activity, assessed by {sup 123}I-MIBG scintigraphy, as well as the measurement of circulating catecholamines. (author)

  8. Assessment of cardiac sympathetic nerve activity in children with chronic heart failure using quantitative iodine-123 metaiodobenzylguanidine imaging

    Energy Technology Data Exchange (ETDEWEB)

    Karasawa, Kensuke; Ayusawa, Mamoru; Noto, Nobutaka; Sumitomo, Naokata; Okada, Tomoo; Harada, Kensuke [Nihon Univ., Tokyo (Japan). School of Medicine

    2000-12-01

    Cardiac sympathetic nerve activity in children with chronic heart failure was examined by quantitative iodine-123 metaiodobenzylguanidine (MIBG) myocardial imaging in 33 patients aged 7.5{+-}6.1 years (range 0-18 years), including 8 with cardiomyopathy, 15 with congenital heart disease, 3 with anthracycrine cardiotoxicity, 3 with myocarditis, 3 with primary pulmonary hypertension and 1 with Pompe's disease. Anterior planar images were obtained 15 min and 3 hr after the injection of iodine-123 MIBG. The cardiac iodine-123 MIBG uptake was assessed as the heart to upper mediastinum uptake activity ratio of the delayed image (H/M) and the cardiac percentage washout rate (%WR). The severity of chronic heart failure was class I (no medication) in 8 patients, class II (no symptom with medication) in 9, class III (symptom even with medication) in 10 and class IV (late cardiac death) in 6. H/M was 2.33{+-}0.22 in chronic heart failure class I, 2.50{+-}0.34 in class II, 1.95{+-}0.61 in class III, and 1.39{+-}0.29 in class IV (p<0.05). %WR was 24.8{+-}12.8% in chronic heart failure class I, 23.3{+-}10.2% in class II, 49.2{+-}24.5% in class III, and 66.3{+-}26.5% in class IV (p<0.05). The low H/M and high %WR were proportionate to the severity of chronic heart failure. Cardiac iodine-123 MIBG showed cardiac adrenergic neuronal dysfunction in children with severe chronic heart failure. Quantitative iodine-123 MIBG myocardial imaging is clinically useful as a predictor of therapeutic outcome and mortality in children with chronic heart failure. (author)

  9. The clinical value of cardiac sympathetic imaging in heart failure

    DEFF Research Database (Denmark)

    Christensen, Thomas Emil; Kjaer, Andreas; Hasbak, Philip

    2014-01-01

    The autonomic nervous system plays an important role in the pathology of heart failure. The single-photon emission computed tomography tracer iodine-123-metaiodobenzylguanidine ((123) I-MIBG) can be used to investigate the activity of the predominant neurotransmitter of the sympathetic nervous...... system, norepinephrine. Also, positron emission tomography tracers are being developed for the same purpose. With (123) I-MIBG as a starting point, this brief review introduces the modalities used for cardiac sympathetic imaging....

  10. Cardiac spectral power reflects parasympathetic but not sympathetic nervous system activity in a clinical population.

    Science.gov (United States)

    Muth, E R; Morrow, G R; Jiang, W; Stern, R M; Dubeshter, B

    1996-11-06

    The purpose of this short communication is to report our clinical findings regarding the use of the low frequency (LF, 0.02-0.15 Hz) and high frequency (HF, > 0.15 Hz) components of the spectral decomposition of heart-rate as indices of sympathetic (SNS) and parasympathetic nervous system (PNS) activity, respectively. Thirty-two females with histologically confirmed ovarian cancer, ranging in age from 46-72 years, participated in an autonomic assessment protocol consisting of a resting heart rate recording and several ANS function tests. The LF, HF and total power measures from the spectral decomposition were highly correlated with one another. In addition, the spectral components were most highly correlated with measures of PNS activity, i.e. standard deviation of heart rate at rest and the ratio of the six longest to the six shortest R-R intervals during deep breathing (E:I ratio). It is concluded, as other researchers have stated, that the use of the HF component of the HR spectrum as a measure of PNS activity is warranted, but caution must be used when interpreting the LF component.

  11. Effects of Spinal Cord Stimulation on Cardiac Sympathetic Nerve Activity in Patients with Heart Failure

    DEFF Research Database (Denmark)

    Naar, Jan; Jaye, Deborah; Linde, Cecilia

    2017-01-01

    activity in HF patients. Secondary hypotheses were that SCS improves left ventricular function and dimension, exercise capacity, and clinical variables relevant to HF. METHODS: HF patients with a SCS device previously participating in the DEFEAT-HF trial were included in this crossover study with 6-week...... intervention periods (SCS-ON and SCS-OFF). SCS (50 Hz, 210-μs pulse duration, aiming at T2-T4 segments) was delivered for 12 hours daily. Indices of myocardial sympathetic neuronal function (heart-to-mediastinum ratio, HMR) and activity (washout rate, WR) were assessed using (123) I......-metaiodobenzylguanidine (MIBG) scintigraphy. Echocardiography, exercise testing, and clinical data collection were also performed. RESULTS: We included 13 patients (65.3 ± 8.0 years, nine males) and MIBG scintigraphy data were available in 10. HMR was not different comparing SCS-ON (1.37 ± 0.16) and SCS-OFF (1.41 ± 0.21, P = 0...

  12. The articulo-cardiac sympathetic reflex in spinalized, anesthetized rats.

    Science.gov (United States)

    Nakayama, Tomohiro; Suzuki, Atsuko; Ito, Ryuzo

    2006-04-01

    Somatic afferent regulation of heart rate by noxious knee joint stimulation has been proven in anesthetized cats to be a reflex response whose reflex center is in the brain and whose efferent arc is a cardiac sympathetic nerve. In the present study we examined whether articular stimulation could influence heart rate by this efferent sympathetic pathway in spinalized rats. In central nervous system (CNS)-intact rats, noxious articular movement of either the knee or elbow joint resulted in an increase in cardiac sympathetic nerve activity and heart rate. However, although in acutely spinalized rats a noxious movement of the elbow joint resulted in a significant increase in cardiac sympathetic nerve activity and heart rate, a noxious movement of the knee joint had no such effect and resulted in only a marginal increase in heart rate. Because this marginal increase was abolished by adrenalectomy suggests that it was due to the release of adrenal catecholamines. In conclusion, the spinal cord appears to be capable of mediating, by way of cardiac sympathetic nerves, the propriospinally induced reflex increase in heart rate that follows noxious stimulation of the elbow joint, but not the knee joint.

  13. Role of endothelin-1 in mediating changes in cardiac sympathetic nerve activity in heart failure.

    Science.gov (United States)

    Abukar, Yonis; May, Clive N; Ramchandra, Rohit

    2016-01-01

    Heart failure (HF) is associated with increased sympathetic nerve activity to the heart (CSNA), which is directly linked to mortality in HF patients. Previous studies indicate that HF is associated with high levels of plasma endothelin-1 (ET-1), which correlates with the severity of the disease. We hypothesized that blockade of endothelin receptors would decrease CSNA. The effects of intravenous tezosentan (a nonselective ETA and ETB receptor antagonist) (8 mg·kg(-1)·h(-1)) on resting levels of CSNA, arterial pressure, and heart rate were determined in conscious normal sheep (n = 6) and sheep with pacing-induced HF (n = 7). HF was associated with a significant decrease in ejection fraction (from 74 ± 2% to 38 ± 1%, P < 0.001) and a significant increase in resting levels of CSNA burst incidence (from 56 ± 11 to 87 ± 2 bursts/100 heartbeats, P < 0.01). Infusion of tezosentan for 60 min significantly decreased resting mean aterial pressure (MAP) in both normal and HF sheep (-8 ± 4 mmHg and -4 ± 3 mmHg, respectively; P < 0.05). This was associated with a significant decrease in CSNA (by 25 ± 26% of control) in normal sheep, but there was no change in CSNA in HF sheep. Calculation of spontaneous baroreflex gain indicated significant impairment of the baroreflex control of HR after intravenous tezosentan infusion in normal animals but no change in HF animals. These data suggest that endogenous levels of ET-1 contribute to the baseline levels of CSNA in normal animals, but this effect is absent in HF.

  14. Cardiac sympathetic imaging with mIBG in cirrhosis and portal hypertension

    DEFF Research Database (Denmark)

    Møller, Søren; Mortensen, Christian; Bendtsen, Flemming

    2012-01-01

    Autonomic and cardiac dysfunction is frequent in cirrhosis and includes increased sympathetic nervous activity, impaired heart rate variability (HRV), and baroreflex sensitivity (BRS). Quantified (123)I-metaiodobenzylguanidine (mIBG) scintigraphy reflects cardiac noradrenaline uptake, and in pati...

  15. Assessment of cardiac sympathetic nerve integrity with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raffel, David M. E-mail: raffel@umich.edu; Wieland, Donald M

    2001-07-01

    The autonomic nervous system plays a critical role in the regulation of cardiac function. Abnormalities of cardiac innervation have been implicated in the pathophysiology of many heart diseases, including sudden cardiac death and congestive heart failure. In an effort to provide clinicians with the ability to regionally map cardiac innervation, several radiotracers for imaging cardiac sympathetic neurons have been developed. This paper reviews the development of neuronal imaging agents and discusses their emerging role in the noninvasive assessment of cardiac sympathetic innervation.

  16. Effects of nicorandil on cardiac sympathetic nerve activity after reperfusion therapy in patients with first anterior acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu; Toyama, Takuji; Suzuki, Tadashi; Kurabayashi, Masahiko [Gunma University School of Medicine, Department of Cardiovascular Medicine, Maebashi (Japan); Kumakura, Hisao; Takayama, Yoshiaki; Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan, Gunma (Japan)

    2005-03-01

    Ischaemic preconditioning (PC) is a cardioprotective phenomenon in which short periods of myocardial ischaemia result in resistance to decreased contractile dysfunction during a subsequent period of sustained ischaemia. Nicorandil, an ATP-sensitive potassium channel opener, can induce PC effects on sympathetic nerves during myocardial ischaemia. However, its effects on cardiac sympathetic nerve activity (CSNA) and left ventricular remodelling have not been determined. In this study, we sought to determine whether nicorandil administration improves CSNA in patients with acute myocardial infarction (AMI). We studied 58 patients with first anterior AMI, who were randomly assigned to receive nicorandil (group A) or isosorbide dinitrate (group B) after primary coronary angioplasty. The nicorandil or isosorbide dinitrate was continuously infused for >48 h. The extent score (ES) was determined from {sup 99m}Tc-pyrophosphate scintigraphy, and the total defect score (TDS) was determined from {sup 201}Tl scintigraphy 3-5 days after primary angioplasty. The left ventricular end-diastolic volume (LVEDV) and left ventricular ejection fraction (LVEF) were determined by left ventriculography 2 weeks later. The delayed heart/mediastinum count (H/M) ratio, delayed TDS and washout rate (WR) were determined from {sup 123}I-meta-iodobenzylguanidine (MIBG) images 3 weeks later. The left ventriculography results were re-examined 6 months after treatment. Fifty patients originally enrolled in the trial completed the entire protocol. After treatment, no significant differences were observed in ES or left ventricular parameters between the two groups. However, in group A (n=25), the TDSs determined from {sup 201}Tl and {sup 123}I-MIBG were significantly lower (26{+-}6 vs 30{+-}5, P<0.01, and 32{+-}8 vs 40{+-}6, P<0.0001, respectively), the H/M ratio significantly higher (1.99{+-}0.16 vs 1.77{+-}0.30, P<0.005) and the WR significantly lower (36%{+-}8% vs 44%{+-}12%, P<0.005) than in group B

  17. Motor imagery muscle contraction strength influences spinal motor neuron excitability and cardiac sympathetic nerve activity

    OpenAIRE

    2015-01-01

    [Purpose] The aim of this study was to investigate the changes in spinal motor neuron excitability and autonomic nervous system activity during motor imagery of isometric thenar muscle activity at 10% and 50% maximal voluntary contraction (MVC). [Methods] The F-waves and low frequency/high frequency (LF/HF) ratio were recorded at rest, during motor imagery, and post-trial. For motor imagery trials, subjects were instructed to imagine thenar muscle activity at 10% and 50% MVC while holding the...

  18. Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction.

    Science.gov (United States)

    Lymperopoulos, Anastasios; Rengo, Giuseppe; Gao, Erhe; Ebert, Steven N; Dorn, Gerald W; Koch, Walter J

    2010-05-21

    Chronic heart failure (HF) is characterized by sympathetic overactivity and enhanced circulating catecholamines (CAs), which significantly increase HF morbidity and mortality. We recently reported that adrenal G protein-coupled receptor kinase 2 (GRK2) is up-regulated in chronic HF, leading to enhanced CA release via desensitization/down-regulation of the chromaffin cell alpha(2)-adrenergic receptors that normally inhibit CA secretion. We also showed that adrenal GRK2 inhibition decreases circulating CAs and improves cardiac inotropic reserve and function. Herein, we hypothesized that adrenal-targeted GRK2 gene deletion before the onset of HF might be beneficial by reducing sympathetic activation. To specifically delete GRK2 in the chromaffin cells of the adrenal gland, we crossed PNMTCre mice, expressing Cre recombinase under the chromaffin cell-specific phenylethanolamine N-methyltransferase (PNMT) gene promoter, with floxedGRK2 mice. After confirming a significant ( approximately 50%) reduction of adrenal GRK2 mRNA and protein levels, the PNMT-driven GRK2 knock-out (KO) offspring underwent myocardial infarction (MI) to induce HF. At 4 weeks post-MI, plasma levels of both norepinephrine and epinephrine were reduced in PNMT-driven GRK2 KO, compared with control mice, suggesting markedly reduced post-MI sympathetic activation. This translated in PNMT-driven GRK2 KO mice into improved cardiac function and dimensions as well as amelioration of abnormal cardiac beta-adrenergic receptor signaling at 4 weeks post-MI. Thus, adrenal-targeted GRK2 gene KO decreases circulating CAs, leading to improved cardiac function and beta-adrenergic reserve in post-MI HF. GRK2 inhibition in the adrenal gland might represent a novel sympatholytic strategy that can aid in blocking HF progression.

  19. Effects of perindopril on cardiac sympathetic nerve activity in patients with congestive heart failure: comparison with enalapril

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu; Toyama, Takuji; Suzuki, Tadashi; Kurabayashi, Masahiko [Gunma University School of Medicine, Department of Cardiovascular Medicine, Maebashi, Gunma (Japan); Kumakura, Hisao; Takayama, Yoshiaki; Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan, Department of Internal Medicine, Gunma (Japan)

    2005-08-01

    The production of aldosterone in the heart is suppressed by the angiotensin-converting enzyme (ACE) inhibitor perindopril in patients with congestive heart failure (CHF). Moreover, perindopril has been reported to have more cardioprotective effects than enalapril. Forty patients with CHF [left ventricular ejection fraction (LVEF) <45%; mean 33{+-}7%] were randomly assigned to perindopril (2 mg/day; n=20) or enalapril (5 mg/day; n=20). All patients were also treated with diuretics. The delayed heart/mediastinum count (H/M) ratio, delayed total defect score (TDS) and washout rate (WR) were determined from {sup 123}I-meta-iodobenzylguanidine (MIBG) images, and plasma brain natriuretic peptide (BNP) concentrations were measured before and 6 months after treatment. The left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV) and LVEF were also determined by echocardiography. After treatment, in patients receiving perindopril, TDS decreased from 39{+-}10 to 34{+-}9 (P<0.01), H/M ratios increased from 1.62{+-}0.27 to 1.76{+-}0.29 (P<0.01), WR decreased from 50{+-}14% to 42{+-}14% (P<0.05) and plasma BNP concentrations decreased from 226{+-}155 to 141{+-}90 pg/ml (P<0.0005). In addition, the LVEDV decreased from 180{+-}30 to 161{+-}30 ml (P<0.05) and the LVESV decreased from 122{+-}35 to 105{+-}36 ml (P<0.05). Although the LVEF tended to increase, the change was not statistically significant (from 33{+-}8% to 36{+-}12%; P=NS). On the other hand, there were no significant changes in these parameters in patients receiving enalapril. Plasma BNP concentrations, {sup 123}I-MIBG scintigraphic and echocardiographic parameters improved after 6 months of perindopril treatment. These findings indicate that perindopril treatment can ameliorate the cardiac sympathetic nerve activity and the left ventricular performance in patients with CHF. (orig.)

  20. Cardiac Sympathetic Hyperactivity after Chemotherapy: Early Sign of Cardiotoxicity?

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, Sarita Lígia Pessoa de Melo Machado [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Hospital Agamenon Magalhães (HAM), Recife, PE (Brazil); Brandão, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Andrade, Luciana Raposo [Hospital Santa Joana, Recife, PE (Brazil); Maia, Rafael José Coelho [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Hospital Agamenon Magalhães (HAM), Recife, PE (Brazil); Markman Filho, Brivaldo [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil)

    2015-09-15

    Chemotherapy with anthracyclines and trastuzumab can cause cardiotoxicity. Alteration of cardiac adrenergic function assessed by metaiodobenzylguanidine labeled with iodine-123 ({sup 123}I-mIBG) seems to precede the drop in left ventricular ejection fraction. To evaluate and to compare the presence of cardiovascular abnormalities among patients with breast cancer undergoing chemotherapy with anthracyclines and trastuzumab, and only with anthracycline. Patients with breast cancer were analyzed clinical, laboratory, electrocardiographic and echocardiographic and cardiac sympathetic activity. In scintigraphic images, the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum, and the washout rate were calculated. The variables were compared between patients who received anthracyclines and trastuzumab (Group 1) and only anthracyclines (Group 2). Twenty patients, with mean age 57 ± 14 years, were studied. The mean left ventricular ejection fraction by echocardiography was 67.8 ± 4.0%. Mean washout rate was 28.39 ± 9.23% and the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum was 2.07 ± 0.28. Of the patients, 82% showed an increased in washout rate, and the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum decreased in 25%. Concerning the groups, the mean washout rate of Group 1 was 32.68 ± 9.30% and of Group 2 was 24.56 ± 7.72% (p = 0,06). The ratio of {sup 123}I-mIBG uptake between the heart and mediastinum was normal in all patients in Group 2, however, the Group 1, showed 50% the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum ≤ 1.8 (p = 0.02). In women with breast cancer undergoing chemotherapy, assessment of cardiac sympathetic activity with {sup 123}I-mIBG appears to be an early marker of cardiotoxicity. The combination of chemotherapy showed higher risk of cardiac adrenergic hyperactivity.

  1. Cardiac sympathetic nerve terminal function in congestive heart failure

    Institute of Scientific and Technical Information of China (English)

    Chang-seng LIANG

    2007-01-01

    Increased cardiac release of norepinephrine (NE) and depleted cardiac stores of NE are two salient features of the human failing heart. Researches from my labo-ratory have shown that these changes are accompanied by a functional defect of NE uptake in the cardiac sympathetic nerve terminals. Our studies have shown that the decrease of NE uptake is caused by reduction of NE transporter density in the sympathetic nerve endings, and this change is responsible, at least in part, for the increased myocardial interstitial NE, decreased myocardial adrenoceptor density, and increased myocyte apoptosis in experimental cardiomyopathies. We have also provided evidence in both intact animals and cultured PC12 cells that the decrease of NE transporter is induced by the actions of oxidative metabolites of exogenous NE, involving endoplasmic reticulum stress and impaired N-glycosylation of the NE transporter. This change in the cardiac sympathetic NE uptake function, as demonstrated by [123I] metaiodobenzylguanidine in human studies, may not only serve as an important prognostic variable in patients with congestive heart failure, but also be used as a surrogate for the efficacies of various therapeutic interventions for heart failure. Finally, increasing evidence suggests and further studies are needed to show that the cardiac sympathetic nerve terminal function may be a direct target for pharmacologic treatment of congestive heart failure.

  2. Sympathetic Activation Does Not Affect the Cardiac and Respiratory Contribution to the Relationship between Blood Pressure and Pial Artery Pulsation Oscillations in Healthy Subjects.

    Directory of Open Access Journals (Sweden)

    Pawel J Winklewski

    Full Text Available Using a novel method called near-infrared transillumination backscattering sounding (NIR-T/BSS that allows for the non-invasive measurement of pial artery pulsation (cc-TQ and subarachnoid width (sas-TQ in humans, we assessed the influence of sympathetic activation on the cardiac and respiratory contribution to blood pressure (BP cc-TQ oscillations in healthy subjects.The pial artery and subarachnoid width response to handgrip (HGT and cold test (CT were studied in 20 healthy subjects. The cc-TQ and sas-TQ were measured using NIR-T/BSS; cerebral blood flow velocity (CBFV was measured using Doppler ultrasound of the left internal carotid artery; heart rate (HR and beat-to-beat mean BP were recorded using a continuous finger-pulse photoplethysmography; respiratory rate (RR, minute ventilation (MV, end-tidal CO2 (EtCO2 and end-tidal O2 (EtO2 were measured using a metabolic and spirometry module of the medical monitoring system. Wavelet transform analysis was used to assess the relationship between BP and cc-TQ oscillations.HGT evoked an increase in BP (+15.9%; P<0.001, HR (14.7; P<0.001, SaO2 (+0.5; P<0.001 EtO2 (+2.1; P<0.05 RR (+9.2%; P = 0.05 and MV (+15.5%; P<0.001, while sas-TQ was diminished (-8.12%; P<0.001, and a clear trend toward cc-TQ decline was observed (-11.0%; NS. CBFV (+2.9%; NS and EtCO2 (-0.7; NS did not change during HGT. CT evoked an increase in BP (+7.4%; P<0.001, sas-TQ (+3.5%; P<0.05 and SaO2(+0.3%; P<0.05. HR (+2.3%; NS, CBFV (+2.0%; NS, EtO2 (-0.7%; NS and EtCO2 (+0.9%; NS remained unchanged. A trend toward decreased cc-TQ was observed (-5.1%; NS. The sas-TQ response was biphasic with elevation during the first 40 seconds (+8.8% vs. baseline; P<0.001 and subsequent decline (+4.1% vs. baseline; P<0.05. No change with respect to wavelet coherence and wavelet phase coherence was found between the BP and cc-TQ oscillations.Short sympathetic activation does not affect the cardiac and respiratory contribution to the relationship

  3. Usefulness of Cardiac Sympathetic Nerve Imaging Using (123)Iodine-Metaiodobenzylguanidine Scintigraphy for Predicting Sudden Cardiac Death in Patients With Heart Failure.

    Science.gov (United States)

    Kasama, Shu; Toyama, Takuji; Kurabayashi, Masahiko

    2016-01-01

    The autonomic nervous system plays an important role in the human heart. Activation of the cardiac sympathetic nervous system is a cardinal pathophysiological abnormality associated with the failing human heart. Myocardial imaging using (123)I-metaiodobenzylguanidine (MIBG), an analog of norepinephrine, can be used to investigate the activity of norepinephrine, the predominant neurotransmitter of the sympathetic nervous system. Many clinical trials have demonstrated that (123)I-MIBG scintigraphic parameters predict cardiac adverse events, especially sudden cardiac death, in patients with heart failure. In this review, we summarize results from published studies that have focused on the use of cardiac sympathetic nerve imaging using (123)I-MIBG scintigraphy for risk stratification of sudden cardiac death in patients with heart failure.

  4. Angiotensin II, sympathetic nerve activity and chronic heart failure.

    Science.gov (United States)

    Wang, Yutang; Seto, Sai-Wang; Golledge, Jonathan

    2014-03-01

    Sympathetic nerve activity has been reported to be increased in both humans and animals with chronic heart failure. One of the mechanisms believed to be responsible for this phenomenon is increased systemic and cerebral angiotensin II signaling. Plasma angiotensin II is increased in humans and animals with chronic heart failure. The increase in angiotensin II signaling enhances sympathetic nerve activity through actions on both central and peripheral sites during chronic heart failure. Angiotensin II signaling is enhanced in different brain sites such as the paraventricular nucleus, the rostral ventrolateral medulla and the area postrema. Blocking angiotensin II type 1 receptors decreases sympathetic nerve activity and cardiac sympathetic afferent reflex when therapy is administered to the paraventricular nucleus. Injection of an angiotensin receptor blocker into the area postrema activates the sympathoinhibitory baroreflex. In peripheral regions, angiotensin II elevates both norepinephrine release and synthesis and inhibits norepinephrine uptake at nerve endings, which may contribute to the increase in sympathetic nerve activity seen in chronic heart failure. Increased circulating angiotensin II during chronic heart failure may enhance the sympathoexcitatory chemoreflex and inhibit the sympathoinhibitory baroreflex. In addition, increased circulating angiotensin II can directly act on the central nervous system via the subfornical organ and the area postrema to increase sympathetic outflow. Inhibition of angiotensin II formation and its type 1 receptor has been shown to have beneficial effects in chronic heart failure patients.

  5. Central Sympathetic Inhibition: a Neglected Approach for Treatment of Cardiac Arrhythmias?

    Science.gov (United States)

    Cagnoni, Francesca; Destro, Maurizio; Bontempelli, Erika; Locatelli, Giovanni; Hering, Dagmara; Schlaich, Markus P

    2016-02-01

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Overactivation of the sympathetic nervous system (SNS) plays an important role in the pathogenesis of comorbidities related to AF such as hypertension, congestive heart failure, obesity, insulin resistance, and obstructive sleep apnea. Methods that reduce sympathetic drive, such as centrally acting sympatho-inhibitory agents, have been shown to reduce the incidence of spontaneous or induced atrial arrhythmias, suggesting that neuromodulation may be helpful in controlling AF. Moxonidine acts centrally to reduce activity of the SNS, and clinical trials indicate that this is associated with a decreased AF burden in hypertensive patients with paroxysmal AF and reduced post-ablation recurrence of AF in patients with hypertension who underwent pulmonary vein isolation (PVI). Furthermore, device-based approaches to reduce sympathetic drive, such as renal denervation, have yielded promising results in the prevention and treatment of cardiac arrhythmias. In light of these recent findings, targeting elevated sympathetic drive with either pharmacological or device-based approaches has become a focus of clinical research. Here, we review the data currently available to explore the potential utility of sympatho-inhibitory therapies in the prevention and treatment of cardiac arrhythmias.

  6. Effects of adding intravenous nicorandil to standard therapy on cardiac sympathetic nerve activity and myocyte dysfunction in patients with acute decompensated heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Toyama, Takuji; Funada, Ryuichi; Takama, Noriaki; Koitabashi, Norimichi; Kurabayashi, Masahiko [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Suzuki, Yasuyuki; Matsumoto, Naoya [Nihon University School of Medicine, Department of Cardiology, Tokyo (Japan); Sato, Yuichi [Health Park Clinic, Department of Imaging, Takasaki, Gunma (Japan)

    2015-04-01

    Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, improves cardiac sympathetic nerve activity (CSNA) in ischemic heart disease or chronic heart failure. However, its effects on CSNA and myocyte dysfunction in acute heart failure (AHF) remain unclear. We investigated the effects of adding intravenous nicorandil to standard therapy on CSNA and myocyte dysfunction in AHF. We selected 70 patients with mild to moderate nonischemic AHF who were treated with standard conventional therapy soon after admission. Thirty-five patients were assigned to additionally receive intravenous nicorandil (4-12 mg/h; group A), whereas the remaining patients continued their current drug regimen (group B). Delayed total defect score (TDS), delayed heart to mediastinum count (H/M) ratio, and washout rate (WR) were determined by {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy within 3 days of admission and 4 weeks later. High sensitivity troponin T (hs-TnT) level was also measured at the same time points. After treatment, MIBG scintigraphic parameters significantly improved in both groups. However, the extent of the changes in these parameters in group A significantly exceeded the extent of the changes in group B [TDS -11.3 ± 4.3 in group A vs -4.0 ± 6.0 in group B (p < 0.01); H/M ratio 0.31 ± 0.16 vs 0.14 ± 0.16 (p < 0.01); WR -13.8 ± 7.8 % vs -6.1 ± 8.9 % (p < 0.01)]. The hs-TnT level decreased significantly from 0.052 ± 0.043 to 0.041 ± 0.033 ng/ml (p < 0.05) in group A, but showed no significant change in group B. Moreover, in both groups, no relationships between the extent of changes in MIBG parameters and hs-TnT level were observed. Adding intravenous nicorandil to standard therapy provides additional benefits for CSNA and myocyte dysfunction over conventional therapy alone in AHF patients. Furthermore, the mechanisms of improvement in CSNA and myocyte dysfunction after nicorandil treatment in AHF patients were distinct. (orig.)

  7. GENDER-SELECTIVE INTERACTION BETWEEN AGING AND CARDIOVASCULAR SYMPATHETIC ACTIVITY

    Directory of Open Access Journals (Sweden)

    Thorat D Kiran

    2010-06-01

    Full Text Available Physiologically aging refers to the impaired ability to maintain homeostasis during external as wellas internal stresses. The sympathetic nervous system becomes tonically, progressively and markedlyactivated with aging in humans. Study is done to measure the cardiovascular sympatheticdysfunctions in the males and females of the different age groups. Total 80, healthy subjects nothaving any major illness and any chronic addiction, were selected for the study. All the subjects wereevaluated by using “CANWIN cardiac autonomic neuropathy analyzer” using the tests like Pulse rateby Palpatory method, Blood Pressure response to sudden standing and Sustained Handgrip test. In all the elderly subjects the sympathetic system was over activated and this over activation of the sympathetic system became more severe as the age advanced. Aging is accompanied by a greater increase in sympathetic activity in women than in men, independent of menopausal status. The study concludes that there is more marked influence of age on sympathetic nervous system activation and impaired sensitivity of baroreceptors in women than men.

  8. Impaired cardiac sympathetic innervation in symptomatic patients with long QT syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kies, Peter; Stegger, Lars; Schober, Otmar [University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); Paul, Matthias; Moennig, Gerold [University Hospital Muenster, Department for Cardiology and Angiology, Muenster (Germany); Gerss, Joachim [University of Muenster, Institute of Biostatistics and Clinical Research, Muenster (Germany); Wichter, Thomas [Marienhospital Osnabrueck, Department of Cardiology, Niels-Stensen-Kliniken, Osnabrueck (Germany); Schaefers, Michael [University of Muenster, European Institute of Molecular Imaging - EIMI, Muenster (Germany); Schulze-Bahr, Eric [University Hospital Muenster, Department for Cardiology and Angiology, Muenster (Germany); University Hospital Muenster, Institute for Genetics of Heart Diseases, Muenster (Germany)

    2011-10-15

    Increased sympathetic activation is a key modifier for arrhythmogenesis in patients with long QT syndrome (LQTS), a congenital channelopathy. Therefore, we investigated cardiac sympathetic function using {sup 123}I-metaiodobenzylguanidine (MIBG) single photon emission computed tomography (SPECT) in a cohort of symptomatic LQTS patients and correlated these findings with the underlying genotype. [{sup 123}I]MIBG SPECT was performed in 28 LQTS patients. Among these, 18 patients (64%) had a previous syncope and 10 patients (36%) survived sudden cardiac arrest. Patients were characterized in terms of genetic subtypes and QTc interval on surface ECGs. SPECT images were analysed for regional [{sup 123}I]MIBG uptake in a 33-segment bullseye scheme and compared to those obtained from 10 age-matched healthy control subjects (43 {+-} 12 years). An abnormal {sup 123}I-MIBG scan was found in 17 of 28 LQTS patients (61%) with a tracer reduction mainly located in the anteroseptal segments of the left ventricle. This finding was independent of the genetic LQTS subtype. In addition, no differences were found between LQTS patients with a QTc >500 ms vs <500 ms or those suffering from syncope vs VF (p > 0.05). A distinct regional pattern of impaired cardiac sympathetic function was identified in the majority of symptomatic LQTS patients. This innervation defect was independent of the underlying genotype and clinical disease expression. (orig.)

  9. Cardiac sympathetic dysfunction in anti-NMDA receptor encephalitis.

    Science.gov (United States)

    Byun, Jung-Ick; Lee, Soon-Tae; Moon, Jangsup; Jung, Keun-Hwa; Shin, Jung-Won; Sunwoo, Jun-Sang; Lim, Jung-Ah; Shin, Yong-Won; Kim, Tae-Joon; Lee, Keon-Joo; Park, Kyung-Il; Jung, Ki-Young; Lee, Sang Kun; Chu, Kon

    2015-12-01

    Patients with anti-NMDA receptor (anti-NMDAR) encephalitis frequently suffer from autonomic dysfunctions, which can cause substantial morbidity. This study assessed cardiac autonomic functions in patients with anti-NMDAR encephalitis using heart rate variability (HRV) analysis. This was a retrospective single-center case-control study. Eleven patients with anti-NMDAR encephalitis and 15 age- and sex-matched controls were included in this study. To ensure that autonomic dysfunction does not occur in any encephalitis, we additionally analyzed HRV of 9 patients with herpes encephalitis (HSE) and compared with that of NMDAR encephalitis patients and controls. Five minute resting stationary electrocardiogram was collected from each subject, and HRV was analyzed. Total power and low frequency (LF) power were lower in anti-NMDAR encephalitis patients than those in controls (p=0.005, 0.001 respectively), indicating cardiac autonomic dysfunction especially in sympathetic system. Patients with HSE showed no significant difference in HRV parameters compared with that of controls. Cardiac autonomic dysfunction was associated with 3 month functional outcome in anti-NMDAR encephalitis patients.

  10. Chronic orthostatic intolerance: a disorder with discordant cardiac and vascular sympathetic control

    Science.gov (United States)

    Furlan, R.; Jacob, G.; Snell, M.; Robertson, D.; Porta, A.; Harris, P.; Mosqueda-Garcia, R.

    1998-01-01

    BACKGROUND: Chronic orthostatic intolerance (COI) is a debilitating autonomic condition in young adults. Its neurohumoral and hemodynamic profiles suggest possible alterations of postural sympathetic function and of baroreflex control of heart rate (HR). METHODS AND RESULTS: In 16 COI patients and 16 healthy volunteers, intra-arterial blood pressure (BP), ECG, central venous pressure (CVP), and muscle sympathetic nerve activity (MSNA) were recorded at rest and during 75 degrees tilt. Spectral analysis of RR interval and systolic arterial pressure (SAP) variabilities provided indices of sympathovagal modulation of the sinoatrial node (ratio of low-frequency to high-frequency components, LF/HF) and of sympathetic vasomotor control (LFSAP). Baroreflex mechanisms were assessed (1) by the slope of the regression line obtained from changes of RR interval and MSNA evoked by pharmacologically induced alterations in BP and (2) by the index alpha, obtained from cross-spectral analysis of RR and SAP variabilities. At rest, HR, MSNA, LF/HF, and LFSAP were higher in COI patients, whereas BP and CVP were similar in the two groups. During tilt, BP did not change and CVP fell by the same extent in the 2 groups; the increase of HR and LF/HF was more pronounced in COI patients. Conversely, the increase of MSNA was lower in COI than in control subjects. Baroreflex sensitivity was similar in COI and control subjects at rest; tilt reduced alpha similarly in both groups. CONCLUSIONS: COI is characterized by an overall enhancement of noradrenergic tone at rest and by a blunted postganglionic sympathetic response to standing, with a compensatory cardiac sympathetic overactivity. Baroreflex mechanisms maintain their functional responsiveness. These data suggest that in COI, the functional distribution of central sympathetic tone to the heart and vasculature is abnormal.

  11. Sympathetic cardiac hyperinnervation and atrial autonomic imbalance in diet-induced obesity promote cardiac arrhythmias.

    Science.gov (United States)

    McCully, Belinda H; Hasan, Wohaib; Streiff, Cole T; Houle, Jennifer C; Woodward, William R; Giraud, George D; Brooks, Virginia L; Habecker, Beth A

    2013-11-15

    Obesity increases the risk of arrhythmias and sudden cardiac death, but the mechanisms are unknown. This study tested the hypothesis that obesity-induced cardiac sympathetic outgrowth and hyperinnervation promotes the development of arrhythmic events. Male Sprague-Dawley rats (250-275 g), fed a high-fat diet (33% kcal/fat), diverged into obesity-resistant (OR) and obesity-prone (OP) groups and were compared with rats fed normal chow (13% kcal/fat; CON). In vitro experiments showed that both OR and OP rats exhibited hyperinnervation of the heart and high sympathetic outgrowth compared with CON rats, even though OR rats are not obese. Despite the hyperinnervation and outgrowth, we showed that, in vivo, OR rats were less susceptible to arrhythmic events after an intravenous epinephrine challenge compared with OP rats. On examining total and stimulus-evoked neurotransmitter levels in an ex vivo system, we demonstrate that atrial acetylcholine content and release were attenuated in OP compared with OR and CON groups. OP rats also expressed elevated atrial norepinephrine content, while norepinephrine release was suppressed. These findings suggest that the consumption of a high-fat diet, even in the absence of overt obesity, stimulates sympathetic outgrowth and hyperinnervation of the heart. However, normalized cardiac parasympathetic nervous system control may protect the heart from arrhythmic events.

  12. Cholinergic Signaling Exerts Protective Effects in Models of Sympathetic Hyperactivity-Induced Cardiac Dysfunction

    Science.gov (United States)

    Gavioli, Mariana; Lara, Aline; Almeida, Pedro W. M.; Lima, Augusto Martins; Damasceno, Denis D.; Rocha-Resende, Cibele; Ladeira, Marina; Resende, Rodrigo R.; Martinelli, Patricia M.; Melo, Marcos Barrouin; Brum, Patricia C.; Fontes, Marco Antonio Peliky; Souza Santos, Robson A.; Prado, Marco A. M.; Guatimosim, Silvia

    2014-01-01

    Cholinergic control of the heart is exerted by two distinct branches; the autonomic component represented by the parasympathetic nervous system, and the recently described non-neuronal cardiomyocyte cholinergic machinery. Previous evidence has shown that reduced cholinergic function leads to deleterious effects on the myocardium. Yet, whether conditions of increased cholinergic signaling can offset the pathological remodeling induced by sympathetic hyperactivity, and its consequences for these two cholinergic axes are unknown. Here, we investigated two models of sympathetic hyperactivity: i) the chronic beta-adrenergic receptor stimulation evoked by isoproterenol (ISO), and ii) the α2A/α2C-adrenergic receptor knockout (KO) mice that lack pre-synaptic adrenergic receptors. In both models, cholinergic signaling was increased by administration of the cholinesterase inhibitor, pyridostigmine. First, we observed that isoproterenol produces an autonomic imbalance characterized by increased sympathetic and reduced parasympathetic tone. Under this condition transcripts for cholinergic proteins were upregulated in ventricular myocytes, indicating that non-neuronal cholinergic machinery is activated during adrenergic overdrive. Pyridostigmine treatment prevented the effects of ISO on autonomic function and on the ventricular cholinergic machinery, and inhibited cardiac remodeling. α2A/α2C-KO mice presented reduced ventricular contraction when compared to wild-type mice, and this dysfunction was also reversed by cholinesterase inhibition. Thus, the cardiac parasympathetic system and non-neuronal cardiomyocyte cholinergic machinery are modulated in opposite directions under conditions of increased sympathetic drive or ACh availability. Moreover, our data support the idea that pyridostigmine by restoring ACh availability is beneficial in heart disease. PMID:24992197

  13. Cholinergic signaling exerts protective effects in models of sympathetic hyperactivity-induced cardiac dysfunction.

    Directory of Open Access Journals (Sweden)

    Mariana Gavioli

    Full Text Available Cholinergic control of the heart is exerted by two distinct branches; the autonomic component represented by the parasympathetic nervous system, and the recently described non-neuronal cardiomyocyte cholinergic machinery. Previous evidence has shown that reduced cholinergic function leads to deleterious effects on the myocardium. Yet, whether conditions of increased cholinergic signaling can offset the pathological remodeling induced by sympathetic hyperactivity, and its consequences for these two cholinergic axes are unknown. Here, we investigated two models of sympathetic hyperactivity: i the chronic beta-adrenergic receptor stimulation evoked by isoproterenol (ISO, and ii the α2A/α2C-adrenergic receptor knockout (KO mice that lack pre-synaptic adrenergic receptors. In both models, cholinergic signaling was increased by administration of the cholinesterase inhibitor, pyridostigmine. First, we observed that isoproterenol produces an autonomic imbalance characterized by increased sympathetic and reduced parasympathetic tone. Under this condition transcripts for cholinergic proteins were upregulated in ventricular myocytes, indicating that non-neuronal cholinergic machinery is activated during adrenergic overdrive. Pyridostigmine treatment prevented the effects of ISO on autonomic function and on the ventricular cholinergic machinery, and inhibited cardiac remodeling. α2A/α2C-KO mice presented reduced ventricular contraction when compared to wild-type mice, and this dysfunction was also reversed by cholinesterase inhibition. Thus, the cardiac parasympathetic system and non-neuronal cardiomyocyte cholinergic machinery are modulated in opposite directions under conditions of increased sympathetic drive or ACh availability. Moreover, our data support the idea that pyridostigmine by restoring ACh availability is beneficial in heart disease.

  14. Norepinephrine-induced nerve growth factor depletion causes cardiac sympathetic denervation in severe heart failure.

    Science.gov (United States)

    Kimura, Kensuke; Kanazawa, Hideaki; Ieda, Masaki; Kawaguchi-Manabe, Haruko; Miyake, Yoshiko; Yagi, Takashi; Arai, Takahide; Sano, Motoaki; Fukuda, Keiichi

    2010-08-25

    In severe congestive heart failure (CHF), sympathetic overactivity correlates with the exacerbation of cardiac performance. To test the hypothesis that the cardiac sympathetic nerve density dramatically changes with the acceleration of circulating norepinephrine (NE) concentration, we investigated the temporal association of nerve growth factor (NGF) expression in the heart and cardiac sympathetic nerve density during the development of CHF in the continuous NE-infused rats. The animals were analyzed at 0-, 1-, 3-, 7-, 14-, and 28-day after implantation of osmotic pump at a rate of 0.05 mg/kg/hr. The cardiac performance was temporally facilitated in NE-exposed rats at 3-day in accordance with the sympathetic hyper-innervation induced by the augmentation of NGF mRNA expression in the heart. In NE-treated rats, left ventricular end-diastolic pressure was significantly increased after 7-day and marked left ventricular hypertrophy and systemic fluid retention were observed at 28-day. CHF-induced sympathetic overactivity further increased plasma NE concentration in NE-treated rats and finally reached to 16.1+/-5.6 ng/ml at 28-day (control level was 0.39+/-0.1 ng/ml, pcardiac performance. The cardiac sympathetic fiber loss was also confirmed in NE-exposed DBH (dopamine beta-hydroxylase)-Cre/Floxed-EGFP (enhanced green fluorescent protein) mice with severe CHF, in which sympathetic nerve could be traced by EGFP. Our results suggest that the cardiac sympathetic nerve density is strictly regulated by the NGF expression in the heart and long-exposure of high plasma NE concentration caused myocardial NGF reduction, following sympathetic fiber loss in severe CHF animals.

  15. Renal sympathetic denervation prevents the development of pulmonary arterial hypertension and cardiac dysfunction in dogs.

    Science.gov (United States)

    Hu, Wei; Yu, Sheng-Bo; Chen, Liao; Guo, Rui-Qiang; Zhao, Qing-Yan

    2015-08-01

    The renin-angiotensin-aldosterone system is activated in pulmonary arterial hypertension (PAH) patients, and this activation may have long-term negative effects on the progression of PAH. The purpose of this study was to evaluate the effects of transcatheter renal sympathetic denervation (RSD) on the development of pulmonary arterial hypertension and cardiac dysfunction in dogs using two-dimensional speckle tracking imaging. Twenty-two dogs were randomly divided into three groups: control group (n = 7), PAH group (n = 8), and PAH + RSD group (n = 7). All dogs were assessed using two-dimensional speckle tracking imaging. The ventricular strain, ventricular synchrony, left ventricular (LV) twist, and torsion rate were analyzed to evaluate cardiac function. After 8 weeks, the right ventricular lateral longitudinal strain and the septum longitudinal strain were reduced in the PAH group compared with the control group (p dogs.

  16. Cardiac sympathetic denervation in familial amyloid polyneuropathy assessed by iodine-123 metaiodobenzylguanidine scintigraphy and heart rate variability

    Energy Technology Data Exchange (ETDEWEB)

    Delahaye, N.; Le Guludec, D. [Department of Nuclear Medicine, Bichat Hospital, Paris (France); Dinanian, S.; Slama, M.S. [Department of Cardiology, A. Beclere Hospital, Paris (France); Mzabi, H.; Samuel, D. [Department of Hepatic Surgery, P. Brousse Hospital, Paris (France); Adams, D. [Department of Neurology, Bicetre Hospital, Paris (France); Merlet, P. [SHFJ, DSV-CEA, Orsay (France)

    1999-04-29

    Familial amyloid polyneuropathy (FAP) is a rare and severe hereditary form of amyloidosis, due to nervous deposits of a genetic variant transthyretin produced by the liver and characterized by both sensorimotor and autonomic neuropathy. Left ventricular systolic dysfunction is rare, but conduction disturbances and sudden deaths can occur. The neurological status of the heart has not been elucidated, and an alteration of the sympathetic nerves may be involved. We studied 17 patients (42{+-}12 years) before liver transplantation by iodine-123 metaiodobenzylguanidine (MIBG) scintigraphy, heart rate variability analysis, coronary angiography, radionuclide ventriculography, rest thallium single-photon emission tomography (SPET) and echocardiography. Coronary arteries, left ventricular systolic function and rest thallium SPET were normal in all patients. Only mild evidence of amyloid infiltration was found at echocardiographic examination. Cardiac MIBG uptake was dramatically decreased in patients compared with age-matched control subjects (heart-to-mediastinum activity ratio at 4 h: 1.36{+-}0.26 versus 1.98{+-}0.35, P<0.001), while there was no difference in MIBG washout rate. Heart rate variability analysis showed a considerable scatter of values, with high values in four patients despite cardiac sympathetic denervation as assessed by MIBG imaging. The clinical severity of the polyneuropathy correlated with MIBG uptake at 4 h but not with the heart rate variability indices. Cardiac MIBG uptake and the heart rate variability indices did not differ according to the presence or absence of conduction disturbances. Patients with FAP have sympathetic cardiac denervation as assessed by MIBG imaging despite a preserved left ventricular systolic function and cardiac perfusion, without correlation with conduction disturbances. Results of the heart rate variability analysis were more variable and this technique does not seem to be the best way to evaluate the extent of cardiac

  17. Expressions of cardiac sympathetic norepinephrine transporter and β1-adrenergic receptor decreased in aged rats

    Institute of Scientific and Technical Information of China (English)

    He LI; Xiao-qing MA; Fan YE; Jing ZHANG; Xin ZHOU; Zhi-hong WANG; Yu-ming LI; Guo-yuan ZHANG

    2009-01-01

    Evidence suggests that the deterioration of communication between the sympathetic nervous system and cardiovas-cular system always accompanies the aging of human and animals. Cardiac sympathetic norepinephrine (NE) transporter (NET) on presynaptic membrane is a predominant component to eliminate released NE in the synaptic cleff and maintains the sensitivity of the β-adrenergic receptor (β-AR). In the present study, we investigated NET and β1-AR mRNA levels and sympathetic nerve density in cardiac sympathetic ganglion and leff ventricular myocardium in 2- and 16-month-old rats with Northern blot analysis and immunohistochemistry. The expression levels of NET mRNA, NET protein and β1-AR mRNA in the ganglia or myocardia of 16-month-old rats were markedly reduced by 67%, 26%, and 43%, respectively, in comparison with those in 2-month-old rats. Our results also show that aging induces a strong decrease of the catecholaminergic nerve fiber density.

  18. Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents.

    Science.gov (United States)

    Kanazawa, Hideaki; Ieda, Masaki; Kimura, Kensuke; Arai, Takahide; Kawaguchi-Manabe, Haruko; Matsuhashi, Tomohiro; Endo, Jin; Sano, Motoaki; Kawakami, Takashi; Kimura, Tokuhiro; Monkawa, Toshiaki; Hayashi, Matsuhiko; Iwanami, Akio; Okano, Hideyuki; Okada, Yasunori; Ishibashi-Ueda, Hatsue; Ogawa, Satoshi; Fukuda, Keiichi

    2010-02-01

    Although several cytokines and neurotrophic factors induce sympathetic neurons to transdifferentiate into cholinergic neurons in vitro, the physiological and pathophysiological roles of this remain unknown. During congestive heart failure (CHF), sympathetic neural tone is upregulated, but there is a paradoxical reduction in norepinephrine synthesis and reuptake in the cardiac sympathetic nervous system (SNS). Here we examined whether cholinergic transdifferentiation can occur in the cardiac SNS in rodent models of CHF and investigated the underlying molecular mechanism(s) using genetically modified mice. We used Dahl salt-sensitive rats to model CHF and found that, upon CHF induction, the cardiac SNS clearly acquired cholinergic characteristics. Of the various cholinergic differentiation factors, leukemia inhibitory factor (LIF) and cardiotrophin-1 were strongly upregulated in the ventricles of rats with CHF. Further, LIF and cardiotrophin-1 secreted from cultured failing rat cardiomyocytes induced cholinergic transdifferentiation in cultured sympathetic neurons, and this process was reversed by siRNAs targeting Lif and cardiotrophin-1. Consistent with the data in rats, heart-specific overexpression of LIF in mice caused cholinergic transdifferentiation in the cardiac SNS. Further, SNS-specific targeting of the gene encoding the gp130 subunit of the receptor for LIF and cardiotrophin-1 in mice prevented CHF-induced cholinergic transdifferentiation. Cholinergic transdifferentiation was also observed in the cardiac SNS of autopsied patients with CHF. Thus, CHF causes target-dependent cholinergic transdifferentiation of the cardiac SNS via gp130-signaling cytokines secreted from the failing myocardium.

  19. Imaging of the autonomic nervous system: focus on cardiac sympathetic innervation.

    Science.gov (United States)

    Goldstein, David S

    2003-12-01

    Symptoms or signs of abnormal autonomic nervous system function occur commonly in several neurological disorders. Clinical evaluations have depended on physiological, pharmacological, and neurochemical approaches. Recently, imaging of sympathetic noradrenergic innervation has been introduced and applied especially in the heart. Most studies have used the radiolabeled sympathomimetic amine, (123)I-metaiodobenzylguanidine. Decreased uptake or increased "washout" of (123)I-metaiodobenzylguanidine-derived radioactivity is associated with worse prognosis or more severe disease in hypertension, congestive heart failure, arrhythmias, and diabetes mellitus. This pattern may reflect a high rate of postganglionic sympathetic nerve traffic to the heart. Many recent studies have agreed on the remarkable finding that all patients with Parkinson's disease and orthostatic hypotension have a loss of cardiac sympathetic innervation, whereas all patients with multiple system atrophy, often difficult to distinguish clinically from Parkinson's disease, have intact cardiac sympathetic innervation. Because Parkinson's disease entails a postganglionic sympathetic noradrenergic lesion, the disease appears to be not only a movement disorder, with dopamine loss in the nigrostriatal system of the brain, but also a dysautonomia, with noradrenaline loss in the sympathetic nervous system of the heart. As new ligands are developed, one may predict further discoveries of involvement of components of the autonomic nervous system in neurological diseases.

  20. Norepinephrine transporter (NET) is expressed in cardiac sympathetic ganglia of adult rat

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The sympathetic nervous system plays a cardinal role in regulating cardiac function through releasing the neurotransmitter norepinephrine (NE). In comparison with central nervous system, the molecular mechanism of NE uptake in myocardium is not clear. In present study, we proved that in rat the CNS type of NE transporter (NET) was also expressed in middle cervical-stellate ganglion complex (MC-SG complex) which is considered to control the activity of heart, but not expressed in myocardium. The results also showed that NET expression level in right ganglion was significantly higher than in the left, rendering the greater capacity of NE uptake in right ventricle, a fact which may contribute to the maintenance of right ventricular function under pathologic state.

  1. Effects of Antidepressants, but not Psychopathology, on Cardiac Sympathetic Control : A Longitudinal Study

    NARCIS (Netherlands)

    Licht, Carmilla M. M.; Penninx, Brenda W. J. H.; de Geus, Eco J. C.

    2012-01-01

    Increased sympathetic activity has been hypothesized to have a role in the elevated somatic disease risk in persons with depressive or anxiety disorders. However, it remains unclear whether increased sympathetic activity reflects a direct effect of anxiety or depression or an indirect effect of anti

  2. Co-localization of histamine and norepinephrine in sympathetic ganglia and exocytosis of endogenous histamine from cardiac sympathetic nerve endings of macaca mulatto monkey

    Institute of Scientific and Technical Information of China (English)

    Ming-kaiLI; Xiao-xingLUO; Liang-weiCHEN; ZhongCHEN; JiaMENG; JingHU; Yu-meiWU; Jing-ruMENG; ZhengHOU; XueMA

    2005-01-01

    AIM To provide the evidence about localization, biosynthesis, metabolism and release of histamine from the cardiac sympathetic nerve terminals, and endogenous sympathetic histamine could inhibit itsel frelease from the nerve terminal through the presynaptic histamine H3 receptor. METHODS Using double-labeled immunohistochemistry to observe the co-localization of histamine and NE in the superior cer-vical ganglia (SCG) of macaca mulatto monkey; Different-speed centrifugation to obtain the cardiac sympathetic nerve terminal model (the cardiac synaptosomes), spectrofluorometer and ELISA techniques to detect the release of histamine from the cardiacsynaptosomes. RESULTS ( 1 ) The coexistence of histamine and norepinephrine immunoreactivities was identified in the same neuron within SCG of macaca mulatto monkey. (2) Depolarization of macaca mulatto monkey cardiac synaptosomes with 50 mmol/L potassium caused the release of endogenous histamine,

  3. Scintigraphic assessment of cardiac sympathetic innervation with I-123-metaiodobenzylguanidine in cardiomyopathy. Special reference to cardiac arrhythmia

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Takahisa; Otsuka, Nobuaki; Sone, Teruki; Mimura, Hiroaki; Yanagimoto, Shinichi; Tomomitsu, Tatsushi; Fukunaga, Masao [Kawasaki Medical School, Kurashiki, Okayama (Japan); Morita, Koichi

    1999-07-01

    Cardiac sympathetic imagings with I-123-metaiodobenzylguanidine (MIBG) were carried out in 5 cases with dilated cardiomyopathy (DCM), 26 cases with hypertrophic cardiomyopathy (HCM), and 4 cases without cardiac disease as a control to assess cardiac sympathetic innervation qualitatively and quantitatively, and to clarify the relation of MIBG accumulation to arrhythmia. MIBG scintigraphy was performed at 15 min. (early image) and 4 hr. (delayed image) after intravenous injection of MIBG 111 MBq. The MIBG uptake ratio of mediastinum (H/M) and the cardiac washout rate (WR) from early to delayed images were calculated. On both early and delayed SPECTs, MIBG uptake was assessed by defect scores (DSs). Regarding the cases with HCM, the MIBG uptake ratio, WR, and DS were also compared in cases with and without arrhythmia. In DCM, the MIBG uptake on delayed SPECT was markedly low, the H/M ratio was significantly lower, and the DS was significantly higher than in the control (all p<0.05). As for the WR, there was no significant difference between HCM, DCM and the control. In HCM, significantly reduced MIBG uptake was observed in cases with ventricular techycardia (VT) and in cases with atrial fibrillation (Af), as compared with cases without arrhythmia (all p<0.05). There results suggest that MIBG scintigraphy might be a useful tool in the assessment of cardiac sympathetic abnormalities in cardiomyopathy, especially in cases with arrhythmia. (author)

  4. Radionuclide imaging of cardiac sympathetic innervation in heart failure: unlocking untapped potential.

    Science.gov (United States)

    Gupta, Shuchita; Amanullah, Aman

    2015-03-01

    Heart failure (HF) is associated with sympathetic overactivity, which contributes to disease progression and arrhythmia development. Cardiac sympathetic innervation imaging can be performed using radiotracers that are taken up in the presynaptic nerve terminal of sympathetic nerves. The commonly used radiotracers are (123)I-metaiodobenzylguanidine ((123)I-mIBG) for planar and single-photon emission computed tomography imaging, and (11)C-hydroxyephedrine for positron emission tomography imaging. Sympathetic innervation imaging has been used in assessing prognosis, response to treatment, risk of ventricular arrhythmias and sudden death and prediction of response to cardiac resynchronization therapy in patients with HF. Other potential applications of these techniques are in patients with chemotherapy-induced cardiomyopathy, predicting myocardial recovery in patients with left ventricular assist devices, and assessing reinnervation following cardiac transplantation. There is a lack of standardization with respect to technique of (123)I-mIBG imaging that needs to be overcome for the imaging modality to gain popularity in clinical practice.

  5. An electrophysiologist perspective on risk stratification in heart failure: can better understanding of the condition of the cardiac sympathetic nervous system help?

    Science.gov (United States)

    Borgquist, Rasmus; Singh, Jagmeet P

    2015-06-01

    Heart failure is often complicated by arrhythmias that can adversely affect the quality of life and increase the risk for sudden cardiac death. Current risk stratification strategies for sudden cardiac death in the heart failure patient are not ideal, with much potential for further refinement. Overactivation of the sympathetic nervous system has been shown to be associated with worsening heart failure as well as arrhythmic events. Recent advances in our understanding of the autonomic nervous system and new methods for quantification of the pathologic activation of the sympathetic nerves have triggered increasing interest in this field. This viewpoint focuses on the need for and challenges of risk stratification of sudden death in the heart failure patient and discusses the potential value of measuring sympathetic nervous system activity to better stratify risk and to select patients with heart failure for implantable cardioverter defibrillator therapy.

  6. Investigation of Sleep Bruxism Relating to Micro-arousals and Cardiac Sympathetic Activities%夜磨牙与微觉醒及心脏交感神经活动的关系

    Institute of Scientific and Technical Information of China (English)

    刘伟才; 王海波; 陈威; 李强

    2012-01-01

    Objective: To investigate whether rhythmic masticatory muscle activity (RMMA) is associated with sleep micro- arousals (MA), and analyze the association between RMMA of sleep bruxism patients (RMMA/SB) and autonomic cardiac activity. Methods: Thirty SB subjects and thirty control subjects for two consecutive nights were performed by polygraphic recordings. MA index and RMMA index were scored. The mean heart rate from a series of 10 cardiac cycles was calculated at 60, 40, 20 and 5 sec before RMMA onset respectively. To assess a transient beat-to-beat heart rate change in relation to the RMMA onset, heart rate from 5 cardiac cycles before and 5 cycles after the onset were also calculated. Results: Sleep bruxism (SB) subjects showed a higher incidence of rhythmic masticatory muscle activity (RMMA) than control subjects (6.10±1.05 vs. 1.81 ±0.39, P<0.0001). However, no difference was found in according to their micro-arousal index(7.72±1.21 vs.7.53±1.33, P=0.5641). RMMA/SB was associated with sleep micro-arousals. In both groups, transient heart rate acceleration was observed in relation to the onset of RMMA episodes. Conclusion: RMMA is associated with sleep micro-arousals. In SB subjects, a clear increase in sympathetic activity precedes SB onset.%目的:研究夜磨牙(sleep bruxism,SB)患者睡眠期咀嚼肌节律性运动(RMMA)发生的微觉醒机制.方法:对30名夜磨牙患者、30名正常人进行连续2夜的多导睡眠监测,研究RMMA事件与微觉醒(MA)的时间相关性;比较2组间RMMA指数及MA指数的差异;RMMA事件发生前60 s、前40 s、前20 s、前5s,共5个时间点的各连续10个心动周期的平均心率,以及RMMA事件发生前后各5个心动周期的心率变化.结果:夜磨牙症患者微觉醒指数(7.72±1.21)与正常对照相似(7.53±1.33,P=0.5641);但咀嚼肌节律性运动频率,即磨牙指数[(6.10±1.05)次/h]约3倍于正常对照组[(1.81±0.39)次/h,P<0.0001)].RMMA事件与MA存在高度时间相关

  7. Differential cardiac responses to unilateral sympathetic nerve stimulation in the isolated innervated rabbit heart.

    Science.gov (United States)

    Winter, James; Tanko, Abdul Samed; Brack, Kieran E; Coote, John H; Ng, G André

    2012-01-26

    The heart receives both a left and right sympathetic innervation. Currently there is no description of an in vitro whole heart preparation for comparing the influence of each sympathetic supply on cardiac function. The aim was to establish the viability of using an in vitro model to investigate the effects of left and right sympathetic chain stimulation (LSS/RSS). For this purpose the upper sympathetic chain on each side was isolated and bipolar stimulating electrodes were attached between T2-T3 and electrically insulated from surrounding tissue in a Langendorff innervated rabbit heart preparation (n=8). Heart rate (HR) was investigated during sinus rhythm, whilst dromotropic, inotropic and ventricular electrophysiological effects were measured during constant pacing (250 bpm). All responses exhibited linear increases with increases in stimulation frequency (2-10 Hz). The change in HR was larger during RSS than LSS (P<0.01), increasing by 78±9 bpm and 49±8 bpm respectively (10 Hz, baseline; 145±7 bpm). Left ventricular pressure was increased from a baseline of 50±4 mmHg, by 22±5 mmHg (LSS, 10 Hz) and 4±1 mmHg (RSS, 10 Hz) respectively (P<0.001). LSS, but not RSS, caused a shortening of basal and apical monophasic action potential duration (MAPD90). We demonstrate that RSS exerts a greater effect at the sinoatrial node and LSS at the left ventricle. The study confirms previous experiments on dogs and cats, provides quantitative data on the comparative influence of right and left sympathetic nerves and demonstrates the feasibility of isolating and stimulating the ipsilateral cardiac sympathetic supply in an in vitro innervated rabbit heart preparation.

  8. Interaction between cardiac sympathetic afferent reflex and chemoreflex is mediated by the NTS AT1 receptors in heart failure.

    Science.gov (United States)

    Wang, Wei-Zhong; Gao, Lie; Wang, Han-Jun; Zucker, Irving H; Wang, Wei

    2008-09-01

    Several sympathoexcitatory reflexes, such as the cardiac sympathetic afferent reflex (CSAR) and arterial chemoreflex, are significantly augmented and contribute to elevated sympathetic outflow in chronic heart failure (CHF). This study was undertaken to investigate the interaction between the CSAR and the chemoreflex in CHF and to further identify the involvement of angiotensin II type 1 receptors (AT1Rs) in the nucleus of the tractus solitarius (NTS) in this interaction. CHF was induced in rats by coronary ligation. Acute experiments were performed in anesthetized rats. The chemoreflex-induced increase in cardiovascular responses was significantly greater in CHF than in sham-operated rats after either chemical or electrical activation of the CSAR. The inhibition of the CSAR by epicardial lidocaine reduced the chemoreflex-induced effects in CHF rats but not in sham-operated rats. Bilateral NTS injection of the AT1R antagonist losartan (10 and 100 pmol) dose-dependently decreased basal sympathetic nerve activity in CHF but not in sham-operated rats. This procedure also abolished the CSAR-induced enhancement of the chemoreflex. The discharge and chemosensitivity of NTS chemosensitive neurons were significantly increased following the stimulation of the CSAR in sham-operated and CHF rats, whereas CSAR inhibition by epicardial lidocaine significantly attenuated chemosensitivity of NTS neurons in CHF but not in sham-operated rats. Finally, the protein expression of AT1R in the NTS was significantly higher in CHF than in sham-operated rats. These results demonstrate that the enhanced cardiac sympathetic afferent input contributes to an excitatory effect of chemoreflex function in CHF, which is mediated by an NTS-AT1R-dependent mechanism.

  9. Macrophage populations and cardiac sympathetic denervation during L-NAME-induced hypertension in rats

    DEFF Research Database (Denmark)

    Neves, S R S; Machado, C R S; Pinto, A M T;

    2006-01-01

    The rat model of hypertension induced by prolonged treatment with Nomega-nitro-L-arginine methyl ester (L-NAME) has been extensively used. However, the effects on cardiac autonomic innervation are unknown. Here, the cardiac sympathetic innervation is analyzed in parallel with myocardial lesions...... and macrophage infiltration at day 7. No denervation was detectable at day 14 of double treatment, using subcutaneous AG. Our findings favor a role for ED1+ macrophages and iNOS in the hypertension-induced denervation process....

  10. Adipose afferent reflex: sympathetic activation and obesity hypertension.

    Science.gov (United States)

    Xiong, X-Q; Chen, W-W; Zhu, G-Q

    2014-03-01

    Excessive sympathetic activity contributes to the pathogenesis of hypertension and the progression of the related organ damage. Adipose afferent reflex (AAR) is a sympatho-excitatory reflex that the afferent activity from white adipose tissue (WAT) increases sympathetic outflow and blood pressure. Hypothalamic paraventricular nucleus (PVN or PVH) is one of the central sites in the control of the AAR, and ionotropic glutamate receptors in the nucleus mediate the AAR. The AAR is enhanced in obesity and obesity hypertension. Enhanced WAT afferent activity and AAR contribute to the excessive sympathetic activation and hypertension in obesity. Blockage of the AAR attenuates the excessive sympathetic activity and hypertension. Leptin may be one of sensors in the WAT for the AAR, and is involved in the enhanced AAR in obesity and hypertension. This review focuses on the neuroanatomical basis and physiological functions of the AAR, and the important role of the enhanced AAR in the pathogenesis of obesity hypertension.

  11. Cardiac sympathetic nervous system imaging with (123)I-meta-iodobenzylguanidine: Perspectives from Japan and Europe.

    Science.gov (United States)

    Nakajima, Kenichi; Scholte, Arthur J H A; Nakata, Tomoaki; Dimitriu-Leen, Aukelien C; Chikamori, Taishiro; Vitola, João V; Yoshinaga, Keiichiro

    2017-03-13

    Cardiac sympathetic nervous system dysfunction is closely associated with risk of serious cardiac events in patients with heart failure (HF), including HF progression, pump-failure death, and sudden cardiac death by lethal ventricular arrhythmia. For cardiac sympathetic nervous system imaging, (123)I-meta-iodobenzylguanidine ((123)I-MIBG) was approved by the Japanese Ministry of Health, Labour and Welfare in 1992 and has therefore been widely used since in clinical settings. (123)I-MIBG was also later approved by the Food and Drug Administration (FDA) in the United States of America (USA) and it was expected to achieve broad acceptance. In Europe, (123)I-MIBG is currently used only for clinical research. This review article is based on a joint symposium of the Japanese Society of Nuclear Cardiology (JSNC) and the American Society of Nuclear Cardiology (ASNC), which was held in the annual meeting of JSNC in July 2016. JSNC members and a member of ASNC discussed the standardization of (123)I-MIBG parameters, and clinical aspects of (123)I-MIBG with a view to further promoting (123)I-MIBG imaging in Asia, the USA, Europe, and the rest of the world.

  12. Role of sympathetic nerve activity in the process of fainting

    Directory of Open Access Journals (Sweden)

    Satoshi eIwase

    2014-09-01

    Full Text Available Syncope is defined as a transient loss of consciousness and postural tone, characterized by rapid onset, short duration, and spontaneous recovery, and the process of syncope progression will be described with two types of sympathetic change. Simultaneous recordings of microneurographically recorded MSNA and continuous and noninvasive blood pressure measurement have disclose what is going on in the course of progression of the syncope. Vasovagal or neurally mediated syncope, three stages are identified in the course of syncope onset, oscillation, imbalance, and catastrophe phases. The vasovagal syncope is characterized by the sympathoexcitation, followed by vagal overcome via the Bezold-Jarisch reflex. Orthostatic syncope is caused by the response failure or lack of sympathetic nerve activity toward the orthostatic challenge followed by the fluid shift, and subsequent cerebral low perfusion. Four causes are considered for the compensatory failure, which triggers the orthostatic syncope; hypovolemia, increased pooling in the lower body, failure to activate the sympathetic activity, and failure of vasoconstriction against sympathetic vasoconstrictive stimulation. Many pathophysiological conditions were described in the viewpoint of 1 exaggerated sympathoexcitation and 2 failure to activate the sympathetic nerve. We conclude that the sympathetic nervous system can control the cardiovascular function, and its failure resulted syncope, however, responses of the system by microneurographically recorded MSNA would determine the pathophysiology of the onset and progression of syncope, explaining the treatment effect that could be achieved by the analysis of this mechanism.

  13. Cardiac Dysregulation and Myocardial Injury in a 6-Hydroxydopamine-Induced Rat Model of Sympathetic Denervation.

    Directory of Open Access Journals (Sweden)

    Yue-Hua Jiang

    Full Text Available Cardiac sympathetic denervation is found in various cardiac pathologies; however, its relationship with myocardial injury has not been thoroughly investigated.Twenty-four rats were assigned to the normal control group (NC, sympathectomy control group (SC, and a sympathectomy plus mecobalamin group (SM. Sympathectomy was induced by injection of 6-OHDA, after which, the destruction and distribution of sympathetic and vagal nerve in the left ventricle (LV myocardial tissue were determined by immunofluorescence and ELISA. Heart rate variability (HRV, ECG and echocardiography, and assays for myocardial enzymes in serum before and after sympathectomy were examined. Morphologic changes in the LV by HE staining and transmission electron microscope were used to estimate levels of myocardial injury and concentrations of inflammatory cytokines were used to reflect the inflammatory reaction.Injection of 6-OHDA decreased NE (933.1 ± 179 ng/L for SC vs. 3418.1± 443.6 ng/L for NC, P < 0.01 and increased NGF (479.4± 56.5 ng/mL for SC vs. 315.85 ± 28.6 ng/mL for NC, P < 0.01 concentrations. TH expression was reduced, while ChAT expression showed no change. Sympathectomy caused decreased HRV and abnormal ECG and echocardiography results, and histopathologic examinations showed myocardial injury and increased collagen deposition as well as inflammatory cell infiltration in the cardiac tissue of rats in the SC and SM groups. However, all pathologic changes in the SM group were less severe compared to those in the SC group.Chemical sympathectomy with administration of 6-OHDA caused dysregulation of the cardiac autonomic nervous system and myocardial injuries. Mecobalamin alleviated inflammatory and myocardial damage by protecting myocardial sympathetic nerves.

  14. Selective quantification of the cardiac sympathetic and parasympathetic nervous systems by multisignal analysis of cardiorespiratory variability.

    Science.gov (United States)

    Chen, Xiaoxiao; Mukkamala, Ramakrishna

    2008-01-01

    Heart rate (HR) power spectral indexes are limited as measures of the cardiac autonomic nervous systems (CANS) in that they neither offer an effective marker of the beta-sympathetic nervous system (SNS) due to its overlap with the parasympathetic nervous system (PNS) in the low-frequency (LF) band nor afford specific measures of the CANS due to input contributions to HR [e.g., arterial blood pressure (ABP) and instantaneous lung volume (ILV)]. We derived new PNS and SNS indexes by multisignal analysis of cardiorespiratory variability. The basic idea was to identify the autonomically mediated transfer functions relating fluctuations in ILV to HR (ILV-->HR) and fluctuations in ABP to HR (ABP-->HR) so as to eliminate the input contributions to HR and then separate each estimated transfer function in the time domain into PNS and SNS indexes using physiological knowledge. We evaluated these indexes with respect to selective pharmacological autonomic nervous blockade in 14 humans. Our results showed that the PNS index derived from the ABP-->HR transfer function was correctly decreased after vagal and double (vagal + beta-sympathetic) blockade (P < 0.01) and did not change after beta-sympathetic blockade, whereas the SNS index derived from the same transfer function was correctly reduced after beta-sympathetic blockade in the standing posture and double blockade (P < 0.05) and remained the same after vagal blockade. However, this SNS index did not significantly decrease after beta-sympathetic blockade in the supine posture. Overall, these predictions were better than those provided by the traditional high-frequency (HF) power, LF-to-HF ratio, and normalized LF power of HR variability.

  15. The low frequency power of heart rate variability is neither a measure of cardiac sympathetic tone nor of baroreflex sensitivity.

    Science.gov (United States)

    Martelli, Davide; Silvani, Alessandro; McAllen, Robin M; May, Clive N; Ramchandra, Rohit

    2014-10-01

    The lack of noninvasive approaches to measure cardiac sympathetic nerve activity (CSNA) has driven the development of indirect estimates such as the low-frequency (LF) power of heart rate variability (HRV). Recently, it has been suggested that LF HRV can be used to estimate the baroreflex modulation of heart period (HP) rather than cardiac sympathetic tone. To test this hypothesis, we measured CSNA, HP, blood pressure (BP), and baroreflex sensitivity (BRS) of HP, estimated with the modified Oxford technique, in conscious sheep with pacing-induced heart failure and in healthy control sheep. We found that CSNA was higher and systolic BP and HP were lower in sheep with heart failure than in control sheep. Cross-correlation analysis showed that in each group, the beat-to-beat changes in HP correlated with those in CSNA and in BP, but LF HRV did not correlate significantly with either CSNA or BRS. However, when control sheep and sheep with heart failure were considered together, CSNA correlated negatively with HP and BRS. There was also a negative correlation between CSNA and BRS in control sheep when considered alone. In conclusion, we demonstrate that in conscious sheep, LF HRV is neither a robust index of CSNA nor of BRS and is outperformed by HP and BRS in tracking CSNA. These results do not support the use of LF HRV as a noninvasive estimate of either CSNA or baroreflex function, but they highlight a link between CSNA and BRS.

  16. Heart rate complexity and cardiac sympathetic dysinnervation in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Baumert, Mathias; Sacre, Julian W

    2013-01-01

    Cardiovascular autonomic neuropathy (CAN) is one of the most severe complications of type 2 diabetes mellitus (T2DM). The aim of this study was to investigate associations of cardiac sympathetic dysinnervation (CSD; by (123)I-MIBG scintigraphy) with short-term heart rate variability (HRV) measured by traditional vs. complexity markers. ECG was measured in 31 diabetic patients during rest over a period of 5 minutes and HRV quantified in different domains (time and frequency domain, scaling properties, symbolic dynamics). (123)I-MIBG scintigraphy identified 16 patients with CSD. Resting heart rate was increased and HRV reduced in these patients. In a subgroup of 16 patients ECG was also measured during standing. Changes in several HRV measures upon standing demonstrated cardiac responsiveness to orthostatic stress. Strong correlations between HRV, measured during standing, and CSD were observed with metrics based on symbolic dynamics. In conclusion, HRV assessment during standing may be useful for assessing cardiac sympathetic dysinnervation in patients with type 2 diabetes mellitus.

  17. Estimated central blood volume in cirrhosis: relationship to sympathetic nervous activity, beta-adrenergic blockade and atrial natriuretic factor

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik; Bendtsen, Flemming; Gerbes, A L

    1992-01-01

    The estimated central blood volume (i.e., blood volume in the heart cavities, lungs and central arterial tree) was determined by multiplying cardiac output by circulatory mean transit time in 19 patients with cirrhosis and compared with sympathetic nervous activity and circulating level of atrial...

