WorldWideScience

Sample records for cardiac progenitor cells

  1. Alteration of cardiac progenitor cell potency in GRMD dogs.

    Science.gov (United States)

    Cassano, M; Berardi, E; Crippa, S; Toelen, J; Barthelemy, I; Micheletti, R; Chuah, M; Vandendriessche, T; Debyser, Z; Blot, S; Sampaolesi, M

    2012-01-01

    Among the animal models of Duchenne muscular dystrophy (DMD), the Golden Retriever muscular dystrophy (GRMD) dog is considered the best model in terms of size and pathological onset of the disease. As in human patients presenting with DMD or Becker muscular dystrophies (BMD), the GRMD is related to a spontaneous X-linked mutation of dystrophin and is characterized by myocardial lesions. In this respect, GRMD is a useful model to explore cardiac pathogenesis and for the development of therapeutic protocols. To investigate whether cardiac progenitor cells (CPCs) isolated from healthy and GRMD dogs may differentiate into myocardial cell types and to test the feasibility of cell therapy for cardiomyopathies in a preclinical model of DMD, CPCs were isolated from cardiac biopsies of healthy and GRMD dogs. Gene profile analysis revealed an active cardiac transcription network in both healthy and GRMD CPCs. However, GRMD CPCs showed impaired self-renewal and cardiac differentiation. Population doubling and telomerase analyses highlighted earlier senescence and proliferation impairment in progenitors isolated from GRMD cardiac biopsies. Immunofluorescence analysis revealed that only wt CPCs showed efficient although not terminal cardiac differentiation, consistent with the upregulation of cardiac-specific proteins and microRNAs. Thus, the pathological condition adversely influences the cardiomyogenic differentiation potential of cardiac progenitors. Using PiggyBac transposon technology we marked CPCs for nuclear dsRed expression, providing a stable nonviral gene marking method for in vivo tracing of CPCs. Xenotransplantation experiments in neonatal immunodeficient mice revealed a valuable contribution of CPCs to cardiomyogenesis with homing differences between wt and dystrophic progenitors. These results suggest that cardiac degeneration in dystrophinopathies may account for the progressive exhaustion of local cardiac progenitors and shed light on cardiac stemness in

  2. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts

    Science.gov (United States)

    Liu, Yu; Chen, Li; Diaz, Andrea Diaz; Benham, Ashley; Xu, Xueping; Wijaya, Cori S.; Fa’ak, Faisal; Luo, Weijia; Soibam, Benjamin; Azares, Alon; Yu, Wei; Lyu, Qiongying; Stewart, M. David; Gunaratne, Preethi; Cooney, Austin; McConnell, Bradley K.; Schwartz, Robert J.

    2016-01-01

    Mesp1 directs multipotential cardiovascular cell fates, even though it’s transiently induced prior to the appearance of the cardiac progenitor program. Tracing Mesp1-expressing cells and their progeny allows isolation and characterization of the earliest cardiovascular progenitor cells. Studying the biology of Mesp1-CPCs in cell culture and ischemic disease models is an important initial step toward using them for heart disease treatment. Because of Mesp1’s transitory nature, Mesp1-CPC lineages were traced by following EYFP expression in murine Mesp1Cre/+; Rosa26EYFP/+ ES cells. We captured EYFP+ cells that strongly expressed cardiac mesoderm markers and cardiac transcription factors, but not pluripotent or nascent mesoderm markers. BMP2/4 treatment led to the expansion of EYFP+ cells, while Wnt3a and Activin were marginally effective. BMP2/4 exposure readily led EYFP+ cells to endothelial and smooth muscle cells, but inhibition of the canonical Wnt signaling was required to enter the cardiomyocyte fate. Injected mouse pre-contractile Mesp1-EYFP+ CPCs improved the survivability of injured mice and restored the functional performance of infarcted hearts for at least 3 months. Mesp1-EYFP+ cells are bona fide CPCs and they integrated well in infarcted hearts and emerged de novo into terminally differentiated cardiac myocytes, smooth muscle and vascular endothelial cells. PMID:27538477

  3. Resident cardiac progenitor cells: at the heart of regeneration.

    Science.gov (United States)

    Bollini, Sveva; Smart, Nicola; Riley, Paul R

    2011-02-01

    Stem cell therapy has recently emerged as an innovative strategy over conventional cardiovascular treatments to restore cardiac function in patients affected by ischemic heart disease. Various stem cell populations have been tested and their potential for cardiac repair has been analyzed. Embryonic stem cells retain the greatest differentiation potential, but concerns persist with regard to their immunogenic and teratogenic effects. Although adult somatic stem cells are not tumourigenic and easier to use in an autologous setting, they exist in small numbers and possess reduced differentiation potential. Traditionally the heart was considered to be a post-mitotic organ; however, this dogma has recently been challenged with the identification of a reservoir of resident stem cells, defined as cardiac progenitor cells (CPCs). These endogenous progenitors may represent the best candidates for cardiovascular cell therapy, as they are tissue-specific, often pre-committed to a cardiac fate, and display a greater propensity to differentiate towards cardiovascular lineages. This review will focus on current research into the biology of CPCs and their regenerative potential. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".

  4. Electrically Induced Calcium Handling in Cardiac Progenitor Cells

    Science.gov (United States)

    Wagner, Mary B.

    2016-01-01

    For nearly a century, the heart was viewed as a terminally differentiated organ until the discovery of a resident population of cardiac stem cells known as cardiac progenitor cells (CPCs). It has been shown that the regenerative capacity of CPCs can be enhanced by ex vivo modification. Preconditioning CPCs could provide drastic improvements in cardiac structure and function; however, a systematic approach to determining a mechanistic basis for these modifications founded on the physiology of CPCs is lacking. We have identified a novel property of CPCs to respond to electrical stimulation by initiating intracellular Ca2+ oscillations. We used confocal microscopy and intracellular calcium imaging to determine the spatiotemporal properties of the Ca2+ signal and the key proteins involved in this process using pharmacological inhibition and confocal Ca2+ imaging. Our results provide valuable insights into mechanisms to enhance the therapeutic potential in stem cells and further our understanding of human CPC physiology.

  5. Association of CD14+ monocyte-derived progenitor cells with cardiac allograft vasculopathy

    OpenAIRE

    Salama, Mohamed; Andrukhova, Olena; Roedler, Susanne; Zuckermann, Andreas; Laufer, Guenther; Aharinejad, Seyedhossein

    2011-01-01

    Objective The pathogenesis of cardiac allograft vasculopathy after heart transplant remains controversial. Histologically, cardiac allograft vasculopathy is characterized by intimal hyperplasia of the coronary arteries induced by infiltrating cells. The origin of these infiltrating cells in cardiac allograft vasculopathy is unclear. Endothelial progenitor cells are reportedly involved in cardiac allograft vasculopathy; however, the role of CD14+ monocyte-derived progenitor cells in cardiac al...

  6. Endothelial Progenitor Cells in Peripheral Blood of Cardiac Catheterization Personnel

    Directory of Open Access Journals (Sweden)

    Soheir Korraa1, Tawfik M.S.1, Mohamed Maher 2 and Amr Zaher

    2014-07-01

    Full Text Available Background: The aim of the present study was to evaluate the rejuvenation capacity among cardiac catheterization technicians occupationally exposed to ionizing radiation. Subjects and methods: The individual annual collective dose information was measured by thermoluminscent personal dosimeters (TLD for those technicians and found to be ranging between 2.16 and 8.44 mSv/y. Venous blood samples were obtained from 30 cardiac catheterization technicians exposed to X-ray during fluoroscopy procedures at the National Heart Institute in Embaba. The control group involved 25 persons not exposed to ionizing radiation and not working in hospitals in addition to 20 persons not exposed to ionizing radiation and working in hospitals. Blood samples were assayed for total and differential blood counts, micronucleus formation (FMN plasma stromal derived growth factor-1α (SDF-1 α and cell phenotype of circulating endothelial progenitor cells (EPCs, whose surface markers were identified as the CD34, CD133 and kinase domain receptors (KDR. Results: SDF-1α (2650± 270 vs. 2170 ± 430 pg/ml and FMN (19.9 ± 5.5 vs. 2.8 ± 1.4/1000 cells were significantly higher among cardiac catheterization staff compared to those of the controls respectively. Similarly, EPCs: CD34 (53 ± 3.9 vs. 48 ± 8.5/105 mononuclear cells, CD133 (62.4 ± 4.8 vs. 54.2 ± 10.6 /105 mononuclear cells KDR (52.7 ± 10.6 vs.43.5± 8.2 /105 mononuclear cells were also significantly higher among cardiac catheterization staff compared to the values of controls respectively. Smoking seemed to have a positive effect on the FMN and SDF-1 but had a negative effect on EPCs. It was found that among cardiac catheterization staff, the numbers of circulating progenitor cells had increased and accordingly there was an increased capacity for tissue repair. Conclusion: In conclusion, the present work shows that occupational exposure to radiation, well within permissible levels, leaves a genetic mark on the

  7. High Glucose Causes Human Cardiac Progenitor Cell Dysfunction by Promoting Mitochondrial Fission: Role of a GLUT1 Blocker

    Science.gov (United States)

    Choi, He Yun; Park, Ji Hye; Jang, Woong Bi; Ji, Seung Taek; Jung, Seok Yun; Kim, Da Yeon; Kang, Songhwa; Kim, Yeon Ju; Yun, Jisoo; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang-Mo

    2016-01-01

    Cardiovascular disease is the most common cause of death in diabetic patients. Hyperglycemia is the primary characteristic of diabetes and is associated with many complications. The role of hyperglycemia in the dysfunction of human cardiac progenitor cells that can regenerate damaged cardiac tissue has been investigated, but the exact mechanism underlying this association is not clear. Thus, we examined whether hyperglycemia could regulate mitochondrial dynamics and lead to cardiac progenitor cell dysfunction, and whether blocking glucose uptake could rescue this dysfunction. High glucose in cardiac progenitor cells results in reduced cell viability and decreased expression of cell cycle-related molecules, including CDK2 and cyclin E. A tube formation assay revealed that hyperglycemia led to a significant decrease in the tube-forming ability of cardiac progenitor cells. Fluorescent labeling of cardiac progenitor cell mitochondria revealed that hyperglycemia alters mitochondrial dynamics and increases expression of fission-related proteins, including Fis1 and Drp1. Moreover, we showed that specific blockage of GLUT1 improved cell viability, tube formation, and regulation of mitochondrial dynamics in cardiac progenitor cells. To our knowledge, this study is the first to demonstrate that high glucose leads to cardiac progenitor cell dysfunction through an increase in mitochondrial fission, and that a GLUT1 blocker can rescue cardiac progenitor cell dysfunction and downregulation of mitochondrial fission. Combined therapy with cardiac progenitor cells and a GLUT1 blocker may provide a novel strategy for cardiac progenitor cell therapy in cardiovascular disease patients with diabetes. PMID:27350339

  8. Neonatal Heart-Enriched miR-708 Promotes Differentiation of Cardiac Progenitor Cells in Rats

    Directory of Open Access Journals (Sweden)

    Shengqiong Deng

    2016-06-01

    Full Text Available Cardiovascular disease is becoming the leading cause of death throughout the world. However, adult hearts have limited potential for regeneration after pathological injury, partly due to the quiescent status of stem/progenitor cells. Reactivation of cardiac stem/progenitor cells to create more myocyte progeny is one of the key steps in the regeneration of a damaged heart. In this study, miR-708 was identified to be enriched in the neonatal cardiomyocytes of rats, but this has not yet been proven in adult humans. A lower level of miR-708 in c-kit(+ stem/progenitor cells was detected compared to non-progenitors. Overexpression of miR-708 induced cardiomyocyte differentiation of cardiac stem/progenitor cells. This finding strengthened the potential of applying miRNAs in the regeneration of injured hearts, and this indicates that miR-708 could be a novel candidate for treatment of heart diseases.

  9. Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation

    Directory of Open Access Journals (Sweden)

    Alexander R. Pinto

    2014-11-01

    Full Text Available Macrophages are an immune cell type found in every organ of the body. Classically, macrophages are recognised as housekeeping cells involved in the detection of foreign antigens and danger signatures, and the clearance of tissue debris. However, macrophages are increasingly recognised as a highly versatile cell type with a diverse range of functions that are important for tissue homeostasis and injury responses. Recent research findings suggest that macrophages contribute to tissue regeneration and may play a role in the activation and mobilisation of stem cells. This review describes recent advances in our understanding of the role played by macrophages in cardiac tissue maintenance and repair following injury. We examine the involvement of exogenous and resident tissue macrophages in cardiac inflammatory responses and their potential activity in regulating cardiac regeneration.

  10. Cardiomyocyte differentiation induced in cardiac progenitor cells by cardiac fibroblast-conditioned medium.

    Science.gov (United States)

    Zhang, Xi; Shen, Man-Ru; Xu, Zhen-Dong; Hu, Zhe; Chen, Chao; Chi, Ya-Li; Kong, Zhen-Dong; Li, Zi-Fu; Li, Xiao-Tong; Guo, Shi-Lei; Xiong, Shao-Hu; Zhang, Chuan-Sen

    2014-05-01

    Our previous study showed that after being treated with 5-azacytidine, Nkx2.5(+) human cardiac progenitor cells (CPCs) derived from embryonic heart tubes could differentiate into cardiomyocytes. Although 5-azacytidine is a classical agent that induces myogenic differentiation in various types of cells, the drug is toxic and unspecific for myogenic differentiation. To investigate the possibility of inducing CPCs to differentiate into cardiomyocytes by a specific and non-toxic method, CPCs of passage 15 and mesenchymal stem cells (MSCs) were treated with cardiac ventricular fibroblast-conditioned medium (CVF-conditioned medium). Following this treatment, the Nkx2.5(+) CPCs underwent cardiomyogenic differentiation. Phase-contrast microscopy showed that the morphology of the treated CPCs gradually changed. Ultrastructural observation confirmed that the cells contained typical sarcomeres. The expression of cardiomyocyte-associated genes, such as alpha-cardiac actin, cardiac troponin T, and beta-myosin heavy chain (MHC), was increased in the CPCs that had undergone cardiomyogenic differentiation compared with untreated cells. In contrast, the MSCs did not exhibit changes in morphology or molecular expression after being treated with CVF-conditioned medium. The results indicated that Nkx2.5(+) CPCs treated with CVF-conditioned medium were capable of differentiating into a cardiac phenotype, whereas treated MSCs did not appear to undergo cardiomyogenic differentiation. Subsequently, following the addition of Dkk1 and the blocking of Wnt signaling pathway, CVF-conditioned medium-induced morphological changes and expression of cardiomyocyte-associated genes of Nkx2.5(+) CPCs were inhibited, which indicates that CVF-conditioned medium-induced cardiomyogenic differentiation of Nkx2.5(+) CPCs is associated with Wnt signaling pathway. In addition, we also found that the activation of Wnt signaling pathway was accompanied by higher expression of GATA-4 and the blocking of the

  11. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery.

    Science.gov (United States)

    Llucià-Valldeperas, A; Sanchez, B; Soler-Botija, C; Gálvez-Montón, C; Prat-Vidal, C; Roura, S; Rosell-Ferrer, J; Bragos, R; Bayes-Genis, A

    2015-11-01

    A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square-wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real-time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA-4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue.

  12. Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization

    NARCIS (Netherlands)

    Westenbrink, B. Daan; Lipsic, Erik; van der Meer, Peter; van der Harst, Pirn; Oeseburg, Hisko; Sarvaas, Gideon J. Du Marchie; Koster, Johan; Voors, Adriaan A.; van Veldhuisen, Dirk J.; van Gilst, Wiek H.; Schoemaker, Regien G.

    2007-01-01

    Aims Erythropoietin (EPO) improves cardiac function and induces neovascutarization in chronic heart failure (CHF), although the exact mechanism has not been elucidated. We studied the effects of EPO on homing and incorporation of endothelial progenitor cells (EPC) into the myocardial microvasculatur

  13. Neonatal Heart-Enriched miR-708 Promotes Differentiation of Cardiac Progenitor Cells in Rats

    OpenAIRE

    Shengqiong Deng; Qian Zhao; Xianjin Zhou; Lin Zhang; Luer Bao; Lixiao Zhen; Yuzhen Zhang; Huimin Fan; Zhongmin Liu; Zuoren Yu

    2016-01-01

    Cardiovascular disease is becoming the leading cause of death throughout the world. However, adult hearts have limited potential for regeneration after pathological injury, partly due to the quiescent status of stem/progenitor cells. Reactivation of cardiac stem/progenitor cells to create more myocyte progeny is one of the key steps in the regeneration of a damaged heart. In this study, miR-708 was identified to be enriched in the neonatal cardiomyocytes of rats, but this has not yet been pro...

  14. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Nan Cao; Bin Wei; Liu Wang; Ying Jin; Huang-Tian Yang; Zumei Liu; Zhongyan Chen; Jia Wang; Taotao Chen; Xiaoyang Zhao; Yu Ma; Lianju Qin; Jiuhong Kang

    2012-01-01

    Generation of induced pluripotent stem cells (iPSCs) has opened new avenues for the investigation of heart diseases,drug screening and potential autologous cardiac regeneration.However,their application is hampered by inefficient cardiac differentiation,high interline variability,and poor maturation of iPSC-derived cardiomyoeytes (iPS-CMs).To identify efficient inducers for cardiac differentiation and maturation of iPSCs and elucidate the mechanisms,we systematically screened sixteen cardiomyocyte inducers on various murine (m) iPSCs and found that only ascorbic acid (AA) consistently and robustly enhanced the cardiac differentiation of eleven lines including eight without spontaneous cardiogenic potential.We then optimized the treatment conditions and demonstrated that differentiation day 2-6,a period for the specification of cardiac progenitor cells (CPCs),was a critical time for AA to take effect.This was further confirmed by the fact that AA increased the expression of cardiovascular but not mesodermal markers.Noteworthily,AA treatment led to approximately 7.3-fold (miPSCs) and 30.2-fold (human iPSCs) augment in the yield of iPS-CMs.Such effect was attributed to a specific increase in the proliferation of CPCs via the MEK-ERK1/2 pathway by promoting collagen synthesis.In addition,AA-induced cardiomyocytes showed better sareomerie organization and enhanced responses of action potentials and calcium transients to β-adrenergic and muscarinic stimulations.These findings demonstrate that AA is a suitable cardiomyocyte inducer for iPSCs to improve cardiac differentiation and maturation simply,universally,and efficiently.These findings also highlight the importance of stimulating CPC proliferation by manipulating extracellular microenvironment in guiding cardiac differentiation of the pluripotent stem cells.

  15. Characterization of cell subpopulations expressing progenitor cell markers in porcine cardiac valves.

    Directory of Open Access Journals (Sweden)

    Huan Wang

    Full Text Available Valvular interstitial cells (VICs are the main population of cells found in cardiac valves. These resident fibroblastic cells play important roles in maintaining proper valve function, and their dysregulation has been linked to disease progression in humans. Despite the critical functions of VICs, their cellular composition is still not well defined for humans and other mammals. Given the limited availability of healthy human valves and the similarity in valve structure and function between humans and pigs, we characterized porcine VICs (pVICs based on expression of cell surface proteins and sorted a specific subpopulation of pVICs to study its functions. We found that small percentages of pVICs express the progenitor cell markers ABCG2 (~5%, NG2 (~5% or SSEA-4 (~7%, whereas another subpopulation (~5% expresses OB-CDH, a type of cadherin expressed by myofibroblasts or osteo-progenitors. pVICs isolated from either aortic or pulmonary valves express most of these protein markers at similar levels. Interestingly, OB-CDH, NG2 and SSEA-4 all label distinct valvular subpopulations relative to each other; however, NG2 and ABCG2 are co-expressed in the same cells. ABCG2(+ cells were further characterized and found to deposit more calcified matrix than ABCG2(- cells upon osteogenic induction, suggesting that they may be involved in the development of osteogenic VICs during valve pathology. Cell profiling based on flow cytometry and functional studies with sorted primary cells provide not only new and quantitative information about the cellular composition of porcine cardiac valves, but also contribute to our understanding of how a subpopulation of valvular cells (ABCG2(+ cells may participate in tissue repair and disease progression.

  16. The impact of juvenile coxsackievirus infection on cardiac progenitor cells and postnatal heart development.

    Science.gov (United States)

    Sin, Jon; Puccini, Jenna M; Huang, Chengqun; Konstandin, Mathias H; Gilbert, Paul E; Sussman, Mark A; Gottlieb, Roberta A; Feuer, Ralph

    2014-07-01

    Coxsackievirus B (CVB) is an enterovirus that most commonly causes a self-limited febrile illness in infants, but cases of severe infection can manifest in acute myocarditis. Chronic consequences of mild CVB infection are unknown, though there is an epidemiologic association between early subclinical infections and late heart failure, raising the possibility of subtle damage leading to late-onset dysfunction, or chronic ongoing injury due to inflammatory reactions during latent infection. Here we describe a mouse model of juvenile infection with a subclinical dose of coxsackievirus B3 (CVB3) which showed no evident symptoms, either immediately following infection or in adult mice. However following physiological or pharmacologically-induced cardiac stress, juvenile-infected adult mice underwent cardiac hypertrophy and dilation indicative of progression to heart failure. Evaluation of the vasculature in the hearts of adult mice subjected to cardiac stress showed a compensatory increase in CD31+ blood vessel formation, although this effect was suppressed in juvenile-infected mice. Moreover, CVB3 efficiently infected juvenile c-kit+ cells, and cardiac progenitor cell numbers were reduced in the hearts of juvenile-infected adult mice. These results suggest that the exhausted cardiac progenitor cell pool following juvenile CVB3 infection may impair the heart's ability to increase capillary density to adapt to increased load.

  17. Characterization of Cardiac-Resident Progenitor Cells Expressing High Aldehyde Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Marc-Estienne Roehrich

    2013-01-01

    Full Text Available High aldehyde dehydrogenase (ALDH activity has been associated with stem and progenitor cells in various tissues. Human cord blood and bone marrow ALDH-bright (ALDHbr cells have displayed angiogenic activity in preclinical studies and have been shown to be safe in clinical trials in patients with ischemic cardiovascular disease. The presence of ALDHbr cells in the heart has not been evaluated so far. We have characterized ALDHbr cells isolated from mouse hearts. One percent of nonmyocytic cells from neonatal and adult hearts were ALDHbr. ALDHvery-br cells were more frequent in neonatal hearts than adult. ALDHbr cells were more frequent in atria than ventricles. Expression of ALDH1A1 isozyme transcripts was highest in ALDHvery-br cells, intermediate in ALDHbr cells, and lowest in ALDHdim cells. ALDH1A2 expression was highest in ALDHvery-br cells, intermediate in ALDHdim cells, and lowest in ALDHbr cells. ALDH1A3 and ALDH2 expression was detectable in ALDHvery-br and ALDHbr cells, unlike ALDHdim cells, albeit at lower levels compared with ALDH1A1 and ALDH1A2. Freshly isolated ALDHbr cells were enriched for cells expressing stem cell antigen-1, CD34, CD90, CD44, and CD106. ALDHbr cells, unlike ALDHdim cells, could be grown in culture for more than 40 passages. They expressed sarcomeric α-actinin and could be differentiated along multiple mesenchymal lineages. However, the proportion of ALDHbr cells declined with cell passage. In conclusion, the cardiac-derived ALDHbr population is enriched for progenitor cells that exhibit mesenchymal progenitor-like characteristics and can be expanded in culture. The regenerative potential of cardiac-derived ALDHbr cells remains to be evaluated.

  18. Human cord blood CD34+ progenitor cells acquire functional cardiac properties through a cell fusion process.

    Science.gov (United States)

    Avitabile, Daniele; Crespi, Alessia; Brioschi, Chiara; Parente, Valeria; Toietta, Gabriele; Devanna, Paolo; Baruscotti, Mirko; Truffa, Silvia; Scavone, Angela; Rusconi, Francesca; Biondi, Andrea; D'Alessandra, Yuri; Vigna, Elisa; Difrancesco, Dario; Pesce, Maurizio; Capogrossi, Maurizio C; Barbuti, Andrea

    2011-05-01

    The efficacy of cardiac repair by stem cell administration relies on a successful functional integration of injected cells into the host myocardium. Safety concerns have been raised about the possibility that stem cells may induce foci of arrhythmia in the ischemic myocardium. In a previous work (36), we showed that human cord blood CD34(+) cells, when cocultured on neonatal mouse cardiomyocytes, exhibit excitation-contraction coupling features similar to those of cardiomyocytes, even though no human genes were upregulated. The aims of the present work are to investigate whether human CD34(+) cells, isolated after 1 wk of coculture with neonatal ventricular myocytes, possess molecular and functional properties of cardiomyocytes and to discriminate, using a reporter gene system, whether cardiac differentiation derives from a (trans)differentiation or a cell fusion process. Umbilical cord blood CD34(+) cells were isolated by a magnetic cell sorting method, transduced with a lentiviral vector carrying the enhanced green fluorescent protein (EGFP) gene, and seeded onto primary cultures of spontaneously beating rat neonatal cardiomyocytes. Cocultured EGFP(+)/CD34(+)-derived cells were analyzed for their electrophysiological features at different time points. After 1 wk in coculture, EGFP(+) cells, in contact with cardiomyocytes, were spontaneously contracting and had a maximum diastolic potential (MDP) of -53.1 mV, while those that remained isolated from the surrounding myocytes did not contract and had a depolarized resting potential of -11.4 mV. Cells were then resuspended and cultured at low density to identify EGFP(+) progenitor cell derivatives. Under these conditions, we observed single EGFP(+) beating cells that had acquired an hyperpolarization-activated current typical of neonatal cardiomyocytes (EGFP(+) cells, -2.24 ± 0.89 pA/pF; myocytes, -1.99 ± 0.63 pA/pF, at -125 mV). To discriminate between cell autonomous differentiation and fusion, EGFP(+)/CD34

  19. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Christophe M Raynaud

    Full Text Available Mesenchymal progenitors or stromal cells have shown promise as a therapeutic strategy for a range of diseases including heart failure. In this context, we explored the growth and differentiation potential of mesenchymal progenitors (MPs derived in vitro from human embryonic stem cells (hESCs. Similar to MPs isolated from bone marrow, hESC derived MPs (hESC-MPs efficiently differentiated into archetypical mesenchymal derivatives such as chondrocytes and adipocytes. Upon treatment with 5-Azacytidine or TGF-β1, hESC-MPs modified their morphology and up-regulated expression of key cardiac transcription factors such as NKX2-5, MEF2C, HAND2 and MYOCD. Nevertheless, NKX2-5+ hESC-MP derivatives did not form contractile cardiomyocytes, raising questions concerning the suitability of these cells as a platform for cardiomyocyte replacement therapy. Gene profiling experiments revealed that, although hESC-MP derived cells expressed a suite of cardiac related genes, they lacked the complete repertoire of genes associated with bona fide cardiomyocytes. Our results suggest that whilst agents such as TGF-β1 and 5-Azacytidine can induce expression of cardiac related genes, but treated cells retain a mesenchymal like phenotype.

  20. Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation

    OpenAIRE

    Pinto, Alexander R.; Godwin, James W.; Rosenthal, Nadia A.

