WorldWideScience

Sample records for cardiac pumping function

  1. Combining computer modelling and cardiac imaging to understand right ventricular pump function.

    Science.gov (United States)

    Walmsley, John; van Everdingen, Wouter; Cramer, Maarten J; Prinzen, Frits W; Delhaas, Tammo; Lumens, Joost

    2017-10-01

    Right ventricular (RV) dysfunction is a strong predictor of outcome in heart failure and is a key determinant of exercise capacity. Despite these crucial findings, the RV remains understudied in the clinical, experimental, and computer modelling literature. This review outlines how recent advances in using computer modelling and cardiac imaging synergistically help to understand RV function in health and disease. We begin by highlighting the complexity of interactions that make modelling the RV both challenging and necessary, and then summarize the multiscale modelling approaches used to date to simulate RV pump function in the context of these interactions. We go on to demonstrate how these modelling approaches in combination with cardiac imaging have improved understanding of RV pump function in pulmonary arterial hypertension, arrhythmogenic right ventricular cardiomyopathy, dyssynchronous heart failure and cardiac resynchronization therapy, hypoplastic left heart syndrome, and repaired tetralogy of Fallot. We conclude with a perspective on key issues to be addressed by computational models of the RV in the near future. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  2. The specific case: cardiac amyloidosis as differential diagnosis in case of restricted cardiac pump function; Der besondere Fall. Amyloidose des Herzens als Differenzialdiagnose bei eingeschraenkter kardialer Pumpfunktion

    Energy Technology Data Exchange (ETDEWEB)

    D' Errico, L. [Universitaetsspital Basel (Switzerland). Klinik fuer Radiologie und Nuklearmedizin; Zellweger, M.; Niemann, T.

    2014-03-15

    The NMR imaging data in combination with clinical characterization and echocardiography are consistent with the diagnosis of a cardiac amyloidosis. The article describes disease pattern and diagnosis based on contrast agent accumulation and diastolic functional disturbances. CT was performed to exclude pulmonary embolism.

  3. Qualitative and quantitative analyses of the morphological-dynamics of early cardiac pumping function using video densitometry and optical coherence tomography (OCT)

    DEFF Research Database (Denmark)

    Happel, C.; Männer, J.; Thommes, J.

    has become a matter of dispute. Uncovering of the pumping mechanism of tubular embryonic hearts requires detailed information about the hemodynamics as well as morphological dynamics of the pump action. We have analyzed the morphological dynamics of cardiac pump action in chick embryos (HH-stage 16......) of the embryonic heart segments (common atrium, AV-canal, embryonic ventricles, outflow tract). Video densitometric M-mode curves show remarkable similarities to OCT M-mode recordings. OCT M-mode recordings can only be taken at one site at a time whereas video densitometry allows simultaneous recordings at any...... striking differences in contraction behavior of different heart segments of the tubular embryonic heart. These findings are important for the understanding of the pumping mechanism of the developing valveless embryonic heart....

  4. Mechano-electrical feedback explains T-wave morphology and optimizes cardiac pump function: insight from a multi-scale model.

    Science.gov (United States)

    Hermeling, Evelien; Delhaas, Tammo; Prinzen, Frits W; Kuijpers, Nico H L

    2012-01-01

    In the ECG, T- and R-wave are concordant during normal sinus rhythm (SR), but discordant after a period of ventricular pacing (VP). Experiments showed that the latter phenomenon, called T-wave memory, is mediated by a mechanical stimulus. By means of a mathematical model, we investigated the hypothesis that slow acting mechano-electrical feedback (MEF) explains T-wave memory. In our model, electromechanical behavior of the left ventricle (LV) was simulated using a series of mechanically and electrically coupled segments. Each segment comprised ionic membrane currents, calcium handling, and excitation-contraction coupling. MEF was incorporated by locally adjusting conductivity of L-type calcium current (g(CaL)) to local external work. In our set-up, g(CaL) could vary up to 25%, 50%, 100% or unlimited amount around its default value. Four consecutive simulations were performed: normal SR (with MEF), acute VP, sustained VP (with MEF), and acutely restored SR. MEF led to T-wave concordance in normal SR and to discordant T-waves acutely after restoring SR. Simulated ECGs with a maximum of 25-50% adaptation closely resembled those during T-wave memory experiments in vivo and also provided the best compromise between optimal systolic and diastolic function. In conclusion, these simulation results indicate that slow acting MEF in the LV can explain a) the relatively small differences in systolic shortening and mechanical work during SR, b) the small dispersion in repolarization time, c) the concordant T-wave during SR, and d) T-wave memory. The physiological distribution in electrophysiological properties, reflected by the concordant T-wave, may serve to optimize cardiac pump function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Cardiac function studies

    International Nuclear Information System (INIS)

    Horn, H.J.

    1986-01-01

    A total of 27 patients were subjected tointramyocardial sequential scintiscanning (first pass) using 99m-Tc human serum albumin. A refined method is described that is suitable to analyse clinically relevant parameters like blood volume, cardiac output, ejection fraction, stroke volume, enddiastolic and endsystolic volumes as well as pulmonal transition time and uses a complete camaracomputer system adapted to the requirements of a routine procedure. Unless there is special hardware available, the method does not yet appear mature enough to be put into general practice. Its importance recently appeared in a new light due to the advent of particularly shortlived isotopes. For the time being, however, ECG-triggered equilibrium studies are to be preferred for cardiac function tests. (TRV) [de

  6. Mathematical Models of Cardiac Pacemaking Function

    Science.gov (United States)

    Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak

    2013-10-01

    Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  7. Mathematical Models of Cardiac Pacemaking Function

    Directory of Open Access Journals (Sweden)

    Pan eLi

    2013-10-01

    Full Text Available Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  8. In vivo imaging of the cyclic changes in cross-sectional shape of the ventricular segment of pulsating embryonic chick hearts at stages 14 to 17: a contribution to the understanding of the ontogenesis of cardiac pumping function.

    Science.gov (United States)

    Männer, Jörg; Thrane, Lars; Norozi, Kambiz; Yelbuz, T Mesud

    2009-12-01

    The cardiac cycle-related deformations of tubular embryonic hearts were traditionally described as concentric narrowing and widening of a tube of circular cross-section. Using optical coherence tomography (OCT), we have recently shown that, during the cardiac cycle, only the myocardial tube undergoes concentric narrowing and widening while the endocardial tube undergoes eccentric narrowing and widening, having an elliptic cross-section at end-diastole and a slit-shaped cross-section at end-systole. Due to technical limitations, these analyses were confined to early stages of ventricular development (chick embryos, stages 10-13). Using a modified OCT-system, we now document, for the first time, the cyclic changes in cross-sectional shape of beating embryonic ventricles at stages 14 to 17. We show that during these stages (1) a large area of diminished cardiac jelly appears at the outer curvature of the ventricular region associated with formation of endocardial pouches; (2) the ventricular endocardial lumen acquires a bell-shaped cross-section at end-diastole and becomes compressed like a fireplace bellows during systole; (3) the contracting portions of the embryonic ventricles display stretching along its baso-apical axis at end-systole. The functional significance of our data is discussed with respect to early cardiac pumping function. (c) 2009 Wiley-Liss, Inc.

  9. Rectal microcirculatory alterations after elective on-pump cardiac surgery

    NARCIS (Netherlands)

    Boerma, E. C.; Kaiferova, K.; Konijn, A. J. M.; De Vries, J. W.; Buter, H.; Ince, C.

    Background. Hemodynamic changes, related to on-pump cardiac surgery, have been reported to impair intestinal perfusion. However, until recently, direct in vivo observation of the intestinal microcirculation was not clinically feasible, and the concept of altered intestinal blood flow in the setting

  10. Novel regulation of cardiac Na pump via phospholemman.

    Science.gov (United States)

    Pavlovic, Davor; Fuller, William; Shattock, Michael J

    2013-08-01

    As the only quantitatively significant Na efflux pathway from cardiac cells, the Na/K ATPase (Na pump) is the primary regulator of intracellular Na. The transmembrane Na gradient it establishes is essential for normal electrical excitability, numerous coupled-transport processes and, as the driving force for Na/Ca exchange, thus setting cardiac Ca load and contractility. As Na influx varies with electrical excitation, heart rate and pathology, the dynamic regulation of Na efflux is essential. It is now widely recognized that phospholemman, a 72 amino acid accessory protein which forms part of the Na pump complex, is the key nexus linking cellular signaling to pump regulation. Phospholemman is the target of a variety of post-translational modifications (including phosphorylation, palmitoylation and glutathionation) and these can dynamically alter the activity of the Na pump. This review summarizes our current understanding of the multiple regulatory mechanisms that converge on phospholemman and govern NA pump activity in the heart. The corrected Fig. 4 is reproduced below. The publisher would like to apologize for any inconvenience caused. [corrected]. Copyright © 2013. Published by Elsevier Ltd.

  11. Cardiac function in acute hypothyroidism

    International Nuclear Information System (INIS)

    Donaghue, K.; Hales, I.; Allwright, S.; Cooper, R.; Edwards, A.; Grant, S.; Morrow, A.; Wilmshurst, E.; Royal North Shore Hospital, Sydney

    1985-01-01

    It has been established that chronic hypothyroidism may affect cardiac function by several mechanisms. It is not known how long the patient has to be hypothyroid for cardiac involvement to develop. This study was undertaken to assess the effect of a short period of hypothyroidism (10 days) on cardiac function. Nine patients who had had total tyroidectomy, had received ablative radioiodine for thyroid cancer and were euthyroid on replacement therapy were studied while both euthyroid and hypothyroid. Cardiac assessment was performed by X-ray, ECG, echocardiography and gated blood-pool scans. After 10 days of hypothyroidisms, the left-ventricular ejection fraction failed to rise after exercise in 4 of the 9 patients studied, which was significant (P<0.002). No significant changes in cardiac size or function at rest were detected. This functional abnormality in the absence of any demonstrable change in cardiac size and the absence of pericardial effussion with normal basal function suggest that short periods of hypothyroidism may reduce cardiac reserve, mostly because of alterations in metabolic function. (orig.)

  12. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach

    KAUST Repository

    Bueno-Orovio, Alfonso; Sá nchez, Carlos; Pueyo, Esther; Rodriguez, Blanca

    2013-01-01

    gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology

  13. Predictors of cardiogenic shock in cardiac surgery patients receiving intra-aortic balloon pumps.

    Science.gov (United States)

    Iyengar, Amit; Kwon, Oh Jin; Bailey, Katherine L; Ashfaq, Adeel; Abdelkarim, Ayman; Shemin, Richard J; Benharash, Peyman

    2018-02-01

    Cardiogenic shock after cardiac surgery leads to severely increased mortality. Intra-aortic balloon pumps may be used during the preoperative period to increase coronary perfusion. The purpose of this study was to characterize predictors of postoperative cardiogenic shock in cardiac surgery patients with and without intra-aortic balloon pumps support. We performed a retrospective analysis of our institutional database of the Society of Thoracic Surgeons for patients operated between January 2008 to July 2015. Multivariable logistic regression was used to model postoperative cardiogenic shock in both the intra-aortic balloon pumps and matched control cohorts. Overall, 4,741 cardiac surgery patients were identified during the study period, of whom 192 (4%) received a preoperative intra-aortic balloon pump. Intra-aortic balloon pumps patients had a greater prevalence of diabetes, previous cardiac surgery, congestive heart failure, and an urgent/emergent status (P pumps patients also had greater 30-day mortality and more postoperative cardiogenic shock (9% vs 3%, P pumps cohort, only sex, previous percutaneous coronary intervention and preoperative arrhythmia remained significant on multivariable analysis (all P pumps and those who do not. Further analysis of the effects of prophylactic intra-aortic balloon pumps support is warranted. (Surgery 2017;160:XXX-XXX.). Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Radionuclide kineventriculographic evaluation of the heart pump function in valvular prosthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Zh; Shejretova, E; Trindev, P; Topalov, V; Denchev, S; Khadzhikostova, Kh

    1986-01-01

    The heart pump function was investigated by the methods of radionuclide kineventriculography, standart opaque ventryculography and echocardiography. The statistical analysis revealed lack of correlation for the ejection fraction, determined by the three methods. The methodological advantages of radionuclide kineventriculography are pointed out for exact and objective evaluation of the ejection fraction of the left cardiac ventricle, as well as some limitations in the application of this index in the clinical assessment of the heart pump function in patients, indicated for valvular prosthesis.

  15. Characterization of the cardiac Na+/K+ pump by development of a comprehensive and mechanistic model.

    Science.gov (United States)

    Oka, Chiaki; Cha, Chae Young; Noma, Akinori

    2010-07-07

    A large amount of experimental data on the characteristics of the cardiac Na(+)/K(+) pump have been accumulated, but it remains difficult to predict the quantitative contribution of the pump in an intact cell because most measurements have been made under non-physiological conditions. To extrapolate the experimental findings to intact cells, we have developed a comprehensive Na(+)/K(+) pump model based on the thermodynamic framework (Smith and Crampin, 2004) of the Post-Albers reaction cycle combined with access channel mechanisms. The new model explains a variety of experimental results for the Na(+)/K(+) pump current (I(NaK)), including the dependency on the concentrations of Na(+) and K(+), the membrane potential and the free energy of ATP hydrolysis. The model demonstrates that both the apparent affinity and the slope of the substrate-I(NaK) relationship measured experimentally are affected by the composition of ions in the extra- and intracellular solutions, indirectly through alteration in the probability distribution of individual enzyme intermediates. By considering the voltage dependence in the Na(+)- and K(+)-binding steps, the experimental voltage-I(NaK) relationship could be reconstructed with application of experimental ionic compositions in the model, and the view of voltage-dependent K(+) binding was supported. Re-evaluation of charge movements accompanying Na(+) and K(+) translocations gave a reasonable number for the site density of the Na(+)/K(+) pump on the membrane. The new model is relevant for simulation of cellular functions under various interventions, such as depression of energy metabolism. (c) 2010 Elsevier Ltd. All rights reserved.

  16. Cardiac function and cognition in older community-dwelling cardiac patients

    NARCIS (Netherlands)

    Eggermont, Laura H.P.; Aly, Mohamed F.A.; Vuijk, Pieter J.; de Boer, Karin; Kamp, Otto; van Rossum, Albert C.; Scherder, Erik J.A.

    2017-01-01

    Background: Cognitive deficits have been reported in older cardiac patients. An underlying mechanism for these findings may be reduced cardiac function. The relationship between cardiac function as represented by different echocardiographic measures and different cognitive function domains in older

  17. Outcome of Cardiac Rehabilitation Following Off-Pump Versus On-Pump Coronary Bypass Surgery

    Directory of Open Access Journals (Sweden)

    Reza Arefizadeh

    2017-05-01

    CONCLUSIONS: Regarding QOL and psychological status, there were no differences in the CR outcome between those who underwent off-pump bypass surgery and those who underwent on-pump surgery; nevertheless, the off-pump technique was superior to the on-pump method on METs improvement following CR.

  18. How does pressure overload cause cardiac hypertrophy and dysfunction? High-ouabain affinity cardiac Na+ pumps are crucial.

    Science.gov (United States)

    Blaustein, Mordecai P

    2017-11-01

    Left ventricular hypertrophy is frequently observed in hypertensive patients and is believed to be due to the pressure overload and cardiomyocyte stretch. Three recent reports on mice with genetically engineered Na + pumps, however, have demonstrated that cardiac ouabain-sensitive α 2 -Na + pumps play a key role in the pathogenesis of transaortic constriction-induced hypertrophy. Hypertrophy was delayed/attenuated in mice with mutant, ouabain-resistant α 2 -Na + pumps and in mice with cardiac-selective knockout or transgenic overexpression of α 2 -Na + pumps. The latter, seemingly paradoxical, findings can be explained by comparing the numbers of available (ouabain-free) high-affinity (α 2 ) ouabain-binding sites in wild-type, knockout, and transgenic hearts. Conversely, hypertrophy was accelerated in α 2 -ouabain-resistant (R) mice in which the normally ouabain-resistant α 1 -Na + pumps were mutated to an ouabain-sensitive (S) form (α 1 S/S α 2 R/R or "SWAP" vs. wild-type or α 1 R/R α 2 S/S mice). Furthermore, transaortic constriction-induced hypertrophy in SWAP mice was prevented/reversed by immunoneutralizing circulating endogenous ouabain (EO). These findings show that EO and its receptor, ouabain-sensitive α 2 , are critical factors in pressure overload-induced cardiac hypertrophy. This complements reports linking elevated plasma EO to hypertension, cardiac hypertrophy, and failure in humans and elucidates the underappreciated role of the EO-Na + pump pathway in cardiovascular disease. Copyright © 2017 the American Physiological Society.

  19. Functional check of telescoping transfer pumps

    International Nuclear Information System (INIS)

    Sharpe, C.L.

    1994-01-01

    Activities are defined which constitute a functional check of a telescoping transfer pump (TTP). This report is written to the Procedures group of HLW and particularly applies to those TTP's which are the sole means of emergency transfer from a HLW waste tank

  20. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach

    KAUST Repository

    Bueno-Orovio, Alfonso

    2013-05-15

    The sodium-potassium pump is widely recognized as the principal mechanism for active ion transport across the cellular membrane of cardiac tissue, being responsible for the creation and maintenance of the transarcolemmal sodium and potassium gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology, both directly through its electrogenic nature and indirectly via the regulation of cell homeostasis, make it hard to predict the electrophysiological consequences of reduced sodium-potassium pump activity in cardiac repolarization. In this review, we discuss how recent studies adopting the systems biology approach, through the integration of experimental and modeling methodologies, have identified the sodium-potassium pump as one of the most important ionic mechanisms in regulating key properties of cardiac repolarization and its rate dependence, from subcellular to whole organ levels. These include the role of the pump in the biphasic modulation of cellular repolarization and refractoriness, the rate control of intracellular sodium and calcium dynamics and therefore of the adaptation of repolarization to changes in heart rate, as well as its importance in regulating pro-arrhythmic substrates through modulation of dispersion of repolarization and restitution. Theoretical findings are consistent across a variety of cell types and species including human, and widely in agreement with experimental findings. The novel insights and hypotheses on the role of the pump in cardiac electrophysiology obtained through this integrative approach could eventually lead to novel therapeutic and diagnostic strategies. © 2013 Springer-Verlag Berlin Heidelberg.

  1. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach.

    Science.gov (United States)

    Bueno-Orovio, Alfonso; Sánchez, Carlos; Pueyo, Esther; Rodriguez, Blanca

    2014-02-01

    The sodium-potassium pump is widely recognized as the principal mechanism for active ion transport across the cellular membrane of cardiac tissue, being responsible for the creation and maintenance of the transarcolemmal sodium and potassium gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology, both directly through its electrogenic nature and indirectly via the regulation of cell homeostasis, make it hard to predict the electrophysiological consequences of reduced sodium-potassium pump activity in cardiac repolarization. In this review, we discuss how recent studies adopting the systems biology approach, through the integration of experimental and modeling methodologies, have identified the sodium-potassium pump as one of the most important ionic mechanisms in regulating key properties of cardiac repolarization and its rate dependence, from subcellular to whole organ levels. These include the role of the pump in the biphasic modulation of cellular repolarization and refractoriness, the rate control of intracellular sodium and calcium dynamics and therefore of the adaptation of repolarization to changes in heart rate, as well as its importance in regulating pro-arrhythmic substrates through modulation of dispersion of repolarization and restitution. Theoretical findings are consistent across a variety of cell types and species including human, and widely in agreement with experimental findings. The novel insights and hypotheses on the role of the pump in cardiac electrophysiology obtained through this integrative approach could eventually lead to novel therapeutic and diagnostic strategies.

  2. Functional studies of sodium pump isoforms

    DEFF Research Database (Denmark)

    Clausen, Michael Jakob

    The Na+,K+-ATPase is an essential ion pump found in all animal cells. It uses the energy from ATP hydrolysis to export three Na+ and import two K+, both against their chemical gradients and for Na+ also against the electrical potential. Mammals require four Na+,K+-ATPase isoforms that each have...... unique expression profiles and specialized functional features. We use a Two Electrode Voltage Clamp setup to determine pre-steady-state and steady-state characteristics of each isoform and design chimeras to pin-point the structural elements responsible for observed differences. With this strategy we...

  3. Functional cardiac imaging: positron emission tomography

    International Nuclear Information System (INIS)

    Mullani, N.A.; Gould, K.L.

    1984-01-01

    Dynamic cardiovascular imaging plays a vital role in the diagnosis and treatment of cardiac disease by providing information about the function of the heart. During the past 30 years, cardiovascular imaging has evolved from the simple chest x-ray and fluoroscopy to such sophisticated techniques as invasive cardiac angiography and cinearteriography and, more recently, to noninvasive cardiac CT scanning, nuclear magnetic resonance, and positron emission tomography, which reflect more complex physiologic functions. As research tools, CT, NMR, and PET provide quantitative information on global as well as regional ventricular function, coronary artery stenosis, myocardial perfusion, glucose and fatty acid metabolism, or oxygen utilization, with little discomfort or risk to the patient. As imaging modalities become more sophisticated and more oriented toward clinical application, the prospect of routinely obtaining such functional information about the heart is becoming realistic. However, these advances are double-edged in that the interpretation of functional data is more complex than that of the anatomic imaging familiar to most physicians. They will require an enhanced understanding of the physiologic and biochemical processes, as well as of the instrumentation and techniques for analyzing the data. Of the new imaging modalities that provide functional information about the heart, PET is the most useful because it quantitates the regional distribution of radionuclides in vivo. Clinical applications, interpretation of data, and the impact of PET on our understanding of cardiac pathophysiology are discussed. 5 figures

  4. An analysis of the energetic cost of the branchial and cardiac pumps during sustained swimming in trout

    DEFF Research Database (Denmark)

    FARRELL, AP; STEFFENSEN, JF

    1987-01-01

    Experimental data are available for the oxygen cost of the branchial and cardiac pumps in fish. These data were used to theoretically analyze the relative oxygen cost of these pumps during rest and swimming in rainbow troutSalmo gairdneri. Efficiency of the heart increases with activity and so...... the relative oxygen cost of the cardiac pumps decreased from 4.6% at rest to 1.9% at the critical swimming speed. The relative oxygen cost of the branchial pump is significant in the resting and slowly swimming fish, being 10 to 15% of total oxygen uptake. However, when swimming trout switch to a ram mode...... of ventilation, a considerable saving in oxygen cost is accrued by switching the cost of ventilation from the branchial to the tail musculature. Thus, the relative oxygen cost of the branchial and cardiac pumps actually decreases at critical swimming speed compared to rest and therefore is unlikely to be a major...

  5. Improved Outcome of Cardiac Extracorporeal Membrane Oxygenation in Infants and Children Using Magnetic Levitation Centrifugal Pumps.

    Science.gov (United States)

    Luciani, Giovanni Battista; Hoxha, Stiljan; Torre, Salvatore; Rungatscher, Alessio; Menon, Tiziano; Barozzi, Luca; Faggian, Giuseppe

    2016-01-01

    Extracorporeal membrane oxygenation (ECMO) has traditionally been and, for the most part, still is being performed using roller pumps. Use of first-generation centrifugal pumps has yielded controversial outcomes, perhaps due to mechanical properties of the same and the ensuing risk of hemolysis and renal morbidity. Latest-generation centrifugal pumps, using magnetic levitation (ML), exhibit mechanical properties which may have overcome limitations of first-generation devices. This retrospective study aimed to assess the safety and efficacy of veno-arterial (V-A) ECMO for cardiac indications in neonates, infants, and children, using standard (SP) and latest-generation ML centrifugal pumps. Between 2002 and 2014, 33 consecutive neonates, infants, and young children were supported using V-A ECMO for cardiac indications. There were 21 males and 12 females, with median age of 29 days (4 days-5 years) and a median body weight of 3.2 kg (1.9-18 kg). Indication for V-A ECMO were acute circulatory collapse in ICU or ward after cardiac repair in 16 (49%) patients, failure to wean after repair of complex congenital heart disease in 9 (27%), fulminant myocarditis in 4 (12%), preoperative sepsis in 2 (6%), and refractory tachy-arrhythmias in 2 (6%). Central cannulation was used in 27 (81%) patients and peripheral in 6. Seven (21%) patients were supported with SP and 26 (79%) with ML centrifugal pumps. Median duration of support was 82 h (range 24-672 h), with 26 (79%) patients weaned from support. Three patients required a second ECMO run but died on support. Seventeen (51%) patients required peritoneal dialysis for acute renal failure. Overall survival to discharge was 39% (13/33 patients). All patients with fulminant myocarditis and with refractory arrhythmias were weaned, and five (83%) survived, whereas no patient supported for sepsis survived. Risk factors for hospital mortality included lower (pumps in infants and children yields outcomes absolutely comparable to

  6. Asymmetric Functional Conversion of Eubacterial Light-driven Ion Pumps*

    Science.gov (United States)

    Inoue, Keiichi; Nomura, Yurika; Kandori, Hideki

    2016-01-01

    In addition to the well-known light-driven outward proton pumps, novel ion-pumping rhodopsins functioning as outward Na+ and inward Cl− pumps have been recently found in eubacteria. They convert light energy into transmembrane electrochemical potential difference, similar to the prototypical archaeal H+ pump bacteriorhodopsin (BR) and Cl− pump halorhodopsin (HR). The H+, Na+, and Cl− pumps possess the conserved respective DTE, NDQ, and NTQ motifs in the helix C, which likely serve as their functional determinants. To verify this hypothesis, we attempted functional interconversion between selected pumps from each category by mutagenesis. Introduction of the proton-pumping motif resulted in successful Na+ → H+ functional conversion. Introduction of the respective characteristic motifs with several additional mutations leads to successful Na+ → Cl− and Cl− → H+ functional conversions, whereas remaining conversions (H+ → Na+, H+ → Cl−, Cl− → Na+) were unsuccessful when mutagenesis of 4–6 residues was used. Phylogenetic analysis suggests that a H+ pump is the common ancestor of all of these rhodopsins, from which Cl− pumps emerged followed by Na+ pumps. We propose that successful functional conversions of these ion pumps are achieved exclusively when mutagenesis reverses the evolutionary amino acid sequence changes. Dependence of the observed functional conversions on the direction of evolution strongly suggests that the essential structural mechanism of an ancestral function is retained even after the gain of a new function during natural evolution, which can be evoked by a few mutations. By contrast, the gain of a new function needs accumulation of multiple mutations, which may not be easily reproduced by limited mutagenesis in vitro. PMID:26929409

  7. The relationship between the hypokalaemic response to adrenaline, beta-adrenoceptors, and Na(+)-K+ pumps in skeletal and cardiac muscle membranes in the rabbit

    International Nuclear Information System (INIS)

    Elfellah, M.S.; Reid, J.L.

    1990-01-01

    The hypokalaemic response to adrenaline and the involvement of beta-adrenoceptors and Na(+)-K+ pumps were investigated in control rabbits and animals chronically pretreated with adrenaline. The hypokalaemic response to acute intravenous infusion of adrenaline was significantly reduced when rabbits were chronically pretreated with adrenaline for 10 days. Chronic pretreatment of rabbits with adrenaline significantly reduced the densities for [125I]cyanopindolol and [3H]ouabain binding sites in skeletal muscle and heart. Furthermore, there was a strong positive correlation (r = 0.97, p less than 0.001) between the Bmax for ICYP and [3H]ouabain, in the rabbit heart. Ouabain-sensitive 86Rb uptake and the activity of 3-O-methylfluorescein phosphate phosphatase were used to assess the function of the Na(+)-K+ pump in skeletal and cardiac muscle. There was no significant difference in these functional indices of the Na(+)-K+ pump between the control and adrenaline-pretreated animals, in skeletal or cardiac muscle. Thus, downregulation of the [3H]ouabain binding sites did not appear to be accompanied by reduced function of the Na(+)-K+ pump. Additional investigations are required to confirm further the dissociation between the function of the pump and the ouabain binding sites

  8. Activation of cAMP-dependent signaling induces oxidative modification of the cardiac Na+-K+ pump and inhibits its activity.

    Science.gov (United States)

    White, Caroline N; Liu, Chia-Chi; Garcia, Alvaro; Hamilton, Elisha J; Chia, Karin K M; Figtree, Gemma A; Rasmussen, Helge H

    2010-04-30

    Cellular signaling can inhibit the membrane Na(+)-K(+) pump via protein kinase C (PKC)-dependent activation of NADPH oxidase and a downstream oxidative modification, glutathionylation, of the beta(1) subunit of the pump alpha/beta heterodimer. It is firmly established that cAMP-dependent signaling also regulates the pump, and we have now examined the hypothesis that such regulation can be mediated by glutathionylation. Exposure of rabbit cardiac myocytes to the adenylyl cyclase activator forskolin increased the co-immunoprecipitation of NADPH oxidase subunits p47(phox) and p22(phox), required for its activation, and increased superoxide-sensitive fluorescence. Forskolin also increased glutathionylation of the Na(+)-K(+) pump beta(1) subunit and decreased its co-immunoprecipitation with the alpha(1) subunit, findings similar to those already established for PKC-dependent signaling. The decrease in co-immunoprecipitation indicates a decrease in the alpha(1)/beta(1) subunit interaction known to be critical for pump function. In agreement with this, forskolin decreased ouabain-sensitive electrogenic Na(+)-K(+) pump current (arising from the 3:2 Na(+):K(+) exchange ratio) of voltage-clamped, internally perfused myocytes. The decrease was abolished by the inclusion of superoxide dismutase, the inhibitory peptide for the epsilon-isoform of PKC or inhibitory peptide for NADPH oxidase in patch pipette solutions that perfuse the intracellular compartment. Pump inhibition was also abolished by inhibitors of protein kinase A and phospholipase C. We conclude that cAMP- and PKC-dependent inhibition of the cardiac Na(+)-K(+) pump occurs via a shared downstream oxidative signaling pathway involving NADPH oxidase activation and glutathionylation of the pump beta(1) subunit.

  9. Multi-Function Gas Fired Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Mehdizadeh Momen, Ayyoub [ORNL; Abu-Heiba, Ahmad [ORNL; Vineyard, Edward Allan [ORNL

    2015-11-01

    The aim of this project was to design a residential fuel fired heat pump and further improve efficiency in collaboration with an industry partner – Southwest Gas, the developer of the Nextaire commercial rooftop fuel-fired heat pump. Work started in late 2010. After extensive search for suitable engines, one manufactured by Marathon was selected. Several prototypes were designed and built over the following four years. Design changes were focused on lowering the cost of components and the cost of manufacturing. The design evolved to a final one that yielded the lowest cost. The final design also incorporates noise and vibration reduction measures that were verified to be effective through a customer survey. ETL certification is currently (as of November 2015) underway. Southwest Gas is currently in talks with GTI to reach an agreement through which GTI will assess the commercial viability and potential of the heat pump. Southwest Gas is searching for investors to manufacture the heat pump and introduce it to the market.

  10. Cardiac function and cognition in older community-dwelling cardiac patients.

    Science.gov (United States)

    Eggermont, Laura H P; Aly, Mohamed F A; Vuijk, Pieter J; de Boer, Karin; Kamp, Otto; van Rossum, Albert C; Scherder, Erik J A

    2017-11-01

    Cognitive deficits have been reported in older cardiac patients. An underlying mechanism for these findings may be reduced cardiac function. The relationship between cardiac function as represented by different echocardiographic measures and different cognitive function domains in older cardiac patients remains unknown. An older (≥70 years) heterogeneous group of 117 community-dwelling cardiac patients under medical supervision by a cardiologist underwent thorough echocardiographic assessment including left ventricular ejection fraction, cardiac index, left atrial volume index, left ventricular mass index, left ventricular diastolic function, and valvular calcification. During a home visit, a neuropsychological assessment was performed within 7.1 ± 3.8 months after echocardiographic assessment; the neuropsychological assessment included three subtests of a word-learning test (encoding, recall, recognition) to examine one memory function domain and three executive function tests, including digit span backwards, Trail Making Test B minus A, and the Stroop colour-word test. Regression analyses showed no significant linear or quadratic associations between any of the echocardiographic functions and the cognitive function measures. None of the echocardiographic measures as representative of cardiac function was correlated with memory or executive function in this group of community-dwelling older cardiac patients. These findings contrast with those of previous studies. © 2017 Japanese Psychogeriatric Society.

  11. Cardiac Function Remains Impaired Despite Reversible Cardiac Remodeling after Acute Experimental Viral Myocarditis

    Directory of Open Access Journals (Sweden)

    Peter Moritz Becher

    2017-01-01

    Full Text Available Background. Infection with Coxsackievirus B3 induces myocarditis. We aimed to compare the acute and chronic phases of viral myocarditis to identify the immediate effects of cardiac inflammation as well as the long-term effects after resolved inflammation on cardiac fibrosis and consequently on cardiac function. Material and Methods. We infected C57BL/6J mice with Coxsackievirus B3 and determined the hemodynamic function 7 as well as 28 days after infection. Subsequently, we analyzed viral burden and viral replication in the cardiac tissue as well as the expression of cytokines and matrix proteins. Furthermore, cardiac fibroblasts were infected with virus to investigate if viral infection alone induces profibrotic signaling. Results. Severe cardiac inflammation was determined and cardiac fibrosis was consistently colocalized with inflammation during the acute phase of myocarditis. Declined cardiac inflammation but no significantly improved hemodynamic function was observed 28 days after infection. Interestingly, cardiac fibrosis declined to basal levels as well. Both cardiac inflammation and fibrosis were reversible, whereas the hemodynamic function remains impaired after healed viral myocarditis in C57BL/6J mice.

  12. Profound regulation of Na/K pump activity by transient elevations of cytoplasmic calcium in murine cardiac myocytes.

    Science.gov (United States)

    Lu, Fang-Min; Deisl, Christine; Hilgemann, Donald W

    2016-09-14

    Small changes of Na/K pump activity regulate internal Ca release in cardiac myocytes via Na/Ca exchange. We now show conversely that transient elevations of cytoplasmic Ca strongly regulate cardiac Na/K pumps. When cytoplasmic Na is submaximal, Na/K pump currents decay rapidly during extracellular K application and multiple results suggest that an inactivation mechanism is involved. Brief activation of Ca influx by reverse Na/Ca exchange enhances pump currents and attenuates current decay, while repeated Ca elevations suppress pump currents. Pump current enhancement reverses over 3 min, and results are similar in myocytes lacking the regulatory protein, phospholemman. Classical signaling mechanisms, including Ca-activated protein kinases and reactive oxygen, are evidently not involved. Electrogenic signals mediated by intramembrane movement of hydrophobic ions, such as hexyltriphenylphosphonium (C6TPP), increase and decrease in parallel with pump currents. Thus, transient Ca elevation and Na/K pump inactivation cause opposing sarcolemma changes that may affect diverse membrane processes.

  13. Alterations in cardiac sarcolemmal Ca2+ pump activity during diabetes mellitus

    International Nuclear Information System (INIS)

    Heyliger, C.E.; Prakash, A.; McNeill, J.

    1987-01-01

    Diabetes mellitus is frequently associated with a primary cardiomyopathy. The mechanisms responsible for this heart disease are not clear, but an alteration in myocardial Ca 2+ transport is believed to be involved in its development. Even though sarcolemma plays a crucial role in cellular Ca 2+ transport, little appears to be known about its Ca 2+ transporting capability in the diabetic myocardium. In this regard, the authors have examined the status of the cardiac sarcolemmal Ca 2+ pump during diabetes mellitus. Purified sarcolemmal membranes were isolated from male Wistar diabetic rat hearts 8 wk after streptozotocin injection. Ca 2+ pump activity assessed by measuring its Ca 2+ -stimulated adenosine triphosphatase and Ca 2+ -uptake ability in the absence and presence of calmodulin was significantly depressed in the diabetic myocardium relative to controls. These results did not appear to have been influenced by the minimal sarcoplasmic reticular and mitochondrial contamination of this membrane preparation. Hence, it appears that the sarcolemmal Ca 2+ pump is defective in the diabetic myocardium and may be involved in the altered Ca 2+ transport of the heart during diabetes mellitus

  14. Natriuretic peptides stimulate the cardiac sodium pump via NPR-C-coupled NOS activation

    DEFF Research Database (Denmark)

    William, M.; Hamilton, E.J.; Garcia, A.

    2008-01-01

    Natriuretic peptides (NPs) and their receptors (NPRs) are expressed in the heart, but their effects on myocyte function are poorly understood. Because NPRs are coupled to synthesis of cGMP, an activator of the sarcolemmal Na(+)-K(+) pump, we examined whether atrial natriuretic peptide (ANP) regul...

  15. Novel axolotl cardiac function analysis method using magnetic resonance imaging

    NARCIS (Netherlands)

    Sanches, Pedro Gomes; Op 't Veld, Roel C.; de Graaf, Wolter; Strijkers, Gustav J.; Grüll, Holger

    2017-01-01

    The salamander axolotl is capable of complete regeneration of amputated heart tissue. However, non-invasive imaging tools for assessing its cardiac function were so far not employed. In this study, cardiac magnetic resonance imaging is introduced as a non-invasive technique to image heart function

  16. Novel axolotl cardiac function analysis method using magnetic resonance imaging

    NARCIS (Netherlands)

    Sanches, P.G.; Op ‘t Veld, R.C.; de Graaf, W.; Strijkers, G.J.; Grüll, H.

    2017-01-01

    The salamander axolotl is capable of complete regeneration of amputated heart tissue. However, non-invasive imaging tools for assessing its cardiac function were so far not employed. In this study, cardiac magnetic resonance imaging is introduced as a noninvasive technique to image heart function of

  17. Species-dependent adaptation of the cardiac Na+/K+ pump kinetics to the intracellular Na+ concentration.

    Science.gov (United States)

    Lewalle, Alexandre; Niederer, Steven A; Smith, Nicolas P

    2014-12-15

    The Na(+)/K(+) ATPase (NKA) plays a critical role in maintaining ionic homeostasis and dynamic function in cardiac myocytes, within both the in vivo cell and in silico models. Physiological conditions differ significantly between mammalian species. However, most existing formulations of NKA used to simulate cardiac function in computational models are derived from a broad range of experimental sources spanning many animal species. The resultant inability of these models to discern species-specific features is a significant obstacle to achieving a detailed quantitative and comparative understanding of physiological behaviour in different biological contexts. Here we present a framework for characterising the steady-state NKA current using a biophysical mechanistic model specifically designed to provide a mechanistic explanation of the NKA flux supported by self-consistent species-specific data. We thus compared NKA kinetics specific to guinea- pig and rat ventricular myocytes. We observe that the apparent binding affinity for sodium in the rat is significantly lower, whereas the overall pump cycle rate is doubled, in comparison to the guinea pig. This sensitivity of NKA to its regulatory substrates compensates for the differences in Na(+) concentrations between the cell types. NKA is thereby maintained within its dynamic range over a wide range of pacing frequencies in these two species, despite significant disparities in sodium concentration. Hence, by replacing a conventional generic NKA model with our rat-specific NKA formula into a whole-cell simulation, we have, for the first time, been able to accurately reproduce the action potential duration and the steady-state sodium concentration as functions of pacing frequency. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  18. Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition.

    Science.gov (United States)

    Chia, Karin K M; Liu, Chia-Chi; Hamilton, Elisha J; Garcia, Alvaro; Fry, Natasha A; Hannam, William; Figtree, Gemma A; Rasmussen, Helge H

    2015-08-15

    Protein kinase C can activate NADPH oxidase and induce glutathionylation of the β1-Na(+)-K(+) pump subunit, inhibiting activity of the catalytic α-subunit. To examine if signaling of nitric oxide-induced soluble guanylyl cyclase (sGC)/cGMP/protein kinase G can cause Na(+)-K(+) pump stimulation by counteracting PKC/NADPH oxidase-dependent inhibition, cardiac myocytes were exposed to ANG II to activate NADPH oxidase and inhibit Na(+)-K(+) pump current (Ip). Coexposure to 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) to stimulate sGC prevented the decrease of Ip. Prevention of the decrease was abolished by inhibition of protein phosphatases (PP) 2A but not by inhibition of PP1, and it was reproduced by an activator of PP2A. Consistent with a reciprocal relationship between β1-Na(+)-K(+) pump subunit glutathionylation and pump activity, YC-1 decreased ANG II-induced β1-subunit glutathionylation. The decrease induced by YC-1 was abolished by a PP2A inhibitor. YC-1 decreased phosphorylation of the cytosolic p47(phox) NADPH oxidase subunit and its coimmunoprecipitation with the membranous p22(phox) subunit, and it decreased O2 (·-)-sensitive dihydroethidium fluorescence of myocytes. Addition of recombinant PP2A to myocyte lysate decreased phosphorylation of p47(phox) indicating the subunit could be a substrate for PP2A. The effects of YC-1 to decrease coimmunoprecipitation of p22(phox) and p47(phox) NADPH oxidase subunits and decrease β1-Na(+)-K(+) pump subunit glutathionylation were reproduced by activation of nitric oxide-dependent receptor signaling. We conclude that sGC activation in cardiac myocytes causes a PP2A-dependent decrease in NADPH oxidase activity and a decrease in β1 pump subunit glutathionylation. This could account for pump stimulation with neurohormonal oxidative stress expected in vivo. Copyright © 2015 the American Physiological Society.

  19. Genetic Polymorphisms in Endothelin-1 as Predictors for Long-Term Survival and the Cardiac Index in Patients Undergoing On-Pump Cardiac Surgery.

    Directory of Open Access Journals (Sweden)

    Ashham Mansur

    Full Text Available Genetic variants within the endothelin-1 gene (EDN1 have been associated with several cardiovascular diseases and may act as genetic prognostic markers. Here, we explored the overall relevance of EDN1 polymorphisms for long-term survival in patients undergoing on-pump cardiac surgery. A prospectively collected cohort of 455 Caucasian patients who underwent cardiac surgery with cardiopulmonary bypass was followed up for 5 years. The obtained genotypes and inferred haplotypes were analyzed for their associations with the five-year mortality rate (primary endpoint. The EDN1 T-1370G and K198N genotype distributions did not deviate from Hardy-Weinberg equilibrium and the major allele frequencies were 83% and 77%, respectively. The cardiovascular risk factors were equally distributed in terms of the different genotypes and haplotypes associated with the two polymorphisms. The five-year mortality rate did not differ among the different EDN1 T-1370G and K198N genotypes and haplotypes. Haplotype analysis revealed that carriers of the G-T (compound EDN1 T-1370G G/K198N T haplotype had a higher cardiac index than did non-carriers (p = 0.0008; however, this difference did not reach significance after adjusting for multiple testing. The results indicate that common variations in EDN1 do not act as prognostic markers for long-term survival in patients undergoing on-pump cardiac surgery.

  20. Evaluation of cardiac function in active and hibernating grizzly bears.

    Science.gov (United States)

    Nelson, O Lynne; McEwen, Margaret-Mary; Robbins, Charles T; Felicetti, Laura; Christensen, William F

    2003-10-15

    To evaluate cardiac function parameters in a group of active and hibernating grizzly bears. Prospective study. 6 subadult grizzly bears. Indirect blood pressure, a 12-lead ECG, and a routine echocardiogram were obtained in each bear during the summer active phase and during hibernation. All measurements of myocardial contractility were significantly lower in all bears during hibernation, compared with the active period. Mean rate of circumferential left ventricular shortening, percentage fractional shortening, and percentage left ventricular ejection fraction were significantly lower in bears during hibernation, compared with the active period. Certain indices of diastolic function appeared to indicate enhanced ventricular compliance during the hibernation period. Mean mitral inflow ratio and isovolumic relaxation time were greater during hibernation. Heart rate was significantly lower for hibernating bears, and mean cardiac index was lower but not significantly different from cardiac index during the active phase. Contrary to results obtained in hibernating rodent species, cardiac index was not significantly correlated with heart rate. Cardiac function parameters in hibernating bears are opposite to the chronic bradycardic effects detected in nonhibernating species, likely because of intrinsic cardiac muscle adaptations during hibernation. Understanding mechanisms and responses of the myocardium during hibernation could yield insight into mechanisms of cardiac function regulation in various disease states in nonhibernating species.

  1. β(3) adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification.

    Science.gov (United States)

    Bundgaard, Henning; Liu, Chia-Chi; Garcia, Alvaro; Hamilton, Elisha J; Huang, Yifei; Chia, Karin K M; Hunyor, Stephen N; Figtree, Gemma A; Rasmussen, Helge H

    2010-12-21

    inhibition of L-type Ca(2+) current contributes to negative inotropy of β(3) adrenergic receptor (β(3) AR) activation, but effects on other determinants of excitation-contraction coupling are not known. Of these, the Na(+)-K(+) pump is of particular interest because of adverse effects attributed to high cardiac myocyte Na(+) levels and upregulation of the β(3) AR in heart failure. we voltage clamped rabbit ventricular myocytes and identified electrogenic Na(+)-K(+) pump current (I(p)) as the shift in holding current induced by ouabain. The synthetic β(3) AR agonists BRL37344 and CL316,243 and the natural agonist norepinephrine increased I(p). Pump stimulation was insensitive to the β(1)/β(2) AR antagonist nadolol and the protein kinase A inhibitor H-89 but sensitive to the β(3) AR antagonist L-748,337. Blockade of nitric oxide synthase abolished pump stimulation and an increase in fluorescence of myocytes loaded with a nitric oxide-sensitive dye. Exposure of myocytes to β(3) AR agonists decreased β(1) Na(+)-K(+) pump subunit glutathionylation, an oxidative modification that causes pump inhibition. The in vivo relevance of this was indicated by an increase in myocardial β(1) pump subunit glutathionylation with elimination of β(3) AR-mediated signaling in β(3) AR(-/-) mice. The in vivo effect of BRL37344 on contractility of the nonfailing and failing heart in sheep was consistent with a beneficial effect of Na(+)-K(+) pump stimulation in heart failure. the β(3) AR mediates decreased β(1) subunit glutathionylation and Na(+)-K(+) pump stimulation in the heart. Upregulation of the receptor in heart failure may be a beneficial mechanism that facilitates the export of excess Na(+).

  2. Cardiac telomere length in heart development, function, and disease.

    Science.gov (United States)

    Booth, S A; Charchar, F J

    2017-07-01

    Telomeres are repetitive nucleoprotein structures at chromosome ends, and a decrease in the number of these repeats, known as a reduction in telomere length (TL), triggers cellular senescence and apoptosis. Heart disease, the worldwide leading cause of death, often results from the loss of cardiac cells, which could be explained by decreases in TL. Due to the cell-specific regulation of TL, this review focuses on studies that have measured telomeres in heart cells and critically assesses the relationship between cardiac TL and heart function. There are several lines of evidence that have identified rapid changes in cardiac TL during the onset and progression of heart disease as well as at critical stages of development. There are also many factors, such as the loss of telomeric proteins, oxidative stress, and hypoxia, that decrease cardiac TL and heart function. In contrast, antioxidants, calorie restriction, and exercise can prevent both cardiac telomere attrition and the progression of heart disease. TL in the heart is also indicative of proliferative potential and could facilitate the identification of cells suitable for cardiac rejuvenation. Although these findings highlight the involvement of TL in heart function, there are important questions regarding the validity of animal models, as well as several confounding factors, that need to be considered when interpreting results and planning future research. With these in mind, elucidating the telomeric mechanisms involved in heart development and the transition to disease holds promise to prevent cardiac dysfunction and potentiate regeneration after injury. Copyright © 2017 the American Physiological Society.

  3. Bone Morphogenetic Protein 9 Reduces Cardiac Fibrosis and Improves Cardiac Function in Heart Failure.

    Science.gov (United States)

    Morine, Kevin J; Qiao, Xiaoying; York, Sam; Natov, Peter S; Paruchuri, Vikram; Zhang, Yali; Aronovitz, Mark J; Karas, Richard H; Kapur, Navin K

    2018-02-27

    Background -Heart failure is a growing cause of morbidity and mortality worldwide. Transforming growth factor beta (TGF-β1) promotes cardiac fibrosis, but also activates counter-regulatory pathways that serve to regulate TGF-β1 activity in heart failure. Bone morphogenetic protein 9 (BMP9) is a member of the TGFβ family of cytokines and signals via the downstream effector protein Smad1. Endoglin is a TGFβ co-receptor that promotes TGF-β1 signaling via Smad3 and binds BMP9 with high affinity. We hypothesized that BMP9 limits cardiac fibrosis by activating Smad1 and attenuating Smad3 and further that neutralizing endoglin activity promotes BMP9 activity. Methods -We examined BMP9 expression and signaling in human cardiac fibroblasts and human subjects with heart failure. We utilized the thoracic aortic constriction (TAC) induced model of heart failure to evaluate the functional effect of BMP9 signaling on cardiac remodeling. Results -BMP9 expression is increased in the circulation and left ventricle (LV) of human subjects with heart failure and is expressed by cardiac fibroblasts. Next, we observed that BMP9 attenuates Type I collagen synthesis in human cardiac fibroblasts using recombinant human BMP9 and an siRNA approach. In BMP9 -/- mice subjected to TAC, loss of BMP9 activity promotes cardiac fibrosis, impairs LV function, and increases LV levels of phosphorylated Smad3 (pSmad3), not pSmad1. In contrast, treatment of wild-type mice subjected to TAC with recombinant BMP9 limits progression of cardiac fibrosis, improves LV function, enhances myocardial capillary density, and increases LV levels of pSmad1, not pSmad3 compared to vehicle treated controls. Since endoglin binds BMP9 with high affinity, we explored the effect of reduced endoglin activity on BMP9 activity. Neutralizing endoglin activity in human cardiac fibroblasts or in wild-type mice subjected to TAC induced heart failure limits collagen production, increases BMP9 protein levels, and increases

  4. Assessment of hydraulic performance and biocompatibility of a MagLev centrifugal pump system designed for pediatric cardiac or cardiopulmonary support.

    Science.gov (United States)

    Dasse, Kurt A; Gellman, Barry; Kameneva, Marina V; Woolley, Joshua R; Johnson, Carl A; Gempp, Thomas; Marks, John D; Kent, Stella; Koert, Andrew; Richardson, J Scott; Franklin, Steve; Snyder, Trevor A; Wearden, Peter; Wagner, William R; Gilbert, Richard J; Borovetz, Harvey S

    2007-01-01

    The treatment of children with life-threatening cardiac and cardiopulmonary failure is a large and underappreciated public health concern. We have previously shown that the CentriMag is a magnetically levitated centrifugal pump system, having the utility for treating adults and large children (1,500 utilized worldwide). We present here the PediVAS, a pump system whose design was modified from the CentriMag to meet the physiological requirements of young pediatric and neonatal patients. The PediVAS is comprised of a single-use centrifugal blood pump, reusable motor, and console, and is suitable for right ventricular assist device (RVAD), left ventricular assist device (LVAD), biventricular assist device (BVAD), or extracorporeal membrane oxygenator (ECMO) applications. It is designed to operate without bearings, seals and valves, and without regions of blood stasis, friction, or wear. The PediVAS pump is compatible with the CentriMag hardware, although the priming volume was reduced from 31 to 14 ml, and the port size reduced from 3/8 to (1/4) in. For the expected range of pediatric flow (0.3-3.0 L/min), the PediVAS exhibited superior hydraulic efficiency compared with the CentriMag. The PediVAS was evaluated in 14 pediatric animals for up to 30 days, demonstrating acceptable hydraulic function and hemocompatibility. The current results substantiate the performance and biocompatibility of the PediVAS cardiac assist system and are likely to support initiation of a US clinical trial in the future.

  5. Na/K pump inactivation, subsarcolemmal Na measurements, and cytoplasmic ion turnover kinetics contradict restricted Na spaces in murine cardiac myocytes

    OpenAIRE

    Lu, Fang-Min; Hilgemann, Donald W.

    2017-01-01

    The Na/K pump exports cytoplasmic Na ions while importing K ions, and its activity is thought to be affected by restricted intracellular Na diffusion in cardiac myocytes. Lu and Hilgemann find instead that the pump can enter an inactivated state and that inactivation can be relieved by cytoplasmic Na.

  6. PUMPS

    Science.gov (United States)

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  7. The effects of malnutrition on cardiac function in African children.

    Science.gov (United States)

    Silverman, Jonathan A; Chimalizeni, Yamikani; Hawes, Stephen E; Wolf, Elizabeth R; Batra, Maneesh; Khofi, Harriet; Molyneux, Elizabeth M

    2016-02-01

    Cardiac dysfunction may contribute to high mortality in severely malnourished children. Our objective was to assess the effect of malnutrition on cardiac function in hospitalised African children. Prospective cross-sectional study. Public referral hospital in Blantyre, Malawi. We enrolled 272 stable, hospitalised children ages 6-59 months, with and without WHO-defined severe acute malnutrition. Cardiac index, heart rate, mean arterial pressure, stroke volume index and systemic vascular resistance index were measured by the ultrasound cardiac output monitor (USCOM, New South Wales, Australia). We used linear regression with generalised estimating equations controlling for age, sex and anaemia. Our primary outcome, cardiac index, was similar between those with and without severe malnutrition: difference=0.22 L/min/m(2) (95% CI -0.08 to 0.51). No difference was found in heart rate or stroke volume index. However, mean arterial pressure and systemic vascular resistance index were lower in children with severe malnutrition: difference=-8.6 mm Hg (95% CI -12.7 to -4.6) and difference=-200 dyne s/cm(5)/m(2) (95% CI -320 to -80), respectively. In this largest study to date, we found no significant difference in cardiac function between hospitalised children with and without severe acute malnutrition. Further study is needed to determine if cardiac function is diminished in unstable malnourished children. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Cardiac dimensions and function in female handball players.

    Science.gov (United States)

    Malmgren, A; Dencker, M; Stagmo, M; Gudmundsson, P

    2015-04-01

    Long-term intensive endurance training leads to increased left ventricular mass and increased left ventricular end-diastolic and left atrial end-systolic diameters. Different types of sports tend to give rise to distinct morphological forms of the athlete's heart. However, the sport-specific aspects have not been fully investigated in female athletes. The purpose of the present study was to investigate differences in left and right cardiac dimensions, cardiac volumes, and systolic and diastolic function in elite female handball players compared to sedentary controls. A cross-sectional study of 33 elite female handball players was compared to 33 matched sedentary controls. Mean age was 21.5±2 years. The subjects underwent echocardiography examinations, both 2-dimensional (2DE) and 3-dimensional (3DE). Cardiac dimensions and volumes were quantified using M-mode, 2DE and 3DE. Systolic and diastolic left ventricular functions were also evaluated. All cardiac dimensions and volumes were adjusted for body surface area (BSA). Left atrium and left ventricle volumes were significantly (Phandball players compared with sedentary controls. Even right atrium area as well as right ventricular end-diastolic and end-systolic area were significantly (Phandball players. Significant differences were observed in three out of five systolic parameters. Most diastolic function parameters did not differ between the two groups. The findings from the present study suggest that similar cardiac remodeling takes place in elite female handball players as it does in athletes pursuing endurance or team game sports.

  9. Mammalian enabled (Mena) is a critical regulator of cardiac function.

    Science.gov (United States)

    Aguilar, Frédérick; Belmonte, Stephen L; Ram, Rashmi; Noujaim, Sami F; Dunaevsky, Olga; Protack, Tricia L; Jalife, Jose; Todd Massey, H; Gertler, Frank B; Blaxall, Burns C

    2011-05-01

    Mammalian enabled (Mena) of the Drosophila enabled/vasodilator-stimulated phosphoprotein gene family is a cytoskeletal protein implicated in actin regulation and cell motility. Cardiac Mena expression is enriched in intercalated discs (ICD), the critical intercellular communication nexus between adjacent muscle cells. We previously identified Mena gene expression to be a key predictor of human and murine heart failure (HF). To determine the in vivo function of Mena in the heart, we assessed Mena protein expression in multiple HF models and characterized the effects of genetic Mena deletion on cardiac structure and function. Immunoblot analysis revealed significant upregulation of Mena protein expression in left ventricle tissue from patients with end-stage HF, calsequestrin-overexpressing mice, and isoproterenol-infused mice. Characterization of the baseline cardiac function of adult Mena knockout mice (Mena(-/-)) via echocardiography demonstrated persistent cardiac dysfunction, including a significant reduction in percent fractional shortening compared with wild-type littermates. Electrocardiogram PR and QRS intervals were significantly prolonged in Mena(-/-) mice, manifested by slowed conduction on optical mapping studies. Ultrastructural analysis of Mena(-/-) hearts revealed disrupted organization and widening of ICD structures, mislocalization of the gap junction protein connexin 43 (Cx43) to the lateral borders of cardiomyoycytes, and increased Cx43 expression. Furthermore, the expression of vinculin (an adherens junction protein) was significantly reduced in Mena(-/-) mice. We report for the first time that genetic ablation of Mena results in cardiac dysfunction, highlighted by diminished contractile performance, disrupted ICD structure, and slowed electrical conduction.

  10. Valveless pumping mechanics of the embryonic heart during cardiac looping: Pressure and flow through micro-PIV.

    Science.gov (United States)

    Bark, D L; Johnson, B; Garrity, D; Dasi, L P

    2017-01-04

    Cardiovascular development is influenced by the flow-induced stress environment originating from cardiac biomechanics. To characterize the stress environment, it is necessary to quantify flow and pressure. Here, we quantify the flow field in a developing zebrafish heart during the looping stage through micro-particle imaging velocimetry and by analyzing spatiotemporal plots. We further build upon previous methods to noninvasively quantify the pressure field at a low Reynolds number using flow field data for the first time, while also comparing the impact of viscosity models. Through this method, we show that the atrium builds up pressure to ~0.25mmHg relative to the ventricle during atrial systole and that atrial expansion creates a pressure difference of ~0.15mmHg across the atrium, resulting in efficient cardiac pumping. With these techniques, it is possible to noninvasively fully characterize hemodynamics during heart development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Qualitative and quantitative analyses of the morphological-dynamics of early cardiac pump action using video densidometry and optical coherence tomography (OCT)

    DEFF Research Database (Denmark)

    Männer, Jörg; Thrane, Lars; Thommes, Jan

    2010-01-01

    a matter of dispute. Uncovering of the pumping mechanism of tubular embryonic hearts requires detailed information about the hemodynamics as well as morphological dynamics of their pump action. We have therefore analyzed the morphological dynamics of cardiac pump action in chick embryos (HH-stages 16...... have recorded striking differences in the contraction behavior (e.g. contraction speed, duration of systolic occlusion of heart lumen) of the embryonic heart segments (common atrium, AV-canal, embryonic ventricles, outflow tract). Moreover, we show, for the first time, the pump action of tubular...

  12. Pump

    International Nuclear Information System (INIS)

    Mole, C.J.

    1983-01-01

    An electromagnetic pump for circulating liquid -metal coolant through a nuclear reactor wherein opposite walls of a pump duct serve as electrodes to transmit current radially through the liquid-metal in the ducts. A circumferential electric field is supplied to the liquid-metal by a toroidal electromagnet which has core sections interposed between the ducts. The windings of the electromagnet are composed of metal which is superconductive at low temperatures and the electromagnet is maintained at a temperature at which it is superconductive by liquid helium which is fed through the conductors which supply the excitation for the electromagnet. The walls of the ducts joining the electrodes include metal plates insulated from the electrodes backed up by insulators so that they are capable of withstanding the pressure of the liquid-metal. These composite wall structures may also be of thin metal strips of low electrical conductivity backed up by sturdy insulators. (author)

  13. EANM/ESC guidelines for radionuclide imaging of cardiac function

    DEFF Research Database (Denmark)

    Hesse, B.; Lindhardt, T.B.; Acampa, W.

    2008-01-01

    radionuclide ventriculography, gated myocardial perfusion scintigraphy, gated PET, and studies with non-imaging devices for the evaluation of cardiac function. The items covered are presented in 11 sections: clinical indications, radiopharmaceuticals and dosimetry, study acquisition, RV EF, LV EF, LV volumes...

  14. [Structure and functional organization of integrated cardiac intensive care].

    Science.gov (United States)

    Scherillo, Marino; Miceli, Domenico; Tubaro, Marco; Guiducci, Umberto

    2007-05-01

    The early invasive strategy for the treatment of acute coronary syndromes and the increasing number of older and sicker patients requiring prolonged and more complex intensive care have induced many changes in the function of the intensive care units. These changes include the statement that specially trained cardiologists and cardiac nurses who can manage patients with acute cardiac conditions should staff the intensive care units. This document indicates the structure of the units and specific recommendations for the number of beds, monitoring system, respirators, pacemaker/defibrillators and additional equipment.

  15. β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade.

    Science.gov (United States)

    Karimi Galougahi, Keyvan; Liu, Chia-Chi; Garcia, Alvaro; Fry, Natasha A; Hamilton, Elisha J; Figtree, Gemma A; Rasmussen, Helge H

    2015-09-01

    Dysregulated nitric oxide (NO)- and superoxide (O2 (·-))-dependent signaling contributes to the pathobiology of diabetes-induced cardiovascular complications. We examined if stimulation of β3-adrenergic receptors (β3-ARs), coupled to endothelial NO synthase (eNOS) activation, relieves oxidative inhibition of eNOS and the Na(+)-K(+) pump induced by hyperglycemia. Hyperglycemia was established in male New Zealand White rabbits by infusion of the insulin receptor antagonist S961 for 7 days. Hyperglycemia increased tissue and blood indexes of oxidative stress. It induced glutathionylation of the Na(+)-K(+) pump β1-subunit in cardiac myocytes, an oxidative modification causing pump inhibition, and reduced the electrogenic pump current in voltage-clamped myocytes. Hyperglycemia also increased glutathionylation of eNOS, which causes its uncoupling, and increased coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits, consistent with NADPH oxidase activation. Blocking translocation of p47(phox) to p22(phox) with the gp91ds-tat peptide in cardiac myocytes ex vivo abolished the hyperglycemia-induced increase in glutathionylation of the Na(+)-K(+) pump β1-subunit and decrease in pump current. In vivo treatment with the β3-AR agonist CL316243 for 3 days eliminated the increase in indexes of oxidative stress, decreased coimmunoprecipitation of p22(phox) with p47(phox), abolished the hyperglycemia-induced increase in glutathionylation of eNOS and the Na(+)-K(+) pump β1-subunit, and abolished the decrease in pump current. CL316243 also increased coimmunoprecipitation of glutaredoxin-1 with the Na(+)-K(+) pump β1-subunit, which may reflect facilitation of deglutathionylation. In vivo β3-AR activation relieves oxidative inhibition of key cardiac myocyte proteins in hyperglycemia and may be effective in targeting the deleterious cardiac effects of diabetes. Copyright © 2015 the American Physiological Society.

  16. Autoimmune Response Confers Decreased Cardiac Function in ...

    African Journals Online (AJOL)

    inflammatory response; rather, autoimmune response would keep affecting decreased heart function in. RHD patients who ... untreated children. Nearly 30 - 45 % of the affected children could ..... Technology Department of Anhui Province (PR.

  17. Evaluation of left ventricular function by cardiac CT

    International Nuclear Information System (INIS)

    Naito, Hiroaki; Kozuka, Takahiro

    1982-01-01

    Left ventricular function was evaluated by CT, which was compared with the data of left ventriculography for various cardiac diseases. The end diastolic volume of the left ventricle can be readily computed from CT, with a satisfactory correlation with that of left ventriculography (r = 0.95). The left ventricular ejection fraction, calculated from the areal ratio of the left ventricular lumen in end-diastolic imaging to that in end-sytolic imaging, also roughly reflects left ventricular contractile function, but shows correlation with left ventriculography by only r = 0.79. Although the cardiac output is not sensitive for functional evaluation, it can be directly calculated by means of dynamic scanning and shows a satisfactory correlation with the ear piece pigment dilution (r = 0.85). Evaluation of left ventricular function by CT shows a high precision in comparison with left ventriculography, but still lacks temporal resolving power. (Chiba, N.)

  18. Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes

    Directory of Open Access Journals (Sweden)

    Florian Hiermeier

    2017-11-01

    Full Text Available Valveless pumping phenomena (peristalsis, Liebau-effect can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts.

  19. Cardiac structure and function in Cushing's syndrome: a cardiac magnetic resonance imaging study.

    Science.gov (United States)

    Kamenický, Peter; Redheuil, Alban; Roux, Charles; Salenave, Sylvie; Kachenoura, Nadjia; Raissouni, Zainab; Macron, Laurent; Guignat, Laurence; Jublanc, Christel; Azarine, Arshid; Brailly, Sylvie; Young, Jacques; Mousseaux, Elie; Chanson, Philippe

    2014-11-01

    Patients with Cushing's syndrome have left ventricular (LV) hypertrophy and dysfunction on echocardiography, but echo-based measurements may have limited accuracy in obese patients. No data are available on right ventricular (RV) and left atrial (LA) size and function in these patients. The objective of the study was to evaluate LV, RV, and LA structure and function in patients with Cushing's syndrome by means of cardiac magnetic resonance, currently the reference modality in assessment of cardiac geometry and function. Eighteen patients with active Cushing's syndrome and 18 volunteers matched for age, sex, and body mass index were studied by cardiac magnetic resonance. The imaging was repeated in the patients 6 months (range 2-12 mo) after the treatment of hypercortisolism. Compared with controls, patients with Cushing's syndrome had lower LV, RV, and LA ejection fractions (P Cushing's syndrome is associated with subclinical biventricular and LA systolic dysfunctions that are reversible after treatment. Despite skeletal muscle atrophy, Cushing's syndrome patients have an increased LV mass, reversible upon correction of hypercortisolism.

  20. Regulatory effects of phospholamban on cardiac sarcoplasmic reticulum function

    International Nuclear Information System (INIS)

    Kim, Hae Won.

    1989-01-01

    In this thesis, the author reports the effect of phospholamban on: (a) Ca 2+ release by cardiac SR and (b) the Ca 2+ -ATPase activity in a purified reconstituted system. Phosphorylation of phospholamban by Ca 2+ · calmodulin-dependent protein kinase had no appreciable effect on the initial rates of Ca 2+ release from cardiac SR vesicles loaded under passive conditions and on the apparent 45 Ca 2+ - 40 Ca 2+ exchange from cardiac SR vesicles loaded under active conditions. us, it appears that Ca 2+ · calmodulin-dependent phosphorylation of phospholamban is not involved in the regulation of Ca 2+ release and 45 Ca 2+-40 Ca 2+ exchange. To determine the molecular mechanism by which phospholamban regulates the Ca 2+ pump, a reconstituted system was developed, using a freeze-thaw sonication procedure. The Ca 2+ -ATPase was purified by a method which yields an active enzyme preparation essentially free of phospholamban. The best rates of Ca 2+ uptake were obtained when cholate and phosphatidylcholine (PC) were used at a ratio of cholate/PC/Ca 2 + -ATPase of 2/80/1. The maximal rates of Ca 2+ Uptake were 700 nmol/min/mg reconstituted vesicles compared to 800 nmol/min/mg SR vesicles. The EC 50 values for Ca 2+ were 0.05 μM for both Ca 2+ uptake and Ca 2+ -ATPase activity in the reconstituted vesicles compared to 0.63 μM Ca 2+ in native SR vesicles. To determine the effect of phospholamban on the Ca + -ATPase activity in the reconstituted vesicles, purified phospholamban was added to the cholate/Ca 2+ -ATPase mixture prior to combining it with liposomes

  1. Cardiac Autonomic Function Is Associated With the Coronary Microcirculatory Function in Patients With Type 2 Diabetes

    DEFF Research Database (Denmark)

    von Scholten, Bernt Johan; Hansen, Christian Stevns; Hasbak, Philip

    2016-01-01

    Cardiac autonomic dysfunction and cardiac microvascular dysfunction are diabetic complications associated with increased mortality, but the association between these has been difficult to assess. We applied new and sensitive methods to assess this in patients with type 2 diabetes mellitus (T2DM......). In a cross-sectional design, coronary flow reserve (CFR) assessed by cardiac (82)Rb-positron emission tomography/computed tomography, cardiac autonomic reflex tests, and heart rate variability indices were performed in 55 patients with T2DM, without cardiovascular disease, and in 28 control subjects. Cardiac....... A heart rate variability index, reflecting sympathetic and parasympathetic function (low-frequency power), and the late heart-to-mediastinum ratio, reflecting the function of adrenergic receptors and sympathetic activity, were positively correlated with CFR after adjustment for age and heart rate...

  2. Flow Rate In Microfluidic Pumps As A Function Of Tension and Pump Motor Head Speed

    Science.gov (United States)

    Irwin, Anthony; McBride, Krista

    2015-03-01

    As the use of microfluidic devices has become more common in recent years the need for standardization within the pump systems has grown. The pumps are ball bearing rotor microfluidic pumps and work off the idea of peristalsis. The rapid contraction and relaxation propagating down a tube or a microfluidic channel. The ball bearings compress the tube (occlusion) and move along part of the tube length forcing fluid to move inside of the tube in the same direction of the ball bearings. When the ball bearing rolls off the area occupied by the microfluidic channel, its walls and ceiling undergo restitution and a pocket of low pressure is briefly formed pulling more of the liquid into the pump system. Before looking to standardize the pump systems it must be known how the tension placed by the pumps bearing heads onto the PDMS inserts channels affect the pumps performance (mainly the flow rate produced). The relationship of the speed at which the bearings on the motor head spin and the flow rate must also be established. This research produced calibration curves for flow rate vs. tension and rpm. These calibration curves allow the devices to be set to optimal user settings by simply varying either the motor head tension or the motor head speed. I would like to acknowledge the help and support of Vanderbilt University SyBBURE program, Christina Marasco, Stacy Sherod, Franck Block and Krista McBride.

  3. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca exchangers.

    Science.gov (United States)

    Barkla, Bronwyn J; Hirschi, Kendal D; Pittman, Jon K

    2008-05-01

    Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+)exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a role in mediating the plant's stress response. A common feature of these mutants was the perturbation of H(+)-ATPase activity at both the tonoplast and the plasma membrane, suggesting a tight interplay between the Ca(2+)/H(+) exchangers and H(+) pumps. We speculate that indirect regulation of proton flux by the exchangers may be as important as the direct regulation of Ca(2+) flux. These results suggest cautious interpretation of mutant Ca(2+)/H(+) exchanger phenotypes that may be due to either perturbed Ca(2+) or H(+) transport.

  4. Exercise improves cardiac autonomic function in obesity and diabetes.

    Science.gov (United States)

    Voulgari, Christina; Pagoni, Stamatina; Vinik, Aaron; Poirier, Paul

    2013-05-01

    Physical activity is a key element in the prevention and management of obesity and diabetes. Regular physical activity efficiently supports diet-induced weight loss, improves glycemic control, and can prevent or delay type 2 diabetes diagnosis. Furthermore, physical activity positively affects lipid profile, blood pressure, reduces the rate of cardiovascular events and associated mortality, and restores the quality of life in type 2 diabetes. However, recent studies have documented that a high percentage of the cardiovascular benefits of exercise cannot be attributed solely to enhanced cardiovascular risk factor modulation. Obesity in concert with diabetes is characterized by sympathetic overactivity and the progressive loss of cardiac parasympathetic influx. These are manifested via different pathogenetic mechanisms, including hyperinsulinemia, visceral obesity, subclinical inflammation and increased thrombosis. Cardiac autonomic neuropathy is an underestimated risk factor for the increased cardiovascular morbidity and mortality associated with obesity and diabetes. The same is true for the role of physical exercise in the restoration of the heart cardioprotective autonomic modulation in these individuals. This review addresses the interplay of cardiac autonomic function in obesity and diabetes, and focuses on the importance of exercise in improving cardiac autonomic dysfunction. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. PRINCIPLES OF DEVELOPMENT MATHEMATICAL MODEL FOR RESEARCHING OF NONPULSATILE FLOW PUMP AND CARDIAC SYSTEM

    Directory of Open Access Journals (Sweden)

    I. V. Bykov

    2013-01-01

    Full Text Available Aim. The presented research uncovers the using of mathematical modeling methods for cardio-vascular system and axial blood pump interaction analysis under heart failure with combined valve pathology. The research will pro- vide data for automated pump control algorithm synthesis. Materials and methods. Mathematical model is build up by using experiments results from mock cardio-vascular circulation loop and mathematical representation of Newtonian fluid dynamics in pulsing circulation loop. The model implemented in modeling environment Simulink (Matlab. Results. Authors implemented mathematical model which describe cardio-vascular system and left-ven- tricular assistive device interaction for intact conditions. Values of parameters for intact conditions were acquired in the experiments on animals with implanted axial pump, experiments were conducted in FRCTAO. The model was verified by comparison of instantaneous blood flowrate values in experiments and in model. Conclusion. The paper present implemented mathematical model of cardio-vascular system and axial pump interaction for intact conditions, where the pump connected between left ventricle and aorta. In the next part of research authors will use the presented model to evaluate using the biotechnical system in conditions of heart failure and valve pathology. 