  18. Role of autoinhibitory feedback in cardiac sympathetic transmission

    Energy Technology Data Exchange (ETDEWEB)

    Angus, J.A.; Korner, P.I.; Jackman, G.P.; Bobik, A.; Kopin, I.J.

    1984-01-01

    The relationship between two indices of transmitter release measured simultaneously and the frequency of 4 field pulses (0.125-2 Hz) were obtained from superfused guinea pig right atria after labelling with /sup 3/H-noradrenaline. The relationships between /sup 3/H-efflux or rate responses and frequency were hyperbolic. Autoinhibitory feedback did not play a role since phentolamine (1 microM) did not alter the /sup 3/H-efflux or rate responses to 4 field pulses that gave 50-60% of the maximum rate response. In the presence of neuronal uptake block (desipramine (0.1 microM) phentolamine enhanced /sup 3/H-efflux and rate responses to 4 field pulses at all frequencies. In the absence of desipramine prolonged trains of field pulses (8-12 pulses) at low frequency (0.25 Hz) were not sufficient to activate autoinhibitory feedback. At 2 Hz phentolamine enhanced both responses at 12 field pulses. We conclude that in the right atrium autoinhibitory feedback plays little role in the modulation of transmitter release at levels of stimulation that cause 50-60% of maximum tissue response. The presence of neuronal uptake inhibition or high stimulus strengths are necessary to evoke autoinhibitory feedback.

  19. Role of left cardiac sympathetic denervation in the management of congenital long QT syndrome.

    Directory of Open Access Journals (Sweden)

    Wang L

    2003-01-01

    Full Text Available Congenital long QT syndrome (LQTS is a rare but life-threatening disorder affecting cardiac electrophysiology. It occurs due to mutation in genes encoding for the ion channels in ventricular cell membrane. Syncopal attacks and cardiac arrest are the main symptoms of the disease. Anti-adrenergic therapy with oral beta-blockers has been the mainstay of treatment for LQTS. However, up to 30% of patients fail to respond to medical therapy and remain symptomatic. An alarming 10% of patients still experience cardiac arrest or sudden cardiac death during the course of therapy. Left cardiac sympathetic denervation (LCSD has been used as an alternative therapy in patients who are resistant to beta-blockers. Although LCSD appears effective in reducing the frequency of syncopal attacks and improving the survival rate in both the short and long-term, its use has not gained popularity. The recent advent of minimally invasive thoracoscopic sympathectomy may improve the acceptance of LCSD by physicians and patients in the future. The primary objective of this article was to review the current evidence of the clinical efficacy and safety of LCSD in the management of LQTS. The review was based on Medline search of articles published between 1966 and 2002.

  20. Prognostic value of sympathetic innervation and cardiac asynchrony in dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Manrique, Alain; Hitzel, Anne; Vera, Pierre [Rouen University Hospital - Henri Becquerel Center, Nuclear Medicine, Rouen (France); Bernard, Mathieu; Bauer, Fabrice [Rouen University Hospital, Cardiology, Rouen (France); Menard, Jean-Francois [Rouen University Hospital, Biostatistics, Rouen (France); Sabatier, Remi [Caen University Hospital, Cardiology, Caen (France); Jacobson, Arnold [GE Healthcare, Princeton, NJ (United States); Agostini, Denis [Caen University Hospital, Nuclear Medicine, Caen (France)

    2008-11-15

    The purpose of the study is to examine prognostic values of cardiac I-123 metaiodobenzylguanidine (MIBG) uptake and cardiac dyssynchrony in patients with dilated cardiomyopathy (DCM). Ninety-four patients with non-ischemic DCM underwent I-123 MIBG imaging for assessing cardiac sympathetic innervation and equilibrium radionuclide angiography. Mean phase angles and SD of the phase histogram were computed for both right ventricular (RV) and left ventricular (LV). Phase measures of interventricular (RV-LV) and intraventricular (SD-RV and SD-LV) asynchrony were computed. Most patients were receiving beta-blockers (89%) and angiotensin-converting enzyme inhibitors (88%). One patient (1%) was lost to follow-up, six had cardiac death (6.4%), eight had heart transplantation (8.6%), and seven had unplanned hospitalization for heart failure (7.5%; mean follow-up: 37 {+-} 16 months). Patients with poor clinical outcome were older, had higher The New York Heart Association functional class, impaired right ventricular ejection fraction and left ventricular ejection fraction, and impaired cardiac I-123 MIBG uptake. On multivariate analysis, I-123 MIBG heart-to-mediastinum (H/M) uptake ratio <1.6 was the only predictor of both primary (cardiac death or heart transplantation, RR = 7.02, p < 0.01) and secondary (cardiac death, heart transplantation, or recurrent heart failure, RR = 8.10, p = 0.0008) end points. In patients receiving modern medical therapy involving beta-blockers, I-123 MIBG uptake, but not intra-LV asynchrony, was predictive of clinical outcome. The impact of beta-blockers on the prognostic value of ventricular asynchrony remains to be clarified. (orig.)

  1. Alterations of left ventricular deformation and cardiac sympathetic derangement in patients with systolic heart failure: a 3D speckle tracking echocardiography and cardiac {sup 123}I-MIBG study

    Energy Technology Data Exchange (ETDEWEB)

    Leosco, Dario; Parisi, Valentina; Pagano, Gennaro; Femminella, Grazia Daniela; Bevilacqua, Agnese; Formisano, Roberto; Ferro, Gaetana; De Lucia, Claudio; Ferrara, Nicola [University Federico II, Department of Translational Medical Science, Naples (Italy); Pellegrino, Teresa [Italian National Research Council (CNR), Institute of Biostructure and Bioimaging, Naples (Italy); University Federico II, Department of Advanced Biomedical Science, Naples (Italy); Paolillo, Stefania [University Federico II, Department of Advanced Biomedical Science, Naples (Italy); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples (Italy); Prastaro, Maria; Filardi, Pasquale Perrone; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Science, Naples (Italy); Rengo, Giuseppe [University Federico II, Department of Translational Medical Science, Naples (Italy); Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, BN (Italy)

    2015-09-15

    Myocardial contractile function is under the control of cardiac sympathetic activity. Three-dimensional speckle tracking echocardiography (3D-STE) and cardiac imaging with {sup 123}I-metaiodobenzylguanidine ({sup 123}I-MIBG) are two sophisticated techniques for the assessment of left ventricular (LV) deformation and sympathetic innervation, respectively, which offer important prognostic information in patients with heart failure (HF). The purpose of this investigation was to explore, in patients with systolic HF, the relationship between LV deformation assessed by 3D-STE and cardiac sympathetic derangement evaluated by {sup 123}I-MIBG imaging. We prospectively studied 75 patients with systolic HF. All patients underwent a 3D-STE study (longitudinal, circumferential, area and radial) and {sup 123}I-MIBG planar and SPECT cardiac imaging. 3D-STE longitudinal, circumferential and area strain values were correlated with {sup 123}I-MIBG late heart to mediastinum (H/M) ratio and late SPECT total defect score. After stratification of the patients according to ischaemic or nonischaemic HF aetiology, we observed a good correlation of all 3D-STE measurements with late H/M ratio and SPECT data in the ischaemic group, but in patients with HF of nonischaemic aetiology, no correlation was found between LV deformation and cardiac sympathetic activity. At the regional level, the strongest correlation between LV deformation and adrenergic innervation was found for the left anterior descending coronary artery distribution territory for all four 3D-STE values. In multivariate linear regression analyses, including age, gender, LV ejection fraction, NYHA class, body mass index, heart rate and HF aetiology, only 3D-STE area and radial strain values significantly predicted cardiac sympathetic derangement on {sup 123}I-MIBG late SPECT. This study indicated that 3D-STE measurements are correlated with {sup 123}I-MIBG planar and SPECT data. Furthermore, 3D-STE area and radial strain values

  2. Baroreflex control of sympathetic activity in experimental hypertension

    Directory of Open Access Journals (Sweden)

    M.C.C. Irigoyen

    1998-09-01

    Full Text Available The arterial baroreceptor reflex system is one of the most powerful and rapidly acting mechanisms for controlling arterial pressure. The purpose of the present review is to discuss data relating sympathetic activity to the baroreflex control of arterial pressure in two different experimental models: neurogenic hypertension by sinoaortic denervation (SAD and high-renin hypertension by total aortic ligation between the renal arteries in the rat. SAD depresses baroreflex regulation of renal sympathetic activity in both the acute and chronic phases. However, increased sympathetic activity (100% was found only in the acute phase of sinoaortic denervation. In the chronic phase of SAD average discharge normalized but the pattern of discharges was different from that found in controls. High-renin hypertensive rats showed overactivity of the renin angiotensin system and a great depression of the baroreflexes, comparable to the depression observed in chronic sinoaortic denervated rats. However, there were no differences in the average tonic sympathetic activity or changes in the pattern of discharges in high-renin rats. We suggest that the difference in the pattern of discharges may contribute to the increase in arterial pressure lability observed in chronic sinoaortic denervated rats.

  3. Causes and consequences of increased sympathetic activity in renal disease

    NARCIS (Netherlands)

    Joles, JA; Koomans, HA

    2004-01-01

    Much evidence indicates increased sympathetic nervous activity (SNA) in renal disease. Renal ischemia is probably a primary event leading to increased SNA. Increased SNA often occurs in association with hypertension. However, the deleterious effect of increased SNA on the diseased kidney is not only

  4. Cardiac autonomic nervous system activity in obesity.

    Science.gov (United States)

    Liatis, Stavros; Tentolouris, Nikolaos; Katsilambros, Nikolaos

    2004-08-01

    The development of obesity is caused by a disturbance of energy balance, with energy intake exceeding energy expenditure. As the autonomic nervous system (ANS) has a role in the regulation of both these variables, it has become a major focus of investigation in the fields of obesity pathogenesis. The enhanced cardiac sympathetic drive shown in most of the studies in obese persons might be due to an increase in their levels of circulating insulin. The role of leptin needs further investigation with studies in humans. There is a blunted response of the cardiac sympathetic nervous system (SNS) activity in obese subjects after consumption of a carbohydrate-rich meal as well as after insulin administration. This might be due to insulin resistance. It is speculated that increased SNS activity in obesity may contribute to the development of hypertension in genetically susceptible individuals. It is also speculated that the increase in cardiac SNS activity under fasting conditions in obesity may be associated with high cardiovascular morbidity and mortality.

  5. Periodic Repolarisation Dynamics: A Natural Probe of the Ventricular Response to Sympathetic Activation

    Science.gov (United States)

    Rizas, Konstantinos D; Hamm, Wolfgang; Kääb, Stefan; Schmidt, Georg; Bauer, Axel

    2016-01-01

    Periodic repolarisation dynamics (PRD) refers to low-frequency (≤0.1Hz) modulations of cardiac repolarisation instability. Spontaneous PRD can be assessed non-invasively from 3D high-resolution resting ECGs. Physiological and experimental studies have indicated that PRD correlates with efferent sympathetic nerve activity, which clusters in low-frequency bursts. PRD is increased by physiological provocations that lead to an enhancement of sympathetic activity, whereas it is suppressed by pharmacological β-blockade. Electrophysiological studies revealed that PRD occurs independently from heart rate variability. Increased PRD under resting conditions is a strong predictor of mortality in post-myocardial infarction (post-MI) patients, yielding independent prognostic value from left-ventricular ejection fraction (LVEF), heart rate variability, the Global Registry of Acute Coronary Events score and other established risk markers. The predictive value of PRD is particularly strong in post-MI patients with preserved LVEF (>35 %) in whom it identifies a new high-risk group of patients. The upcoming Implantable Cardiac Monitors in High-Risk Post-Infarction Patients with Cardiac Autonomic Dysfunction and Moderately Reduced Left Ventricular Ejection Fraction (SMART-MI) trial will test prophylactic strategies in high-risk post-MI patients with LVEF 36–50 % identified by PRD and deceleration capacity of heart rate (NCT02594488). PMID:27403291

  6. Association between left ventricular regional sympathetic denervation and mechanical dyssynchrony in phase analysis: a cardiac CZT study

    Energy Technology Data Exchange (ETDEWEB)

    Gimelli, Alessia; Genovesi, Dario; Giorgetti, Assuero; Kusch, Annette [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Liga, Riccardo [Scuola Superiore Sant' Anna, Pisa (Italy); Marzullo, Paolo [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); CNR, Institute of Clinical Physiology, Pisa (Italy)

    2014-05-15

    To evaluate the relationships among myocardial sympathetic innervation, perfusion and mechanical synchronicity assessed with cardiac cadmium-zinc-telluride (CZT) scintigraphy. A group of 29 patients underwent an evaluation of myocardial perfusion with {sup 99m}Tc-tetrofosmin CZT scintigraphy and adrenergic innervation with {sup 123}I-metaiodobenzylguanidine (MIBG) CZT scintigraphy. The summed rest score (SRS), motion score (SMS) and thickening score (STS), as well as the summed {sup 123}I-MIBG defect score (SS-MIBG), were determined. Regional tracer uptake for both {sup 99m}Tc-tetrofosmin and {sup 123}I-MIBG was also calculated. Finally, the presence of significant myocardial mechanical dyssynchrony was evaluated in phase analysis on gated CZT images and the region of latest mechanical activation identified. Significant mechanical dyssynchrony was present in 17 patients (59 %) and associated with higher SRS (P = 0.030), SMS (P < 0.001), STS (P = 0.003) and early SS-MIBG (P = 0.037) as well as greater impairments in left ventricular ejection fraction (P < 0.001) and end-diastolic volume (P < 0.001). In multivariate analysis a higher end-diastolic volume remained the only predictor of mechanical dyssynchrony (P = 0.047). Interestingly, while in the whole population regional myocardial perfusion and adrenergic activity were strongly correlated (R = 0.68), in patients with mechanical dyssynchrony the region of latest mechanical activation was predicted only by greater impairment in regional {sup 123}I-MIBG uptake (P = 0.012) that overwhelmed the effect of depressed regional perfusion. Left ventricular mechanical dyssynchrony is associated with greater depression in contractile function and greater impairments in regional myocardial perfusion and sympathetic activity. In patients with dyssynchrony, the region of latest mechanical activation is characterized by a significantly altered adrenergic tone. (orig.)

  7. Estimated central blood volume in cirrhosis: relationship to sympathetic nervous activity, beta-adrenergic blockade and atrial natriuretic factor

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Bendtsen, F; Gerbes, A L

    1992-01-01

    The estimated central blood volume (i.e., blood volume in the heart cavities, lungs and central arterial tree) was determined by multiplying cardiac output by circulatory mean transit time in 19 patients with cirrhosis and compared with sympathetic nervous activity and circulating level of atrial...... natriuretic factor. Arterial norepinephrine level, an index of overall sympathetic nervous activity (3.08 nmol/L in patients vs. 1.36 nmol/L in controls; p blood volume (mean = 23 ml/kg in patients vs. 27 ml/kg in controls; p ....05). Similarly, renal venous norepinephrine level (an index of renal sympathetic tone; 4.26 nmol/L in patients vs. 1.78 nmol/L in controls; p blood volume (r = -0.53, n = 18, p

  8. Polycystic Ovary Syndrome Presents Higher Sympathetic Cardiac Autonomic Modulation that is not altered by Strength Training

    Science.gov (United States)

    RIBEIRO, VICTOR B.; KOGURE, GISLAINE S.; REIS, ROSANA M.; GASTALDI, ADA C.; DE ARAÚJO, JOÃO E.; MAZON, JOSÉ H.; BORGHI, AUDREY; SOUZA, HUGO C.D.

    2016-01-01

    Polycystic ovary syndrome (PCOS) may present important comorbidities, such as cardiovascular and metabolic diseases, which are often preceded by changes in cardiac autonomic modulation. Different types of physical exercises are frequently indicated for the prevention and treatment of PCOS. However, little is known about the effects of strength training on the metabolic, hormonal, and cardiac autonomic parameters. Therefore, our aim was to investigate the effects of strength training on the autonomic modulation of heart rate variability (HRV) and its relation to endocrine-metabolic parameters in women with PCOS. Fifty-three women were divided into two groups: CONTROL (n=26) and PCOS (n=27). The strength training lasted 4 months, which was divided into mesocycles of 4 weeks each. The training load started with 70% of one repetition maximum (1RM). Blood samples were collected before and after intervention for analysis of fasting insulin and glucose, HOMA-IR, testosterone, androstenedione and testosterone/androstenedione (T/A) ratio. Spectral analysis of HRV was performed to assess cardiac autonomic modulation indexes. The PCOS group presented higher insulin and testosterone levels, T/A ratio, along with increased sympathetic cardiac autonomic modulation before intervention. The training protocol used did not cause any change of endocrine-metabolic parameters in the CONTROL group. Interestingly, in the PCOS group, reduced testosterone levels and T/A ratio. Additionally, strength training did not have an effect on the spectral parameter values of HRV obtained in both groups. Strength training was not able to alter HRV autonomic modulation in women with PCOS, however may reduce testosterone levels and T/A ratio. PMID:27990221

  9. In vivo demonstration of H3-histaminergic inhibition of cardiac sympathetic stimulation by R-α-methyl-histamine and its prodrug BP 2.94 in the dog

    OpenAIRE

    Mazenot, Catherine; Ribuot, Christophe; Durand, Andrée; Joulin, Yves; Demenge, Pierre; Godin-Ribuot, Diane

    1999-01-01

    The aim of this study was to investigate whether histamine H3-receptor agonists could inhibit the effects of cardiac sympathetic nerve stimulation in the dog.Catecholamine release by the heart and the associated variation of haemodynamic parameters were measured after electrical stimulation of the right cardiac sympathetic nerves (1–4 Hz, 10 V, 10 ms) in the anaesthetized dog treated with R-α-methyl-histamine (R-HA) and its prodrug BP 2.94 (BP).Cardiac sympathetic stimulation induced a noradr...

  10. Efeito do carvedilol a curto prazo na atividade simpática cardíaca pela cintilografia com 123I-MIBG Effects of short-term carvedilol on the cardiac sympathetic activity assessed by 123I-MIBG scintigraphy

    Directory of Open Access Journals (Sweden)

    Sandra Marina Ribeiro de Miranda

    2010-03-01

    Full Text Available FUNDAMENTO: Alterações autonômicas na insuficiência cardíaca estão associadas a um aumento da morbimortalidade. Vários métodos não invasivos têm sido empregados para avaliar a função simpática, incluindo a imagem cardíaca com 123I-MIBG. OBJETIVO: Avaliar a atividade simpática cardíaca, por meio da cintilografia com 123I-MIBG, antes e após três meses de terapia com carvedilol em pacientes com insuficiência cardíaca com fração de ejeção do VE BACKGROUND: Autonomic alterations in heart failure are associated with an increase in morbimortality. Several noninvasive methods have been employed to evaluate the sympathetic function, including the Meta-Iodobenzylguanidine (123I-MIBG scintigraphy imaging of the heart. OBJECTIVE: to evaluate the cardiac sympathetic activity through 123I-MIBG scintigraphy, before and after three months of carvedilol therapy in patients with heart failure and left ventricular ejection fraction (LVEF < 45%. PATIENTS AND METHODS: Sixteen patients, aged 56.3 ± 12.6 years (11 males, with a mean LVEF of 28% ± 8% and no previous use of beta-blockers were recruited for the study. Images of the heart innervation were acquired with 123I-MIBG, and the serum levels of catecholamines (epinephrine, dopamine and norepinephrine were measured; the radioisotope ventriculography (RIV was performed before and after a three-month therapy with carvedilol. RESULTS: Patients' functional class showed improvement: before the treatment, 50% of the patients were FC II and 50% were FC III. After 3 months, 7 patients were FC I (43.8% and 9 were FC II (56.2%, (p = 0.0001. The mean LVEF assessed by RIV increased from 29% to 33% (p = 0.017. There was no significant variation in cardiac adrenergic activity assessed by 123I-MIBG (early and late resting images and washout rate. No significant variation was observed regarding the measurement of catecholamines. CONCLUSION: The short-term treatment with carvedilol promoted the clinical

  11. Effects of renal sympathetic nerve radiofrequency ablation on norepinephrine spillover rate and sympathetic nerve activity in dogs with hypertension

    Directory of Open Access Journals (Sweden)

    Hang YU

    2012-11-01

    Full Text Available Objective  To evaluate the validity and explore the mechanism of renal sympathetic denervation (RSD in the treatment of dogs with hypertension reproduced by constriction of abdominal aorta. Methods  The hypertension model was reproduced by constriction of abdominal aorta in 20 adult healthy dogs. These dogs were then randomly divided into the treatment group and control group (10 each. Renal sympathetic nerve radiofrequency ablation was done in treatment group 1 month after modeling. The foreleg blood pressure, sympathetic activity and norepinephrine overflow rate of dogs in two groups were detected before modeling, and 1, 2 and 3 months after modeling, and the trend of the change was also observed. Results  One month after modeling, the systolic blood pressure (SBP, diastolic blood pressure (DBP and mean arterial blood pressure (MAP were elevated significantly in control group (146.7±21.0, 89.0±12.7 and 108.3±14.9mmHg compared with those before modeling (119.5±13.2, 76.5±7.8 and 90.9±8mmHg, P < 0.05. The renal sympathetic activity impulse and norepinephrine spillover rate were also enhanced significantly (P < 0.05. The renal sympathetic nerve activity obviously decreased in the treatment group after the operation, and then increased 2 months after the ablation. The norepinephrine spillover rate in treatment group increased significantly 1 month after modeling (P < 0.05, and decreased after ablation, and it lasted to the end of the experiment (P < 0.05. One and two months after ablation, the norepinephrine spillover rate was lower in treatment group than in control group (P < 0.05. Conclusion  Renal sympathetic nerve radiofrequency ablation significantly inhibits the elevation of norepinephrine spillover rate and sympathetic nerve activity in dogs with hypertension.

  12. Orexin-A controls sympathetic activity and eating behavior.

    Science.gov (United States)

    Messina, Giovanni; Dalia, Carmine; Tafuri, Domenico; Monda, Vincenzo; Palmieri, Filomena; Dato, Amelia; Russo, Angelo; De Blasio, Saverio; Messina, Antonietta; De Luca, Vincenzo; Chieffi, Sergio; Monda, Marcellino

    2014-01-01

    It is extremely important for the health to understand the regulatory mechanisms of energy expenditure. These regulatory mechanisms play a central role in the pathogenesis of body weight alteration. The hypothalamus integrates nutritional information derived from all peripheral organs. This region of the brain controls hormonal secretions and neural pathways of the brainstem. Orexin-A is a hypothalamic neuropeptide involved in the regulation of feeding behavior, sleep-wakefulness rhythm, and neuroendocrine homeostasis. This neuropeptide is involved in the control of the sympathetic activation, blood pressure, metabolic status, and blood glucose level. This minireview focuses on relationship between the sympathetic nervous system and orexin-A in the control of eating behavior and energy expenditure. The "thermoregulatory hypothesis" of food intake is analyzed, underlining the role played by orexin-A in the control of food intake related to body temperature. Furthermore, the paradoxical eating behavior induced orexin-A is illustrated in this minireview.

  13. Orexin-A controls sympathetic activity and eating behavior

    Directory of Open Access Journals (Sweden)

    Giovanni eMessina

    2014-09-01

    Full Text Available It is extremely important for the health to understand the regulatory mechanisms of energy expenditure. These regulatory mechanisms play a central role in the pathogenesis of body weight alteration. The hypothalamus integrates nutritional information derived from all peripheral organs. This region of the brain controls hormonal secretions and neural pathways of the brainstem. Orexin-A is a hypothalamic neuropeptide involved in the regulation of feeding behavior, sleep-wakefulness rhythm, and neuroendocrine homeostasis. This neuropeptide is involved in the control of the sympathetic activation, blood pressure, metabolic status, and blood glucose level. This minireview focuses on relationship between the sympathetic nervous system and orexin-A in the control of eating behavior and energy expenditure. The thermoregulatory hypothesis of food intake is analyzed, underlining the role played by orexin-A in the control of food intake related to body temperature. Furthermore, the paradoxical eating behavior induced orexin-A is illustrated in this minireview.

  14. Effects of renal sympathetic denervation on post-myocardial infarction cardiac remodeling in rats.

    Directory of Open Access Journals (Sweden)

    Jialu Hu

    Full Text Available OBJECTIVE: To investigate the therapeutic effects of renal denervation (RD on post- myocardial infarction (MI cardiac remodeling in rats, the most optimal time for intervention and the sustainability of these effects. METHODS: One hundred SPF male Wistar rats were randomly assigned to N group (Normal, n=10, MI group(MI, n=20,RD group (RD, n=10, RD3+MI (MI three days after RD, n=20, MI1+RD (RD one day after MI, n=20, MI7+RD (RD seven days after MI, n=20. MI was produced through thoracotomic ligation of the anterior descending artery. RD was performed through laparotomic stripping of the renal arteriovenous adventitial sympathetic nerve. Left ventricular function, hemodynamics, plasma BNP, urine volume, urine sodium excretion and other indicators were measured four weeks after MI. RESULTS: (1 The left ventricular function of the MI group significantly declined (EF<40%, plasma BNP was elevated, urine output was significantly reduced, and 24-hour urine sodium excretion was significantly reduced. (2 Denervation can be achieved by surgically stripping the arteriovenous adventitia, approximately 3 mm from the abdominal aorta. (3 In rats with RD3+MI, MI1+RD and MI7+RD, compared with MI rats respectively, the LVEF was significantly improved (75 ± 8.4%,69 ± 3.8%,73 ± 5.5%, hemodynamic indicators were significantly improved, plasma BNP was significantly decreased, and the urine output was significantly increased (21.3 ± 5 ml,23.8 ± 5.4 ml,25.2 ± 8.7 ml. However, the urinary sodium excretion also increased but without significant difference. CONCLUSIONS: RD has preventive and therapeutic effects on post-MI cardiac remodeling.These effects can be sustained for at least four weeks, but there were no significant differences between denervation procedures performed at different times in the course of illness. Cardiac function, hemodynamics, urine volume and urine sodium excretion in normal rats were not affected by RD.

  15. Impact of aging on cardiac sympathetic innervation measured by {sup 123}I-mIBG imaging in patients with systolic heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Rengo, Giuseppe; Ferrara, Nicola [Scientific Institute of Telese Terme, Salvatore Maugeri Foundation, IRCCS, Telese Terme (Italy); University of Naples Federico II, Division of Geriatrics, Department of Translational Medical Sciences, Naples (Italy); Pagano, Gennaro; Formisano, Roberto; Komici, Klara; Petraglia, Laura; Parisi, Valentina; Femminella, Grazia Daniela; De Lucia, Claudio; Cannavo, Alessandro; Memmi, Alessia; Leosco, Dario [University of Naples Federico II, Division of Geriatrics, Department of Translational Medical Sciences, Naples (Italy); Vitale, Dino Franco [Scientific Institute of Telese Terme, Salvatore Maugeri Foundation, IRCCS, Telese Terme (Italy); Paolillo, Stefania [Institute of Diagnostic and Nuclear Development, SDN Foundation, Naples (Italy); Attena, Emilio [Fatebenefratelli Hospital, Department of Cardiology, Naples (Italy); Pellegrino, Teresa [Institute of Biostructures and Bioimages of the National Council of Research, Naples (Italy); Federico II University of Naples, Division of Imaging, Radiotherapy, Neuroradiology, and Medical Physics, Department of Advanced Biomedical Sciences, Naples (Italy); Dellegrottaglie, Santo [Ospedale Medico-Chirurgico Accreditato Villa dei Fiori, Division of Cardiology, Acerra, Naples (Italy); Trimarco, Bruno; Filardi, Pasquale Perrone [Federico II University of Naples, Division of Cardiology, Department of Advanced Biomedical Sciences, Naples (Italy); Cuocolo, Alberto [Institute of Diagnostic and Nuclear Development, SDN Foundation, Naples (Italy); Federico II University of Naples, Division of Imaging, Radiotherapy, Neuroradiology, and Medical Physics, Department of Advanced Biomedical Sciences, Naples (Italy)

    2016-12-15

    Sympathetic nervous system (SNS) hyperactivity is a salient characteristic of chronic heart failure (HF) and contributes to the progression of the disease. Iodine-123 meta-iodobenzylguanidine ({sup 123}I-mIBG) imaging has been successfully used to assess cardiac SNS activity in HF patients and to predict prognosis. Importantly, SNS hyperactivity characterizes also physiological ageing, and there is conflicting evidence on cardiac {sup 123}I-mIBG uptake in healthy elderly subjects compared to adults. However, little data are available on the impact of ageing on cardiac sympathetic nerve activity assessed by {sup 123}I-mIBG scintigraphy, in patients with HF. We studied 180 HF patients (age = 66.1 ± 10.5 years [yrs]), left ventricular ejection fraction (LVEF = 30.6 ± 6.3 %) undergoing cardiac {sup 123}I-mIBG imaging. Early and late heart to mediastinum (H/M) ratios and washout rate were calculated in all patients. Demographic, clinical, and echocardiographic data were also collected. Our study population consisted of 53 patients aged >75 years (age = 77.7 ± 4.0 year), 67 patients aged 62-72 years (age = 67.9 ± 3.2 years) and 60 patients aged ≤61 year (age = 53.9 ± 5.6 years). In elderly patients, both early and late H/M ratios were significantly lower compared to younger patients (p < 0.05). By multivariate analysis, H/M ratios (both early and late) and washout rate were significantly correlated with LVEF and age. Our data indicate that, in a population of HF patients, there is an independent age-related effect on cardiac SNS innervation assessed by {sup 123}I-mIBG imaging. This finding suggests that cardiac {sup 123}I-mIBG uptake in patients with HF might be affected by patient age. (orig.)

  16. Sympathetic nerve activity and simulated diving in healthy humans.

    Science.gov (United States)

    Shamsuzzaman, Abu; Ackerman, Michael J; Kuniyoshi, Fatima Sert; Accurso, Valentina; Davison, Diane; Amin, Raouf S; Somers, Virend K

    2014-04-01

    The goal of our study was to develop a simple and practical method for simulating diving in humans using facial cold exposure and apnea stimuli to measure neural and circulatory responses during the stimulated diving reflex. We hypothesized that responses to simultaneous facial cold exposure and apnea (simulated diving) would be synergistic, exceeding the sum of responses to individual stimuli. We studied 56 volunteers (24 female and 32 male), average age of 39 years. All subjects were healthy, free of cardiovascular and other diseases, and on no medications. Although muscle sympathetic nerve activity (MSNA), blood pressure, and vascular resistance increased markedly during both early and late phases of simulated diving, significant reductions in heart rate were observed only during the late phase. Total MSNA during simulated diving was greater than combined MSNA responses to the individual stimuli. We found that simulated diving is a powerful stimulus to sympathetic nerve traffic with significant bradycardia evident in the late phase of diving and eliciting synergistic sympathetic and parasympathetic responses. Our data provide insight into autonomic triggers that could help explain catastrophic cardiovascular events that may occur during asphyxia or swimming, such as in patients with obstructive sleep apnea or congenital long QT syndrome.

  17. Assessment of cardiac sympathetic nerve abnormalities by {sup 123}I-MIBG (metaiodobenzylguanidine) myocardial scintigraphy in diabetic patients undergoing hemodialysis

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Hiroshige; Oda, Hiroshi; Matsuno, Yukihiko [Prefectural Gifu Hospital (Japan)] [and others

    1995-05-01

    We compared cardiac sympathetic nerve abnormalities in patients hemodialyzed because of diabetic nephropathy (DN, n=18) and chronic glomerulonephritis (CGN, n=21). {sup 123}I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy was performed in this study. SPECT and anterior planar myocardial images were obtained 15 minutes after (initial images) and 4 hours after (delayed images) an injection of MIBG. The following results were obtained: (1) SPECT showed more defects in DN than in CGN. (2) The heart to superior mediastinum uptake ratio (H/M) was lower in DN than in CGN. These findings suggest that myocardial uptake of MIBG in DN is significantly impaired because of cardiac sympathetic nerve abnormalities. These abnormalities may affect the prognosis in DN. (author).

  18. Effects of alpha-adrenoceptor and of combined sympathetic and parasympathetic blockade on cardiac performance and vascular resistance

    DEFF Research Database (Denmark)

    Kelbaek, H; Frandsen, Henrik Lund; Hilsted, J

    1992-01-01

    1. Cardiac performance and vascular resistance was studied in seven healthy men by radionuclide cardiography and venous plethysmography before and after alpha-adrenoceptor blockade with phentolamine and after combined alpha-adrenoceptor, beta-adrenoceptor (propranolol) and parasympathetic (atropine...... propranolol and atropine were added. 3. These results indicate that peripheral vasoconstriction especially that exerted by alpha-adrenoceptor nervous tone in skeletal muscle restricts left ventricular emptying of the intact heart. During pharmacologic blockade of the sympathetic and parasympathetic nervous...

  19. Differential effects of adrenergic antagonists (Carvedilol vs Metoprolol on parasympathetic and sympathetic activity: a comparison of clinical results

    Directory of Open Access Journals (Sweden)

    Heather L. Bloom

    2014-08-01

    Full Text Available Background Cardiovascular autonomic neuropathy (CAN is recognized as a significant health risk, correlating with risk of heart disease, silent myocardial ischemia or sudden cardiac death. Beta-blockers are often prescribed to minimize risk. Objectives In this second of two articles, the effects on parasympathetic and sympathetic activity of the alpha/beta-adrenergic blocker, Carvedilol, are compared with those of the selective beta-adrenergic blocker, Metoprolol. Methods Retrospective, serial autonomic nervous system test data from 147 type 2 diabetes mellitus patients from eight ambulatory clinics were analyzed. Patients were grouped according to whether a beta-blocker was (1 introduced, (2 discontinued or (3 continued without adjustment. Group 3 served as the control. Results Introducing Carvedilol or Metoprolol decreased heart rate and blood pressure, and discontinuing them had the opposite effect. Parasympathetic activity increased with introducing Carvedilol. Sympathetic activity increased more after discontinuing Carvedilol, suggesting better sympathetic suppression. With ongoing treatment, resting parasympathetic activity decreased with Metoprolol but increased with Carvedilol. Conclusion Carvedilol has a more profound effect on sympathovagal balance than Metoprolol. While both suppress sympathetic activity, only Carvedilol increases parasympathetic activity. Increased parasympathetic activity may underlie the lower mortality risk with Carvedilol.

  20. Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats

    Directory of Open Access Journals (Sweden)

    A. Medeiros

    2004-12-01

    Full Text Available The effect of swimming training (ST on vagal and sympathetic cardiac effects was investigated in sedentary (S, N = 12 and trained (T, N = 12 male Wistar rats (200-220 g. ST consisted of 60-min swimming sessions 5 days/week for 8 weeks, with a 5% body weight load attached to the tail. The effect of the autonomic nervous system in generating training-induced resting bradycardia (RB was examined indirectly after cardiac muscarinic and adrenergic receptor blockade. Cardiac hypertrophy was evaluated by cardiac weight and myocyte morphometry. Plasma catecholamine concentrations and citrate synthase activity in soleus muscle were also determined in both groups. Resting heart rate was significantly reduced in T rats (355 ± 16 vs 330 ± 20 bpm. RB was associated with a significantly increased cardiac vagal effect in T rats (103 ± 25 vs 158 ± 40 bpm, since the sympathetic cardiac effect and intrinsic heart rate were similar for the two groups. Likewise, no significant difference was observed for plasma catecholamine concentrations between S and T rats. In T rats, left ventricle weight (13% and myocyte dimension (21% were significantly increased, suggesting cardiac hypertrophy. Skeletal muscle citrate synthase activity was significantly increased by 52% in T rats, indicating endurance conditioning. These data suggest that RB induced by ST is mainly mediated parasympathetically and differs from other training modes, like running, that seems to mainly decrease intrinsic heart rate in rats. The increased cardiac vagal activity associated with ST is of clinical relevance, since both are related to increased life expectancy and prevention of cardiac events.

  1. Short-term sertraline treatment suppresses sympathetic nervous system activity in healthy human subjects.

    Science.gov (United States)

    Shores, M M; Pascualy, M; Lewis, N L; Flatness, D; Veith, R C

    2001-05-01

    Increased sympathetic nervous system (SNS) activity has been associated with stress, major depression, aging, and several medical conditions. This study assessed the effect of the selective serotonin reuptake inhibitor (SSRI), sertraline, on sympathetic nervous system (SNS) activity in healthy subjects. Twelve healthy volunteers participated in a double-blind, placebo-controlled, norepinephrine (NE) kinetic study, in which the effects of sertraline on SNS activity were ascertained by determining NE plasma concentrations and NE plasma appearance rates and clearance rates in sertraline or placebo conditions. Subjects received 50 mg of sertraline or placebo for two days and then one week later underwent the same protocol with the other drug. By single compartmental analysis, plasma NE appearance rates were significantly lower in the sertraline compared to the placebo condition (0.26+/-0.10 vs 0.40+/-0.23 microg/m(2)/min; P=0.04). Our study found that the net effect of short-term SSRI treatment is an apparent suppression of SNS activity as indicated by a decreased plasma NE appearance rate in the sertraline condition. If this preliminary finding can be extended to long-term treatment of patients, this could have significant therapeutic relevance for treating depression in elderly patients or those with cardiac disease, in which elevated SNS activity may exacerbate underlying medical conditions.

  2. Renal sympathetic nerve activity during asphyxia in fetal sheep.

    Science.gov (United States)

    Booth, Lindsea C; Malpas, Simon C; Barrett, Carolyn J; Guild, Sarah-Jane; Gunn, Alistair J; Bennet, Laura

    2012-07-01

    The sympathetic nervous system (SNS) is an important mediator of fetal adaptation to life-threatening in utero challenges, such as asphyxia. Although the SNS is active well before term, SNS responses mature significantly over the last third of gestation, and its functional contribution to adaptation to asphyxia over this critical period of life remains unclear. Therefore, we examined the hypotheses that increased renal sympathetic nerve activity (RSNA) is the primary mediator of decreased renal vascular conductance (RVC) during complete umbilical cord occlusion in preterm fetal sheep (101 ± 1 days; term 147 days) and that near-term fetuses (119 ± 0 days) would have a more rapid initial vasomotor response, with a greater increase in RSNA. Causality of the relationship of RSNA and RVC was investigated using surgical (preterm) and chemical (near-term) denervation. All fetal sheep showed a significant increase in RSNA with occlusion, which was more sustained but not significantly greater near-term. The initial fall in RVC was more rapid in near-term than preterm fetal sheep and preceded the large increase in RSNA. These data suggest that although RSNA can increase as early as 0.7 gestation, it is not the primary determinant of RVC. This finding was supported by denervation studies. Interestingly, chemical denervation in near-term fetal sheep was associated with an initial fall in blood pressure, suggesting that by 0.8 gestation sympathetic innervation of nonrenal vascular beds is critical to maintain arterial blood pressure during the rapid initial adaptation to asphyxia.

  3. Statins decrease dendritic arborization in rat sympathetic neurons by blocking RhoA activation

    OpenAIRE

    Kim, Woo-Yang; Gonsiorek, Eugene A.; Barnhart, Chris; Davare, Monika A.; Engebose, Abby J.; Lauridsen, Holly; Bruun, Donald; Lesiak, Adam; Wayman, Gary; Bucelli, Robert; Higgins, Dennis; Lein, Pamela J.

    2009-01-01

    Clinical and experimental evidence suggest that statins decrease sympathetic activity, but whether peripheral mechanisms involving direct actions on post-ganglionic sympathetic neurons contribute to this effect is not known. Because tonic activity of these neurons is directly correlated with the size of their dendritic arbor, we tested the hypothesis that statins decrease dendritic arborization in sympathetic neurons. Oral administration of atorvastatin (20 mg/kg/day for 7 days) significantly...

  4. Highly sensitive index of sympathetic activity based on time-frequency spectral analysis of electrodermal activity.

    Science.gov (United States)

    Posada-Quintero, Hugo F; Florian, John P; Orjuela-Cañón, Álvaro D; Chon, Ki H

    2016-09-01

    Time-domain indices of electrodermal activity (EDA) have been used as a marker of sympathetic tone. However, they often show high variation between subjects and low consistency, which has precluded their general use as a marker of sympathetic tone. To examine whether power spectral density analysis of EDA can provide more consistent results, we recently performed a variety of sympathetic tone-evoking experiments (43). We found significant increase in the spectral power in the frequency range of 0.045 to 0.25 Hz when sympathetic tone-evoking stimuli were induced. The sympathetic tone assessed by the power spectral density of EDA was found to have lower variation and more sensitivity for certain, but not all, stimuli compared with the time-domain analysis of EDA. We surmise that this lack of sensitivity in certain sympathetic tone-inducing conditions with time-invariant spectral analysis of EDA may lie in its inability to characterize time-varying dynamics of the sympathetic tone. To overcome the disadvantages of time-domain and time-invariant power spectral indices of EDA, we developed a highly sensitive index of sympathetic tone, based on time-frequency analysis of EDA signals. Its efficacy was tested using experiments designed to elicit sympathetic dynamics. Twelve subjects underwent four tests known to elicit sympathetic tone arousal: cold pressor, tilt table, stand test, and the Stroop task. We hypothesize that a more sensitive measure of sympathetic control can be developed using time-varying spectral analysis. Variable frequency complex demodulation, a recently developed technique for time-frequency analysis, was used to obtain spectral amplitudes associated with EDA. We found that the time-varying spectral frequency band 0.08-0.24 Hz was most responsive to stimulation. Spectral power for frequencies higher than 0.24 Hz were determined to be not related to the sympathetic dynamics because they comprised less than 5% of the total power. The mean value of time

  5. Clinical usefulness of {sup 123}I-metaiodobenzylguanidine myocardial scintigraphy in diabetic patients with cardiac sympathetic nerve dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Miyanaga, Hajime; Yoneyama, Satoshi; Kamitani, Tadaaki; Kawasaki, Shingo; Takahashi, Toru; Kunishige, Hiroshi [Matsushita Memorial Hospital, Osaka (Japan)

    1995-09-01

    To assess the clinical utility of {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy in evaluating cardiac sympathetic nerve disturbance in diabetic patients, we performed MIBG scintigraphy in 18 diabetic patients and 11 normal controls. Diabetic patients with symptomatic neuropathy (DM2) had a significantly lower heart to mediastinum uptake ratio than did those without neuropathy or normal controls in initial and delayed images (initial image, 1.90{+-}0.27 vs 2.32{+-}0.38, 2.41{+-}0.40, p<0.01; delayed image, 1.80{+-}0.31 vs 2.48{+-}0.35, 2.56{+-}0.28, p<001, respectively). Defect score, assessed visually, were higher in DM2 patients than in patients in the other two groups (initial image, 7{+-}2.6 vs 1.5{+-}1.9, 0.7{+-}0.9; delayed image 10.6{+-}3.3 vs 4.0{+-}2.5, 1.7{+-}1.6 p<0.01, respectively). The maximum washout rate in DM2 patients was also higher than those in patients in the other two groups. The findings of these indices obtained from MIBG scintigraphy coincided with the % low-frequency power extracted from heart rate fluctuations using a power spectral analysis and the results of the Schellong test, which were used to evaluate sympathetic function. These results suggest that MIBG scintigraphy may be useful for evaluating cardiac sympathetic nerve disturbance in patients with diabetes. (author).

  6. Sympathetic system activity in obesity and metabolic syndrome.

    Science.gov (United States)

    Tentolouris, N; Liatis, S; Katsilambros, N

    2006-11-01

    Obesity is a very common disease worldwide, resulting from a disturbance in the energy balance. The metabolic syndrome is also a cluster of abnormalities with basic characteristics being insulin resistance and visceral obesity. The major concerns of obesity and metabolic syndrome are the comorbidities, such as type 2 diabetes, cardiovascular disease, stroke, and certain types of cancers. Sympathetic nervous system (SNS) activity is associated with both energy balance and metabolic syndrome. Sympathomimetic medications decrease food intake, increase resting metabolic rate (RMR), and thermogenic responses, whereas blockage of the SNS exerts opposite effects. The contribution of the SNS to the daily energy expenditure, however, is small ( approximately 5%) in normal subjects consuming a weight maintenance diet. Fasting suppresses, whereas meal ingestion induces SNS activity. Most of the data agree that obesity is characterized by SNS predominance in the basal state and reduced SNS responsiveness after various sympathetic stimuli. Weight loss reduces SNS overactivity in obesity. Metabolic syndrome is characterized by enhanced SNS activity. Most of the indices used for the assessment of its activity are better associated with visceral fat than with total fat mass. Visceral fat is prone to lipolysis: this effect is mediated by catecholamine action on the sensitive beta(3)-adrenoceptors found in the intraabdominal fat. In addition, central fat distribution is associated with disturbances in the hypothalamo-pituitary-adrenal axis, suggesting that a disturbed axis may be implicated in the development of the metabolic syndrome. Furthermore, SNS activity induces a proinflammatory state by IL-6 production, which in turn results in an acute phase response. The increased levels of inflammatory markers seen in the metabolic syndrome may be elicited, at least in part, by SNS overactivity. Intervention studies showed that the disturbances of the autonomic nervous system seen in the

  7. Age-related changes in rhythmic electrical activity in the cervical sympathetic trunk in rats and cats.

    Science.gov (United States)

    Maslyukov, P M; Korzina, M B; Emanuilov, A I

    2010-03-01

    Baseline electrical activity in the cervical sympathetic trunk was studied in neonatal rats and cats and at ages 10, 20, and 30 days and two and six months, using spectral analysis. Rats from the neonatal period to the end of the first month of life and cats to 20 days of life showed increases at the amplitudes of electrical oscillations. From birth, all animals showed oscillations in the respiratory and cardiac rhythms. From day 20, frequencies with a cardiac component in rats dominated the power spectrum. The proportion of other frequencies, not associated with the cardiac or respiratory rhythms, was smaller. In cats, unlike the situation in rats, there were no age-related changes in the spectral composition of baseline electrical activity. High-frequency oscillations were recorded in cats from birth.

  8. Sympathetic activity is increased in polycystic kidney disease and is associated with hypertension

    NARCIS (Netherlands)

    Klein, IHHT; Ligtenberg, G; Oey, PL; Koomans, HA; Blankestijn, PJ

    2001-01-01

    Hypertension is common in patients with polycystic kidney disease (PKD). This study addresses the hypothesis that sympathetic activity is enhanced in hypertensive PKD patients, not only when renal function is impaired but also when renal function is still normal. Muscle sympathetic nerve activity (M

  9. Differential activation of sympathetic discharge to skin and skeletal muscle in humans.

    Science.gov (United States)

    Vissing, S F

    1997-01-01

    The present work provides insight into the relative contribution of different mechanisms in regulating sympathetic discharge to skin and skeletal muscle in humans. Activation of sympathetic nerve activity during common behaviours such as orthostasis and exercise was shown to be highly selective, depending on the specific sympathetic outflow under study. Regarding orthostasis, data from experiments in this thesis revoked the concept that cardiopulmonary afferents only regulate muscle vascular resistance in the forearm, not in the leg. Also the concept that the cutaneous circulation is under baroreceptor control has been challenged. Unloading cardiopulmonary afferents with lower body negative pressure elicited intensity dependent increases in peroneal sympathetic discharge to skeletal muscle, and increases in forearm and calf vascular resistances. Therefore, it was concluded that cardiopulmonary afferents regulate vascular resistance in skeletal muscle of both forearm and calf, suggesting an important role for these afferents in the reflex adjustments to upright posture. In contrast to muscle sympathetic nerve activity, baroreceptor deactivation with lower body negative pressure had no effect on skin sympathetic nerve activity or skin vascular resistance. However, assumption of upright posture increased skin vascular resistance, this increase was abolished when increased vascular transmural pressure was avoided by elevating the arm. Local cutaneous nerve blockade, but not blockade of efferent sympathetic nerve traffic, abolished the vasoconstrictor response to upright posture. Based on these experiments, it was concluded that baroreceptor afferents do not regulate sympathetic vasoconstrictor outflow to the cutaneous circulation. During upright posture at normothermia cutaneous vasoconstriction is mainly driven by a local reflex. To explain activation of sympathetic outflow during exercise two theories have been proposed. One is that a "central motor command" signal

  10. [The state of sympathetic-adrenal system in patients with chronic cardiac insufficiency].

    Science.gov (United States)

    Nigmatullin, R R; Kirillova, V V; Dzhordzhikiia, R K; Kudrin, V S; Klodt, P M

    2009-01-01

    Activation of sympato-adrenal system plays an important role in the development of chronic cardiac failure (CCF). However, its relation to morpho-functional state of myocardium in CCF patients is virtually unknown. HPLC with electrochemical detection was used to determine plasma noradrenalin, adrenalin, and their precursors, 3,4-dioxyphenylalanine (DOPA) and dopamine, in patients with different morpho-functional changes in myocardium. The study demonstrated enhanced activity of sympato-adrenal system in patients with CCF. It showed for the first time that activity of sympato-adrenal system in CCF patients depends on the morpho-functional status of myocardium.

  11. Plasma dihydroxyphenylalanine (DOPA) is independent of sympathetic activity in humans

    DEFF Research Database (Denmark)

    Eldrup, E; Christensen, N J; Andreasen, J;

    1989-01-01

    To clarify the origin of plasma DOPA (3,4-Dihydroxyphenylalanine), the relationship between plasma DOPA and acute or chronic changes in sympathetic activity has been studied. Plasma DOPA and noradrenaline (NA) concentrations were measured by reverse-phase high-performance liquid chromatography...... in diabetic patients with autonomic neuropathy compared to diabetics without neuropathy, whereas baseline plasma DOPA concentrations were similar in the three groups investigated: 6.55 (5.03-7.26, median [interquartile range], n = 8) nmol l-1 in diabetics with neuropathy, 7.41 (5.79-7.97, n = 8) nmol l-1...... in diabetics without neuropathy, and 6.85 (5.58-7.36, n = 8) nmol l-1 in controls. No relationship was obtained between baseline values of plasma NE and plasma DOPA. Plasma DOPA did not change in the upright position, whereas plasma NE increased significantly. Our results indicate that plasma DOPA...

  12. The sympathetic nervous system in obesity hypertension.

    Science.gov (United States)

    Lohmeier, Thomas E; Iliescu, Radu

    2013-08-01

    Abundant evidence supports a role of the sympathetic nervous system in the pathogenesis of obesity-related hypertension. However, the nature and temporal progression of mechanisms underlying this sympathetically mediated hypertension are incompletely understood. Recent technological advances allowing direct recordings of renal sympathetic nerve activity (RSNA) in conscious animals, together with direct suppression of RSNA by renal denervation and reflex-mediated global sympathetic inhibition in experimental animals and human subjects have been especially valuable in elucidating these mechanisms. These studies strongly support the concept that increased RSNA is the critical mechanism by which increased central sympathetic outflow initiates and maintains reductions in renal excretory function, causing obesity hypertension. Potential determinants of renal sympathoexcitation and the differential mechanisms mediating the effects of renal-specific versus reflex-mediated, global sympathetic inhibition on renal hemodynamics and cardiac autonomic function are discussed. These differential mechanisms may impact the efficacy of current device-based approaches for hypertension therapy.

  13. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation.

    Directory of Open Access Journals (Sweden)

    Mamoru Tanida

    Full Text Available In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb. We investigated the potential of AMPKα2 in the sympathetic effects of leptin using in vivo siRNA injection to knockdown AMPKα2 in rats, to produce reduced hypothalamic AMPKα2 expression. Leptin effects on body weight, food intake, and blood FFA levels were eliminated in AMPKα2 siRNA-treated rats. Leptin-evoked enhancements of the sympathetic nerve outflows to the kidney, brown and white adipose tissues were attenuated in AMPKα2 siRNA-treated rats. To check whether AMPKα2 was specific to sympathetic changes induced by leptin, we examined the effects of injecting MT-II, a melanocortin-3 and -4 receptor agonist, on the sympathetic nerve outflows to the kidney and adipose tissue. MT-II-induced sympatho-excitation in the kidney was unchanged in AMPKα2 siRNA-treated rats. However, responses of neural activities involving adipose tissue to MT-II were attenuated in AMPKα2 siRNA-treated rats. These results suggest that hypothalamic AMPKα2 is involved not only in appetite and body weight regulation but also in the regulation of sympathetic nerve discharges to the kidney and adipose tissue. Thus, AMPK might function not only as an energy sensor, but as a key molecule in the cardiovascular, thermogenic, and lipolytic effects of leptin through the sympathetic nervous system.

  14. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation.

    Science.gov (United States)

    Tanida, Mamoru; Yamamoto, Naoki; Shibamoto, Toshishige; Rahmouni, Kamal

    2013-01-01

    In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK) is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb). We investigated the potential of AMPKα2 in the sympathetic effects of leptin using in vivo siRNA injection to knockdown AMPKα2 in rats, to produce reduced hypothalamic AMPKα2 expression. Leptin effects on body weight, food intake, and blood FFA levels were eliminated in AMPKα2 siRNA-treated rats. Leptin-evoked enhancements of the sympathetic nerve outflows to the kidney, brown and white adipose tissues were attenuated in AMPKα2 siRNA-treated rats. To check whether AMPKα2 was specific to sympathetic changes induced by leptin, we examined the effects of injecting MT-II, a melanocortin-3 and -4 receptor agonist, on the sympathetic nerve outflows to the kidney and adipose tissue. MT-II-induced sympatho-excitation in the kidney was unchanged in AMPKα2 siRNA-treated rats. However, responses of neural activities involving adipose tissue to MT-II were attenuated in AMPKα2 siRNA-treated rats. These results suggest that hypothalamic AMPKα2 is involved not only in appetite and body weight regulation but also in the regulation of sympathetic nerve discharges to the kidney and adipose tissue. Thus, AMPK might function not only as an energy sensor, but as a key molecule in the cardiovascular, thermogenic, and lipolytic effects of leptin through the sympathetic nervous system.

  15. Sympathetic nervous activity in cirrhosis. A survey of plasma catecholamine studies

    DEFF Research Database (Denmark)

    Henriksen, J H; Ring-Larsen, H; Christensen, N J

    1985-01-01

    in this condition. This may especially apply to the sympathetic tone in the kidney, as evaluated by regional measurements of noradrenaline overflow. Hepatic elimination of catecholamines is only slightly reduced. Activation of the sympathetic nervous system seems to play an important role in the avid sodium...

  16. Significance of cardiac sympathetic nervous system abnormality for predicting vascular events in patients with idiopathic paroxysmal atrial fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Akutsu, Yasushi; Kaneko, Kyouichi; Kodama, Yusuke; Li, Hui-Ling; Kawamura, Mitsuharu; Asano, Taku; Hamazaki, Yuji; Tanno, Kaoru; Kobayashi, Youichi [Showa University School of Medicine, Division of Cardiology, Department of Medicine, Tokyo (Japan); Suyama, Jumpei; Shinozuka, Akira; Gokan, Takehiko [Showa University School of Medicine, Department of Radiology, Tokyo (Japan)

    2010-04-15

    Neuronal system activity plays an important role for the prognosis of patients with atrial fibrillation (AF). Using {sup 123}I metaiodobenzylguanidine ({sup 123}I-MIBG) scintigraphy, we investigated whether a cardiac sympathetic nervous system (SNS) abnormality would be associated with an increased risk of vascular events in patients with paroxysmal AF. {sup 123}I-MIBG scintigraphy was performed in 69 consecutive patients (67 {+-} 13 years, 62% men) with paroxysmal AF who did not have structural heart disease. SNS integrity was assessed from the heart to mediastinum (H/M) ratio on delayed imaging. Serum concentration of C-reactive protein (CRP) was measured before {sup 123}I-MIBG study. During a mean of 4.5 {+-} 3.6 years follow-up, 19 patients had myocardial infarction, stroke or heart failure (range: 0.2-11.5 years). SNS abnormality (H/M ratio <2.7) and high CRP ({>=}0.3 mg/dl) were associated with the vascular events (58.3% in 14 of 24 patients with SNS abnormality vs 11.1% in 5 of 45 patients without SNS abnormality, p < 0.0001, 52.4% in 11 of 21 patients with high CRP vs 16.7% in 8 of 48 patients without high CRP, p < 0.0001). After adjustment for potential confounding variables such as age, left atrial dimension and left ventricular function, SNS abnormality was an independent predictor of vascular events with a hazard ratio of 4.1 [95% confidence interval (CI): 1.3-12.6, p = 0.014]. Further, SNS abnormality had an incremental and additive prognostic power in combination with high CRP with an adjusted hazard ratio of 4.1 (95% CI: 1.5-10.9, p = 0.006). SNS abnormality is predictive of vascular events in patients with idiopathic paroxysmal AF. (orig.)

  17. Relevance of Sympathetic Nervous System Activation in Obesity and Metabolic Syndrome.

    Science.gov (United States)

    Thorp, Alicia A; Schlaich, Markus P

    2015-01-01

    Sympathetic tone is well recognised as being implicit in cardiovascular control. It is less readily acknowledged that activation of the sympathetic nervous system is integral in energy homeostasis and can exert profound metabolic effects. Accumulating data from animal and human studies suggest that central sympathetic overactivity plays a pivotal role in the aetiology and complications of several metabolic conditions that can cluster to form the Metabolic Syndrome (MetS). Given the known augmented risk for type 2 diabetes, cardiovascular disease, and premature mortality associated with the MetS understanding the complex pathways underlying the metabolic derangements involved has become a priority. Many factors have been proposed to contribute to increased sympathetic nerve activity in metabolic abnormalities including obesity, impaired baroreflex sensitivity, hyperinsulinemia, and elevated adipokine levels. Furthermore there is mounting evidence to suggest that chronic sympathetic overactivity can potentiate two of the key metabolic alterations of the MetS, central obesity and insulin resistance. This review will discuss the regulatory role of the sympathetic nervous system in metabolic control and the proposed pathophysiology linking sympathetic overactivity to metabolic abnormalities. Pharmacological and device-based approaches that target central sympathetic drive will also be discussed as possible therapeutic options to improve metabolic control in at-risk patient cohorts.

  18. Respiratory modulation of sympathetic nerve activity is enhanced in male rat offspring following uteroplacental insufficiency.

    Science.gov (United States)

    Menuet, C; Wlodek, M E; Fong, A Y; Allen, A M

    2016-06-01

    Sympathetic nerve activity to the cardiovascular system displays prominent respiratory-related modulation which leads to the generation of rhythmic oscillations in blood pressure called Traube-Hering waves. An amplification of this respiratory modulation of sympathetic activity is observed in hypertension of both genetic, the spontaneously hypertensive rat, and induced, chronic intermittent hypoxia or maternal protein restriction during gestation, origin. Male offspring of mothers with uteroplacental insufficiency, induced by bilateral uterine vessel ligation at 18 days of gestation, are also hypertensive in adulthood. In this study we examined whether these male offspring display altered respiratory modulation of sympathetic activity at pre-hypertensive ages compared to controls. Respiratory, cardiovascular and sympathetic parameters were examined using the working heart-brainstem preparation in 35 day old male rats that had reduced birth weight due to uteroplacental insufficiency. Whilst all respiratory parameters were not different between groups, we observed an enhanced respiratory-related burst of thoracic sympathetic nerve activity and amplified Traube-Hering waves in the growth-restricted group. This group also showed an increased sympathetic and bradycardic response to activation of peripheral chemoreceptors. The observations add support to the view that altered respiratory modulation of sympathetic activity represents a common mechanism involved in the development of several forms of hypertension.

  19. Activation of histamine H3 receptors in human nasal mucosa inhibits sympathetic vasoconstriction.

    Science.gov (United States)

    Varty, LoriAnn M; Gustafson, Eric; Laverty, Maureen; Hey, John A

    2004-01-19

    The peripheral histamine H3 receptor is a presynaptic heterologous receptor located on postganglionic sympathetic nerve fibers innervating sympathetic effector systems such as blood vessels and the heart. An extensive body of evidence shows that activation of the histamine H3 receptor attenuates sympathetic tone by presynaptic inhibition of noradrenaline release. It is proposed that this sympathoinhibitory action, in vivo, leads to reduced vasoconstriction, thereby eliciting a vasodilatory effect. In humans, the peripheral histamine H3 receptor has also been shown to exert a sympathoinhibitory function on specific peripheral autonomic effector systems. For example, human saphenous vein and heart possess functional presynaptic histamine H3 receptors on the sympathetic nerve terminals that upon activation decrease the sympathetic tone to these respective organs. The present studies were conducted to define the role of histamine H3 receptors on neurogenic sympathetic vasoconstrictor responses in human nasal turbinate mucosa. Contractility studies were conducted to evaluate the effect of histamine H3 receptor activation on sympathetic vasoconstriction in surgically isolated human nasal turbinate mucosa. We found that the histamine H3 receptor agonist, (R)-alpha-methylhistamine (30 and 300 nM), inhibited electrical field stimulation-induced (neurogenic) sympathetic vasoconstriction in a concentration-dependent fashion. Pretreatment with the selective histamine H3 receptor antagonist, clobenpropit (100 nM), blocked the sympathoinhibitory effect of (R)-alpha-methylhistamine on the neurogenic sympathetic vasoconstriction. In addition, analysis of Taqman mRNA expression studies showed a specific, high level of distribution of the histamine H3 receptor localized in the human nasal mucosa. Taken together, these studies indicate that histamine H3 receptors modulate vascular contractile responses in human nasal mucosa most likely by inhibiting noradrenaline release from

  20. Scintigraphic assessment of regional cardiac sympathetic nervous system in patients with single-vessel coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Kazuyuki; Yoshida, Hiroshi; Nawada, Ryuzo; Obayashi, Kazuhiko; Tamekiyo, Hiromichi; Mochizuki, Mamoru [Shizuoka General Hospital (Japan)

    2000-06-01

    In coronary artery disease, the cardiac sympathetic nervous system is closely associated with myocardial ischemia. I-123 metaiodobenzylguanidine (MIBG) imaging allows us to assess the cardiac sympathetic nervous system regionally. One-hundred and eleven patients with single-vessel disease underwent regional quantitative analysis of MIBG imaging before successful percutaneous transluminal coronary angioplasty (PTCA), and repeat angiography 6 months after PTCA. Based on the results of the follow-up left ventriculogram, patients were divided into 3 groups: 39 angina pectoris (AP), 48 prior myocardial infarction without asynergy (MI without asynergy) and 24 prior myocardial infarction with asynergy (Ml with asynergy). AP and MI without asynergy had significant correlations between uptake parameters and regional washout in the territory of diseased vessels, among which the severity score in AP was the most closely correlated with regional washout (r=0.79, p<0.0001). These correlations disappeared in MI with asynergy. To compare regional MIBG parameters in the territory of the diseased vessel as well as in the territories of the other major coronary arteries among the 3 groups, we examined MIBG parameters in 57 patients with left anterior descending artery (LAD) disease selected from among the study patients. Regional washout in the territory of the LAD was significantly higher in the MI without asynergy group than in the other two groups. The left circumflex artery (LCX) region showed significantly reduced MlBG uptake and an increased extent score in the MI with asynergy group compared with the AP group, although only a difference in the extent score existed between the MI with asynergy group and the AP group in the right coronary artery (RCA) region. In addition, the global ejection fraction before PTCA showed a significant negative correlation with each regional washout rate. In this way, regional quantitative analysis of MIBG imaging can detect the regional

  1. Sympathetic nervous activation in obesity and the metabolic syndrome--causes, consequences and therapeutic implications.

    Science.gov (United States)

    Lambert, Gavin W; Straznicky, Nora E; Lambert, Elisabeth A; Dixon, John B; Schlaich, Markus P

    2010-05-01

    The world wide prevalence of obesity and the metabolic syndrome is escalating. Contrary to earlier experimental evidence, human obesity is characterised by sympathetic nervous activation, with the outflows to both the kidney and skeletal muscle being activated. While the mechanisms responsible for initiating the sympathetic activation remain to be unequivocally elucidated, hyperinsulinemia, obstructive sleep apnoea, increased circulating adipokines, stress and beta adrenergic receptor polymorphisms are implicated. The pattern of sympathetic activation may be the pathophysiological mechanism underpinning much obesity-related illnesses with the consequences including, amongst others, the development of hypertension, insulin resistance, diastolic dysfunction and renal impairment. While diet and exercise are the first line therapy for the treatment of obesity and the metabolic syndrome, pharmacological interventions targeting the sympathetic nervous system, either directly or indirectly are also likely to be of benefit. Importantly, the benefit may not necessarily be weight related but may be associated with a reduction in end organ damage.

  2. {sup 123}I-Labelled metaiodobenzylguanidine for the evaluation of cardiac sympathetic denervation in early stage amyloidosis

    Energy Technology Data Exchange (ETDEWEB)

    Noordzij, Walter; Glaudemans, Andor W.J.M.; Rheenen, Ronald W.J. van; Dierckx, Rudi A.J.O.; Slart, Riemer H.J.A. [University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, PO Box 30.001, Groningen (Netherlands); Hazenberg, Bouke P.C. [University of Groningen, Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [University of Groningen, Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands)

    2012-10-15

    Cardiac amyloidosis is a rare disorder, but it may lead to potentially life-threatening restrictive cardiomyopathy. Cardiac manifestations frequently occur in primary amyloidosis (AL) and familial amyloidosis (ATTR), but are uncommon in secondary amyloidosis (AA). Echocardiography is the method of choice for assessing cardiac amyloidosis. Amyloid deposits impair the function of sympathetic nerve endings. Disturbance of myocardial sympathetic innervations may play an important role in the remodelling process. {sup 123}I-MIBG can detect these innervation changes. Patients with biopsy-proven amyloidosis underwent general work-up, echocardiography and {sup 123}I-MIBG scintigraphy. Left ventricular internal dimensions and wall thickness were measured, and highly refractile cardiac echoes (sparkling) were analysed. Early (15 min) and late (4 h) heart-to-mediastinum ratio (HMR) and wash-out rate were determined after administration of MIBG. Included in the study were 61 patients (30 women and 31 men; mean age 62 years; 39 AL, 11 AA, 11 ATTR). Echocardiographic parameters were not significantly different between the groups. Sparkling was present in 72 % of ATTR patients, in 54 % of AL patients and in 45 % of AA patients. Mean late HMR in all patients was 2.3 {+-} 0.75, and the mean wash-out rate was 8.6 {+-} 14 % (the latter not significantly different between the patient groups). Late HMR was significantly lower in patients with echocardiographic signs of amyloidosis than in patients without (2.0 {+-} 0.70 versus 2.8 {+-} 0.58, p < 0.001). Wash-out rates were significantly higher in these patients (-3.3 {+-} 9.9 % vs. 17 {+-} 10 %, p < 0.001). In ATTR patients without echocardiographic signs of amyloidosis, HMR was lower than in patients with the other types (2.0 {+-} 0.59 vs. 2.9 {+-} 0.50, p = 0.007). MIBG HMR is lower and wash-out rate is higher in patients with echocardiographic signs of amyloidosis. Also, {sup 123}I-MIBG scintigraphy can detect cardiac denervation in

  3. LMI1195 PET imaging in evaluation of regional cardiac sympathetic denervation and its potential role in antiarrhythmic drug treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ming; Bozek, Jody; Lamoy, Melanie; Kagan, Mikhail; Benites, Pedro; Onthank, David; Robinson, Simon P. [Lantheus Medical Imaging, Discovery Research, N. Billerica, MA (United States)

    2012-12-15

    Regional cardiac sympathetic denervation (RCSD) associated with reduced noradrenaline transporter (NAT) function has been linked to cardiac arrhythmia. This study examined the association of LMI1195, an {sup 18}F-labeled NAT substrate developed for positron emission tomography (PET) imaging, with NAT in vitro, and its imaging to detect RCSD and guide antiarrhythmic drug treatment in vivo. LMI1195 association with NAT was assessed in comparison with other substrates, noradrenaline (NA) and {sup 123}I-metaiodobenzylguanidine (MIBG), in NAT-expressing cells. LMI1195 cardiac imaging was performed for evaluation of RCSD in a rabbit model surgically developed by regional phenol application on the left ventricular (LV) wall. The normal LV areas in images were quantified as regions with radioactivity {>=}50 % maximum. Potential impact of RCSD on dofetilide, an antiarrhythmic drug, induced ECG changes was assessed. NAT blockade with desipramine reduced LMI1195 cell uptake by 90 {+-} 3 %, similar to NA and MIBG. NA, MIBG, or self inhibited LMI1195 cell uptake concentration-dependently with comparable IC{sub 50} values (1.09, 0.21, and 0.90 {mu}M). LMI1195 cardiac imaging differentiated innervated and denervated areas in RCSD rabbits. The surgery resulted in a large denervated LV area at 2 weeks which was partially recovered at 12 weeks. Myocardial perfusion imaging with flurpiridaz F 18 showed normal perfusion in RCSD areas. Dofetilide induced more prominent QTc prolongation in RCSD than control animals. However, changes in heart rate were comparable. LMI1195 exhibits high association with NAT and can be used for imaging RCSD. The detected RCSD increases cardiac risks to the antiarrhythmic drug, dofetilide, by inducing more QTc prolongation. (orig.)

  4. Enhanced adipose afferent reflex contributes to sympathetic activation in diet-induced obesity hypertension.

    Science.gov (United States)

    Xiong, Xiao-Qing; Chen, Wei-Wei; Han, Ying; Zhou, Ye-Bo; Zhang, Feng; Gao, Xing-Ya; Zhu, Guo-Qing

    2012-11-01

    We recently found that adipose afferent reflex (AAR) induced by chemical stimulation of white adipose tissue (WAT) increased sympathetic outflow and blood pressure in normal rats. The study was designed to test the hypothesis that AAR contributes to sympathetic activation in obesity hypertension. Male rats were fed with a control diet (12% kcal as fat) or high-fat diet (42% kcal as fat) for 12 weeks to induce obesity hypertension. Stimulation of WAT with capsaicin increased renal sympathetic nerve activity and mean arterial pressure. Both AAR and WAT afferent activity were enhanced in obesity hypertension (OH) compared with obesity nonhypertension (ON) and in ON compared with obesity-resistant or control diet rats. WAT sensory denervation induced by resiniferatoxin caused greater decreases in renal sympathetic nerve activity and mean arterial pressure in OH than ON and in ON than obesity-resistant or control. The depressor effect of resiniferatoxin lasted ≥ 3 weeks in OH. Leptin antagonist in WAT reduced renal sympathetic nerve activity and mean arterial pressure in OH. WAT injection of capsaicin increased plasma renin, angiotensin II, and norepinephrine levels in OH and caused more c-fos expression in paraventricular nucleus in OH than ON and in ON than obesity-resistant or control rats. Inhibiting paraventricular nucleus neurons with lidocaine attenuated renal sympathetic nerve activity in OH and ON, decreased mean arterial pressure in OH, and abolished the capsaicin-induced AAR in all groups. The results indicate that enhanced AAR contributes to sympathetic activation in OH, and paraventricular nucleus plays an important role in the enhanced AAR and sympathetic activation in OH.

  5. Adaptive reaction of boys’ sympathetic-adrenal system to physical activity in puberty.

    Directory of Open Access Journals (Sweden)

    Alekcei Anatolevich Zverev

    2016-04-01

    Full Text Available This paper deals with the study of adaptive reactions of the sympathetic-adrenal system of 11-16-year-old boys to graduated exercise at different pubertal stages. To evaluate the functional state of the cardiovascular system, the heart rate, systolic and cardiac output were determined. The state of the sympathetic-adrenal system was analyzed by the excretion level of catecholamines and DOPA. Cardiac output in response to graduated exercise in boys at pubertal stages 1-2 is substantially ensured by the increased heart rate, and at the other stages of puberty - mainly due to increase in stroke volume, which is estimated as a favorable response to exercise. In mechanisms of urgent adaptation to graduated exercise, the boys of third and fourth pubertal stages show an intensive functioning of the cardiovascular system and a reducing reserve capacity of the sympathetic-adrenal system. The adolescents of fifth pubertal stage show economical response to functional tests, a reduced reactivity of the components of the sympathetic-adrenal system on the background of a significant increase in the excretion of precursors.

  6. Leptin into the rostral ventral lateral medulla (RVLM augments renal sympathetic nerve activity and blood pressure

    Directory of Open Access Journals (Sweden)

    Maria J Barnes

    2014-08-01

    Full Text Available Leptin is a hormone released from adipose tissue. While this hormone normally acts to reduce feeding behavior and increase energy expenditure, in obesity, resistance to these effects occurs even though the hormone is released in large amounts. Although leptin no longer works to suppress feeding in the obese, leptin retains its potent effects on other autonomic functions such as blood pressure regulation. Leptin has been associated with hypertension and increased sympathetic autonomic activity. Therefore, leptin is emerging as a major contributor to the hypertensive state observed in obesity. Sympathetic control of blood pressure is maintained principally by autonomic reflex control circuits in the caudal brainstem. The rostral ventral-lateral medulla (RVLM is the primary regulator of the sympathetic nervous system, sending excitatory fibers to sympathetic preganglionic neurons to regulate sympathetic control over resistance vessels and blood pressure. Previous studies from our laboratory have shown that neurons in the ventral lateral medulla express leptin receptors (ObRb. Our present study using pseudo-rabies multi-synaptic retrograde tract tracing and immunohistochemical methods revealed that neurons within the RVLM that send sympathetic projections to the kidney express leptin receptors. Acute microinjection of leptin (1 and 3µg; 40nL into the RVLM evoked a significant increase in Mean Arterial Pressure (MAP and renal sympathetic nerve activity (RSNA. When the 3µg dose of leptin was preceded with a leptin antagonist, (SLAN-4; 1ng, it attenuated the cardiovascular response of leptin. Taken together, these data suggest that leptin’s actions within the RVLM may influence blood pressure and renal sympathetic nerve activity.

  7. Contributions of central command and muscle feedback to sympathetic nerve activity in contracting human skeletal muscle

    Directory of Open Access Journals (Sweden)

    Daniel eBoulton

    2016-05-01

    Full Text Available During voluntary contractions, muscle sympathetic nerve activity (MSNA to contracting muscles increases in proportion to force but the underlying mechanisms are not clear. To shed light on these mechanisms, particularly the influences of central command and muscle afferent feedback, the present study tested the hypothesis that MSNA is greater during voluntary compared with electrically-evoked contractions. Seven male subjects performed a series of 1-minute isometric dorsiflexion contractions (left leg separated by 2-minute rest periods, alternating between voluntary and electrically-evoked contractions at similar forces (5-10 % of maximum. MSNA was recorded continuously (microneurography from the left peroneal nerve and quantified from cardiac-synchronised, negative-going spikes in the neurogram. Compared with pre-contraction values, MSNA increased by 51 ± 34 % (P 0.05. MSNA analysed at 15-s intervals revealed that this effect of voluntary contraction appeared 15-30 s after contraction onset (P < 0.01, remained elevated until the end of contraction, and disappeared within 15 s after contraction. These findings suggest that central command, and not feedback from contracting muscle, is the primary mechanism responsible for the increase in MSNA to contracting muscle. The time-course of MSNA suggests that there is a longer delay in the onset of this effect compared with its cessation after contraction.