    2014-01-01

    Macrophages are an immune cell type found in every organ of the body. Classically, macrophages are recognised as housekeeping cells involved in the detection of foreign antigens and danger signatures, and the clearance of tissue debris. However, macrophages are increasingly recognised as a highly versatile cell type with a diverse range of functions that are important for tissue homeostasis and injury responses. Recent research findings suggest that macrophages contribute to tissue regenerati...

  1. Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure

    KAUST Repository

    Mosqueira, Diogo

    2014-03-25

    Stem cell responsiveness to extracellular matrix (ECM) composition and mechanical cues has been the subject of a number of investigations so far, yet the molecular mechanisms underlying stem cell mechano-biology still need full clarification. Here we demonstrate that the paralog proteins YAP and TAZ exert a crucial role in adult cardiac progenitor cell mechano-sensing and fate decision. Cardiac progenitors respond to dynamic modifications in substrate rigidity and nanopattern by promptly changing YAP/TAZ intracellular localization. We identify a novel activity of YAP and TAZ in the regulation of tubulogenesis in 3D environments and highlight a role for YAP/TAZ in cardiac progenitor proliferation and differentiation. Furthermore, we show that YAP/TAZ expression is triggered in the heart cells located at the infarct border zone. Our results suggest a fundamental role for the YAP/TAZ axis in the response of resident progenitor cells to the modifications in microenvironment nanostructure and mechanics, thereby contributing to the maintenance of myocardial homeostasis in the adult heart. These proteins are indicated as potential targets to control cardiac progenitor cell fate by materials design. © 2014 American Chemical Society.

  2. miR-133a Enhances the Protective Capacity of Cardiac Progenitors Cells after Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Alberto Izarra

    2014-12-01

    Full Text Available miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs, but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vascularization and cardiomyocyte proliferation. The beneficial effects of miR-133a-CPCs seem to correlate with the upregulated expression of several relevant paracrine factors and the plausible cooperative secretion of miR-133a via exosomal transport. Finally, an in vitro heart muscle model confirmed the antiapoptotic effects of miR-133a-CPCs, favoring the structuration and contractile functionality of the artificial tissue.

  3. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Lifeng [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China); Zhou, Yong [Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Yu, Shanhe [Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025 (China); Ji, Guixiang [Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing 210042 (China); Wang, Lei [Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Liu, Wei [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China); Gu, Aihua, E-mail: aihuagu@njmu.edu.cn [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China)

    2013-11-15

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes and nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.

  4. Hiding inside? Intracellular expression of non-glycosylated c-kit protein in cardiac progenitor cells.

    Science.gov (United States)

    Shi, Huilin; Drummond, Christopher A; Fan, Xiaoming; Haller, Steven T; Liu, Jiang; Malhotra, Deepak; Tian, Jiang

    2016-05-01

    Cardiac progenitor cells including c-kit(+) cells and cardiosphere-derived cells (CDCs) play important roles in cardiac repair and regeneration. CDCs were reported to contain only small subpopulations of c-kit(+) cells and recent publications suggested that depletion of the c-kit(+) subpopulation of cells has no effect on regenerative properties of CDCs. However, our current study showed that the vast majority of CDCs from murine heart actually express c-kit, albeit, in an intracellular and non-glycosylated form. Immunostaining and flow cytometry showed that the fluorescent signal indicative of c-kit immunostaining significantly increased when cell membranes were permeabilized. Western blots further demonstrated that glycosylation of c-kit was increased during endothelial differentiation in a time dependent manner. Glycosylation inhibition by 1-deoxymannojirimycin hydrochloride (1-DMM) blocked c-kit glycosylation and reduced expression of endothelial cell markers such as Flk-1 and CD31 during differentiation. Pretreatment of these cells with a c-kit kinase inhibitor (imatinib mesylate) also attenuated Flk-1 and CD31 expression. These results suggest that c-kit glycosylation and its kinase activity are likely needed for these cells to differentiate into an endothelial lineage. In vivo, we found that intracellular c-kit expressing cells are located in the wall of cardiac blood vessels in mice subjected to myocardial infarction. In summary, our work demonstrated for the first time that c-kit is not only expressed in CDCs but may also directly participate in CDC differentiation into an endothelial lineage.

  5. Analysis of Pregnancy-Associated Plasma Protein A Production in Human Adult Cardiac Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Piera D’Elia

    2013-01-01

    Full Text Available IGF-binding proteins (IGFBPs and their proteases regulate IGFs bioavailability in multiple tissues. Pregnancy-associated plasma protein A (PAPP-A is a protease acting by cleaving IGFBP2, 4, and 5, regulating local bioavailability of IGFs. We have previously shown that IGFs and IGFBPs are produced by human adult cardiac progenitor cells (haCPCs and that IGF-1 exerts paracrine therapeutic effects in cardiac cell therapy with CPCs. Using immunofluorescence and enzyme immunoassays, we firstly report that PAPP-A is produced and secreted in surprisingly high amounts by haCPCs. In particular, the homodimeric, enzymatically active, PAPP-A is secreted in relevant concentrations in haCPC-conditioned media, while the enzymatically inactive PAPPA/proMBP complex is not detectable in the same media. Furthermore, we show that both homodimeric PAPP-A and proMBP can be detected as cell associated, suggesting that the previously described complex formation at the cell surface does not occur easily, thus positively affecting IGF signalling. Therefore, our results strongly support the importance of PAPP-A for the IGFs/IGFBPs/PAPP-A axis in CPCs biology.

  6. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    Science.gov (United States)

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  7. Heterogeneity in SDF-1 expression defines the vasculogenic potential of adult cardiac progenitor cells.

    Directory of Open Access Journals (Sweden)

    Claudia O Rodrigues

    Full Text Available RATIONALE: The adult myocardium has been reported to harbor several classes of multipotent progenitor cells (CPCs with tri-lineage differentiation potential. It is not clear whether c-kit+CPCs represent a uniform precursor population or a more complex mixture of cell types. OBJECTIVE: To characterize and understand vasculogenic heterogeneity within c-kit+presumptive cardiac progenitor cell populations. METHODS AND RESULTS: c-kit+, sca-1+ CPCs obtained from adult mouse left ventricle expressed stem cell-associated genes, including Oct-4 and Myc, and were self-renewing, pluripotent and clonogenic. Detailed single cell clonal analysis of 17 clones revealed that most (14/17 exhibited trilineage differentiation potential. However, striking morphological differences were observed among clones that were heritable and stable in long-term culture. 3 major groups were identified: round (7/17, flat or spindle-shaped (5/17 and stellate (5/17. Stellate morphology was predictive of vasculogenic differentiation in Matrigel. Genome-wide expression studies and bioinformatic analysis revealed clonally stable, heritable differences in stromal cell-derived factor-1 (SDF-1 expression that correlated strongly with stellate morphology and vasculogenic capacity. Endogenous SDF-1 production contributed directly to vasculogenic differentiation: both shRNA-mediated knockdown of SDF-1 and AMD3100, an antagonist of the SDF-1 receptor CXC chemokine Receptor-4 (CXCR4, reduced tube-forming capacity, while exogenous SDF-1 induced tube formation by 2 non-vasculogenic clones. CPCs producing SDF-1 were able to vascularize Matrigel dermal implants in vivo, while CPCs with low SDF-1 production were not. CONCLUSIONS: Clonogenic c-kit+, sca-1+ CPCs are heterogeneous in morphology, gene expression patterns and differentiation potential. Clone-specific levels of SDF-1 expression both predict and promote development of a vasculogenic phenotype via a previously unreported autocrine

  8. In vitro cultured progenitors and precursors of cardiac cell lineages from human normal and post-ischemic hearts

    Directory of Open Access Journals (Sweden)

    F Di Meglio

    2009-08-01

    Full Text Available The demonstration of the presence of dividing primitive cells in damaged hearts has sparked increased interest about myocardium regenerative processes. We examined the rate and the differentiation of in vitro cultured resident cardiac primitive cells obtained from pathological and normal human hearts in order to evaluate the activation of progenitors and precursors of cardiac cell lineages in post-ischemic human hearts. The precursors and progenitors of cardiomyocyte, smooth muscle and endothelial lineage were identified by immunocytochemistry and the expression of characteristic markers was studied by western blot and RT-PCR. The amount of proteins characteristic for cardiac cells (a-SA and MHC, VEGFR-2 and FVIII, SMA for the precursors of cardiomyocytes, endothelial and smooth muscle cells, respectively inclines toward an increase in both a-SA and MHC. The increased levels of FVIII and VEGFR2 are statistically significant, suggesting an important re-activation of neoangiogenesis. At the same time, the augmented expression of mRNA for Nkx 2.5, the trascriptional factor for cardiomyocyte differentiation, confirms the persistence of differentiative processes in terminally injured hearts. Our study would appear to confirm the activation of human heart regeneration potential in pathological conditions and the ability of its primitive cells to maintain their proliferative capability in vitro. The cardiac cell isolation method we used could be useful in the future for studying modifications to the microenvironment that positively influence cardiac primitive cell differentiation or inhibit, or retard, the pathological remodeling and functional degradation of the heart.

  9. Antiarrhythmic effect of growth factor-supplemented cardiac progenitor cells in chronic infarcted heart.

    Science.gov (United States)

    Savi, Monia; Bocchi, Leonardo; Rossi, Stefano; Frati, Caterina; Graiani, Gallia; Lagrasta, Costanza; Miragoli, Michele; Di Pasquale, Elisa; Stirparo, Giuliano G; Mastrototaro, Giuseppina; Urbanek, Konrad; De Angelis, Antonella; Macchi, Emilio; Stilli, Donatella; Quaini, Federico; Musso, Ezio

    2016-06-01

    c-Kit(pos) cardiac progenitor cells (CPCs) represent a successful approach in healing the infarcted heart and rescuing its mechanical function, but electrophysiological consequences are uncertain. CPC mobilization promoted by hepatocyte growth factor (HGF) and IGF-1 improved electrogenesis in myocardial infarction (MI). We hypothesized that locally delivered CPCs supplemented with HGF + IGF-1 (GFs) can concur in ameliorating electrical stability of the regenerated heart. Adult male Wistar rats (139 rats) with 4-wk-old MI or sham conditions were randomized to receive intramyocardial injection of GFs, CPCs, CPCs + GFs, or vehicle (V). Enhanced green fluorescent protein-tagged CPCs were used for cell tracking. Vulnerability to stress-induced arrhythmia was assessed by telemetry-ECG. Basic cardiac electrophysiological properties were examined by epicardial multiple-lead recording. Hemodynamic function was measured invasively. Hearts were subjected to anatomical, morphometric, immunohistochemical, and molecular biology analyses. Compared with V and at variance with individual CPCs, CPCs + GFs approximately halved arrhythmias in all animals, restoring cardiac anisotropy toward sham values. GFs alone reduced arrhythmias by less than CPCs + GFs, prolonging ventricular refractoriness without affecting conduction velocity. Concomitantly, CPCs + GFs reactivated the expression levels of Connexin-43 and Connexin-40 as well as channel proteins of key depolarizing and repolarizing ion currents differently than sole GFs. Mechanical function and anatomical remodeling were equally improved by all regenerative treatments, thus exhibiting a divergent behavior relative to electrical aspects. Conclusively, we provided evidence of distinctive antiarrhythmic action of locally injected GF-supplemented CPCs, likely attributable to retrieval of Connexin-43, Connexin-40, and Cav1.2 expression, favoring intercellular coupling and spread of excitation in mended heart.

  10. Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells

    Science.gov (United States)

    Samse, Kaitlen; Emathinger, Jacqueline; Hariharan, Nirmala; Quijada, Pearl; Ilves, Kelli; Völkers, Mirko; Ormachea, Lucia; De La Torre, Andrea; Orogo, Amabel M.; Alvarez, Roberto; Din, Shabana; Mohsin, Sadia; Monsanto, Megan; Fischer, Kimberlee M.; Dembitsky, Walter P.; Gustafsson, Åsa B.; Sussman, Mark A.

    2015-01-01

    Human cardiac progenitor cells (hCPC) improve heart function after autologous transfer in heart failure patients. Regenerative potential of hCPCs is severely limited with age, requiring genetic modification to enhance therapeutic potential. A legacy of work from our laboratory with Pim1 kinase reveals effects on proliferation, survival, metabolism, and rejuvenation of hCPCs in vitro and in vivo. We demonstrate that subcellular targeting of Pim1 bolsters the distinct cardioprotective effects of this kinase in hCPCs to increase proliferation and survival, and antagonize cellular senescence. Adult hCPCs isolated from patients undergoing left ventricular assist device implantation were engineered to overexpress Pim1 throughout the cell (PimWT) or targeted to either mitochondrial (Mito-Pim1) or nuclear (Nuc-Pim1) compartments. Nuc-Pim1 enhances stem cell youthfulness associated with decreased senescence-associated β-galactosidase activity, preserved telomere length, reduced expression of p16 and p53, and up-regulation of nucleostemin relative to PimWT hCPCs. Alternately, Mito-Pim1 enhances survival by increasing expression of Bcl-2 and Bcl-XL and decreasing cell death after H2O2 treatment, thereby preserving mitochondrial integrity superior to PimWT. Mito-Pim1 increases the proliferation rate by up-regulation of cell cycle modulators Cyclin D, CDK4, and phospho-Rb. Optimal stem cell traits such as proliferation, survival, and increased youthful properties of aged hCPCs are enhanced after targeted Pim1 localization to mitochondrial or nuclear compartments. Targeted Pim1 overexpression in hCPCs allows for selection of the desired phenotypic properties to overcome patient variability and improve specific stem cell characteristics. PMID:25882843

  11. Improvement of cardiac function in mouse myocardial infarction after transplantation of epigenetically-modified bone marrow progenitor cells.

    Directory of Open Access Journals (Sweden)

    Johnson Rajasingh

    Full Text Available OBJECTIVE: To study usefulness of bone marrow progenitor cells (BPCs epigenetically altered by chromatin modifying agents in mediating heart repair after myocardial infarction in mice. METHODS AND RESULTS: We tested the therapeutic efficacy of bone marrow progenitor cells treated with the clinically-used chromatin modifying agents Trichostatin A (TSA, histone deacetylase inhibitor and 5Aza-2-deoxycytidine (Aza, DNA methylation inhibitor in a mouse model of acute myocardial infarction (AMI. Treatment of BPCs with Aza and TSA induced expression of pluripotent genes Oct4, Nanog, Sox2, and thereafter culturing these cells in defined cardiac myocyte-conditioned medium resulted in their differentiation into cardiomyocyte progenitors and subsequently into cardiac myocytes. Their transition was deduced by expression of repertoire of markers: Nkx2.5, GATA4, cardiotroponin T, cardiotroponin I, α-sarcomeric actinin, Mef2c and MHC-α. We observed that the modified BPCs had greater AceH3K9 expression and reduced histone deacetylase1 (HDAC1 and lysine-specific demethylase1 (LSD1 expression compared to untreated BPCs, characteristic of epigenetic changes. Intra-myocardial injection of modified BPCs after AMI in mice significantly improved left ventricular function. These changes were ascribed to differentiation of the injected cells into cardiomyocytes and endothelial cells. CONCLUSION: Treatment of BPCs with Aza and TSA converts BPCs into multipotent cells, which can then be differentiated into myocyte progenitors. Transplantation of these modified progenitor cells into infarcted mouse hearts improved left ventricular function secondary to differentiation of cells in the niche into myocytes and endothelial cells.

  12. RESIDENT PROGENITOR CARDIAC CELLS IN PATIENTS WITH DILATED CARDIOMYOPATHY AND CONGESTIVE HEART FAILURE

    Directory of Open Access Journals (Sweden)

    T. G. Kulikova

    2014-01-01

    Full Text Available Aim. To study content of resident progenitor cardiomyocytes in endomyocardial biopsy samples of patients with dilated cardiomyopathy (DCM and heart failure (HF at different disease stages and relate it to patient clinical characteristics.Material and methods. Resident progenitor cardiomyocytes were studied in endomyocardial biopsy samples from 14 patients (age from 26 to 52 years old with DCM and HF by immunofluorescence method. Results were analyzed individually for each patient.Results. Resident progenitor cardiomyocytes expressing simultaneously stem cell markers c-kit, MDR-1 and early cardiomyocyte differentiation markers GATA-4 and Nkx2.5 were found in endomyocardial biopsy samples from patients with DCM and HF. Resident progenitor cardiomyocytes detected by these cell markers were found in all patients at all disease stages.Conclusion. Results show that the myocardial regenerative processes exist at all stages of the disease progression.

  13. RESIDENT PROGENITOR CARDIAC CELLS IN PATIENTS WITH DILATED CARDIOMYOPATHY AND CONGESTIVE HEART FAILURE

    Directory of Open Access Journals (Sweden)

    T. G. Kulikova

    2015-09-01

    Full Text Available Aim. To study content of resident progenitor cardiomyocytes in endomyocardial biopsy samples of patients with dilated cardiomyopathy (DCM and heart failure (HF at different disease stages and relate it to patient clinical characteristics.Material and methods. Resident progenitor cardiomyocytes were studied in endomyocardial biopsy samples from 14 patients (age from 26 to 52 years old with DCM and HF by immunofluorescence method. Results were analyzed individually for each patient.Results. Resident progenitor cardiomyocytes expressing simultaneously stem cell markers c-kit, MDR-1 and early cardiomyocyte differentiation markers GATA-4 and Nkx2.5 were found in endomyocardial biopsy samples from patients with DCM and HF. Resident progenitor cardiomyocytes detected by these cell markers were found in all patients at all disease stages.Conclusion. Results show that the myocardial regenerative processes exist at all stages of the disease progression.

  14. Preliminary evaluation of treatment efficacy of umbilical cord blood-derived mesenchymal stem cell-differentiated cardiac pro-genitor cells in a myocardial injury mouse model

    Directory of Open Access Journals (Sweden)

    Truc Le-Buu Pham

    2015-12-01

    Full Text Available Recently, stem cell therapy has been investigated as a strategy to prevent or reverse damage to heart tissue. Although the results of cell transplantation in animal models and patients with myocardial ischemia are promising, the selection of the appropriate cell type remains an issue that requires consideration. In this study, we aimed to evaluate the effect of cardiac progenitor cell transplantation in a mouse model of myocardial ischemia. The cardiac progenitor cells used for transplantation were differentiated from umbilical cord blood mesenchymal stem cells. Animal models injected with phosphate-buffered saline (PBS and healthy mice were used as controls. Cell grafting was assessed by changes in blood pressure and histological evaluation. After 14 days of transplantation, the results demonstrated that the blood pressure of transplanted mice was stable, similar to healthy mice, whereas it fluctuated in PBS-injected mice. Histological analysis showed that heart tissue had regenerated in transplanted mice, but remained damaged in PBS-injected mice. Furthermore, trichrome staining revealed that the transplanted mice did not generate significant amount of scar tissue compared with PBS-injected control mice. In addition, the cardiac progenitor cells managed to survive and integrate with local cells in cell-injected heart tissue 14 days after transplantation. Most importantly, the transplanted cells did not exhibit tumorigenesis. In conclusion, cardiac progenitor cell transplantation produced a positive effect in a mouse model of myocardial ischemia. [Biomed Res Ther 2015; 2(12.000: 435-445

  15. Doxorubicin Regulates Autophagy Signals via Accumulation of Cytosolic Ca2+ in Human Cardiac Progenitor Cells

    Science.gov (United States)

    Park, Ji Hye; Choi, Sung Hyun; Kim, Hyungtae; Ji, Seung Taek; Jang, Woong Bi; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang Mo

    2016-01-01

    Doxorubicin (DOXO) is widely used to treat solid tumors. However, its clinical use is limited by side effects including serious cardiotoxicity due to cardiomyocyte damage. Resident cardiac progenitor cells (hCPCs) act as key regulators of homeostasis in myocardial cells. However, little is known about the function of hCPCs in DOXO-induced cardiotoxicity. In this study, we found that DOXO-mediated hCPC toxicity is closely related to calcium-related autophagy signaling and was significantly attenuated by blocking mTOR signaling in human hCPCs. DOXO induced hCPC apoptosis with reduction of SMP30 (regucalcin) and autophagosome marker LC3, as well as remarkable induction of the autophagy-related markers, Beclin-1, APG7, and P62/SQSTM1 and induction of calcium-related molecules, CaM (Calmodulin) and CaMKII (Calmodulin kinase II). The results of an LC3 puncta assay further indicated that DOXO reduced autophagosome formation via accumulation of cytosolic Ca2+. Additionally, DOXO significantly induced mTOR expression in hCPCs, and inhibition of mTOR signaling by rapamycin, a specific inhibitor, rescued DOXO-mediated autophagosome depletion in hCPCs with significant reduction of DOXO-mediated cytosolic Ca2+ accumulation in hCPCs, and restored SMP30 and mTOR expression. Thus, DOXO-mediated hCPC toxicity is linked to Ca2+-related autophagy signaling, and inhibition of mTOR signaling may provide a cardio-protective effect against DOXO-mediated hCPC toxicity. PMID:27735842

  16. High Density Sphere Culture of Adult Cardiac Cells Increases the Levels of Cardiac and Progenitor Markers and Shows Signs of Vasculogenesis

    Directory of Open Access Journals (Sweden)

    Kristina Vukusic

    2013-01-01

    Full Text Available 3D environment and high cell density play an important role in restoring and supporting the phenotypes of cells represented in cardiac tissues. The aim of this study was therefore to investigate the suitability of high density sphere (HDS cultures for studies of cardiomyocyte-, endothelial-, and stem-cell biology. Primary adult cardiac cells from nine human biopsies were cultured using different media for up to 9 weeks. The possibilities to favor a certain cell phenotype and induce production of extra cellular matrix (ECM were studied by histology, immunohistochemistry, and quantitative real-time PCR. Defined media gave significant increase in both cardiac- and progenitor-specific markers and also an intraluminal position of endothelial cells over time. Cardiac media showed indication of differentiation and maturity of HDS considering the ECM production and activities within NOTCH regulation but no additional cardiac differentiation. Endothelial media gave no positive effects on endothelial phenotype but increased proliferation without fibroblast overgrowth. In addition, indications for early vasculogenesis were found. It was also possible to affect the Wnt signaling in HDS by addition of a glycogen synthase kinase 3 (GSK3 inhibitor. In conclusion, these findings show the suitability of HDS as in vitro model for studies of cardiomyocyte-, endothelial-, and stem-cell biology.

  17. Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis

    Directory of Open Access Journals (Sweden)

    Burchfield Jana S

    2008-10-01

    Full Text Available Abstract A new era has begun in the treatment of ischemic disease and heart failure. With the discovery that stem cells from diverse organs and tissues, including bone marrow, adipose tissue, umbilical cord blood, and vessel wall, have the potential to improve cardiac function beyond that of conventional pharmacological therapy comes a new field of research aiming at understanding the precise mechanisms of stem cell-mediated cardiac repair. Not only will it be important to determine the most efficacious cell population for cardiac repair, but also whether overlapping, common mechanisms exist. Increasing evidence suggests that one mechanism of action by which cells provide tissue protection and repair may involve paracrine factors, including cytokines and growth factors, released from transplanted stem cells into the surrounding tissue. These paracrine factors have the potential to directly modify the healing process in the heart, including neovascularization, cardiac myocyte apoptosis, inflammation, fibrosis, contractility, bioenergetics, and endogenous repair.

  18. Efficient non-viral reprogramming of myoblasts to stemness with a single small molecule to generate cardiac progenitor cells.

    Directory of Open Access Journals (Sweden)

    Zeeshan Pasha

    Full Text Available UNLABELLED: The current protocols for generation of induced pluripotent stem (iPS cells involve genome integrating viral vectors which may induce tumorgenesis. The aim of this study was to develop and optimize a non-viral method without genetic manipulation for reprogramming of skeletal myoblasts (SMs using small molecules. METHODS AND RESULTS: SMs from young male Oct3/4-GFP(+ transgenic mouse were treated with DNA methyltransferase (DNMT inhibitor, RG108. Two weeks later, GFP(+ colonies of SM derived iPS cells (SiPS expressing GFP and with morphological similarity of mouse embryonic stem (ESCs were formed and propagated in vitro. SiPS were positive for alkaline phosphatase activity, expressed SSEA1, displayed ES cell specific pluripotency markers and formed teratoma in nude mice. Optimization of culture conditions for embryoid body (EBs formation yielded spontaneously contracting EBs having morphological, molecular, and ultra-structural similarities with cardiomyocytes and expressed early and late cardiac markers. miR profiling showed abrogation of let-7 family and upregulation of ESCs specific miR-290-295 cluster thus indicating that SiPS were similar to ESCs in miR profile. Four weeks after transplantation into the immunocompetent mice model of acute myocardial infarction (n = 12 per group, extensive myogenesis was observed in SiPS transplanted hearts as compared to DMEM controls (n = 6 per group. A significant reduction in fibrosis and improvement in global heart function in the hearts transplanted with SiPS derived cardiac progenitor cells were observed. CONCLUSIONS: Reprogramming of SMs by DNMT inhibitor is a simple, reproducible and efficient technique more likely to generate transgene integration-free iPS cells. Cardiac progenitors derived from iPS cells propagated extensively in the infarcted myocardium without tumorgenesis and improved cardiac function.

  19. Resveratrol treatment reduces cardiac progenitor cell dysfunction and prevents morpho-functional ventricular remodeling in type-1 diabetic rats.

    Directory of Open Access Journals (Sweden)

    Francesca Delucchi

    Full Text Available Emerging evidence suggests that both adult cardiac cell and the cardiac stem/progenitor cell (CSPC compartments are involved in the patho-physiology of diabetic cardiomyopathy (DCM. We evaluated whether early administration of Resveratrol, a natural antioxidant polyphenolic compound, in addition to improving cardiomyocyte function, exerts a protective role on (i the progenitor cell pool, and (ii the myocardial environment and its impact on CSPCs, positively interfering with the onset of DCM phenotype. Adult Wistar rats (n = 128 with streptozotocin-induced type-1 diabetes were either untreated (D group; n = 54 or subjected to administration of trans-Resveratrol (i.p. injection: 2.5 mg/Kg/day; DR group; n = 64. Twenty-five rats constituted the control group (C. After 1, 3 or 8 weeks of hyperglycemia, we evaluated cardiac hemodynamic performance, and cardiomyocyte contractile properties and intracellular calcium dynamics. Myocardial remodeling and tissue inflammation were also assessed by morphometry, immunohistochemistry and immunoblotting. Eventually, the impact of the diabetic "milieu" on CSPC turnover was analyzed in co-cultures of healthy CSPCs and cardiomyocytes isolated from D and DR diabetic hearts. In untreated animals, cardiac function was maintained during the first 3 weeks of hyperglycemia, although a definite ventricular remodeling was already present, mainly characterized by a marked loss of CSPCs and adult cardiac cells. Relevant signs of ventricular dysfunction appeared after 8 weeks of diabetes, and included: 1 a significant reduction in ±dP/dt in comparison with C group, 2 a prolongation of isovolumic contraction/relaxation times, 3 an impaired contraction of isolated cardiomyocytes associated with altered intracellular calcium dynamics. Resveratrol administration reduced atrial CSPC loss, succeeded in preserving the functional abilities of CSPCs and mature cardiac cells, improved cardiac environment by reducing

  20. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4.