  6. Proangiogenic scaffolds as functional templates for cardiac tissue engineering

    OpenAIRE

    Madden, Lauran R.; Mortisen, Derek J.; Sussman, Eric M.; Dupras, Sarah K.; Fugate, James A.; Cuy, Janet L.; Hauch, Kip D.; Laflamme, Michael A.; Murry, Charles E.; Ratner, Buddy D.

    2010-01-01

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-s...

  7. Novel axolotl cardiac function analysis method using magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Pedro Gomes Sanches

    Full Text Available The salamander axolotl is capable of complete regeneration of amputated heart tissue. However, non-invasive imaging tools for assessing its cardiac function were so far not employed. In this study, cardiac magnetic resonance imaging is introduced as a non-invasive technique to image heart function of axolotls. Three axolotls were imaged with magnetic resonance imaging using a retrospectively gated Fast Low Angle Shot cine sequence. Within one scanning session the axolotl heart was imaged three times in all planes, consecutively. Heart rate, ejection fraction, stroke volume and cardiac output were calculated using three techniques: (1 combined long-axis, (2 short-axis series, and (3 ultrasound (control for heart rate only. All values are presented as mean ± standard deviation. Heart rate (beats per minute among different animals was 32.2±6.0 (long axis, 30.4±5.5 (short axis and 32.7±4.9 (ultrasound and statistically similar regardless of the imaging method (p > 0.05. Ejection fraction (% was 59.6±10.8 (long axis and 48.1±11.3 (short axis and it differed significantly (p = 0.019. Stroke volume (μl/beat was 133.7±33.7 (long axis and 93.2±31.2 (short axis, also differed significantly (p = 0.015. Calculations were consistent among the animals and over three repeated measurements. The heart rate varied depending on depth of anaesthesia. We described a new method for defining and imaging the anatomical planes of the axolotl heart and propose one of our techniques (long axis analysis may prove useful in defining cardiac function in regenerating axolotl hearts.

  8. Pim-1 Kinase Phosphorylates Cardiac Troponin I and Regulates Cardiac Myofilament Function

    Directory of Open Access Journals (Sweden)

    Ni Zhu

    2018-03-01

    Full Text Available Background/Aims: Pim-1 is a serine/threonine kinase that is highly expressed in the heart, and exerts potent cardiac protective effects through enhancing survival, proliferation, and regeneration of cardiomyocytes. Its myocardial specific substrates, however, remain unknown. In the present study, we aim to investigate whether Pim-1 modulates myofilament activity through phosphorylation of cardiac troponin I (cTnI, a key component in regulating myofilament function in the heart. Methods: Coimmunoprecipitation and immunofluorescent assays were employed to investigate the interaction of Pim-1 with cTnI in cardiomyocytes. Biochemical, site directed mutagenesis, and mass spectrometric analyses were utilized to identify the phosphorylation sites of Pim1 in cTnI. Myofilament functional assay using skinned cardiac fiber was used to assess the effect of Pim1-mediated phosphorylation on cardiac myofilament activity. Lastly, the functional significance of Pim1-mediated cTnI in heart disease was determined in diabetic mice. Results: We found that Pim-1 specifically interacts with cTnI in cardiomyocytes and this interaction leads to Pim1-mediated cTnI phosphorylation, predominantly at Ser23/24 and Ser150. Furthermore, our functional assay demonstrated that Pim-1 induces a robust phosphorylation of cTnI within the troponin complex, thus leading to a decreased Ca2+ sensitivity. Insulin-like growth factor 1 (IGF-1, a peptide growth factor that has been shown to stimulate myocardial contractility, markedly induces cTnI phosphorylation at Ser23/24 and Ser150 through increasing Pim-1 expression in cardiomyocytes. In a high-fat diabetic mice model, the expression of Pim1 in the heart is significantly decreased, which is accompanied by a decreased phosphorylation of cTnI at Ser23/24 and Ser150, further implicating the pathological significance of the Pim1/cTnI axis in the development of diabetic cardiomyopathy. Conclusion: Our results demonstrate that Pim-1 is a

  9. Conditioning techniques and ischemic reperfusion injury in relation to on-pump cardiac surgery

    DEFF Research Database (Denmark)

    Holmberg, Fredrik Eric Olof; Ottas, Konstantin Alex; Andreasen, Charlotte

    2014-01-01

    OBJECTIVES: The objective was to investigate the potential protective effects of two conditioning methods, on myocardial ischemic and reperfusion injury in relation to cardiac surgery. DESIGN: Totally 68 patients were randomly assigned to either a control group (n = 23), a remote ischemic...

  10. [Experimental therapy of cardiac remodeling with quercetin-containing drugs].

    Science.gov (United States)

    Kuzmenko, M A; Pavlyuchenko, V B; Tumanovskaya, L V; Dosenko, V E; Moybenko, A A

    2013-01-01

    It was shown that continuous beta-adrenergic hyperstimulation resulted in cardiac function disturbances and fibrosis of cardiac tissue. Treatment with quercetin-containing drugs, particularly, water-soluble corvitin and tableted quertin exerted favourable effect on cardiac hemodynamics, normalized systolic and diastolic function in cardiac remodeling, induced by sustained beta-adrenergic stimulation. It was estimated that conducted experimental therapy limited cardiac fibrosis area almost three-fold, that could be associated with first and foremost improved cardiac distensibility, characteristics of diastolic and also pump function in cardiac remodeling.

  11. Identification and functional characterization of cardiac pacemaker cells in zebrafish.

    Directory of Open Access Journals (Sweden)

    Federico Tessadori

    Full Text Available In the mammalian heart a conduction system of nodes and conducting cells generates and transduces the electrical signals evoking myocardial contractions. Specialized pacemaker cells initiating and controlling cardiac contraction rhythmicity are localized in an anatomically identifiable structure of myocardial origin, the sinus node. We previously showed that in mammalian embryos sinus node cells originate from cardiac progenitors expressing the transcription factors T-box transcription factor 3 (Tbx3 and Islet-1 (Isl1. Although cardiac development and function are strikingly conserved amongst animal classes, in lower vertebrates neither structural nor molecular distinguishable components of a conduction system have been identified, questioning its evolutionary origin. Here we show that zebrafish embryos lacking the LIM/homeodomain-containing transcription factor Isl1 display heart rate defects related to pacemaker dysfunction. Moreover, 3D reconstructions of gene expression patterns in the embryonic and adult zebrafish heart led us to uncover a previously unidentified, Isl1-positive and Tbx2b-positive region in the myocardium at the junction of the sinus venosus and atrium. Through their long interconnecting cellular protrusions the identified Isl1-positive cells form a ring-shaped structure. In vivo labeling of the Isl1-positive cells by transgenic technology allowed their isolation and electrophysiological characterization, revealing their unique pacemaker activity. In conclusion we demonstrate that Isl1-expressing cells, organized as a ring-shaped structure around the venous pole, hold the pacemaker function in the adult zebrafish heart. We have thereby identified an evolutionary conserved, structural and molecular distinguishable component of the cardiac conduction system in a lower vertebrate.

  12. Na/K pump inactivation, subsarcolemmal Na measurements, and cytoplasmic ion turnover kinetics contradict restricted Na spaces in murine cardiac myocytes.

    Science.gov (United States)

    Lu, Fang-Min; Hilgemann, Donald W

    2017-07-03

    Decades ago, it was proposed that Na transport in cardiac myocytes is modulated by large changes in cytoplasmic Na concentration within restricted subsarcolemmal spaces. Here, we probe this hypothesis for Na/K pumps by generating constitutive transsarcolemmal Na flux with the Na channel opener veratridine in whole-cell patch-clamp recordings. Using 25 mM Na in the patch pipette, pump currents decay strongly during continuous activation by extracellular K (τ, ∼2 s). In contradiction to depletion hypotheses, the decay becomes stronger when pump currents are decreased by hyperpolarization. Na channel currents are nearly unchanged by pump activity in these conditions, and conversely, continuous Na currents up to 0.5 nA in magnitude have negligible effects on pump currents. These outcomes are even more pronounced using 50 mM Li as a cytoplasmic Na congener. Thus, the Na/K pump current decay reflects mostly an inactivation mechanism that immobilizes Na/K pump charge movements, not cytoplasmic Na depletion. When channel currents are increased beyond 1 nA, models with unrestricted subsarcolemmal diffusion accurately predict current decay (τ ∼15 s) and reversal potential shifts observed for Na, Li, and K currents through Na channels opened by veratridine, as well as for Na, K, Cs, Li, and Cl currents recorded in nystatin-permeabilized myocytes. Ion concentrations in the pipette tip (i.e., access conductance) track without appreciable delay the current changes caused by sarcolemmal ion flux. Importantly, cytoplasmic mixing volumes, calculated from current decay kinetics, increase and decrease as expected with osmolarity changes (τ >30 s). Na/K pump current run-down over 20 min reflects a failure of pumps to recover from inactivation. Simulations reveal that pump inactivation coupled with Na-activated recovery enhances the rapidity and effectivity of Na homeostasis in cardiac myocytes. In conclusion, an autoregulatory mechanism enhances cardiac Na/K pump activity when

  13. Positron emission tomographic imaging of cardiac sympathetic innervation and function

    International Nuclear Information System (INIS)

    Goldstein, D.S.; Chang, P.C.; Eisenhofer, G.; Miletich, R.; Finn, R.; Bacher, J.; Kirk, K.L.; Bacharach, S.; Kopin, I.J.

    1990-01-01

    Sites of uptake, storage, and metabolism of [ 18 F]fluorodopamine and excretion of [ 18 F]fluorodopamine and its metabolites were visualized using positron emission tomographic (PET) scanning after intravenous injection of the tracer into anesthetized dogs. Radioactivity was concentrated in the renal pelvis, heart, liver, spleen, salivary glands, and gall bladder. Uptake of 18F by the heart resulted in striking delineation of the left ventricular myocardium. Pretreatment with desipramine markedly decreased cardiac positron emission, consistent with dependence of the heart on neuronal uptake (uptake-1) for removal of circulating catecholamines. In reserpinized animals, cardiac positron emission was absent within 30 minutes after injection of [ 18 F]-6-fluorodopamine, demonstrating that the emission in untreated animals was from radioactive labeling of the sympathetic storage vesicles. Decreased positron emission from denervated salivary glands confirmed that the tracer was concentrated in sympathetic neurons. Radioactivity in the gall bladder and urinary system depicted the hepatic and renal excretion of the tracer and its metabolites. Administration of tyramine or nitroprusside increased and ganglionic blockade with trimethaphan decreased the rate of loss of myocardial radioactivity. The results show that PET scanning after administration of [ 18 F]fluorodopamine can be used to visualize sites of sympathetic innervation, follow the metabolism and renal and hepatic excretion of catecholamines, and examine cardiac sympathetic function

  14. Proangiogenic scaffolds as functional templates for cardiac tissue engineering.

    Science.gov (United States)

    Madden, Lauran R; Mortisen, Derek J; Sussman, Eric M; Dupras, Sarah K; Fugate, James A; Cuy, Janet L; Hauch, Kip D; Laflamme, Michael A; Murry, Charles E; Ratner, Buddy D

    2010-08-24

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30-40 microm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response.

  15. Functional capacity and mental state of patients undergoing cardiac surgery

    Directory of Open Access Journals (Sweden)

    Bruna Corrêa

    Full Text Available Abstract Introduction: Cardiovascular diseases are a serious public health problem in Brazil. Myocardial revascularization surgery (MRS as well as cardiac valve replacement and repair are procedures indicated to treat them. Thus, extracorporeal circulation (ECC is still widely used in these surgeries, in which patients with long ECC times may have greater neurological deficits. Neurological damage resulting from MRS can have devastating consequences such as loss of independence and worsening of quality of life. Objective: To assess the effect of cardiac surgery on a patient’s mental state and functional capacity in both the pre- and postoperative periods. Methods: We conducted a cross-sectional study with convenience sampling of subjects undergoing MRS and valve replacement. Participants were administered the Mini-Mental State Exam (MMSE and the Duke Activity Status Index (DASI in the pre- and postoperative periods, as well as before their hospital discharge. Results: This study assessed nine patients (eight males aged 62.4 ± 6.3 years with a BMI of 29.5 ± 2.3 kg/m2. There was a significant decrease in DASI scores and VO2 from preoperative to postoperative status (p = 0.003 and p = 0.003, respectively. Conclusion: This study revealed a loss of cognitive and exercise capacity after cardiac surgery. A larger sample however is needed to consolidate these findings.

  16. Effect of prolonged space flight on cardiac function and dimensions

    Science.gov (United States)

    Henry, W. L.; Epstein, S. E.; Griffith, J. M.; Goldstein, R. E.; Redwood, D. R.

    1974-01-01

    Echocardiographic studies were performed preflight 5 days before launch and on recovery day and 1, 2, 4, 11, 31 and 68 days postflight. From these echocardiograms measurements were made. From these primary measurements, left ventricular end-diastolic volume, end-systolic volume, stroke volume, and mass were derived using the accepted assumptions. Findings in the Scientist Pilot and Pilot resemble those seen in trained distance runners. Wall thickness measurements were normal in all three crewmembers preflight. Postflight basal studies were unchanged in the Commander on recovery day through 68 days postflight in both the Scientist Pilot and Pilot, however, the left ventricular end-diastolic volume, stroke volume, and mass were decreased slightly. Left ventricular function curves were constructed for the Commander and Pilot by plotting stroke volume versus end-diastolic volume. In both astronauts, preflight and postflight data fell on the same straight line demonstrating that no deterioration in cardiac function had occurred. These data indicate that the cardiovascular system adapts well to prolonged weightlessness and suggest that alterations in cardiac dimensions and function are unlikely to limit man's future in space.

  17. Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function.

    Science.gov (United States)

    Chiellini, Grazia; Frascarelli, Sabina; Ghelardoni, Sandra; Carnicelli, Vittoria; Tobias, Sandra C; DeBarber, Andrea; Brogioni, Simona; Ronca-Testoni, Simonetta; Cerbai, Elisabetta; Grandy, David K; Scanlan, Thomas S; Zucchi, Riccardo

    2007-05-01

    3-Iodothyronamine T1AM is a novel endogenous thyroid hormone derivative that activates the G protein-coupled receptor known as trace anime-associated receptor 1 (TAAR1). In the isolated working rat heart and in rat cardiomyocytes, T1AM produced a reversible, dose-dependent negative inotropic effect (e.g., 27+/-5, 51+/-3, and 65+/-2% decrease in cardiac output at 19, 25, and 38 microM concentration, respectively). An independent negative chronotropic effect was also observed. The hemodynamic effects of T1AM were remarkably increased in the presence of the tyrosine kinase inhibitor genistein, whereas they were attenuated in the presence of the tyrosine phosphatase inhibitor vanadate. No effect was produced by inhibitors of protein kinase A, protein kinase C, calcium-calmodulin kinase II, phosphatidylinositol-3-kinase, or MAP kinases. Tissue cAMP levels were unchanged. In rat ventricular tissue, Western blot experiments with antiphosphotyrosine antibodies showed reduced phosphorylation of microsomal and cytosolic proteins after perfusion with synthetic T1AM; reverse transcriptase-polymerase chain reaction experiments revealed the presence of transcripts for at least 5 TAAR subtypes; specific and saturable binding of [125I]T1AM was observed, with a dissociation constant in the low micromolar range (5 microM); and endogenous T1AM was detectable by tandem mass spectrometry. In conclusion, our findings provide evidence for the existence of a novel aminergic system modulating cardiac function.

  18. Left ventricular volume analysis as a basic tool to describe cardiac function.

    Science.gov (United States)

    Kerkhof, Peter L M; Kuznetsova, Tatiana; Ali, Rania; Handly, Neal

    2018-03-01

    The heart is often regarded as a compression pump. Therefore, determination of pressure and volume is essential for cardiac function analysis. Traditionally, ventricular performance was described in terms of the Starling curve, i.e., output related to input. This view is based on two variables (namely, stroke volume and end-diastolic volume), often studied in the isolated (i.e., denervated) heart, and has dominated the interpretation of cardiac mechanics over the last century. The ratio of the prevailing coordinates within that paradigm is termed ejection fraction (EF), which is the popular metric routinely used in the clinic. Here we present an insightful alternative approach while describing volume regulation by relating end-systolic volume (ESV) to end-diastolic volume. This route obviates the undesired use of metrics derived from differences or ratios, as employed in previous models. We illustrate basic principles concerning ventricular volume regulation by data obtained from intact animal experiments and collected in healthy humans. Special attention is given to sex-specific differences. The method can be applied to the dynamics of a single heart and to an ensemble of individuals. Group analysis allows for stratification regarding sex, age, medication, and additional clinically relevant covariates. A straightforward procedure derives the relationship between EF and ESV and describes myocardial oxygen consumption in terms of ESV. This representation enhances insight and reduces the impact of the metric EF, in favor of the end-systolic elastance concept advanced 4 decades ago.

  19. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  20. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-01-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, free-standing electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on-demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function. PMID:26974408

  1. The effect of childhood obesity on cardiac functions.

    Science.gov (United States)

    Üner, Abdurrahman; Doğan, Murat; Epcacan, Zerrin; Epçaçan, Serdar

    2014-03-01

    Obesity is a metabolic disorder defined as excessive accumulation of body fat, which is made up of genetic, environmental, and hormonal factors and has various social, psychological, and medical complications. Childhood obesity is a major indicator of adult obesity. The aim of this study is to evaluate the cardiac functions via electrocardiography (ECG), echocardiography (ECHO), and treadmill test in childhood obesity. A patient group consisting of 30 obese children and a control group consisting of 30 non-obese children were included in the study. The age range was between 8 and 17 years. Anthropometric measurements, physical examination, ECG, ECHO, and treadmill test were done in all patients. P-wave dispersion (PD) was found to be statistically significantly high in obese patients. In ECHO analysis, we found that end-diastolic diameter, end-systolic diameter, left ventricle posterior wall thickness, and interventricular septum were significantly greater in obese children. In treadmill test, exercise capacity was found to be significantly lower and the hemodynamic response to exercise was found to be defective in obese children. Various cardiac structural and functional changes occur in childhood obesity and this condition includes important cardiovascular risks. PD, left ventricle end-systolic and end-diastolic diameter, left ventricle posterior wall thickness, interventricular septum thickness, exercise capacity, and hemodynamic and ECG measurements during exercise testing are useful tests to determine cardiac dysfunctions and potential arrhythmias even in early stages of childhood obesity. Early recognition and taking precautions for obesity during childhood is very important to intercept complications that will occur in adulthood.

  2. Cardiac structure and function and dependency in the oldest old.

    Science.gov (United States)

    Leibowitz, David; Jacobs, Jeremy M; Stessman-Lande, Irit; Cohen, Aharon; Gilon, Dan; Ein-Mor, Eliana; Stessman, Jochanan

    2011-08-01

    To examine the association between cardiac function and activities of daily living (ADLs) in an age-homogenous, community-dwelling population born in 1920 and 1921. Cross-sectional analysis of a prospective cohort study. Community-dwelling elderly population. Participants were recruited from the Jerusalem Longitudinal Cohort Study, which has followed an age-homogenous cohort of Jerusalem residents born in 1920 and 1921. Four hundred eighty-nine of the participants (228 male, 261 female) from the most recent set of data collection in 2005 and 2006 underwent echocardiography at their place of residence in addition to structured interviews and physical examination. A home-based comprehensive assessment was performed to assess health and functional status, including performance of ADLs. Dependence was defined as needing assistance with one or more basic ADLs. Standard echocardiographic assessment of cardiac structure and function, including ejection fraction (EF) and diastolic function as assessed using early diastolic mitral annular tissue velocity measurements obtained using tissue Doppler, was performed. Of the participants with limitation in at least one ADL, significantly more had low EF (dependence in ADL had higher left ventricular mass index (LVMI) (129.3 vs 119.7 g/m²) and left atrial volume index (LAVI) (41.3 vs 36.7 mL/m²). There were no differences between the groups in percentage of participants with impaired diastolic function or average ratio of early diastolic transmitral flow velocity to early diastolic mitral annular tissue velocity (11.5 vs 11.8; P=.64). In this age-homogenous cohort of the oldest old, high LVMI and LAVI and indices of systolic but not diastolic function as assessed according to Doppler were associated with limitations in ADLs. © 2011, Copyright the Authors. Journal compilation © 2011, The American Geriatrics Society.

  3. Longstanding Hyperthyroidism Is Associated with Normal or Enhanced Intrinsic Cardiomyocyte Function despite Decline in Global Cardiac Function

    Science.gov (United States)

    Redetzke, Rebecca A.; Gerdes, A. Martin

    2012-01-01

    Thyroid hormones (THs) play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV) contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH). LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function. PMID:23056390

  4. Longstanding hyperthyroidism is associated with normal or enhanced intrinsic cardiomyocyte function despite decline in global cardiac function.

    Directory of Open Access Journals (Sweden)

    Nathan Y Weltman

    Full Text Available Thyroid hormones (THs play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH. LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function.

  5. Functional significance of cardiac reinnervation in heart transplant recipients.

    Science.gov (United States)

    Schwaiblmair, M; von Scheidt, W; Uberfuhr, P; Ziegler, S; Schwaiger, M; Reichart, B; Vogelmeier, C

    1999-09-01

    There is accumulating evidence of structural sympathetic reinnervation after human cardiac transplantation. However, the functional significance of reinnervation in terms of exercise capacity has not been established as yet; we therefore investigated the influence of reinnervation on cardiopulmonary exercise testing. After orthotopic heart transplantation 35 patients (mean age, 49.1 +/- 8.4 years) underwent positron emission tomography with scintigraphically measured uptake of C11-hydroxyephedrine (HED), lung function testing, and cardiopulmonary exercise testing. Two groups were defined based on scintigraphic findings, indicating a denervated group (n = 15) with a HED uptake of 5.45%/min and a reinnervated group (n = 20) with a HED uptake of 10.59%/min. The two study groups did not show significant differences with regard to anthropometric data, number of rejection episodes, preoperative hemodynamics, and postoperative lung function data. The reinnervated group had a significant longer time interval from transplantation (1625 +/- 1069 versus 800 +/- 1316 days, p exercise (137 +/- 15 versus 120 +/- 20 beats/min, p = .012), peak oxygen uptake (21.0 +/- 4 versus 16.1 +/- 5 mL/min/kg, p = .006), peak oxygen pulse (12.4 +/- 2.9 versus 10.2 +/- 2.7 mL/min/beat, p = .031), and anaerobic threshold (11.2 +/- 1.8 versus 9.5 +/- 2.1 mL/min, p = .046) were significantly increased in comparison to denervated transplant recipients. Additionally, a decreased functional dead space ventilation (0.24 +/- 0.05 versus 0.30 +/- 0.05, p = .004) was observed in the reinnervated group. Our study results support the hypothesis that partial sympathetic reinnervation after cardiac transplantation is of functional significance. Sympathetic reinnervation enables an increased peak oxygen uptake. This is most probably due to partial restoration of the chronotropic and inotropic competence of the heart as well as an improved oxygen delivery to the exercising muscles and a reduced ventilation

  6. Cardiac function adaptations in hibernating grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    Nelson, O Lynne; Robbins, Charles T

    2010-03-01

    Research on the cardiovascular physiology of hibernating mammals may provide insight into evolutionary adaptations; however, anesthesia used to handle wild animals may affect the cardiovascular parameters of interest. To overcome these potential biases, we investigated the functional cardiac phenotype of the hibernating grizzly bear (Ursus arctos horribilis) during the active, transitional and hibernating phases over a 4 year period in conscious rather than anesthetized bears. The bears were captive born and serially studied from the age of 5 months to 4 years. Heart rate was significantly different from active (82.6 +/- 7.7 beats/min) to hibernating states (17.8 +/- 2.8 beats/min). There was no difference from the active to the hibernating state in diastolic and stroke volume parameters or in left atrial area. Left ventricular volume:mass was significantly increased during hibernation indicating decreased ventricular mass. Ejection fraction of the left ventricle was not different between active and hibernating states. In contrast, total left atrial emptying fraction was significantly reduced during hibernation (17.8 +/- 2.8%) as compared to the active state (40.8 +/- 1.9%). Reduced atrial chamber function was also supported by reduced atrial contraction blood flow velocities and atrial contraction ejection fraction during hibernation; 7.1 +/- 2.8% as compared to 20.7 +/- 3% during the active state. Changes in the diastolic cardiac filling cycle, especially atrial chamber contribution to ventricular filling, appear to be the most prominent macroscopic functional change during hibernation. Thus, we propose that these changes in atrial chamber function constitute a major adaptation during hibernation which allows the myocardium to conserve energy, avoid chamber dilation and remain healthy during a period of extremely low heart rates. These findings will aid in rational approaches to identifying underlying molecular mechanisms.

  7. Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling.

    Science.gov (United States)

    Galougahi, Keyvan Karimi; Liu, Chia-Chi; Garcia, Alvaro; Fry, Natasha A S; Hamilton, Elisha J; Rasmussen, Helge H; Figtree, Gemma A

    2013-06-15

    The widely reported stimulation of the cardiac Na(+)-K(+) pump by protein kinase A (PKA) should oppose other effects of PKA to increase contractility of the normal heart. It should also reduce harmful raised myocyte Na(+) levels in heart failure, yet blockade of the β1 adrenergic receptor (AR), coupled to PKA signalling, is beneficial. We treated rabbits with the β1 AR antagonist metoprolol to modulate PKA activity and studied cardiac myocytes ex vivo. Metoprolol increased electrogenic pump current (Ip) in voltage clamped myocytes and reduced glutathionylation of the β1 pump subunit, an oxidative modification causally related to pump inhibition. Activation of adenylyl cyclase with forskolin to enhance cAMP synthesis or inclusion of the catalytic subunit of PKA in patch pipette solutions abolished the increase in Ip in voltage clamped myocytes induced by treatment with metoprolol, supporting cAMP/PKA-mediated pump inhibition. Metoprolol reduced myocardial PKA and protein kinase C (PKC) activities, reduced coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits and reduced myocardial O2(•-)-sensitive dihydroethidium fluorescence. Treatment also enhanced coimmunoprecipitation of the β1 pump subunit with glutaredoxin 1 that catalyses de-glutathionylation. Since angiotensin II induces PKC-dependent activation of NADPH oxidase, we examined the effects of angiotensin-converting enzyme inhibition with captopril. This treatment had no effect on PKA activity but reduced the activity of PKC, reduced β1 subunit glutathionylation and increased Ip. The PKA-induced Na(+)-K(+) pump inhibition we report should act with other mechanisms that enhance contractility of the normal heart but accentuate the harmful effects of raised cytosolic Na(+) in the failing heart. This scheme is consistent with the efficacy of β1 AR blockade in the treatment of heart failure.

  8. Protein kinase-dependent oxidative regulation of the cardiac Na+–K+ pump: evidence from in vivo and in vitro modulation of cell signalling

    Science.gov (United States)

    Galougahi, Keyvan Karimi; Liu, Chia-Chi; Garcia, Alvaro; Fry, Natasha A S; Hamilton, Elisha J; Rasmussen, Helge H; Figtree, Gemma A

    2013-01-01

    The widely reported stimulation of the cardiac Na+–K+ pump by protein kinase A (PKA) should oppose other effects of PKA to increase contractility of the normal heart. It should also reduce harmful raised myocyte Na+ levels in heart failure, yet blockade of the β1 adrenergic receptor (AR), coupled to PKA signalling, is beneficial. We treated rabbits with the β1 AR antagonist metoprolol to modulate PKA activity and studied cardiac myocytes ex vivo. Metoprolol increased electrogenic pump current (Ip) in voltage clamped myocytes and reduced glutathionylation of the β1 pump subunit, an oxidative modification causally related to pump inhibition. Activation of adenylyl cyclase with forskolin to enhance cAMP synthesis or inclusion of the catalytic subunit of PKA in patch pipette solutions abolished the increase in Ip in voltage clamped myocytes induced by treatment with metoprolol, supporting cAMP/PKA-mediated pump inhibition. Metoprolol reduced myocardial PKA and protein kinase C (PKC) activities, reduced coimmunoprecipitation of cytosolic p47phox and membranous p22phox NADPH oxidase subunits and reduced myocardial O2•−-sensitive dihydroethidium fluorescence. Treatment also enhanced coimmunoprecipitation of the β1 pump subunit with glutaredoxin 1 that catalyses de-glutathionylation. Since angiotensin II induces PKC-dependent activation of NADPH oxidase, we examined the effects of angiotensin-converting enzyme inhibition with captopril. This treatment had no effect on PKA activity but reduced the activity of PKC, reduced β1 subunit glutathionylation and increased Ip. The PKA-induced Na+–K+ pump inhibition we report should act with other mechanisms that enhance contractility of the normal heart but accentuate the harmful effects of raised cytosolic Na+ in the failing heart. This scheme is consistent with the efficacy of β1 AR blockade in the treatment of heart failure. PMID:23587884

  9. Cardiac structure and functions in patients with asymptomatic primary hyperparathyroidism.

    Science.gov (United States)

    Aktas Yılmaz, B; Akyel, A; Kan, E; Ercin, U; Tavil, Y; Bilgihan, A; Cakır, N; Arslan, M; Balos Toruner, F

    2013-11-01

    The data about cardiovascular (CV) changes in patients with asymptomatic primary hyperparathyroidism (PHPT) are scarce. The aim of this study is to compare cardiac structure and functions in patients with asymptomatic PHPT and controls by using tissue Doppler echocardiography. Thirty-eight patients with asymptomatic PHPT and 31 sex- and age-matched controls with similar cardiac risk factors were evaluated. There was no significant difference in ejection fraction (EF) between the patients and the controls [64±5.95 vs 62±3.25% (p=0.094)]. Left ventricular mass index (LVMI) was significantly higher in patients than controls [105.96 (66.45-167.24) vs 93.79 (64.25- 139.25) g/m2, p=0.014]. There was a significant correlation between LVMI and serum calcium (Ca) (r=0.240, p<0.005). Myocardial performance index (MPI) was significantly higher in patients than controls [0.49 (0.35-0.60) vs 0.39 (0.33-0.62), p<0.001]. There was positive correlation between theMPI and serumCa levels (r=0.505, p<0.001), parathyroid hormone (PTH) levels (r=0.464, p<0.001) and LVMI (r=0.270, p<0.005). When the normotensive patients and controls were evaluated, the difference between the groups remained statistically significant considering LVMI and MPI [109 (66.45-167.24) g/m2 vs 94.17 (64.25-75.10) g/m2, p=0.03; and 0.49 (0.35-0.60) vs 0.39 (0.33-0.62), p<0.01, respectively]. There were significant correlations between MPI and Ca (r=0.566, p<0.001), and PTH (r=0.472, p<0.001). Our study results showed that cardiacmorphology and diastolic functions are altered in the patients with asymptomatic PHPT. High serum PTH and Ca levels may have an impact on these CV changes. Whether these subtle CV changes would affect cardiac systolic functions and mortality in patients with asymptomatic PHPT should be investigated in further prospective studies.

  10. Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function

    Science.gov (United States)

    Beaumont, Eric; Salavatian, Siamak; Southerland, E Marie; Vinet, Alain; Jacquemet, Vincent; Armour, J Andrew; Ardell, Jeffrey L

    2013-01-01

    The aims of the study were to determine how aggregates of intrinsic cardiac (IC) neurons transduce the cardiovascular milieu versus responding to changes in central neuronal drive and to determine IC network interactions subsequent to induced neural imbalances in the genesis of atrial fibrillation (AF). Activity from multiple IC neurons in the right atrial ganglionated plexus was recorded in eight anaesthetized canines using a 16-channel linear microelectrode array. Induced changes in IC neuronal activity were evaluated in response to: (1) focal cardiac mechanical distortion; (2) electrical activation of cervical vagi or stellate ganglia; (3) occlusion of the inferior vena cava or thoracic aorta; (4) transient ventricular ischaemia, and (5) neurally induced AF. Low level activity (ranging from 0 to 2.7 Hz) generated by 92 neurons was identified in basal states, activities that displayed functional interconnectivity. The majority (56%) of IC neurons so identified received indirect central inputs (vagus alone: 25%; stellate ganglion alone: 27%; both: 48%). Fifty per cent transduced the cardiac milieu responding to multimodal stressors applied to the great vessels or heart. Fifty per cent of IC neurons exhibited cardiac cycle periodicity, with activity occurring primarily in late diastole into isovolumetric contraction. Cardiac-related activity in IC neurons was primarily related to direct cardiac mechano-sensory inputs and indirect autonomic efferent inputs. In response to mediastinal nerve stimulation, most IC neurons became excessively activated; such network behaviour preceded and persisted throughout AF. It was concluded that stochastic interactions occur among IC local circuit neuronal populations in the control of regional cardiac function. Modulation of IC local circuit neuronal recruitment may represent a novel approach for the treatment of cardiac disease, including atrial arrhythmias. PMID:23818689

  11. Functional requirements for portable exhauster system to be used during saltwell pumping

    International Nuclear Information System (INIS)

    Nelson, O.D.

    1998-01-01

    This document defines functional requirements for portable exhausters used to ventilate primary tanks during saltwell pumping, and provide back-up to primary and annulus ventilation systems at C-106 and AY-102

  12. Sex differences in cardiac function after prolonged strenuous exercise.

    Science.gov (United States)

    Cote, Anita T; Phillips, Aaron A; Foulds, Heather J; Charlesworth, Sarah A; Bredin, Shannon S D; Burr, Jamie F; Koehle, Michael S; Warburton, Darren E R

    2015-05-01

    To evaluate sex differences in left ventricular (LV) function after an ultramarathon, and the association of vascular and training indices with the magnitude of exercise-induced cardiac fatigue. Descriptive field study. Fat Dog 100 Ultramarathon Trail Race, Canada. Thirty-four (13 women) recreational runners (aged 28-56 years). A 100-km or 160-km mountain marathon. Baseline baroreceptor sensitivity, heart rate variability, and arterial compliance; Pre-exercise and postexercise echocardiographic evaluations of LV dimensions, volumes, Doppler flow velocities, tissue velocities, strain, and strain rate. Finishers represented 17 men (44.8 ± 6.6 years) and 8 women (45.9 ± 10.2 years; P = 0.758). After ultraendurance exercise, significant reductions (P training status/experience. These findings suggest that vascular health is an important contributor to the degree of cardiovascular strain incurred as the result of an acute bout of prolonged strenuous exercise.

  13. Cardiac diastolic function after recovery from pre-eclampsia.

    Science.gov (United States)

    Soma-Pillay, P; Louw, M C; Adeyemo, A O; Makin, J; Pattinson, R C

    Pre-eclampsia is associated with significant changes to the cardiovascular system during pregnancy. Eccentric and concentric remodelling of the left ventricle occurs, resulting in impaired contractility and diastolic dysfunction. It is unclear whether these structural and functional changes resolve completely after delivery. The objective of the study was to determine cardiac diastolic function at delivery and one year post-partum in women with severe pre-eclampsia, and to determine possible future cardiovascular risk. This was a descriptive study performed at Steve Biko Academic Hospital, a tertiary referral hospital in Pretoria, South Africa. Ninety-six women with severe preeclampsia and 45 normotensive women with uncomplicated pregnancies were recruited during the delivery admission. Seventy-four (77.1%) women in the pre-eclamptic group were classified as a maternal near miss. Transthoracic Doppler echocardiography was performed at delivery and one year post-partum. At one year post-partum, women with pre-eclampsia had a higher diastolic blood pressure (p = 0.001) and body mass index (p = 0.02) than women in the normotensive control group. Women with early onset pre-eclampsia requiring delivery prior to 34 weeks' gestation had an increased risk of diastolic dysfunction at one year post-partum (RR 3.41, 95% CI: 1.11-10.5, p = 0.04) and this was irrespective of whether the patient had chronic hypertension or not. Women who develop early-onset pre-eclampsia requiring delivery before 34 weeks are at a significant risk of developing cardiac diastolic dysfunction one year after delivery compared to normotensive women with a history of a low-risk pregnancy.

  14. Functional Effects of Hyperthyroidism on Cardiac Papillary Muscle in Rats

    Directory of Open Access Journals (Sweden)

    Fabricio Furtado Vieira

    Full Text Available Abstract Background: Hyperthyroidism is currently recognized to affect the cardiovascular system, leading to a series of molecular and functional changes. However, little is known about the functional influence of hyperthyroidism in the regulation of cytoplasmic calcium and on the sodium/calcium exchanger (NCX in the cardiac muscle. Objectives: To evaluate the functional changes in papillary muscles isolated from animals with induced hyperthyroidism. Methods: We divided 36 Wistar rats into a group of controls and another of animals with hyperthyroidism induced by intraperitoneal T3 injection. We measured in the animals' papillary muscles the maximum contraction force, speed of contraction (+df/dt and relaxation (-df/dt, contraction and relaxation time, contraction force at different concentrations of extracellular sodium, post-rest potentiation (PRP, and contraction force induced by caffeine. Results: In hyperthyroid animals, we observed decreased PRP at all rest times (p < 0.05, increased +df/dt and -df/dt (p < 0.001, low positive inotropic response to decreased concentration of extracellular sodium (p < 0.001, reduction of the maximum force in caffeine-induced contraction (p < 0.003, and decreased total contraction time (p < 0.001. The maximal contraction force did not differ significantly between groups (p = 0.973. Conclusion: We hypothesize that the changes observed are likely due to a decrease in calcium content in the sarcoplasmic reticulum, caused by calcium leakage, decreased expression of NCX, and increased expression of a-MHC and SERCA2.

  15. Cardiac microvascular endothelial cells express a functional Ca+ -sensing receptor.

    Science.gov (United States)

    Berra Romani, Roberto; Raqeeb, Abdul; Laforenza, Umberto; Scaffino, Manuela Federica; Moccia, Francesco; Avelino-Cruz, Josè Everardo; Oldani, Amanda; Coltrini, Daniela; Milesi, Veronica; Taglietti, Vanni; Tanzi, Franco

    2009-01-01

    The mechanism whereby extracellular Ca(2+) exerts the endothelium-dependent control of vascular tone is still unclear. In this study, we assessed whether cardiac microvascular endothelial cells (CMEC) express a functional extracellular Ca(2+)-sensing receptor (CaSR) using a variety of techniques. CaSR mRNA was detected using RT-PCR, and CaSR protein was identified by immunocytochemical analysis. In order to assess the functionality of the receptor, CMEC were loaded with the Ca(2+)-sensitive fluorochrome, Fura-2/AM. A number of CaSR agonists, such as spermine, Gd(3+), La(3+) and neomycin, elicited a heterogeneous intracellular Ca(2+) signal, which was abolished by disruption of inositol 1,4,5-trisphosphate (InsP(3)) signaling and by depletion of intracellular stores with cyclopiazonic acid. The inhibition of the Na(+)/Ca(2+) exchanger upon substitution of extracellular Na(+) unmasked the Ca(2+) signal triggered by an increase in extracellular Ca(2+) levels. Finally, aromatic amino acids, which function as allosteric activators of CaSR, potentiated the Ca(2+) response to the CaSR agonist La(3+). These data provide evidence that CMEC express CaSR, which is able to respond to physiological agonists by mobilizing Ca(2+) from intracellular InsP(3)-sensitive stores. Copyright 2008 S. Karger AG, Basel.

  16. Functional Effects of Hyperthyroidism on Cardiac Papillary Muscle in Rats.

    Science.gov (United States)

    Vieira, Fabricio Furtado; Olivoto, Robson Ruiz; Silva, Priscyla Oliveira da; Francisco, Julio Cesar; Fogaça, Rosalvo Tadeu Hochmuller

    2016-12-01

    Hyperthyroidism is currently recognized to affect the cardiovascular system, leading to a series of molecular and functional changes. However, little is known about the functional influence of hyperthyroidism in the regulation of cytoplasmic calcium and on the sodium/calcium exchanger (NCX) in the cardiac muscle. To evaluate the functional changes in papillary muscles isolated from animals with induced hyperthyroidism. We divided 36 Wistar rats into a group of controls and another of animals with hyperthyroidism induced by intraperitoneal T3 injection. We measured in the animals' papillary muscles the maximum contraction force, speed of contraction (+df/dt) and relaxation (-df/dt), contraction and relaxation time, contraction force at different concentrations of extracellular sodium, post-rest potentiation (PRP), and contraction force induced by caffeine. In hyperthyroid animals, we observed decreased PRP at all rest times (p < 0.05), increased +df/dt and -df/dt (p < 0.001), low positive inotropic response to decreased concentration of extracellular sodium (p < 0.001), reduction of the maximum force in caffeine-induced contraction (p < 0.003), and decreased total contraction time (p < 0.001). The maximal contraction force did not differ significantly between groups (p = 0.973). We hypothesize that the changes observed are likely due to a decrease in calcium content in the sarcoplasmic reticulum, caused by calcium leakage, decreased expression of NCX, and increased expression of a-MHC and SERCA2.

  17. Relationship between cardiac function and resting cerebral blood flow

    DEFF Research Database (Denmark)

    Henriksen, Otto M; Jensen, Lars T; Krabbe, Katja

    2014-01-01

    ) and 2.4 l min(-1) m(-2), respectively, in females. No effects of cardiac output or cardiac index on CBF or structural signs of brain ageing were observed. However, fractional brain flow defined as the ratio of total brain flow to cardiac output was inversely correlated with cardiac index (r(2) = 0.22, P...... = 0.008) and furthermore lower in males than in females (8.6% versus 12.5%, P = 0.003). Fractional brain flow was also inversely correlated with cerebral white matter lesion grade, although this effect was not significant when adjusted for age. Frequency analysis of heart rate variability showed...

  18. Venous muscle pump function during pregnancy. Assessment by ambulatory strain-gauge plethysmography

    DEFF Research Database (Denmark)

    Struckmann, J R; Meiland, H; Bagi, P

    1990-01-01

    The venous muscle pump function was quantitatively assessed through pregnancy weeks 16, 30, 38 and 3 months (week 53) following delivery, in 24 pregnant women who completed a normal pregnancy. A statistically significant increase was found in the mean venous reflux (P less than 0.01), which was r...... primarily by mechanical obstruction, or hormonal influence other than that of estradiol, estriol or progesterone. 17% (4.7-37%) of the women with a normal pregnancy developed a pathological venous muscle pump function....... virtually disappeared post partum, corresponding to the muscle pump normalization. No statistical correlation was found between venous muscle pump values and changes in hormone concentrations of estradiol, estriol and progesterone. It is suggested that venous insufficiency development in pregnancy is caused...

  19. Interoception across modalities: on the relationship between cardiac awareness and the sensitivity for gastric functions.

    Directory of Open Access Journals (Sweden)

    Beate M Herbert

    Full Text Available The individual sensitivity for ones internal bodily signals ("interoceptive awareness" has been shown to be of relevance for a broad range of cognitive and affective functions. Interoceptive awareness has been primarily assessed via measuring the sensitivity for ones cardiac signals ("cardiac awareness" which can be non-invasively measured by heartbeat perception tasks. It is an open question whether cardiac awareness is related to the sensitivity for other bodily, visceral functions. This study investigated the relationship between cardiac awareness and the sensitivity for gastric functions in healthy female persons by using non-invasive methods. Heartbeat perception as a measure for cardiac awareness was assessed by a heartbeat tracking task and gastric sensitivity was assessed by a water load test. Gastric myoelectrical activity was measured by electrogastrography (EGG and subjective feelings of fullness, valence, arousal and nausea were assessed. The results show that cardiac awareness was inversely correlated with ingested water volume and with normogastric activity after water load. However, persons with good and poor cardiac awareness did not differ in their subjective ratings of fullness, nausea and affective feelings after drinking. This suggests that good heartbeat perceivers ingested less water because they subjectively felt more intense signals of fullness during this lower amount of water intake compared to poor heartbeat perceivers who ingested more water until feeling the same signs of fullness. These findings demonstrate that cardiac awareness is related to greater sensitivity for gastric functions, suggesting that there is a general sensitivity for interoceptive processes across the gastric and cardiac modality.

  20. The Effect of Milrinone on the Right Ventriclular Function in Patients with Reduced Right Ventricular Function Undergoing Off-pump Coronary Artery Bypass Graft Surgery

    Science.gov (United States)

    Lee, Jong Hwa; Oh, Young Jun; Shim, Yon Hee; Hong, Yong Woo; Yi, Gijong

    2006-01-01

    This investigation evaluated the effect of continuous milrinone infusion on right ventriclular (RV) function during off-pump coronary artery bypass graft (OPCAB) surgery in patients with reduced RV function. Fifty patients scheduled for OPCAB, with thermodilution RV ejection fraction (RVEF) milrinone (0.5 µg/kg/min) or control (saline) group. Hemodynamic variables and RV volumetric data measured by thermodilution method were collected as follows: after anesthesia induction (T1); 10 min after heart displacement for obtuse marginal artery anastomosis (T2); after pericardial closure (T3). Cardiac index and heart rate increased and systemic vascular resistance significantly decreased in milrinone group at T2. Initially lower RVEF of milrinone group was eventually comparable to control group after milrinone infusion. RVEF did not significantly change at T2 and T3 in both groups. RV end-diastolic volume in milrinone group consistently decreased from the baseline at T2 and T3. Continuous infusion of milrinone without a bolus demonstrated potentially beneficial effect on cardiac output and RV afterload in patients with reduced RV function during OPCAB. However, aggressive augmentation of intravascular volume seems to be necessary to maximize the effect of the milrinone in these patients. PMID:17043419

  1. Reduced Right Ventricular Function Predicts Long-Term Cardiac Re-Hospitalization after Cardiac Surgery.

    Directory of Open Access Journals (Sweden)

    Leela K Lella

    Full Text Available The significance of right ventricular ejection fraction (RVEF, independent of left ventricular ejection fraction (LVEF, following isolated coronary artery bypass grafting (CABG and valve procedures remains unknown. The aim of this study is to examine the significance of abnormal RVEF by cardiac magnetic resonance (CMR, independent of LVEF in predicting outcomes of patients undergoing isolated CABG and valve surgery.From 2007 to 2009, 109 consecutive patients (mean age, 66 years; 38% female were referred for pre-operative CMR. Abnormal RVEF and LVEF were considered 30 days outcomes included, cardiac re-hospitalization, worsening congestive heart failure and mortality. Mean clinical follow up was 14 months.Forty-eight patients had reduced RVEF (mean 25% and 61 patients had normal RVEF (mean 50% (p<0.001. Fifty-four patients had reduced LVEF (mean 30% and 55 patients had normal LVEF (mean 59% (p<0.001. Patients with reduced RVEF had a higher incidence of long-term cardiac re-hospitalization vs. patients with normal RVEF (31% vs.13%, p<0.05. Abnormal RVEF was a predictor for long-term cardiac re-hospitalization (HR 3.01 [CI 1.5-7.9], p<0.03. Reduced LVEF did not influence long-term cardiac re-hospitalization.Abnormal RVEF is a stronger predictor for long-term cardiac re-hospitalization than abnormal LVEF in patients undergoing isolated CABG and valve procedures.

  2. Spironolactone in chronic hemodialysis patients improves cardiac function

    International Nuclear Information System (INIS)

    Taheri, Shahram; Mortazavi, Mojhgan; Shahidi Shahrzad; Seirafian, Shiva; Pourmoghadas, Ali; Garakyaraghi, Mohammad; Eshaghian, Afrooz; Ghassami, Maryam

    2009-01-01

    We performed this study to assess whether low dose spironolactone could be administered in hemodialysis (HD) patients with moderate to severe heart failure to improve cardiovascular function and reduce hospitalization without inducing hyperkalemia. We enrolled 16 chronic HD patients with moderate to severe heart failure and left ventricle ejection fraction :5 45%. In a double blinded randomized placebo controlled study, one group of 8 patients received 25 mg of spironolactone after each dialysis session within six months, and the rest received a placebo. Echocardiography was performed on all the patients to assess ejection fraction and left ventricular mass during 12 hours after completion of hemodialysis at the beginning and the end of study. Serum potassium was measured predialysis every 4 weeks. The mean ejection fraction increased significantly more in spironolactone group during the study period than in the placebo group (6.2 + - 1.64 vs. 0.83 + - 4.9, P0.046). The mean left ventricular mass decreased in the spironolactone group, but increased significantly in the placebo group during the period (-8.4 + - 4.72 vs. 3 + -7.97. 95%, P= 0.021). The incidence of hyperkalemia was not significantly increased in the study or controlled groups. In conclusion, we found in this study that administration of spironolactone in chronic HD patients with moderate to severe heart failure substantially improved their cardiac function and decreases left ventricular mass without development of significant hyperkalemia. (author)

  3. Sodium Channel (Dys)Function and Cardiac Arrhythmias

    NARCIS (Netherlands)

    Remme, Carol Ann; Bezzina, Connie R.

    2010-01-01

    P>Cardiac voltage-gated sodium channels are transmembrane proteins located in the cell membrane of cardiomyocytes. Influx of sodium ions through these ion channels is responsible for the initial fast upstroke of the cardiac action potential. This inward sodium current thus triggers the initiation

  4. Evaluation of the cardiac efficiency by means of functional radiocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, J; Stoll, W [Friedrich-Schiller-Universitaet, Jena (German Democratic Republic). Bereich Medizin

    1982-01-01

    A new method of evaluating the cardiac efficiency by means of radiocardiography performed on exertion with /sup 113m/InCl is reported. Analysis of stroke volume, end diastolic volume and of the quotient of cardiac output to end diastolic volume on exertion enables an adequate evaluation of the actual myocardial efficiency.

  5. ABC of the cardiac magnetic resonance. Part 1: anatomy and function

    International Nuclear Information System (INIS)

    Loureiro, Ricardo; Rached, Heron; Castro, Claudio C.; Cerri, Giovanni G.; Favaro, Daniele; Baptista, Luciana; Andrade, Joalbo; Rochitte, Carlos E.; Parga Filho, Jose; Avila, Luiz F.; Piva, Rosa M.V.

    2003-01-01

    The objective of this work is to demonstrate the fundamental concepts, the basic sequences and the clinical and potential applications of cardiac magnetic resonance as a diagnostic technique in updated radiology and cardiology practices. In this first part, we present the basic planning of the cardiac image acquisition, the nomenclature and standardized myocardial segmentation, image synchronization principles for electrocardiogram and the heart functional and anatomical evaluation by cardiac magnetic resonance. (author)

  6. Relationship between cardiac function and resting cerebral blood flow: MRI measurements in healthy elderly subjects.

    Science.gov (United States)

    Henriksen, Otto M; Jensen, Lars T; Krabbe, Katja; Larsson, Henrik B W; Rostrup, Egill

    2014-11-01

    Although both impaired cardiac function and reduced cerebral blood flow are associated with ageing, current knowledge of the influence of cardiac function on resting cerebral blood flow (CBF) is limited. The aim of this study was to investigate the potential effects of cardiac function on CBF. CBF and cardiac output were measured in 31 healthy subjects 50-75 years old using magnetic resonance imaging techniques. Mean values of CBF, cardiac output and cardiac index were 43.6 ml per 100 g min(-1), 5.5 l min(-1) and 2.7 l min(-1) m(-2), respectively, in males, and 53.4 ml per 100 g min(-1), 4.3 l min(-1) and 2.4 l min(-1) m(-2), respectively, in females. No effects of cardiac output or cardiac index on CBF or structural signs of brain ageing were observed. However, fractional brain flow defined as the ratio of total brain flow to cardiac output was inversely correlated with cardiac index (r(2) = 0.22, P = 0.008) and furthermore lower in males than in females (8.6% versus 12.5%, P = 0.003). Fractional brain flow was also inversely correlated with cerebral white matter lesion grade, although this effect was not significant when adjusted for age. Frequency analysis of heart rate variability showed a gender-related inverse association of increased low-to-high-frequency power ratio with CBF and fractional brain flow. The findings do not support a direct effect of cardiac function on CBF, but demonstrates gender-related differences in cardiac output distribution. We propose fractional brain flow as a novel index that may be a useful marker of adequate brain perfusion in the context of ageing as well as cardiovascular disease. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  7. The effects of levosimendan in cardiac surgery patients with poor left ventricular function

    NARCIS (Netherlands)

    de Hert, Stefan G.; Lorsomradee, Suraphong; Cromheecke, Stefanie; van der Linden, Philippe J.

    2007-01-01

    BACKGROUND: Patients with poor left ventricular function often require inotropic drug support immediately after cardiopulmonary bypass. Levosimendan improves cardiac function by a novel mechanism of action compared to currently available drugs. We hypothesized that, in patients with severely

  8. Cardiac Alpha1-Adrenergic Receptors: Novel Aspects of Expression, Signaling Mechanisms, Physiologic Function, and Clinical Importance

    Science.gov (United States)

    O’Connell, Timothy D.; Jensen, Brian C.; Baker, Anthony J.

    2014-01-01

    Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate “inside-out” signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure. PMID:24368739

  9. Cardiac function of the naked mole-rat: ecophysiological responses to working underground.

    Science.gov (United States)

    Grimes, Kelly M; Voorhees, Andrew; Chiao, Ying Ann; Han, Hai-Chao; Lindsey, Merry L; Buffenstein, Rochelle

    2014-03-01

    The naked mole-rat (NMR) is a strictly subterranean rodent with a low resting metabolic rate. Nevertheless, it can greatly increase its metabolic activity to meet the high energetic demands associated with digging through compacted soils in its xeric natural habitat where food is patchily distributed. We hypothesized that the NMR heart would naturally have low basal function and exhibit a large cardiac reserve, thereby mirroring the species' low basal metabolism and large metabolic scope. Echocardiography showed that young (2-4 yr old) healthy NMRs have low fractional shortening (28 ± 2%), ejection fraction (43 ± 2%), and cardiac output (6.5 ± 0.4 ml/min), indicating low basal cardiac function. Histology revealed large NMR cardiomyocyte cross-sectional area (216 ± 10 μm(2)) and cardiac collagen deposition of 2.2 ± 0.4%. Neither of these histomorphometric traits was considered pathological, since biaxial tensile testing showed no increase in passive ventricular stiffness. NMR cardiomyocyte fibers showed a low degree of rotation, contributing to the observed low NMR cardiac contractility. Interestingly, when the exercise mimetic dobutamine (3 μg/g ip) was administered, NMRs showed pronounced increases in fractional shortening, ejection fraction, cardiac output, and stroke volume, indicating an increased cardiac reserve. The relatively low basal cardiac function and enhanced cardiac reserve of NMRs are likely to be ecophysiological adaptations to life in an energetically taxing environment.

  10. Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: Functional significance

    Science.gov (United States)

    2013-01-01

    During excitation, muscle cells gain Na+ and lose K+, leading to a rise in extracellular K+ ([K+]o), depolarization, and loss of excitability. Recent studies support the idea that these events are important causes of muscle fatigue and that full use of the Na+,K+-ATPase (also known as the Na+,K+ pump) is often essential for adequate clearance of extracellular K+. As a result of their electrogenic action, Na+,K+ pumps also help reverse depolarization arising during excitation, hyperkalemia, and anoxia, or from cell damage resulting from exercise, rhabdomyolysis, or muscle diseases. The ability to evaluate Na+,K+-pump function and the capacity of the Na+,K+ pumps to fill these needs require quantification of the total content of Na+,K+ pumps in skeletal muscle. Inhibition of Na+,K+-pump activity, or a decrease in their content, reduces muscle contractility. Conversely, stimulation of the Na+,K+-pump transport rate or increasing the content of Na+,K+ pumps enhances muscle excitability and contractility. Measurements of [3H]ouabain binding to skeletal muscle in vivo or in vitro have enabled the reproducible quantification of the total content of Na+,K+ pumps in molar units in various animal species, and in both healthy people and individuals with various diseases. In contrast, measurements of 3-O-methylfluorescein phosphatase activity associated with the Na+,K+-ATPase may show inconsistent results. Measurements of Na+ and K+ fluxes in intact isolated muscles show that, after Na+ loading or intense excitation, all the Na+,K+ pumps are functional, allowing calculation of the maximum Na+,K+-pumping capacity, expressed in molar units/g muscle/min. The activity and content of Na+,K+ pumps are regulated by exercise, inactivity, K+ deficiency, fasting, age, and several hormones and pharmaceuticals. Studies on the α-subunit isoforms of the Na+,K+-ATPase have detected a relative increase in their number in response to exercise and the glucocorticoid dexamethasone but have not

  11. Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: functional significance.

    Science.gov (United States)

    Clausen, Torben

    2013-10-01

    During excitation, muscle cells gain Na(+) and lose K(+), leading to a rise in extracellular K(+) ([K(+)]o), depolarization, and loss of excitability. Recent studies support the idea that these events are important causes of muscle fatigue and that full use of the Na(+),K(+)-ATPase (also known as the Na(+),K(+) pump) is often essential for adequate clearance of extracellular K(+). As a result of their electrogenic action, Na(+),K(+) pumps also help reverse depolarization arising during excitation, hyperkalemia, and anoxia, or from cell damage resulting from exercise, rhabdomyolysis, or muscle diseases. The ability to evaluate Na(+),K(+)-pump function and the capacity of the Na(+),K(+) pumps to fill these needs require quantification of the total content of Na(+),K(+) pumps in skeletal muscle. Inhibition of Na(+),K(+)-pump activity, or a decrease in their content, reduces muscle contractility. Conversely, stimulation of the Na(+),K(+)-pump transport rate or increasing the content of Na(+),K(+) pumps enhances muscle excitability and contractility. Measurements of [(3)H]ouabain binding to skeletal muscle in vivo or in vitro have enabled the reproducible quantification of the total content of Na(+),K(+) pumps in molar units in various animal species, and in both healthy people and individuals with various diseases. In contrast, measurements of 3-O-methylfluorescein phosphatase activity associated with the Na(+),K(+)-ATPase may show inconsistent results. Measurements of Na(+) and K(+) fluxes in intact isolated muscles show that, after Na(+) loading or intense excitation, all the Na(+),K(+) pumps are functional, allowing calculation of the maximum Na(+),K(+)-pumping capacity, expressed in molar units/g muscle/min. The activity and content of Na(+),K(+) pumps are regulated by exercise, inactivity, K(+) deficiency, fasting, age, and several hormones and pharmaceuticals. Studies on the α-subunit isoforms of the Na(+),K(+)-ATPase have detected a relative increase in their

  12. New developments in paediatric cardiac functional ultrasound imaging.

    Science.gov (United States)

    de Korte, Chris L; Nillesen, Maartje M; Saris, Anne E C M; Lopata, Richard G P; Thijssen, Johan M; Kapusta, Livia

    2014-07-01

    Ultrasound imaging can be used to estimate the morphology as well as the motion and deformation of tissues. If the interrogated tissue is actively deforming, this deformation is directly related to its function and quantification of this deformation is normally referred as 'strain imaging'. Tissue can also be deformed by applying an internal or external force and the resulting, induced deformation is a function of the mechanical tissue characteristics. In combination with the load applied, these strain maps can be used to estimate or reconstruct the mechanical properties of tissue. This technique was named 'elastography' by Ophir et al. in 1991. Elastography can be used for atherosclerotic plaque characterisation, while the contractility of the heart or skeletal muscles can be assessed with strain imaging. Rather than using the conventional video format (DICOM) image information, radio frequency (RF)-based ultrasound methods enable estimation of the deformation at higher resolution and with higher precision than commercial methods using Doppler (tissue Doppler imaging) or video image data (2D speckle tracking methods). However, the improvement in accuracy is mainly achieved when measuring strain along the ultrasound beam direction, so it has to be considered a 1D technique. Recently, this method has been extended to multiple directions and precision further improved by using spatial compounding of data acquired at multiple beam steered angles. Using similar techniques, the blood velocity and flow can be determined. RF-based techniques are also beneficial for automated segmentation of the ventricular cavities. In this paper, new developments in different techniques of quantifying cardiac function by strain imaging, automated segmentation, and methods of performing blood flow imaging are reviewed and their application in paediatric cardiology is discussed.

  13. Validation of Na,K-ATPase pump function of corneal endothelial cells for corneal regenerative medicine.

    Science.gov (United States)

    Hatou, Shin; Higa, Kazunari; Inagaki, Emi; Yoshida, Satoru; Kimura, Erika; Hayashi, Ryuhei; Tsujikawa, Motokazu; Tsubota, Kazuo; Nishida, Kohji; Shimmura, Shigeto

    2013-12-01

    Tissue-engineering approaches to cultivate corneal endothelial cells (CECs) or induce CECs from stem cells are under investigation for the treatment of endothelial dysfunction. Before clinical application, a validation method to determine the quality of these cells is required. In this study, we quantified the endothelial pump function required for maintaining the corneal thickness using rabbit CECs (RCECs) and a human CEC line (B4G12). The potential difference of RCECs cultured on a permeable polyester membrane (Snapwell), B4G12 cells on Snapwell, or B4G12 cells on a collagen membrane (CM6) was measured by an Ussing chamber system, and the effect of different concentrations of ouabain (Na,K-ATPase specific inhibitor) was obtained. A mathematical equation derived from the concentration curve revealed that 2 mM ouabain decreases pump function of RCECs to 1.0 mV, and 0.6 mM ouabain decreases pump function of B4G12 on CM6 to 1.0 mV. Ouabain injection into the anterior chamber of rabbit eyes at a concentration of pump function >1.0 mV is required to maintain the corneal thickness. These results can be used for standardization of CEC pump function and validation of tissue-engineered CEC sheets for clinical use.

  14. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca(2+) exchangers

    Science.gov (United States)

    Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+) exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recen...

  15. Changes of cardiac function in hyperthyroidism and hypothyroidism

    International Nuclear Information System (INIS)

    Morishita, Takeshi; Kawamura, Yasuaki; Yamazaki, Junichi; Okuzumi, Ichio; Muto, Toshinori; Wakakura, Manabu; Okamoto, Kiyoshi; Irie, Minoru; Inoue, Kazuko.

    1988-01-01

    Changes of cardiac parameters in patients with 21 hyperthyroidisms and 11 primary hypothyroidisms were studied administered by methimazole or 1-thyroxine using radionuclide method. In hyperthyroidisms, cardiac parameter (CI, EF, PEP/LVET, PEP) normalized 4 - 6 week delayed compared with hormonal level (T 3 , T 4 ) recovery period. On the other hand, in hypothyroidism PEP/LVET delayed about 2 weeks compared with hormonal level, however, other cardiac parameters were maintained within normal level, relatively. Correlation between T 3 and LVET was significant statistically (r = -0.59, p 3 and PEP was significant (r = -0.60, p < 0.01) in hypothyroidisms, respectively. (author)

  16. Evaluation of cardiac functions in patients with thalassemia major

    International Nuclear Information System (INIS)

    Kucuk, N.O.; Aras, G.; Sipahi, T.; Ibis, E.; Akar, N.; Soylu, A.; Erbay, G.

    1999-01-01

    It is known that a blood transfusion is necessary for survival in patients with thalassemia, but it may cause myocardial dysfunction due to myocardial siderosis as in other organs. The aim of this study was to evaluate myocardial perfusion by means of stress thallium scanning (MPS) and left ventricular functions by rest radionuclide ventriculography (RNV). Twenty-one patients at ages 9-16 (mean 12.1±3.2) who have been diagnosed with thalassemia for 4-15 years mean 12.7±4.8) were included in the study. They had blood transfusion 78-318 times (mean 162.1±71). MPS and RNV was performed within two days after the any transfusion. MPS showed ischemia in 3 patients and normal perfusion in 18 patients. RNV revealed normal systolic parameters (wall motion, EF, PER, TPE) but diminished diastolic parameters (TPF, PFR) compared with normal values (p<0.05). We conclude that ischemia or fixed defects may be seen in stress MPS as results of cardiac involvement in patients with thalassemia. But, RNV is an important and preferable test for the early detection of subclinic cardiomyopathy. RNV may therefore show diastolic abnormalities before the systolic abnormalities show up. (author)

  17. Evaluation of cardiac functions in patients with thalassemia major

    Energy Technology Data Exchange (ETDEWEB)

    Kucuk, N.O.; Aras, G.; Sipahi, T.; Ibis, E.; Akar, N.; Soylu, A.; Erbay, G. [Ankara Univ. (Turkey). Medical School

    1999-06-01

    It is known that a blood transfusion is necessary for survival in patients with thalassemia, but it may cause myocardial dysfunction due to myocardial siderosis as in other organs. The aim of this study was to evaluate myocardial perfusion by means of stress thallium scanning (MPS) and left ventricular functions by rest radionuclide ventriculography (RNV). Twenty-one patients at ages 9-16 (mean 12.1{+-}3.2) who have been diagnosed with thalassemia for 4-15 years mean 12.7{+-}4.8) were included in the study. They had blood transfusion 78-318 times (mean 162.1{+-}71). MPS and RNV was performed within two days after the any transfusion. MPS showed ischemia in 3 patients and normal perfusion in 18 patients. RNV revealed normal systolic parameters (wall motion, EF, PER, TPE) but diminished diastolic parameters (TPF, PFR) compared with normal values (p<0.05). We conclude that ischemia or fixed defects may be seen in stress MPS as results of cardiac involvement in patients with thalassemia. But, RNV is an important and preferable test for the early detection of subclinic cardiomyopathy. RNV may therefore show diastolic abnormalities before the systolic abnormalities show up. (author)

  18. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca2+ exchangers

    OpenAIRE

    Barkla, Bronwyn J; Hirschi, Kendal D; Pittman, Jon K

    2008-01-01

    Tonoplast-localised proton-coupled Ca2+ transporters encoded by cation/H+ exchanger (CAX) genes play a critical role in sequestering Ca2+ into the vacuole. These transporters may function in coordination with Ca2+ release channels, to shape stimulus-induced cytosolic Ca2+ elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a ...

  19. Cardiac Function in 7-8-Year-Old Offspring of Women with Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Maarten Rijpert

    2011-01-01

    Full Text Available Offspring of type 1 diabetic mothers (ODMs are at risk of short-term and long-term complications, such as neonatal macrosomia (birth weight >90th percentile, hypertrophic cardiomyopathy, and cardiovascular morbidity in later life. However, no studies have been performed regarding cardiac outcome. In this study, we investigated cardiac dimensions and function in 30 ODMs at 7-8 years of age in relation to neonatal macrosomia and maternal glycemic control during pregnancy and compared these with those in a control group of 30 children of nondiabetic women. We found that cardiac dimensions and systolic and diastolic function parameters in ODMs were comparable with those in controls. Neonatal macrosomia and poorer maternal glycemic control during pregnancy were not related to worse cardiac outcome in ODM. We conclude that cardiac function at 7-8 years of age in offspring of women with type 1 diabetes is reassuring and comparable with that in controls.

  20. Assessment of Cardiac Function in Fetuses of Gestational Diabetic Mothers During the Second Trimester.

    Science.gov (United States)

    Atiq, Mehnaz; Ikram, Anum; Hussain, Batool M; Saleem, Bakhtawar

    2017-06-01

    Fetuses of diabetic mothers may have structural or functional cardiac abnormalities which increase morbidity and mortality. Isolated functional abnormalities have been identified in the third trimester. The aim of the present study was to assess fetal cardiac function (systolic, diastolic, and global myocardial performance) in the second trimester in mothers with gestational diabetes, and also to relate cardiac function with glycemic control. Mothers with gestational diabetes mellitus referred for fetal cardiac evaluation in the second trimester (between 19 and 24 weeks) from March 2015 to February 2016 were enrolled as case subjects in this study. Non-diabetic mothers who had a fetal echocardiogram done between 19 and 24 weeks for other indications were enrolled as controls. Functional cardiac variables showed a statistically significant difference in isovolumetric relaxation and contraction times and the myocardial performance index and mitral E/A ratios in the gestational diabetic group (p = 0.003). Mitral annular plane systolic excursion was significantly less in the diabetic group (p = 0.01). The only functional cardiac variable found abnormal in mothers with poor glycemic control was the prolonged isovolumetric relaxation time. Functional cardiac abnormalities can be detected in the second trimester in fetuses of gestational diabetic mothers and timely intervention can improve postnatal outcomes.

  1. Integration of concepts: cardiac extracellular matrix remodeling after myocardial infarction

    NARCIS (Netherlands)

    Cleutjens, Jack P. M.; Creemers, Esther E. J. M.

    2002-01-01

    The cardiac extracellular matrix consists of a three-dimensional structural network of interstitial collagens to which other matrix components are attached. The main physiological functions of this network are to retain tissue integrity and cardiac pump function. Collagen deposition is controlled

  2. Assessment of cardiac neuronal function with iodine-123 MIBG scintigraphy in children with idiopathic dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Maunoury, Ch.; Sebahoun, St.; Hallaj, I.; Barritault, L.; Acar, Ph.; Sidi, D.; Kachaner, J.; Agostini, D.; Bouvard, G.

    2000-01-01

    The I-123 MIBG cardiac scintigraphy can assess norepinephrine uptake. It has been showed that cardiac adrenergic neuronal function was impaired in adults with dilated cardiomyopathy. The aim of this prospective study was to assess cardiac neuronal function in children with idiopathic dilated cardiomyopathy (DCM) and to compare cardiac uptake of I-123 MIBG with left ventricular ejection fraction (LVEF). We studied 26 consecutive patients with idiopathic DCM, aged 44 ± 50 months, and 12 controls, aged 49 ±65 months. A planar scintigraphy was performed in all children 4 hours after intravenous injection of 20 to 75 MBq of I-123 MIBG. A static anterior view was acquired for 10 minutes. Cardiac uptake of I-123 MIBG was expressed as the heart to mediastinum count ratio (HMR). Equilibrium radionuclide angiography was performed following a standard protocol. Cardiac uptake of I-123 MIBG was significantly decreased in patients with idiopathic DCM when compared with cardiac uptake in controls (172±34% vs 277±14%, P<0.0001. There was a good correlation between RCM and LVEF in patients with idiopathic DCM (y = 2.5 x +113.3, r = 0.80, P < 0.0001). In conclusion, cardiac neuronal function was impaired in children with idiopathic DCM and related to impairment of left ventricular function. (author)

  3. Age-related normal structural and functional ventricular values in cardiac function assessed by magnetic resonance

    International Nuclear Information System (INIS)

    Fiechter, Michael; Gaemperli, Oliver; Kaufmann, Philipp A; Fuchs, Tobias A; Gebhard, Catherine; Stehli, Julia; Klaeser, Bernd; Stähli, Barbara E; Manka, Robert; Manes, Costantina; Tanner, Felix C

    2013-01-01

    The heart is subject to structural and functional changes with advancing age. However, the magnitude of cardiac age-dependent transformation has not been conclusively elucidated. This retrospective cardiac magnetic resonance (CMR) study included 183 subjects with normal structural and functional ventricular values. End systolic volume (ESV), end diastolic volume (EDV), and ejection fraction (EF) were obtained from the left and the right ventricle in breath-hold cine CMR. Patients were classified into four age groups (20–29, 30–49, 50–69, and ≥70 years) and cardiac measurements were compared using Pearson’s rank correlation over the four different groups. With advanced age a slight but significant decrease in ESV (r=−0.41 for both ventricles, P<0.001) and EDV (r=−0.39 for left ventricle, r=−0.35 for right ventricle, P<0.001) were observed associated with a significant increase in left (r=0.28, P<0.001) and right (r=0.27, P<0.01) ventricular EF reaching a maximal increase in EF of +8.4% (P<0.001) for the left and +6.1% (P<0.01) for the right ventricle in the oldest compared to the youngest patient group. Left ventricular myocardial mass significantly decreased over the four different age groups (P<0.05). The aging process is associated with significant changes in left and right ventricular EF, ESV and EDV in subjects with no cardiac functional and structural abnormalities. These findings underline the importance of using age adapted values as standard of reference when evaluating CMR studies

  4. Inhalation of Simulated Smog Atmospheres Affects Cardiac Function in Mice

    Science.gov (United States)

    The health effects of individual criteria air pollutants have been well investigated. However, little is known about the health effects of air pollutant mixtures that more realistically represent environmental exposures. The present study was designed to evaluate the cardiac eff...