  8. Thin-fiber mechanoreceptors reflexly increase renal sympathetic nerve activity during static contraction.

    Science.gov (United States)

    Kim, Jong Kyung; Hayes, Shawn G; Kindig, Angela E; Kaufman, Marc P

    2007-02-01

    The renal vasoconstriction induced by the sympathetic outflow during exercise serves to direct blood flow from the kidney toward the exercising muscles. The renal circulation seems to be particularly important in this regard, because it receives a substantial part of the cardiac output, which in resting humans has been estimated to be 20%. The role of group III mechanoreceptors in causing the reflex renal sympathetic response to static contraction remains an open question. To shed some light on this question, we recorded the renal sympathetic nerve responses to static contraction before and after injection of gadolinium into the arterial supply of the statically contracting triceps surae muscles of decerebrate unanesthetized and chloralose-anesthetized cats. Gadolinium has been shown to be a selective blocker of mechanogated channels in thin-fiber muscle afferents, which comprise the afferent arm of the exercise pressor reflex arc. In decerebrate (n = 15) and chloralose-anesthetized (n = 12) cats, we found that gadolinium (10 mM; 1 ml) significantly attenuated the renal sympathetic nerve and pressor responses to static contraction (60 s) after a latent period of 60 min; both responses recovered after a latent period of 120 min. We conclude that thin-fiber mechanoreceptors supplying contracting muscle are involved in some of the renal vasoconstriction evoked by the exercise pressor reflex.

  9. Regional heterogeneity in cardiac sympathetic innervation in acute myocardial infarction: relationship with myocardial oedema on magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Gimelli, Alessia; Masci, Pier Giorgio; Pasanisi, Emilio Maria; Lombardi, Massimo [Fondazione CNR/Regione Toscana, Pisa (Italy); Liga, Riccardo; Grigoratos, Chrysanthos [University Hospital of Pisa, Pisa (Italy); Marzullo, Paolo [Fondazione CNR/Regione Toscana, Pisa (Italy); Institute of Clinical Physiology, CNR, Pisa (Italy)

    2014-09-15

    To assess the relationships between myocardial structure and function on cardiac magnetic resonance (CMR) imaging and sympathetic tone on {sup 123}I-metaiodobenzylguanidine ({sup 123}I-MIBG) scintigraphy early after myocardial infarction (MI). Ten patients underwent {sup 123}I-MIBG and {sup 99m}Tc-tetrofosmin rest cadmium zinc telluride scintigraphy 4 ± 1 days after MI. The segmental left ventricular (LV) relative radiotracer uptake of both {sup 99m}Tc-tetrofosmin and early {sup 123}I-MIBG was calculated. The day after scintigraphy, on CMR imaging, the extent of ischaemia-related oedema and of myocardial fibrosis (late gadolinium enhancement, LGE) was assessed. Accordingly, the extent of oedema and LGE was evaluated for each segment and segmental wall thickening determined. Based on LGE distribution, LV segments were categorized as ''infarcted'' (56 segments), ''adjacent'' (66 segments) or ''remote'' (48 segments). Infarcted segments showed a more depressed systolic wall thickening and greater extent of oedema than adjacent segments (p < 0.001) and remote segments (p < 0.001). Interestingly, while uptake of {sup 99m}Tc-tetrofosmin was significantly depressed only in infarcted segments (p < 0.001 vs. both adjacent and remote segments), uptake of {sup 123}I-MIBG was impaired not only in infarcted segments (p < 0.001 vs. remote) but also in adjacent segments (p = 0.024 vs. remote segments). At the regional level, after correction for {sup 99m}Tc-tetrofosmin and LGE distribution, segmental {sup 123}I-MIBG uptake (p < 0.001) remained an independent predictor of ischaemia-related oedema. After acute MI the regional impairment of sympathetic tone extends beyond the area of altered myocardial perfusion and is associated with myocardial oedema. (orig.)

  10. Using Lorenz plot and Cardiac Sympathetic Index of heart rate variability for detecting seizures for patients with epilepsy.

    Science.gov (United States)

    Jeppesen, Jesper; Beniczky, Sandor; Johansen, Peter; Sidenius, Per; Fuglsang-Frederiksen, Anders

    2014-01-01

    Tachycardia is often seen during epileptic seizures, but it also occurs during physical exercise. In order to assess whether focal epileptic seizures can be detected by short term moving window Heart Rate Variability (HRV) analysis, we modified the geometric HRV method, Lorenz plot, to consist of only 30, 50 or 100 R-R intervals per analyzed window. From each window we calculated the longitudinal (L) and transverse (T) variability of Lorenz plot to retrieve the Cardiac Sympathetic Index (CSI) as (L/T) and "Modified CSI" (described in methods), and compared the maximum during the patient's epileptic seizures with that during the patient's own exercise and non-seizure sessions as control. All five analyzed patients had complex partial seizures (CPS) originating in the temporal lobe (11 seizures) during their 1-5 days long term video-EEG monitoring. All CPS with electroencephalographic correlation were selected for the HRV analysis. The CSI and Modified CSI were correspondently calculated after each heart beat depicting the prior 30, 50 and 100 R-R intervals at the time. CSI (30, 50 and 100) and Modified CSI (100) showed a higher maximum peak during seizures than exercise/non-seizure (121-296%) for 4 of the 5 patients within 4 seconds before till 60 seconds after seizure onset time even though exercise maximum HR exceeded that of the seizures. The results indicate a detectable, sudden and inordinate shift towards sympathetic overdrive in the sympathovagal balance of the autonomic nervous system just around seizure-onset for certain patients. This new modified moving window Lorenz plot method seems promising way of constructing a portable ECG-based epilepsy alarm for certain patients with epilepsy who needs aid during seizure.

  11. Is baroreflex control of sympathetic activity and heart rate active in the preterm fetal sheep?

    Science.gov (United States)

    Booth, Lindsea C; Malpas, Simon C; Barrett, Carolyn J; Guild, Sarah-Jane; Gunn, Alistair J; Bennet, Laura

    2009-03-01

    The arterial baroreflex is a fundamental reflex that buffers rapid changes in arterial blood pressure (BP) via regulation of the heart rate and sympathetic nerve activity to the vasculature. In adults a sigmoidal relationship between BP and both heart rate and sympathetic nerve activity is well documented. Its role in blood pressure control before birth is unclear. Preterm babies have a high incidence of low BP, especially in the first few days of life, which could be related, in part, to immaturity of the baroreflex. In the present study, we investigated the baroreflex control of fetal heart rate and renal sympathetic nerve activity (RSNA) in preterm fetal sheep in utero (102 +/- 1 days of gestation; term 140 days). Phenylephrine was associated with a significant increase in BP from 38 +/- 2 to 58 +/- 3 mmHg and a decrease in heart rate (HR) from 177 +/- 4 to 116 +/- 8 beats per minute (bpm). Sodium nitroprusside was associated with a significant fall in BP from 38 +/- 2 to 26 +/- 1 mmHg and an increase in HR from 182 +/- 4 to 274 +/- 8 bpm. However, the time between the 50% changes in BP and HR was significantly greater after hypotension than hypertension (31 +/- 8 s vs. 14 +/- 5 s, P < 0.05). No significant changes in RSNA occurred with either stimulus. This suggests that there are different maturational tempos for the components of the central autonomic response to altered blood pressure.

  12. EFFECTS OF INTRAVENOUS FENTANYL ON SPONTANEOUS RENAL SYMPATHETIC NERVE ACTIVITY IN NORMAL AND VAGOTOMIZED RABBITS

    Institute of Scientific and Technical Information of China (English)

    Chen Wang; James G.Whitwam

    2004-01-01

    Objective To investigate the roles of sympathetic and vagus nerves in hypotension and bradycardia induced by fentanyl.Methods Fourteen rabbits were divided into 2 groups: normal and vagotomized rabbits. Rabbits were anesthetized,paralyzed, and artificial ventilated. Right renal sympathetic nerve was exposed and prepared for recording electrical activity.Fentanyl was injected intravenously in incremental doses of 1, 4, 15, 30, and 50 μg/kg at 10 minutes intervals.Results Fentanyl significantly reduced the spontaneous activity of renal sympathetic nerve, mean arterial pressure, and heart rate above a total dose of 20 μg/kg in both normal and vagotomized rabbits. However, normal rabbits spontaneous sympathetic nerve activity and mean arterial pressure were more depressed than vagotomized rabbits at total doses of 50 and 100 μg/kg. There were no significant difference in the reduction of heart rate between normal and vagotomized rabbits.Conclusion Fentanyl induction of bradycardia and hypotension in rabbits is mainly due to depression of sympathetic nerve activity.

  13. Prejunctional inhibition of sympathetically evoked pupillary dilation in cats by activation of histamine H3 receptors.

    Science.gov (United States)

    Koss, M C; Hey, J A

    1993-08-01

    Frequency-dependent pupillary dilations were evoked by electrical stimulation of the pre- or post-ganglionic cervical sympathetic nerve (sympatho-excitation) or the hypothalamus (parasympatho-inhibition) in sympathectomized anesthetized cats. Systemic administration of the selective histamine H3 receptor agonist (R)-alpha-methylhistamine (R alpha MeHA) produced a dose-dependent depression of mydriasis due to direct neural sympathetic activation but had no effect on responses elicited by parasympathetic withdrawal. The histamine H2 receptor agonist, dimaprit, was inactive. R alpha MeHA was much more effective in depressing sympathetic responses obtained at lower frequencies when compared to higher frequencies of stimulation. Responses evoked both pre- and postganglionically were inhibited by R alpha MeHA. This peripheral sympatho-inhibitory action of R alpha MeHA was antagonized by the histamine H3 receptor blocker thioperamide but not by intravenous pretreatment with the histamine H1 receptor antagonist chlorpheniramine. Histamine H2 receptor blockers cimetidine and ranitidine were also without effect. R alpha MeHA did not depress pupillary responses elicited by i.v. (-)-adrenaline. The results demonstrate that histamine H3 receptors modulate sympathetic activation of the iris at a site proximal to the iris dilator muscle. The predominant mechanism of action appears to the prejunctional inhibition of noradrenaline release from postganglionic sympathetic nerve endings. However, a concomitant ganglionic inhibitory action cannot be excluded.

  14. Marital Conflict and Children's Externalizing Behavior: Interactions between Parasympathetic and Sympathetic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Kouros, Chrystyna D.; Erath, Stephen; Cummings, E. Mark; Keller, Peggy; Staton, Lori

    2009-01-01

    Toward greater specificity in the prediction of externalizing problems in the context of interparental conflict, interactions between children's parasympathetic and sympathetic nervous system (PNS and SNS) activity were examined as moderators. PNS activity was indexed by respiratory sinus arrhythmia (RSA) and RSA reactivity (RSA-R) to lab…

  15. Cold pressor test demonstrates residual sympathetic cardiovascular activation in familial dysautonomia.

    Science.gov (United States)

    Hilz, M J; Axelrod, F B; Braeske, K; Stemper, B

    2002-04-15

    In familial dysautonomia (FD), i.e. Riley-Day-syndrome, sympathetic cardiovascular function, as well as afferent temperature and pain mediating neurons, are significantly reduced. Thus, it was questioned if cold pressor test (CPT), which normally enhances sympathetic outflow and induces peripheral vasoconstriction by the activation of thermo- and nociceptive system activation, could be used to assess sympathetic function in FD. To evaluate whether CPT can be used to assess sympathetic activation in FD, we performed CPT in 15 FD patients and 18 controls. After a 35-min resting period, participants immersed their right hand and arm up to the elbow into 0-1 degrees C cold water while we monitored heart rate (HR), respiration, beat-to-beat radial artery blood pressure (BP), and laser Doppler skin blood flow (SBF) at the right index finger pulp. From these measurements, heart rate variability parameters were calculated: root mean square of successive differences (RMSSD), coefficient of variation (CV), low and high frequency (LF, HF) power spectra of the electrocardiogram (ECG). All participants perceived cold stimulation and indicated discomfort. In controls, SBF decreased and HR and BP increased rapidly upon CPT. After 60 s, SBF indicated secondary vasodilatation in six controls, BP rise attenuated and HR returned to baseline in all controls. In the patients, SBF remained unchanged, HR and BP increased significantly, but after 50-60 s of CPT and changes were lower than in controls (p<0.05). RMSSD and CV decreased and LF increased significantly only in the controls. We conclude that CPT activates sympathetic HR and BP modulation despite impaired pain and temperature perception in FD patients. BP increase in the presence of almost unchanged SBF might be due to HR increase and to nociceptive arousal and emotionally induced catecholamine release as seen in emotional crises of FD patients. CPT assesses sympathetic cardiovascular responses independently from baroreflex

  16. Evaluation of cardiac sympathetic neuronal integrity in diabetic patients using iodine-123 metaiodobenzylguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Jung [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Lee, Jong Doo [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Ryu, Young Hoon [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Jeon, Pyoung [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Shim, Yong Woon [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Yoo, Hyung Sik [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Park, Chang Yun [Department of Diagnostic Radiology and Nuclear Medicine, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of); Lim, Seung Gil [Department of Endocrinology, Yonsei University, College of Medicine, 134 Shincheon-dong, Seodaemun-gu, Seoul, 120-752 (Korea, Republic of)

    1996-04-01

    Autonomic dysfunction is associated with increased mortality in diabetic patients. To evaluate the cardiac autonomic dysfunction in these patients, a prospective study was undertaken using iodine-123 metaiodobenzylguanidine (MIBG) single-photon emission tomography (SPET). The study groups consisted of ten diabetic patients with cardiac autonomic neuropathy (group I) and six without autonomic neuropathy (group II). Autonomic nervous function tests, thallium scan, radionuclide ventriculographic data including ejection fraction and wall motion study, and 24-h urine catecholamine levels were evaluated. {sup 123}I-MIBG SPET was performed at 30 min and 4 h following injection of 3 mCi of {sup 123}I-MIBG in groups I and II and in normal subjects (n=4). On planar images, the heart to mediastinum (H/M) ratio was measured. Defect pattern and severity of MIBG uptake were qualitatively analysed on SPET. Compared with control subjects, diabetic patients had a reduced H/M ratio regardless of the presence of clinical autonomic neuropathy. There was no difference in H/M ratio between groups I and II. On SPET images, focal or diffuse defects were demonstrated in all patients in group I, and in five of the six patients in group II. The extent of defects tended to be more pronounced in group I than in group II. In conclusion, {sup 123}I-MIBG scan was found to be a more sensitive method than clinical autonomic nervous function tests for the detection of autonomic neuropathy in diabetes. (orig.). With 3 figs., 1 tab.

  17. Targeted NGF siRNA delivery attenuates sympathetic nerve sprouting and deteriorates cardiac dysfunction in rats with myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Hesheng Hu

    Full Text Available Nerve growth factor (NGF is involved in nerve sprouting, hyper-innervation, angiogenesis, anti-apoptosis, and preservation of cardiac function after myocardial infarction (MI. Positively modulating NGF expression may represent a novel pharmacological strategy to improve post-infarction prognosis. In this study, lentivirus encoding NGF short interfering RNA (siRNA was prepared, and MI was modeled in the rat using left anterior descending coronary artery ligation. Rats were randomly grouped to receive intramyocardial injection of lentiviral solution containing NGF-siRNA (n = 19, MI-SiNGF group, lentiviral solution containing empty vector (n = 18, MI-GFP group or 0.9% NaCl solution (n = 18, MI-control group, or to receive thoracotomy and pericardiotomy (n = 17, sham-operated group. At 1, 2, 4, and 8 wk after transduction, rats in the MI-control group had higher levels of NGF mRNA and protein than those in the sham-operated group, rats in the MI-GFP group showed similar levels as the MI-control group, and rats in the MI-SiNGF group had lower levels compared to the MI-GFP group, indicating that MI model was successfully established and NGF siRNA effectively inhibited the expression of NGF. At 8 wk, echocardiographic and hemodynamic studies revealed a more severe cardiac dysfunction in the MI-siRNA group compared to the MI-GFP group. Moreover, rats in the MI-siRNA group had lower mRNA and protein expression levels of tyrosine hydroxylase (TH and growth-associated protein 43-positive nerve fibers (GAP-43 at both the infarcted border and within the non-infarcted left ventricles (LV. NGF silencing also reduced the vascular endothelial growth factor (VEGF expression and decreased the arteriolar and capillary densities at the infarcted border compared to the MI-GFP group. Histological analysis indicated a large infarcted size in the MI-SiNGF group. These findings suggested that endogenous NGF silencing attenuated sympathetic nerve sprouting

  18. Cortisol and Children's Adjustment: The Moderating Role of Sympathetic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Erath, Stephen A.; Buckhalt, Joseph A.; Granger, Douglas A.; Mize, Jacquelyn

    2008-01-01

    We examined relations among cortisol, markers of sympathetic nervous system (SNS) activity (including salivary alpha-amylase and skin conductance level), and children's adjustment. We also tested the Bauer et al. ("Journal of Developmental and Behavioral Pediatrics," 23(2), 102-113, 2002) hypothesis that interactions between the SNS and cortisol…

  19. Is kidney ischemia the central mechanism in parallel activation of the renin and sympathetic system?

    NARCIS (Netherlands)

    Siddiqi, Laima; Joles, Jaap A.; Grassi, Guido; Blankestijn, Peter J.

    2009-01-01

    In chronic kidney disease simultaneous activation of the renin - angiotensin and sympathetic systems occurs. Kidney ischemia seems to play a key role in the pathogenesis. This review firstly summarizes experimental and clinical evidence in chronic kidney disease supporting this idea and addresses th

  20. Impact of sympathetic nervous system activity on post-exercise flow-mediated dilatation in humans.

    NARCIS (Netherlands)

    Atkinson, C.L.; Lewis, N.C.; Carter, H.H.; Thijssen, D.H.J.; Ainslie, P.N.; Green, D.J.

    2015-01-01

    KEY POINTS: Previous studies indicate a transient reduction in arterial function following large muscle group exercise, but the mechanisms involved are unknown. Sympathetic nervous system activation may contribute to such reductions through direct effects in the artery wall, or because of decreases

  1. Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space

    Science.gov (United States)

    Ertl, Andrew C.; Diedrich, Andre; Biaggioni, Italo; Levine, Benjamin D.; Robertson, Rose Marie; Cox, James F.; Zuckerman, Julie H.; Pawelczyk, James A.; Ray, Chester A.; Buckey, Jay C Jr; Lane, Lynda D.; Shiavi, Richard; Gaffney, F. Andrew; Costa, Fernando; Holt, Carol; Blomqvist, C. Gunnar; Eckberg, Dwain L.; Baisch, Friedhelm J.; Robertson, David

    2002-01-01

    Astronauts returning from space have reduced red blood cell masses, hypovolaemia and orthostatic intolerance, marked by greater cardio-acceleration during standing than before spaceflight, and in some, orthostatic hypotension and presyncope. Adaptation of the sympathetic nervous system occurring during spaceflight may be responsible for these postflight alterations. We tested the hypotheses that exposure to microgravity reduces sympathetic neural outflow and impairs sympathetic neural responses to orthostatic stress. We measured heart rate, photoplethysmographic finger arterial pressure, peroneal nerve muscle sympathetic activity and plasma noradrenaline spillover and clearance, in male astronauts before, during (flight day 12 or 13) and after the 16 day Neurolab space shuttle mission. Measurements were made during supine rest and orthostatic stress, as simulated on Earth and in space by 7 min periods of 15 and 30 mmHg lower body suction. Mean (+/- S.E.M.) heart rates before lower body suction were similar pre-flight and in flight. Heart rate responses to -30 mmHg were greater in flight (from 56 +/- 4 to 72 +/- 4 beats min(-1)) than pre-flight (from 56 +/- 4 at rest to 62 +/- 4 beats min(-1), P < 0.05). Noradrenaline spillover and clearance were increased from pre-flight levels during baseline periods and during lower body suction, both in flight (n = 3) and on post-flight days 1 or 2 (n = 5, P < 0.05). In-flight baseline sympathetic nerve activity was increased above pre-flight levels (by 10-33 %) in the same three subjects in whom noradrenaline spillover and clearance were increased. The sympathetic response to 30 mmHg lower body suction was at pre-flight levels or higher in each subject (35 pre-flight vs. 40 bursts min(-1) in flight). No astronaut experienced presyncope during lower body suction in space (or during upright tilt following the Neurolab mission). We conclude that in space, baseline sympathetic neural outflow is increased moderately and sympathetic

  2. Enhanced sympathetic arousal in response to FMRI scanning correlates with task induced activations and deactivations.

    Directory of Open Access Journals (Sweden)

    Markus Muehlhan

    Full Text Available It has been repeatedly shown that functional magnetic resonance imaging (fMRI triggers distress and neuroendocrine response systems. Prior studies have revealed that sympathetic arousal increases, particularly at the beginning of the examination. Against this background it appears likely that those stress reactions during the scanning procedure may influence task performance and neural correlates. However, the question how sympathetic arousal elicited by the scanning procedure itself may act as a potential confounder of fMRI data remains unresolved today. Thirty-seven scanner naive healthy subjects performed a simple cued target detection task. Levels of salivary alpha amylase (sAA, as a biomarker for sympathetic activity, were assessed in samples obtained at several time points during the lab visit. SAA increased two times, immediately prior to scanning and at the end of the scanning procedure. Neural activation related to motor preparation and timing as well as task performance was positively correlated with the first increase. Furthermore, the first sAA increase was associated with task induced deactivation (TID in frontal and parietal regions. However, these effects were restricted to the first part of the experiment. Consequently, this bias of scanner related sympathetic activation should be considered in future fMRI investigations. It is of particular importance for pharmacological investigations studying adrenergic agents and the comparison of groups with different stress vulnerabilities like patients and controls or adolescents and adults.

  3. Ghrelin modulates sympathetic nervous system activity and stress response in lean and overweight men.

    Science.gov (United States)

    Lambert, Elisabeth; Lambert, Gavin; Ika-Sari, Carolina; Dawood, Tye; Lee, Katie; Chopra, Reena; Straznicky, Nora; Eikelis, Nina; Drew, Sara; Tilbrook, Alan; Dixon, John; Esler, Murray; Schlaich, Markus P

    2011-07-01

    Ghrelin is a growth hormone-releasing peptide secreted by the stomach with potent effects on appetite. Experimental and clinical studies indicate that ghrelin also influences cardiovascular regulation and metabolic function and mediates behavioral responses to stress. We investigated the effects of ghrelin on blood pressure (BP), sympathetic nervous system activity, and mental stress responses in lean (n=13) and overweight or obese (n=13) individuals. Subjects received an intravenous infusion of human ghrelin (5 pmol/kg per minute for 1 hour) and saline in a randomized fashion. Ghrelin decreased systolic (-6 and -11 mm Hg) and diastolic BP (-8 mm Hg for both), increased muscle sympathetic nervous system activity (18±2 to 28±3 bursts per min, P<0.05 and from 21±2 to 32±3 bursts per min, P<0.001) in lean and overweight or obese subjects, respectively, without a significant change in heart rate, calf blood flow, or vascular resistance. Ghrelin induced a rise in plasma glucose concentration in lean individuals (P<0.05) and increased cortisol levels in both groups (P<0.05). Stress induced a significant change in mean BP (+22 and +27 mm Hg), heart rate (+36 and +29 bpm), and muscle sympathetic nervous system activity (+6.1±1.6 and +6.8±2.7 bursts per min) during saline infusion in lean and overweight or obese subjects, respectively. During ghrelin infusion, the changes in BP and muscle sympathetic nerve activity in response to stress were significantly reduced in both groups (P<0.05). In conclusion, ghrelin exerts unique effects in that it reduces BP and increases muscle sympathetic nervous system activity and blunts cardiovascular responses to mental stress. These responses may represent a combination of peripheral (baroreflex-mediated) and central effects of ghrelin.

  4. Acute electromyostimulation decreases muscle sympathetic nerve activity in patients with advanced chronic heart failure (EMSICA Study.

    Directory of Open Access Journals (Sweden)

    Marc Labrunée

    Full Text Available BACKGROUND: Muscle passive contraction of lower limb by neuromuscular electrostimulation (NMES is frequently used in chronic heart failure (CHF patients but no data are available concerning its action on sympathetic activity. However, Transcutaneous Electrical Nerve Stimulation (TENS is able to improve baroreflex in CHF. The primary aim of the present study was to investigate the acute effect of TENS and NMES compared to Sham stimulation on sympathetic overactivity as assessed by Muscle Sympathetic Nerve Activity (MSNA. METHODS: We performed a serie of two parallel, randomized, double blinded and sham controlled protocols in twenty-two CHF patients in New York Heart Association (NYHA Class III. Half of them performed stimulation by TENS, and the others tested NMES. RESULTS: Compare to Sham stimulation, both TENS and NMES are able to reduce MSNA (63.5 ± 3.5 vs 69.7 ± 3.1 bursts / min, p < 0.01 after TENS and 51.6 ± 3.3 vs 56.7 ± 3.3 bursts / min, p < 0, 01 after NMES. No variation of blood pressure, heart rate or respiratory parameters was observed after stimulation. CONCLUSION: The results suggest that sensory stimulation of lower limbs by electrical device, either TENS or NMES, could inhibit sympathetic outflow directed to legs in CHF patients. These properties could benefits CHF patients and pave the way for a new non-pharmacological approach of CHF.

  5. Sympathetic activation by the cold pressor test does not increase the muscle force generation capacity.

    Science.gov (United States)

    Roatta, Silvestro; Farina, Dario

    2011-06-01

    A positive inotropic action by the sympathetic nervous system on skeletal muscles has been observed and investigated in animal and in vitro studies. This action provided a theoretical basis for the putative ergogenic action of catecholamines and adrenergic agonists, although there is no clear evidence of this effect in humans. The aim of this study was to investigate the occurrence of inotropic effects associated to physiological sympathetic activation in healthy subjects. The muscle force capacity was investigated in the tibialis anterior (n = 9 subjects) and in the soleus (n = 9) muscles electrically stimulated with single pulses and double pulses with variable interspike interval (4-1,000 ms) and short pulse trains (frequency: 5-14 Hz) before, during, and after sympathetic activation by the cold pressor test (CPT). CPT significantly decreased by 10.4 ± 7.2 and 10.6 ± 4.4% the force produced by single and double pulse stimulation, respectively, and produced smaller decreases in the force obtained by train stimulation in the tibialis anterior, while no significant changes were observed in either type of contraction in the soleus muscle. CPT failed to induce any increase in the force capacity of the investigated muscles. The prevalent decrease in force evidenced in this study supports the concept that the weakening sympathetic action on type I fiber, already shown to occur in humans, prevails over the putative potentiating action.

  6. Sympathetic nervous system and chronic renal failure.

    Science.gov (United States)

    Boero, R; Pignataro, A; Ferro, M; Quarello, F

    2001-01-01

    The aim of this work was to review evidence on the role of the sympathetic nervous system (SNS) in chronic renal failure (CRF). Three main points are discussed: 1) SNS and pathogenesis of arterial hypertension; 2) SNS and cardiovascular risk; 3) implication of SNS in arterial hypotension during hemodialysis. Several lines of evidence indicate the presence of a sympathetic hyperactivity in CRF, and its relationship with arterial hypertension. It is suggested that diseased kidneys send afferent nervous signals to central integrative sympathetic nuclei, thus contributing to the development and maintenance of arterial hypertension. The elimination of these impulses with nephrectomy could explain the concomitant reduction of blood pressure. Several experiments confirmed this hypothesis. Regarding SNS and cardiovascular risk, some data suggest that reduced heart rate variability identifies an increased risk for both all causes and sudden death, independently from other recognized risk factors. Symptomatic hypotension is a common problem during hemodialysis treatment, occurring in approximately 20-30% of all hemodialysis sessions and is accompanied by acute withdrawal of sympathetic activity, vasodilation and relative bradicardia. This reflex is thought to be evoked by vigorous contraction of a progressively empty left ventricle, activating cardiac mechanoceptors. This inhibits cardiovascular centers through vagal afferents, and overrides the stimulation by baroreceptor deactivation. Alternative explanations include cerebral ischemia and increased production of nitric oxide, which inhibit central sympathetic activity. It is hoped that therapies aimed at modulating sympathetic nerve activity in patients with CRF will ameliorate their prognosis and quality of life.

  7. The facial massage reduced anxiety and negative mood status, and increased sympathetic nervous activity.

    Science.gov (United States)

    Hatayama, Tomoko; Kitamura, Shingo; Tamura, Chihiro; Nagano, Mayumi; Ohnuki, Koichiro

    2008-12-01

    The aim of this study was to clarify the effects of 45 min of facial massage on the activity of autonomic nervous system, anxiety and mood in 32 healthy women. Autonomic nervous activity was assessed by heart rate variability (HRV) with spectral analysis. In the spectral analysis of HRV, we evaluated the high-frequency components (HF) and the low- to high-frequency ratio (LF/HF ratio), reflecting parasympathetic nervous activity and sympathetic nervous activity, respectively. The State Trait Anxiety Inventory (STAI) and the Profile of Mood Status (POMS) were administered to evaluate psychological status. The score of STAI and negative scale of POMS were significantly reduced following the massage, and only the LF/HF ratio was significantly enhanced after the massage. It was concluded that the facial massage might refresh the subjects by reducing their psychological distress and activating the sympathetic nervous system.

  8. Differential sympathetic activation in muscle and skin neural districts in the metabolic syndrome.

    Science.gov (United States)

    Grassi, Guido; Quarti-Trevano, Fosca; Seravalle, Gino; Dell'Oro, Raffaella; Dubini, Antonella; Mancia, Giuseppe

    2009-10-01

    The present study was designed to determine whether and to what extent the activation of the sympathetic nervous system reported in the metabolic syndrome is generalized to the whole cardiovascular system or if it is rather confined to selected vascular districts. In 16 untreated patients with metabolic syndrome, 12 essential hypertensive subjects, 12 obese subjects, and 14 lean healthy normotensive controls, we measured blood pressure (Finapres, Englewood, CO), heart rate (electrocardiogram), venous plasma norepinephrine (high-performance liquid chromatography), and postganglionic sympathetic nerve traffic in the skeletal muscle and in the skin districts (microneurography). The muscle and skin nerve traffic measurements were obtained in a randomized sequence. Measurements also included skin sympathetic nerve responses to an arousal (acoustic stimulus). The 4 groups of subjects had superimposable ages. Muscle sympathetic nerve traffic values were significantly higher in subjects with hypertension and in those with obesity than in controls (51.2 +/- 2.8 and 52.0 +/- 3.0 vs 37.2 +/- 3.3 bursts per 100 heart beats, respectively; P fashion by the various components of the disease.

  9. Power Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment.

    Science.gov (United States)

    Posada-Quintero, Hugo F; Florian, John P; Orjuela-Cañón, Alvaro D; Aljama-Corrales, Tomas; Charleston-Villalobos, Sonia; Chon, Ki H

    2016-10-01

    Time-domain features of electrodermal activity (EDA), the measurable changes in conductance at the skin surface, are typically used to assess overall activation of the sympathetic system. These time domain features, the skin conductance level (SCL) and the nonspecific skin conductance responses (NS.SCRs), are consistently elevated with sympathetic nervous arousal, but highly variable between subjects. A novel frequency-domain approach to quantify sympathetic function using the power spectral density (PSD) of EDA is proposed. This analysis was used to examine if some of the induced stimuli invoke the sympathetic nervous system's dynamics which can be discernible as a large spectral peak, conjectured to be present in the low frequency band. The resulting indices were compared to the power of low-frequency components of heart rate variability (HRVLF) time series, as well as to time-domain features of EDA. Twelve healthy subjects were subjected to orthostatic, physical and cognitive stress, to test these techniques. We found that the increase in the spectral powers of the EDA was largely confined to 0.045-0.15 Hz, which is in the prescribed band for HRVLF. These low frequency components are known to be, in part, influenced by the sympathetic nervous dynamics. However, we found an additional 5-10% of the spectral power in the frequency range of 0.15-0.25 Hz with all three stimuli. Thus, dynamics of the normalized sympathetic component of the EDA, termed EDASympn, are represented in the frequency band 0.045-0.25 Hz; only a small amount of spectral power is present in frequencies higher than 0.25 Hz. Our results showed that the time-domain indices (the SCL and NS.SCRs), and EDASympn, exhibited significant increases under orthostatic, physical, and cognitive stress. However, EDASympn was more responsive than the SCL and NS.SCRs to the cold pressor stimulus, while the latter two were more sensitive to the postural and Stroop tests. Additionally, EDASympn exhibited an

  10. Histamine H3 receptor activation inhibits neurogenic sympathetic vasoconstriction in porcine nasal mucosa.

    Science.gov (United States)

    Varty, LoriAnn M; Hey, John A

    2002-10-11

    Histamine release from mast cells is a primary mediator of rhinorrhea, nasal mucosal swelling, increased secretion, sneezing, pruritus and congestion that occur in allergic rhinitis. It is well known that histamine H(1) receptor antagonists inhibit the itch and rhinorhea, but do not block the allergic nasal congestion. A growing body of evidence shows that in addition to histamine H(1) receptors, activation of H(3) receptors may contribute to the procongestant nasal actions of histamine. Activation of the prejunctional histamine H(3) receptor modulates sympathetic control of nasal vascular tone and resistance. The present study was conducted to further characterize the role of histamine H(3) receptors on neurogenic sympathetic vascular contractile responses in isolated porcine nasal turbinate mucosa. We presently found that the histamine H(3) receptor agonist, (R)-alpha-methylhistamine (10-1000 nM), inhibited electrical field stimulation-induced sympathetic vasomotor contractions in a concentration-dependent fashion. Pretreatment with either of the selective histamine H(3) receptor antagonists, thioperamide and clobenpropit, blocked the sympathoinhibitory effect of (R)-alpha-methylhistamine in porcine turbinate mucosa. The effect of compound 48/80, an agent that elicits the release of endogenous histamine from mast cells on nasal sympathetic contractile responses, was also tested. The action of compound 48/80 to release mast cell-derived histamine in the nose mimics many of the nasal responses associated with allergic rhinitis, extravascular leakage and decreased nasal patency. We presently found that compound 48/80 also inhibited the electrical field stimulation-induced sympathetic response. Pretreatment with the H(3) receptor antagonist clobenpropit blocked the sympathoinhibitory action of compound 48/80 on sympathetic contractile responses in nasal mucosa. Taken together, these studies indicate that histamine H(3) receptors modulate vascular contractile

  11. Autonomic Nervous System Responses to Viewing Green and Built Settings: Differentiating Between Sympathetic and Parasympathetic Activity.

    Science.gov (United States)

    van den Berg, Magdalena M H E; Maas, Jolanda; Muller, Rianne; Braun, Anoek; Kaandorp, Wendy; van Lien, René; van Poppel, Mireille N M; van Mechelen, Willem; van den Berg, Agnes E

    2015-12-14

    This laboratory study explored buffering and recovery effects of viewing urban green and built spaces on autonomic nervous system activity. Forty-six students viewed photos of green and built spaces immediately following, and preceding acute stress induction. Simultaneously recorded electrocardiogram and impedance cardiogram signal was used to derive respiratory sinus arrhythmia (RSA) and pre-ejection period (PEP), indicators of respectively parasympathetic and sympathetic activity. The findings provide support for greater recovery after viewing green scenes, as marked by a stronger increase in RSA as a marker of parasympathetic activity. There were no indications for greater recovery after viewing green scenes in PEP as a marker of sympathetic activity, and there were also no indications of greater buffering effects of green space in neither RSA nor PEP. Overall, our findings are consistent with a predominant role of the parasympathetic nervous system in restorative effects of viewing green space.

  12. Autonomic Nervous System Responses to Viewing Green and Built Settings: Differentiating Between Sympathetic and Parasympathetic Activity

    Science.gov (United States)

    van den Berg, Magdalena M.H.E.; Maas, Jolanda; Muller, Rianne; Braun, Anoek; Kaandorp, Wendy; van Lien, René; van Poppel, Mireille N.M.; van Mechelen, Willem; van den Berg, Agnes E.

    2015-01-01

    This laboratory study explored buffering and recovery effects of viewing urban green and built spaces on autonomic nervous system activity. Forty-six students viewed photos of green and built spaces immediately following, and preceding acute stress induction. Simultaneously recorded electrocardiogram and impedance cardiogram signal was used to derive respiratory sinus arrhythmia (RSA) and pre-ejection period (PEP), indicators of respectively parasympathetic and sympathetic activity. The findings provide support for greater recovery after viewing green scenes, as marked by a stronger increase in RSA as a marker of parasympathetic activity. There were no indications for greater recovery after viewing green scenes in PEP as a marker of sympathetic activity, and there were also no indications of greater buffering effects of green space in neither RSA nor PEP. Overall, our findings are consistent with a predominant role of the parasympathetic nervous system in restorative effects of viewing green space. PMID:26694426

  13. Autonomic Nervous System Responses to Viewing Green and Built Settings: Differentiating Between Sympathetic and Parasympathetic Activity

    Directory of Open Access Journals (Sweden)

    Magdalena M.H.E. van den Berg

    2015-12-01

    Full Text Available This laboratory study explored buffering and recovery effects of viewing urban green and built spaces on autonomic nervous system activity. Forty-six students viewed photos of green and built spaces immediately following, and preceding acute stress induction. Simultaneously recorded electrocardiogram and impedance cardiogram signal was used to derive respiratory sinus arrhythmia (RSA and pre-ejection period (PEP, indicators of respectively parasympathetic and sympathetic activity. The findings provide support for greater recovery after viewing green scenes, as marked by a stronger increase in RSA as a marker of parasympathetic activity. There were no indications for greater recovery after viewing green scenes in PEP as a marker of sympathetic activity, and there were also no indications of greater buffering effects of green space in neither RSA nor PEP. Overall, our findings are consistent with a predominant role of the parasympathetic nervous system in restorative effects of viewing green space.

  14. Influence of central inhibition of sympathetic nervous activity on myocardial metabolism in chronic heart failure: acute effects of the imidazoline I1-receptor agonist moxonidine.

    Science.gov (United States)

    Mobini, Reza; Fu, Michael; Jansson, Per-Anders; Bergh, Claes-Håkan; Scharin Täng, Margareta; Waagstein, Finn; Andersson, Bert

    2006-03-01

    Although beta-adrenergic blockade is beneficial in heart failure, inhibition of central sympathetic outflow using moxonidine has been associated with increased mortality. In the present study, we studied the acute effects of the imidazoline-receptor agonist moxonidine on haemodynamics, NA (noradrenaline) kinetics and myocardial metabolism. Fifteen patients with CHF (chronic heart failure) were randomized to a single dose of 0.6 mg of sustained-release moxonidine or matching placebo. Haemodynamics, NA kinetics and myocardial metabolism were studied over a 2.5 h time period. There was a significant reduction in pulmonary and systemic arterial pressures, together with a decrease in cardiac index in the moxonidine group. Furthermore, there was a simultaneous reduction in systemic and cardiac net spillover of NA in the moxonidine group. Analysis of myocardial consumption of substrates in the moxonidine group showed a significant increase in non-esterified fatty acid consumption and a possible trend towards an increase in myocardial oxygen consumption compared with the placebo group (P=0.16). We conclude that a single dose of moxonidine (0.6 mg) in patients already treated with a beta-blocker reduced cardiac and overall sympathetic activity. The finding of increased lipid consumption without decreased myocardial oxygen consumption indicates a lack of positive effects on myocardial metabolism under these conditions. We suggest this might be a reason for the failure of moxonidine to prevent deaths in long-term studies in CHF.

  15. Sympathetic nervous system activity is associated with obesity-induced subclinical organ damage in young adults.

    Science.gov (United States)

    Lambert, Elisabeth; Sari, Carolina Ika; Dawood, Tye; Nguyen, Julie; McGrane, Mariee; Eikelis, Nina; Chopra, Reena; Wong, Chiew; Chatzivlastou, Kanella; Head, Geoff; Straznicky, Nora; Esler, Murray; Schlaich, Markus; Lambert, Gavin

    2010-09-01

    Excess weight is established as a major risk factor for cardiovascular diseases, particularly in young individuals. To get a better understanding of the pathophysiology underlying increased cardiovascular disease risk, we evaluated early signs of organ damage and their possible relationship to sympathetic nervous activity. Eighteen lean (body mass index obese (body mass index >25 kg/m(2)) healthy university students were included in the study. We comprehensively assessed subclinical target organ damage, including the following: (1) assessment of renal function; (2) left ventricular structure and systolic and diastolic function; and (3) endothelial function. Muscle sympathetic nervous activity was assessed by microneurography. Participants with excess weight had decreased endothelial function (Pnervous activity (Pnervous activity (R(2)=0.244; Pnervous activity, after adjustment for body mass index, sex, and blood pressure (R(2)=0.318, P<0.01 and R(2)=0.312, P<0.05, respectively). Excess weight in young individuals is associated with subclinical alterations in renal and endothelial function, as well as in the structure of the heart, even in the absence of hypertension. Sympathetic activity is closely associated with cardiovascular and renal alterations observed in these subjects.

  16. Sympathetic activity in the rat: effects of anaesthesia on noradrenaline kinetics.

    Science.gov (United States)

    Maignan, E; Dong, W X; Legrand, M; Safar, M; Cuche, J L

    2000-04-12

    Noradrenaline (NA) kinetics represent an effective tool for evaluating the activity of the sympathetic system: thus plasma NA concentration, spillover rate (SOR) and metabolic clearance rate (MC) were measured in the rat. The dilution technique was adapted and validated: pithing that caused mechanical destruction of the spinal cord was shown to reduce drastically NA-SOR and plasma NA concentration with no effect on NA-MC. NA-SOR and plasma NA concentration were restored within their normal limits when 2.5 Hz electrical stimulation of the sympathetic roots was superimposed. Normal values of NA kinetics in non-anaesthetised normotensive 12-week-old rats are reported: NA-SOR=196.1+/-26.4 ng/kg/min, NA-MC=413.9+/-38.8 ml/kg/min and plasma NA=486+/-52 pg/ml. NA kinetic was investigated in response to anaesthesia, known to depress excitable tissues of the central nervous system and expected to depress the activity of the sympathetic system. When NA-SOR was significantly reduced during anaesthesia with either sodium pentobarbital or chloralose, plasma NA concentration was not changed because NA-MC was also reduced. Thus, plasma NA concentration can be a misleading marker of the sympathetic activity. The response of the sympathetic activity to four different anaesthetic agents is shown to be heterogeneous, ranging from inhibition to stimulation. Sodium pentobarbital anaesthesia was associated with a statistically significant reduction of both NA-SOR (105.6+/-14.1 ng/kg/min, P<0. 01) and NA-MC (239.3+/-18.7 ml/kg/min, P<0.001) while plasma NA was not changed (438+/-47 pg/ml). Chloralose reduced NA-SOR (101.6+/-20. 1 ng/kg/min, P<0.05) while ketamine did not (150.6+/-35.5 ng/kg/min, n.s.): both compounds reduced NA-MC (257.9+/-27.8 ml/kg/min, P<0.01 and 265.8+/-34.3 ml/kg/min, P<0.05, respectively). Diethyl ether was shown to increase both NA-SOR (472.2+/-111 ng/kg/min, P<0.05) and plasma NA concentration (1589+/-436 pg/ml, P<0.01), while NA-MC remained unchanged. Thus, any

  17. Sympathetic activity induced by naloxone-precipitated morphine withdrawal is blocked in genetically engineered mice lacking functional CRF1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    García-Carmona, Juan-Antonio; Martínez-Laorden, Elena; Milanés, María-Victoria; Laorden, María-Luisa

    2015-02-15

    There is large body evidence indicating that stress can lead to cardiovascular disease. However, the exact brain areas and the mechanisms involved remain to be revealed. Here, we performed a series of experiments to characterize the role of CRF1 receptor (CRF1R) in the stress response induced by naloxone-precipitated morphine withdrawal. The experiments were performed in the hypothalamic paraventricular nucleus (PVN) ventrolateral medulla (VLM), brain regions involved in the regulation of cardiovascular activity, and in the right ventricle by using genetically engineered mice lacking functional CRF1R levels (KO). Mice were treated with increasing doses of morphine and withdrawal was precipitated by naloxone administration. Noradrenaline (NA) turnover, c-Fos, expression, PKA and TH phosphorylated at serine 40, was evaluated by high-performance liquid chromatography (HPLC), immunohistochemistry and immunoblotting. Morphine withdrawal induced an enhancement of NA turnover in PVN in parallel with an increase in TH neurons expressing c-Fos in VLM in wild-type mice. In addition we have demonstrated an increase in NA turnover, TH phosphorylated at serine 40 and PKA levels in heart. The main finding of the present study was that NA turnover, TH positive neurons that express c-Fos, TH phosphorylated at serine 40 and PKA expression observed during morphine withdrawal were significantly inhibited in CRF1R KO mice. Our results demonstrate that CRF/CRF1R activation may contribute to the adaptive changes induced by naloxone-precipitated withdrawal in the heart and in the brain areas which modulate the cardiac sympathetic function and suggest that CRF/CRF1R pathways could be contributing to cardiovascular disease associated to opioid addiction. - Highlights: • Naloxone-precipitated morphine withdrawal increases sympathetic activity in the PVN and heart. • Co-localization of TH phosphorylated at serine 40/c-Fos in the VLM after morphine withdrawal • Naloxone

  18. Liver afferents contribute to water drinking-induced sympathetic activation in human subjects: a clinical trial.

    Directory of Open Access Journals (Sweden)

    Marcus May

    Full Text Available UNLABELLED: Water drinking acutely increases sympathetic activity in human subjects. In animals, the response appears to be mediated through transient receptor potential channel TRPV4 activation on osmosensitive hepatic spinal afferents, described as osmopressor response. We hypothesized that hepatic denervation attenuates water drinking-induced sympathetic activation. We studied 20 liver transplant recipients (44±2.6 years, 1.2±0.1 years post transplant as model of hepatic denervation and 20 kidney transplant recipients (43±2.6 years, 0.8±0.1 years post transplant as immunosuppressive drug matched control group. Before and after 500 ml water ingestion, we obtained venous blood samples for catecholamine analysis. We also monitored brachial and finger blood pressure, ECG, and thoracic bioimpedance. Plasma norepinephrine concentration had changed by 0.01±0.07 nmol/l in liver and by 0.21±0.07 nmol/l in kidney transplant recipients (p<0.05 between groups after 30-40 minutes of water drinking. While blood pressure and systemic vascular resistance increased in both groups, the responses tended to be attenuated in liver transplant recipients. Our findings support the idea that osmosensitive hepatic afferents are involved in water drinking-induced sympathetic activation in human subjects. TRIAL REGISTRATION: ClinicalTrials.gov NCT01237431.

  19. Effects of tiotropium on sympathetic activation during exercise in stable chronic obstructive pulmonary disease patients

    Directory of Open Access Journals (Sweden)

    Kitada S

    2012-05-01

    Full Text Available Kenji Yoshimura, Ryoji Maekura, Toru Hiraga, Seigo Kitada, Keisuke Miki, Mari Miki, Yoshitaka TateishiDepartment of Respiratory Medicine, Toneyama National Hospital, Osaka, JapanBackground: Tiotropium partially relieves exertional dyspnea and reduces the risk of congestive heart failure in chronic obstructive pulmonary disease (COPD patients. However, its effect on the sympathetic activation response to exercise is unknown.Aims: This study aimed to determine whether tiotropium use results in a sustained reduction in sympathetic activation during exercise.Methods: We conducted a 12-week, open-label (treatments: tiotropium 18 µg or oxitropium 0.2 mg × 3 mg, crossover study in 17 COPD patients. Treatment order was randomized across subjects. The subjects underwent a pulmonary function test and two modes of cardiopulmonary exercise (constant work rate and incremental exercise testing using a cycle ergometer, with measurement of arterial catecholamines after each treatment period.Results: Forced expiratory volume in 1 second and forced vital capacity were significantly larger in the tiotropium treatment group. In constant exercise testing, exercise endurance time was longer, with improvement in dyspnea during exercise and reduction in dynamic hyperinflation in the tiotropium treatment group. Similarly, in incremental exercise testing, exercise time, carbon dioxide production, and minute ventilation at peak exercise were significantly higher in the tiotropium treatment group. Plasma norepinephrine concentrations and dyspnea intensity were also lower during submaximal isotime exercise and throughout the incremental workload exercise in the tiotropium treatment group.Conclusion: Tiotropium suppressed the increase of sympathetic activation during exercise at the end of the 6-week treatment, as compared with the effect of oxipropium. This effect might be attributed to improvement in lung function and exercise capacity and reduction in exertional dyspnea

  20. Muscle Sympathetic Nerve Activity During Intense Lower Body Negative Pressure to Presyncope in Humans

    Science.gov (United States)

    2009-08-24

    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, 1996). As diastolic arterial pressure... dogs . Am J Physiol Heart Circ Physiol 274, H1099–H1105. Preiss G & Polosa C (1974). Patterns of sympathetic neuron activity associated with Mayer waves...Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). Heart rate variability: standards of measurement

  1. Simultaneous parasympathetic and sympathetic activation reveals altered autonomic control of heart rate, vascular tension and epinephrine release in anaesthetized hypertensive rats

    Directory of Open Access Journals (Sweden)

    Torill eBerg

    2011-11-01

    Full Text Available Sympathetic hyperactivity and parasympathetic insufficiency characterize blood pressure control in genetic hypertension, but is difficult to demonstrate experimentally in anesthetized rats. Here we present a pharmacological approach to activate sympathetic and parasympathetic nerves simultaneously, and identify their contribution. Anaesthetized normotensive (WKY and spontaneously hypertensive rats (SHR were injected i.v. with 4-aminopyridine (4-AP, a voltage-sensitive K+ channel inhibitor. Blood pressure was recorded through a femoral artery catheter, cardiac output and heart rate (HR through an ascending aorta flow probe. Total peripheral vascular resistance (TPVR was calculated. 4-AP induced an immediate, atropine- and hexamethonium-sensitive bradycardia in WKY, and in strains, a subsequent, sustained tachycardia, and norepinephrine but not epinephrine release. The tachycardia was eliminated by reserpine, nadolol or right vagal nerve stimulation, but not adrenalectomy, scopolamine or hexamethonium. 4-AP-induced, atropine-sensitive bradycardia was observed in reserpinized or nadolol-treated SHR, where atropine also increased the late HR-response. 4-AP increased TPVR, transiently in WKY but sustained in SHR. Yohimbine but not phentolamine prevented TPVR down-regulation in WKY. Reserpine, phentolamine and prazosin eliminated the late vasoconstriction in SHR. Plasma epinephrine overflow increased in nadolol-treated SHR. Conclusions: 4-AP activated parasympathetic ganglion transmission and peripheral, sympathetic nerve norepinephrine release. The sympathetic component dominated the HR-response to 4-AP in SHR. α2-adrenceptor-dependent vasodilatation opposed norepinephrine-induced α1-adrenergic vasoconstriction in WKY, but not in SHR. A βAR-activated, probably vagal afferent mechanism, hampered adrenal epinephrine secretion in SHR. Thus, 4-AP exposed mechanisms, which contribute to hypertension, and may allow identification of the factors

  2. Change in hormones reflecting sympathetic activity in the Finnish sauna.

    Science.gov (United States)

    Lammintausta, R; Syvälahti, E; Pekkarinen, A

    1976-08-01

    The effects of the high temperature (80-120 degrees C) of the Finnish Sauna bath on the concentrations of growth hormone, immunoreactive insulin and renin activity in plasma, on blood glucose and on the urinary excretion of aldosterone, vanilmandelic acid and sodium of 55 healthy volunteers were studied. There was a significant increase in mean heart rate (62%), serum growth hormone (142%) and plasma renin activity (95%) in the Sauna. One hour after the Sauna bath the mean serum growth hormone had returned to the control level while plasma renin activity still remained higher (p less than 0.05) than before the Sauna bath. The serum insulin, blood sugar and urinary excretion of aldosterone and VMA did not change during or after Sauna bath. The urinary sodium excretion decreased significantly after the Sauna bath and the decrease was most striking (46%) during the first 6-hour period from the beginning of Sauna bath. Plasma renin activity values correlated positively with 12-hour urinary VMA excretion (p less than 0.01) and negatively with 6-hour urinary sodium excretion (p less than 0.05) before and after Sauna, suggesting the role of catecholamines and sodium depletion in renin response in Sauna.

  3. Adrenal G protein-coupled receptor kinase-2 in regulation of sympathetic nervous system activity in heart failure

    Institute of Scientific and Technical Information of China (English)

    Katie; A; Mc; Crink; Ava; Brill; Anastasios; Lymperopoulos

    2015-01-01

    Heart failure(HF), the number one cause of death in the western world, is caused by the insufficient performance of the heart leading to tissue underperfusion in response to an injury or insult. It comprises complex interactions between important neurohormonal mechanisms that try but ultimately fail to sustain cardiac output. The most prominent such mechanism is the sympathetic(adrenergic) nervous system(SNS), whose activity and outflow are greatly elevated in HF. SNS hyperactivity confers significant toxicity to the failing heart and markedly increases HF morbidity and mortality via excessive activation of adrenergic receptors, which are G protein-coupled receptors. Thus, ligand binding induces their coupling to heterotrimeric G proteins that transduce intracellular signals. G protein signaling is turned-off by the agonist-bound receptor phosphorylation courtesy of G protein-coupled receptor kinases(GRKs), followed by βarrestin binding, which prevents the GRK-phosphorylated receptor from further interaction with the G proteins and simultaneously leads it inside the cell(receptor sequestration). Recent evidence indicates that adrenal GRK2 and βarrestins can regulate adrenal catecholamine secretion, thereby modulating SNS activity in HF. The present review gives an account of all these studies on adrenal GRKs and βarrestins in HF and discusses the exciting new therapeutic possibilities for chronic HF offered by targeting these proteins pharmacologically.

  4. Leptin signaling in the nucleus tractus solitarii increases sympathetic nerve activity to the kidney.

    Science.gov (United States)

    Mark, Allyn L; Agassandian, Khristofor; Morgan, Donald A; Liu, Xuebo; Cassell, Martin D; Rahmouni, Kamal

    2009-02-01

    The hypothalamic arcuate nucleus was initially regarded as the principal site of leptin action, but there is increasing evidence for functional leptin receptors in extrahypothalamic sites, including the nucleus tractus solitarii (NTS). We demonstrated previously that arcuate injection of leptin increases sympathetic nerve activity (SNA) to brown adipose tissue and kidney. In this study, we tested the hypothesis that leptin signaling in the NTS affects sympathetic neural outflow. Using a stereotaxic device in anesthetized rats, we microinjected leptin (0.25 to 1.00 microg) or saline into the NTS while recording SNA to kidney and brown adipose tissue. Microinjection of leptin into the commissural and medial subnuclei of the caudal NTS at the level of the area postrema in Sprague-Dawley rats produced a dose-related increase in renal SNA (+112+/-15% with leptin 1 microg; n=7; Pleptin receptors, because it was not observed in Zucker obese rats that have a missense mutation in the leptin receptor. Rostral NTS injection of leptin failed to increase SNA, indicating that leptin signaling in the NTS is probably confined to the caudal NTS at the level of the area postrema. In summary, this study demonstrates that leptin signaling in the caudal NTS increases SNA to the kidney but not to the brown adipose tissue. The study strengthens the concept of a distributed brain network of leptin action and demonstrates that these distributed brain sites can mediate contrasting sympathetic responses to leptin.

  5. Augmented supraorbital skin sympathetic nerve activity responses to symptom trigger events in rosacea patients.

    Science.gov (United States)

    Metzler-Wilson, Kristen; Toma, Kumika; Sammons, Dawn L; Mann, Sarah; Jurovcik, Andrew J; Demidova, Olga; Wilson, Thad E

    2015-09-01

    Facial flushing in rosacea is often induced by trigger events. However, trigger causation mechanisms are currently unclear. This study tested the central hypothesis that rosacea causes sympathetic and axon reflex-mediated alterations resulting in trigger-induced symptomatology. Twenty rosacea patients and age/sex-matched controls participated in one or a combination of symptom triggering stressors. In protocol 1, forehead skin sympathetic nerve activity (SSNA; supraorbital microneurography) was measured during sympathoexcitatory mental (2-min serial subtraction of novel numbers) and physical (2-min isometric handgrip) stress. In protocol 2, forehead skin blood flow (laser-Doppler flowmetry) and transepithelial water loss/sweat rate (capacitance hygrometry) were measured during sympathoexcitatory heat stress (whole body heating by perfusing 50°C water through a tube-lined suit). In protocol 3, cheek, forehead, forearm, and palm skin blood flow were measured during nonpainful local heating to induce axon reflex vasodilation. Heart rate (HR) and mean arterial pressure (MAP) were recorded via finger photoplethysmography to calculate cutaneous vascular conductance (CVC; flux·100/MAP). Higher patient transepithelial water loss was observed (rosacea 0.20 ± 0.02 vs. control 0.10 ± 0.01 mg·cm(-2)·min(-1), P rosacea and controls, respectively) stress was augmented in rosacea (both P rosacea compared with controls. No axon reflex vasodilation differences were observed between groups. These data indicate that rosacea affects SSNA and that hyperresponsiveness to trigger events appears to have a sympathetic component.

  6. Effect of generalised sympathetic activation by cold pressor test on cerebral haemodynamics in healthy humans.

    Science.gov (United States)

    Roatta, S; Micieli, G; Bosone, D; Losano, G; Bini, R; Cavallini, A; Passatore, M

    1998-07-15

    There is no general agreement regarding several aspects of the role of the sympathetic system on cerebral haemodynamics such as extent of effectiveness, operational range and site of action. This study was planned to identify the effect of a generalised sympathetic activation on the cerebral haemodynamics in healthy humans before it is masked by secondary corrections, metabolic or myogenic in nature. A total of 35 healthy volunteers aged 20-35 underwent a 5 min lasting cold pressor test (CPT) performed on their left hand. The cerebral blood flow (CBF) velocity in the middle cerebral arteries and arterial blood pressure were recorded with transcranial Doppler sonography and with a non-invasive finger-cuff method, respectively. The ratio of arterial blood pressure to mean blood velocity (ABP/Vm) and Pulsatility Index (PI) were calculated throughout each trial. CPT induced an increase in mean ABP (range 2-54 mmHg depending on the subject) and only a slight, though significant, increase in blood velocity in the middle cerebral artery (+2.4 and +4.4% on ipsi- and contralateral side, respectively). During CPT, the ratio ABP/Vm increased and PI decreased in all subjects on both sides. These changes began simultaneously with the increase in blood pressure. The increase in ABP/Vm ratio is attributed to an increase in the cerebrovascular resistance, while the concomitant reduction in PI is interpreted as due to the reduction in the compliance of the middle cerebral artery. The results suggest that generalised increases in the sympathetic discharge, causing increases in ABP, can prevent concomitant increases in CBF by acting on both small resistance and large compliant vessels. This effect is also present when a slight increase in blood pressure occurs, which suggests a moderate increase in the sympathetic discharge, i.e. when ABP remains far below the upper limit of CBF autoregulation.

  7. Effect of contraction intensity on sympathetic nerve activity to active human skeletal muscle

    Directory of Open Access Journals (Sweden)

    Daniel eBoulton

    2014-06-01

    Full Text Available The effect of contraction intensity on muscle sympathetic nerve activity (MSNA to active human limbs has not been established. To address this, MSNA was recorded from the left peroneal nerve during and after dorsiflexion contractions sustained for two minutes by the left leg at ~10, 25 and 40 %MVC. To explore the involvement of the muscle metaboreflex, limb ischaemia was imposed midway during three additional contractions and maintained during recovery. Compared with total MSNA at rest (11.5 ± 4.1 mv.min-1, MSNA in the active leg increased significantly at the low (21.9 ± 13.6 mv.min-1, medium (30.5 ± 20.8 mv.min-1 and high (50.0 ± 24.5 mv.min-1 intensities. This intensity-dependent effect was more strongly associated with increases in MSNA burst amplitude than burst frequency. Total MSNA then returned to resting levels within the first minute of recovery. Limb ischaemia had no significant influence on the intensity-dependent rise in MSNA or its decline during recovery in the active leg. These findings reveal intensity-dependent increases in total MSNA and burst amplitude to contracting human skeletal muscle that do not appear to involve the muscle metaboreflex.

  8. Sympathetic Neurotransmitters Modulate Osteoclastogenesis and Osteoclast Activity in the Context of Collagen-Induced Arthritis.

    Directory of Open Access Journals (Sweden)

    Dominique Muschter

    Full Text Available Excessive synovial osteoclastogenesis is a hallmark of rheumatoid arthritis (RA. Concomitantly, local synovial changes comprise neuronal components of the peripheral sympathetic nervous system. Here, we wanted to analyze if collagen-induced arthritis (CIA alters bone marrow-derived macrophage (BMM osteoclastogenesis and osteoclast activity, and how sympathetic neurotransmitters participate in this process. Therefore, BMMs from Dark Agouti rats at different CIA stages were differentiated into osteoclasts in vitro and osteoclast number, cathepsin K activity, matrix resorption and apoptosis were analyzed in the presence of acetylcholine (ACh, noradrenaline (NA vasoactive intestinal peptide (VIP and assay-dependent, adenylyl cyclase activator NKH477. We observed modulation of neurotransmitter receptor mRNA expression in CIA osteoclasts without affecting protein level. CIA stage-dependently altered marker gene expression associated with osteoclast differentiation and activity without affecting osteoclast number or activity. Neurotransmitter stimulation modulated osteoclast differentiation, apoptosis and activity. VIP, NA and adenylyl cyclase activator NKH477 inhibited cathepsin K activity and osteoclastogenesis (NKH477, 10(-6 M NA whereas ACh mostly acted pro-osteoclastogenic. We conclude that CIA alone does not affect metabolism of in vitro generated osteoclasts whereas stimulation with NA, VIP plus specific activation of adenylyl cyclase induced anti-resorptive effects probably mediated via cAMP signaling. Contrary, we suggest pro-osteoclastogenic and pro-resorptive properties of ACh mediated via muscarinic receptors.

  9. Activation of cardiac ryanodine receptors by cardiac glycosides.

    Science.gov (United States)

    Sagawa, Toshio; Sagawa, Kazuko; Kelly, James E; Tsushima, Robert G; Wasserstrom, J Andrew

    2002-03-01

    This study investigated the effects of cardiac glycosides on single-channel activity of the cardiac sarcoplasmic reticulum (SR) Ca2+ release channels or ryanodine receptor (RyR2) channels and how this action might contribute to their inotropic and/or toxic actions. Heavy SR vesicles isolated from canine left ventricle were fused with artificial planar lipid bilayers to measure single RyR2 channel activity. Digoxin and actodigin increased single-channel activity at low concentrations normally associated with therapeutic plasma levels, yielding a 50% of maximal effect of approximately 0.2 nM for each agent. Channel activation by glycosides did not require MgATP and occurred only when digoxin was applied to the cytoplasmic side of the channel. Similar results were obtained in human RyR2 channels; however, neither the crude skeletal nor the purified cardiac channel was activated by glycosides. Channel activation was dependent on [Ca2+] on the luminal side of the bilayer with maximal stimulation occurring between 0.3 and 10 mM. Rat RyR2 channels were activated by digoxin only at 1 microM, consistent with the lower sensitivity to glycosides in rat heart. These results suggest a model in which RyR2 channel activation by digoxin occurs only when luminal [Ca2+] was increased above 300 microM (in the physiological range). Consequently, increasing SR load (by Na+ pump inhibition) serves to amplify SR release by promoting direct RyR2 channel activation via a luminal Ca2+-sensitive mechanism. This high-affinity effect of glycosides could contribute to increased SR Ca2+ release and might play a role in the inotropic and/or toxic actions of glycosides in vivo.

  10. Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Ibrahim M Salman

    2015-08-01

    Full Text Available Chronic kidney disease (CKD is associated with sympathetic hyperactivity and impaired blood pressure control reflex responses, yet direct evidence demonstrating these features of autonomic dysfunction in conscious animals is still lacking. Here we measured renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP using telemetry-based recordings in a rat model of CKD, the Lewis Polycystic Kidney (LPK rat, and assessed responses to chemoreflex activation and acute stress. Male LPK and Lewis control animals (total n=16 were instrumented for telemetric recording of RSNA and MAP. At 12–13 weeks-of-age, resting RSNA and MAP, sympathetic and haemodynamic responses to both peripheral (hypoxia: 10% O2 and central chemoreflex (hypercapnia: 7% CO2 activation and acute stress (open-field exposure, were measured. As indicators of renal function, urinary protein (UPro and creatinine (Ucr levels were assessed. LPK rats had higher resting RSNA (1.2±0.1 vs. 0.6±0.1 µV, p<0.05 and MAP (151±8 vs. 97±2 mmHg, p<0.05 compared to Lewis. MAP was negatively correlated with Ucr (r=-0.80, p=0.002 and positively correlated with RSNA (r=0.66, p=0.014, with multiple linear regression modeling indicating the strongest correlation was with Ucr. RSNA and MAP responses to activation of the central chemoreflex and open-field stress were reduced in the LPK relative to the Lewis (all p<0.05. This is the first description of dual conscious telemetry recording of RSNA and MAP in a genetic rodent model of CKD. Elevated RSNA is likely a key contributor to the marked hypertension in this model, while attenuated RSNA and MAP responses to central chemoreflex activation and acute stress in the LPK indicate possible deficits in the neural processing of autonomic outflows evoked by these sympathoexcitatory pathways.

  11. Sympathetic nervous system promotes hepatocarcinogenesis by modulating inflammation through activation of alpha1-adrenergic receptors of Kupffer cells.

    Science.gov (United States)

    Huan, Hong-Bo; Wen, Xu-Dong; Chen, Xue-Jiao; Wu, Lin; Wu, Li-Li; Zhang, Liang; Yang, Da-Peng; Zhang, Xia; Bie, Ping; Qian, Cheng; Xia, Feng

    2017-01-01

    The sympathetic nervous system (SNS) is known to play a significant role in tumor initiation and metastasis. Hepatocellular carcinoma (HCC) frequently occurs in cirrhotic livers after chronic inflammation, and the SNS is hyperactive in advanced liver cirrhosis. However, it remains unclear whether the SNS promotes hepatocarcinogenesis by modulating chronic liver inflammation. In this study, a retrospective pathological analysis and quantification of sympathetic nerve fiber densities (tyrosine hydroxylase, TH(+)) in HCC patients, and diethylnitrosamine (DEN)-induced hepatocarcinogenesis in rats were performed. Our data showed that high density of sympathetic nerve fibers and α1-adrenergic receptors (ARs) of Kupffer cells (KCs) were associated with a poor prognosis of HCC. Sympathetic denervation or blocking of α1-ARs decreased DEN-induced HCC incidence and tumor development. In addition, synergistic effects of interleukin-6 (IL-6) and transforming growth factor-beta (TGF-β) in hepatocarcinogenesis were observed. The suppression of the SNS reduced IL-6 and TGF-β expression, which suppressed hepatocarcinogenesis, and KCs play a key role in this process. After the ablation of KCs, IL-6 and TGF-β expression and the development of HCC were inhibited. This study demonstrates that sympathetic innervation is crucial for hepatocarcinogenesis and that the SNS promotes hepatocarcinogenesis by activating α1-ARs of KCs to boost the activation of KCs and to maintain the inflammatory microenvironment. These results indicate that sympathetic denervation or α1-ARs blockage may represent novel treatment approaches for HCC.

  12. Use of iodine-123 metaiodobenzylguanidine scintigraphy to assess cardiac sympathetic denervation and the impact of hypertension in patients with non-insulin-dependent diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Koji; Nakatani, Yuko; Onishi, Satoshi [Dept. of Internal Medicine, Keihanna Hospital, Hirakata City, Osaka (Japan); Utsunomiya, Keita; Saika, Yoshinori [Dept. of Radiology, Keihanna Hospital, Hirakata City (Japan); Iwasaka, Toshiji [Cardiovascular Center, Kansai Medical University, Osaka (Japan)

    1999-10-01

    The objectives of this clinical study using iodine-123 metaiodobenzylguanidine (MIBG) scintigraphy were (a) to evaluate cardiac sympathetic denervation in non-insulin-dependent diabetes mellitus (NIDDM) patients with and without hypertension and (b) to investigate the relation between cardiac sympathetic denervation and prognosis in NIDDM patients. We compared clinical characteristics and MIBG data [heart to mediastinum (H/M) ratio and % washout rate (WR)] in a control group and NIDDM patients with and without hypertension. MIBG scintigraphy was performed in 11 controls and 82 NIDDM patients without overt cardiovascular disease except for hypertension (systolic blood pressure {>=}140 and/or diastolic blood pressure {>=}90 mmHg). After MIBG examination, blood pressure was measured regularly in all NIDDM patients. There were significant differences between 65 normotensive and 17 hypertensive NIDDM patients with respect to age (55{+-}11 vs 63{+-}12 years, respectively, P<0.05), prevalence of diabetic retinopathy (12% vs 35%, respectively, P<0.05) and systolic blood pressure (120{+-}12 vs 145{+-}16 mmHg, respectively, P<0.001). The H/M ratio in hypertensive NIDDM patients was significantly lower than in the control group (1.81{+-}0.29 vs 2.27{+-}0.20, respectively, P<0.01). During the follow-up period (18{+-} 12 months), 17 NIDDM patients newly developed hypertension after MIBG examination. There were no significant differences in their clinical characteristics compared with persistently normotensive or hypertensive NIDDM patients. %WR in patients with new onset hypertension was significantly higher than in the control group (30.88%{+-}16.87% vs 12.89%{+-}11.94%, respectively, P<0.05). Moreover, in these patients %WR correlated with duration from the date of MIBG scintigraphy to the onset of hypertension (r=-0.512, P<0.05). Five NIDDM patients died during the follow-up period (four newly hypertensive patients and one normotensive patient). There were significant

  13. Reactive oxygen species in the paraventricular nucleus of the hypothalamus alter sympathetic activity during metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    JOSIANE CAMPOS CRUZ

    2015-12-01

    Full Text Available The paraventricular nucleus of the hypothalamus (PVN contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II, which activates AT1 receptors in the circumventricular organs (OCVs, mainly in the subfornical organ (SFO. Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS, leading to increases in sympathetic nerve activity (SNA. Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS: dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS.

  14. Effect of pioglitazone on muscle sympathetic nerve activity in type 2 diabetes mellitus with α-glucosidase inhibitor.

    Science.gov (United States)

    Kobayashi, Daisuke; Takamura, Masayuki; Murai, Hisayoshi; Usui, Soichiro; Ikeda, Tatsunori; Inomata, Jun-ichiro; Takashima, Shin-ichiro; Kato, Takeshi; Furusho, Hiroshi; Takeshita, Yumie; Ota, Tsuguhito; Takamura, Toshinari; Kaneko, Shuichi

    2010-12-08

    Activation of the sympathetic nervous system is augmented in patients with type 2 diabetes mellitus (DM). Pioglitazone, an anti-diabetic drug, improves insulin resistance, but its influence on sympathetic nerve activity is not clear. To identify the relationship between insulin resistance and sympathetic activity, we examined muscle sympathetic nerve activity (MSNA) in controlled type 2 DM patients with alpha-glucosidase inhibitor (GI). We measured MSNA and calculated homeostasis model assessment of insulin resistance index (HOMA-IR) in twelve DM patients treated with alpha-GI and thirteen age-matched healthy subjects. In DM patients with alpha-GI, all parameters were reexamined after three months of treatment with pioglitazone. MSNA and HOMA-IR were significantly greater in DM patients with alpha-GI compared to healthy subjects. Hemoglobin A1c did not differ in DM patients before and after pioglitazone. However, pioglitazone significantly decreased MSNA in DM patients compared with alpha-GI (21.7±5.2 vs. 32.0±6.8 burst/min, ppioglitazone was similar to that in healthy subjects. HOMA-IR significantly decreased after pioglitazone, and a significant relationship was found between the absolute change in MSNA and HOMA-IR (r=0.65, ppioglitazone provides an additional effect on inhibition of sympathetic nerve activity.

  15. Activation of NTS A2a adenosine receptors differentially resets baroreflex control of renal vs. adrenal sympathetic nerve activity.

    Science.gov (United States)

    Ichinose, Tomoko K; O'Leary, Donal S; Scislo, Tadeusz J

    2009-04-01

    The role of nucleus of solitary tract (NTS) A(2a) adenosine receptors in baroreflex mechanisms is controversial. Stimulation of these receptors releases glutamate within the NTS and elicits baroreflex-like decreases in mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas inhibition of these receptors attenuates HR baroreflex responses. In contrast, stimulation of NTS A(2a) adenosine receptors increases preganglionic adrenal sympathetic nerve activity (pre-ASNA), and the depressor and sympathoinhibitory responses are not markedly affected by sinoaortic denervation and blockade of NTS glutamatergic transmission. To elucidate the role of NTS A(2a) adenosine receptors in baroreflex function, we compared full baroreflex stimulus-response curves for HR, RSNA, and pre-ASNA (intravenous nitroprusside/phenylephrine) before and after bilateral NTS microinjections of selective adenosine A(2a) receptor agonist (CGS-21680; 2.0, 20 pmol/50 nl), selective A(2a) receptor antagonist (ZM-241385; 40 pmol/100 nl), and nonselective A(1) + A(2a) receptor antagonist (8-SPT; 1 nmol/100 nl) in urethane/alpha-chloralose anesthetized rats. Activation of A(2a) receptors decreased the range, upper plateau, and gain of baroreflex-response curves for RSNA, whereas these parameters all increased for pre-ASNA, consistent with direct effects of the agonist on regional sympathetic activity. However, no resetting of baroreflex-response curves along the MAP axis occurred despite the marked decreases in baseline MAP. The antagonists had no marked effects on baseline variables or baroreflex-response functions. We conclude that the activation of NTS A(2a) adenosine receptors differentially alters baroreflex control of HR, RSNA, and pre-ASNA mostly via non-baroreflex mechanism(s), and these receptors have virtually no tonic action on baroreflex control of these sympathetic outputs.

  16. Usefulness of {sup 123}I-Meta-iodobenzylguanidine (MIBG) myocardial scintigraphy for evaluation of cardiac sympathetic nervous system function in diabetic patients.