    Science.gov (United States)

    Xiao, J; Pan, Y; Li, X H; Yang, X Y; Feng, Y L; Tan, H H; Jiang, L; Feng, J; Yu, X Y

    2016-01-01

    Cardiac progenitor cells derived from adult heart have emerged as one of the most promising stem cell types for cardiac protection and repair. Exosomes are known to mediate cell-cell communication by transporting cell-derived proteins and nucleic acids, including various microRNAs (miRNAs). Here we investigated the cardiac progenitor cell (CPC)-derived exosomal miRNAs on protecting myocardium under oxidative stress. Sca1(+)CPCs-derived exosomes were purified from conditional medium, and identified by nanoparticle trafficking analysis (NTA), transmission electron microscopy and western blotting using CD63, CD9 and Alix as markers. Exosomes production was measured by NTA, the result showed that oxidative stress-induced CPCs secrete more exosomes compared with normal condition. Although six apoptosis-related miRNAs could be detected in two different treatment-derived exosomes, only miR-21 was significantly upregulated in oxidative stress-induced exosomes compared with normal exosomes. The same oxidative stress could cause low miR-21 and high cleaved caspase-3 expression in H9C2 cardiac cells. But the cleaved caspase-3 was significantly decreased when miR-21 was overexpressed by transfecting miR-21 mimic. Furthermore, miR-21 mimic or inhibitor transfection and luciferase activity assay confirmed that programmed cell death 4 (PDCD4) was a target gene of miR-21, and miR-21/PDCD4 axis has an important role in anti-apoptotic effect of H9C2 cell. Western blotting and Annexin V/PI results demonstrated that exosomes pre-treated H9C2 exhibited increased miR-21 whereas decreased PDCD4, and had more resistant potential to the apoptosis induced by the oxidative stress, compared with non-treated cells. These findings revealed that CPC-derived exosomal miR-21 had an inhibiting role in the apoptosis pathway through downregulating PDCD4. Restored miR-21/PDCD4 pathway using CPC-derived exosomes could protect myocardial cells against oxidative stress-related apoptosis. Therefore

  1. Influence of conductive polymer doping on the viability of cardiac progenitor cells

    OpenAIRE

    Gelmi, Amy; Kozak Ljunggren, Monika; Rafat, Mehrdad; Jager, Edwin

    2014-01-01

    Cardiac tissue engineering via the use of stem cells is the future for repairing impaired heart function that results from a myocardial infarction. Developing an optimised platform to support the stem cells is vital to realising this, and through utilising new smart materials such as conductive polymers we can provide a multi-pronged approach to supporting and stimulating the stem cells via engineered surface properties, electrical, and electromechanical stimulation. Here we present a fundame...

  2. miR-322/-503 cluster is expressed in the earliest cardiac progenitor cells and drives cardiomyocyte specification

    Science.gov (United States)

    Shen, Xiaopeng; Soibam, Benjamin; Benham, Ashley; Xu, Xueping; Chopra, Mani; Peng, Xiaoping; Yu, Wei; Bao, Wenjing; Liang, Rui; Azares, Alon; Liu, Peijun; Gunaratne, Preethi H.; Mercola, Mark; Cooney, Austin J.; Schwartz, Robert J.; Liu, Yu

    2016-01-01

    Understanding the mechanisms of early cardiac fate determination may lead to better approaches in promoting heart regeneration. We used a mesoderm posterior 1 (Mesp1)-Cre/Rosa26-EYFP reporter system to identify microRNAs (miRNAs) enriched in early cardiac progenitor cells. Most of these miRNA genes bear MESP1-binding sites and active histone signatures. In a calcium transient-based screening assay, we identified miRNAs that may promote the cardiomyocyte program. An X-chromosome miRNA cluster, miR-322/-503, is the most enriched in the Mesp1 lineage and is the most potent in the screening assay. It is specifically expressed in the looping heart. Ectopic miR-322/-503 mimicking the endogenous temporal patterns specifically drives a cardiomyocyte program while inhibiting neural lineages, likely by targeting the RNA-binding protein CUG-binding protein Elav-like family member 1 (Celf1). Thus, early miRNAs in lineage-committed cells may play powerful roles in cell-fate determination by cross-suppressing other lineages. miRNAs identified in this study, especially miR-322/-503, are potent regulators of early cardiac fate. PMID:27512039

  3. Stiffness-controlled three-dimensional collagen scaffolds for differentiation of human Wharton's jelly mesenchymal stem cells into cardiac progenitor cells.

    Science.gov (United States)

    Lin, Yun-Li; Chen, Chie-Pein; Lo, Chun-Min; Wang, Hwai-Shi

    2016-09-01

    Stem cell-based regenerative therapy has emerged as a promising treatment for myocardial infarction. The aim of this study is to develop stiffness-controlled collagen scaffolds to allow proliferation and differentiation of mesenchymal stem cell (MSCs) into cardiac progenitor cells. In this study transforming growth factor β2 (TGF-β2), was used to induce stem cell differentiation into cardiac lineage cells. Collagen scaffolds were cross-linked with cross-linkers, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), and N-Hydroxysuccinimide (NHS). The results showed that collagen scaffolds cross-linked with 25/50 and 50/50 of EDC mM/NHS mM cross-linkers exhibited little difference in shape and size, the scaffold cross-linked with 50/50 of cross-linkers demonstrated better interconnectivity and higher Young's modulus (31.8 kPa) than the other (15.4 kPa). SEM observation showed that MSCs could grow inside the scaffolds and interact with collagen scaffolds. Furthermore, greater viability and cardiac lineage differentiation were achieved in MSCs cultured on stiffer scaffolds. The results suggest that three-dimensional type I collagen scaffolds with suitable cross-linking to adjust for stiffness can affect MSC fate and direct the differentiation of MSCs into cardiac progenitor cells with/without TGF-β2. These stiffness-controlled collagen scaffolds hold great potential as carriers for delivering MSCs differentiated cardiac progenitor cells into infracted hearts. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2234-2242, 2016. PMID:27120780

  4. Preclinical Evaluation of the Immunomodulatory Properties of Cardiac Adipose Tissue Progenitor Cells Using Umbilical Cord Blood Mesenchymal Stem Cells: A Direct Comparative Study

    Directory of Open Access Journals (Sweden)

    Isaac Perea-Gil

    2015-01-01

    Full Text Available Cell-based strategies to regenerate injured myocardial tissue have emerged over the past decade, but the optimum cell type is still under scrutiny. In this context, human adult epicardial fat surrounding the heart has been characterized as a reservoir of mesenchymal-like progenitor cells (cardiac ATDPCs with potential clinical benefits. However, additional data on the possibility that these cells could trigger a deleterious immune response following implantation are needed. Thus, in the presented study, we took advantage of the well-established low immunogenicity of umbilical cord blood-derived mesenchymal stem cells (UCBMSCs to comparatively assess the immunomodulatory properties of cardiac ATDPCs in an in vitro allostimulatory assay using allogeneic mature monocyte-derived dendritic cells (MDDCs. Similar to UCBMSCs, increasing amounts of seeded cardiac ATDPCs suppressed the alloproliferation of T cells in a dose-dependent manner. Secretion of proinflammatory cytokines (IL6, TNFα, and IFNγ was also specifically modulated by the different numbers of cardiac ATDPCs cocultured. In summary, we show that cardiac ATDPCs abrogate T cell alloproliferation upon stimulation with allogeneic mature MDDCs, suggesting that they could further regulate a possible harmful immune response in vivo. Additionally, UCBMSCs can be considered as valuable tools to preclinically predict the immunogenicity of prospective regenerative cells.

  5. Infrared fluorescent protein 1.4 genetic labeling tracks engrafted cardiac progenitor cells in mouse ischemic hearts.

    Directory of Open Access Journals (Sweden)

    Lijuan Chen

    Full Text Available Stem cell therapy has a potential for regenerating damaged myocardium. However, a key obstacle to cell therapy's success is the loss of engrafted cells due to apoptosis or necrosis in the ischemic myocardium. While many strategies have been developed to improve engrafted cell survival, tools to evaluate cell efficacy within the body are limited. Traditional genetic labeling tools, such as GFP-like fluorescent proteins (eGFP, DsRed, mCherry, have limited penetration depths in vivo due to tissue scattering and absorption. To circumvent these limitations, a near-infrared fluorescent mutant of the DrBphP bacteriophytochrome from Deinococcus radiodurans, IFP1.4, was developed for in vivo imaging, but it has yet to be used for in vivo stem/progenitor cell tracking. In this study, we incorporated IFP1.4 into mouse cardiac progenitor cells (CPCs by a lentiviral vector. Live IFP1.4-labeled CPCs were imaged by their near-infrared fluorescence (NIRF using an Odyssey scanner following overnight incubation with biliverdin. A significant linear correlation was observed between the amount of cells and NIRF signal intensity in in vitro studies. Lentiviral mediated IFP1.4 gene labeling is stable, and does not impact the apoptosis and cardiac differentiation of CPC. To assess efficacy of our model for engrafted cells in vivo, IFP1.4-labeled CPCs were intramyocardially injected into infarcted hearts. NIRF signals were collected at 1-day, 7-days, and 14-days post-injection using the Kodak in vivo multispectral imaging system. Strong NIRF signals from engrafted cells were imaged 1 day after injection. At 1 week after injection, 70% of the NIRF signal was lost when compared to the intensity of the day 1 signal. The data collected 2 weeks following transplantation showed an 88% decrease when compared to day 1. Our studies have shown that IFP1.4 gene labeling can be used to track the viability of transplanted cells in vivo.

  6. Epigenetic regulation of cardiac progenitor cells marker c-kit by stromal cell derived factor-1α.

    Directory of Open Access Journals (Sweden)

    Zhongpu Chen

    Full Text Available BACKGROUND: Cardiac progenitor cells (CPCs have been proven suitable for stem cell therapy after myocardial infarction, especially c-kit(+CPCs. CPCs marker c-kit and its ligand, the stem cell factor (SCF, are linked as c-kit/SCF axis, which is associated with the functions of proliferation and differentiation. In our previous study, we found that stromal cell-derived factor-1α (SDF-1α could enhance the expression of c-kit. However, the mechanism is unknown. METHODS AND RESULTS: CPCs were isolated from adult mouse hearts, c-kit(+ and c-kit(- CPCs were separated by magnetic beads. The cells were cultured with SDF-1α and CXCR4-selective antagonist AMD3100, and c-kit expression was measured by qPCR and Western blotting. Results showed that SDF-1α could enhance c-kit expression of c-kit(+CPCs, made c-kit(-CPCs expressing c-kit, and AMD3100 could inhibit the function of SDF-1α. After the intervention of SDF-1α and AMD3100, proliferation and migration of CPCs were measured by CCK-8 and transwell assay. Results showed that SDF-1α could enhance the proliferation and migration of both c-kit(+ and c-kit(- CPCs, and AMD3100 could inhibit these functions. DNA methyltransferase (DNMT mRNA were measured by qPCR, DNMT activity was measured using the DNMT activity assay kit, and DNA methylation was analyzed using Sequenom's MassARRAY platform, after the CPCs were cultured with SDF-1α. The results showed that SDF-1α stimulation inhibited the expression of DNMT1 and DNMT3β, which are critical for the maintenance of regional DNA methylation. Global DNMT activity was also inhibited by SDF-1α. Lastly, SDF-1α treatment led to significant demethylation in both c-kit(+ and c-kit(- CPCs. CONCLUSIONS: SDF-1α combined with CXCR4 could up-regulate c-kit expression of c-kit(+CPCs and make c-kit(-CPCs expressing c-kit, which result in the CPCs proliferation and migration ability improvement, through the inhibition of DNMT1 and DNMT3β expression and global DNMT

  7. Progenitor Cell Therapy in a Porcine Acute Myocardial Infarction Model Induces Cardiac Hypertrophy, Mediated by Paracrine Secretion of Cardiotrophic Factors Including TGFβ1

    OpenAIRE

    Doyle, Brendan; Sorajja, Paul; Hynes, Brian; Kumar, Arun H. S.; Araoz, Phillip A.; Stalboerger, Paul G.; Miller, Dylan; Reed, Cynthia; Schmeckpeper, Jeffrey; Wang, Shaohua; Liu, Chunsheng; Terzic, Andre; Kruger, David; Riederer, Stephen; Caplice, Noel M.

    2008-01-01

    Administration of endothelial progenitor cells (EPC) is a promising therapy for post-infarction cardiac repair. However, the mechanisms that underlie apparent beneficial effects on myocardial remodeling are unclear. In a porcine model of acute myocardial infarction, we investigated the therapeutic effects of a mixed population of culture modified peripheral blood mononuclear cells (termed hereafter porcine EPC). Porcine EPC were isolated using methods identical to those previously adopted for...

  8. Efficient generation of human embryonic stem cell-derived cardiac progenitors based on tissue-specific enhanced green fluorescence protein expression.

    Science.gov (United States)

    Szebényi, Kornélia; Péntek, Adrienn; Erdei, Zsuzsa; Várady, György; Orbán, Tamás I; Sarkadi, Balázs; Apáti, Ágota

    2015-01-01

    Cardiac progenitor cells (CPCs) are committed to the cardiac lineage but retain their proliferative capacity before becoming quiescent mature cardiomyocytes (CMs). In medical therapy and research, the use of human pluripotent stem cell-derived CPCs would have several advantages compared with mature CMs, as the progenitors show better engraftment into existing heart tissues, and provide unique potential for cardiovascular developmental as well as for pharmacological studies. Here, we demonstrate that the CAG promoter-driven enhanced green fluorescence protein (EGFP) reporter system enables the identification and isolation of embryonic stem cell-derived CPCs. Tracing of CPCs during differentiation confirmed up-regulation of surface markers, previously described to identify cardiac precursors and early CMs. Isolated CPCs express cardiac lineage-specific transcripts, still have proliferating capacity, and can be re-aggregated into embryoid body-like structures (CAG-EGFP(high) rEBs). Expression of troponin T and NKX2.5 mRNA is up-regulated in long-term cultured CAG-EGFP(high) rEBs, in which more than 90% of the cells become Troponin I positive mature CMs. Moreover, about one third of the CAG-EGFP(high) rEBs show spontaneous contractions. The method described here provides a powerful tool to generate expandable cultures of pure human CPCs that can be used for exploring early markers of the cardiac lineage, as well as for drug screening or tissue engineering applications.

  9. Xenotransplantation of Human Cardiomyocyte Progenitor Cells Does Not Improve Cardiac Function in a Porcine Model of Chronic Ischemic Heart Failure. Results from a Randomized, Blinded, Placebo Controlled Trial

    OpenAIRE

    Jansen of Lorkeers, SJ; Gho, Johannes M. I. H.; Koudstaal, Stefan; van Hout, Geert; Zwetsloot, Peter Paul M; van Oorschot, Joep W M; Esther C M van Eeuwijk; Leiner, Tim; Höfer, Imo E.; Goumans, Marie-José; Doevendans, Pieter A.; Sluijter, Joost P. G.; Chamuleau, Steven A J

    2015-01-01

    BACKGROUND: Recently cardiomyocyte progenitor cells (CMPCs) were successfully isolated from fetal and adult human hearts. Direct intramyocardial injection of human CMPCs (hCMPCs) in experimental mouse models of acute myocardial infarction significantly improved cardiac function compared to controls. AIM: Here, our aim was to investigate whether xenotransplantation via intracoronary infusion of fetal hCMPCs in a pig model of chronic myocardial infarction is safe and efficacious, in view of tra...

  10. 心脏干/祖细胞与心肌损伤修复%Cardiac Stem/progenitor Cells and Repair of Heart Injury

    Institute of Scientific and Technical Information of China (English)

    贾竹青; 周春燕

    2011-01-01

    Cell-based therapy is the promising regeneration treatment for cardiac diseases. A variety of cell types had been utilized in cardiac repair, including embryonic stem cells, embryonic or neonatal cardiomyocytes, skeletal myoblasts, and bone marrow mesenchymal or adipose tissue-derived stem cells besides the pluripotent stem cells. Yet disadvantages have been discovered in their application, such as low survival rate, short retention in heart, insufficient integration with host cells and immunologic rejection. Adult resident stem or progenitor cells in the heart have been attractive, nevertheless, the disadvantages of lacking markers of cardiac stem/progenitor cells, scarce of available sources and their limited ability of mobilization and proliferation hindered their potential uses. The better understanding of molecular mechanisms on the proliferation, differentiation and homing regulation of cardiac stem/ progenitor cells during the repair of heart injury is critical to effectively mobilize and expand the heart stem/progenitor cells for applications. This review discusses the potentials of resident cardiac stem and progenitor cells in heart injury and introduces the achievements in heart regeneration in recent years.%细胞移植是一种有希望的组织再生的治疗手段.多种类型的细胞已经用于动物心肌损伤的修复中,包括胚胎干细胞、胚胎和新生动物的心肌细胞、骨骼肌成肌细胞、骨髓干细胞、脂肪来源的干细胞、可诱导的多能干细胞等.但是,这些用于移植的细胞存在成活率低、在心脏局部存留少、与宿主心肌细胞不能整合和免疫排斥等问题,这些问题限制了它们的应用.心脏自身存在的干细胞因为没有其他来源细胞存在的种种问题,因而成为备受关注的治疗心肌梗死的种子细胞.但是,心脏干/祖细胞也有自身弊端,包括干细胞群的细胞生物学或遗传学标志没有统一,在心肌中数量极少,体外扩增能

  11. In vitro expansion of human cardiac progenitor cells: exploring 'omics tools for characterization of cell-based allogeneic products.

    Science.gov (United States)

    Gomes-Alves, P; Serra, M; Brito, C; Ricardo, C P; Cunha, R; Sousa, M F; Sanchez, B; Bernad, A; Carrondo, M J T; Rodriguez-Borlado, L; Alves, P M

    2016-05-01

    Human cardiac stem/progenitor cells (hCPCs) have been shown to be capable to regenerate contractile myocardium. However, because of their relative low abundance in the heart, in vitro expansion of hCPC is mandatory to achieve necessary quantities for allogeneic or autologous cardiac regeneration therapy applications (10(6)-10(9) cells/patient). Up to now, cell number requirements of ongoing phase I/IIa trials have been fulfilled with production in static monolayer cultures. However, this manufacturing process poses critical limitations when moving to the following clinical phases where hundreds of patients will be enrolled. For this, increased process yield is required, while guaranteeing the quality of the cell-based products. In this work, we developed and validated a robust, scalable, and good manufacturing practice (GMP)-compatible bioprocess for the expansion of high-quality hCPC. We applied platforms extensively used by the biopharmaceutical industry, such as microcarrier technology and stirred systems, and assessed culture conditions' impact on hCPC's quality and potency, as required by regulatory agencies. Complementary analytical assays including gene expression microarrays and mass spectrometry-based approaches were explored to compare transcriptome, proteome, surface markers, and secretion profiles of hCPC cultured in static monolayers and in stirred microcarrier-based systems. Our results show that stirred microcarrier-based culture systems enabled achieving more than 3-fold increase in hCPC expansion, when compared with traditional static monolayers, while retaining cell's phenotype and similar "omics" profiles. These findings demonstrate that this change in the production process does not affect cell's identity and quality, with potential to be translated into a transversal production platform for clinical development of stem-cell therapies. PMID:26924043

  12. Progenitor Cell Therapy in a Porcine Acute Myocardial Infarction Model Induces Cardiac Hypertrophy, Mediated by Paracrine Secretion of Cardiotrophic Factors Including TGFβ1

    Science.gov (United States)

    Doyle, Brendan; Sorajja, Paul; Hynes, Brian; Kumar, Arun H.S.; Araoz, Phillip A.; Stalboerger, Paul G.; Miller, Dylan; Reed, Cynthia; Schmeckpeper, Jeffrey; Wang, Shaohua; Liu, Chunsheng; Terzic, Andre; Kruger, David; Riederer, Stephen

    2008-01-01

    Administration of endothelial progenitor cells (EPC) is a promising therapy for post-infarction cardiac repair. However, the mechanisms that underlie apparent beneficial effects on myocardial remodeling are unclear. In a porcine model of acute myocardial infarction, we investigated the therapeutic effects of a mixed population of culture modified peripheral blood mononuclear cells (termed hereafter porcine EPC). Porcine EPC were isolated using methods identical to those previously adopted for harvest of EPC in human cell therapy studies. In addition the therapeutic effects of paracrine factors secreted by these cells was evaluated in vitro and in vivo. Intracoronary injection of autologous porcine EPC was associated with increased infarct territory mass and improved regional ventricular systolic function at 2 months compared to control. Treatment with conditioned media derived from autologous EPC was associated with similar improved effects on infarct territory mass and function. Histologic analysis of the infarct territory revealed significantly increased cardiomyocyte size in EPC and conditioned media treated groups, when compared to controls. A paracrine EPC effect was also verified in a pure myocardial preparation in which cardiomyocytes devoid of fibroblast, neuronal and vascular elements directly responded by increasing cell mass when exposed to the same conditioned media. Analysis of conditioned media revealed elevated levels of TGFβ1 (human 267.3±11.8 pg/ml, porcine 57.1±6.1 pg/ml), a recognized mediator of hypertrophic signaling in the heart. Neutralizing antibodies to TGFβ1 attenuated the pro-hypertrophic effect of conditioned media, and use of recombinant TGFβ1 added to fresh media replicated the pro-hypertrophic effects of conditioned media in vitro. These data demonstrate the potential of paracrine factors secreted from endothelial progenitor cells to induce cardiomyocyte hypertrophy contributing to increased infarct territory LV mass, with

  13. Hypoxic Preconditioning Inhibits Hypoxia-induced Apoptosis of Cardiac Progenitor Cells via the PI3K/Akt-DNMT1-p53 Pathway.

    Science.gov (United States)

    Xu, Rongfeng; Sun, Yuning; Chen, Zhongpu; Yao, Yuyu; Ma, Genshan

    2016-01-01

    Research has demonstrated that hypoxic preconditioning (HP) can enhance the survival and proliferation of cardiac progenitor cells (CPCs); however, the underlying mechanisms are not fully understood. Here, we report that HP of c-kit (+) CPCs inhibits p53 via the PI3K/Akt-DNMT1 pathway. First, CPCs were isolated from the hearts of C57BL/6 mice and further purified by magnetic-activated cell sorting. Next, these cells were cultured under either normoxia (H0) or HP for 6 hours (H6) followed by oxygen-serum deprivation for 24 hours (24h). Flow cytometric analysis and MTT assays revealed that hypoxia-preconditioned CPCs exhibited an increased survival rate. Western blot and quantitative real-time PCR assays showed that p53 was obviously inhibited, while DNMT1 and DNMT3β were both significantly up-regulated by HP. Bisulphite sequencing analysis indicated that DNMT1 and DNMT3β did not cause p53 promoter hypermethylation. A reporter gene assay and chromatin immunoprecipitation analysis further demonstrated that DNMT1 bound to the promoter locus of p53 in hypoxia-preconditioned CPCs. Together, these observations suggest that HP of CPCs could lead to p53 inhibition by up-regulating DNMT1 and DNMT3β, which does not result in p53 promoter hypermethylation, and that DNMT1 might directly repress p53, at least in part, by binding to the p53 promoter locus. PMID:27488808

  14. Human Cardiac Progenitor Spheroids Exhibit Enhanced Engraftment Potential.

    Directory of Open Access Journals (Sweden)

    Francesca Oltolina

    Full Text Available A major obstacle to an effective myocardium stem cell therapy has always been the delivery and survival of implanted stem cells in the heart. Better engraftment can be achieved if cells are administered as cell aggregates, which maintain their extra-cellular matrix (ECM. We have generated spheroid aggregates in less than 24 h by seeding human cardiac progenitor cells (hCPCs onto methylcellulose hydrogel-coated microwells. Cells within spheroids maintained the expression of stemness/mesenchymal and ECM markers, growth factors and their cognate receptors, cardiac commitment factors, and metalloproteases, as detected by immunofluorescence, q-RT-PCR and immunoarray, and expressed a higher, but regulated, telomerase activity. Compared to cells in monolayers, 3D spheroids secreted also bFGF and showed MMP2 activity. When spheroids were seeded on culture plates, the cells quickly migrated, displaying an increased wound healing ability with or without pharmacological modulation, and reached confluence at a higher rate than cells from conventional monolayers. When spheroids were injected in the heart wall of healthy mice, some cells migrated from the spheroids, engrafted, and remained detectable for at least 1 week after transplantation, while, when the same amount of cells was injected as suspension, no cells were detectable three days after injection. Cells from spheroids displayed the same engraftment capability when they were injected in cardiotoxin-injured myocardium. Our study shows that spherical in vivo ready-to-implant scaffold-less aggregates of hCPCs able to engraft also in the hostile environment of an injured myocardium can be produced with an economic, easy and fast protocol.

  15. Growth factor-induced mobilization of cardiac progenitor cells reduces the risk of arrhythmias, in a rat model of chronic myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Leonardo Bocchi

    Full Text Available Heart repair by stem cell treatment may involve life-threatening arrhythmias. Cardiac progenitor cells (CPCs appear best suited for reconstituting lost myocardium without posing arrhythmic risks, being commissioned towards cardiac phenotype. In this study we tested the hypothesis that mobilization of CPCs through locally delivered Hepatocyte Growth Factor and Insulin-Like Growth Factor-1 to heal chronic myocardial infarction (MI, lowers the proneness to arrhythmias. We used 133 adult male Wistar rats either with one-month old MI and treated with growth factors (GFs, n = 60 or vehicle (V, n = 55, or sham operated (n = 18. In selected groups of animals, prior to and two weeks after GF/V delivery, we evaluated stress-induced ventricular arrhythmias by telemetry-ECG, cardiac mechanics by echocardiography, and ventricular excitability, conduction velocity and refractoriness by epicardial multiple-lead recording. Invasive hemodynamic measurements were performed before sacrifice and eventually the hearts were subjected to anatomical, morphometric, immunohistochemical, and molecular biology analyses. When compared with untreated MI, GFs decreased stress-induced arrhythmias and concurrently prolonged the effective refractory period (ERP without affecting neither the duration of ventricular repolarization, as suggested by measurements of QTc interval and mRNA levels for K-channel α-subunits Kv4.2 and Kv4.3, nor the dispersion of refractoriness. Further, markers of cardiomyocyte reactive hypertrophy, including mRNA levels for K-channel α-subunit Kv1.4 and β-subunit KChIP2, interstitial fibrosis and negative structural remodeling were significantly reduced in peri-infarcted/remote ventricular myocardium. Finally, analyses of BrdU incorporation and distribution of connexin43 and N-cadherin indicated that cytokines generated new vessels and electromechanically-connected myocytes and abolished the correlation of infarct size with deterioration

  16. Functional cardiomyocytes derived from Isl1 cardiac progenitors via Bmp4 stimulation.

    Directory of Open Access Journals (Sweden)

    Esra Cagavi

    Full Text Available As heart failure due to myocardial infarction remains a leading cause of morbidity worldwide, cell-based cardiac regenerative therapy using cardiac progenitor cells (CPCs could provide a potential treatment for the repair of injured myocardium. As adult CPCs may have limitations regarding tissue accessibility and proliferative ability, CPCs derived from embryonic stem cells (ESCs could serve as an unlimited source of cells with high proliferative ability. As one of the CPCs that can be derived from embryonic stem cells, Isl1 expressing cardiac progenitor cells (Isl1-CPCs may serve as a valuable source of cells for cardiac repair due to their high cardiac differentiation potential and authentic cardiac origin. In order to generate an unlimited number of Isl1-CPCs, we used a previously established an ESC line that allows for isolation of Isl1-CPCs by green fluorescent protein (GFP expression that is directed by the mef2c gene, specifically expressed in the Isl1 domain of the anterior heart field. To improve the efficiency of cardiac differentiation of Isl1-CPCs, we studied the role of Bmp4 in cardiogenesis of Isl1-CPCs. We show an inductive role of Bmp directly on cardiac progenitors and its enhancement on early cardiac differentiation of CPCs. Upon induction of Bmp4 to Isl1-CPCs during differentiation, the cTnT+ cardiomyocyte population was enhanced 2.8±0.4 fold for Bmp4 treated CPC cultures compared to that detected for vehicle treated cultures. Both Bmp4 treated and untreated cardiomyocytes exhibit proper electrophysiological and calcium signaling properties. In addition, we observed a significant increase in Tbx5 and Tbx20 expression in differentiation cultures treated with Bmp4 compared to the untreated control, suggesting a link between Bmp4 and Tbx genes which may contribute to the enhanced cardiac differentiation in Bmp4 treated cultures. Collectively these findings suggest a cardiomyogenic role for Bmp4 directly on a pure population of

  17. Noninvasive Imaging of Administered Progenitor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Steven R Bergmann, M.D., Ph.D.