  5. Blood conservation techniques and platelet function in cardiac surgery.

    Science.gov (United States)

    Boldt, J; Zickmann, B; Czeke, A; Herold, C; Dapper, F; Hempelmann, G

    1991-09-01

    Postoperative alterations in platelet function induced by cardiopulmonary bypass (CPB) are of importance. The effect on platelet aggregation of three different techniques for reducing blood consumption was studied in 30 patients undergoing elective aortocoronary bypass grafting from the beginning of anesthesia until the 1st postoperative day. The patients were randomly divided into three groups, in which 1) a cell separator was used during and after CPB; 2) a hemofiltration device was used; and 3) high-dose aprotinin was used in order to reduce the need of homologous blood. A fourth group undergoing neurosurgery procedures served as a control. Platelet aggregation induced by adenosine diphosphate (concentration 0.25, 0.50, 1.0, and 2.0 microM), collagen (4 microliters/ml), and epinephrine (25 microM) was determined by the turbidimetric method. Platelet aggregation was not significantly changed in the control group, indicating that the operation itself did not impair platelet function. At the end of the operation (after retransfusion of the salvaged pump blood), the maximum aggregation and maximum gradient of aggregation induced by all three inductors were most reduced (significantly) in the cell-separator patients. On the 1st postoperative day, platelet aggregation in the hemofiltration patients and the patients treated with aprotinin had normalized. Aggregation of patients pretreated with high-dose aprotinin was not different from that of the hemofiltration patients throughout the investigation. Blood loss was significantly highest in the cell-separator group (770 +/- 400 ml on the 1st postoperative day) but was not different between the hemofiltration (390 +/- 230 ml) and the aprotinin-treated patients (260 +/- 160 ml).(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Chronic Cardiac-Targeted RNA Interference for the Treatment of Heart Failure Restores Cardiac Function and Reduces Pathological Hypertrophy

    Science.gov (United States)

    Suckau, Lennart; Fechner, Henry; Chemaly, Elie; Krohn, Stefanie; Hadri, Lahouaria; Kockskämper, Jens; Westermann, Dirk; Bisping, Egbert; Ly, Hung; Wang, Xiaomin; Kawase, Yoshiaki; Chen, Jiqiu; Liang, Lifan; Sipo, Isaac; Vetter, Roland; Weger, Stefan; Kurreck, Jens; Erdmann, Volker; Tschope, Carsten; Pieske, Burkert; Lebeche, Djamel; Schultheiss, Heinz-Peter; Hajjar, Roger J.; Poller, Wolfgang Ch.

    2009-01-01

    Background RNA interference (RNAi) has the potential to be a novel therapeutic strategy in diverse areas of medicine. We report on targeted RNAi for the treatment of heart failure (HF), an important disorder in humans resulting from multiple etiologies. Successful treatment of HF is demonstrated in a rat model of transaortic banding by RNAi targeting of phospholamban (PLB), a key regulator of cardiac Ca2+ homeostasis. Whereas gene therapy rests on recombinant protein expression as its basic principle, RNAi therapy employs regulatory RNAs to achieve its effect. Methods and Results We describe structural requirements to obtain high RNAi activity from adenoviral (AdV) and adeno-associated virus (AAV9) vectors and show that an AdV short hairpin RNA vector (AdV-shRNA) silenced PLB in cardiomyocytes (NRCMs) and improved hemodynamics in HF rats 1 month after aortic root injection. For simplified long-term therapy we developed a dimeric cardiotropic AAV vector (rAAV9-shPLB) delivering RNAi activity to the heart via intravenous injection. Cardiac PLB protein was reduced to 25% and SERCA2a suppression in the HF groups was rescued. In contrast to traditional vectors rAAV9 shows high affinity for myocardium, but low affinity for liver and other organs. rAAV9-shPLB therapy restored diastolic (LVEDP, dp/dtmin, Tau) and systolic (fractional shortening) functional parameters to normal range. The massive cardiac dilation was normalized and the cardiac hypertrophy, cardiomyocyte diameter and cardiac fibrosis significantly reduced. Importantly, there was no evidence of microRNA deregulation or hepatotoxicity during these RNAi therapies. Conclusion Our data show, for the first time, high efficacy of an RNAi therapeutic strategy in a cardiac disease. PMID:19237664

  7. On the mechanism of irradiation effect on the function of Helix pomatia neuron Na+, K+-pump

    International Nuclear Information System (INIS)

    Ajrapetyan, S.N.; Egorova, E.G.; Sagiyan, A.A.; Dadalyan, S.S.; Dvoretskij, A.I.; Sulejmonyan, M.A.

    1987-01-01

    Mechanism of irradiation effect on passive permeability, Na + /Ca 2+ exchange, Na + , K + -pump function intensity, the number of membrane functionally active pump units (Na + , K + -ATP-ase molecules) was determined using Helix pomatia and nervous ganglions isolated from them and irradiated by 5.16 Kl/kg dose. The data obtained show that ionizing radiation leads to obvious destructions in the mechanisms of neuron Na + , K + -pump functioning

  8. Alloxan-induced diabetes reduces sarcolemmal Na+-K+ pump function in rabbit ventricular myocytes.

    Science.gov (United States)

    Hansen, Peter S; Clarke, Ronald J; Buhagiar, Kerrie A; Hamilton, Elisha; Garcia, Alvaro; White, Caroline; Rasmussen, Helge H

    2007-03-01

    The effect of diabetes on sarcolemmal Na(+)-K(+) pump function is important for our understanding of heart disease associated with diabetes and design of its treatment. We induced diabetes characterized by hyperglycemia but no other major metabolic disturbances in rabbits. Ventricular myocytes isolated from diabetic rabbits and controls were voltage clamped and internally perfused with the whole cell patch-clamp technique. Electrogenic Na(+)-K(+) pump current (I(p), arising from the 3:2 Na(+)-to-K(+) exchange ratio) was identified as the shift in holding current induced by Na(+)-K(+) pump blockade with 100 micromol/l ouabain in most experiments. There was no effect of diabetes on I(p) recorded when myocytes were perfused with pipette solutions containing 80 mmol/l Na(+) to nearly saturate intracellular Na(+)-K(+) pump sites. However, diabetes was associated with a significant decrease in I(p) measured when pipette solutions contained 10 mmol/l Na(+). The decrease was independent of membrane voltage but dependent on the intracellular concentration of K(+). There was no effect of diabetes on the sensitivity of I(p) to extracellular K(+). Pump inhibition was abolished by restoration of euglycemia or by in vivo angiotensin II receptor blockade with losartan. We conclude that diabetes induces sarcolemmal Na(+)-K(+) pump inhibition that can be reversed with pharmacological intervention.

  9. Myocardin-related transcription factors are required for cardiac development and function

    Science.gov (United States)

    Mokalled, Mayssa H.; Carroll, Kelli J.; Cenik, Bercin K.; Chen, Beibei; Liu, Ning; Olson, Eric N.; Bassel-Duby, Rhonda

    2016-01-01

    Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the developing or adult heart has not been explored. Through cardiac-specific deletion of MRTF alleles in mice, we show that either MRTF-A or MRTF-B is dispensable for cardiac development and function, whereas deletion of both MRTF-A and MRTF-B causes a spectrum of structural and functional cardiac abnormalities. Defects observed in MRTF-A/B null mice ranged from reduced cardiac contractility and adult onset heart failure to neonatal lethality accompanied by sarcomere disarray. RNA-seq analysis on neonatal hearts identified the most altered pathways in MRTF double knockout hearts as being involved in cytoskeletal organization. Together, these findings demonstrate redundant but essential roles of the MRTFs in maintenance of cardiac structure and function and as indispensible links in cardiac cytoskeletal gene regulatory networks. PMID:26386146

  10. Simultaneous determination of dynamic cardiac metabolism and function using PET/MRI.

    Science.gov (United States)

    Barton, Gregory P; Vildberg, Lauren; Goss, Kara; Aggarwal, Niti; Eldridge, Marlowe; McMillan, Alan B

    2018-05-01

    Cardiac metabolic changes in heart disease precede overt contractile dysfunction. However, metabolism and function are not typically assessed together in clinical practice. The purpose of this study was to develop a cardiac positron emission tomography/magnetic resonance (PET/MR) stress test to assess the dynamic relationship between contractile function and metabolism in a preclinical model. Following an overnight fast, healthy pigs (45-50 kg) were anesthetized and mechanically ventilated. 18 F-fluorodeoxyglucose ( 18 F-FDG) solution was administered intravenously at a constant rate of 0.01 mL/s for 60 minutes. A cardiac PET/MR stress test was performed using normoxic gas (F I O 2  = .209) and hypoxic gas (F I O 2  = .12). Simultaneous cardiac imaging was performed on an integrated 3T PET/MR scanner. Hypoxic stress induced a significant increase in heart rate, cardiac output, left ventricular (LV) ejection fraction (EF), and peak torsion. There was a significant decline in arterial SpO 2 , LV end-diastolic and end-systolic volumes in hypoxia. Increased LV systolic function was coupled with an increase in myocardial FDG uptake (Ki) during hypoxic stress. PET/MR with continuous FDG infusion captures dynamic changes in both cardiac metabolism and contractile function. This technique warrants evaluation in human cardiac disease for assessment of subtle functional and metabolic abnormalities.

  11. Functional Relevance of Coronary Artery Disease by Cardiac Magnetic Resonance and Cardiac Computed Tomography: Myocardial Perfusion and Fractional Flow Reserve

    Directory of Open Access Journals (Sweden)

    Gianluca Pontone

    2015-01-01

    Full Text Available Coronary artery disease (CAD is one of the leading causes of morbidity and mortality and it is responsible for an increasing resource burden. The identification of patients at high risk for adverse events is crucial to select those who will receive the greatest benefit from revascularization. To this aim, several non-invasive functional imaging modalities are usually used as gatekeeper to invasive coronary angiography, but the diagnostic yield of elective invasive coronary angiography remains unfortunately low. Stress myocardial perfusion imaging by cardiac magnetic resonance (stress-CMR has emerged as an accurate technique for diagnosis and prognostic stratification of the patients with known or suspected CAD thanks to high spatial and temporal resolution, absence of ionizing radiation, and the multiparametric value including the assessment of cardiac anatomy, function, and viability. On the other side, cardiac computed tomography (CCT has emerged as unique technique providing coronary arteries anatomy and more recently, due to the introduction of stress-CCT and noninvasive fractional flow reserve (FFR-CT, functional relevance of CAD in a single shot scan. The current review evaluates the technical aspects and clinical experience of stress-CMR and CCT in the evaluation of functional relevance of CAD discussing the strength and weakness of each approach.

  12. Nebivolol: impact on cardiac and endothelial function and clinical utility

    Directory of Open Access Journals (Sweden)

    Toblli JE

    2012-03-01

    Full Text Available Jorge Eduardo Toblli1, Federico DiGennaro1, Jorge Fernando Giani2, Fernando Pablo Dominici21Hospital Aleman, 2Instituto de Química y Fisicoquímica Biológicas (IQUIFIB, Facultad de Farmacia y Bioquímica, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, ArgentinaAbstract: Endothelial dysfunction is a systemic pathological state of the endothelium characterized by a reduction in the bioavailability of vasodilators, essentially nitric oxide, leading to impaired endothelium-dependent vasodilation, as well as disarrangement in vascular wall metabolism and function. One of the key factors in endothelial dysfunction is overproduction of reactive oxygen species which participate in the development of hypertension, atherosclerosis, diabetes, cardiac hypertrophy, heart failure, ischemia-reperfusion injury, and stroke. Because impaired endothelial activity is believed to have a major causal role in the pathophysiology of vascular disease, hypertension, and heart failure, therapeutic agents which modify this condition are of clinical interest. Nebivolol is a third-generation β-blocker with high selectivity for β1-adrenergic receptors and causes vasodilation by interaction with the endothelial L-arginine/nitric oxide pathway. This dual mechanism of action underscores several hemodynamic qualities of nebivolol, which include reductions in heart rate and blood pressure and improvements in systolic and diastolic function. Although nebivolol reduces blood pressure to a degree similar to that of conventional β-blockers and other types of antihypertensive drugs, it may have advantages in populations with difficult-to-treat hypertension, such as patients with heart failure along with other comorbidities, like diabetes and obesity, and elderly patients in whom nitric oxide-mediated endothelial dysfunction may be more pronounced. Furthermore, recent data indicate that nebivolol appears to be a cost-effective treatment for elderly patients with

  13. Evaluation of Factors Influencing Liver Function Test in On-Pump Coronary Artery Bypass Graft Surgery

    Directory of Open Access Journals (Sweden)

    Shahrbano Shahbazi

    2013-12-01

    Full Text Available Background: Liver dysfunction during on-pump coronary artery bypass graft surgery (CABG is a rare complication but is associated with significant morbidity and mortality. The ability to identify high-risk patients may be helpful in planning appropriate management strategies. We aimed to evaluate the factors influencing liver function tests during on-pump CABG. Methods: In 146 patients scheduled for on-pump CABG, the liver function test was done preoperatively and on the first postoperative day. Some preoperative and intraoperative risk factors were checked and then the postoperative liver function tests were compared with the preoperative ones. Probable relationships between these changes and the preoperative and intraoperative risk factors were studied. Results: A medical history of diabetes had a significant relationship with the changes in direct bilirubin. Preoperative central venous pressure had a significant relationship with the changes in aspartate aminotransferase and alanine aminotransferase. Use of intra-aortic balloon pump and duration of aortic cross-clamp were significantly related to the changes in the liver function tests except for alanine aminotransferase and alkaline phosphatase. Conclusion: It seems that the techniques for the reduction of cardiopulmonary bypass and aortic cross-clamp duration may be useful to protect liver function. We recommend that a larger population of patients be studied to confirm these findings.

  14. Cardiac function in survivors of childhood acute myeloid leukemia treated with chemotherapy only

    DEFF Research Database (Denmark)

    Jarfelt, Marianne; Andersen, Niels Holmark; Glosli, Heidi

    2015-01-01

    OBJECTIVES: We report cardiac function of patients treated for Childhood acute myeloid leukemia with chemotherapy only according to three consecutive Nordic protocols. METHODS: Ninety-eight of 138 eligible patients accepted examination with standardized echocardiography. Results were compared...

  15. Effect of Cardiac Rehabilitation on Heart Rate and Functional Capacity in Patients After Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Mandana Parvand

    2016-09-01

    Discussion: Cardiac rehabilitation can increase the performance of blood circulation and uptake of oxygen in body. Due to these changes, there was a significant increase in the functional capacity and an insignificant reduction in the heart rate.

  16. Functions of PDE3 Isoforms in Cardiac Muscle

    Science.gov (United States)

    Movsesian, Matthew; Ahmad, Faiyaz

    2018-01-01

    Isoforms in the PDE3 family of cyclic nucleotide phosphodiesterases have important roles in cyclic nucleotide-mediated signalling in cardiac myocytes. These enzymes are targeted by inhibitors used to increase contractility in patients with heart failure, with a combination of beneficial and adverse effects on clinical outcomes. This review covers relevant aspects of the molecular biology of the isoforms that have been identified in cardiac myocytes; the roles of these enzymes in modulating cAMP-mediated signalling and the processes mediated thereby; and the potential for targeting these enzymes to improve the profile of clinical responses. PMID:29415428

  17. MK-III function tests in JOYO. Primary main cooling pump

    International Nuclear Information System (INIS)

    Isozaki, Kazunori; Saito, Takakazu; Sumino, Kouzo; Karube, Kouji; Terano, Toshihiro; Sakaba, Hideo; Nakai, Satoru

    2004-06-01

    MK-III function test (SKS-1) that was carried out from October 17, 2001 through October 23, 2001 using MK-III transition core configuration and MK-III function tests (SKS-2) was carried out from January 27, 2003 through February 13, 2003 using MK-III core configuration. The major function tests results of primary cooling system were shown as follows; (1) The stability of the primary main pump flow control system was confirmed on both CAS (cascade) mode and Man (manual) mode. Also no divergence of flow and revolution of the pump were observed at step flow change disturbance. (2) The main motor was shifted to run-back flow control operation in about 54 seconds after scram. The flow rate and pump revolution at run-back operation of A and B cooling system were 167 m 3 /h and 117 rpm, 185m 3 /h and 118 rpm respectively. The pump revolution was within the design target revolution 122 rpm ± 8 rpm and the flow was over the 10% of the rated flow. (3) The pony motor was engaged in operation in about 39 seconds after the primary main pump trip. The flow rate and pump revolution at the pony motor operation of A and B cooling system were 180 m 3 /h and 124 rpm, 190 m 3 /h and 123 rpm respectively. These values were satisfied the design low limit of 93 rpm and 10% of the rated flow. (4) Free flow coast down time constant was longer than 10 seconds that was design shortest time at both the primary pump trip and run-back operation. (5) Pump over flow column sodium levels of both A and B cooling system at rated operating condition were NL-1550 mm and, NL-1468 mm respectively and were lower than NL-1581 mm of the design value. This result shows the new IHX pressure loss estimation was conservative. (6) It was confirmed that the primary main pump could operate with out scram for up to 0.6 seconds of external power supply loss. (author)

  18. Action of ouabain and an amino-cardenolide on Na+-pump function and contractility of isolated canine heart cells

    International Nuclear Information System (INIS)

    Porterfield, L.M.; Songu-Mize, E.; Chryssanthis, T.; Caldwell, R.W.

    1986-01-01

    Viable, rod-shaped, Ca ++ -tolerant cells were isolated from the cardiac ventricle of adult mongrel dogs, a digitalis-sensitive species. These cells do not contract spontaneously but contractions were driven by electrical field stimulation. Changes in contractile amplitude were assessed by computer-assisted analysis of recorded phase contrast images. Addition of a polar aminocardenolide (AC), ASI-222, produced a dose-related increase in contractility with a concentration producing a 50% maximal response (RC 50 ) of 4 x 10 -8 M. For ouabain (OB) the RC 50 was 7 x 10 -7 M. Cellular Na + -pump (NaP) function was determined as digitalis-sensitive 86 Rb + -uptake. Addition of AC and OB to these cells produced a dose-related decrease in 86 Rb + -uptake; concentrations which produced a 50% inhibition (IC 50 ) of NaP function were of 6 x 10 -8 M and 1.2 x 10 -6 M for AC and OB, respectively. Their data indicates that in isolated dog heart cells AC is both a more potent inotropic agent and an inhibitor of NaP function by 15-20 fold than OB. The RC 50 and IC 50 for these processes correlate for each glycoside

  19. Prognostic value of left atrial function in systemic light-chain amyloidosis: a cardiac magnetic resonance study.

    Science.gov (United States)

    Mohty, Dania; Boulogne, Cyrille; Magne, Julien; Varroud-Vial, Nicolas; Martin, Sylvain; Ettaif, Hind; Fadel, Bahaa M; Bridoux, Frank; Aboyans, Victor; Damy, Thibaud; Jaccard, Arnaud

    2016-09-01

    Cardiac involvement in systemic light-chain amyloidosis (AL) imparts an adverse impact on outcome. The left atrium (LA), by virtue of its anatomical location and muscular wall, is commonly affected by the amyloid process. Although LA infiltration by amyloid fibrils leads to a reduction in its pump function, the infiltration of the left ventricular (LV) myocardium results in diastolic dysfunction with subsequent increase in filling pressures and LA enlargement. Even though left atrial volume (LAV) is an independent prognostic marker in many cardiomyopathies, its value in amyloid heart disease remains to be determined. In addition, few data are available as to the prognostic value of LA function in systemic AL. Using cardiac magnetic resonance (CMR), the current study aims to assess the prognostic significance of the maximal LAV and total LA emptying fraction (LAEF) in patients with AL. Fifty-four consecutive patients (age 66 ± 10 years, 59% males) with confirmed systemic AL and mean LV ejection fraction of 60 ± 12% underwent CMR. As compared with patients with no or minimal cardiac involvement (Mayo Clinic [MC] stage I), those at moderate and high risk (MC stages II and III) had significantly larger indexed maximal LAV (36 ± 15 vs. 46 ± 13 vs. 52 ± 19 mL/m(2), P = 0.03) and indexed minimal LAV (20 ± 6 vs. 34 ± 11 vs. 44 ± 17 mL/m(2), P 16% (37 ± 11 vs. 94 ± 4%, P = 0.001). In multivariate analysis, lower LAEF remained independently associated with a higher risk of 2-year mortality (HR = 1.08 per 1% decrease, 95% CI: 1.02-1.15, P = 0.003). In patients with systemic AL, LAEF as assessed by CMR is associated with NYHA functional class, MC stage, myocardial LGE and 2-year mortality. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  20. Comparative Toxicity of Different Crude Oils on the Cardiac Function of Marine Medaka (Oryzias melastigma Embryo

    Directory of Open Access Journals (Sweden)

    Zhendong Zhang

    2014-12-01

    Full Text Available The acute toxic effect of different crude oils (heavy crude oil and bonny light crude oil on embryos of marine medaka Oryzias melastigma was measured and evaluated by exposure to the water-accommodated fraction (WAF in the present study. The cardiac function of medaka embryos was used as target organ of ecotoxicological effect induced by oil exposure. Results showed that the developing marine medaka heart was a sensitive target organ to crude oil exposure the heavy crude oil WAF was more toxic to cardiac function of medaka embryos than bonny light cured oil one. Cardiac function of medaka embryos was clearly affected by exposure to heavy crude oil WAF after 24 hours exposure and showed a dose-dependent slowing of heart rate. Furthermore, swelled and enlarged heart morphology, lowered blood circulation and accumulation of blood cells around the heart area were found. However, the toxic effect of bonny light crude oil on cardiac function of medaka embryos was comparatively low. Statistical results showed that the cardiac function was only affected by highest bonny light crude oil WAF (9.8 mg/L exposure treatment. These findings indicated that cardiac function of marine medaka embryo was a good toxicity model for oil pollution and could be used to compare and evaluate the toxicity of different crude oils. The heart rate was an appropriate endpoint in the acute toxicity test.

  1. Clinical evaluation of the Spiral Pump® after improvements to the original project in patients submitted to cardiac surgeries with cardiopulmonary bypass

    Directory of Open Access Journals (Sweden)

    Jarbas Jakson Dinkhuysen

    2014-09-01

    Full Text Available Objective: The objective of this paper is to present the results from Spiral Pump clinical trial after design modifications performed at its previous project. This pump applies axial end centrifugal hydraulic effects for blood pumping during cardiopulmonary bypass for patients under cardiac surgery. Methods: This study was performed in 52 patients (51% males, between 20 to 80 (67±14.4 years old weighing 53 to 102 (71.7±12.6 kg, mostly under myocardial revascularization surgery (34.6% and valvular surgery (32.8%. Besides the routine evaluation of the data observed in these cases, we monitored pump rotational speed, blood flow, cardiopulmonary bypass duration, urine free hemoglobin for blood cell trauma analysis (+ to 4+, lactate desidrogenase (UI/L, fibrinogen level (mg/dL and platelet count (nº/mm3. Results: Besides maintaining appropriate blood pressure and metabolic parameters it was also observed that the Free Hemoglobin levels remained normal, with a slight increase after 90 minutes of cardiopulmonary bypass. The Lactate Dehydrogenase showed an increase, with medians varying between 550-770 IU/L, whereas the decrease in Fibrinogen showed medians of 130-100 mg/dl. The number of platelets showed a slight decrease with the medians ranging from 240,000 to 200,000/mm3. No difficulty was observed during perfusion terminations, nor were there any immediate deaths, and all patients except one, were discharged in good condition. CONCLUSION: The Spiral Pump, as blood propeller during cardiopulmonary bypass, demonstrated to be reliable and safe, comprising in a good option as original and national product for this kind of application.

  2. Stabilization of diastolic calcium signal via calcium pump regulation of complex local calcium releases and transient decay in a computational model of cardiac pacemaker cell with individual release channels.

    Directory of Open Access Journals (Sweden)

    Alexander V Maltsev

    2017-08-01

    Full Text Available Intracellular Local Ca releases (LCRs from sarcoplasmic reticulum (SR regulate cardiac pacemaker cell function by activation of electrogenic Na/Ca exchanger (NCX during diastole. Prior studies demonstrated the existence of powerful compensatory mechanisms of LCR regulation via a complex local cross-talk of Ca pump, release and NCX. One major obstacle to study these mechanisms is that LCR exhibit complex Ca release propagation patterns (including merges and separations that have not been characterized. Here we developed new terminology, classification, and computer algorithms for automatic detection of numerically simulated LCRs and examined LCR regulation by SR Ca pumping rate (Pup that provides a major contribution to fight-or-flight response. In our simulations the faster SR Ca pumping accelerates action potential-induced Ca transient decay and quickly clears Ca under the cell membrane in diastole, preventing premature releases. Then the SR generates an earlier, more synchronized, and stronger diastolic LCR signal activating an earlier and larger inward NCX current. LCRs at higher Pup exhibit larger amplitudes and faster propagation with more collisions to each other. The LCRs overlap with Ca transient decay, causing an elevation of the average diastolic [Ca] nadir to ~200 nM (at Pup = 24 mM/s. Background Ca (in locations lacking LCRs quickly decays to resting Ca levels (<100 nM at high Pup, but remained elevated during slower decay at low Pup. Release propagation is facilitated at higher Pup by a larger LCR amplitude, whereas at low Pup by higher background Ca. While at low Pup LCRs show smaller amplitudes, their larger durations and sizes combined with longer transient decay stabilize integrals of diastolic Ca and NCX current signals. Thus, the local interplay of SR Ca pump and release channels regulates LCRs and Ca transient decay to insure fail-safe pacemaker cell operation within a wide range of rates.

  3. A portable cadmium telluride multidetector probe for cardiac function monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Arntz, Y.; Chambron, J.; Dumitresco, B.; Eclancher, B. E-mail: eclan@alsace.u-strasbg.fr; Prat, V

    1999-06-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) which well depicted the filling and ejection of the cardiac beats, allowing to compare the clinically relevant parameters of the cardiac performance, proportional variables of the stroke volume (SV), ejection fraction (EF) and ventricular flow-rate with the known absolute values programmed on the model. The portable system is now in operation for clinical assessment of cardiac patients.

  4. A portable cadmium telluride multidetector probe for cardiac function monitoring

    International Nuclear Information System (INIS)

    Arntz, Y.; Chambron, J.; Dumitresco, B.; Eclancher, B.; Prat, V.

    1999-01-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) which well depicted the filling and ejection of the cardiac beats, allowing to compare the clinically relevant parameters of the cardiac performance, proportional variables of the stroke volume (SV), ejection fraction (EF) and ventricular flow-rate with the known absolute values programmed on the model. The portable system is now in operation for clinical assessment of cardiac patients

  5. Functional dissection of the proton pumping modules of mitochondrial complex I.

    Directory of Open Access Journals (Sweden)

    Stefan Dröse

    2011-08-01

    Full Text Available Mitochondrial complex I, the largest and most complicated proton pump of the respiratory chain, links the electron transfer from NADH to ubiquinone to the pumping of four protons from the matrix into the intermembrane space. In humans, defects in complex I are involved in a wide range of degenerative disorders. Recent progress in the X-ray structural analysis of prokaryotic and eukaryotic complex I confirmed that the redox reactions are confined entirely to the hydrophilic peripheral arm of the L-shaped molecule and take place at a remarkable distance from the membrane domain. While this clearly implies that the proton pumping within the membrane arm of complex I is driven indirectly via long-range conformational coupling, the molecular mechanism and the number, identity, and localization of the pump-sites remains unclear. Here, we report that upon deletion of the gene for a small accessory subunit of the Yarrowia complex I, a stable subcomplex (nb8mΔ is formed that lacks the distal part of the membrane domain as revealed by single particle analysis. The analysis of the subunit composition of holo and subcomplex by three complementary proteomic approaches revealed that two (ND4 and ND5 of the three subunits with homology to bacterial Mrp-type Na(+/H(+ antiporters that have been discussed as prime candidates for harbouring the proton pumps were missing in nb8mΔ. Nevertheless, nb8mΔ still pumps protons at half the stoichiometry of the complete enzyme. Our results provide evidence that the membrane arm of complex I harbours two functionally distinct pump modules that are connected in series by the long helical transmission element recently identified by X-ray structural analysis.

  6. Postoperative Functional Outcome After Off-Pump Versus On-Pump Coronary Artery Bypass Grafting Using Gated Myocardial SPECT: A Comparison by Propensity Score Analysis

    International Nuclear Information System (INIS)

    Lee, Jong Jin; Paeng, Jin Chul; Lee, Dong Soo; Kim, Ki Bong; Chung, June Key; Lee, Myung Chul; Kang, Won Jun

    2010-01-01

    We evaluated the short-term and mid-term differences in perfusion and function after off-pump and on-pump coronary artery bypass grafting (CABG) using gated myocardial single photon emission computed tomography. A total of 70 patients with coronary artery disease who underwent CABG were included based on the propensity score matching results from 165 patients. Thirty-five patients underwent off-pump and 35 patients on-pump CABG. Rest 201 TI/dipyridamole stress 99m Tc-methoxyisobutylisonitrile gated single photon emission computed thermographs were performed preoperatively and postoperatively at short-term (103±23 days after surgery) and mid-term follow-up (502±111 days after surgery). Changes in left ventricular ejection fraction, end systolic volume, stress and rest segmental perfusion, and segmental wall thickening were compared between the two groups. The segments with preoperative rest 201 T1 uptake under 60% of maximum uptake were included in the segmental analysis. Left ventricular ejection fraction (P=0.001) and end systolic volume (P=0.008) showed significant improvement in both groups. There were no significant short-term and mid-term differences between the two groups in terms of left ventricular ejection fraction (P=0.309) and end systolic volume (P=0.938). Likewise, segmental rest (P=0.178) and stress perfusion (P=0.071), and systolic wall thickening (P=0.241) showed significant improvement in both groups with similar time courses. Off-pump CABG resulted in significant improvements in left ventricular ejection fraction, end systolic volume, and regional myocardial perfusion and function that are comparable to on-pump CABG at short-term and mid-term. Gated myocardial SPECT successfully revealed that off-pump CABG is as good as on-pump CABG from the viewpoint of myocardial perfusion and function.

  7. Cardiac structure and function predicts functional decline in the oldest old.

    Science.gov (United States)

    Leibowitz, David; Jacobs, Jeremy M; Lande-Stessman, Irit; Gilon, Dan; Stessman, Jochanan

    2018-02-01

    Background This study examined the association between cardiac structure and function and the deterioration in activities of daily living (ADLs) in an age-homogenous, community-dwelling population of patients born in 1920-1921 over a five-year follow-up period. Design Longitudinal cohort study. Methods Patients were recruited from the Jerusalem Longitudinal Cohort Study, which has followed an age-homogenous cohort of Jerusalem residents born in 1920-1921. Patients underwent home echocardiography and were followed up for five years. Dependence was defined as needing assistance with one or more basic ADL. Standard echocardiographic assessment of cardiac structure and function, including systolic and diastolic function, was performed. Reassessment of ADLs was performed at the five-year follow-up. Results A total of 459 patients were included in the study. Of these, 362 (79%) showed a deterioration in at least one ADL at follow-up. Patients with functional deterioration had a significantly higher left ventricular mass index and left atrial volume with a lower ejection fraction. There was no significant difference between the diastolic parameters the groups in examined. When the data were examined categorically, a significantly larger percentage of patients with functional decline had an abnormal left ventricular ejection fraction and left ventricular hypertrophy. The association between left ventricular mass index and functional decline remained significant in all multivariate models. Conclusions In this cohort of the oldest old, an elevated left ventricular mass index, higher left atrial volumes and systolic, but not diastolic dysfunction, were predictive of functional disability.

  8. Overhydration, Cardiac Function and Survival in Hemodialysis Patients.

    Science.gov (United States)

    Onofriescu, Mihai; Siriopol, Dimitrie; Voroneanu, Luminita; Hogas, Simona; Nistor, Ionut; Apetrii, Mugurel; Florea, Laura; Veisa, Gabriel; Mititiuc, Irina; Kanbay, Mehmet; Sascau, Radu; Covic, Adrian

    2015-01-01

    .29-5.89 for RFO >17.4%) and multivariate (HR = 2.31, 95%CI = 1.42-3.77 for RFO >15% and HR = 4.17, 95%CI = 2.48-7.02 for RFO >17.4%) Cox regression analysis. The study shows that the hydration status is associated with the mortality risk in a HD population, independently of cardiac morphology and function. We also describe and propose a new cut-off for RFO, in order to better define the relationship between overhydration and mortality risk. Further studies are needed to properly validate this new cut-off in other HD populations.

  9. Overhydration, Cardiac Function and Survival in Hemodialysis Patients.

    Directory of Open Access Journals (Sweden)

    Mihai Onofriescu

    .67, 95%CI = 2.29-5.89 for RFO >17.4% and multivariate (HR = 2.31, 95%CI = 1.42-3.77 for RFO >15% and HR = 4.17, 95%CI = 2.48-7.02 for RFO >17.4% Cox regression analysis.The study shows that the hydration status is associated with the mortality risk in a HD population, independently of cardiac morphology and function. We also describe and propose a new cut-off for RFO, in order to better define the relationship between overhydration and mortality risk. Further studies are needed to properly validate this new cut-off in other HD populations.

  10. Effects of vildagliptin versus sitagliptin, on cardiac function, heart rate variability and mitochondrial function in obese insulin-resistant rats

    Science.gov (United States)

    Apaijai, Nattayaporn; Pintana, Hiranya; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2013-01-01

    Background and Purpose Long-term high-fat diet (HFD) consumption has been shown to cause insulin resistance, which is characterized by hyperinsulinaemia with metabolic inflexibility. Insulin resistance is associated with cardiac sympathovagal imbalance, cardiac dysfunction and cardiac mitochondrial dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors, vildagliptin and sitagliptin, are oral anti-diabetic drugs often prescribed in patients with cardiovascular disease. Therefore, in this study, we sought to determine the effects of vildagliptin and sitagliptin in a murine model of insulin resistance. Experimental Approach Male Wistar rats weighing 180–200 g, were fed either a normal diet (20% energy from fat) or a HFD (59% energy from fat) for 12 weeks. These rats were then divided into three subgroups to receive vildagliptin (3 mg·kg−1·day−1), sitagliptin (30 mg·kg−1·day−1) or vehicle for another 21 days. Metabolic parameters, oxidative stress, heart rate variability (HRV), cardiac function and cardiac mitochondrial function were determined. Key Results Rats that received HFD developed insulin resistance characterized by increased body weight, plasma insulin, total cholesterol and oxidative stress levels along with a decreased high-density lipoprotein (HDL) level. Moreover, cardiac dysfunction, depressed HRV, cardiac mitochondrial dysfunction and cardiac mitochondrial morphology changes were observed in HFD rats. Both vildagliptin and sitagliptin decreased plasma insulin, total cholesterol and oxidative stress as well as increased HDL level. Furthermore, vildagliptin and sitagliptin attenuated cardiac dysfunction, prevented cardiac mitochondrial dysfunction and completely restored HRV. Conclusions and Implications Both vildagliptin and sitagliptin share similar efficacy in cardioprotection in obese insulin-resistant rats. PMID:23488656

  11. Hormonal regulation of Na+/K+-dependent ATPase activity and pump function in corneal endothelial cells.

    Science.gov (United States)

    Hatou, Shin

    2011-10-01

    Na- and K-dependent ATPase (Na,K-ATPase) in the basolateral membrane of corneal endothelial cells plays an important role in the pump function of the corneal endothelium. We investigated the role of dexamethasone in the regulation of Na,K-ATPase activity and pump function in these cells. Mouse corneal endothelial cells were exposed to dexamethasone or insulin. ATPase activity was evaluated by spectrophotometric measurement, and pump function was measured using an Ussing chamber. Western blotting and immunocytochemistry were performed to measure the expression of the Na,K-ATPase α1-subunit. Dexamethasone increased Na,K-ATPase activity and the pump function of endothelial cells. Western blot analysis indicated that dexamethasone increased the expression of the Na,K-ATPase α1-subunit but decreased the ratio of active to inactive Na,K-ATPase α1-subunit. Insulin increased Na,K-ATPase activity and pump function of cultured corneal endothelial cells. These effects were transient and blocked by protein kinase C inhibitors and inhibitors of protein phosphatases 1 (PP1) and 2A (PP2A). Western blot analysis indicated that insulin decreased the amount of inactive Na,K-ATPase α1-subunit, but the expression of total Na,K-ATPase α1-subunit was unchanged. Immunocytochemistry showed that insulin increased cell surface expression of the Na,K-ATPase α1-subunit. Our results suggest that dexamethasone and insulin stimulate Na,K-ATPase activity in mouse corneal endothelial cells. The effect of dexamethasone activation in these cells was mediated by Na,K-ATPase synthesis and an increased enzymatic activity because of dephosphorylation of Na,K-ATPase α1-subunits. The effect of insulin is mediated by the protein kinase C, PP1, and/or PP2A pathways.

  12. Multimodality Cardiac Imaging for the Assessment of Left Atrial Function and the Association With Atrial Arrhythmias

    DEFF Research Database (Denmark)

    Olsen, Flemming Javier; Bertelsen, Litten; de Knegt, Martina Chantal

    2016-01-01

    Several cardiac imaging modalities are able to visualize the left atrium (LA) and, therefore, allow for quantification of both structural and functional properties of this cardiac chamber. In echocardiography, only the maximal LA volume is included in the assessment of diastolic function at the c......Several cardiac imaging modalities are able to visualize the left atrium (LA) and, therefore, allow for quantification of both structural and functional properties of this cardiac chamber. In echocardiography, only the maximal LA volume is included in the assessment of diastolic function...... atrial fibrillation, which will be a point of focus in this review. Pivotal cardiac magnetic resonance imaging studies have revealed high correlation between LA fibrosis and risk of atrial fibrillation recurrence after catheter ablation, and subsequent multimodality imaging studies have uncovered...... an inverse relationship between LA reservoir function and degree of LA fibrosis. This has sparked an increased interest into the application of advanced imaging modalities, including both speckle tracking echocardiography and tissue tracking by cardiac magnetic resonance imaging. Even though increasing...

  13. Moderate-Intensity Exercise Affects Gut Microbiome Composition and Influences Cardiac Function in Myocardial Infarction Mice

    Directory of Open Access Journals (Sweden)

    Zuheng Liu

    2017-09-01

    Full Text Available Physical exercise is commonly regarded as protective against cardiovascular disease (CVD. Recent studies have reported that exercise alters the gut microbiota and that modification of the gut microbiota can influence cardiac function. Here, we focused on the relationships among exercise, the gut microbiota and cardiac function after myocardial infarction (MI. Four-week-old C57BL/6J mice were exercised on a treadmill for 4 weeks before undergoing left coronary artery ligation. Cardiac function was assessed using echocardiography. Gut microbiomes were evaluated post-exercise and post-MI using 16S rRNA gene sequencing on an Illumina HiSeq platform. Exercise training inhibited declines in cardiac output and stroke volume in post-MI mice. In addition, physical exercise and MI led to alterations in gut microbial composition. Exercise training increased the relative abundance of Butyricimonas and Akkermansia. Additionally, key operational taxonomic units were identified, including 24 lineages (mainly from Bacteroidetes, Barnesiella, Helicobacter, Parabacteroides, Porphyromonadaceae, Ruminococcaceae, and Ureaplasma that were closely related to exercise and cardiac function. These results suggested that exercise training improved cardiac function to some extent in addition to altering the gut microbiota; therefore, they could provide new insights into the use of exercise training for the treatment of CVD.

  14. Use of I-123 MIBG cardiac scintigraphy to assess the impact of carvedilol on cardiac adrenergic neuronal function in childhood dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Maunoury, C.; Acar, P.; Sidi, D.

    2006-01-01

    I-123 MIBG cardiac scintigraphy is a useful tool to assess cardiac adrenergic neuronal function, which is impaired in children with dilated cardiomyopathy (DCM). In adults with DCM, long-term treatment with carvedilol improves both cardiac adrenergic neuronal function and left ventricular function. The aim of this prospective study was to evaluate the impact of carvedilol on cardiac adrenergic neuronal function and on left ventricular function in seventeen patients (11 female, 6 male, mean age 39 ± 57 months, range 1 - 168 months) with DCM. All patients underwent I-123 MIBG cardiac scintigraphy and equilibrium radio-nuclide angiography before and after a 6 month period of carvedilol therapy. A static anterior view of the chest was acquired 4 hours after intravenous injection of 20 to 75 MBq of I-123 MIBG. Cardiac neuronal uptake of I-123 MIBG was measured using the heart to mediastinum count ratio (HMR). Radionuclide left ventricular ejection fraction (LVEF) was assessed following a standard protocol. There was no major cardiac events (death or transplantation) during the follow-up period. I-123 MIBG cardiac uptake and left ventricular function respectively increased by 38% and 65% after 6 months of treatment with carvedilol (HMR 223 ± 49% vs 162 ± 26%, p < 0.0001 and LVEF = 43 ± 17% vs 26 ± 11%, p < 0.0001). Carvedilol can improve cardiac adrenergic neuronal function and left ventricular function in children with DCM. Further studies are needed to assess the relationship between improvement in I-123 MIBG cardiac uptake and the beneficial effects of carvedilol on morbidity and mortality. (authors)

  15. The changes in beta-adrenoceptor-mediated cardiac function in experimental hypothyroidism: the possible contribution of cardiac beta3-adrenoceptors.

    Science.gov (United States)

    Arioglu, E; Guner, S; Ozakca, I; Altan, V M; Ozcelikay, A T

    2010-02-01

    Thyroid hormone deficiency has been reported to decrease expression and function of both beta(1)- and beta(2)-adrenoceptor in different tissues including heart. The purpose of this study was to examine the possible contribution of beta(3)-adrenoceptors to cardiac dysfunction in hypothyroidism. In addition, effect of this pathology on beta(1)- and beta(2)-adrenoceptor was investigated. Hypothyroidism was induced by adding methimazole (300 mg/l) to drinking water of rats for 8 weeks. Cardiac hemodynamic parameters were measured in anesthetised rats in vivo. Responses to beta-adrenoceptor agonists were examined in rat papillary muscle in vitro. We also studied the effect of hypotyroidism on mRNA expression of beta-adrenoceptors, Gialpha, GRK, and eNOS in rat heart. All of the hemodynamic parameters (systolic, diastolic and mean arterial pressure, left ventricular pressure, heart rate, +dp/dt, and -dp/dt) were significantly reduced by the methimazole treatment. The negative inotropic effect elicited by BRL 37344 (a beta(3)-adrenoceptor preferential agonist) and positive inotropic effects produced by isoprenaline and noradrenaline, respectively, were significantly decreased in papillary muscle of hypothyroid rats as compared to those of controls. On the other hand, hypothyroidism resulted in increased cardiac beta(2)- and beta(3)-adrenoceptor, Gialpha(2), Gialpha(3), GRK3, and eNOS mRNA expressions. However, beta(1)-adrenoceptor and GRK2 mRNA expressions were not changed significantly in this pathology. These results show that mRNA expression of beta(3)-adrenoceptors as well as the signalling pathway components mediated through beta(3)-adrenoceptors are significantly increased in hypothyroid rat heart. Since we could not correlate these alternates with the decreased negative inotropic response mediated by this receptor subtype, it is not clear whether these changes are important for hypothyroid induced reduction in cardiac function.

  16. Effect of thoracic epidural anesthesia on oxygen delivery and utilization in cardiac surgical patients scheduled to undergo off-pump coronary artery bypass surgery: a prospective study.

    Science.gov (United States)

    Suryaprakash, Sharadaprasad; Chakravarthy, Murali; Gautam, Mamatha; Gandhi, Anurag; Jawali, Vivek; Patil, Thimmannagowda; Jayaprakash, Krishnamoorthy; Pandey, Saurabh; Muniraju, Geetha

    2011-01-01

    To evaluate the effect of thoracic epidural anesthesia (TEA) on tissue oxygen delivery and utilization in patients undergoing cardiac surgery. This prospective observational study was conducted in a tertiary referral heart hospital. A total of 25 patients undergoing elective off-pump coronary artery bypass surgery were enrolled in this study. All patients received thoracic epidural catheter in the most prominent inter-vertebral space between C7 and T3 on the day before operation. On the day of surgery, an arterial catheter and Swan Ganz catheter (capable of measuring cardiac index) was inserted. After administering full dose of local anesthetic in the epidural space, serial hemodynamic and oxygen transport parameters were measured for 30 minute prior to administration of general anesthesia, with which the study was culminated. A significant decrease in oxygen delivery index with insignificant changes in oxygen extraction and consumption indices was observed. We conclude that TEA does not affect tissue oxygenation despite a decrease in arterial pressures and cardiac output.

  17. Effect of thoracic epidural anesthesia on oxygen delivery and utilization in cardiac surgical patients scheduled to undergo off-pump coronary artery bypass surgery: A prospective study

    Directory of Open Access Journals (Sweden)

    Suryaprakash Sharadaprasad

    2011-01-01

    Full Text Available To evaluate the effect of thoracic epidural anesthesia (TEA on tissue oxygen delivery and utilization in patients undergoing cardiac surgery. This prospective observational study was conducted in a tertiary referral heart hospital. A total of 25 patients undergoing elective off-pump coronary artery bypass surgery were enrolled in this study. All patients received thoracic epidural catheter in the most prominent inter-vertebral space between C7 and T3 on the day before operation. On the day of surgery, an arterial catheter and Swan Ganz catheter (capable of measuring cardiac index was inserted. After administering full dose of local anesthetic in the epidural space, serial hemodynamic and oxygen transport parameters were measured for 30 minute prior to administration of general anesthesia, with which the study was culminated. A significant decrease in oxygen delivery index with insignificant changes in oxygen extraction and consumption indices was observed. We conclude that TEA does not affect tissue oxygenation despite a decrease in arterial pressures and cardiac output.

  18. Methyl-CpG binding-protein 2 function in cholinergic neurons mediates cardiac arrhythmogenesis.

    Science.gov (United States)

    Herrera, José A; Ward, Christopher S; Wehrens, Xander H T; Neul, Jeffrey L

    2016-11-15

    Sudden unexpected death occurs in one quarter of deaths in Rett Syndrome (RTT), a neurodevelopmental disorder caused by mutations in Methyl-CpG-binding protein 2 (MECP2). People with RTT show a variety of autonomic nervous system (ANS) abnormalities and mouse models show similar problems including QTc interval prolongation and hypothermia. To explore the role of cardiac problems in sudden death in RTT, we characterized cardiac rhythm in mice lacking Mecp2 function. Male and female mutant mice exhibited spontaneous cardiac rhythm abnormalities including bradycardic events, sinus pauses, atrioventricular block, premature ventricular contractions, non-sustained ventricular arrhythmias, and increased heart rate variability. Death was associated with spontaneous cardiac arrhythmias and complete conduction block. Atropine treatment reduced cardiac arrhythmias in mutant mice, implicating overactive parasympathetic tone. To explore the role of MeCP2 within the parasympathetic neurons, we selectively removed MeCP2 function from cholinergic neurons (MeCP2 ChAT KO), which recapitulated the cardiac rhythm abnormalities, hypothermia, and early death seen in RTT male mice. Conversely, restoring MeCP2 only in cholinergic neurons rescued these phenotypes. Thus, MeCP2 in cholinergic neurons is necessary and sufficient for autonomic cardiac control, thermoregulation, and survival, and targeting the overactive parasympathetic system may be a useful therapeutic strategy to prevent sudden unexpected death in RTT.

  19. Therapeutic Inhibition of miR-208a Improves Cardiac Function and Survival During Heart Failure

    Science.gov (United States)

    Montgomery, Rusty L.; Hullinger, Thomas G.; Semus, Hillary M.; Dickinson, Brent A.; Seto, Anita G.; Lynch, Joshua M.; Stack, Christianna; Latimer, Paul A.; Olson, Eric N.; van Rooij, Eva

    2012-01-01

    Background Diastolic dysfunction in response to hypertrophy is a major clinical syndrome with few therapeutic options. MicroRNAs act as negative regulators of gene expression by inhibiting translation or promoting degradation of target mRNAs. Previously, we reported that genetic deletion of the cardiac-specific miR-208a prevents pathological cardiac remodeling and upregulation of Myh7 in response to pressure overload. Whether this miRNA might contribute to diastolic dysfunction or other forms of heart disease is currently unknown. Methods and Results Here, we show that systemic delivery of an antisense oligonucleotide induces potent and sustained silencing of miR-208a in the heart. Therapeutic inhibition of miR-208a by subcutaneous delivery of antimiR-208a during hypertension-induced heart failure in Dahl hypertensive rats dose-dependently prevents pathological myosin switching and cardiac remodeling while improving cardiac function, overall health, and survival. Transcriptional profiling indicates that antimiR-208a evokes prominent effects on cardiac gene expression; plasma analysis indicates significant changes in circulating levels of miRNAs on antimiR-208a treatment. Conclusions These studies indicate the potential of oligonucleotide-based therapies for modulating cardiac miRNAs and validate miR-208 as a potent therapeutic target for the modulation of cardiac function and remodeling during heart disease progression. PMID:21900086

  20. Functional and biocompatibility performances of an integrated Maglev pump-oxygenator.

    Science.gov (United States)

    Zhang, Tao; Cheng, Guangming; Koert, Andrew; Zhang, Juntao; Gellman, Barry; Yankey, G Kwame; Satpute, Aditee; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J

    2009-01-01

    To provide respiratory support for patients with lung failure, a novel compact integrated pump-oxygenator is being developed. The functional and biocompatibility performances of this device are presented. The pump-oxygenator is designed by combining a magnetically levitated pump/rotor with a uniquely configured hollow fiber membrane bundle to create an assembly free, ultracompact, all-in-one system. The hemodynamics, gas transfer and biocompatibility performances of this novel device were investigated both in vitro in a circulatory flow loop and in vivo in an ovine animal model. The in vitro results showed that the device was able to pump blood flow from 2 to 8 L/min against a wide range of pressures and to deliver an oxygen transfer rate more than 300 mL/min at a blood flow of 6 L/min. Blood damage tests demonstrated low hemolysis (normalized index of hemolysis [NIH] approximately 0.04) at a flow rate of 5 L/min against a 100-mm Hg afterload. The data from five animal experiments (4 h to 7 days) demonstrated that the device could bring the venous blood to near fully oxygen-saturated condition (98.6% +/- 1.3%). The highest oxygen transfer rate reached 386 mL/min. The gas transfer performance was stable over the study duration for three 7-day animals. There was no indication of blood damage. The plasma free hemoglobin and platelet count were within the normal ranges. No gross thrombus is found on the explanted pump components and fiber surfaces. Both in vitro and in vivo results demonstrated that the newly developed pump-oxygenator can achieve sufficient blood flow and oxygen transfer with excellent biocompatibility.

  1. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function.

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  2. The profound effects of microcystin on cardiac antioxidant enzymes, mitochondrial function and cardiac toxicity in rat

    International Nuclear Information System (INIS)

    Qiu Tong; Xie Ping; Liu Ying; Li Guangyu; Xiong Qian; Hao Le; Li Huiying

    2009-01-01

    Deaths from microcystin toxication have widely been attributed to hypovolemic shock due to hepatic interstitial hemorrhage, while some recent studies suggest that cardiogenic complication is also involved. So far, information on cardiotoxic effects of MC has been rare and the underlying mechanism is still puzzling. The present study examined toxic effects of microcystins on heart muscle of rats intravenously injected with extracted MC at two doses, 0.16LD 50 (14 μg MC-LReq kg -1 body weight) and 1LD 50 (87 μg MC-LReq kg -1 body weight). In the dead rats, both TTC staining and maximum elevations of troponin I levels confirmed myocardial infarction after MC exposure, besides a serious interstitial hemorrhage in liver. In the 1LD 50 dose group, the coincident falls in heart rate and blood pressure were related to mitochondria dysfunction in heart, while increases in creatine kinase and troponin I levels indicated cardiac cell injury. The corresponding pathological alterations were mainly characterized as loss of adherence between cardiac myocytes and swollen or ruptured mitochondria at the ultrastructural level. MC administration at a dose of 1LD 50 not only enhanced activities and up-regulated mRNA transcription levels of antioxidant enzymes, but also increased GSH content. At both doses, level of lipid peroxides increased obviously, suggesting serious oxidative stress in mitochondria. Simultaneously, complex I and III were significantly inhibited, indicating blocks in electron flow along the mitochondrial respiratory chain in heart. In conclusion, the findings of this study implicate a role for MC-induced cardiotoxicity as a potential factor that should be considered when evaluating the mechanisms of death associated with microcystin intoxication in Brazil

  3. Cardiac autonomic function in patients with diabetes improves with practice of comprehensive yogic breathing program

    Directory of Open Access Journals (Sweden)

    Viveka P Jyotsna

    2013-01-01

    Full Text Available Background: The aim of this study was to observe the effect comprehensive yogic breathing (Sudarshan Kriya Yoga [SKY] and Pranayam had on cardiac autonomic functions in patients with diabetes. Materials and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 64 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program. Standard therapy included dietary advice, brisk walking for 45 min daily, and administration of oral antidiabetic drugs. Comprehensive yogic breathing program was introduced to the participants through a course of 12 h spread over 3 days. It was an interactive session in which SKY, a rhythmic cyclical breathing, preceded by Pranayam is taught under the guidance of a certified teacher. Cardiac autonomic function tests were done before and after 6 months of intervention. Results: In the intervention group, after practicing the breathing techniques for 6 months, the improvement in sympathetic functions was statistically significant (P 0.04. The change in sympathetic functions in the standard therapy group was not significant (P 0.75.Parasympathetic functions did not show any significant change in either group. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P 0.06. In the standard therapy group, no change in cardiac autonomic functions was noted (P 0.99. Conclusion: Cardiac autonomic functions improved in patients with diabetes on standard treatment who followed the comprehensive yogic breathing program compared to patients who were on standard therapy alone.

  4. Importance of circulating IGF-1 for normal cardiac morphology, function and post infarction remodeling.

    Science.gov (United States)

    Scharin Täng, M; Redfors, B; Lindbom, M; Svensson, J; Ramunddal, T; Ohlsson, C; Shao, Y; Omerovic, E

    2012-12-01

    IGF-1 plays an important role in cardiovascular homeostasis, and plasma levels of IGF-1 correlate inversely with systolic function in heart failure. It is not known to what extent circulating IGF-1 secreted by the liver and local autocrine/paracrine IGF-1 expressed in the myocardium contribute to these beneficial effects on cardiac function and morphology. In the present study, we used a mouse model of liver-specific inducible deletion of the IGF-1 gene (LI-IGF-1 -/- mouse) in an attempt to evaluate the importance of circulating IGF-I on cardiac morphology and function under normal and pathological conditions, with an emphasis on its regulatory role in myocardial phosphocreatine metabolism. Echocardiography was performed in LI-IGF-1 -/- and control mice at rest and during dobutamine stress, both at baseline and post myocardial infarction (MI). High-energy phosphate metabolites were compared between LI-IGF-1 -/- and control mice at 4 weeks post MI. We found that LI-IGF-1 -/- mice had significantly greater left ventricular dimensions at baseline and showed a greater relative increase in cardiac dimensions, as well as deterioration of cardiac function, post MI. Myocardial creatine content was 17.9% lower in LI-IGF-1 -/- mice, whereas there was no detectable difference in high-energy nucleotides. These findings indicate an important role of circulating IGF-1 in preserving cardiac structure and function both in physiological settings and post MI. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Endothelial Function as a Possible Significant Determinant of Cardiac Function during Exercise in Patients with Structural Heart Disease

    Directory of Open Access Journals (Sweden)

    Bonpei Takase

    2009-01-01

    Full Text Available This study was investigated the role that endothelial function and systemic vascular resistance (SVR play in determining cardiac function reserve during exercise by a new ambulatory radionuclide monitoring system (VEST in patients with heart disease. The study population consisted of 32 patients. The patients had cardiopulmonary stress testing using the treadmill Ramp protocol and the VEST. The anaerobic threshold (AT was autodetermined using the V-slope method. The SVR was calculated by determining the mean blood pressure/cardiac output. Flow-mediated vasodilation (FMD was measured in the brachial artery to evaluate endotheilial function. FMD and the percent change f'rom rest to AT in SVR correlated with those from rest to AT in ejection fraction and peak ejection ratio by VEST, respectively. Our findings suggest that FMD in the brachial artery and the SVR determined by VEST in patients with heart disease can possibly reflect cardiac function reserve during aerobic exercise.

  6. Long Term Osmotic Mini Pump Treatment with Alpha-MSH Improves Myocardial Function in Zucker Diabetic Fatty Rats

    Directory of Open Access Journals (Sweden)

    Miklos Szokol

    2017-10-01

    Full Text Available The present investigation evaluates the cardiovascular effects of the anorexigenic mediator alpha-melanocyte stimulating hormone (MSH, in a rat model of type 2 diabetes. Osmotic mini pumps delivering MSH or vehicle, for 6 weeks, were surgically implanted in Zucker Diabetic Fatty (ZDF rats. Serum parameters, blood pressure, and weight gain were monitored along with oral glucose tolerance (OGTT. Echocardiography was conducted and, following sacrifice, the effects of treatment on ischemia/reperfusion cardiac injury were assessed using the isolated working heart method. Nicotinamide adenine dinucleotide phosphate (NADPH oxidase activity was measured to evaluate levels of oxidative stress, and force measurements were performed on isolated cardiomyocytes to determine calcium sensitivity, active tension and myofilament co-operation. Vascular status was also evaluated on isolated arterioles using a contractile force measurement setup. The echocardiographic parameters ejection fraction (EF, fractional shortening (FS, isovolumetric relaxation time (IVRT, mitral annular plane systolic excursion (MAPSE, and Tei-index were significantly better in the MSH-treated group compared to ZDF controls. Isolated working heart aortic and coronary flow was increased in treated rats, and higher Hill coefficient indicated better myofilament co-operation in the MSH-treated group. We conclude that MSH improves global heart functions in ZDF rats, but these effects are not related to the vascular status.

  7. Stable xenon CT measurement of cerebral blood flow in cardiac transplantation candidates: Correlation with cognitive function

    International Nuclear Information System (INIS)

    Bello, J.A.; Fink, M.E.; Hilal, S.K.; Rose, E.A.; Reemtsma, K.

    1987-01-01

    Thirteen consecutive unselected patients with NYHA class 4 cardiac failure referred for cardiac transplantation underwent neurologic examination and cerebral blood flow measurement (rCBF) using the stable xenon enhanced CT method on a GE9800 system. Eleven men and two women were studied (mean age = 43.8 +- 6.1). On neurological examination, six of the patients demonstrated normal mental function; the remaining seven patients demonstrated memory, language, or learning impairment. There was no difference in mean cardiac output between the groups (4.9 L/min +- 1.68 vs. 4.2L/min +- 1.57). rCBF was significantly reduced in the impaired group. Cognitive impairment in patients with cardiac failure can be correlated with cerebral ischemia. Stable xenon CT measurement of rCBF in transplant candidates may help identify patients requiring more rapid transplantation to prevent permanent cerebral injury

  8. BIOMATERIALS FOR ROTARY BLOOD PUMPS

    NARCIS (Netherlands)

    VANOEVEREN, W

    Rotary blood pumps are used for cardiac assist and cardiopulmonary support since mechanical blood damage is less than with conventional roller pumps. The high shear rate in the rotary pump and the reduced anticoagulation of the patient during prolonged pumping enforces high demands on the

  9. Operating function tests of the PWR type RHR pump for engineering safety system under simulated strong ground excitation

    International Nuclear Information System (INIS)

    Uga, Takeo; Shiraki, Kazuhiro; Homma, Toshiaki; Inazuka, Hisashi; Nakajima, Norifumi.

    1979-08-01

    Results are described of operating function verification tests of a PWR RHR pump during an earthquake. Of the active reactor components, the PWR residual heat removal pump was chosen from view points of aseismic classification, safety function, structural complexity and past aseismic tests. Through survey of the service conditions and structure of this pump, seismic test conditions such as acceleration level, simulated seismic wave form and earthquake duration were decided for seismicity of the operating pump. Then, plans were prepared to evaluate vibration chracteristics of the pump and to estimate its aseismic design margins. Subsequently, test facility and instrumentation system were designed and constructed. Experimental results could thus be acquired on vibration characteristics of the pump and its dynamic behavior during different kinds and levels of simulated earthquake. In conclusion: (1) Stiffeners attached to the auxiliary system piping do improve aseismic performance of the pump. (2) The rotor-shaft-bearing system is secure unless it is subjected to transient disturbunces having high frequency content. (3) The motor and pump casing having resonance frequencies much higher than frequency content of the seismic wave show only small amplifications. (4) The RHR pump possesses an aseismic design margin more than 2.6 times the expected ultimate earthquake on design basis. (author)

  10. Assessment of the integrity and functional requirement of moderator pump-motor units

    International Nuclear Information System (INIS)

    Soni, R.S.; Chawla, D.S.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1995-01-01

    The design of various active components in a nuclear power plant calls for a satisfactory analysis of these components for various loadings from the point of view of safety because a designated number of these components must always remain functional. Presented herein is the structural and seismic qualification of one the active components namely the moderator system pump-motor units for a typical PHWR. (author). 5 refs., 8 figs

  11. A Cell Model to Evaluate Chemical Effects on Adult Human Cardiac Progenitor Cell Differentiation and Function

    Science.gov (United States)

    Adult cardiac stem cells (CSC) and progenitor cells (CPC) represent a population of cells in the heart critical for its regeneration and function over a lifetime. The impact of chemicals on adult human CSC/CPC differentiation and function is unknown. Research was conducted to dev...

  12. β(3) adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification

    DEFF Research Database (Denmark)

    Bundgaard, Henning; Liu, Chia-Chi; Garcia, Alvaro

    2010-01-01

    inhibition of L-type Ca(2+) current contributes to negative inotropy of β(3) adrenergic receptor (β(3) AR) activation, but effects on other determinants of excitation-contraction coupling are not known. Of these, the Na(+)-K(+) pump is of particular interest because of adverse effects attributed ...

  13. ß(3) adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification

    DEFF Research Database (Denmark)

    Bundgaard, Henning; Liu, Chia-Chi; Garcia, Alvaro

    2010-01-01

    inhibition of L-type Ca(2+) current contributes to negative inotropy of ß(3) adrenergic receptor (ß(3) AR) activation, but effects on other determinants of excitation-contraction coupling are not known. Of these, the Na(+)-K(+) pump is of particular interest because of adverse effects attributed ...

  14. Vascular calcification and cardiac function according to residual renal function in patients on hemodialysis with urination.

    Directory of Open Access Journals (Sweden)

    Dong Ho Shin

    Full Text Available Vascular calcification is common and may affect cardiac function in patients with end-stage renal disease (ESRD. However, little is known about the effect of residual renal function on vascular calcification and cardiac function in patients on hemodialysis.This study was conducted between January 2014 and January 2017. One hundred six patients with residual renal function on maintenance hemodialysis for 3 months were recruited. We used residual renal urea clearance (KRU to measure residual renal function. First, abdominal aortic calcification score (AACS and brachial-ankle pulse wave velocity (baPWV were measured in patients on hemodialysis. Second, we performed echocardiography and investigated new cardiovascular events after study enrollment.The median KRU was 0.9 (0.3-2.5 mL/min/1.73m2. AACS (4.0 [1.0-10.0] vs. 3.0 [0.0-8.0], p = 0.05 and baPWV (1836.1 ± 250.4 vs. 1676.8 ± 311.0 cm/s, p = 0.01 were significantly higher in patients with a KRU < 0.9 mL/min/1.73m2 than a KRU ≥ 0.9 mL/min/1.73m2. Log-KRU significantly negatively correlated with log-AACS (ß = -0.29, p = 0.002 and baPWV (ß = -0.19, P = 0.05 after factor adjustment. The proportion of left ventricular diastolic dysfunction was significantly higher in patients with a KRU < 0.9 mL/min/1.73m2 than with a KRU ≥ 0.9 mL/min/1.73m2 (67.9% vs. 49.1%, p = 0.05. Patients with a KRU < 0.9 mL/min/1.73m2 showed a higher tendency of cumulative cardiovascular events compared to those with a KRU ≥ 0.9 ml/min/1.73m2 (P = 0.08.Residual renal function was significantly associated with vascular calcification and left ventricular diastolic dysfunction in patients on hemodialysis.

  15. PET measures of pre- and post-synaptic cardiac beta adrenergic function

    Energy Technology Data Exchange (ETDEWEB)

    Link, Jeanne M.; Stratton, John R.; Levy, Wayne; Poole, Jeanne E.; Shoner, Steven C.; Stuetzle, Werner; Caldwell, James H. E-mail: jcald@u.washington.edu

    2003-11-01

    Positron Emission Tomography was used to measure global and regional cardiac {beta}-adrenergic function in 19 normal subjects and 9 congestive heart failure patients. [{sup 11}C]-meta-hydroxyephedrine was used to image norepinephrine transporter function as an indicator of pre-synaptic function and [{sup 11}C]-CGP12177 was used to measure cell surface {beta}-receptor density as an indicator of post-synaptic function. Pre-synaptic, but not post-synaptic, function was significantly different between normals and CHF patients. Pre-synaptic function was well matched to post-synaptic function in the normal hearts but significantly different and poorly matched in the CHF patients studied. This imaging technique can help us understand regional sympathetic function in cardiac disease.

  16. Gravity Reception and Cardiac Function in the Spider

    Science.gov (United States)

    Finck, A.

    1985-01-01

    The following features of the arachnid gravity system were studied. (1) the absolute threshold to hyper-gz is quite low indicating fine proprioreceptive properties of the lyriform organ, the Gz/vibration detector; (2) the neurogenic heart of the spider is a good dependent variable for assessing its behavior to Gz and other stimuli which produce mechanical effects on the exoskeleton; (3) Not only is the cardiac response useful but it is now understood to be an integral part of the system which compensates for the consequences of gravity in the spider (an hydraulic leg extension); and (4) a theoretical model was proposed in which a mechanical amplifier, the leg lever, converts a weak force (at the tarsus) to a strong force (at the patella), capable of compressing the exoskeleton and consequently the lyriform receptor.

  17. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment.

    Science.gov (United States)

    Lyra-Leite, Davi M; Andres, Allen M; Petersen, Andrew P; Ariyasinghe, Nethika R; Cho, Nathan; Lee, Jezell A; Gottlieb, Roberta A; McCain, Megan L

    2017-10-01

    Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease. NEW & NOTEWORTHY A new methodology has been developed to measure O 2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix

  18. Cortical Bone Stem Cell Therapy Preserves Cardiac Structure and Function After Myocardial Infarction.

    Science.gov (United States)

    Sharp, Thomas E; Schena, Giana J; Hobby, Alexander R; Starosta, Timothy; Berretta, Remus M; Wallner, Markus; Borghetti, Giulia; Gross, Polina; Yu, Daohai; Johnson, Jaslyn; Feldsott, Eric; Trappanese, Danielle M; Toib, Amir; Rabinowitz, Joseph E; George, Jon C; Kubo, Hajime; Mohsin, Sadia; Houser, Steven R

    2017-11-10

    Cortical bone stem cells (CBSCs) have been shown to reduce ventricular remodeling and improve cardiac function in a murine myocardial infarction (MI) model. These effects were superior to other stem cell types that have been used in recent early-stage clinical trials. However, CBSC efficacy has not been tested in a preclinical large animal model using approaches that could be applied to patients. To determine whether post-MI transendocardial injection of allogeneic CBSCs reduces pathological structural and functional remodeling and prevents the development of heart failure in a swine MI model. Female Göttingen swine underwent left anterior descending coronary artery occlusion, followed by reperfusion (ischemia-reperfusion MI). Animals received, in a randomized, blinded manner, 1:1 ratio, CBSCs (n=9; 2×10 7 cells total) or placebo (vehicle; n=9) through NOGA-guided transendocardial injections. 5-ethynyl-2'deoxyuridine (EdU)-a thymidine analog-containing minipumps were inserted at the time of MI induction. At 72 hours (n=8), initial injury and cell retention were assessed. At 3 months post-MI, cardiac structure and function were evaluated by serial echocardiography and terminal invasive hemodynamics. CBSCs were present in the MI border zone and proliferating at 72 hours post-MI but had no effect on initial cardiac injury or structure. At 3 months, CBSC-treated hearts had significantly reduced scar size, smaller myocytes, and increased myocyte nuclear density. Noninvasive echocardiographic measurements showed that left ventricular volumes and ejection fraction were significantly more preserved in CBSC-treated hearts, and invasive hemodynamic measurements documented improved cardiac structure and functional reserve. The number of EdU + cardiac myocytes was increased in CBSC- versus vehicle- treated animals. CBSC administration into the MI border zone reduces pathological cardiac structural and functional remodeling and improves left ventricular functional reserve

  19. Effects of a single terlipressin administration on cardiac function and perfusion in cirrhosis

    DEFF Research Database (Denmark)

    Krag, Aleksander; Bendtsen, Flemming; Mortensen, Christian

    2010-01-01

    BACKGROUND: The vasoconstrictor terlipressin is widely used in the treatment of the hepatorenal syndrome and variceal bleeding. However, terlipressin may compromise cardiac function and induce ischemia. AIM: Therefore, we aimed to assess the effects of terlipressin on cardiac function and perfusion...... with nonrefractory ascites, both at baseline and after terlipressin treatment. The decrease in the left ventricular wall thickening and wall motion correlated with the Child--Pugh score, r=-0.59, P=0.005 and r=-0.48, P=0.03. CONCLUSION: In advanced cirrhosis, the increase in afterload and EDV after terlipressin...