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Koji; Nakatani, Yuko; Doi, Kenji; Adachi, Gakuji; Takada, Kou

    2001-11-01

    The cardiac sympathetic nervous system function of diabetic patients with no definite cardiovascular complications other than hypertension was evaluated by {sup 123}I -MIBG myocardial scintigraphy. The subjects consisted of 82 diabetic patients, 59 men, 23 women, mean age 57 years, 17 with hypertension and 65 with normal blood pressure, and they were compared with normal controls (8 men and 3 women, mean age 54 years). Myocardial scintigraphy was performed 10 minutes and 4 hours after administration of MIBG. The superior mediastinum and whole myocardium were set as regions of interest, and the heart-to-mediastinum ratio (H/M ratio) and the washout rate (%WR) were calculated. The mean observation period was 18{+-}12 months, and 17 of the 65 diabetic patients with normal blood pressure before the study developed hypertension during the observation period. There were significant differences in H/M ratio and %WR between the diabetic patients and normal controls (H/M ratio; 1.96{+-}0.34 vs 2.27{+-}0.20, %WR; 24.71{+-}16.99% vs 12.89{+-}11.94). The diabetic patients with hypertension had higher morbidity with diabetic retinopathy and a lower H/M ratio. The 17 patients who developed hypertension during the observation period showed an increase in %WR and a reduction in the H/M ratio. Five patients who died during the observation period had a reduced H/M ratio and increased of %WR. {sup 123}I-MIBG myocardial scintigraphy in diabetic patients was shown to be useful for detecting cardiac sympathetic nervous system dysfunction, predicting the development of hypertension, and identifying patients who had a poor outcome. Diabetic patients with abnormal signals on MIBG myocardial scintigraphy need to be monitored much more carefully. (K.H.)

  17. Diesel Exhaust-Induced Cardiac Dysfunction Is Mediated by Sympathetic Dominance in Heart Failure-Prone Rats

    Science.gov (United States)

    Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) may provoke cardiac events through defective co-ordination of the two main autonomic nervous system (ANS) branches. We exposed heart failure-prone rats once to DE (500 g/m3 ...

  18. Acupuncture Attenuates Renal Sympathetic Activity and Blood Pressure via Beta-Adrenergic Receptors in Spontaneously Hypertensive Rats

    Science.gov (United States)

    Ye, Yang; Wang, Xue-Rui; Li, Fang; Xiao, Ling-Yong; Shi, Guang-Xia

    2017-01-01

    The sympathetic nervous system, via epinephrine and norepinephrine, regulates β-adrenergic receptor (β-AR) expression, and renal sympathetic activation causes sustained increases in blood pressure by enhanced renin release. In this study, we aim to investigate the effect and underlying mechanism of acupuncture at Taichong (LR3) on renal sympathetic activity in spontaneously hypertensive rats. Unanesthetized rats were subject to daily acupuncture for 2 weeks. Mean blood pressure (MBP) and heart rate variability (HRV) were monitored at days 0, 7, and 14 by radiotelemetry. After euthanasia on the 14th day, blood and the kidneys were collected and subject to the following analyses. Epinephrine and norepinephrine were detected by ELISA. The expression of β-ARs was studied by western blotting and PCR. The renin content was analyzed by radioimmunoassay. 14-day acupuncture significantly attenuates the increase of MBP. The HRV indices, the standard deviation of all normal NN intervals (SDNN), and the ratio of the low-frequency component to the high-frequency component (LF/HF) were improved following acupuncture. Renal sympathetic activation induced upregulation of epinephrine, norepinephrine, and renin content were attenuated by acupuncture. In addition, acupuncture decreased β1-AR expression and improved β2-AR expression. These results indicated that acupuncture relieves the increased MBP via the regulation of renal sympathetic activity and β-ARs. PMID:28270938

  19. Neuropeptide Y level in paraventricular nucleus of experimental diabetic rats: correlation with sympathetic activity and body weight

    Directory of Open Access Journals (Sweden)

    Pallab K Ganguly

    2010-09-01

    Full Text Available Pallab K GangulyCollege of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi ArabiaAbstract: Neuropeptide Y (NPY, colocalized with norepinephrine neuron, is known to modulate sympathetic activity and feeding behavior. Although experimental type 1 diabetes has increased sympathetic activity at the early part of the disease process, little effort was made so far to understand the correlation between NPY level in the hypothalamus and sympathetic activity in diabetes. Male Sprague Dawley rats were made diabetic by a single injection of streptozotocin (65 mg/kg body weight, IV. The animals were then studied after 2, 4, and 8 weeks. Control animals received only citrate vehicle. In an effort to clarify the modulatory effect of NPY at the early stage of diabetes, the paraventricular nucleus (PVN of hypothalamus was sampled by microdialysis for NPY and norepinephrine level. While NPY level was increased immediately within 2 weeks (along with feeding behavior, norepinephrine level was increased only after 8 weeks following injection of streptozotocin. The animals lost significant weight. These results are interpreted to mean that a strong correlation exists between the feeding behavior and NPY level in PVN. Since NPY is known to inhibit sympathetic activity it is possible that NPY receptors are down-regulated following diabetes. The higher level of norepinephrine indicating higher sympathetic activity did not allow the animals to gain weight. In addition, controversy exists regarding pleiotropic activities of NPY related to the feeding behavior of these animals.Keywords: streptozotocin-induced diabetes, increased sympathetic activity, feeding behavior, down-regulation of NPY receptors

  20. Strength training reduces arterial blood pressure but not sympathetic neural activity in young normotensive subjects

    Science.gov (United States)

    Carter, Jason R.; Ray, Chester A.; Downs, Emily M.; Cooke, William H.

    2003-01-01

    The effects of resistance training on arterial blood pressure and muscle sympathetic nerve activity (MSNA) at rest have not been established. Although endurance training is commonly recommended to lower arterial blood pressure, it is not known whether similar adaptations occur with resistance training. Therefore, we tested the hypothesis that whole body resistance training reduces arterial blood pressure at rest, with concomitant reductions in MSNA. Twelve young [21 +/- 0.3 (SE) yr] subjects underwent a program of whole body resistance training 3 days/wk for 8 wk. Resting arterial blood pressure (n = 12; automated sphygmomanometer) and MSNA (n = 8; peroneal nerve microneurography) were measured during a 5-min period of supine rest before and after exercise training. Thirteen additional young (21 +/- 0.8 yr) subjects served as controls. Resistance training significantly increased one-repetition maximum values in all trained muscle groups (P training did not affect MSNA or heart rate. Arterial blood pressures and MSNA were unchanged, but heart rate increased after 8 wk of relative inactivity for subjects in the control group (61 +/- 2 to 67 +/- 3 beats/min; P = 0.01). These results indicate that whole body resistance exercise training might decrease the risk for development of cardiovascular disease by lowering arterial blood pressure but that reductions of pressure are not coupled to resistance exercise-induced decreases of sympathetic tone.

  1. Effect of cortisol on muscle sympathetic nerve activity in Pima Indians and Caucasians.

    Science.gov (United States)

    Vozarova, Barbora; Weyer, Christian; Snitker, Soren; Gautier, Jean-Francois; Cizza, Giovanni; Chrousos, George; Ravussin, Eric; Tataranni, P Antonio

    2003-07-01

    The hypothalamo-pituitary-adrenal axis and sympathetic nervous system (SNS) interact to maintain cardiovascular and metabolic homeostasis, especially during stress. Pima Indians have a low SNS activity, which may contribute to both their increased risk of obesity and reduced risk of hypertension. Although glucocorticoids inhibit SNS activity, Pima Indians are not hypercortisolemic compared with Caucasians. This does not exclude the possibility that the SNS is more responsive to an inhibitory effect of cortisol in the former than in the latter group. We measured fasting plasma ACTH and cortisol and muscle SNS activity [muscle sympathetic nervous system activity (MSNA), microneurography] in 58 males [27 Pimas/31 Caucasians]. Seven Pimas and 12 Caucasians were randomized to a double-blind, placebo-controlled, cross-over study to examine the effect of overnight partial chemical adrenalectomy (metyrapone) followed by cortisol replacement (hydrocortisone) on plasma ACTH, cortisol, and MSNA. There were no ethnic differences in fasting plasma ACTH or cortisol, but MSNA adjusted for percent body fat was lower in Pimas than in Caucasians (P fasting cortisol and basal MSNA. Administration of metyrapone did not lead to significant changes in MSNA. In response to a hydrocortisone infusion, MSNA decreased in Pima Indians (P = 0.03) but not in Caucasians (P = 0.7). Our data indicate that the low SNS activity that predisposes Pima Indians to obesity is not due to a tonic inhibitory effect of cortisol. However, an acute release of cortisol is likely to more effectively contain sympathoexcitation during stress in Pima Indians than in Caucasians, which may be an important mechanism of cardioprotection in this Native American population.

  2. Alzheimer caregiver stress: basal natural killer cell activity, pituitary-adrenal cortical function, and sympathetic tone.

    Science.gov (United States)

    Irwin, M; Hauger, R; Patterson, T L; Semple, S; Ziegler, M; Grant, I

    1997-01-01

    The association between Alzheimer caregiving and natural killer (NK) cell activity and basal plasma levels of adrenocorticotropic hormone (ACTH), cortisol, beta-endorphin, prolactin, epinephrine, norepinephrine, and neuropeptide Y was determined in 100 spousal Alzheimer caregivers and 33 age- and gender-comparable control volunteers upon intake into a study of the psychological and physiologic impact of caregiving. The relationship between these physiologic measures and individual characteristics such as age, gender, medical status, severity of stress, severity of depressive symptoms, and caregiver burden was tested. In addition, the association between NK activity and alterations of the neuroendocrine measures was investigated. As compared to controls, the Alzheimer caregivers had similar levels of NK activity and of basal plasma neuroendocrine hormones and sympathetic measures. While older age and male gender status were associated with increased levels of ACTH, neither medical caseness, severity of life stress, nor severity of depressive symptoms was associated with alterations in any of the multiple physiologic domains. Classification of Alzheimer caregiver burden identified caregivers who were mismatched in terms of the amount of care they were required to provide and the amount of respite time received. The mismatched caregivers had significantly higher basal plasma ACTH but no change in other physiological measures, as compared to non-mismatched caregivers. NK activity was negatively correlated with plasma levels of neuropeptide Y but not with any of the other neuroendocrine measures. Based on this cross-sectional evaluation of NK activity and neuroendocrine and sympathetic measures, we conclude that most Alzheimer caregivers do not show evidence of altered basal physiology.

  3. [Sympathetic nerve activity in chronic renal failure - what are the therapeutic options?].

    Science.gov (United States)

    Hausberg, M; Tokmak, F

    2013-11-01

    Patients with chronic renal failure are characterized by a tonic elevation of sympathetic tone. This factor largely contributes to their increased cardiovascular risk. The increased sympathetic drive is caused by activiation of renal afferent fibers in the diseased kidneys. Therapeutic options for hypertensive patients with chronic renal failure with respect to their sympathetic overactivity are inhibitors of the renin-angiotensin-system and central sympatholytic drugs. The role of catheter-based renal denervation in these patients is currently under investigation.

  4. Frontal midline theta rhythm is correlated with cardiac autonomic activities during the performance of an attention demanding meditation procedure.

    Science.gov (United States)

    Kubota, Y; Sato, W; Toichi, M; Murai, T; Okada, T; Hayashi, A; Sengoku, A

    2001-04-01

    Frontal midline theta rhythm (Fm theta), recognized as distinct theta activity on EEG in the frontal midline area, reflects mental concentration as well as meditative state or relief from anxiety. Attentional network in anterior frontal lobes including anterior cingulate cortex is suspected to be the generator of this activity, and the regulative function of the frontal neural network over autonomic nervous system (ANS) during cognitive process is suggested. However no studies have examined peripheral autonomic activities during Fm theta induction, and interaction of central and peripheral mechanism associated with Fm theta remains unclear. In the present study, a standard procedure of Zen meditation requiring sustained attention and breath control was employed as the task to provoke Fm theta, and simultaneous EEG and ECG recordings were performed. For the subjects in which Fm theta activities were provoked (six men, six women, 48% of the total subjects), peripheral autonomic activities were evaluated during the appearance of Fm theta as well as during control periods. Successive inter-beat intervals were measured from the ECG, and a recently developed method of analysis by Toichi et al. (J. Auton. Nerv. Syst. 62 (1997) 79-84) based on heart rate variability was used to assess cardiac sympathetic and parasympathetic functions separately. Both sympathetic and parasympathetic indices were increased during the appearance of Fm theta compared with control periods. Theta band activities in the frontal area were correlated negatively with sympathetic activation. The results suggest a close relationship between cardiac autonomic function and activity of medial frontal neural circuitry.

  5. Perfusion of isolated carotid sinus with hydrogen sulfide attenuated the renal sympathetic nerve activity in anesthetized male rats.

    Science.gov (United States)

    Guo, Q; Wu, Y; Xue, H; Xiao, L; Jin, S; Wang, R

    2016-07-18

    The purpose of the present study was to define the indirect central effect of hydrogen sulfide (H(2)S) on baroreflex control of sympathetic outflow. Perfusing the isolated carotid sinus with sodium hydrosulfide (NaHS), a H(2)S donor, the effect of H(2)S was measured by recording changes of renal sympathetic nerve activity (RSNA) in anesthetized male rats. Perfusion of isolated carotid sinus with NaHS (25, 50, 100 micromol/l) dose and time-dependently inhibited sympathetic outflow. Preconditioning of glibenclamide (20 micromol/l), a ATP-sensitive K(+) channels (K(ATP)) blocker, the above effect of NaHS was removed. With 1, 4-dihydro-2, 6-dimethyl-5-nitro-4-(2-[trifluoromethyl] phenyl) pyridine-3-carboxylic acid methyl ester (Bay K8644, 500 nmol/l) pretreatment, which is an agonist of L-calcium channels, the effect of NaHS was eliminated. Perfusion of cystathionine gamma-lyase (CSE) inhibitor, DL-propargylglycine (PPG, 200 micromol/l), increased sympathetic outflow. The results show that exogenous H(2)S in the carotid sinus inhibits sympathetic outflow. The effect of H(2)S is attributed to opening K(ATP) channels and closing the L-calcium channels.

  6. Sensing Cardiac Electrical Activity With a Cardiac Myocyte--Targeted Optogenetic Voltage Indicator

    NARCIS (Netherlands)

    Chang Liao, Mei-Ling; de Boer, Teun P; Mutoh, Hiroki; Raad, Nour; Richter, Claudia; Wagner, Eva; Downie, Bryan R; Unsöld, Bernhard; Arooj, Iqra; Streckfuss-Bömeke, Katrin; Döker, Stephan; Luther, Stefan; Guan, Kaomei; Wagner, Stefan; Lehnart, Stephan E; Maier, Lars S; Stühmer, Walter; Wettwer, Erich; van Veen, Toon; Morlock, Michael M; Knöpfel, Thomas; Zimmermann, Wolfram-Hubertus

    2015-01-01

    RATIONALE: Monitoring and controlling cardiac myocyte activity with optogenetic tools offer exciting possibilities for fundamental and translational cardiovascular research. Genetically encoded voltage indicators may be particularly attractive for minimal invasive and repeated assessments of cardiac

  7. Activation of NTS A(1) adenosine receptors inhibits regional sympathetic responses evoked by activation of cardiopulmonary chemoreflex.

    Science.gov (United States)

    Ichinose, Tomoko K; Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2012-09-01

    Previously we have shown that adenosine operating via the A(1) receptor subtype may inhibit glutamatergic transmission in the baroreflex arc within the nucleus of the solitary tract (NTS) and differentially increase renal (RSNA), preganglionic adrenal (pre-ASNA), and lumbar (LSNA) sympathetic nerve activity (ASNA>RSNA≥LSNA). Since the cardiopulmonary chemoreflex and the arterial baroreflex are mediated via similar medullary pathways, and glutamate is a primary transmitter in both pathways, it is likely that adenosine operating via A(1) receptors in the NTS may differentially inhibit regional sympathetic responses evoked by activation of cardiopulmonary chemoreceptors. Therefore, in urethane-chloralose-anesthetized rats (n = 37) we compared regional sympathoinhibition evoked by the cardiopulmonary chemoreflex (activated with right atrial injections of serotonin 5HT(3) receptor agonist phenylbiguanide, PBG, 1-8 μg/kg) before and after selective stimulation of NTS A(1) adenosine receptors [microinjections of N(6)-cyclopentyl adenosine (CPA), 0.033-330 pmol/50 nl]. Activation of cardiopulmonary chemoreceptors evoked differential, dose-dependent sympathoinhibition (RSNA>ASNA>LSNA), and decreases in arterial pressure and heart rate. These differential sympathetic responses were uniformly attenuated in dose-dependent manner by microinjections of CPA into the NTS. Volume control (n = 11) and blockade of adenosine receptor subtypes in the NTS via 8-(p-sulfophenyl)theophylline (8-SPT, 1 nmol in 100 nl) (n = 9) did not affect the reflex responses. We conclude that activation of NTS A(1) adenosine receptors uniformly inhibits neural and cardiovascular cardiopulmonary chemoreflex responses. A(1) adenosine receptors have no tonic modulatory effect on this reflex under normal conditions. However, when adenosine is released into the NTS (i.e., during stress or severe hypotension/ischemia), it may serve as negative feedback regulator for depressor and sympathoinhibitory reflexes

  8. Arterial baroreflex control of muscle sympathetic nerve activity under orthostatic stress in humans

    Directory of Open Access Journals (Sweden)

    Masashi eIchinose

    2012-08-01

    Full Text Available The mechanisms by which blood pressure is maintained against the orthostatic stress caused by gravity’s effect on the fluid distribution within the body are important issues in physiology, especially in humans who usually adopt an upright posture. Peripheral vasoconstriction and increased heart rate are major cardiovascular adjustments to orthostatic stress and comprise part of the reflex response elicited via the carotid sinus and aortic baroreceptors (arterial baroreflex: ABR and cardiopulmonary stretch receptors (cardiopulmonary baroreflex. In a series of studies, we have been characterizing the ABR-mediated regulation of cardiovascular hemodynamics and muscle sympathetic nerve activity (MSNA while applying orthostatic stress in humans. We have found that under orthostatic stress, dynamic carotid baroreflex responses are modulated as exemplified by the increases in the MSNA, blood pressure and heart rate responses elicited by carotid baroreflex unloading and the shorter period of MSNA suppression, comparable reduction and faster recovery of MAP and greater heart rate response to carotid baroreflex stimulation. Our results also show that ABR-mediated beat-to-beat control over burst incidence, burst strength and total MSNA is progressively modulated as orthostatic stress is increased until induction of syncope, and that the sensitivity of ABR control over the aforementioned MSNA variables is substantially reduced during the development of syncope. We suggest that in humans, the modulation of ABR function under orthostatic stress may be one of the mechanisms by which blood pressure is maintained and orthostatic hypotension limited, and impairment of ABR control over sympathetic vasomotor activity leads to the severe hypotension associated with orthostatic syncope.

  9. Effects of acute administration of selective serotonin reuptake inhibitors on sympathetic nerve activity

    Energy Technology Data Exchange (ETDEWEB)

    Tiradentes, R.V. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Pires, J.G.P. [Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Escola de Medicina da Empresa Brasileira de Ensino, Vitória, ES (Brazil); Silva, N.F. [Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Ramage, A.G. [Department of Neuroscience, Physiology and Pharmacology, University College London, London (United Kingdom); Santuzzi, C.H. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Futuro, H.A. Neto [Escola de Medicina da Empresa Brasileira de Ensino, Vitória, ES (Brazil); Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Escola Superior de Ciências da Saúde, Santa Casa de Misericórdia de Vitória, Vitória, ES (Brazil)

    2014-05-30

    Serotonergic mechanisms have an important function in the central control of circulation. Here, the acute effects of three selective serotonin (5-HT) reuptake inhibitors (SSRIs) on autonomic and cardiorespiratory variables were measured in rats. Although SSRIs require 2-3 weeks to achieve their full antidepressant effects, it has been shown that they cause an immediate inhibition of 5-HT reuptake. Seventy male Wistar rats were anesthetized with urethane and instrumented to record blood pressure, heart rate, renal sympathetic nerve activity (RSNA), and respiratory frequency. At lower doses, the acute cardiovascular effects of fluoxetine, paroxetine and sertraline administered intravenously were insignificant and variable. At middle and higher doses, a general pattern was observed, with significant reductions in sympathetic nerve activity. At 10 min, fluoxetine (3 and 10 mg/kg) reduced RSNA by -33±4.7 and -31±5.4%, respectively, without changes in blood pressure; 3 and 10 mg/kg paroxetine reduced RSNA by -35±5.4 and -31±5.5%, respectively, with an increase in blood pressure +26.3±2.5; 3 mg/kg sertraline reduced RSNA by -59.4±8.6%, without changes in blood pressure. Sympathoinhibition began 5 min after injection and lasted approximately 30 min. For fluoxetine and sertraline, but not paroxetine, there was a reduction in heart rate that was nearly parallel to the sympathoinhibition. The effect of these drugs on the other variables was insignificant. In conclusion, acute peripheral administration of SSRIs caused early autonomic cardiovascular effects, particularly sympathoinhibition, as measured by RSNA. Although a peripheral action cannot be ruled out, such effects are presumably mostly central.

  10. Increased sympathetic nerve activity correlates with neurovascular compression at the rostral ventrolateral medulla.

    Science.gov (United States)

    Sendeski, Mauricio M; Consolim-Colombo, Fernanda Marciano; Leite, Claudia Costa; Rubira, Marcelo Custódio; Lessa, Patricia; Krieger, Eduardo Moacyr

    2006-05-01

    We used microneurography to measure muscle sympathetic nerve activity (MSNA) in 25 hypertensive subjects and correlated these results with the presence or absence of signs of neurovascular compression (NVC) at the rostral ventrolateral (RVL) medulla on MRI. Subjects were divided into 3 groups based on MRI findings: NVC-, no MRI evidence of NVC (N=9); NVC+contact, image showing artery in contact but not compressing the RVL medulla (N=8); and NVC+compression, image showing arterial compression of the RVL medulla (N=8). The MSNA measurements were performed at rest, after a hypothermic stimulus, and during isometric exercise. The MSNA during rest in the NVC+compression group was significantly higher than that in the NVC+contact and NVC- groups (30.4+/-3.4 versus 17.5+/-1.1 and 21.4+/-3.2 spikes per minute, respectively). However, the blood pressure in the NVC+compression group was slightly but not significantly higher than that in the other 2 groups (183+/-7/115+/-8, 174+/-6/108+/-7, and 171+/-5/110+/-5 mm Hg, respectively). The increases in MSNA, blood pressure, and heart rate during the cold pressor and isometric exercise tests were similar. Our results show that, although resting MSNA is elevated in patients with true NVC of the RVL medulla, patients without NVC or with arterial contact but not overt compression of the RVL medulla have similar MSNA. These findings are important for identifying, among hypertensive patients with NVC, individuals who may have associated physiological repercussions, such as increased sympathetic activity.

  11. Sympathetic reinnervation in cardiac transplants : preliminary results {sup 123}I-MIBG and {sup 201}Tl/{sup 99m}Tc-MIBI scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joug Ho; Oh, Se Jin; Son, Min Soo; Son, Ji Won; Choi, In Seok; Shin, Euk Kyun; Park, Kuk Yang; Kim, Ju E. [International Medicine and Thoraic Surgery, Inchon (Korea, Republic of)

    1997-07-01

    Iodine-123 metaiodobenzylguanidine ({sup 123}I-MIBG) is a norepinephrine (NE) analogue. To determine whether cardiac sympathetic reinnervation occurs after orthotopic heart transplantation (TPL). Nine patients (M : F=7 :2; mean ages=34{+-}24.1 yr; idiopathic:rheumatic = 8: 1) within 197.{+-}14.3 (4-36) months after TPL performed both {sup 123}I-MIBG scintigraphy and {sup 201}Tl/{sup 99m}Tc-MIBI dipyridamole stress gated myocardial perfusion SPECT (g-MPS). {sup 23}I-MIBG imagings were performed in anterior position 15 minutes, 4 and 24 hours after i.v. injection of 148 MBq {sup 123}I MIBG. Image quantitation was based on the ratio of hear to mediastinal MIBG uptake (HMR). Six subjects with <14 (4.3{+-}1.4) months after TPL had no visible {sup 123}I-MIBG uptake on early 15. min imaging however, three subjects with 26 to 36(32.0{+-}5.3) months had visible cardiac {sup 123}I-MIBG uptake (HMR:1.24{+-}0.09 vs. 1.8{+-}0.2). Correlation was found between plasma NE concentration and HMR(r=0.80: p<0.05). Compared to HMR on 15 min images (1.5{+-}0.3), neither four nor 24 hour delayed images (1.3{+-}0.3 vs. 1.1{+-}0.1 : p<0.05, respectively, ANOVA) showed definite delayed localization of MIBG. The uptakes in the liver, lung, salivary glands and spleen were present. To dipyridamole stress, transplant hearts showed significant subnormal hemodynamic responses of HR, s-BP, d-BP, and rate pressure product (95.4{+-}13.8 to 107.4{+-}14.6, 131.0{+-}16.7 to 123.6{+-}13.4, 79.1{+-}12.7 to 72.2{+-}12.7, 124.5{+-}19.6 to 133.0{+-}23.6 p<0.05, respectively). G-MPS of one patient shod an apicoanterior wall reversible perfusion defect which was confirmed as 90% distal left anterior descending artery stenosis by coronary angiography. MIBG uptake seems to involve mainly the specific sodium and energy dependent uptake-1 pathway, and the non-neuronal uptake-2 involving simple diffusion is not significant. Conclusively, partial sympathetic late reinnervation of the transplant human hearts can

  12. Autonomic markers of emotional processing: skin sympathetic nerve activity in humans during exposure to emotionally-charged images

    Directory of Open Access Journals (Sweden)

    Rachael eBrown

    2012-10-01

    Full Text Available The sympathetic innervation of the skin primarily subserves thermoregulation, but the system has also been commandeered as a means of expressing emotion. While it is known that the level of skin sympathetic nerve activity (SSNA is affected by anxiety, the majority of emotional studies have utilized the galvanic skin response as a means of inferring increases in SSNA. The purpose of the present study was to characterize the changes in SSNA when showing subjects neutral or emotionally-charged images from the International Affective Picture System. Skin sympathetic nerve activity was recorded via tungsten microelectrodes inserted into cutaneous fascicles of the common peroneal nerve in ten subjects. Neutral images, positively-charged images (erotica or negatively-charged images (mutilation were presented in blocks of fifteen images of a specific type, each block lasting two minutes. Images of erotica or mutilation were presented in a quasi-random fashion, each block following a block of neutral images. Both images of erotica or images of mutilation caused significant increases in SSNA, but the increases in SSNA were greater for mutilation. The increases in SSNA were often coupled with sweat release and cutaneous vasoconstriction, however, these markers were not always consistent with the SSNA increases. We conclude that SSNA, comprising cutaneous vasoconstrictor and sudomotor activity, increases with both positively-charged and negatively-charged emotional images. Measurement of SSNA provides a more comprehensive assessment of sympathetic outflow to the skin than does the use of sweat release alone as a marker of emotional processing.

  13. Recent evidence for activity-dependent initiation of sympathetic sprouting and neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    Jun-Ming ZHANG; Judith A. Strong

    2008-01-01

    Traumatic injury or inflammatory irritation of the peripheral nervous system often leads to persistent pathophysiological pain states. It has been well-documented that, after peripheral nerve injury or inflammation, functional and anatomical alterations sweep over the entire peripheral nervous system including the peripheral nerve endings, the injured or inflamed afferent fibers, the dorsal root ganglion (DRG), and the central afferent terminals in the spinal cord. Among all the changes, ectopic discharge or spontaneous activity of primary sensory neurons is of great clinical interest, as such discharges doubtless contribute to the develop-ment of pathological pain states such as neuropathic pain. Two key sources of abnormal spontaneous activity have been identified following peripheral nerve injury: the injured afferent fibers (neuroma) leading to the DRG, and the DRG somata. The purpose of this review is to provide a global account of the abnormal spontaneous activity in various animal models of pain. Particular attention is focused on the consequence of peripheral nerve injury and localized inflammation. Further, mechanisms involved in the generation of spontaneous activity are also reviewed; evidence of spontaneous activity in contributing to abnormal sympathetic sprouting in the axotomized DRG and to the initiation of neuropathic pain based on new findings from our research group are discussed. An improved understanding of the causes of spontaneous activity and the origins of neuropathic pain should facilitate the development of novel strategies for effective treatment of pathological pain.

  14. Low-frequency physiological activation of the vestibular utricle causes biphasic modulation of skin sympathetic nerve activity in humans.

    Science.gov (United States)

    Grewal, Tarandeep; Dawood, Tye; Hammam, Elie; Kwok, Kenny; Macefield, Vaughan G

    2012-07-01

    We have previously shown that sinusoidal galvanic vestibular stimulation, a means of selectively modulating vestibular afferent activity, can cause partial entrainment of sympathetic outflow to muscle and skin in human subjects. However, it influences the firing of afferents from the entire vestibular apparatus, including the semicircular canals. Here, we tested the hypothesis that selective stimulation of one set of otolithic organs-those located in the utricle, which are sensitive to displacement in the horizontal axis-could entrain sympathetic nerve activity. Skin sympathetic nerve activity (SSNA) was recorded via tungsten microelectrodes inserted into cutaneous fascicles of the common peroneal nerve in 10 awake subjects, seated (head vertical, eyes closed) on a motorised platform. Slow sinusoidal accelerations-decelerations (~4 mG) were applied in the X (antero-posterior) or Y (medio-lateral) direction at 0.08 Hz; composite movements in both directions were also applied. Subjects either reported feeling a vague sense of movement (with no sense of direction) or no movement at all. Nevertheless, cross-correlation analysis revealed a marked entrainment of SSNA for all types of movements: vestibular modulation was 97 ± 3 % for movements in the X axis and 91 ± 5 % for displacements in the Y axis. For each sinusoidal cycle, there were two major peaks of modulation-one associated with acceleration as the platform moved forward or to the side, and one associated with acceleration in the opposite direction. We interpret these observations as reflecting inertial displacement of the stereocilia within the utricle during acceleration, which causes a robust vestibulosympathetic reflex.

  15. Baroreflex control of renal sympathetic nerve activity and heart rate in near-term fetal sheep.

    Science.gov (United States)

    Booth, Lindsea C; Gunn, Alistair J; Malpas, Simon C; Barrett, Carolyn J; Davidson, Joanne O; Guild, Sarah-Jane; Bennet, Laura

    2011-08-01

    Late preterm infants, born between 34 and 36 weeks gestation, have significantly higher morbidity than neonates born at full term, which may be partly related to reduced sensitivity of the arterial baroreflex. The present study assessed baroreflex control of heart rate (HR) and renal sympathetic nerve activity (RSNA) in near-term fetal sheep at 123 ± 1 days gestation. At this age, although fetuses are not fully mature in some respects (term is 147 days), sleep-state cycling is established [between high-voltage, low-frequency (HV) and low-voltage, high-frequency (LV) sleep], and neural myelination is similar to the term human infant. Fetal sheep were instrumented to record blood pressure (BP), HR (n = 15) and RSNA (n = 5). Blood pressure was manipulated using vasoactive drugs, phenylephrine and sodium nitroprusside. In both HV and LV sleep, phenylephrine was associated with increased arterial BP and decreased HR. In HV sleep, phenylephrine was associated with a fall in RSNA, from 124 ± 14 to 58 ± 11% (P fall in BP after sodium nitroprusside was associated with a significant increase in HR during LV but not HV sleep, and there was no significant effect of hypotension on RSNA. These data demonstrate that in near-term fetal sheep baroreflex activity is only partly active and is highly modulated by sleep state. Critically, there was no RSNA response to marked hypotension; this finding has implications for the ability of the late preterm fetus to adapt to low BP.

  16. Measuring Cardiac Autonomic Nervous System (ANS) Activity in Toddlers - Resting and Developmental Challenges.

    Science.gov (United States)

    Bush, Nicole R; Caron, Zoe K; Blackburn, Katherine S; Alkon, Abbey

    2016-02-25

    The autonomic nervous system (ANS) consists of two branches, the parasympathetic and sympathetic nervous systems, and controls the function of internal organs (e.g., heart rate, respiration, digestion) and responds to everyday and adverse experiences (1). ANS measures in children have been found to be related to behavior problems, emotion regulation, and health (2-7). Therefore, understanding the factors that affect ANS development during early childhood is important. Both branches of the ANS affect young children's cardiovascular responses to stimuli and have been measured noninvasively, via external monitoring equipment, using valid and reliable measures of physiological change (8-11). However, there are few studies of very young children with simultaneous measures of the parasympathetic and sympathetic nervous systems, which limits understanding of the integrated functioning of the two systems. In addition, the majority of existing studies of young children report on infants' resting ANS measures or their reactivity to commonly used mother-child interaction paradigms, and less is known about ANS reactivity to other challenging conditions. We present a study design and standardized protocol for a non-invasive and rapid assessment of cardiac autonomic control in 18 month old children. We describe methods for continuous monitoring of the parasympathetic and sympathetic branches of the ANS under resting and challenge conditions during a home or laboratory visit and provide descriptive findings from our sample of 140 ethnically diverse toddlers using validated equipment and scoring software. Results revealed that this protocol can produce a range of physiological responses to both resting and developmentally challenging conditions, as indicated by changes in heart rate and indices of parasympathetic and sympathetic activity. Individuals demonstrated variability in resting levels, responses to challenges, and challenge reactivity, which provides additional evidence

  17. Slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with chronic heart failure: from modeling to clinical application.

    Science.gov (United States)

    Harada, Daisuke; Asanoi, Hidetsugu; Takagawa, Junya; Ishise, Hisanari; Ueno, Hiroshi; Oda, Yoshitaka; Goso, Yukiko; Joho, Shuji; Inoue, Hiroshi

    2014-10-15

    Influences of slow and deep respiration on steady-state sympathetic nerve activity remain controversial in humans and could vary depending on disease conditions and basal sympathetic nerve activity. To elucidate the respiratory modulation of steady-state sympathetic nerve activity, we modeled the dynamic nature of the relationship between lung inflation and muscle sympathetic nerve activity (MSNA) in 11 heart failure patients with exaggerated sympathetic outflow at rest. An autoregressive exogenous input model was utilized to simulate entire responses of MSNA to variable respiratory patterns. In another 18 patients, we determined the influence of increasing tidal volume and slowing respiratory frequency on MSNA; 10 patients underwent a 15-min device-guided slow respiration and the remaining 8 had no respiratory modification. The model predicted that a 1-liter, step increase of lung volume decreased MSNA dynamically; its nadir (-33 ± 22%) occurred at 2.4 s; and steady-state decrease (-15 ± 5%), at 6 s. Actually, in patients with the device-guided slow and deep respiration, respiratory frequency effectively fell from 16.4 ± 3.9 to 6.7 ± 2.8/min (P state MSNA was decreased by 31% (P state MSNA. Thus slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with high levels of resting sympathetic tone as in heart failure.

  18. Renal sympathetic denervation for treatment of patients with heart failure: summary of the available evidence.

    Science.gov (United States)

    Nammas, Wail; Koistinen, Juhani; Paana, Tuomas; Karjalainen, Pasi P

    2017-02-10

    Heart failure syndrome results from compensatory mechanisms that operate to restore - back to normal - the systemic perfusion pressure. Sympathetic overactivity plays a pivotal role in heart failure; norepinephrine contributes to maintenance of the systemic blood pressure and increasing preload. Cardiac norepinephrine spillover increases in patients with heart failure; norepinephrine exerts direct toxicity on cardiac myocytes resulting in a decrease of synthetic activity and/or viability. Importantly, cardiac norepinephrine spillover is a powerful predictor of mortality in patients with moderate to severe HF. This provided the rationale for trials that demonstrated survival benefit associated with the use of beta adrenergic blockers in heart failure with reduced ejection fraction. Nevertheless, the MOXCON trial demonstrated that rapid uptitration of moxonidine (inhibitor of central sympathetic outflow) in patients with heart failure was associated with excess mortality and morbidity, despite reduction of plasma norepinephrine. Interestingly, renal norepinephrine spillover was the only independent predictor of adverse outcome in patients with heart failure, in multivariable analysis. Recently, renal sympathetic denervation has emerged as a novel approach for control of blood pressure in patients with treatment-resistant hypertension. This article summarizes the available evidence for the effect of renal sympathetic denervation in the setting of heart failure. Key messages Experimental studies supported a beneficial effect of renal sympathetic denervation in heart failure with reduced ejection fraction. Clinical studies demonstrated improvement of symptoms, and left ventricular function. In heart failure and preserved ejection fraction, renal sympathetic denervation is associated with improvement of surrogate endpoints.

  19. Protein kinase C pathway on cardiac sympathetic nerve neuroplasticity and myocardial interstitial remodeling%心脏交感神经和心肌间质重塑的共同通路——蛋白激酶C途径

    Institute of Scientific and Technical Information of China (English)

    李贺; 周欣; 王坷; 赵丽霞; 王志宏; 李玉明

    2011-01-01

    Cardiac sympathetic nerve and myocardial interstitium play important roles for preservation of heart function. Different extent of the interstitial remodeling and neuroplasticity commonly occur in many kinds of cardiovascular diseases. The abnormalities interact and contribute to progression and worsening of the diseases. There is accumulating evidence suggesting that protein kinase C activation as a regulator involves in and mediates interaction between the neuroplasticity and remodeling under such conditions, which plays a critical role in the nerve dysfunction and myocardial fibrosis.%心脏交感神经和心肌间质对维持正常心功能有重要作用.心血管患病时,两者均发生不同程度的重塑,并互相影响,这些变化对疾病进展发挥重要影响.研究证据显示,两者间的相互作用可能通过蛋白激酶C介导,对交感神经功能异常和心肌纤维化都发挥重要作用.

  20. Baroreflex modulation of muscle sympathetic nerve activity during posthandgrip muscle ischemia in humans

    Science.gov (United States)

    Cui, J.; Wilson, T. E.; Shibasaki, M.; Hodges, N. A.; Crandall, C. G.

    2001-01-01

    To identify whether muscle metaboreceptor stimulation alters baroreflex control of muscle sympathetic nerve activity (MSNA), MSNA, beat-by-beat arterial blood pressure (Finapres), and electrocardiogram were recorded in 11 healthy subjects in the supine position. Subjects performed 2 min of isometric handgrip exercise at 40% of maximal voluntary contraction followed by 2.5 min of posthandgrip muscle ischemia. During muscle ischemia, blood pressure was lowered and then raised by intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure was more negative (P ischemia (-201.9 +/- 20.4 units. beat(-1). mmHg(-1)) when compared with control conditions (-142.7 +/- 17.3 units. beat(-1). mmHg(-1)). No significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. However, both curves shifted during postexercise ischemia to accommodate the elevation in blood pressure and MSNA that occurs with this condition. These data suggest that the sensitivity of baroreflex modulation of MSNA is elevated by muscle metaboreceptor stimulation, whereas the sensitivity of baroreflex of modulate heart rate is unchanged during posthandgrip muscle ischemia.

  1. Sympathetic and Parasympathetic Activity in Cancer-Related Fatigue: More Evidence for a Physiological Substrate in Cancer Survivors

    OpenAIRE

    2011-01-01

    Fatigue is a notable clinical problem in cancer survivors, and understanding its pathophysiology is important. This study evaluated relationships between fatigue and both sympathetic and parasympathetic nervous system activity in breast cancer survivors. Norepinephrine and heart rate variability (HRV) were evaluated at rest, as well as during and after a standardized laboratory speech and mental arithmetic stressor. The participants, 109 women who had completed treatment for stage 0-IIIA brea...

  2. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Stanton, M.S.; Tuli, M.M.; Radtke, N.L.; Heger, J.J.; Miles, W.M.; Mock, B.H.; Burt, R.W.; Wellman, H.N.; Zipes, D.P. (Indiana Univ. School of Medicine, IN (USA))

    1989-11-15

    Transmural myocardial infarction in dogs produces denervation of sympathetic nerves in viable myocardium apical to the infarct that may be arrhythmogenic. It is unknown whether sympathetic denervation occurs in humans. The purpose of this study was to use iodine-123-metaiodobenzylguanidine (MIBG), a radiolabeled guanethidine analog that is actively taken up by sympathetic nerve terminals, to image noninvasively the cardiac sympathetic nerves in patients with and without ventricular arrhythmias after myocardial infarction. Results showed that 10 of 12 patients with spontaneous ventricular tachyarrhythmias after myocardial infarction exhibited regions of thallium-201 uptake indicating viable perfused myocardium, with no MIBG uptake. Such a finding is consistent with sympathetic denervation. One patient had frequent episodes of nonsustained ventricular tachycardia induced at exercise testing that was eliminated by beta-adrenoceptor blockade. Eleven of the 12 patients had ventricular tachycardia induced at electrophysiologic study and metoprolol never prevented induction. Sympathetic denervation was also detected in two of seven postinfarction patients without ventricular arrhythmias. Normal control subjects had no regions lacking MIBG uptake. This study provides evidence that regional sympathetic denervation occurs in humans after myocardial infarction and can be detected noninvasively by comparing MIBG and thallium-201 images. Although the presence of sympathetic denervation may be related to the onset of spontaneous ventricular tachyarrhythmias in some patients, it does not appear to be related to sustained ventricular tachycardia induced at electrophysiologic study.

  3. Molecular Aspects of Exercise-induced Cardiac Remodeling.

    Science.gov (United States)

    Bernardo, Bianca C; McMullen, Julie R

    2016-11-01

    Exercise-induced cardiac remodeling is typically an adaptive response associated with cardiac myocyte hypertrophy and renewal, increased cardiac myocyte contractility, sarcomeric remodeling, cell survival, metabolic and mitochondrial adaptations, electrical remodeling, and angiogenesis. Initiating stimuli/triggers of cardiac remodeling include increased hemodynamic load, increased sympathetic activity, and the release of hormones and growth factors. Prolonged and strenuous exercise may lead to maladaptive exercise-induced cardiac remodeling including cardiac dysfunction and arrhythmia. In addition, this article describes novel therapeutic approaches for the treatment of heart failure that target mechanisms responsible for adaptive exercise-induced cardiac remodeling, which are being developed and tested in preclinical models.

  4. Vibration sense and sympathetic vasoconstrictor activity in patients with occlusive arterial disease

    DEFF Research Database (Denmark)

    Bjerre-Jepsen, K; Henriksen, O; Parm, Martin Lehnsbo;

    1983-01-01

    The function of sympathetic vasoconstrictor fibres was studied in 18 patients with occlusive arterial disease of the legs and somatic neuropathy, as evidenced as an increased vibration perception threshold. Nine patients suffered from long-term diabetes mellitus. Sympathetic vasoconstrictor...... function was studied by the capability of the local sympathetic venoarteriolar reflex (Henriksen 1977) elicited by lowering the leg to induce an arteriolar constriction in subcutaneous tissue at the ankle level. Blood flow was measured by the local isotope washout technique. In only five patients with loss...... of vibration sense, abnormal vasoconstrictor function was found. In three of these patients, the abnormal response most likely could be ascribed to impaired function of the vascular smooth muscle cells. Neither in diabetics nor in non-diabetics could an abnormal vibration sense be taken as evidence for loss...

  5. Acute inhibition of glial cells in the NTS does not affect respiratory and sympathetic activities in rats exposed to chronic intermittent hypoxia.

    Science.gov (United States)

    Costa, Kauê M; Moraes, Davi J A; Machado, Benedito H

    2013-02-16

    Recent studies suggest that neuron-glia interactions are involved in multiple aspects of neuronal activity regulation. In the nucleus tractus solitarius (NTS) neuron-glia interactions are thought to participate in the integration of autonomic responses to physiological challenges. However, it remains to be shown whether NTS glial cells might influence breathing and cardiovascular control, and also if they could be integral to the autonomic and respiratory responses to hypoxic challenges. Here, we investigated whether NTS glia play a tonic role in the modulation of central respiratory and sympathetic activities as well as in the changes in respiratory-sympathetic coupling induced by exposure to chronic intermittent hypoxia (CIH), a model of central autonomic and respiratory plasticity. We show that bilateral microinjections of fluorocitrate (FCt), a glial cell inhibitor, into the caudal and intermediate subnuclei of the NTS did not alter baseline respiratory and sympathetic parameters in in situ preparations of juvenile rats. Similar results were observed in rats previously exposed to CIH. Likewise, CIH-induced changes in respiratory-sympathetic coupling were unaffected by FCt-mediated inhibition. However, microinjection of FCt into the ventral medulla produced changes in respiratory frequency. Our results show that acute glial inhibition in the NTS does not affect baseline respiratory and sympathetic control. Additionally, we conclude that NTS glial cells may not be necessary for the continuous manifestation of sympathetic and respiratory adaptations to CIH. Our work provides evidence that neuron-glia interactions in the NTS do not participate in baseline respiratory and sympathetic control.

  6. A novel electrophilic synthesis and evaluation of medium specific radioactivity (1R,2S)-4-[{sup 18}F]fluorometaraminol, a tracer for the assessment of cardiac sympathetic nerve integrity with PET

    Energy Technology Data Exchange (ETDEWEB)

    Eskola, Olli E-mail: olesko@utu.fi; Groenroos, Tove; Bergman, Joergen; Haaparanta, Merja; Marjamaeki, Paeivi; Lehikoinen, Pertti; Forsback, Sarita; Langer, Oliver; Hinnen, Francoise; Dolle, Frederic; Halldin, Christer; Solin, Olof

    2004-01-01

    (1R,2S)-4-[{sup 18}F]fluorometaraminol (4-[{sup 18}F]FMR), a tracer for cardiac sympathetic innervation, was synthesized by electrophilic aromatic substitution. A trimethylstannyl precursor, protected with tert-butoxycarbonyl protecting groups, was radiofluorinated with high specific radioactivity [{sup 18}F]F{sub 2}. Specific radioactivity of 4-[{sup 18}F]FMR, in average 11.8 {+-}3.3 GBq/{mu}mol, was improved 40-800-fold in comparison to the previous electrophilic fluorinations. The biodistribution of 4-[{sup 18}F]FMR in rat was in accordance with the known distribution of sympathetic innervation. 4-[{sup 18}F]FMR showed no metabolic degradation in left ventricle of rat heart, where the uptake was high, rapid and specific.

  7. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity.

    Directory of Open Access Journals (Sweden)

    Yumie Morimoto-Kobayashi

    Full Text Available Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1 expression in brown adipose tissue (BAT was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA. Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional

  8. Left ventricular contraction kinetics in patients with hypertrophic cardiomyopathy. Its relation to myocardial sympathetic activity

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Michihiro; Kurihara, Tadashi; Shindoh, Takashi; Honda, Minoru; Hohjyoh, Osamu [Sumitomo Hospital, Osaka (Japan)

    1997-02-01

    We performed gated-SPECT on 11 patients with hypertrophic cardiomyopathy (HCM) and 13 normal subjects. In order to assess myocardial contraction kinetics in various left ventricular (LV) parts, we constructed multi-plane long axial tomograms and divided the left ventricle into 17 segments. Myocardial count change during systole (%CC) was calculated in each segment, and compared with %CC in normal subjects in the corresponding segments. As an index of systolic asynchrony we calculated the standard deviation (SD) of R-wave to peak systolic interval among 17 segments in each patient. In patients with HCM we performed MIBG imaging (initial and delayed imaging) and myocardial {sup 201}Tl imaging at rest. As the indices of myocardial sympathetic activity we calculated the following parameters; Uptake Ratio which is the ratio of %uptake of MIBG (delayed image) to %uptake of {sup 201}Tl, %Washout (%WO) which is the percent decrease of myocardial MIBG activity from initial to delayed image, Unhomogeneity of myocardial MIBG distribution which is coefficient of variance (CV) of myocardial MIBG in delayed image, and Defect Score, which is extent of the defect in MIBG delayed image. Decreased %CC was observed in 87 of 187 HCM segments (47%) and they were mainly distributed in the hypertrophic regions. Systolic asynchrony (SD) in HCM was greater than that in the normal subjects. In patients with HCM, Uptake Ratio and %WO did not correlate with the number of segments with abnormal %CC, but CV and Defect Score correlated well with the number of segments with decreased %CC. Although abnormal %CC was observed chiefly in the apex, septum and anterior myocardium, defects of MIBG were observed mainly in inferior segments. On the other hand SD correlated well with all MIBG indices. SD correlated inversely with the index of LV early diastolic filling. (author)

  9. A technique for estimating activity in whole nerve trunks applied to the cervical sympathetic trunk, in the rabbit.

    Science.gov (United States)

    Hellström, F; Roatta, S; Johansson, H; Passatore, M

    1999-12-24

    The changes in sympathetic outflow may be evaluated from the amplitude of the antidromic compound action potential (ACAP) according to the collision technique described by Douglas and Ritchie (Douglas, W.W. and Ritchie J.M., A technique for recording functional activity in specific groups of medullated and non-medullated fibers in whole nerve trunks. J. Physiol., 138(1957) 19-30). This technique was revised, taking into account the depressant action exerted by antidromic stimulation on sympathetic preganglionic neurones (SPNs). Cervical sympathetic nerve (CSN) of rabbits was used as experimental model. Stimulation frequencies of 0.2-0.5 Hz were found to be sufficiently low to avoid depressant actions on CSN spontaneous activity; they were employed to test the sensitivity of the technique during different experimental manoeuvres, such as changes in pulmonary-ventilation, baroreceptor unloading and arousal stimuli. In addition a procedure was devised to calibrate the ACAP amplitude: high frequency antidromic stimulation was used to induce a complete and transient inhibition of SPNs which allows to record the ACAP maximum amplitude. ACAPs recorded in various experimental conditions can then be expressed as percentage of this value.

  10. Agmatine suppresses peripheral sympathetic tone by inhibiting N-type Ca(2+) channel activity via imidazoline I2 receptor activation.

    Science.gov (United States)

    Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo

    2016-08-26

    Agmatine, a putative endogenous ligand of imidazoline receptors, suppresses cardiovascular function by inhibiting peripheral sympathetic tone. However, the molecular identity of imidazoline receptor subtypes and its cellular mechanism underlying the agmatine-induced sympathetic suppression remains unknown. Meanwhile, N-type Ca(2+) channels are important for the regulation of NA release in the peripheral sympathetic nervous system. Therefore, it is possible that agmatine suppresses NA release in peripheral sympathetic nerve terminals by inhibiting Ca(2+) influx through N-type Ca(2+) channels. We tested this hypothesis by investigating agmatine effect on electrical field stimulation (EFS)-evoked contraction and NA release in endothelium-denuded rat superior mesenteric arterial strips. We also investigated the effect of agmatine on the N-type Ca(2+) current in superior cervical ganglion (SCG) neurons in rats. Our study demonstrates that agmatine suppresses peripheral sympathetic outflow via the imidazoline I2 receptor in rat mesenteric arteries. In addition, the agmatine-induced suppression of peripheral vascular sympathetic tone is mediated by modulating voltage-dependent N-type Ca(2+) channels in sympathetic nerve terminals. These results suggest a potential cellular mechanism for the agmatine-induced suppression of peripheral sympathetic tone. Furthermore, they provide basic and theoretical information regarding the development of new agents to treat hypertension.

  11. TRPA1 Mediates Amplified Sympathetic Responsiveness to Activation of Metabolically Sensitive Muscle Afferents in Rats with Femoral Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Jihong eXing

    2015-09-01

    Full Text Available Autonomic responses to stimulation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1 has been reported to contribute to sympathetic nerve activity (SNA and arterial blood pressure (BP responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves’ TRPA1plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24-72 hrs of femoral artery occlusion 1 upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG tissues; 2 selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV; and 3 enhances renal SNA and BP responses to AITC (a TRPA1 agonist injected into the arterial blood supply of the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves’TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia.

  12. Effects of three days of dry immersion on muscle sympathetic nerve activity and arterial blood pressure in humans.

    Science.gov (United States)

    Iwase, S; Sugiyama, Y; Miwa, C; Kamiya, A; Mano, T; Ohira, Y; Shenkman, B; Egorov, A I; Kozlovskaya, I B

    2000-03-15

    The present study was performed to determine how sympathetic function is altered by simulated microgravity, dry immersion for 3 days, and to elucidate the mechanism of post-spaceflight orthostatic intolerance in humans. Six healthy men aged 21-36 years old participated in the study. Before and after the dry immersion, subjects performed head-up tilt (HUT) test to 30 degrees and 60 degrees (5 min each) with recordings of muscle sympathetic nerve activity (MSNA, by microneurography), electrocardiogram, and arterial blood pressure (Finapres). Resting MSNA was increased after dry immersion from 23.7+/-3.2 to 40.9+/-3.0 bursts/min (p<0.005) without significant changes in resting heart rate (HR). MSNA responsiveness to orthostasis showed no significant difference but HR response was significantly augmented after dry immersion (p<0. 005). A significant diastolic blood pressure fall at 5th min of 60 degrees HUT was observed in five orthostatic tolerant subjects despite enough MSNA discharge after dry immersion. A subject suffered from presyncope at 2 min after 60 degrees HUT. He showed gradual blood pressure fall 10 s after 60 degrees HUT with initially well-maintained MSNA response and then with a gradually attenuated MSNA, followed by a sudden MSNA withdrawal and abrupt blood pressure drop. In conclusion, dry immersion increased MSNA without changing MSNA response to orthostasis, and resting HR, while increasing the HR response to orthostasis. Analyses of MSNA and blood pressure changes in orthostatic tolerant subjects and a subject with presyncope suggested that not only insufficient vasoconstriction to sympathetic stimuli, but also a central mechanism to induce a sympathetic withdrawal might play a role in the development of orthostatic intolerance after microgravity exposure.

  13. Evaluation of sympathetic nerve system activity with MIBG. Comparison with heart rate variability

    Energy Technology Data Exchange (ETDEWEB)

    Kurata, Chinori; Wakabayashi, Yasushi; Shouda, Sakae; Mikami, Tadashi [Hamamatsu Medical School (Japan); Tawarahara, Kei; Sugiyama, Tsuyoshi; Nakano, Tomoyasu; Suzuki, Toshihiko

    1997-04-01

    Authors attempted to elucidate the relations of plasma concentration of norepinephrine (pNE) and findings of heart rate variability and MIBG myocardial scintigraphy and evaluated cardiac autonomic nervous activity in chronic renal failure. Subjects were 211 patients with various heart diseases (coronary artery lesion, cardiomyopathy, hypertension, diabetes mellitus, renal failure and so on), 60 patients with artificial kidney due to chronic renal failure, 13 of whom were found to have coronary arterial disease by Tl myocardial scintigraphy, and 14 normal volunteers. ECG was recorded with the portable recorder for heart rate variability. Together with collection of blood for pNE measurement, myocardial scintigraphy was done at 15 and 150 min after intravenous administration of 111 MBq of MIBG for acquisition of early and delayed, respectively, images of the frontal breast. Accumulation at and elimination during the time points of MIBG were computed in cps unit. Variability of heart rate was found to have the correlation positive with MIBG delayed accumulation and negative with the elimination, and pNE, negative with heart rate variability and the delayed accumulation and positive with the elimination. Thus cardiac autonomic nervous abnormality was suggested to occur before uremic cardiomyopathy. (K.H.)

  14. Sympathetic activity of S-(+-ketamine low doses in the epidural space

    Directory of Open Access Journals (Sweden)

    Slobodan Mihaljevic

    2014-07-01

    Full Text Available BACKGROUND AND OBJECTIVES: S-(+-ketamine is an intravenous anaesthetic and sympathomimetic with properties of local anaesthetic. It has an effect of an analgetic and local anaesthetic when administered epidurally, but there are no data whether low doses of S-(+-ketamine have sympathomimetic effects. The aim of this study was to determine whether low doses of S-(+-ketamine, given epidurally together with local anaesthetic, have any effect on sympathetic nervous system, both systemic and below the level of anaesthetic block. METHODS: The study was conducted on two groups of patients to whom epidural anaesthesia was administered to. Local anaesthesia (0.5% bupivacaine was given to one group (control group while local anaesthesia and S-(+-ketamine were given to other group. Age, height, weight, systolic, diastolic and mean arterial blood pressure were measured. Non-competitive enzyme immunochemistry method (Cat Combi ELISA was used to determine the concentrations of catecholamines (adrenaline and noradrenaline. Immunoenzymometric determination with luminescent substrate on a machine called Vitros Eci was used to determine the concentration of cortisol. Pulse transit time was measured using photoplethysmography. Mann-Whitney U-test, Wilcoxon test and Friedman ANOVA were the statistical tests. Blood pressure, pulse, adrenaline, noradrenaline and cortisol concentrations were measured in order to estimate systemic sympathetic effects. RESULTS: 40 patients in the control group were given 0.5% bupivacaine and 40 patients in the test group were given 0.5% bupivacaine with S-(+-ketamine. Value p < 0.05 has been taken as a limit of statistical significance. CONCLUSIONS: Low dose of S-(+-ketamine administered epidurally had no sympathomimetic effects; it did not change blood pressure, pulse, serum hormones or pulse transit time. Low dose of S-(+-ketamine administered epidurally did not deepen sympathetic block. Adding 25 mg of S-(+-ketamine to 0

  15. Cardiac allograft immune activation: current perspectives

    Directory of Open Access Journals (Sweden)

    Chang D

    2014-12-01

    Full Text Available David Chang, Jon Kobashigawa Cedars-Sinai Heart Institute, Los Angeles, CA, USA Abstract: Heart transplant remains the most durable option for end-stage heart disease. Cardiac allograft immune activation and heart transplant rejection remain among the main complications limiting graft and recipient survival. Mediators of the immune system can cause different forms of rejection post-heart transplant. Types of heart transplant rejection include hyperacute rejection, cellular rejection, antibody-mediated rejection, and chronic rejection. In this review, we will summarize the innate and adaptive immune responses which influence the post-heart transplant recipient. Different forms of rejection and their clinical presentation, detection, and immune monitoring will be discussed. Treatment of heart transplant rejection will be examined. We will discuss potential treatment strategies for preventing rejection post-transplant in immunologically high-risk patients with antibody sensitization. Keywords: heart transplant, innate immunity, adaptive immunity, rejection, immunosuppression

  16. The human sympathetic nervous system: its relevance in hypertension and heart failure.

    Science.gov (United States)

    Parati, Gianfranco; Esler, Murray

    2012-05-01

    Evidence assembled in this review indicates that sympathetic nervous system dysfunction is crucial in the development of heart failure and essential hypertension. This takes the form of persistent and adverse activation of sympathetic outflows to the heart and kidneys in both conditions. An important goal for clinical scientists is translation of the knowledge of pathophysiology, such as this, into better treatment for patients. The achievement of this 'mechanisms to management' transition is at different stages of development with regard to the two disorders. Clinical translation is mature in cardiac failure, knowledge of cardiac neural pathophysiology having led to the introduction of beta-adrenergic blockers, an effective therapy. With essential hypertension perhaps we are on the cusp of effective translation, with recent successful testing of selective catheter-based renal sympathetic nerve ablation in patients with resistant hypertension, an intervention firmly based on the demonstration of activation of the renal sympathetic outflow. Additional evidence in this regard is provided by the results of pilot studies exploring the possibility to reduce blood pressure in resistant hypertensives through electrical stimulation of the area of carotid baroreceptors. Despite the general importance of the sympathetic nervous system in blood pressure regulation, and the specific demonstration that the blood pressure elevation in essential hypertension is commonly initiated and sustained by sympathetic nervous activation, drugs antagonizing this system are currently underutilized in the care of patients with hypertension. Use of beta-adrenergic blocking drugs is waning, given the propensity of this drug class to have adverse metabolic effects, including predisposition to diabetes development. The blood pressure lowering achieved with carotid baroreceptor stimulation and with the renal denervation device affirms the importance of the sympathetic nervous system in

  17. Changes in plasma catecholamine and neuropeptide Y levels after sympathetic activation in dogs.

    Science.gov (United States)

    Poncet, M. F.; Damase-Michel, C.; Tavernier, G.; Tran, M. A.; Berlan, M.; Montastruc, J. L.; Montastruc, P.

    1992-01-01

    1. Plasma levels of noradrenaline (NA) and neuropeptide Y (NPY) were evaluated in two experimental models associated with an increase in sympathetic tone: conscious dogs which were subject to either sinoaortic denervation or acute administration of the alpha 2-adrenoceptor antagonist yohimbine. 2. Dogs that had undergone sinoaortic denervation exhibited a two fold increase in plasma NA without any change in NPY levels. 3. Yohimbine (0.05 mg kg-1 i.v. as a bolus) produced similar effects. A higher dose of yohimbine (0.5 mg kg-1 i.v.) increased both plasma NA (7 fold) and NPY (6.5 fold) levels. 4. The present results indicate that changes in plasma catecholamines and NPY are not always concomitant. They suggest that the simultaneous release of NA and NPY is only observed under in vivo conditions for a marked increase in sympathetic tone. PMID:1596679

  18. Parachute Jumping Induces More Sympathetic Activation Than Cortisol Secretion in First-Time Parachutists

    OpenAIRE

    Chieffi; Viggiano; Tafuri; Cibelli; Valenzano; Triggiani; Messina; Luca; Monda

    2016-01-01

    Background The word “stress” describes the status of the body affected by external or internal forces, or “stressors”, threatening to alter its dynamic balance or homeostasis. The adaptive changes which occur in reply to stressors are either behavioral or physical. Once a given threshold is surpassed, a systemic reaction takes place involving the “stress system” in the brain together with its peripheral components, the hypothalamic-pituitary-adrenal axis and autonomic sympathetic...

  19. Central activation of the sympathetic nervous system including the adrenals in anaesthetized guinea pigs by the muscarinic agonist talsaclidine.

    Science.gov (United States)

    Walland, A; Pieper, M P

    1998-04-01

    Talsaclidine, a novel M1-receptor selective muscarinic agonist for cholinergic substitution therapy of Alzheimer's disease, activates the sympathetic nervous system in guinea pigs and dogs at the orthosympathic ganglia and the paraganglionic adrenals. Results from guinea pigs provide indirect evidence for an additional central site of action. The present investigation in anaesthetized and vagotomized guinea pigs intended to demonstrate central activation of the sympathetic nervous system directly by comparing the blood pressure effects of intracerebroventricular and intravenous injections of small doses of talsaclidine. Increasing doses of 0.2 and 0.6 mg/kg talsaclidine were injected alternately into the third cerebral ventricle and intravenously in 6 guinea pigs before and after blockade of peripheral muscarinic receptors with 1 mg/kg ipratropium bromide i.v. In another group of 6 animals the injections were given into the cisterna cerebellomedullaris using the same protocol. In both groups central administration of talsaclidine caused dose-related hypertension while intravenous injections were hypotensive. Ipratropium bromide, a peripheral antimuscarinic drug, reversed this hypotensive action of intravenous talsaclidine into hypertension, but did not inhibit the effects of central administration. In contrast, atropine, an antimuscarinic drug which passes the blood-brain barrier, abolished the effect of 0.6 mg/kg talsaclidine injected into the cisterna cerebellomedullaris of 8 guinea pigs. The hypertensive effect of a first injection of 0.6 mg/kg talsaclidine into the cisterna cerebellomedullaris of 6 guinea pigs was approximately twice as large as that of a second given 90 min after bilateral adrenalectomy. Sham operation in another 6 animals was not inhibitory. The results demonstrate that talsaclidine, a selective muscarinic M1-receptor agonist, activates central parts of the sympathetic nervous system, including central projections of the adrenals by an action

  20. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  1. Bursting into space: alterations of sympathetic control by space travel

    Science.gov (United States)

    Eckberg, D. L.

    2003-01-01

    AIM: Astronauts return to Earth with reduced red cell masses and hypovolaemia. Not surprisingly, when they stand, their heart rates may speed inordinately, their blood pressures may fall, and some may experience frank syncope. We studied autonomic function in six male astronauts (average +/- SEM age: 40 +/- 2 years) before, during, and after the 16-day Neurolab space shuttle mission. METHOD: We recorded electrocardiograms, finger photoplethysmographic arterial pressures, respiration, peroneal nerve muscle sympathetic activity, plasma noradrenaline and noradrenaline kinetics, and cardiac output, and we calculated stroke volume and total peripheral resistance. We perturbed autonomic function before and during spaceflight with graded Valsalva manoeuvres and lower body suction, and before and after the mission with passive upright tilt. RESULTS: In-flight baseline sympathetic nerve activity was increased above pre-flight levels (by 10-33%) in three subjects, in whom noradrenaline spillover and clearance also were increased. Valsalva straining provoked greater reductions of arterial pressure, and proportionally greater sympathetic responses in space than on Earth. Lower body suction elicited greater increases of sympathetic nerve activity, plasma noradrenaline, and noradrenaline spillover in space than on Earth. After the Neurolab mission, left ventricular stroke volume was lower and heart rate was higher during tilt, than before spaceflight. No astronaut experienced orthostatic hypotension or pre-syncope during 10 min of post-flight tilting. CONCLUSION: We conclude that baseline sympathetic outflow, however measured, is higher in space than on earth, and that augmented sympathetic nerve responses to Valsalva straining, lower body suction, and post-flight upright tilt represent normal adjustments to greater haemodynamic stresses associated with hypovolaemia.

  2. ARRHYTHMIA INDUCED BY NICOTINE ACTIVATING CARDIAC INTRINSIC NEURONS IN CANINE ATRIAL AND VENTRICULAR GANGLIAL PLEXUS

    Institute of Scientific and Technical Information of China (English)

    袁秉祥; 刘书勤; 李萍; 李新华

    2002-01-01

    Objective To study the arrhythmia induced by stimulation of nicotine-sensitive neurons in cardiac ganglial plexuses. Methods When nicotine (100μg) was injected into canine right atrial ganglial plexus (RAGP) and ganglial plexus between aorta and pulmonary artery (A-PGP) in 33 anesthetized open-chest dog, electrocardiogram, atrial force and ventricular intramyocardial pressures (IMP) were recorded. The responses were also recorded following administration of atropine or propranolol and after heart acute decentralization. Results Ventricular arrhythmia (VA) was induced by injections of nicotine into A-PGP, but not by injections of nicotine into RAGP in 13 dogs. Atrioventricilar (A-V) block was induced by nicotine activating RAGP in 10 dogs, but not by nicotine activating A-PGP. Propranolol could reduce the frequency of VA elicited by stimulating A-PGP, atropine could reduce the frequency of A-V block elicited by stimulating RAGP. After acute decentralization, VA was still induced by activation of A-PGP in 9 dogs, but A-V block elicited by stimulating RAGP was decreased. Conclusion VA is induced by stimulating N receptor in cardiac nicotine-sensitive efferent sympathetic neurons of ventricular ganglial plexus (A-PGP), and then modifying β receptor of ventricles. A-V block is elicited by stimulating N receptor in atrial ganglial plexus (RAGP), then modifying M receptor of A-V node not only via efferent parasympathetic neurons, but also via afferent pathway.

  3. Alterations in electrodermal activity and cardiac parasympathetic tone during hypnosis.

    Science.gov (United States)

    Kekecs, Zoltán; Szekely, Anna; Varga, Katalin

    2016-02-01

    Exploring autonomic nervous system (ANS) changes during hypnosis is critical for understanding the nature and extent of the hypnotic phenomenon and for identifying the mechanisms underlying the effects of hypnosis in different medical conditions. To assess ANS changes during hypnosis, electrodermal activity and pulse rate variability (PRV) were measured in 121 young adults. Participants either received hypnotic induction (hypnosis condition) or listened to music (control condition), and both groups were exposed to test suggestions. Blocks of silence and experimental sound stimuli were presented at baseline, after induction, and after de-induction. Skin conductance level (SCL) and high frequency (HF) power of PRV measured at each phase were compared between groups. Hypnosis decreased SCL compared to the control condition; however, there were no group differences in HF power. Furthermore, hypnotic suggestibility did not moderate ANS changes in the hypnosis group. These findings indicate that hypnosis reduces tonic sympathetic nervous system activity, which might explain why hypnosis is effective in the treatment of disorders with strong sympathetic nervous system involvement, such as rheumatoid arthritis, hot flashes, hypertension, and chronic pain. Further studies with different control conditions are required to examine the specificity of the sympathetic effects of hypnosis.

  4. Burnout versus work engagement in their effects on 24-hour ambulatory monitored cardiac autonomic function

    NARCIS (Netherlands)

    L.J.P. van Doornen (Lorenz); J.H. Houtveen (Jan); S. Langelaan (Saar); A.B. Bakker (Arnold); W. van Rhenen (Willem); W.B. Schaufeli (Wilmar)

    2009-01-01

    textabstractBurnout has been associated with increased risk of cardiovascular disease. This relationship may be mediated by a stress-related disruption in cardiac autonomic activity. The aim of the present study was to assess cardiac autonomic activity (sympathetic and parasympathetic) during a work

  5. Perfectionism and Effort-Related Cardiac Activity: Do Perfectionists Try Harder?

    Science.gov (United States)

    Harper, Kelly L; Eddington, Kari M; Silvia, Paul J

    2016-01-01

    Do perfectionists try harder? Previous research on perfectionism and effort has used self-report items and task performance as indicators of effort. The current study investigated whether individual differences in perfectionism predicted effort-related cardiac activity during a mental effort task. Based on past research that suggests adaptive perfectionism is associated with higher effort, it was hypothesized that self-oriented perfectionism (SOP) would predict increased effort on the task. One hundred and eleven college students completed the Multidimensional Perfectionism Scale (MPS) and a self-paced parity task in which they received a small cash reward (3 cents) for each correct response. Impedance cardiography was used to assess autonomic reactivity, and regression models tested whether SOP and socially prescribed perfectionism (SPP) explained autonomic reactivity. Overall, participants showed both sympathetic (faster pre-ejection period; PEP) and parasympathetic activation (elevated high-frequency heart rate variability; HRV) during the task, reflecting higher effort and engagement. Contrary to predictions, individual differences in perfectionism did not moderate cardiac reactivity. These findings draw attention to the importance of assessing physiological components of effort and motivation directly rather than inferring them from task performance or self-reported effort.

  6. Synergistic activation of cardiac genes by myocardin and Tbx5.

    Directory of Open Access Journals (Sweden)

    Chunbo Wang

    Full Text Available Myocardial differentiation is associated with the activation and expression of an array of cardiac specific genes. However, the transcriptional networks that control cardiac gene expression are not completely understood. Myocardin is a cardiac and smooth muscle-specific expressed transcriptional coactivator of Serum Response Factor (SRF and is able to potently activate cardiac and smooth muscle gene expression during development. We hypothesize that myocardin discriminates between cardiac and smooth muscle specific genes by associating with distinct co-factors. Here, we show that myocardin directly interacts with Tbx5, a member of the T-box family of transcription factors involved in the Holt-Oram syndrome. Tbx5 synergizes with myocardin to activate expression of the cardiac specific genes atrial natriuretic factor (ANF and alpha myosin heavy chain (α-MHC, but not that of smooth muscle specific genes SM22 or smooth muscle myosin heavy chain (SM-MHC. We found that this synergistic activation of shared target genes is dependent on the binding sites for Tbx5, T-box factor-Binding Elements (TBEs. Myocardin and Tbx5 physically interact and their interaction domains were mapped to the basic domain and the coil domain of myocardin and Tbx5, respectively. Our analysis demonstrates that the Tbx5G80R mutation, which leads to the Holt-Oram syndrome in humans, failed to synergize with myocardin to activate cardiac gene expression. These data uncover a key role for Tbx5 and myocardin in establishing the transcriptional foundation for cardiac gene activation and suggest that the interaction of myocardin and Tbx5 maybe involved in cardiac development and diseases.

  7. POINCARE PLOT OF HEART RATE VARIABILITY: QUANTITATIVE ANALYSIS OF SYMPATHETIC NERVOUS ACTIVITY IN NON-OBESE POLYCYSTIC OVARY SYNDROME PATIENTS

    Directory of Open Access Journals (Sweden)

    Malathi

    2016-06-01

    Full Text Available BACKGROUND Polycystic Ovary Syndrome (PCOS is one of the most common endocrinopathy in premenopausal women. AIM The aim of the study was to evaluate the effectiveness of the Poincare plot analysis of Heart Rate Variability (HRV in PCOS. METHODS AND MATERIALS 24 PCOS diagnosed by Rotterdam 2003 Diagnostic Criteria and were of lean and ideal weight as per WHO criteria and 24 BMI matched, age matched normally menstruating women served as study participants. People of the study group underwent 5 min of ECG, which was evaluated for HRV. HRV analysed were Geometrical parameters (HRV, TRI, INDEX, TINN, Total Power (TP and Poincare plot parameters (SD1, SD2, SD1/SD2, S. RESULTS The Poincare scatter grams were narrower in patients and wider in control groups showing parasympathetic withdrawal and sympathetic dominance, but were not statistically significant. Area (S, TP and HRV TRI INDEX, TINN showed overall decrease in autonomic activity denoting altered sympathovagal balance favouring sympathetic dominance. There was a significant correlation of TP, SD1, SD2, S, TINN and HRV TRI INDEX with increased Rate Pressure Product (RPP as well as with one another, but not with BMI. The regression analysis did not lay forward the independent associations of these variables. DISCUSSION AND CONCLUSION This study indicates the total variability is decreased even in young, lean and ideal weight PCOS patients. Larger studies are needed to evaluating the short- and long-term variability.

  8. A comparative study of changes operated by sympathetic nervous system activation on spindle afferent discharge and on tonic vibration reflex in rabbit jaw muscles.

    Science.gov (United States)

    Passatore, M; Deriu, F; Grassi, C; Roatta, S

    1996-03-07

    The effect of sympathetic activation on the spindle afferent response to vibratory stimuli eliciting the tonic vibration reflex in jaw closing muscles was studied in precollicularly decerebrate rabbits. Stimulation of the cervical sympathetic trunk, at frequencies within the physiologic range, consistently induced a decrease in spindle response to muscle vibration, which was often preceded by a transient enhancement. Spindle discharge was usually correlated with the EMG activity in the masseter muscle and the tension reflexly developed by jaw muscles. The changes in spindle response to vibration were superimposed on variations of the basal discharge which exhibited different patterns in the studied units, increases in the firing rate being more frequently observed. These effects were mimicked by close arterial injection of the selective alpha 1-adrenoceptor agonist phenylephrine. Data presented here suggest that sympathetically-induced modifications of the tonic vibration reflex are due to changes exerted on muscle spindle afferent information.

  9. DMPP-evoked increases in postganglionic sympathetic nerve activity and blood pressure occurs by two mechanisms in the rat.

    Science.gov (United States)

    Martin, J R

    1997-08-01

    1. Intravenous administration of the ganglionic nicotinic receptor agonist DMPP (1,1-dimethyl-4-phenylpiperazinium iodide) into urethane-anaesthetized rats evoked dose-dependent increases in mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA). 2. The ganglionic nicotinic receptor antagonists pentolinium and hexamethonium either alone or combined did not inhibit the increase in RSNA and MAP evoked by 50 to 200 micrograms kg-1 doses of DMPP. The increase in renal sympathetic nerve activity evoked by DMPP occurred as a brief burst in firing. 3. The increase in MAP, but not RSNA, evoked by DMPP in the presence of pentolinium was inhibited by the selective alpha 1-adrenergic receptor antagonist prazosin. 4. The non-selective alpha-adrenoceptor and NPY receptor antagonist benextramine also inhibited the increase in MAP without inhibiting the increase in RSNA. Surprisingly, the combination of benextramine and pentolinium, or benextramine and hexamethonium, completely blocked the DMPP-evoked increase in RSNA and thus the increase in MAP. 5. The uptake1 antagonist desipramine combined with pentolinium did not affect the DMPP-evoked increases in MAP or RSNA when compared to the responses evoked in the presence of pentolinium alone. 6. Adding the selective M1 muscarinic receptor antagonist telenzepine to pentolinium and prazosin did not inhibit the increase in RSNA evoked by a 100 micrograms kg-1 dose of DMPP. 7. While the DMPP-evoked increase in MAP in the presence of ganglionic nicotinic receptor antagonists is primarily dependent upon activation of alpha 1-adrenoceptors, the increase in RSNA occurs via activation of ganglionic nicotinic receptors and activation of a mechanism susceptible to blockade by benextramine.