    2012-12-03

    The objective of this research grant was to develop an approach for labeling progenitor cells, specifically those that we had identified as being able to replace ischemic heart cells, so that the distribution could be followed non-invasively. In addition, the research was aimed at determining whether administration of progenitor cells resulted in improved myocardial perfusion and function. The efficiency and toxicity of radiolabeling of progenitor cells was to be evaluated. For the proposed clinical protocol, subjects with end-stage ischemic coronary artery disease were to undergo a screening cardiac positron emission tomography (PET) scan using N-13 ammonia to delineate myocardial perfusion and function. If they qualified based on their PET scan, they would undergo an in-hospital protocol whereby CD34+ cells were stimulated by the administration of granulocytes-colony stimulating factor (G-CSF). CD34+ cells would then be isolated by apharesis, and labeled with indium-111 oxine. Cells were to be re-infused and subjects were to undergo single photon emission computed tomography (SPECT) scanning to evaluate uptake and distribution of labeled progenitor cells. Three months after administration of progenitor cells, a cardiac PET scan was to be repeated to evaluate changes in myocardial perfusion and/or function. Indium oxine is a radiopharmaceutical for labeling of autologous lymphocytes. Indium-111 (In-111) decays by electron capture with a t{sub ½} of 67.2 hours (2.8 days). Indium forms a saturated complex that is neutral, lipid soluble, and permeates the cell membrane. Within the cell, the indium-oxyquinolone complex labels via indium intracellular chelation. Following leukocyte labeling, ~77% of the In-111 is incorporated in the cell pellet. The presence of red cells and /or plasma reduces the labeling efficacy. Therefore, the product needed to be washed to eliminate plasma proteins. This repeated washing can damage cells. The CD34 selected product was a 90

  18. Xenotransplantation of Human Cardiomyocyte Progenitor Cells Does Not Improve Cardiac Function in a Porcine Model of Chronic Ischemic Heart Failure. Results from a Randomized, Blinded, Placebo Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Sanne J Jansen of Lorkeers

    Full Text Available Recently cardiomyocyte progenitor cells (CMPCs were successfully isolated from fetal and adult human hearts. Direct intramyocardial injection of human CMPCs (hCMPCs in experimental mouse models of acute myocardial infarction significantly improved cardiac function compared to controls.Here, our aim was to investigate whether xenotransplantation via intracoronary infusion of fetal hCMPCs in a pig model of chronic myocardial infarction is safe and efficacious, in view of translation purposes.We performed a randomized, blinded, placebo controlled trial. Four weeks after ischemia/reperfusion injury by 90 minutes of percutaneous left anterior descending artery occlusion, pigs (n = 16, 68.5 ± 5.4 kg received intracoronary infusion of 10 million fetal hCMPCs or placebo. All animals were immunosuppressed by cyclosporin (CsA. Four weeks after infusion, endpoint analysis by MRI displayed no difference in left ventricular ejection fraction, left ventricular end diastolic and left ventricular end systolic volumes between both groups. Serial pressure volume (PV-loop and echocardiography showed no differences in functional parameters between groups at any timepoint. Infarct size at follow-up, measured by late gadolinium enhancement MRI showed no difference between groups. Intracoronary pressure and flow measurements showed no signs of coronary obstruction 30 minutes after cell infusion. No premature death occurred in cell treated animals.Xenotransplantation via intracoronary infusion of hCMPCs is feasible and safe, but not associated with improved left ventricular performance and infarct size compared to placebo in a porcine model of chronic myocardial infarction.

  19. Development of Bipotent Cardiac/Skeletal Myogenic Progenitors from MESP1+ Mesoderm

    Directory of Open Access Journals (Sweden)

    Sunny Sun-Kin Chan

    2016-01-01

    Full Text Available The branchiomeric skeletal muscles co-evolved with new chambers of the heart to enable predatory feeding in chordates. These co-evolved tissues develop from a common population in anterior splanchnic mesoderm, referred to as cardiopharyngeal mesoderm (CPM. The regulation and development of CPM are poorly understood. We describe an embryonic stem cell-based system in which MESP1 drives a PDGFRA+ population with dual cardiac and skeletal muscle differentiation potential, and gene expression resembling CPM. Using this system, we investigate the regulation of these bipotent progenitors, and find that cardiac specification is governed by an antagonistic TGFβ-BMP axis, while skeletal muscle specification is enhanced by Rho kinase inhibition. We define transcriptional signatures of the first committed CPM-derived cardiac and skeletal myogenic progenitors, and discover surface markers to distinguish cardiac (PODXL+ from the skeletal muscle (CDH4+ CPM derivatives. These tools open an accessible window on this developmentally and evolutionarily important population.

  20. Long noncoding RNA H19 mediates melatonin inhibition of premature senescence of c-kit(+) cardiac progenitor cells by promoting miR-675.

    Science.gov (United States)

    Cai, Benzhi; Ma, Wenya; Bi, Chongwei; Yang, Fan; Zhang, Lai; Han, Zhenbo; Huang, Qi; Ding, Fengzhi; Li, Yuan; Yan, Gege; Pan, Zhenwei; Yang, Baofeng; Lu, Yanjie

    2016-08-01

    Melatonin, a hormone secreted by the pineal gland, possesses multiple biological activities such as antitumor, antioxidant, and anti-ischemia. C-kit(+) cardiac progenitor cells (CPCs) have emerged as a promising tool for the treatment of heart diseases. However, the senescence of CPCs due to pathological stimuli leads to the decline of CPCs' functions and regenerative potential. This study was conducted to demonstrate whether melatonin antagonizes the senescence of CPCs in response to oxidative stress. Here, we found that the melatonin treatment markedly inhibited the senescent characteristics of CPCs after exposed to sublethal concentration of H2 O2 , including the increase in senescence-associated β-galactosidase (SA-β-gal)-positive CPCs, senescence-associated heterochromatin loci (SAHF), secretory IL-6 level, and the upregulation of p53 and p21 proteins. Senescence-associated proliferation reduction was also attenuated by melatonin in CPCs. Luzindole, the melatonin membrane receptor blocker, may block the melatonin-mediated suppression of premature senescence in CPCs. Interestingly, we found that long noncoding RNA H19 and its derived miR-675 were downregulated by H2 O2 in CPCs, but melatonin treatment could counter this alteration. Furthermore, knockdown of H19 or miR-675 blocked antisenescence actions of melatonin on H2 O2 -treated CPCs. It was further verified that H19-derived miR-675 targeted at the 3'UTR of USP10, which resulted in the downregulation of p53 and p21 proteins. In summary, melatonin antagonized premature senescence of CPCs via H19/miR-675/USP10 pathway, which provides new insights into pharmacological actions and potential applications of melatonin on the senescence of CPCs. PMID:27062045

  1. Progenitor Cells and Podocyte Regeneration

    Science.gov (United States)

    Shankland, Stuart J.; Pippin, Jeffrey W.; Duffield, Jeremy S.

    2014-01-01

    The very limited ability of adult podocytes to proliferate in vivo is clinically significant because: podocytes form a vascular barrier which is functionally critical to the nephron; podocyte hypoplasia is a characteristic of disease; and inadequate regeneration of podocytes is a major cause of persistent podocyte hypoplasia. Excessive podocyte loss or inadequate replacement leads to glomerulosclerosis in many progressive kidney diseases. Thus, restoration of podocyte cell density is almost certainly reliant on regeneration by podocyte progenitors. However such putative progenitors have remained elusive until recently. In this review we describe the developmental processes leading to podocyte and parietal epithelial cell (PEC) formation during glomerulogenesis. We compare evidence that in normal human kidneys PECs expressing ‘progenitor’ markers CD133 and CD24 can differentiate into podocytes in vitro and in vivo with evidence from animal models suggesting a more limited role of PEC-capacity to serve as podocyte progenitors in adults. We will highlight tantalizing new evidence that specialized vascular wall cells of afferent arterioles including those which produce renin in healthy kidney, provide a novel local progenitor source of new PECs and podocytes in response to podocyte hypoplasia in the adult, and draw comparisons with glomerulogenesis. PMID:25217270

  2. GFRA2 Identifies Cardiac Progenitors and Mediates Cardiomyocyte Differentiation in a RET-Independent Signaling Pathway.

    Science.gov (United States)

    Ishida, Hidekazu; Saba, Rie; Kokkinopoulos, Ioannis; Hashimoto, Masakazu; Yamaguchi, Osamu; Nowotschin, Sonja; Shiraishi, Manabu; Ruchaya, Prashant; Miller, Duncan; Harmer, Stephen; Poliandri, Ariel; Kogaki, Shigetoyo; Sakata, Yasushi; Dunkel, Leo; Tinker, Andrew; Hadjantonakis, Anna-Katerina; Sawa, Yoshiki; Sasaki, Hiroshi; Ozono, Keiichi; Suzuki, Ken; Yashiro, Kenta

    2016-07-26

    A surface marker that distinctly identifies cardiac progenitors (CPs) is essential for the robust isolation of these cells, circumventing the necessity of genetic modification. Here, we demonstrate that a Glycosylphosphatidylinositol-anchor containing neurotrophic factor receptor, Glial cell line-derived neurotrophic factor receptor alpha 2 (Gfra2), specifically marks CPs. GFRA2 expression facilitates the isolation of CPs by fluorescence activated cell sorting from differentiating mouse and human pluripotent stem cells. Gfra2 mutants reveal an important role for GFRA2 in cardiomyocyte differentiation and development both in vitro and in vivo. Mechanistically, the cardiac GFRA2 signaling pathway is distinct from the canonical pathway dependent on the RET tyrosine kinase and its established ligands. Collectively, our findings establish a platform for investigating the biology of CPs as a foundation for future development of CP transplantation for treating heart failure. PMID:27396331

  3. GFRA2 Identifies Cardiac Progenitors and Mediates Cardiomyocyte Differentiation in a RET-Independent Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Hidekazu Ishida

    2016-07-01

    Full Text Available A surface marker that distinctly identifies cardiac progenitors (CPs is essential for the robust isolation of these cells, circumventing the necessity of genetic modification. Here, we demonstrate that a Glycosylphosphatidylinositol-anchor containing neurotrophic factor receptor, Glial cell line-derived neurotrophic factor receptor alpha 2 (Gfra2, specifically marks CPs. GFRA2 expression facilitates the isolation of CPs by fluorescence activated cell sorting from differentiating mouse and human pluripotent stem cells. Gfra2 mutants reveal an important role for GFRA2 in cardiomyocyte differentiation and development both in vitro and in vivo. Mechanistically, the cardiac GFRA2 signaling pathway is distinct from the canonical pathway dependent on the RET tyrosine kinase and its established ligands. Collectively, our findings establish a platform for investigating the biology of CPs as a foundation for future development of CP transplantation for treating heart failure.

  4. Developmental origin and lineage plasticity of endogenous cardiac stem cells.

    Science.gov (United States)

    Santini, Maria Paola; Forte, Elvira; Harvey, Richard P; Kovacic, Jason C

    2016-04-15

    Over the past two decades, several populations of cardiac stem cells have been described in the adult mammalian heart. For the most part, however, their lineage origins and in vivo functions remain largely unexplored. This Review summarizes what is known about different populations of embryonic and adult cardiac stem cells, including KIT(+), PDGFRα(+), ISL1(+)and SCA1(+)cells, side population cells, cardiospheres and epicardial cells. We discuss their developmental origins and defining characteristics, and consider their possible contribution to heart organogenesis and regeneration. We also summarize the origin and plasticity of cardiac fibroblasts and circulating endothelial progenitor cells, and consider what role these cells have in contributing to cardiac repair.

  5. Stem cell sources for cardiac regeneration.

    Science.gov (United States)

    Roccio, M; Goumans, M J; Sluijter, J P G; Doevendans, P A

    2008-03-01

    Cell-based cardiac repair has the ambitious aim to replace the malfunctioning cardiac muscle developed after myocardial infarction, with new contractile cardiomyocytes and vessels. Different stem cell populations have been intensively studied in the last decade as a potential source of new cardiomyocytes to ameliorate the injured myocardium, compensate for the loss of ventricular mass and contractility and eventually restore cardiac function. An array of cell types has been explored in this respect, including skeletal muscle, bone marrow derived stem cells, embryonic stem cells (ESC) and more recently cardiac progenitor cells. The best-studied cell types are mouse and human ESC cells, which have undisputedly been demonstrated to differentiate into cardiomyocyte and vascular lineages and have been of great help to understand the differentiation process of pluripotent cells. However, due to their immunogenicity, risk of tumor development and the ethical challenge arising from their embryonic origin, they do not provide a suitable cell source for a regenerative therapy approach. A better option, overcoming ethical and allogenicity problems, seems to be provided by bone marrow derived cells and by the recently identified cardiac precursors. This report will overview current knowledge on these different cell types and their application in cardiac regeneration and address issues like implementation of delivery methods, including tissue engineering approaches that need to be developed alongside.

  6. Endothelial progenitor cells in cardiovascular diseases

    Institute of Scientific and Technical Information of China (English)

    Poay; Sian; Sabrina; Lee; Kian; Keong; Poh

    2014-01-01

    Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells(EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vas-culogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk fac-tors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardio-vascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evalu-ate the challenges facing EPC research and how these may be overcome.

  7. Haemopoietic progenitor cells in human peripheral blood

    International Nuclear Information System (INIS)

    The purpose of the investigation reported is to purify haemopoietic progenitor cells from human peripheral blood using density gradient centrifugation in order to isolate a progenitor cell fraction without immunocompetent cells. The purification technique of peripheral blood flow colony forming unit culture (CFU-c) by means of density gradient centrifugation and a combined depletion of various rosettes is described. The results of several 'in vitro' characteristics of purified CFU-c suspensions and of the plasma clot diffusion chamber culture technique are presented. Irradiation studies revealed that for both human bone marrow and peripheral blood the CFU-c were less radioresistant than clusters. Elimination of monocytes (and granulocytes) from the test suspensions induced an alteration in radiosensitivity pararmeters. The results obtained with the different techniques are described by analysing peripheral progenitor cell activity in myeloproliferative disorders. (Auth.)

  8. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lijuan [Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009 (China); Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Wang, Yingjie [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Internal Medicine of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Pan, Yaohua; Zhang, Lan [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Shen, Chengxing [Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai (China); Qin, Gangjian [Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 (United States); Ashraf, Muhammad [Pathology and Lab Med, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Weintraub, Neal [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Ma, Genshan, E-mail: magenshan@hotmail.com [Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009 (China); Tang, Yaoliang, E-mail: tangyg@ucmail.uc.edu [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States)

    2013-02-15

    Highlights: ► Cardiac progenitor-derived (CPC) Exosomes protect H9C2 from apoptosis in vitro. ► CPC-exosomes protect cardiomyoyctes from MI/R induced apoptosis in vivo. ► CPC-exosomes were taken up by H9C2 with high efficiency using PKH26 labeling. ► miR-451, one of GATA4-responsive miRNA cluster, is enriched in CPC-exosomes. -- Abstract: Background: Cardiac progenitors (CPC) mediate cardioprotection via paracrine effects. To date, most of studies focused on secreted paracrine proteins. Here we investigated the CPC-derived-exosomes on protecting myocardium from acute ischemia/reperfusion (MI/R) injury. Methods and results: CPC were isolated from mouse heart using two-step protocol. Exosomes were purified from conditional medium, and confirmed by electron micrograph and Western blot using CD63 as a marker. qRT-PCR shows that CPC-exosomes have high level expression of GATA4-responsive-miR-451. Exosomes were ex vivo labeled with PKH26, We observed exosomes can be uptaken by H9C2 cardiomyoblasts with high efficiency after 12 h incubation. CPC-exosomes protect H9C2 from oxidative stress by inhibiting caspase 3/7 activation invitro. In vivo delivery of CPC-exosomes in an acute mouse myocardial ischemia/reperfusion model inhibited cardiomyocyte apoptosis by about 53% in comparison with PBS control (p < 0.05). Conclusion: Our results suggest, for the first time, the CPC-exosomes can be used as a therapeutic vehicle for cardioprotection, and highlights a new perspective for using non-cell exosomes for cardiac disease.

  9. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury

    International Nuclear Information System (INIS)

    Highlights: ► Cardiac progenitor-derived (CPC) Exosomes protect H9C2 from apoptosis in vitro. ► CPC-exosomes protect cardiomyoyctes from MI/R induced apoptosis in vivo. ► CPC-exosomes were taken up by H9C2 with high efficiency using PKH26 labeling. ► miR-451, one of GATA4-responsive miRNA cluster, is enriched in CPC-exosomes. -- Abstract: Background: Cardiac progenitors (CPC) mediate cardioprotection via paracrine effects. To date, most of studies focused on secreted paracrine proteins. Here we investigated the CPC-derived-exosomes on protecting myocardium from acute ischemia/reperfusion (MI/R) injury. Methods and results: CPC were isolated from mouse heart using two-step protocol. Exosomes were purified from conditional medium, and confirmed by electron micrograph and Western blot using CD63 as a marker. qRT-PCR shows that CPC-exosomes have high level expression of GATA4-responsive-miR-451. Exosomes were ex vivo labeled with PKH26, We observed exosomes can be uptaken by H9C2 cardiomyoblasts with high efficiency after 12 h incubation. CPC-exosomes protect H9C2 from oxidative stress by inhibiting caspase 3/7 activation invitro. In vivo delivery of CPC-exosomes in an acute mouse myocardial ischemia/reperfusion model inhibited cardiomyocyte apoptosis by about 53% in comparison with PBS control (p < 0.05). Conclusion: Our results suggest, for the first time, the CPC-exosomes can be used as a therapeutic vehicle for cardioprotection, and highlights a new perspective for using non-cell exosomes for cardiac disease

  10. In vivo identification of periodontal progenitor cells.

    Science.gov (United States)

    Roguljic, H; Matthews, B G; Yang, W; Cvija, H; Mina, M; Kalajzic, I

    2013-08-01

    The periodontal ligament contains progenitor cells; however, their identity and differentiation potential in vivo remain poorly characterized. Previous results have suggested that periodontal tissue progenitors reside in perivascular areas. Therefore, we utilized a lineage-tracing approach to identify and track periodontal progenitor cells from the perivascular region in vivo. We used an alpha-smooth muscle actin (αSMA) promoter-driven and tamoxifen-inducible Cre system (αSMACreERT2) that, in combination with a reporter mouse line (Ai9), permanently labels a cell population, termed 'SMA9'. To trace the differentiation of SMA9-labeled cells into osteoblasts/cementoblasts, we utilized a Col2.3GFP transgene, while expression of Scleraxis-GFP was used to follow differentiation into periodontal ligament fibroblasts during normal tissue formation and remodeling following injury. In uninjured three-week-old SMA9 mice, tamoxifen labeled a small population of cells in the periodontal ligament that expanded over time, particularly in the apical region of the root. By 17 days and 7 weeks after labeling, some SMA9-labeled cells expressed markers indicating differentiation into mature lineages, including cementocytes. Following injury, SMA9 cells expanded, and differentiated into cementoblasts, osteoblasts, and periodontal ligament fibroblasts. SMA9-labeled cells represent a source of progenitors that can give rise to mature osteoblasts, cementoblasts, and fibroblasts within the periodontium. PMID:23735585

  11. Pigment Cell Progenitors in Zebrafish Remain Multipotent through Metamorphosis.

    Science.gov (United States)

    Singh, Ajeet Pratap; Dinwiddie, April; Mahalwar, Prateek; Schach, Ursula; Linker, Claudia; Irion, Uwe; Nüsslein-Volhard, Christiane

    2016-08-01

    The neural crest is a transient, multipotent embryonic cell population in vertebrates giving rise to diverse cell types in adults via intermediate progenitors. The in vivo cell-fate potential and lineage segregation of these postembryonic progenitors is poorly understood, and it is unknown if and when the progenitors become fate restricted. We investigate the fate restriction in the neural crest-derived stem cells and intermediate progenitors in zebrafish, which give rise to three distinct adult pigment cell types: melanophores, iridophores, and xanthophores. By inducing clones in sox10-expressing cells, we trace and quantitatively compare the pigment cell progenitors at four stages, from embryogenesis to metamorphosis. At all stages, a large fraction of the progenitors are multipotent. These multipotent progenitors have a high proliferation ability, which diminishes with fate restriction. We suggest that multipotency of the nerve-associated progenitors lasting into metamorphosis may have facilitated the evolution of adult-specific traits in vertebrates. PMID:27453500

  12. X Inactivation and Progenitor Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ruben Agrelo

    2011-04-01

    Full Text Available In mammals, silencing of one of the two X chromosomes is necessary to achieve dosage compensation. The 17 kb non-coding RNA called Xist triggers X inactivation. Gene silencing by Xist can only be achieved in certain contexts such as in cells of the early embryo and in certain hematopoietic progenitors where silencing factors are present. Moreover, these epigenetic contexts are maintained in cancer progenitors in which SATB1 has been identified as a factor related to Xist-mediated chromosome silencing.

  13. Endothelial progenitor cells in hematologic malignancies.

    Science.gov (United States)

    Testa, Ugo; Saulle, Ernestina; Castelli, Germana; Pelosi, Elvira

    2016-01-01

    Studies carried out in the last years have improved the understanding of the cellular and molecular mechanisms controlling angiogenesis during adult life in normal and pathological conditions. Some of these studies have led to the identification of some progenitor cells that sustain angiogenesis through indirect, paracrine mechanisms (hematopoietic angiogenic cells) and through direct mechanisms, i.e., through their capacity to generate a progeny of phenotypically and functionally competent endothelial cells [endothelial colony forming cells (ECFCs)]. The contribution of these progenitors to angiogenetic processes under physiological and pathological conditions is intensively investigated. Angiogenetic mechanisms are stimulated in various hematological malignancies, including chronic myeloid leukemia (CML), acute myeloid leukemia (AML), myelodysplastic syndromes and multiple myeloma, resulting in an increased angiogenesis that contributes to disease progression. In some of these conditions there is preliminary evidence that some endothelial cells could derive from the malignant clone, thus leading to the speculation that the leukemic cell derives from the malignant transformation of a hemangioblastic progenitor, i.e., of a cell capable of differentiation to the hematopoietic and to the endothelial cell lineages. Our understanding of the mechanisms underlying increased angiogenesis in these malignancies not only contributed to a better knowledge of the mechanisms responsible for tumor progression, but also offered the way for the discovery of new therapeutic targets. PMID:27583252

  14. PDGFRα demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium

    Science.gov (United States)

    Noseda, Michela; Harada, Mutsuo; McSweeney, Sara; Leja, Thomas; Belian, Elisa; Stuckey, Daniel J.; Abreu Paiva, Marta S.; Habib, Josef; Macaulay, Iain; de Smith, Adam J.; al-Beidh, Farah; Sampson, Robert; Lumbers, R. Thomas; Rao, Pulivarthi; Harding, Sian E.; Blakemore, Alexandra I. F.; Eirik Jacobsen, Sten; Barahona, Mauricio; Schneider, Michael D.

    2015-01-01

    Cardiac progenitor/stem cells in adult hearts represent an attractive therapeutic target for heart regeneration, though (inter)-relationships among reported cells remain obscure. Using single-cell qRT–PCR and clonal analyses, here we define four subpopulations of cardiac progenitor/stem cells in adult mouse myocardium all sharing stem cell antigen-1 (Sca1), based on side population (SP) phenotype, PECAM-1 (CD31) and platelet-derived growth factor receptor-α (PDGFRα) expression. SP status predicts clonogenicity and cardiogenic gene expression (Gata4/6, Hand2 and Tbx5/20), properties segregating more specifically to PDGFRα+ cells. Clonal progeny of single Sca1+ SP cells show cardiomyocyte, endothelial and smooth muscle lineage potential after cardiac grafting, augmenting cardiac function although durable engraftment is rare. PDGFRα− cells are characterized by Kdr/Flk1, Cdh5, CD31 and lack of clonogenicity. PDGFRα+/CD31− cells derive from cells formerly expressing Mesp1, Nkx2-5, Isl1, Gata5 and Wt1, distinct from PDGFRα−/CD31+ cells (Gata5 low; Flk1 and Tie2 high). Thus, PDGFRα demarcates the clonogenic cardiogenic Sca1+ stem/progenitor cell. PMID:25980517

  15. Endothelin-1 supports clonal derivation and expansion of cardiovascular progenitors derived from human embryonic stem cells.

    Science.gov (United States)

    Soh, Boon-Seng; Ng, Shi-Yan; Wu, Hao; Buac, Kristina; Park, Joo-Hye C; Lian, Xiaojun; Xu, Jiejia; Foo, Kylie S; Felldin, Ulrika; He, Xiaobing; Nichane, Massimo; Yang, Henry; Bu, Lei; Li, Ronald A; Lim, Bing; Chien, Kenneth R

    2016-03-08

    Coronary arteriogenesis is a central step in cardiogenesis, requiring coordinated generation and integration of endothelial cell and vascular smooth muscle cells. At present, it is unclear whether the cell fate programme of cardiac progenitors to generate complex muscular or vascular structures is entirely cell autonomous. Here we demonstrate the intrinsic ability of vascular progenitors to develop and self-organize into cardiac tissues by clonally isolating and expanding second heart field cardiovascular progenitors using WNT3A and endothelin-1 (EDN1) human recombinant proteins. Progenitor clones undergo long-term expansion and differentiate primarily into endothelial and smooth muscle cell lineages in vitro, and contribute extensively to coronary-like vessels in vivo, forming a functional human-mouse chimeric circulatory system. Our study identifies EDN1 as a key factor towards the generation and clonal derivation of ISL1(+) vascular intermediates, and demonstrates the intrinsic cell-autonomous nature of these progenitors to differentiate and self-organize into functional vasculatures in vivo.