  20. Evaluating the cardiac function of duchenne muscular dystrophy with Doppler Tei index

    International Nuclear Information System (INIS)

    Yao Fengjuan; Zheng Ju; Lu Kun; Liu Donghong; Wu Miaoling; Lin Hong; Zhang Cheng; Yu Hongkui

    2007-01-01

    Objective: To evaluate the cardiac function of early Duchenne muscular dystrophy (DMD) by left ventricular ejection fraction (LVEF) and pulse Doppler Tei index. Methods: Twenty-eight DMD patients and fifteen normal people were studied. LVEF, E/A and Tei index were measured and calculated by M-mode and Pulse wave Doppler respectively. Results: Compared with control group, Tei index and IRT were significantly high, and there were not significant difference in LVEF(%) and E/A. Conclusion: Tei index was valuable in assessing cardiac function of early DMD. (authors)

  1. Inspiration from heart development: Biomimetic development of functional human cardiac organoids.

    Science.gov (United States)

    Richards, Dylan J; Coyle, Robert C; Tan, Yu; Jia, Jia; Wong, Kerri; Toomer, Katelynn; Menick, Donald R; Mei, Ying

    2017-10-01

    Recent progress in human organoids has provided 3D tissue systems to model human development, diseases, as well as develop cell delivery systems for regenerative therapies. While direct differentiation of human embryoid bodies holds great promise for cardiac organoid production, intramyocardial cell organization during heart development provides biological foundation to fabricate human cardiac organoids with defined cell types. Inspired by the intramyocardial organization events in coronary vasculogenesis, where a diverse, yet defined, mixture of cardiac cell types self-organizes into functional myocardium in the absence of blood flow, we have developed a defined method to produce scaffold-free human cardiac organoids that structurally and functionally resembled the lumenized vascular network in the developing myocardium, supported hiPSC-CM development and possessed fundamental cardiac tissue-level functions. In particular, this development-driven strategy offers a robust, tunable system to examine the contributions of individual cell types, matrix materials and additional factors for developmental insight, biomimetic matrix composition to advance biomaterial design, tissue/organ-level drug screening, and cell therapy for heart repair. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Sodium pumping: pump problems

    International Nuclear Information System (INIS)

    Guer, M.; Guiton, P.

    Information on sodium pumps for LMFBR type reactors is presented concerning ring pump design, pool reactor pump design, secondary pumps, sodium bearings, swivel joints of the oscillating annulus, and thermal shock loads

  3. Sport socks do not enhance calf muscle pump function but inelastic wraps do.

    Science.gov (United States)

    Partsch, H; Mosti, G

    2014-12-01

    Aim of the study was to measure the effect of elastic and inelastic compression on calf muscle pump function in healthy male athletes. This was an experimental study which included 21 healthy male athletes. The ejection fraction (EF) of the venous calf pump was measured comparing the effects of a variety of compression materials: 1) sport compression stockings; 2) light zinc paste bandages; 3) sport compression stockings with additional Velcro® wraps over the calf. The influence of sport stocking and wraps on the venous calibre at the largest calf circumference in the lying and standing position was investigated using MRI. Inelastic compression exerting a median pressure in the standing position of 37.5 mmHg (zinc paste) and 48 mmHg (loosely applied straps over a sport stocking) achieved a significant increase of EF up to 100%. Sport stockings alone with a standing pressure of 19-24 mmHg did not show a significant change of EF. MRI demonstrated some venous narrowing in the lying but not in the standing position. By wrapping inelastic straps over the stocking an emptying of the veins in the lying and a considerable narrowing in the standing position could be observed. Venous calf pump function in athletes is not influenced by elastic sport stockings, but inelastic wraps either alone or applied over sport stockings lead to a significant enhancement.

  4. Left ventricular long axis function assessed during cine-cardiovascular magnetic resonance is an independent predictor of adverse cardiac events.

    Science.gov (United States)

    Rangarajan, Vibhav; Chacko, Satish Jacob; Romano, Simone; Jue, Jennifer; Jariwala, Nikhil; Chung, Jaehoon; Farzaneh-Far, Afshin

    2016-06-07

    Left ventricular pump function requires a complex interplay involving myocardial fibers orientated in the longitudinal, oblique and circumferential directions. Long axis dysfunction appears to be an early marker for a number of pathological states. We hypothesized that mitral annular plane systolic excursion (MAPSE) measured during cine-cardiovascular magnetic resonance (CMR) reflects changes in long axis function and may be an early marker for adverse cardiovascular outcomes. The aims of this study were therefore: 1) To assess the feasibility and reproducibility of MAPSE measurements during routine cine-CMR; and 2) To assess whether MAPSE, as a surrogate for long axis function, is a predictor of major adverse cardiovascular events (MACE). Four hundred consecutive patients undergoing CMR were prospectively enrolled. MAPSE was measured in the 4-chamber cine view. Patients were prospectively followed for major adverse cardiac events (MACE) - death, non-fatal myocardial infarction, hospitalization for heart failure or unstable angina, and late revascularization. Cox proportional hazards regression modeling was used to identify factors independently associated with MACE. Net reclassification improvement (NRI) was calculated to assess whether addition of MAPSE resulted in improved risk reclassification of MACE. Seventy-two MACE occurred during a median follow-up of 14.5 months. By Kaplan-Meier analysis, patients with lateral MAPSE cine-CMR is an independent predictor of MACE.

  5. Investigations of new cardiac functional imaging using Fourier analysis of gated blood-pool study

    International Nuclear Information System (INIS)

    Maeda, H.; Takeda, K.; Nakagawa, T.; Yamaguchi, N.; Taguchi, M.; Konishi, T.; Hamada, M.

    1982-01-01

    A new cardiac functional imaging, using temporal Fourier analysis of 28-frame gated cardiac blood-pool studies, was developed. A time-activity curve of each pixel was approximated by its Fourier series. Approximation by the sum for terms to the 3rd frequency of its Fourier series was considered to be most reasonable because of having the least aberration due to statistical fluctuation and close agreement between the global left ventricular curve and the regional fitted curves in normal subjects. To evaluate the ventricular systolic and diastolic performances, 9 parameters were analyzed from thus fitted curves on a pixel-by-pixel basis and displayed on a colour CRT in 64x64 matrix form. In patients with hypertrophic obstructive cardiomyopathy and other cardiac lesions, detailed information on the regional ventricular systolic and diastolic performances was clearly visualized by this method, which was difficult to obtain from the usual functional images of phase and amplitude at the fundamental frequency alone

  6. Engineering the heart: Evaluation of conductive nanomaterials for improving implant integration and cardiac function

    Science.gov (United States)

    Zhou, Jin; Chen, Jun; Sun, Hongyu; Qiu, Xiaozhong; Mou, Yongchao; Liu, Zhiqiang; Zhao, Yuwei; Li, Xia; Han, Yao; Duan, Cuimi; Tang, Rongyu; Wang, Chunlan; Zhong, Wen; Liu, Jie; Luo, Ying; (Mengqiu) Xing, Malcolm; Wang, Changyong

    2014-01-01

    Recently, carbon nanotubes together with other types of conductive materials have been used to enhance the viability and function of cardiomyocytes in vitro. Here we demonstrated a paradigm to construct ECTs for cardiac repair using conductive nanomaterials. Single walled carbon nanotubes (SWNTs) were incorporated into gelatin hydrogel scaffolds to construct three-dimensional ECTs. We found that SWNTs could provide cellular microenvironment in vitro favorable for cardiac contraction and the expression of electrochemical associated proteins. Upon implantation into the infarct hearts in rats, ECTs structurally integrated with the host myocardium, with different types of cells observed to mutually invade into implants and host tissues. The functional measurements showed that SWNTs were essential to improve the performance of ECTs in inhibiting pathological deterioration of myocardium. This work suggested that conductive nanomaterials hold therapeutic potential in engineering cardiac tissues to repair myocardial infarction. PMID:24429673

  7. Prophylactic furosemide infusion decreasing early major postoperative renal dysfunction in on-pump adult cardiac surgery: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Fakhari S

    2017-01-01

    Full Text Available Solmaz Fakhari,1 Fariba Mirzaei Bavil,2 Eissa Bilehjani,1 Sona Abolhasani,3 Moussa Mirinazhad,2 Bahman Naghipour2 1Department of Anesthesiology, 2Department of Physiology, 3Tabriz University of Medical Sciences, Tabriz, Iran Introduction: Acute renal dysfunction is a common complication of cardiac surgery. Furosemide is used in prevention, or treatment, of acute renal dysfunction. This study was conducted to evaluate the protective effects of intra- and early postoperative furosemide infusion on preventing acute renal dysfunction in elective adult cardiac surgery. Methods: Eighty-one patients, candidates of elective cardiac surgery, were enrolled in this study in either the furosemide (n=41 or placebo (n=40 group. Furosemide (2 mg/h or 0.9% saline was administered and continued up to 12 hours postoperatively. We measured serum creatinine (Scr at preoperative and on the second and fifth postoperative days. Then calculated estimated glomerular filtration rate (eGFR at these times. An increase in Scr of >0.5 mg/dL and/or >25%–50%, compared to preoperative values, was considered as acute kidney injury (AKI. In contrast, an increase in Scr by >50% and/or the need for hemodialysis was regarded as acute renal failure (ARF. At the end we compared the AKI or ARF incidence between the two groups. Results: On the second and fifth postoperative days, Scr was lower, and the eGFR was higher in the furosemide group. AKI incidence was similar in the two groups (11 vs 12 cases; P-value 0.622; however, ARF rate was lower in furosemide group (1 vs 6 cases; P-value 0.044. During the study period, Scr was more stable in the furosemide group, however in the placebo group, Scr initially increased and then decreased to its preoperative value after a few days. Conclusion: This study showed that intra- and early postoperative furosemide infusion has a renal protective effect in adult cardiac surgery with cardiopulmonary bypass. Although this protective effect cannot

  8. The Role of Diacylglycerol Acyltransferase (DGAT) 1 and 2 in Cardiac Metabolism and Function.

    Science.gov (United States)

    Roe, Nathan D; Handzlik, Michal K; Li, Tao; Tian, Rong

    2018-03-21

    It is increasingly recognized that synthesis and turnover of cardiac triglyceride (TG) play a pivotal role in the regulation of lipid metabolism and function of the heart. The last step in TG synthesis is catalyzed by diacylglycerol:acyltransferase (DGAT) which esterifies the diacylglycerol with a fatty acid. Mammalian heart has two DGAT isoforms, DGAT1 and DGAT2, yet their roles in cardiac metabolism and function remain poorly defined. Here, we show that inactivation of DGAT1 or DGAT2 in adult mouse heart results in a moderate suppression of TG synthesis and turnover. Partial inhibition of DGAT activity increases cardiac fatty acid oxidation without affecting PPARα signaling, myocardial energetics or contractile function. Moreover, coinhibition of DGAT1/2 in the heart abrogates TG turnover and protects the heart against high fat diet-induced lipid accumulation with no adverse effects on basal or dobutamine-stimulated cardiac function. Thus, the two DGAT isoforms in the heart have partially redundant function, and pharmacological inhibition of one DGAT isoform is well tolerated in adult hearts.

  9. Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function.

    Science.gov (United States)

    Jonker, Jacqueline T; de Mol, Pieter; de Vries, Suzanna T; Widya, Ralph L; Hammer, Sebastiaan; van Schinkel, Linda D; van der Meer, Rutger W; Gans, Rijk O B; Webb, Andrew G; Kan, Hermien E; de Koning, Eelco J P; Bilo, Henk J G; Lamb, Hildo J

    2013-11-01

    To prospectively assess the effects of an exercise intervention on organ-specific fat accumulation and cardiac function in type 2 diabetes mellitus. Written informed consent was obtained from all participants, and the study protocol was approved by the medical ethics committee. The study followed 12 patients with type 2 diabetes mellitus (seven men; mean age, 46 years ± 2 [standard error]) before and after 6 months of moderate-intensity exercise, followed by a high-altitude trekking expedition with exercise of long duration. Abdominal, epicardial, and paracardial fat volume were measured by using magnetic resonance (MR) imaging. Cardiac function was quantified with cardiac MR, and images were analyzed by a researcher who was supervised by a senior researcher (4 and 21 years of respective experience in cardiac MR). Hepatic, myocardial, and intramyocellular triglyceride (TG) content relative to water were measured with proton MR spectroscopy at 1.5 and 7 T. Two-tailed paired t tests were used for statistical analysis. Exercise reduced visceral abdominal fat volume from 348 mL ± 57 to 219 mL ± 33 (P Exercise decreased hepatic TG content from 6.8% ± 2.3 to 4.6% ± 1.6 (P Exercise did not change epicardial fat volume (P = .9), myocardial TG content (P = .9), intramyocellular lipid content (P = .3), or cardiac function (P = .5). A 6-month exercise intervention in type 2 diabetes mellitus decreased hepatic TG content and visceral abdominal and paracardial fat volume, which are associated with increased cardiovascular risk, but cardiac function was unaffected. Tissue-specific exercise-induced changes in body fat distribution in type 2 diabetes mellitus were demonstrated in this study. RSNA, 2013

  10. A portable cadmium telluride multidetector probe for cardiac function monitoring

    CERN Document Server

    Arntz, Y; Dumitresco, B; Eclancher, B; Prat, V

    1999-01-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) wh...

  11. Analysis of cardiac diastolic function: application in coronary artery disease

    International Nuclear Information System (INIS)

    Miller, T.R.; Goldman, K.J.; Sampathkumaran, K.S.; Biello, D.R.; Ludbrook, P.A.; Sobel, B.E.

    1983-01-01

    Separation of systolic and diastolic parameters in gated cardiac blood-pool imaging (RVG) was achieved with the retention of two harmonics in the Fourier-series representation of the time-activity curve. Regional and global analysis of left-ventricular peak filling rate (PFR) and time to peak filling (TPF) was performed in 18 control subjects, 20 patients with coronary artery disease (CAD) but with normal RVG (normal regional wall motion and ejection fraction, and 16 CAD patients with abnormal RVG. In regional analysis of CAD patients, the standard deviation of the TPF histogram identified 13/20 (65%) of normal RVG patients and 12/16 (75%) of abnormal RVG patients as abnormal. In global analysis of CAD patients, PFR values identified 10/20 (50%) of normal RVG patients and 11/16 (69%) of abnormal RVG patients as abnormal. Thus, left-ventricular systolic and diastolic parameters can be separately measured with retention of higher-order harmonics in the Fourier transform, and regional inhomogeneity of diastolic filling can be detected in CAD patients with normal resting ejection fraction and wall motion

  12. Structural and functional cardiac adaptations to 6 months of football training in untrained hypertensive men

    DEFF Research Database (Denmark)

    Andersen, L. J.; Randers, M. B.; Hansen, P. R.

    2014-01-01

    We investigated the effects of 3 and 6 months of regular football training on cardiac structure and function in hypertensive men. Thirty-one untrained males with mild-to-moderate hypertension were randomized 2:1 to a football training group (n = 20) and a control group receiving traditional...... training improves LV diastolic function in untrained men with mild-to-moderate arterial hypertension. Furthermore, it may improve longitudinal systolic function of both ventricles. The results suggest that football training has favorable effects on cardiac function in hypertensive men....... function improved with respect to tricuspid annular plane systolic excursion (21.8 ± 3.2 to 24.5 ± 3.7 mm). Arterial blood pressure decreased in both groups, but significantly more in the football training group. No significant changes were observed in the control group. In conclusion, short-term football...

  13. Cardiac Morphology and Function, and Blood Gas Transport in Aquaporin-1 Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Samer eAl-Samir

    2016-05-01

    Full Text Available We have studied cardiac and respiratory functions of aquaporin- 1-deficient mice by the Pressure-Volume-loop technique and by blood gas analysis. In addition, the morphological properties of the animals’ hearts were analysed. In anesthesia under maximal dobutamine stimulation, the mice exhibit a moderately elevated heart rate of < 600 min-1 and an O2 consumption of ~0.6 ml/min/g, which is about twice the basal rate. In this state, which is similar to the resting state of the conscious animal, all cardiac functions including stroke volume and cardiac output exhibited resting values and were identical between deficient and wildtype animals. Likewise, pulmonary and peripheral exchange of O2 and CO2 were normal. In contrast, several morphological parameters of the heart tissue of deficient mice were altered: 1 left ventricular wall thickness was reduced by 12%, 2 left ventricular mass, normalized to tibia length, was reduced by 10-20%, 3 cardiac muscle fiber cross sectional area was decreased by 17%, and 4 capillary density was diminished by 10%. As the P-V-loop technique yielded normal end-diastolic and end-systolic left ventricular volumes, the deficient hearts are characterized by thin ventricular walls in combination with normal intraventricular volumes. The aquaporin-1-deficient heart thus seems to be at a disadvantage compared to the wildtype heart by a reduced left-ventricular wall thickness and an increased diffusion distance between blood capillaries and muscle mitochondria. While under the present quasi-resting conditions these morphological alterations have no consequences for cardiac function, we expect that the deficient hearts will show a reduced maximal cardiac output.

  14. Survivors of cardiac arrest with good neurological outcome show considerable impairments of memory functioning.

    Science.gov (United States)

    Sulzgruber, Patrick; Kliegel, Andreas; Wandaller, Cosima; Uray, Thomas; Losert, Heidrun; Laggner, Anton N; Sterz, Fritz; Kliegel, Matthias

    2015-03-01

    Deficits in cognitive function are a well-known dysfunction in survivors of cardiac arrest. However, data concerning memory function in this neurological vulnerable patient collective remain scarce and inconclusive. Therefore, we aimed to assess multiple aspects of retrospective and prospective memory performance in patients after cardiac arrest. We prospectively enrolled 33 survivors of cardiac arrest, with cerebral performance categories (CPC) 1 and 2 and a control-group (n=33) matched in sex, age and educational-level. To assess retrospective and prospective memory performance we administrated 4 weeks after cardiac arrest the "Rey Adult Learning Test" (RAVLT), the "Digit-Span-Backwards Test", the "Logic-Memory Test" and the "Red-Pencil Test". Results indicate an impairment in immediate and delayed free recall, but not in recognition. However, the overall impairment in immediate recall was qualified by analyzing RAVLT performance, showing that patients were only impaired in trials 4 and 5 of the learning sequence. Moreover, working and prospective memory as well as prose recall were worse in cardiac arrest survivors. Cranial computed tomography was available in 61% of all patients (n=20) but there was no specific neurological damage detectable that could be linked to this cognitive impairment. Episodic long-term memory functioning appears to be particularly impaired after cardiac arrest. In contrast, short-term memory storage, even tested via free-call, seems not to be affected. Based on cranial computed tomography we suggest that global brain ischemia rather than focal brain lesions appear to underlie these effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Exercise and Type 2 Diabetes Mellitus : Changes in Tissue-specific Fat Distribution and Cardiac Function

    NARCIS (Netherlands)

    Jonker, Jacqueline T.; de Mol, Pieter; de Vries, Suzanna T.; Widya, Ralph L.; Hammer, Sebastiaan; van Schinkel, Linda D.; van der Meer, Rutger W.; Gans, Rijk O. B.; Webb, Andrew G.; Kan, Hermien E.; de Koning, Eelco J. P.; Bilo, Henk J. G.; Lamb, Hildo J.

    2013-01-01

    Purpose: To prospectively assess the effects of an exercise intervention on organ-specific fat accumulation and cardiac function in type 2 diabetes mellitus. Materials and Methods: Written informed consent was obtained from all participants, and the study protocol was approved by the medical ethics

  16. The diagnostic and therapeutic aspects of loss-of-function cardiac sodium channelopathies in children

    NARCIS (Netherlands)

    Chockalingam, Priya; Clur, Sally-Ann B.; Breur, Johannes M. P. J.; Kriebel, Thomas; Paul, Thomas; Rammeloo, Lukas A.; Wilde, Arthur A. M.; Blom, Nico A.

    2012-01-01

    BACKGROUND Loss-of-function sodium channelopathies manifest as a spectrum of diseases including Brugada syndrome (BrS) and cardiac conduction disease. OBJECTIVE To analyze the diagnostic and therapeutic aspects of these disorders in children. METHODS Patients aged <= 16 years with genetically

  17. Tei index in determination of fetal cardiac function in pregnant women with gestational diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Guo-Dong Li

    2016-09-01

    Full Text Available Objective: To explore the application value of Tei index in determination of fetal cardiac function in pregnant women with gestational diabetes mellitus (GDM. Methods: A total of 60 gestational diabetes mellitus pregnant women with single birth were included in the study and served as GDM group, while 60 healthy pregnant women with single birth were served as the control group. The fetal echocardiography was performed. The cardiac structure, function, and other related indicators were detected and compared. Results: IVSs, LVWT, RVWT, LVEF, LVFS, and RVFS in GDM group were significantly greater than those in the control group (P<0.05. E/A MV and E/A TV in GDM group were significantly lower than those in the control group (P<0.05. The left and right ventricular Tei index in GDM group was significantly higher than that in the control group (P<0.05. Conclusions: The fetal cardiac structure and function in GDM pregnant women can cause damage to a different degree. Tei index is an important indicator to evaluate the fetal cardiac function in GDM pregnant women, and can be applied in the early diagnosis and treatment; therefore, it deserved to be widely recommended in the clinic.

  18. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    Science.gov (United States)

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  19. Action Potential Shortening and Impairment of Cardiac Function by Ablation of Slc26a6.

    Science.gov (United States)

    Sirish, Padmini; Ledford, Hannah A; Timofeyev, Valeriy; Thai, Phung N; Ren, Lu; Kim, Hyo Jeong; Park, Seojin; Lee, Jeong Han; Dai, Gu; Moshref, Maryam; Sihn, Choong-Ryoul; Chen, Wei Chun; Timofeyeva, Maria Valeryevna; Jian, Zhong; Shimkunas, Rafael; Izu, Leighton T; Chiamvimonvat, Nipavan; Chen-Izu, Ye; Yamoah, Ebenezer N; Zhang, Xiao-Dong

    2017-10-01

    Intracellular pH (pH i ) is critical to cardiac excitation and contraction; uncompensated changes in pH i impair cardiac function and trigger arrhythmia. Several ion transporters participate in cardiac pH i regulation. Our previous studies identified several isoforms of a solute carrier Slc26a6 to be highly expressed in cardiomyocytes. We show that Slc26a6 mediates electrogenic Cl - /HCO 3 - exchange activities in cardiomyocytes, suggesting the potential role of Slc26a6 in regulation of not only pH i , but also cardiac excitability. To test the mechanistic role of Slc26a6 in the heart, we took advantage of Slc26a6 knockout ( Slc26a6 -/ - ) mice using both in vivo and in vitro analyses. Consistent with our prediction of its electrogenic activities, ablation of Slc26a6 results in action potential shortening. There are reduced Ca 2+ transient and sarcoplasmic reticulum Ca 2+ load, together with decreased sarcomere shortening in Slc26a6 -/ - cardiomyocytes. These abnormalities translate into reduced fractional shortening and cardiac contractility at the in vivo level. Additionally, pH i is elevated in Slc26a6 -/ - cardiomyocytes with slower recovery kinetics from intracellular alkalization, consistent with the Cl - /HCO 3 - exchange activities of Slc26a6. Moreover, Slc26a6 -/ - mice show evidence of sinus bradycardia and fragmented QRS complex, supporting the critical role of Slc26a6 in cardiac conduction system. Our study provides mechanistic insights into Slc26a6, a unique cardiac electrogenic Cl - /HCO 3 - transporter in ventricular myocytes, linking the critical roles of Slc26a6 in regulation of pH i , excitability, and contractility. pH i is a critical regulator of other membrane and contractile proteins. Future studies are needed to investigate possible changes in these proteins in Slc26a6 -/ - mice. © 2017 American Heart Association, Inc.

  20. Adaptive servo ventilation improves Cheyne-Stokes respiration, cardiac function, and prognosis in chronic heart failure patients with cardiac resynchronization therapy.

    Science.gov (United States)

    Miyata, Makiko; Yoshihisa, Akiomi; Suzuki, Satoshi; Yamada, Shinya; Kamioka, Masashi; Kamiyama, Yoshiyuki; Yamaki, Takayoshi; Sugimoto, Koichi; Kunii, Hiroyuki; Nakazato, Kazuhiko; Suzuki, Hitoshi; Saitoh, Shu-ichi; Takeishi, Yasuchika

    2012-09-01

    Cheyne-Stokes respiration (CSR-CSA) is often observed in patients with chronic heart failure (CHF). Although cardiac resynchronization therapy (CRT) is effective for CHF patients with left ventricular dyssynchrony, it is still unclear whether adaptive servo ventilation (ASV) improves cardiac function and prognosis of CHF patients with CSR-CSA after CRT. Twenty two patients with CHF and CSR-CSA after CRT defibrillator (CRTD) implantation were enrolled in the present study and randomly assigned into two groups: 11 patients treated with ASV (ASV group) and 11 patients treated without ASV (non-ASV group). Measurement of plasma B-type natriuretic peptide (BNP) levels (before 3, and 6 months later) and echocardiography (before and 6 months) were performed in each group. Patients were followed up to register cardiac events (cardiac death and re-hospitalization) after discharge. In the ASV group, indices for apnea-hypopnea, central apnea, and oxyhemoglobin saturation were improved on ASV. BNP levels, cardiac systolic and diastolic function were improved with ASV treatment for 6 months. Importantly, the event-free rate was significantly higher in the ASV group than in the non-ASV group. ASV improves CSR-CSA, cardiac function, and prognosis in CHF patients with CRTD. Patients with CSR-CSA and post CRTD implantation would get benefits by treatment with ASV. Copyright © 2012 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  1. Ultrasonographic assessment of maternal cardiac function and peripheral circulation during normal gestation in dogs.

    Science.gov (United States)

    Blanco, Paula G; Tórtora, Mariana; Rodríguez, Raúl; Arias, Daniel O; Gobello, Cristina

    2011-10-01

    The aim of this study was to describe changes in cardiac morphology, systolic function and some peripheral hemodynamic parameters during normal pregnancy in dogs. Twenty healthy bitches, 10 pregnant (PG) and 10 non-pregnant controls (CG), were evaluated every 10 days using echocardiography from day 0 of the estrus cycle to parturition or to day 65 for the PG and CG groups, respectively. Systolic blood pressure (SBP) and uterine artery resistance index (RI) were also assessed. Throughout the study, the shortening fraction and cardiac output increased up to 30% vs. 5% (Pdogs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. The Role of Levosimendan in Patients with Decreased Left Ventricular Function Undergoing Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Marija Bozhinovska

    2016-06-01

    Full Text Available The postoperative low cardiac output is one of the most important complications following cardiac surgery and is associated with increased morbidity and mortality. The condition requires inotropic support to achieve adequate hemodynamic status and tissue perfusion. While catecholamines are utilised as a standard therapy in cardiac surgery, their use is limited due to increased oxygen consumption. Levosimendan is calcium sensitising inodilatator expressing positive inotropic effect by binding with cardiac troponin C without increasing oxygen demand. Furthermore, the drug opens potassium ATP (KATP channels in cardiac mitochondria and in the vascular muscle cells, showing cardioprotective and vasodilator properties, respectively. In the past decade, levosimendan demonstrated promising results in treating patients with reduced left ventricular function when administered in peri- or post- operative settings. In addition, pre-operative use of levosimendan in patients with severely reduced left ventricular ejection fraction may reduce the requirements for postoperative inotropic support, mechanical support, duration of intensive care unit stay as well as hospital stay and a decrease in post-operative mortality. However, larger studies are needed to clarify clinical advantages of levosimendan versus conventional inotropes.

  3. Use of the cardiopulmonary flow index to evaluate cardiac function in thoroughbred horses

    International Nuclear Information System (INIS)

    Guthrie, A.J.; Killeen, V.M.; Grosskopf, J.F.W.

    1991-01-01

    The ratio of the cardiopulmonary blood volume to stroke volume is called the cardiopulmonary flow index (CPFI). The CPFI can be determined indirectly from the simultaneous recording of a radiocardiogram and an electrocardiogram. The CPFI and cardiac output were measured simultaneously in horses that were diagnosed as having cardiac disease. The results obtained from these subjects were compared with those from control animals and significant differences were found between the mean CPFI of the control horses and those with macroscopically visible myocardial fibrosis on post mortem examination. No significant differences were found between the means of the cardiac output measured in either of the groups of horses. The effect of pharmacological acceleration of the heart rate on the CPFI was also studied. Significant differences were found between the mean CPFI and the slopes of the regression lines of CPFI on heart rate of the control and principal groups of horses. These differences were greatest at heart rates near to the resting heart rates of the individuals. The CPFI was found to be a more sensitive measure of cardiac function than cardiac output, in the horses. 16 refs., 2 figs., 2 tabs

  4. Structural and functional aspects of the multidrug efflux pump AcrB.

    Science.gov (United States)

    Eicher, Thomas; Brandstätter, Lorenz; Pos, Klaas M

    2009-08-01

    The tripartite efflux system AcrA/AcrB/TolC is the main pump in Escherichia coli for the efflux of multiple antibiotics, dyes, bile salts and detergents. The inner membrane component AcrB is central to substrate recognition and energy transduction and acts as a proton/drug antiporter. Recent structural studies show that homotrimeric AcrB can adopt different monomer conformations representing consecutive states in an allosteric functional rotation transport cycle. The conformational changes create an alternate access drug transport tunnel including a hydrophobic substrate binding pocket in one of the cycle intermediates.

  5. Evaluating the pacemaker effect with the pump parameter of gated blood-pool imaging

    International Nuclear Information System (INIS)

    Cheng Muhua

    1995-01-01

    13 normal controls and 27 patients with ventricular pacemaker had undergone planar gated blood-pool imaging in different conditions. Result shows: (1) Pump parameters can successfully reflect therapeutic effect of pacemaker among them EMP is the most valuable parameter for evaluating the cardiac pumping effect. (2) After implantation of the ventricular pacemaker, the LVEF did not increase, but the CO and EMP was significantly increased. (3) Compared with right ventricular demand pacemaker, the rate-responsive ventricular pacemaker give better hemodynamic benefit at exercise condition. (4) Through restrained cardiac pacemaker the functional change was analyzed on or off pace, and monitoring the cardiac function itself after the pacemaker was implanted

  6. Update on the slow delayed rectifier potassium current (I(Ks)): role in modulating cardiac function.

    Science.gov (United States)

    Liu, Zhenzhen; Du, Lupei; Li, Minyong

    2012-01-01

    The slow delayed rectifier current (I(Ks)) is the slow component of cardiac delayed rectifier current and is critical for the late phase repolarization of cardiac action potential. This current is also an important target for Sympathetic Nervous System (SNS) to regulate the cardiac electivity to accommodate to heart rate alterations in response to exercise or emotional stress and can be up-regulated by β- adrenergic or other signal molecules. I(Ks) channel is originated by the co-assembly of pore-forming KCNQ1 α-subunit and accessory KCNE1 β-subunit. Mutations in any subunit can bring about severe long QT syndrome (LQT-1, LQT-5) as characterized by deliquium, seizures and sudden death. This review summarizes the normal physiological functions and molecular basis of I(Ks) channels, as well as illustrates up-to-date development on its blockers and activators. Therefore, the current extensive survey should generate fundamental understanding of the role of I(Ks) channel in modulating cardiac function and donate some instructions to the progression of I(Ks) blockers and activators as potential antiarrhythmic agents or pharmacological tools to determine the physiological and pathological function of I(Ks).

  7. Assessment of cardiac morphology and ventricular function in healthy Chinese individuals using MRI

    International Nuclear Information System (INIS)

    Lu Minjie; Zhao Shihua; Jiang Shiliang

    2011-01-01

    Objective: To investigate reproducibility of cardiac MRI for assessment of cardiac morphology and ventricular function in selected normal Chinese Han population. Methods: Two hundred and sixty-nine normal volunteers underwent cardiac MRI using a 1.5 T MR system. HASTE and steady state free precession imaging were performed with long and short axis images and cine mode through the ventricle with wireless vector cardiac gating. The images were reviewed by two independent observers. The dimensions of cardiac chambers and ventricular function including ejection fraction (EF), end diastolic volume (EDV) , end systolic volume (ESV) and myocardial mass were evaluated. The data between male and female were compared by using two-tailed unpaired t test. Results: Total imaging time was (15±3) min. The anteroposterior diameter of the left atrium was (2.87±0.77) cm, the right atrial diameter perpendicular to the atrial septum was (3.61±0.57) cm, the end diastolic diameter of the left ventricle was (4.97± 0.52) cm, the end diastolic diameter of the right ventricle was (2.65±0.48) cm. On the left ventricle, EF was (60.62±7.08)%, EDV was (115.37±26.71) ml, ESV was (46.02±15.72) ml and LV mass was (82.97±24.03) g. On the right ventricle, EF was (47.73±6.50)%, EDV was (128.27±32.16) ml, ESV was (67.7±21.07) ml and RV mass was (48.24±13.42) g. There were no statistically significant differences in LVESV (P=0.144), LVEDV index (P=0.714), LVESV index (P=0.113), LVCI (P=0.199), RVEF (P=0.296) and RV mass (P=0.093), and statistically significant differences in other cardiac parameters between male and female. Conclusion: Cardiac MRI can provide useful information about cardiac function and morphology with a high level of reproducibility in normal Chinese Han population. (authors)

  8. Effect of clopidogrel premedication in off-pump cardiac surgery: are we forfeiting the benefits of reduced hemorrhagic sequelae?

    Science.gov (United States)

    Kapetanakis, Emmanouil I; Medlam, Diego A; Petro, Kathleen R; Haile, Elizabeth; Hill, Peter C; Dullum, Mercedes K C; Bafi, Ammar S; Boyce, Steven W; Corso, Paul J

    2006-04-04

    Premedication with clopidogrel has reduced thrombotic complications after percutaneous coronary revascularization procedures. However, because of the enhanced and irreversible platelet inhibition by clopidogrel, patients requiring surgical revascularization have a higher risk of bleeding complications and transfusion requirements. A principal benefit of surgical coronary revascularization without cardiopulmonary bypass is its lower hemorrhagic sequelae. The purpose of this study was to evaluate the effect of preoperative clopidogrel administration in the incidence of hemostatic reexploration, blood product transfusion rates, morbidity, and mortality in patients undergoing off-pump coronary artery bypass graft surgery using a large patient sample and a risk-adjusted approach. Two hundred eighty-one patients (17.9%) did and 1291 (82.1%) did not receive clopidogrel before their surgery, for a total of 1572 patients undergoing isolated off-pump coronary artery bypass graft surgery between January 2000 and June 2002. Risk-adjusted logistic regression analyses and a matched pair analyses by propensity scores were used to assess the association between clopidogrel administration and reoperation as a result of bleeding, intraoperative and postoperative blood transfusions received, and the need for multiple transfusions. Hemorrhage-related preoperative risk factors identified in the literature and those found significant in a univariate model were used. The clopidogrel group had a higher likelihood of hemostatic reoperations (odds ratio [OR], 5.1; 95% confidence interval [CI], 2.47 to 10.47; P<0.01) and an increased need in overall packed red blood cell (OR, 2.6; 95% CI, 1.94 to 3.60; P<0.01), multiple unit (OR, 1.6; 95% CI, 1.07 to 2.48; P=0.02), and platelet (OR, 2.5; 95% CI, 1.77 to 3.66; P<0.01) transfusions. Surgical outcomes and operative mortality (1.4% versus 1.4%; P=1.00) were not statistically different. Clopidogrel administration in the cardiology suite increases

  9. Myocardin-related transcription factors are required for cardiac development and function

    OpenAIRE

    Mokalled, Mayssa H.; Carroll, Kelli J.; Cenik, Bercin K.; Chen, Beibei; Liu, Ning; Olson, Eric N.; Bassel-Duby, Rhonda

    2015-01-01

    Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the d...

  10. TNNI3K is a novel mediator of myofilament function and phosphorylates cardiac troponin I

    International Nuclear Information System (INIS)

    Wang, Hui; Wang, Lin; Song, Li; Zhang, Yan-Wan; Ye, Jue; Xu, Rui-Xia; Shi, Na; Meng, Xian-Min

    2013-01-01

    The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to examine whether the phosphorylation of cTnI caused by TNNI3K can regulate cardiac myofilament contractile function. Co-immunoprecipitation was performed to confirm that TNNI3K could interact with cTnI. Kinase assays further indicated that TNNI3K did not phosphorylate cTnI at Ser23/24 and Ser44, but directly phosphorylated Ser43 and Thr143 in vitro. The results obtained for adult rat cardiomyocytes also indicated that enhanced phosphorylation of cTnI at Ser43 and Thr143 correlated with rTNNI3K (rat TNNI3K) overexpression, and phosphorylation was reduced when rTNNI3K was knocked down. To determine the contractile function modulated by TNNI3K-mediated phosphorylation of cTnI, cardiomyocyte contraction was studied in adult rat ventricular myocytes. The contraction of cardiomyocytes increased with rTNNI3K overexpression and decreased with rTNNI3K knockdown. We conclude that TNNI3K may be a novel mediator of cTnI phosphorylation and contribute to the regulation of cardiac myofilament contraction function

  11. Effects of plasma viscosity modulation on cardiac function during moderate hemodilution

    Directory of Open Access Journals (Sweden)

    Chatpun Surapong

    2010-01-01

    Full Text Available Background : Previous studies have found that increasing plasma viscosity as whole blood viscosity decrease has beneficial effects in microvascular hemodynamics. As the heart couples with systemic vascular network, changes in plasma and blood viscosity during hemodilution determine vascular pressure drop and flow rate, which influence cardiac function. This study aimed to investigate how changes in plasma viscosity affect on cardiac function during acute isovolemic hemodilution. Materials and Methods: Plasma viscosity was modulated by hemodilution of 40% of blood volume with three different plasma expanders (PEs. Dextran 2000 kDa (Dx2M, 6.3 cP and dextran 70 kDa (Dx70, 3.0 cP were used as high and moderate viscogenic PEs, respectively. Polyethylene glycol conjugated with human serum albumin (PEG-HSA, 2.2 cP was used as low viscogenic PE. The cardiac function was assessed using a miniaturized pressure-volume conductance catheter. Results: After hemodilution, pressure dropped to 84%, 79%, and 78% of baseline for Dx2M, Dx70 and PEG-HSA, respectively. Cardiac output markedly increased for Dx2M and PEG-HSA. Dx2M significantly produced higher stroke work relative to baseline and compared to Dx70. Conclusion: Acute hemodilution with PEG-HSA without increasing plasma viscosity provided beneficial effects on cardiac function compared to Dx70, and similar to those measured with Dx2M. Potentially negative effects of increasing peripheral vascular resistance due to the increase in plasma viscosity were prevented.

  12. Sudden cardiac death and pump failure death prediction in chronic heart failure by combining ECG and clinical markers in an integrated risk model

    Science.gov (United States)

    Orini, Michele; Mincholé, Ana; Monasterio, Violeta; Cygankiewicz, Iwona; Bayés de Luna, Antonio; Martínez, Juan Pablo

    2017-01-01

    Background Sudden cardiac death (SCD) and pump failure death (PFD) are common endpoints in chronic heart failure (CHF) patients, but prevention strategies are different. Currently used tools to specifically predict these endpoints are limited. We developed risk models to specifically assess SCD and PFD risk in CHF by combining ECG markers and clinical variables. Methods The relation of clinical and ECG markers with SCD and PFD risk was assessed in 597 patients enrolled in the MUSIC (MUerte Súbita en Insuficiencia Cardiaca) study. ECG indices included: turbulence slope (TS), reflecting autonomic dysfunction; T-wave alternans (TWA), reflecting ventricular repolarization instability; and T-peak-to-end restitution (ΔαTpe) and T-wave morphology restitution (TMR), both reflecting changes in dispersion of repolarization due to heart rate changes. Standard clinical indices were also included. Results The indices with the greatest SCD prognostic impact were gender, New York Heart Association (NYHA) class, left ventricular ejection fraction, TWA, ΔαTpe and TMR. For PFD, the indices were diabetes, NYHA class, ΔαTpe and TS. Using a model with only clinical variables, the hazard ratios (HRs) for SCD and PFD for patients in the high-risk group (fifth quintile of risk score) with respect to patients in the low-risk group (first and second quintiles of risk score) were both greater than 4. HRs for SCD and PFD increased to 9 and 11 when using a model including only ECG markers, and to 14 and 13, when combining clinical and ECG markers. Conclusion The inclusion of ECG markers capturing complementary pro-arrhythmic and pump failure mechanisms into risk models based only on standard clinical variables substantially improves prediction of SCD and PFD in CHF patients. PMID:29020031

  13. Cardiac function associated with home ventilator care in Duchenne muscular dystrophy.

    Science.gov (United States)

    Lee, Sangheun; Lee, Heeyoung; Eun, Lucy Youngmin; Gang, Seung Woong

    2018-02-01

    Cardiomyopathy is becoming the leading cause of death in patients with Duchenne muscular dystrophy because mechanically assisted lung ventilation and assisted coughing have helped resolve respiratory complications. To clarify cardiopulmonary function, we compared cardiac function between the home ventilator-assisted and non-ventilator-assisted groups. We retrospectively reviewed patients with Duchenne muscular dystrophy from January 2010 to March 2016 at Gangnam Severance Hospital. Demographic characteristics, pulmonary function, and echocardiography data were investigated. Fifty-four patients with Duchenne muscular dystrophy were divided into 2 groups: home ventilator-assisted and non-ventilator-assisted. The patients in the home ventilator group were older (16.25±1.85 years) than those in the nonventilator group (14.73±1.36 years) ( P =0.001). Height, weight, and body surface area did not differ significantly between groups. The home ventilator group had a lower seated functional vital capacity (1,038±620.41 mL) than the nonventilator group (1,455±603.12 mL). Mean left ventricular ejection fraction and fractional shortening were greater in the home ventilator group, but the data did not show any statistical difference. The early ventricular filling velocity/late ventricular filling velocity ratio (1.7±0.44) was lower in the home ventilator group than in the nonventilator group (2.02±0.62). The mitral valve annular systolic velocity was higher in the home ventilator group (estimated β, 1.06; standard error, 0.48). Patients with Duchenne muscular dystrophy on a ventilator may have better systolic and diastolic cardiac functions. Noninvasive ventilator assistance can help preserve cardiac function. Therefore, early utilization of noninvasive ventilation or oxygen may positively influence cardiac function in patients with Duchenne muscular dystrophy.

  14. [Cardiac Synchronization Function Estimation Based on ASM Level Set Segmentation Method].

    Science.gov (United States)

    Zhang, Yaonan; Gao, Yuan; Tang, Liang; He, Ying; Zhang, Huie

    At present, there is no accurate and quantitative methods for the determination of cardiac mechanical synchronism, and quantitative determination of the synchronization function of the four cardiac cavities with medical images has a great clinical value. This paper uses the whole heart ultrasound image sequence, and segments the left & right atriums and left & right ventricles of each frame. After the segmentation, the number of pixels in each cavity and in each frame is recorded, and the areas of the four cavities of the image sequence are therefore obtained. The area change curves of the four cavities are further extracted, and the synchronous information of the four cavities is obtained. Because of the low SNR of Ultrasound images, the boundary lines of cardiac cavities are vague, so the extraction of cardiac contours is still a challenging problem. Therefore, the ASM model information is added to the traditional level set method to force the curve evolution process. According to the experimental results, the improved method improves the accuracy of the segmentation. Furthermore, based on the ventricular segmentation, the right and left ventricular systolic functions are evaluated, mainly according to the area changes. The synchronization of the four cavities of the heart is estimated based on the area changes and the volume changes.

  15. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs.

    Science.gov (United States)

    Wang, Bo; Patnaik, Sourav S; Brazile, Bryn; Butler, J Ryan; Claude, Andrew; Zhang, Ge; Guan, Jianjun; Hong, Yi; Liao, Jun

    2015-01-01

    Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications.

  16. The effects of pleural fluid drainage on respiratory function in mechanically ventilated patients after cardiac surgery.

    Science.gov (United States)

    Brims, Fraser J H; Davies, Michael G; Elia, Andy; Griffiths, Mark J D

    2015-01-01

    Pleural effusions occur commonly after cardiac surgery and the effects of drainage on gas exchange in this population are not well established. We examined pulmonary function indices following drainage of pleural effusions in cardiac surgery patients. We performed a retrospective study examining the effects of pleural fluid drainage on the lung function indices of patients recovering from cardiac surgery requiring mechanical ventilation for more than 7 days. We specifically analysed patients who had pleural fluid removed via an intercostal tube (ICT: drain group) compared with those of a control group (no effusion, no ICT). In the drain group, 52 ICTs were sited in 45 patients. The mean (SD) volume of fluid drained was 1180 (634) mL. Indices of oxygenation were significantly worse in the drain group compared with controls prior to drainage. The arterial oxygen tension (PaO2)/fractional inspired oxygen (FiO2) (P/F) ratio improved on day 1 after ICT placement (mean (SD), day 0: 31.01 (8.92) vs 37.18 (10.7); pdrain group patients were more likely to have an improved mode of ventilation on day 1 compared with controls (p=0.028). Pleural effusion after cardiac surgery may impair oxygenation. Drainage of pleural fluid is associated with a rapid and sustained improvement in oxygenation.

  17. The effects of pleural fluid drainage on respiratory function in mechanically ventilated patients after cardiac surgery

    Science.gov (United States)

    Brims, Fraser J H; Davies, Michael G; Elia, Andy; Griffiths, Mark J D

    2015-01-01

    Background Pleural effusions occur commonly after cardiac surgery and the effects of drainage on gas exchange in this population are not well established. We examined pulmonary function indices following drainage of pleural effusions in cardiac surgery patients. Methods We performed a retrospective study examining the effects of pleural fluid drainage on the lung function indices of patients recovering from cardiac surgery requiring mechanical ventilation for more than 7 days. We specifically analysed patients who had pleural fluid removed via an intercostal tube (ICT: drain group) compared with those of a control group (no effusion, no ICT). Results In the drain group, 52 ICTs were sited in 45 patients. The mean (SD) volume of fluid drained was 1180 (634) mL. Indices of oxygenation were significantly worse in the drain group compared with controls prior to drainage. The arterial oxygen tension (PaO2)/fractional inspired oxygen (FiO2) (P/F) ratio improved on day 1 after ICT placement (mean (SD), day 0: 31.01 (8.92) vs 37.18 (10.7); pdrain group patients were more likely to have an improved mode of ventilation on day 1 compared with controls (p=0.028). Conclusions Pleural effusion after cardiac surgery may impair oxygenation. Drainage of pleural fluid is associated with a rapid and sustained improvement in oxygenation. PMID:26339492

  18. Awareness of cardiac function in anxious, phobic and hypochondriacal patients.

    Science.gov (United States)

    Tyrer, P; Lee, I; Alexander, J

    1980-02-01

    Awareness of pulse rate was tested in 60 psychiatric out-patients with anxiety, phobic or hypochondriacal neuroses by asking them to record how fast their hearts were beating during exposure to short film sequences. Correlations between subjective and objective heart rate (ECG) were significantly higher in anxious and hypochondriacal patients than in phobic ones. The results suggest that somatic symptoms in hypochondriacal and anxiety neurosis reflect increased awareness of bodily function.

  19. Clinical research on correlation between BNP and left cardiac function in patients with heart failure

    International Nuclear Information System (INIS)

    Yin Xin; Xu Dandan; Wu Chunxu

    2005-01-01

    To investigate the correlation between brain natriuretic peptide (BNP) and the cardiac function in patients with heart failure(HF), the plasma level of BNP was determined by IRMA and the left cardiac function parameters were measured on echocardiogram in patients with different grade of HF. The results showed that the plasma level of BNP elevated with the worsening of heart failure (NYHA classification). The plasma levels of BNP were negatively correlated with left ventricular ejection fraction (LVEF) and left ventricular end-diastolic diameter (LVDd). The plasma level of BNP increases significantly along with the severity of HF classified by NYHA, and might be a biochemical parameter for evaluating the left ventricular function. (authors)

  20. Improved cardiac function and exercise capacity following correction of pectus excavatum: a review of current literature.

    Science.gov (United States)

    Maagaard, Marie; Heiberg, Johan

    2016-09-01

    Patients with pectus excavatum (PE) often describe improvements in exercise stamina following corrective surgery. Studies have investigated the surgical effect on physiological parameters; still, no consensus has yet been reached. Therefore, the aim of this literature review was to describe the cardiac outcome after surgical correction, both at rest and during exercise. In February 2016, a detailed search of the databases PubMed, Medline, and EMBASE was performed. We assessed clinical studies that described cardiac outcomes both before and after surgical correction of PE. We only included studies reporting either pre-defined echocardiographic or exercise test parameters. No exclusion criteria or statistical analyses were applied. Twenty-one full-text articles, published between 1972 and 2016, were selected, with cohort-ranges of 3-168 patients, mean age-ranges of 5-33 years, and mean follow-up-ranges from immediately to 4 years after surgery. Twelve studies described resting cardiac parameters. Four studies measured cardiac output, where one described 36% immediate increase after surgery, one reported 15% increase after Nuss-bar removal and two found no difference. Three studies demonstrated improvement in mean stroke volume ranges of 22-34% and two studies found no difference. Fifteen studies investigated exercise capacity, with 11 considering peak O 2 pr. kg, where five studies demonstrated improvements with the mean ranging from 8% to 15% after surgery, five studies demonstrated no difference, and one saw a decrease of 19% 3 months after Nuss-bar implantation. A measurable increase in exercise capacity exists following surgery, which may be caused by multiple factors. This may be owed to the relief of compressed cardiac chambers with the increased anterior-posterior thoracic dimensions, which could facilitate an improved filling of the heart. With these results, the positive physiological impact of the surgery is emphasized and the potential gain in cardiac

  1. LRRC10 is required to maintain cardiac function in response to pressure overload.

    Science.gov (United States)

    Brody, Matthew J; Feng, Li; Grimes, Adrian C; Hacker, Timothy A; Olson, Timothy M; Kamp, Timothy J; Balijepalli, Ravi C; Lee, Youngsook

    2016-01-15

    We previously reported that the cardiomyocyte-specific leucine-rich repeat containing protein (LRRC)10 has critical functions in the mammalian heart. In the present study, we tested the role of LRRC10 in the response of the heart to biomechanical stress by performing transverse aortic constriction on Lrrc10-null (Lrrc10(-/-)) mice. Mild pressure overload induced severe cardiac dysfunction and ventricular dilation in Lrrc10(-/-) mice compared with control mice. In addition to dilation and cardiomyopathy, Lrrc10(-/-) mice showed a pronounced increase in heart weight with pressure overload stimulation and a more dramatic loss of cardiac ventricular performance, collectively suggesting that the absence of LRRC10 renders the heart more disease prone with greater hypertrophy and structural remodeling, although rates of cardiac fibrosis and myocyte dropout were not different from control mice. Lrrc10(-/-) cardiomyocytes also exhibited reduced contractility in response to β-adrenergic stimulation, consistent with loss of cardiac ventricular performance after pressure overload. We have previously shown that LRRC10 interacts with actin in the heart. Here, we show that His(150) of LRRC10 was required for an interaction with actin, and this interaction was reduced after pressure overload, suggesting an integral role for LRRC10 in the response of the heart to mechanical stress. Importantly, these experiments demonstrated that LRRC10 is required to maintain cardiac performance in response to pressure overload and suggest that dysregulated expression or mutation of LRRC10 may greatly sensitize human patients to more severe cardiac disease in conditions such as chronic hypertension or aortic stenosis. Copyright © 2016 the American Physiological Society.

  2. Natriuretic peptides in developing medaka embryos: implications in cardiac development by loss-of-function studies.

    Science.gov (United States)

    Miyanishi, Hiroshi; Okubo, Kataaki; Nobata, Shigenori; Takei, Yoshio

    2013-01-01

    Cardiac natriuretic peptides (NPs), atrial NP (ANP) and B-type NP (BNP), and their receptor, guanylyl cyclase (GC)-A have attracted attention of many basic and clinical researchers because of their potent renal and cardiovascular actions. In this study, we used medaka, Oryzias latipes, as a model species to pursue the physiological functions of NPs because it is a suitable model for developmental analyses. Medaka has two ligands, BNP and C-type NP3 (CNP3) (but not ANP), that have greater affinity for the two O. latipes GC-A receptors (OLGC), OLGC7 and OLGC2, respectively. CNP3 is the ancestral molecule of cardiac NPs. Initially, we examined developmental expression of cardiac NP/receptor combinations, BNP/OLGC7 and CNP3/OLGC2, using quantitative real-time PCR and in situ hybridization. BNP and CNP3 mRNA increased at stages 25 (onset of ventricular formation) and 22 (appearance of heart anlage), respectively, whereas both receptor mRNAs increased at as early as stage 12. BNP/OLGC7 transcripts were found in arterial/ventricular tissues and CNP3/OLGC2 transcripts in venous/atrial tissues by in situ hybridization. Thus, BNP and CNP3 can act locally on cardiac myocytes in a paracrine/autocrine fashion. Double knockdown of BNP/OLGC7 genes impaired ventricular development by causing hypoplasia of ventricular myocytes as evidenced by reduced bromodeoxyuridine incorporation. CNP3 knockdown induced hypertrophy of atria and activated the renin-angiotensin system. Collectively, it appears that BNP is important for normal ventricular, whereas CNP3 is important for normal atrial development and performance, a role usually taken by ANP in other vertebrates. The current study provides new insights into the role of cardiac NPs in cardiac development in vertebrates.

  3. Functional modulation of cardiac form through regionally confined cell shape changes.

    Directory of Open Access Journals (Sweden)

    Heidi J Auman

    2007-03-01

    Full Text Available Developing organs acquire a specific three-dimensional form that ensures their normal function. Cardiac function, for example, depends upon properly shaped chambers that emerge from a primitive heart tube. The cellular mechanisms that control chamber shape are not yet understood. Here, we demonstrate that chamber morphology develops via changes in cell morphology, and we determine key regulatory influences on this process. Focusing on the development of the ventricular chamber in zebrafish, we show that cardiomyocyte cell shape changes underlie the formation of characteristic chamber curvatures. In particular, cardiomyocyte elongation occurs within a confined area that forms the ventricular outer curvature. Because cardiac contractility and blood flow begin before chambers emerge, cardiac function has the potential to influence chamber curvature formation. Employing zebrafish mutants with functional deficiencies, we find that blood flow and contractility independently regulate cell shape changes in the emerging ventricle. Reduction of circulation limits the extent of cardiomyocyte elongation; in contrast, disruption of sarcomere formation releases limitations on cardiomyocyte dimensions. Thus, the acquisition of normal cardiomyocyte morphology requires a balance between extrinsic and intrinsic physical forces. Together, these data establish regionally confined cell shape change as a cellular mechanism for chamber emergence and as a link in the relationship between form and function during organ morphogenesis.

  4. An Echocardiographic Study of Left Ventricular Size and Cardiac Function in Adolescent Females with Anorexia Nervosa.

    Science.gov (United States)

    Escudero, Carolina A; Potts, James E; Lam, Pei-Yoong; De Souza, Astrid M; Mugford, Gerald J; Sandor, George G S

    2016-01-01

    This retrospective case-control study investigated cardiac dimensions and ventricular function in female adolescents with anorexia nervosa (AN) compared with controls. Echocardiographic measurements of left ventricular (LV) dimensions, LV mass index, left atrial size and cardiac index were made. Detailed measures of systolic and diastolic ventricular function were made including tissue Doppler imaging. Patients were stratified by body mass index ≤10th percentile (AN ≤ 10th) and >10th percentile (AN > 10th). Ninety-five AN patients and 58 controls were included. AN and AN ≤ 10th groups had reduced LV dimensions, LV mass index, left atrial size and cardiac index compared with controls. There were no differences between groups in measures of systolic function. Measures of diastolic tissue Doppler imaging were decreased in AN and AN ≤ 10th. No differences in echocardiographic measurements existed between controls and AN > 10th. Female adolescents with AN have preserved systolic function and abnormalities of diastolic ventricular function. AN ≤ 10th may be a higher risk group. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  5. Tansig activation function (of MLP network) for cardiac abnormality detection

    Science.gov (United States)

    Adnan, Ja'afar; Daud, Nik Ghazali Nik; Ishak, Mohd Taufiq; Rizman, Zairi Ismael; Rahman, Muhammad Izzuddin Abd

    2018-02-01

    Heart abnormality often occurs regardless of gender, age and races. This problem sometimes does not show any symptoms and it can cause a sudden death to the patient. In general, heart abnormality is the irregular electrical activity of the heart. This paper attempts to develop a program that can detect heart abnormality activity through implementation of Multilayer Perceptron (MLP) network. A certain amount of data of the heartbeat signals from the electrocardiogram (ECG) will be used in this project to train the MLP network by using several training algorithms with Tansig activation function.

  6. Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds.

    Science.gov (United States)

    Hussain, Ali; Collins, George; Yip, Derek; Cho, Cheul H

    2013-02-01

    The in vitro generation of a three-dimensional (3-D) myocardial tissue-like construct employing cells, biomaterials, and biomolecules is a promising strategy in cardiac tissue regeneration, drug testing, and tissue engineering applications. Despite significant progress in this field, current cardiac tissue models are not yet able to stably maintain functional characteristics of cardiomyocytes for long-term culture and therapeutic purposes. The objective of this study was to fabricate bioactive 3-D chitosan nanofiber scaffolds using an electrospinning technique and exploring its potential for long-term cardiac function in the 3-D co-culture model. Chitosan is a natural polysaccharide biomaterial that is biocompatible, biodegradable, non-toxic, and cost effective. Electrospun chitosan was utilized to provide structural scaffolding characterized by scale and architectural resemblance to the extracellular matrix (ECM) in vivo. The chitosan fibers were coated with fibronectin via adsorption in order to enhance cellular adhesion to the fibers and migration into the interfibrous milieu. Ventricular cardiomyocytes were harvested from neonatal rats and studied in various culture conditions (i.e., mono- and co-cultures) for their viability and function. Cellular morphology and functionality were examined using immunofluorescent staining for alpha-sarcomeric actin (SM-actin) and gap junction protein, Connexin-43 (Cx43). Scanning electron microscopy (SEM) and light microscopy were used to investigate cellular morphology, spatial organization, and contractions. Calcium indicator was used to monitor calcium ion flux of beating cardiomyocytes. The results demonstrate that the chitosan nanofibers retained their cylindrical morphology in long-term cell cultures and exhibited good cellular attachment and spreading in the presence of adhesion molecule, fibronectin. Cardiomyocyte mono-cultures resulted in loss of cardiomyocyte polarity and islands of non-coherent contractions. However

  7. [Limits of cardiac functional adaptation in "top level" resistance athletes].

    Science.gov (United States)

    Carù, B; Righetti, G; Bossi, M; Gerosa, C; Gazzotti, G; Maranetto, D

    2001-02-01

    Sports activity, particularly when performed at high level, provokes cardiovascular adjustments depending on the type of sport and on the level of the load. We evaluated 15 athletes from the Italian national team during a non-agonistic period of cross country skiing, with non-invasive tests including exercise test, color Doppler echocardiography, Holter monitoring, physical examination and standard rest electrocardiogram. Physical examination, rest electrocardiogram, exercise testing and echocardiography were all within the range of the expected values for this type of subjects. Holter monitoring recorded during the periods of agonistic activity revealed significant hypokinetic arrhythmias such as severe bradycardia, pauses, I and II degree atrioventricular blocks, and complete atrioventricular block in 2 cases; these features were not observed on Holter monitoring recorded during the non-agonistic period. The perfect health status of subjects and their racing results may bring about physiological functional adjustments, but these observations suggest the need for a follow-up to evaluate possible pathologic outcomes.

  8. Preserved cardiac function despite marked impairment of cAMP generation.

    Directory of Open Access Journals (Sweden)

    Mei Hua Gao

    Full Text Available So many clinical trials of positive inotropes have failed, that it is now axiomatic that agents that increase cAMP are deleterious to the failing heart. An alternative strategy is to alter myocardial Ca(2+ handling or myofilament response to Ca(2+ using agents that do not affect cAMP. Although left ventricular (LV function is tightly linked to adenylyl cyclase (AC activity, the beneficial effects of AC may be independent of cAMP and instead stem from effects on Ca(2+ handling. Here we ask whether an AC mutant molecule that reduces LV cAMP production would have favorable effects on LV function through its effects on Ca(2+ handling alone.We generated transgenic mice with cardiac-directed expression of an AC6 mutant (AC6mut. Cardiac myocytes showed impaired cAMP production in response to isoproterenol (74% reduction; p<0.001, but LV size and function were normal. Isolated hearts showed preserved LV function in response to isoproterenol stimulation. AC6mut expression was associated with increased sarcoplasmic reticulum Ca(2+ uptake and the EC50 for SERCA2a activation was reduced. Cardiac myocytes isolated from AC6mut mice showed increased amplitude of Ca(2+ transients in response to isoproterenol (p = 0.0001. AC6mut expression also was associated with increased expression of LV S100A1 (p = 0.03 and reduced expression of phospholamban protein (p = 0.01.LV AC mutant expression is associated with normal cardiac function despite impaired cAMP generation. The mechanism appears to be through effects on Ca(2+ handling - effects that occur despite diminished cAMP.

  9. Assessment of right atrial function analysis

    International Nuclear Information System (INIS)

    Shohgase, Takashi; Miyamoto, Atsushi; Kanamori, Katsushi; Kobayashi, Takeshi; Yasuda, Hisakazu

    1988-01-01

    To assess the potential utility of right atrial function analysis in cardiac disease, reservoir function, pump function, and right atrial peak emptying rate (RAPER) were compared in 10 normal subjects, 32 patients with coronary artery disease, and 4 patients with primary pulmonary hypertension. Right atrial volume curves were obtained using cardiac radionuclide method with Kr-81m. In normal subjects, reservoir function index was 0.41+-0.05; pump function index was 0.25+-0.05. Both types of patients has decreased reservoir funcion and increased pump function. Pump function tended to decrease with an increase of right ventricular end-diastolic pressure. RAPER correlated well with right ventricular peak filling rate, probably reflecting right ventricular diastolic function. Analysis of right atrial function seemed to be of value in evaluating factors regulating right ventricular contraction and diastolic function, and cardiac output. (Namekawa, K)

  10. Anti-tachycardia therapy can improve altered cardiac adrenergic function in tachycardia-induced cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Ohkusu, Yasuo; Takahashi, Nobukazu; Ishikawa, Toshiyuki [Yokohama City Univ. (Japan). School of Medicine] [and others

    2002-11-01

    We investigated whether anti-tachycardia therapy might improve the altered cardiac adrenergic and systolic function in tachycardia-induced cardiomyopathy (TC) in contrast to dilated cardiomyopathy (DCM). The subjects were 23 patients with heart failure, consisting of 8 patients with TC (43.6{+-}10.0 yrs) and 15 with DCM (45.3{+-}8.2 yrs). TC was determined as impairment of left ventricular function secondary to chronic or very frequent arrhythmia during more than 10% of the day. All patients were receiving anti-tachycardia treatment. Cardiac {sup 123}I-MIBG uptake was assessed as the heart/mediastinum activity ratio (H/M) before and after treatment. Left ventricular ejection fraction (LVEF) was also assessed. In the baseline study, H/M and LVEF showed no difference between TC and DCM (2.21{+-}0.44 vs. 2.10{+-}0.42, 35.3{+-}13.1 vs. 36.0{+-}10.9%, respectively). After treatment, the degree of change in H/M and LVEF differed significantly (0.41{+-}0.34 vs. 0.08{+-}0.20, 20.5{+-}14.4 vs. -2.1{+-}9.6%, p<0.01). In TC, heart failure improved after a shorter duration of treatment (p<0.05). In conclusion, anti-tachycardia therapy can improve altered cardiac adrenergic function and systolic function in patients with TC over a shorter period than in those with DCM. (author)

  11. Structural and functional cardiac changes in myotonic dystrophy type 1: a cardiovascular magnetic resonance study

    Directory of Open Access Journals (Sweden)

    Hermans Mieke CE

    2012-07-01

    Full Text Available Abstract Background Myotonic dystrophy type 1 (MD1 is a neuromuscular disorder with potential involvement of the heart and increased risk of sudden death. Considering the importance of cardiomyopathy as a predictor of prognosis, we aimed to systematically evaluate and describe structural and functional cardiac alterations in patients with MD1. Methods Eighty MD1 patients underwent physical examination, electrocardiography (ECG, echocardiography and cardiovascular magnetic resonance (CMR. Blood samples were taken for determination of NT-proBNP plasma levels and CTG repeat length. Results Functional and structural abnormalities were detected in 35 patients (44%. Left ventricular systolic dysfunction was found in 20 cases, left ventricular dilatation in 7 patients, and left ventricular hypertrophy in 6 patients. Myocardial fibrosis was seen in 10 patients (12.5%. In general, patients had low left ventricular mass indexes. Right ventricular involvement was uncommon and only seen together with left ventricular abnormalities. Functional or structural cardiac involvement was associated with age (p = 0.04, male gender (p Conclusions CMR can be useful to detect early structural and functional myocardial abnormalities in patients with MD1. Myocardial involvement is strongly associated with conduction abnormalities, but a normal ECG does not exclude myocardial alterations. These findings lend support to the hypothesis that MD1 patients have a complex cardiac phenotype, including both myocardial and conduction system alteration.

  12. Pulse wave velocity and cardiac autonomic function in type 2 diabetes mellitus.

    Science.gov (United States)

    Chorepsima, Stamatina; Eleftheriadou, Ioanna; Tentolouris, Anastasios; Moyssakis, Ioannis; Protogerou, Athanasios; Kokkinos, Alexandros; Sfikakis, Petros P; Tentolouris, Nikolaos

    2017-05-19

    Increased carotid-femoral pulse wave velocity (PWV) has been associated with incident cardiovascular disease, independently of traditional risk factors. Cardiac autonomic dysfunction is a common complication of diabetes and has been associated with reduced aortic distensibility. However, the association of cardiac autonomic dysfunction with PWV is not known. In this study we examined the association between cardiac autonomic function and PWV in subjects with type 2 diabetes mellitus. A total of 290 patients with type 2 diabetes were examined. PWV was measured at the carotid-femoral segment with applanation tonometry. Central mean arterial blood pressure (MBP) was determined by the same apparatus. Participants were classified as having normal (n = 193) or abnormal (n = 97) PWV values using age-corrected values. Cardiac autonomic nervous system activity was determined by measurement of parameters of heart rate variability (HRV). Subjects with abnormal PWV were older, had higher arterial blood pressure and higher heart rate than those with normal PWV. Most of the values of HRV were significantly lower in subjects with abnormal than in those with normal PWV. Multivariate analysis, after controlling for various confounding factors, demonstrated that abnormal PWV was associated independently only with peripheral MBP [odds ratio (OR) 1.049, 95% confidence intervals (CI) 1.015-1.085, P = 0.005], central MBP (OR 1.052, 95% CI 1.016-1.088, P = 0.004), log total power (OR 0.490, 95% CI 0.258-0.932, P = 0.030) and log high frequency power (OR 0.546, 95% CI 0.301-0.991, P = 0.047). In subjects with type 2 diabetes, arterial blood pressure and impaired cardiac autonomic function is associated independently with abnormal PWV.

  13. Oleic and linoleic acids are active principles in Nigella sativa and stabilize an E(2)P conformation of the Na,K-ATPase. Fatty acids differentially regulate cardiac glycoside interaction with the pump.

    Science.gov (United States)

    Mahmmoud, Yasser A; Christensen, S Brøgger

    2011-10-01

    Nigella sativa seed oil was found to contain a modulator of Na,K-ATPase. Separation analyses combined with (1)H NMR and GCMS identified the inhibitory fraction as a mixture of oleic and linoleic acids. These two fatty acids are specifically concentrated in several medicinal plant oils, and have particularly been implicated in decreasing high blood pressure. The ouabain binding site on Na,K-ATPase has also been implicated in blood pressure regulation. Thus, we aimed to determine how these two molecules modify pig kidney Na,K-ATPase. Oleic and linoleic acids did not modify reactions involving the E(1) (Na(+)) conformations of the Na,K-ATPase. In contrast, K(+) dependent reactions were strongly modified after treatment. Oleic and linoleic acids were found to stabilize a pump conformation that binds ouabain with high affinity, i.e., an ion free E(2)P form. Time-resolved binding assays using anthroylouabain, a fluorescent ouabain analog, revealed that the increased ouabain affinity is unique to oleic and linoleic acids, as compared with γ-linolenic acid, which decreased pump-mediated ATP hydrolysis but did not equally increase ouabain interaction with the pump. Thus, the dynamic changes in plasma levels of oleic and linoleic acids are important in the modulation of the sensitivity of the sodium pump to cardiac glycosides. Given the possible involvement of the cardiac glycoside binding site on Na,K-ATPase in the regulation of hypertension, we suggest oleic acid to be a specific chaperon that modulates interaction of cardiac glycosides with the sodium pump. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  14. Evaluation of cardiac motion and function by cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kondo, Takeshi; Kurokawa, Hiroshi; Anno, Hirofumi

    1992-01-01

    Cardiac cine magnetic resonance imaging (MRI) was studied to evaluate the cardiac motion and function, and a water-stream phantom study was performed to clarify whether it was possible to quantitatively assess the valvular regurgitation flow by the size of the flow void. In normal subjects, the left ventricular (LV) epicardial apex swung up to the base only a few millimeters, and the mitral annulus ring moved about 14 mm as mean value toward the apex during systole. Those motions of mitral annulus ring may contribute to the left atrial filling. The LV longitudinal shortening and torsions were shown by the tagging method. This tagging method was the best method for estimating cardiac motions. Cardiac cine MRI using software including a modified Simpson's method program and a wall motion analysis program was useful for routine LV volumetry and wall motion analysis because it was a simple and reliable method. Our water-stream phantom studies demonstrated that it might be difficult to perform quantitative evaluation of valvular regurgitation flow by using only the size of the flow void without acquiring information relating to the orifice area. (author)

  15. Maintenance strategy based on reliability functions for an oil centrifugal pump

    Directory of Open Access Journals (Sweden)

    Denis Carlos Mengue

    2013-06-01

    Full Text Available The purpose of this article was to define the most appropriate maintenance strategy for a centrifugal pump (preventive, predictive, corrective or emergency, based on reliability calculation. The research method was the quantitative modeling, applied in a petroleum plant. The study may contribute to the development of a strategic model for the management of the industrial plant maintenance. In the company's information system, records of eleven years have been gathered on times between failures and times for repair of the equipment. These times were modeled by probability distributions. From the results obtained were calculated Reliability and Maintainability functions R(t and M(t. By combining their expected values (MTBF and MTTR, Av availability was calculated. The figures for MTBF, MTTR and Av were respectively 3,936 hours, 133 hours and 96.73%. The most likely shape factor of the Weibull distribution which modeled the time between failures was 0.69. So, it was possible to affirm that the pump is in the infant mortality phase. The theoretical framework of RCM indicated corrective  maintenance as the strategy for the item. This strategy aims to eliminate the defects of equipment design, reinforce items that usually break and remove the causes of the failures.

  16. A 1D pulse wave propagation model of the hemodynamics of calf muscle pump function.

    Science.gov (United States)

    Keijsers, J M T; Leguy, C A D; Huberts, W; Narracott, A J; Rittweger, J; van de Vosse, F N

    2015-07-01

    The calf muscle pump is a mechanism which increases venous return and thereby compensates for the fluid shift towards the lower body during standing. During a muscle contraction, the embedded deep veins collapse and venous return increases. In the subsequent relaxation phase, muscle perfusion increases due to increased perfusion pressure, as the proximal venous valves temporarily reduce the distal venous pressure (shielding). The superficial and deep veins are connected via perforators, which contain valves allowing flow in the superficial-to-deep direction. The aim of this study is to investigate and quantify the physiological mechanisms of the calf muscle pump, including the effect of venous valves, hydrostatic pressure, and the superficial venous system. Using a one-dimensional pulse wave propagation model, a muscle contraction is simulated by increasing the extravascular pressure in the deep venous segments. The hemodynamics are studied in three different configurations: a single artery-vein configuration with and without valves and a more detailed configuration including a superficial vein. Proximal venous valves increase effective venous return by 53% by preventing reflux. Furthermore, the proximal valves shielding function increases perfusion following contraction. Finally, the superficial system aids in maintaining the perfusion during the contraction phase and reduces the refilling time by 37%. © 2015 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.