  10. 肾交感神经去除术对心力衰竭犬心功能的影响%Influence of renal sympathetic denervation on cardiac function of dogs with heart failure

    Institute of Scientific and Technical Information of China (English)

    黄达民; 侯舒心; 罗晓菡; 张金春; 卢英民

    2016-01-01

    Objective:To study influence of renal sympathetic denervation (RDN)on cardiac function of dogs with heart failure (HF).Methods:A total of 40 dogs were randomly and equally divided into RDN group [received bilat- eral renal artery radiofrequency ablation (RFA)]and model group (only received femoral puncture).Pacemaker was implanted in every dog,and dog HF model was established using rapid right ventricular pacing.Cardiac and re-nal function indexes,BNP and sympathetic activity index levels were observed and compared between two groups be- fore RFA/sham operation,instant and four weeks after model establishment.Results:After operation four weeks, compared with model group,there were significant reductions in levels of epinephrine (E)[(362.69±42.54)ng/ml vs.(290.36±42.32)ng/ml],renin (R)[(305.46± 39.68)ng/ml vs.(230.04±32.80)ng/ml],aldosterone (AD)[(408.00±38.56)ng/ml vs.(246.00± 48.37)ng/ml],angiotensin Ⅱ (ATⅡ)[(280.00±48.08)pg/ml vs.(172.00±25.04)pg/ml]and norepinephrine (NE)[(425.65±50.54)ng/ml vs.(316.76±46.29)ng/ml]in RDN group (P<0.05 all);there were significant reductions in HR,respiratory rate (RR)and BNP level in RDN group,P<0.05 all;there were significant rise in SBP,LVEF,CO,CI,left ventricular pressure maximal rising rate (+dp/dtmax),left ventricular pressure maximal dropping rate (-dp/dtmax)and left ventricular end-systolic pressure (LVESP),and significant reductions in left ventricular end-systolic dimension (LVESd),left ventricular end-diastolic dimension (LVEDd)and left ventricular end-diastolic pressure (LVEDP)in RDN group,P<0.05 all.Conclusion:RDN can decrease renal sympathetic activity,improve heart function,inhibit myocardial remode- ling,its therapeutic effect is significant%目的:研究肾交感神经去除术(RDN)对心力衰竭(HF)犬心功能的影响.方法:选择实验犬40只,随机均分为RDN组(接受双肾动脉射频消融)及模型组(仅予股动脉穿刺).40只犬均安置心脏起搏器,用快速右室起搏的方法

  11. Refractory Hypertension: Evidence of Heightened Sympathetic Activity as a Cause of Antihypertensive Treatment Failure.

    Science.gov (United States)

    Dudenbostel, Tanja; Acelajado, Maria C; Pisoni, Roberto; Li, Peng; Oparil, Suzanne; Calhoun, David A

    2015-07-01

    Refractory hypertension is an extreme phenotype of treatment failure defined as uncontrolled blood pressure in spite of ≥5 classes of antihypertensive agents, including chlorthalidone and a mineralocorticoid receptor antagonist. A prospective evaluation of possible mechanisms of refractory hypertension has not been done. The goal of this study was to test for evidence of heightened sympathetic tone as indicated by 24-hour urinary normetanephrine levels, clinic and ambulatory heart rate (HR), HR variability, arterial stiffness as indexed by pulse wave velocity, and systemic vascular resistance compared with patients with controlled resistant hypertension. Forty-four consecutive patients, 15 with refractory and 29 with controlled resistant hypertension, were evaluated prospectively. Refractory hypertensive patients were younger (48±13.3 versus 56.5±14.1 years; P=0.038) and more likely women (80.0 versus 51.9%; P=0.047) compared with patients with controlled resistant hypertension. They also had higher urinary normetanephrine levels (464.4±250.2 versus 309.8±147.6 µg per 24 hours; P=0.03), higher clinic HR (77.8±7.7 versus 68.8±7.6 bpm; P=0.001) and 24-hour ambulatory HR (77.8±7.7 versus 68.8±7.6; P=0.0018), higher pulse wave velocity (11.8±2.2 versus 9.4±1.5 m/s; P=0.009), reduced HR variability (4.48 versus 6.11; P=0.03), and higher systemic vascular resistance (3795±1753 versus 2382±349 dyne·s·cm(5)·m(2); P=0.008). These findings are consistent with heightened sympathetic tone being a major contributor to antihypertensive treatment failure and highlight the need for effective sympatholytic therapies in patients with refractory hypertension.

  12. Vitamin D Levels Are Associated with Cardiac Autonomic Activity in Healthy Humans

    Directory of Open Access Journals (Sweden)

    Linda Ellis

    2013-06-01

    Full Text Available Vitamin D deficiency (≤50nmol/L 25-hydroxy vitamin D is a cardiovascular (CV risk factor that affects approximately one billion people worldwide, particularly those affected by chronic kidney disease (CKD. Individuals with CKD demonstrate abnormal cardiac autonomic nervous system activity, which has been linked to the significant rates of CV-related mortality in this population. Whether vitamin D deficiency has a direct association with regulation of cardiac autonomic activity has never been explored in humans. Methods: Thirty-four (34 healthy, normotensive subjects were studied and categorized based on 25-hydroxy vitamin D deficiency (deficient vs. non-deficient, n = 7 vs. 27, as well as 1,25-dihydroxy vitamin D levels (above vs. below 25th percentile, n = 8 vs. 26. Power spectral analysis of electrocardiogram recordings provided measures of cardiac autonomic activity across low frequency (LF and high frequency (HF, representative of vagal contribution bands, representative of the sympathetic and vagal limbs of the autonomic nervous system when transformed to normalized units (nu, respectively, as well as overall cardiosympathovagal balance (LF:HF during graded angiotensin II (AngII challenge (3 ng/kg/min × 30 min, 6 ng/kg/min × 30 min. Results: At baseline, significant suppression of sympathovagal balance was observed in the 25-hydroxy vitamin D-deficient participants (LF:HF, p = 0.02 vs. non-deficient, although no other differences were observed throughout AngII challenge. Participants in the lowest 1,25-dihydroxy VD quartile experienced significant withdrawal of inhibitory vagal control, as well as altered overall sympathovagal balance throughout AngII challenge (HF, mean difference = −6.98 ± 3 nu, p = 0.05; LF:HF, mean difference = 0.34 ± 0.1, p = 0.043 vs. above 25th percentile. Conclusions: Vitamin D deficiency is associated with suppression of resting cardiac autonomic activity, while low 1,25-dihydroxy vitamin D levels are

  13. [The effect of loading tests on the activity and reactivity of the sympathetic-adrenal system in subjects with arterial hypertension and overweight].

    Science.gov (United States)

    Kartvelishvili, H Iu

    1997-01-01

    Regulatory potentialities were studied of the sympathetic-adrenal system that reveal themselves in response to psychoemotional testing and acute peroral salt loading. In the group of over-weight (OW) patients presenting with hypertensive disease (HD), 1-h excretion of catecholamines following the psychoemotional testing was not different from that during the testing itself, which fact suggests more prolonged reaction of the sympathetic-adrenal system to stress in these examinees. An acute peroral salt loading causes increase in activity of the hormonal and mediator links of the sympathetic-adrenal system in HD patients both overweight and in the normal range body weight (BW). It was only those persons presenting with normal BW that were retaining sodium after the test.

  14. True or false? Memory is differentially affected by stress-induced cortisol elevations and sympathetic activity at consolidation and retrieval.

    Science.gov (United States)

    Smeets, Tom; Otgaar, Henry; Candel, Ingrid; Wolf, Oliver T

    2008-11-01

    Adrenal stress hormones released in response to acute stress may yield memory-enhancing effects when released post-learning and impairing effects at memory retrieval, especially for emotional memory material. However, so far these differential effects of stress hormones on the various memory phases for neutral and emotional memory material have not been demonstrated within one experiment. This study investigated whether, in line with their effects on true memory, stress and stress-induced adrenal stress hormones affect the encoding, consolidation, and retrieval of emotional and neutral false memories. Participants (N=90) were exposed to a stressor before encoding, during consolidation, before retrieval, or were not stressed and then were subjected to neutral and emotional versions of the Deese-Roediger-McDermott word list learning paradigm. Twenty-four hours later, recall of presented words (true recall) and non-presented critical lure words (false recall) was assessed. Results show that stress exposure resulted in superior true memory performance in the consolidation stress group and reduced true memory performance in the retrieval stress group compared to the other groups, predominantly for emotional words. These memory-enhancing and memory-impairing effects were strongly related to stress-induced cortisol and sympathetic activity measured via salivary alpha-amylase levels. Neutral and emotional false recall, on the other hand, was neither affected by stress exposure, nor related to cortisol and sympathetic activity following stress. These results demonstrate the importance of stress-induced hormone-related activity in enhancing memory consolidation and in impairing memory retrieval, in particular for emotional memory material.

  15. Concurrent sympathetic activation and vagal withdrawal in hyperthyroidism: Evidence from detrended fluctuation analysis of heart rate variability

    Science.gov (United States)

    Chen, Jin-Long; Shiau, Yuo-Hsien; Tseng, Yin-Jiun; Chiu, Hung-Wen; Hsiao, Tzu-Chien; Wessel, Niels; Kurths, Jürgen; Chu, Woei-Chyn

    2010-05-01

    Despite many previous studies on the association between hyperthyroidism and the hyperadrenergic state, controversies still exist. Detrended fluctuation analysis (DFA) is a well recognized method in the nonlinear analysis of heart rate variability (HRV), and it has physiological significance related to the autonomic nervous system. In particular, an increased short-term scaling exponent α1 calculated from DFA is associated with both increased sympathetic activity and decreased vagal activity. No study has investigated the DFA of HRV in hyperthyroidism. This study was designed to assess the sympathovagal balance in hyperthyroidism. We performed the DFA along with the linear analysis of HRV in 36 hyperthyroid Graves’ disease patients (32 females and 4 males; age 30 ± 1 years, means ± SE) and 36 normal controls matched by sex, age and body mass index. Compared with the normal controls, the hyperthyroid patients revealed a significant increase ( Phyperthyroid 1.28±0.04 versus control 0.91±0.02), long-term scaling exponent α2 (1.05±0.02 versus 0.90±0.01), overall scaling exponent α (1.11±0.02 versus 0.89±0.01), low frequency power in normalized units (LF%) and the ratio of low frequency power to high frequency power (LF/HF); and a significant decrease ( Phyperthyroidism is characterized by concurrent sympathetic activation and vagal withdrawal. This sympathovagal imbalance state in hyperthyroidism helps to explain the higher prevalence of atrial fibrillation and exercise intolerance among hyperthyroid patients.

  16. Bradykinin Contributes to Sympathetic and Pressor Responses Evoked by Activation of Skeletal Muscle Afferents P2X in Heart Failure

    Directory of Open Access Journals (Sweden)

    Jihong Xing

    2016-11-01

    Full Text Available Background/Aims: Published data suggest that purinergic P2X receptors of muscle afferent nerves contribute to the enhanced sympathetic nervous activity (SNA and blood pressure (BP responses during static exercise in heart failure (HF. In this study, we examined engagement of bradykinin (BK in regulating responses of SNA and BP evoked by P2X stimulation in rats with HF. We further examined cellular mechanisms responsible for BK. We hypothesized that BK potentiates P2X currents of muscle dorsal root ganglion (DRG neurons, and this effect is greater in HF due to upregulation of BK kinin B2 and P2X3 receptor. As a result, BK amplifies muscle afferents P2X-mediated SNA and BP responses. Methods: Renal SNA and BP responses were recorded in control rats and rats with HF. Western Blot analysis and patch-clamp methods were employed to examine the receptor expression and function of DRG neurons involved in the effects of BK. Results: BK injected into the arterial blood supply of the hindlimb muscles heightened the reflex SNA and BP responses induced by P2X activation with α,β-methylene ATP to a greater degree in HF rats. In addition, HF upregulated the protein expression of kinin B2 and P2X3 in DRG and the prior application of BK increased the magnitude of α,β-methylene ATP-induced currents in muscle DRG neurons from HF rats. Conclusion: BK plays a facilitating role in modulating muscle afferent P2X-engaged reflex sympathetic and pressor responses. In HF, P2X responsivness is augmented due to increases in expression of kinin B2 and P2X3 receptors and P2X current activity.

  17. Psychobiology of PTSD in the acute aftermath of trauma: Integrating research on coping, HPA function and sympathetic nervous system activity.

    Science.gov (United States)

    Morris, Matthew C; Rao, Uma

    2013-02-01

    Research on the psychobiological sequelae of trauma has typically focused on long-term alterations in individuals with chronic posttraumatic stress disorder (PTSD). Far less is known about the nature and course of psychobiological risk factors for PTSD during the acute aftermath of trauma. In this review, we summarize data from prospective studies focusing on the relationships among sympathetic nervous system activity, hypothalamic-pituitary-adrenal function, coping strategies and PTSD symptoms during the early recovery (or non-recovery) phase. Findings from pertinent studies are integrated to inform psychobiological profiles of PTSD-risk in children and adults in the context of existing models of PTSD-onset and maintenance. Data regarding bidirectional relations between coping strategies and stress hormones is reviewed. Limitations of existing literature and recommendations for future research are discussed.

  18. Role of sympathetic neural activation in age- and habitual exercise-related differences in the thermic effect of food.

    Science.gov (United States)

    Jones, Pamela Parker; Van Pelt, Rachael E; Johnson, David G; Seals, Douglas R

    2004-10-01

    The thermic effect of food (TEF) declines with advancing age in adult humans but is enhanced in the habitually exercising state. The responsiveness of the sympathetic nervous system (SNS) has been implicated in these differences in TEF. We tested the hypotheses that 1) the reduction in TEF with aging is associated with an attenuated SNS response to acute energy intake; and 2) the greater TEF observed in endurance exercise-trained adults is associated with an augmented SNS response. Four groups of healthy men were studied: 16 young and 11 older sedentary men and nine young and 10 older habitually exercising men. Metabolic rate (indirect calorimetry, ventilated hood), skeletal muscle sympathetic nerve activity (MSNA; peroneal microneurography), and plasma norepinephrine and plasma epinephrine concentrations were measured before and for up to 4 h after ingestion of a carbohydrate drink (2.5 g/kg fat-free mass). TEF was approximately 50% greater in young compared with older men (P exercising compared with sedentary men (P responses were not different among the four groups. Covarying for MSNA did not significantly alter the observed differences in TEF. Habitual exercise status did not affect the age-associated decline in TEF. These findings demonstrate that altered postprandial whole-body and skeletal muscle SNS activation is not an important mechanism mediating either the reduction in TEF with aging or the augmented TEF associated with the exercise-trained state in healthy men. Differences in beta-adrenergic responsiveness to postprandial sympathoadrenal stimulation and/or nonsympathetic adrenergic influences likely explain the age- and habitual exercise-related differences in TEF.

  19. Influence of the cardiac myosin hinge region on contractile activity.

    OpenAIRE

    Margossian, S S; Krueger, J W; Sellers, J R; Cuda, G; Caulfield, J B; Norton, P.; Slayter, H. S.

    1991-01-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myos...

  20. Hypothalamic Paraventricular and Arcuate Nuclei Contribute to Elevated Sympathetic Nerve Activity in Pregnant Rats: Roles of Neuropeptide Y and α-Melanocyte-Stimulating Hormone.

    Science.gov (United States)

    Shi, Zhigang; Cassaglia, Priscila A; Gotthardt, Laura C; Brooks, Virginia L

    2015-12-01

    Pregnancy increases sympathetic nerve activity (SNA), but the mechanisms are unknown. Here, we investigated the contributions of the hypothalamic paraventricular and arcuate nuclei in α-chloralose-anesthetized pregnant and nonpregnant rats. Baseline arterial pressure (AP) was lower, and heart rate (HR), lumbar sympathetic activity, and splanchnic SNA were higher in pregnant rats compared with nonpregnant rats. Inhibition of the paraventricular nucleus via bilateral muscimol nanoinjections decreased AP and HR more in pregnant rats than in nonpregnant rats and decreased lumbar SNA only in pregnant rats. Similarly, after arcuate muscimol nanoninjections, the decreases in AP, HR, and lumbar, renal, and splanchnic sympathetic nerve activities were greater in pregnant rats than in nonpregnant rats. Major arcuate neuronal groups that project to the paraventricular nucleus express inhibitory neuropeptide Y (NPY) and excitatory α-melanocyte-stimulating hormone. Inhibition of paraventricular melanocortin 3/4 receptors with SHU9119 also decreased AP, HR, and lumbar SNA in pregnant rats but not in nonpregnant rats. Conversely, paraventricular nucleus NPY expression was reduced in pregnant animals, and although blockade of paraventricular NPY Y1 receptors increased AP, HR, and lumbar sympathetic activity in nonpregnant rats, it had no effects in pregnant rats. Yet, the sympathoinhibitory, depressor, and bradycardic effects of paraventricular NPY nanoinjections were similar between groups. In conclusion, the paraventricular and arcuate nuclei contribute to increased basal SNA during pregnancy, likely due in part to decreased tonic NPY inhibition and increased tonic α-melanocyte-stimulating hormone excitation of presympathetic neurons in the paraventricular nucleus.

  1. Inhibition of neutrophil activity improves cardiac function after cardiopulmonary bypass

    Directory of Open Access Journals (Sweden)

    Grünwald Frank

    2007-10-01

    Full Text Available Abstract Background The arterial in line application of the leukocyte inhibition module (LIM in the cardiopulmonary bypass (CPB limits overshooting leukocyte activity during cardiac surgery. We studied in a porcine model whether LIM may have beneficial effects on cardiac function after CPB. Methods German landrace pigs underwent CPB (60 min myocardial ischemia; 30 min reperfusion without (group I; n = 6 or with LIM (group II; n = 6. The cardiac indices (CI and cardiac function were analyzed pre and post CPB with a Swan-Ganz catheter and the cardiac function analyzer. Neutrophil labeling with technetium, scintigraphy, and histological analyses were done to track activated neutrophils within the organs. Results LIM prevented CPB-associated increase of neutrophil counts in peripheral blood. In group I, the CI significantly declined post CPB (post: 3.26 ± 0.31; pre: 4.05 ± 0.45 l/min/m2; p 2; p = 0.23. Post CPB, the intergroup difference showed significantly higher CI values in the LIM group (p Conclusion Our data provides strong evidence that LIM improves perioperative hemodynamics and cardiac function after CPB by limiting neutrophil activity and inducing accelerated sequestration of neutrophils in the spleen.

  2. External cardiac compression may be harmful in some scenarios of pulseless electrical activity.

    LENUS (Irish Health Repository)

    Hogan, T S

    2012-10-01

    Pulseless electrical activity occurs when organised or semi-organised electrical activity of the heart persists but the product of systemic vascular resistance and the increase in systemic arterial flow generated by the ejection of the left venticular stroke volume is not sufficient to produce a clinically detectable pulse. Pulseless electrical activity encompasses a very heterogeneous variety of severe circulatory shock states ranging in severity from pseudo-cardiac arrest to effective cardiac arrest. Outcomes of cardiopulmonary resuscitation for pulseless electrical activity are generally poor. Impairment of cardiac filling is the limiting factor to cardiac output in many scenarios of pulseless electrical activity, including extreme vasodilatory shock states. There is no evidence that external cardiac compression can increase cardiac output when impaired cardiac filling is the limiting factor to cardiac output. If impaired cardiac filling is the limiting factor to cardiac output and the heart is effectively ejecting all the blood returning to it, then external cardiac compression can only increase cardiac output if it increases venous return and cardiac filling. Repeated cardiac compression asynchronous with the patient\\'s cardiac cycle and raised mean intrathoracic pressure due to chest compression can be expected to reduce rather than to increase cardiac filling and therefore to reduce rather than to increase cardiac output in such circumstances. The hypothesis is proposed that the performance of external cardiac compression will have zero or negative effect on cardiac output in pulseless electrical activity when impaired cardiac filling is the limiting factor to cardiac output. External cardiac compression may be both directly and indirectly harmful to significant sub-groups of patients with pulseless electrical activity. We have neither evidence nor theory to provide comfort that external cardiac compression is not harmful in many scenarios of pulseless

  3. External cardiac compression may be harmful in some scenarios of pulseless electrical activity.

    Science.gov (United States)

    Hogan, T S

    2012-10-01

    Pulseless electrical activity occurs when organised or semi-organised electrical activity of the heart persists but the product of systemic vascular resistance and the increase in systemic arterial flow generated by the ejection of the left venticular stroke volume is not sufficient to produce a clinically detectable pulse. Pulseless electrical activity encompasses a very heterogeneous variety of severe circulatory shock states ranging in severity from pseudo-cardiac arrest to effective cardiac arrest. Outcomes of cardiopulmonary resuscitation for pulseless electrical activity are generally poor. Impairment of cardiac filling is the limiting factor to cardiac output in many scenarios of pulseless electrical activity, including extreme vasodilatory shock states. There is no evidence that external cardiac compression can increase cardiac output when impaired cardiac filling is the limiting factor to cardiac output. If impaired cardiac filling is the limiting factor to cardiac output and the heart is effectively ejecting all the blood returning to it, then external cardiac compression can only increase cardiac output if it increases venous return and cardiac filling. Repeated cardiac compression asynchronous with the patient's cardiac cycle and raised mean intrathoracic pressure due to chest compression can be expected to reduce rather than to increase cardiac filling and therefore to reduce rather than to increase cardiac output in such circumstances. The hypothesis is proposed that the performance of external cardiac compression will have zero or negative effect on cardiac output in pulseless electrical activity when impaired cardiac filling is the limiting factor to cardiac output. External cardiac compression may be both directly and indirectly harmful to significant sub-groups of patients with pulseless electrical activity. We have neither evidence nor theory to provide comfort that external cardiac compression is not harmful in many scenarios of pulseless

  4. Modelling of the dynamic relationship between arterial pressure, renal sympathetic nerve activity and renal blood flow in conscious rabbits.

    Science.gov (United States)

    Berger, C S; Malpas, S C

    1998-12-01

    A linear autoregressive/moving-average model was developed to describe the dynamic relationship between mean arterial pressure (MAP), renal sympathetic nerve activity (SNA) and renal blood flow (RBF) in conscious rabbits. The RBF and SNA to the same kidney were measured under resting conditions in a group of eight rabbits. Spectral analysis of the data sampled at 0.4 Hz showed that the low-pass bandwidth of the signal power for RBF was approximately 0. 05 Hz. An autoregressive/moving-average model with an exogenous input (ARMAX) was then derived (using the iterative Gauss-Newton algorithm provided by the MATLAB identification Toolbox), with MAP and SNA as inputs and RBF as output, to model the low-frequency fluctuations. The model step responses of RBF to changes in SNA and arterial pressure indicated an overdamped response with a settling time that was usually less than 2 s. Calculated residuals from the model indicated that 79 5 % (mean s.d., averaged over eight independent experiments) of the variation in RBF could be accounted for by the variations in arterial pressure and SNA. Two additional single-input models for each of the inputs were similarly obtained and showed conclusively that changes in RBF, in the conscious resting rabbit, are a function of both SNA and MAP and that the SNA signal has the predominant effect. These results indicate a strong reliance on SNA for the dynamic regulation of RBF. Such information is likely to be important in understanding the diminished renal function that occurs in a variety of disease conditions in which overactivity of the sympathetic nervous system occurs.

  5. OBJECTIVE EVALUATION OF CARDIAC AUTONOMIC ACTIVITY IN DIFFERENT PHASES OF MENSTRUAL CYCLE

    Directory of Open Access Journals (Sweden)

    Srujana

    2015-01-01

    Full Text Available A wide spectrum of biological function is regulated by the cyclic changes in estrogen and progesterone levels during regular menstrual cycle. However limited literature is available concerning the relationship of these hormones and cardiac autonomic activity. In the present study, we hypothesize that there would be heart rate variability during different phases of menstrual cycle, which can be attributed to the effect of ovarian steroids on cardiovascular function in women. The aim of the study is to compare the c ardiac autonomic activity in the different phases of menstrual cycle ( M enstrual, follicular and luteal phases using heart rate variability. The objective is to establish a physiological correlation between the cardiac autonomic activity and different phas es of menstrual cycle. The study was conducted in 48 regularly menstruating young female, of age group 18 - 30yrs, in the Upgraded Department of Physiology, Osmania medical college, from December 2011 to August 2013, using LABCHART software provided by ADLAB S. The power spectral analysis of HRV was used to calculate low frequency(LF , high frequency (HF component and their ratio (LF/HF during menstrual (2±1 days, follicular(11±1 day and luteal phases (20±1day from the first day of bleeding. Results showe d a significant increase was noted in low frequency component in luteal phase compared to follicular phase (p=0.000, whereas, a tendency for increase in high frequency component was observed in follicular phase (p=0.004. Furthermore, LF/HF was significan tly higher in luteal phase than in the follicular phase (p=0.000 indicating an increased sympathetic activity. The conclusion is regulation of autonomic tone is modified during menstrual cycle. The alteration in the balance of ovarian hormones might be re sponsible for these changes.

  6. CAPSAICIN SUPPLEMENTATION FAILS TO MODULATE AUTONOMIC AND CARDIAC ELECTROPHYSIOLOGIC ACTIVITY DURING EXERCISE IN THE OBESE: WITH VARIANTS OF UCP2 AND UCP3 POLYMORPHISM

    Directory of Open Access Journals (Sweden)

    Ki Ok Shin

    2008-09-01

    Full Text Available We investigated the effects of capsaicin supplementation (150mg on alterations of autonomic nervous system (ANS activity associated with adverse effects of cardiac depolarization-repolarization intervals during aerobic exercise in obese humans. Nine obese males (26.1 ± 1.5 yrs volunteered between study designed. The cardiac ANS activities evaluated by means of heart rate variability of power spectral analysis and cardiac QT interval were continuously measured during 5-min rest and 30-min exercise at 50% of maximal ventilation threshold (50%VTmax on stationary ergometer with placebo (CON or capsaicin (CAP oral administration chosen at random. The uncoupling protein (UCP 2 and UCP 3 genetic variants of the subjects were analyzed by noninvasive genotyping method from collecting buccal mucosa cells. The results indicated that there were no significant differences in cardiac ANS activities during rest and exercise between CON and CAP trials. Although no significant difference, A/A allele of UCP2 polymorphism showed a reduced sympathetic nervous system (SNS index activity compared to G/G + G/A allele during exercise intervention in our subjects. On the other hand, the data on cardiac QT interval showed no significant difference, indicating that oral administration of capsaicin did not cause any adverse effect on cardiac depolarization-repolarization. In conclusion, our results suggest that capsaicin supplementation 1 h before exercise intervention has no effect on cardiac ANS activities and cardiac electrical stability during exercise in obese individuals. Further studies should also consider genetic variants for exercise efficacy against obesity

  7. Effects of 12 months continuous positive airway pressure on sympathetic activity related brainstem function and structure in obstructive sleep apnea.

    Directory of Open Access Journals (Sweden)

    Luke Anthony Henderson

    2016-03-01

    Full Text Available Muscle sympathetic nerve activity (MSNA is greatly elevated in patients with obstructive sleep apnoea (OSA during normoxic daytime wakefulness. Increased MSNA is a precursor to hypertension and elevated cardiovascular morbidity and mortality. However, the mechanisms underlying the high MSNA in OSA are not well understood. In this study we used concurrent microneurography and magnetic resonance imaging to explore MSNA-related brainstem activity changes and anatomical changes in 15 control and 15 subjects with OSA prior to and following 6 and 12 months of continuous positive airway pressure (CPAP treatment. We found that 6 and 12 months of CPAP treatment significantly reduced the elevated resting MSNA in individuals with OSA. Furthermore, this MSNA reduction was associated with restoration of MSNA-related activity and structural changes in the medullary raphe, rostral ventrolateral medulla, dorsolateral pons and ventral midbrain. This restoration occurred after 6 months of CPAP treatment and was maintained following 12 months CPAP. These findings show that continual CPAP treatment is an effective long-term treatment for elevated MNSA likely due to its effects on restoring brainstem structure and function.

  8. A model-based approach for the evaluation of vagal and sympathetic activities in a newborn lamb

    Science.gov (United States)

    Le Rolle, Virginie; Ojeda, David; Beuchee, Alain; Praud, Jean-Paul; Pladys, Patrick; Hernandez, Alfredo I.

    2013-01-01

    This paper proposes a baroreflex model and a recursive identification method to estimate the time-varying vagal and sympathetic contributions to heart rate variability during autonomic maneuvers. The baroreflex model includes baroreceptors, cardiovascular control center, parasympathetic and sympathetic pathways. The gains of the global afferent sympathetic and vagal pathways are identified recursively. The method has been validated on data from newborn lambs, which have been acquired during the application of an autonomic maneuver, without medication and under beta-blockers. Results show a close match between experimental and simulated signals under both conditions. The vagal and sympathetic contributions have been simulated and, as expected, it is possible to observe different baroreflex responses under beta-blockers compared to baseline conditions. PMID:24110579

  9. Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight

    Science.gov (United States)

    Levine, Benjamin D.; Pawelczyk, James A.; Ertl, Andrew C.; Cox, James F.; Zuckerman, Julie H.; Diedrich, Andre; Biaggioni, Italo; Ray, Chester A.; Smith, Michael L.; Iwase, Satoshi; Saito, Mitsuru; Sugiyama, Yoshiki; Mano, Tadaaki; Zhang, Rong; Iwasaki, Kenichi; Lane, Lynda D.; Buckey, Jay C Jr; Cooke, William H.; Baisch, Friedhelm J.; Eckberg, Dwain L.; Blomqvist, C. Gunnar

    2002-01-01

    Orthostatic intolerance is common when astronauts return to Earth: after brief spaceflight, up to two-thirds are unable to remain standing for 10 min. Previous research suggests that susceptible individuals are unable to increase their systemic vascular resistance and plasma noradrenaline concentrations above pre-flight upright levels. In this study, we tested the hypothesis that adaptation to the microgravity of space impairs sympathetic neural responses to upright posture on Earth. We studied six astronauts approximately 72 and 23 days before and on landing day after the 16 day Neurolab space shuttle mission. We measured heart rate, arterial pressure and cardiac output, and calculated stroke volume and total peripheral resistance, during supine rest and 10 min of 60 deg upright tilt. Muscle sympathetic nerve activity was recorded in five subjects, as a direct measure of sympathetic nervous system responses. As in previous studies, mean (+/- S.E.M.) stroke volume was lower (46 +/- 5 vs. 76 +/- 3 ml, P = 0.017) and heart rate was higher (93 +/- 1 vs. 74 +/- 4 beats min(-1), P = 0.002) during tilt after spaceflight than before spaceflight. Total peripheral resistance during tilt post flight was higher in some, but not all astronauts (1674 +/- 256 vs. 1372 +/- 62 dynes s cm(-5), P = 0.32). No crew member exhibited orthostatic hypotension or presyncopal symptoms during the 10 min of postflight tilting. Muscle sympathetic nerve activity was higher post flight in all subjects, in supine (27 +/- 4 vs. 17 +/- 2 bursts min(-1), P = 0.04) and tilted (46 +/- 4 vs. 38 +/- 3 bursts min(-1), P = 0.01) positions. A strong (r(2) = 0.91-1.00) linear correlation between left ventricular stroke volume and muscle sympathetic nerve activity suggested that sympathetic responses were appropriate for the haemodynamic challenge of upright tilt and were unaffected by spaceflight. We conclude that after 16 days of spaceflight, muscle sympathetic nerve responses to upright tilt are normal.

  10. Sympathetic actions on the skeletal muscle.

    Science.gov (United States)

    Roatta, Silvestro; Farina, Dario

    2010-01-01

    The sympathetic nervous system (SNS) modulates several functions in skeletal muscle fibers, including metabolism, ionic transport across the membrane, and contractility. These actions, together with the sympathetic control of other organ systems, support intense motor activity. However, some SNS actions on skeletal muscles may not always be functionally advantageous. Implications for motor control and sport performance are discussed.

  11. Sympathetic and parasympathetic activity in cancer-related fatigue: more evidence for a physiological substrate in cancer survivors.

    Science.gov (United States)

    Fagundes, Christopher P; Murray, David M; Hwang, Beom Seuk; Gouin, Jean-Philippe; Thayer, Julian F; Sollers, John J; Shapiro, Charles L; Malarkey, William B; Kiecolt-Glaser, Janice K

    2011-09-01

    Fatigue is a notable clinical problem in cancer survivors, and understanding its pathophysiology is important. This study evaluated relationships between fatigue and both sympathetic and parasympathetic nervous system activity in breast cancer survivors. Norepinephrine and heart rate variability (HRV) were evaluated at rest, as well as during and after a standardized laboratory speech and mental arithmetic stressor. The participants, 109 women who had completed treatment for stage 0-IIIA breast cancer within the past two years, were at least two months post surgery, radiation or chemotherapy, whichever occurred last. Women who reported more fatigue had significantly higher norepinephrine and lower HRV before and after the stressor than their less fatigued counterparts. Fatigue was not related to treatment or disease variables including treatment type, cancer stage, time since diagnosis, and time since treatment. Importantly, the relationship between HRV and cancer-related fatigue was sizeable. Based on research that has demonstrated characteristic age-related HRV decrements, our findings suggest a 20-year difference between fatigued and non-fatigued cancer survivors, raising the possibility that fatigue may signify accelerated aging. Furthermore, lower HRV and elevated norepinephrine have been associated with a number of adverse health outcomes; accordingly, fatigue may also signal the need for increased vigilance to other health threats.

  12. Arterial baroreceptor reflex control of renal sympathetic nerve activity following chronic myocardial infarction in male, female, and ovariectomized female rats.

    Science.gov (United States)

    Pinkham, Maximilian I; Whalley, Gillian A; Guild, Sarah-Jane; Malpas, Simon C; Barrett, Carolyn J

    2015-07-15

    There is controversy regarding whether the arterial baroreflex control of renal sympathetic nerve activity (SNA) in heart failure is altered. We investigated the impact of sex and ovarian hormones on changes in the arterial baroreflex control of renal SNA following a chronic myocardial infarction (MI). Renal SNA and arterial pressure were recorded in chloralose-urethane anesthetized male, female, and ovariectomized female (OVX) Wistar rats 6-7 wk postsham or MI surgery. Animals were grouped according to MI size (sham, small and large MI). Ovary-intact females had a lower mortality rate post-MI (24%) compared with both males (38%) and OVX (50%) (P renal SNA. As a result, the male large MI group (49 ± 6 vs. 84 ± 5% in male sham group) and OVX large MI group (37 ± 3 vs. 75 ± 5% in OVX sham group) displayed significantly reduced arterial baroreflex range of control of normalized renal SNA (P renal SNA was unchanged regardless of MI size. In males and OVX there was a significant, positive correlation between left ventricle (LV) ejection fraction and arterial baroreflex range of control of normalized renal SNA, but not absolute renal SNA, that was not evident in ovary-intact females. The current findings demonstrate that the arterial baroreflex control of renal SNA post-MI is preserved in ovary-intact females, and the state of left ventricular dysfunction significantly impacts on the changes in the arterial baroreflex post-MI.

  13. The sensitivity of neurons with non-periodic activity to sympathetic stimulation in rat injured dorsal root ganglion

    Institute of Scientific and Technical Information of China (English)

    Hong-Jun YANG; San-Jue HU; Pu-Lin GONG; Jian-Hong DUAN

    2006-01-01

    Objective The relationship between firing pattern and sensitivity of neurons was studied in chronically compressed dorsal root ganglion (DRG) neurons and the Hindmarsh-Rose (HR) neuronal model. Methods Spontaneous activities from single fibers of chronically compressed DRG neurons in rats were recorded, and divided into periodic and non-periodic firing patterns. The sensitivity of the two kinds of firing pattern neuron to sympathetic stimulation (SS)was compared. Result It was found that 27.3% of periodic firing neurons and 93.2% of non-periodic firing neurons responded to SS respectively ( periodic vs non-periodic, P < 0.01 ). The responses to SS with different stimulation time were greater non-periodic firing neurons than periodic firing neurons (P < 0.01 ). The non-periodic firing neurons obviously responded to SS. After the firing pattern of these neurons transformed to periodic firing pattern, their responses to SS disappeared or decreased obviously. The HR neuronal model exhibited a significantly greater response to perturbation in non-periodic (chaotic) firing pattern than in periodic firing pattern. Conclusion The non-periodic firing neurons with deterministic chaos are more sensitive to external stimuli than the periodic firing neurons.

  14. Evaluation of cardiac blood blow, metabolism and sympathetic nerve function in patients with cardiac failure using PET and SPECT. Prognostic diagnosis based on the analysis of aggravating factors of the disease

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Yoshio; Shimozu, Junko; Yasumura, Yoshio; Nagatani, Kenzo; Miyatake, Kunio [National Cardiovascular Center, Suita, Osaka (Japan)

    1998-02-01

    Focusing on the failure of energy metabolism, which is assumed to be attributed to the cardiac muscle disorder of a patient with cardiac failure, the characteristics and diagnostic significance of the metabolic disorders of cadiac muscles were investigated in those patients. The diagnostic efficacy of {beta}-methyl iodophenyl pentadecanoic acid (BMIPP) which is a imaging agent for lipid metabolism in the cardiac muscle was assessed in the clinical states of cardiac failure due to pulmonary hypertension. Even if there was a considerable increase in the mean pulmonary arterial pressure (mPAP), the initial accumulation of BMIPP linearly increased, similarly to the increase in the accumulation of MIBI, a blood flow agent. The initial accumulation of BMIPP was thought to reflect a thicken cardiac muscle and/or increased blood flow. Also, its washing-out rate was suggested to be usable as an clinical indicator to estimate the loading of ventricular pressure. (M.N.)

  15. Sympathetic reflex control of blood flow in human peripheral tissues

    DEFF Research Database (Denmark)

    Henriksen, O

    1991-01-01

    Sympathetic vasoconstrictor reflexes are essential for the maintenance of arterial blood pressure in upright position. It has been generally believed that supraspinal sympathetic vasoconstrictor reflexes elicited by changes in baroreceptor activity play an important role. Recent studies on human ...... to collision of normodromically and antidromically conducted impulses in efferent sympathetic vasoconstrictor fibers. The evidence obtained suggests that sympathetic vasoconstrictor reflexes to postural changes are complex and highly differentiated....

  16. Neurohumoral activation in heart failure: the role of adrenergic receptors

    OpenAIRE

    Patricia C. Brum; Rolim, Natale P. L.; BACURAU, Aline V. N.; Alessandra Medeiros

    2006-01-01

    Heart failure (HF) is a common endpoint for many forms of cardiovascular disease and a significant cause of morbidity and mortality. The development of end-stage HF often involves an initial insult to the myocardium that reduces cardiac output and leads to a compensatory increase in sympathetic nervous system activity. Acutely, the sympathetic hyperactivity through the activation of beta-adrenergic receptors increases heart rate and cardiac contractility, which compensate for decreased cardia...

  17. The effect of short-term withdrawal from continuous positive airway pressure therapy on sympathetic activity and markers of vascular inflammation in subjects with obstructive sleep apnoea.

    Science.gov (United States)

    Phillips, Craig L; Yang, Qiao; Williams, Andrew; Roth, Michael; Yee, Brendon J; Hedner, Jan A; Berend, Norbert; Grunstein, Ronald R

    2007-06-01

    Obstructive sleep apnoea (OSA) is commonly associated with cardiovascular disease and sympathetic activation. However, it is unclear whether this association is independent of obesity and to what extent treatment with nasal continuous positive airway pressure (CPAP) alleviates the vascular inflammation that underpins cardiovascular disease. We therefore evaluated whether short-term withdrawal from CPAP therapy in subjects with moderate-severe OSA would result in increased levels of sympathetic activity and circulating inflammatory cytokines independent of weight. Vascular inflammatory markers (hsCRP, hsIL-6 and hsTNF-alpha) were assessed in 20 subjects after one and seven nights of withdrawal from CPAP together with the hypoxia-responsive angiogenic marker VEGF and urinary catecholamines. Compared with baseline on CPAP, withdrawal from therapy resulted in an immediate return of OSA with an increase in RDI to 26.7 +/- 5.2 and 39.0 +/- 5.9 events per hour after one and seven nights without CPAP, respectively (both P 0.1). In conclusion, 1 week of CPAP withdrawal was associated with a return of OSA and a marked increase in sympathetic activity without a concomitant elevation of vascular inflammatory markers.

  18. Effects of physiological and pharmacological variation of sympathetic nervous system activity on plasma non-esterified fatty acid concentrations in man.

    Science.gov (United States)

    Barbe, P; Galitzky, J; Riviere, D; Senard, J M; Lafontan, M; Garrigues, M; Berlan, M

    1993-01-01

    1. The consequence of the sympatholytic effect of clonidine (alpha 2-adrenoceptor agonist) was compared with the effect of a physiological inhibition of sympathetic nervous system activity (change from upright to supine position) on plasma catecholamine and non-esterified fatty acid (NEFA) concentrations in overnight fasting healthy men. 2. Clonidine (150 micrograms orally) administered in upright position induced a significant reduction of plasma noradrenaline and NEFA concentrations. A change from upright to supine position which provoked a more marked decrease in plasma noradrenaline concentrations induced a weak increase in plasma NEFA concentrations. 3. The modification of plasma NEFA and catecholamine concentrations brought about by standing up was studied after placebo or yohimbine (alpha 2-adrenoceptor antagonist) administration. With placebo, standing up promotes a 100% increase in plasma noradrenaline concentrations (measured 5 and 15 min after rising) and a weak transient decrease in plasma NEFA concentrations (5 min after rising). In the supine position, yohimbine increased plasma noradrenaline and NEFA concentrations by about 100% and 55% respectively. Standing after yohimbine administration promoted large increases in plasma noradrenaline and NEFA concentrations. 4. These results indicate that a reduction of sympathetic nervous activity is not associated with a decrease of plasma NEFA concentrations and argue for a role of alpha 2-adrenoceptors in the NEFA mobilization from adipose tissue after sympathetic nervous system activation in man. PMID:8373709

  19. Sympathetic nervous activity decreases during head-down bed rest but not during microgravity

    DEFF Research Database (Denmark)

    Christensen, Niels J; Heer, Martina; Ivanova, Krassimira

    2005-01-01

    We tested the hypothesis that sympathoadrenal activity in humans is low during spaceflight and that this effect can be simulated by head-down bed rest (HDBR). Platelet norepinephrine and epinephrine were measured as indexes of long-term changes in sympathoadrenal activity. Ten normal healthy...

  20. Heart rate complexity: A novel approach to assessing cardiac stress reactivity.

    Science.gov (United States)

    Brindle, Ryan C; Ginty, Annie T; Phillips, Anna C; Fisher, James P; McIntyre, David; Carroll, Douglas

    2016-04-01

    Correlation dimension (D2), a measure of heart rate (HR) complexity, has been shown to decrease in response to acute mental stress and relate to adverse cardiovascular health. However, the relationship between stress-induced changes in D2 and HR has yet to be established. The present studies aimed to assess this relationship systematically while controlling for changes in respiration and autonomic activity. In Study 1 (N = 25) D2 decreased during stress and predicted HR reactivity even after adjusting for changes in respiration rate, and cardiac vagal tone. This result was replicated in Study 2 (N = 162) and extended by including a measure of cardiac sympathetic activity; correlation dimension remained an independent predictor of HR reactivity in a hierarchical linear model containing measures of cardiac parasympathetic and sympathetic activity and their interaction. These results suggest that correlation dimension may provide additional information regarding cardiac stress reactivity above that provided by traditional measures of cardiac autonomic function.

  1. Central Administration of Insulin and Leptin Together Enhance Renal Sympathetic Nerve Activity and Fos Production in the Arcuate Nucleus

    Science.gov (United States)

    Habeeballah, Hamza; Alsuhaymi, Naif; Stebbing, Martin J.; Jenkins, Trisha A.; Badoer, Emilio

    2017-01-01

    There is considerable interest in the central actions of insulin and leptin. Both induce sympatho-excitation. This study (i) investigated whether centrally administered leptin and insulin together elicits greater increases in renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) than when given alone, and (ii) quantified the number of activated neurons in brain regions influencing SNA, to identify potential central sites of interaction. In anesthetised (urethane 1.4–1.6 g/kg iv) male Sprague-Dawley rats, RSNA, MAP, and HR were recorded following intracerebroventricular (ICV) saline (control; n = 5), leptin (7 μg; n = 5), insulin (500 mU; n = 4) and the combination of leptin and insulin; (n = 4). Following leptin or insulin alone, RSNA was significantly increased (74 and 62% respectively). MAP responses were not significantly different between the groups. Insulin alone significantly increased HR. Leptin alone also increased HR but it was significantly less than following insulin alone (P < 0.005). When leptin and insulin were combined, the RSNA increase (124%) was significantly greater than the response to either alone. There were no differences between the groups in MAP responses, however, the increase in HR induced by insulin was attenuated by leptin. Of the brain regions examined, only in the arcuate nucleus did leptin and insulin together increase the number of Fos-positive cell nuclei significantly more than leptin or insulin alone. In the lamina terminalis and rostroventrolateral medulla, leptin and insulin together increased Fos, but the effect was not greater than leptin alone. The results suggest that when central leptin and insulin levels are elevated, the sympatho-excitatory response in RSNA will be greater. The arcuate nucleus may be a common site of cardiovascular integration. PMID:28119622

  2. Interactions between cardiac, respiratory, and brain activity in humans

    Science.gov (United States)

    Musizza, Bojan; Stefanovska, Aneta

    2005-05-01

    The electrical activity of the heart (ECG), respiratory function and electric activity of the brain (EEG) were simultaneously recorded in conscious, healthy humans. Instantaneous frequencies of the heart beat, respiration and α-waves were then determined from 30-minutes recordings. The instantaneous cardiac frequency was defined as the inverse value of the time interval between two consecutive R-peaks. The instantaneous respiratory frequency was obtained from recordings of the excursions of thorax by application of the Hilbert transform. To obtain the instantaneous frequency of α-waves, the EEG signal recorded from the forehead was first analysed using the wavelet transform. Then the frequency band corresponding to α-waves was extracted and the Hilbert transform applied. Synchronization analysis was performed and the direction of coupling was ascertained, using pairs of instantaneous frequencies in each case. It is shown that the systems are weakly bidirectionally coupled. It was confirmed that, in conscious healthy humans, respiration drives cardiac activity. We also demonstrate from these analyses that α-activity drives both respiration and cardiac activity.

  3. Snoring, sympathetic activity and cardiovascular risk factors in a 70 year old population

    DEFF Research Database (Denmark)

    Jennum, P; Schultz-Larsen, K; Christensen, Niels Juel

    1993-01-01

    In order to describe the relation between snoring, cardiovascular risk factors, metabolic factors and sympathetitic activity, 804 70-year-old males and females were classified according to snoring habits and life-style factors (alcohol and tobacco consumption), blood pressure, body mass index (BMI...... with tobacco consumption (p = 0.08). No associations were found between snoring and fasting glucose, plasma lipids, plasma epinephrine or in the use of antihypertensive medication. In multivariate analysis, with forced entry of gender, BMI, physical activity, alcohol and tobacco consumption, the relation...

  4. Nuclear imaging in cardiac amyloidosis

    Energy Technology Data Exchange (ETDEWEB)

    Glaudemans, A.W.J.M.; Slart, R.H.J.A.; Veltman, N.C.; Dierckx, R.A.J.O. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, P.O. Box 30001, Groningen (Netherlands); Zeebregts, C.J. [University Medical Center Groningen, Department of Surgery (Division of Vascular Surgery), Groningen (Netherlands); Tio, R.A. [University Medical Center Groningen, Department of Cardiology, Groningen (Netherlands); Hazenberg, B.P.C. [University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Groningen (Netherlands)

    2009-04-15

    Amyloidosis is a disease characterized by depositions of amyloid in organs and tissues. It can be localized (in just one organ) or systemic. Cardiac amyloidosis is a debilitating disease and can lead to arrhythmias, deterioration of heart function and even sudden death. We reviewed PubMed/Medline, without time constraints, on the different nuclear imaging modalities that are used to visualize myocardial amyloid involvement. Several SPECT tracers have been used for this purpose. The results with these tracers in the evaluation of myocardial amyloidosis and their mechanisms of action are described. Most clinical evidence was found for the use of {sup 123}I-MIBG. Myocardial defects in MIBG activity seem to correlate well with impaired cardiac sympathetic nerve endings due to amyloid deposits. {sup 123}I-MIBG is an attractive option for objective evaluation of cardiac sympathetic level and may play an important role in the indirect measurement of the effect of amyloid myocardial infiltration. Other, less sensitive, options are {sup 99m}Tc-aprotinin for imaging amyloid deposits and perhaps {sup 99m}Tc-labelled phosphate derivatives, especially in the differential diagnosis of the aetiology of cardiac amyloidosis. PET tracers, despite the advantage of absolute quantification and higher resolution, are not yet well evaluated for the study of cardiac amyloidosis. Because of these advantages, there is still the need for further research in this field. (orig.)

  5. Autonomic nervous system responses to viewing green and built settings: differentiating between sympathetic and parasympathetic activity

    NARCIS (Netherlands)

    van den Berg, Magdalena; Maas, Jolanda; Mulder, Rianne; Braun, Anoek; Kaandorp, Wendy; van Lien, René; van Poppel, Mireille; van Mechelen, Willem; van den Berg, Agnes

    2015-01-01

    his laboratory study explored buffering and recovery effects of viewing urban green and built spaces on autonomic nervous system activity. Forty-six students viewed photos of green and built spaces immediately following, and preceding acute stress induction. Simultaneously recorded electrocardiogram

  6. Sex Comparisons in Muscle Sympathetic Nerve Activity and Arterial Pressure Oscillations During Progressive Central Hypovolemia

    Science.gov (United States)

    2015-01-01

    Baroreflex activity, blood Loss, gender , lower body negative pressure. Correspondence Robert Carter III, US Army Institute of Surgical Research, Fort...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...adrenoreceptor responsiveness, greater vasoconstriction under equal LBNP, lower levels of total circulating norepinephrine (NE) at presyncope, and lower

  7. Hypothalamic-Pituitary-Adrenal and Sympathetic Nervous System Activity and Children's Behavioral Regulation

    Science.gov (United States)

    Lisonbee, Jared A.; Pendry, Patricia; Mize, Jacquelyn; Gwynn, Eugenia Parrett

    2010-01-01

    Self-regulation ability is an important component of children's academic success. Physiological reactivity may relate to brain activity governing attention and behavioral regulation. Saliva samples collected from 186 preschool children (101 boys, mean age = 53 months, 34% minority) before and after a series of mildly challenging games and again 30…

  8. Endoplasmic reticulum stress increases brain MAPK signaling, inflammation and renin-angiotensin system activity and sympathetic nerve activity in heart failure.

    Science.gov (United States)

    Wei, Shun-Guang; Yu, Yang; Weiss, Robert M; Felder, Robert B

    2016-10-01

    We previously reported that endoplasmic reticulum (ER) stress is induced in the subfornical organ (SFO) and the hypothalamic paraventricular nucleus (PVN) of heart failure (HF) rats and is reduced by inhibition of mitogen-activated protein kinase (MAPK) signaling. The present study further examined the relationship between brain MAPK signaling, ER stress, and sympathetic excitation in HF. Sham-operated (Sham) and HF rats received a 4-wk intracerebroventricular (ICV) infusion of vehicle (Veh) or the ER stress inhibitor tauroursodeoxycholic acid (TUDCA, 10 μg/day). Lower mRNA levels of the ER stress biomarkers GRP78, ATF6, ATF4, and XBP-1s in the SFO and PVN of TUDCA-treated HF rats validated the efficacy of the TUDCA dose. The elevated levels of phosphorylated p44/42 and p38 MAPK in SFO and PVN of Veh-treated HF rats, compared with Sham rats, were significantly reduced in TUDCA-treated HF rats as shown by Western blot and immunofluorescent staining. Plasma norepinephrine levels were higher in Veh-treated HF rats, compared with Veh-treated Sham rats, and were significantly lower in the TUDCA-treated HF rats. TUDCA-treated HF rats also had lower mRNA levels for angiotensin converting enzyme, angiotensin II type 1 receptor, tumor necrosis factor-α, interleukin-1β, cyclooxygenase-2, and NF-κB p65, and a higher mRNA level of IκB-α, in the SFO and PVN than Veh-treated HF rats. These data suggest that ER stress contributes to the augmented sympathetic activity in HF by inducing MAPK signaling, thereby promoting inflammation and renin-angiotensin system activity in key cardiovascular regulatory regions of the brain.

  9. Effect of cortisol on muscle sympathetic nerve activity in Pima Indians and Caucasians

    DEFF Research Database (Denmark)

    Vozarova, Barbora; Weyer, Christian; Snitker, Soren

    2003-01-01

    . Although glucocorticoids inhibit SNS activity, Pima Indians are not hypercortisolemic compared with Caucasians. This does not exclude the possibility that the SNS is more responsive to an inhibitory effect of cortisol in the former than in the latter group. We measured fasting plasma ACTH and cortisol...... (metyrapone) followed by cortisol replacement (hydrocortisone) on plasma ACTH, cortisol, and MSNA. There were no ethnic differences in fasting plasma ACTH or cortisol, but MSNA adjusted for percent body fat was lower in Pimas than in Caucasians (P cortisol...... to a tonic inhibitory effect of cortisol. However, an acute release of cortisol is likely to more effectively contain sympathoexcitation during stress in Pima Indians than in Caucasians, which may be an important mechanism of cardioprotection in this Native American population....

  10. Influence of the cardiac myosin hinge region on contractile activity.

    Science.gov (United States)

    Margossian, S S; Krueger, J W; Sellers, J R; Cuda, G; Caulfield, J B; Norton, P; Slayter, H S

    1991-06-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myosin, and had no effect on ATPase activity of purified S1 and myofibrils. However, it completely suppressed the movement of actin filaments in in vitro motility assays and reduced active shortening of sarcomeres of skinned cardiac myocytes by half. Suppression of motion by the anti-hinge antibody may reflect a mechanical constraint imposed by the antibody upon the mobility of the S2 region of myosin. The results suggest that the steps in the mechanochemical energy transduction can be separately influenced through S2.

  11. Consciously controlled breathing decreases the high-frequency component of heart rate variability by inhibiting cardiac parasympathetic nerve activity.

    Science.gov (United States)

    Sasaki, Konosuke; Maruyama, Ryoko

    2014-01-01

    Heart rate variability (HRV), the beat-to-beat alterations in heart rate, comprises sympathetic and parasympathetic nerve activities of the heart. HRV analysis is used to quantify cardiac autonomic regulation. Since respiration could be a confounding factor in HRV evaluation, some studies recommend consciously controlled breathing to standardize the method. However, it remains unclear whether controlled breathing affects HRV measurement. We compared the effects of controlled breathing on HRV with those of spontaneous breathing. In 20 healthy volunteers, we measured respiratory frequency (f), tidal volume, and blood pressure (BP) and recorded electrocardiograms during spontaneous breathing (14.8 ± 0.7 breaths/min) and controlled breathing at 15 (0.25 Hz) and 6 (0.10 Hz) breaths/min. Compared to spontaneous breathing, controlled breathing at 0.25 Hz showed a higher heart rate and a lower high-frequency (HF) component, an index of parasympathetic nerve activity, although the f was the same. During controlled breathing at 0.10 Hz, the ratio of the low frequency (LF) to HF components (LF/HF), an index of sympathetic nerve activity, increased greatly and HF decreased, while heart rate and BP remained almost unchanged. Thus, controlled breathing at 0.25 Hz, which requires mental concentration, might inhibit parasympathetic nerve activity. During controlled breathing at 0.10 Hz, LF/HF increases because some HF subcomponents are synchronized with f and probably move into the LF band. This increment leads to misinterpretation of the true autonomic nervous regulation. We recommend that the respiratory pattern of participants should be evaluated before spectral HRV analysis to correctly understand changes in autonomic nervous regulation.

  12. Sympathetic reflex control of blood flow in human peripheral tissues

    DEFF Research Database (Denmark)

    Henriksen, O

    1991-01-01

    Sympathetic vasoconstrictor reflexes are essential for the maintenance of arterial blood pressure in upright position. It has been generally believed that supraspinal sympathetic vasoconstrictor reflexes elicited by changes in baroreceptor activity play an important role. Recent studies on human...... sympathetic vasoconstrictor reflexes are blocked. Blood flow has been measure by the local 133Xe-technique. The results indicate the presence of spinal as well as supraspinal sympathetic vasoconstrictor reflexes to human peripheral tissues. Especially is emphasized the presence of a local sympathetic veno...

  13. Clinical application of l-123 MlBG cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young [College of Medicine, Donga Univ., Busan (Korea, Republic of)

    2004-10-01

    Cardiac neurotransmission imaging allows in vivo assessment of presynaptic reuptake, neurotransmitter storage and postsynaptic receptors. Among the various neurotransmitter, I-123 MlBG is most available and relatively well-established. Metaiodobenzylguanidine (MIBG) is an analogue of the false neurotransmitter guanethidine. It is taken up to adrenergic neurons by uptake-1 mechanism as same as norepinephrine. As tagged with I-123, it can be used to image sympathetic function in various organs including heart with planar or SPECT techniques. I-123 MIBG imaging has a unique advantage to evaluate myocardial neuronal activity in which the heart has no significant structural abnormality or even no functional derangement measured with other conventional examination. In patients with cardiomyopathy and heart failure, this imaging has most sensitive technique to predict prognosis and treatment response of betablocker or ACE inhibitor. In diabetic patients, it allow very early detection of autonomic neuropathy. In patients with dangerous arrhythmia such as ventricular tachycardia or fibrillation, MIBG imaging may be only an abnormal result among various exams. In patients with ischemic heart disease, sympathetic derangement may be used as the method of risk stratification. In heart transplanted patients, sympathetic reinnervation is well evaluated. Adriamycin-induced cardiotoxicity is detected earlier than ventricular dysfunction with sympathetic dysfunction. Neurodegenerative disorder such as Parkinson's disease or dementia with Lewy bodies has also cardiac sympathetic dysfunction. Noninvasive assessment of cardiac sympathetic nerve activity with l-123 MlBG imaging may be improve understanding of the pathophysiology of cardiac disease and make a contribution to predict survival and therapy efficacy.

  14. Morphology of sympathetic chain in Saguinus niger

    Directory of Open Access Journals (Sweden)

    MARINA P.E. PINTO

    2013-03-01

    Full Text Available Saguinus niger popularly known as Sauim, is a Brazilian North primate. Sympathetic chain investigation would support traumatic and/or cancer diagnosis which are little described in wild animals. The aim of this study was to describe the morphology and distribution of sympathetic chain in order to supply knowledge for neurocomparative research. Three female young animals that came death by natural causes were investigated. Animals were fixed in formaldehyde 10% and dissected along the sympathetic chain in neck, thorax and abdomen. Cranial cervical ganglion was located at the level of carotid bifurcation, related to carotid internal artery. In neck basis the vagosympathetic trunk divides into the sympathetic trunk and the parasympathetic vagal nerve. Sympathetic trunk ran in dorsal position and originated the stellate ganglia, formed by the fusion of caudal cervical and first thoracic ganglia. Vagal trunk laid ventrally to heart and formed the cardiac plexus. In abdomen, on the right side, were found the celiac ganglion and cranial mesenteric ganglion; in the left side these ganglia were fusioned into the celiac-mesenteric ganglion displaced closely to the celiac artery. In both sides, the caudal mesenteric ganglion was located near to the caudal mesenteric artery.

  15. Use-dependent loss of active sympathetic neurogenic vasodilation after nitric oxide synthase inhibition in conscious rats. Evidence for the presence of preformed stores of nitric oxide-containing factors

    Science.gov (United States)

    Davisson, R. L.; Shaffer, R. A.; Johnson, A. K.; Lewis, S. J.

    1996-01-01

    In this study, we examined whether air-jet stress-induced active sympathetic hindlimb vasodilation in conscious rats involves the release of preformed stores of nitric oxide-containing factors. We determined the effects of repeated episodes of air-jet stress (six episodes given 5 minutes apart) on mean arterial pressure and vascular resistances in the mesenteric bed and intact and sympathetically denervated hindlimb beds of conscious rats treated with saline or the nitric oxide synthesis inhibitor N omega-nitro-L-arginine methyl ester (L-NAME, 25 mumol/kg IV). In saline-treated rats, air-jet stress produced alerting behavior, minor changes in blood pressure, pronounced mesenteric vaso-constriction, and immediate and marked vasodilation in the sympathetically intact hindlimb but a minor vasodilation in the sympathetically denervated hindlimb. Each air-jet stress produced virtually identical responses. In L-NAME-treated rats, the first air-jet stress produced vasodilator responses in the sympathetically intact and sympathetically denervated hindlimbs that were similar to those in the saline-treated rats. However, each subsequent air-jet stress produced progressively smaller vasodilator responses in the sympathetically intact but not the sympathetically denervated hindlimb. There was no loss of air-jet stress-induced alerting behavior or mesenteric vasoconstriction, suggesting that L-NAME did not interfere with the central processing of the air-jet or the resultant changes in autonomic nerve activity. The progressive diminution of air-jet stress-induced vasodilation in the intact hindlimb of L-NAME-treated rats may be due to the use-dependent depletion of preformed stores of nitric oxide-containing factors that cannot be replenished in the absence of nitric oxide synthesis.

  16. Sexual activity and cardiac risk: is depression a contributing factor?

    Science.gov (United States)

    Roose, S P; Seidman, S N

    2000-07-20

    There is a well-documented association between depression, ischemic heart disease, and cardiovascular mortality. This association has a number of dimensions including: (1) depressed patients have a higher than expected rate of sudden cardiovascular death; (2) over the course of a lifetime, patients with depression develop symptomatic and fatal ischemic heart disease at a higher rate compared with a nondepressed group; and (3) depression after myocardial infarction (MI) is associated with increased cardiac mortality. Depression is also associated with sexual dysfunction, particularly erectile dysfunction. If depression is the primary illness, then erectile dysfunction can be considered a symptom of the depressive illness. However, if the erectile dysfunction is primary, men may develop a depressive syndrome in reaction to the loss of sexual function. Regardless of whether erectile dysfunction is a symptom of depression or depression is a consequence of erectile dysfunction, these conditions are frequently comorbid. Thus, the patient with ischemic heart disease who is depressed is more likely to have erectile difficulties. An attempt by this patient to engage in sexual activity is therefore more likely to be unsuccessful and, given the increase in cardiac mortality associated with depression, it may result in a serious cardiac event.

  17. Cardiac hypertrophy induced by active Raf depends on Yorkie-mediated transcription.

    Science.gov (United States)

    Yu, Lin; Daniels, Joseph P; Wu, Huihui; Wolf, Matthew J

    2015-02-03

    Organ hypertrophy can result from enlargement of individual cells or from cell proliferation or both. Activating mutations in the serine-threonine kinase Raf cause cardiac hypertrophy and contribute to Noonan syndrome in humans. Cardiac-specific expression of activated Raf also causes hypertrophy in Drosophila melanogaster. We found that Yorkie (Yki), a transcriptional coactivator in the Hippo pathway that regulates organ size, is required for Raf-induced cardiac hypertrophy in flies. Although aberrant activation of Yki orthologs stimulates cardiac hyperplasia in mice, cardiac-specific expression of an activated mutant form of Yki in fruit flies caused cardiac hypertrophy without hyperplasia. Knockdown of Yki caused cardiac dilation without loss of cardiomyocytes and prevented Raf-induced cardiac hypertrophy. In flies, Yki-induced cardiac hypertrophy required the TEA domain-containing transcription factor Scalloped, and, in mammalian cells, expression of mouse Raf(L613V), an activated form of Raf with a Noonan syndrome mutation, increased Yki-induced Scalloped activity. Furthermore, overexpression of Tgi (a Tondu domain-containing Scalloped-binding corepressor) in the fly heart abrogated Yki- or Raf-induced cardiac hypertrophy. Thus, crosstalk between Raf and Yki occurs in the heart and can influence Raf-mediated cardiac hypertrophy.

  18. Macaque cardiac physiology is sensitive to the valence of passively viewed sensory stimuli.

    Directory of Open Access Journals (Sweden)

    Eliza Bliss-Moreau

    Full Text Available Autonomic nervous system activity is an important component of affective experience. We demonstrate in the rhesus monkey that both the sympathetic and parasympathetic branches of the autonomic nervous system respond differentially to the affective valence of passively viewed video stimuli. We recorded cardiac impedance and an electrocardiogram while adult macaques watched a series of 300 30-second videos that varied in their affective content. We found that sympathetic activity (as measured by cardiac pre-ejection period increased and parasympathetic activity (as measured by respiratory sinus arrhythmia decreased as video content changes from positive to negative. These findings parallel the relationship between autonomic nervous system responsivity and valence of stimuli in humans. Given the relationship between human cardiac physiology and affective processing, these findings suggest that macaque cardiac physiology may be an index of affect in nonverbal animals.

  19. Pituitary adenylyl cyclase-activating polypeptide and nerve growth factor use the proteasome to rescue nerve growth factor-deprived sympathetic neurons cultured from chick embryos.

    Science.gov (United States)

    Przywara, D A; Kulkarni, J S; Wakade, T D; Leontiev, D V; Wakade, A R

    1998-11-01

    Removal of nerve growth factor (NGF) from sympathetic neurons initiates a neuronal death program and apoptosis. We show that pituitary adenylyl cyclase-activating polypeptide (PACAP) prevents apoptosis in NGF-deprived sympathetic neurons. PACAP (100 nM) added to culture medium at the time of plating failed to support neuronal survival. However, in neurons grown for 2 days with NGF and then deprived of NGF, PACAP prevented cell death for the next 24-48 h. Uptake of [3H]norepinephrine ([3H]NE) was used as an index of survival and decreased >50% in NGF-deprived cultures within 24 h. PACAP (1-100 nM) restored [3H]NE uptake to 92 +/- 8% of that of NGF-supported controls. Depolarization-induced [3H]NE release in neurons rescued by PACAP was the same as that in NGF-supported neurons. PACAP rescue was not mimicked by forskolin or 8-bromo-cyclic AMP and was not blocked by the protein kinase A inhibitor Rp-adenosine 3',5'-cyclic monophosphothioate. Mobilization of phosphatidylinositol by muscarine failed to support NGF-deprived neurons. Thus, PACAP may use novel signaling to promote survival of sympathetic neurons. The apoptosis-associated caspase CPP32 activity increased approximately fourfold during 6 h of NGF withdrawal (145 +/- 40 versus 38 +/- 17 nmol of substrate cleaved/min/mg of protein) and returned to even below the control level in NGF-deprived, PACAP-rescued cultures (14 +/- 7 nmol/min/mg of protein). Readdition of NGF or PACAP to NGF-deprived cultures reversed CPP32 activation, and this was blocked by lactacystin, a potent and specific inhibitor of the 20S proteasome, suggesting that NGF and PACAP target CPP32 for destruction by the proteasome. As PACAP is a preganglionic neurotransmitter in autonomic ganglia, we propose a novel function for this transmitter as an apoptotic rescuer of sympathetic neurons when the supply of NGF is compromised.

  20. Immunopathology of sympathetic ophthalmia.

    Science.gov (United States)

    Marak, G E

    1976-01-01

    The long held notion that sympathetic ophthalmia represents an autoimmune reaction to uveal pigment is no longer tenable. Pigmentation influences the histopathologic picture of sympathetic ophthalmia but no evidence supports the role of uveal pigment as inciting antigen. Several recent studies have confirmed our initial report of the participation of cellular hypersensitivity to ocular tissues in the pathogenesis of this disease. Both clinical and experimental studies implicate retinal tissue as being more immunogenic than uveal antigens. The recent histopathologic observation that eosinophils concentrate near the choriocapillaris suggests that outer retina and retinal pigment epithelium should not be overlooked as a potential source of the stimulating antigen in sympathetic ophthalmia.

  1. Bardoxolone Methyl Prevents Fat Deposition and Inflammation in Brown Adipose Tissue and Enhances Sympathetic Activity in Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Dinh, Chi H L; Szabo, Alexander; Yu, Yinghua; Camer, Danielle; Zhang, Qingsheng; Wang, Hongqin; Huang, Xu-Feng

    2015-06-09

    Obesity results in changes in brown adipose tissue (BAT) morphology, leading to fat deposition, inflammation, and alterations in sympathetic nerve activity. Bardoxolone methyl (BARD) has been extensively studied for the treatment of chronic diseases. We present for the first time the effects of oral BARD treatment on BAT morphology and associated changes in the brainstem. Three groups (n = 7) of C57BL/6J mice were fed either a high-fat diet (HFD), a high-fat diet supplemented with BARD (HFD/BARD), or a low-fat diet (LFD) for 21 weeks. BARD was administered daily in drinking water. Interscapular BAT, and ventrolateral medulla (VLM) and dorsal vagal complex (DVC) in the brainstem, were collected for analysis by histology, immunohistochemistry and Western blot. BARD prevented fat deposition in BAT, demonstrated by the decreased accumulation of lipid droplets. When administered BARD, HFD mice had lower numbers of F4/80 and CD11c macrophages in the BAT with an increased proportion of CD206 macrophages, suggesting an anti-inflammatory effect. BARD increased phosphorylation of tyrosine hydroxylase in BAT and VLM. In the VLM, BARD increased energy expenditure proteins, including beta 3-adrenergic receptor (β3-AR) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Overall, oral BARD prevented fat deposition and inflammation in BAT, and stimulated sympathetic nerve activity.

  2. [Changes in the activity of sympathetic-adrenal medullary system and hypothalamic-pituitary-adrenal system in humans exposed to psychogenic stressors and their effects on immunoreactivity].

    Science.gov (United States)

    Simić, Natasa

    2010-10-01

    This paper gives an account of the functioning of the two systems in different stress induced situations. The activation of the sympathetic-adrenal medullary system is accompanied by the release of catecholamines, while the increased activity of the hypothalamic-pituitary-adrenal system results in the increased release of corticosteroids, especially cortisol. The role of the sympathetic-adrenal medullary system was investigated in immunologic changes induced by laboratory stressors. In the real, as in laboratory conditions, the effects of different stressors on the level of cortisol were studied, as it is the final product of the hypothalamic-pituitary-adrenal system activity. Additional (negative) effects on the functioning of these systems could induce some variables, as an increased consumption of alcohol, smoking, and sleeping disorder. Furthermore, the methodological shortcomings and the selection of subjects in previous studies are discussed. Previous results are also discussed, such as the immunosuppressive effects of cortisol, as well as the mediator and moderator variables in relation to stress and immunoreactivity.

  3. Bardoxolone Methyl Prevents Fat Deposition and Inflammation in Brown Adipose Tissue and Enhances Sympathetic Activity in Mice Fed a High-Fat Diet

    Science.gov (United States)

    Dinh, Chi H. L.; Szabo, Alexander; Yu, Yinghua; Camer, Danielle; Zhang, Qingsheng; Wang, Hongqin; Huang, Xu-Feng

    2015-01-01

    Obesity results in changes in brown adipose tissue (BAT) morphology, leading to fat deposition, inflammation, and alterations in sympathetic nerve activity. Bardoxolone methyl (BARD) has been extensively studied for the treatment of chronic diseases. We present for the first time the effects of oral BARD treatment on BAT morphology and associated changes in the brainstem. Three groups (n = 7) of C57BL/6J mice were fed either a high-fat diet (HFD), a high-fat diet supplemented with BARD (HFD/BARD), or a low-fat diet (LFD) for 21 weeks. BARD was administered daily in drinking water. Interscapular BAT, and ventrolateral medulla (VLM) and dorsal vagal complex (DVC) in the brainstem, were collected for analysis by histology, immunohistochemistry and Western blot. BARD prevented fat deposition in BAT, demonstrated by the decreased accumulation of lipid droplets. When administered BARD, HFD mice had lower numbers of F4/80 and CD11c macrophages in the BAT with an increased proportion of CD206 macrophages, suggesting an anti-inflammatory effect. BARD increased phosphorylation of tyrosine hydroxylase in BAT and VLM. In the VLM, BARD increased energy expenditure proteins, including beta 3-adrenergic receptor (β3-AR) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Overall, oral BARD prevented fat deposition and inflammation in BAT, and stimulated sympathetic nerve activity. PMID:26066016

  4. Scintigraphic evaluation of regional myocardial sympathetic activity in patients with hypertrophic cardiomyopathy. Comparison between asymmetrical hypertrophic cardiomyopathy and apical hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Eno, Shin; Takeo, Eiichiro; Sasaki, Satoshi; Matsuda, Keiji; Fujii, Hideaki; Kanazawa, Ikuo [Chugoku Rosai General Hospital, Kure, Hiroshima (Japan)

    1998-02-01

    Using {sup 123}I-MIBG (metaiodobenzylguanidine) and {sup 201}Tl imagings, an examination concerning the relation between the hypertrophic region and its sympathetic nervous function was done. Subjects were 12 normal adults (4 males and 8 females, mean age 61.3 yr), 13 patients with asymmetrical hypertrophic cardiomyopathy (10 males and 3 females, 63.9 yr) and 13 patients with apical hypertrophy (9 males and 4 females, 67.2 yr). The SPECT apparatus was Toshiba two-gated gamma camera GCA 7200A. At 20 min and 3 hr after intravenous injection of 111 MBq of {sup 123}I-MIBG, myocardial SPECT and planar images were obtained with collimator LEHR under following conditions: photoelectric peak 159 KeV, window width 20%, matrix size 64 x 64 (256 x 256 for the planar image), step angle 6deg, 40 sec/step and 180deg for 1 camera. In another day, {sup 201}Tl SPECT and planar imagings were performed 10 min after intravenous injection of 111 MBq of {sup 201}Tl for the photoelectric peak 72 KeV under similar conditions to above. SPECT images were reconstructed using Butterworth filter and Shepp and Logan filter. Images were examined for the defect score, myocardium/mediastinum ratio, whole heart washout rate and regional washout rate. In the asymmetrical hypertrophic myopathy, abnormal sympathetic nerve function was recognized on the regions regardless of their disease severity while in the apical hypertrophy, abnormality was restricted on the apical region. Therefore, the two diseases were found different from each other from the aspect of sympathetic nerve functions. (K.H.)