  16. Origin of hemopoietic stromal progenitor cells in chimeras

    International Nuclear Information System (INIS)

    Intravenously injected bone marrow cells do not participate in the regeneration of hemopoietic stromal progenitors in irradiated mice, nor in the curetted parts of the recipient's marrow. The hemopoietic stromal progenitors in allogeneic chimeras are of recipient origin. The adherent cell layer (ACL) of long-term cultures of allogeneic chimera bone marrow contains only recipient hemopoietic stromal progenitors. However, in ectopic hemopoietic foci produced by marrow implantation under the renal capsule and repopulated by the recipient hemopoietic cells after irradiation and reconstitution by syngeneic hemopoietic cells, the stromal progenitors were of implant donor origin, as were stromal progenitors of the ACL in long-term cultures of hemopoietic cells from ectopic foci. Our results confirm that the stromal and hemopoietic progenitors differ in origin and that hemopoietic stromal progenitors are not transplantable by the intravenous route in mice

  17. Progenitor Cells and Podocyte Regeneration

    OpenAIRE

    Shankland, Stuart J.; Pippin, Jeffrey W.; Duffield, Jeremy S.

    2014-01-01

    The very limited ability of adult podocytes to proliferate in vivo is clinically significant because: podocytes form a vascular barrier which is functionally critical to the nephron; podocyte hypoplasia is a characteristic of disease; and inadequate regeneration of podocytes is a major cause of persistent podocyte hypoplasia. Excessive podocyte loss or inadequate replacement leads to glomerulosclerosis in many progressive kidney diseases. Thus, restoration of podocyte cell density is almost c...

  18. Mobilization of hematopoietic progenitor cells in patients with liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Ursula; M; Gehling; Marc; Willems; Kathleen; Schlagner; Ralf; A; Benndorf; Maura; Dandri; Jrg; Petersen; Martina; Sterneck; Joerg-Matthias; Pollok; Dieter; K; Hossfeld; Xavier; Rogiers

    2010-01-01

    AIM:To test the hypothesis that liver cirrhosis is associated with mobilization of hematopoietic progenitor cells. METHODS:Peripheral blood samples from 72 patients with liver cirrhosis of varying etiology were analyzed by flow cytometry.Identified progenitor cell subsets were immunoselected and used for functional assays in vitro. Plasma levels of stromal cell-derived factor-1(SDF-1) were measured using an enzyme linked immunosorbent assay.RESULTS:Progenitor cells with a CD133 + /CD45 + CD14 + phenotype we...

  19. Secreted proteome of the murine multipotent hematopoietic progenitor cell line DKmix

    OpenAIRE

    Luecke, N; Templin, C; Muetzelburg, M V; Neumann, D.; Just, I; Pich, A.(IFIC, Universitat de València, CSIC, Apt. Correus 22085, 46071 , València, Spain)

    2010-01-01

    Administration of the multipotent hematopoietic progenitor cell (HPC) line DKmix improved cardiac function after myocardial infarction and accelerated dermal wound healing due to paracrine mechanisms. The aim of this study was to analyse the secreted proteins of DKmix cells in order to identify the responsible paracrine factors and assess their relevance to the wide spectrum of therapeutic effects. A mass spectrometry (MS)-based approach was used to identify secreted proteins of DKmix cells. ...

  20. [Stem cells and cardiac regeneration].

    Science.gov (United States)

    Perez Millan, Maria Ines; Lorenti, Alicia

    2006-01-01

    Stem cells are defined by virtue of their functional attributes: absence of tissue specific differentitated markers, capable of proliferation, able to self-maintain the population, able to produce a large number of differentiated, functional progeny, able to regenerate the tissue after injury. Cell therapy is an alternative for the treatment of several diseases, like cardiac diseases (cell cardiomyoplasty). A variety of stem cells could be used for cardiac repair: from cardiac and extracardiac sources. Each cell type has its own profile of advantages, limitations, and practicability issues in specific clinical settings. Differentiation of bone marrow stem cells to cardiomyocyte-like cells have been observed under different culture conditions. The presence of resident cardiac stem cell population capable of differentiation into cardiomyocyte or vascular lineage suggests that these cells could be used for cardiac tissue repair, and represent a great promise for clinical application. Stem cells mobilization by cytokines may also offer a strategy for cardiac regeneration. The use of stem cells (embryonic and adult) may hold the key to replacing cells lost in many devastating diseases. This potential benefit is a major focus for stem cell research.

  1. Endothelial Progenitor Cells Enter the Aging Arena.

    Directory of Open Access Journals (Sweden)

    Kate eWilliamson

    2012-02-01

    Full Text Available Age is a significant risk factor for the development of vascular diseases, such as atherosclerosis. Although pharmacological treatments, including statins and anti-hypertensive drugs, have improved the prognosis for patients with cardiovascular disease, it remains a leading cause of mortality in those aged 65 years and over. Furthermore, given the increased life expectancy of the population in developed countries, there is a clear need for alternative treatment strategies. Consequently, the relationship between aging and progenitor cell-mediated repair is of great interest. Endothelial progenitor cells (EPCs play an integral role in the cellular repair mechanisms for endothelial regeneration and maintenance. However, EPCs are subject to age-associated changes that diminish their number in circulation and function, thereby enhancing vascular disease risk. A great deal of research is aimed at developing strategies to harness the regenerative capacity of these cells.In this review, we discuss the current understanding of the cells termed ‘EPCs’, examine the impact of age on EPC-mediated repair and identify therapeutic targets with potential for attenuating the age-related decline in vascular health via beneficial actions on EPCs.

  2. PET imaging of adoptive progenitor cell therapies.

    Energy Technology Data Exchange (ETDEWEB)

    Gelovani, Juri G.

    2008-05-13

    Objectives. The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive “tracking” of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to

  3. PET imaging of adoptive progenitor cell therapies

    International Nuclear Information System (INIS)

    The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive 'tracking' of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to stem cell imaging

  4. Endothelial progenitor cells regenerate infracted myocardium with neovascularisation development.

    Science.gov (United States)

    Abd El Aziz, M T; Abd El Nabi, E A; Abd El Hamid, M; Sabry, D; Atta, H M; Rahed, L A; Shamaa, A; Mahfouz, S; Taha, F M; Elrefaay, S; Gharib, D M; Elsetohy, Khaled A

    2015-03-01

    We achieved possibility of isolation, characterization human umbilical cord blood endothelial progenitor cells (EPCs), examination potency of EPCs to form new blood vessels and differentiation into cardiomyoctes in canines with acute myocardial infarction (AMI). EPCs were separated and cultured from umbilical cord blood. Their phenotypes were confirmed by uptake of double stains dioctadecyl tetramethylindocarbocyanine-labeled acetylated LDL and FITC-labeled Ulex europaeus agglutinin 1 (DILDL-UEA-1). EPCs of cord blood were counted. Human VEGFR-2 and eNOS from the cultured EPCs were assessed by qPCR. Human EPCs was transplanted intramyocardially in canines with AMI. ECG and cardiac enzymes (CK-MB and Troponin I) were measured to assess severity of cellular damage. Histopathology was done to assess neovascularisation. Immunostaining was done to detect EPCs transdifferentiation into cardiomyocytes in peri-infarct cardiac tissue. qPCR for human genes (hVEGFR-2, and eNOS) was done to assess homing and angiogenic function of transplanted EPCs. Cultured human cord blood exhibited an increased number of EPCs and significant high expression of hVEGFR-2 and eNOS genes in the culture cells. Histopathology showed increased neovascularization and immunostaining showed presence of EPCs newly differentiated into cardiomyocyte-like cells. Our findings suggested that hEPCs can mediate angiogenesis and differentiate into cardiomyoctes in canines with AMI. PMID:25750747

  5. Enhancing endothelial progenitor cell for clinical use

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Circulating endothelial progenitor cells (EPCs) havebeen demonstrated to correlate negatively with vascularendothelial dysfunction and cardiovascular risk factors.However, translation of basic research into the clinicalpractice has been limited by the lack of unambiguousand consistent definitions of EPCs and reduced EPCcell number and function in subjects requiring them forclinical use. This article critically reviews the definitionof EPCs based on commonly used protocols, their valueas a biomarker of cardiovascular risk factor in subjectswith cardiovascular disease, and strategies to enhanceEPCs for treatment of ischemic diseases.

  6. Stem cells and progenitor cells in renal disease.

    Science.gov (United States)

    Haller, Hermann; de Groot, Kirsten; Bahlmann, Ferdinand; Elger, Marlies; Fliser, Danilo

    2005-11-01

    Stem cells and progenitor cells are necessary for repair and regeneration of injured renal tissue. Infiltrating or resident stem cells can contribute to the replacement of lost or damaged tissue. However, the regulation of circulating progenitor cells is not well understood. We have analyzed the effects of erythropoietin on circulating progenitor cells and found that low levels of erythropoietin induce mobilization and differentiation of endothelial progenitor cells. In an animal model of 5/6 nephrectomy we could demonstrate that erythropoietin ameliorates tissue injury. Full regeneration of renal tissue demands the existence of stem cells and an adequate local "milieu," a so-called stem cell niche. We have previously described a stem cell niche in the kidneys of the dogfish, Squalus acanthus. Further analysis revealed that in the regenerating zone of the shark kidney, stem cells exist that can be induced by loss of renal tissue to form new glomeruli. Such animal models improve our understanding of stem cell behavior in the kidney and may eventually contribute to novel therapies. PMID:16221168

  7. Effect of human neural progenitor cells on injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    XU Guang-hui; BAI Jin-zhu; CAI Qin-lin; LI Xiao-xia; LI Ling-song; SHEN Li

    2005-01-01

    Objective: To study whether human neural progenitor cells can differentiate into neural cells in vivo and improve the recovery of injured spinal cord in rats.Methods: Human neural progenitor cells were transplanted into the injured spinal cord and the functional recovery of the rats with spinal cord contusion injury was evaluated with Basso-Beattie-Bresnahan (BBB) locomotor scale and motor evoked potentials. Additionally, the differentiation of human neural progenitor cells was shown by immunocytochemistry.Results: Human neural progenitor cells developed into functional cells in the injured spinal cord and improved the recovery of injured spinal cord in both locomotor scores and electrophysiological parameters in rats.Conclusions: Human neural progenitor cells can treat injured spinal cord, which may provide a new cell source for research of clinical application.

  8. Subretinal transplantation of mouse retinal progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Caihui Jiang; Maonian Zhang; Henry Klassen; Michael Young

    2011-01-01

    The development of cell replacement techniques is promising as a potential treatment for photoreceptor loss. However, the limited integration ability of donor and recipient cells presents a challenge following transplantation. In the present study, retinal progenitor cells (RPCs) were harvested from the neural retinas of enhanced green fluorescent protein mice on postnatal day 1, and expanded in a neurobasal medium supplemented with fetal bovine serum without endothelial growth factor. Using a confocal microscope, immunohistochemistry demonstrated that expanded RPCs in vitro maintain retinal stem cell properties and can be differentiated into photoreceptor cells. Three weeks after transplantation, subretinal transplanted RPCs were found to have migrated and integrated into the outer nuclear layer of recipient retinas with laser injury, some of the integrated cells had differentiated into photoreceptors, and a subpopulation of these cells expressed photoreceptor specific synaptic protein, appearing to form synaptic connections with bipolar cells. These results suggest that subretinal transplantation of RPCs may provide a feasible therapeutic strategy for the loss of retinal photoreceptor cells.

  9. Murine Mueller cells are progenitor cells for neuronal cells and fibrous tissue cells

    International Nuclear Information System (INIS)

    Mammalian Mueller cells have been reported to possess retinal progenitor cell properties and generate new neurons after injury. This study investigates murine Mueller cells under in vitro conditions for their capability of dedifferentiation into retinal progenitor cells. Mueller cells were isolated from mouse retina, and proliferating cells were expanded in serum-containing medium. For dedifferentiation, the cultured cells were transferred to serum-replacement medium (SRM) at different points in time after their isolation. Interestingly, early cell passages produced fibrous tissue in which extracellular matrix proteins and connective tissue markers were differentially expressed. In contrast, aged Mueller cell cultures formed neurospheres in SRM that are characteristic for neuronal progenitor cells. These neurospheres differentiated into neuron-like cells after cultivation on laminin/ornithine cell culture substrate. Here, we report for the first time that murine Mueller cells can be progenitors for both, fibrous tissue cells and neuronal cells, depending on the age of the cell culture

  10. Ultrastructural Evidence of Exosome Secretion by Progenitor Cells in Adult Mouse Myocardium and Adult Human Cardiospheres

    Directory of Open Access Journals (Sweden)

    Lucio Barile

    2012-01-01

    Full Text Available The demonstration of beneficial effects of cell therapy despite the persistence of only few transplanted cells in vivo suggests secreted factors may be the active component of this treatment. This so-called paracrine hypothesis is supported by observations that culture media conditioned by progenitor cells contain growth factors that mediate proangiogenic and cytoprotective effects. Cardiac progenitor cells in semi-suspension culture form spherical clusters (cardiospheres that deliver paracrine signals to neighboring cells. A key component of paracrine secretion is exosomes, membrane vesicles that are stored intracellularly in endosomal compartments and are secreted when these structures fuse with the cell plasma membrane. Exosomes have been identified as the active component of proangiogenic effects of bone marrow CD34+ stem cells in mice and the regenerative effects of embryonic mesenchymal stem cells in infarcted hearts in pigs and mice. Here, we provide electron microscopic evidence of exosome secretion by progenitor cells in mouse myocardium and human cardiospheres. Exosomes are emerging as an attractive vector of paracrine signals delivered by progenitor cells. They can be stored as an “off-the-shelf” product. As such, exosomes have the potential for circumventing many of the limitations of viable cells for therapeutic applications in regenerative medicine.

  11. Progenitor cells in arteriosclerosis: good or bad guys?

    Science.gov (United States)

    Campagnolo, Paola; Wong, Mei Mei; Xu, Qingbo

    2011-08-15

    Accumulating evidence indicates that the mobilization and recruitment of circulating or tissue-resident progenitor cells that give rise to endothelial cells (ECs) and smooth muscle cells (SMCs) can participate in atherosclerosis, neointima hyperplasia after arterial injury, and transplant arteriosclerosis. It is believed that endothelial progenitor cells do exist and can repair and rejuvenate the arteries under physiologic conditions; however, they may also contribute to lesion formation by influencing plaque stability in advanced atherosclerotic plaque under specific pathologic conditions. At the same time, smooth muscle progenitors, despite their capacity to expedite lesion formation during restenosis, may serve to promote atherosclerotic plaque stabilization by producing extracellular matrix proteins. This profound evidence provides support to the hypothesis that both endothelial and smooth muscle progenitors may act as a double-edged sword in the pathogenesis of arteriosclerosis. Therefore, the understanding of the regulatory networks that control endothelial and smooth muscle progenitor differentiation is undoubtedly fundamental both for basic research and for improving current therapeutic avenues for atherosclerosis. We update the progress in progenitor cell study related to the development of arteriosclerosis, focusing specifically on the role of progenitor cells in lesion formation and discuss the controversial issues that regard the origins, frequency, and impact of the progenitors in the disease.

  12. Senegenin promotes in vitro proliferation of human neural progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Fang Shi; Zhigang Liang; Zixuan Guo; Ran Li; Fen Yu; Zhanjun Zhang; Xuan Wang; Xiaomin Wang

    2011-01-01

    Senegenin, an effective component of Polygala tenuifolia root extract, promotes proliferation and differentiation of neural progenitor cells in the hippocampus.However, the effects of senegenin on mesencephalon-derived neural progenitor cells remain poorly understood.Cells from a ventral mesencephalon neural progenitor cell line (ReNcell VM) were utilized as models for pharmaceutical screening.The effects of various senegenin concentrations on cell proliferation were analyzed,demonstrating that high senegenin concentrations (5, 10, 50, and 100 pmo/L), particularly 50 pmol/L, significantly promoted proliferation of ReNcell VM cells.In the mitogen-activated protein kinase signal transduction pathway, senegenin significantly increased phosphorylation levels of extracellular signal-regulated kinases.Moreover, cell proliferation was suppressed by extracellular signal-regulated kinase inhibitors.Results suggested that senegenin contributed to in vitro proliferation of human neural progenitor cells by upregulating phosphorylation of extracellular signal-regulated kinase.

  13. Endometrial stem/progenitor cells: the first 10 years

    OpenAIRE

    Gargett, Caroline E; Schwab, Kjiana E.; Deane, James A

    2015-01-01

    BACKGROUND The existence of stem/progenitor cells in the endometrium was postulated many years ago, but the first functional evidence was only published in 2004. The identification of rare epithelial and stromal populations of clonogenic cells in human endometrium has opened an active area of research on endometrial stem/progenitor cells in the subsequent 10 years. METHODS The published literature was searched using the PubMed database with the search terms ‘endometrial stem cells and menstru...

  14. Lung Stem and Progenitor Cells in Tissue Homeostasis and Disease

    OpenAIRE

    Leeman, Kristen T.; Fillmore, Christine M.; Kim, Carla F.

    2014-01-01

    The mammalian lung is a complex organ containing numerous putative stem/progenitor cell populations that contribute to region-specific tissue homeostasis and repair. In this review, we discuss recent advances in identifying and studying these cell populations in the context of lung homeostasis and disease. Genetically engineered mice now allow for lineage tracing of several lung stem and progenitor cell populations in vivo during different types of lung injury repair. Using specific sets of c...

  15. Endothelial progenitor cells with Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    KONG Xiao-dong; ZHANG Yun; LIU Li; SUN Ning; ZHANG Ming-yi; ZHANG Jian-ning

    2011-01-01

    Background Endothelial dysfunction is thought to be critical events in the pathogenesis of Alzheimer's disease (AD).Endothelial progenitor cells (EPCs) have provided insight into maintaining and repairing endothelial function. To study the relation between EPCs and AD, we explored the number of circulating EPCs in patients with AD.Methods A total of 104 patients were recruited from both the outpatients and inpatients of the geriatric neurology department at General Hospital, rianjin Medical University. Consecutive patients with newly diagnosed AD (n=30),patients with vascular dementia (VaD, n=34), and healthy elderly control subjects with normal cognition (n=40) were enrolled after matching for age, gender, body mass index, medical history, current medication and Mini Mental State Examination. Middle cerebral artery flow velocity was examined with transcranial Doppler. Endothelial function was evaluated according to the level of EPCs, and peripheral blood EPCs was counted by flow cytometry.Results There were no significant statistical differences of clinical data in AD, VaD and control groups (P >0.05). The patients with AD showed decreased CD34-positive (CD34+) or CD133-positive (CD133+) levels compared to the control subjects, but there were no significant statistical differences in patients with AD. The patients with AD had significantly lower CD34+CD133+ EPCs(CD34 and CD133 double positive endothelial progenitor cells) than the control subjects (P <0.05). In the patients with AD, a lower CD34+CD133+ EPCs count was independently associated with a lower Mini-Mental State Examination score (r=0.514, P=0.004). Patients with VaD also showed a significant decrease in CD34+CD133+ EPCs levels, but this was not evidently associated with the Mini-Mental State Examination score. The changes of middle cerebral artery flow velocity were similar between AD and VaD. Middle cerebral artery flow velocity was decreased in the AD and VaD groups and significantly lower than

  16. Mobilization of bone marrow-derived progenitor cells in acute coronary syndromes.

    Directory of Open Access Journals (Sweden)

    Wojciech Wojakowski

    2005-12-01

    Full Text Available Two hypotheses explain the role of adult progenitor cells in myocardial regeneration. Stem cell plasticity which involves mobilization of stem cells from the bone marrow and other niches, homing to the area of tissue injury and transdifferentiation into functional cardiomyocytes. Alternative hypothesis is based on the observations that bone marrow harbors a heterogenous population of cells positive for CXCR4 - receptor for chemokine SDF-1. This population of non-hematopoietic cells expresses genes specific for early muscle, myocardial and endothelial progenitor cells (EPC. These tissue-committed stem cells circulate in the peripheral blood at low numbers and can be mobilized by hematopoietic cytokines in the setting of myocardial ischemia. Endothelial precursors capable of transforming into mature, functional endothelial cells are present in the pool of peripheral mononuclear cells in circulation. Their number significantly increases in acute myocardial infarction (AMI with subsequent decrease after 1 month, as well as in patients with unstable angina in comparison to stable coronary heart disease (CHD. There are numerous physiological and pathological stimuli which influence the number of circulating EPC such as regular physical activity, medications (statins, PPAR-gamma agonists, estrogens, as well as numerous inflammatory and hematopoietic cytokines. Mobilization of stem cells in AMI involves not only the endothelial progenitors but also hematopoietic, non-hematopoietic stem cells and most probably the mesenchymal cells. In healthy subjects and patients with stable CHD, small number of circulating CD34+, CXCR4+, CD117+, c-met+ and CD34/CD117+ stem cells can be detected. In patients with AMI, a significant increase in CD34+/CXCR4+, CD117+, c-met+ and CD34/CD117+ stem cell number the in peripheral blood was demonstrated with parallel increase in mRNA expression for early cardiac, muscle and endothelial markers in peripheral blood mononuclear

  17. Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density and improve heart function in a rat cellular cardiomyoplasty model

    Institute of Scientific and Technical Information of China (English)

    SDAVANI; NMERSIN; BROYER; BKANTELIP; JPKANTELIP

    2004-01-01

    AIM: Cellular cardiomyoplasty is promising for improving postinfarcted cardiac function. Over the past decade, a variety of cell types have been proposed including mononuclear bone marrow cells. The latter contains different lineages including mesenchymal stem cells (MSCs). The aim of this study was to analyse the differentiation pathways of engrafted syngenic mesenchymal progenitor cells (MPCs) obtained in culture from bone marrow

  18. Human pancreatic islet progenitor cells demonstrate phenotypic plasticity in vitro

    Indian Academy of Sciences (India)

    Maithili P Dalvi; Malati R Umrani; Mugdha V Joglekar; Anandwardhan A Hardikar

    2009-10-01

    Phenotypic plasticity is a phenomenon that describes the occurrence of 2 or more distinct phenotypes under diverse conditions. This article discusses the work carried out over the past few years in understanding the potential of human pancreatic islet-derived progenitors for cell replacement therapy in diabetes. The phenotypic plasticity exhibited by pancreatic progenitors during reversible epithelial-to-mesenchymal transition (EMT) and possible role of microRNAs in regulation of this process is also presented herein.

  19. Osteocytes serve as a progenitor cell of osteosarcoma

    OpenAIRE

    Sottnik, Joseph L.; Campbell, Brittany; Mehra, Rohit; Behbahani-Nejad, Omid; Hall, Christopher L.; Keller, Evan T.

    2014-01-01

    Osteosarcoma (OSA) is the most common primary bone tumor in humans. However, the cell of origin of OSA is not clearly defined although there is evidence that osteoblasts may serve as OSA progenitors. The role of osteocytes, terminally differentiated osteoblasts, as OSA progenitors has yet to be described. Analysis of patient cDNA from publicly available microarray data revealed that patients with OSA have increased expression of dentin matrix phosphoprotein 1 (DMP1), a marker of osteocytes. A...

  20. CXCR4 expression in prostate cancer progenitor cells.

    Directory of Open Access Journals (Sweden)

    Anna Dubrovska

    Full Text Available Tumor progenitor cells represent a population of drug-resistant cells that can survive conventional chemotherapy and lead to tumor relapse. However, little is known of the role of tumor progenitors in prostate cancer metastasis. The studies reported herein show that the CXCR4/CXCL12 axis, a key regulator of tumor dissemination, plays a role in the maintenance of prostate cancer stem-like cells. The CXCL4/CXCR12 pathway is activated in the CD44(+/CD133(+ prostate progenitor population and affects differentiation potential, cell adhesion, clonal growth and tumorigenicity. Furthermore, prostate tumor xenograft studies in mice showed that a combination of the CXCR4 receptor antagonist AMD3100, which targets prostate cancer stem-like cells, and the conventional chemotherapeutic drug Taxotere, which targets the bulk tumor, is significantly more effective in eradicating tumors as compared to monotherapy.

  1. Progenitor cells in the kidney: biology and therapeutic perspectives

    NARCIS (Netherlands)

    Rookmaaker, M.B.; Verhaar, M.C.; Zonneveld, A.J. van; Rabelink, T.J.

    2004-01-01

    Progenitor cells in the kidney: Biology and therapeutic perspectives. The stem cell may be viewed as an engineer who can read the blue print and become the building. The role of this fascinating cell in physiology and pathophysiology has recently attracted a great deal of interest. The archetype of

  2. Omega 3 fatty acids reduce myeloid progenitor cell frequency in the bone marrow of mice and promote progenitor cell differentiation

    Directory of Open Access Journals (Sweden)

    Sollars Vincent E

    2009-03-01

    Full Text Available Abstract Background Omega 3 fatty acids have been found to inhibit proliferation, induce apoptosis, and promote differentiation in various cell types. The processes of cell survival, expansion, and differentiation are of key importance in the regulation of hematopoiesis. We investigated the role of omega 3 fatty acids in controlling the frequency of various myeloid progenitor cells in the bone marrow of mice. Increased progenitor cell frequency and blocked differentiation are characteristics of hematopoietic disorders of the myeloid lineage, such as myeloproliferative diseases and myeloid leukemias. Results We found that increasing the proportion of omega 3 fatty acids relative to the proportion of omega 6 fatty acids in the diet caused increased differentiation and reduced the frequency of myeloid progenitor cells in the bone marrow of mice. Furthermore, this had no adverse effect on peripheral white blood cell counts. Conclusion Our results indicate that omega 3 fatty acids impact hematopoietic differentiation by reducing myeloid progenitor cell frequency in the bone marrow and promoting progenitor cell differentiation. Further exploration of this discovery could lead to the use of omega 3 fatty acids as a therapeutic option for patients that have various disorders of hematopoiesis.

  3. Indium-111 oxine labelling affects the cellular integrity of haematopoietic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Bernd; Reinartz, Patrick; Schaefer, Wolfgang M.; Buell, Ulrich [University Hospital, RWTH Aachen University, Department of Nuclear Medicine, Aachen (Germany); Weber, Christian; Schober, Andreas; Zeiffer, Ute; Liehn, Elisa A.; Hundelshausen, Philipp von [University Hospital, RWTH Aachen University, Department of Molecular Cardiovascular Research, Aachen (Germany)

    2007-05-15

    Cell-based therapy by transplantation of progenitor cells has emerged as a promising development for organ repair, but non-invasive imaging approaches are required to monitor the fate of transplanted cells. Radioactive labelling with {sup 111}In-oxine has been used in preclinical trials. This study aimed to validate {sup 111}In-oxine labelling and subsequent in vivo and ex vivo detection of haematopoietic progenitor cells. Murine haematopoietic progenitor cells (10{sup 6}, FDCPmix) were labelled with 0.1 MBq (low dose) or 1.0 MBq (high dose) {sup 111}In-oxine and compared with unlabelled controls. Cellular retention of {sup 111}In, viability and proliferation were determined up to 48 h after labelling. Labelled cells were injected into the cavity of the left or right cardiac ventricle in mice. Scintigraphic images were acquired 24 h later. Organ samples were harvested to determine the tissue-specific activity. Labelling efficiency was 75 {+-} 14%. Cellular retention of incorporated {sup 111}In after 48 h was 18 {+-} 4%. Percentage viability after 48 h was 90 {+-} 1% (control), 58 {+-} 7% (low dose) and 48 {+-} 8% (high dose) (p<0.0001). Numbers of viable cells after 48 h (normalised to 0 h) were 249 {+-} 51% (control), 42 {+-} 8% (low dose) and 32 {+-} 5% (high dose) (p<0.0001). Cells accumulated in the spleen (86.6 {+-} 27.0% ID/g), bone marrow (59.1 {+-} 16.1% ID/g) and liver (30.3 {+-} 9.5% ID/g) after left ventricular injection, whereas most of the cells were detected in the lungs (42.4 {+-} 21.8% ID/g) after right ventricular injection. Radiolabelling of haematopoietic progenitor cells with {sup 111}In-oxine is feasible, with high labelling efficiency but restricted stability. The integrity of labelled cells is significantly affected, with substantially reduced viability and proliferation and limited migration after systemic transfusion. (orig.)