  17. Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus

    NARCIS (Netherlands)

    van der Meer, Rutger W.; Rijzewijk, Luuk J.; de Jong, Hugo W. A. M.; Lamb, Hildo J.; Lubberink, Mark; Romijn, Johannes A.; Bax, Jeroen J.; de Roos, Albert; Kamp, Otto; Paulus, Walter J.; Heine, Robert J.; Lammertsma, Adriaan A.; Smit, Johannes W. A.; Diamant, Michaela

    2009-01-01

    Cardiac disease is the leading cause of mortality in type 2 diabetes mellitus (T2DM). Pioglitazone has been associated with improved cardiac outcome but also with an elevated risk of heart failure. We determined the effects of pioglitazone on myocardial function in relation to cardiac high-energy

  18. A high-sugar and high-fat diet impairs cardiac systolic and diastolic function in mice.

    Science.gov (United States)

    Carbone, Salvatore; Mauro, Adolfo G; Mezzaroma, Eleonora; Kraskauskas, Donatas; Marchetti, Carlo; Buzzetti, Raffaella; Van Tassell, Benjamin W; Abbate, Antonio; Toldo, Stefano

    2015-11-01

    Heart failure (HF) is a clinical syndrome characterized by dyspnea, fatigue, exercise intolerance and cardiac dysfunction. Unhealthy diet has been associated with increased risk of obesity and heart disease, but whether it directly affects cardiac function, and promotes the development and progression of HF is unknown. We fed 8-week old male or female CD-1 mice with a standard diet (SD) or a diet rich in saturated fat and sugar, resembling a "Western" diet (WD). Cardiac systolic and diastolic function was measured at baseline and 4 and 8 weeks by Doppler echocardiography, and left ventricular (LV) end-diastolic pressure (EDP) by cardiac catheterization prior to sacrifice. An additional group of mice received WD for 4 weeks followed by SD (wash-out) for 8 weeks. WD-fed mice experienced a significant decreased in LV ejection fraction (LVEF), reflecting impaired systolic function, and a significant increase in isovolumetric relaxation time (IRT), myocardial performance index (MPI), and LVEDP, showing impaired diastolic function, without any sex-related differences. Switching to a SD after 4 weeks of WD partially reversed the cardiac systolic and diastolic dysfunction. A diet rich in saturated fat and sugars (WD) impairs cardiac systolic and diastolic function in the mouse. Further studies are required to define the mechanism through which diet affects cardiac function, and whether dietary interventions can be used in patients with, or at risk for, HF. Published by Elsevier Ireland Ltd.

  19. Natural aminoacyl tRNA synthetase fragment enhances cardiac function after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Margaret E McCormick

    Full Text Available A naturally-occurring fragment of tyrosyl-tRNA synthetase (TyrRS has been shown in higher eukaryotes to 'moonlight' as a pro-angiogenic cytokine in addition to its primary role in protein translation. Pro-angiogenic cytokines have previously been proposed to be promising therapeutic mechanisms for the treatment of myocardial infarction. Here, we show that systemic delivery of the natural fragment of TyRS, mini-TyrRS, improves heart function in mice after myocardial infarction. This improvement is associated with reduced formation of scar tissue, increased angiogenesis of cardiac capillaries, recruitment of c-kitpos cells and proliferation of myocardial fibroblasts. This work demonstrates that mini-TyrRS has beneficial effects on cardiac repair and regeneration and offers support for the notion that elucidation of the ever expanding repertoire of noncanonical functions of aminoacyl tRNA synthetases offers unique opportunities for development of novel therapeutics.

  20. Cardiodynamicsgram: a novel tool for monitoring cardiac function in exercise training.

    Science.gov (United States)

    Wen, Xu; Guo, Bokai; Gong, Yinglan; Xia, Ling; Yu, Jie

    2018-04-27

    This study evaluated the feasibility of cardiodynamicsgram (CDG) for monitoring the cardiac functions of athletes and exercisers. CDG could provide an effective, simple, and economical tool for exercise training. Seventeen middle-distance race athletes aged 14-28 years old were recruited. CDG tests and blood test including creatine kinase (CK), CK-MB isoenzyme, and high-sensitivity troponin I (hsTnI) were performed before a high-intensity prolonged training, as well as 2 and 14 h after training, respectively. The CDG test result was unsatisfactory when the CK test result was used as standard. However, the accuracy of CDG test was about 80% when CK-MB and hsTnI were used as standards. Thus, CDG offers a noninvasive, simple, and economical approach for monitoring the cardiac function of athletes and exercisers during exercise training. Nonetheless, the applicability of CDG needs further investigation.

  1. Hypothalamus-pituitary-thyroid axis activity and function of cardiac muscle in energy deficit

    Directory of Open Access Journals (Sweden)

    Katarzyna Lachowicz

    2017-12-01

    Full Text Available Frequently repeated statement that energy restriction is a factor that improves cardiovascular system function seems to be not fully truth. Low energy intake modifies the hypothalamus-pituitary-thyroid axis activity and thyroid hormone peripheral metabolism. Thyroid hormones, as modulators of the expression and activity of many cardiomyocyte proteins, control heart function. Decreased thyroid hormone levels and their disturbanced conversion and action result in alternation of cardiac remodeling, disorder of calcium homeostasis and diminish myocardial contractility. This review provides a summary of the current state of knowledge about the mechanisms of energy restriction effects on thyroidal axis activity, thyroid hormone peripheral metabolism and action in target tissues, especially in cardiac myocytes. We also showed the existence of energy restriction-thyroid-heart pathway.

  2. Cardiac function and tadalafil used for treating fetal growth restriction in pregnant women without cardiovascular disease.

    Science.gov (United States)

    Tanaka, Kayo; Tanaka, Hiroaki; Maki, Shintaro; Kubo, Michiko; Nii, Masafumi; Magawa, Shoichi; Hatano, Fumi; Tsuji, Makoto; Osato, Kazuhiro; Kamimoto, Yuki; Umekawa, Takashi; Ikeda, Tomoaki

    2018-02-20

    The aim of the present study was to evaluate tadalafil for the treatment of fetal growth restriction (FGR) and the cardiac function in pregnant women without cardiovascular disease who used tadalafil for this reason. We examined nine pregnant women without cardiovascular disease who were using tadalafil to treat FGR. Maternal heart rate, systolic blood pressure (BP), and echocardiographic findings were assessed before and after tadalafil use. Diastolic BP was lower after compared to that before using tadalafil, but the difference was not significant. Echocardiographic findings were not significantly different before and after tadalafil use. Tadalafil did not adversely affect pregnant women without cardiovascular disease and was considered acceptable for use since it did not affect the mother's cardiac function.

  3. Exposure to occupational air pollution and cardiac function in workers of the Esfahan Steel Industry, Iran.

    Science.gov (United States)

    Golshahi, Jafar; Sadeghi, Masoumeh; Saqira, Mohammad; Zavar, Reihaneh; Sadeghifar, Mostafa; Roohafza, Hamidreza

    2016-06-01

    Air pollution is recognized as an important risk factor for cardiovascular disease. We investigated association of exposure to occupational air pollution and cardiac function in the workers of the steel industry. Fifty male workers of the agglomeration and coke-making parts of the Esfahan Steel Company were randomly selected (n = 50). Workers in the administrative parts were studied as controls (n = 50). Those with known history of hypertension, dyslipidemia, or diabetes, and active smokers were not included. Data of age, body mass index, employment duration, blood pressure, fasting blood sugar, and lipid profile were gathered. Echocardiography was performed to evaluate cardiac function. Left ventricular ejection fraction was lower in workers of the agglomeration/coke-making parts than in controls (mean difference = 5 to 5.5 %, P steel industry is associated with left heart systolic dysfunction. Possible right heart insults due to air pollution exposure warrant further investigations.

  4. CARDIAC TRANSPLANT REJECTION AND NON-INVASIVE COMON CAROTID ARTERY WALL FUNCTIONAL INDICES

    Directory of Open Access Journals (Sweden)

    A. O. Shevchenko

    2015-01-01

    Full Text Available Allograft rejection would entail an increase in certain blood biomarkers and active substances derived from activated inflammatory cells which could influence entire vascular endothelial function and deteriorate arterial wall stiffness. We propose that carotid wall functional indices measured with non-invasive ultrasound could we valuable markers of the subclinical cardiac allograft rejection. Aim. Our goal was to analyze the clinical utility of functional common carotid wall (CCW variables measured with high-resolution Doppler ultrasound as a non-invasive screening tool for allograft rejection in cardiac transplant patients (pts. Methods. One hundred and seventy one pts included 93 cardiac recipients, 30 dilated cardiomyopathy waiting list pts, and 48 stable coronary artery disease (SCAD pts without decompensated heart failure were included. Along with resistive index (Ri, pulsative index (Pi, and CCW intima-media thickness (IMT, CCW rigidity index (iRIG was estimated using empirical equation. Non-invasive evaluation was performed in cardiac transplant recipients prior the endomyo- cardial biopsy. Results. Neither of Ri, Pi, or CCW IMT were different in studied subgroups. iRIG was signifi- cantly lower in SCAD pts when compared to the dilated cardiomyopathy subgroup. The later had similar values with cardiac transplant recipients without rejection. Antibody-mediated and cellular rejection were found in 22 (23.7% and 17 (18.3% cardiac recipients, respectively. Mean iRIG in pts without rejection was significantly lower in comparison to antibody-mediated rejection and cell-mediated (5514.7 ± 2404.0 vs 11856.1 ± 6643.5 and 16071.9 ± 10029.1 cm/sec2, respectively, p = 0.001. Area under ROC for iRIG was 0.90 ± 0.03 units2. Analysis showed that iRIG values above estimated treshold 7172 cm/sec2 suggested relative risk of any type of rejection 17.7 (95%CI = 6.3–49.9 sensitivity 80.5%, specificity – 81.1%, negative predictive value – 84

  5. Renal and cardiac function during alpha1-beta-blockade in congestive heart failure

    DEFF Research Database (Denmark)

    Heitmann, M; Davidsen, U; Stokholm, K H

    2002-01-01

    The kidney and the neurohormonal systems are essential in the pathogenesis of congestive heart failure (CHF) and the physiologic response. Routine treatment of moderate to severe CHF consists of diuretics, angiotensin-converting enzyme (ACE) inhibition and beta-blockade. The need for control...... of renal function during initiation of ACE-inhibition in patients with CHF is well known. The aim of this study was to investigate whether supplementation by a combined alpha1-beta-blockade to diuretics and ACE-inhibition might improve cardiac function without reducing renal function....

  6. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    International Nuclear Information System (INIS)

    Grans, Camilla Figueiredo; Feriani, Daniele Jardim; Abssamra, Marcos Elias Vergilino; Rocha, Leandro Yanase; Carrozzi, Nicolle Martins; Mostarda, Cristiano; Figueroa, Diego Mendrot; Angelis, Kátia De; Irigoyen, Maria Cláudia; Rodrigues, Bruno

    2014-01-01

    Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats

  7. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    Directory of Open Access Journals (Sweden)

    Camilla Figueiredo Grans

    2014-07-01

    Full Text Available Background: Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. Objective: To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Methods: Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week. At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. Results: The maximum load test increased in groups trained control (+32% and trained infarcted (+46% in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%, myocardial performance index (-39% and systolic blood pressure (+6% improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%, as well as in the low frequency band of systolic blood pressure (-46% in rats from group trained infarcted in relation to group sedentary infarcted. Conclusion: Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats.

  8. Image processing of x-ray left ventricular cineangiocardiograms and displays of cardiac functions

    International Nuclear Information System (INIS)

    Eiho, Shigeru; Yamada, Shigeru; Kuwahara, Michiyoshi

    1980-01-01

    Cineangiocardiography has been often used as one of the highly helpful techniques to examine the cardiac function. This paper deals with the method of tracing automatically the boundaries of the left ventricle on cineangiocardiograms, the method to evaluate and display various cardiac functions, the method to reconstruct the left ventricular cavity from biplane cineangiocardiograms and the method to display a 3-dimensional shape of the left ventricle reconstructed. Our algorithm of boundary tracing is based on a heuristic search for a local maximum of the changing rate in the gray level of cineangiocardiogram. The boundaries of endocardial margins of the left ventricle on 80 to 120 consecutive frames are automatically traced by our method. By using the detected boundaries of the left ventricle, a lot of quantitative information may be established on the cardiac function. The volume change, the wall motions and the %-shortening are displayed graphically. The motion of the boundary of the left ventricle is displayed on a CRT as a moving picture. The left ventricular cavity is reconstructed from the detected boundaries of the left ventricle on biplane cineangiocardiograms. A reconstructed image can be shown as superimposed lines or halftone planes to produce a 3-dimensional perspective. The %-shortening which shows the contractility of the regional myocardium is displayed on a silhouette of the left ventricle. We can easily recognize the abnormal area of contraction and the level and spread of abnormality from this displayed image. With the use of the system described in this paper, we can grasp the movement of the left ventricle exactly and evaluate the cardiac function quantitatively. (author)

  9. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    Energy Technology Data Exchange (ETDEWEB)

    Grans, Camilla Figueiredo; Feriani, Daniele Jardim; Abssamra, Marcos Elias Vergilino; Rocha, Leandro Yanase; Carrozzi, Nicolle Martins [Laboratório do Movimento Humano, Universidade São Judas Tadeu (USJT), São Paulo, SP (Brazil); Mostarda, Cristiano [Departamento de Educação Física, Universidade Federal do Maranhão (UFMA), São Luís, MA (Brazil); Figueroa, Diego Mendrot [Laboratório de Hipertensão Experimental, Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP (Brazil); Angelis, Kátia De [Laboratório de Fisiologia Translacional, Universidade Nove de Julho (Uninove), São Paulo, SP (Brazil); Irigoyen, Maria Cláudia [Laboratório de Hipertensão Experimental, Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP (Brazil); Rodrigues, Bruno, E-mail: bruno.rodrigues@incor.usp.br [Laboratório do Movimento Humano, Universidade São Judas Tadeu (USJT), São Paulo, SP (Brazil)

    2014-07-15

    Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats.

  10. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    Science.gov (United States)

    Grans, Camilla Figueiredo; Feriani, Daniele Jardim; Abssamra, Marcos Elias Vergilino; Rocha, Leandro Yanase; Carrozzi, Nicolle Martins; Mostarda, Cristiano; Figueroa, Diego Mendrot; Angelis, Kátia De; Irigoyen, Maria Cláudia; Rodrigues, Bruno

    2014-01-01

    Background Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. Objective To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Methods Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. Results The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Conclusion Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats. PMID:25014059

  11. Regulation of cardiac remodeling by cardiac Na/K-ATPase isoforms

    Directory of Open Access Journals (Sweden)

    Lijun Catherine Liu

    2016-09-01

    Full Text Available Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1-3. The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1 the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2 the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  12. Cardiovascular measurement and cardiac function analysis with electron beam computed tomography in health Chinese people (50 cases report)

    International Nuclear Information System (INIS)

    Lu Bin; Dai Ruping; Zhang Shaoxiong; Bai Hua; Jing Baolian; Cao Cheng; He Sha; Ren Li

    1998-01-01

    Purpose: To quantitatively measure cardiovascular diameters and function parameters by using electron beam computed tomography, EBCT. Methods: Men 50 health Chinese people accepted EBCT common transverse and short-axis enhanced movie scan (27 men, 23 women, average age 47.7 years.). The transverse scan was used to measure the diameters of the ascending aorta, descending aorta, pulmonary artery and left atrium. The movie study was used to measure the left ventricular myocardium thickness and analysis global, sectional and segmental function of the right and left ventricles. Results: The cardiovascular diameters and cardiac functional parameters were calculated. The diameters and most functional parameters (end syspoble volume, syspole volume, ejection fraction, cardiac-output, cardiac index) of normal Chinese men were greater than those of women (P>0.05). However, the EDV and MyM(myocardium mass) of both ventricles were significant (p<0.01). Conclusion: EBCT is a minimally invasive method for cardiovascular measurement and cardiac function evaluation

  13. Usefulness of true FISP cine MR imaging in patients with poor cardiac function

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Toshiharu; Yamada, Naoaki; Motooka, Makoto; Enomoto, Naoyuki; Maeshima, Isamu; Matsuda, Kazuhide; Urayama, Shinichi; Ikeo, Miki [National Cardiovascular Center, Suita, Osaka (Japan)

    2002-01-01

    This study was done to assess the value of True FISP cine in patients with poor cardiac function. True FISP cine and FLASH cine imaging were performed on a 1.5 T machine. Both short axis and horizontal long axis imaging sections were used. The imaging sections used a Matrix (120 x 128), FOV (24 x 32 cm), and had a slice thickness of 8 mm. The imaging time for True FISP cine was 8 heart beats and 17 heart beats for FLASH cine. The contrast-to-noise ratio between the blood and myocardium (CNR) was measured at enddiastole and endsystole. The subjects in the study were 10 healty volunteers (average age 26.5{+-}3.2 years) and 12 patients with hypofunction (average age 53.9{+-}13.2 years). In the volunteers, the CNR of the short axis imaging was similar in both True FISP (24.6{+-}3.7) and FLASH (23.4{+-}5.9). In the patients with poor cardiac function however, the CNR of True FISP was larger than FLASH in both the short and long axis. In the short axis (22.7{+-}6.1 vs. 17.9{+-}5.3, P<0.01) and in the long axis (17.4{+-}4.3 vs. 9.3{+-}4.0, P<0.01). We conclude that True FISP cine has a higher contrast in a shorter imaging time than FLASH cine. True FISP cine is especially useful in patients with poor cardiac function. (author)

  14. Electrokinetic pump

    Science.gov (United States)

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  15. Role of insulin in regulation of Na+-/K+-dependent ATPase activity and pump function in corneal endothelial cells.

    Science.gov (United States)

    Hatou, Shin; Yamada, Masakazu; Akune, Yoko; Mochizuki, Hiroshi; Shiraishi, Atsushi; Joko, Takeshi; Nishida, Teruo; Tsubota, Kazuo

    2010-08-01

    The Na(+)-/K(+)-dependent ATPase (Na,K-ATPase) expressed in the basolateral membrane of corneal endothelial cells plays an important role in the pump function of the corneal endothelium. The role of insulin in the regulation of Na,K-ATPase activity and pump function in corneal endothelial cells was investigated. Confluent monolayers of mouse corneal endothelial cells were exposed to insulin. ATPase activity was evaluated by spectrophotometric measurement of phosphate released from ATP with the use of ammonium molybdate; Na,K-ATPase activity was defined as the portion of total ATPase activity sensitive to ouabain. Pump function was measured with the use of a Ussing chamber; pump function attributable to Na,K-ATPase activity was defined as the portion of the total short-circuit current sensitive to ouabain. Western blot analysis and immunocytochemistry were performed to measure the expression of the Na,K-ATPase alpha(1)-subunit. Insulin increased the Na,K-ATPase activity and pump function of cultured corneal endothelial cells. These effects were blocked by protein kinase C (PKC) inhibitors and protein phosphatases 1 and 2A inhibitor. Western blot analysis indicated that insulin decreased the ratio of the inactive Na,K-ATPase alpha(1)-subunit. Immunocytochemistry indicated that insulin increased the cell surface expression of the Na,K-ATPase alpha(1)-subunit. These results suggest that insulin increases the Na,K-ATPase activity and pump function of cultured corneal endothelial cells. The effect of insulin is mediated by PKC and presumably results in the activation of PP1, 2A, or both, which are essential for activating Na,K-ATPase by alpha(1)-subunit dephosphorylation.

  16. Towards structural and functional analysis of the plant plasma membrane proton pump

    DEFF Research Database (Denmark)

    Justesen, Bo Højen

    The plasma membrane H+-ATPase is a proton pump essential for several physiological important processes in plants. Through the extrusion of protons from the cell, the PM H+-ATPase establishes and maintains a proton gradient used by proton coupled transporters and secondary active transport...... of nutrients and metabolites across the plasma membrane. Additional processes involving the PM H+-ATPase includes plant growth, development, and response to biotic and abiotic stresses. Extensive efforts have been made in attempts to elucidate the detailed physiological role and biochemical characteristics...... of plasma membrane H+-ATPases. Studies on the plasma membrane H+-ATPases have involved both in vivo and in vitro approaches, with the latter employing either solubilisation by detergent micelles, or reconstitution into lipid vesicles. Despite resulting in a large body of information on structure, function...

  17. Effects of milrinone on left ventricular cardiac function during cooling in an intact animal model.

    Science.gov (United States)

    Tveita, Torkjel; Sieck, Gary C

    2012-08-01

    Due to adverse effects of β-receptor agonists reported when applied during hypothermia, left ventricular (LV) cardiac effects of milrinone, a PDE3 inhibitor which mode of action is deprived the sarcolemmal β-receptor-G protein-PKA system, was tested during cooling to 15 °C. Sprague Dawley rats were instrumented to measure left ventricular (LV) pressure-volume changes using a Millar pressure-volume conductance catheter. Core temperature was reduced from 37 to 15 °C (60 min) using internal and external heat exchangers. Milrinone, or saline placebo, was given as continuous i.v. infusions for 30 min at 37 °C and during cooling. In normothermic controls continuous milrinone infusion for 90 min elevated cardiac output (CO) and stroke volume (SV) significantly. Significant differences in cardiac functional variables between the milrinone group and the saline control group during cooling to 15 °C were found: Compared to saline treated animals throughout cooling from 33 to 15 °CSV was significantly elevated in milrinone animals, the index of LV isovolumic relaxation, Tau, was significantly better preserved, and both HR and CO were significantly higher from 33 to 24 °C. Likewise, during cooling between 33 and 28 °C also LVdP/dt(max) was significantly higher in the milrinone group. Milrinone preserved LV systolic and diastolic function at a significantly higher level than in saline controls during cooling to 15 °C. In essential contrast to our previous results when using β-receptor agonists during hypothermia, the present experiment demonstrates the positive inotropic effects of milrinone on LV cardiac function during cooling to 15 °C. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study

    NARCIS (Netherlands)

    Janssens, Karin A. M.; Riese, Harriette; Van Roon, Arie M.; Hunfeld, Joke A. M.; Groot, Paul F. C.; Oldehinkel, Albertine J.; Rosmalen, Judith G. M.

    2016-01-01

    Objective Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS). However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac

  19. Effects of protein-calorie restriction on mechanical function of hypertrophied cardiac muscle

    Directory of Open Access Journals (Sweden)

    Antônio Carlos Cicogna

    1999-04-01

    Full Text Available OBJECTIVE: To assess the effect of food restriction (FR on hypertrophied cardiac muscle in spontaneously hypertensive rats (SHR. METHODS: Isolated papillary muscle preparations of the left ventricle (LV of 60-day-old SHR and of normotensive Wistar-Kyoto (WKY rats were studied. The rats were fed either an unrestricted diet or FR diet (50% of the intake of the control diet for 30 days. The mechanical function of the muscles was evaluated through monitoring isometric and isotonic contractions. RESULTS: FR caused: 1 reduction in the body weight and LV weight of SHR and WKY rats; 2 increase in the time to peak shortening and the time to peak developed tension (DT in the hypertrophied myocardium of the SHR; 3 diverging changes in the mechanical function of the normal cardiac muscles of WKY rats with reduction in maximum velocity of isotonic shortening and of the time for DT to decrease 50% of its maximum value, and increase of the resting tension and of the rate of tension decline. CONCLUSION: Short-term FR causes prolongation of the contraction time of hypertrophied muscles and paradoxal changes in mechanical performance of normal cardiac fibers, with worsening of the shortening indices and of the resting tension, and improvement of the isometric relaxation.

  20. Pulmonary function and health-related quality of life 1-year follow up after cardiac surgery.

    Science.gov (United States)

    Westerdahl, Elisabeth; Jonsson, Marcus; Emtner, Margareta

    2016-07-08

    Pulmonary function is severely reduced in the early period after cardiac surgery, and impairments have been described up to 4-6 months after surgery. Evaluation of pulmonary function in a longer perspective is lacking. In this prospective study pulmonary function and health-related quality of life were investigated 1 year after cardiac surgery. Pulmonary function measurements, health-related quality of life (SF-36), dyspnoea, subjective breathing and coughing ability and pain were evaluated before and 1 year after surgery in 150 patients undergoing coronary artery bypass grafting, valve surgery or combined surgery. One year after surgery the forced vital capacity and forced expiratory volume in 1 s were significantly decreased (by 4-5 %) compared to preoperative values (p < 0.05). Saturation of peripheral oxygen was unchanged 1 year postoperatively compared to baseline. A significantly improved health-related quality of life was found 1 year after surgery, with improvements in all eight aspects of SF-36 (p < 0.001). Sternotomy-related pain was low 1 year postoperatively at rest (median 0 [min-max; 0-7]), while taking a deep breath (0 [0-4]) and while coughing (0 [0-8]). A more pronounced decrease in pulmonary function was associated with dyspnoea limitations and impaired subjective breathing and coughing ability. One year after cardiac surgery static and dynamic lung function measurements were slightly decreased, while health-related quality of life was improved in comparison to preoperative values. Measured levels of pain were low and saturation of peripheral oxygen was same as preoperatively.

  1. Testosterone receptor blockade after trauma-hemorrhage improves cardiac and hepatic functions in males.

    Science.gov (United States)

    Remmers, D E; Wang, P; Cioffi, W G; Bland, K I; Chaudry, I H

    1997-12-01

    Although studies have shown that testosterone receptor blockade with flutamide after hemorrhage restores the depressed immune function, it remains unknown whether administration of flutamide following trauma and hemorrhage and resuscitation has any salutary effects on the depressed cardiovascular and hepatocellular functions. To study this, male rats underwent a laparotomy (representing trauma) and were then bled and maintained at a mean arterial pressure (MAP) of 40 mmHg until the animals could not maintain this pressure. Ringer lactate was given to maintain a MAP of 40 mmHg until 40% of the maximal shed blood volume was returned in the form of Ringer lactate. The rats were then resuscitated with four times the shed blood volume in the form of Ringer lactate over 60 min. Flutamide (25 mg/kg) or an equal volume of the vehicle propanediol was injected subcutaneously 15 min before the end of resuscitation. Various in vivo heart performance parameters (e.g., maximal rate of the pressure increase or decrease), cardiac output, and hepatocellular function (i.e., the maximum velocity and the overall efficiency of indocyanine green clearance) were determined at 20 h after resuscitation. Additionally, hepatic microvascular blood flow (HMBF) was determined using a laser Doppler flowmeter. The results indicate that left ventricular performance, cardiac output, HMBF, and hepatocellular function decreased significantly at 20 h after the completion of trauma, hemorrhage, and resuscitation. Administration of the testosterone receptor blocker flutamide, however, significantly improved cardiac performance, HMBF, and hepatocellular function. Thus flutamide appears to be a novel and useful adjunct for improving cardiovascular and hepatocellular functions in males following trauma and hemorrhagic shock.

  2. Relationship between myocardial T2* values and cardiac volumetric and functional parameters in β-thalassemia patients evaluated by cardiac magnetic resonance in association with serum ferritin levels

    Energy Technology Data Exchange (ETDEWEB)

    Liguori, Carlo, E-mail: c.liguori@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Pitocco, Francesca, E-mail: f.pitocco@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Di Giampietro, Ilenia, E-mail: i.digiampietro@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Vivo, Aldo Eros de, E-mail: devivoeros@gmail.com [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Schena, Emiliano, E-mail: e.schena@unicampus.it [Unit of Measurements and Biomedical Instrumentation, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Cianciulli, Paolo, E-mail: CIANCIULLI.PAOLO@aslrmc.it [Thalassemia Unit, Ospedale Sant Eugenio, Piazzale dell’Umanesimo 10, 00143 Rome (Italy); Zobel, Bruno Beomonte, E-mail: b.zobel@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy)

    2013-09-15

    Purpose: Myocardial T2* cardiovascular magnetic resonance provides a rapid and reproducible assessment of cardiac iron load in thalassemia patients. Although cardiac involvement is mainly characterized by left ventricular dysfunction caused by iron overload, little is known about right ventricular function. The aim of this study was to assess the relationship between T2* value in myocardium and left–right ventricular volumetric and functional parameters and to evaluate the existing associations between left–right ventricles volumetric and functional parameter, myocardial T2* values and blood ferritin levels. Materials and methods: A retrospective analysis of 208 patients with β-thalassemia major and thalassemia intermedia was performed (109 males and 99 females; mean age 37.7 ± 13 years; 143 thalassemia major, 65 thalassemia intermedia). Myocardial iron load was assessed by T2* measurements, and volumetric functions were analyzed using the steady state free precession sequence. Results: A significant correlation was observed between EFLV and T2* (p = 0.0001), EFRV and T2* (p = 0.0279). An inverse correlation was present between DVLV and T2* (p = 0.0468), SVLV and T2* (p = 0.0003), SVRV and T2* (p = 0.0001). There was no significant correlation between cardiac T2* and LV–RV mass indices. A significant correlation was observed between T2* and serum ferritin levels (p < 0.001) and between EFLV and serum ferritin (p < 0.05). Conclusion: Myocardial iron load assessed by T2* cardiac magnetic resonance is associated with deterioration in left–right ventricular function; this is more evident when T2* values fall below 14 ms. CMR appears to be a promising approach for cardiac risk evaluation in TM patients.

  3. Relationship between myocardial T2* values and cardiac volumetric and functional parameters in β-thalassemia patients evaluated by cardiac magnetic resonance in association with serum ferritin levels

    International Nuclear Information System (INIS)

    Liguori, Carlo; Pitocco, Francesca; Di Giampietro, Ilenia; Vivo, Aldo Eros de; Schena, Emiliano; Cianciulli, Paolo; Zobel, Bruno Beomonte

    2013-01-01

    Purpose: Myocardial T2* cardiovascular magnetic resonance provides a rapid and reproducible assessment of cardiac iron load in thalassemia patients. Although cardiac involvement is mainly characterized by left ventricular dysfunction caused by iron overload, little is known about right ventricular function. The aim of this study was to assess the relationship between T2* value in myocardium and left–right ventricular volumetric and functional parameters and to evaluate the existing associations between left–right ventricles volumetric and functional parameter, myocardial T2* values and blood ferritin levels. Materials and methods: A retrospective analysis of 208 patients with β-thalassemia major and thalassemia intermedia was performed (109 males and 99 females; mean age 37.7 ± 13 years; 143 thalassemia major, 65 thalassemia intermedia). Myocardial iron load was assessed by T2* measurements, and volumetric functions were analyzed using the steady state free precession sequence. Results: A significant correlation was observed between EFLV and T2* (p = 0.0001), EFRV and T2* (p = 0.0279). An inverse correlation was present between DVLV and T2* (p = 0.0468), SVLV and T2* (p = 0.0003), SVRV and T2* (p = 0.0001). There was no significant correlation between cardiac T2* and LV–RV mass indices. A significant correlation was observed between T2* and serum ferritin levels (p < 0.001) and between EFLV and serum ferritin (p < 0.05). Conclusion: Myocardial iron load assessed by T2* cardiac magnetic resonance is associated with deterioration in left–right ventricular function; this is more evident when T2* values fall below 14 ms. CMR appears to be a promising approach for cardiac risk evaluation in TM patients

  4. Performance analysis of hybrid ground-coupled heat pump system with multi-functions

    International Nuclear Information System (INIS)

    You, Tian; Wang, Baolong; Wu, Wei; Shi, Wenxing; Li, Xianting

    2015-01-01

    Highlights: • The hybrid GCHP system with multi-functions is proposed. • The system maintains the soil temperature and heating reliability steady. • The multi-functional operation of HCUT can save more energy of the system. - Abstract: Underground thermal imbalance is a significant problem for ground-coupled heat pump (GCHP) systems that serve predominately heated buildings in cold regions, which extract more heat from the ground and inject less heat, especially in buildings requiring domestic hot water (DHW). To solve this problem, a previously developed heat compensation unit with thermosyphon (HCUT) is integrated with a GCHP unit to build a hybrid GCHP system. To improve the energy savings of this hybrid GCHP system, the HCUT unit is set to have multiple functions (heat compensation, direct DHW and direct space heating) in this paper. To analyze the improved system performance, a hotel requiring air-conditioning and DHW is selected and simulated in three typical cold cities using the dynamic software DeST and TRNSYS. The results indicate that the hybrid GCHP system can maintain the underground thermal balance while keeping the indoor air temperature within the design range. Furthermore, the HCUT unit efficiently reduces the energy consumption via its multi-functional operations. Compared to the previous system that only used HCUT for heat compensation, adding the direct DHW function further saves 7.5–11.0% energy in heat compensation (HC) and DHW (i.e., 3.6–4.8% of the whole system). Simultaneously adding the direct DHW and space heating functions to the HCUT can save 9.8–12.9% energy in HC and DHW (i.e., 5.1–6.0% of the whole system). The hybrid GCHP system with a multi-functional HCUT provides more energy savings while maintaining the underground thermal balance in cold regions that demand both air-conditioning and DHW

  5. Can Functional Cardiac Age be Predicted from ECG in a Normal Healthy Population

    Science.gov (United States)

    Schlegel, Todd; Starc, Vito; Leban, Manja; Sinigoj, Petra; Vrhovec, Milos

    2011-01-01

    In a normal healthy population, we desired to determine the most age-dependent conventional and advanced ECG parameters. We hypothesized that changes in several ECG parameters might correlate with age and together reliably characterize the functional age of the heart. Methods: An initial study population of 313 apparently healthy subjects was ultimately reduced to 148 subjects (74 men, 84 women, in the range from 10 to 75 years of age) after exclusion criteria. In all subjects, ECG recordings (resting 5-minute 12-lead high frequency ECG) were evaluated via custom software programs to calculate up to 85 different conventional and advanced ECG parameters including beat-to-beat QT and RR variability, waveform complexity, and signal-averaged, high-frequency and spatial/spatiotemporal ECG parameters. The prediction of functional age was evaluated by multiple linear regression analysis using the best 5 univariate predictors. Results: Ignoring what were ultimately small differences between males and females, the functional age was found to be predicted (R2= 0.69, P ECGs, functional cardiac age can be estimated by multiple linear regression analysis of mostly advanced ECG results. Because some parameters in the regression formula, such as QTcorr, high frequency QRS amplitude and P-wave width also change with disease in the same direction as with increased age, increased functional age of the heart may reflect subtle age-related pathologies in cardiac electrical function that are usually hidden on conventional ECG.

  6. Intravital imaging of cardiac function at the single-cell level.

    Science.gov (United States)

    Aguirre, Aaron D; Vinegoni, Claudio; Sebas, Matt; Weissleder, Ralph

    2014-08-05

    Knowledge of cardiomyocyte biology is limited by the lack of methods to interrogate single-cell physiology in vivo. Here we show that contracting myocytes can indeed be imaged with optical microscopy at high temporal and spatial resolution in the beating murine heart, allowing visualization of individual sarcomeres and measurement of the single cardiomyocyte contractile cycle. Collectively, this has been enabled by efficient tissue stabilization, a prospective real-time cardiac gating approach, an image processing algorithm for motion-artifact-free imaging throughout the cardiac cycle, and a fluorescent membrane staining protocol. Quantification of cardiomyocyte contractile function in vivo opens many possibilities for investigating myocardial disease and therapeutic intervention at the cellular level.

  7. Effects of cigarette smoking on cardiac autonomic function during dynamic exercise.

    Science.gov (United States)

    Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo

    2011-06-01

    The purpose of this study was to investigate the acute effect of cigarette smoking on cardiac autonomic function in young adult smokers during dynamic exercise. Fourteen healthy young smokers (21.4 ± 3.4 years) performed peak and submaximal exercise protocols under control and smoking conditions. Resting and submaximal beat-to-beat R-R series were recorded and spectrally decomposed using the fast Fourier transformation. Smoking resulted in a significant decrease in work time, VO(2peak) and peak O(2) pulse (P exercise after smoking (P smoking, both at rest and during exercise (P smoking (P smoking, but only at rest (P smoking is accompanied by acute changes in heart rate spectral components both at rest and during exercise. Therefore, the cardiac autonomic control is altered by smoking not only at rest, but also during exercise, resulting in reduced vagal modulation and increased sympathetic dominance.

  8. Functional Near-Infrared Fluorescence Imaging for Cardiac Surgery and Targeted Gene Therapy

    Directory of Open Access Journals (Sweden)

    Akira Nakayama

    2002-10-01

    Full Text Available Cardiac revascularization is presently performed without realtime visual assessment of myocardial blood flow or perfusion. Moreover, gene therapy of the heart cannot, at present, be directed to specific territories at risk for myocardial infarction. We have developed a surgical imaging system that exploits the low autofluorescence, deep tissue penetration, low tissue scatter, and invisibility of near-infrared (NIR fluorescent light. By completely isolating visible and NIR light paths, one is able to visualize, simultaneously, the anatomy and/or function of the heart, or any desired tissue. In rat model systems, we demonstrate that the heptamethine indocyanine-type NIR fluorophores IR-786 and the carboxylic acid form of IRDye78 can be injected intravenously in the living animal to provide real-time visual assessment of myocardial blood flow or perfusion intraoperatively. This imaging system may prove useful for the refinement of revascularization techniques, and for the administration of cardiac gene therapy.

  9. Hyperpolarized metabolic MR in the study of cardiac function and disease

    DEFF Research Database (Denmark)

    Lauritzen, M. H.; Søgaard, L. V.; Madsen, Pia Lisbeth

    2014-01-01

    Several diseases of the heart have been linked to an insufficient ability to generate enough energy (ATP) to sustain proper heart function. Hyperpolarized magnetic resonance (MR) is a novel technique that can visualize and quantify myocardial energy metabolism. Hyperpolarization enhances the MR...... signal from a biological molecule of interest by more than 10,000 times, making it possible to measure its cellular uptake and conversion in specific enzymatic pathways in real time. We review the role of hyperpolarized MR in identifying changes in cardiac metabolism in vivo, and present the extensive...... literature on hyperpolarized pyruvate that has been used to characterize cardiac disease in various in vivo models, such as myocardial ischemia, hypertension, diabetes, hyperthyroidism and heart failure. The technical aspects of the technique are presented as well as the challenges of translating...

  10. Effective dielectric function of TiO2 nanoparticles under laser pumping in the fundamental absorption band

    Science.gov (United States)

    Zimnyakov, D. A.; Yuvchenko, S. A.

    2017-06-01

    A nonlinear optical response of TiO2 nanoparticles under pumping by 355-nm laser radiation is experimentally investigated. Using the data obtained by z-scanning with simultaneous measurement of the scattering intensity, the effective permittivity of particles is reconstructed as a function of the pump intensity. It is found that graphical mapping of the relationship between the real and imaginary parts of the permittivity can be obtained using an affine transformation of a similar map of the frequency-dependent dielectric function for the Lorentz model. It is shown that an increase in the pump intensity should lead to a red shift of the absorption maximum of nanoparticles and a rise in the plasma frequency, which is estimated (using a single-oscillator Lorenz model) from the obtained values of the real and imaginary parts of the effective permittivity for the probe radiation wavelength in use.

  11. Efficacy of cardiac resynchronization with defibrillator insertion in patients undergone coronary artery bypass graft: A cohort study of cardiac function

    Directory of Open Access Journals (Sweden)

    Reza Karbasi Afshar

    2015-01-01

    Full Text Available Introduction: Cardiac resynchronization therapy (CRT is a proven therapeutic method in selected patients with heart failure and systolic dysfunction which increases left ventricular function and patient survival. We designed a study that included patients undergoing coronary artery bypass graft (CABG, with and without CRT-defibrillator (CRT-D inserting and then measured its effects on these two groups. Patients and Methods: Between 2010 and 2013, we conducted a prospective cohort study on 100 coronary artery disease patients where candidate for CABG. Then based on the receiving CRT-D, the patients were categorized in two groups; Group 1 ( n = 48, with CRT-D insertion before CABG and Group 2 ( n = 52 without receiving CRT-D. Thereafter both of these groups were followed-up at 1-3 months after CABG for mortality, hospitalization, atrial fibrillation (AF, echocardiographic assessment, and New York Heart Association (NYHA class level. Results: The mean age of participants in Group 1 (48 male and in Group 2 (52 male was 58 ± 13 and 57 ± 12 respectively. Difference between Groups 1 and 2 in cases of mean left ventricular ejection fraction (LVEF changes and NYHA class level was significant ( P > 0.05. Hospitalization ( P = 0.008, mortality rate ( P = 0.007, and AF were significantly different between these two groups. Conclusions: The results showed that the increase in LVEF and patient′s improvement according to NYHA-class was significant in the first group, and readmission, mortality rate and AF was increased significantly in the second group.

  12. Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function.

    Science.gov (United States)

    Wengrowski, Anastasia M; Wang, Xin; Tapa, Srinivas; Posnack, Nikki Gillum; Mendelowitz, David; Kay, Matthew W

    2015-02-01

    Release of norepinephrine (NE) from sympathetic neurons enhances heart rate (HR) and developed force through activation of β-adrenergic receptors, and this sympathoexcitation is a key risk for the generation of cardiac arrhythmias. Studies of β-adrenergic modulation of cardiac function typically involve the administration of exogenous β-adrenergic receptor agonists to directly elicit global β-adrenergic receptor activation by bypassing the involvement of sympathetic nerve terminals. In this work, we use a novel method to activate sympathetic fibres within the myocardium of Langendorff-perfused hearts while measuring changes in electrical and mechanical function. The light-activated optogenetic protein channelrhodopsin-2 (ChR2) was expressed in murine catecholaminergic sympathetic neurons. Sympathetic fibres were then photoactivated to examine changes in contractile force, HR, and cardiac electrical activity. Incidence of arrhythmia was measured with and without exposure to photoactivation of sympathetic fibres, and hearts were optically mapped to detect changes in action potential durations and conduction velocities. Results demonstrate facilitation of both developed force and HR after photostimulated release of NE, with increases in contractile force and HR of 34.5 ± 5.5 and 25.0 ± 9.3%, respectively. Photostimulation of sympathetic fibres also made hearts more susceptible to arrhythmia, with greater incidence and severity. In addition, optically mapped action potentials displayed a small but significant shortening of the plateau phase (-5.5 ± 1.0 ms) after photostimulation. This study characterizes a powerful and clinically relevant new model for studies of cardiac arrhythmias generated by increasing the activity of sympathetic nerve terminals and the resulting activation of myocyte β-adrenergic receptors. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  13. Evaluation of cardiac morphology and function in mitral stenosis using CT

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Masaki [Chiba Univ. (Japan). School of Medicine

    1992-11-01

    The purpose of this study was to evaluate cardiac morphology and function in patients with mitral stenosis (MS). The subjects consisted of 96 patients (23 males and 73 females) with MS who underwent plain and contrast-enhanced CT. Follow-up examinations were performed at least twice in 42 patients, including 18 who were examined before and after surgery. The volume of each cardiac chamber was calculated by Simpson's rule and was divided by body surface area (BSA). The average left atrial (LA) volume was 171[+-]80 cm[sup 3]/m[sup 2] BSA in the 96 MS patients, and 46[+-]10 cm[sup 3]/m[sup 2] BSA in normal control subjects. Atrial fibrillation (Af) was present in 61 patients (64%), and left atrial thrombi were detected in 15 (25%) of them. LA volume increased by 16% in 24 patients without surgery during a mean follow-up period of 4.1 years. The LA tended to enlarge more in the patients with a smaller mitral valve area, a larger LA volume at the first examination, or Af. In 18 patients, after open surgery or percutaneous transvenous mitral commissurotomy, pulmonary CT values decreased significantly as a result of the improvement of pulmonary congestion. LA and RA volume decreased significantly and LV volume increased after surgery. It was concluded that CT was useful for evaluating cardiac function and morphological changes, not only by detecting mitral valve calcification and LA thrombi but also by measuring cardiac volume and pulmonary CT values. (author).

  14. Immune function surveillance: association with rejection, infection and cardiac allograft vasculopathy.

    Science.gov (United States)

    Heikal, N M; Bader, F M; Martins, T B; Pavlov, I Y; Wilson, A R; Barakat, M; Stehlik, J; Kfoury, A G; Gilbert, E M; Delgado, J C; Hill, H R

    2013-01-01

    Rejection, cardiac allograft vasculopathy (CAV), and infection are significant causes of mortality in heart transplantation recipients. Assessing the immune status of a particular patient remains challenging. Although endomyocardial biopsy (EMB) and angiography are effective for the identification of rejection and CAV, respectively, these are expensive, invasive, and may have numerous complications. The aim of this study was to evaluate the immune function and assess its utility in predicting rejection, CAV, and infection in heart transplantation recipients. We prospectively obtained samples at the time of routine EMB and when clinically indicated for measurement of the ImmuKnow assay (IM), 12 cytokines and soluble CD30 (sCD30). EMB specimens were evaluated for acute cellular rejection, and antibody-mediated rejection (AMR). CAV was diagnosed by the development of angiographic coronary artery disease. Infectious episodes occurring during the next 30 days after testing were identified by the presence of positive bacterial or fungal cultures and/or viremia that prompted treatment with antimicrobials. We collected 162 samples from 56 cardiac transplant recipients. There were 31 infection episodes, 7 AMR, and 4 CAV cases. The average IM value was significantly lower during infection, (P = .04). Soluble CD30 concentrations showed significantly positive correlation with infection episodes, (P = .001). Significant positive correlation was observed between interleukin-5(IL-5) and AMR episodes (P = .008). Tumor necrosis factor-α and IL-8 showed significant positive correlation with CAV (P = .001). Immune function monitoring appears promising in predicting rejection, CAV, and infection in cardiac transplantation recipients. This approach may help in more individualized immunosuppression and it may also minimize unnecessary EMBs and cardiac angiographies. Published by Elsevier Inc.

  15. Intrathecal morphine plus general anesthesia in cardiac surgery: effects on pulmonary function, postoperative analgesia, and plasma morphine concentration

    Directory of Open Access Journals (Sweden)

    Luciana Moraes dos Santos

    2009-04-01

    Full Text Available OBJECTIVES: To evaluate the effects of intrathecal morphine on pulmonary function, analgesia, and morphine plasma concentrations after cardiac surgery. INTRODUCTION: Lung dysfunction increases morbidity and mortality after cardiac surgery. Regional analgesia may improve pulmonary outcomes by reducing pain, but the occurrence of this benefit remains controversial. METHODS: Forty-two patients were randomized for general anesthesia (control group n=22 or 400 µg of intrathecal morphine followed by general anesthesia (morphine group n=20. Postoperative analgesia was accomplished with an intravenous, patient-controlled morphine pump. Blood gas measurements, forced vital capacity (FVC, forced expiratory volume (FEV, and FVC/FEV ratio were obtained preoperatively, as well as on the first and second postoperative days. Pain at rest, profound inspiration, amount of coughing, morphine solicitation, consumption, and plasma morphine concentration were evaluated for 36 hours postoperatively. Statistical analyses were performed using the repeated measures ANOVA or Mann-Whiney tests (*p<0.05. RESULTS: Both groups experienced reduced FVC postoperatively (3.24 L to 1.38 L in control group; 2.72 L to 1.18 L in morphine group, with no significant decreases observed between groups. The two groups also exhibited similar results for FEV1 (p=0.085, FEV1/FVC (p=0.68 and PaO2/FiO2 ratio (p=0.08. The morphine group reported less pain intensity (evaluated using a visual numeric scale, especially when coughing (18 hours postoperatively: control group= 4.73 and morphine group= 1.80, p=0.001. Cumulative morphine consumption was reduced after 18 hours in the morphine group (control group= 20.14 and morphine group= 14.20 mg, p=0.037. The plasma morphine concentration was also reduced in the morphine group 24 hours after surgery (control group= 15.87 ng.mL-1 and morphine group= 4.08 ng.mL-1, p=0.029. CONCLUSIONS: Intrathecal morphine administration did not significantly alter

  16. General well function for pumping from a confined, leaky, or unconfined aquifer

    Science.gov (United States)

    Perina, Tomas; Lee, Tien-Chang

    2006-02-01

    A general well function for groundwater flow toward an extraction well with non-uniform radial flux along the screen and finite-thickness skin, partially penetrating an unconfined, leaky-boundary flux, or confined aquifer is derived via the Laplace and generalized finite Fourier transforms. The mixed boundary condition at the well face is solved as the discretized Fredholm integral equation. The general well function reduces to a uniform radial flux solution as a special case. In the Laplace domain, the relation between the drawdown in the extraction well and flowrate is linear and the formulations for specified flowrate or specified drawdown pumping are interchangeable. The deviation in drawdown of the uniform from non-uniform radial flux solutions depends on the relative positions of the extraction and observation well screens, aquifer properties, and time of observation. In an unconfined aquifer the maximum deviation occurs during the period of delayed drawdown when the effect of vertical flow is most apparent. The skin and wellbore storage in an observation well are included as model parameters. A separate solution is developed for a fully penetrating well with the radial flux being a continuous function of depth.

  17. Chronic resuscitation after trauma-hemorrhage and acute fluid replacement improves hepatocellular function and cardiac output.

    Science.gov (United States)

    Remmers, D E; Wang, P; Cioffi, W G; Bland, K I; Chaudry, I H

    1998-01-01

    To determine whether prolonged (chronic) resuscitation has any beneficial effects on cardiac output and hepatocellular function after trauma-hemorrhage and acute fluid replacement. Acute fluid resuscitation after trauma-hemorrhage restores but does not maintain the depressed hepatocellular function and cardiac output. Male Sprague-Dawley rats underwent a 5-cm laparotomy (i.e., trauma was induced) and were bled to and maintained at a mean arterial pressure of 40 mmHg until 40% of maximal bleed-out volume was returned in the form of Ringer's lactate (RL). The animals were acutely resuscitated with RL using 4 times the volume of maximum bleed-out over 60 minutes, followed by chronic resuscitation of 0, 5, or 10 mL/kg/hr RL for 20 hours. Hepatocellular function was determined by an in vivo indocyanine green clearance technique. Hepatic microvascular blood flow was assessed by laser Doppler flowmetry. Plasma levels of interleukin-6 (IL-6) were determined by bioassay. Chronic resuscitation with 5 mL/kg/hr RL, but not with 0 or 10 mL/kg/hr RL, restored cardiac output, hepatocellular function, and hepatic microvascular blood flow at 20 hours after hemorrhage. The regimen above also reduced plasma IL-6 levels. Because chronic resuscitation with 5 mL/kg/hr RL after trauma-hemorrhage and acute fluid replacement restored hepatocellular function and hepatic microvascular blood flow and decreased plasma levels of IL-6, we propose that chronic fluid resuscitation in addition to acute fluid replacement should be routinely used in experimental studies of trauma-hemorrhage.

  18. Chronic mitral regurgitation detected on cardiac MDCT: differentiation between functional and valvular aetiologies.

    LENUS (Irish Health Repository)

    Killeen, Ronan P

    2012-02-01

    OBJECTIVE: To determine whether cardiac computed tomography (MDCT) can differentiate between functional and valvular aetiologies of chronic mitral regurgitation (MR) compared with echocardiography (TTE). METHODS: Twenty-seven patients with functional or valvular MR diagnosed by TTE and 19 controls prospectively underwent cardiac MDCT. The morphological appearance of the mitral valve (MV) leaflets, MV geometry, MV leaflet angle, left ventricular (LV) sphericity and global\\/regional wall motion were analysed. The coronary arteries were evaluated for obstructive atherosclerosis. RESULTS: All control and MR cases were correctly identified by MDCT. Significant differences were detected between valvular and control groups for anterior leaflet length (30 +\\/- 7 mm vs. 22 +\\/- 4 mm, P < 0.02) and thickness (3.0 +\\/- 1 mm vs. 2.2 +\\/- 1 mm, P < 0.01). High-grade coronary stenosis was detected in all patients with functional MR compared with no controls (P < 0.001). Significant differences in those with\\/without MV prolapse were detected in MV tent area (-1.0 +\\/- 0.6 mm vs. 1.3 +\\/- 0.9 mm, P < 0.0001) and MV tent height (-0.7 +\\/- 0.3 mm vs. 0.8 +\\/- 0.8 mm, P < 0.0001). Posterior leaflet angle was significantly greater for functional MR (37.9 +\\/- 19.1 degrees vs. 22.9 +\\/- 14 degrees , P < 0.018) and less for valvular MR (0.6 +\\/- 35.5 degrees vs. 22.9 +\\/- 14 degrees, P < 0.017). Sensitivity, specificity, and positive and negative predictive values of MDCT were 100%, 95%, 96% and 100%. CONCLUSION: Cardiac MDCT allows the differentiation between functional and valvular causes of MR.

  19. Prediction of cardiac sympathetic nerve activity and cardiac functional outcome after treatment in patients with dilated cardiomyopathy. Examination using dobutamine gated blood pool scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu; Toyama, Takuji; Iwasaki, Tsutomu; Suzuki, Tadashi [Gunma Univ., Maebashi (Japan). School of Medicine; Hoshizaki, Hiroshi; Oshima, Shigeru; Taniguchi, Koichi; Nagai, Ryozo

    2000-07-01

    This study evaluated whether dobutamine gated blood pool scintigraphy can predict improvement of cardiac sympathetic nerve activity and cardiac function. Sixteen patients (10 men and 6 women, mean age 59{+-}13 years) with dilated cardiomyopathy underwent dobutamine gated blood pool scintigraphy to measure left ventricular ejection fraction (LVEF) using tracer at 0, 5, 10 and 15 {mu}g/kg/min before treatment. Patients were divided into good responders (LVEF increase {>=}15%) 8 patients (GR Group) and poor responders (LVEF increase <15%) 8 patients (PR Group) after treatment with {beta}-blocker or amiodarone with a background treatment of digitalis, diuretics and angiotensin converting enzyme inhibitor. I-123 metaiodobenzylguanidine (MIBG) imaging to evaluate cardiac sympathetic nerve activity and echocardiography were performed before and at one year after treatment. MIBG imaging was obtained 4 hours after tracer injection, and the heart/mediastinum count ratio (H/M ratio) calculated from the anterior planar image and the total defect score (TDS) from the single photon emission computed tomography image. LVEF and left ventricular endo-diastolic dimension (LVDd) were measured by echocardiography and New York Heart Association (NYHA) functional class was evaluated. The GR Group showed TDS decreased from 28{+-}6 to 17{+-}12 (p<0.05), H/M ratio increased from 1.79{+-}0.26 to 2.07{+-}0.32 (p<0.05), LVEF increased from 29{+-}8% to 48{+-}10% (p<0.01), and LVDd decreased from 65{+-}4 mm to 58{+-}5 mm (p<0.05). In contrast, the PR group showed no significant changes in TDS. H/M ratio, LVEF and LVDd. NYHA functional class improved in both groups. The improvement was better in the GR Group than in the PR group. Dobutamine gated blood pool scintigraphy is useful to predict the improvement of the cardiac sympathetic nerve activity and cardiac function, and symptoms after treatment in patients with dilated cardiomyopathy. (author)

  20. Radionuclide assessment of left ventricular function in patients requiring intraoperative balloon pump assistance

    International Nuclear Information System (INIS)

    Davies, R.A.; Laks, H.; Wackers, F.J.; Berger, H.J.; Williams, B.; Hammond, G.L.; Geha, A.S.; Gottschalk, A.; Zaret, B.L.

    1982-01-01

    Twenty-three surviving patients who were weaned from cardiopulmonary bypass with intraaortic balloon pump assistance returned for follow-up radionuclide left ventricular (LV) function and thallium 201 perfusion studies at a mean of 23 +/- 3 months following operation. It was found that despite profound intraoperative myocardial depression requiring intraaortic balloon assistance, 13 patients had no change (within 10%) in the resting LV ejection fraction compared with the preoperative measurement. Among all 23 patients, there was no difference between mean (+/- standard error of the mean) preoperative and postoperative resting LV ejection fraction (48 +/- 4 vs 46 +/- 4%, p . not significant [NS]). Only 11 patients had perioperative myocardial infarction documented by new Q waves in the electrocardiogram, by elevation of creatine kinase-MB fraction, or by defects on thallium 201 imaging not explained by documented myocardial infarction before operation. Overall, postoperative resting LV ejection fraction was not different from the preoperative value in patients with perioperative myocardial infarction (44 +/- 7 vs 47 +/- 5%, p . NS). Postoperative resting LV ejection fraction rose by greater than 10% compared with preoperative values in 4 patients (3 with aortic valve replacement), remained within the 10% limit in 9 patients, and fell by greater than 10% in 10 patients (7 with perioperative myocardial infarction). Only 4 out of 16 patients studied at follow-up with exercise radionuclide studies demonstrated a normal LV response to exercise (greater than 5% increase in LV ejection fraction). Thus, among survivors requiring intraaortic balloon pump assistance for weaning from cardiopulmonary bypass, LV performance at rest is frequently preserved. In addition, 11 of the 23 patients had evidence of perioperative myocardial infarction, indicating a component of reversible intraoperative LV dysfunction

  1. Right and left ventricular cardiac function in a developed world population with human immunodeficiency virus studied with radionuclide ventriculography

    DEFF Research Database (Denmark)

    Lebech, Anne-Mette; Gerstoft, Jan; Hesse, Birger

    2004-01-01

    . No correlations were found between reduced cardiac function and levels of the 3 peptides measured. CONCLUSIONS: No major dysfunction of the left ventricle is present in a developed world HIV population. However, a small but significant part of this population has modestly reduced right-sided systolic function.......-associated morbidity and mortality rates. Accordingly, the prevalence of HIV-associated cardiac dysfunction may also have changed. The aim of the study was to establish the prevalence of right- and left-sided cardiac dysfunction in a Danish HIV population, most of whom were undergoing HAART, with radionuclide...... ventricular ejection fraction and 6 (7%) had a reduced right ventricle ejection fraction (0.35-0.42) compared with reference values from the age- and sex-matched reference population. Patients with HIV and reduced cardiac function did not differ in the duration of HIV, CD4 count, CD4 nadir, or HIV RNA load...

  2. Long-lasting functional disabilities in patients who recover from coma after cardiac operations.

    Science.gov (United States)

    Rodriguez, Rosendo A; Nair, Shona; Bussière, Miguel; Nathan, Howard J

    2013-03-01

    Uncertainty regarding the long-term functional outcome of patients who awaken from coma after cardiac operations is difficult for families and physicians and may delay rehabilitation. We studied the long-term functional status of these patients to determine if duration of coma predicted outcome. We followed 71 patients who underwent cardiac operations; recovered their ability to respond to verbal commands after coma associated with postoperative stroke, encephalopathy, and/or seizures; and were discharged from the hospital. The Glasgow Outcome Scale Extended (GOSE) was used to assess functional disability 2 to 4 years after discharge. Outcomes were classified as favorable (GOSE scores 7 and 8) and unfavorable (GOSE scores 1-6). Of 71 patients identified, 39 were interviewed, 15 died, 1 refused to be interviewed, and 16 were lost to follow-up. Of the 54 patients with completed GOSE evaluations, only 15 (28%) had favorable outcomes. Among patients with unfavorable outcomes, 15 (28%) died, 14 (26%) survived with moderate disabilities, and 10 (18%) had severe disabilities. Factors associated with unfavorable outcomes were increases in duration of coma (p = 0.007), time in intensive care (p = 0.006), length of hospitalization (p = 0.004), and postoperative serum creatine kinase levels (p = 0.006). Only duration of coma was an independent predictor of unfavorable outcome (odds ratio [OR], 1.25; 95% confidence interval [CI], 1.008-1.537; p = 0.042). Patients with durations of coma greater than 4 days were more likely to have unfavorable outcomes (OR, 5.1; 95% CI, 1.3-21.3; p = 0.02). Two thirds of comatose patients who survived to discharge after cardiac operations had unfavorable long-term functional outcomes. A longer duration of unconsciousness is a predictor of unfavorable outcome. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Cardiac MRI in pulmonary artery hypertension: correlations between morphological and functional parameters and invasive measurements

    Energy Technology Data Exchange (ETDEWEB)

    Alunni, Jean-Philippe; Otal, Philippe; Rousseau, Herve; Chabbert, Valerie [CHU Rangueil, Department of Radiology, Toulouse (France); Degano, Bruno; Tetu, Laurent; Didier, Alain [CHU Larrey, Department of Pneumology, Toulouse (France); Arnaud, Catherine [CHU Rangueil, Department of Methods in Clinical Research, Toulouse (France); Blot-Souletie, Nathalie [CHU Rangueil, Department of Cardiology, Toulouse (France)

    2010-05-15

    To compare cardiac MRI with right heart catheterisation in patients with pulmonary hypertension (PH) and to evaluate its ability to assess PH severity. Forty patients were included. MRI included cine and phase-contrast sequences, study of ventricular function, cardiac cavity areas and ratios, position of the interventricular septum (IVS) in systole and diastole, and flow measurements. We defined four groups according to the severity of PH and three groups according to IVS position: A, normal position; B, abnormal in diastole; C, abnormal in diastole and systole. IVS position was correlated with pulmonary artery pressures and PVR (pulmonary vascular resistance). Median pulmonary artery pressures and resistance were significantly higher in patients with an abnormal septal position compared with those with a normal position. Correlations were good between the right ventricular ejection fraction and PVR, right ventricular end-systolic volume and PAP, percentage of right ventricular area change and PVR, and diastolic and systolic ventricular area ratio and PVR. These parameters were significantly associated with PH severity. Cardiac MRI can help to assess the severity of PH. (orig.)

  4. Cardiac magnetic resonance imaging in evaluation of anatomical structure and function of the ventricles

    International Nuclear Information System (INIS)

    Suzuki, Jun-ichi; Usui, Masahiro; Takenaka, Katsu

    1990-01-01

    Cardiac magnetic resonance imaging (MRI) is being widely employed for evaluation of cardiovascular anatomies and functions. However, the indications for cardiac MRI to obtain information which cannot be obtained using other conventional methods have not yet been determined. To demonstrate the usefulness of MRI in delineating the apex of the left ventricle and free wall of the right ventricle, end-diastolic short axis MRI images were obtained in 20 patients with apical hypertrophy and in 9 normal volunteers. To compare the accuracy of estimations of left ventricular volumes obtained using the modified Simpson's method of MRI with that using the MRI area length method, 19 patients, in whom left ventriculography had been performed, were studied. The apex of the left ventricle was evaluated circumferentially and distribution of hypertrophied muscles was defined. Sixty-five percent of the length of the right ventricular free wall was clearly delineated. Correlation coefficients of the ejection fraction between MRI and angiography were 0.85 with the modified Simpson's method of MRI, and 0.62 with the area length method of MRI. Three themes were chosen to demonstrate good clinical indications for cardiac MRI. (author)

  5. Cardiac function and myocardial perfusion immediately following maximal treadmill exercise inside the MRI room

    Directory of Open Access Journals (Sweden)

    Ballinger Michelle R

    2008-01-01

    Full Text Available Abstract Treadmill exercise stress testing is an essential tool in the prevention, detection, and treatment of a broad spectrum of cardiovascular disease. After maximal exercise, cardiac images at peak stress are typically acquired using nuclear scintigraphy or echocardiography, both of which have inherent limitations. Although CMR offers superior image quality, the lack of MRI-compatible exercise and monitoring equipment has prevented the realization of treadmill exercise CMR. It is critical to commence imaging as quickly as possible after exercise to capture exercise-induced cardiac wall motion abnormalities. We modified a commercial treadmill such that it could be safely positioned inside the MRI room to minimize the distance between the treadmill and the scan table. We optimized the treadmill exercise CMR protocol in 20 healthy volunteers and successfully imaged cardiac function and myocardial perfusion at peak stress, followed by viability imaging at rest. Imaging commenced an average of 30 seconds after maximal exercise. Real-time cine of seven slices with no breath-hold and no ECG-gating was completed within 45 seconds of exercise, immediately followed by stress perfusion imaging of three short-axis slices which showed an average time to peak enhancement within 57 seconds of exercise. We observed a 3.1-fold increase in cardiac output and a myocardial perfusion reserve index of 1.9, which agree with reported values for healthy subjects at peak stress. This study successfully demonstrates in-room treadmill exercise CMR in healthy volunteers, but confirmation of feasibility in patients with heart disease is still needed.

  6. Isolated pulmonary regurgitation causes decreased right ventricular longitudinal function and compensatory increased septal pumping in a porcine model

    DEFF Research Database (Denmark)

    Kopic, S; Stephensen, S S; Heiberg, E

    2017-01-01

    AIM: Longitudinal ventricular contraction is a parameter of cardiac performance with predictive power. Right ventricular (RV) longitudinal function is impaired in patients with free pulmonary regurgitation (PR) following corrective surgery for Tetralogy of Fallot (TOF). It remains unclear whether...... received a stent in the pulmonary valve orifice, inducing PR. After 2-3 months, animals were subjected to cardiac magnetic resonance imaging. A subset of animals (n = 6) then underwent percutaneous pulmonary valve replacement (PPVR) with follow-up 1 month later. Longitudinal, lateral and septal...

  7. The effects of dexamethasone on the Na,K-ATPase activity and pump function of corneal endothelial cells.

    Science.gov (United States)

    Hatou, Shin; Yamada, Masakazu; Mochizuki, Hiroshi; Shiraishi, Atsushi; Joko, Takeshi; Nishida, Teruo

    2009-05-01

    The Na(+)- and K(+)-dependent ATPase (Na,K-ATPase) expressed in the basolateral membrane of corneal endothelial cells plays an important role in the pump function of the corneal endothelium. We investigated the possible role of dexamethasone in the regulation of Na,K-ATPase activity and pump function in corneal endothelial cells. Confluent monolayers of mouse corneal endothelial cells were exposed to dexamethasone. ATPase activity of the cells was evaluated by spectrophotometric measurement of phosphate released from ATP with the use of ammonium molybdate, with Na,K-ATPase activity being defined as the portion of total ATPase activity sensitive to ouabain. Pump function of the cells was measured with the use of an Ussing chamber, with the pump function attributable to Na,K-ATPase activity being defined as the portion of the total short-circuit current sensitive to ouabain. Western blot analysis was examined to measure the expression of the Na,K-ATPase alpha(1)-subunit. Dexamethasone (1 or 10 microM) increased the Na,K-ATPase activity and pump function of the cultured cells. These effects of dexamethasone were blocked by cycloheximide, a protein synthesis inhibitor. Western blot analysis also indicated that dexamethasone increased the expression of the Na,K-ATPase alpha(1)-subunit, whereas it decreased the expression of the phospho-Na,K-ATPase alpha(1)-subunit. Our results suggest that dexamethasone stimulates Na,K-ATPase activity in mouse corneal endothelial cells. The effect of dexamethasone activation in these cells is mediated by Na,K-ATPase synthesis and increase in an enzymatic activity by dephosphorylation of Na,K-ATPase alpha(1)-subunits.

  8. Usefulness of true FISP cine MR imaging in patients with poor cardiac function

    International Nuclear Information System (INIS)

    Sakuma, Toshiharu; Yamada, Naoaki; Motooka, Makoto; Enomoto, Naoyuki; Maeshima, Isamu; Matsuda, Kazuhide; Urayama, Shinichi; Ikeo, Miki

    2002-01-01

    This study was done to assess the value of True FISP cine in patients with poor cardiac function. True FISP cine and FLASH cine imaging were performed on a 1.5 T machine. Both short axis and horizontal long axis imaging sections were used. The imaging sections used a Matrix (120 x 128), FOV (24 x 32 cm), and had a slice thickness of 8 mm. The imaging time for True FISP cine was 8 heart beats and 17 heart beats for FLASH cine. The contrast-to-noise ratio between the blood and myocardium (CNR) was measured at enddiastole and endsystole. The subjects in the study were 10 healty volunteers (average age 26.5±3.2 years) and 12 patients with hypofunction (average age 53.9±13.2 years). In the volunteers, the CNR of the short axis imaging was similar in both True FISP (24.6±3.7) and FLASH (23.4±5.9). In the patients with poor cardiac function however, the CNR of True FISP was larger than FLASH in both the short and long axis. In the short axis (22.7±6.1 vs. 17.9±5.3, P<0.01) and in the long axis (17.4±4.3 vs. 9.3±4.0, P<0.01). We conclude that True FISP cine has a higher contrast in a shorter imaging time than FLASH cine. True FISP cine is especially useful in patients with poor cardiac function. (author)

  9. Effect of urokinase thrombolysis on the cardiac function, coagulation, and fibrinolytic system in patients with AMI

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Kuang

    2017-06-01

    Full Text Available Objective: To observe the effect of urokinase thrombolysis on the cardiac function, coagulation, and fibrinolytic system in patients with acute myocardial infarction (AMI. Methods: A total of 39 patients with AMI who were admitted in our hospital from March, 2016 to November, 2016 were included in the study and served as the observation group. The peripheral venous blood before and after thrombolysis was collected. The plasma NTproBNP level, related coagulation factors, and fibrinolysis indicators were detected. The cardiac function before treatment was evaluated. A total of 30 healthy individuals who came for physical examinations were served as the control group for contrastive analysis. Results: The plasma NT-proBNP, Fg, and D-D levels before thrombolysis in the observation group were significantly higher than those in the control group, while PT, APTT, and TT in the observation group were significantly shortened. The plasma NT-proBNP and D-D levels 2-48 h after thrombolysis in the observation group were significantly elevated first and reduced later and reached the peak 4 h after treatment, while PT, APTT, and TT were significantly extended first and shortened later. The plasma Fg level was significantly reduced first and elevated later and reached the minimum 4 h after treatment. During the treatment process, in the observation group, 2 had mucocutaneous hemorrhage, 3 had nasal hemorrhage, and 1 had gingival bleeding, but no gastrointestinal bleeding or cerebral hemorrhage occurred. Conclusions: The thrombolytic therapy can effectively reduce the coagulation activity in patients with AMI, strengthen the fibrinolysis activity, and improve the cardiac function.

  10. Adaptive responses of cardiac function to fetal postural change as gestational age increases

    Science.gov (United States)

    Kim, Woo Jin; Choi, Hye Jin; Yang, Sun Young; Koo, Boo Hae; Ahn, Ki Hoon; Hong, Soon Cheol; Oh, Min-Jeong; Kim, Hai-Joong

    2016-01-01

    Objective The cardiovascular system maintains homeostasis through a series of adaptive responses to physiological requirements. However, little is known about the adaptation of fetal cardiac function to gravity, according to gestational age. In the present study, we aimed to evaluate the adaptive responses of cardiac function to postural changes, using Tei index measurements. Methods Fetal echocardiography and Doppler examination were performed on 114 women with vertex singleton pregnancies at 19 to 40 weeks' gestation. Participants were placed in an upright seated position, and the Tei index for fetal left ventricular cardiac function was measured. The women were then moved into a supine position and the Tei index was re-measured. Results The mean Tei index when measured in an upright seated position was significantly lower than that measured in a supine positioning for all fetuses (0.528±0.103 vs. 0.555±0.106, P=0.014, respectively). This difference was also noted in fetuses with a gestational age of 28–40 weeks (0.539±0.107 vs. 0.574±0.102, P=0.011, respectively). However, there was no difference in the Tei index between an upright seated and a supine position among fetuses with a gestational age of Postural changes from an upright seated to a supine position result in an increased Tei index after a gestational age of 28 weeks. This appears to reflect maturation in the adaptive responses of the fetal cardiovascular system to postural changes. PMID:27896244

  11. Supplementary Administration of Everolimus Reduces Cardiac Systolic Function in Kidney Transplant Recipients.

    Science.gov (United States)

    Tsujimura, Kazuma; Ota, Morihito; Chinen, Kiyoshi; Nagayama, Kiyomitsu; Oroku, Masato; Nishihira, Morikuni; Shiohira, Yoshiki; Abe, Masami; Iseki, Kunitoshi; Ishida, Hideki; Tanabe, Kazunari

    2017-05-26

    BACKGROUND The effect of everolimus, one of the mammalian targets of rapamycin inhibitors, on cardiac function was evaluated in kidney transplant recipients. MATERIAL AND METHODS Seventy-six participants who underwent kidney transplant between March 2009 and May 2016 were retrospectively reviewed. To standardize everolimus administration, the following criteria were used: (1) the recipient did not have a donor-specific antigen before kidney transplantation; (2) the recipient did not have proteinuria and uncontrollable hyperlipidemia after kidney transplantation; and (3) acute rejection was not observed on protocol biopsy 3 months after kidney transplantation. According to these criteria, everolimus administration for maintenance immunosuppression after kidney transplantation was included. Cardiac function was compared between the treatment group (n=30) and non-treatment group (n=46). RESULTS The mean observation periods of the treatment and non-treatment groups were 41.3±12.6 and 43.9±19.8 months, respectively (p=0.573). The mean ejection fraction and fractional shortening of the treatment and non-treatment groups after kidney transplant were 66.5±7.9% vs. 69.6±5.5% (p=0.024) and 37.1±6.2% vs. 39.3±4.7% (p=0.045), respectively. In the treatment group, the mean ejection fraction and fractional shortening before and after kidney transplantation did not differ significantly (p=0.604 and 0.606, respectively). In the non-treatment group, the mean ejection fraction and fractional shortening before and after kidney transplantation differed significantly (p=0.004 and 0.006, respectively). CONCLUSIONS Supplementary administration of everolimus after kidney transplantation can reduce cardiac systolic function.