  5. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice.

    Science.gov (United States)

    Nohara, Kazunari; Waraich, Rizwana S; Liu, Suhuan; Ferron, Mathieu; Waget, Aurélie; Meyers, Matthew S; Karsenty, Gérard; Burcelin, Rémy; Mauvais-Jarvis, Franck

    2013-06-15

    Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension.

  6. Activation of ATP/UTP-selective receptors increases blood flow and blunts sympathetic vasoconstriction in human skeletal muscle

    DEFF Research Database (Denmark)

    Yegutkin, G.G.; Gonzalez-Alonso, J.; Rosenmeier, Jaya Birgitte

    2008-01-01

    and sympatholytic effects of exogenous ATP in the skeletal muscle vasculature are largely mediated via ATP itself rather than its dephosphorylated metabolites, most likely via binding to endothelial ATP/UTP-selective P2Y(2) receptors. These data are consistent with a role of ATP in skeletal muscle hyperaemia......Sympathetic vasoconstriction is blunted in the vascular beds of contracting skeletal muscle in humans, presumably due to the action of vasoactive metabolites (functional sympatholysis). Recently, we demonstrated that infusion of ATP into the arterial circulation of the resting human leg increases...

  7. Clinical efficacy of efonidipine hydrochloride, a T-type calcium channel inhibitor, on sympathetic activities. Examination using spectral analysis of heart rate/blood pressure variabilities and {sup 123}I-Metaiodobenzylguanidine myocardial scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Kenji; Nomura, Masahiro; Nishikado, Akiyoshi; Uehara, Kouzoh; Nakaya, Yutaka; Ito, Susumu [Tokushima Univ. (Japan). School of Medicine

    2003-02-01

    Dihydropyridine Ca antagonists cause reflex tachycardia related to their hypotensive effects. Efonidipine hydrochloride has inhibitory effects on T-type Ca channels, even as it inhibits reflex tachycardia. In the present study, the influence of efonidipine hydrochloride on heart rate and autonomic nervous function was investigated. Using an electrocardiogram and a tonometric blood pressure measurement, autonomic nervous activity was evaluated using spectral analysis of heart rate/systolic blood pressure variability. Three protocols were used: a single dose of efonidipine hydrochloride was administered orally to healthy subjects with resting heart rate values of 75 beats/min or more (high-heart rate (HR) group) and to healthy subjects with resting heart rate values less than 75 beats/min (low-HR group); efonidipine hydrochloride was newly administered to untreated patients with essential hypertension, and autonomic nervous activity was investigated after a 4-week treatment period; and patients with high heart rate values ({>=}75 beats/min) who had been treated with a dihydropyridine L-type Ca channel inhibitor for 1 month or more were switched to efonidipine hydrochloride and any changes in autonomic nervous activity were investigated. In all protocols, administration of efonidipine hydrochloride decreased the heart rate in patients with a high heart rate, reduced sympathetic nervous activity, and enhanced parasympathetic nervous activity. In addition, myocardial scintigraphy with {sup 123}I-metaiodobenzylguanidine showed significant improvement in the washout rate and heart to mediastinum (H/M) ratio of patients who were switched from other dihydropyridine Ca antagonists to efonidipine hydrochloride. Efonidipine hydrochloride inhibits increases in heart rate and has effects on the autonomic nervous system. It may be useful for treating hypertension and angina pectoris, and may also have a cardiac protective function. (author)

  8. Physical exercise and cardiac autonomic activity in healthy adult men.

    Science.gov (United States)

    Panda, Kaninika; Krishna, Pushpa

    2014-01-01

    Physical inactivity is an important risk factor for cardiovascular mortality and morbidity. Regular exercise is known to improve health and maintain physical fitness. The heart rate response to exercise reflects autonomic control of heart and has shown to predict cardiovascular prognosis. Decreased heart rate variability (HRV) is known as a risk factor for cardiovascular mortality. The objective of this study was to study the effect of exercise on cardiac autonomic activity. Thirty two healthy adult men in the age group of 18-25 years with normal body mass index (BMI) were recruited from different physical fitness centers, who were undergoing regular exercise for past 3 months. Resting ECG was recorded for 5 minutes and analyzed for frequency analysis of HRV. HRV parameters of the subjects were compared with fifty age and BMI matched subjects who were not undergoing any exercise program. Physical activity level of all subjects was assessed by using Global Physical Activity Questionnaire. The exercising (E) subjects were found to have a lesser heart rate (73.27 ± 8.6 vs 74.41 ± 8.59) compared to non-exercising (NE) group, which was not significant. No significant difference was found in frequency domain parameters of HRV between exercising and non-exercising group with LF (47.12 ± 19.17 vs 43.55 ± 16.66), HF (41.03 ± 17.65 vs 46.03 ± 15.89) and LF/HF (1.61 ± 1.16 vs 1.22 ± 0.93) respectively. Physical activity level was significantly different between the two groups (4175 ± 1481.53 vs 1176.4?1103.83, pexercise did not have any effect on cardiac autonomic activity despite the difference in physical activity.

  9. Role of the autonomic nervous system in modulating cardiac arrhythmias.

    Science.gov (United States)

    Shen, Mark J; Zipes, Douglas P

    2014-03-14

    The autonomic nervous system plays an important role in the modulation of cardiac electrophysiology and arrhythmogenesis. Decades of research has contributed to a better understanding of the anatomy and physiology of cardiac autonomic nervous system and provided evidence supporting the relationship of autonomic tone to clinically significant arrhythmias. The mechanisms by which autonomic activation is arrhythmogenic or antiarrhythmic are complex and different for specific arrhythmias. In atrial fibrillation, simultaneous sympathetic and parasympathetic activations are the most common trigger. In contrast, in ventricular fibrillation in the setting of cardiac ischemia, sympathetic activation is proarrhythmic, whereas parasympathetic activation is antiarrhythmic. In inherited arrhythmia syndromes, sympathetic stimulation precipitates ventricular tachyarrhythmias and sudden cardiac death except in Brugada and J-wave syndromes where it can prevent them. The identification of specific autonomic triggers in different arrhythmias has brought the idea of modulating autonomic activities for both preventing and treating these arrhythmias. This has been achieved by either neural ablation or stimulation. Neural modulation as a treatment for arrhythmias has been well established in certain diseases, such as long QT syndrome. However, in most other arrhythmia diseases, it is still an emerging modality and under investigation. Recent preliminary trials have yielded encouraging results. Further larger-scale clinical studies are necessary before widespread application can be recommended.

  10. Metabolic responses to high-fat or low-fat meals and association with sympathetic nervous system activity in healthy young men.

    Science.gov (United States)

    Nagai, Narumi; Sakane, Naoki; Moritani, Toshio

    2005-10-01

    The present study was designed to investigate the metabolic and sympathetic responses to a high-fat meal in humans. Fourteen young men (age: 23.6 +/- 0.5 y, BMI: 21.3 +/- 0.4 kg/m2) were examined for energy expenditure and fat oxidation measured by indirect calorimetry for 3.5 h after a high-fat (70%, energy from fat) or an isoenergetic low-fat (20% energy from fat) meal served in random order. The sympathetic nervous system (SNS) activity was assessed using power spectral analysis of heart rate variability (HRV). After the high-fat meal, increases in thermoregulatory SNS activity (very low-frequency component of HRV, 0.007-0.035 Hz, 577.4+/-45.9 vs. 432.0+/-49.3 ms2, p<0.05) and fat oxidation (21.0+/-5.3 vs. 13.3+/-4.3 g, p<0.001) were greater than those after the low-fat meal. However, thermic effects of the meal (TEM) were lower after the high-fat meal than after the low-fat meal (27.5+/-11.2 vs. 36.1+/-10.9 kcal, p<0.05). In conclusion, the high-fat meal can stimulate thermoregulatory SNS and lipolysis, but resulted in lower TEM, suggesting that a high proportion of dietary fat intake, even with a normal daily range of calories, may be a potent risk factor for further weight gain.

  11. Cardiac troponin testing in idiopathic inflammatory myopathies and systemic sclerosis-spectrum disorders: biomarkers to distinguish between primary cardiac involvement and low-grade skeletal muscle disease activity.

    Science.gov (United States)

    Hughes, Michael; Lilleker, James B; Herrick, Ariane L; Chinoy, Hector

    2015-05-01

    Primary cardiac involvement, an under-recognised manifestation of the idiopathic inflammatory myopathies (IIM) and systemic sclerosis (SSc)-spectrum disorders, is associated with significant mortality. Within these two conditions, traditional skeletal muscle enzyme testing may not effectively distinguish between skeletal and cardiac muscle involvement, especially in patients with subclinical cardiac disease. Accurate biomarkers are thus required to screen for cardiac disease, to better inform both therapeutic decision-making and treatment response. The widespread uptake of cardiac troponin testing has revolutionised the management of acute coronary syndromes. While cardiac troponin I (cTnI) appears specific to the myocardium, cardiac troponin T (cTnT) is also expressed by skeletal muscle, including regenerating skeletal muscle tissue. There is increasing interest about the role of cardiac troponins as a putative biomarker of primary cardiac involvement in IIM and SSc-spectrum disorders. Herewith we discuss subclinical cardiac disease in IIM and SSc-spectrum disorders, the respective roles of cTnI and cTnT testing, and the re-expression of cTnT within regenerating skeletal muscle tissue. There remains wide variation in access to cardiac troponin testing nationally and internationally. We propose two pragmatic clinical pathways using cardiac troponins, preferably measuring concomitant cTnT followed by confirmatory (cardiac) cTnI to screen patients for subclinical cardiac disease and/or low-grade skeletal muscle disease activity, and also an agenda for future research.

  12. Research progress of myocardial ischemia and sympathetic afferent%心肌缺血与交感神经传入的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘俊; 梁尚栋

    2011-01-01

    心脏的自主神经包括交感神经与副交感神经.支配心脏的交感神经不仅有传出轴突,也有传递心脏感受的传入神经.心肌缺血可激活心交感传入神经并将信息传递到大脑心血管中枢,通过兴奋交感传出神经引起交感兴奋性反射,出现心率加快和血压升高等现象使心肌缺血、缺氧和心绞痛加重.因此,交感神经功能变化可加重心肌缺血损伤.%The heart autonomic nervous system consists of both sympathetic and parasympathetic nerves. The heart sympathetic nerves contain not only efferent axons, but also the afferentnerve( transmitting messages to the heart ). Myocardial ischemia activates cardiac sympathetic afferent nerve and transmits the information to the brain and cardiovascular centre, which resultsin sympathetic reflex excitability by excitatory sympathetic efferent. This causes an increase in heart rate and blood pressure, leading to the development of myocardial ischemia, hypoxia and angina pain. Therefore, the change in sympathetic function is acontributing factor to myocardial ischemia.

  13. Carotid baroreceptor-muscle sympathetic relation in humans.

    Science.gov (United States)

    Rea, R F; Eckberg, D L

    1987-12-01

    The purpose of this study was to define the relation between carotid distending pressure and muscle sympathetic activity in humans. Carotid baroreceptors of nine healthy subjects were compressed or stretched for 5 s with graded neck pressure or suction (+40 to -65 mmHg), and muscle sympathetic nerve activity was recorded. The results delineate several features of human baroreflex function. First, the carotid-muscle sympathetic relation is well described by an inverse sigmoid function. Second, a linear relation exists between carotid distending pressure and sympathetic outflow over a range of approximately 25 mmHg. Third, sympathetic responses to changes of carotid pressures are asymmetric; increases of sympathetic activity during carotid compression are much greater than reductions of sympathetic activity during carotid stretch. Fourth, at rest, normal subjects operate near the threshold level for sympathetic excitation. Thus the carotid-muscle sympathetic baroreflex is poised to oppose reductions more effectively than elevations of arterial pressure, and the range of pressures over which the reflex is active is wider than thought hitherto.

  14. Effect of regional myocardial ischemia on sympathetic nervous system as assessed by fluorine-18-metaraminol

    Energy Technology Data Exchange (ETDEWEB)

    Schwaiger, M.; Guibourg, H.; Rosenspire, K.; McClanahan, T.; Gallagher, K.; Hutchins, G.; Wieland, D.M. (Univ. of Michigan Medical Center, Ann Arbor (USA))

    1990-08-01

    With the introduction of radiolabeled catecholamine analogues, the noninvasive evaluation of the cardiac sympathetic nervous system has become possible. This study evaluated the effect of regional ischemia on myocardial retention of the new norepinephrine analogue 6-({sup 18}F) fluorometaraminol (FMR) in the open chest dog model. Six dogs were injected intravenously with FMR following 30-min occlusion of the left anterior descending artery. Six sham animals served as control group. Regional myocardial blood flow as determined by microspheres decreased 87% during ischemia (p less than 0.01), but was not significantly different from control myocardium following reperfusion. Regional myocardial 18F activity as determined postmortem was significantly reduced in reperfused myocardium (-34%), which paralleled an 18% reduction of tissue norepinephrine concentration. Thus, short time periods of coronary occlusion affect neuronal function indicating the sensitivity of the sympathetic nerve terminals to ischemia. FMR provides a new tracer approach for the characterization of neuronal integrity in postischemic myocardium.

  15. Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity.

    Directory of Open Access Journals (Sweden)

    Shinsuke Nakayama

    Full Text Available This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT level, and measured magnetic fields on the surface of the thoracic wall in humans. The changes in magnetic field detected by this sensor synchronized with the electric activity of the electrocardiogram (ECG. The shape of the magnetic wave was largely altered by shifting the sensor position within 20 mm in parallel and/or perpendicular to the thoracic wall. The magnetic activity was maximal in the 4th intercostals near the center of the sterna. Furthermore, averaging the magnetic activity at 15 mm in the distance between the thoracic wall and the sensor demonstrated magnetic waves mimicking the P wave and QRS complex. The present study shows the application of PMI sensor in detecting cardiac magnetic activity in several healthy subjects, and suggests future applications of this technology in medicine and biology.

  16. Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity.

    Science.gov (United States)

    Nakayama, Shinsuke; Sawamura, Kenta; Mohri, Kaneo; Uchiyama, Tsuyoshi

    2011-01-01

    This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI) sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT) level, and measured magnetic fields on the surface of the thoracic wall in humans. The changes in magnetic field detected by this sensor synchronized with the electric activity of the electrocardiogram (ECG). The shape of the magnetic wave was largely altered by shifting the sensor position within 20 mm in parallel and/or perpendicular to the thoracic wall. The magnetic activity was maximal in the 4th intercostals near the center of the sterna. Furthermore, averaging the magnetic activity at 15 mm in the distance between the thoracic wall and the sensor demonstrated magnetic waves mimicking the P wave and QRS complex. The present study shows the application of PMI sensor in detecting cardiac magnetic activity in several healthy subjects, and suggests future applications of this technology in medicine and biology.

  17. [Correlations between the coefficient of variation of RR intervals and sympathetic nerve activity following superior tilting in normotensive subjects and in patients with essential hypertension].

    Science.gov (United States)

    Shimazaki, M; Kikuchi, K; Yamaji, I; Kobayakawa, H; Yamamoto, M; Kudo, C; Wada, A; Mukai, H; Iimura, O

    1991-01-01

    The relationship between changes in sympathetic nerve activity and those in parasympathetic tone with a change in position was investigated in patients with essential hypertension using the coefficient of variation of RR intervals on electrocardiograms (CVRR). Mean arterial pressure (MAP), heart rate (HR), plasma noradrenaline concentration (pNA) and CVRR were measured in a supine position at rest and 20 min after having the head tilted 60 degrees superiorly in 10 normotensives (NT: 51.9 +/- 3.0 yrs) and 7 essential hypertensive patients (EHT: 51.0 +/- 2.8 yrs). After changing the position, CVRR decreased significantly in the NT, but not in the EHT; whereas, significant increases of both HR and pNA without significant changes in MAP were shown in both groups. A significant negative correlation between percentage changes in CVRR (% delta CVRR) and pNA (% delta pNA) were observed in the NT, but not in the EHT. However, there was no relationship of % delta CVRR to % delta MAP or to % delta HR in either group. It was suggested from the changes in CVRR that suppression of the parasympathetic tone, which occurs in the NT group corresponding to sympathetic augmentation to present a decrease in blood pressure with a change in position, may be impaired in the EHT group.

  18. Cardiorenal axis and arrhythmias: Will renal sympathetic denervation provide additive value to the therapeutic arsenal?

    Science.gov (United States)

    van Brussel, Peter M; Lieve, Krystien V V; de Winter, Robbert J; Wilde, Arthur A M

    2015-05-01

    Disruption of sympathetic tone may result in the occurrence or maintenance of cardiac arrhythmias. Multiple arrhythmic therapies that intervene by influencing cardiac sympathetic tone are common in clinical practice. These vary from pharmaceutical (β-blockers, angiotensin-converting enzyme inhibitors, and calcium antagonists) to percutaneous/surgical (cardiac sympathetic denervation) interventions. In some patients, however, these therapies have insufficient prophylactic and therapeutic capabilities. A safe and effective additional therapy wherein sympathetic drive is further attenuated would be expedient. Recently, renal sympathetic denervation (RSD) has been subject of research for various sympathetic nervous system-related diseases. By its presumed afferent and efferent sympatholytic effects, RSD might indirectly attenuate sympathetic outflow via the brain to the heart but might also reduce systemic catecholamine excretion and might therefore reduce catecholamine-sensitive arrhythmias. RSD is subject of research for various sympathetically driven arrhythmias, both supraventricular and ventricular. In this review, we give an overview of the rationale behind RSD as potential therapy in mediating arrhythmias that are triggered by a disrupted sympathetic nervous system and discuss the presently available results from animal and human studies.

  19. Cardiac hypertrophy induced by active Raf depends on Yorkie-mediated transcription

    OpenAIRE

    Yu, Lin; Daniels, Joseph P.; Wu, Huihui; Wolf, Matthew J.

    2015-01-01

    Organ hypertrophy can result from enlargement of individual cells or from cell proliferation or both. Activating mutations in the serine-threonine kinase Raf cause cardiac hypertrophy and contribute to Noonan syndrome in humans. Cardiac-specific expression of activated Raf also causes hypertrophy in Drosophila melanogaster. We found that Yorkie (Yki), a transcriptional coactivator in the Hippo pathway that regulates organ size, is required for Raf-induced cardiac hypertrophy in flies. Althoug...

  20. Nitric oxide and the autonomic regulation of cardiac excitability. The G.L. Brown Prize Lecture.

    Science.gov (United States)

    Paterson, D

    2001-01-01

    Cardiac sympathetic imbalance and arrhythmia; Nitric oxide-cGMP pathway and the cholinergic modulation of cardiac excitability; Nitric oxide-cGMP pathway and the sympathetic modulation of cardiac excitability; Functional significance of nitric oxide in the autonomic regulation of cardiac excitability; Summary; References. Experimental Physiology (2001) 86.1, 1-12.

  1. Integrin activation and focal complex formation in cardiac hypertrophy

    Science.gov (United States)

    Laser, M.; Willey, C. D.; Jiang, W.; Cooper, G. 4th; Menick, D. R.; Zile, M. R.; Kuppuswamy, D.

    2000-01-01

    Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.

  2. Detection of cardiac activity changes from human speech

    Science.gov (United States)

    Tovarek, Jaromir; Partila, Pavol; Voznak, Miroslav; Mikulec, Martin; Mehic, Miralem

    2015-05-01

    Impact of changes in blood pressure and pulse from human speech is disclosed in this article. The symptoms of increased physical activity are pulse, systolic and diastolic pressure. There are many methods of measuring and indicating these parameters. The measurements must be carried out using devices which are not used in everyday life. In most cases, the measurement of blood pressure and pulse following health problems or other adverse feelings. Nowadays, research teams are trying to design and implement modern methods in ordinary human activities. The main objective of the proposal is to reduce the delay between detecting the adverse pressure and to the mentioned warning signs and feelings. Common and frequent activity of man is speaking, while it is known that the function of the vocal tract can be affected by the change in heart activity. Therefore, it can be a useful parameter for detecting physiological changes. A method for detecting human physiological changes by speech processing and artificial neural network classification is described in this article. The pulse and blood pressure changes was induced by physical exercises in this experiment. The set of measured subjects was formed by ten healthy volunteers of both sexes. None of the subjects was a professional athlete. The process of the experiment was divided into phases before, during and after physical training. Pulse, systolic, diastolic pressure was measured and voice activity was recorded after each of them. The results of this experiment describe a method for detecting increased cardiac activity from human speech using artificial neural network.

  3. TRPA1 and Sympathetic Activation contribute to increased risk of triggered cardiac arrhythmias in hypertensive rats exposed to diesel exhaust

    Science.gov (United States)

    Background -Diesel exhaust (DE), which is emitted from on-and off-road sources, is a complex mixture of toxic gaseous and particulate components that results in adverse cardiovascular effects. Arrhythmias, which are often triggered in the hours and days following exposure, are on...

  4. The Human Sympathetic Nervous System Response to Spaceflight

    Science.gov (United States)

    Ertl, Andrew C.; Diedrich, Andre; Paranjape, Sachin Y.; Biaggioni, Italo; Robertson, Rose Marie; Lane, Lynda D.; Shiavi, Richard; Robertson, David

    2003-01-01

    The sympathetic nervous system is an important part of the autonomic (or automatic) nervous system. When an individual stands up, the sympathetic nervous system speeds the heart and constricts blood vessels to prevent a drop in blood pressure. A significant number of astronauts experience a drop in blood pressure when standing for prolonged periods after they return from spaceflight. Difficulty maintaining blood pressure with standing is also a daily problem for many patients. Indirect evidence available before the Neurolab mission suggested the problem in astronauts while in space might be due partially to reduced sympathetic nervous system activity. The purpose of this experiment was to identify whether sympathetic activity was reduced during spaceflight. Sympathetic nervous system activity can be determined in part by measuring heart rate, nerve activity going to blood vessels, and the release of the hormone norepinephrine into the blood. Norepinephrine is a neurotransmitter discharged from active sympathetic nerve terminals, so its rate of release can serve as a marker of sympathetic nervous system action. In addition to standard cardiovascular measurements (heart rate, blood pressure), we determined sympathetic nerve activity as well as norepinephrine release and clearance on four crewmembers on the Neurolab mission. Contrary to our expectation, the results demonstrated that the astronauts had mildly elevated resting sympathetic nervous system activity in space. Sympathetic nervous system responses to stresses that simulated the cardiovascular effects of standing (lower body negative pressure) were brisk both during and after spaceflight. We concluded that, in the astronauts tested, the activity and response of the sympathetic nervous system to cardiovascular stresses appeared intact and mildly elevated both during and after spaceflight. These changes returned to normal within a few days.

  5. Role of Nuclear Medicine in the cardiac resinchronization therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Giorgi, Maria Clementina Pinto; D' Orio, Silvana Angelina; Meneghetti, Jose Claudio [Instituto do Coracao (InCor/FM/USP), Sao Paulo, SP (Brazil)

    2011-10-15

    Cardiac resynchronization therapy (CRT) emerged as one of the most promising approaches in the treatment of cardiac dyssynchrony in heart failure patients' refractory to medical treatment. However, despite very promising clinical and functional results, individual response analyses show that a significant number of patients do not respond to treatment. The role of nuclear medicine and molecular imaging in the selection of CRT candidates by the assessment of cardiac dyssynchrony, myocardial viability, myocardial perfusion and blood flow and sympathetic cardiac activity has been discussed in this review. The potential utilization of this tool to improve the comprehension of detrimental effects of dyssynchrony on cardiac function and the evaluation and monitoring of the response to CRT were also considered. Other molecular targets that characterize glucose and fatty acid metabolism, apoptosis, angiotensin converting enzyme activity and angiogenesis that can be evaluated with this technique were described. (author)

  6. Increased sympathetic tone in forearm subcutaneous tissue in primary hypothyroidism

    DEFF Research Database (Denmark)

    Vagn Nielsen, H; Hasselström, K; Feldt-Rasmussen, U

    1987-01-01

    Sympathetic reflex regulation of subcutaneous blood flow (SBF) in the forearm was studied in eight patients with primary hypothyroidism. Diastolic arterial pressure was greater than or equal to 95 mmHg in five patients. SBF was determined by local clearance of Na99mTcO4. Sympathetic vasoconstrict......Sympathetic reflex regulation of subcutaneous blood flow (SBF) in the forearm was studied in eight patients with primary hypothyroidism. Diastolic arterial pressure was greater than or equal to 95 mmHg in five patients. SBF was determined by local clearance of Na99mTcO4. Sympathetic.......02)). In conclusion sympathetic vasoconstrictor activity in adipose tissue is markedly increased in primary hypothyroidism. Sympathetic tone and arterial pressure are reduced during treatment....

  7. Cardiac repolarization during hypoglycaemia and hypoxaemia in healthy males: impact of renin-angiotensin system activity

    DEFF Research Database (Denmark)

    Due-Andersen, Rikke; Høi-Hansen, Thomas; Olsen, Niels Vidiendal;

    2008-01-01

    AIMS: Activity in the renin-angiotensin system (RAS) may influence the susceptibility to cardiac arrhythmia. To study the effect of basal RAS activity on cardiac repolarization during myocardial stress induced by hypoglycaemia or hypoxaemia in healthy humans. METHODS AND RESULTS: Ten subjects...

  8. Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal.

    Science.gov (United States)

    McConnell, Patrick A; Froeliger, Brett; Garland, Eric L; Ives, Jeffrey C; Sforzo, Gary A

    2014-01-01

    Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics [heart rate variability (HRV)] during post-exercise relaxation. Subjects (n = 21; 18-29 years old) participated in a double-blind, placebo-controlled study during which binaural beats and placebo were administered over two randomized and counterbalanced sessions (within-subjects repeated-measures design). At the onset of each visit, subjects exercised for 20-min; post-exercise, subjects listened to either binaural beats ('wide-band' theta-frequency binaural beats) or placebo (carrier tones) for 20-min while relaxing alone in a quiet, low-light environment. Dependent variables consisted of high-frequency (HF, reflecting parasympathetic activity), low-frequency (LF, reflecting sympathetic and parasympathetic activity), and LF/HF normalized powers, as well as self-reported relaxation. As compared to the placebo visit, the binaural-beat visit resulted in greater self-reported relaxation, increased parasympathetic activation and increased sympathetic withdrawal. By the end of the 20-min relaxation period there were no observable differences in HRV between binaural-beat and placebo visits, although binaural-beat associated HRV significantly predicted subsequent reported relaxation. Findings suggest that listening to binaural beats may exert an acute influence on both LF and HF components of HRV and may increase subjective feelings of relaxation.

  9. BLOCKADE OF ROSTRAL VENTROLATERAL MEDULLA (RVLM BOMBESIN RECEPTOR TYPE 1 DECREASES BLOOD PRESSURE AND SYMPATHETIC ACTIVITY IN ANESTHETIZED SPONTANEOUSLY HYPERTENSIVE RATS

    Directory of Open Access Journals (Sweden)

    Izabella Silva De Jesus Pinto

    2016-06-01

    Full Text Available IIntrathecal injection of bombesin (BBS promoted hypertensive and sympathoexcitatory effects in normotensive (NT rats. However, the involvement of rostral ventrolateral medulla (RVLM in these responses is still unclear. In the present study, we investigated: (1 the effects of BBS injected bilaterally into RVLM on cardiorespiratory and sympathetic activity in NT and spontaneously hypertensive rats (SHR; (2 the contribution of RVLM bombesin type 1 receptors (BB1 to the maintenance of hypertension in SHR. Urethane-anesthetized rats (1.2 g · kg−1, i.v. were instrumented to record mean arterial pressure (MAP, diaphragm (DIA motor and renal sympathetic nerve activity (RSNA. In NT rats and SHR, BBS (0.3 mM nanoinjected into RVLM increased MAP (33.9 ± 6.6 mmHg and 37.1 ± 4.5 mmHg, respectively; p < 0.05 and RSNA (97.8 ± 12.9 % and 84.5 ± 18.1 %, respectively; p < 0.05. In SHR, BBS also increased DIA burst amplitude (115.3 ± 22.7 %; p < 0.05. BB1 receptors antagonist (BIM-23127; 3 mM reduced MAP (-19.9 ± 4.4 mmHg; p < 0.05 and RSNA (-17.7 ± 3.8 %; p < 0.05 in SHR, but not in NT rats (-2.5 ± 2.8 mmHg; -2.7 ± 5.6 %, respectively. These results show that BBS can evoke sympathoexcitatory and pressor responses by activating RVLM BB1 receptors. This pathway might be involved in the maintenance of high levels of arterial blood pressure in SHR.

  10. Inhibitory H3 receptors on sympathetic nerves of the pithed rat: activation by endogenous histamine and operation in spontaneously hypertensive rats.

    Science.gov (United States)

    Godlewski, G; Malinowska, B; Buczko, W; Schlicker, E

    1997-02-01

    Our previous results demonstrate the occurrence of presynaptic inhibitory histamine H3 receptors on sympathetic neurons innervating resistance vessels of the pithed rat. The present study, in which new H3 receptor ligands with increased potency and selectivity (imetit, clobenpropit) were used, was designed to further explore the role of H3 receptors in the regulation of the rat cardiovascular system. In particular we were interested whether these receptors may be activated by endogenous histamine and whether they are detectable in an experimental model of hypertension. All experiments were performed on pithed and vagotomized rats treated with rauwolscine 1 mumol/kg. In normotensive Wistar rats the electrical (1 Hz, 1 ms, 50 V for 20 s) stimulation of the preganglionic sympathetic nerve fibres increased diastolic blood pressure by about 35 mmHg. Two H3 receptor agonists, R-(-)-alpha-methylhistamine and imetit, inhibited the electrically induced increase in diastolic blood pressure in a dose-dependent manner. The maximal effect (about 25%) was obtained for R-(-)-alpha-methylhistamine at about 10 mumol/kg and for imetit at about 1 mumol/kg. Two H3 receptor antagonists, thioperamide 1 mumol/kg and clobenpropit 0.1 mumol/kg, attenuated the inhibitory effect of imetit. The neurogenic vasopressor response was increased by about 15% by thioperamide 1 mumol/kg and clobenpropit 0.1 mumol/kg and decreased by 25% by the histamine methyltransferase inhibitor metoprine 37 mumol/kg. R-(-)-alpha-Methylhistamine, imetit, thioperamide, clobenpropit and metoprine did not affect the vasopressor response to exogenously added noradrenaline 0.01 mumol/kg (which increased diastolic blood pressure by about 40 mmHg). Metoprine had only a very low affinity for H3 binding sites (labelled by 3H-N alpha-methylhistamine; pKi 4.46). In pithed Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats, electrical (1 Hz, 1 ms, 50 V for 10 s) stimulation increased diastolic blood pressure by 28

  11. ANGPTL2 activity in cardiac pathologies accelerates heart failure by perturbing cardiac function and energy metabolism

    Science.gov (United States)

    Tian, Zhe; Miyata, Keishi; Kadomatsu, Tsuyoshi; Horiguchi, Haruki; Fukushima, Hiroyuki; Tohyama, Shugo; Ujihara, Yoshihiro; Okumura, Takahiro; Yamaguchi, Satoshi; Zhao, Jiabin; Endo, Motoyoshi; Morinaga, Jun; Sato, Michio; Sugizaki, Taichi; Zhu, Shunshun; Terada, Kazutoyo; Sakaguchi, Hisashi; Komohara, Yoshihiro; Takeya, Motohiro; Takeda, Naoki; Araki, Kimi; Manabe, Ichiro; Fukuda, Keiichi; Otsu, Kinya; Wada, Jun; Murohara, Toyoaki; Mohri, Satoshi; Yamashita, Jun K.; Sano, Motoaki; Oike, Yuichi

    2016-01-01

    A cardioprotective response that alters ventricular contractility or promotes cardiomyocyte enlargement occurs with increased workload in conditions such as hypertension. When that response is excessive, pathological cardiac remodelling occurs, which can progress to heart failure, a leading cause of death worldwide. Mechanisms underlying this response are not fully understood. Here, we report that expression of angiopoietin-like protein 2 (ANGPTL2) increases in pathologically-remodeled hearts of mice and humans, while decreased cardiac ANGPTL2 expression occurs in physiological cardiac remodelling induced by endurance training in mice. Mice overexpressing ANGPTL2 in heart show cardiac dysfunction caused by both inactivation of AKT and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a signalling and decreased myocardial energy metabolism. Conversely, Angptl2 knockout mice exhibit increased left ventricular contractility and upregulated AKT-SERCA2a signalling and energy metabolism. Finally, ANGPTL2-knockdown in mice subjected to pressure overload ameliorates cardiac dysfunction. Overall, these studies suggest that therapeutic ANGPTL2 suppression could antagonize development of heart failure. PMID:27677409

  12. Sympathetic nerve activity in normal and cystic follicles from isolated bovine ovary: local effect of beta-adrenergic stimulation on steroid secretion

    Directory of Open Access Journals (Sweden)

    Ortega Hugo H

    2011-05-01

    Full Text Available Abstract Cystic ovarian disease (COD is an important cause of abnormal estrous behavior and infertility in dairy cows. COD is mainly observed in high-yielding dairy cows during the first months post-partum, a period of high stress. We have previously reported that, in lower mammals, stress induces a cystic condition similar to the polycystic ovary syndrome in humans and that stress is a definitive component in the human pathology. To know if COD in cows is also associated with high sympathetic activity, we studied isolated small antral (5mm, preovulatory (10mm and cystic follicles (25mm. Cystic follicles which present an area 600 fold greater compared with preovulatory follicles has only 10 times less concentration of NE as compared with small antral and preovulatory follicles but they had 10 times more NE in follicular fluid, suggesting a high efflux of neurotransmitter from the cyst wall. This suggestion was reinforced by the high basal release of recently taken-up 3H-NE found in cystic follicles. While lower levels of beta-adrenergic receptor were found in cystic follicles, there was a heightened response to the beta-adrenergic agonist isoproterenol and to hCG, as measured by testosterone secretion. There was however an unexpected capacity of the ovary in vitro to produce cortisol and to secrete it in response to hCG but not to isoproterenol. These data suggest that, during COD, the bovine ovary is under high sympathetic nerve activity that in addition to an increased response to hCG in cortisol secretion could participate in COD development.

  13. Should the sympathetic nervous system be a target to improve cardiometabolic risk in obesity?

    Science.gov (United States)

    Lambert, Elisabeth A; Straznicky, Nora E; Dixon, John B; Lambert, Gavin W

    2015-07-15

    The sympathetic nervous system (SNS) plays a key role in both cardiovascular and metabolic regulation; hence, disturbances in SNS regulation are likely to impact on both cardiovascular and metabolic health. With excess adiposity, in particular when visceral fat accumulation is present, sympathetic activation commonly occurs. Experimental investigations have shown that adipose tissue releases a large number of adipokines, cytokines, and bioactive mediators capable of stimulating the SNS. Activation of the SNS and its interaction with adipose tissue may lead to the development of hypertension and end-organ damage including vascular, cardiac, and renal impairment and in addition lead to metabolic abnormalities, especially insulin resistance. Lifestyle changes such as weight loss and exercise programs considerably improve the cardiovascular and metabolic profile of subjects with obesity and decrease their cardiovascular risk, but unfortunately weight loss is often difficult to achieve and sustain. Pharmacological and device-based approaches to directly or indirectly target the activation of the SNS may offer some benefit in reducing the cardiometabolic consequences of obesity. Preliminary evidence is encouraging, but more trials are needed to investigate whether sympathetic inhibition could be used in obesity to reverse or prevent cardiometabolic disease development. The purpose of this review article is to highlight the current knowledge of the role that SNS plays in obesity and its associated metabolic disorders and to review the potential benefits of sympathoinhibition on metabolic and cardiovascular functions.

  14. A case of delayed cardiac perforation of active ventricular lead

    Directory of Open Access Journals (Sweden)

    Hangyuan Guo

    2011-12-01

    Full Text Available A 65-year-old man was admitted as for one month of repetitive dizziness and one episode of syncope. Electrocardiogram showed sinus bradycardia and his Holter monitoring also showed sinus bradycardia with sinus arrest, sino-atrial block and a longest pause of 4.3 s. Then sick sinus syndrome and Adam-Stokes syndrome were diagnosed. Then a dual chamber pacemaker (Medtronic SDR303 was implanted and the parameters were normal by detection. The patient was discharged 1 week later with suture removed. Then 1.5 month late the patient was presented to hospital once again for sudden onset of chest pain with exacerbation after taking deep breath. Pacemaker programming showed both pacing and sensing abnormality with threshold of?5.0V and resistance of 1200?. Lead perforation was revealed by chest X-ray and confirmed by echocardiogram. Considering the fact that there was high risk to remove ventricular lead, spiral tip of previous ventricular lead was withdrew followed by implantation of a new ventricular active lead to the septum. Previous ventricular lead was maintained. As we know that the complications of lead perforation in the clinic was rare. Here we discuss the clinical management and the possible reasons for cardiac perforation of active ventricular lead.

  15. Cardiac activation mapping using ultrasound current source density imaging (UCSDI).

    Science.gov (United States)

    Olafsson, Ragnar; Witte, Russell S; Jia, Congxian; Huang, Sheng-Wen; Kim, Kang; O'Donnell, Matthew

    2009-03-01

    We describe the first mapping of biological current in a live heart using ultrasound current source density imaging (UCSDI). Ablation procedures that treat severe heart arrhythmias require detailed maps of the cardiac activation wave. The conventional procedure is time-consuming and limited by its poor spatial resolution (5-10 mm). UCSDI can potentially improve on existing mapping procedures. It is based on a pressure-induced change in resistivity known as the acousto-electric (AE) effect, which is spatially confined to the ultrasound focus. Data from 2 experiments are presented. A 540 kHz ultrasonic transducer (f/# = 1, focal length = 90 mm, pulse repetition frequency = 1600 Hz) was scanned over an isolated rabbit heart perfused with an excitation-contraction decoupler to reduce motion significantly while retaining electric function. Tungsten electrodes inserted in the left ventricle recorded simultaneously the AE signal and the low-frequency electrocardiogram (ECG). UCSDI displayed spatial and temporal patterns consistent with the spreading activation wave. The propagation velocity estimated from UCSDI was 0.25 +/- 0.05 mm/ms, comparable to the values obtained with the ECG signals. The maximum AE signal-to-noise ratio after filtering was 18 dB, with an equivalent detection threshold of 0.1 mA/ cm(2). This study demonstrates that UCSDI is a potentially powerful technique for mapping current flow and biopotentials in the heart.

  16. Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure.

    Science.gov (United States)

    Lymperopoulos, Anastasios; Rengo, Giuseppe; Funakoshi, Hajime; Eckhart, Andrea D; Koch, Walter J

    2007-03-01

    Cardiac overstimulation by the sympathetic nervous system (SNS) is a salient characteristic of heart failure, reflected by elevated circulating levels of catecholamines. The success of beta-adrenergic receptor (betaAR) antagonists in heart failure argues for SNS hyperactivity being pathogenic; however, sympatholytic agents targeting alpha2AR-mediated catecholamine inhibition have been unsuccessful. By investigating adrenal adrenergic receptor signaling in heart failure models, we found molecular mechanisms to explain the failure of sympatholytic agents and discovered a new strategy to lower SNS activity. During heart failure, there is substantial alpha2AR dysregulation in the adrenal gland, triggered by increased expression and activity of G protein-coupled receptor kinase 2 (GRK2). Adrenal gland-specific GRK2 inhibition reversed alpha2AR dysregulation in heart failure, resulting in lowered plasma catecholamine levels, improved cardiac betaAR signaling and function, and increased sympatholytic efficacy of a alpha2AR agonist. This is the first demonstration, to our knowledge, of a molecular mechanism for SNS hyperactivity in heart failure, and our study identifies adrenal GRK2 activity as a new sympatholytic target.

  17. The influence of motor activity on the development of cardiac arrhythmias during experimental emotional stress

    Science.gov (United States)

    Ulyaninskiy, L. S.; Urmancheyeva, T. G.; Stepanyan, Y. P.; Fufacheva, A. A.; Gritsak, A. V.; Kuznetsova, B. A.; Kvitka, A. A.

    1982-01-01

    Experimental emotional stress which can produce various disorders of cardiac rhythm: sinus tachycardia, atrial fibrillation, ventricular, extrasystoles and paroxysmal ventricular tachysystoles was studied. In these conditions the adrenalin content in the blood and myocardium is increased 3 to 4 times. It is found that moderate motor activity leads to a relative decrease of adrenalin in the myocardium and arrest of cardiac arrhythmias.

  18. 24-Hour motor activity and autonomic cardiac functioning in major depressive disorder

    NARCIS (Netherlands)

    A.C. Volkers (Anita)

    2002-01-01

    textabstractThe studies of this thesis concern the spontaneous pattern of motor activity and autonomic cardiac functioning in major depressive disorder. The main purpose of the studies was to obtain insight in the psychomotor and autonomic cardiac dysfunction in depression by investigating the 24-ho

  19. Effect of pioglitazone on arterial baroreflex sensitivity and sympathetic nerve activity in patients with acute myocardial infarction and type 2 diabetes mellitus.

    Science.gov (United States)

    Yokoe, Hiroshi; Yuasa, Fumio; Yuyama, Reisuke; Murakawa, Kousuke; Miyasaka, Yoko; Yoshida, Susumu; Tsujimoto, Satoshi; Sugiura, Tetsuro; Iwasaka, Toshiji

    2012-06-01

    Pioglitazone has been shown to reduce the occurrence of fatal and nonfatal myocardial infarction (MI) in type 2 diabetes mellitus (DM). However, the mechanisms of such favorable effects remain speculative. The aim of this study was to investigate the effect of pioglitazone on arterial baroreflex sensitivity (BRS) and muscle sympathetic nerve activity (MSNA) in 30 DM patients with recent MI. Patients were randomly assigned to those taking pioglitazone (n = 15) and those not taking pioglitazone (n = 15) at 4 weeks after the onset of MI. BRS, MSNA, calculated homeostasis model assessment of insulin resistance index (HOMA-IR), and plasma adiponectin were measured at baseline and after 12 weeks. Pioglitazone increased plasma adiponectin (from 6.9 ± 3.3 μg/dL to 12.2 ± 7.1 μg/dL) and reduced HOMA-IR (from 4.0 ± 2.2 to 2.1 ± 0.9). In the pioglitazone group, MSNA decreased significantly (from 37 ± 7 bursts/min to 25 ± 8 bursts/min) and BRS increased significantly (from 6.7 ± 3.0 to 9.9 ± 3.2 ms/mm Hg) after 12 weeks. Furthermore, a significant relationship was found between the change in MSNA and HOMA-IR (r = 0.6, P = 0.042). Thus, pioglitazone decreased the sympathetic nerve traffic through the improvement of insulin resistance in DM patients with recent MI, which indicate that the sympathoinhibitory effects of pioglitazone may, at least in part, have contributed to the beneficial effects of pioglitazone.

  20. Sympathetic Nerve Activity Maintains an Anti-Inflammatory State in Adipose Tissue in Male Mice by Inhibiting TNF-α Gene Expression in Macrophages.

    Science.gov (United States)

    Tang, Lijun; Okamoto, Shiki; Shiuchi, Tetsuya; Toda, Chitoku; Takagi, Kazuyo; Sato, Tatsuya; Saito, Kumiko; Yokota, Shigefumi; Minokoshi, Yasuhiko

    2015-10-01

    Adipose tissue macrophages (ATMs) play an important role in the inflammatory response in obese animals. How ATMs are regulated in lean animals has remained elusive, however. We now show that the sympathetic nervous system (SNS) is necessary to maintain the abundance of the mRNA for the proinflammatory cytokine TNF-α at a low level in ATMs of lean mice. Intracerebroventricular injection of agouti-related neuropeptide increased the amount of TNF-α mRNA in epididymal (epi) white adipose tissue (WAT), but not in interscapular brown adipose tissue (BAT), through inhibition of sympathetic nerve activity in epiWAT. The surgical denervation and β-adrenergic antagonist propranolol up-regulated TNF-α mRNA in both epiWAT and BAT in vivo. Signaling by the β2-adrenergic receptor (AR) and protein kinase A down-regulated TNF-α mRNA in epiWAT explants and suppressed lipopolysaccharide-induced up-regulation of TNF-α mRNA in the stromal vascular fraction of this tissue. β-AR-deficient (β-less) mice manifested an increased plasma TNF-α concentration and increased TNF-α mRNA abundance in epiWAT and BAT. TNF-α mRNA abundance was greater in ATMs (CD11b(+) cells of the stromal vascular fraction) from epiWAT or BAT of wild-type mice than in corresponding CD11b(-) cells, and β2-AR mRNA abundance was greater in ATMs than in CD11b(-) cells of epiWAT. Our results show that the SNS and β2-AR-protein kinase A pathway maintain an anti-inflammatory state in ATMs of lean mice in vivo, and that the brain melanocortin pathway plays a role in maintaining this state in WAT of lean mice via the SNS.

  1. Mechanism of relation among heart meridian, referred cardiac pain and heart

    Institute of Scientific and Technical Information of China (English)

    RONG; Peijing(荣培晶); ZHU; Bing(朱兵)

    2002-01-01

    It has been demonstrated that an important clinical phenomenon often associated with visceral diseases is the referred pain to somatic structures, especially to the body areaof homo-segmental innervation. It is interesting that the somatic foci of cardiac referred pain wereoften and mainly distributed along the heart meridian (HM), whereas the acupoints of HM havebeen applied to treat cardiac disease since ancient times. The purpose of this study was to inves-tigate the neural relationship between the cardiac referred pain and the heart meridian.Fluorescent triple-labeling was injected into the pericardium, some acupoints of HM and lung me-ridian (LM, for control). The responses of the left cardiac sympathetic nerve and of the EMG in left HM and LM were electrophysiologically studied, when the electrical stimuli were applied to the acupoints of left HM and to the left cardiac sympathetic nerve. More double-labeled neurons in HM-heart, not in LM-heart, were observed in the ipsilateral dorsal root ganglia of the spinal segments C8-T3. Electric stimulation of the acupoints of left HM was able to elicit more responses of left cardiac sympathetic nerve than that of the LM-acupoints. Electric stimulation of the left cardiac sympathetic nerve resulted in stronger activities of EMG-response in the acupoints of left HM than in LM-acupoints. We conclude that double-labeling study has provided direct evidence for the existence of dichotomizing afferent fibers that supply both the pericardium and HM. Electrophysiological results show that HM is more closely related functionally to heart. These findings provide a possible morphological and physiological explanation for the referred cardiac pain and HM-heart interrelation.

  2. Comparative Analysis of Telomerase Activity in CD117+CD34+ Cardiac Telocytes with Bone Mesenchymal Stem Cells, Cardiac Fibroblasts and Cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yuan Li; Shan-Shan Lu; Ting Xu; Hong-Qi Zhang; Hua Li

    2015-01-01

    Background:This study characterized the cardiac telocyte (TC) population both in vivo and in vitro,and investigated its telomerase activity related to mitosis.Methods:Using transmission electron microscopy and a phase contrast microscope,the typical morphological features of cardiac TCs were observed;by targeting the cell surface proteins CD 1 17 and CD34,CD 117+CD34+ cardiac TCs were sorted via flow cytometry and validated by immunofluorescence based on the primary cell culture.Then the optimized basal nutrient medium for selected population was examined with the cell counting kit 8.Under this conditioned medium,the process of cell division was captured,and the telomerase activity ofCD 117+CD34+ cardiac TCs was detected in comparison with bone mesenchymal stem cells (BMSCs),cardiac fibroblasts (CFBs),cardiomyocytes (CMs).Results:Cardiac TCs projected characteristic telopodes with thin segments (podomers) in alternation with dilation (podoms).In addition,64% of the primary cultured cardiac TCs were composed of CD 117+CD34+ cardiac TCs;which was verified by immunofluorescence.In a live cell imaging system,CD 117+CD34+ cardiac TCs were observed to enter into cell division in a short time,followed by an significant invagination forming across the middle of the cell body.Using a real-time quantitative telomeric-repeat amplification assay,the telomerase concentration in CD117+CD34+ cardiac TCs was obviously lower than in BMSCs and CFBs,and significantly higher than in CMs.Conclusions:Cardiac TCs represent a unique cell population and CD117+CD34+ cardiac TCs have relative low telomerase activity that differs from BMSCs,CFBs and CMs and thus they might play an important role in maintaining cardiac homeostasis.

  3. Comparative Analysis of Telomerase Activity in CD117+CD34+ Cardiac Telocytes with Bone Mesenchymal Stem Cells, Cardiac Fibroblasts and Cardiomyocytes

    Science.gov (United States)

    Li, Yuan-Yuan; Lu, Shan-Shan; Xu, Ting; Zhang, Hong-Qi; Li, Hua

    2015-01-01

    Background: This study characterized the cardiac telocyte (TC) population both in vivo and in vitro, and investigated its telomerase activity related to mitosis. Methods: Using transmission electron microscopy and a phase contrast microscope, the typical morphological features of cardiac TCs were observed; by targeting the cell surface proteins CD117 and CD34, CD117+CD34+ cardiac TCs were sorted via flow cytometry and validated by immunofluorescence based on the primary cell culture. Then the optimized basal nutrient medium for selected population was examined with the cell counting kit 8. Under this conditioned medium, the process of cell division was captured, and the telomerase activity of CD117+CD34+ cardiac TCs was detected in comparison with bone mesenchymal stem cells (BMSCs), cardiac fibroblasts (CFBs), cardiomyocytes (CMs). Results: Cardiac TCs projected characteristic telopodes with thin segments (podomers) in alternation with dilation (podoms). In addition, 64% of the primary cultured cardiac TCs were composed of CD117+CD34+ cardiac TCs; which was verified by immunofluorescence. In a live cell imaging system, CD117+CD34+ cardiac TCs were observed to enter into cell division in a short time, followed by an significant invagination forming across the middle of the cell body. Using a real-time quantitative telomeric-repeat amplification assay, the telomerase concentration in CD117+CD34+ cardiac TCs was obviously lower than in BMSCs and CFBs, and significantly higher than in CMs. Conclusions: Cardiac TCs represent a unique cell population and CD117+CD34+ cardiac TCs have relative low telomerase activity that differs from BMSCs, CFBs and CMs and thus they might play an important role in maintaining cardiac homeostasis. PMID:26168836

  4. PM2.5对大鼠心脏交感神经分布的影响及其与心肌神经生长因子表达的关系%Effect of PM2.5 on sympathetic innervation by stimulating the secretion of cardiac nerve growth factor in healthy rat hearts

    Institute of Scientific and Technical Information of China (English)

    段军; 丛鲁红; 李刚; 易丽; 柯元南; 周益锋

    2012-01-01

    Objective To assess the effect of PM2.5 on sympathetic innervation and the relationship with cardiac nerve growth factor in healthy rat hearts,identify the ability to the sympathetic nerve reconstruction,and explore the possible arrhythogenic mechanism of PM2.5.Methods Forty healthy SD rats were instilled into trachea with two different solutions twice per week for four weeks:control group with saline and experimental group with PM2.5 25 mg/kg.Then these rats were killed,and biatrial appendages,two ventricular anterior walls were left.Immune cytochemical staining of cardiac nerves was performed using anti-tyrosine hydroxylase antibodies and cardiac nerve growth factor was detected by western blotting.Resuits Compared with the control group,both the density of sympathetic nerves and the expression of cardiac NGF protein in the experimental group were much higher in the left ventricular anterior wall ( P<0.01 and P<0.05) and in the right ventricular anterior wall ( P<0.01 and P<0.05).Conclusions PM2.5 can induce regional sympathetic hyperinnervation in both ventricular anterior walls in healthy rats by stimulating the NGF protein secretion,and the sympathetic nerve reconstruction effect of PM2.5 was confirmed.%目的 研究可吸入颗粒物PM2.5对大鼠心脏交感神经分布的影响及其与心肌神经生长因子表达的关系,明确PM2.5是否具有致交感神经重构作用,探讨PM2.5致心律失常的可能机制.方法 40只SD雄性大鼠,随机分为对照组和实验组,每组20只.实验组大鼠按25 mg/kg剂量经气管内缓慢注入颗粒物悬液染毒,每周染毒2次,连续染毒4周;对照组以生理盐水代替颗粒物悬液;两组大鼠于末次染毒后次日处死,开胸留取双侧心耳和双心室前壁,通过免疫组化方法检测酪氨酸羟化酶染色阳性的交感神经纤维分布密度,同时采用蛋白免疫印迹法检测心肌神经生长因子(NGF)蛋白表达.结果 与对照组比较,实验组大鼠吸入PM2

  5. PATIENTS OVERCOME ANXIETY AND ARE ENCOURAGED TO BE PHYSICAL ACTIVE THROUGH EXERCISE-BASED CARDIAC REHABILITATION

    DEFF Research Database (Denmark)

    Simonÿ, Charlotte; Dreyer, Pia; Pedersen, Birthe D.

    into that the heart endures physical activity. In addition to serving as physical guidance, exercise-based cardiac rehabilitation offers valuable mental support. The patients find help to overcome an initial anxiety and move forward towards a physically active life featuring a feeling of improved health and new......Purpose. Patients face demanding and challenging processes when they experience cardiac problems. Exercise-based cardiac rehabilitation is established to enable these patients to move forward to lead a satisfying life. It is recognised that patients fail to join all sessions of the rehabilitation......, and it seems to be crucial to further emphasise the individuals lived experiences when exercise-based cardiac rehabilitation is followed. Hence this study aims to investigate how patients experience exercise-based cardiac rehabilitation in a hospital setting. Methods. This study, which included nine men...

  6. Further Studies on Structure-Cardiac Activity Relationships of Diterpenoid Alkaloids.

    Science.gov (United States)

    Zhang, Zhong-Tang; Jian, Xi-Xian; Ding, Jia-Yu; Deng, Hong-Ying; Chao, Ruo-Bing; Chen, Qiao-Hong; Chen, Dong-Lin; Wang, Feng-Peng

    2015-12-01

    The cardiac effect of thirty-eight diterpenoid alkaloids was evaluated on the isolated bullfrog heart model. Among them, twelve compounds exhibited appreciable cardiac activity, with compounds 3 and 35 being more active than the reference drug lanatoside. The structure-cardiac activity relationships of the diterpenoid alkaloids were summarized based on our present and previous studies [2]: i) 1α-OMe or 1α-OH, 8-OH, 14-OH, and NH (or NMe) are key structural features important for the cardiac effect of the aconitine-type C19-diterpenoid alkaloids without any esters. C18-diterpenoid alkaloids, lycoctonine-type C19-diterpenoid alkaloids, and the veatchine- and denudatine-type C20-diterpenoid alkaloids did not show any cardiac activity; ii) the presence of 3α-OH is beneficial to the cardiac activity; iii) the effect on the cardiac action of 6α-OMe, 13-OH, 15α-OH, and 16-demethoxy or a double bond between C-15 and C-16 depends on the substituent pattern on the nitrogen atom.

  7. Non-dipping blood pressure variations in adult Kazakhs are derived from decreased daytime physical activity and increased nighttime sympathetic activity.

    Science.gov (United States)

    Kawamura, Hiroshi; Ozawa, Yukio; Izumi, Yoichi; Kasamaki, Yuji; Nakayama, Tomohiro; Mitsubayashi, Hiromi; Ohta, Masakatsu; Ichimaru, Yuhei

    2016-01-01

    Many of the elderly Kazakhs have been found to exhibit non-dipping blood pressure variations (BPV). Such variations are seen in both normotensive and hypertensive Kazakhs. The purpose of this study was (1) to determine whether middle-aged Kazakhs also include large numbers of non-dippers, (2) to compare the characteristics of non-dipping and dipping, and (3) to clarify the mechanisms responsible for non-dipping type BPV by examining the autonomic nervous activity and physical activity. We performed ambulatory blood pressure (BP) monitoring. The subjects were divided into two groups (dipping and non-dipping type). We monitored the subjects' physical activity with accelerometry and assessed their autonomic nerve activity by performing a frequency domain analysis of their heart rate variability (HRV). The power spectral density (PSD) of the HRV was calculated using fast Fourier transformation. We analyzed the systolic blood pressure (SBP) variations with the maximum entropy method (MEM). The dippers and non-dippers accounted for 48% and 52% of the subjects, respectively. MEM analysis revealed that the SBP variations of the non-dippers exhibited a 24 hour periodicity with a very weak PSD as well as an ultradian periodicity. The non-dippers exhibited higher low-frequency/high-frequency (LF/HF) ratio and lower HF/(LF + HF) ratios than the dippers, particularly during the nighttime. In addition, the non-dippers performed less physical activity than the dippers. These differences in cardiac autonomic function and physical activity might contribute to the generation of a weak circadian rhythm in SBP, and thus, ultimately lead to the non-dipping SBP variations observed in non-dipper Kazakhs.

  8. Exacerbated cardiac fibrosis induced by β-adrenergic activation in old mice due to decreased AMPK activity.

    Science.gov (United States)

    Wang, Jingjing; Song, Yao; Li, Hao; Shen, Qiang; Shen, Jing; An, Xiangbo; Wu, Jimin; Zhang, Jianshu; Wu, Yunong; Xiao, Han; Zhang, Youyi

    2016-11-01

    Senescent hearts exhibit defective responses to β-adrenergic receptor (β-AR) over-activation upon stress, leading to more severe pathological cardiac remodelling. However, the underlying mechanisms remain unclear. Here, we investigated the role of adenosine monophosphate-activated protein kinase (AMPK) in protecting against ageing-associated cardiac remodelling in mice upon β-AR over-activation. 10-week-old (young) and 18-month-old (old) mice were subcutaneously injected with the β-AR agonist isoproterenol (ISO; 5 mg/kg). More extensive cardiac fibrosis was found in old mice upon ISO exposure than in young mice. Meanwhile, ISO treatment decreased AMPK activity and increased β-arrestin 1, but not β-arrestin 2, expression, and the effects of ISO on AMPK and β-arrestin 1 were greater in old mice than in young mice. Similarly, young AMPKα2-knockout (KO) mice showed more extensive cardiac fibrosis upon ISO exposure than that was observed in age-matched wild-type (WT) littermates. The extent of cardiac fibrosis in WT old mice was similar to that in young KO mice. Additionally, AMPK activities were decreased and β-arrestin 1 expression increased in KO mice. In contrast, the AMPK activator metformin decreased β-arrestin 1 expression and attenuated cardiac fibrosis in both young and old mice upon ISO exposure. In conclusion, more severe cardiac fibrosis is induced by ISO in old mice than in young mice. A decrease in AMPK activity, which further increases β-arrestin 1 expression, is the central mechanism underlying the ageing-related cardiac fibrosis induced by ISO. The AMPK activator metformin is a promising therapeutic agent for treating ageing-related cardiac remodelling upon β-AR over-activation.

  9. Effect of postnatal lead exposure on the development of sympathetic innervation of the heart. [Rats

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, M.E.

    1983-01-01

    To determine possible mechanisms for this Pb-induced cardiotoxicity, several neutrochemical parameters indicative of cardiac sympathetic innervation were measured in developing rats. Presynaptic indices of nerve terminal development which were studied included steady-state levels of norepinephrine, neuronal uptake and vesicular storage of /sup 3/H-norepinephrine. Analysis of postsynaptic development was accomplished by quantitating the density of ..beta..-adrenergic receptors and by measuring the activity of adenylate cyclase. Rat pups were exposed to Pb from birth to weaning (21 days) via the milk of dams whose drinking water contained 0.2% Pb acetate. This method and level of Pb treatment had no effect on body or heart weight development, however, it did result in a seven-fold increase in the blood Pb content (70-75 ..mu..g/dl) of the treated pups during the period of exposure. Pb exposure accelerated the development of sympathetic innervation of the heart as detected by significant increases in the vesicular uptake of /sup 3/H-norepinephrine and the steady-state concentration of norepinephrine measured at postnatal day 4. On the other hand, ontogeny of the neutronal uptake of /sup 3/H-norepinephrine in the heart and in the forebrain was not affected by Pb treatment. The apparent premature development of sympathetic innervation induced by Pb treatment was not reflected in significant alterations in either the density or the affinity of ..beta..-adrenergic receptor sites determined by the binding kinetics of /sup 3/H-dihydroalprenolol.

  10. Extra cardiac activity detected on myocardial perfusion scintigraphy after intra-arterial injection of 99mTc-MIBI

    DEFF Research Database (Denmark)

    Afzelius, Pia; Henriksen, Jens H

    2008-01-01

    , prolongation of the study and interference of the extra cardiac activity with the cardiac image reconstructions. Whole-body scintigraphy disclosed an arterial flow distribution of activity to skeletal muscles in left shoulder and upper limb. CONCLUSION: Accidentally injected radiotracer retrogradely...... (dipyridamol) imaging and followed by rest imaging day 2 was performed. RESULTS: On day 2, when rest perfusion scintigraphy was carried out, extra cardiac activity was present in the left part of thorax and in the left upper extremity resulting in reduced accumulation of 99mTc-MIBI in cardiac tissue...... into the arterial system resulted in an unusual extra cardiac activity interfering with later image processing....

  11. Cardiac modeling using active appearance models and morphological operators

    Science.gov (United States)

    Pfeifer, Bernhard; Hanser, Friedrich; Seger, Michael; Hintermueller, Christoph; Modre-Osprian, Robert; Fischer, Gerald; Muehlthaler, Hannes; Trieb, Thomas; Tilg, Bernhard

    2005-04-01

    We present an approach for fast reconstructing of cardiac myocardium and blood masses of a patient's heart from morphological image data, acquired either MRI or CT, in order to estimate numerically the spread of electrical excitation in the patient's atria and ventricles. The approach can be divided into two main steps. During the first step the ventricular and atrial blood masses are extracted employing Active Appearance Models (AAM). The left and right ventricular blood masses are segmented automatically after providing the positions of the apex cordis and the base of the heart. Because of the complex geometry of the atria the segmentation process of the atrial blood masses requires more information as the ventricular blood mass segmentation process of the ventricles. We divided, for this reason, the left and right atrium into three divisions of appearance. This proved sufficient for the 2D AAM model to extract the target blood masses. The base of the heart, the left upper and left lower pulmonary vein from its first up to its last appearance in the image stack, and the right upper and lower pulmonary vein have to be marked. After separating the volume data into these divisions the 2D AAM search procedure extracts the blood masses which are the main input for the second and last step in the myocardium extraction pipeline. This step uses morphologically-based operations in order to extract the ventricular and atrial myocardium either directly by detecting the myocardium in the volume block or by reconstructing the myocardium using mean model information, in case the algorithm fails to detect the myocardium.

  12. Effects of sympathetic activation on QT hysteresis%交感神经张力对犬QT滞后现象的影响

    Institute of Scientific and Technical Information of China (English)

    包明威; 张逸杰; 钟慧; 李彦; 谭团团

    2014-01-01

    Objective To investigate the role of sympathetic activation in the mechanism of QT hysteresis.Methods Dynamic heart rate fluctuation was produced by right atrium(RA)pacing,and sympathetic activity was regulated by isopropylarterenol(ISO) or propranolol intravenous injection.Five protocols were used for investigating the effects of sympathetic activity on QT interval hysteresis,including A:right atrium increase-decrease frequency pacing,B:ISO intravenous injection,C:propranolol intravenous injection + protocol A,D:propranolol intravenous injection + protocol B,E:destroy sinoatrial node + low dose ISO intravenous injection + protocol A.The surface electrocardiogram was recorded,RR and QT interval were determined.Plotted the QTRR and calculated the QT hysteresis index.The QT hysteresis index was compared among different protocols,and the effects of autonomic nerve on QT hysteresis index were evaluated.Results The QTe and QTp hysteresis index in protocol A were significantly lower than that in protocol B [QTe:(0.56±4.56) ms vs.(17.96± 8.22) ms,P< 0.05 ; QTp:(0.50 ± 3.14) ms vs.(11.33 ± 13.47) ms,P< 0.05].There was no significant difference in QTe hysteresis index between protocol A and C [(0.56±4.56)ms vs.(2.34±2.84)ms,P>0.05],but the QTp hysteresis index in protocol A was significantly higher than that in protocol C [QTp:(0.50± 3.14).ms vs.(-5.45±2.13)ms,P<0.05].There was no significant difference between protocol B and C [QTe:(17.12± 10.47) ms vs.(15.77± 14.89) ms,P>0.05 ; QTp:(11.33 ± 13.47) ms vs.(17.12± 10.47) ms,P>0.05].The QTe and QTp hysteresis indexes in protocol C were significantly lower than that in protocol D [QTe:(2.34± 2.84)ms vs.(15.77±14.89) ms,P<0.05 ;QTp:(-5.45±2.13)ms vs.(17.12±10.47) ms,P<0.05].The QTe hysteresis index in protocol A was significantly lower than that in protocol E [QTe:(0.56±4.56) ms vs.(8.42± 7.86) ms,P<0.05],but not QTp [(0.50±3.14)ms vs.(0.62±7.46)ms,P>0.05].The QTe and QTp hysteresis

  13. Lower limb pain in sympathetic-sensory coupling

    Institute of Scientific and Technical Information of China (English)

    Hongjun Yang; Kairun Peng; Sanjue Hu; Li Xuan

    2011-01-01

    Previous studies have shown that sympathetic nerves are related to certain types of pain, and this phenomenon is referred to as sympathetic-sensory coupling. Chronic pain resulting from nerve injury can be exacerbated by sympathetic stimulation or relieved by sympathetic inhibition. In the present study, the correlation between pain and sympathetic nerves was analyzed in patients with severe pain in lower limbs, as well as in a chronically compressed dorsal root ganglion (CCD) rat model (model of low back pain and sciatica). Patients with severe pain in the lower limbs underwent chemical lumbar sympathectomy (CLS), and the analgesic effects of CLS were compared with painkillers. Results demonstrated significantly relieved lower limb pain following CLS, and the analgesic effects of CLS were superior to those seen with painkillers. In the CCD rat model, dorsal root ganglion neuronal activity significantly increased as a result of electrical stimulation to the sympathetic nerves. These results suggest that sympathetic nerves are closely associated with pain and sympathetic-sensory coupling is likely in lower limb pain in both patients and rat models of CCD.

  14. Detection of telornerase activity and cytology in diagnosis of cardiac cancer

    Institute of Scientific and Technical Information of China (English)

    Qiang Wang; Qing Ming Wu; Sheng Bao Li

    2000-01-01

    AIM To investigate the diagnostic significance of cytology and telomerase activity in the exfoliated cells ofcardia obtained from endoscopic brushing in the cardiac cancer.METHODS The techniques of the qualitative TRAP-silver staining and quantitative TRAP-PCR-ELISAwere employed to detect telomerase activity in the exfoliated cells of cardia obtained from endoscopicbrushing in 72 cases with cardial lesions, cytological diagnosis was made at the same time.RESULTS Telomerase activity with cardiac cancer group (1.521 ± 0. 192) was significantly higher than thatwith cardialitis group (0.065± 0.014). Positive rate of telomerase activity detected in cardiac cancer group(88.89%) was significantly higher than that with cardialitis group (11.11%), the former was significantlyhiger than cytological examination (77.78%). The diagnostic rate of cardiac cancer reached 93.33% iftelomerase activity and cytology were examined at the same time.CONCLUSION Cytology and telomerase activity in the exfoliated cardiac cells may be an effective andsensitive methods in the diagnosis of cardiac cancer. This research can be a basis for the mass screening ofcardiac cancer.

  15. Acidosis-induced p38 MAPK activation and its implication in regulation of cardiac contractility

    Institute of Scientific and Technical Information of China (English)

    Ming ZHENG; Rong HOU; Rui-ping XIAO

    2004-01-01

    AIM: To determine the possible role of pH in mediating activation of p38 mitogen-activated protein kinase (MAPK) and the consequent function of activated p38 MAPK in regulating cardiac contractility. METHODS: Adult rat cardiomyocytes were isolated and cultured. Low pH media was used to induce intracellular acidosis and contraction of single cardiomyocyte was measured. RESULTS: Phosphorylation of p38 MAPK was increased during ischemia, and pHi was decreased. Intracellular acidosis activated p38 MAPK to a similar level as ischemia. Inhibition of p38 MAPK activation by SB203580, a specific inhibitor of p38 MAPK, reversed acidosis-mediated reduction of myocyte contractility. CONCLUSION: In adult rat cardiomyocytes, intracellular acidification activated p38 MAPK and decreased cardiac contractility. Pretreatment of cardiomyocytes with SB203580 completely blocked p38 MAPK activation and partially reversed acidosis-mediated decline of cardiac contractility.

  16. Iodine-123 metaiodobenzylguanidine imaging of the heart in idiopathic congestive cardiomyopathy and cardiac transplants

    Energy Technology Data Exchange (ETDEWEB)

    Glowniak, J.V.; Turner, F.E.; Gray, L.L.; Palac, R.T.; Lagunas-Solar, M.C.; Woodward, W.R.

    1989-07-01

    Iodine-123 metaiodobenzylguanidine ((/sup 123/I)MIBG) is a norepinephrine analog which can be used to image the sympathetic innervation of the heart. In this study, cardiac imaging with (/sup 123/I)MIBG was performed in patients with idiopathic congestive cardiomyopathy and compared to normal controls. Initial uptake, half-time of tracer within the heart, and heart to lung ratios were all significantly reduced in patients compared to normals. Uptake in lungs, liver, salivary glands, and spleen was similar in controls and patients with cardiomyopathy indicating that decreased MIBG uptake was not a generalized abnormality in these patients. Iodine-123 MIBG imaging was also performed in cardiac transplant patients to determine cardiac nonneuronal uptake. Uptake in transplants was less than 10% of normals in the first 2 hr and nearly undetectable after 16 hr. The decreased uptake of MIBG suggests cardiac sympathetic nerve dysfunction while the rapid washout of MIBG from the heart suggests increased cardiac sympathetic nerve activity in idiopathic congestive cardiomyopathy.

  17. VEGETATIVE SUPPORT OF CARDIAC ACTIVITY IN ATHLETES WITH DIFFERENT ANTHROPOMETRIC PROFILE

    Directory of Open Access Journals (Sweden)

    O. N. Kudrya

    2016-01-01

    Full Text Available The purpose of research – to study the features of the functioning of the cardiovascular system and regulatory mechanisms of the young athletes of different heights.Materials and methods. The study included athletes aged 15-16 (32 girls and 36 boys engaged in competitive sports. To study the autonomic regulation of the cardiovascular system using mathematical methods and spectral analysis of heart rate variability. To characterize the vegetative support the circulatory apparatus, all subjects performed an active orthostatic test.Results. The features of vegetative maintenance of heart activity in tall athletes: stress regulatory mechanisms observed resting in tall men and decrease the functionality of the sympathetic division of the autonomic nervous system during active orthostatic test in athletes of different sex. Athletes tall urgent adaptation of the cardiovascular system to changing external conditions associated with activation of suprasegmental divisions of the autonomic nervous system and the excessive activation of the sympathetic division, which is an inefficient way of adaptation.Conclusion. Thus, high growth is evident not only in the increase of total size of the body of athletes, but also in the peculiarities of morphofunctional state involved, indicating the need of individual rationing of loads for tall players. The revealed morphofunctional characteristics of the organism tall athletes allow us to recommend an increase in the proportion of aerobic exercise to enhance the adaptive capacities of the organism. 

  18. Nitrogen and sodium balance and sympathetic-nervous-system activity in obese subjects treated with a low-calorie protein or mixed diet.

    Science.gov (United States)

    DeHaven, J; Sherwin, R; Hendler, R; Felig, P

    1980-02-28

    Seven obese subjects were placed on a 400-kcal protein diet and on an isocaloric mixed diet (50 per cent protein and 50 per cent carbohydrate), three to 5 1/2 weeks for each diet. Despite twofold to fivefold increases in ketone levels in the blood and urine with the protein diet, net nitrogen balance was no different from that with the mixed diet (-2.1 +/- 0.9 vs. -2.6 +/- 0.4 g per day; mean +/- S.E.M.). However, net sodium loss with the protein diet (-382 +/- 117 mmol) was significantly greater than with the mixed diet (-25 +/- 105 mmol; P less than 0.02). Furthermore, maximal orthostatic decreases in systolic blood pressure with the protein diet (-28 +/- 3 mm Hg) were greater than with the mixed diet (-18 +/- 3 mm Hg; P less than 0.02) and were accompanied by symptoms of orthostatic hypotension in all patients. The protein diet (but not the mixed diet) also resulted in a 40 per cent decline in basal plasma levels of norepinephrine (P less than 0.01) and a failure of plasma norepinephrine to rise after two minutes of standing. We conclude that as compared with mixed diets, hypocaloric protein diets offer no advantage with respect to nitrogen metabolism but result in greater sodium depletion, a decrease in sympathetic-nervous-system activity, and the development of orthostatic hypotension.

  19. A new method based on fractal variance function for analysis and quantification of sympathetic and vagal activity in variability of R-R time series in ECG signals

    Energy Technology Data Exchange (ETDEWEB)

    Conte, Elio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari, Bari (Italy); School of Advanced International Studies on Nuclear, Theoretical and Nonlinear Methodologies-Bari (Italy)], E-mail: fisio2@fisiol.uniba.it; Federici, Antonio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari, Bari (Italy); Zbilut, Joseph P. [Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1653W Congress, Chicago, IL 60612 (United States)

    2009-08-15

    It is known that R-R time series calculated from a recorded ECG, are strongly correlated to sympathetic and vagal regulation of the sinus pacemaker activity. In human physiology it is a crucial question to estimate such components with accuracy. Fourier analysis dominates still to day the data analysis efforts of such data ignoring that FFT is valid under some crucial restrictions that results largely violated in R-R time series data as linearity and stationarity. In order to go over such approach, we introduce a new method, called CZF. It is based on variogram analysis. It is aimed from a profound link with Recurrence Quantification Analysis that is a basic tool for investigation of non linear and non stationary time series. Therefore, a relevant feature of the method is that it finally may be applied also in cases of non linear and non stationary time series analysis. In addition, the method enables also to analyze the fractal variance function, the Generalized Fractal Dimension and, finally, the relative probability density function of the data. The CZF gives very satisfactory results. In the present paper it has been applied to direct experimental cases of normal subjects, patients with hypertension before and after therapy and in children under some different conditions of experimentation.

  20. Sympathetic predominance is associated with impaired endothelial progenitor cells and tunneling nanotubes in controlled-hypertensive patients.