  4. Obstructive sleep apnea and endothelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Wang Q

    2013-10-01

    Full Text Available Qing Wang,1,* Qi Wu,2,* Jing Feng,3,4 Xin Sun5 1The Second Respiratory Department of the First People's Hospital of Kunming, Yunnan, People's Republic of China; 2Tianjin Haihe Hospital, Tianjin, People's Republic of China; 3Respiratory Department of Tianjin Medical University General Hospital, Tianjin, People's Republic of China; 4Division of Pulmonary and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA; 5Respiratory Department of Tianjin Haihe Hospital, Tianjin, People's Republic of China *These authors contributed equally to this work Background: Obstructive sleep apnea (OSA occurs in 4% of middle-aged men and 2% of middle-aged women in the general population, and the prevalence is even higher in specific patient groups. OSA is an independent risk factor for a variety of cardiovascular diseases. Endothelial injury could be the pivotal determinant in the development of cardiovascular pathology in OSA. Endothelial damage ultimately represents a dynamic balance between the magnitude of injury and the capacity for repair. Bone marrow–derived endothelial progenitor cells (EPCs within adult peripheral blood present a possible means of vascular maintenance that could home to sites of injury and restore endothelial integrity and normal function. Methods: We summarized pathogenetic mechanisms of OSA and searched for available studies on numbers and functions of EPCs in patients with OSA to explore the potential links between the numbers and functions of EPCs and OSA. In particular, we tried to elucidate the molecular mechanisms of the effects of OSA on EPCs. Conclusion: Intermittent hypoxia cycles and sleep fragmentation are major pathophysiologic characters of OSA. Intermittent hypoxia acts as a trigger of oxidative stress, systemic inflammation, and sympathetic activation. Sleep fragmentation is associated with a burst of sympathetic activation and systemic inflammation. In most studies, a reduction in circulating EPCs has

  5. Impaired DNA replication within progenitor cell pools promotes leukemogenesis.

    Directory of Open Access Journals (Sweden)

    Ganna Bilousova

    2005-12-01

    Full Text Available Impaired cell cycle progression can be paradoxically associated with increased rates of malignancies. Using retroviral transduction of bone marrow progenitors followed by transplantation into mice, we demonstrate that inhibition of hematopoietic progenitor cell proliferation impairs competition, promoting the expansion of progenitors that acquire oncogenic mutations which restore cell cycle progression. Conditions that impair DNA replication dramatically enhance the proliferative advantage provided by the expression of Bcr-Abl or mutant p53, which provide no apparent competitive advantage under conditions of healthy replication. Furthermore, for the Bcr-Abl oncogene the competitive advantage in contexts of impaired DNA replication dramatically increases leukemogenesis. Impaired replication within hematopoietic progenitor cell pools can select for oncogenic events and thereby promote leukemia, demonstrating the importance of replicative competence in the prevention of tumorigenesis. The demonstration that replication-impaired, poorly competitive progenitor cell pools can promote tumorigenesis provides a new rationale for links between tumorigenesis and common human conditions of impaired DNA replication such as dietary folate deficiency, chemotherapeutics targeting dNTP synthesis, and polymorphisms in genes important for DNA metabolism.

  6. Natural Helper cells derive from lymphoid progenitors1

    OpenAIRE

    Yang, Qi; Saenz, Steven A.; Zlotoff, Daniel A.; Artis, David; Bhandoola, Avinash

    2011-01-01

    Natural Helper (NH) cells are recently discovered innate immune cells that confer protective type 2 immunity during helminth infection and mediate influenza induced airway hypersensitivity. Little is known about the ontogeny of NH cells. We now report NH cells derive from bone marrow lymphoid progenitors. Using RAG-1Cre/ROSA26YFP mice, we show that the majority of NH cells are marked with a history of RAG-1 expression, implying lymphoid developmental origin. The development of NH cells depend...

  7. Erythropoietin guides multipotent hematopoietic progenitor cells toward an erythroid fate

    Science.gov (United States)

    Grover, Amit; Mancini, Elena; Moore, Susan; Mead, Adam J.; Atkinson, Deborah; Rasmussen, Kasper D.; O’Carroll, Donal; Jacobsen, Sten Eirik W.

    2014-01-01

    The erythroid stress cytokine erythropoietin (Epo) supports the development of committed erythroid progenitors, but its ability to act on upstream, multipotent cells remains to be established. We observe that high systemic levels of Epo reprogram the transcriptomes of multi- and bipotent hematopoietic stem/progenitor cells in vivo. This induces erythroid lineage bias at all lineage bifurcations known to exist between hematopoietic stem cells (HSCs) and committed erythroid progenitors, leading to increased erythroid and decreased myeloid HSC output. Epo, therefore, has a lineage instructive role in vivo, through suppression of non-erythroid fate options, demonstrating the ability of a cytokine to systematically bias successive lineage choices in favor of the generation of a specific cell type. PMID:24493804

  8. Isolation of alveolar epithelial type II progenitor cells from adult human lungs

    OpenAIRE

    Fujino, Naoya; Kubo, Hiroshi; Suzuki, Takaya; Ota, Chiharu; Hegab, Ahmed E.; He, Mei; Suzuki, Satoshi; Suzuki, Takashi; Yamada, Mitsuhiro; Kondo, Takashi; Kato, Hidemasa; Yamaya, Mutsuo

    2010-01-01

    Resident stem/progenitor cells in the lung are important for tissue homeostasis and repair. However, a progenitor population for alveolar type II (ATII) cells in adult human lungs has not been identified. The aim of this study is to isolate progenitor cells from adult human lungs with the ability to differentiate into ATII cells. We isolated colony-forming cells that had the capability for self-renewal and the potential to generate ATII cells in vitro. These undifferentiated progenitor cells ...

  9. A role for matrix stiffness in the regulation of cardiac side population cell function.

    Science.gov (United States)

    Qiu, Yiling; Bayomy, Ahmad F; Gomez, Marcus V; Bauer, Michael; Du, Ping; Yang, Yanfei; Zhang, Xin; Liao, Ronglih

    2015-05-01

    The mechanical properties of the local microenvironment may have important influence on the fate and function of adult tissue progenitor cells, altering the regenerative process. This is particularly critical following a myocardial infarction, in which the normal, compliant myocardial tissue is replaced with fibrotic, stiff scar tissue. In this study, we examined the effects of matrix stiffness on adult cardiac side population (CSP) progenitor cell behavior. Ovine and murine CSP cells were isolated and cultured on polydimethylsiloxane substrates, replicating the elastic moduli of normal and fibrotic myocardium. Proliferation capacity and cell cycling were increased in CSP cells cultured on the stiff substrate with an associated reduction in cardiomyogeneic differentiation and accelerated cell ageing. In addition, culture on stiff substrate stimulated upregulation of extracellular matrix and adhesion proteins gene expression in CSP cells. Collectively, we demonstrate that microenvironment properties, including matrix stiffness, play a critical role in regulating progenitor cell functions of endogenous resident CSP cells. Understanding the effects of the tissue microenvironment on resident cardiac progenitor cells is a critical step toward achieving functional cardiac regeneration.

  10. Osteocytes serve as a progenitor cell of osteosarcoma.

    Science.gov (United States)

    Sottnik, Joseph L; Campbell, Brittany; Mehra, Rohit; Behbahani-Nejad, Omid; Hall, Christopher L; Keller, Evan T

    2014-08-01

    Osteosarcoma (OSA) is the most common primary bone tumor in humans. However, the cell of origin of OSA is not clearly defined although there is evidence that osteoblasts may serve as OSA progenitors. The role of osteocytes, terminally differentiated osteoblasts, as OSA progenitors has yet to be described. Analysis of patient cDNA from publicly available microarray data revealed that patients with OSA have increased expression of dentin matrix phosphoprotein 1 (DMP1), a marker of osteocytes. Analysis of multiple murine, human, and canine OSA cell lines revealed DMP1 expression. To test the tumorigenic potential of osteocytes, MLO-Y4, a SV-40 immortalized murine osteocyte cell line, was injected into subcutaneous and orthotopic (intratibial) sites of mice. Tumor growth occurred in both locations. Orthotopic MLO-Y4 tumors produced mixed osteoblastic/osteolytic radiographic lesions; a hallmark of OSA. Together, these data demonstrate for the first time that osteocytes can serve as OSA progenitors. PMID:24700678

  11. Immortalized neural progenitor cells for CNS gene transfer and repair.

    Science.gov (United States)

    Martínez-Serrano, A; Björklund, A

    1997-11-01

    Immortalized multipotent neural stem and progenitor cells have emerged as a highly convenient source of tissue for genetic manipulation and ex vivo gene transfer to the CNS. Recent studies show that these cells, which can be maintained and genetically transduced as cell lines in culture, can survive, integrate and differentiate into both neurons and glia after transplantation to the intact or damaged brain. Progenitors engineered to secrete trophic factors, or to produce neurotransmitter-related or metabolic enzymes can be made to repopulate diseased or injured brain areas, thus providing a new potential therapeutic tool for the blockade of neurodegenerative processes and reversal of behavioural deficits in animal models of neurodegenerative diseases. With further technical improvements, the use of immortalized neural progenitors may bring us closer to the challenging goal of targeted and effective CNS repair.

  12. Low Connexin Channel-Dependent Intercellular Communication in Human Adult Hematopoietic Progenitor/Stem Cells: Probing Mechanisms of Autologous Stem Cell Therapy

    OpenAIRE

    Yang, Jian; Darley, Richard L.; Hallett, Maurice; Evans, W. Howard

    2010-01-01

    Human bone marrow is a clinical source of autologous progenitor stem cells showing promise for cardiac repair following ischemic insult. Functional improvements following delivery of adult bone marrow CD34+ cells into heart tissue may require metabolic/electrical communication between participating cells. Since connexin43 (Cx43) channels are implicated in cardiogenesis and provide intercellular connectivity in the heart, the authors analyzed the expression of 20 connexins (Cx) in CD34+ cells ...

  13. Neonatal epicardial-derived progenitors aquire myogenic traits in skeletal muscle, but not cardiac muscle

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Jensen, Charlotte H; Skovrind, Ida;

    2016-01-01

    BACKGROUND/OBJECTIVES: Epicardium-derived progenitor cells (EPDCs) differentiate into all heart cell types in the embryonic heart, yet their differentiation into cardiomyocytes in the adult heart is limited and poorly described. This may be due to EPDCs lacking myogenic potential or the inert adu...... that EPDCs may be more myogenic than previously anticipated. But, the heart may lack factors for induction of myogenesis of EPDCs, a scenario that should be taken into consideration when aiming for repair of damaged myocardium by stem cell transplantation.......BACKGROUND/OBJECTIVES: Epicardium-derived progenitor cells (EPDCs) differentiate into all heart cell types in the embryonic heart, yet their differentiation into cardiomyocytes in the adult heart is limited and poorly described. This may be due to EPDCs lacking myogenic potential or the inert adult...... heart missing regenerative signals essential for directed differentiation of EPDCs. Herein, we aimed to evaluate the myogenic potential of neonatal EPDCs in adult and neonatal mouse myocardium, as well as in skeletal muscle. The two latter tissues have an intrinsic capability to develop and regenerate...

  14. Stem and progenitor cells in biostructure of blood vessel walls

    Directory of Open Access Journals (Sweden)

    Krzysztof Korta

    2013-09-01

    Full Text Available Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, “anchored” in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC. Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as “subendothelial or vasculogenic zones”. Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  15. Endogenous cardiac stem cells for the treatment of heart failure

    Directory of Open Access Journals (Sweden)

    Fuentes T

    2013-03-01

    Full Text Available Tania Fuentes, Mary Kearns-Jonker Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA Abstract: Stem cell-based therapies hold promise for regenerating the myocardium after injury. Recent data obtained from phase I clinical trials using endogenous cardiovascular progenitors isolated directly from the heart suggest that cell-based treatment for heart patients using stem cells that reside in the heart provides significant functional benefit and an improvement in patient outcome. Methods to achieve improved engraftment and regeneration may extend this therapeutic benefit. Endogenous cardiovascular progenitors have been tested extensively in small animals to identify cells that improve cardiac function after myocardial infarction. However, the relative lack of large animal models impedes translation into clinical practice. This review will exclusively focus on the latest research pertaining to humans and large animals, including both endogenous and induced sources of cardiovascular progenitors. Keywords: Isl1, iPSC, large animal, c-kit, cardiosphere

  16. Disruption of canonical TGFβ-signaling in murine coronary progenitor cells by low level arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Patrick; Huang, Tianfang; Broka, Derrick; Parker, Patti [Department of Pharmacology and Toxicology College of Pharmacy, Southwest Environmental Health Sciences Center, Steele Children' s Research Center and Bio5 Institute, University of Arizona, Tucson, AZ 85721 (United States); Barnett, Joey V. [Department of Pharmacology, Vanderbilt Medical University, Nashville, TN (United States); Camenisch, Todd D., E-mail: camenisch@pharmacy.arizona.edu [Department of Pharmacology and Toxicology College of Pharmacy, Southwest Environmental Health Sciences Center, Steele Children' s Research Center and Bio5 Institute, University of Arizona, Tucson, AZ 85721 (United States)

    2013-10-01

    Exposure to arsenic results in several types of cancers as well as heart disease. A major contributor to ischemic heart pathologies is coronary artery disease, however the influences by environmental arsenic in this disease process are not known. Similarly, the impact of toxicants on blood vessel formation and function during development has not been studied. During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types including smooth muscle cells which contribute to the coronary vessels. The TGFβ family of ligands and receptors is essential for developmental cardiac epithelial to mesenchymal transition (EMT) and differentiation into coronary smooth muscle cells. In this in vitro study, 18 hour exposure to 1.34 μM arsenite disrupted developmental EMT programming in murine epicardial cells causing a deficit in cardiac mesenchyme. The expression of EMT genes including TGFβ2, TGFβ receptor-3, Snail, and Has-2 are decreased in a dose-dependent manner following exposure to arsenite. TGFβ2 cell signaling is abrogated as detected by decreases in phosphorylated Smad2/3 when cells are exposed to 1.34 μM arsenite. There is also loss of nuclear accumulation pSmad due to arsenite exposure. These observations coincide with a decrease in vimentin positive mesenchymal cells invading three-dimensional collagen gels. However, arsenite does not block TGFβ2 mediated smooth muscle cell differentiation by epicardial cells. Overall these results show that arsenic exposure blocks developmental EMT gene programming in murine coronary progenitor cells by disrupting TGFβ2 signals and Smad activation, and that smooth muscle cell differentiation is refractory to this arsenic toxicity. - Highlights: • Arsenic blocks TGFβ2 induced expression of EMT genes. • Arsenic blocks TGFβ2 triggered Smad2/3 phosphorylation and nuclear translocation. • Arsenic blocks epicardial cell differentiation into cardiac mesenchyme.

  17. Glial progenitor cell-based treatment of the childhood leukodystrophies

    DEFF Research Database (Denmark)

    Osorio, M Joana; Goldman, Steven A

    2016-01-01

    stem cell-derived human neural or glial progenitor cells may comprise a promising strategy for both structural remyelination and metabolic rescue. A broad variety of pediatric white matter disorders, including the primary hypomyelinating disorders, the lysosomal storage disorders, and the broader group...... genetic editing of pluripotent stem cells. Yet these challenges notwithstanding, the promise of glial progenitor cell-based treatment of the childhood myelin disorders offers hope to the many victims of this otherwise largely untreatable class of disease....... and astrocytes are the major affected cell populations, and are either structurally impaired or metabolically compromised through cell-intrinsic pathology, or are the victims of mis-accumulated toxic byproducts of metabolic derangement. In either case, glial cell replacement using implanted tissue or pluripotent...

  18. Cellular plasticity : the good, the bad, and the ugly? Microenvironmental influences on progenitor cell therapy

    NARCIS (Netherlands)

    Moonen, Jan-Renier A. J.; Harmsen, Martin C.; Krenning, Guido

    2012-01-01

    Progenitor cell based therapies have emerged for the treatment of ischemic cardiovascular diseases where there is insufficient endogenous repair. However, clinical success has been limited, which challenges the original premise that transplanted progenitor cells would orchestrate repair. In this rev

  19. Amlodipine Ameliorates Ischemia-Induced Neovascularization in Diabetic Rats through Endothelial Progenitor Cell Mobilization.

    Science.gov (United States)

    Sun, Jiayin; Xie, Jun; Kang, Lina; Ferro, Albert; Dong, Li; Xu, Biao

    2016-01-01

    Objectives. We investigated whether amlodipine could improve angiogenic responses in a diabetic rat model of acute myocardial infarction (AMI) through improving bone marrow endothelial progenitor cell (EPC) mobilization, in the same way as angiotensin converting enzyme inhibitors. Methods. After induction of AMI by coronary artery ligation, diabetic rats were randomly assigned to receive perindopril (2 mgkg(-1) day(-1)), amlodipine (2.5 mgkg(-1) day(-1)), or vehicle by gavage (n = 20 per group). Circulating EPC counts before ligation and on days 1, 3, 5, 7, 14, and 28 after AMI were measured in each group. Microvessel density, cardiac function, and cardiac remodeling were assessed 4 weeks after treatment. The signaling pathway related to EPC mobilization was also measured. Results. Circulating EPC count in amlodipine- and perindopril-treated rats peaked at day 7, to an obvious higher level than the control group peak which was reached earlier (at day 5). Rats treated with amlodipine showed improved postischemia neovascularization and cardiac function, together with reduced cardiac remodeling, decreased interstitial fibrosis, and cardiomyocyte apoptosis. Amlodipine treatment also increased cardiac SDF-1/CXCR4 expression and gave rise to activation of VEGF/Akt/eNOS signaling in bone marrow. Conclusions. Amlodipine promotes neovascularization by improving EPC mobilization from bone marrow in diabetic rats after AMI, and activation of VEGF/Akt/eNOS signaling may in part contribute to this. PMID:27243031

  20. Amlodipine Ameliorates Ischemia-Induced Neovascularization in Diabetic Rats through Endothelial Progenitor Cell Mobilization

    Directory of Open Access Journals (Sweden)

    Jiayin Sun

    2016-01-01

    Full Text Available Objectives. We investigated whether amlodipine could improve angiogenic responses in a diabetic rat model of acute myocardial infarction (AMI through improving bone marrow endothelial progenitor cell (EPC mobilization, in the same way as angiotensin converting enzyme inhibitors. Methods. After induction of AMI by coronary artery ligation, diabetic rats were randomly assigned to receive perindopril (2 mgkg−1 day−1, amlodipine (2.5 mgkg−1 day−1, or vehicle by gavage (n=20 per group. Circulating EPC counts before ligation and on days 1, 3, 5, 7, 14, and 28 after AMI were measured in each group. Microvessel density, cardiac function, and cardiac remodeling were assessed 4 weeks after treatment. The signaling pathway related to EPC mobilization was also measured. Results. Circulating EPC count in amlodipine- and perindopril-treated rats peaked at day 7, to an obvious higher level than the control group peak which was reached earlier (at day 5. Rats treated with amlodipine showed improved postischemia neovascularization and cardiac function, together with reduced cardiac remodeling, decreased interstitial fibrosis, and cardiomyocyte apoptosis. Amlodipine treatment also increased cardiac SDF-1/CXCR4 expression and gave rise to activation of VEGF/Akt/eNOS signaling in bone marrow. Conclusions. Amlodipine promotes neovascularization by improving EPC mobilization from bone marrow in diabetic rats after AMI, and activation of VEGF/Akt/eNOS signaling may in part contribute to this.

  1. Stem and progenitor cells: advancing bone tissue engineering.

    Science.gov (United States)

    Tevlin, R; Walmsley, G G; Marecic, O; Hu, Michael S; Wan, D C; Longaker, M T

    2016-04-01

    Unlike many other postnatal tissues, bone can regenerate and repair itself; nevertheless, this capacity can be overcome. Traditionally, surgical reconstructive strategies have implemented autologous, allogeneic, and prosthetic materials. Autologous bone--the best option--is limited in supply and also mandates an additional surgical procedure. In regenerative tissue engineering, there are myriad issues to consider in the creation of a functional, implantable replacement tissue. Importantly, there must exist an easily accessible, abundant cell source with the capacity to express the phenotype of the desired tissue, and a biocompatible scaffold to deliver the cells to the damaged region. A literature review was performed using PubMed; peer-reviewed publications were screened for relevance in order to identify key advances in stem and progenitor cell contribution to the field of bone tissue engineering. In this review, we briefly introduce various adult stem cells implemented in bone tissue engineering such as mesenchymal stem cells (including bone marrow- and adipose-derived stem cells), endothelial progenitor cells, and induced pluripotent stem cells. We then discuss numerous advances associated with their application and subsequently focus on technological advances in the field, before addressing key regenerative strategies currently used in clinical practice. Stem and progenitor cell implementation in bone tissue engineering strategies have the ability to make a major impact on regenerative medicine and reduce patient morbidity. As the field of regenerative medicine endeavors to harness the body's own cells for treatment, scientific innovation has led to great advances in stem cell-based therapies in the past decade.

  2. A Progenitor Cell Expressing Transcription Factor RORγt Generates All Human Innate Lymphoid Cell Subsets.

    Science.gov (United States)

    Scoville, Steven D; Mundy-Bosse, Bethany L; Zhang, Michael H; Chen, Li; Zhang, Xiaoli; Keller, Karen A; Hughes, Tiffany; Chen, Luxi; Cheng, Stephanie; Bergin, Stephen M; Mao, Hsiaoyin C; McClory, Susan; Yu, Jianhua; Carson, William E; Caligiuri, Michael A; Freud, Aharon G

    2016-05-17

    The current model of murine innate lymphoid cell (ILC) development holds that mouse ILCs are derived downstream of the common lymphoid progenitor through lineage-restricted progenitors. However, corresponding lineage-restricted progenitors in humans have yet to be discovered. Here we identified a progenitor population in human secondary lymphoid tissues (SLTs) that expressed the transcription factor RORγt and was unique in its ability to generate all known ILC subsets, including natural killer (NK) cells, but not other leukocyte populations. In contrast to murine fate-mapping data, which indicate that only ILC3s express Rorγt, these human progenitor cells as well as human peripheral blood NK cells and all mature ILC populations expressed RORγt. Thus, all human ILCs can be generated through an RORγt(+) developmental pathway from a common progenitor in SLTs. These findings help establish the developmental signals and pathways involved in human ILC development.

  3. Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage.

    Science.gov (United States)

    Woolthuis, Carolien M; Park, Christopher Y

    2016-03-10

    The classical model of hematopoiesis has long held that hematopoietic stem cells (HSCs) sit at the apex of a developmental hierarchy in which HSCs undergo long-term self-renewal while giving rise to cells of all the blood lineages. In this model, self-renewing HSCs progressively lose the capacity for self-renewal as they transit into short-term self-renewing and multipotent progenitor states, with the first major lineage commitment occurring in multipotent progenitors, thus giving rise to progenitors that initiate the myeloid and lymphoid branches of hematopoiesis. Subsequently, within the myeloid lineage, bipotent megakaryocyte-erythrocyte and granulocyte-macrophage progenitors give rise to unipotent progenitors that ultimately give rise to all mature progeny. However, over the past several years, this developmental scheme has been challenged, with the origin of megakaryocyte precursors being one of the most debated subjects. Recent studies have suggested that megakaryocytes can be generated from multiple pathways and that some differentiation pathways do not require transit through a requisite multipotent or bipotent megakaryocyte-erythrocyte progenitor stage. Indeed, some investigators have argued that HSCs contain a subset of cells with biased megakaryocyte potential, with megakaryocytes directly arising from HSCs under steady-state and stress conditions. In this review, we discuss the evidence supporting these nonclassical megakaryocytic differentiation pathways and consider their relative strengths and weaknesses as well as the technical limitations and potential pitfalls in interpreting these studies. Ultimately, such pitfalls will need to be overcome to provide a comprehensive and definitive understanding of megakaryopoiesis. PMID:26787736

  4. Retinal progenitor cell xenografts to the pig retina

    DEFF Research Database (Denmark)

    Warfvinge, Karin; Kiilgaard, Jens Folke; Klassen, Henry;

    2006-01-01

    We evaluated the host response to murine retinal progenitor cells (RPCs) following transplantation to the subretinal space (SRS) of the pig. RPCs from GFP mice were transplanted subretinally in 18 nonimmunosuppressed normal or laser-treated pigs. Evaluation of the SRS was performed on hematoxylin-eosin...

  5. Neural progenitor cells regulate microglia functions and activity.

    Science.gov (United States)

    Mosher, Kira I; Andres, Robert H; Fukuhara, Takeshi; Bieri, Gregor; Hasegawa-Moriyama, Maiko; He, Yingbo; Guzman, Raphael; Wyss-Coray, Tony

    2012-11-01

    We found mouse neural progenitor cells (NPCs) to have a secretory protein profile distinct from other brain cells and to modulate microglial activation, proliferation and phagocytosis. NPC-derived vascular endothelial growth factor was necessary and sufficient to exert at least some of these effects in mice. Thus, neural precursor cells may not only be shaped by microglia, but also regulate microglia functions and activity.

  6. CD34+ cells represent highly functional endothelial progenitor cells in murine bone marrow.

    Directory of Open Access Journals (Sweden)

    Junjie Yang

    Full Text Available BACKGROUND: Endothelial progenitor cells (EPCs were shown to have angiogenic potential contributing to neovascularization. However, a clear definition of mouse EPCs by cell surface markers still remains elusive. We hypothesized that CD34 could be used for identification and isolation of functional EPCs from mouse bone marrow. METHODOLOGY/PRINCIPAL FINDINGS: CD34(+ cells, c-Kit(+/Sca-1(+/Lin(- (KSL cells, c-Kit(+/Lin(- (KL cells and Sca-1(+/Lin(- (SL cells were isolated from mouse bone marrow mononuclear cells (BMMNCs using fluorescent activated cell sorting. EPC colony forming capacity and differentiation capacity into endothelial lineage were examined in the cells. Although CD34(+ cells showed the lowest EPC colony forming activity, CD34(+ cells exhibited under endothelial culture conditions a more adherent phenotype compared with the others, demonstrating the highest mRNA expression levels of endothelial markers vWF, VE-cadherin, and Flk-1. Furthermore, a dramatic increase in immediate recruitment of cells to the myocardium following myocardial infarction and systemic cell injection was observed for CD34(+ cells comparing with others, which could be explained by the highest mRNA expression levels of key homing-related molecules Integrin β2 and CXCR4 in CD34(+ cells. Cell retention and incorporation into the vasculature of the ischemic myocardium was also markedly increased in the CD34(+ cell-injected group, giving a possible explanation for significant reduction in fibrosis area, significant increase in neovascularization and the best cardiac functional recovery in this group in comparison with the others. CONCLUSION: These findings suggest that mouse CD34(+ cells may represent a functional EPC population in bone marrow, which could benefit the investigation of therapeutic EPC biology.