  12. The incidence and functional consequences of RT-associated cardiac perfusion defects

    International Nuclear Information System (INIS)

    Marks, Lawrence B.; Yu Xiaoli; Prosnitz, Robert G.; Zhou Sumin; Hardenbergh, Patricia H.; Blazing, Michael; Hollis, Donna; Lind, Pehr; Tisch, Andrea; Wong, Terence Z.; Borges-Neto, Salvador

    2005-01-01

    Purpose: Radiation therapy (RT) for left-sided breast cancer has been associated with cardiac dysfunction. We herein assess the temporal nature and volume dependence of RT-induced left ventricular perfusion defects and whether these perfusion defects are related to changes in cardiac wall motion or alterations in ejection fraction. Methods: From 1998 to 2001, 114 patients were enrolled onto an IRB-approved prospective clinical study to assess changes in regional and global cardiac function after RT for left-sided breast cancer. Patients were imaged 30 to 60 minutes after injection of technetium 99m sestamibi or tetrofosmin. Post-RT perfusion scans were compared with the pre-RT studies to assess for RT-induced perfusion defects as well as functional changes in wall motion and ejection fraction. Two-tailed Fisher's exact test and the Cochran-Armitage test for linear trends were used for statistical analysis. Results: The incidence of new perfusion defects 6, 12, 18, and 24 months after RT was 27%, 29%, 38%, and 42%, respectively. New defects occurred in approximately 10% to 20% and 50% to 60% of patients with less than 5%, and greater than 5%, of their left ventricle included within the RT fields, respectively (p = 0.33 to 0.00008). The rates of wall motion abnormalities in patients with and without perfusion defects were 12% to 40% versus 0% to 9%, respectively; p values were 0.007 to 0.16, depending on the post-RT interval. Conclusions: Radiation therapy causes volume-dependent perfusion defects in approximately 40% of patients within 2 years of RT. These perfusion defects are associated with corresponding wall-motion abnormalities. Additional study is necessary to better define the long-term functional consequences of RT-induced perfusion defects

  13. Effect of milrinone on cardiac functions in patients undergoing coronary artery bypass graft: a meta-analysis of randomized clinical trials

    Directory of Open Access Journals (Sweden)

    You Z

    2015-12-01

    Full Text Available Zhigang You,* Lin Huang,* Xiaoshu Cheng, Qinghua Wu, Xinghua Jiang, Yanqing WuDepartment of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China *These authors contributed equally to this work Background and aim: Inotropes are commonly used to treat myocardial dysfunction, which is the major complication after coronary artery bypass graft (CABG. Milrinone, a phosphodiesterase 3 inhibitor, is one of these inotropes. Recently, a number of clinical studies have been carried out to evaluate the effects of milrinone on cardiac function in patients with low ventricular ejection fraction undergoing CABG. However, it has been inconclusive because of the inconsistent results. In addition, some studies found that milrinone increased the incidence of postoperative atrial arrhythmias and did not show any long-term beneficial effects on survival. Therefore, it is very important to perform a meta-analysis to summarize the results so as to determine the clinical efficacy and safety of milrinone.Method: Several databases and websites for clinical trials were searched until October 2015 for prospective clinical studies comparing milrinone versus placebo on cardiac functions in patients undergoing CAGB.Results: Four articles were identified by our search strategy. 1 Milrinone decreased incidence of myocardial ischemia and myocardial infarction (15.6% versus 44.4%; 4.7% versus 18% in milrinone and control group respectively. 2 Milrinone decreased duration of inotropic support (95% confidence interval [CI]: -6.52 to -1.68; P=0.0009 and mechanical ventilation (h support (95% CI -5.00 to -0.69; P=0.010, but did not decrease the requirement for intra-aortic balloon pump or inotropic support (P>0.05. 3 Milrinone did not decrease the overall mortality or morbidity, intensive care unit stay (P>0.05.Conclusion: Perioperative continuous infusion of milrinone is effective to lower incidence of myocardial

  14. Estimation of probability density functions of damage parameter for valve leakage detection in reciprocating pump used in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Kyeom; Kim, Tae Yun; Kim, Hyun Su; Chai, Jang Bom; Lee, Jin Woo [Div. of Mechanical Engineering, Ajou University, Suwon (Korea, Republic of)

    2016-10-15

    This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.

  15. Estimation of probability density functions of damage parameter for valve leakage detection in reciprocating pump used in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Jong Kyeom; Kim, Tae Yun; Kim, Hyun Su; Chai, Jang Bom; Lee, Jin Woo

    2016-01-01

    This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage

  16. Estimation of Probability Density Functions of Damage Parameter for Valve Leakage Detection in Reciprocating Pump Used in Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Jong Kyeom Lee

    2016-10-01

    Full Text Available This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.

  17. Effects of ioxaglic acid on cardiac functions during coronary arteriography in canines

    Energy Technology Data Exchange (ETDEWEB)

    Traegaardh, B. (Malmoe Allmaenna Sjukhus, Malmoe, Sweden); Lynch, P.R. (Temple Univ., Philadelphia, PA (USA). School of Medicine)

    1983-01-01

    The new monoacid dimer ioxaglic acid (P286), the non-ionic metrizamide (Amipaque) and diatrizoate (Renografin 76) were compared regarding their effects on left ventricular pressure, the first derivative of left ventricular pressure, aortic pressures and on ECG changes during left and right coronary angiography in dogs. Ioxaglate was found to affect most of these parameters less than diatrizoate probably due to its lower osmolality. Ioxaglate should be regarded suitable for coronary angiography. However, ioxaglate was found to have greater effects on the cardiac function than the equiosmolar metrizamide. This is probably due to the chemotoxicity of the anion or possibly to the sodium content of the ioxaglic acid solution.

  18. Soccer training improves cardiac function in men with type 2 diabetes

    DEFF Research Database (Denmark)

    Schmidt, Jakob Friis; Rostgaard Andersen, Thomas; Horton, Joshua

    2013-01-01

    training can counteract the early signs of diabetic heart disease. PURPOSE: To evaluate the effects of soccer training on cardiac function, exercise capacity and blood pressure in middle-aged men with T2DM. METHODS: Twenty-one men aged 49.8±1.7 yrs with T2DM and no history of cardiovascular disease......INTRODUCTION: Patients with type 2 diabetes (T2DM) have an increased risk of cardiovascular disease which is worsened by physical inactivity. Subclinical myocardial dysfunction is associated with increased risk of heart failure and impaired prognosis in T2DM; however, it is not clear if exercise...

  19. Improvement in cardiac function and free fatty acid metabolism in a case of dilated cardiomyopathy with CD36 deficiency.

    Science.gov (United States)

    Hirooka, K; Yasumura, Y; Ishida, Y; Komamura, K; Hanatani, A; Nakatani, S; Yamagishi, M; Miyatake, K

    2000-09-01

    A 27-year-old man diagnosed as having dilated cardiomyopathy (DCM) without myocardial accumulation of 123I-beta-methyl-iodophenylpentadecanoic acid, and he was found to have type I CD36 deficiency. This abnormality of cardiac free fatty acid metabolism was also confirmed by other methods: 18F-fluoro-2-deoxyglucose positron emission tomography, measurements of myocardial respiratory quotient and cardiac fatty acid uptake. Although the type I CD36 deficiency was reconfirmed after 3 months, the abnormal free fatty acid metabolism improved after carvedilol therapy and was accompanied by improved cardiac function. Apart from a cause-and-effect relationship, carvedilol can improve cardiac function and increase free fatty acid metabolism in patients with both DCM and CD36 deficiency.

  20. Sca-1+ cardiosphere-derived cells are enriched for Isl1-expressing cardiac precursors and improve cardiac function after myocardial injury.

    Directory of Open Access Journals (Sweden)

    Jianqin Ye

    Full Text Available BACKGROUND: Endogenous cardiac progenitor cells are a promising option for cell-therapy for myocardial infarction (MI. However, obtaining adequate numbers of cardiac progenitors after MI remains a challenge. Cardiospheres (CSs have been proposed to have cardiac regenerative properties; however, their cellular composition and how they may be influenced by the tissue milieu remains unclear. METHODOLOGY/PRINCIPAL FINDING: Using "middle aged" mice as CSs donors, we found that acute MI induced a dramatic increase in the number of CSs in a mouse model of MI, and this increase was attenuated back to baseline over time. We also observed that CSs from post-MI hearts engrafted in ischemic myocardium induced angiogenesis and restored cardiac function. To determine the role of Sca-1(+CD45(- cells within CSs, we cloned these from single cell isolates. Expression of Islet-1 (Isl1 in Sca-1(+CD45(- cells from CSs was 3-fold higher than in whole CSs. Cloned Sca-1(+CD45(- cells had the ability to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro. We also observed that cloned cells engrafted in ischemic myocardium induced angiogenesis, differentiated into endothelial and smooth muscle cells and improved cardiac function in post-MI hearts. CONCLUSIONS/SIGNIFICANCE: These studies demonstrate that cloned Sca-1(+CD45(- cells derived from CSs from infarcted "middle aged" hearts are enriched for second heart field (i.e., Isl-1(+ precursors that give rise to both myocardial and vascular tissues, and may be an appropriate source of progenitor cells for autologous cell-therapy post-MI.

  1. Traditional Chinese Medicine Tongxinluo Improves Cardiac Function of Rats with Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Fang-Fang Shen

    2014-01-01

    Full Text Available The study aimed at testing the hypothesis that tongxinluo capsule might exert its cardioprotective effect by preventing ventricular remodeling and improving coronary microvascular function in a rat model of doxorubicin-induced dilated cardiomyopathy (DCM. Rats that survived DCM induction were randomly divided into three groups to be given 1.5 g·kg−1·day−1 (TXL-H, n=9 or 0.15 g·kg−1·day−1 (TXL-L, n=10 of tongxinluo, or normal saline at the same volume (DCM-C, n=10 intragastrically. Age matched normal rats treated with normal saline were used as normal controls (NOR-C, n=9. After four weeks of treatment, the DCM-C, TXL-H, and TXL-L groups exhibited significant cardiac dysfunction, left ventricular remodeling, and coronary microvascular dysfunction, compared with the NOR-C rats. However, myocardial functional parameters were significantly improved and microvascular density (MVD increased in the TXL-H group compared with the DCM-C group (all P<0.01. Left ventricular remodeling was prevented. There were close linear relationships between CVF and LVEF (r=-0.683, P<0.05, MVD and LVEF (r=0.895, P<0.05, and MVD and CVF (r=-0.798, P<0.05. It was indicated that high-dose tongxinluo effectively improved cardiac function in rat model of DCM.

  2. Prospective randomized controlled intervention trial: Comprehensive Yogic Breathing Improves Cardiac autonomic functions and Quality of life in Diabetes

    Directory of Open Access Journals (Sweden)

    V P Jyotsna

    2012-01-01

    Full Text Available Aims and Objectives: To assess the effect of Comprehensive Yogic Breathing Program on glycemic control, quality of life, and cardiac autonomic functions in diabetes. Material and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 120 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes (n = 56 and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program (n = 64. Standard therapy included advice on diet, walk, and oral antidiabetic drugs. Comprehensive yogic breathing program was an interactive session in which Sudarshan kriya yoga, a rhythmic cyclical breathing, preceded by Pranayam was taught under guidance of a certified teacher. Change in fasting, post prandial blood sugars, glycated hemoglobin, and quality of life were assessed. Cardiac autonomic function tests were done before and six months after intervention. Results: There was significant improvement in psychological (P = 0.006 and social domains (P = 0.04 and total quality of life (P = 0.02 in the group practicing comprehensive yogic breathing program as compared to the group following standard therapy alone. In the group following breathing program, the improvement in sympathetic cardiac autonomic functions was statistically significant (P = 0.01, while the change in the standard group was not significant (P = 0.17. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P = 0.07. In the standard therapy group, no change in cardiac autonomic functions was noted (P = 0.76. The parameters of glycemic control were comparable in both groups. Conclusion: There was significant improvement in quality of life and cardiac autonomic functions in the diabetes patients practicing comprehensive yogic breathing

  3. Peptide Functionalized Gold Nanorods for the Sensitive Detection of a Cardiac Biomarker Using Plasmonic Paper Devices (Postprint)

    Science.gov (United States)

    2015-11-10

    Albumin to saturate the non-specific binding sites on the paper substrate prior to troponin exposure. For testing the biosensor, troponin of various...AFRL-RX-WP-JA-2016-0191 PEPTIDE FUNCTIONALIZED GOLD NANORODS FOR THE SENSITIVE DETECTION OF A CARDIAC BIOMARKER USING PLASMONIC PAPER ...SENSITIVE DETECTION OF A CARDIAC BIOMARKER USING PLASMONIC PAPER DEVICES (POSTPRINT) 5a. CONTRACT NUMBER FA8650-15-D-5405-0001 5b. GRANT NUMBER 5c

  4. The effect of chronic digitalization on pump function in systolic heart failure.

    Science.gov (United States)

    Hassapoyannes, C A; Easterling, B M; Chavda, K; Chavda, K K; Movahed, M R; Welch, G W

    2001-10-01

    Short- and intermediate-term use of cardiac glycosides promotes inotropy and improves the ejection fraction in systolic heart failure. To determine whether chronic digitalization alters left ventricular function and performance. Eighty patients with mild-to-moderate systolic heart failure (baseline ejection fraction < or =45%) participated from our institution in a multi-center, chronic, randomized, double-blind study of digitalis vs. placebo. Of the 40 survivors, 38 (20 allocated to the digitalis arm and 18 to the placebo arm) were evaluated at the end of follow-up (mean, 48.4 months). Left ventricular systolic function was assessed by both nuclear ventriculography and echocardiography. The ejection fraction was measured scintigraphically, while the ventricular volumes were computed echocardiographically. The groups did not differ, at baseline or end-of-study, with respect to the ejection fraction and the loading conditions (arterial pressure, ventricular volumes and heart rate) by either intention-to-treat or actual-treatment-received analysis. Over the course of the trial, the digitalis arm exhibited no significant increase in the use of diuretics (18%, P=0.33), in distinction from the placebo group (78%, P=0.004), and a longer stay on study drug among those patients who withdrew from double-blind treatment (28.6 vs. 11.4 months, P=0.01). Following chronic use of digitalis for mild-to-moderate heart failure, cross-sectional comparison with a control group from the same inception cohort showed no appreciable difference in systolic function or performance. Thus, the suggested clinical benefit cannot be explained by an inotropic effect.

  5. Impact of type 2 diabetes and duration of type 2 diabetes on cardiac structure and function

    DEFF Research Database (Denmark)

    Jørgensen, Peter G; Jensen, Magnus T; Mogelvang, Rasmus

    2016-01-01

    BACKGROUND: Contemporary treatment of type 2 diabetes (T2D) has improved patient outcome and may also have affected myocardial structure and function. We aimed to describe the effect of T2D and T2D duration on cardiac structure and function in a large outpatient population. METHODS: We performed...... comprehensive echocardiography on a representative sample of 1004 persons including a representative sample of 770 patients with T2D without known heart disease and 234 age- and sex-matched controls. RESULTS: T2D was associated with increased left ventricular (LV) wall thicknesses and decreased LV internal...... dysfunction persisted after multivariable adjustment (P=0.013). CONCLUSIONS: In patients with T2D, LV structural and functional alterations persist and are accentuated with increasing diabetes duration despite reductions in overall risk of cardiovascular disease in this patient population....

  6. Impact of thoracic surgery on cardiac morphology and function in small animal models of heart disease: a cardiac MRI study in rats.

    Directory of Open Access Journals (Sweden)

    Peter Nordbeck

    Full Text Available BACKGROUND: Surgical procedures in small animal models of heart disease might evoke alterations in cardiac morphology and function. The aim of this study was to reveal and quantify such potential artificial early or long term effects in vivo, which might account for a significant bias in basic cardiovascular research, and, therefore, could potentially question the meaning of respective studies. METHODS: Female Wistar rats (n = 6 per group were matched for weight and assorted for sham left coronary artery ligation or control. Cardiac morphology and function was then investigated in vivo by cine magnetic resonance imaging at 7 Tesla 1 and 8 weeks after the surgical procedure. The time course of metabolic and inflammatory blood parameters was determined in addition. RESULTS: Compared to healthy controls, rats after sham surgery showed a lower body weight both 1 week (267.5±10.6 vs. 317.0±11.3 g, n<0.05 and 8 weeks (317.0±21.1 vs. 358.7±22.4 g, n<0.05 after the intervention. Left and right ventricular morphology and function were not different in absolute measures in both groups 1 week after surgery. However, there was a confined difference in several cardiac parameters normalized to the body weight (bw, such as myocardial mass (2.19±0.30/0.83±0.13 vs. 1.85±0.22/0.70±0.07 mg left/right per g bw, p<0.05, or enddiastolic ventricular volume (1.31±0.36/1.21±0.31 vs. 1.14±0.20/1.07±0.17 µl left/right per g bw, p<0.05. Vice versa, after 8 weeks, cardiac masses, volumes, and output showed a trend for lower values in sham operated rats compared to controls in absolute measures (782.2±57.2/260.2±33.2 vs. 805.9±84.8/310.4±48.5 mg, p<0.05 for left/right ventricular mass, but not normalized to body weight. Matching these findings, blood testing revealed only minor inflammatory but prolonged metabolic changes after surgery not related to cardiac disease. CONCLUSION: Cardio-thoracic surgical procedures in experimental myocardial infarction

  7. Translating golden retriever muscular dystrophy microarray findings to novel biomarkers for cardiac/skeletal muscle function in Duchenne muscular dystrophy.

    Science.gov (United States)

    Galindo, Cristi L; Soslow, Jonathan H; Brinkmeyer-Langford, Candice L; Gupte, Manisha; Smith, Holly M; Sengsayadeth, Seng; Sawyer, Douglas B; Benson, D Woodrow; Kornegay, Joe N; Markham, Larry W

    2016-04-01

    In Duchenne muscular dystrophy (DMD), abnormal cardiac function is typically preceded by a decade of skeletal muscle disease. Molecular reasons for differences in onset and progression of these muscle groups are unknown. Human biomarkers are lacking. We analyzed cardiac and skeletal muscle microarrays from normal and golden retriever muscular dystrophy (GRMD) dogs (ages 6, 12, or 47+ mo) to gain insight into muscle dysfunction and to identify putative DMD biomarkers. These biomarkers were then measured using human DMD blood samples. We identified GRMD candidate genes that might contribute to the disparity between cardiac and skeletal muscle disease, focusing on brain-derived neurotropic factor (BDNF) and osteopontin (OPN/SPP1, hereafter indicated as SPP1). BDNF was elevated in cardiac muscle of younger GRMD but was unaltered in skeletal muscle, while SPP1 was increased only in GRMD skeletal muscle. In human DMD, circulating levels of BDNF were inversely correlated with ventricular function and fibrosis, while SPP1 levels correlated with skeletal muscle function. These results highlight gene expression patterns that could account for differences in cardiac and skeletal disease in GRMD. Most notably, animal model-derived data were translated to DMD and support use of BDNF and SPP1 as biomarkers for cardiac and skeletal muscle involvement, respectively.

  8. Structure and Function of Neisseria gonorrhoeae MtrF Illuminates a Class of Antimetabolite Efflux Pumps

    Directory of Open Access Journals (Sweden)

    Chih-Chia Su

    2015-04-01

    Full Text Available Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. N. gonorrhoeae MtrF is an integral membrane protein that belongs to the AbgT family of transporters for which no structural information is available. Here, we describe the crystal structure of MtrF, revealing a dimeric molecule with architecture distinct from all other families of transporters. MtrF is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins, posing a plausible pathway for substrate transport. A combination of the crystal structure and biochemical functional assays suggests that MtrF is an antibiotic efflux pump mediating bacterial resistance to sulfonamide antimetabolite drugs.

  9. Sarcolemmal cholesterol and caveolin-3 dependence of cardiac function, ischemic tolerance, and opioidergic cardioprotection

    Science.gov (United States)

    See Hoe, Louise E.; Schilling, Jan M.; Tarbit, Emiri; Kiessling, Can J.; Busija, Anna R.; Niesman, Ingrid R.; Du Toit, Eugene; Ashton, Kevin J.; Roth, David M.; Headrick, John P.; Patel, Hemal H.

    2014-01-01

    Cholesterol-rich caveolar microdomains and associated caveolins influence sarcolemmal ion channel and receptor function and protective stress signaling. However, the importance of membrane cholesterol content to cardiovascular function and myocardial responses to ischemia-reperfusion (I/R) and cardioprotective stimuli are unclear. We assessed the effects of graded cholesterol depletion with methyl-β-cyclodextrin (MβCD) and lifelong knockout (KO) or overexpression (OE) of caveolin-3 (Cav-3) on cardiac function, I/R tolerance, and opioid receptor (OR)-mediated protection. Langendorff-perfused hearts from young male C57Bl/6 mice were untreated or treated with 0.02–1.0 mM MβCD for 25 min to deplete membrane cholesterol and disrupt caveolae. Hearts were subjected to 25-min ischemia/45-min reperfusion, and the cardioprotective effects of morphine applied either acutely or chronically [sustained ligand-activated preconditioning (SLP)] were assessed. MβCD concentration dependently reduced normoxic contractile function and postischemic outcomes in association with graded (10–30%) reductions in sarcolemmal cholesterol. Cardioprotection with acute morphine was abolished with ≥20 μM MβCD, whereas SLP was more robust and only inhibited with ≥200 μM MβCD. Deletion of Cav-3 also reduced, whereas Cav-3 OE improved, myocardial I/R tolerance. Protection via SLP remained equally effective in Cav-3 KO mice and was additive with innate protection arising with Cav-3 OE. These data reveal the membrane cholesterol dependence of normoxic myocardial and coronary function, I/R tolerance, and OR-mediated cardioprotection in murine hearts (all declining with cholesterol depletion). In contrast, baseline function appears insensitive to Cav-3, whereas cardiac I/R tolerance parallels Cav-3 expression. Novel SLP appears unique, being less sensitive to cholesterol depletion than acute OR protection and arising independently of Cav-3 expression. PMID:25063791

  10. Empagliflozin Prevents Worsening of Cardiac Function in an Experimental Model of Pressure Overload-Induced Heart Failure

    Directory of Open Access Journals (Sweden)

    Nikole J. Byrne, BSc

    2017-08-01

    Full Text Available This study sought to determine whether the sodium/glucose cotransporter 2 (SGLT2 inhibitor empagliflozin improved heart failure (HF outcomes in nondiabetic mice. The EMPA-REG OUTCOME (Empagliflozin, Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients trial demonstrated that empagliflozin markedly prevented HF and cardiovascular death in subjects with diabetes. However, despite ongoing clinical trials in HF patients without type 2 diabetes, there are no objective and translational data to support an effect of SGLT2 inhibitors on cardiac structure and function, particularly in the absence of diabetes and in the setting of established HF. Male C57Bl/6 mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Following surgery, mice that progressed to HF received either vehicle or empagliflozin for 2 weeks. Cardiac function was then assessed in vivo using echocardiography and ex vivo using isolated working hearts. Although vehicle-treated HF mice experienced a progressive worsening of cardiac function over the 2-week treatment period, this decline was blunted in empagliflozin-treated HF mice. Treatment allocation to empagliflozin resulted in an improvement in cardiac systolic function, with no significant changes in cardiac remodeling or diastolic dysfunction. Moreover, isolated hearts from HF mice treated with empagliflozin displayed significantly improved ex vivo cardiac function compared to those in vehicle-treated controls. Empagliflozin treatment of nondiabetic mice with established HF blunts the decline in cardiac function both in vivo and ex vivo, independent of diabetes. These data provide important basic and translational clues to support the evaluation of SGLT2 inhibitors as a treatment strategy in a broad range of patients with established HF.

  11. Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function.

    Science.gov (United States)

    Ardell, Jeffrey L; Rajendran, Pradeep S; Nier, Heath A; KenKnight, Bruce H; Armour, J Andrew

    2015-11-15

    Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy. Copyright © 2015 the American Physiological Society.

  12. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review.

    Science.gov (United States)

    Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R

    2015-07-06

    The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.

  13. Evaluation of right cardiac function with sup(81m)Kr

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Tsunehiko; Uehara, Toshiisa; Hayashida, Kohei; Kotsuka, Takahiro [National Cardiovascular Center, Suita, Osaka (Japan)

    1982-10-01

    Right cardiac function was evaluated by a first-pass method of repeated rapid injections of sup(81m)Kr, and by a multigated scanning of continuous injections using a scinticamera and a computer system. Right ventricular ejection fraction (RVEF) was rather low in the ascending course of time-activity curve and rather high in the descending course by the use of rapid injection. The RVEF estimated by the rapid injection method was relatively high in ischemic heart disease; but the figure was a little changed in tricuspid insufficiency, especially in the case with high reflux, showing no effect of rapid injection. There was a good correlation between the result of rapid injection and that of the sup(99m)Tc-first-pass method. Clinically, a little increase in RVEF due to exercise was observed in a group of right coronary artery obstruction, and in all the cases of tricuspid insufficiency changes in RVEF due to exercise was in good accordance with the result of classification of severity of the disease. Accuracy in RVEF estimated by the rapid injection method was correlated with that of multi-gated scanning. In continuous observation of right cardiac function by the continuous injection method, decreased RVEF following exercise was noted in cases of inferior wall infarction with atrial fibrillation, compared with the RVEF in cases of anterior wall infarction with normal right coronary arteries.

  14. Morphological and Functional Evaluation of Quadricuspid Aortic Valves Using Cardiac Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Song, Inyoung; Park, Jung Ah; Choi, Bo Hwa; Ko, Sung Min [Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030 (Korea, Republic of); Shin, Je Kyoun; Chee, Hyun Keun; Kim, Jun Seok [Department of Thoracic Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030 (Korea, Republic of)

    2016-11-01

    The aim of this study was to identify the morphological and functional characteristics of quadricuspid aortic valves (QAV) on cardiac computed tomography (CCT). We retrospectively enrolled 11 patients with QAV. All patients underwent CCT and transthoracic echocardiography (TTE), and 7 patients underwent cardiovascular magnetic resonance (CMR). The presence and classification of QAV assessed by CCT was compared with that of TTE and intraoperative findings. The regurgitant orifice area (ROA) measured by CCT was compared with severity of aortic regurgitation (AR) by TTE and the regurgitant fraction (RF) by CMR. All of the patients had AR; 9 had pure AR, 1 had combined aortic stenosis and regurgitation, and 1 had combined subaortic stenosis and regurgitation. Two patients had a subaortic fibrotic membrane and 1 of them showed a subaortic stenosis. One QAV was misdiagnosed as tricuspid aortic valve on TTE. In accordance with the Hurwitz and Robert's classification, consensus was reached on the QAV classification between the CCT and TTE findings in 7 of 10 patients. The patients were classified as type A (n = 1), type B (n = 3), type C (n = 1), type D (n = 4), and type F (n = 2) on CCT. A very high correlation existed between ROA by CCT and RF by CMR (r = 0.99) but a good correlation existed between ROA by CCT and regurgitant severity by TTE (r = 0.62). Cardiac computed tomography provides comprehensive anatomical and functional information about the QAV.

  15. Morphological and functional evaluation of quadricuspid aortic valves using cardiac computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Young; Park, Jung Ah; Choi, Bo Hwa; Ko, Sung Min; Shin, Je Kyoun; Chee, Hyun Keun; KIm, Jun Seok [Konkuk University Medical Center, Konkuk University School of Medicine, Seoul (Korea, Republic of)

    2016-07-15

    The aim of this study was to identify the morphological and functional characteristics of quadricuspid aortic valves (QAV) on cardiac computed tomography (CCT). We retrospectively enrolled 11 patients with QAV. All patients underwent CCT and transthoracic echocardiography (TTE), and 7 patients underwent cardiovascular magnetic resonance (CMR). The presence and classification of QAV assessed by CCT was compared with that of TTE and intraoperative findings. The regurgitant orifice area (ROA) measured by CCT was compared with severity of aortic regurgitation (AR) by TTE and the regurgitant fraction (RF) by CMR. All of the patients had AR; 9 had pure AR, 1 had combined aortic stenosis and regurgitation, and 1 had combined subaortic stenosis and regurgitation. Two patients had a subaortic fibrotic membrane and 1 of them showed a subaortic stenosis. One QAV was misdiagnosed as tricuspid aortic valve on TTE. In accordance with the Hurwitz and Robert's classification, consensus was reached on the QAV classification between the CCT and TTE findings in 7 of 10 patients. The patients were classified as type A (n = 1), type B (n = 3), type C (n = 1), type D (n = 4), and type F (n = 2) on CCT. A very high correlation existed between ROA by CCT and RF by CMR (r = 0.99) but a good correlation existed between ROA by CCT and regurgitant severity by TTE (r = 0.62). Cardiac computed tomography provides comprehensive anatomical and functional information about the QAV.

  16. The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease

    Directory of Open Access Journals (Sweden)

    W. H. Davin Townley-Tilson

    2015-01-01

    Full Text Available Ischemic heart disease is the leading cause of death worldwide. Oxygen-sensing proteins are critical components of the physiological response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these oxygen-sensing proteins. While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role in cardiac function and disease. We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable in drug design and therapeutic targets for heart disease.

  17. Physiologic abnormalities of cardiac function in progressive systemic sclerosis with diffuse scleroderma

    International Nuclear Information System (INIS)

    Follansbee, W.P.; Curtiss, E.I.; Medsger, T.A. Jr.; Steen, V.D.; Uretsky, B.F.; Owens, G.R.; Rodnan, G.P.

    1984-01-01

    To investigate cardiopulmonary function in progressive systemic sclerosis with diffuse scleroderma, we studied 26 patients with maximal exercise and redistribution thallium scans, rest and exercise radionuclide ventriculography, pulmonary-function testing, and chest roentgenography. Although only 6 patients had clinical evidence of cardiac involvement, 20 had abnormal thallium scans, including 10 with reversible exercise-induced defects and 18 with fixed defects (8 had both). Seven of the 10 patients who had exercise-induced defects and underwent cardiac catheterization had normal coronary angiograms. Mean resting left ventricular ejection fraction and mean resting right ventricular ejection fraction were lower in patients with post-exercise left ventricular thallium defect scores above the median (59 +/- 13 per cent vs. 69 +/- 6 per cent, and 36 +/- 12 per cent vs. 47 +/- 7 per cent, respectively). The authors conclude that in progressive systemic sclerosis with diffuse scleroderma, abnormalities of myocardial perfusion are common and appear to be due to a disturbance of the myocardial microcirculation. Both right and left ventricular dysfunction appear to be related to this circulatory disturbance, suggesting ischemically mediated injury

  18. Report of the substudy assessing the impact of neurocognitive function on quality of life 5 years after cardiac surgery.

    Science.gov (United States)

    Newman, M F; Grocott, H P; Mathew, J P; White, W D; Landolfo, K; Reves, J G; Laskowitz, D T; Mark, D B; Blumenthal, J A

    2001-12-01

    The importance of perioperative cognitive decline has long been debated. We recently demonstrated a significant correlation between perioperative cognitive decline and long-term cognitive dysfunction. Despite this association, some still question the importance of these changes in cognitive function to the quality of life of patients and their families. The purpose of our investigation was to determine the association between cognitive dysfunction and long-term quality of life after cardiac surgery. After institutional review board approval and patient informed consent, 261 patients undergoing cardiac surgery with cardiopulmonary bypass were enrolled and followed for 5 years. Cognitive function was measured with a battery of tests at baseline, discharge, and 6 weeks and 5 years postoperatively. Quality of life was assessed with well-validated, standardized assessments at the 5-year end point. Our results demonstrate significant correlations between cognitive function and quality of life in patients after cardiac surgery. Lower 5-year overall cognitive function scores were associated with lower general health and a less productive working status. Multivariable logistic and linear regression controlling for age, sex, education, and diabetes confirmed this strong association in the majority of areas of quality of life. Five years after cardiac surgery, there is a strong relationship between neurocognitive functioning and quality of life. This has important social and financial implications for preoperative evaluation and postoperative care of patients undergoing cardiac surgery.

  19. Comparative impact of AAV and enzyme replacement therapy on respiratory and cardiac function in adult Pompe mice

    Directory of Open Access Journals (Sweden)

    Darin J Falk

    Full Text Available Pompe disease is an autosomal recessive genetic disorder characterized by a deficiency of the enzyme responsible for degradation of lysosomal glycogen (acid α-glucosidase (GAA. Cardiac dysfunction and respiratory muscle weakness are primary features of this disorder. To attenuate the progressive and rapid accumulation of glycogen resulting in cardiorespiratory dysfunction, adult Gaa−/− mice were administered a single systemic injection of rAAV2/9-DES-hGAA (AAV9-DES or bimonthly injections of recombinant human GAA (enzyme replacement therapy (ERT. Assessment of cardiac function and morphology was measured 1 and 3 months after initiation of treatment while whole-body plethysmography and diaphragmatic contractile function was evaluated at 3 months post-treatment in all groups. Gaa−/− animals receiving either AAV9-DES or ERT demonstrated a significant improvement in cardiac function and diaphragmatic contractile function as compared to control animals. AAV9-DES treatment resulted in a significant reduction in cardiac dimension (end diastolic left ventricular mass/gram wet weight; EDMc at 3 months postinjection. Neither AAV nor ERT therapy altered minute ventilation during quiet breathing (eupnea. However, breathing frequency and expiratory time were significantly improved in AAV9-DES animals. These results indicate systemic delivery of either strategy improves cardiac function but AAV9-DES alone improves respiratory parameters at 3 months post-treatment in a murine model of Pompe disease.

  20. Study on the relationship between plasma BNP levels and left cardiac function in patients with heart failure

    International Nuclear Information System (INIS)

    Yin Xin; Xu Dandan; Wu Chunxu

    2005-01-01

    Objective: To investigate the relationship between plasma brain natriuretic peptide (BNP) levels and cardiac function in patients with heart failure. Methods: Plasma levels of BNP (with IRMA) and left cardiac function parameters (examined with echocardiogram) were obtained in 80 patients with heart failure at admission and repeatedly examined in 43 of them later after 2w treatment a swell as in 30 controls. Results: The plasma BNP levels increased along with the deterioration of cardiac function, with significant differences among the patients with different cardiac function grades (P<0.01). After 2w treatment, the plasma BNP levels were significantly lower than those before (P<0.01). The plasma levels of BNP were negatively correlated with left ventricular ejection fraction (LVEF) and left ventricle fraction shortening, but positively correlated with left ventricular end-systolic diameter (LVSd) and left ventricular end-diastolic diameter (LVDd). Conclusion: Plasma levels of BNP were closely related to the severity of heart failure and could serve as a biochemical marker for assessing the left cardiac function. (authors)

  1. The natural history of cardiac and pulmonary function decline in patients with duchenne muscular dystrophy.

    Science.gov (United States)

    Roberto, Rolando; Fritz, Anto; Hagar, Yolanda; Boice, Braden; Skalsky, Andrew; Hwang, Hosun; Beckett, Laurel; McDonald, Craig; Gupta, Munish

    2011-07-01

    Retrospective review of scoliosis progression, pulmonary and cardiac function in a series of patients with Duchenne Muscular Dystrophy (DMD). To determine whether operative treatment of scoliosis decreases the rate of pulmonary function loss in patients with DMD. It is generally accepted that surgical intervention should be undertaken in DMD scoliosis once curve sizes reach 35° to allow intervention before critical respiratory decline has occurred. There are conflicting reports, however, regarding the effect of scoliosis stabilization on the rate of pulmonary function decline when compared to nonoperative cohorts. We reviewed spinal radiographs, echocardiograms, and spirometry, hospital, and operative records of all patients seen at our tertiary referral center from July 1, 1992 to June 1, 2007. Data were recorded to Microsoft Excel (Microsoft, Redmond, WA) and analyzed with SAS (SAS Institute, Cary, NC) and R statistical processing software (www.r-project.org). The percent predicted forced vital capacity (PPFVC) decreased 5% per year before operation. The mean PPFVC was 54% (SD = 21%) before operation with a mean postoperative PPFVC of 43% (SD = 14%). Surgical treatment was associated with a 12% decline in PPFVC independent of other treatment variables. PPFVC after operation declined at a rate of 1% per year and while this rate was lower, it was not significantly different than the rate of decline present before operation (P = 0.18). Cardiac function as measured by left ventricular fractional shortening declined at a rate of 1% per year with most individuals exhibiting a left ventricular fractional shortening rate of more than 30 before operation. Operative treatment of scoliosis in DMD using the Luque Galveston method was associated with a reduction of forced vital capacity related to operation. The rate of pulmonary function decline after operation was not significantly reduced when compared with the rate of preoperative forced vital capacity decline.

  2. New aspects of HERG K⁺ channel function depending upon cardiac spatial heterogeneity.

    Directory of Open Access Journals (Sweden)

    Pen Zhang

    Full Text Available HERG K(+ channel, the genetic counterpart of rapid delayed rectifier K(+ current in cardiac cells, is responsible for many cases of inherited and drug-induced long QT syndromes. HERG has unusual biophysical properties distinct from those of other K(+ channels. While the conventional pulse protocols in patch-clamp studies have helped us elucidate these properties, their limitations in assessing HERG function have also been progressively noticed. We employed AP-clamp techniques using physiological action potential waveforms recorded from various regions of canine heart to study HERG function in HEK293 cells and identified several novel aspects of HERG function. We showed that under AP-clamp IHERG increased gradually with membrane repolarization, peaked at potentials around 20-30 mV more negative than revealed by pulse protocols and at action potential duration (APD to 60%-70% full repolarization, and fell rapidly at the terminal phase of repolarization. We found that the rising phase of IHERG was conferred by removal of inactivation and the decaying phase resulted from a fall in driving force, which were all determined by the rate of membrane repolarization. We identified regional heterogeneity and transmural gradient of IHERG when quantified with the area covered by IHERG trace. In addition, we observed regional and transmural differences of IHERG in response to dofetilide blockade. Finally, we characterized the influence of HERG function by selective inhibition of other ion currents. Based on our results, we conclude that the distinct biophysical properties of HERG reported by AP-clamp confer its unique function in cardiac repolarization thereby in antiarrhythmia and arrhythmogenesis.

  3. Heme oxygenase-1 induction improves cardiac function following myocardial ischemia by reducing oxidative stress.

    Directory of Open Access Journals (Sweden)

    Yossi Issan

    Full Text Available Oxidative stress plays a key role in exacerbating diabetes and cardiovascular disease. Heme oxygenase-1 (HO-1, a stress response protein, is cytoprotective, but its role in post myocardial infarction (MI and diabetes is not fully characterized. We aimed to investigate the protection and the mechanisms of HO-1 induction in cardiomyocytes subjected to hypoxia and in diabetic mice subjected to LAD ligation.In vitro: cultured cardiomyocytes were treated with cobalt-protoporphyrin (CoPP and tin protoporphyrin (SnPP prior to hypoxic stress. In vivo: CoPP treated streptozotocin-induced diabetic mice were subjected to LAD ligation for 2/24 h. Cardiac function, histology, biochemical damage markers and signaling pathways were measured.HO-1 induction lowered release of lactate dehydrogenase (LDH and creatine phospho kinase (CK, decreased propidium iodide staining, improved cell morphology and preserved mitochondrial membrane potential in cardiomyocytes. In diabetic mice, Fractional Shortening (FS was lower than non-diabetic mice (35±1%vs.41±2, respectively p<0.05. CoPP-treated diabetic animals improved cardiac function (43±2% p<0.01, reduced CK, Troponin T levels and infarct size compared to non-treated diabetic mice (P<0.01, P<0.001, P<0.01 respectively. CoPP-enhanced HO-1 protein levels and reduced oxidative stress in diabetic animals, as indicated by the decrease in superoxide levels in cardiac tissues and plasma TNFα levels (p<0.05. The increased levels of HO-1 by CoPP treatment after LAD ligation led to a shift of the Bcl-2/bax ratio towards the antiapoptotic process (p<0.05. CoPP significantly increased the expression levels of pAKT and pGSK3β (p<0.05 in cardiomyocytes and in diabetic mice with MI. SnPP abolished CoPP's cardioprotective effects.HO-1 induction plays a role in cardioprotection against hypoxic damage in cardiomyocytes and in reducing post ischemic cardiac damage in the diabetic heart as proved by the increased levels of pAKT with

  4. [Sodium hydrosulfide improves cardiac functions and structures in rats with chronic heart failure].

    Science.gov (United States)

    Li, Xiao-hui; Zhang, Chao-ying; Zhang, Ting

    2011-11-22

    To explore the effects of sodium hydrosulfide (NaHS), a hydrogen sulphide (H(2)S) donor, on cardiac functions and structures in rats with chronic heart failure induced by volume overload and examine its influence on cardiac remodelling. A total of 47 SD rats (120 - 140 g) were randomly divided into 5 groups:shunt group (n = 11), sham group (n = 8), shunt + NaHS group (n = 10), sham + NaHS group (n = 8) and shunt + phentolamine group (n = 10). The rat model of chronic heart failure was induced by abdominal aorta-inferior vena cava puncture. At Week 8 post-operation, hemodynamic parameters, microstructures and ultrastructures of myocardial tissues were analyzed. Extracellular collagen content in myocardial tissues was analyzed after Sirius red staining. Right ventricular hydroxyproline concentration was determined and compared. At Week 8 post-operation, compared with the sham operation and shunt + NaHS groups, the shunt group showed significantly increased right ventricular systolic pressure (RVSP) and right ventricular end diastolic pressure (RVEDP) (mm Hg: 35.2 ± 3.9 vs 21.4 ± 3.7 and 28.1 ± 2.7, 32 ± 5 vs 21 ± 4 and 26 ± 4, all P vs 2336 ± 185 and 1835 ± 132, 1331 ± 107 vs 2213 ± 212 and 1768 ± 116, all P non-uniformly in the shunt group, some fiber mitochondria were highly swollen and contained vacuoles. And sarcoplasmic reticulum appeared slightly dilated. Polarized microscopy indicated that, collagen content (particularly type-I collagen) increased in the shunt group compared with the sham operation group. Additionally, compared with the shunt group, the shunt and NaHS treatment groups showed an amelioration of myocardial damage, an alleviation of myocardial fiber changes and a decrease in myocardial collagen content (particularly type-I collagen). Compared with the sham operation and shunt + NaHS groups, the shunt group displayed increased right ventricular hydroxyproline (mg×g(-1)·pro: 1.32 ± 0.25 vs 0.89 ± 0.18 and 0.83 ± 0.19, all P < 0

  5. Asymptomatic Changes in Cardiac Function Can Occur in DCIS Patients Following Treatment with HER-2/neu Pulsed Dendritic Cell Vaccines

    Science.gov (United States)

    Bahl, Susan; Roses, Robert; Sharma, Anupama; Koldovsky, Ursula; Xu, Shuwen; Weinstein, Susan; Nisenbaum, Harvey; Fox, Kevin; Pasha, Theresa; Zhang, Paul; Araujo, Louis; Carver, Joseph; Czerniecki, Brian J

    2009-01-01

    Background Targeting HER-2/neu with Trastuzumab has been associated with development of cardiac toxicity. Methods Twenty-seven patients with ductal carcinoma in situ (DCIS) of the breast completed an IRB approved clinical trial of a HER-2/neu targeted dendritic cell based vaccine. Four weekly vaccinations were administered prior to surgical resection. All subjects underwent pre- and post-vaccine cardiac monitoring by MUGA/ECHO scanning allowing for a comparison of cardiac function. Results In 3 of 27 vaccinated patients (11%) transient asymptomatic decrements in ejection fraction of greater than 15% were noted after vaccination. Notably, evidence of circulating anti-HER-2/neu antibody was found prior to vaccination in all three patients, but cardiac toxicity was not noted until induction of cellular mediated immune responses. Conclusions This is the first description of HER-2/neu targeted vaccination associated with an incidence of cardiac changes, and the induction of cellular immune responses combined with antibody may contribute to changes in cardiac function. PMID:19800453

  6. Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties

    International Nuclear Information System (INIS)

    Protopapadaki, Christina; Saelens, Dirk

    2017-01-01

    Highlights: • Comprehensive method includes variability in building and feeder characteristics. • Detailed, 10-min, Modelica-based simulation of buildings, heat pumps and networks. • Overloading and voltage issues appear from 30% heat pumps in rural Belgian feeders. • Analysis of load profiles reveals great impact of heat pump back-up heaters. • High correlation of building neighborhood properties with grid impact indicators. - Abstract: Heating electrification powered by distributed renewable energy generation is considered among potential solutions towards mitigation of greenhouse gas emissions. Roadmaps propose a wide deployment of heat pumps and photovoltaics in the residential sector. Since current distribution grids are not designed to accommodate these loads, potential benefits of such policies might be compromised. However, in large-scale analyses, often grid constraints are neglected. On the other hand, grid impact of heat pumps and photovoltaics has been investigated without considering the influence of building characteristics. This paper aims to assess and quantify in a probabilistic way the impact of these technologies on the low-voltage distribution grid, as a function of building and district properties. The Monte Carlo approach is used to simulate an assortment of Belgian residential feeders, with varying size, cable type, heat pump and PV penetration rates, and buildings of different geometry and insulation quality. Modelica-based models simulate the dynamic behavior of both buildings and heating systems, as well as three-phase unbalanced loading of the network. Additionally, stochastic occupant behavior is taken into account. Analysis of neighborhood load profiles puts into perspective the importance of demand diversity in terms of building characteristics and load simultaneity, highlighting the crucial role of back-up electrical loads. It is shown that air-source heat pumps have a greater impact on the studied feeders than PV, in terms

  7. Genetic modification of embryonic stem cells with VEGF enhances cell survival and improves cardiac function.

    Science.gov (United States)

    Xie, Xiaoyan; Cao, Feng; Sheikh, Ahmad Y; Li, Zongjin; Connolly, Andrew J; Pei, Xuetao; Li, Ren-Ke; Robbins, Robert C; Wu, Joseph C

    2007-01-01

    Cardiac stem cell therapy remains hampered by acute donor cell death posttransplantation and the lack of reliable methods for tracking cell survival in vivo. We hypothesize that cells transfected with inducible vascular endothelial growth factor 165 (VEGF(165)) can improve their survival as monitored by novel molecular imaging techniques. Mouse embryonic stem (ES) cells were transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF(165) and renilla luciferase (Rluc). Addition of doxycycline induced Bi-Tet expression of VEGF(165) and Rluc significantly compared to baseline (p<0.05). Expression of VEGF(165) enhanced ES cell proliferation and inhibited apoptosis as determined by Annexin-V staining. For noninvasive imaging, ES cells were transduced with a double fusion (DF) reporter gene consisting of firefly luciferase and enhanced green fluorescence protein (Fluc-eGFP). There was a robust correlation between cell number and Fluc activity (R(2)=0.99). Analysis by immunostaining, histology, and RT-PCR confirmed that expression of Bi-Tet and DF systems did not affect ES cell self-renewal or pluripotency. ES cells were differentiated into beating embryoid bodies expressing cardiac markers such as troponin, Nkx2.5, and beta-MHC. Afterward, 5 x 10(5) cells obtained from these beating embryoid bodies or saline were injected into the myocardium of SV129 mice (n=36) following ligation of the left anterior descending (LAD) artery. Bioluminescence imaging (BLI) and echocardiography showed that VEGF(165) induction led to significant improvements in both transplanted cell survival and cardiac function (p<0.05). This is the first study to demonstrate imaging of embryonic stem cell-mediated gene therapy targeting cardiovascular disease. With further validation, this platform may have broad applications for current basic research and further clinical studies.

  8. Cardiac Function in Patients with Early Cirrhosis during Maximal Beta-Adrenergic Drive

    DEFF Research Database (Denmark)

    Krag, Aleksander; Bendtsen, Flemming; Dahl, Emilie Kristine

    2014-01-01

    BACKGROUND AND AIM: Cardiac dysfunction in patients with early cirrhosis is debated. We investigated potential cardiac dysfunction by assessing left ventricular systolic performance during a dobutamine stress test in patients with early cirrhosis. PATIENTS AND METHODS: Nineteen patients with Chil...

  9. Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis

    NARCIS (Netherlands)

    Frank, Deborah U.; Carter, Kandis L.; Thomas, Kirk R.; Burr, R. Michael; Bakker, Martijn L.; Coetzee, William A.; Tristani-Firouzi, Martin; Bamshad, Michael J.; Christoffels, Vincent M.; Moon, Anne M.

    2012-01-01

    TBX3 is critical for human development: mutations in TBX3 cause congenital anomalies in patients with ulnar-mammary syndrome. Data from mice and humans suggest multiple roles for Tbx3 in development and function of the cardiac conduction system. The mechanisms underlying the functional development,

  10. TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein

    Energy Technology Data Exchange (ETDEWEB)

    Kurhanewicz, Nicole [Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 (United States); McIntosh-Kastrinsky, Rachel [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599 (United States); Tong, Haiyan; Ledbetter, Allen; Walsh, Leon; Farraj, Aimen [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Hazari, Mehdi, E-mail: hazari.mehdi@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)

    2017-06-01

    Short-term exposure to ambient air pollution is linked with adverse cardiovascular effects. While previous research focused primarily on particulate matter-induced responses, gaseous air pollutants also contribute to cause short-term cardiovascular effects. Mechanisms underlying such effects have not been adequately described, however the immediate nature of the response suggests involvement of irritant neural activation and downstream autonomic dysfunction. Thus, this study examines the role of TRPA1, an irritant sensory receptor found in the airways, in the cardiac response of mice to acrolein and ozone. Conscious unrestrained wild-type C57BL/6 (WT) and TRPA1 knockout (KO) mice implanted with radiotelemeters were exposed once to 3 ppm acrolein, 0.3 ppm ozone, or filtered air. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure. Analysis of ECG morphology, incidence of arrhythmia and heart rate variability (HRV) were performed. Cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 h post-exposure. Acrolein exposure increased HRV independent of HR, as well as incidence of arrhythmia. Acrolein also increased left ventricular developed pressure in WT mice at 24 h post-exposure. Ozone did not produce any changes in cardiac function. Neither gas produced ECG effects, changes in HRV, arrhythmogenesis, or mechanical function in KO mice. These data demonstrate that a single exposure to acrolein causes cardiac dysfunction through TRPA1 activation and autonomic imbalance characterized by a shift toward parasympathetic modulation. Furthermore, it is clear from the lack of ozone effects that although gaseous irritants are capable of eliciting immediate cardiac changes, gas concentration and properties play important roles. - Highlights: • Acute acrolein exposure causes autonomic imbalance and altered CV function in mice. • TRPA1 mediates acrolein-induced autonomic nervous system cardiac

  11. Genome-wide screens for in vivo Tinman binding sites identify cardiac enhancers with diverse functional architectures.

    Directory of Open Access Journals (Sweden)

    Hong Jin

    Full Text Available The NK homeodomain factor Tinman is a crucial regulator of early mesoderm patterning and, together with the GATA factor Pannier and the Dorsocross T-box factors, serves as one of the key cardiogenic factors during specification and differentiation of heart cells. Although the basic framework of regulatory interactions driving heart development has been worked out, only about a dozen genes involved in heart development have been designated as direct Tinman target genes to date, and detailed information about the functional architectures of their cardiac enhancers is lacking. We have used immunoprecipitation of chromatin (ChIP from embryos at two different stages of early cardiogenesis to obtain a global overview of the sequences bound by Tinman in vivo and their linked genes. Our data from the analysis of ~50 sequences with high Tinman occupancy show that the majority of such sequences act as enhancers in various mesodermal tissues in which Tinman is active. All of the dorsal mesodermal and cardiac enhancers, but not some of the others, require tinman function. The cardiac enhancers feature diverse arrangements of binding motifs for Tinman, Pannier, and Dorsocross. By employing these cardiac and non-cardiac enhancers in machine learning approaches, we identify a novel motif, termed CEE, as a classifier for cardiac enhancers. In vivo assays for the requirement of the binding motifs of Tinman, Pannier, and Dorsocross, as well as the CEE motifs in a set of cardiac enhancers, show that the Tinman sites are essential in all but one of the tested enhancers; although on occasion they can be functionally redundant with Dorsocross sites. The enhancers differ widely with respect to their requirement for Pannier, Dorsocross, and CEE sites, which we ascribe to their different position in the regulatory circuitry, their distinct temporal and spatial activities during cardiogenesis, and functional redundancies among different factor binding sites.

  12. TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein

    International Nuclear Information System (INIS)

    Kurhanewicz, Nicole; McIntosh-Kastrinsky, Rachel; Tong, Haiyan; Ledbetter, Allen; Walsh, Leon; Farraj, Aimen; Hazari, Mehdi

    2017-01-01

    Short-term exposure to ambient air pollution is linked with adverse cardiovascular effects. While previous research focused primarily on particulate matter-induced responses, gaseous air pollutants also contribute to cause short-term cardiovascular effects. Mechanisms underlying such effects have not been adequately described, however the immediate nature of the response suggests involvement of irritant neural activation and downstream autonomic dysfunction. Thus, this study examines the role of TRPA1, an irritant sensory receptor found in the airways, in the cardiac response of mice to acrolein and ozone. Conscious unrestrained wild-type C57BL/6 (WT) and TRPA1 knockout (KO) mice implanted with radiotelemeters were exposed once to 3 ppm acrolein, 0.3 ppm ozone, or filtered air. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure. Analysis of ECG morphology, incidence of arrhythmia and heart rate variability (HRV) were performed. Cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 h post-exposure. Acrolein exposure increased HRV independent of HR, as well as incidence of arrhythmia. Acrolein also increased left ventricular developed pressure in WT mice at 24 h post-exposure. Ozone did not produce any changes in cardiac function. Neither gas produced ECG effects, changes in HRV, arrhythmogenesis, or mechanical function in KO mice. These data demonstrate that a single exposure to acrolein causes cardiac dysfunction through TRPA1 activation and autonomic imbalance characterized by a shift toward parasympathetic modulation. Furthermore, it is clear from the lack of ozone effects that although gaseous irritants are capable of eliciting immediate cardiac changes, gas concentration and properties play important roles. - Highlights: • Acute acrolein exposure causes autonomic imbalance and altered CV function in mice. • TRPA1 mediates acrolein-induced autonomic nervous system cardiac

  13. Soil temperature distribution around a U-tube heat exchanger in a multi-function ground source heat pump system

    International Nuclear Information System (INIS)

    Li Shuhong; Yang Weihua; Zhang Xiaosong

    2009-01-01

    The imbalance of heat extracted from the earth by the underground heat exchangers in winter and ejected into it in summer is expected to affect the long term performance of conventional ground source heat pump (GSHP) in territories with a cold winter and a warm summer such as the middle and downstream areas of the Yangtze River in China. This paper presents a new multi-function ground source heat pump (MFGSHP) system which supplies hot water as well as space cooling/heating to mitigate the soil imbalance of the extracted and ejected heat by a ground source heat pump system. The heat transfer characteristic is studied and the soil temperature around the underground heat exchangers are simulated under a typical climatic condition of the Yangtze River. A three-dimensional model was constructed with the commercial computational fluid dynamics software FLUENT based on the inner heat source theory. Temperature distribution and variation trend of a tube cluster of the underground heat exchanger are simulated for the long term performance. The results show that the soil temperature around the underground tube keeps increasing due to the surplus heat ejected into the earth in summer, which deteriorates the system performance and may lead to the eventual system deterioration. The simulation shows that MFGSHP can effectively alleviate the temperature rise by balancing the heat ejected to/extracted from underground by the conventional ground source heat pump system. The new system also improves the energy efficiency.

  14. Motion estimation for cardiac functional analysis using two x-ray computed tomography scans.

    Science.gov (United States)

    Fung, George S K; Ciuffo, Luisa; Ashikaga, Hiroshi; Taguchi, Katsuyuki

    2017-09-01

    This work concerns computed tomography (CT)-based cardiac functional analysis (CFA) with a reduced radiation dose. As CT-CFA requires images over the entire heartbeat, the scans are often performed at 10-20% of the tube current settings that are typically used for coronary CT angiography. A large image noise then degrades the accuracy of motion estimation. Moreover, even if the scan was performed during the sinus rhythm, the cardiac motion observed in CT images may not be cyclic with patients with atrial fibrillation. In this study, we propose to use two CT scan data, one for CT angiography at a quiescent phase at a standard dose and the other for CFA over the entire heart beat at a lower dose. We have made the following four modifications to an image-based cardiac motion estimation method we have previously developed for a full-dose retrospectively gated coronary CT angiography: (a) a full-dose prospectively gated coronary CT angiography image acquired at the least motion phase was used as the reference image; (b) a three-dimensional median filter was applied to lower-dose retrospectively gated cardiac images acquired at 20 phases over one heartbeat in order to reduce image noise; (c) the strength of the temporal regularization term was made adaptive; and (d) a one-dimensional temporal filter was applied to the estimated motion vector field in order to decrease jaggy motion patterns. We describe the conventional method iME1 and the proposed method iME2 in this article. Five observers assessed the accuracy of the estimated motion vector field of iME2 and iME1 using a 4-point scale. The observers repeated the assessment with data presented in a new random order 1 week after the first assessment session. The study confirmed that the proposed iME2 was robust against the mismatch of noise levels, contrast enhancement levels, and shapes of the chambers. There was a statistically significant difference between iME2 and iME1 (accuracy score, 2.08 ± 0.81 versus 2.77

  15. Direct evidence of impaired neuronal Na/K-ATPase pump function in alternating hemiplegia of childhood.

    Science.gov (United States)

    Simmons, Christine Q; Thompson, Christopher H; Cawthon, Bryan E; Westlake, Grant; Swoboda, Kathryn J; Kiskinis, Evangelos; Ess, Kevin C; George, Alfred L

    2018-03-19

    Mutations in ATP1A3 encoding the catalytic subunit of the Na/K-ATPase expressed in mammalian neurons cause alternating hemiplegia of childhood (AHC) as well as an expanding spectrum of other neurodevelopmental syndromes and neurological phenotypes. Most AHC cases are explained by de novo heterozygous ATP1A3 mutations, but the fundamental molecular and cellular consequences of these mutations in human neurons are not known. In this study, we investigated the electrophysiological properties of neurons generated from AHC patient-specific induced pluripotent stem cells (iPSCs) to ascertain functional disturbances underlying this neurological disease. Fibroblasts derived from two subjects with AHC, a male and a female, both heterozygous for the common ATP1A3 mutation G947R, were reprogrammed to iPSCs. Neuronal differentiation of iPSCs was initiated by neurogenin-2 (NGN2) induction followed by co-culture with mouse glial cells to promote maturation of cortical excitatory neurons. Whole-cell current clamp recording demonstrated that, compared with control iPSC-derived neurons, neurons differentiated from AHC iPSCs exhibited a significantly lower level of ouabain-sensitive outward current ('pump current'). This finding correlated with significantly depolarized potassium equilibrium potential and depolarized resting membrane potential in AHC neurons compared with control neurons. In this cellular model, we also observed a lower evoked action potential firing frequency when neurons were held at their resting potential. However, evoked action potential firing frequencies were not different between AHC and control neurons when the membrane potential was clamped to -80 mV. Impaired neuronal excitability could be explained by lower voltage-gated sodium channel availability at the depolarized membrane potential observed in AHC neurons. Our findings provide direct evidence of impaired neuronal Na/K-ATPase ion transport activity in human AHC neurons and demonstrate the potential

  16. Functional property of the cardiac valve prosthesis evaluated in vivo by cine-radiography

    Energy Technology Data Exchange (ETDEWEB)

    Murakoshi, Sadaaki

    1986-07-01

    Functional property of the convexo-concave Bjoerk-Shiley cardiac valve prosthesis implanted in the mitral position of 21 patients was investigated by integrated cine-radiography repeated for a long term after operation. The maximum opening angle of the tilting disc was 58 +- 2 deg, and was not affected by atrial fibrillation nor by tachycardia up to 160 bpm. There was no change in the maximum opening angle of the disc observed during follow-up period. Good correlation between shortning of the disc opening time and increase in pulse rate suggests excellent adaptation of this prosthesis for tachycardia induced by exercise or electric pacing. However, atrial fibrillation causes time delay in disc closure immediately after prolonged R-R interval. Disc rotation alleviating disc wear was observed in all the patients whether it moves slow or quick. Dysfunction of the disc opening can be readily determined not only by measuring the maximum disc opening angle, but also by observing the characteristic movement indicated in this study. It is concluded from these results that clinical apprication for the convexo-concave Bjoerk-Shiley valve prosthesis is appropriate and cine-radiography is an useful non-invasive examination of cardiac valve prosthesis for long follow-up period.

  17. Functional property of the cardiac valve prosthesis evaluated in vivo by cine-radiography

    International Nuclear Information System (INIS)

    Murakoshi, Sadaaki

    1986-01-01

    Functional property of the convexo-concave Bjoerk-Shiley cardiac valve prosthesis implanted in the mitral position of 21 patients was investigated by integrated cine-radiography repeated for a long term after operation. The maximum opening angle of the tilting disc was 58 ± 2 deg, and was not affected by atrial fibrillation nor by tachycardia up to 160 bpm. There was no change in the maximum opening angle of the disc observed during follow-up period. Good correlation between shortning of the disc opening time and increase in pulse rate suggests excellent adaptation of this prosthesis for tachycardia induced by exercise or electric pacing. However, atrial fibrillation causes time delay in disc closure immediately after prolonged R-R interval. Disc rotation alleviating disc wear was observed in all the patients whether it moves slow or quick. Dysfunction of the disc opening can be readily determined not only by measuring the maximum disc opening angle, but also by observing the characteristic movement indicated in this study. It is concluded from these results that clinical apprication for the convexo-concave Bjoerk-Shiley valve prosthesis is appropriate and cine-radiography is an useful non-invasive examination of cardiac valve prosthesis for long follow-up period. (author)

  18. Edaravone Improves Septic Cardiac Function by Inducing an HIF-1α/HO-1 Pathway

    Directory of Open Access Journals (Sweden)

    Chao He

    2018-01-01

    Full Text Available Septic myocardial dysfunction remains prevalent and raises mortality rate in patients with sepsis. During sepsis, tissues undergo tremendous oxidative stress which contributes critically to organ dysfunction. Edaravone, a potent radical scavenger, has been proved beneficial in ischemic injuries involving hypoxia-inducible factor- (HIF- 1, a key regulator of a prominent antioxidative protein heme oxygenase- (HO- 1. However, its effect in septic myocardial dysfunction remains unclarified. We hypothesized that edaravone may prevent septic myocardial dysfunction by inducing the HIF-1/HO-1 pathway. Rats were subjected to cecal ligation and puncture (CLP with or without edaravone infusion at three doses (50, 100, or 200 mg/kg, resp. before CLP and intraperitoneal injection of the HIF-1α antagonist, ME (15 mg/kg, after CLP. After CLP, rats had cardiac dysfunction, which was associated with deformed myocardium, augmented lipid peroxidation, and increased myocardial apoptosis and inflammation, along with decreased activities of catalase, HIF-1α, and HO-1 in the myocardium. Edaravone pretreatment dose-dependently reversed the changes, of which high dose most effectively improved cardiac function and survival rate of septic rats. However, inhibition of HIF-1α by ME demolished the beneficial effects of edaravone at high dose, reducing the survival rate of the septic rats without treatments. Taken together, edaravone, by inducing the HIF-1α/HO-1 pathway, suppressed oxidative stress and protected the heart against septic myocardial injury and dysfunction.

  19. Model-based imaging of cardiac electrical function in human atria

    Science.gov (United States)

    Modre, Robert; Tilg, Bernhard; Fischer, Gerald; Hanser, Friedrich; Messnarz, Bernd; Schocke, Michael F. H.; Kremser, Christian; Hintringer, Florian; Roithinger, Franz

    2003-05-01

    Noninvasive imaging of electrical function in the human atria is attained by the combination of data from electrocardiographic (ECG) mapping and magnetic resonance imaging (MRI). An anatomical computer model of the individual patient is the basis for our computer-aided diagnosis of cardiac arrhythmias. Three patients suffering from Wolff-Parkinson-White syndrome, from paroxymal atrial fibrillation, and from atrial flutter underwent an electrophysiological study. After successful treatment of the cardiac arrhythmia with invasive catheter technique, pacing protocols with stimuli at several anatomical sites (coronary sinus, left and right pulmonary vein, posterior site of the right atrium, right atrial appendage) were performed. Reconstructed activation time (AT) maps were validated with catheter-based electroanatomical data, with invasively determined pacing sites, and with pacing at anatomical markers. The individual complex anatomical model of the atria of each patient in combination with a high-quality mesh optimization enables accurate AT imaging, resulting in a localization error for the estimated pacing sites within 1 cm. Our findings may have implications for imaging of atrial activity in patients with focal arrhythmias.

  20. Assessment of left ventricular function by thallium-201 quantitative gated cardiac SPECT

    International Nuclear Information System (INIS)

    Baba, Akira; Hano, Takuzo; Ohmori, Hisashi; Ibata, Masayo; Kawabe, Tetsuya; Kubo, Takashi; Kimura, Keizo; Nishio, Ichiro

    2002-01-01

    Present study was designed to evaluate the accuracy of the measurement of left ventricular volume by quantitative gated SPECT (QGS) software using 201 Tl and the effect of cutoff frequency of Butterworth prereconstruction filter on the calculation of volume. The RH-2 type cardiac phantom and 20 patients with ischemic heart disease were studied. Left ventricular end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) were calculated by the QGS software using the various frequency of Butterworth filter. These parameters were evaluated by Simpson's method using left ventriculography (LVG). The volume of the phantom calculated by QGS was under-estimated by 14%. In the clinical study, EDV and ESV measured by QGS were smaller than those obtained from LVG by 10%. When the cutoff frequency of Butterworth filter was 0.43 cycles/cm, the values measured by QGS were best correlated with those by LVG (EDV: r=0.80, p 201 Tl quantitative gated cardiac SPECT can estimate myocardial ischemia and left ventricular function simultaneously. (author)

  1. Assessment of left ventricular function by thallium-201 quantitative gated cardiac SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Akira; Hano, Takuzo; Ohmori, Hisashi; Ibata, Masayo; Kawabe, Tetsuya; Kubo, Takashi; Kimura, Keizo; Nishio, Ichiro [Wakayama Medical Coll. (Japan)

    2002-02-01

    Present study was designed to evaluate the accuracy of the measurement of left ventricular volume by quantitative gated SPECT (QGS) software using {sup 201}Tl and the effect of cutoff frequency of Butterworth prereconstruction filter on the calculation of volume. The RH-2 type cardiac phantom and 20 patients with ischemic heart disease were studied. Left ventricular end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) were calculated by the QGS software using the various frequency of Butterworth filter. These parameters were evaluated by Simpson's method using left ventriculography (LVG). The volume of the phantom calculated by QGS was under-estimated by 14%. In the clinical study, EDV and ESV measured by QGS were smaller than those obtained from LVG by 10%. When the cutoff frequency of Butterworth filter was 0.43 cycles/cm, the values measured by QGS were best correlated with those by LVG (EDV: r=0.80, p<0.001; ESV: r=0.86, p<0.001; EF: r=0.80, p<0.001). These data suggest that {sup 201}Tl quantitative gated cardiac SPECT can estimate myocardial ischemia and left ventricular function simultaneously. (author)

  2. Early sepsis does not stimulate reactive oxygen species production and does not reduce cardiac function despite an increased inflammation status.

    Science.gov (United States)

    Léger, Thibault; Charrier, Alice; Moreau, Clarisse; Hininger-Favier, Isabelle; Mourmoura, Evangelia; Rigaudière, Jean-Paul; Pitois, Elodie; Bouvier, Damien; Sapin, Vincent; Pereira, Bruno; Azarnoush, Kasra; Demaison, Luc

    2017-07-01

    If it is sustained for several days, sepsis can trigger severe abnormalities of cardiac function which leads to death in 50% of cases. This probably occurs through activation of toll-like receptor-9 by bacterial lipopolysaccharides and overproduction of proinflammatory cytokines such as TNF- α and IL-1 β In contrast, early sepsis is characterized by the development of tachycardia. This study aimed at determining the early changes in the cardiac function during sepsis and at finding the mechanism responsible for the observed changes. Sixty male Wistar rats were randomly assigned to two groups, the first one being made septic by cecal ligation and puncture (sepsis group) and the second one being subjected to the same surgery without cecal ligation and puncture (sham-operated group). The cardiac function was assessed in vivo and ex vivo in standard conditions. Several parameters involved in the oxidative stress and inflammation were determined in the plasma and heart. As evidenced by the plasma level of TNF- α and gene expression of IL-1 β and TNF- α in the heart, inflammation was developed in the sepsis group. The cardiac function was also slightly stimulated by sepsis in the in vivo and ex vivo situations. This was associated with unchanged levels of oxidative stress, but several parameters indicated a lower cardiac production of reactive oxygen species in the septic group. In conclusion, despite the development of inflammation, early sepsis did not increase reactive oxygen species production and did not reduce myocardial function. The depressant effect of TNF- α and IL-1 β on the cardiac function is known to occur at very high concentrations. The influence of low- to moderate-grade inflammation on the myocardial mechanical behavior must thus be revisited. © 2017 French National Institute of Agronomical Research (INRA). Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  3. Nuclear cardiac

    International Nuclear Information System (INIS)

    Slutsky, R.; Ashburn, W.L.

    1982-01-01

    The relationship between nuclear medicine and cardiology has continued to produce a surfeit of interesting, illuminating, and important reports involving the analysis of cardiac function, perfusion, and metabolism. To simplify the presentation, this review is broken down into three major subheadings: analysis of myocardial perfusion; imaging of the recent myocardial infarction; and the evaluation of myocardial function. There appears to be an increasingly important relationship between cardiology, particularly cardiac physiology, and nuclear imaging techniques

  4. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Lifeng [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China); Zhou, Yong [Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Yu, Shanhe [Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025 (China); Ji, Guixiang [Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing 210042 (China); Wang, Lei [Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Liu, Wei [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China); Gu, Aihua, E-mail: aihuagu@njmu.edu.cn [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China)

    2013-11-15

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes and nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.

  5. Reduced capacity of cardiac efferent sympathetic neurons to release noradrenaline and modify cardiac function in tachycardia-induced canine heart failure.