    Science.gov (United States)

    de Cavanagh, Elena M V; González, Sergio A; Inserra, Felipe; Forcada, Pedro; Castellaro, Carlos; Chiabaut-Svane, Jorge; Obregón, Sebastián; Casarini, María Jesús; Kempny, Pablo; Kotliar, Carol

    2014-07-15

    Early endothelial progenitor cells (early EPC) and late EPC are involved in endothelial repair and can rescue damaged endothelial cells by transferring organelles through tunneling nanotubes (TNT). In rodents, EPC mobilization from the bone marrow depends on sympathetic nervous system activity. Indirect evidence suggests a relation between autonomic derangements and human EPC mobilization. We aimed at testing whether hypertension-related autonomic imbalances are associated with EPC impairment. Thirty controlled-essential hypertensive patients [systolic blood pressure/diastolic blood pressure = 130(120-137)/85(61-88) mmHg; 81.8% male] and 20 healthy normotensive subjects [114(107-119)/75(64-79) mmHg; 80% male] were studied. Mononuclear cells were cultured on fibronectin- and collagen-coated dishes for early EPC and late EPC, respectively. Low (LF)- and high (HF)-frequency components of short-term heart rate variability were analyzed during a 5-min rest, an expiration/inspiration maneuver, and a Stroop color-word test. Modulations of cardiac sympathetic and parasympathetic activities were evaluated by LF/HF (%) and HF power (ms(2)), respectively. In controlled-hypertensive patients, the numbers of early EPC, early EPC that emitted TNT, late EPC, and late EPC that emitted TNT were 41, 77, 50, and 88% lower than in normotensive subjects (P hypertensive patients, late EPC number was positively associated with cardiac parasympathetic reserve during the expiration/inspiration maneuver (rho = 0.45, P = 0.031) and early EPC with brachial flow-mediated dilation (rho = 0.655; P = 0.049); also, late TNT number was inversely related to cardiac sympathetic response during the stress test (rho = -0.426, P = 0.045). EPC exposure to epinephrine or norepinephrine showed negative dose-response relationships on cell adhesion to fibronectin and collagen; both catecholamines stimulated early EPC growth, but epinephrine inhibited late EPC growth. In controlled-hypertensive patients

  1. The lipid-mobilizing effect of atrial natriuretic peptide is unrelated to sympathetic nervous system activation or obesity in young men.

    Science.gov (United States)

    Galitzky, J; Sengenès, C; Thalamas, C; Marques, M A; Senard, J M; Lafontan, M; Berlan, M

    2001-04-01

    We recently demonstrated that natriuretic peptides and especially the atrial natriuretic peptide (ANP) are powerful lipolytic agents on isolated human fat cells. To search for a possible influence of obesity on ANP responsiveness, we compared the lipolytic effects of human ANP (h-ANP) on isolated subcutaneous abdominal adipose tissue (SCAAT) fat cells from young healthy lean and obese men. The lipid-mobilizing effects of an intravenous infusion of h-ANP was studied, as well as various metabolic and cardiovascular parameters that were compared in the same subjects. h-ANP (50 ng/min/kg) was infused iv for 60 min. Microdialysis probes were inserted in SCAAT to measure modifications of the extracellular glycerol concentrations during h-ANP infusion. Spectral analysis of blood pressure and heart rate oscillations that were recorded using digital photoplethysmography were used to assess changes in autonomic nervous system activity. h-ANP induced a marked and similar increase in glycerol and nonesterified fatty acids, and a weak increase in insulin plasma levels in lean and obese men. Plasma norepinephrine concentrations rose similarly during h-ANP infusion in lean and obese men. The effects of h-ANP infusion on the autonomic nervous system were similar in both groups, with an increase in the spectral energy of the low-frequency band of systolic blood pressure variability and a decrease in the spectral energy of the high-frequency band of heart rate. In SCAAT, h-ANP infusion increased extracellular glycerol concentration and decreased blood flow similarly in both groups. The increase in extracellular glycerol observed during h-ANP infusion was not modified when 0.1 mM propranolol was added to the microdialysis probe perfusate to prevent beta-adrenoceptor activation. These data show that ANP is a potent lipolytic hormone independent of the activation of the sympathetic nervous system, and that obesity did not modify the lipid-mobilizing effect of ANP in young obese

  2. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  3. Cardiac repolarization during hypoglycaemia in type 1 diabetes: impact of basal renin-angiotensin system activity

    DEFF Research Database (Denmark)

    Due-Andersen, Rikke; Høi-Hansen, Thomas; Larroude, Charlotte Ellen;

    2008-01-01

    activity affects cardiac repolarization during hypoglycaemia, thereby potentially carrying prognostic information on risk of the 'dead-in-bed syndrome'. METHODS AND RESULTS: Nine subjects with high RAS activity and nine subjects with low RAS activity were subjected to single-blinded placebo...

  4. Effect of Long-Term Physical Activity Practice after Cardiac Rehabilitation on Some Risk Factors

    Science.gov (United States)

    Freyssin, Celine, Jr.; Blanc, Philippe; Verkindt, Chantal; Maunier, Sebastien; Prieur, Fabrice

    2011-01-01

    The objective of this study was to evaluate the effects of long-term physical activity practice after a cardiac rehabilitation program on weight, physical capacity and arterial compliance. The Dijon Physical Activity Score was used to identify two groups: sedentary and active. Weight, distance at the 6-min walk test and the small artery elasticity…

  5. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, G.L.; Palma, R.K.; Brito, J.O.; Sanches, I.C. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil); Irigoyen, M.C. [Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); De Angelis, K. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil)

    2015-03-27

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation.

  6. [Psychosomatic aspects of cardiac arrhythmias].

    Science.gov (United States)

    Siepmann, Martin; Kirch, Wilhelm

    2010-07-01

    Emotional stress facilitates the occurrence of cardiac arrhythmias including sudden cardiac death. The prevalence of anxiety and depression is increased in cardiac patients as compared to the normal population. The risk of cardiovascular mortality is enhanced in patients suffering from depression. Comorbid anxiety disorders worsen the course of cardiac arrhythmias. Disturbance of neurocardiac regulation with predominance of the sympathetic tone is hypothesized to be causative for this. The emotional reaction to cardiac arrhythmias is differing to a large extent between individuals. Emotional stress may result from coping with treatment of cardiac arrhythmias. Emotional stress and cardiac arrhythmias may influence each other in the sense of a vicious circle. Somatoform cardiac arrhythmias are predominantly of psychogenic origin. Instrumental measures and frequent contacts between physicians and patients may facilitate disease chronification. The present review is dealing with the multifaceted relationships between cardiac arrhythmias and emotional stress. The underlying mechanisms and corresponding treatment modalities are discussed.

  7. Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation

    Institute of Scientific and Technical Information of China (English)

    Yong-nan FU; Han XIAO; Xiao-wei MA; Sheng-yang JIANG; Ming XU; You-yi ZHANG

    2011-01-01

    Aim: To identify the role of metformin in cardiac hypertrophy and investigate the possible mechanism underlying this effect.Methods: Wild type and AMPKα2 knockout (AMPKα2-/-) littermates were subjected to left ventricular pressure overload caused by evaluated using echocardiography and anatomic and histological methods. The antihypertrophic mechanism of metformin was analyzed using Western blotting.Results: Metformin significantly attenuated cardiac hypertrophy induced by pressure overload in wild type mice, but the antihypertrophic actions of metformin were ablated in AMPKx2-/- mice. Furthermore, metformin suppressed the phosphorylation of Akt/protein kinase B (AKT) and mammalian target of rapamycin (mTOR) in response to pressure overload in wild type mice, but not in AMPKα2-/-mice.Conclusion: Long-term administration of metformin may attenuate cardiac hypertrophy induced by pressure overload in nondiabetic mice, and this attenuation is highly dependent on AMPK activation. These findings may provide a potential therapy for patients at risk of developing pathological cardiac hypertrophy.

  8. P2 receptors in the central and peripheral nervous systems modulating sympathetic vasomotor tone.

    Science.gov (United States)

    Ralevic, V

    2000-07-01

    Arterial pressure depends on the level of activity of sympathetic vasoconstrictor outflow to blood vessels. This activity is generated in the central nervous system, and involves inputs from a variety of brain regions projecting to sympathetic preganglionic neurones. Of especial interest are a group of neurones in the rostral ventrolateral medulla (RVLM), as they have been demonstrated to have a fundamental role in reflex regulation of the cardiovascular system, and in generation of tonic drive to sympathetic outflow. Sympathetic outflow to blood vessels is additionally modulated at sympathetic ganglia, and at the peripheral terminals of sympathetic nerves. This review considers the role of P2 purine receptors in this neural pathway. Ionotropic P2X receptors are expressed in the RVLM, in sympathetic ganglia, and at the sympathetic neuromuscular junction, and mediate fast excitatory neurotransmission, indicating a general role for ATP as a regulator of sympathetic vasomotor tone. P2Y receptors couple to G proteins and mediate slower signalling to ATP; they have been reported to inhibit prejunctionally neurotransmission at the peripheral terminals of sympathetic nerves, but little is known about their possible role in the central nervous system and in sympathetic ganglia.

  9. Fetal cardiac activity analysis during twin pregnancy using a multi-channel SQUID system

    Science.gov (United States)

    Costa Monteiro, E.; Schleussner, E.; Kausch, S.; Grimm, B.; Schneider, A.; Hall Barbosa, C.; Haueisen, J.

    2001-05-01

    The use of SQUID magnetometers for non-invasive in utero assessment of cardiac electrical disturbances has already been shown to be a valuable clinical tool. In this way, its applicability also for the complicated case of twin pregnancy, in which the proximity of the cardiac magnetic source of each fetus can hamper the individual analysis of cardiac electrical activity, is of clinical interest. In this paper, we present fetal magnetocardiography performed on a mother pregnant of twins with 26 weeks gestational age, measured inside a magnetically shielded room, by using two identical 31-channel low- Tc SQUID magnetometer systems. Each sensor array has been positioned over one of the fetuses, according to its heart position previously assessed with the aid of ultrasound measurements. The raw data is initially averaged in time and, afterwards, analyzed by means of time plots and isofield maps. The time recordings allow the study of the morphology of each fetus’ cardiac signal and the cardiac time intervals. The resultant equivalent dipole obtained from the isofield maps indicates the position and orientation of each fetus heart. The results agree with the ultrasound analysis performed immediately before the measurements and used to obtain the approximate location of the fetuses’ hearts. Since a distinct analysis of the cardiac electrical activity of each fetus could be achieved, the results indicate the potential of the fetal magnetocardiography in the individual antenatal diagnosis of each one of the fetuses of a twin pregnancy.

  10. An active contour framework based on the Hermite transform for shape segmentation of cardiac MR images

    Science.gov (United States)

    Barba-J, Leiner; Escalante-Ramírez, Boris

    2016-04-01

    Early detection of cardiac affections is fundamental to address a correct treatment that allows preserving the patient's life. Since heart disease is one of the main causes of death in most countries, analysis of cardiac images is of great value for cardiac assessment. Cardiac MR has become essential for heart evaluation. In this work we present a segmentation framework for shape analysis in cardiac magnetic resonance (MR) images. The method consists of an active contour model which is guided by the spectral coefficients obtained from the Hermite transform (HT) of the data. The HT is used as model to code image features of the analyzed images. Region and boundary based energies are coded using the zero and first order coefficients. An additional shape constraint based on an elliptical function is used for controlling the active contour deformations. The proposed framework is applied to the segmentation of the endocardial and epicardial boundaries of the left ventricle using MR images with short axis view. The segmentation is sequential for both regions: the endocardium is segmented followed by the epicardium. The algorithm is evaluated with several MR images at different phases of the cardiac cycle demonstrating the effectiveness of the proposed method. Several metrics are used for performance evaluation.

  11. Activation of the Cardiac Renin-Angiotensin System in High Oxygen-Exposed Newborn Rats: Angiotensin Receptor Blockade Prevents the Developmental Programming of Cardiac Dysfunction.

    Science.gov (United States)

    Bertagnolli, Mariane; Dios, Anne; Béland-Bonenfant, Sarah; Gascon, Gabrielle; Sutherland, Megan; Lukaszewski, Marie-Amélie; Cloutier, Anik; Paradis, Pierre; Schiffrin, Ernesto L; Nuyt, Anne Monique

    2016-04-01

    Newborn rats exposed to high oxygen (O2), mimicking preterm birth-related neonatal stress, develop later in life cardiac hypertrophy, dysfunction, fibrosis, and activation of the renin-angiotensin system. Cardiac renin-angiotensin system activation in O2-exposed adult rats is characterized by an imbalance in angiotensin (Ang) receptors type 1/2 (AT1/2), with prevailing AT1 expression. To study the role of renin-angiotensin system in the developmental programming of cardiac dysfunction, we assessed Ang receptor expression during neonatal high O2 exposure and whether AT1 receptor blockade prevents cardiac alterations in early adulthood. Sprague-Dawley newborn rats were kept with their mother in 80% O2 or room air (control) from days 3 to 10 (P3-P10) of life. Losartan or water was administered by gavage from P8 to P10 (n=9/group). Rats were studied at P3 (before O2 exposure), P5, P10 (end of O2), and P28. Losartan treatment had no impact on growth or kidney development. AT1 and Ang type 2 receptors were upregulated in the left ventricle by high O2 exposure (P5 and P10), which was prevented by Losartan treatment at P10. Losartan prevented the cardiac AT1/2 imbalance at P28. Losartan decreased cardiac hypertrophy and fibrosis and improved left ventricle fraction of shortening in P28 O2-exposed rats, which was associated with decreased oxidation of calcium/calmodulin-dependent protein kinase II, inhibition of the transforming growth factor-β/SMAD3 pathway, and upregulation of cardiac angiotensin-converting enzyme 2. In conclusion, short-term Ang II blockade during neonatal high O2 prevents the development of cardiac alterations later in life in rats. These findings highlight the key role of neonatal renin-angiotensin system activation in the developmental programming of cardiac dysfunction induced by deleterious neonatal conditions.

  12. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury

    Science.gov (United States)

    Di Siena, S; Gimmelli, R; Nori, S L; Barbagallo, F; Campolo, F; Dolci, S; Rossi, P; Venneri, M A; Giannetta, E; Gianfrilli, D; Feigenbaum, L; Lenzi, A; Naro, F; Cianflone, E; Mancuso, T; Torella, D; Isidori, A M; Pellegrini, M

    2016-01-01

    The role of endogenous c-Kit receptor activation on cardiac cell homeostasis and repair remains largely unexplored. Transgenic mice carrying an activating point mutation (TgD814Y) in the kinase domain of the c-Kit gene were generated. c-KitTgD814Y receptor was expressed in the heart during embryonic development and postnatal life, in a similar timing and expression pattern to that of the endogenous gene, but not in the hematopoietic compartment allowing the study of a cardiac-specific phenotype. c-KitTgD814Y mutation produced a constitutive active c-Kit receptor in cardiac tissue and cells from transgenic mice as demonstrated by the increased phosphorylation of ERK1/2 and AKT, which are the main downstream molecular effectors of c-Kit receptor signaling. In adult transgenic hearts, cardiac morphology, size and total c-Kit+ cardiac cell number was not different compared with wt mice. However, when c-KitTgD814Y mice were subjected to transmural necrotic heart damage by cryoinjury (CI), all transgenic survived, compared with half of wt mice. In the sub-acute phase after CI, transgenic and wt mice showed similar heart damage. However, 9 days after CI, transgenic mice exhibited an increased number of c-Kit+CD31+ endothelial progenitor cells surrounding the necrotic area. At later follow-up, a consistent reduction of fibrotic area, increased capillary density and increased cardiomyocyte replenishment rate (as established by BrdU incorporation) were observed in transgenic compared with wt mice. Consistently, CD45−c-Kit+ cardiac stem cells isolated from transgenic c-KitTgD814Y mice showed an enhanced endothelial and cardiomyocyte differentiation potential compared with cells isolated from the wt. Constitutive activation of c-Kit receptor in mice is associated with an increased cardiac myogenic and vasculogenic reparative potential after injury, with a significant improvement of survival. PMID:27468693

  13. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes.

    Science.gov (United States)

    Lyu, Linmao; Wang, Hui; Li, Bin; Qin, Qingyun; Qi, Lei; Nagarkatti, Mitzi; Nagarkatti, Prakash; Janicki, Joseph S; Wang, Xing Li; Cui, Taixing

    2015-12-01

    Chronic activation of the myocardial renin angiotensin system (RAS) elevates the local level of angiotensin II (Ang II) thereby inducing pathological cardiac hypertrophy, which contributes to heart failure. However, the precise underlying mechanisms have not been fully delineated. Herein we report a novel paracrine mechanism between cardiac fibroblasts (CF)s and cardiomyocytes whereby Ang II induces pathological cardiac hypertrophy. In cultured CFs, Ang II treatment enhanced exosome release via the activation of Ang II receptor types 1 (AT1R) and 2 (AT2R), whereas lipopolysaccharide, insulin, endothelin (ET)-1, transforming growth factor beta (TGFβ)1 or hydrogen peroxide did not. The CF-derived exosomes upregulated the expression of renin, angiotensinogen, AT1R, and AT2R, downregulated angiotensin-converting enzyme 2, and enhanced Ang II production in cultured cardiomyocytes. In addition, the CF exosome-induced cardiomyocyte hypertrophy was blocked by both AT1R and AT2R antagonists. Exosome inhibitors, GW4869 and dimethyl amiloride (DMA), inhibited CF-induced cardiomyocyte hypertrophy with little effect on Ang II-induced cardiomyocyte hypertrophy. Mechanistically, CF exosomes upregulated RAS in cardiomyocytes via the activation of mitogen-activated protein kinases (MAPKs) and Akt. Finally, Ang II-induced exosome release from cardiac fibroblasts and pathological cardiac hypertrophy were dramatically inhibited by GW4869 and DMA in mice. These findings demonstrate that Ang II stimulates CFs to release exosomes, which in turn increase Ang II production and its receptor expression in cardiomyocytes, thereby intensifying Ang II-induced pathological cardiac hypertrophy. Accordingly, specific targeting of Ang II-induced exosome release from CFs may serve as a novel therapeutic approach to treat cardiac pathological hypertrophy and heart failure.

  14. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj [Department of Physiology, University of Tübingen, Tübingen (Germany); Schönberger, Tanja [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Noegel, Angelika A. [Center for Biochemistry, Institute of Biochemistry I, University of Cologne, Köln (Germany); Gawaz, Meinrad [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tübingen, Tübingen (Germany)

    2014-02-28

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca{sup 2+} signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7{sup −/−}) and wild-type mice (anxa7{sup +/+}) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7{sup −/−} mice than in anxa7{sup +/+} mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions.

  15. Effects of moxonidine on sympathetic nervous system activity: An update on metabolism, cardio, and other target-organ protection

    Directory of Open Access Journals (Sweden)

    Eleni F Karlafti

    2013-01-01

    Full Text Available Moxonidine is the newest, second-generation, centrally acting antihypertensive agent. It has selective agonist activity at imidazoline I1 receptors and less adverse effects than the other centrally acting drugs. This fact authorizes the frequent use of moxonidine in clinical practice, as monotherapy or in combination with other antihypertensive agents. Also, moxonidine has beneficial effects in obese and metabolic syndrome and in target-organs, such as heart and kidneys.

  16. Effects of moxonidine on sympathetic nervous system activity: An update on metabolism, cardio, and other target-organ protection.

    Science.gov (United States)

    Karlafti, Eleni F; Hatzitolios, Apostolos I; Karlaftis, Anastasios F; Baltatzi, Maria S; Koliakos, Georgios G; Savopoulos, Christos G

    2013-10-01

    Moxonidine is the newest, second-generation, centrally acting antihypertensive agent. It has selective agonist activity at imidazoline I1 receptors and less adverse effects than the other centrally acting drugs. This fact authorizes the frequent use of moxonidine in clinical practice, as monotherapy or in combination with other antihypertensive agents. Also, moxonidine has beneficial effects in obese and metabolic syndrome and in target-organs, such as heart and kidneys.

  17. Factors influencing the cardiac MIBG accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Takatsu, Hisato; Fujiwara, Hisayoshi [Gifu Univ. (Japan). School of Medicine

    1997-02-01

    Following factors possibly influencing the cardiac MIBG accumulation were examined mainly in mice. 1. The specific activity of the MIBG (meta-iodo-benzyl guanidine) on the neuronal and non-neuronal fractions. 2. Motor restriction stress on MIBG accumulation and washout. 3. Loading and restriction of sodium chloride on the accumulation and effect of suppression of renin-angiotensin system. 4. Examinations in Dahl rats. 125I- or 131I-MIBG was intravenously administered to mice at 74 kBq. At 30 min or 4 hr after administration, mice were sacrificed and their left ventricles were dissected out for measurement of radioactivity in a liquid scintillation counter. Salt-sensitive and -resistant Dahl rats were given with 37 MBq of 123I-MIBG and cardiac radioactivity was measured externally for calculation of washout. Factors examined were found highly correlated with the accumulation of MIBG and measurement of its washout was considered useful for evaluating sympathetic activity. (K.H.)

  18. Dysfunctional Hyperpolarization-Activated Cyclic Nucleotide-gated Ion Channels in Cardiac Diseases

    Directory of Open Access Journals (Sweden)

    Xiaoqi Zhao

    Full Text Available Abstract Hyperpolarization-activated cyclic nucleotide-gated (HCN channels are reverse voltage-dependent, and their activation depends on the hyperpolarization of the membrane and may be directly or indirectly regulated by the cyclic adenosine monophosphate (cAMP or other signal-transduction cascades. The distribution, quantity and activation states of HCN channels differ in tissues throughout the body. Evidence exhibits that HCN channels play critical roles in the generation and conduction of the electrical impulse and the physiopathological process of some cardiac diseases. They may constitute promising drug targets in the treatment of these cardiac diseases. Pharmacological treatment targeting HCN channels is of benefit to these cardiac conditions.

  19. UCP3 Regulates Single-Channel Activity of the Cardiac mCa1.

    Science.gov (United States)

    Motloch, Lukas J; Gebing, Tina; Reda, Sara; Schwaiger, Astrid; Wolny, Martin; Hoppe, Uta C

    2016-08-01

    Mitochondrial Ca(2+) uptake (mCa(2+) uptake) is thought to be mediated by the mitochondrial Ca(2+) uniporter (MCU). UCP2 and UCP3 belong to a superfamily of mitochondrial ion transporters. Both proteins are expressed in the inner mitochondrial membrane of the heart. Recently, UCP2 was reported to modulate the function of the cardiac MCU related channel mCa1. However, the possible role of UCP3 in modulating cardiac mCa(2+) uptake via the MCU remains inconclusive. To understand the role of UCP3, we analyzed cardiac mCa1 single-channel activity in mitoplast-attached single-channel recordings from isolated murine cardiac mitoplasts, from adult wild-type controls (WT), and from UCP3 knockout mice (UCP3(-/-)). Single-channel registrations in UCP3(-/-) confirmed a murine voltage-gated Ca(2+) channel, i.e., mCa1, which was inhibited by Ru360. Compared to WT, mCa1 in UCP3(-/-) revealed similar single-channel characteristics. However, in UCP3(-/-) the channel exhibited decreased single-channel activity, which was insensitive to adenosine triphosphate (ATP) inhibition. Our results suggest that beyond UCP2, UCP3 also exhibits regulatory effects on cardiac mCa1/MCU function. Furthermore, we speculate that UCP3 might modulate previously described inhibitory effects of ATP on mCa1/MCU activity as well.

  20. Myocardial structural, contractile and electrophysiological changes in the guinea-pig heart failure model induced by chronic sympathetic activation

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Osadchiy, Oleg; Olesen, Søren-Peter

    2011-01-01

    potential, effective refractory period and QT interval, an upward shift of the electrical restitution curve determined over a wide range of diastolic intervals, and reduced maximal restitution slope. The physiological right ventricular-to-LV difference in action potential duration was eliminated in ISO...... whether sustained adrenergic activation may produce a clinically relevant heart failure phenotype in the guinea-pig, an animal species whose ventricular action potential shape and restitution properties resemble those determined in humans. Isoprenaline (ISO), a ß-adrenoceptor agonist, was infused...... pressure-volume and stress-strain relationships assessed in isolated, perfused heart preparations), reduced contractile reserve in the presence of acute ß-adrenoceptor stimulation, and pulmonary oedema (increased lung weights). These changes were associated with prolongation of LV epicardial action...

  1. RyR2 modulates a Ca2+-activated K+ current in mouse cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Yong-Hui Mu

    Full Text Available In cardiomyocytes, Ca2+ entry through voltage-dependent Ca2+ channels (VDCCs binds to and activates RyR2 channels, resulting in subsequent Ca2+ release from the sarcoplasmic reticulum (SR and cardiac contraction. Previous research has documented the molecular coupling of small-conductance Ca2+-activated K+ channels (SK channels to VDCCs in mouse cardiac muscle. Little is known regarding the role of RyRs-sensitive Ca2+ release in the SK channels in cardiac muscle. In this study, using whole-cell patch clamp techniques, we observed that a Ca2+-activated K+ current (IK,Ca recorded from isolated adult C57B/L mouse atrial myocytes was significantly decreased by ryanodine, an inhibitor of ryanodine receptor type 2 (RyR2, or by the co-application of ryanodine and thapsigargin, an inhibitor of the sarcoplasmic reticulum calcium ATPase (SERCA (p<0.05, p<0.01, respectively. The activation of RyR2 by caffeine increased the IK,Ca in the cardiac cells (p<0.05, p<0.01, respectively. We further analyzed the effect of RyR2 knockdown on IK,Ca and Ca2+ in isolated adult mouse cardiomyocytes using a whole-cell patch clamp technique and confocal imaging. RyR2 knockdown in mouse atrial cells transduced with lentivirus-mediated small hairpin interference RNA (shRNA exhibited a significant decrease in IK,Ca (p<0.05 and [Ca2+]i fluorescence intensity (p<0.01. An immunoprecipitated complex of SK2 and RyR2 was identified in native cardiac tissue by co-immunoprecipitation assays. Our findings indicate that RyR2-mediated Ca2+ release is responsible for the activation and modulation of SK channels in cardiac myocytes.

  2. HRVanalysis: A Free Software for Analyzing Cardiac Autonomic Activity.

    Science.gov (United States)

    Pichot, Vincent; Roche, Frédéric; Celle, Sébastien; Barthélémy, Jean-Claude; Chouchou, Florian

    2016-01-01

    Since the pioneering studies of the 1960s, heart rate variability (HRV) has become an increasingly used non-invasive tool for examining cardiac autonomic functions and dysfunctions in various populations and conditions. Many calculation methods have been developed to address these issues, each with their strengths and weaknesses. Although, its interpretation may remain difficult, this technique provides, from a non-invasive approach, reliable physiological information that was previously inaccessible, in many fields including death and health prediction, training and overtraining, cardiac and respiratory rehabilitation, sleep-disordered breathing, large cohort follow-ups, children's autonomic status, anesthesia, or neurophysiological studies. In this context, we developed HRVanalysis, a software to analyse HRV, used and improved for over 20 years and, thus, designed to meet laboratory requirements. The main strength of HRVanalysis is its wide application scope. In addition to standard analysis over short and long periods of RR intervals, the software allows time-frequency analysis using wavelet transform as well as analysis of autonomic nervous system status on surrounding scored events and on preselected labeled areas. Moreover, the interface is designed for easy study of large cohorts, including batch mode signal processing to avoid running repetitive operations. Results are displayed as figures or saved in TXT files directly employable in statistical softwares. Recordings can arise from RR or EKG files of different types such as cardiofrequencemeters, holters EKG, polygraphs, and data acquisition systems. HRVanalysis can be downloaded freely from the Web page at: https://anslabtools.univ-st-etienne.fr HRVanalysis is meticulously maintained and developed for in-house laboratory use. In this article, after a brief description of the context, we present an overall view of HRV analysis and we describe the methodological approach of the different techniques provided

  3. Obesity-Related Metabolic Syndrome: Mechanisms of Sympathetic Overactivity

    Directory of Open Access Journals (Sweden)

    Maria Paola Canale

    2013-01-01

    Full Text Available The prevalence of the metabolic syndrome has increased worldwide over the past few years. Sympathetic nervous system overactivity is a key mechanism leading to hypertension in patients with the metabolic syndrome. Sympathetic activation can be triggered by reflex mechanisms as arterial baroreceptor impairment, by metabolic factors as insulin resistance, and by dysregulated adipokine production and secretion from visceral fat with a mainly permissive role of leptin and antagonist role of adiponectin. Chronic sympathetic nervous system overactivity contributes to a further decline of insulin sensitivity and creates a vicious circle that may contribute to the development of hypertension and of the metabolic syndrome and favor cardiovascular and kidney disease. Selective renal denervation is an emerging area of interest in the clinical management of obesity-related hypertension. This review focuses on current understanding of some mechanisms through which sympathetic overactivity may be interlaced to the metabolic syndrome, with particular regard to the role of insulin resistance and of some adipokines.

  4. Role of the Sympathetic Nervous System in Stress-Mediated Cardiovascular Disease.

    Science.gov (United States)

    Hering, Dagmara; Lachowska, Kamila; Schlaich, Markus

    2015-10-01

    A high incidence of acute cardiovascular events and sudden cardiac death following unexpected acute emotional stress or a natural catastrophic disaster has been well-documented over the past decades. Chronic psychosocial factors have been shown to be directly linked to the development of hypertension, cardiovascular disease and stroke. Activation of various neurogenic pathways is an important mediator of acute and chronic stress-induced hypertension and heart disease. Heightened sympathetic activation has been shown to be a critical contributor linking psychogenic effects on cardiovascular regulation to serious and often fatal CV outcomes. Accordingly, several therapeutic approaches that attenuate autonomic imbalance via modulation of increased sympathetic outflow by either non-pharmacological or interventional means have been shown to alleviate clinical symptoms. Likewise stress reduction per se achieved with transcendental medicine has been linked to improved patient outcomes. Therapies that oppose adrenergic activity and/or have the potential to attenuate negative emotions are likely to reduce cardiovascular risk and its adverse consequences attributable to chronic mental stress.

  5. Neural regulation of gastrointestinal inflammation: role of the sympathetic nervous system.

    Science.gov (United States)

    Cervi, Andrea L; Lukewich, Mark K; Lomax, Alan E

    2014-05-01

    The sympathetic innervation of the gastrointestinal (GI) tract regulates motility, secretion and blood flow by inhibiting the activity of the enteric nervous system (ENS) and direct vasoconstrictor innervation of the gut microvasculature. In addition to these well-established roles, there is evidence that the sympathetic nervous system (SNS) can modulate GI inflammation. Postganglionic sympathetic neurons innervate lymphoid tissues and immune cells within the GI tract. Furthermore, innate and adaptive immune cells express receptors for sympathetic neurotransmitters. Activation of these receptors can affect a variety of important immune cell functions, including cytokine release and differentiation of helper T lymphocyte subsets. This review will consider the neuroanatomical evidence of GI immune cell innervation by sympathetic axons, the effects of blocking or enhancing SNS activity on GI inflammation, and the converse modulation of sympathetic neuroanatomy and function by GI inflammation.

  6. Sympathetic adaptations to one-legged training

    Science.gov (United States)

    Ray, C. A.

    1999-01-01

    The purpose of the present study was to determine the effect of leg exercise training on sympathetic nerve responses at rest and during dynamic exercise. Six men were trained by using high-intensity interval and prolonged continuous one-legged cycling 4 day/wk, 40 min/day, for 6 wk. Heart rate, mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA; peroneal nerve) were measured during 3 min of upright dynamic one-legged knee extensions at 40 W before and after training. After training, peak oxygen uptake in the trained leg increased 19 +/- 2% (P leg exercise and indicates that attenuation of MSNA to exercise reported with forearm training also occurs with leg training.

  7. Recent advances in sympathetic ophthalmia.

    Science.gov (United States)

    Marak, G E

    1979-01-01

    Recent advances in understanding the pathogenesis of sympathetic ophthalmia are helping to remove the pigmented cloud which has obstructed the view of researchers on this disease for many years. Clinical features, diagnostic testing, histopathologic variations and principles of treatment are evaluated in the context of our increasing understanding of the pathogenesis of this disease. The relationship of sympathetic ophthalmia to Harada's disease and phacoantigenic uveitis are reviewed.

  8. Calcium binding to cardiac myocytes protected from proteolytic enzyme activity.

    Science.gov (United States)

    Bailey, L E; Fawzi, A B

    1985-04-17

    Excitation-contraction coupling in cardiac muscle is dependent on extracellular calcium and calcium bound to the surface of the myocardial cell. In this study, we examined the physical characteristics of calcium binding to adult guinea pig ventricular myocytes disaggregated mechanically in oxygenated tissue culture medium containing a proteinase inhibitor (aprotinin), and separated from cellular debris by Cytodex beads. Cells prepared in this manner excluded Trypan blue and showed no evidence of spontaneous contraction or contracture. Scatchard plots of calcium binding determined by continuous flow equilibrium dialysis revealed a high-affinity, low-capacity pool, Ka = 65 X 10(3) M-1 and Bt = 1.3 nmol X mg-1 and a low-affinity, high-capacity pool, Ka = 141 M-1 and Bt = 138 nmol X mg-1. The low-affinity pool was not detectable after lanthanum, trypsin or collagenase treatment or in cells prepared without aprotinin in the isolation medium. Both neuraminidase and phospholipase C reduced Bt of the low-affinity pool by one half, but only neuraminidase affected the affinity constant of this pool. Ka was increased to 516.7 M-1, similar to the apparent affinity constant for calcium binding estimated from dP/dtmax measured at several extracellular calcium concentrations (470 M-1). The results suggest that calcium bound to sarcolemmal phospholipids represents the superficial calcium involved in excitation-contraction coupling in the heart.

  9. A Case Report of Renal Sympathetic Denervation for the Treatment of Polymorphic Ventricular Premature Complexes

    Science.gov (United States)

    Kiuchi, Márcio Galindo; Vitorio, Frederico Puppim; da Silva, Gustavo Ramalho; Paz, Luis Marcelo Rodrigues; Souto, Gladyston Luiz Lima

    2015-01-01

    Abstract Premature ventricular complexes are very common, appearing most frequently in patients with hypertension, obesity, sleep apnea, and structural heart disease. Sympathetic hyperactivity plays a critical role in the development, maintenance, and aggravation of ventricular arrhythmias. Recently, Armaganijan et al reported the relevance of sympathetic activation in patients with ventricular arrhythmias and suggested a potential role for catheter-based renal sympathetic denervation in reducing the arrhythmic burden. In this report, we describe a 32-year-old hypertensive male patient presenting with a high incidence of polymorphic premature ventricular complexes on a 24 hour Holter monitor. Beginning 1 year prior, the patient experienced episodes of presyncope, syncope, and tachycardia palpitations. The patient was taking losartan 100 mg/day, which kept his blood pressure (BP) under control, and sotalol 160 mg twice daily. Bisoprolol 10 mg/day was used previously but was not successful for controlling the episodes. The 24 hour Holter performed after the onset of sotalol 160 mg twice daily showed a heart rate ranging between 48 (minimum)–78 (average)–119 (maximum) bpm; 14,286 polymorphic premature ventricular complexes; 3 episodes of nonsustained ventricular tachycardia, the largest composed of 4 beats at a rate of 197 bpm; and 14 isolated atrial ectopic beats. Cardiac magnetic resonance imaging with gadolinium perfusion performed at rest and under pharmacological stress with dipyridamole showed increased left atrial internal volume, preserved systolic global biventricular function, and an absence of infarcted or ischemic areas. The patient underwent bilateral renal sympathetic denervation. The only drug used postprocedure was losartan 25 mg/day. Three months after the patient underwent renal sympathetic denervation, the mean BP value dropped to 132/86 mmHg, the mean systolic/diastolic 24 hour ambulatory BP measurement was reduced to 128/83

  10. Activation of mitochondrial STAT-3 and reduced mitochondria damage during hypothermia treatment for post-cardiac arrest myocardial dysfunction.

    Science.gov (United States)

    Huang, Chien-Hua; Tsai, Min-Shan; Chiang, Chih-Yen; Su, Yu-Jen; Wang, Tzung-Dau; Chang, Wei-Tien; Chen, Huei-Wen; Chen, Wen-Jone

    2015-11-01

    While therapeutic hypothermia improves the outcomes of individuals in cardiac arrest, the hemodynamic responses and mechanisms which underlie hypothermia-induced cardioprotection are not fully understood. Therefore, we investigated the mechanism by which induced hypothermia preserves cardiac function and protects against mitochondrial damage following cardiac arrest. Cardiac arrest was induced in adult male Wistar rats by asphyxiation for 8.5 min. Following resuscitation, the animals were randomly assigned to a hypothermia (32 °C) or normothermia (37 °C) group. Monitoring results showed that cardiac output at the fourth hour after resuscitation was significantly better in rats treated with hypothermia when compared to rats treated with normothermia (P mitochondrial permeability transition pores occurred less frequently in the hypothermic group. While complex I/III activity in the electron transport reaction was damaged after cardiac arrest and resuscitation, the degree of injury was ameliorated by hypothermia treatment (P mitochondrial integrity and electron transport activity.

  11. Effects of renal sympathetic nerve radiofrequency ablation on norepinephrine spillover rate and sympathetic nerve activity in dogs with hypertension%肾交感神经射频消融术对高血压犬去甲肾上腺素溢出率及交感神经活性的影响

    Institute of Scientific and Technical Information of China (English)

    余航; 杨成明; 李慧杰; 曾春雨; 方玉强; 何多芬; 张小群; 温春兰

    2012-01-01

    目的 评价肾交感神经射频消融术(RSD)治疗腹主动脉缩窄型高血压犬的有效性和作用机制.方法 成年健康杂种犬20只,采用腹主动脉缩窄法建立高血压模型.模型建立后,随机分为治疗组(n=10)和对照组(n=10).治疗组犬于建模后1个月行双侧肾交感神经射频消融术.分别于建立模型前和建立模型后1、2、3个月,测定犬前上臂血压、交感神经活性及去甲肾上腺素溢出率并观察其变化趋势.结果 建模后1个月,对照组前上臂收缩压(SBP)、舒张压(DBP)和平均动脉压(MAP)与建模前比较均明显升高(P<0.05),肾交感神经活性冲动明显增强,去甲肾上腺素溢出率水平明显增高(P<0.05).治疗组RSD手术即刻肾交感神经活性明显下降,至消融后2个月略有增高;去甲肾上腺素溢出率水平在建模后1个月显著增高(P<0.05),消融后显著降低并一直持续至实验结束(P<0.05).与对照组比较,治疗组消融后1个月、2个月去甲肾上腺素溢出率水平显著降低(P<0.05).结论 RSD对于高血压犬去甲肾上腺素溢出率及交感神经活性均有明显抑制作用.%Objective To evaluate the validity and explore the mechanism of renal sympathetic denervation (RSD) in the treatment of dogs with hypertension reproduced by constriction of abdominal aorta. Methods The hypertension model was reproduced by constriction of abdominal aorta in 20 adult healthy dogs. These dogs were then randomly divided into the treatment group and control group (10 each). Renal sympathetic nerve radiofrequency ablation was done in treatment group 1 month after modeling. The foreleg blood pressure, sympathetic activity and norepinephrine overflow rate of dogs in two groups were detected before modeling, and 1, 2 and 3 months after modeling, and the trend of the change was also observed. Results One month after modeling, the systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial blood

  12. (123)I-Meta-iodobenzylguanidine Sympathetic Imaging: Standardization and Application to Neurological Diseases.

    Science.gov (United States)

    Nakajima, Kenichi; Yamada, Masahito

    2016-09-01

    (123)I-meta-iodobenzylguanidine (MIBG) has become widely applied in Japan since its introduction to clinical cardiology and neurology practice in the 1990s. Neurological studies found decreased cardiac uptake of (123)I-MIBG in Lewy-body diseases including Parkinson's disease and dementia with Lewy bodies. Thus, cardiac MIBG uptake is now considered a biomarker of Lewy body diseases. Although scintigraphic images of (123)I-MIBG can be visually interpreted, an average count ratio of heart-to-mediastinum (H/M) has commonly served as a semi-quantitative marker of sympathetic activity. Since H/M ratios significantly vary according to acquisition and processing conditions, quality control should be appropriate, and quantitation should be standardized. The threshold H/M ratio for differentiating Lewy-body disease is 2.0-2.1, and was based on standardized H/M ratios to comparable values of medium-energy collimators. Parkinson's disease can be separated from various types of parkinsonian syndromes using cardiac (123)I-MIBG, whereas activity is decreased on images of Lewy-body diseases using both (123)I-ioflupane for the striatum and (123)I-MIBG. Despite being a simple index, the H/M ratio of (123)I-MIBG uptake is reproducible and can serve as an effective tool to support a diagnosis of Lewy-body diseases in neurological practice.

  13. Expression and assembly of active human cardiac troponin in Escherichia coli.

    Science.gov (United States)

    Lassalle, Michael W

    2013-02-01

    Cardiomyopathy-related mutations in human cardiac troponin subunits, including troponin C (hcTnC), troponin I (hcTnI), and troponin T (hcTnT), are well-documented. Recently, it has been recognised that human cardiac troponin (hcTn) is a sophisticated allosteric system. Therefore, the effect of drugs on this protein complex should be studied with assembled hcTn rather than a short fragment of a subunit or the subunit itself. Here, we describe the expression and assembly of active hcTn in Escherichia coli, a novel method that is rapid and simple, and produces large amounts of functional hcTn.

  14. Small-conductance Ca2+ -activated K+ channels and cardiac arrhythmias.

    Science.gov (United States)

    Zhang, Xiao-Dong; Lieu, Deborah K; Chiamvimonvat, Nipavan

    2015-08-01

    Small-conductance Ca2+ -activated K+ (SK, KCa2) channels are unique in that they are gated solely by changes in intracellular Ca2+ and, hence, function to integrate intracellular Ca2+ and membrane potentials on a beat-to-beat basis. Recent studies have provided evidence for the existence and functional significance of SK channels in the heart. Indeed, our knowledge of cardiac SK channels has been greatly expanded over the past decade. Interests in cardiac SK channels are further driven by recent studies suggesting the critical roles of SK channels in human atrial fibrillation, the SK channel as a possible novel therapeutic target in atrial arrhythmias, and upregulation of SK channels in heart failure in animal models and in human heart failure. However, there remain critical gaps in our knowledge. Specifically, blockade of SK channels in cardiac arrhythmias has been shown to be both antiarrhythmic and proarrhythmic. This contemporary review provides an overview of the literature on the role of cardiac SK channels in cardiac arrhythmias and serves as a discussion platform for the current clinical perspectives. At the translational level, development of SK channel blockers as a new therapeutic strategy in the treatment of atrial fibrillation and the possible proarrhythmic effects merit further considerations and investigations.

  15. Pharmacological inhibition of FAAH activity in rodents: A promising pharmacological approach for psychological-cardiac comorbidity?

    Science.gov (United States)

    Carnevali, Luca; Rivara, Silvia; Nalivaiko, Eugene; Thayer, Julian F; Vacondio, Federica; Mor, Marco; Sgoifo, Andrea

    2017-03-01

    Numerous studies have documented a link between psychological disorders and cardiac disease. Yet, no systematic attempts have been made to develop pharmacological approaches for mood and anxiety disorders that could also be beneficial for cardiac health. The endocannabinoid system has been implicated in the regulation of stress, emotional behavior and cardiovascular function. General preclinical findings indicate that the endocannabinoid anandamide modulates physiological and behavioral stress responses and may also protect the heart from arrhythmias. Moreover, recent experimental studies suggest that pharmacological enhancement of anandamide signaling via inhibition of its degrading enzyme fatty acid amide hydrolase (FAAH) exerts anxiolytic- and antidepressive-like effects and improves cardiac autonomic function and the electrical stability of the myocardium in rodent models that reproduce aspects of human psychological/cardiac comorbidity. Here we summarize and discuss such experimental findings, which might guide future preclinical studies towards a systematic evaluation of the therapeutic potential of pharmacological approaches that target FAAH activity for the treatment of the comorbidity between psychological disorders and cardiac disease.

  16. Murine cardiac images obtained with focusing pinhole SPECT are barely influenced by extra-cardiac activity

    Science.gov (United States)

    Branderhorst, Woutjan; van der Have, Frans; Vastenhouw, Brendan; Viergever, Max A.; Beekman, Freek J.

    2012-02-01

    Ultra-high-resolution SPECT images can be obtained with focused multipinhole collimators. Here we investigate the influence of unwanted high tracer uptake outside the scan volume on reconstructed tracer distributions inside the scan volume, for 99mTc-tetrofosmin myocardial perfusion scanning in mice. Simulated projections of a digital mouse phantom (MOBY) in a focusing multipinhole SPECT system (U-SPECT-II, MILabs, The Netherlands) were generated. With this system differently sized user-defined scan volumes can be selected, by translating the animal in 3D through the focusing collimators. Scan volume selections were set to (i) a minimal volume containing just the heart, acquired without translating the animal during scanning, (ii) a slightly larger scan volume as is typically applied for the heart, requiring only small XYZ translations during scanning, (iii) same as (ii), but extended further transaxially, and (iv) same as (ii), but extended transaxially to cover the full thorax width (gold standard). Despite an overall negative bias that is significant for the minimal scan volume, all selected volumes resulted in visually similar images. Quantitative differences in the reconstructed myocardium between gold standard and the results from the smaller scan volume selections were small; the 17 standardized myocardial segments of a bull's eye plot, normalized to the myocardial mean of the gold standard, deviated on average 6.0%, 2.5% and 1.9% for respectively the minimal, the typical and the extended scan volume, while maximum absolute deviations were respectively 18.6%, 9.0% and 5.2%. Averaged over ten low-count noisy simulations, the mean absolute deviations were respectively 7.9%, 3.2% and 1.9%. In low-count noisy simulations, the mean and maximum absolute deviations for the minimal scan volume could be reduced to respectively 4.2% and 12.5% by performing a short survey scan of the exterior activity and focusing the remaining scan time at the organ of interest. We

  17. Arachidonic acid incorporation and turnover is decreased in sympathetically denervated rat heart.

    Science.gov (United States)

    Patrick, Casey B; McHowat, Jane; Rosenberger, Thad A; Rapoport, Stanley I; Murphy, Eric J

    2005-06-01

    Heart sympathetic denervation can accompany Parkinson's disease, but the effect of this denervation on cardiac lipid-mediated signaling is unknown. To address this issue, rats were sympathetically denervated with 6-hydroxydopamine (6-OHDA, 50 mg/kg ip) and infused with 170 muCi/kg of either [1-(14)C]palmitic acid ([1-(14)C]16:0) or [1-(14)C]arachidonic acid ([1-(14)C]20:4 n-6), and kinetic parameters were assessed using a steady-state radiotracer model. Heart norepinephrine and epinephrine levels were decreased 82 and 85%, respectively, in denervated rats, and this correlated with a 34% reduction in weight gain in treated rats. Fatty acid tracer uptake was not significantly different between groups for either tracer, although the dilution coefficient lambda was increased in [1-(14)C]20:4 n-6-infused rats, which indicates that less 20:4 n-6 was recycled in denervated rats. In [1-(14)C]16:0-infused rats, incorporation rate and turnover values of 16:0 in stable lipid compartments were unchanged, which is indicative of preservation of beta-oxidation. In [1-(14)C]20:4 n-6-infused rats, there were dramatic reductions in incorporation rate (60-84%) and turnover value (56-85%) in denervated rats that were dependent upon the lipid compartment. In addition, phospholipase A(2) activity was reduced 40% in treated rats, which is consistent with the reduction observed in 20:4 n-6 turnover. These results demonstrate marked reductions in 20:4 n-6 incorporation rate and turnover in sympathetic denervated rats and thereby suggest an effect on lipid-mediated signal transduction mediated by a reduction in phospholipase A(2) activity.

  18. Objectively measured daily physical activity related to cardiac size in young children

    DEFF Research Database (Denmark)

    Dencker, M; Thorsson, O; Karlsson, M K;

    2009-01-01

    ), aged 8-11 years, from a population-based cohort. Left ventricular end-diastolic diameter (LVDD) and left atrial end-systolic diameter (LA) were measured with echocardiography and indexed for body surface area (BSA). Physical activity was assessed by accelerometry, and the duration of vigorous physical...... activity per day (VPA) was calculated. Acceptable accelerometer and echocardiography measurements were obtained in 228 children (boys=127, girls=101). Univariate correlations between VPA and LVDD were indexed for BSA in boys (r=0.27, P... that independent factors for LVDD, indexed for BSA for boys, were age and VPA. LA indexed for BSA was not related to physical activity variables in either gender. No clear relationship exists between cardiac size and daily physical activity in children aged 8-11 years. This suggests that significant cardiac...

  19. Activation of GATA4 gene expression at the early stage of cardiac specification

    Directory of Open Access Journals (Sweden)

    Ayse eYilbas

    2014-03-01

    Full Text Available Currently, there are no effective treatments to directly repair damaged heart tissue after cardiac injury since existing therapies focus on rescuing or preserving reversibly damaged tissue. Cell-based therapies using cardiomyocytes generated from stem cells present a promising therapeutic approach to directly replace damaged myocardium with new healthy tissue. However, the molecular mechanisms underlying the commitment of stem cells into cardiomyocytes are not fully understood and will be critical to guide this new technology into the clinic. Since GATA4 is a critical regulator of cardiac differentiation, we examined the molecular basis underlying the early activation of GATA4 gene expression during cardiac differentiation of pluripotent stem cells. Our studies demonstrate the direct involvement of histone acetylation and transcriptional coactivator p300 in the regulation of GATA4 gene expression. More importantly, we show that histone acetyltransferase (HAT activity is important for GATA4 gene expression with the use of curcumin, a HAT inhibitor. In addition, the widely used histone deacetylase inhibitor valproic acid enhances both histone acetylation and cardiac specification.

  20. Activation of GATA4 gene expression at the early stage of cardiac specification

    Science.gov (United States)

    Yilbas, Ayse; Hamilton, Alison; Wang, Yingjian; Mach, Hymn; Lacroix, Natascha; Davis, Darryl; Chen, Jihong; LI, Qiao

    2014-03-01

    Currently, there are no effective treatments to directly repair damaged heart tissue after cardiac injury since existing therapies focus on rescuing or preserving reversibly damaged tissue. Cell-based therapies using cardiomyocytes generated from stem cells present a promising therapeutic approach to directly replace damaged myocardium with new healthy tissue. However, the molecular mechanisms underlying the commitment of stem cells into cardiomyocytes are not fully understood and will be critical to guide this new technology into the clinic. Since GATA4 is a critical regulator of cardiac differentiation, we examined the molecular basis underlying the early activation of GATA4 gene expression during cardiac differentiation of pluripotent stem cells. Our studies demonstrate the direct involvement of histone acetylation and transcriptional coactivator p300 in the regulation of GATA4 gene expression. More importantly, we show that histone acetyltransferase (HAT) activity is important for GATA4 gene expression with the use of curcumin, a HAT inhibitor. In addition, the widely used histone deacetylase inhibitor valproic acid enhances both histone acetylation and cardiac specification.

  1. Echocardiography integrated ACLS protocol versus conventional cardiopulmonary resuscitation in patients with pulseless electrical activity cardiac arrest

    Institute of Scientific and Technical Information of China (English)

    Mojtaba Chardoli; Farhad Heidari; Helaleh Rabiee; Mahdi Sharif-Alhoseini; Hamid Shokoohi; Vafa Rahimi-Movaghar

    2012-01-01

    Objective: To examine the utility of bedside echocardiography in detecting the reversible causes of pulseless electrical activity (PEA) cardiac arrest and predicting the resuscitation outcomes.Methods: In this prospective interventional study,patients presenting with PEA cardiac arrest were randomized into two groups.In Group A,ultrasound trained emergency physicians performed echocardiography evaluating cardiac activity,right ventricle dilation,left ventricle function,pericardial effusion/tamponade and ⅣC size along with the advanced cardiac life support (ACLS) protocol.Patients in Group B solely underwent ACLS protocol without applying echocardiography.The presence or absence of mechanical ventricular activity (MVA) and evidences of PEA reversible causes were recorded.The return of spontaneous circulation (ROSC) and death were evaluated in both groups.Results: One hundred patients with the mean age of (58±6.1) years were enrolled in this study.Fifty patients (Group A) had echocardiography detected in parallel with cardiopulmonary resuscitation (CPR).Among them,7 patients (14%) had pericardial effusion,11 (22%) had hypovolemia,and 39 (78%) were revealed the presence of MVA.In the pseudo PEA subgroup (presence of MVA),43% had ROSC (positive predictive value) and in the true PEA subgroup with cardiac standstill (absence of MVA),there was no recorded ROSC (negative predictive value).Among patients in Group B,no reversible etiology was detected.There was no significant difference in resuscitation results between Groups A and B observed (P=0.52).Conclusion: Bedside echocardiography can identify some reversible causes of PEA.However,there are no significant changes in survival outcome between the echo group and those with traditional CPR.

  2. Interaction of Xylamine with peripheral sympathetic neurons

    Energy Technology Data Exchange (ETDEWEB)

    Ransom, R.W.; Waggaman, L.A.; Cho, A.K.

    1985-09-30

    Xylamine (XYL) administered to intact rats caused a 70-80% reduction in norepinephrine (NE) uptake by the vas deferens but had little or no effect on NE content in that tissue. The vas deferens accumulates /sup 3/H-XYL in vitro by a desmethylimipramine (DMI)-sensitive mechanism. Vasa deferentia from 6-hydroxydopamine (60HDA) pretreated animals exhibited a 80% reduction in both NE content and XYL uptake activity. These results indicate that XYL is taken up by sympathetic nerve terminals and can reduce NE uptake activity without depleting terminals of neurotransmitter. 9 references, 4 tables.

  3. Individual differences in behavioral activation and cardiac vagal control influence affective startle modification.

    Science.gov (United States)

    Yang, Xiao; Friedman, Bruce H

    2017-04-01

    The startle response (SR) has a close relationship with stress responses. Startle modification (SRM) has been widely used to study stress disorders (e.g., posttraumatic stress disorder). The framework of the behavioral inhibition and activation systems (BIS/BAS) has been thought to correspond with withdrawal and approach motivational processes underlying affective SRM and can influence stress reactivity. Vagally-mediated cardiac activity as indexed by heart rate variability (HRV) has been associated with SRM and regulatory processes during stress. In the present study, the influence of individual differences in the BIS/BAS and resting HRV on affective SRM were examined. Eighty-six subjects viewed affective pictures while acoustic SR stimuli were delivered. Individual differences in motivation were measured by the BIS/BAS scales. The magnitude of SR was assessed as electromyographic activity of the SR eyeblink during pictures of different valences. Resting HRV was derived from electrocardiography. In contrast to previous studies, the present results showed that startle inhibition and potentiation were related to BAS and HRV, but not to BIS. There was also an interaction of BAS and HRV, indicating that the relationship between HRV and SRM strengthened as BAS scores decreased. The present findings suggest that BAS may relate to both withdrawal and approach, and trait stress reactivity is influenced by BAS and cardiac vagal activity. In addition, BAS moderates the relationship between cardiac vagal activity and SRM. These findings have both theoretical and practical implications for the study of SRM, stress disorders, and health.

  4. Acute cold exposure-induced down-regulation of CIDEA, cell death-inducing DNA fragmentation factor-alpha-like effector A, in rat interscapular brown adipose tissue by sympathetically activated beta3-adrenoreceptors.

    Science.gov (United States)

    Shimizu, Takahiro; Yokotani, Kunihiko

    2009-09-18

    The thermogenic activity of brown adipose tissue (BAT) largely depends on the mitochondrial uncoupling protein 1 (UCP1), which is up-regulated by environmental alterations such as cold. Recently, CIDEA (cell death-inducing DNA fragmentation factor-alpha-like effector A) has also been shown to be expressed at high levels in the mitochondria of BAT. Here we examined the effect of cold on the mRNA and protein levels of CIDEA in interscapular BAT of conscious rats with regard to the sympathetic nervous system. Cold exposure (4 degrees C for 3h) elevated the plasma norepinephrine level and increased norepinephrine turnover in BAT. Cold exposure resulted in down-regulation of the mRNA and protein levels of CIDEA in BAT, accompanied by up-regulation of mRNA and protein levels of UCP1. The cold exposure-induced changes of CIDEA and UCP1 were attenuated by intraperitoneal pretreatment with propranolol (a non-selective beta-adrenoreceptor antagonist) (2mg/animal) or SR59230A (a selective beta(3)-adrenoreceptor antagonist) (2mg/animal), respectively. These results suggest that acute cold exposure resulted in down-regulation of CIDEA in interscapular BAT by sympathetically activated beta(3)-adrenoreceptor-mediated mechanisms in rats.

  5. A coarse-grained model to study calcium activation of the cardiac thin filament

    Science.gov (United States)

    Zhang, Jing; Schwartz, Steven

    2015-03-01

    Familial hypertrophic cardiomyopathy (FHC) is one of the most common heart disease caused by genetic mutations. Cardiac muscle contraction and relaxation involve regulation of crossbridge binding to the cardiac thin filament, which regulates actomyosin interactions through calcium-dependent alterations in the dynamics of cardiac troponin (cTn) and tropomyosin (Tm). An atomistic model of cTn complex interacting with Tm has been studied by our group. A more realistic model requires the inclusion of the dynamics of actin filament, which is almost 6 times larger than cTn and Tm in terms of atom numbers, and extensive sampling of the model becomes very resource-demanding. By using physics-based protein united-residue force field, we introduce a coarse-grained model to study the calcium activation of the thin filament resulting from cTn's allosteric regulation of Tm dynamics on actin. The time scale is much longer than that of all-atom molecular dynamics simulation because of the reduction of the degrees of freedom. The coarse-grained model is a good template for studying cardiac thin filament mutations that cause FHC, and reduces the cost of computational resources.

  6. Gender differences in sympathetic nervous system regulation.

    Science.gov (United States)

    Hinojosa-Laborde, C; Chapa, I; Lange, D; Haywood, J R

    1999-02-01

    1. Females are protected against the development of hypertension. The purpose of the current review is to present the evidence for gender differences in the regulation of the sympatho-adrenal nervous system and to determine if these differences support the hypothesis that, in females, the regulation of the sympathetic nervous system (SNS) is altered such that sympatho-adrenal activation is attenuated or sympatho-adrenal inhibition is augmented. 2. The central control of sympatho-adrenal function is different in females and responses vary during the oestral and menstrual cycles. Pathways regulating the SNS appear to be less sensitive to excitatory stimuli and more sensitive to inhibitory stimuli in females compared with males. 3. Gender differences in arterial baroreflex sensitivity suggest that females may have a greater baroreflex sensitivity, such that alterations in blood pressure are more efficiently controlled than in males. Cardiopulmonary reflex inhibition of sympathetic nerve activity is greater in females, possibly resulting in a greater renal excretory function. 4. An attenuated sensitivity to adrenergic nerve stimulation, but not to noradrenaline (NA), suggests that gender differences in noradrenergic neurotransmission may protect females against sympathetic hyperactivity. Gender differences in the regulation of NA release via presynaptic alpha 2-adrenoceptors, the vasoconstrictor response to the cotransmitter neuropeptide Y and the clearance of catecholamines are consistent with this hypothesis. 5. Similarly, attenuated stress-induced increases in plasma catecholamines in women suggest that females are less sensitive and/or less responsive to adrenal medullary activation. This is supported by findings of gender differences in adrenal medullary catecholamine content, release and degradation. 6. We conclude that there is strong evidence that supports the hypothesis that, in females, the regulation of the SNS is altered such that sympatho

  7. Digoxin activates sarcoplasmic reticulum Ca(2+)-release channels: a possible role in cardiac inotropy.

    Science.gov (United States)

    McGarry, S J; Williams, A J

    1993-04-01

    1. The effect of digoxin on rapid 45Ca2+ efflux from cardiac and skeletal sarcoplasmic reticulum (SR) vesicles was investigated. Additionally the interaction of digoxin with single cardiac and skeletal muscle SR Ca(2+)-release channels incorporated into planar phospholipid bilayers and held under voltage clamp was determined. 2. Digoxin (1 nM) increased the initial rate and amount of Ca(2+)-induced release of 45Ca2+ from cardiac SR vesicles, passively loaded with 45CaCl2, at an extravesicular [Ca2+] of 0.1 microM. The efflux in the presence and absence of digoxin was inhibited at pM extravesicular Ca2+ and blocked by 5 mM Mg2+. 3. To elucidate the mechanism of action of digoxin, single-channel recording was used. Digoxin (1-20 nM) increased single-channel open probability (Po) when added to the cytosolic but not the luminal face of the cardiac channel in the presence of sub-maximally activating Ca2+ (0.1 microM-10 microM) with an EC50 of 0.91 nM at 10 microM Ca2+. The mechanisms underlying the action of digoxin appear to be concentration-dependent. The activation observed at 1 nM digoxin appears to be consistent with the sensitization of the channel to the effects of Ca2+. At higher concentrations the drug appears to interact synergistically with Ca2+ to produce values of Po considerably greater than those seen with Ca2+ as the sole activating ligand. 4. Digoxin had no effect on single-channel conductance or the Ca2+/Tris permeability ratio. In channels activated by digoxin the Po was decreased by Mg2+. Single-channels were characteristically modified to along lasting open, but reduced, conductance state when 100 nM ryanodine was added to the cytosolic side of the channel.5. Activation of the cardiac SR Ca2+-release channel was observed with similar concentrations of digitoxin, however, higher concentrations of ouabain were required to increase PO. In contrast, a steroid which is not positively inotropic, chlormadinone acetate, had no effect on either cardiac or

  8. Cardiac Iodine-123-Meta-Iodo-Benzylguanidine Uptake in Carotid Sinus Hypersensitivity.

    Directory of Open Access Journals (Sweden)

    Maw Pin Tan

    Full Text Available Carotid sinus syndrome is the association of carotid sinus hypersensitivity with syncope, unexplained falls and drop attacks in generally older people. We evaluated cardiac sympathetic innervation in this disorder in individuals with carotid sinus syndrome, asymptomatic carotid sinus hypersensitivity and controls without carotid sinus hypersensitivity.Consecutive patients diagnosed with carotid sinus syndrome at a specialist falls and syncope unit were recruited. Asymptomatic carotid sinus hypersensitivity and non-carotid sinus hypersensitivity control participants recruited from a community-dwelling cohort. Cardiac sympathetic innervation was determined using Iodine-123-metaiodobenzylguanidine (123-I-MIBG scanning. Heart to mediastinal uptake ratio (H:M were determined for early and late uptake on planar scintigraphy at 20 minutes and 3 hours following intravenous injection of 123-I-MIBG.Forty-two subjects: carotid sinus syndrome (n = 21, asymptomatic carotid sinus hypersensitivity (n = 12 and no carotid sinus hypersensitivity (n = 9 were included. Compared to the non- carotid sinus hypersensitivity control group, the carotid sinus syndrome group had significantly higher early H:M (estimated mean difference, B = 0.40; 95% confidence interval, CI = 0.13 to 0.67, p = 0.005 and late H:M (B = 0.32; 95%CI = 0.03 to 0.62, p = 0.032. There was, however, no significant difference in early H:M (p = 0.326 or late H:M (p = 0.351 between the asymptomatic carotid sinus hypersensitivity group and non- carotid sinus hypersensitivity controls.Cardiac sympathetic neuronal activity is increased relative to age-matched controls in individuals with carotid sinus syndrome but not those with asymptomatic carotid sinus hypersensitivity. Blood pressure and heart rate measurements alone may therefore represent an over simplification in the assessment for carotid sinus syndrome and the relative increase in cardiac sympathetic innervation provides additional clues to

  9. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation.

    Science.gov (United States)

    Sharma, Naveen; Okere, Isidore C; Brunengraber, Daniel Z; McElfresh, Tracy A; King, Kristen L; Sterk, Joseph P; Huang, Hazel; Chandler, Margaret P; Stanley, William C

    2005-01-15

    A high rate of cardiac work increases citric acid cycle (CAC) turnover and flux through pyruvate dehydrogenase (PDH); however, the mechanisms for these effects are poorly understood. We tested the hypotheses that an increase in cardiac energy expenditure: (1) activates PDH and reduces the product/substrate ratios ([NADH]/[NAD(+)] and [acetyl-CoA]/[CoA-SH]); and (2) increases the content of CAC intermediates. Measurements were made in anaesthetized pigs under control conditions and during 15 min of a high cardiac workload induced by dobutamine (Dob). A third group was made hyperglycaemic (14 mm) to stimulate flux through PDH during the high work state (Dob + Glu). Glucose and fatty acid oxidation were measured with (14)C-glucose and (3)H-oleate. Compared with control, the high workload groups had a similar increase in myocardial oxygen consumption ( and cardiac power. Dob increased PDH activity and glucose oxidation above control, but did not reduce the [NADH]/[NAD(+)] and [acetyl-CoA]/[CoA-SH] ratios, and there were no differences between the Dob and Dob + Glu groups. An additional group was treated with Dob + Glu and oxfenicine (Oxf) to inhibit fatty acid oxidation: this increased [CoA-SH] and glucose oxidation compared with Dob; however, there was no further activation of PDH or decrease in the [NADH]/[NAD(+)] ratio. Content of the 4-carbon CAC intermediates succinate, fumarate and malate increased 3-fold with Dob, but there was no change in citrate content, and the Dob + Glu and Dob + Glu + Oxf groups were not different from Dob. In conclusion, compared with normal conditions, at high myocardial energy expenditure (1) the increase in flux through PDH is regulated by activation of the enzyme complex and continues to be partially controlled through inhibition by fatty acid oxidation, and (2) there is expansion of the CAC pool size at the level of 4-carbon intermediates that is largely independent of myocardial fatty acid oxidation.

  10. Are hospitals also for relatives? A survey of hospitals' activities regarding relatives of cardiac patients

    DEFF Research Database (Denmark)

    Nissen, Nina Konstantin; Madsen, Mette; Kjøller, Mette;

    2008-01-01

    AIM: Patients and their close relatives both feel the burden of cardiovascular disease. Relatives of heart patients experience lower quality of life and increased mortality than the general population and relatives of patients with other diseases. Nevertheless, knowledge on health services aimed ...... of resources, lack of interest and knowledge among staff, and practical and psychological barriers among patients and relatives. More research is needed on health services concerning relatives of cardiac patients, regarding both the prevalence of activities and barriers to these....

  11. Activation and modulation of cardiac poly-adenosine diphosphate ribose polymerase activity in a rat model of brain death.

    Science.gov (United States)

    Brain, John G; Rostron, Anthony J; Dark, John H; Kirby, John A

    2008-05-15

    DNA damage during transplantation can activate poly-adenosine diphosphate ribose polymerase (PARP) resulting in the generation of polymers of adenosine diphosphate-ribose (PAR). Excessive linkage of PAR to nuclear proteins can induce cell death, thereby limiting the function of transplanted organs. This study uses a rat model of brain death to determine the profile of PARP activation and whether mechanisms that lead to cell death can be ameliorated by appropriate donor resuscitation. The expression of PAR-linked nuclear proteins within cardiac myocytes was greatly increased after the induction of donor brain death. Importantly, infusion of noradrenaline or vasopressin to normalize the chronic hypotension produced by brain death reduced the expression of PAR to a level below baseline. These data suggest that chronic hypotension after donor brain death has the potential to limit cardiac function through the activation of PARP; however, this early cause of graft damage can be mitigated by appropriate donor resuscitation.

  12. Role of sympathetic nervous system and neuropeptides in obesity hypertension

    Directory of Open Access Journals (Sweden)

    J.E. Hall

    2000-06-01

    Full Text Available Obesity is the most common cause of human essential hypertension in most industrialized countries. Although the precise mechanisms of obesity hypertension are not fully understood, considerable evidence suggests that excess renal sodium reabsorption and a hypertensive shift of pressure natriuresis play a major role. Sympathetic activation appears to mediate at least part of the obesity-induced sodium retention and hypertension since adrenergic blockade or renal denervation markedly attenuates these changes. Recent observations suggest that leptin and its multiple interactions with neuropeptides in the hypothalamus may link excess weight gain with increased sympathetic activity. Leptin is produced mainly in adipocytes and is believed to regulate energy balance by acting on the hypothalamus to reduce food intake and to increase energy expenditure via sympathetic activation. Short-term administration of leptin into the cerebral ventricles increases renal sympathetic activity, and long-term leptin infusion at rates that mimic plasma concentrations found in obesity raises arterial pressure and heart rate via adrenergic activation in non-obese rodents. Transgenic mice overexpressing leptin also develop hypertension. Acute studies suggest that the renal sympathetic effects of leptin may depend on interactions with other neurochemical pathways in the hypothalamus, including the melanocortin-4 receptor (MC4-R. However, the role of this pathway in mediating the long-term effects of leptin on blood pressure is unclear. Also, it is uncertain whether there is resistance to the chronic renal sympathetic and blood pressure effects of leptin in obese subjects. In addition, leptin also has other cardiovascular and renal actions, such as stimulation of nitric oxide formation and improvement of insulin sensitivity, which may tend to reduce blood pressure in some conditions. Although the role of these mechanisms in human obesity has not been elucidated, this

  13. Cardiac stimulant activity of bark and wood of Premna serratifolia

    Directory of Open Access Journals (Sweden)

    Rekha Rajendran

    2008-06-01

    Full Text Available Premna serratifolia Lin., (Verbenaceae contains alkaloids and iridoid glycoside and is believed to prevent cardiovascular disease. The stem-bark and stem-wood were extracted with 95% ethanol and distilled water. These extracts were screened for their effects by Isolated Frog Heart Perfusion Technique and biochemical parameters in heart tissue and serum of albino rats after administering the extracts for 7 days. The ethanol extract produced significant positive ionotropic and negative chronotropic actions similar to that of digoxin on frog heart and its effect was inhibited by nifedipine but not by propranolol. A significant decrease in membrane Na+K+ATPase and Mg2+ATPase and an increase in Ca2+ATPase further confirmed its cardiotonic activity. Aqueous extract produced positive ionotropic and chronotropic effects similar to that of adrenaline and its effect was antagonized by propranolol and nifedipine. The results suggest that the ethanol extract produced cardiotonic effect and the aqueous extract produced β-adrenergic effect.

  14. Altered activities of transcription factors and their related gene expression in cardiac tissues of diabetic rats.

    Science.gov (United States)

    Nishio, Y; Kashiwagi, A; Taki, H; Shinozaki, K; Maeno, Y; Kojima, H; Maegawa, H; Haneda, M; Hidaka, H; Yasuda, H; Horiike, K; Kikkawa, R

    1998-08-01

    Gene regulation in the cardiovascular tissues of diabetic subjects has been reported to be altered. To examine abnormal activities in transcription factors as a possible cause of this altered gene regulation, we studied the activity of two redox-sensitive transcription factors--nuclear factor-kappaB (NF-kappaB) and activating protein-1 (AP-1)--and the change in the mRNA content of heme oxygenase-1, which is regulated by these transcription factors in the cardiac tissues of rats with streptozotocin-induced diabetes. Increased activity of NF-kappaB and AP-1 but not nuclear transcription-activating factor, as determined by an electrophoretic mobility shift assay, was found in the hearts of 4-week diabetic rats. Glycemic control by a subcutaneous injection of insulin prevented these diabetes-induced changes in transcription factor activity. In accordance with these changes, the mRNA content of heme oxygenase-1 was increased fourfold in 4-week diabetic rats and threefold in 24-week diabetic rats as compared with control rats (P oxidative stress is involved in the activation of the transcription factors NF-kappaB and AP-1 in the cardiac tissues of diabetic rats, and that these abnormal activities of transcription factors could be associated with the altered gene regulation observed in the cardiovascular tissues of diabetic rats.

  15. Role of mitogen-activated protein kinase pathways in multifactorial adverse cardiac remodeling associated with metabolic syndrome.

    Science.gov (United States)

    Asrih, Mohamed; Mach, François; Nencioni, Alessio; Dallegri, Franco; Quercioli, Alessandra; Montecucco, Fabrizio

    2013-01-01

    Metabolic syndrome has been widely associated with an increased risk for acute cardiovascular events. Emerging evidence supports metabolic syndrome as a condition favoring an adverse cardiac remodeling, which might evolve towards heart dysfunction and failure. This pathological remodeling has been described to result from the cardiac adaptive response to clinical mechanical conditions (such as hypertension, dyslipidemia, and hyperglycemia), soluble inflammatory molecules (such as cytokines and chemokines), as well as hormones (such as insulin), characterizing the pathophysiology of metabolic syndrome. Moreover, these cardiac processes (resulting in cardiac hypertrophy and fibrosis) are also associated with the modulation of intracellular signalling pathways within cardiomyocytes. Amongst the different intracellular kinases, mitogen-activated protein kinases (MAPKs) were shown to be involved in heart damage in metabolic syndrome. However, their role remains controversial. In this paper, we will discuss and update evidence on MAPK-mediated mechanisms underlying cardiac adverse remodeling associated with metabolic syndrome.

  16. Role of Mitogen-Activated Protein Kinase Pathways in Multifactorial Adverse Cardiac Remodeling Associated with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Mohamed Asrih

    2013-01-01

    Full Text Available Metabolic syndrome has been widely associated with an increased risk for acute cardiovascular events. Emerging evidence supports metabolic syndrome as a condition favoring an adverse cardiac remodeling, which might evolve towards heart dysfunction and failure. This pathological remodeling has been described to result from the cardiac adaptive response to clinical mechanical conditions (such as hypertension, dyslipidemia, and hyperglycemia, soluble inflammatory molecules (such as cytokines and chemokines, as well as hormones (such as insulin, characterizing the pathophysiology of metabolic syndrome. Moreover, these cardiac processes (resulting in cardiac hypertrophy and fibrosis are also associated with the modulation of intracellular signalling pathways within cardiomyocytes. Amongst the different intracellular kinases, mitogen-activated protein kinases (MAPKs were shown to be involved in heart damage in metabolic syndrome. However, their role remains controversial. In this paper, we will discuss and update evidence on MAPK-mediated mechanisms underlying cardiac adverse remodeling associated with metabolic syndrome.