  7. File list: Pol.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Neural_progenitor_cells mm9 RNA polymerase Neural Neural progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  8. File list: Oth.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Neural_progenitor_cells mm9 TFs and others Neural Neural progenito...r cells SRX109472,SRX315274,SRX802060,SRX109471 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  9. File list: His.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Neural_progenitor_cells mm9 Histone Neural Neural progenitor cells... SRX315278,SRX667383,SRX668241,SRX315276,SRX315277 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  10. File list: Oth.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  11. File list: Unc.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progen...itor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  12. File list: DNS.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  13. File list: DNS.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  14. File list: Unc.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progen...itor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  15. File list: Unc.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progen...itor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  16. File list: Unc.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progen...itor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  17. File list: Oth.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  18. File list: His.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127409,SRX127394,SRX127396,SRX127407,SRX127383,SRX127381 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  19. File list: His.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127394,SRX127409,SRX127396,SRX127407,SRX127381,SRX127383 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  20. File list: Pol.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  1. File list: DNS.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  2. File list: Oth.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  3. File list: Pol.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  4. File list: His.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127409,SRX127407,SRX127394,SRX127396,SRX127383,SRX127381 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  5. File list: Pol.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  6. File list: DNS.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  7. File list: Unc.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Neural_progenitor_cells mm9 Unclassified Neural Neural progenitor ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  8. File list: His.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Neural_progenitor_cells mm9 Histone Neural Neural progenitor cells... SRX315278,SRX667383,SRX668241,SRX315277,SRX315276 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  9. File list: Pol.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Neural_progenitor_cells mm9 RNA polymerase Neural Neural progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  10. File list: His.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Neural_progenitor_cells mm9 Histone Neural Neural progenitor cells... SRX315278,SRX315277,SRX667383,SRX668241,SRX315276 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  11. File list: Pol.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Neural_progenitor_cells mm9 RNA polymerase Neural Neural progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  12. File list: Pol.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Neural_progenitor_cells mm9 RNA polymerase Neural Neural progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  13. File list: DNS.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238870,SRX238868 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  14. File list: Oth.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Neural_progenitor_cells mm9 TFs and others Neural Neural progenito...r cells SRX109472,SRX315274,SRX802060,SRX109471 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  15. File list: His.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Neural_progenitor_cells mm9 Histone Neural Neural progenitor cells... SRX315277,SRX667383,SRX668241,SRX315278,SRX315276 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  16. File list: Oth.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Neural_progenitor_cells mm9 TFs and others Neural Neural progenito...r cells SRX109472,SRX315274,SRX109471,SRX802060 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  17. File list: DNS.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238870,SRX238868 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  18. File list: DNS.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238868,SRX238870 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  19. File list: Oth.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Neural_progenitor_cells mm9 TFs and others Neural Neural progenito...r cells SRX109472,SRX315274,SRX109471,SRX802060 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  20. File list: DNS.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238870,SRX238868 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  1. File list: Unc.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Neural_progenitor_cells mm9 Unclassified Neural Neural progenitor ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  2. Innovation in basic science: stem cells and their role in the treatment of paediatric cardiac failure--opportunities and challenges.

    Science.gov (United States)

    Kaushal, Sunjay; Jacobs, Jeffrey Phillip; Gossett, Jeffrey G; Steele, Ann; Steele, Peter; Davis, Craig R; Pahl, Elfriede; Vijayan, Kalpana; Asante-Korang, Alfred; Boucek, Robert J; Backer, Carl L; Wold, Loren E

    2009-11-01

    Heart failure is a leading cause of death worldwide. Current therapies only delay progression of the cardiac disease or replace the diseased heart with cardiac transplantation. Stem cells represent a recently discovered novel approach to the treatment of cardiac failure that may facilitate the replacement of diseased cardiac tissue and subsequently lead to improved cardiac function and cardiac regeneration. A stem cell is defined as a cell with the properties of being clonogenic, self-renewing, and multipotent. In response to intercellular signalling or environmental stimuli, stem cells differentiate into cells derived from any of the three primary germ layers: ectoderm, endoderm, and mesoderm, a powerful advantage for regenerative therapies. Meanwhile, a cardiac progenitor cell is a multipotent cell that can differentiate into cells of any of the cardiac lineages, including endothelial cells and cardiomyocytes. Stem cells can be classified into three categories: (1) adult stem cells, (2) embryonic stem cells, and (3) induced pluripotential cells. Adult stem cells have been identified in numerous organs and tissues in adults, including bone-marrow, skeletal muscle, adipose tissue, and, as was recently discovered, the heart. Embryonic stem cells are derived from the inner cell mass of the blastocyst stage of the developing embryo. Finally through transcriptional reprogramming, somatic cells, such as fibroblasts, can be converted into induced pluripotential cells that resemble embryonic stem cells. Four classes of stem cells that may lead to cardiac regeneration are: (1) Embryonic stem cells, (2) Bone Marrow derived stem cells, (3) Skeletal myoblasts, and (4) Cardiac stem cells and cardiac progenitor cells. Embryonic stem cells are problematic because of several reasons: (1) the formation of teratomas, (2) potential immunologic cellular rejection, (3) low efficiency of their differentiation into cardiomyocytes, typically 1% in culture, and (4) ethical and political

  3. Innovation in basic science: stem cells and their role in the treatment of paediatric cardiac failure--opportunities and challenges.

    Science.gov (United States)

    Kaushal, Sunjay; Jacobs, Jeffrey Phillip; Gossett, Jeffrey G; Steele, Ann; Steele, Peter; Davis, Craig R; Pahl, Elfriede; Vijayan, Kalpana; Asante-Korang, Alfred; Boucek, Robert J; Backer, Carl L; Wold, Loren E

    2009-11-01

    Heart failure is a leading cause of death worldwide. Current therapies only delay progression of the cardiac disease or replace the diseased heart with cardiac transplantation. Stem cells represent a recently discovered novel approach to the treatment of cardiac failure that may facilitate the replacement of diseased cardiac tissue and subsequently lead to improved cardiac function and cardiac regeneration. A stem cell is defined as a cell with the properties of being clonogenic, self-renewing, and multipotent. In response to intercellular signalling or environmental stimuli, stem cells differentiate into cells derived from any of the three primary germ layers: ectoderm, endoderm, and mesoderm, a powerful advantage for regenerative therapies. Meanwhile, a cardiac progenitor cell is a multipotent cell that can differentiate into cells of any of the cardiac lineages, including endothelial cells and cardiomyocytes. Stem cells can be classified into three categories: (1) adult stem cells, (2) embryonic stem cells, and (3) induced pluripotential cells. Adult stem cells have been identified in numerous organs and tissues in adults, including bone-marrow, skeletal muscle, adipose tissue, and, as was recently discovered, the heart. Embryonic stem cells are derived from the inner cell mass of the blastocyst stage of the developing embryo. Finally through transcriptional reprogramming, somatic cells, such as fibroblasts, can be converted into induced pluripotential cells that resemble embryonic stem cells. Four classes of stem cells that may lead to cardiac regeneration are: (1) Embryonic stem cells, (2) Bone Marrow derived stem cells, (3) Skeletal myoblasts, and (4) Cardiac stem cells and cardiac progenitor cells. Embryonic stem cells are problematic because of several reasons: (1) the formation of teratomas, (2) potential immunologic cellular rejection, (3) low efficiency of their differentiation into cardiomyocytes, typically 1% in culture, and (4) ethical and political

  4. Properties of Adult Lung Stem and Progenitor Cells.

    Science.gov (United States)

    Bertoncello, Ivan

    2016-12-01

    The last decade has seen significant progress in understanding the organisation of regenerative cells in the adult lung. Cell-lineage tracing and in vitro clonogenic assays have enabled the identification and characterisation of endogenous lung epithelial stem and progenitor cells. Selective lung injury models, and genetically engineered mice have revealed highly conserved gene networks, factors, signalling pathways, and cellular interactions important in maintaining lung homeostasis and regulating lung regeneration and repair following injury. This review describes the current models of lung epithelial stem and progenitor cell organisation in adult mice, and the impediments encountered in translational studies aiming to identify and characterise their human homologs. J. Cell. Physiol. 231: 2582-2589, 2016. © 2016 Wiley Periodicals, Inc. PMID:27062064

  5. Red blood cell-incompatible allogeneic hematopoietic progenitor cell transplantation.

    Science.gov (United States)

    Rowley, S D; Donato, M L; Bhattacharyya, P

    2011-09-01

    Transplantation of hematopoietic progenitor cells from red cell-incompatible donors occurs in 30-50% of patients. Immediate and delayed hemolytic transfusion reactions are expected complications of red cell-disparate transplantation and both ABO and other red cell systems such as Kidd and rhesus can be involved. The immunohematological consequences of red cell-incompatible transplantation include delayed red blood cell recovery, pure red cell aplasia and delayed hemolysis from viable lymphocytes carried in the graft ('passenger lymphocytes'). The risks of these reactions, which may be abrupt in onset and fatal, are ameliorated by graft processing and proper blood component support. Red blood cell antigens are expressed on endothelial and epithelial tissues in the body and could serve to increase the risk of GvHD. Mouse models indicate that blood cell antigens may function as minor histocompatibility antigens affecting engraftment. Similar observations have been found in early studies of human transplantation for transfused recipients, although current conditioning and immunosuppressive regimens appear to overcome this affect. No deleterious effects from the use of red cell-incompatible hematopoietic grafts on transplant outcomes, such as granulocyte and platelet engraftments, the incidences of acute or chronic GvHD, relapse risk or OS, have been consistently demonstrated. Most studies, however, include limited number of patients, varying diagnoses and differing treatment regimens, complicating the detection of an effect of ABO-incompatible transplantation. Classification of patients by ABO phenotype ignoring the allelic differences of these antigens also may obscure the effect of red cell-incompatible transplantation on transplant outcomes. PMID:21897398

  6. Stem cell sources for cardiac regeneration

    NARCIS (Netherlands)

    Roccio, M.; Goumans, M. J.; Sluijter, J. P. G.; Doevendans, P. A.

    2008-01-01

    Cell-based cardiac repair has the ambitious aim to replace the malfunctioning cardiac muscle developed after myocardial infarction, with new contractile cardiomyocytes and vessels. Different stem cell populations have been intensively studied in the last decade as a potential source of new cardiomyo

  7. Allogenic benefit in stem cell therapy: cardiac repair and regeneration.

    Science.gov (United States)

    Al-Daccak, R; Charron, D

    2015-09-01

    Stem cell (SC)-based therapies are a developing mean to repair, restore, maintain, or enhance organ functioning through life span. They are in particular a fast track to restore function in failing heart. Various types of SCs have been used in experimental and clinical studies showing the potential of these cells to revolutionize the treatment of heart diseases. Autologous cells have been privileged to overpass immunological barriers. The field has progressed tremendously and the hurdles, which have been largely overlooked in the excitement over the expected benefit the immunogenicity, have been revealed. Also, manufacturing of patient-specific clinical grade SC product, whether adult stem or reprogrammed induced pluripotent SCs, and the availability of these cells in sufficient amounts and status when needed is questionable. In contrast, adult SCs derived from healthy donors, thus allogeneic, have the advantage to be immediately available as an 'off-the-shelf' therapeutic product. The challenge is to overcome the immunological barriers to their transplantation. Recent research provided new insights into the mode of action and immune behavior of SCs in autologous as well as allogeneic settings. Lessons are learned and immune paradigms are changing: allogenicity, if balanced could be part of the dynamic and durable mechanisms that are critical to sustain cardiac regeneration and repair. We discuss the hurdles, lessons, and advances accomplished in the field through the progressive journey of cardiac-derived stem/progenitor cells toward allogeneic cardiac regenerative/reparative therapy. PMID:26206374

  8. Embryonic Heart Progenitors and Cardiogenesis

    Science.gov (United States)

    Brade, Thomas; Pane, Luna S.; Moretti, Alessandra; Chien, Kenneth R.; Laugwitz, Karl-Ludwig

    2013-01-01

    The mammalian heart is a highly specialized organ, comprised of many different cell types arising from distinct embryonic progenitor populations during cardiogenesis. Three precursor populations have been identified to contribute to different myocytic and nonmyocytic cell lineages of the heart: cardiogenic mesoderm cells (CMC), the proepicardium (PE), and cardiac neural crest cells (CNCCs). This review will focus on molecular cues necessary for proper induction, expansion, and lineage-specific differentiation of these progenitor populations during cardiac development in vivo. Moreover, we will briefly discuss how the knowledge gained on embryonic heart progenitor biology can be used to develop novel therapeutic strategies for the management of congenital heart disease as well as for improvement of cardiac function in ischemic heart disease. PMID:24086063

  9. Adiponectin promotes endothelial progenitor cell number and function

    OpenAIRE

    Shibata, Rei; Skurk, Carsten; Ouchi, Noriyuki; Galasso, Gennaro; Kondo, Kazuhisa; Ohashi, Taiki; Shimano, Masayuki; Kihara, Shinji; Murohara, Toyoaki; Walsh, Kenneth

    2008-01-01

    Obesity-linked diseases are associated with suppressed endothelial progenitor cell (EPC) function. Adiponectin is an adipose-derived protein that is downregulated in obese and diabetic subjects. Here, we investigated the effects of adiponectin on EPCs. EPC levels did not increase in adiponectin deficient (APN-KO) in response to hindlimb ischemia. Adenovirus-mediated delivery of adiponectin increased EPC levels in both WT and APN-KO mice. Incubation of human peripheral blood mononuclear cells ...

  10. Mobilization of stem and progenitor cells in cardiovascular diseases

    OpenAIRE

    Wojakowski, W; Landmesser, U.; Bachowski, R; Jadczyk, T; M. Tendera

    2012-01-01

    Circulating bone marrow (BM)-derived stem and progenitor cells (SPCs) participate in turnover of vascular endothelium and myocardial repair after acute coronary syndromes. Acute myocardial infarction (MI) produces a generalized inflammatory reaction, including mobilization of SPCs, increased local production of chemoattractants in the ischemic myocardium, as well as neural and humoral signals activating the SPC egress from the BM. Several types of circulating BM cells were identified in the p...

  11. Neural Progenitor Cells Derived from Human Embryonic Stem Cells as an Origin of Dopaminergic Neurons

    Directory of Open Access Journals (Sweden)

    Parinya Noisa

    2015-01-01

    Full Text Available Human embryonic stem cells (hESCs are able to proliferate in vitro indefinitely without losing their ability to differentiate into multiple cell types upon exposure to appropriate signals. Particularly, the ability of hESCs to differentiate into neuronal subtypes is fundamental to develop cell-based therapies for several neurodegenerative disorders, such as Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease. In this study, we differentiated hESCs to dopaminergic neurons via an intermediate stage, neural progenitor cells (NPCs. hESCs were induced to neural progenitor cells by Dorsomorphin, a small molecule that inhibits BMP signalling. The resulting neural progenitor cells exhibited neural bipolarity with high expression of neural progenitor genes and possessed multipotential differentiation ability. CBF1 and bFGF responsiveness of these hES-NP cells suggested their similarity to embryonic neural progenitor cells. A substantial number of dopaminergic neurons were derived from hES-NP cells upon supplementation of FGF8 and SHH, key dopaminergic neuron inducers. Importantly, multiple markers of midbrain neurons were detected, including NURR1, PITX3, and EN1, suggesting that hESC-derived dopaminergic neurons attained the midbrain identity. Altogether, this work underscored the generation of neural progenitor cells that retain the properties of embryonic neural progenitor cells. These cells will serve as an unlimited source for the derivation of dopaminergic neurons, which might be applicable for treating patients with Parkinson’s disease.

  12. Minor histocompatibility antigens on canine hemopoietic progenitor cells.

    Science.gov (United States)

    Weber, Martin; Lange, Claudia; Günther, Wolfgang; Franz, Monika; Kremmer, Elisabeth; Kolb, Hans-Jochem

    2003-06-15

    Adoptive immunotherapy with CTL against minor histocompatibility Ags (mHA) provides a promising way to treat leukemia relapse in allogeneic chimeras. Here we describe the in vitro generation of CTL against mHA in the dog. We tested their inhibitory effect on the growth of hemopoietic progenitor cells stimulated by hemopoietic growth factors in a 4-day suspension culture. CTL were produced by coculture of donor PBMC with bone marrow-derived dendritic cells (DCs). These DCs were characterized by morphology, high expression of MHC class II and CD1a, and the absence of the monocyte-specific marker CD14. Characteristically these cells stimulated allogeneic lymphocytes (MLR) and, after pulsing with a foreign Ag (keyhole limpet hemocyanin), autologous T cells. CTL were generated either ex vivo by coculture with DCs of DLA-identical littermates or in vivo by immunization of the responder with DCs obtained from a DLA-identical littermate. In suspension culture assays the growth of hemopoietic progenitor cells was inhibited in 53% of DLA-identical littermate combinations. In canine families mHA segregated with DLA as restriction elements. One-way reactivity against mHA was found in five littermate combinations. In two cases mHA might be Y chromosome associated, in three cases autosomally inherited alleles were detected. We conclude that CTL can be produced in vitro and in vivo against mHA on canine hemopoietic progenitor cells using bone marrow-derived DCs. PMID:12794111

  13. File list: ALL.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Neural_progenitor_cells mm9 All antigens Neural Neural progenitor ...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  14. File list: ALL.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Neural_progenitor_cells mm9 All antigens Neural Neural progenitor ...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  15. File list: ALL.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Neural_progenitor_cells mm9 All antigens Neural Neural progenitor ...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  16. Bone marrow-derived hematopoietic stem and progenitor cells infiltrate allogeneic and syngeneic transplants.

    Science.gov (United States)

    Fan, Z; Enjoji, K; Tigges, J C; Toxavidis, V; Tchipashivili, V; Gong, W; Strom, T B; Koulmanda, M

    2014-12-01

    Lineage (CD3e, CD11b, GR1, B220 and Ly-76) negative hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) infiltrate islet allografts within 24 h posttransplantation. In fact, lineage(negative) Sca-1(+) cKit(+) ("LSK") cells, a classic signature for HSCs, were also detected among these graft infiltrating cells. Lineage negative graft infiltrating cells are functionally multi-potential as determined by a standard competitive bone marrow transplant (BMT) assay. By 3 months post-BMT, both CD45.1 congenic, lineage negative HSCs/HPCs and classic "LSK" HSCs purified from islet allograft infiltrating cells, differentiate and repopulate multiple mature blood cell phenotypes in peripheral blood, lymph nodes, spleen, bone marrow and thymus of CD45.2 hosts. Interestingly, "LSK" HSCs also rapidly infiltrate syngeneic islet transplants as well as allogeneic cardiac transplants and sham surgery sites. It seems likely that an inflammatory response, not an adaptive immune response to allo-antigen, is responsible for the rapid infiltration of islet and cardiac transplants by biologically active HSCs/HPCs. The pattern of hematopoietic differentiation obtained from graft infiltrating HSCs/HPCs, cells that are recovered from inflammatory sites, as noted in the competitive BMT assay, is not precisely the same as that of intramedullary HSCs. This does not refute the obvious multi-lineage potential of graft infiltrating HSCs/HPCs.

  17. Derivation and characterization of hepatic progenitor cells from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Dongxin Zhao

    Full Text Available The derivation of hepatic progenitor cells from human embryonic stem (hES cells is of value both in the study of early human liver organogenesis and in the creation of an unlimited source of donor cells for hepatocyte transplantation therapy. Here, we report for the first time the generation of hepatic progenitor cells derived from hES cells. Hepatic endoderm cells were generated by activating FGF and BMP pathways and were then purified by fluorescence activated cell sorting using a newly identified surface marker, N-cadherin. After co-culture with STO feeder cells, these purified hepatic endoderm cells yielded hepatic progenitor colonies, which possessed the proliferation potential to be cultured for an extended period of more than 100 days. With extensive expansion, they co-expressed the hepatic marker AFP and the biliary lineage marker KRT7 and maintained bipotential differentiation capacity. They were able to differentiate into hepatocyte-like cells, which expressed ALB and AAT, and into cholangiocyte-like cells, which formed duct-like cyst structures, expressed KRT19 and KRT7, and acquired epithelial polarity. In conclusion, this is the first report of the generation of proliferative and bipotential hepatic progenitor cells from hES cells. These hES cell-derived hepatic progenitor cells could be effectively used as an in vitro model for studying the mechanisms of hepatic stem/progenitor cell origin, self-renewal and differentiation.

  18. 桃叶珊瑚苷通过 ERβ途径抑制 TNF-α诱导的心脏祖细胞凋亡%Aucubin inhibited apoptosis of mouse cardiac progenitor cells induced by TNF-αthrough ERβpathway

    Institute of Scientific and Technical Information of China (English)

    李春晓; 李慧影; 王虹; 陈璐; 邱丽珍; 耿潇; 尤星宇

    2016-01-01

    Aim Aucubin(AU) is one of the effective ingredients of eucommia , plantain , rehmannia and oth-er herbs.Modern pharmacological studies have shown that AU has protective effects on immunity , cardiovas-cular and nervous system , but its mechanism is un-clear .Previous studies have confirmed that AU can ac-tivate estrogen receptor , suggesting that AU may play a role in cardiovascular protection through estrogen signa-ling pathway .In recent years , more and more evidence showed that cardiac progenitor cells ( CPCs ) play an important role in the repair of myocardial ischemic in-jury.Methods To further elucidate the mechanism , our study used mouse CPCs as cell model and elucida-ted the effect of AU on CPCs apoptosis induced by tumor necrosis factor alpha ( TNF-α) and its mecha-nism by IncuCyte live cell imaging , TUNEL staining , Western blot and quantitative PCR . Results AU could reduce TNF-α-induced apoptosis of CPCs , de-crease the expression of caspase-3 and up-regulate Bcl-2/Bax levels.Estrogen receptor beta ( ERβ) antagonist could block the anti-apoptotic effect of AU , and AU treatment was able to increase the expression of ERβ. Conclusion AU could inhibit the apoptosis of CPCs induced by TNF-α, and its mechanism is the activation of ERβpathway .%目的:桃叶珊瑚苷( aucubin, AU)是杜仲、车前草、地黄等中草药的有效成分之一。现代药理学研究发现, AU对免疫、心脑血管、神经系统均有保护作用,但其作用机制尚不清楚。课题组前期研究证实AU可激活雌激素受体,提示AU可能通过雌激素信号通路发挥心血管保护作用。近年来越来越多的证据表明,心脏祖细胞( cardiac progenitor cells , CPCs)在心肌缺血组织损伤修复中发挥重要作用。方法为了进一步阐明AU的作用机制,该研究以小鼠CPCs为细胞模型,采用IncuCyte活细胞成像、TUNEL、Western blot、定量PCR等方法探讨了AU

  19. Retinal Endothelial Cell Apoptosis Stimulates Recruitment of Endothelial Progenitor Cells

    Science.gov (United States)

    Bhatwadekar, Ashay D.; Glenn, Josephine V.; Curtis, Tim M.; Grant, Maria B.; Stitt, Alan W.; Gardiner, Tom A.

    2013-01-01

    Purpose Bone marrow–derived endothelial progenitor cells (EPCs) contribute to vascular repair although it is uncertain how local endothelial cell apoptosis influences their reparative function. This study was conducted to determine how the presence of apoptotic bodies at sites of endothelial damage may influence participation of EPCs in retinal microvascular repair. Methods Microlesions of apoptotic cell death were created in monolayers of retinal microvascular endothelial cells (RMECs) by using the photodynamic drug verteporfin. The adhesion of early-EPCs to these lesions was studied before detachment of the apoptotic cells or after their removal from the wound site. Apoptotic bodies were fed to normal RMECs and mRNA levels for adhesion molecules were analyzed. Results Endothelial lesions where apoptotic bodies were left attached at the wound site showed a fivefold enhancement in EPC recruitment (P < 0.05) compared with lesions where the apoptotic cells had been removed. In intact RMEC monolayers exposed to apoptotic bodies, expression of ICAM, VCAM, and E-selectin was upregulated by 5- to 15-fold (P < 0.05– 0.001). EPCs showed a characteristic chemotactic response (P < 0.05) to conditioned medium obtained from apoptotic bodies, whereas analysis of the medium showed significantly increased levels of VEGF, IL-8, IL-6, and TNF-α when compared to control medium; SDF-1 remained unchanged. Conclusions The data indicate that apoptotic bodies derived from retinal capillary endothelium mediate release of proangiogenic cytokines and chemokines and induce adhesion molecule expression in a manner that facilitates EPC recruitment. PMID:19474402

  20. Hand2 Function in Second Heart Field Progenitors is Essential for Cardiogenesis

    OpenAIRE

    Tsuchihashi, Takatoshi; Maeda, Jun; Shin, Chong; Ivey, Kathryn N.; Black, Brian; Olson, Eric N.; Yamagishi, Hiroyuki; Srivastava, Deepak

    2010-01-01

    Cardiogenesis involves the contributions of multiple progenitor pools, including mesoderm-derived cardiac progenitors known as the first and second heart fields. Disruption of genetic pathways regulating individual subsets of cardiac progenitors likely underlies many forms of human cardiac malformations. Hand2 is a member of the basic helix loop helix (bHLH) family of transcription factors and is expressed in numerous cell lineages that contribute to the developing heart. However, the early e...

  1. Cell therapy for ischaemic heart disease: focus on the role of resident cardiac stem cells.

    Science.gov (United States)

    Chamuleau, S A J; Vrijsen, K R; Rokosh, D G; Tang, X L; Piek, J J; Bolli, R

    2009-05-01

    Myocardial infarction results in loss of cardiomyocytes, scar formation, ventricular remodelling, and eventually heart failure. In recent years, cell therapy has emerged as a potential new strategy for patients with ischaemic heart disease. This includes embryonic and bone marrow derived stem cells. Recent clinical studies showed ostensibly conflicting results of intracoronary infusion of autologous bone marrow derived stem cells in patients with acute or chronic myocardial infarction. Anyway, these results have stimulated additional clinical and pre-clinical studies to further enhance the beneficial effects of stem cell therapy. Recently, the existence of cardiac stem cells that reside in the heart itself was demonstrated. Their discovery has sparked intense hope for myocardial regeneration with cells that are obtained from the heart itself and are thereby inherently programmed to reconstitute cardiac tissue. These cells can be detected by several surface markers (e.g. c-kit, Sca-1, MDR1, Isl-1). Both in vitro and in vivo differentiation into cardiomyocytes, endothelial cells and vascular smooth muscle cells has been demonstrated, and animal studies showed promising results on improvement of left ventricular function. This review will discuss current views regarding the feasibility of cardiac repair, and focus on the potential role of the resident cardiac stem and progenitor cells. (Neth Heart J 2009;17:199-207.).

  2. Stem cells for cardiac repair: an introduction

    Institute of Scientific and Technical Information of China (English)

    Bastiaan C du Pr(e); Pieter A Doevendans; Linda W van Laake

    2013-01-01

    Cardiovascular disease is a major cause of morbidity and mortality throughout the world. Most cardiovascular diseases, such as ischemic heart disease and cardiomyopathy, are associated with loss of functional cardiomyocytes. Unfortunately, the heart has a limited regenerative capacity and is not able to replace these cardiomyocytes once lost. In recent years, stem cells have been put forward as a potential source for cardiac regeneration. Pre-clinical studies that use stem cell-derived cardiac cells show promising results. The mechanisms, though, are not well understood, results have been variable, sometimes transient in the long term, and often without a mechanistic explanation. There are still several major hurdles to be taken. Stem cell-derived cardiac cells should resemble original cardiac cell types and be able to integrate in the damaged heart. Integration requires administration of stem cell-derived cardiac cells at the right time using the right mode of delivery. Once delivered, transplanted cells need vascularization, electrophysiological coupling with the injured heart, and prevention of immunological rejection. Finally, stem cell therapy needs to be safe, reproducible, and affordable. In this review, we will give an introduction to the principles of stem cell based cardiac repair.