    Science.gov (United States)

    Cardinal, R; Nadeau, R; Laurent, C; Boudreau, G; Armour, J A

    1996-09-01

    To investigate the capacity of efferent sympathetic neurons to modulate the failing heart, stellate ganglion stimulation was performed in dogs with biventricular heart failure induced by rapid ventricular pacing (240 beats/min) for 4-6 weeks. Less noradrenaline was released from cardiac myoneural junctions into coronary sinus blood in response to left stellate ganglion stimulation in anesthetized failing heart preparations (582 pg/mL, lower and upper 95% confidence intervals of 288 and 1174 pg/mL, n = 19) compared with healthy heart preparations (6391 pg/mL, 95% confidence intervals of 4180 and 9770 pg/mL, n = 14; p < 0.001). There was substantial adrenaline extraction by failing hearts (49 +/- 6%), although it was slightly lower than in healthy heart preparations (65 +/- 9%, p = 0.055). In contrast with healthy heart preparations, no net release of adrenaline occurred during stellate ganglion stimulation in any of the failing heart preparations, and ventricular tissue levels of adrenaline fell below the sensitivity limit of the HPLC technique. In failing heart preparations, maximal electrical stimulation of right or left stellate ganglia resulted in minimal augmentation of left ventricular intramyocardial (17%) and chamber (12%) systolic pressures. These indices were augmented by 145 and 97%, respectively, following exogenous noradrenaline administration. Thus, the cardiac efferent sympathetic neurons' reduced capacity to release noradrenaline and modify cardiac function can contribute to reduction of sympathetic support to the failing heart.

  6. The impact of therapeutic hypothermia on neurological function and quality of life after cardiac arrest

    DEFF Research Database (Denmark)

    Bro-Jeppesen, John; Kjaergaard, Jesper; Horsted, Tina I

    2008-01-01

    AIMS: To assess the impact of therapeutic hypothermia on cognitive function and quality of life in comatose survivors of out of Hospital Cardiac arrest (OHCA). METHODS: We prospectively studied comatose survivors of OHCA consecutively admitted in a 4-year period. Therapeutic hypothermia......=0.01. No significant differences were found in long-term survival (57% vs. 56% alive at 30 months), MMSE, or SF-36. Therapeutic hypothermia (hazard ratio: 0.15, p=0.007) and bystander CPR (hazard ratio 0.19, p=0.002) were significantly related to survival in the intervention period. CONCLUSION: CPC...... at discharge from hospital was significantly improved following implementation of therapeutic hypothermia in comatose patients resuscitated from OCHA with VF/VT. However, significant improvement in survival, cognitive status or quality of life could not be detected at long-term follow-up....

  7. Trial of quantitative analysis of cardiac function by 3D reconstruction of multislice cine MR images

    International Nuclear Information System (INIS)

    Yamamoto, Hideki; Sei, Tetsurou; Nakagawa, Tomio; Hiraki, Yoshio.

    1994-01-01

    Non-invasive techniques for measuring the dynamic behavior of the left ventricle (LV) can be invaluable tool in the diagnosis of the heart disease. In this paper we present methods for quantitative analysis of cardiac function using a compact magnetic resonance image processing system. A 256 x 256 magnetic resonance transaxial image of the left ventricle in a normal case is obtained. After gray level thresholding and region segmentation, the boundary of the left ventricular chamber is extracted. Then, the boundaries of the left ventricular chamber are displayed three-dimensionally by using the Z-buffer algorithm. Thus, LV volume and ejection fraction are calculated. Here, the value of LV ejection fraction is 60%. These results agree reasonably well with the corresponding data obtained by the echocardiography. (author)

  8. Relationship between inflammatory and coagulation biomarkers and cardiac autonomic function in HIV-infected individuals

    DEFF Research Database (Denmark)

    Young, Lari C; Roediger, Mollie P; Grandits, Greg

    2014-01-01

    Therapy study. We examined the association between IL-6, high-sensitivity C-reactive protein (hsCRP) and D-dimer with heart rate variability measures (SDNN and rMSSD), both cross-sectionally and longitudinally. RESULTS: Cross-sectional analysis revealed significant inverse associations between IL-6, hs......CRP and d-dimer with SDNN and rMSSD (p Cross-sectionally, higher levels of inflammatory and coagulation biomarkers were......AIM: To examine the relationship between inflammatory and coagulation biomarkers and cardiac autonomic function (CAF) as measured by heart rate variability in persons with HIV. MATERIALS & METHODS: This analysis included 4073 HIV-infected persons from the Strategies for Management of Antiretroviral...

  9. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Mepham, Kathryn, E-mail: katherine.mepham@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Sebag, Igal A., E-mail: igal.sebag@mcgill.ca [Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  10. Cardiac autonomic function during sleep: effects of alcohol dependence and evidence of partial recovery with abstinence.

    Science.gov (United States)

    de Zambotti, Massimiliano; Willoughby, Adrian R; Baker, Fiona C; Sugarbaker, David S; Colrain, Ian M

    2015-06-01

    Chronic alcoholism is associated with the development of cardiac and peripheral autonomic nervous system (ANS) pathology. The aim of the present study was to evaluate the extent to which recovery in ANS function could be demonstrated over the first 4 months of abstinence. Fifteen alcoholics (7 women) were studied on three occasions: within a month of detoxification, at approximately 2 months post-detox, and at 4 months post-detox. Thirteen control subjects (6 women) were also studied on three occasions with inter-study intervals matching those of the alcoholics. Six alcoholics relapsed, 48.7 ± 27.9 days following the initial PSG session. ANS function was assessed in the first part of stable non-rapid eye movement sleep. Frequency-domain power spectral analysis of heart rate variability (HRV) produced variables including: heart rate (HR), total power (TP; an index representing total HR variability), High Frequency power (HFa; an index reflecting cardiac vagal modulation), HF proportion of total power (HFprop sympathovagal balance), and HF peak frequency (HFpf; an index reflecting respiration rate). Overall, high total and high frequency variability and low sympathovagal balance and myocardial contractility are considered as desired conditions to promote cardiovascular health. At initial assessment, alcoholics had a higher HR (p < 0.001) and respiratory rate (p < 0.01), and lower vagal activity (HFa; p < 0.01) than controls. Alcoholics showed evidence of recovery in HR (p = 0.039) and HFa (p = 0.031) with 4 months of abstinence. Alcoholics with higher TP at the initial visit showed a greater improvement in TP from the initial to the 4 month follow-up session (r = 0.75, p < 0.05). Alcoholics showed substantial recovery in HR and vagal modulation of HRV with 4 months of abstinence, with evidence that the extent of recovery in HRV may be partially determined by the extent of alcohol dependence-related insult to the cardiac ANS system. These data support other studies

  11. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment

    International Nuclear Information System (INIS)

    Iso, Yoshitaka; Spees, Jeffrey L.; Serrano, Claudia; Bakondi, Benjamin; Pochampally, Radhika; Song, Yao-Hua; Sobel, Burton E.; Delafontaine, Patrick; Prockop, Darwin J.

    2007-01-01

    The aim of this study was to determine whether intravenously administered multipotent stromal cells from human bone marrow (hMSCs) can improve cardiac function after myocardial infarction (MI) without long-term engraftment and therefore whether transitory paracrine effects or secreted factors are responsible for the benefit conferred. hMSCs were injected systemically into immunodeficient mice with acute MI. Cardiac function and fibrosis after MI in the hMSC-treated group were significantly improved compared with controls. However, despite the cardiac improvement, there was no evident hMSC engraftment in the heart 3 weeks after MI. Microarray assays and ELISAs demonstrated that multiple protective factors were expressed and secreted from the hMSCs in culture. Factors secreted by hMSCs prevented cell death of cultured cardiomyocytes and endothelial cells under conditions that mimicked tissue ischemia. The favorable effects of hMSCs appear to reflect the impact of secreted factors rather than engraftment, differentiation, or cell fusion

  12. American Heart Association's Life's Simple 7: Avoiding Heart Failure and Preserving Cardiac Structure and Function.

    Science.gov (United States)

    Folsom, Aaron R; Shah, Amil M; Lutsey, Pamela L; Roetker, Nicholas S; Alonso, Alvaro; Avery, Christy L; Miedema, Michael D; Konety, Suma; Chang, Patricia P; Solomon, Scott D

    2015-09-01

    Many people may underappreciate the role of lifestyle in avoiding heart failure. We estimated whether greater adherence in middle age to American Heart Association's Life's Simple 7 guidelines—on smoking, body mass, physical activity, diet, cholesterol, blood pressure, and glucose—is associated with lower lifetime risk of heart failure and greater preservation of cardiac structure and function in old age. We studied the population-based Atherosclerosis Risk in Communities Study cohort of 13,462 adults ages 45-64 years in 1987-1989. From the 1987-1989 risk factor measurements, we created a Life's Simple 7 score (range 0-14, giving 2 points for ideal, 1 point for intermediate, and 0 points for poor components). We identified 2218 incident heart failure events using surveillance of hospital discharge and death codes through 2011. In addition, in 4855 participants free of clinical cardiovascular disease in 2011-2013, we performed echocardiography from which we quantified left ventricular hypertrophy and diastolic dysfunction. One in four participants (25.5%) developed heart failure through age 85 years. Yet, this lifetime heart failure risk was 14.4% for those with a middle-age Life's Simple 7 score of 10-14 (optimal), 26.8% for a score of 5-9 (average), and 48.6% for a score of 0-4 (inadequate). Among those with no clinical cardiovascular event, the prevalence of left ventricular hypertrophy in late life was approximately 40% as common, and diastolic dysfunction was approximately 60% as common, among those with an optimal middle-age Life's Simple 7 score, compared with an inadequate score. Greater achievement of American Heart Association's Life's Simple 7 in middle age is associated with a lower lifetime occurrence of heart failure and greater preservation of cardiac structure and function. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Cardiac biopotentials influence on central nervous system functioning: first steps in hypothesis verification

    Directory of Open Access Journals (Sweden)

    Kondal'skaya Yu.O.

    2012-12-01

    Full Text Available The research goal is to verify the hypothesis on influence of cardiac biopotentials on central nervous system. Materials: 20 healthy individuals aged 18-26 years old have been participated in the investigations. Two groups composed of 10 patients each have been formed. Double increase in heart biopotentials by means of artificial impulse insertion between natural cardiac contractions has been modeled. Artificial impulses have been similar to unaffected ones, produced in a normal heart work. Additional impulses have been generated using external pacemaker and have been linked up with electrodes on the chest. They have been synchronized with the heart rhythm and located in-between R waves. The duration of those impulses has been fully matched to ventricular complex. Their amplitude has been adjusted individually depending on the height of R wave. Nervous system mobility has been used as the indicator reflecting the central nervous system functioning. Degree of mobility has been defined on the basis of tapping test results. The test has been repeated at specific intervals. Groups have been exposed to two adverse testing modes. Additional impulses have been conducted to the patients of group I within an hour over a period of the first and the third 15-minute intervals and to the patients of group II over a period of the second and the fourth 15-minute intervals. In the middle and in the end of each time interval tapping test has been carried out. After preliminary analysis two other modes of stimulation have been tested. The stimulation has been performed within the 40-minute course: over a period of the first 20-minute interval and vice versa. Results: Detailed evaluation has revealed that short-time increase of nervous processes has been checked in combination with decrease in their stability. Conclusion: The data obtained have shown that there is possible influence on central nervous system functioning. The article ends with prospects of further

  14. Evaluation of cardiac function using multi-shot echo planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tadashi; Tanitame, Nobuko; Hata, Ryoichiro; Hirai, Nobuhiko; Ikeda, Midori; Ono, Chiaki; Fukuoka, Haruhito; Ito, Katsuhide [Hiroshima Univ. (Japan). School of Medicine

    1998-01-01

    In this study, we performed multi-shot echo planar imaging (8 shot, TR/TE/FL=55 ms/18 ms/60 degrees) and k-space segmented fast gradient echo sequence (8 views per segment, TR/TE/FL=9.9 ms/1.8 ms/30 degrees) to assess cardiac function in healthy volunteers. Transaxial sections of the entire heart were obtained with both sequences in ECG triggered, breath hold, and with a 256 x 128 matrix. Resulting temporal resolution was 55 ms for echo planar imaging, and 71 ms for k-space segmented fast gradient echo sequence, respectively. Ventricular volume and ejection fraction of both ventricles and left ventricular mass obtained with multi-shot echo planar imaging were assessed in comparison with k-space segmented fast gradient echo sequence. Measurements of left ventricular volume, ejection fraction and mass obtained with multi-shot echo planar imaging demonstrated close correlation with those obtained with k-space segmented fast gradient echo sequence. Right ventricular volumes obtained with echo planar imaging were significantly higher than those obtained with k-space segmented fast gradient echo sequence. This tendency is considered to be due to differing contrast between right ventricular myocardium and fat tissue observed with echo planar imaging relative to that observed with fast gradient echo sequence, because fat suppression is always performed in echo planar images. Multi-shot echo planar imaging can be a reliable tool for measurement of cardiac functional parameters, although wall motion analysis of the left ventricle requires higher temporal resolution and a short axial section. (K.H.)

  15. Cardiac Function After Multimodal Breast Cancer Therapy Assessed With Functional Magnetic Resonance Imaging and Echocardiography Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Heggemann, Felix, E-mail: felix.heggemann@umm.de [First Medical Department, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); German Center for Cardiovascular Research, Mannheim (Germany); Grotz, Hanna; Welzel, Grit [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Dösch, Christina [First Medical Department, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); German Center for Cardiovascular Research, Mannheim (Germany); Hansmann, Jan [Institute of Diagnostic Radiology and Nuclear Medicine, University Medical Center Mannheim University of Heidelberg, Mannheim (Germany); Kraus-Tiefenbacher, Uta [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Attenberger, Ulrike; Schönberg, Stephan Oswald [German Center for Cardiovascular Research, Mannheim (Germany); Institute of Diagnostic Radiology and Nuclear Medicine, University Medical Center Mannheim University of Heidelberg, Mannheim (Germany); Borggrefe, Martin [First Medical Department, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); German Center for Cardiovascular Research, Mannheim (Germany); Wenz, Frederik [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Papavassiliu, Theano [First Medical Department, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); German Center for Cardiovascular Research, Mannheim (Germany); Lohr, Frank [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany)

    2015-11-15

    Purpose: Breast intensity modulated radiation therapy (IMRT) reduces high-dose heart volumes but increases low-dose volumes. We prospectively assessed heart changes after 3D conformal RT (3DCRT) and IMRT for left-sided breast cancer. Heart dose was analyzed individually, 3DCRT patients were moderately exposed, and IMRT was performed only in patients with unacceptably high heart doses upon 3DCRT planning. Methods and Materials: In 49 patients (38 patients received 3DCRT; 11 patients received IMRT; and 20 patients received neoadjuvant or adjuvant chemotherapy) magnetic resonance imaging (MRI) and echocardiography were performed before and at 6, 12, and 24 months after treatment. Results: Mean heart dose for IMRT was 12.9 ± 3.9 Gy versus 4.5 ± 2.4 Gy for 3DCRT. Heart volumes receiving >40 Gy were 2.6% (3DCRT) versus 1.3% (IMRT); doses were >50 Gy only with 3DCRT. Temporary ejection fraction (EF) decrease was observed on MRI after 6 months (63%-59%, P=.005) resolving at 24 months. Only 3 patients had pronounced largely transient changes of EF and left ventricular enddiastolic diameter (LVEDD). Mitral (M) and tricuspid (T) annular plane systolic excursion (MAPSE and TAPSE) were reduced over the whole cohort (still within normal range). After 24 months left ventricular remodeling index decreased in patients receiving chemotherapy (0.80 vs 0.70, P=.028). Neither wall motion abnormalities nor late enhancements were found. On echocardiography, in addition to EF findings that were similar to those on MRI, global strain was unchanged over the whole cohort at 24 months after a transient decrease at 6 and 12 months. Longitudinal strain decreased in the whole cohort after 24 months in some segments, whereas it increased in others. Conclusions: Until 24 months after risk-adapted modern multimodal adjuvant therapy, only subclinical cardiac changes were observed in both 3DCRT patients with inclusion of small to moderate amounts of heart volume in RT tangents and

  16. Different Modes of Monitoring and Correction of Cardiac Function During Operations Under Extracorporeal Circulation

    Directory of Open Access Journals (Sweden)

    L. A. Krichevsky

    2007-01-01

    Full Text Available Objective: to comparatively evaluate the efficiency of intensive care measures chosen on the basis of traditional monitoring of central hemodynamics (CH or on that of the data of transesophageal echocardiography (TE echoCG.Materials and methods: 50 patients were examined at coronary bypass surgery under extracorporeal circulation. Under a prospective comparative analysis were two algorithms of treatment policy: maintenance of cardiac index, by using the maximum volemic load, or that of left ventricular systolic function under guidance of transesophageal echocardiography.Results: Significantly (p<0.05 larger doses of dopamine and/or dobutamine were required to maintain adequate left ventricular systolic function. However, this treatment policy showed much better (p<0.05 circulatory parameters in the postperfusion period. At the same time the duration of postoperative inotropic therapy in these patients proved to be significantly (p<0.05 less.Conclusion. The treatment policy based on the maintenance of left ventricular systolic function under guidance of TE echoCG leads to the shortest circulatory stabilization during myocardial revascularization. The application of a volemic load and the expectant use of inotropic drugs result in a longer restoration of operated heart function

  17. Persistence of normal cardiac function and myocardial perfusion in irradiated long-term survivors of Hodgkin's disease

    International Nuclear Information System (INIS)

    Constine, L.S.; Schwartz, R.G.; Savage, D.E.; King, V.; Muhs, A.; Rubin, P.

    1996-01-01

    Purpose: The risk of myocardial infarction and cardiac dysfunction following mantle irradiation (RT) for Hodgkin's disease is controversial. The relative risk of fatal myocardial infarction is 2.8 in our Hodgkin's patients, similar to other reports. Sensitive evaluations of cardiac function and myocardial perfusion might be expected to reveal pre-clinical abnormalities of potential significance. We hypothesized the presence of pre-clinical cardiac toxicity and progressive deterioration of left ventricular performance and myocardial ischemia over time in long-term survivors of Hodgkin's disease. The data reported herein extend our previous study in patient number (n=50) and follow-up duration (mean 16.5 years). Materials and Methods: Equilibrium radionuclide angiocardiography (ERNA) was used to quantify left ventricular (LV) systolic and diastolic function with LV ejection fraction (LVEF) and peak filling rate (PFR), respectively. Quantitative myocardial perfusion scintigraphy (MPS) and ECG stress testing with exercise or dipyridamole were used to assess myocardial perfusion and electrical function. Patients at least 1.0 year after RT were eligible if ≤ 50 years old at RT and without known Hodgkin's or cardiac disease. Fifty patients, ages 10-46 years (mean 26.0) at RT, were tested 1.1 to 29.1 years (mean 9.1) after RT. Seventeen patients were tested 2 - 3 times separated by 0.5 - 6.5 years (mean 3.3). The mean central cardiac RT dose was 35.1 Gy (range 18.5 - 47.5) in daily 1.5-2.0 Gy fractions. Twelve patients were additionally irradiated to the left ventricle (LVRT), usually through partial transmission left lung shields (range 14.3-21.3 Gy). Results: No patient had symptomatic cardiac disease at the time of evaluation. The mean LVEF (first test, n = 50) was 60 ± 6% (range 42-73%) [normal ≥ 50%], and PFR (first test, n=44) was 3.43 ± 0.83 end diastolic volume per second (range 1.5-5.2 EDV/sec) [normal ≥ 2.54 EDV/sec] with 2 and 7 patients below normal

  18. Coumpounds affecting cell membrane functions and integrity: MDR pumps and theit exploration

    Czech Academy of Sciences Publication Activity Database

    Sigler, Karel; Gášková, D.

    2002-01-01

    Roč. 51, č. 24 (2002), s. 19-22 ISSN 0137-1398. [Uroczyste Seminarium z okazji urodzin Profesora Stanislawa Witka /70./. Wroclaw, 21.07.2002] R&D Projects: GA AV ČR IBS5020202; GA MŠk ME 577 Keywords : xenobioticexporting * multidrug resistance * mdr pumps Subject RIV: EE - Microbiology, Virology

  19. Baking-powder driven centripetal pumping controlled by event-triggering of functional liquids

    DEFF Research Database (Denmark)

    Kinahan, David J.; Burger, Robert; Vembadi, Abhishek

    2015-01-01

    This paper reports radially inbound pumping by the event-triggered addition of water to on-board stored baking powder in combination with valving by an immiscible, high-specific weight liquid on a centrifugal microfluidic platform. This technology allows making efficient use of precious real estate...

  20. Short-term memory of motor network performance via activity-dependent potentiation of Na+/K+ pump function.

    Science.gov (United States)

    Zhang, Hong-Yan; Sillar, Keith T

    2012-03-20

    Brain networks memorize previous performance to adjust their output in light of past experience. These activity-dependent modifications generally result from changes in synaptic strengths or ionic conductances, and ion pumps have only rarely been demonstrated to play a dynamic role. Locomotor behavior is produced by central pattern generator (CPG) networks and modified by sensory and descending signals to allow for changes in movement frequency, intensity, and duration, but whether or how the CPG networks recall recent activity is largely unknown. In Xenopus frog tadpoles, swim bout duration correlates linearly with interswim interval, suggesting that the locomotor network retains a short-term memory of previous output. We discovered an ultraslow, minute-long afterhyperpolarization (usAHP) in network neurons following locomotor episodes. The usAHP is mediated by an activity- and sodium spike-dependent enhancement of electrogenic Na(+)/K(+) pump function. By integrating spike frequency over time and linking the membrane potential of spinal neurons to network performance, the usAHP plays a dynamic role in short-term motor memory. Because Na(+)/K(+) pumps are ubiquitously expressed in neurons of all animals and because sodium spikes inevitably accompany network activity, the usAHP may represent a phylogenetically conserved but largely overlooked mechanism for short-term memory of neural network function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The Impact of a Non-Functional Thyroid Receptor Beta upon Triiodotironine-Induced Cardiac Hypertrophy in Mice

    Directory of Open Access Journals (Sweden)

    Güínever Eustáquio do Império

    2015-08-01

    Full Text Available Background/Aims: Thyroid hormone (TH signalling is critical for heart function. The heart expresses thyroid hormone receptors (THRs; THRα1 and THRβ1. We aimed to investigate the regulation mechanisms of the THRβ isoform, its association with gene expression changes and implications for cardiac function. Methods: The experiments were performed using adult male mice expressing TRβΔ337T, which contains the Δ337T mutation of the human THRB gene and impairs ligand binding. Cardiac function and RNA expression were studied after hypo-or hyperthyroidism inductions. T3-induced cardiac hypertrophy was not observed in TRβΔ337T mice, showing the fundamental role of THRβ in cardiac hypertrophy. Results: We identified a group of independently regulated THRβ genes, which includes Adrb2, Myh7 and Hcn2 that were normally regulated by T3 in the TRβΔ337T group. However, Adrb1, Myh6 and Atp2a2 were regulated via THRβ. The TRβΔ337T mice exhibited a contractile deficit, decreased ejection fraction and stroke volume, as assessed by echocardiography. In our model, miR-208a and miR-199a may contribute to THRβ-mediated cardiac hypertrophy, as indicated by the absence of T3-regulated ventricular expression in TRβΔ337T mice. Conclusion: THRβ has important role in the regulation of specific mRNA and miRNA in T3-induced cardiac hypertrophic growth and in the alteration of heart functions.

  2. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    Directory of Open Access Journals (Sweden)

    Vinicius S Carreira

    Full Text Available The Developmental Origins of Health and Disease (DOHaD Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR, either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease.

  3. Impact of exercise rehabilitation on cardiac neuronal function in heart failure. An iodine-123 metaiodobenzylguanidine scintigraphy study

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, D.; Bouvard, G. [Service de Medecine Nucleaire, CHU Cote de Nacre, Caen (France); Lecluse, E.; Grollier, G.; Potier, J.C. [Service de Cardiologie, CHU Cote de Nacre, Caen (France); Belin, A. [Service de Readaptation Cardiaque, CHU Cote de Nacre, Caen (France); Babatasi, G. [Service de Chirurgie Cardio-Thoracique, CHU Cote de Nacre, Caen (France); Amar, M.H. [Centre Francois Baclesse, Caen (France). Service de Recherche Clinique

    1998-03-01

    Exercise training can induce important haemodynamic and metabolic adaptations in patients with chronic heart failure due to severe left ventricular dysfunction. This study examined the impact of exercise rehabilitation on cardiac neuronal function using iodine-123 metaiobodenzylguanidine (MIBG) scintigraphy. Fourteen patients (11 men, 3 women; mean age 48 years; range: 36-66 years) with stable chronic heart failure of NYHA class II-III and an initial resting radionuclide left ventricular ejection fraction (LVEF) <50% were enrolled in the study. Patients underwent progressive, supervised endurance training (treadmill test, Bruce protocol) during a 6-month period (60 sessions, 3 sessions per week) at a cardiac rehabilitation referral centre in order to measure exercise parameters. Planar {sup 123}I-MIBG scintigraphy provided measurements of cardiac neuronal uptake (heart-mediastinum ratio activity, 4 h after intravenous injection of 185 MBq of MIBG). Radionuclide LVEF was also assessed at the outset and after 6 months of exercise training. Workload (801{+-}428 vs 1229{+-}245 kpm.min{sup -1}, P=0.001), exercise duration (504{+-}190 vs 649{+-}125 s, P=0.02), and myocardial MIBG uptake (135%{+-}19% vs 156%{+-}25%, P=0.02) increased significantly after rehabilitation. However, LVEF did not change significantly (23%{+-}9% vs 21%{+-}10%, p=NS). It is concluded that exercise rehabilitation induces improvement of cardiac neuronal function without having negative effects on cardiac contractility in patients with stable chronic heart failure. (orig.)

  4. Effect of milrinone on cardiac functions in patients undergoing coronary artery bypass graft: a meta-analysis of randomized clinical trials.

    Science.gov (United States)

    You, Zhigang; Huang, Lin; Cheng, Xiaoshu; Wu, Qinghua; Jiang, Xinghua; Wu, Yanqing

    2016-01-01

    Inotropes are commonly used to treat myocardial dysfunction, which is the major complication after coronary artery bypass graft (CABG). Milrinone, a phosphodiesterase 3 inhibitor, is one of these inotropes. Recently, a number of clinical studies have been carried out to evaluate the effects of milrinone on cardiac function in patients with low ventricular ejection fraction undergoing CABG. However, it has been inconclusive because of the inconsistent results. In addition, some studies found that milrinone increased the incidence of postoperative atrial arrhythmias and did not show any long-term beneficial effects on survival. Therefore, it is very important to perform a meta-analysis to summarize the results so as to determine the clinical efficacy and safety of milrinone. Several databases and websites for clinical trials were searched until October 2015 for prospective clinical studies comparing milrinone versus placebo on cardiac functions in patients undergoing CAGB. Four articles were identified by our search strategy. 1) Milrinone decreased incidence of myocardial ischemia and myocardial infarction (15.6% versus 44.4%; 4.7% versus 18% in milrinone and control group, respectively). 2) Milrinone decreased duration of inotropic support (95% confidence interval [CI]: -6.52 to -1.68; P=0.0009) and mechanical ventilation (h) support (95% CI -5.00 to -0.69; P=0.010), but did not decrease the requirement for intra-aortic balloon pump or inotropic support (P>0.05). 3) Milrinone did not decrease the overall mortality or morbidity, intensive care unit stay (P>0.05). Perioperative continuous infusion of milrinone is effective to lower incidence of myocardial ischemia and myocardial infarction in patients post-CABG, but it was unable to improve the overall morbidity and mortality or decreased duration of intensive care unit stay. The available sample size is small; therefore, future studies should be directed toward a better understanding of the benefit of milrinone to

  5. Optimization of two-photon wave function in parametric down conversion by adaptive optics control of the pump radiation.

    Science.gov (United States)

    Minozzi, M; Bonora, S; Sergienko, A V; Vallone, G; Villoresi, P

    2013-02-15

    We present an efficient method for optimizing the spatial profile of entangled-photon wave function produced in a spontaneous parametric down conversion process. A deformable mirror that modifies a wavefront of a 404 nm CW diode laser pump interacting with a nonlinear β-barium borate type-I crystal effectively controls the profile of the joint biphoton function. The use of a feedback signal extracted from the biphoton coincidence rate is used to achieve the optimal wavefront shape. The optimization of the two-photon coupling into two, single spatial modes for correlated detection is used for a practical demonstration of this physical principle.

  6. In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors.

    Directory of Open Access Journals (Sweden)

    Matteo Vecellio

    Full Text Available Adult human cardiac mesenchymal-like stromal cells (CStC represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS in the presence of 5 µM all-trans Retinoic Acid (ATRA, 5 µM Phenyl Butyrate (PB, and 200 µM diethylenetriamine/nitric oxide (DETA/NO, to create a novel epigenetically active cocktail (EpiC. Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and α-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker I(f current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors.

  7. Evaluation of the diagnostic accuracy of ultra-miniaturized pocket ultrasound device on cardiac function in critically ill patients

    Directory of Open Access Journals (Sweden)

    Li WANG

    2016-09-01

    Full Text Available Objective  To compare the diagnostic accuracy of a new ultra-miniaturized pocket ultrasound device (PUD (VscanTM, GE Healthcare, Wauwatosa, WI and conventional high-quality echocardiography system (Vivid qTM, GE Healthcare for a cardiac focused ultrasonography in critical patients. Methods  The patients admitted to our hospital and receiving transthoracic echocardiography (TTE using a PUD and a conventional echocardiography system were included in this study during the 10 months from December 2013 to October 2014. Each examination was performed independently by an intensive care unit (ICU physician and an experienced ultrasound doctor, unaware of the results found by the alternative device. The following parameters were assessed: global cardiac systolic function, identification of ventricular size, whether or not accompanying enlargement or hypertrophy, assessment for the morphology of cardiac valves and its function, pericardial effusion and estimation of the inferior vena cava (IVC diameter. The time-consuming of each device were recorded. Results  One hundred and twenty-eight patients were included in the study. Their left ventricular wall motion abnormalities, global left ventricular systolic dysfunction, pericardial effusion, IVC dilation were assessed by PUD and the assessment results were highly consistent with those by Vivid q (κ>0.84. The consistency was slightly lower in evaluating the left and right ventricular size. For evaluating the cardiac valves function, the agreement of two devices were relatively low (κ=0.69-0.84. Compared with Vivid q, PUD took less time (4.7±1.4min vs 6.3±2.6min; P<0.05. Conclusion  PUD can provide fast, reliable cardiac examination, thus being an effective method for ICU physicians to assess the cardiac f unction in critical patients. DOI: 10.11855/j.issn.0577-7402.2016.08.10

  8. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study

    NARCIS (Netherlands)

    Janssens, Karin A. M.; Riese, Harriëtte; van Roon, Arie M.; Hunfeld, Joke A. M.; Groot, Paul F. C.; Oldehinkel, Albertine J.; Rosmalen, Judith G. M.

    2016-01-01

    Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS). However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autonomic nervous

  9. Association of Weight and Body Composition on Cardiac Structure and Function in the ARIC Study (Atherosclerosis Risk in Communities).

    Science.gov (United States)

    Bello, Natalie A; Cheng, Susan; Claggett, Brian; Shah, Amil M; Ndumele, Chiadi E; Roca, Gabriela Querejeta; Santos, Angela B S; Gupta, Deepak; Vardeny, Orly; Aguilar, David; Folsom, Aaron R; Butler, Kenneth R; Kitzman, Dalane W; Coresh, Josef; Solomon, Scott D

    2016-08-01

    Obesity increases cardiovascular risk. However, the extent to which various measures of body composition are associated with abnormalities in cardiac structure and function, independent of comorbidities commonly affecting obese individuals, is not clear. This study sought to examine the relationship between body mass index, waist circumference, and percent body fat with conventional and advanced measures of cardiac structure and function. We studied 4343 participants of the ARIC study (Atherosclerosis Risk in Communities) who were aged 69 to 82 years, free of coronary heart disease and heart failure, and underwent comprehensive echocardiography. Increasing body mass index, waist circumference, and body fat were associated with greater left ventricular (LV) mass and left atrial volume indexed to height(2.7) in both men and women (Pheart disease or heart failure, obesity was associated with subclinical abnormalities in cardiac structure in both men and women and with adverse LV remodeling and impaired LV systolic function in women. These data highlight the association of obesity and subclinical abnormalities of cardiac structure and function, particularly in women. © 2016 American Heart Association, Inc.

  10. Atorvastatin improves cardiac function and remodeling in chronic non-ischemic heart failure: A clinical and pre-clinical study

    Directory of Open Access Journals (Sweden)

    Ibrahim Elmadbouh

    2015-12-01

    Conclusions: Atorvastatin with standard CHF therapy improved cardiac function and remodeling. Cardio-protective “pleiotropic” actions of atorvastatin are anti-inflammatory, anti-fibrotic and anti-oxidative. Thus, atorvastatin has a potential therapeutic value in the management of CHF patients.

  11. Manual hyperinflation partly prevents reductions of functional residual capacity in cardiac surgical patients--a randomized controlled trial

    NARCIS (Netherlands)

    Paulus, Frederique; Veelo, Denise P.; de Nijs, Selma B.; Beenen, Ludo F. M.; Bresser, Paul; de Mol, Bas A. J. M.; Binnekade, Jan M.; Schultz, Marcus J.

    2011-01-01

    Cardiac surgery is associated with post-operative reductions of functional residual capacity (FRC). Manual hyperinflation (MH) aims to prevent airway plugging, and as such could prevent the reduction of FRC after surgery. The main purpose of this study was to determine the effect of MH on

  12. Improvement of cardiac function persists long term with medical therapy for left ventricular systolic dysfunction.

    Science.gov (United States)

    Chen, David; Chang, Richard; Umakanthan, Branavan; Stoletniy, Liset N; Heywood, J Thomas

    2007-09-01

    In certain patients with left ventricular (LV) systolic dysfunction, improvements in cardiac function are seen after initiation of medical therapy; however, the long-term stability of ventricular function in such patients is not well described. We retrospectively analyzed 171 patients who had a baseline ejection fraction of 45% or less, a follow-up echocardiogram at 2 to 12 months after initiation of medical therapy, and a final echocardiogram. We found that 48.5% of the patients demonstrated initial improvements in LV function after initiation of medical therapy, and the improvements appear to be sustained (88% of patients) at 44 +/- 21 months follow-up. A nonischemic etiology and younger age were the only independent predictors of change of LV ejection fraction of 10 or more at a mean 8.4 +/- 3.4 months after optimal medical therapy. Our study revealed a trend toward improved long-term survival in individuals with an early improvement in LV ejection fraction with medical therapy, especially in those with sustained improvement.

  13. Estradiol improves cardiac and hepatic function after trauma-hemorrhage: role of enhanced heat shock protein expression.

    Science.gov (United States)

    Szalay, László; Shimizu, Tomoharu; Suzuki, Takao; Yu, Huang-Ping; Choudhry, Mashkoor A; Schwacha, Martin G; Rue, Loring W; Bland, Kirby I; Chaudry, Irshad H

    2006-03-01

    Although studies indicate that 17beta-estradiol administration after trauma-hemorrhage (T-H) improves cardiac and hepatic functions, the underlying mechanisms remain unclear. Because the induction of heat shock proteins (HSPs) can protect cardiac and hepatic functions, we hypothesized that these proteins contribute to the salutary effects of estradiol after T-H. To test this hypothesis, male Sprague-Dawley rats ( approximately 300 g) underwent laparotomy and hemorrhagic shock (35-40 mmHg for approximately 90 min) followed by resuscitation with four times the shed blood volume in the form of Ringer lactate. 17beta-estradiol (1 mg/kg body wt) was administered at the end of the resuscitation. Five hours after T-H and resuscitation there was a significant decrease in cardiac output, positive and negative maximal rate of left ventricular pressure. Liver function as determined by bile production and indocyanine green clearance was also compromised after T-H and resuscitation. This was accompanied by an increase in plasma alanine aminotransferase (ALT) levels and liver perfusate lactic dehydrogenase levels. Furthermore, circulating levels of TNF-alpha, IL-6, and IL-10 were also increased. In addition to decreased cardiac and hepatic function, there was an increase in cardiac HSP32 expression and a reduction in HSP60 expression after T-H. In the liver, HSP32 and HSP70 were increased after T-H. There was no change in heart HSP70 and liver HSP60 after T-H and resuscitation. Estradiol administration at the end of T-H and resuscitation increased heart/liver HSPs expression, ameliorated the impairment of heart/liver functions, and significantly prevented the increase in plasma levels of ALT, TNF-alpha, and IL-6. The ability of estradiol to induce HSPs expression in the heart and the liver suggests that HSPs, in part, mediate the salutary effects of 17beta-estradiol on organ functions after T-H.

  14. Heterogeneous response of cardiac sympathetic function to cardiac resynchronization therapy in heart failure documented by 11[C]-hydroxy-ephedrine and PET/CT

    International Nuclear Information System (INIS)

    Capitanio, Selene; Nanni, Cristina; Marini, Cecilia; Bonfiglioli, Rachele; Martignani, Cristian; Dib, Bassam; Fuccio, Chiara; Boriani, Giuseppe; Picori, Lorena; Boschi, Stefano; Morbelli, Silvia

    2015-01-01

    Introduction: Cardiac resynchronization therapy (CRT) is an accepted treatment in patients with end-stage heart failure. PET permits the absolute quantification of global and regional homogeneity in cardiac sympathetic innervation. We evaluated the variation of cardiac adrenergic activity in patients with idiopathic heart failure (IHF) disease (NYHA III–IV) after CRT using 11 C-hydroxyephedrine (HED) PET/CT. Methods: Ten IHF patients (mean age = 68; range = 55–81; average left ventricular ejection fraction 26 ± 4%) implanted with a resynchronization device underwent three HED PET/CT studies: PET 1 one week after inactive device implantation; PET 2, one week after PET 1 under stimulated rhythm; PET 3, at 3 months under active CRT. A dedicated software (PMOD 3.4 version) was used to estimate global and regional cardiac uptake of HED through 17 segment polar maps. Results: At baseline, HED uptake was heterogeneously distributed throughout the left ventricle with a variation coefficient of 18 ± 5%. This variable markedly decreased after three months CRT (12 ± 5%, p < 0.01). Interestingly, subdividing the 170 myocardial segments (17 segments of each patient multiplied by the number of patients) into two groups, according to the median value of tracer uptake expressed as % of maximal myocardial uptake (76%), we observed a different behaviour depending on baseline innervation: HED uptake significantly increased only in segments with “impaired innervation” (SUV 2.61 ± 0.92 at PET1 and 3.05 ± 1.67 at three months, p < 0.01). Conclusion: As shown by HED PET/CT uptake and distribution, improvement in homogeneity of myocardial neuronal function reflected a selective improvement of tracer uptake in regions with more severe neuronal damage. Advances in Knowledge: These finding supported the presence of a myocardial regional variability in response of cardiac sympathetic system to CRT and a systemic response involving remote tissues with rich adrenergic innervation

  15. Right-sided cardiac function in healthy volunteers measured by first-pass radionuclide ventriculography and gated blood-pool SPECT: comparison with cine MRI

    DEFF Research Database (Denmark)

    Kjaer, Andreas; Lebech, Anne-Mette; Hesse, Birger

    2005-01-01

    for evaluation of right-sided cardiac function. The aim of our study was to compare the agreement between these methods when measuring right-sided cardiac function. METHODS: Twenty-four healthy volunteers were included. Mean age was 44 years (range: 25-60) and 29% were females. All participants had FP, GBPS...

  16. Competing Risk of Cardiac Status and Renal Function During Hospitalization for Acute Decompensated Heart Failure.

    Science.gov (United States)

    Salah, Khibar; Kok, Wouter E; Eurlings, Luc W; Bettencourt, Paulo; Pimenta, Joana M; Metra, Marco; Verdiani, Valerio; Tijssen, Jan G; Pinto, Yigal M

    2015-10-01

    The aim of this study was to analyze the dynamic changes in renal function in combination with dynamic changes in N-terminal pro-B-type natriuretic peptide (NT-proBNP) in patients hospitalized for acute decompensated heart failure (ADHF). Treatment of ADHF improves cardiac parameters, as reflected by lower levels of NT-proBNP. However this often comes at the cost of worsening renal parameters (e.g., serum creatinine, estimated glomerular filtration rate [eGFR], or serum urea). Both the cardiac and renal markers are validated indicators of prognosis, but it is not yet clear whether the benefits of lowering NT-proBNP are outweighed by the concomitant worsening of renal parameters. This study was an individual patient data analysis assembled from 6 prospective cohorts consisting of 1,232 patients hospitalized for ADHF. Endpoints were all-cause mortality and the composite of all-cause mortality and/or readmission for a cardiovascular reason within 180 days after discharge. A significant reduction in NT-proBNP was not associated with worsening of renal function (WRF) or severe WRF (sWRF). A reduction of NT-proBNP of more than 30% during hospitalization determined prognosis (all-cause mortality hazard ratio [HR]: 1.81; 95% confidence Interval [CI]: 1.32 to 2.50; composite endpoint: HR: 1.36, 95% CI: 1.13 to 1.64), regardless of changes in renal function and other clinical variables. When we defined prognosis, NT-proBNP changes during hospitalization for treatment of ADHF prevailed over parameters for worsening renal function. Severe WRF is a measure of prognosis, but is of lesser value than, and independent of the prognostic changes induced by adequate NT-proBNP reduction. This suggests that in ADHF patients it may be warranted to strive for an optimal decrease in NT-proBNP, even if this induces WRF. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  17. Utility of QGS for 201Tl electrocardiogram-gated SPECT in cardiac function evaluations

    International Nuclear Information System (INIS)

    Shimazaki, Hiroshi; Oono, Ryuichi

    2001-01-01

    QGS (quantitative gated SPECT) was applied to 201 Tl SPECT, whose images are inferior to those of Tc SPECT, and its utility was evaluated. More specifically, the cardiac function index was calculated by QGS, and local wall motion was evaluated visually. Accuracy was assessed by comparison with left ventriculography. The subjects were 29 patients (21 males, 8 females; 6 with myocardial infarction, 18 with stenocardia, 2 with pericardial disease, 3 with other heart diseases) who had undergone myocardial scintigraphy and left ventriculography between February and May, 2000. 201 Tl (74 or 111 MBq) was administered to all patients. The resting image was obtained 10 minutes later, and the delayed image during loading was obtained 4 hours later. The conditions for acquiring the images were as follows. Two detectors were arranged at a 90-degree angle in the form of an L. The 180 degrees from 45 degrees right anterior oblique (RAO) to 45 degrees left posterior oblique (LPO) were divided into 30 sections at 6-degree intervals, and the image in each section was acquired for 60 seconds. The matrix was 64 x 64. As a cardiac function index, the left ventricular ejection function (LVEF) obtained by electrocardiogram-gated SPECT (QGS-EF) at the rest (14 cases) and the QGS-EF on the delayed images (15 cases) were compared with the LVEF determined by left ventriculography (LVG-EF). There was an excellent positive correlation between the data obtained by two methods, with a correlation coefficient of r=0.93 (y=1.04x-0.04). Most of the difference between the values fell within two standard deviations, and the error was in the clinically allowable range. There was no significant difference between the correlation coefficient at rest and during loading or between the cases that showed an obvious defect on the image and those that did not. The local wall motion of the left ventricle was visually evaluated in five stages in two directions (RAO, 30 degrees, and LAO, 60 degrees). The motion

  18. Continuous-flow cardiac assistance: effects on aortic valve function in a mock loop.

    Science.gov (United States)

    Tuzun, Egemen; Rutten, Marcel; Dat, Marco; van de Vosse, Frans; Kadipasaoglu, Cihan; de Mol, Bas

    2011-12-01

    As the use of left ventricular assist devices (LVADs) to treat end-stage heart failure has become more widespread, leaflet fusion--with resul-tant aortic regurgitation--has been observed more frequently. To quantitatively assess the effects of nonpulsatile flow on aortic valve function, we tested a continuous-flow LVAD in a mock circulatory system (MCS) with an interposed valve. To mimic the hemodynamic characteristics of LVAD patients, we utilized an MCS in which a Jarvik 2000 LVAD was positioned at the base of a servomotor-operated piston pump (left ventricular chamber). We operated the LVAD at 8000 to 12,000 rpm, changing the speed in 1000-rpm increments. At each speed, we first varied the outflow resistance at a constant stroke volume, then varied the stroke volume at a constant outflow resistance. We measured the left ventricular pressure, aortic pressure, pump flow, and total flow, and used these values to compute the change, if any, in the aortic duty cycle (aortic valve open time) and transvalvular aortic pressure loads. Validation of the MCS was demonstrated by the simulation of physiologic pressure and flow waveforms. At increasing LVAD speeds, the mean aortic pressure load steadily increased, while the aortic duty cycle steadily decreased. Changes were consistent for each MCS experimental setting, despite variations in stroke volume and outflow resistance. Increased LVAD flow results in an impaired aortic valve-open time due to a pressure overload above the aortic valve. Such an overload may initiate structural changes, causing aortic leaflet fusion and/or regurgitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Changes in cardiovascular function and vascular Na-K pump activity in streptozotocin (STZ)-diabetic rats

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Blood pressure, vascular reactivity and Na-K pump function were examined in male Sprague-Dawley rats and rats made diabetic with a single dose of STZ (50 mg/Kg, I.V.). In each group, body weight, systolic blood pressure and heart rate were determined weekly, and serum glucose was measured biweekly for 12 weeks. Contractile responses and Na-K pump activity of vascular smooth muscle were studied in caudal artery strips. At 12 weeks after treatment, STZ rats had elevated serum glucose but decreased body weight and heart rate in comparison to control rats. Systolic blood pressure of STZ rats was not significantly increased at any time during the treatment period. Contractile responses of caudal artery strips to norepinephrine and serotonin did not indicate altered sensitivity (ED50) of vascular smooth muscle in STZ rats. The responsiveness (g tension/g wet wt.), however, was significantly increased in artery strips from STZ rats. Analysis of ouabain-inhibitable 86 Rb-uptake of caudal artery by the double-reciprocal plot showed that neither the rate of 86 Rb-uptake nor the affinity for rubidium were altered by STZ treatment. The data indicate that nonspecific increases in the reactivity of caudal arteries to excitatory agents occur in diabetic rats which may precede the development of hypertension. The enhanced reactivity is not associated with alteration of the vascular Na-K pump activity

  20. Self-reported physical activity and lung function two months after cardiac surgery--a prospective cohort study.

    Science.gov (United States)

    Jonsson, Marcus; Urell, Charlotte; Emtner, Margareta; Westerdahl, Elisabeth

    2014-03-28

    Physical activity has well-established positive health-related effects. Sedentary behaviour has been associated with postoperative complications and mortality after cardiac surgery. Patients undergoing cardiac surgery often suffer from impaired lung function postoperatively. The association between physical activity and lung function in cardiac surgery patients has not previously been reported. Patients undergoing cardiac surgery were followed up two months postoperatively. Physical activity was assessed on a four-category scale (sedentary, moderate activity, moderate regular exercise, and regular activity and exercise), modified from the Swedish National Institute of Public Health's national survey. Formal lung function testing was performed preoperatively and two months postoperatively. The sample included 283 patients (82% male). Two months after surgery, the level of physical activity had increased (p < 0.001) in the whole sample. Patients who remained active or increased their level of physical activity had significantly better recovery of lung function than patients who remained sedentary or had decreased their level of activity postoperatively in terms of vital capacity (94 ± 11% of preoperative value vs. 91 ± 9%; p = 0.03), inspiratory capacity (94 ± 14% vs. 88 ± 19%; p = 0.008), and total lung capacity (96 ± 11% vs. 90 ± 11%; p = 0.01). An increased level of physical activity, compared to preoperative level, was reported as early as two months after surgery. Our data shows that there could be a significant association between physical activity and recovery of lung function after cardiac surgery. The relationship between objectively measured physical activity and postoperative pulmonary recovery needs to be further examined to verify these results.

  1. On the Averaging of Cardiac Diffusion Tensor MRI Data: The Effect of Distance Function Selection

    Science.gov (United States)

    Giannakidis, Archontis; Melkus, Gerd; Yang, Guang; Gullberg, Grant T.

    2016-01-01

    Diffusion tensor magnetic resonance imaging (DT-MRI) allows a unique insight into the microstructure of highly-directional tissues. The selection of the most proper distance function for the space of diffusion tensors is crucial in enhancing the clinical application of this imaging modality. Both linear and nonlinear metrics have been proposed in the literature over the years. The debate on the most appropriate DT-MRI distance function is still ongoing. In this paper, we presented a framework to compare the Euclidean, affine-invariant Riemannian and log-Euclidean metrics using actual high-resolution DT-MRI rat heart data. We employed temporal averaging at the diffusion tensor level of three consecutive and identically-acquired DT-MRI datasets from each of five rat hearts as a means to rectify the background noise-induced loss of myocyte directional regularity. This procedure is applied here for the first time in the context of tensor distance function selection. When compared with previous studies that used a different concrete application to juxtapose the various DT-MRI distance functions, this work is unique in that it combined the following: (i) Metrics were judged by quantitative –rather than qualitative– criteria, (ii) the comparison tools were non-biased, (iii) a longitudinal comparison operation was used on a same-voxel basis. The statistical analyses of the comparison showed that the three DT-MRI distance functions tend to provide equivalent results. Hence, we came to the conclusion that the tensor manifold for cardiac DT-MRI studies is a curved space of almost zero curvature. The signal to noise ratio dependence of the operations was investigated through simulations. Finally, the “swelling effect” occurrence following Euclidean averaging was found to be too unimportant to be worth consideration. PMID:27754986

  2. On the averaging of cardiac diffusion tensor MRI data: the effect of distance function selection

    Science.gov (United States)

    Giannakidis, Archontis; Melkus, Gerd; Yang, Guang; Gullberg, Grant T.

    2016-11-01

    Diffusion tensor magnetic resonance imaging (DT-MRI) allows a unique insight into the microstructure of highly-directional tissues. The selection of the most proper distance function for the space of diffusion tensors is crucial in enhancing the clinical application of this imaging modality. Both linear and nonlinear metrics have been proposed in the literature over the years. The debate on the most appropriate DT-MRI distance function is still ongoing. In this paper, we presented a framework to compare the Euclidean, affine-invariant Riemannian and log-Euclidean metrics using actual high-resolution DT-MRI rat heart data. We employed temporal averaging at the diffusion tensor level of three consecutive and identically-acquired DT-MRI datasets from each of five rat hearts as a means to rectify the background noise-induced loss of myocyte directional regularity. This procedure is applied here for the first time in the context of tensor distance function selection. When compared with previous studies that used a different concrete application to juxtapose the various DT-MRI distance functions, this work is unique in that it combined the following: (i) metrics were judged by quantitative—rather than qualitative—criteria, (ii) the comparison tools were non-biased, (iii) a longitudinal comparison operation was used on a same-voxel basis. The statistical analyses of the comparison showed that the three DT-MRI distance functions tend to provide equivalent results. Hence, we came to the conclusion that the tensor manifold for cardiac DT-MRI studies is a curved space of almost zero curvature. The signal to noise ratio dependence of the operations was investigated through simulations. Finally, the ‘swelling effect’ occurrence following Euclidean averaging was found to be too unimportant to be worth consideration.

  3. Estrogen Therapy, Independent of Timing, Improves Cardiac Structure and Function in Oophorectomized mRen2.Lewis Rats

    Science.gov (United States)

    Jessup, Jewell A.; Wang, Hao; MacNamara, Lindsay M.; Presley, Tennille D.; Kim-Shapiro, Daniel B.; Zhang, Lili; Chen, Alex F.; Groban, Leanne

    2013-01-01

    Objective mRen2.Lewis Rats exhibit exacerbated increases in blood pressure, left ventricular (LV) remodeling, and diastolic impairment following the loss of estrogens. In this same model, depletion of estrogens has marked effects on the cardiac biopterin profile concomitant with suppressed nitric oxide (NO) release. With respect to the establishment of overt systolic hypertension after oophorectomy (OVX), we assessed the effects of timing chronic 17 β-estradiol (E2) therapy on myocardial function, structure, and the cardiac NO system. Methods Oophrectomy (OVX; n=24) or sham-operation (Sham; n=13) was performed in 4-week-old, female mRen2.Lewis rats. Following randomization, OVX rats received E2 immediately (OVX + early E2; n=7), E2 at 11 weeks of age (OVX + late E2 N=8), or no E2 at all (OVX N=9). Results Early E2 was associated with lower body weight, less hypertension-related cardiac remodeling, and decreased LV filling pressure compared to OVX rats without E2 supplementation. Late E2 similarly attenuated the adverse effects of ovarian hormone loss on tissue-Doppler derived LV filling pressures and perivascular fibrosis, and significantly improved myocardial relaxation, or mitral annular velocity (e′). Early and late exposure to E2 decreased dihydrobiopterin, but only late E2 yielded significant increases in cardiac nitrite concentrations. Conclusions Although there were some similarities between early and late E2 treatment on preservation of diastolic function and cardiac structure after OVX, the lusitropic potential of E2 was most consistent with late supplementation. The cardioprotective effects of late E2 were independent of blood pressure and may have occurred through regulation of cardiac biopterins and NO production. PMID:23481117

  4. The Short-Term Effects of Ketogenic Diet on Cardiac Ventricular Functions in Epileptic Children.

    Science.gov (United States)

    Doksöz, Önder; Çeleğen, Kübra; Güzel, Orkide; Yılmaz, Ünsal; Uysal, Utku; İşgüder, Rana; Çeleğen, Mehmet; Meşe, Timur

    2015-09-01

    Our primary aim was to determine the short-term effects of a ketogenic diet on cardiac ventricular function in patients with refractory epilepsy. Thirty-eight drug-resistant epileptic patients who were treated with a ketogenic diet were enrolled in this prospective study. Echocardiography was performed on all patients before beginning the ketogenic diet and after the sixth month of therapy. Two-dimensional, M-mode, color flow, spectral Doppler, and pulsed-wave tissue Doppler imaging measurements were performed on all patients. The median age of the 32 patients was 45.5 months, and 22 (57.8%) of them were male. Body weight, height, and body mass index increased significantly at the sixth month of therapy when compared with baseline values (P 0.05). Doppler flow indices of mitral annulus and tricuspid annulus velocity of patients at baseline and month 6 showed no significant differences (P > 0.05). Tricuspid annular E/A ratio was lower at month 6 (P 0.05), there was a decrease in Ea velocity and Ea/Aa ratio gathered from tricuspid annulus at month 6 compared with baseline (P ketogenic diet does not impair left ventricular functions in children with refractory epilepsy; however, it may be associated with a right ventricular diastolic dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Burnout versus work engagement in their effects on 24-hour ambulatory monitored cardiac autonomic function

    NARCIS (Netherlands)

    L.J.P. van Doornen (Lorenz); J.H. Houtveen (Jan); S. Langelaan (Saar); A.B. Bakker (Arnold); W. van Rhenen (Willem); W.B. Schaufeli (Wilmar)

    2009-01-01

    textabstractBurnout has been associated with increased risk of cardiovascular disease. This relationship may be mediated by a stress-related disruption in cardiac autonomic activity. The aim of the present study was to assess cardiac autonomic activity (sympathetic and parasympathetic) during a

  6. Renin inhibition improves cardiac function and remodeling after myocardial infarction independent of blood pressure

    NARCIS (Netherlands)

    D. Westermann (Dirk); A. Riad (Alexander); O. Lettau (Olga); A.J.M. Roks (Anton); K. Sawatis (Konstantinos); P.M. Becher (Peter Moritz); F. Escher (Felicitas); A.H.J. Danser (Jan); H.P. Schultheiss (Heinz-Peter); C. Tschöpe (Carsten)

    2008-01-01

    textabstractPharmacological renin inhibition with aliskiren is an effective antihypertensive drug treatment, but it is currently unknown whether aliskiren is able to attenuate cardiac failure independent of its blood pressure-lowering effects. We investigated the effect of aliskiren on cardiac

  7. Cardiac autonomic function and hot flashes among perimenopausal and postmenopausal women.

    Science.gov (United States)

    Gibson, Carolyn J; Mendes, Wendy Berry; Schembri, Michael; Grady, Deborah; Huang, Alison J

    2017-07-01

    Abnormalities in autonomic function are posited to play a pathophysiologic role in menopausal hot flashes. We examined relationships between resting cardiac autonomic activity and hot flashes in perimenopausal and postmenopausal women. Autonomic function was assessed at baseline and 12 weeks among perimenopausal and postmenopausal women (n = 121, mean age 53 years) in a randomized trial of slow-paced respiration for hot flashes. Pre-ejection period (PEP), a marker of sympathetic activation, was measured with impedance cardiography. Respiratory sinus arrhythmia (RSA), a marker of parasympathetic activation, was measured with electrocardiography. Participants self-reported hot flash frequency and severity in 7-day symptom diaries. Analysis of covariance models were used to relate autonomic function and hot flash frequency and severity at baseline, and to relate changes in autonomic function to changes in hot flash frequency and severity over 12 weeks, adjusting for age, body mass index, and intervention assignment. PEP was not associated with hot flash frequency or severity at baseline or over 12 weeks (P > 0.05 for all). In contrast, there was a trend toward greater frequency of moderate-to-severe hot flashes with higher RSA at baseline (β = 0.43, P = 0.06), and a positive association between change in RSA and change in frequency of moderate-to-severe hot flashes over 12 weeks (β = 0.63, P = 0.04). Among perimenopausal and postmenopausal women with hot flashes, variations in hot flash frequency and severity were not explained by variations in resting sympathetic activation. Greater parasympathetic activation was associated with more frequent moderate-to-severe hot flashes, which may reflect increased sensitivity to perceiving hot flashes.

  8. Evaluation of Exercise Performance, Cardiac Function, and Quality of Life in Children After Liver Transplantation.

    Science.gov (United States)

    Vandekerckhove, Kristof; Coomans, Ilse; De Bruyne, Elke; De Groote, Katya; Panzer, Joseph; De Wolf, Daniel; Boone, Jan; De Bruyne, Ruth

    2016-07-01

    In children, after having liver transplantation (LT), it is important to assess the quality of life (QOL). Physical fitness is an important determinant of QOL, and because cardiac function can influence exercise performance, it is the purpose of the present study to assess these factors. Children in stable follow-up for more than 6 months post-LT were invited to participate in a case control study. Patients underwent cardiopulmonary exercise testing and echocardiography to assess systolic and diastolic function, and left ventricular wall dimensions. Health-related QOL was evaluated using child- and adolescent-reported PedsQL questionnaire. Twenty-eight of 31 included patients performed a maximal exercise test (15 boys, 11.6 ± 2.9 years, weight, 40.9 ± 13.1 kg; length, 148.6 ± 17.3 cm; body mass index, 17.6 ± 2.3). Liver transplantation patients had lower maximal oxygen consumption (VO2max/kg) (37.5 ± 9.3 mL/kg per minute vs 44.1 ± 8.8 mL/kg per minute), shorter exercise duration (9.3 ± 2.8 minutes vs 13.3 ± 3 minutes) and lower load (71 ± 14 vs 85 ± 20%). They reached the ventilatory anaerobic threshold earlier (81.4 ± 9.5 vs 88.3 ± 11.9%). Echocardiography demonstrated increased interventricular septal wall thickness (interventricular septum in diastole Z value, +0.45 ± 0.49, P exercise testing. Health-related QOL showed lower overall, emotional, psychosocial, and school functioning scores. Children on antihypertensive medication had impaired physical functioning compared with other LT patients. Lower physical fitness level, more deconditioning and lower health-related QOL in children after LT emphasize the importance of exercise stimulation and fitness programs. Patients on antihypertensive medication seem to be the most vulnerable group suffering from decreased physical fitness.

  9. Evaluation of Cardiac Mitochondrial Function by a Nuclear Imaging Technique using Technetium-99m-MIBI Uptake Kinetics

    International Nuclear Information System (INIS)

    Matsuo, Shinro; Nakajima, Kenichi; Kinuya, Seigo

    2013-01-01

    Mitochondria play an important role in energy production for the cell. The proper function of a myocardial cell largely depends on the functional capacity of the mitochondria. Therefore it is necessary to establish a novel and reliable method for a non-invasive assessment of mitochondrial function and metabolism in humans. Although originally designed for evaluating myocardial perfusion, 99m Tc-MIBI can be also used to evaluate cardiac mitochondrial function. In a clinical study on ischemic heart disease, reverse redistribution of 99m Tc-MIBI was evident after direct percutaneous transluminal coronary angioplasty. The presence of increased washout of 99m Tc-MIBI was associated with the infarct-related artery and preserved left ventricular function. In non-ischemic cardiomyopathy, an increased washout rate of 99m Tc-MIBI, which correlated inversely with left ventricular ejection fraction, was observed in patients with congestive heart failure. Increased 99m Tc-MIBI washout was also observed in mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) and in doxorubicin-induced cardiomyopathy. Noninvasive assessment of cardiac mitochondrial function could be greatly beneficial in monitoring possible cardiotoxic drug use and in the evaluation of cardiac damage in clinical medicine

  10. Exercise capacity in diabetes mellitus is predicted by activity status and cardiac size rather than cardiac function: a case control study.

    Science.gov (United States)

    Roberts, Timothy J; Burns, Andrew T; MacIsaac, Richard J; MacIsaac, Andrew I; Prior, David L; La Gerche, André

    2018-03-23

    The reasons for reduced exercise capacity in diabetes mellitus (DM) remains incompletely understood, although diastolic dysfunction and diabetic cardiomyopathy are often favored explanations. However, there is a paucity of literature detailing cardiac function and reserve during incremental exercise to evaluate its significance and contribution. We sought to determine associations between comprehensive measures of cardiac function during exercise and maximal oxygen consumption ([Formula: see text]peak), with the hypothesis that the reduction in exercise capacity and cardiac function would be associated with co-morbidities and sedentary behavior rather than diabetes itself. This case-control study involved 60 subjects [20 with type 1 DM (T1DM), 20 T2DM, and 10 healthy controls age/sex-matched to each diabetes subtype] performing cardiopulmonary exercise testing and bicycle ergometer echocardiography studies. Measures of biventricular function were assessed during incremental exercise to maximal intensity. T2DM subjects were middle-aged (52 ± 11 years) with a mean T2DM diagnosis of 12 ± 7 years and modest glycemic control (HbA 1c 57 ± 12 mmol/mol). T1DM participants were younger (35 ± 8 years), with a 19 ± 10 year history of T1DM and suboptimal glycemic control (HbA 1c 65 ± 16 mmol/mol). Participants with T2DM were heavier than their controls (body mass index 29.3 ± 3.4 kg/m 2 vs. 24.7 ± 2.9, P = 0.001), performed less exercise (10 ± 12 vs. 28 ± 30 MET hours/week, P = 0.031) and had lower exercise capacity ([Formula: see text]peak = 26 ± 6 vs. 38 ± 8 ml/min/kg, P accounting for age, sex and body surface area in a multivariate analysis, significant positive predictors of [Formula: see text]peak were cardiac size (LV end-diastolic volume, LVEDV) and estimated MET-hours, while T2DM was a negative predictor. These combined factors accounted for 80% of the variance in [Formula: see text

  11. Means-End based Functional Modeling for Intelligent Control: Modeling and Experiments with an Industrial Heat Pump System

    DEFF Research Database (Denmark)

    Saleem, Arshad

    2007-01-01

    The purpose of this paper is to present a Multilevel Flow Model (MFM) of an industrial heat pump system and its use for diagnostic reasoning. MFM is functional modeling language supporting an explicit means-ends intelligent control strategy for large industrial process plants. The model is used...... in several diagnostic experiments analyzing different fault scenarios. The model and results of the experiments are explained and it is shown how MFM based intelligent modeling and automated reasoning can improve the fault diagnosis process significantly....

  12. Cardiac systolic function in cirrhotic patients’ candidate of liver trans-plantation compared with control group

    Directory of Open Access Journals (Sweden)

    Roya Sattarzadeh-Badkoubeh

    2017-02-01

    systolic dysfunction in cirrhotic patients. These effects were due to chamber enlargement and we cannot use the most of cardiac indices for evaluation systolic function in cirrhotic patients. So, we suggest that systolic time interval and Tei index are useful indices in evaluation of systolic function in cirrhotic patients.

  13. Penis Pump

    Science.gov (United States)

    ... your appointment might be less involved. Choosing a penis pump Some penis pumps are available without a ... it doesn't get caught in the ring. Penis pumps for penis enlargement Many advertisements in magazines ...

  14. Functional cardiomyocytes derived from Isl1 cardiac progenitors via Bmp4 stimulation.

    Directory of Open Access Journals (Sweden)

    Esra Cagavi

    Full Text Available As heart failure due to myocardial infarction remains a leading cause of morbidity worldwide, cell-based cardiac regenerative therapy using cardiac progenitor cells (CPCs could provide a potential treatment for the repair of injured myocardium. As adult CPCs may have limitations regarding tissue accessibility and proliferative ability, CPCs derived from embryonic stem cells (ESCs could serve as an unlimited source of cells with high proliferative ability. As one of the CPCs that can be derived from embryonic stem cells, Isl1 expressing cardiac progenitor cells (Isl1-CPCs may serve as a valuable source of cells for cardiac repair due to their high cardiac differentiation potential and authentic cardiac origin. In order to generate an unlimited number of Isl1-CPCs, we used a previously established an ESC line that allows for isolation of Isl1-CPCs by green fluorescent protein (GFP expression that is directed by the mef2c gene, specifically expressed in the Isl1 domain of the anterior heart field. To improve the efficiency of cardiac differentiation of Isl1-CPCs, we studied the role of Bmp4 in cardiogenesis of Isl1-CPCs. We show an inductive role of Bmp directly on cardiac progenitors and its enhancement on early cardiac differentiation of CPCs. Upon induction of Bmp4 to Isl1-CPCs during differentiation, the cTnT+ cardiomyocyte population was enhanced 2.8±0.4 fold for Bmp4 treated CPC cultures compared to that detected for vehicle treated cultures. Both Bmp4 treated and untreated cardiomyocytes exhibit proper electrophysiological and calcium signaling properties. In addition, we observed a significant increase in Tbx5 and Tbx20 expression in differentiation cultures treated with Bmp4 compared to the untreated control, suggesting a link between Bmp4 and Tbx genes which may contribute to the enhanced cardiac differentiation in Bmp4 treated cultures. Collectively these findings suggest a cardiomyogenic role for Bmp4 directly on a pure population of

  15. Comparison of yoga and walking-exercise on cardiac time intervals as a measure of cardiac function in elderly with increased pulse pressure.

    Science.gov (United States)

    Patil, Satish Gurunathrao; Patil, Shankargouda S; Aithala, Manjunatha R; Das, Kusal Kanti

    Arterial aging along with increased blood pressure(BP) has become the major cardiovascular(CV) risk in elderly. The aim of the study was to compare the effects of yoga program and walking-exercise on cardiac function in elderly with increased pulse pressure (PP). An open label, parallel-group randomized controlled study design was adopted. Elderly individuals aged ≥60 years with PP≥60mmHg were recruited for the study. Yoga (study) group (n=30) was assigned for yoga training and walking (exercise) group (n=30) for walking with loosening practices for one hour in the morning for 6days in a week for 3 months. The outcome measures were cardiac time intervals derived from pulse wave analysis and ECG: resting heart rate (RHR), diastolic time(DT), ventricular ejection time(LVET), upstroke time(UT), ejection duration index (ED%), pre-ejection period (PEP), rate pressure product (RPP) and percentage of mean arterial pressure (%MAP). The mean within-yoga group change in RHR(bpm) was 4.41 (p=0.031), PD(ms): -50.29 (p=0.042), DT(ms): -49.04 (p=0.017), ED%: 2.107 (p=0.001), ES(mmHg/ms): 14.62 (p=0.118), ET(ms): -0.66 (p=0.903), UT(ms): -2.54 (p=0.676), PEP(ms): -1.25 (p=0.11) and %MAP: 2.08 (p=0.04). The mean within-control group change in HR (bpm) was 0.35 (p=0.887), PD (ms): 11.15(p=0.717), DT (ms): 11.3 (p=0.706), ED%: -0.101 (p=0.936), ES (mmHg/ms): 0.75 (p=0.926), ET(ms): 2.2 (p=0.721), UT(ms):4.7(p=455), PEP (ms): 2.1(p=0.11), %MAP: 0.65 (p=0.451). A significant difference between-group was found in RHR (p=0.036), PD (p=0.02), ED% (p=0.049), LVET (p=0.048), DT (p=0.02) and RPP (p=0.001). Yoga practice for 3 months showed a significant improvement in diastolic function with a minimal change in systolic function. Yoga is more effective than walking in improving cardiac function in elderly with high PP. Copyright © 2017 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  16. Impact of exercise rehabilitation on cardiac neuronal function in heart failure. An iodine-123 metaiodobenzylguanidine scintigraphy study

    International Nuclear Information System (INIS)

    Agostini, D.; Bouvard, G.; Lecluse, E.; Grollier, G.; Potier, J.C.; Belin, A.; Babatasi, G.; Amar, M.H.

    1998-01-01

    Exercise training can induce important haemodynamic and metabolic adaptations in patients with chronic heart failure due to severe left ventricular dysfunction. This study examined the impact of exercise rehabilitation on cardiac neuronal function using iodine-123 metaiobodenzylguanidine (MIBG) scintigraphy. Fourteen patients (11 men, 3 women; mean age 48 years; range: 36-66 years) with stable chronic heart failure of NYHA class II-III and an initial resting radionuclide left ventricular ejection fraction (LVEF) 123 I-MIBG scintigraphy provided measurements of cardiac neuronal uptake (heart-mediastinum ratio activity, 4 h after intravenous injection of 185 MBq of MIBG). Radionuclide LVEF was also assessed at the outset and after 6 months of exercise training. Workload (801±428 vs 1229±245 kpm.min -1 , P=0.001), exercise duration (504±190 vs 649±125 s, P=0.02), and myocardial MIBG uptake (135%±19% vs 156%±25%, P=0.02) increased significantly after rehabilitation. However, LVEF did not change significantly (23%±9% vs 21%±10%, p=NS). It is concluded that exercise rehabilitation induces improvement of cardiac neuronal function without having negative effects on cardiac contractility in patients with stable chronic heart failure. (orig.)

  17. [Progress in the development of insulin pumps and their advanced automatic functions].

    Science.gov (United States)

    Prázný, Martin

    2015-04-01

    Patients with type 1 diabetes are exposed to permanent burden consisting of careful glucose self-monitoring and precise insulin dosage based on measured glucose values, carbohydrates content in the food and both planned and non-planned physical activity. Erroneous insulin dosing causes frequent both hypoglycemia and hyperglycemia. Hypoglycemia is, however, the most clinically significant complication limiting the optimal diabetes control. Automatic features for insulin dosage integrated in insulin pumps are thus very important. Low glucose suspend (LGS) and Predictive Low Glucose Management (PLGM) use glucose sensor values to prevent hypoglycemia, shorten the time spent in hypoglycemic range and present further step forward to fully closed-loop system of insulin treatment.

  18. Renal denervation improves cardiac function in rats with chronic heart failure: Effects on expression of β-adrenoceptors

    Science.gov (United States)

    Zheng, Hong; Liu, Xuefei; Sharma, Neeru M.

    2016-01-01

    Chronic activation of the sympathetic drive contributes to cardiac remodeling and dysfunction during chronic heart failure (HF). The present study was undertaken to assess whether renal denervation (RDN) would abrogate the sympathoexcitation in HF and ameliorate the adrenergic dysfunction and cardiac damage. Ligation of the left coronary artery was used to induce HF in Sprague-Dawley rats. Four weeks after surgery, RDN was performed, 1 wk before the final measurements. At the end of the protocol, cardiac function was assessed by measuring ventricular hemodynamics. Rats with HF had an average infarct area >30% of the left ventricle and left ventricular end-diastolic pressure (LVEDP) >20 mmHg. β1- and β2-adrenoceptor proteins in the left ventricle were reduced by 37 and 49%, respectively, in the rats with HF. RDN lowered elevated levels of urinary excretion of norepinephrine and brain natriuretic peptide levels in the hearts of rats with HF. RDN also decreased LVEDP to 10 mmHg and improved basal dP/dt to within the normal range in rats with HF. RDN blunted loss of β1-adrenoceptor (by 47%) and β2-adrenoceptor (by 100%) protein expression and improved isoproterenol (0.5 μg/kg)-induced increase in +dP/dt (by 71%) and −dP/dt (by 62%) in rats with HF. RDN also attenuated the increase in collagen 1 expression in the left ventricles of rats with HF. These findings demonstrate that RDN initiated in chronic HF condition improves cardiac function mediated by adrenergic agonist and blunts β-adrenoceptor expression loss, providing mechanistic insights for RDN-induced improvements in cardiac function in the HF condition. PMID:27288440

  19. Restricted N-terminal truncation of cardiac troponin T: a novel mechanism for functional adaptation to energetic crisis.