  17. Activation of E-prostanoid 3 receptor in macrophages facilitates cardiac healing after myocardial infarction

    Science.gov (United States)

    Tang, Juan; Shen, Yujun; Chen, Guilin; Wan, Qiangyou; Wang, Kai; Zhang, Jian; Qin, Jing; Liu, Guizhu; Zuo, Shengkai; Tao, Bo; Yu, Yu; Wang, Junwen; Lazarus, Michael; Yu, Ying

    2017-01-01

    Two distinct monocyte (Mo)/macrophage (Mp) subsets (Ly6Clow and Ly6Chigh) orchestrate cardiac recovery process following myocardial infarction (MI). Prostaglandin (PG) E2 is involved in the Mo/Mp-mediated inflammatory response, however, the role of its receptors in Mos/Mps in cardiac healing remains to be determined. Here we show that pharmacological inhibition or gene ablation of the Ep3 receptor in mice suppresses accumulation of Ly6Clow Mos/Mps in infarcted hearts. Ep3 deletion in Mos/Mps markedly attenuates healing after MI by reducing neovascularization in peri-infarct zones. Ep3 deficiency diminishes CX3C chemokine receptor 1 (CX3CR1) expression and vascular endothelial growth factor (VEGF) secretion in Mos/Mps by suppressing TGFβ1 signalling and subsequently inhibits Ly6Clow Mos/Mps migration and angiogenesis. Targeted overexpression of Ep3 receptors in Mos/Mps improves wound healing by enhancing angiogenesis. Thus, the PGE2/Ep3 axis promotes cardiac healing after MI by activating reparative Ly6Clow Mos/Mps, indicating that Ep3 receptor activation may be a promising therapeutic target for acute MI. PMID:28256515

  18. Chronic cardiac pressure overload induces adrenal medulla hypertrophy and increased catecholamine synthesis.

    Science.gov (United States)

    Schneider, Johanna; Lother, Achim; Hein, Lutz; Gilsbach, Ralf

    2011-06-01

    Increased activity of the sympathetic system is an important feature contributing to the pathogenesis and progression of chronic heart failure. While the mechanisms and consequences of enhanced norepinephrine release from sympathetic nerves have been intensely studied, the role of the adrenal gland in the development of cardiac hypertrophy and progression of heart failure is less well known. Thus, the aim of the present study was to determine the effect of chronic cardiac pressure overload in mice on adrenal medulla structure and function. Cardiac hypertrophy was induced in wild-type mice by transverse aortic constriction (TAC) for 8 weeks. After TAC, the degree of cardiac hypertrophy correlated significantly with adrenal weight and adrenal catecholamine storage. In the medulla, TAC caused an increase in chromaffin cell size but did not result in chromaffin cell proliferation. Ablation of chromaffin α(2C)-adrenoceptors did not affect adrenal weight or epinephrine synthesis. However, unilateral denervation of the adrenal gland completely prevented adrenal hypertrophy and increased catecholamine synthesis. Transcriptome analysis of microdissected adrenal medulla identified 483 up- and 231 downregulated, well-annotated genes after TAC. Among these genes, G protein-coupled receptor kinases 2 (Grk2) and 6 and phenylethanolamine N-methyltransferase (Pnmt) were significantly upregulated by TAC. In vitro, acetylcholine-induced Pnmt and Grk2 expression as well as enhanced epinephrine content was prevented by inhibition of nicotinic acetylcholine receptors and Ca(2+)/calmodulin-dependent signaling. Thus, activation of preganglionic sympathetic nerves innervating the adrenal medulla plays an essential role in inducing adrenal hypertrophy, enhanced catecholamine synthesis and induction of Grk2 expression after cardiac pressure overload.

  19. Cardiac lipid content is unresponsive to a physical activity training intervention in type 2 diabetic patients, despite improved ejection fraction

    Directory of Open Access Journals (Sweden)

    Leiner Tim

    2011-05-01

    Full Text Available Abstract Background Increased cardiac lipid content has been associated with diabetic cardiomyopathy. We recently showed that cardiac lipid content is reduced after 12 weeks of physical activity training in healthy overweight subjects. The beneficial effect of exercise training on cardiovascular risk is well established and the decrease in cardiac lipid content with exercise training in healthy overweight subjects was accompanied by improved ejection fraction. It is yet unclear whether diabetic patients respond similarly to physical activity training and whether a lowered lipid content in the heart is necessary for improvements in cardiac function. Here, we investigated whether exercise training is able to lower cardiac lipid content and improve cardiac function in type 2 diabetic patients. Methods Eleven overweight-to-obese male patients with type 2 diabetes mellitus (age: 58.4 ± 0.9 years, BMI: 29.9 ± 0.01 kg/m2 followed a 12-week training program (combination endurance/strength training, three sessions/week. Before and after training, maximal whole body oxygen uptake (VO2max and insulin sensitivity (by hyperinsulinemic, euglycemic clamp was determined. Systolic function was determined under resting conditions by CINE-MRI and cardiac lipid content in the septum of the heart by Proton Magnetic Resonance Spectroscopy. Results VO2max increased (from 27.1 ± 1.5 to 30.1 ± 1.6 ml/min/kg, p = 0.001 and insulin sensitivity improved upon training (insulin stimulated glucose disposal (delta Rd of glucose improved from 5.8 ± 1.9 to 10.3 ± 2.0 μmol/kg/min, p = 0.02. Left-ventricular ejection fraction improved after training (from 50.5 ± 2.0 to 55.6 ± 1.5%, p = 0.01 as well as cardiac index and cardiac output. Unexpectedly, cardiac lipid content in the septum remained unchanged (from 0.80 ± 0.22% to 0.95 ± 0.21%, p = 0.15. Conclusions Twelve weeks of progressive endurance/strength training was effective in improving VO2max, insulin sensitivity

  20. Neurohormonal activation and diagnostic value of cardiac peptides in patients with suspected mild heart failure

    DEFF Research Database (Denmark)

    Mikkelsen, Kirsten V.; Bie, Peter; Møller, Jacob E.;

    2006-01-01

    BACKGROUND: Data describing activation of brain natriuretic peptide (BNP) system relative to the renin-angiotensin-aldosterone system (RAAS) are sparse in the early phase of heart failure (HF). AIMS: To compare activation of BNP system relative to RAAS hyperactivity and to assess diagnostic...... accuracy of cardiac peptides to detect any left ventricular dysfunction (LVD) in patients referred from primary care with suspected HF before institution of medical therapy. METHODS: Of 166 referred patients 150 were consecutively included (14 were excluded and two refused consent). Echocardiography...

  1. Propranolol for Paroxysmal Sympathetic Hyperactivity with Lateralizing Hyperhidrosis after Stroke

    Directory of Open Access Journals (Sweden)

    Jason W. Siefferman

    2015-01-01

    Full Text Available Brain injury can lead to impaired cortical inhibition of the hypothalamus, resulting in increased sympathetic nervous system activation. Symptoms of paroxysmal sympathetic hyperactivity may include hyperthermia, tachycardia, tachypnea, vasodilation, and hyperhidrosis. We report the case of a 41-year-old man who suffered from a left middle cerebral artery stroke and subsequently developed central fever, contralateral temperature change, and hyperhidrosis. His symptoms abated with low-dose propranolol and then returned upon discontinuation. Restarting propranolol again stopped his symptoms. This represents the first report of propranolol being used for unilateral dysautonomia after stroke. Propranolol is a lipophilic nonselective beta-blocker which easily crosses the blood-brain barrier and may be used to treat paroxysmal sympathetic hyperactivity.

  2. Creative motivation: creative achievement predicts cardiac autonomic markers of effort during divergent thinking.

    Science.gov (United States)

    Silvia, Paul J; Beaty, Roger E; Nusbaum, Emily C; Eddington, Kari M; Kwapil, Thomas R

    2014-10-01

    Executive approaches to creativity emphasize that generating creative ideas can be hard and requires mental effort. Few studies, however, have examined effort-related physiological activity during creativity tasks. Using motivational intensity theory as a framework, we examined predictors of effort-related cardiac activity during a creative challenge. A sample of 111 adults completed a divergent thinking task. Sympathetic (PEP and RZ) and parasympathetic (RSA and RMSSD) outcomes were assessed using impedance cardiography. As predicted, people with high creative achievement (measured with the Creative Achievement Questionnaire) showed significantly greater increases in sympathetic activity from baseline to task, reflecting higher effort. People with more creative achievements generated ideas that were significantly more creative, and creative performance correlated marginally with PEP and RZ. The results support the view that creative thought can be a mental challenge.

  3. CpG-ODN attenuates pathological cardiac hypertrophy and heart failure by activation of PI3Kα-Akt signaling.

    Directory of Open Access Journals (Sweden)

    Liang Yang

    Full Text Available Phosphoinositide-3-kinase α (PI3Kα represents a potential novel drug target for pathological cardiac hypertrophy (PCH and heart failure. Oligodeoxynucleotides containing CpG motifs (CpG-ODN are classic agonists of Toll-like receptor 9 (TLR9, which typically activates PI3K-Akt signaling in immune cells; however, the role of the nucleotide TLR9 agonists in cardiac myocytes is largely unknown. Here we report that CpG-ODN C274 could both attenuate PCH and improve cardiac dysfunction by activating PI3Kα-Akt signaling cascade. In vitro studies indicated that C274 could blunt reactivation of fetal cardiac genes and cell enlargement induced by a hypertrophic agent, isoproterenol. The anti-hypertrophic effect of C274 was suppressed by a pan-PI3K inhibitor, LY294002, or a small interfering RNA targeting PI3Kα. In vivo studies demonstrated that PCH, as marked by increased heart weight (HW and cardiac ANF mRNA, was normalized by pre-administration with C274. In addition, Doppler echocardiography detected cardiac ventricular dilation, and contractile dysfunction in isoproterenol-treated animals, consistent with massive replacement fibrosis, reflecting cardiac cell death. As expected, pre-treatment of mice with C274 could prevent cardiac dysfunction associated with diminished cardiac cell death and fibrosis. In conclusion, CpG-ODNs are novel cardioprotective agents possessing antihypertrophic and anti-cell death activity afforded by engagement of the PI3Kα-Akt signaling. CpG-ODNs may have clinical use curbing the progression of PCH and preventing heart failure.

  4. Suppression of NLRP3 Inflammasome Activation Ameliorates Chronic Kidney Disease-Induced Cardiac Fibrosis and Diastolic Dysfunction

    Science.gov (United States)

    Bugyei-Twum, Antoinette; Abadeh, Armin; Thai, Kerri; Zhang, Yanling; Mitchell, Melissa; Kabir, Golam; Connelly, Kim A.

    2016-01-01

    Cardiac fibrosis is a common finding in patients with chronic kidney disease. Here, we investigate the cardio-renal effects of theracurmin, a novel formulation of the polyphenolic compound curcumin, in a rat model of chronic kidney disease. Briefly, Sprague-Dawley rats were randomized to undergo sham or subtotal nephrectomy (SNx) surgery. At 3 weeks post surgery, SNx animals were further randomized to received theracurmin via once daily oral gavage or vehicle for 5 consecutive weeks. At 8 weeks post surgery, cardiac function was assessed via echocardiography and pressure volume loop analysis, followed by LV and renal tissue collection for analysis. SNx animals developed key hallmarks of renal injury including hypertension, proteinuria, elevated blood urea nitrogen, and glomerulosclerosis. Renal injury in SNx animals was also associated with significant diastolic dysfunction, macrophage infiltration, and cardiac NLRP3 inflammasome activation. Treatment of SNx animals with theracurmin improved structural and functional manifestations of cardiac injury associated with renal failure and also attenuated cardiac NLRP3 inflammasome activation and mature IL-1β release. Taken together, our findings suggest a significant role for the NLRP3 inflammasome in renal injury-induced cardiac dysfunction and presents inflammasome attenuation as a unique strategy to prevent adverse cardiac remodeling in the setting of chronic kidney disease. PMID:28000751

  5. Chain Reconnections observed in Sympathetic Eruptions

    CERN Document Server

    Joshi, Navin Chandra; Magara, Tetsuya; Guo, Yang; Aulanier, Guillaume

    2016-01-01

    The nature of various plausible causal links between sympathetic events is still a controversial issue. In this work, we present multi-wavelength observations of sympathetic eruptions, associated flares and coronal mass ejections (CMEs) occurring on 2013 November 17 in two close-by active regions. Two filaments i.e., F1 and F2 are observed in between the active regions. Successive magnetic reconnections, caused by different reasons (flux cancellation, shear and expansion) have been identified during the whole event. The first reconnection occurred during the first eruption via flux cancellation between the sheared arcades overlying filament F2, creating a flux rope and leading to the first double ribbon solar flare. During this phase we observed the eruption of overlaying arcades and coronal loops, which leads to the first CME. The second reconnection is believed to occur between the expanding flux rope of F2 and the overlying arcades of the filament F1. We suggest that this reconnection destabilized the equi...

  6. Metformin inhibits aldosterone-induced cardiac fibroblast activation, migration and proliferation in vitro, and reverses aldosterone+salt-induced cardiac fibrosis in vivo.

    Science.gov (United States)

    Mummidi, Srinivas; Das, Nitin A; Carpenter, Andrea J; Kandikattu, Hemanthkumar; Krenz, Maike; Siebenlist, Ulrich; Valente, Anthony J; Chandrasekar, Bysani

    2016-09-01

    The overall goals of this study were to investigate whether metformin exerts anti-fibrotic effects in aldosterone (Aldo)+salt-treated wild type mouse hearts, and determine the underlying molecular mechanisms in isolated adult cardiac fibroblasts (CF). In vitro, Aldo induced CF activation, migration, and proliferation, and these effects were inhibited by metformin. Further, Aldo induced PPM1A (Protein Phosphatase Magnesium Dependent 1A) activation and inhibited AMPK phosphorylation. At a pharmacologically relevant concentration, metformin restored AMPK activation, and inhibited Aldo-induced Nox4/H2O2-dependent TRAF3IP2 induction, pro-inflammatory cytokine expression, and CF migration and proliferation. Further, metformin potentiated the inhibitory effects of spironolactone, a mineralocorticoid receptor antagonist, on Aldo-induced collagen expression, and CF migration and proliferation. These results were recapitulated in vivo, where metformin reversed Aldo+salt-induced oxidative stress, suppression of AMPK activation, TRAF3IP2 induction, pro-inflammatory cytokine expression, and cardiac fibrosis, without significantly modulating systolic blood pressure. These in vitro and in vivo data indicate that metformin has the potential to reduce adverse cardiac remodeling in hypertensive heart disease.

  7. Large-deflection statics analysis of active cardiac catheters through co-rotational modelling.

    Science.gov (United States)

    Peng Qi; Chen Qiu; Mehndiratta, Aadarsh; I-Ming Chen; Haoyong Yu

    2016-08-01

    This paper presents a co-rotational concept for large-deflection formulation of cardiac catheters. Using this approach, the catheter is first discretized with a number of equal length beam elements and nodes, and the rigid body motions of an individual beam element are separated from its deformations. Therefore, it is adequate for modelling arbitrarily large deflections of a catheter with linear elastic analysis at the local element level. A novel design of active cardiac catheter of 9 Fr in diameter at the beginning of the paper is proposed, which is based on the contra-rotating double helix patterns and is improved from the previous prototypes. The modelling section is followed by MATLAB simulations of various deflections when the catheter is exerted different types of loads. This proves the feasibility of the presented modelling approach. To the best knowledge of the authors, it is the first to utilize this methodology for large-deflection static analysis of the catheter, which will enable more accurate control of robot-assisted cardiac catheterization procedures. Future work would include further experimental validations.

  8. Severe hypoglycemia-induced lethal cardiac arrhythmias are mediated by sympathoadrenal activation.

    Science.gov (United States)

    Reno, Candace M; Daphna-Iken, Dorit; Chen, Y Stefanie; VanderWeele, Jennifer; Jethi, Krishan; Fisher, Simon J

    2013-10-01

    For people with insulin-treated diabetes, severe hypoglycemia can be lethal, though potential mechanisms involved are poorly understood. To investigate how severe hypoglycemia can be fatal, hyperinsulinemic, severe hypoglycemic (10-15 mg/dL) clamps were performed in Sprague-Dawley rats with simultaneous electrocardiogram monitoring. With goals of reducing hypoglycemia-induced mortality, the hypotheses tested were that: 1) antecedent glycemic control impacts mortality associated with severe hypoglycemia; 2) with limitation of hypokalemia, potassium supplementation could limit hypoglycemia-associated deaths; 3) with prevention of central neuroglycopenia, brain glucose infusion could prevent hypoglycemia-associated arrhythmias and deaths; and 4) with limitation of sympathoadrenal activation, adrenergic blockers could prevent hypoglycemia-induced arrhythmic deaths. Severe hypoglycemia-induced mortality was noted to be worsened by diabetes, but recurrent antecedent hypoglycemia markedly improved the ability to survive an episode of severe hypoglycemia. Potassium supplementation tended to reduce mortality. Severe hypoglycemia caused numerous cardiac arrhythmias including premature ventricular contractions, tachycardia, and high-degree heart block. Intracerebroventricular glucose infusion reduced severe hypoglycemia-induced arrhythmias and overall mortality. β-Adrenergic blockade markedly reduced cardiac arrhythmias and completely abrogated deaths due to severe hypoglycemia. Under conditions studied, sudden deaths caused by insulin-induced severe hypoglycemia were mediated by lethal cardiac arrhythmias triggered by brain neuroglycopenia and the marked sympathoadrenal response.

  9. Clinical research progress in percutaneous catheter ablation of renal sympathetic nerve%经导管肾交感神经射频消融术临床研究进展

    Institute of Scientific and Technical Information of China (English)

    潘涛; 郭金和; 滕皋军

    2015-01-01

    Transcatheter renal sympathetic denervation with radiofrequency ablation has become a new treatment for refractory hypertension.Recent studies have showed that renal sympathetic denervation can also treat the diseases that are related to increased sympathetic nerve activity, such as metabolic diseases, cardiac disfunction, arrhythmia, obstructive sleep apnea syndrome, polycystic ovary syndrome, renal failure, etc. This paper aims to make a general review on the recent clinical research progress about renal sympathetic denervation with radiofrequency ablation.%经导管肾交感神经射频消融术(RDN)是治疗顽固性高血压的新手段,进一步研究发现RDN术还可治疗交感神经活性增高相关疾病,如代谢性疾病、心功能不全、心律失常、阻塞性睡眠呼吸暂停综合征、多囊卵巢综合征和肾功能不全等.本文就RDN术临床研究进展作一综述.

  10. Bnip3 Binds and Activates p300: Possible Role in Cardiac Transcription and Myocyte Morphology.

    Directory of Open Access Journals (Sweden)

    John W Thompson

    Full Text Available Bnip3 is a hypoxia-regulated member of the Bcl-2 family of proteins that is implicated in apoptosis, programmed necrosis, autophagy and mitophagy. Mitochondria are thought to be the primary targets of Bnip3 although its activities may extend to the ER, cytoplasm, and nucleus. Bnip3 is induced in the heart by ischemia and pressure-overload, and may contribute to cardiomyopathy and heart failure. Only mitochondrial-dependent programmed death actions have been described for Bnip3 in the heart. Here we describe a novel activity of Bnip3 in cultured cardiac myocytes and transgenic mice overexpressing Bnip3 in the heart (Bnip3-TG. In cultured myocytes Bnip3 bound and activated the acetyltransferase p300, increased acetylation of histones and the transcription factor GATA4, and conferred p300 and GATA4-sensitive cellular morphological changes. In intact Bnip3-TG hearts Bnip3 also bound p300 and GATA4 and conferred enhanced GATA4 acetylation. Bnip3-TG mice underwent age-dependent ventricular dilation and heart failure that was partially prevented by p300 inhibition with curcumin. The results suggest that Bnip3 regulates cardiac gene expression and perhaps myocyte morphology by activating nuclear p300 acetyltransferase activity and hyperacetylating histones and p300-selective transcription factors.

  11. Controlling activation site density by low-energy far-field stimulation in cardiac tissue

    Science.gov (United States)

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites (“virtual electrodes”) in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  12. Endothelial activation/injury and associations with severity of post-cardiac arrest syndrome and mortality after out-of-hospital cardiac arrest

    DEFF Research Database (Denmark)

    Bro-Jeppesen, John; Johansson, Pär I; Hassager, Christian

    2016-01-01

    BACKGROUND: Post-cardiac arrest syndrome (PCAS) is characterized by whole-body ischemia triggering systemic inflammation and damage of the endothelium. This study investigated the relationship between systemic inflammation, endothelial damage and severity of PCAS and the association between endot...... compared to 33°C after OHCA was associated with lower endothelial activation, but not endothelial damage. CLINICAL TRIAL REGISTRATION: URL: clinicaltrials.gov/ct2/show/NCT01020916. Unique identifier: NCT01020916....

  13. Physiological and pathophysiological interactions between the respiratory central pattern generator and the sympathetic nervous system.

    Science.gov (United States)

    Molkov, Yaroslav I; Zoccal, Daniel B; Baekey, David M; Abdala, Ana P L; Machado, Benedito H; Dick, Thomas E; Paton, Julian F R; Rybak, Ilya A

    2014-01-01

    Respiratory modulation seen in the sympathetic nerve activity (SNA) implies that the respiratory and sympathetic networks interact. During hypertension elicited by chronic intermittent hypoxia (CIH), the SNA displays an enhanced respiratory modulation reflecting strengthened interactions between the networks. In this chapter, we review a series of experimental and modeling studies that help elucidate possible mechanisms of sympatho-respiratory coupling. We conclude that this coupling significantly contributes to both the sympathetic baroreflex and the augmented sympathetic activity after exposure to CIH. This conclusion is based on the following findings. (1) Baroreceptor activation results in perturbation of the respiratory pattern via transient activation of postinspiratory neurons in the Bötzinger complex (BötC). The same BötC neurons are involved in the respiratory modulation of SNA, and hence provide an additional pathway for the sympathetic baroreflex. (2) Under hypercapnia, phasic activation of abdominal motor nerves (AbN) is accompanied by synchronous discharges in SNA due to the common source of this rhythmic activity in the retrotrapezoid nucleus (RTN). CIH conditioning increases the CO2 sensitivity of central chemoreceptors in the RTN which results in the emergence of AbN and SNA discharges under normocapnic conditions similar to those observed during hypercapnia in naïve animals. Thus, respiratory-sympathetic interactions play an important role in defining sympathetic output and significantly contribute to the sympathetic activity and hypertension under certain physiological or pathophysiological conditions, and the theoretical framework presented may be instrumental in understanding of malfunctioning control of sympathetic activity in a variety of disease states.

  14. An Autonomic Link Between Inhaled Diesel Exhaust and Impaired Cardiac Performance: Insight From Treadmill and Doubutamine Challenges in Heart Failure-Prone Rats

    Science.gov (United States)

    Background: Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) is an ubiquitous air pollutant believed to provoke cardiac events partly through imbalance of the sympathetic and parasympathetic branches of the autonomic nervo...

  15. Sympathetic adaptations to one-legged training

    Science.gov (United States)

    Ray, C. A.

    1999-01-01

    The purpose of the present study was to determine the effect of leg exercise training on sympathetic nerve responses at rest and during dynamic exercise. Six men were trained by using high-intensity interval and prolonged continuous one-legged cycling 4 day/wk, 40 min/day, for 6 wk. Heart rate, mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA; peroneal nerve) were measured during 3 min of upright dynamic one-legged knee extensions at 40 W before and after training. After training, peak oxygen uptake in the trained leg increased 19 +/- 2% (P training (108 +/- 5 to 96 +/- 5 beats/min and 132 +/- 8 to 119 +/- 4 mmHg, respectively, during the third minute of exercise; P training. However, MSNA was significantly less during the third minute of exercise after training (32 +/- 2 to 22 +/- 3 bursts/min; P training effect on MSNA remained when MSNA was expressed as bursts per 100 heartbeats. Responses to exercise in five untrained control subjects were not different at 0 and 6 wk. These results demonstrate that exercise training prolongs the decrease in MSNA during upright leg exercise and indicates that attenuation of MSNA to exercise reported with forearm training also occurs with leg training.

  16. A population-based lifestyle intervention to promote healthy weight and physical activity in people with cardiac disease: The PANACHE (Physical Activity, Nutrition And Cardiac HEalth study protocol

    Directory of Open Access Journals (Sweden)

    Allman-Farinelli Margaret

    2010-04-01

    Full Text Available Abstract Background Maintaining a healthy weight and undertaking regular physical activity are important for the secondary prevention of cardiovascular disease (CVD. However, many people with CVD are overweight and insufficiently active. In addition, in Australia only 20-30% of people requiring cardiac rehabilitation (CR for CVD actually attend. To improve outcomes of and access to CR the efficacy, effectiveness and cost-effectiveness of alternative approaches to CR need to be established. This research will determine the efficacy of a telephone-delivered lifestyle intervention, promoting healthy weight and physical activity, in people with CVD in urban and rural settings. The control group will also act as a replication study of a previously proven physical activity intervention, to establish whether those findings can be repeated in different urban and rural locations. The cost-effectiveness and acceptability of the intervention to CR staff and participants will also be determined. Methods/Design This study is a randomised controlled trial. People referred for CR at two urban and two rural Australian hospitals will be invited to participate. The intervention (healthy weight group will participate in four telephone delivered behavioural coaching and goal setting sessions over eight weeks. The coaching sessions will be on weight, nutrition and physical activity and will be supported by written materials, a pedometer and two follow-up booster telephone calls. The control (physical activity group will participate in a six week intervention previously shown to increase physical activity, consisting of two telephone delivered behavioural coaching and goal setting sessions on physical activity, supported by written materials, a pedometer and two booster phone calls. Data will be collected at baseline, eight weeks and eight months for the intervention group (baseline, six weeks and six months for the control group. The primary outcome is weight change

  17. Cardiac metastasis from renal cell carcinoma successfully treated with pazopanib: impact of TKIs' antiangiogenic activity.

    Science.gov (United States)

    Schinzari, Giovanni; Monterisi, Santa; Signorelli, Diego; Cona, Silvia; Cassano, Alessandra; Danza, Francesco; Barone, Carlo

    2014-01-01

    Cardiac metastasis from renal cell carcinoma, especially without neoplastic thrombosis of the vena cava, is extremely rare. The prognosis of patients with metastatic renal cell carcinoma has been radically influenced by the introduction of tyrosine kinase inhibitors, but very few reports in the literature have described their activity in heart metastasis. We report the case of a woman with a left ventricle metastasis from kidney cancer without renal vein involvement, who was treated with pazopanib. The patient achieved a prolonged partial response, with clear signs of metastasis devascularization and a favorable toxicity profile.

  18. Sympathetically evoked Ca2+ signaling in arterial smooth muscle

    Institute of Scientific and Technical Information of China (English)

    Wei-jin ZANG; Joseph ZACHARIA; Christine LAMONT; Withrow Gil WIER

    2006-01-01

    The sympathetic nervous system plays an essential role in the control of total peripheral vascular resistance and blood flow, by controlling the contraction of small arteries. Perivascular sympathetic nerves release ATP, norepinephrine (NE) and neuropeptide Y. This review summarizes our knowledge of the intracellular Ca2+ signals that are activated by ATP and NE, acting respectively on P2X1 and α1 adrenoceptors in arterial smooth muscle. Each neurotransmitter produces a unique type of post-synaptic Ca2+ signal and associated contraction. The neural release of ATP and NE is thought to vary markedly with the pattern of nerve activity, probably reflecting both pre- and post-synaptic mechanisms. Finally, we show that Ca2+ signaling during neurogenic contractions activated by trains of sympathetic nerve fiber action potentials are in fact significantly different from that elicited by simple bath application of exogenous neurotransmitters to isolated arteries (a common experimental technique), and end by identifying important questions remaining in our understanding of sympathetic neurotransmission and the physiological regulation of contraction of small arteries.

  19. The central administration of C75, a fatty acid synthase inhibitor, activates sympathetic outflow and thermogenesis in interscapular brown adipose tissue.

    Science.gov (United States)

    Cassolla, Priscila; Uchoa, Ernane Torres; Mansur Machado, Frederico Sander; Guimarães, Juliana Bohnen; Rissato Garófalo, Maria Antonieta; de Almeida Brito, Nilton; Kagohara Elias, Lucila Leico; Coimbra, Cândido Celso; do Carmo Kettelhut, Isis; Carvalho Navegantes, Luiz Carlos

    2013-12-01

    The present work investigated the participation of interscapular brown adipose tissue (IBAT), which is an important site for thermogenesis, in the anti-obesity effects of C75, a synthetic inhibitor of fatty acid synthase (FAS). We report that a single intracerebroventricular (i.c.v.) injection of C75 induced hypophagia and weight loss in fasted male Wistar rats. Furthermore, C75 induced a rapid increase in core body temperature and an increase in heat dissipation. In parallel, C75 stimulated IBAT thermogenesis, which was evidenced by a marked increase in the IBAT temperature that preceded the rise in the core body temperature and an increase in the mRNA levels of uncoupling protein-1. As with C75, an i.c.v. injection of cerulenin, a natural FAS inhibitor, increased the core body and IBAT temperatures. The sympathetic IBAT denervation attenuated all of the thermoregulatory effects of FAS inhibitors as well as the C75 effect on weight loss and hypophagia. C75 induced the expression of Fos in the paraventricular nucleus, preoptic area, dorsomedial nucleus, ventromedial nucleus, and raphé pallidus, all of which support a central role of FAS in regulating IBAT thermogenesis. These data indicate a role for IBAT in the increase in body temperature and hypophagia that is induced by FAS inhibitors and suggest new mechanisms explaining the weight loss induced by these compounds.

  20. Early activation of FGF and nodal pathways mediates cardiac specification independently of Wnt/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Lee J Samuel

    Full Text Available BACKGROUND: Cardiac induction, the first step in heart development in vertebrate embryos, is thought to be initiated by anterior endoderm during gastrulation, but what the signals are and how they act is unknown. Several signaling pathways, including FGF, Nodal, BMP and Wnt have been implicated in cardiac specification, in both gain- and loss-of-function experiments. However, as these pathways regulate germ layer formation and patterning, their specific roles in cardiac induction have been difficult to define. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the mechanisms of cardiac induction directly we devised an assay based on conjugates of anterior endoderm from early gastrula stage Xenopus embryos as the inducing tissue and pluripotent ectodermal explants as the responding tissue. We show that the anterior endoderm produces a specific signal, as skeletal muscle is not induced. Cardiac inducing signal needs up to two hours of interaction with the responding tissue to produce an effect. While we found that the BMP pathway was not necessary, our results demonstrate that the FGF and Nodal pathways are essential for cardiogenesis. They were required only during the first hour of cardiogenesis, while sustained activation of ERK was required for at least four hours. Our results also show that transient early activation of the Wnt/beta-catenin pathway has no effect on cardiogenesis, while later activation of the pathway antagonizes cardiac differentiation. CONCLUSIONS/SIGNIFICANCE: We have described an assay for investigating the mechanisms of cardiac induction by anterior endoderm. The assay was used to provide evidence for a direct, early and transient requirement of FGF and Nodal pathways. In addition, we demonstrate that Wnt/beta-catenin pathway plays no direct role in vertebrate cardiac specification, but needs to be suppressed just prior to differentiation.

  1. FAVORABLE OUTCOME IN IDIOPATHIC VENTRICULAR-FIBRILLATION WITH TREATMENT AIMED AT PREVENTION OF HIGH SYMPATHETIC TONE AND SUPPRESSION OF INDUCIBLE ARRHYTHMIAS

    NARCIS (Netherlands)

    CRIJNS, HJGM; WIESFELD, ACP; POSMA, JL; LIE, KI

    1995-01-01

    Objective-In the absence of an obvious cause for cardiac arrest, patients with idiopathic ventricular fibrillation are difficult to manage. A subset of patients has inducible arrhythmias. In others sympathetic excitation plays a role in the onset of the cardiac arrest. This study evaluates a prospec

  2. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves.

    Science.gov (United States)

    Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H

    2016-08-03

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation.

  3. Mechanisms of electrical activation and conduction in the gastrointestinal system: lessons from cardiac electrophysiology

    Directory of Open Access Journals (Sweden)

    Gary eTse

    2016-05-01

    Full Text Available The gastrointestinal (GI tract is an electrically excitable organ system containing multiple cell types, which coordinate electrical activity propagating through this tract. Disruption in its normal electrophysiology is observed in a number of GI motility disorders. However, this is not well characterized and the field of GI electrophysiology is much less developed compared to the cardiac field. The aim of this article is to use the established knowledge of cardiac electrophysiology to shed light on the mechanisms of electrical activation and propagation along the GI tract, and how abnormalities in these processes lead to motility disorders and suggest better treatment options based on this improved understanding. In the first part of the article, the ionic contributions to the generation of GI slow wave and the cardiac action potential (AP are reviewed. Propagation of these electrical signals can be described by the core conductor theory in both systems. However, specifically for the GI tract, the following unique properties are observed: changes in slow wave frequency along its length, periods of quiescence, synchronization in short distances and desynchronization over long distances. These are best described by a coupled oscillator theory. Other differences include the diminished role of gap junctions in mediating this conduction in the GI tract compared to the heart. The electrophysiology of conditions such as gastroesophageal reflux disease and gastroparesis, and functional problems such as irritable bowel syndrome are discussed in detail, with reference to ion channel abnormalities and potential therapeutic targets. A deeper understanding of the molecular basis and physiological mechanisms underlying GI motility disorders will enable the development of better diagnostic and therapeutic tools and the advancement of this field.

  4. SELECTIVE AND TIME-RELATED ACTIVATION OF THE CARDIAC RENIN-ANGIOTENSIN SYSTEM AFTER EXPERIMENTAL HEART-FAILURE - RELATION TO VENTRICULAR-FUNCTION AND MORPHOLOGY

    NARCIS (Netherlands)

    PINTO, YM; DESMET, BGJL; VANGILST, WH; MONNINK, S; DEGRAEFF, PA; WESSELING, H

    1993-01-01

    Objective: The cardiac renin-angiotensin system is activated in experimental heart failure, but it is unknown at what stage of heart failure it becomes activated, and whether activation is related to ventricular dysfunction and dilatation. Changes in activity of cardiac, renal, and plasma angiotensi

  5. Signs of cardiac autonomic imbalance and proarrhythmic remodeling in FTO deficient mice.

    Directory of Open Access Journals (Sweden)

    Luca Carnevali

    Full Text Available In humans, variants of the fat mass and obesity associated (FTO gene have recently been associated with obesity. However, the physiological function of FTO is not well defined. Previous investigations in mice have linked FTO deficiency to growth retardation, loss of white adipose tissue, increased energy metabolism and enhanced systemic sympathetic activation. In this study we investigated for the first time the effects of global knockout of the mouse FTO gene on cardiac function and its autonomic neural regulation. ECG recordings were acquired via radiotelemetry in homozygous knockout (n = 12 and wild-type (n = 8 mice during resting and stress conditions, and analyzed by means of time- and frequency-domain indexes of heart rate variability. In the same animals, cardiac electrophysiological properties (assessed by epicardial mapping and structural characteristics were investigated. Our data indicate that FTO knockout mice were characterized by (i higher heart rate values during resting and stress conditions, (ii heart rate variability changes (increased LF to HF ratio, (iii larger vulnerability to stress-induced tachyarrhythmias, (iv altered ventricular repolarization, and (v cardiac hypertrophy compared to wild-type counterparts. We conclude that FTO deficiency in mice leads to an imbalance of the autonomic neural modulation of cardiac function in the sympathetic direction and to a potentially proarrhythmic remodeling of electrical and structural properties of the heart.

  6. Noise-induced ectopic activity in a simple cardiac cell model

    Science.gov (United States)

    Hastings, Harold

    2005-03-01

    Ectopic activity in the form of premature ventricular contractions (PVCs) is relatively common in the normal heart. Although PVCs are normally harmless, sometimes but rarely PVCs can generate spiral waves of activation through interaction with other waves of activation, potentially progressing to ventricular tachycardia, followed by ventricular fibrillation and sudden cardiac death. Clusters of PVCs have been found to be significantly more dangerous than isolated PVCs. We model PVC generation by applying triggers (noise) to the generic FitzHugh-Nagumo model as substrate, and study the effects the noise level and excitability. We find: exponential waiting time behavior at fixed parameter levels; no evidence of clustering at fixed parameter levels; and a sharp increase in PVCs as excitability approaches the auto-oscillatory threshold or noise increases beyond a similar threshold. This produces sharp increases in theoretical rates of PVC-induced fibrillation, consistent with results of A Gelzer et al. in animal models. Partially supported by the NSF and NIH.

  7. Subacute cardiac sympathetic dys-innervation, evaluated by the tomo-scintigraphy with {sup 123}I-Mibg in the Takotsubo syndrome: about one case; Dysinnervation sympathique cardiaque subaigue, evaluee par la tomoscintigraphie a l'123I-MIBG dans le syndrome de Takotsubo: a propos d'un cas

    Energy Technology Data Exchange (ETDEWEB)

    Costo, S.; Agostini, D. [Service de medecine nucleaire, CHU Cote-de-Nacre, Caen, (France); Sabatier, R. [service de cardiologie, CHU Cote-de-Nacre, Caen, (France)

    2009-05-15

    The association of perfusion imaging and myocardium innervation showed a major mismatch of fixation attesting of a sympathetic default of innervation contemporary of a left ventricle dysfunction without perfusion troubles, for a patient with a Takotsubo cardiomyopathy. (N.C.)

  8. Effect of dietary fats on the lipid composition and enzyme activities of rat cardiac sarcolemma.

    Science.gov (United States)

    Awad, T B; Chattopadhyay, J P

    1983-09-01

    The effect of dietary lipids on the lipid composition and the activities of some enzymes of cardiac sarcolemma were studied. Feeding rats coconut oil--rich diet for 4 weeks resulted in a significant decrease in 5'-nucleotidase, phosphodiesterase I and p-nitrophenylphosphatase activity of cardiac sarcolemma as compared with feeding rats safflower oil. Sarcolemma from animals fed coconut oil diet contained a significantly lower concentration of total polyunsaturated fatty acids and a higher concentration of total monounsaturated fatty acids than that from rats fed safflower oil. Most of the alterations in polyunsaturated fatty acids were found in 20:4, whereas those of the monounsaturates were found in 18:1. Among all the phosphoglycerides, the fatty acid composition of the phosphatidylcholine exhibited the largest alterations as a result of coconut oil feeding. No dietary effect was observed in the sarcolemma content of cholesterol and phospholipid. These studies clearly indicate that manipulation of dietary lipids influences both the fatty acid composition and some functional properties of the sarcolemma membranes.

  9. Rate-dependent activation failure in isolated cardiac cells and tissue due to Na+ channel block.

    Science.gov (United States)

    Varghese, Anthony; Spindler, Anthony J; Paterson, David; Noble, Denis

    2015-11-15

    While it is well established that class-I antiarrhythmics block cardiac sodium channels, the mechanism of action of therapeutic levels of these drugs is not well understood. Using a combination of mathematical modeling and in vitro experiments, we studied the failure of activation of action potentials in single ventricular cells and in tissue caused by Na(+) channel block. Our computations of block and unblock of sodium channels by a theoretical class-Ib antiarrhythmic agent predict differences in the concentrations required to cause activation failure in single cells as opposed to multicellular preparations. We tested and confirmed these in silico predictions with in vitro experiments on isolated guinea-pig ventricular cells and papillary muscles stimulated at various rates (2-6.67 Hz) and exposed to various concentrations (5 × 10(-6) to 500 × 10(-6) mol/l) of lidocaine. The most salient result was that whereas large doses (5 × 10(-4) mol/l or higher) of lidocaine were required to inhibit action potentials temporarily in single cells, much lower doses (5 × 10(-6) mol/l), i.e., therapeutic levels, were sufficient to have the same effect in papillary muscles: a hundredfold difference. Our experimental results and mathematical analysis indicate that the syncytial nature of cardiac tissue explains the effects of clinically relevant doses of Na(+) channel blockers.

  10. Relation of chaos activity characteristics of the cardiac system with the evolution of species

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    According to the nonlinear theory, the experiments have been conducted on sample ECG (electrocardiogram) signals of healthy human beings, coronary heart disease patients and adult canines. On the basis of the analyses of the power spectra, the computation of the correlation dimension and the Lyapunov exponent to a large number of ECG signals, the following conclusions are shown: through the comparative research, (1( the analyses of the power spectra, the computation of the correlation dimension and the Lyapunov exponent to the ECG signals reflect the whole dynamic characteristics of the hearts, and they may become a new method of researching ECG quantitatively to an early diagnose of heart disease. (2( Under normal physiological conditions the cardiac activities are chaotic, while under pathologic conditions the cardiac activities approach regularity. (3( On the basis of the comparative research of human beings and canines, it is revealed that chaos may be a quantitative index to measure the evolution of species. This conclusion would supply a new cut-in point to elaborate the Darwin theory, and it would enable us to explain the life theory renewably using the basic principle of nonlinear theory.

  11. Chronic sympathetic activation promotes downregulation of ß-adrenoceptor-mediated effects in the guinea pig heart independently of structural remodeling and systolic dysfunction

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Thiele, Stefanie; Osadchiy, Oleg;

    2011-01-01

    pathway upon chronic infusion of isoproterenol, a ß-adrenoceptor agonist, at a dose producing no structural left ventricular (LV) remodeling and systolic dysfunction. Subcutaneous isoproterenol infusion (400 µg kg(-1) h(-1) over 16 days) to guinea pigs using osmotic minipumps produced no change in cardiac...... weights, LV internal dimensions, myocyte cross-sectional area, extent of interstitial fibrosis, and basal contractile function. Isolated, perfused heart preparations from isoproterenol-treated guinea pigs exhibited attenuated responsiveness to acute ß-adrenoceptor stimulation, as evidenced by reduced LV...

  12. The effect of space microgravity on the physiological activity of mammalian resident cardiac stem cells

    Science.gov (United States)

    Belostotskaya, Galina; Zakharov, Eugeny

    Prolonged exposure to weightlessness during space flights is known to cause depression of heart function in mammals. The decrease in heart weight and its remodeling under the influence of prolonged weightlessness (or space microgravity) is assumed to be due to both morphological changes of working cardiomyocytes and their progressive loss, as well as to possible depletion of resident cardiac stem cells (CSCs) population, or their inability to self-renewal and regeneration of muscle tissue under conditions of weightlessness. We have previously shown that the presence of different maturity clones formed by resident CSCs not only in culture but also in the mammalian myocardium can be used as an indicator of the regenerative activity of myocardial cells [Belostotskaya, et al., 2013: 2014]. In this study, we were interested to investigate whether the 30-day near-Earth space flight on the spacecraft BION-M1 affects the regenerative potential of resident CSCs. Immediately after landing of the spacecraft, we had examined the presence of resident c-kit+, Sca-1+ and Isl1+ CSCs and their development in suspension of freshly isolated myocardial cells of C57BL mice in comparison to controls. Cardiac cell suspension was obtained by enzymatic digestion of the heart [Belostotskaya and Golovanova, 2014]. Immunocytochemically stained preparations of fixed cells were analyzed with confocal microscope Leica TCS SP5 (Germany) in the Resource Center of St-Petersburg State University. CSCs were labeled with appropriate antibodies. CSCs differentiation into mature cardiomyocytes was verified using antibodies to Sarcomeric α-Actinin and Cardiac Troponin T. Antibodies to Connexin43 were used to detect cell-cell contacts. All antibodies were conjugated with Alexa fluorochromes (488, 532, 546, 568, 594 and/or 647 nm), according to Zenon-technology (Invitrogen). It has been shown that, under identical conditions of cell isolation, more complete digestion of heart muscle was observed in

  13. Is it time for cardiac innervation imaging?

    Energy Technology Data Exchange (ETDEWEB)

    Knuuti, J. [Turku Univ., Turku (Finland) Turku PET Center; Sipola, P. [Kuopio Univ., Kuopio (Finland)

    2005-03-01

    The autonomic nervous system plays an important role in the regulation of cardiac function and the regional distribution of cardiac nerve terminals can be visualized using scintigraphic techniques. The most commonly used tracer is iodine-123-metaiodobenzylguanidine (MIBG) but C-11-hydroxyephedrine has also been used with PET. When imaging with MIBG, the ratio of heart-to-mediastinal counts is used as an index of tracer uptake, and regional distribution is also assessed from tomographic images. The rate of clearance of the tracer can also be measured and indicates the function of the adrenergic system. Innervation imaging has been applied in patients with susceptibility to arrythmias, coronary artery disease, hypertrophic and dilated cardiomyopathy and anthracycline induced cardiotoxicity. Abnormal adrenergic innervation or function appear to exist in many pathophysiological conditions indicating that sympathetic neurons are very susceptible to damage. Abnormal findings in innervation imaging also appear to have significant prognostic value especially in patients with cardiomyopathy. Recently, it has also been shown that innervation imaging can monitor drug-induced changes in cardiac adrenergic activity. Although innervation imaging holds great promise for clinical use, the method has not received wider clinical acceptance. Larger randomized studies are required to confirm the value of innervation imaging in various specific indications.

  14. High salt intake damages the heart through activation of cardiac (pro renin receptors even at an early stage of hypertension.

    Directory of Open Access Journals (Sweden)

    Yuka Hayakawa

    Full Text Available It has not yet been fully elucidated whether cardiac tissue levels of prorenin, renin and (PRR are activated in hypertension with a high salt intake. We hypothesized that a high salt intake activates the cardiac tissue renin angiotensin system and prorenin-(prorenin receptor system, and damages the heart at an early stage of hypertension.Wistar Kyoto rats (WKY and spontaneously hypertensive rats (SHR received regular (normal-salt diet, 0.9% and high-salt (8.9% chow for 6 weeks from 6 to 12 weeks of age. The systolic blood pressure, plasma renin activity (PRA and plasma angiotensin II concentration were measured, and the protein expressions of prorenin, (prorenin receptor, angiotensinogen, angiotensin II AT1 receptor, ERK1/2, TGF-β, p38MAPK and HSP27 in the myocardium were investigated. The cardiac function was assessed by echocardiography, and histological analysis of the myocardium was performed.The high-salt diet significantly increased the systolic blood pressure, and significantly reduced the PRA and plasma angiotensin II concentration both in the WKYs and SHRs. Cardiac expressions of prorenin, renin, (PRR, angiotensinogen, angiotensin II AT1 receptor, phosphorylated (p-ERK1/2, p-p38MAPK, TGF-β and p-HSP27 were significantly increased by the high salt diet both in the WKYs and SHRs. The high-salt diet significantly increased the interventricular septum thickness and cardiomyocyte size, and accelerated cardiac interstitial and perivascular fibrosis both in the WKYs and SHRs. On the other hand, dilatation of left ventricular end-diastolic dimension and impairment of left ventricular fractional shortening was shown only in salt loaded SHRs.The high-salt diet markedly accelerated cardiac damage through the stimulation of cardiac (PRR and angiotensin II AT1 receptor by increasing tissue prorenin, renin and angiotensinogen and the activation of ERK1/2, TGF-β, p38MAPK and HSP27 under higher blood pressure.

  15. New treatment for old disease: management of resistant hypertension by percutaneous renal sympathetic denervation.

    Science.gov (United States)

    Kanai, Takashi; Krum, Henry

    2013-09-01

    Hypertension is a major contributor to cardiovascular events, such as stroke and myocardial infarction, with accelerated sympathetic nerve activity implicated in its pathogenesis. However, hypertension in many patients is not adequately controlled, despite the availability of numerous medication classes. Novel procedure-as well as device-based strategies, such as percutaneous renal sympathetic nerve denervation therapy-have been developed to improve blood pressure in these refractory patients. Renal sympathetic denervation delivers not only a decrease in blood pressure levels but also renal as well as systemic sympathetic nerve activity. The reduction in blood pressure appears to be sustained over 3 years after the procedure, which implies no counterregulatory mechanism or re-innervation of afferent renal sympathetic nerve so far. Renal sympathetic denervation is expected to be a promising treatment for patients with hypertension, congestive heart failure, chronic kidney disease, and metabolic syndrome implicated in the pathogenesis of potentiated sympathetic nerve activity. This review will focus on the current devices and procedures, their outcomes and prospects in the treatment of hypertension.

  16. Adoption of community-based cardiac rehabilitation programs and physical activity following phase III cardiac rehabilitation in Scotland: a prospective and predictive study.

    Science.gov (United States)

    Sniehotta, Falko F; Gorski, Charlotta; Araujo-Soares, Vera

    2010-09-01

    Little is known about levels of physical activity and attendance at phase IV community-based Cardiac Rehabilitation (CR) programs following completion of exercise-focussed, hospital-based phase III CR. This study aims to test, compare and combine the predictive utility of the Common-Sense Self-Regulation Model (CS-SRM) and the extended Theory of Planned Behaviour (TPB) with action planning for two rehabilitation behaviours: physical activity and phase IV CR attendance. Individuals diagnosed with coronary heart disease (n = 103) completed baseline measures of illness perceptions, intentions, perceived behavioural control (PBC), action planning and past physical activity in the last week of a phase III CR program, and 95 participants completed follow-up measures of physical activity and attended phase IV CR (objectively confirmed) 2 months later. Only one predictor (PBC/cyclical timeline) significantly predicted levels and change of physical activity. While illness perceptions were not predictive of phase IV CR attendance, the extended TPB model showed good predictive power with action planning and intention as the most powerful predictors. Amongst participants who planned when and where to attend phase IV CR at the end of phase III rehabilitation, 65.9% subsequently attended a phase IV CR program compared to only 18.5% of those who had not made a plan. This study adds to our understanding of cardiac rehabilitation behaviour after completion of health service delivered programs. Comparing theoretical models and rehabilitation behaviours contributes to the development of behaviour theory.

  17. Sympathetic crashing acute pulmonary edema.

    Science.gov (United States)

    Agrawal, Naman; Kumar, Akshay; Aggarwal, Praveen; Jamshed, Nayer

    2016-12-01

    Sympathetic crashing acute pulmonary edema (SCAPE) is the extreme end of the spectrum of acute pulmonary edema. It is important to understand this disease as it is relatively common in the emergency department (ED) and has better outcomes when managed appropriately. The patients have an abrupt redistribution of fluid in the lungs, and when treated promptly and effectively, these patients will rapidly recover. Noninvasive ventilation and intravenous nitrates are the mainstay of treatment which should be started within minutes of the patient's arrival to the ED. Use of morphine and intravenous loop diuretics, although popular, has poor scientific evidence.

  18. Bifurcations in a nonlinear model of the baroreceptor-cardiac reflex

    Science.gov (United States)

    Seidel, H.; Herzel, H.

    1998-04-01

    We investigate the dynamic properties of a nonlinear model of the human cardio-baroreceptor control loop. As a new feature we use a phase effectiveness curve to describe the experimentally well-known phase dependency of the cardiac pacemaker's sensitivity to neural activity. We show that an increase of sympathetic time delays leads via a Hopf bifurcation to sustained heart rate oscillations. For increasing baroreflex sensitivity or for repetitive vagal stimulation we observe period-doubling, toroidal oscillations, chaos, and entrainment between the rhythms of the heart and the control loop. The bifurcations depend crucially on the involvement of the cardiac pacemaker's phase dependency. We compare the model output with experimental data from electrically stimulated anesthetized dogs and discuss possible implications for cardiac arrhythmias.

  19. Differential Control of the Sympathetic Nervous System by Leptin: Implications for Obesity

    OpenAIRE

    Rahmouni, Kamal

    2007-01-01

    1. Leptin is a hormone that is secreted by adipocytes and delivered to the brain to regulate appetite and energy expenditure. Other effects of leptin include activation of the sympathetic nervous system and an increase in arterial pressure.

  20. Prolonged Paroxysmal Sympathetic Storming Associated with Spontaneous Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2013-01-01

    Full Text Available Paroxysmal sympathetic storming (PSS is a rare disorder characterized by acute onset of nonstimulated tachycardia, hypertension, tachypnea, hyperthermia, external posturing, and diaphoresis. It is most frequently associated with severe traumatic brain injuries and has been reported in intracranial tumors, hydrocephalous, severe hypoxic brain injury, and intracerebral hemorrhage. Although excessive release of catecholamine and therefore increased sympathetic activities have been reported in subarachnoid hemorrhage (SAH, there is no descriptive report of PSS primarily caused by spontaneous SAH up to date. Here, we report a case of prolonged PSS in a patient with spontaneous subarachnoid hemorrhage and consequent vasospasm. The sympathetic storming started shortly after patient was rewarmed from hypothermia protocol and symptoms responded to Labetalol, but intermittent recurrence did not resolve until 3 weeks later with treatment involving Midazolam, Fentanyl, Dexmedetomidine, Propofol, Bromocriptine, and minimizing frequency of neurological and vital checks. In conclusion, prolonged sympathetic storming can also be caused by spontaneous SAH. In this case, vasospasm might be a precipitating factor. Paralytics and hypothermia could mask the manifestations of PSS. The treatment of the refractory case will need both timely adjustment of medications and minimization of exogenous stressors or stimuli.

  1. Optimisation of recombinant production of active human cardiac SERCA2a ATPase.

    Science.gov (United States)

    Antaloae, Ana V; Montigny, Cédric; le Maire, Marc; Watson, Kimberly A; Sørensen, Thomas L-M

    2013-01-01

    Methods for recombinant production of eukaryotic membrane proteins, yielding sufficient quantity and quality of protein for structural biology, remain a challenge. We describe here, expression and purification optimisation of the human SERCA2a cardiac isoform of Ca(2+) translocating ATPase, using Saccharomyces cerevisiae as the heterologous expression system of choice. Two different expression vectors were utilised, allowing expression of C-terminal fusion proteins with a biotinylation domain or a GFP- His8 tag. Solubilised membrane fractions containing the protein of interest were purified onto Streptavidin-Sepharose, Ni-NTA or Talon resin, depending on the fusion tag present. Biotinylated protein was detected using specific antibody directed against SERCA2 and, advantageously, GFP-His8 fusion protein was easily traced during the purification steps using in-gel fluorescence. Importantly, talon resin affinity purification proved more specific than Ni-NTA resin for the GFP-His8 tagged protein, providing better separation of oligomers present, during size exclusion chromatography. The optimised method for expression and purification of human cardiac SERCA2a reported herein, yields purified protein (> 90%) that displays a calcium-dependent thapsigargin-sensitive activity and is suitable for further biophysical, structural and physiological studies. This work provides support for the use of Saccharomyces cerevisiae as a suitable expression system for recombinant production of multi-domain eukaryotic membrane proteins.

  2. CHAIN RECONNECTIONS OBSERVED IN SYMPATHETIC ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Navin Chandra; Magara, Tetsuya [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do, 446-701 (Korea, Republic of); Schmieder, Brigitte; Aulanier, Guillaume [LESIA, Observatoire de Paris, PSL Research University, CNRS Sarbonne Universités, Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Jansson, F-92195 Meudon (France); Guo, Yang, E-mail: navin@khu.ac.kr, E-mail: njoshi98@gmail.com [School of Astronomy and Space Science, Nanjing University, 210023 Nanjing (China)

    2016-04-01

    The nature of various plausible causal links between sympathetic events is still a controversial issue. In this work, we present multiwavelength observations of sympathetic eruptions, associated flares, and coronal mass ejections (CMEs) occurring on 2013 November 17 in two close active regions. Two filaments, i.e., F1 and F2, are observed in between the active regions. Successive magnetic reconnections, caused for different reasons (flux cancellation, shear, and expansion) have been identified during the whole event. The first reconnection occurred during the first eruption via flux cancellation between the sheared arcades overlying filament F2, creating a flux rope and leading to the first double-ribbon solar flare. During this phase, we observed the eruption of overlying arcades and coronal loops, which leads to the first CME. The second reconnection is believed to occur between the expanding flux rope of F2 and the overlying arcades of filament F1. We suggest that this reconnection destabilized the equilibrium of filament F1, which further facilitated its eruption. The third stage of reconnection occurred in the wake of the erupting filament F1 between the legs of the overlying arcades. This may create a flux rope and the second double-ribbon flare and a second CME. The fourth reconnection was between the expanding arcades of the erupting filament F1 and the nearby ambient field, which produced the bi-directional plasma flows both upward and downward. Observations and a nonlinear force-free field extrapolation confirm the possibility of reconnection and the causal link between the magnetic systems.

  3. Sympathetic blocks for visceral cancer pain management

    DEFF Research Database (Denmark)

    Mercadante, Sebastiano; Klepstad, Pal; Kurita, Geana Paula

    2015-01-01

    The neurolytic blocks of sympathetic pathways, including celiac plexus block (CPB) and superior hypogastric plexus block (SHPB) , have been used for years. The aim of this review was to assess the evidence to support the performance of sympathetic blocks in cancer patients with abdominal visceral...

  4. Sympathetic vasoconstrictor nerve function in alcoholic neuropathy

    DEFF Research Database (Denmark)

    Jensen, K; Andersen, K; Smith, T;

    1984-01-01

    The peripheral sympathetic vasomotor nerve function was investigated in 18 male chronic alcoholics admitted for intellectual impairment or polyneuropathy. By means of the local 133Xenon washout technique, the sympathetic veno-arteriolar axon-reflex was studied. This normally is responsible for a ...

  5. Cardiac autonomic neuropathy in patients with diabetes mellitus.

    Science.gov (United States)

    Dimitropoulos, Gerasimos; Tahrani, Abd A; Stevens, Martin J

    2014-02-15

    Cardiac autonomic neuropathy (CAN) is an often overlooked and common complication of diabetes mellitus. CAN is associated with increased cardiovascular morbidity and mortality. The pathogenesis of CAN is complex and involves a cascade of pathways activated by hyperglycaemia resulting in neuronal ischaemia and cellular death. In addition, autoimmune and genetic factors are involved in the development of CAN. CAN might be subclinical for several years until the patient develops resting tachycardia, exercise intolerance, postural hypotension, cardiac dysfunction and diabetic cardiomyopathy. During its sub-clinical phase, heart rate variability that is influenced by the balance between parasympathetic and sympathetic tones can help in detecting CAN before the disease is symptomatic. Newer imaging techniques (such as scintigraphy) have allowed earlier detection of CAN in the pre-clinical phase and allowed better assessment of the sympathetic nervous system. One of the main difficulties in CAN research is the lack of a universally accepted definition of CAN; however, the Toronto Consensus Panel on Diabetic Neuropathy has recently issued guidance for the diagnosis and staging of CAN, and also proposed screening for CAN in patients with diabetes mellitus. A major challenge, however, is the lack of specific treatment to slow the progression or prevent the development of CAN. Lifestyle changes, improved metabolic control might prevent or slow the progression of CAN. Reversal will require combination of these treatments with new targeted therapeutic approaches. The aim of this article is to review the latest evidence regarding the epidemiology, pathogenesis, manifestations, diagnosis and treatment for CAN.

  6. Brain renin angiotensin system in cardiac hypertrophy and failure

    Directory of Open Access Journals (Sweden)

    Luciana eCampos

    2012-01-01

    Full Text Available Brain renin-angiotensin system (RAS is significantly involved in the roles of the endocrine RAS in cardiovascular regulation. Our studies indicate that the brain RAS participates in the development of cardiac hypertrophy and fibrosis through sympathetic activation. Inhibition of sympathetic hyperactivity after myocardial infarction through suppression of the brain RAS appears beneficial. The brain RAS is involved in the modulation of circadian rhythms of arterial pressure, contributing to nondipping hypertension. We conclude that the brain RAS in pathophysiological states interacts synergistically with the chronically overactive RAS through a positive biofeedback in order to maintain a state of alert diseased conditions, such as cardiac hypertrophy and failure. Therefore, targeting brain RAS with drugs such as angiotensin converting inhibitors or receptor blockers having increased brain penetrability could be of advantage. These RAS-targeting drugs are first-line therapy for all heart failure patients. Since the RAS has both endocrine and local tissue components, RAS drugs are being developed to attain increased tissue penetrability and volume of distribution and consequently an efficient inhibition of both RAS components.

  7. Effect of transcutaneous electric stimulation on the cardiac electrical activity in New Zealand white rabbits

    Directory of Open Access Journals (Sweden)

    Wang ZHANG

    2015-10-01

    Full Text Available Objective To study the effect of transcutaneous electric stimulation on the cardiac electrical activity in New Zealand white rabbits, in order to search a safety threshold for clinical electrical stimulation therapy, as to provide the theoretical basis for the design of in vitro pacemaker. Methods New Zealand white rabbits were randomly assigned into 17 groups (6 each. Rabbits in 16 experimental groups were given 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 and 80V electrical stimulation, respectively, with the stimulating site designated at epigastric region. BL -420F biological function experimental system was employed to supply the power and acquire the ECG, with the output pulse electrical stimulation frequency set at 270 times/minute, and the stimulating wave as square wave. A control group was set, in which the stimulating voltage was set to 35V, the stimulant anode was located in the anterior chest area, and the cathode was on the skin surface of back corresponding to the site of the heart, and the rest was the same as in experimental groups. Results No stimulation rhythm was observed in rabbits of those experimental groups with voltage ≤35V, but all stimulation rhythm was observed in rabbits of control group. No arrhythmia occurred in rabbits of those experimental groups with voltage ≤30V, while the heart rate was slowed down after stimulation in rabbits of the experimental groups with voltage ≥45V stimulation. In rabbits receiving stimulation with voltage ≤35V there was no dystropy or light dystropy, but with no visible injury to the local tissues. No visible injury was observed in the rabbits undergoing stimulation with voltage ≤40V. Conclusion Pulse electric stimulation with voltage ≤35V in the epigastric region would not affect the cardiac electrical activity in rabbits, while stimulation with 35V will lead to all pacing rhythm of the heart without affecting the cardiac electrical activity in rabbits

  8. Potential Effects of Heliogeophysical Activity on the Dynamics of Sudden Cardiac Death at Earth Middle Latitudes

    Science.gov (United States)

    Dimitrova, S.; Babayev, E.; Mustafa, F.

    2017-01-01

    Limited studies exist on comparing the possible effects of heliogeophysical activity (solar and geomagnetic) on the dynamics of sudden cardiac death (SCD) as a function of latitude on Earth. In this work we continue our earlier studies concerning the changing space environment and SCD dynamics at middle latitudes. The study covered 25 to 80-year old males and females, and used medical data provided by all emergency and first medical aid stations in the Grand Baku Area, Azerbaijan. Data coverage includedthe second peak of Solar Cycle 23 and its descending activity years followed by its long-lasting minimum. Gradation of geomagnetic activity into six levels was introduced to study the effect of space weather on SCD. The ANalysis Of VAriance (ANOVA) test was applied to study the significance of the geomagnetic activity effect, estimated by different geomagnetic indices, on SCD dynamics. Variations inthe number of SCDs occurring on days preceding and following the development of geomagnetic storms were also studied. Results revealed that the SCD number was largest on days of very low geomagnetic activity and on days proceeding and following geomagnetic storms with different intensities. Vulnerability for males was found to be higher around days of major and severe geomagnetic storms. Females, on the other hand, were more threatened around days of lower intensity storms. It is concluded that heliogeophysical activity could be considered as one of the regulating external/environmental factors in human homeostasis.

  9. Cardiac sodium channelopathies

    NARCIS (Netherlands)

    Amin, A.S.; Asghari-Roodsari, A.; Tan, H.L.

    2010-01-01

    Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (I-Na) during phase 0 of the cardiac action potential. The importance of I-Na for normal cardiac electrical activity is reflected by the high incidence of

  10. α2A-adrenoceptors, but not nitric oxide, mediate the peripheral cardiac sympatho-inhibition of moxonidine.

    Science.gov (United States)

    Cobos-Puc, Luis E; Aguayo-Morales, Hilda; Silva-Belmares, Yesenia; González-Zavala, Maria A; Centurión, David

    2016-07-05

    Moxonidine centrally inhibits the sympathetic activity through the I1-imidazoline receptor and nitric oxide. In addition, inhibits the peripheral cardiac sympathetic outflow by α2-adrenoceptors/I1-imidazoline receptors, although the role of α2-adrenoceptor subtypes or nitric oxide in the cardiac sympatho-inhibition induced by moxonidine are unknown. Therefore, the cardiac sympatho-inhibition induced by moxonidine (10μg/kgmin) was evaluated before and after of the treatment with the following antagonists/inhibitor: (1) BRL 44408, (300μg/kg, α2A), imiloxan, (3000μg/kg, α2B), and JP-1302, (300μg/kg, α2C), in animals pretreated with AGN 192403 (3000μg/kg, I1 antagonist); (2) N(ω)-nitro-l-arginine methyl ester (l-NAME; 34, 100, and 340μg/kgmin); and (3) the combinations of the highest dose of l-NAME plus AGN 192403 or BRL 44408. Additionally, the expression of the neuronal (nNOS) and inducible (iNOS) nitric oxide synthase in the stellate ganglion was determined after treatment with moxonidine (i.p. 0.56mg/kg daily, during one week). The cardiac sympatho-inhibition of 10μg/kgmin moxonidine was: (1) unaffected by imiloxan and JP-1302, under pretreatment with AGN 192403, or l-NAME (34, 100 and 340μg/kgmin) given alone; (2) partially antagonized by the combination of 340 μg/kgmin l-NAME plus BRL 44408; and (3) abolished by BRL 44408 under treatment with AGN 192403. Furthermore, moxonidine did not modify the nNOS or iNOS protein expression in the stellate ganglion, the main source of postganglionic sympathetic neurons innervating the heart. In conclusion, our results suggest that the peripheral cardiac sympatho-inhibition induced by moxonidine is mediated by α2A-adrenoceptor subtype but not by nitric oxide.

  11. Impaired cardiac SIRT1 activity by carbonyl stress contributes to aging-related ischemic intolerance.

    Directory of Open Access Journals (Sweden)

    Chunhu Gu

    Full Text Available Reactive aldehydes can initiate protein oxidative damage which may contribute to heart senescence. Sirtuin 1 (SIRT1 is considered to be a potential interventional target for I/R injury management in the elderly. We hypothesized that aldehyde mediated carbonyl stress increases susceptibility of aged hearts to ischemia/reperfusion (I/R injury, and elucidate the underlying mechanisms with a focus on SIRT1. Male C57BL/6 young (4-6 mo and aged (22-24 mo mice were subjected to myocardial I/R. Cardiac aldehyde dehydrogenase (ALDH2, SIRT1 activity and protein carbonyls were assessed. Our data revealed that aged heart exhibited increased endogenous aldehyde/carbonyl stress due to impaired ALDH2 activity concomitant with blunted SIRT1 activity (P<0.05. Exogenous toxic aldehydes (4-HNE exposure in isolated cardiomyocyte verified that aldehyde-induced carbonyl modification on SIRT1 impaired SIRT1 activity leading to worse hypoxia/reoxygenation (H/R injury, which could all be rescued by Alda-1 (ALDH2 activator (all P<0.05. However, SIRT1 inhibitor blocked the protective effect of Alda-1 on H/R cardiomyocyte. Interestingly, myocardial I/R leads to higher carbonylation but lower activity of SIRT1 in aged hearts than that seen in young hearts (P<0.05. The application of Alda-1 significantly reduced the carbonylation on SIRT1 and markedly improved the tolerance to in vivo I/R injury in aged hearts, but failed to protect Sirt1(+/- knockout mice against myocardial I/R injury. This was verified by Alda-1 treatment improved postischemic contractile function recovery in ex vivo perfused aged but not in Sirt1(+/- hearts. Thus, aldehyde/carbonyl stress is accelerated in aging heart. These results provide a new insight that impaired cardiac SIRT1 activity by carbonyl stress plays a critical role in the increased susceptibility of aged heart to I/R injury. ALDH2 activation can restore this aging-related myocardial ischemic intolerance.

  12. EFFECTS OF LONG-TERM PHYSICAL ACTIVITY ON CARDIAC STRUCTURE AND FUNCTION: A TWIN STUDY

    Directory of Open Access Journals (Sweden)

    Urho M.Kujala

    2009-12-01

    Full Text Available Previous studies have shown that athletic training or other physical activity causes structural and functional adaptations in the heart, but less is known how long-term physical activity affects heart when genetic liability and childhood environment are taken into account. The aim of this study was to investigate the effects of long-term physical activity vs. inactivity on cardiac structure and function in twin pairs discordant for physical activity for 32 years. Twelve same-sex twin pairs (five monozygotic and seven dizygotic, 50-67 years were studied as a part of the TWINACTIVE study. Discordance in physical activity was initially determined in 1975 and it remained significant throughout the follow-up. At the end of the follow-up in 2007, resting echocardiographic and electrocardiographic measurements were performed. During the follow-up period, the active co-twins were on average 8.2 (SD 4.0 MET hours/day more active than their inactive co-twins (p < 0.001. At the end of the follow-up, resting heart rate was lower in the active than inactive co-twins [59 (SD 5 vs. 68 (SD 10 bpm, p=0.03]. The heart rate-corrected QT interval was similar between the co-twins. Also, there was a tendency for left ventricular mass per body weight to be greater and T wave amplitude in lead II to be higher in the active co-twins (18% and 15%, respectively, p=0.08 for both. Similar trends were found for both monozygotic and dizygotic twin pairs. In conclusion, the main adaptation to long- term physical activity is lowered resting heart rate, even after partially or fully controlling for genetic liability and childhood environment

  13. Sympathetic-leptin relationship in obesity: effect of weight loss.

    Science.gov (United States)

    Quilliot, Didier; Böhme, Philip; Zannad, Faiez; Ziegler, Olivier

    2008-04-01

    Obese patients have high plasma leptin concentrations that do not induce the expected responses on weight regulation, suggesting a leptin resistance in obesity. Elevated leptin levels are also thought to be related to a high sympathetic nervous system (SNS) activity. This effect could be preserved, lowered, or even abolished in obesity. We planned to investigate the possible association in a longitudinal study. Ninety-five normotensive healthy women, aged 40.4 +/- 11.4 years and body mass index of 33.2 +/- 2.3 kg/m(2), were studied. Baseline leptin, fat mass, and heart rate variability were measured and included in a 6-month longitudinal study. Body composition was measured by dual-energy x-ray absorption. Time domain heart rate variability, QT dynamicity, and spectral components on ambulatory electrocardiographs were analyzed. Dietary advice was given by a dietitian to the patient (maximum caloric reduction of 30%), and subjects were randomized in 3 treatment groups: sibutramine 10 mg, sibutramine 20 mg, or placebo. At baseline, low frequencies (LF) and the LF-high frequencies (HF) ratio, mainly related to the SNS, were negatively correlated to leptin concentration (r = -0.30, P = .002 and r = -0.36, P < .001) and to the leptin-fat mass ratio (r = -0.28, P = .004 and r = - 0.33, P = .0007), thus explaining 38% of the LF variance and 33% of the LF/HF variance. Diastolic blood pressure was also negatively correlated to leptin concentrations (-0.20, P = .04) and to the leptin-fat mass ratio (-0.22, P = .022). In contrast, no consistent correlations between leptin and the time domain components related to vagal activity were observed. At 6 months, after completion of the weight loss program, LF significantly decreased (-7.7% +/- 7.9%, P < .001), whereas HF was higher than the initial value (+20% +/- 5.2%). The leptin-fat mass ratio remained negatively correlated to the LF (r = -0.34, P = .030) and to LF/HF (r = -0.35, P = .021) values, explaining 21% of the LF

  14. Characterization of Cardiac-Resident Progenitor Cells Expressing High Aldehyde Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Marc-Estienne Roehrich

    2013-01-01

    Full Text Available High aldehyde dehydrogenase (ALDH activity has been associated with stem and progenitor cells in various tissues. Human cord blood and bone marrow ALDH-bright (ALDHbr cells have displayed angiogenic activity in preclinical studies and have been shown to be safe in clinical trials in patients with ischemic cardiovascular disease. The presence of ALDHbr cells in the heart has not been evaluated so far. We have characterized ALDHbr cells isolated from mouse hearts. One percent of nonmyocytic cells from neonatal and adult hearts were ALDHbr. ALDHvery-br cells were more frequent in neonatal hearts than adult. ALDHbr cells were more frequent in atria than ventricles. Expression of ALDH1A1 isozyme transcripts was highest in ALDHvery-br cells, intermediate in ALDHbr cells, and lowest in ALDHdim cells. ALDH1A2 expression was highest in ALDHvery-br cells, intermediate in ALDHdim cells, and lowest in ALDHbr cells. ALDH1A3 and ALDH2 expression was detectable in ALDHvery-br and ALDHbr cells, unlike ALDHdim cells, albeit at lower levels compared with ALDH1A1 and ALDH1A2. Freshly isolated ALDHbr cells were enriched for cells expressing stem cell antigen-1, CD34, CD90, CD44, and CD106. ALDHbr cells, unlike ALDHdim cells, could be grown in culture for more than 40 passages. They expressed sarcomeric α-actinin and could be differentiated along multiple mesenchymal lineages. However, the proportion of ALDHbr cells declined with cell passage. In conclusion, the cardiac-derived ALDHbr population is enriched for progenitor cells that exhibit mesenchymal progenitor-like characteristics and can be expanded in culture. The regenerative potential of cardiac-derived ALDHbr cells remains to be evaluated.

  15. Mineralocorticoid receptors, inflammation and sympathetic drive in a rat model of systolic heart failure.

    Science.gov (United States)

    Felder, Robert B

    2010-01-01

    Appreciation for the role of aldosterone and mineralocorticoid receptors in cardiovascular disease is accelerating rapidly. Recent experimental work has unveiled a strong relationship between brain mineralocorticoid receptors and sympathetic drive, an important determinant of outcome in heart failure and hypertension. Two putative mechanisms are explored in this manuscript. First, brain mineralocorticoid receptors may influence sympathetic discharge by regulating the release of pro-inflammatory cytokines into the circulation. Blood-borne pro-inflammatory cytokines act upon receptors in the microvasculature of the brain to induce cyclooxygenase-2 activity and the production of prostaglandin E(2), which penetrates the blood-brain barrier to activate the sympathetic nervous system. Second, brain mineralocorticoid receptors may influence sympathetic drive by upregulating the activity of the brain renin-angiotensin system, resulting in NAD(P)H oxidase-dependent superoxide production. A potential role for superoxide-dependent mitogen-activated protein kinase signalling pathways in the regulation of sympathetic nerve activity is also considered. Other potential downstream signalling mechanisms contributing to mineralocorticoid receptor-mediated sympathetic excitation are under investigation.

  16. Control of pineal indole biosynthesis by changes in sympathetic tone caused by factors other than environmental lighting.

    Science.gov (United States)

    Lynch, H. J.; Eng, J. P.; Wurtman, R. J.

    1973-01-01

    Description of experimental investigations showing that, in addition to environmental lighting, other manipulations known to modify sympathetic tone can also modify pineal indole biosynthesis. Comparable alterations in sympathetic tone that occur in response to activity or feeding cycles may be instrumental in generating the pineal rhythms that persist in the absence of light-dark cycle.

  17. The anemia of microgravity and recumbency. Role of sympathetic neural control of erythropoietin production

    Science.gov (United States)

    Robertson, David; Krantz, Sanford B.; Biaggioni, Italo

    We hypothesize that reduced sympathetic stimulation of erythropoietin production may maintain the anemia which develops in virtually all space travellers. We tested this hypothesis in a human model of reduced sympathetic activity. Thirty-three patients with the Bradbury-Eggleston syndrome were divided into three groups according to their hemoglobin (Hgb) level. Patients with low Hgb had lower upright norepinephrine and lower upright renin. Patients with anemia also had inappropriately low plasma erythropoietin levels. We administered recombinant erythropoietin (Epogen) 25-50 units/kg s.c. 3 times per week and found that the anemia seen in autonomic failure could be reversed by this treatment. These results support the hypothesis that erythropoiesis is modulated by the sympathetic nervous system and that such mechanisms may also operate in the microgravity environment where sympathetic activity is reduced.

  18. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF).

    Science.gov (United States)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Hirabayashi, Masumi; Watabe, Kazuhiko; Jimbo, Yasuhiko; Kodama, Itsuo; Komuro, Issei

    2013-01-01

    Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF) promotes cardiac sympathetic innerva