    Science.gov (United States)

    Feng, Han-Zhong; Biesiadecki, Brandon J; Yu, Zhi-Bin; Hossain, M Moazzem; Jin, J-P

    2008-07-15

    The N-terminal variable region of cardiac troponin T (TnT) is a regulatory structure that can be selectively removed during myocardial ischaemia reperfusion by mu-calpain proteolysis. Here we investigated the pathophysiological significance of this post-translational modification that removes amino acids 1-71 of cardiac TnT. Working heart preparations were employed to study rat acute myocardial infarction and transgenic mouse hearts over-expressing the N-terminal truncated cardiac TnT (cTnT-ND). Ex vivo myocardial infarction by ligation of the left anterior descending coronary artery induced heart failure and produced cTnT-ND not only in the infarct but also in remote zones, including the right ventricular free wall, indicating a whole organ response in the absence of systemic neurohumoral mechanisms. Left ventricular pressure overload in mouse working hearts produced increased cTnT-ND in both ventricles, suggesting a role of haemodynamic stress in triggering an acute whole organ proteolytic regulation. Transgenic mouse hearts in which the endogenous intact cardiac TnT was partially replaced by cTnT-ND showed lowered contractile velocity. When afterload increased from 55 mmHg to 90 mmHg, stroke volume decreased in the wild type but not in the transgenic mouse hearts. Correspondingly, the left ventricular rapid-ejection time of the transgenic mouse hearts was significantly longer than that of wild type hearts, especially at high afterload. The restricted deletion of the N-terminal variable region of cardiac troponin T demonstrates a novel mechanism by which the thin filament regulation adapts to sustain cardiac function under stress conditions.

  20. Impaired cerebrovascular function in coronary artery disease patients and recovery following cardiac rehabilitation.

    Directory of Open Access Journals (Sweden)

    Udunna C Anazodo

    2016-01-01

    Full Text Available Coronary artery disease (CAD poses a risk to the cerebrovascular function of older adults and has been linked to impaired cognitive abilities. Using magnetic resonance perfusion imaging, we investigated changes in resting cerebral blood flow (CBF and cerebrovascular reactivity (CVR to hypercapnia in 34 coronary artery disease (CAD patients and 21 age-matched controls. Gray matter volume images were acquired and used as a confounding variable to separate changes in structure from function. Compared to healthy controls, CAD patients demonstrated reduced CBF in the superior frontal, anterior cingulate, insular, pre- and post-central gyri, middle temporal and superior temporal regions. Subsequent analysis of these regions demonstrated decreased CVR in the anterior cingulate, insula, postcentral and superior frontal regions. Except in the superior frontal and precentral regions, regional reductions in CBF and CVR were identified in brain areas where no detectable reductions in gray matter volume were observed, demonstrating that these vascular changes were independent of brain atrophy. Because aerobic fitness training can improve brain function, potential changes in regional CBF were investigated in the CAD patients after completion of a 6-month exercise-based cardiac rehabilitation program. Increased CBF was observed in the bilateral anterior cingulate, as well as recovery of CBF in the dorsal aspect of the right anterior cingulate, where the magnitude of increased CBF was roughly equal to the reduction in CBF at baseline compared to controls. These exercise-related improvements in CBF in the anterior cingulate is intriguing given the role of this area in cognitive processing and regulation of cardiovascular autonomic control.

  1. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle function

    Science.gov (United States)

    Gallagher, Thomas L.; Arribere, Joshua A.; Geurts, Paul A.; Exner, Cameron R. T.; McDonald, Kent L.; Dill, Kariena K.; Marr, Henry L.; Adkar, Shaunak S.; Garnett, Aaron T.; Amacher, Sharon L.; Conboy, John G.

    2012-01-01

    Rbfox RNA binding proteins are implicated as regulators of phylogenetically-conserved alternative splicing events important for muscle function. To investigate the function of rbfox genes, we used morpholino-mediated knockdown of muscle-expressed rbfox1l and rbfox2 in zebrafish embryos. Single and double morphant embryos exhibited changes in splicing of overlapping sets of bioinformatically-predicted rbfox target exons, many of which exhibit a muscle-enriched splicing pattern that is conserved in vertebrates. Thus, conservation of intronic Rbfox binding motifs is a good predictor of Rbfox-regulated alternative splicing. Morphology and development of single morphant embryos was strikingly normal; however, muscle development in double morphants was severely disrupted. Defects in cardiac muscle were marked by reduced heart rate and in skeletal muscle by complete paralysis. The predominance of wavy myofibers and abnormal thick and thin filaments in skeletal muscle revealed that myofibril assembly is defective and disorganized in double morphants. Ultra-structural analysis revealed that although sarcomeres with electron dense M- and Z-bands are present in muscle fibers of rbfox1l/rbox2 morphants, they are substantially reduced in number and alignment. Importantly, splicing changes and morphological defects were rescued by expression of morpholino-resistant rbfox cDNA. Additionally, a target-blocking MO complementary to a single UGCAUG motif adjacent to an rbfox target exon of fxr1 inhibited inclusion in a similar manner to rbfox knockdown, providing evidence that Rbfox regulates the splicing of target exons via direct binding to intronic regulatory motifs. We conclude that Rbfox proteins regulate an alternative splicing program essential for vertebrate heart and skeletal muscle function. PMID:21925157

  2. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle functions.

    Science.gov (United States)

    Gallagher, Thomas L; Arribere, Joshua A; Geurts, Paul A; Exner, Cameron R T; McDonald, Kent L; Dill, Kariena K; Marr, Henry L; Adkar, Shaunak S; Garnett, Aaron T; Amacher, Sharon L; Conboy, John G

    2011-11-15

    Rbfox RNA binding proteins are implicated as regulators of phylogenetically-conserved alternative splicing events important for muscle function. To investigate the function of rbfox genes, we used morpholino-mediated knockdown of muscle-expressed rbfox1l and rbfox2 in zebrafish embryos. Single and double morphant embryos exhibited changes in splicing of overlapping sets of bioinformatically-predicted rbfox target exons, many of which exhibit a muscle-enriched splicing pattern that is conserved in vertebrates. Thus, conservation of intronic Rbfox binding motifs is a good predictor of Rbfox-regulated alternative splicing. Morphology and development of single morphant embryos were strikingly normal; however, muscle development in double morphants was severely disrupted. Defects in cardiac muscle were marked by reduced heart rate and in skeletal muscle by complete paralysis. The predominance of wavy myofibers and abnormal thick and thin filaments in skeletal muscle revealed that myofibril assembly is defective and disorganized in double morphants. Ultra-structural analysis revealed that although sarcomeres with electron dense M- and Z-bands are present in muscle fibers of rbfox1l/rbox2 morphants, they are substantially reduced in number and alignment. Importantly, splicing changes and morphological defects were rescued by expression of morpholino-resistant rbfox cDNA. Additionally, a target-blocking MO complementary to a single UGCAUG motif adjacent to an rbfox target exon of fxr1 inhibited inclusion in a similar manner to rbfox knockdown, providing evidence that Rbfox regulates the splicing of target exons via direct binding to intronic regulatory motifs. We conclude that Rbfox proteins regulate an alternative splicing program essential for vertebrate heart and skeletal muscle functions. Published by Elsevier Inc.

  3. A new function for ATP: activating cardiac sympathetic afferents during myocardial ischemia.

    Science.gov (United States)

    Fu, Liang-Wu; Longhurst, John C

    2010-12-01

    Myocardial ischemia activates cardiac sympathetic afferents leading to chest pain and reflex cardiovascular responses. Brief myocardial ischemia leads to ATP release in the interstitial space. Furthermore, exogenous ATP and α,β-methylene ATP (α,β-meATP), a P2X receptor agonist, stimulate cutaneous group III and IV sensory nerve fibers. The present study tested the hypothesis that endogenous ATP excites cardiac afferents during ischemia through activation of P2 receptors. Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicates (T(2)-T(5)) in anesthetized cats. Single fields of 45 afferents (conduction velocities = 0.25-4.92 m/s) were identified in the left ventricle with a stimulating electrode. Five minutes of myocardial ischemia stimulated 39 of 45 cardiac afferents (8 Aδ, 37 C fibers). Epicardial application of ATP (1-4 μmol) stimulated six ischemically sensitive cardiac afferents in a dose-dependent manner. Additionally, epicardial ATP (2 μmol), ADP (2 μmol), a P2Y agonist, and α,β-meATP (0.5 μmol) significantly activated eight other ischemically sensitive afferents. Third, pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, a P2 receptor antagonist, abolished the responses of six afferents to epicardial ATP (2 μmol) and attenuated the ischemia-related increase in activity of seven other afferents by 37%. In the absence of P2 receptor blockade, cardiac afferents responded consistently to repeated application of ATP (n = 6) and to recurrent myocardial ischemia (n = 6). Finally, six ischemia-insensitive cardiac spinal afferents did not respond to epicardial ATP (2-4 μmol), although these afferents did respond to epicardial bradykinin. Taken together, these data indicate that, during ischemia, endogenously released ATP activates ischemia-sensitive, but not ischemia-insensitive, cardiac spinal afferents through stimulation of P2 receptors likely located on the cardiac sensory

  4. The effect of traditional Persian music on the cardiac functioning of young Iranian women.

    Science.gov (United States)

    Abedi, Behzad; Abbasi, Ataollah; Goshvarpour, Atefeh; Khosroshai, Hamid Tayebi; Javanshir, Elnaz

    In the past few decades, several studies have reported the physiological effects of listening to music. The physiological effects of different music types on different people are not similar. Therefore, in the present study, we have sought to examine the effects of traditional Persian music on the cardiac function in young women. Twenty-two healthy females participated in this study. ECG signals were recorded in two conditions: rest and music. For each of the 21 ECG signals (15 morphological and six wavelet based feature) features were extracted. SVM classifier was used for the classification of ECG signals during and before the music. The results showed that the mean of heart rate, the mean amplitude of R-wave, T-wave, and P-wave decreased in response to music. Time-frequency analysis revealed that the mean of the absolute values of the detail coefficients at higher scales increased during rest. The overall accuracy of 91.6% was achieved using polynomial kernel and RBF kernel. Using linear kernel, the best result (with the accuracy rate of 100%) was attained. Copyright © 2016. Published by Elsevier B.V.

  5. The effects of detomidine, romifidine or acepromazine on echocardiographic measurements and cardiac function in normal horses.

    Science.gov (United States)

    Buhl, Rikke; Ersbøll, Annette K; Larsen, Nanna H; Eriksen, Lis; Koch, Jørgen

    2007-01-01

    To evaluate by echo- and electrocardiography the cardiac effects of sedation with detomidine hydrochloride, romifidine hydrochloride or acepromazine maleate in horses. An experimental study using a cross-over design without randomization. Eight clinically normal Standardbred trotters. Echocardiographic examinations (two-dimensional, guided M-mode and colour Doppler) were recorded on five different days. Heart rate (HR) and standard limb lead electrocardiograms were also obtained. Subsequently, horses were sedated with detomidine (0.01 mg kg(-1)), romifidine (0.04 mg kg(-1)) or acepromazine (0.1 mg kg(-1)) administered intravenously and all examinations repeated. Heart rate before treatment with the three drugs did not differ significantly (p = 0.98). Both detomidine and romifidine induced a significant decrease (p detomidine, there was a significant increase in LVIDd (left ventricular internal diameter in diastole; p = 0.034) and LVIDs (left ventricular internal diameter in systole; p detomidine and to a lesser extent romifidine at the doses given in this study has a significant effect on heart function, echocardiographic measurements of heart dimensions and the occurrence of valvular regurgitation. Although the clinical significance of these results may be minimal, the potential effects of sedative drugs should be taken into account when echocardiographic variables are interpreted in clinical cases.

  6. Exercise capacity in the Bidirectional Glenn physiology: Coupling cardiac index, ventricular function and oxygen extraction ratio.

    Science.gov (United States)

    Vallecilla, Carolina; Khiabani, Reza H; Trusty, Phillip; Sandoval, Néstor; Fogel, Mark; Briceño, Juan Carlos; Yoganathan, Ajit P

    2015-07-16

    In Bi-directional Glenn (BDG) physiology, the superior systemic circulation and pulmonary circulation are in series. Consequently, only blood from the superior vena cava is oxygenated in the lungs. Oxygenated blood then travels to the ventricle where it is mixed with blood returning from the lower body. Therefore, incremental changes in oxygen extraction ratio (OER) could compromise exercise tolerance. In this study, the effect of exercise on the hemodynamic and ventricular performance of BDG physiology was investigated using clinical patient data as inputs for a lumped parameter model coupled with oxygenation equations. Changes in cardiac index, Qp/Qs, systemic pressure, oxygen extraction ratio and ventricular/vascular coupling ratio were calculated for three different exercise levels. The patient cohort (n=29) was sub-grouped by age and pulmonary vascular resistance (PVR) at rest. It was observed that the changes in exercise tolerance are significant in both comparisons, but most significant when sub-grouped by PVR at rest. Results showed that patients over 2 years old with high PVR are above or close to the upper tolerable limit of OER (0.32) at baseline. Patients with high PVR at rest had very poor exercise tolerance while patients with low PVR at rest could tolerate low exercise conditions. In general, ventricular function of SV patients is too poor to increase CI and fulfill exercise requirements. The presented mathematical model provides a framework to estimate the hemodynamic performance of BDG patients at different exercise levels according to patient specific data. Published by Elsevier Ltd.

  7. Affect during incremental exercise: The role of inhibitory cognition, autonomic cardiac function, and cerebral oxygenation.

    Directory of Open Access Journals (Sweden)

    Weslley Quirino Alves da Silva

    Full Text Available Pleasure is a key factor for physical activity behavior in sedentary individuals. Inhibitory cognitive control may play an important role in pleasure perception while exercising, especially at high intensities. In addition, separate work suggests that autonomic regulation and cerebral hemodynamics influence the affective and cognitive responses during exercise.We investigated the effects of exercise intensity on affect, inhibitory control, cardiac autonomic function, and prefrontal cortex (PFC oxygenation.Thirty-seven sedentary young adults performed two experimental conditions (exercise and control in separate sessions in a repeated-measures design. In the exercise condition, participants performed a maximum graded exercise test on a cycle ergometer as we continuously measured oxygen consumption, heart rate variability (HRV, and PFC oxygenation. At each of 8 intensity levels we also measured inhibitory control (Stroop test, associative and dissociative thoughts (ADT, and affective/pleasure ratings. In the control condition, participants sat motionless on a cycle ergometer without active pedaling, and we collected the same measures at the same points in time as the exercise condition. We evaluated the main effects and interactions of exercise condition and intensity level for each measure using two-way repeated measures ANOVAs. Additionally, we evaluated the relationship between affect and inhibitory control, ADT, HRV, and PFC oxygenation using Pearson's correlation coefficients.For exercise intensities below and at the ventilatory threshold (VT, participants reported feeling neutral, with preservation of inhibitory control, while intensities above the VT were associated with displeasure (p<0.001, decreased inhibitory control and HRV (p<0.001, and increased PFC oxygenation (p<0.001. At the highest exercise intensity, pleasure was correlated with the low-frequency index of HRV (r = -0.34; p<0.05 and the low-frequency/high-frequency HRV ratio (r

  8. Cognitive function in survivors of out-of-hospital cardiac arrest after target temperature management at 33°C versus 36°C

    DEFF Research Database (Denmark)

    Lilja, Gisela; Nielsen, Niklas; Friberg, Hans

    2015-01-01

    assessed with tests for memory (Rivermead Behavioural Memory Test), executive functions (Frontal Assessment Battery), and attention/mental speed (Symbol Digit Modalities Test). A control group of 119 matched patients hospitalized for acute ST-segment-elevation myocardial infarction without cardiac arrest...... was more affected among cardiac arrest patients, but results for memory and executive functioning were similar. CONCLUSIONS: Cognitive function was comparable in survivors of out-of-hospital cardiac arrest when a temperature of 33°C and 36°C was targeted. Cognitive impairment detected in cardiac arrest...... performed the same assessments. Half of the cardiac arrest survivors had cognitive impairment, which was mostly mild. Cognitive outcome did not differ (P>0.30) between the 2 temperature groups (33°C/36°C). Compared with control subjects with ST-segment-elevation myocardial infarction, attention/mental speed...

  9. Gelatin Hydrogel Enhances the Engraftment of Transplanted Cardiomyocytes and Angiogenesis to Ameliorate Cardiac Function after Myocardial Infarction.

    Directory of Open Access Journals (Sweden)

    Kazuaki Nakajima

    Full Text Available Cell transplantation therapy will mean a breakthrough in resolving the donor shortage in cardiac transplantation. Cardiomyocyte (CM transplantation, however, has been relatively inefficient in restoring cardiac function after myocardial infarction (MI due to low engraftment of transplanted CM. In order to ameliorate engraftment of CM, the novel transplantation strategy must be invented. Gelatin hydrogel (GH is a biodegradable water-soluble polymer gel. Gelatin is made of collagen. Although we observed that collagen strongly induced the aggregation of platelets to potentially cause coronary microembolization, GH did not enhance thrombogenicity. Therefore, GH is a suitable biomaterial in the cell therapy after heart failure. To assess the effect of GH on the improvement of cardiac function, fetal rat CM (5×10(6 or 1x10(6 cells were transplanted with GH (10 mg/ml to infarcted hearts. We compared this group with sham operated rats, CM in phosphate buffered saline (PBS, only PBS, and only GH-transplanted groups. Three weeks after transplantation, cardiac function was evaluated by echocardiography. The echocardiography confirmed that transplantation of 5×10(6 CM with GH significantly improved cardiac systolic function, compared with the CM+PBS group (fractional area change: 75.1±3.4% vs. 60.7±5.9%, p<0.05, only PBS, and only GH groups (60.1±6.5%, 65.0±2.8%, p<0.05. Pathological analyses demonstrated that in the CM+GH group, CM were efficiently engrafted in infarcted myocardium (p<0.01 and angiogenesis was significantly enhanced (p<0.05 in both central and peripheral areas of the scar. Moreover, quantitative RT-PCR revealed that angiogenic cytokines, such as basic fibroblast growth factor, vascular endothelial growth factor, and hepatocyte growth factor, were significantly enriched in the CM+GH group (p<0.05. Here, we report that GH confined the CM effectively in infarcted myocardium after transplantation, and that CM transplanted with GH

  10. Chronic fatigue syndrome: illness severity, sedentary lifestyle, blood volume and evidence of diminished cardiac function.

    Science.gov (United States)

    Hurwitz, Barry E; Coryell, Virginia T; Parker, Meela; Martin, Pedro; Laperriere, Arthur; Klimas, Nancy G; Sfakianakis, George N; Bilsker, Martin S

    2009-10-19

    The study examined whether deficits in cardiac output and blood volume in a CFS (chronic fatigue syndrome) cohort were present and linked to illness severity and sedentary lifestyle. Follow-up analyses assessed whether differences in cardiac output levels between CFS and control groups were corrected by controlling for cardiac contractility and TBV (total blood volume). The 146 participants were subdivided into two CFS groups based on symptom severity data, severe (n=30) and non-severe (n=26), and two healthy non-CFS control groups based on physical activity, sedentary (n=58) and non-sedentary (n=32). Controls were matched to CFS participants using age, gender, ethnicity and body mass. Echocardiographic measures indicated that the severe CFS participants had 10.2% lower cardiac volume (i.e. stroke index and end-diastolic volume) and 25.1% lower contractility (velocity of circumferential shortening corrected by heart rate) than the control groups. Dual tag blood volume assessments indicated that the CFS groups had lower TBV, PV (plasma volume) and RBCV (red blood cell volume) than control groups. Of the CFS subjects with a TBV deficit (i.e. > or = 8% below ideal levels), the mean+/-S.D. percentage deficit in TBV, PV and RBCV were -15.4+/-4.0, -13.2+/-5.0 and -19.1+/-6.3% respectively. Lower cardiac volume levels in CFS were substantially corrected by controlling for prevailing TBV deficits, but were not affected by controlling for cardiac contractility levels. Analyses indicated that the TBV deficit explained 91-94% of the group differences in cardiac volume indices. Group differences in cardiac structure were offsetting and, hence, no differences emerged for left ventricular mass index. Therefore the findings indicate that lower cardiac volume levels, displayed primarily by subjects with severe CFS, were not linked to diminished cardiac contractility levels, but were probably a consequence of a co-morbid hypovolaemic condition. Further study is needed to address

  11. Irradiation induced modest changes in murine cardiac function despite progressive structural damage to the myocardium and microvasculature

    International Nuclear Information System (INIS)

    Seemann, Ingar; Gabriels, Karen; Visser, Nils L.; Hoving, Saske; Poele, Johannes A. te; Pol, Jeffrey F.; Gijbels, Marion J.; Janssen, Ben J.; Leeuwen, Fijs W. van; Daemen, Mat J.; Heeneman, Sylvia; Stewart, Fiona A.

    2012-01-01

    Background: Radiotherapy of thoracic and chest wall tumors increases the long-term risk of cardiotoxicity, but the underlying mechanisms are unclear. Methods: Single doses of 2, 8, or 16 Gy were delivered to the hearts of mice and damage was evaluated at 20, 40, and 60 weeks, relative to age matched controls. Single photon emission computed tomography (SPECT/CT) and ultrasound were used to measure cardiac geometry and function, which was related to histo-morphology and microvascular damage. Results: Gated SPECT/CT and ultrasound demonstrated decreases in end diastolic and systolic volumes, while the ejection fraction was increased at 20 and 40 weeks after 2, 8, and 16 Gy. Cardiac blood volume was decreased at 20 and 60 weeks after irradiation. Histological examination revealed inflammatory changes at 20 and 40 weeks after 8 and 16 Gy. Microvascular density in the left ventricle was decreased at 40 and 60 weeks after 8 and 16 Gy, with functional damage to remaining microvasculature manifest as decreased alkaline phosphatase (2, 8, and 16 Gy), increased von Willebrand Factor and albumin leakage from vessels (8 and 16 Gy), and amyloidosis (16 Gy). 16 Gy lead to sudden death between 30 and 40 weeks in 38% of mice. Conclusions: Irradiation with 2 and 8 Gy induced modest changes in murine cardiac function within 20 weeks but this did not deteriorate further, despite progressive structural and microvascular damage. This indicates that heart function can compensate for significant structural damage, although higher doses, eventually lead to sudden death.

  12. Residential Proximity to Major Roadways Is Not Associated with Cardiac Function in African Americans: Results from the Jackson Heart Study

    Directory of Open Access Journals (Sweden)

    Anne M. Weaver

    2016-06-01

    Full Text Available Cardiovascular disease (CVD, including heart failure, is a major cause of morbidity and mortality, particularly among African Americans. Exposure to ambient air pollution, such as that produced by vehicular traffic, is believed to be associated with heart failure, possibly by impairing cardiac function. We evaluated the cross-sectional association between residential proximity to major roads, a marker of long-term exposure to traffic-related pollution, and echocardiographic indicators of left and pulmonary vascular function in African Americans enrolled in the Jackson Heart Study (JHS: left ventricular ejection fraction, E-wave velocity, isovolumic relaxation time, left atrial diameter index, and pulmonary artery systolic pressure. We examined these associations using multivariable linear or logistic regression, adjusting for potential confounders. Of 4866 participants at study enrollment, 106 lived <150 m, 159 lived 150–299 m, 1161 lived 300–999 m, and 3440 lived ≥1000 m from a major roadway. We did not observe any associations between residential distance to major roads and these markers of cardiac function. Results were similar with additional adjustment for diabetes and hypertension, when considering varying definitions of major roadways, or when limiting analyses to those free from cardiovascular disease at baseline. Overall, we observed little evidence that residential proximity to major roads was associated with cardiac function among African Americans.

  13. Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy.

    Science.gov (United States)

    Liu, Xifu; Gu, Xinhua; Li, Zhaoming; Li, Xinyan; Li, Hui; Chang, Jianjie; Chen, Ping; Jin, Jing; Xi, Bing; Chen, Denghong; Lai, Donna; Graham, Robert M; Zhou, Mingdong

    2006-10-03

    We evaluated the therapeutic potential of a recombinant 61-residue neuregulin-1 (beta2a isoform) receptor-active peptide (rhNRG-1) in multiple animal models of heart disease. Activation of the erbB family of receptor tyrosine kinases by rhNRG-1 could provide a treatment option for heart failure, because neuregulin-stimulated erbB2/erbB4 heterodimerization is not only critical for myocardium formation in early heart development but prevents severe dysfunction of the adult heart and premature death. Disabled erbB-signaling is also implicated in the transition from compensatory hypertrophy to failure, whereas erbB receptor-activation promotes myocardial cell growth and survival and protects against anthracycline-induced cardiomyopathy. rhNRG-1 was administered IV to animal models of ischemic, dilated, and viral cardiomyopathy, and cardiac function and survival were evaluated. Short-term intravenous administration of rhNRG-1 to normal dogs and rats did not alter hemodynamics or cardiac contractility. In contrast, rhNRG-1 improved cardiac performance, attenuated pathological changes, and prolonged survival in rodent models of ischemic, dilated, and viral cardiomyopathy, with the survival benefits in the ischemic model being additive to those of angiotensin-converting enzyme inhibitor therapy. In addition, despite continued pacing, rhNRG-1 produced global improvements in cardiac function in a canine model of pacing-induced heart failure. These beneficial effects make rhNRG-1 promising as a broad-spectrum therapeutic for the treatment of heart failure due to a variety of common cardiac diseases.

  14. In Vivo Functional Selection Identifies Cardiotrophin-1 as a Cardiac Engraftment Factor for Mesenchymal Stromal Cells.

    Science.gov (United States)

    Bortolotti, Francesca; Ruozi, Giulia; Falcione, Antonella; Doimo, Sara; Dal Ferro, Matteo; Lesizza, Pierluigi; Zentilin, Lorena; Banks, Lawrence; Zacchigna, Serena; Giacca, Mauro

    2017-10-17

    Transplantation of cells into the infarcted heart has significant potential to improve myocardial recovery; however, low efficacy of cell engraftment still limits therapeutic benefit. Here, we describe a method for the unbiased, in vivo selection of cytokines that improve mesenchymal stromal cell engraftment into the heart both in normal conditions and after myocardial infarction. An arrayed library of 80 secreted factors, including most of the currently known interleukins and chemokines, were individually cloned into adeno-associated viral vectors. Pools from this library were then used for the batch transduction of bone marrow-derived mesenchymal stromal cells ex vivo, followed by intramyocardial cell administration in normal and infarcted mice. Three weeks after injection, vector genomes were recovered from the few persisting cells and identified by sequencing DNA barcodes uniquely labeling each of the tested cytokines. The most effective molecule identified by this competitive engraftment screening was cardiotrophin-1, a member of the interleukin-6 family. Intracardiac injection of mesenchymal stromal cells transiently preconditioned with cardiotrophin-1 preserved cardiac function and reduced infarct size, parallel to the persistence of the transplanted cells in the healing hearts for at least 2 months after injection. Engraftment of cardiotrophin-1-treated mesenchymal stromal cells was consequent to signal transducer and activator of transcription 3-mediated activation of the focal adhesion kinase and its associated focal adhesion complex and the consequent acquisition of adhesive properties by the cells. These results support the feasibility of selecting molecules in vivo for their functional properties with adeno-associated viral vector libraries and identify cardiotrophin-1 as a powerful cytokine promoting cell engraftment and thus improving cell therapy of the infarcted myocardium. © 2017 American Heart Association, Inc.

  15. EFFECTS OF LONG-TERM PHYSICAL ACTIVITY ON CARDIAC STRUCTURE AND FUNCTION: A TWIN STUDY

    Directory of Open Access Journals (Sweden)

    Urho M.Kujala

    2009-12-01

    Full Text Available Previous studies have shown that athletic training or other physical activity causes structural and functional adaptations in the heart, but less is known how long-term physical activity affects heart when genetic liability and childhood environment are taken into account. The aim of this study was to investigate the effects of long-term physical activity vs. inactivity on cardiac structure and function in twin pairs discordant for physical activity for 32 years. Twelve same-sex twin pairs (five monozygotic and seven dizygotic, 50-67 years were studied as a part of the TWINACTIVE study. Discordance in physical activity was initially determined in 1975 and it remained significant throughout the follow-up. At the end of the follow-up in 2007, resting echocardiographic and electrocardiographic measurements were performed. During the follow-up period, the active co-twins were on average 8.2 (SD 4.0 MET hours/day more active than their inactive co-twins (p < 0.001. At the end of the follow-up, resting heart rate was lower in the active than inactive co-twins [59 (SD 5 vs. 68 (SD 10 bpm, p=0.03]. The heart rate-corrected QT interval was similar between the co-twins. Also, there was a tendency for left ventricular mass per body weight to be greater and T wave amplitude in lead II to be higher in the active co-twins (18% and 15%, respectively, p=0.08 for both. Similar trends were found for both monozygotic and dizygotic twin pairs. In conclusion, the main adaptation to long- term physical activity is lowered resting heart rate, even after partially or fully controlling for genetic liability and childhood environment

  16. Evaluation of cardiac autonomic function in overweight males: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Debasish Das

    2017-01-01

    Full Text Available Background and Aim: Cardiovascular autonomic function tests (CAFTs are non-invasive tests that can assess both sympathetic and parasympathetic autonomic functions. Autonomic dysfunction may be considered as a risk factor for obesity and vice versa. For measurement of obesity, body mass index (BMI is a simple, valid and inexpensive method. Hence, this study was designed to evaluate the effect of obesity based on BMI criteria on autonomic nervous system based on CAFT in young adult males. Methods: A cross-sectional study was carried out on 43 young adult males in the age group of 18–25 years with an age-matched control (n = 43 group. After initial screening, anthropometric measurements were recorded. CAFTs were performed and recorded by the Cardiac Autonomic Neuropathy Analysis System (CANWin. Unpaired t- test was done to compare the parameters of study and control groups in Microsoft Excel® 2010. Results: Parasympathetic test parameters of study and control groups when expressed in mean ± standard deviation were not found statistically significant (P > 0.05. The fall in systolic blood pressure (BP in orthostatic test of study group (12.19 ± 4.8 mmHg was significantly (P = 0.0001 higher than that of control group (7.33 ± 5.16 mmHg. Increase in diastolic BP in isometric handgrip exercise test of study group (11.84 ± 5.39 mmHg was significantly less (P = 0.004 than that of control group (16.39 ± 8.71 mmHg. Conclusion: Overweight young males have altered sympathetic activity but parasympathetic activity did not show any significant difference when compared to normal weight males.

  17. Cardiac MRI assessment of right ventricular function: impact of right bundle branch block on the evaluation of cardiac performance parameters

    Energy Technology Data Exchange (ETDEWEB)

    Marterer, Robert; Tschauner, Sebastian; Sorantin, Erich [Medical University of Graz, Division of Pediatric Radiology, Department of Radiology, Graz (Austria); Zeng, Hongchun [First Affiliated Hospital of Xinjiang Medical University, Department of Ultrasonography, Urumqi (China); Koestenberger, Martin [Medical University of Graz, Division of Pediatric Cardiology, Department of Pediatrics and Adolescent Medicine, Graz (Austria)

    2015-12-15

    Right ventricular (RV) function represents a prognostic marker in patients with corrected congenital heart disease. In up to 80 % of these patients, right branch bundle block (RBBB) exists and leads to asynchronous ventricular contraction. The aim of this retrospective study was to evaluate the change of RV performance parameters considering delayed RV end-systolic contraction. RV volumes of 33 patients were assessed twice: 1) not taking account of RBBB (group I), and 2) considering RBBB (group II). According to the RV ejection fraction (EF) for both groups, RV function was classified in different categories (>50 % = normal, 40-50 % = mildly-, 30-40 % = moderately-, <30 % = severely-reduced). The mean time difference between maximal systolic contraction of the septum and RV free wall was 90.7 ms ± 42.6. Consequently, RV end-systolic volume was significantly decreased in group II (p < 0.001). Accordingly, RV stroke volume and RV EF were significantly higher in group II (p < 0.001). There was also a significant change in the assessment of RV function (p < 0.02). RBBB induced delayed RV contraction can be detected at CMR. Ignoring the RV physiology in RBBB patients leads to a statistically significant underscoring of RV performance parameters. (orig.)

  18. Prognostic value of depressed midwall systolic function in cardiac light-chain amyloidosis.

    Science.gov (United States)

    Perlini, Stefano; Salinaro, Francesco; Musca, Francesco; Mussinelli, Roberta; Boldrini, Michele; Raimondi, Ambra; Milani, Paolo; Foli, Andrea; Cappelli, Francesco; Perfetto, Federico; Palladini, Giovanni; Rapezzi, Claudio; Merlini, Giampaolo

    2014-05-01

    Cardiac amyloidosis represents an archetypal form of restrictive heart disease, characterized by profound diastolic dysfunction. As ejection fraction is preserved until the late stage of the disease, the majority of patients do fulfill the definition of diastolic heart failure, that is, heart failure with preserved ejection fraction (HFpEF). In another clinical model of HFpEF, that is, pressure-overload hypertrophy, depressed midwall fractional shortening (mFS) has been shown to be a powerful prognostic factor. To assess the potential prognostic role of mFS in cardiac light-chain amyloidosis with preserved ejection fraction, we enrolled 221 consecutive untreated patients, in whom a first diagnosis of cardiac light-chain amyloidosis was concluded between 2008 and 2010. HFpEF was present in 181 patients. Patients in whom cardiac involvement was excluded served as controls (n = 121). Prognosis was assessed after a median follow-up of 561 days. When compared with light-chain amyloidosis patients without myocardial involvement, cardiac light-chain amyloidosis was characterized by increased wall thickness (P model. In cardiac light-chain amyloidosis with normal ejection fraction, depressed circumferential mFS, a marker of myocardial contractile dysfunction, is a powerful predictor of survival.

  19. Evaluation of Right Ventricular Function with Radionuclide Cardiac Angiography - Right Ventricular Ejection Fraction in Chronic Obstructive Lung Disease

    International Nuclear Information System (INIS)

    Sohn, In; Shin, Sung Hae; Chung, June Key; Lee, Myung Chul; Cho, Bo Youn; Lee, Young Woo; Han, Yong Cheol; Koh, Chang Soon

    1982-01-01

    To evaluate the usefulness of radionuclide cardiac angiography in the assessment of the right ventricular function, we measured right ventricular ejection fraction (RVEF) using single pass method. In 12 normal persons, RVEF averaged 52.7±5.9% (mean±S.D.). In 25 patients with chronic obstructive lung disease, RVEF was 37.2±10.6% and significantly lower than that of normal person (p<0.01). All 10 patients with right ventricular failure had abnormal RVEF, which was significantly lower than that of 14 persons without right ventricular failure (27.6±5.7%, 43.9±8.5%, respectively, p<0.01). It concluded that RVEF measured by single pass radionuclide cardiac angiography was a useful, noninvasive method to assess right ventricular function.

  20. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  1. Evaluation of the effect of different types and location of pacemaker on cardiac function using radionuclide techniques

    International Nuclear Information System (INIS)

    Shi Rongfang; Liu Xiujie; Guo Xiuzhen

    1993-01-01

    Left ventricular function was measured in 24 patients using radionuclide ventriculography before and after planting different types of pacemakers. The results showed that the heart rate, peak filling rate (PFR) and relative cardiac output (RCO) were significantly increased after planting the pacemaker. However, the effects of AAI and VVI on the synchronism of LV were different. AAI can significantly improve the synchronism and compliance of LV

  2. Myocardial function during transesophageal cardiac pacing in patients with coronary heart diseases when selected for surgical management: nuclear stethoscopic findings

    International Nuclear Information System (INIS)

    Fitilev, S.B.; Mironova, M.A.; Gordeev, V.F.; Satrapinskij, V.Yu.; Badalyan, E.A.; Akademiya Meditsinskikh Nauk SSSR, Moscow

    1991-01-01

    Studies of myocardial function during transesophageal cardiac pacing (TECP) were carried out in 70 patients with coronary heart diseases (CHD). All the patients were examined for central and intracardiac hemodynamics during TECP using nuclear stetoscope Bios (USA). The obtained data of central hemodynamics and myocardium contractibility make it possible to judge not only of pathological hemodynamics changes, as a CHD diagnostic factor, but of factors limiting reserve of cardiovascular system as well, depending on morphological heart changes

  3. Intramuscular injection of human umbilical cord-derived mesenchymal stem cells improves cardiac function in dilated cardiomyopathy rats.

    Science.gov (United States)

    Mao, Chenggang; Hou, Xu; Wang, Benzhen; Chi, Jingwei; Jiang, Yanjie; Zhang, Caining; Li, Zipu

    2017-01-28

    Stem cells provide a promising candidate for the treatment of the fatal pediatric dilated cardiomyopathy (DCM). This study aimed to investigate the effects of intramuscular injection of human umbilical cord-derived mesenchymal stem cells (hUCMSCs) on the cardiac function of a DCM rat model. A DCM model was established by intraperitoneal injections of doxorubicin in Sprague-Dawley rats. hUCMSCs at different concentrations or cultured medium were injected via limb skeletal muscles, with blank medium injected as the control. The rats were monitored for 4 weeks, meanwhile BNP, cTNI, VEGF, HGF, GM-CSF, and LIF in the peripheral blood were examined by ELISA, and cardiac function was monitored by echocardiography (Echo-CG). Finally, the expression of IGF-1, HGF, and VEGF in the myocardium was examined by histoimmunochemistry and real-time PCR, and the ultrastructure of the myocardium was examined by electron microscopy. Injection of hUCMSCs markedly improved cardiac function in the DCM rats by significantly elevating left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS). The BNP and cTNI levels in the peripheral blood were reduced by hUCMSCs, while HGF, LIF, GM-CSF, and VEGF were increased by hUCMSCs. Expression of IGF-1, HGF, and VEGF in the myocardium from the DCM rats was significantly increased by hUCMSC injection. Furthermore, hUCMSCs protected the ultrastructure of cardiomyocytes by attenuating mitochondrial swelling and maintaining sarcolemma integrity. Intramuscular injection of UCMSCs can improve DCM-induced cardiac function impairment and protect the myocardium. These effects may be mediated by regulation of relevant cytokines in serum and the myocardium.

  4. Cardiac function and perfusion dynamics measured on a beat-by-beat basis in the live mouse using ultra-fast 4D optoacoustic imaging

    Science.gov (United States)

    Ford, Steven J.; Deán-Ben, Xosé L.; Razansky, Daniel

    2015-03-01

    The fast heart rate (~7 Hz) of the mouse makes cardiac imaging and functional analysis difficult when studying mouse models of cardiovascular disease, and cannot be done truly in real-time and 3D using established imaging modalities. Optoacoustic imaging, on the other hand, provides ultra-fast imaging at up to 50 volumetric frames per second, allowing for acquisition of several frames per mouse cardiac cycle. In this study, we combined a recently-developed 3D optoacoustic imaging array with novel analytical techniques to assess cardiac function and perfusion dynamics of the mouse heart at high, 4D spatiotemporal resolution. In brief, the heart of an anesthetized mouse was imaged over a series of multiple volumetric frames. In another experiment, an intravenous bolus of indocyanine green (ICG) was injected and its distribution was subsequently imaged in the heart. Unique temporal features of the cardiac cycle and ICG distribution profiles were used to segment the heart from background and to assess cardiac function. The 3D nature of the experimental data allowed for determination of cardiac volumes at ~7-8 frames per mouse cardiac cycle, providing important cardiac function parameters (e.g., stroke volume, ejection fraction) on a beat-by-beat basis, which has been previously unachieved by any other cardiac imaging modality. Furthermore, ICG distribution dynamics allowed for the determination of pulmonary transit time and thus additional quantitative measures of cardiovascular function. This work demonstrates the potential for optoacoustic cardiac imaging and is expected to have a major contribution toward future preclinical studies of animal models of cardiovascular health and disease.

  5. Nanotized PPARα Overexpression Targeted to Hypertrophied Myocardium Improves Cardiac Function by Attenuating the p53-GSK3β-Mediated Mitochondrial Death Pathway.

    Science.gov (United States)

    Rana, Santanu; Datta, Ritwik; Chaudhuri, Ratul Datta; Chatterjee, Emeli; Chawla-Sarkar, Mamta; Sarkar, Sagartirtha

    2018-05-09

    Metabolic remodeling of cardiac muscles during pathological hypertrophy is characterized by downregulation of fatty acid oxidation (FAO) regulator, peroxisome proliferator-activated receptor alpha (PPARα). Thereby, we hypothesized that a cardiac-specific induction of PPARα might restore the FAO-related protein expression and resultant energy deficit. In the present study, consequences of PPARα augmentation were evaluated for amelioration of chronic oxidative stress, myocyte apoptosis, and cardiac function during pathological cardiac hypertrophy. Nanotized PPARα overexpression targeted to myocardium was done by a stearic acid-modified carboxymethyl-chitosan (CMC) conjugated to a 20-mer myocyte-targeted peptide (CMCP). Overexpression of PPARα ameliorated pathological hypertrophy and improved cardiac function. Augmented PPARα in hypertrophied myocytes revealed downregulated p53 acetylation (lys 382), leading to reduced apoptosis. Such cells showed increased binding of PPARα with p53 that in turn reduced interaction of p53 with glycogen synthase kinase-3β (GSK3β), which upregulated inactive phospho-GSK3β (serine [Ser]9) expression within mitochondrial protein fraction. Altogether, the altered molecular milieu in PPARα-overexpressed hypertrophy groups restored mitochondrial structure and function both in vitro and in vivo. Cardiomyocyte-targeted overexpression of a protein of interest (PPARα) by nanotized plasmid has been described for the first time in this study. Our data provide a novel insight towards regression of pathological hypertrophy by ameliorating mitochondrial oxidative stress in targeted PPARα-overexpressed myocardium. PPARα-overexpression during pathological hypertrophy showed substantial betterment of mitochondrial structure and function, along with downregulated apoptosis. Myocardium-targeted overexpression of PPARα during pathological cardiac hypertrophy led to an overall improvement of cardiac energy deficit and subsequent cardiac

  6. Role of protein kinase C in regulation of Na+- and K +-dependent ATPase activity and pump function in corneal endothelial cells.

    Science.gov (United States)

    Hatou, Shin; Yamada, Masakazu; Mochizuki, Hiroshi; Nishida, Teruo

    2009-05-01

    Na+- and K+-dependent ATPase (Na,K-ATPase) plays an important role in the pump function of the corneal endothelium. We investigated the possible role of protein kinase C (PKC) in regulation of Na,K-ATPase activity and pump function in corneal endothelial cells. Confluent monolayers of mouse corneal endothelial cells were exposed to phorbol 12,13-dibutyrate (PDBu) to induce activation of PKC. ATPase activity of the cells was evaluated by using ammonium molybdate in spectrophotometric measurement of phosphate released from ATP, with Na,K-ATPase activity being defined as the portion of total ATPase activity sensitive to ouabain. Pump function of the cells was measured with a Ussing chamber, with the pump function attributable to Na,K-ATPase activity being defined as the portion of the total short-circuit current sensitive to ouabain. PDBu (10(-7) M) increased the Na,K-ATPase activity and pump function of the cultured cells. These effects of PDBu were potentiated by the cyclooxygenase inhibitor indomethacin and the cytochrome P(450) inhibitor resorufin and were blocked by okadaic acid, an inhibitor of protein phosphatases 1 and 2A. Our results suggest that PKC bidirectionally regulates Na,K-ATPase activity in mouse corneal endothelial cells: it inhibits Na,K-ATPase activity in a cyclooxygenase- and cytochrome P(450)-dependent manner, whereas it stimulates such activity by activating protein phosphatases 1 or 2A.

  7. Loss of stearoyl-CoA desaturase 1 rescues cardiac function in obese leptin-deficient mice.

    Science.gov (United States)

    Dobrzyn, Pawel; Dobrzyn, Agnieszka; Miyazaki, Makoto; Ntambi, James M

    2010-08-01

    The heart of leptin-deficient ob/ob mice is characterized by pathologic left ventricular hypertrophy along with elevated triglyceride (TG) content, increased stearoyl-CoA desaturase (SCD) activity, and increased myocyte apoptosis. In the present study, using an ob/ob;SCD1(-/-) mouse model, we tested the hypothesis that lack of SCD1 could improve steatosis and left ventricle (LV) function in leptin deficiency. We show that disruption of the SCD1 gene improves cardiac function in ob/ob mice by correcting systolic and diastolic dysfunction without affecting levels of plasma TG and FFA. The improvement is associated with reduced expression of genes involved in FA transport and lipid synthesis in the heart, as well as reduction in cardiac FFA, diacylglycerol, TG, and ceramide levels. The rate of FA beta-oxidation is also significantly lower in the heart of ob/ob;SCD1(-/-) mice compared with ob/ob controls. Moreover, SCD1 deficiency reduces cardiac apoptosis in ob/ob mice due to increased expression of antiapoptotic factor Bcl-2 and inhibition of inducible nitric oxide synthase and caspase-3 activities. Reduction in myocardial lipid accumulation and inhibition of apoptosis appear to be one of the main mechanisms responsible for improved LV function in ob/ob mice caused by SCD1 deficiency.

  8. Effects of valsartan combined with atorvastatin on cardiac function, myocardial enzymes and thyroxine levels in patients with chronic heart failure

    Directory of Open Access Journals (Sweden)

    Xiao-Gang Wang1

    2017-04-01

    Full Text Available Objective: To observe the effects of valsartan combined with atorvastatin on cardiac function, myocardial enzymes and thyroxine levels in patients with chronic heart failure (CHF. Methods: 90 cases of CHF cases were divided into observation group and control group according to the order of single and double number, 45 cases each. In the control group, atorvastatin was given on the basis of conventional therapy, and the observation group was given valsartan on the basis of the control group. After 6 months, the differences of cardiac function indexes (LVEF, LVEDD, LVESD, E/A, myocardial enzymes (LDH, AST, CK, CKMB and thyroxine (TT3, TT4, FT3, FT4, TSH in the two groups were observed. Results: After treatment, LVEF and E/A in both groups increased significantly (P0.05, the observation group TT3 and FT3 were respectively (1.37±0.33 mol/L and (2.61±0.69 pmol/L , higher than the control group, the difference was statistically significant (P<0.05. Conclusion: valsartan combined with atorvastatin in the treatment of CHF, can improve cardiac function and myocardial protection effect, and can effectively promote the recovery of thyroid hormone levels, better than the single use of atorvastatin.

  9. Use of {sup 123}I-MIBG scintigraphy to assess the impact of carvedilol on cardiac adrenergic neuronal function in childhood dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Maunoury, Christophe [Service de Medecine Nucleaire, Hopital Necker-Enfants Malades, 149 rue de Sevres, 75743, Paris Cedex 15 (France); Acar, Philippe; Sidi, Daniel [Service de Cardiologie Pediatrique, Hopital Necker-Enfants Malades, Paris (France)

    2003-12-01

    Iodine-123 metaiodobenzylguanidine (MIBG) cardiac scintigraphy is a useful tool for the assessment of cardiac adrenergic neuronal function, which is impaired in children with idiopathic dilated cardiomyopathy (DCM). In adults with DCM, long-term treatment with carvedilol improves both cardiac adrenergic neuronal function and left ventricular function. The aim of this prospective study was to evaluate the impact of carvedilol on cardiac adrenergic neuronal function using {sup 123}I-MIBG scintigraphy and on left ventricular function using equilibrium radionuclide angiography in children with DCM. Seventeen patients (11 female, six male; mean age 39{+-}57 months, range 1-168 months) with DCM and left ventricular dysfunction underwent {sup 123}I-MIBG cardiac scintigraphy and equilibrium radionuclide angiography before and after a 6-month period of carvedilol therapy. A static anterior view of the chest was acquired 4 h after intravenous injection of 20-75 MBq of {sup 123}I-MIBG. Cardiac neuronal uptake of {sup 123}I-MIBG was measured using the heart to mediastinum count ratio (HMR). Radionuclide left ventricular ejection fraction (LVEF) was assessed following a standard protocol. MIBG cardiac uptake and left ventricular function respectively increased by 38% and 65% after 6 months of treatment with carvedilol (HMR=223%{+-}49% vs 162%{+-}26%, P<0.0001, and LVEF=43%{+-}17% vs 26%{+-}11%, P<0.0001). Carvedilol can improve cardiac adrenergic neuronal and left ventricular function in children with dilated cardiomyopathy. Further studies are needed to assess the relationship between improvement in MIBG cardiac uptake and the beneficial effects of carvedilol on morbidity and mortality. (orig.)

  10. Use of 123I-MIBG scintigraphy to assess the impact of carvedilol on cardiac adrenergic neuronal function in childhood dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Maunoury, Christophe; Acar, Philippe; Sidi, Daniel

    2003-01-01

    Iodine-123 metaiodobenzylguanidine (MIBG) cardiac scintigraphy is a useful tool for the assessment of cardiac adrenergic neuronal function, which is impaired in children with idiopathic dilated cardiomyopathy (DCM). In adults with DCM, long-term treatment with carvedilol improves both cardiac adrenergic neuronal function and left ventricular function. The aim of this prospective study was to evaluate the impact of carvedilol on cardiac adrenergic neuronal function using 123 I-MIBG scintigraphy and on left ventricular function using equilibrium radionuclide angiography in children with DCM. Seventeen patients (11 female, six male; mean age 39±57 months, range 1-168 months) with DCM and left ventricular dysfunction underwent 123 I-MIBG cardiac scintigraphy and equilibrium radionuclide angiography before and after a 6-month period of carvedilol therapy. A static anterior view of the chest was acquired 4 h after intravenous injection of 20-75 MBq of 123 I-MIBG. Cardiac neuronal uptake of 123 I-MIBG was measured using the heart to mediastinum count ratio (HMR). Radionuclide left ventricular ejection fraction (LVEF) was assessed following a standard protocol. MIBG cardiac uptake and left ventricular function respectively increased by 38% and 65% after 6 months of treatment with carvedilol (HMR=223%±49% vs 162%±26%, P<0.0001, and LVEF=43%±17% vs 26%±11%, P<0.0001). Carvedilol can improve cardiac adrenergic neuronal and left ventricular function in children with dilated cardiomyopathy. Further studies are needed to assess the relationship between improvement in MIBG cardiac uptake and the beneficial effects of carvedilol on morbidity and mortality. (orig.)

  11. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study.

    Directory of Open Access Journals (Sweden)

    Karin A M Janssens

    Full Text Available Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS. However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autonomic nervous system (ANS levels during a standardized stressful situation, and whether these associations are symptom-specific.We examined 715 adolescents (16.1 years, 51.3% girls from the Dutch cohort study Tracking Adolescents' Individual Lives Sample during the Groningen Social Stress Test (GSST. FSS were assessed by the Youth Self-Report, and clustered into a cluster of overtiredness, dizziness and musculoskeletal pain and a cluster of headache and gastrointestinal symptoms. Perceived stress levels (i.e. unpleasantness and arousal were assessed by the Self-Assessment Manikin, and cardiac ANS activity by assessing heart rate variability (HRV-HF and pre-ejection period (PEP. Perceived stress and cardiac ANS levels before, during, and after the GSST were studied as well as cardiac ANS reactivity. Linear regression analyses were used to examine the associations.Perceived arousal levels during (beta = 0.09, p = 0.04 and after (beta = 0.07, p = 0.047 the GSST, and perceived unpleasantness levels before (beta = 0.07, p = 0.048 and during (beta = 0.12, p = 0.001 the GSST were related to FSS during the past couple of months. The association between perceived stress and FSS was stronger for the FSS cluster of overtiredness, dizziness and musculoskeletal pain than for the cluster of headache and gastrointestinal symptoms. Neither ANS activity levels before, during, and after the GSST, nor maximal HF-HRV and PEP reactivity were related to FSS.This study suggests that perceived stress levels during social stress are related to FSS, whereas cardiac ANS activity and reactivity are not related to FSS.

  12. Methotrexate carried in lipid core nanoparticles reduces myocardial infarction size and improves cardiac function in rats

    Directory of Open Access Journals (Sweden)

    Maranhão RC

    2017-05-01

    Full Text Available Raul C Maranhão,1,2 Maria C Guido,1 Aline D de Lima,1 Elaine R Tavares,1 Alyne F Marques,1 Marcelo D Tavares de Melo,3 Jose C Nicolau,3 Vera MC Salemi,3 Roberto Kalil-Filho3 1Laboratory of Metabolism and Lipids, 2Faculty of Pharmaceutical Sciences, 3Heart Failure Unit, Clinical Cardiology Division, Heart Institute (InCor, Medical School Hospital, University of São Paulo, São Paulo, Brazil Purpose: Acute myocardial infarction (MI is accompanied by myocardial inflammation, fibrosis, and ventricular remodeling that, when excessive or not properly regulated, may lead to heart failure. Previously, lipid core nanoparticles (LDE used as carriers of the anti-inflammatory drug methotrexate (MTX produced an 80-fold increase in the cell uptake of MTX. LDE-MTX treatment reduced vessel inflammation and atheromatous lesions induced in rabbits by cholesterol feeding. The aim of the study was to investigate the effects of LDE-MTX on rats with MI, compared with commercial MTX treatment.Materials and methods: Thirty-eight Wistar rats underwent left coronary artery ligation and were treated with LDE-MTX, or with MTX (1 mg/kg intraperitoneally, once/week, starting 24 hours after surgery or with LDE without drug (MI-controls. A sham-surgery group (n=12 was also included. Echocardiography was performed 24 hours and 6 weeks after surgery. The animals were euthanized and their hearts were analyzed for morphometry, protein expression, and confocal microscopy.Results: LDE-MTX treatment achieved a 40% improvement in left ventricular (LV systolic function and reduced cardiac dilation and LV mass, as shown by echocardiography. LDE-MTX reduced the infarction size, myocyte hypertrophy and necrosis, number of inflammatory cells, and myocardial fibrosis, as shown by morphometric analysis. LDE-MTX increased antioxidant enzymes; decreased apoptosis, macrophages, reactive oxygen species production; and tissue hypoxia in non-infarcted myocardium. LDE-MTX increased adenosine

  13. Effects of the association of diabetes and pulmonary emphysema on cardiac structure and function in rats.

    Science.gov (United States)

    Di Petta, Antonio; Simas, Rafael; Ferreira, Clebson L; Capelozzi, Vera L; Salemi, Vera M C; Moreira, Luiz F P; Sannomiya, Paulina

    2015-10-01

    Chronic obstructive pulmonary disease is often associated with chronic comorbid conditions of cardiovascular disease, diabetes mellitus and hypertension. This study aimed to investigate the effects of the association of diabetes and pulmonary emphysema on cardiac structure and function in rats. Wistar rats were divided into control non-diabetic instilled with saline (CS) or elastase (CE), diabetic instilled with saline (DS) or elastase (DE), DE treated with insulin (DEI) groups and echocardiographic measurements, morphometric analyses of the heart and lungs, and survival analysis conducted 50 days after instillation. Diabetes mellitus was induced [alloxan, 42 mg/kg, intravenously (iv)] 10 days before the induction of emphysema (elastase, 0.25 IU/100 g). Rats were treated with NPH insulin (4 IU before elastase plus 2 IU/day, 50 days). Both CE and DE exhibited similar increases in mean alveolar diameter, which are positively correlated with increases in right ventricular (RV) wall thickness (P = 0.0022), cavity area (P = 0.0001) and cardiomyocyte thickness (P = 0.0001). Diabetic saline group demonstrated a reduction in left ventricular (LV) wall, interventricular (IV) septum, cardiomyocyte thickness and an increase in cavity area, associated with a reduction in LV fractional shortening (P emphysema, even in the presence of insulin. Diabetes per se induced left ventricular dysfunction, which was less evident in the presence of RV hypertrophy. Survival rate was substantially reduced as a consequence, at least in part, of the coexistence of RV hypertrophy and diabetic cardiomyopathy. © 2015 The Authors. International Journal of Experimental Pathology © 2015 International Journal of Experimental Pathology.

  14. A functional study of the esophagus in patients with non-cardiac chest pain and dysphagia.

    Science.gov (United States)

    Gullo, Roberto; Inviati, Angela; Almasio, Piero Luigi; Di Paola, Valentina; Di Giovanni, Silvia; Scerrino, Gregorio; Gulotta, Gaspare; Bonventre, Sebastiano

    2015-03-01

    Nutcracker esophagus and non-specific motility disorders are the main causes of non-cardiac chest pain (NCCP), with gastroesophageal reflux in 60% of cases. Achalasia and diffuse esophageal spasm are the most frequent anomalies described in patients with dysphagia. The goal of this study was to evaluate the occurrence of esophageal body and lower esophageal sphincter motor abnormalities in patients with dysphagia, NCCP, or both. This study is a retrospective analysis of 716 patients with NCCP and/or dysphagia tested between January 1994 and December 2010. 1023 functional studies were performed, 707 of which were esophageal manometries, 225 esophageal pH-meters, and 44 bilimetries. We divided the patients into three groups: group 1 was composed of patients affected with dysphagia, group 2 with NCCP and group 3 with NCCP and dysphagia. Manometric anomalies were detected in 84.4% of cases (p<0.001). The most frequent esophageal motility alteration was achalasia (36%). The lower esophageal sphincter was normal in 45.9% of patients (p<0.001). In all 3 groups, 80.9%, 98.8%, and 93.8, respectively, of patients showed normal upper esophageal sphincter (p=0.005). Our data differs from those of other studies because they were collected from and analyzed by a single tertiary level referral center by a single examiner. This could have eliminated the variability found in different hands and different experiences. The high percentage of symptomatic patients with non-pathologic esophageal motility pattern suggests an unclear origin of the disease, with possible neuromuscular involvement. As a result, these patients may need more-detailed diagnostic studies.

  15. Influence of hydrotherapy on clinical and cardiac autonomic function in migraine patients.

    Science.gov (United States)

    Sujan, M U; Rao, M Raghavendra; Kisan, Ravikiran; Abhishekh, Hulegar A; Nalini, Atchayaram; Raju, Trichur R; Sathyaprabha, T N

    2016-01-01

    Migraine is associated with autonomic symptoms. The growing body of literature suggests that the dysfunctional autonomic nervous system might play a pivotal role in the pathogenesis of migraine. Thermal therapies have been hypothesized to modulate these changes and alleviate pain. However, data regarding the efficacy of hydrotherapy in migraine remain scant. We evaluated the effect of add on hydrotherapy procedure (a hot arm and foot bath with ice massage to head) in migraine patients. Forty chronic migraine patients fulfilling the International Classification of Headache Disorders II criteria were recruited from the neurology outpatient clinic. Patients were randomized to receive either hydrotherapy plus conventional pharmacological care (n = 20) or conventional medication only (n = 20). Hydrotherapy group received treatment with hot arm and foot bath (103°F to 110°F) and ice massage to head daily for 20 min for 45 days. Patients were assessed using headache impact test (HIT), visual analog scale for pain and cardiac autonomic function by heart rate variability (HRV) before and after intervention period. There was a significant decrease in HIT score, frequency, and intensity of headaches following treatment in both the groups. However, it was more evident in add on hydrotherapy group compared to pharmacological treatment alone group. There was also significant improvement in the HRV parameters. In particular, there was a significant decrease in heart rate (P = 0.017), increase in high frequency (HF) (P = 0.014) and decrease in low frequency/HF ratio (P = 0.004) in add on hydrotherapy group. Our study shows that add on hydrotherapy enhanced the vagal tone in addition to reducing the frequency and intensity of headaches in migraine patients.

  16. Influence of hydrotherapy on clinical and cardiac autonomic function in migraine patients

    Directory of Open Access Journals (Sweden)

    M U Sujan

    2016-01-01

    Full Text Available Background: Migraine is associated with autonomic symptoms. The growing body of literature suggests that the dysfunctional autonomic nervous system might play a pivotal role in the pathogenesis of migraine. Thermal therapies have been hypothesized to modulate these changes and alleviate pain. However, data regarding the efficacy of hydrotherapy in migraine remain scant. We evaluated the effect of add on hydrotherapy procedure (a hot arm and foot bath with ice massage to head in migraine patients. Methods: Forty chronic migraine patients fulfilling the International Classification of Headache Disorders II criteria were recruited from the neurology outpatient clinic. Patients were randomized to receive either hydrotherapy plus conventional pharmacological care (n = 20 or conventional medication only (n = 20. Hydrotherapy group received treatment with hot arm and foot bath (103°F to 110°F and ice massage to head daily for 20 min for 45 days. Patients were assessed using headache impact test (HIT, visual analog scale for pain and cardiac autonomic function by heart rate variability (HRV before and after intervention period. Results: There was a significant decrease in HIT score, frequency, and intensity of headaches following treatment in both the groups. However, it was more evident in add on hydrotherapy group compared to pharmacological treatment alone group. There was also significant improvement in the HRV parameters. In particular, there was a significant decrease in heart rate (P = 0.017, increase in high frequency (HF (P = 0.014 and decrease in low frequency/HF ratio (P = 0.004 in add on hydrotherapy group. Conclusion: Our study shows that add on hydrotherapy enhanced the vagal tone in addition to reducing the frequency and intensity of headaches in migraine patients.

  17. Cardiac-specific expression of the tetracycline transactivator confers increased heart function and survival following ischemia reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Laila Elsherif

    Full Text Available Mice expressing the tetracycline transactivator (tTA transcription factor driven by the rat α-myosin heavy chain promoter (α-MHC-tTA are widely used to dissect the molecular mechanisms involved in cardiac development and disease. However, these α-MHC-tTA mice exhibit a gain-of-function phenotype consisting of robust protection against ischemia/reperfusion injury in both in vitro and in vivo models in the absence of associated cardiac hypertrophy or remodeling. Cardiac function, as assessed by echocardiography, did not differ between α-MHC-tTA and control animals, and there were no noticeable differences observed between the two groups in HW/TL ratio or LV end-diastolic and end-systolic dimensions. Protection against ischemia/reperfusion injury was assessed using isolated perfused hearts where α-MHC-tTA mice had robust protection against ischemia/reperfusion injury which was not blocked by pharmacological inhibition of PI3Ks with LY294002. Furthermore, α-MHC-tTA mice subjected to coronary artery ligation exhibited significantly reduced infarct size compared to control animals. Our findings reveal that α-MHC-tTA transgenic mice exhibit a gain-of-function phenotype consisting of robust protection against ischemia/reperfusion injury similar to cardiac pre- and post-conditioning effects. However, in contrast to classical pre- and post-conditioning, the α-MHC-tTA phenotype is not inhibited by the classic preconditioning inhibitor LY294002 suggesting involvement of a non-PI3K-AKT signaling pathway in this phenotype. Thus, further study of the α-MHC-tTA model may reveal novel molecular targets for therapeutic intervention during ischemic injury.

  18. Study of Peak Expiratory Flow Rate as the Assessment of Lung Function in Occupationally Exposed Petrol Pump Workers of Western Maharashtra

    Directory of Open Access Journals (Sweden)

    Patil Smita V

    2016-04-01

    Full Text Available Background: Fast urbanization trends, rapid industrial growth, globalization, and poor environmental conditions at work places have created a lot of healthrelated issues. Aim and Objectives: The aim of this study is to investigate Peak Expiratory Flow Rate (PEFR as the assessment of lung function in occupationally exposed petrol pump workers and also check whether PEFR increases or decreases with duration of exposure. Material and Methods: The study was conducted on 60 male petrol pump workers between age group of 20-40 years who were working as petrol filling attendants for more than one year from western Maharashtra. 50 normal healthy males with same socioeconomic status were chosen as controls to find out the effect of occupational exposure to petroleum product on PEFR as the assessment of lung function tests. Petrol pump workers were divided into three groups based on their duration of exposure i.e. 1- 5 yrs, 6- 10 yrs and more than 11 years. PEFR of petrol pump workers and control was measured by using a Mini Wright peak flow meter which is a portable device for measuring ventilator functions. Comparisons was done using unpaired t-test for 2 groups comparisons and one way ANOVAfor multiple groups of exposures. Results: The PEFR was significantly lower decrease (p=0.001 around petrol pump workers (389.17 as compared to control (534.2. As year of exposure increased mean value of PEFR was significantly decreased from 452.17, 378.00 and 283.64 respectively in petrol pump workers. Conclusion: The results suggested that respiratory functions i.e. PEFR of occupationally exposed petrol pump workers are significantly reduced as compared to controls, also PEFR is significantly reduced with increase in the duration of exposure.

  19. Cardiac glycoside ouabain induces activation of ATF-1 and StAR expression by interacting with the α4 isoform of the sodium pump in Sertoli cells.

    Science.gov (United States)

    Dietze, Raimund; Konrad, Lutz; Shihan, Mazen; Kirch, Ulrike; Scheiner-Bobis, Georgios

    2013-03-01

    Sertoli cells express α1 and α4 isoforms of the catalytic subunit of Na(+),K(+)-ATPase (sodium pump). Our recent findings demonstrated that interactions of the α4 isoform with cardiotonic steroids (CTS) like ouabain induce signaling cascades that resemble the so-called non-classical testosterone pathway characterized by activation of the c-Src/c-Raf/Erk1/2/CREB signaling cascade. Here we investigate a possible physiological significance of the activated cascade. The results obtained in the current investigation show that the ouabain-induced signaling cascade also leads to the activation of the CREB-related activating transcription factor 1 (ATF-1) in the Sertoli cell line 93RS2 in a concentration- and time-dependent manner, as demonstrated by detection of ATF-1 phosphorylated on Ser63 in western blots. The ouabain-activated ATF-1 protein was found to localize to the cell nuclei. The sodium pump α4 isoform mediates this activation, as it is ablated when cells are incubated with siRNA to the α4 isoform. Ouabain also leads to increased expression of steroidogenic acute regulator (StAR) protein, which has been shown to be a downstream consequence of CREB/ATF-1 activation. Taking into consideration that CTS are most likely produced endogenously, the demonstrated induction of StAR expression by ouabain establishes a link between CTS, the α4 isoform of the sodium pump, and steroidogenesis crucial for male fertility and reproduction. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Effect of a single intraoperative high-dose ATG-Fresenius on delayed graft function in donation after cardiac-death donor renal allograft recipients: a randomized study

    NARCIS (Netherlands)

    Hoogen, M.W.F. van den; Kho, M.M.; Abrahams, A.C.; Zuilen, A.D. van; Sanders, J.S.; Dijk, M.; Hilbrands, L.B.; Weimar, W.; Hoitsma, A.J.

    2013-01-01

    OBJECTIVES: Reducing the incidence of delayed graft function after transplant with donation after cardiac death donor renal allografts would facilitate managing recipients during their first weeks after a transplant. To reduce this incidence, in most studies, induction therapy with depleting

  1. Effect of a Single Intraoperative High-Dose ATG-Fresenius on Delayed Graft Function in Donation After Cardiac-Death Donor Renal Allograft Recipients : A Randomized Study

    NARCIS (Netherlands)

    van den Hoogen, Martijn W. F.; Kho, Marcia M. L.; Abrahams, Alferso C.; van Zuilen, Arjan D.; Sanders, Jan Stephan; van Dijk, Marja; Hilbrands, Luuk B.; Weimar, Willem; Hoitsma, Andries J.

    Objectives: Reducing the incidence of delayed graft function after transplant with donation after cardiac death donor renal allografts would facilitate managing recipients during their first weeks after a transplant. To reduce this incidence, in most studies, induction therapy with depleting

  2. Preoperative renin-angiotensin system inhibitors protect renal function in aging patients undergoing cardiac surgery.

    Science.gov (United States)

    Barodka, Viachaslau; Silvestry, Scott; Zhao, Ning; Jiao, Xiangyin; Whellan, David J; Diehl, James; Sun, Jian-Zhong

    2011-05-15

    Renal failure (RF) represents a major postoperative complication for elderly patients undergoing cardiac surgery. This observational cohort study examines effects of preoperative use of renin-angiotensin system (RAS) inhibitors on postoperative renal failure in aging patients undergoing cardiac surgery. We retrospectively analyzed a cohort of 1287 patients who underwent cardiac surgery at this institution (2003-2007). The patients included were ≥65 years old, scheduled for elective cardiac surgery, and without preexisting RF (defined by the criteria of the Society of Thoracic Surgeons as described in Method). Of all patients evaluated, 346 patients met the inclusion criteria and were divided into two groups: using (n = 122) or not using (n = 224) preoperative RAS inhibitors. A comparison of the two groups showed no significant differences in baseline parameters, including creatinine clearance, body mass index, history of diabetes and smoking, preoperative medicines (except that more patients with RAS inhibitors had a history of hypertension or congestive heart failure, fewer RAS inhibitor patients had chronic lung disease), in intraoperative perfusion and aortic cross-clamp time, and in postoperative complications and 30-d mortality. Multivariate logistic regression analysis demonstrated, however, that preoperative RAS inhibitors significantly and independently reduced the incidence of postoperative RF in the patients undergoing cardiac surgery compared with those not taking RAS inhibitors: 1.6% versus 7.6%, yielding an odds ratio of 0.19 (95 % CI 0.04-0.84, P = 0.029). Preoperative RAS inhibitors may have significant renoprotective effects for aging patients undergoing elective cardiac surgery. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Megestrol acetate improves cardiac function in a model of cancer cachexia-induced cardiomyopathy by autophagic modulation.

    Science.gov (United States)

    Musolino, Vincenzo; Palus, Sandra; Tschirner, Anika; Drescher, Cathleen; Gliozzi, Micaela; Carresi, Cristina; Vitale, Cristiana; Muscoli, Carolina; Doehner, Wolfram; von Haehling, Stephan; Anker, Stefan D; Mollace, Vincenzo; Springer, Jochen

    2016-12-01

    Cachexia is a complex metabolic syndrome associated with cancer. One of the features of cachexia is the loss of muscle mass, characterized by an imbalance between protein synthesis and protein degradation. Muscle atrophy is caused by the hyperactivation of some of the main cellular catabolic pathways, including autophagy. Cachexia also affects the cardiac muscle. As a consequence of the atrophy of the heart, cardiac function is impaired and mortality is increased. Anti-cachectic therapy in patients with cancer cachexia is so far limited to nutritional support and anabolic steroids. The use of the appetite stimulant megestrol acetate (MA) has been discussed as a treatment for cachexia. In this study the effects of MA were tested in cachectic tumour-bearing rats (Yoshida AH-130 ascites hepatoma). Rats were treated daily with 100 mg/kg of MA or placebo starting one day after tumour inoculation, and for a period of 16 days. Body weight and body composition were assessed at baseline and at the end of the study. Cardiac function was analysed by echocardiography at baseline and at day 11. Locomotor activity and food intake were assessed before tumour inoculation and at day 11. Autophagic markers were assessed in gastrocnemius muscle and heart by western blot analysis. Treatment with 100 mg/kg/day MA significantly attenuated the loss of body weight (-9 ± 12%, P  cachexia-induced cardiomyopathy.

  4. Fermitins, the orthologs of mammalian Kindlins, regulate the development of a functional cardiac syncytium in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    James H Catterson

    Full Text Available The vertebrate Kindlins are an evolutionarily conserved family of proteins critical for integrin signalling and cell adhesion. Kindlin-2 (KIND2 is associated with intercalated discs in mice, suggesting a role in cardiac syn