  3. Intrinsic Age-Dependent Changes and Cell-Cell Contacts Regulate Nephron Progenitor Lifespan.

    Science.gov (United States)

    Chen, Shuang; Brunskill, Eric W; Potter, S Steven; Dexheimer, Phillip J; Salomonis, Nathan; Aronow, Bruce J; Hong, Christian I; Zhang, Tongli; Kopan, Raphael

    2015-10-12

    During fetal development, nephrons of the metanephric kidney form from a mesenchymal progenitor population that differentiates en masse before or shortly after birth. We explored intrinsic and extrinsic mechanisms controlling progenitor lifespan in a transplantation assay that allowed us to compare engraftment of old and young progenitors into the same young niche. The progenitors displayed an age-dependent decrease in proliferation and concomitant increase in niche exit rates. Single-cell transcriptome profiling revealed progressive age-dependent changes, with heterogeneity increasing in older populations. Age-dependent elevation in mTor and reduction in Fgf20 could contribute to increased exit rates. Importantly, 30% of old progenitors remained in the niche for up to 1 week post engraftment, a net gain of 50% to their lifespan, but only if surrounded by young neighbors. We provide evidence in support of a model in which intrinsic age-dependent changes affect inter-progenitor interactions that drive cessation of nephrogenesis. PMID:26460946

  4. Autophagy in stem and progenitor cells.

    Science.gov (United States)

    Rodolfo, Carlo; Di Bartolomeo, Sabrina; Cecconi, Francesco

    2016-02-01

    Autophagy is a highly conserved cellular process, responsible for the degradation and recycling of damaged and/or outlived proteins and organelles. This is the major cellular pathway, acting throughout the formation of cytosolic vesicles, called autophagosomes, for the delivering to lysosome. Recycling of cellular components through autophagy is a crucial step for cell homeostasis as well as for tissue remodelling during development. Impairment of this process has been related to the pathogenesis of various diseases, such as cancer and neurodegeneration, to the response to bacterial and viral infections, and to ageing. The ability of stem cells to self-renew and differentiate into the mature cells of the body renders this unique type of cell highly crucial to development and tissue renewal, not least in various diseases. During the last two decades, extensive knowledge about autophagy roles and regulation in somatic cells has been acquired; however, the picture about the role and the regulation of autophagy in the different types of stem cells is still largely unknown. Autophagy is a major player in the quality control and maintenance of cellular homeostasis, both crucial factors for stem cells during an organism's life. In this review, we have highlighted the most significant advances in the comprehension of autophagy regulation in embryonic and tissue stem cells, as well as in cancer stem cells and induced pluripotent cells.

  5. Directed Differentiation of Human Embryonic Stem Cells into Neural Progenitors.

    Science.gov (United States)

    Banda, Erin; Grabel, Laura

    2016-01-01

    A variety of protocols have been used to produce neural progenitors from human embryonic stem cells. We have focused on a monolayer culture approach that generates neural rosettes. To initiate differentiation, cells are plated in a serum-free nutrient-poor medium in the presence of a BMP inhibitor. Depending on the cell line used, additional growth factor inhibitors may be required to promote neural differentiation. Long-term culture and addition of the Notch inhibitor DAPT can promote terminal neuronal differentiation. Extent of differentiation is monitored using immunocytochemistry for cell type-specific markers.

  6. Redox and Metabolic Regulation of Stem/Progenitor Cells and Their Niche

    OpenAIRE

    Ushio-Fukai, Masuko; Rehman, Jalees

    2014-01-01

    Stem cells are defined as cells that have the capacity to self-renew and exhibit multipotency or pluripotency, whereas progenitor cells are committed to selected lineages but retain their self-renewal capacity. The stem or progenitor cell niche refers to the microenvironment of the regenerative cells in the bone marrow (BM) or other tissues such as the heart. It can regulate self-renewal, differentiation, migration, and proliferation of regenerative stem/progenitor cells. The precise regulato...

  7. Uncovering the Number and Clonal Dynamics of Mesp1 Progenitors during Heart Morphogenesis

    Directory of Open Access Journals (Sweden)

    Samira Chabab

    2016-01-01

    Full Text Available The heart arises from distinct sources of cardiac progenitors that independently express Mesp1 during gastrulation. The precise number of Mesp1 progenitors that are specified during the early stage of gastrulation, and their clonal behavior during heart morphogenesis, is currently unknown. Here, we used clonal and mosaic tracing of Mesp1-expressing cells combined with quantitative biophysical analysis of the clonal data to define the number of cardiac progenitors and their mode of growth during heart development. Our data indicate that the myocardial layer of the heart derive from ∼250 Mesp1-expressing cardiac progenitors born during gastrulation. Despite arising at different time points and contributing to different heart regions, the temporally distinct cardiac progenitors present very similar clonal dynamics. These results provide insights into the number of cardiac progenitors and their mode of growth and open up avenues to decipher the clonal dynamics of progenitors in other organs and tissues.

  8. Endothelial progenitor cells regenerate infracted myocardium with neovascularisation development ☆

    OpenAIRE

    M.T. Abd El Aziz; Abd El Nabi, E.A.; Abd El Hamid, M.; D. Sabry; Atta, H.M.; L.A. Rahed; A. Shamaa; Mahfouz, S.; Taha, F.M.; S. Elrefaay; Gharib, D.M.; Elsetohy, Khaled A

    2013-01-01

    We achieved possibility of isolation, characterization human umbilical cord blood endothelial progenitor cells (EPCs), examination potency of EPCs to form new blood vessels and differentiation into cardiomyoctes in canines with acute myocardial infarction (AMI). EPCs were separated and cultured from umbilical cord blood. Their phenotypes were confirmed by uptake of double stains dioctadecyl tetramethylindocarbocyanine-labeled acetylated LDL and FITC-labeled Ulex europaeus agglutinin 1 (DILDL-...

  9. Therapeutic Roles of Tendon Stem/Progenitor Cells in Tendinopathy

    OpenAIRE

    Xin Zhang; Yu-cheng Lin; Yun-feng Rui; Hong-liang Xu; Hui Chen; Chen Wang,; Gao-jun Teng

    2016-01-01

    Tendinopathy is a tendon disorder characterized by activity-related pain, local edema, focal tenderness to palpation, and decreased strength in the affected area. Tendinopathy is prevalent in both athletes and the general population, highlighting the need to elucidate the pathogenesis of this disorder. Current treatments of tendinopathy are both conservative and symptomatic. The discovery of tendon stem/progenitor cells (TSPCs) and erroneous differentiation of TSPCs have provided new insights...

  10. Fluoxetine targets early progenitor cells in the adult brain

    OpenAIRE

    Encinas, Juan M.; Vaahtokari, Anne; Enikolopov, Grigori

    2006-01-01

    Chronic treatment with antidepressants increases neurogenesis in the adult hippocampus. This increase in the production of new neurons may be required for the behavioral effects of antidepressants. However, it is not known which class of cells within the neuronal differentiation cascade is targeted by the drugs. We have generated a reporter mouse line, which allows identification and classification of early neuronal progenitors. It also allows accurate quantitation of changes induced by neuro...

  11. Differential Stem and Progenitor Cell Trafficking by Prostaglandin E2

    Science.gov (United States)

    Hoggatt, Jonathan; Mohammad, Khalid S.; Singh, Pratibha; Hoggatt, Amber F.; Chitteti, Brahmananda Reddy; Speth, Jennifer M.; Hu, Peirong; Poteat, Bradley A.; Stilger, Kayla N.; Ferraro, Francesca; Silberstein, Lev; Wong, Frankie K.; Farag, Sherif S.; Czader, Magdalena; Milne, Ginger L.; Breyer, Richard M.; Serezani, Carlos H.; Scadden, David T.; Guise, Theresa; Srour, Edward F.; Pelus, Louis M.

    2013-01-01

    SUMMARY To maintain lifelong production of blood cells, hematopoietic stem cells (HSC) are tightly regulated by inherent programs and extrinsic regulatory signals received from their microenvironmental niche. Long-term repopulating HSC (LT-HSC) reside in several, perhaps overlapping, niches that produce regulatory molecules/signals necessary for homeostasis and increased output following stress/injury 1–5. Despite significant advances in specific cellular or molecular mechanisms governing HSC/niche interactions, little is understood about regulatory function within the intact mammalian hematopoietic niche. Recently, we and others described a positive regulatory role for Prostaglandin E2 (PGE2) on HSC function ex vivo 6,7. While exploring the role of endogenous PGE2 we unexpectedly observed hematopoietic egress after nonsteroidal anti-inflammatory drug (NSAID) treatment. Surprisingly, this was independent of the SDF-1/CXCR4 axis. Stem and progenitor cells were found to have differing mechanisms of egress, with HSC transit to the periphery dependent on niche attenuation and reduction in the retentive molecule osteopontin (OPN). Hematopoietic grafts mobilized with NSAIDs had superior repopulating ability and long-term engraftment. Treatment of non-human primates and healthy human volunteers confirmed NSAID-mediated egress in higher species. PGE2 receptor knockout mice demonstrated that progenitor expansion and stem/progenitor egress resulted from reduced EP4 receptor signaling. These results not only uncover unique regulatory roles for EP4 signaling in HSC retention in the niche but also define a rapidly translatable strategy to therapeutically enhance transplantation. PMID:23485965

  12. Endothelial Progenitor Cells for Diagnosis and Prognosis in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Caterina Oriana Aragona

    2016-01-01

    Full Text Available Objective. To identify, evaluate, and synthesize evidence on the predictive power of circulating endothelial progenitor cells (EPCs in cardiovascular disease, through a systematic review of quantitative studies. Data Sources. MEDLINE was searched using keywords related to “endothelial progenitor cells” and “endothelium” and, for the different categories, respectively, “smoking”; “blood pressure”; “diabetes mellitus” or “insulin resistance”; “dyslipidemia”; “aging” or “elderly”; “angina pectoris” or “myocardial infarction”; “stroke” or “cerebrovascular disease”; “homocysteine”; “C-reactive protein”; “vitamin D”. Study Selection. Database hits were evaluated against explicit inclusion criteria. From 927 database hits, 43 quantitative studies were included. Data Syntheses. EPC count has been suggested for cardiovascular risk estimation in the clinical practice, since it is currently accepted that EPCs can work as proangiogenic support cells, maintaining their importance as regenerative/reparative potential, and also as prognostic markers. Conclusions. EPCs showed an important role in identifying cardiovascular risk conditions, and to suggest their evaluation as predictor of outcomes appears to be reasonable in different defined clinical settings. Due to their capability of proliferation, circulation, and the development of functional progeny, great interest has been directed to therapeutic use of progenitor cells in atherosclerotic diseases. This trial is registered with registration number: Prospero CRD42015023717.

  13. Erythropoietin signaling promotes transplanted progenitor cell survival

    OpenAIRE

    Jia, Yi; Warin, Renaud; Yu, Xiaobing; Epstein, Reed; Noguchi, Constance Tom

    2009-01-01

    We examine the potential for erythropoietin signaling to promote donor cell survival in a model of myoblast transplantation. Expression of a truncated erythropoietin receptor in hematopoietic stem cells has been shown to promote selective engraftment in mice. We previously demonstrated expression of endogenous erythropoietin receptor on murine myoblasts, and erythropoietin treatment can stimulate myoblast proliferation and delay differentiation. Here, we report that enhanced erythropoietin re...

  14. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas.

    Science.gov (United States)

    Kim, Hyo-Sup; Lee, Moon-Kyu

    2016-05-01

    Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β-cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β-cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin-producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β-cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β-cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin-producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin-producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin-producing cells, especially duct and acinar cells. PMID:27330712

  15. Pipeline for Tracking Neural Progenitor Cells

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Dahl, Anders Lindbjerg; Holm, Peter;

    2012-01-01

    a key role in constructing these lineages. We present here a tracking pipeline based on learning a dictionary of discriminative image patches for segmentation and a graph formulation of the cell matching problem incorporating topology changes and acknowledging the fact that segmentation errors do occur...

  16. Fetal hepatic progenitors support long-term expansion of hematopoietic stem cells.

    Science.gov (United States)

    Chou, Song; Flygare, Johan; Lodish, Harvey F

    2013-05-01

    We have developed a coculture system that establishes DLK(+) fetal hepatic progenitors as the authentic supportive cells for expansion of hematopoietic stem (HSCs) and progenitor cells. In 1-week cultures supplemented with serum and supportive cytokines, both cocultured DLK(+) fetal hepatic progenitors and their conditioned medium supported rapid expansion of hematopoietic progenitors and a small increase in HSC numbers. In 2- and 3-week cultures DLK(+) cells, but not their conditioned medium, continuously and significantly (>20-fold) expanded both hematopoietic stem and progenitor cells. Physical contact between HSCs and DLK(+) cells was crucial to maintaining this long-term expansion. Similar HSC expansion (approximately sevenfold) was achieved in cocultures using a serum-free, low cytokine- containing medium. In contrast, DLK(-) cells are incapable of expanding hematopoietic cells, demonstrating that hepatic progenitors are the principle supportive cells for HSC expansion in the fetal liver.

  17. Enhanced generation of retinal progenitor cells from human retinal pigment epithelial cells induced by amniotic fluid

    Directory of Open Access Journals (Sweden)

    Sanie-Jahromi Fatemeh

    2012-04-01

    Full Text Available Abstract Background Retinal progenitor cells are a convenient source of cell replacement therapy in retinal degenerative disorders. The purpose of this study was to evaluate the expression patterns of the homeobox genes PAX6 and CHX10 (retinal progenitor markers during treatment of human retinal pigment epithelium (RPE cells with amniotic fluid (AF, RPE cells harvested from neonatal cadaver globes were cultured in a mixture of DMEM and Ham's F12 supplemented with 10% FBS. At different passages, cells were trypsinized and co-cultured with 30% AF obtained from normal fetuses of 1416 weeks gestational age. Results Compared to FBS-treated controls, AF-treated cultures exhibited special morphological changes in culture, including appearance of spheroid colonies, improved initial cell adhesion and ordered cell alignment. Cell proliferation assays indicated a remarkable increase in the proliferation rate of RPE cells cultivated in 30% AF-supplemented medium, compared with those grown in the absence of AF. Immunocytochemical analyses exhibited nuclear localization of retinal progenitor markers at a ratio of 33% and 27% for CHX10 and PAX6, respectively. This indicated a 3-fold increase in retinal progenitor markers in AF-treated cultures compared to FBS-treated controls. Real-time PCR data of retinal progenitor genes (PAX6, CHX10 and VSX-1 confirmed these results and demonstrated AF's capacity for promoting retinal progenitor cell generation. Conclusion Taken together, the results suggest that AF significantly promotes the rate of retinal progenitor cell generation, indicating that AF can be used as an enriched supplement for serum-free media used for the in vitro propagation of human progenitor cells.

  18. Presence of stem/progenitor cells in the rat penis.

    Science.gov (United States)

    Lin, Guiting; Alwaal, Amjad; Zhang, Xiaoyu; Wang, Jianwen; Wang, Lin; Li, Huixi; Wang, Guifang; Ning, Hongxiu; Lin, Ching-Shwun; Xin, Zhongcheng; Lue, Tom F

    2015-01-15

    Tissue resident stem cells are believed to exist in every organ, and their identification is commonly done using a combination of immunostaining for putative stem cell markers and label-retaining cell (LRC) strategy. In this study, we employed these approaches to identify potential stem cells in the penis. Newborn rats were intraperitoneally injected with thymidine analog, 5-ethynyl-2-deoxyuridine (EdU), and their penis was harvested at 7 h, 3 days, 1 week, and 4 weeks. It was processed for EdU stains and immunofluorescence staining for stem cell markers A2B5, PCNA, and c-kit. EdU-positive cells were counted for each time point and co-localized with each stem cell marker, then isolated and cultured in vitro followed by their characterization using flowcytometry and immunofluorescence. At 7 h post-EdU injection, 410 ± 105.3 penile corporal cells were labeled in each cross-section (∼28%). The number of EdU-positive cells at 3 days increased to 536 ± 115.6, while their percentage dropped to 25%. Progressively fewer EdU-positive cells were present in the sacrificed rat penis at longer time points (1 and 4 weeks). They were mainly distributed in the subtunic and perisinusoidal spaces, and defined as subtunic penile progenitor cells (STPCs) and perisinusoidal penile progenitor cells (PPCs). These cells expressed c-kit, A2B5, and PCNA. After culturing in vitro, only ∼0.324% corporal cells were EdU-labeled LRCs and expressed A2B5/PCNA. Therefore, labeling of penis cells by EdU occurred randomly, and label retaining was not associated with expression of c-kit, A2B5, or PCNA. The penile LRCs are mainly distributed within the subtunic and perisinusoidal space.

  19. 内皮祖细胞和碱性成纤维生长因子对扩张型心肌病大鼠心功能和血管新生的影响%The different effects of endothelial progenitor cells and bFGF on cardiac function and angiogenesis in dilated cardiomyopathy rats

    Institute of Scientific and Technical Information of China (English)

    张昕; 王德强; 郑玉云; 郭晓华

    2011-01-01

    Objective To compare the different effects of endothelial progenitor cells(EPCs) transplantation and basic fibroblast growth factor(bFGF) intramyocardial infusion on cardiac function of dilated cardiomyopathy(DCM) rats. Methods Fifty adult female rats received subcutaneous injection of isoprenaline for induction of DCM. Four weeks later,the model rats were randomly divided into EPCs group, bFGF group and control group of 12 rats each. Three months later , echocardiographic examination and regional myocardial blood flow(RMFM) measurement were performed. EPCs were traced by fluorescence in situ hybridization. The protein and mRNA expression of bFGF in each group was measured by ELISA assay and reverse transcription-polymerase chain reaction respectively. Results Three months after intramyocardial transplantation of EPCs,Sry gene positive cells were detected only in EPCs group,these cells were present in walls of new and original vessels. The cardiac function as well as RMFM were significantly improved in EPCs group and bFGF group,the improvement was more significant in EPCs group. There was higher capillary density,expression of protein and mRNA of bFGF in EPCs group compared with bFGF group and control group (P < 0.05). Conclusions Transplantation of EPCs in myocardium can improve cardiac function,induce neovascularization and increase RMFM in DCM rats. The treatment with EPCs has better efficacy than administration of bFGF alone.%目的 比较心肌内移植内皮祖细胞(EPCs)和注射碱性成纤维生长因子(bFGF)对扩张型心肌病大鼠心功能改善的影响.方法 50只雌性SD大鼠皮下注射异丙肾上腺素,制作扩张型心肌病模型.4周后,36只模型鼠随机分为EPCs组,bFGF组和对照组,每组12只.3个月后,心脏彩色超声评估心功能情况;彩色微球技术评估局部心肌血流量(RMFM);Y染色体原位杂交示踪移植的EPCs;采用逆转录PCR分析bFGF mRNA的表达,ELISA分析心肌组织

  20. How do I perform hematopoietic progenitor cell selection?

    Science.gov (United States)

    Avecilla, Scott T; Goss, Cheryl; Bleau, Sharon; Tonon, Jo-Ann; Meagher, Richard C

    2016-05-01

    Graft-versus-host disease remains the most important source of morbidity and mortality associated with allogeneic stem cell transplantation. The implementation of hematopoietic progenitor cell (HPC) selection is employed by some stem cell processing facilities to mitigate this complication. Current cell selection methods include reducing the number of unwanted T cells (negative selection) and/or enriching CD34+ hematopoietic stem/progenitors (positive selection) using immunomagnetic beads subjected to magnetic fields within columns to separate out targeted cells. Unwanted side effects of cell selection as a result of T-cell reduction are primary graft failure, increased infection rates, delayed immune reconstitution, possible disease relapse, and posttransplant lymphoproliferative disease. The Miltenyi CliniMACS cell isolation system is the only device currently approved for clinical use by the Food and Drug Administration. It uses magnetic microbeads conjugated with a high-affinity anti-CD34 monoclonal antibody capable of binding to HPCs in marrow, peripheral blood, or umbilical cord blood products. The system results in significantly improved CD34+ cell recoveries (50%-100%) and consistent 3-log CD3+ T-cell reductions compared to previous generations of CD34+ cell selection procedures. In this article, the CliniMACS procedure is described in greater detail and the authors provide useful insight into modifications of the system. Successful implementation of cell selection procedures can have a significant positive clinical effect by greatly increasing the pool of donors for recipients requiring transplants. However, before a program implements cell selection techniques, it is important to consider the time and financial resources required to properly and safely perform these procedures. PMID:26919388

  1. Endothelial progenitor cells: what use for the cardiologist?

    Directory of Open Access Journals (Sweden)

    Siddique Aurangzeb

    2010-02-01

    Full Text Available Abstract Endothelial Progenitor Cells (EPC were first described in 1997 and have since been the subject of numerous investigative studies exploring the potential of these cells in the process of cardiovascular damage and repair. Whilst their exact definition and mechanism of action remains unclear, they are directly influenced by different cardiovascular risk factors and have a definite role to play in defining cardiovascular risk. Furthermore, EPCs may have important therapeutic implications and further understanding of their pathophysiology has enabled us to explore new possibilities in the management of cardiovascular disease. This review article aims to provide an overview of the vast literature on EPCs in relation to clinical cardiology.

  2. Cardiac Regeneration and Stem Cells.

    Science.gov (United States)

    Zhang, Yiqiang; Mignone, John; MacLellan, W Robb

    2015-10-01

    After decades of believing the heart loses the ability to regenerate soon after birth, numerous studies are now reporting that the adult heart may indeed be capable of regeneration, although the magnitude of new cardiac myocyte formation varies greatly. While this debate has energized the field of cardiac regeneration and led to a dramatic increase in our understanding of cardiac growth and repair, it has left much confusion in the field as to the prospects of regenerating the heart. Studies applying modern techniques of genetic lineage tracing and carbon-14 dating have begun to establish limits on the amount of endogenous regeneration after cardiac injury, but the underlying cellular mechanisms of this regeneration remained unclear. These same studies have also revealed an astonishing capacity for cardiac repair early in life that is largely lost with adult differentiation and maturation. Regardless, this renewed focus on cardiac regeneration as a therapeutic goal holds great promise as a novel strategy to address the leading cause of death in the developed world.

  3. Bradykinin preconditioning improves therapeutic potential of human endothelial progenitor cells in infarcted myocardium.

    Directory of Open Access Journals (Sweden)

    Zulong Sheng

    Full Text Available OBJECTIVES: Stem cell preconditioning (PC is a powerful approach in reducing cell death after transplantation. We hypothesized that PC human endothelial progenitor cells (hEPCs with bradykinin (BK enhance cell survival, inhibit apoptosis and repair the infarcted myocardium. METHODS: The hEPCs were preconditioned with or without BK. The hEPCs apoptosis induced by hypoxia along with serum deprivation was determined by annexin V-fluorescein isothiocyanate/ propidium iodide staining. Cleaved caspase-3, Akt and eNOS expressions were determined by Western blots. Caspase-3 activity and vascular endothelial growth factor (VEGF levels were assessed in hEPCs. For in vivo studies, the survival and cardiomyocytes apoptosis of transplanted hEPCs were assessed using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodi- carbocyanine,4-chlorobenzenesul-fonate salt labeled hEPCs and TUNEL staining. Infarct size and cardiac function were measured at 10 days after transplantation, and the survival of transplanted hEPCs were visualized using near-infrared optical imaging. RESULTS: In vitro data showed a marked suppression in cell apoptosis following BK PC. The PC reduced caspase-3 activation, increased the Akt, eNOS phosphorylation and VEGF levels. In vivo data in preconditioned group showed a robust cell anti-apoptosis, reduction in infarct size, and significant improvement in cardiac function. The effects of BK PC were abrogated by the B2 receptor antagonist HOE140, the Akt and eNOS antagonists LY294002 and L-NAME, respectively. CONCLUSIONS: The activation of B2 receptor-dependent PI3K/Akt/eNOS pathway by BK PC promotes VEGF secretion, hEPC survival and inhibits apoptosis, thereby improving cardiac function in vivo. The BK PC hEPC transplantation for stem cell-based therapies is a novel approach that has potential for clinical used.

  4. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells

    Science.gov (United States)

    Chen, Huo; Fei, Xia; Tang, YuXu; Yan, Yunqiu; Zhang, Huimin; Zhang, Jinping

    2016-01-01

    A considerable number of studies revealed that B cell development is finely regulated by transcription factors (TFs). Recent studies suggested that TFs are coordinated with microRNAs to control the development of B cells in numerous checkpoints. In the present study, we first found that miR-128-2 was differentially expressed in various immune organs and immunocytes. B cell development was inhibited in miR-128-2-overexpressed chimera and transgenic (TG) mice in bone marrow with decreased preproB, preB, proB, immature B, and recirculating B cells, as well as increased common lymphoid progenitors (CLPs). Further experiments showed that the apoptosis of CLP decreased, but proliferation was not altered in miR-128-2-overexpressed mice. Extensive studies suggested that the inhibition of apoptosis of CLP may be caused by miR-128-2 targeting A2B and MALT1, thereby increasing the phosphorylation of ERK and P38 MAPK. Such findings have prompted future investigations on the function of miR-128-2 in lymph genesis. PMID:27008703

  5. Low- and high-LET radiation drives clonal expansion of lung progenitor cells in vivo

    OpenAIRE

    Farin, Alicia M.; Manzo, Nicholas D.; Kirsch, David G.; Stripp, Barry R.

    2015-01-01

    Abundant populations of epithelial progenitor cells maintain the epithelium along the proximal-to-distal axis of the airway. Exposure of lung tissue to ionizing radiation leads to tissue remodeling and potential cancer initiation or progression. However, little is known about the effects of ionizing radiation on airway epithelial progenitor cells. We hypothesized that ionizing radiation exposure will alter the behavior of airway epithelial progenitor cells in a radiation dose- and quality-dep...

  6. Biological behaviour and role of endothelial progenitor cells in vascular diseases

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qiu-hua; SHE Ming-peng

    2007-01-01

    Obiective To review the biological behaviour of endothelial progenitor cells and their role in vascular diseases.Data sources The data used in this review were mainly from Medline and PubMed for relevant English language articles published from 1985 to March 2007.The search term was "endothelial progenitor cells".Study selection Articles about the biological behaviour of endothelial progenitor cells and their roles in the pathogenesis of vascular diseases such as atherogenesis were used.Results Progenitor cells in bone marrow,peripheral blood and adventitia can differentiate into mature endothelial cells (ECs).The progenitor cells,which express certain surface markers including AC133,CD34 and KDR,enable restoration of the microcirculation and ECs when injury or ischaemia occurs.Endothelial progenitor cells used in experimental models and clinical trials for ischaemic syndromes could restore endothelial integrity and inhibit neointima development.Moreover,their number and functional properties are influenced by certain cytokines and atherosclerotic risk factors.Impairment of the progenitor cells might limit the regenerative capacity,even lead to the development of atherosclerosis or other vascular diseases.Conclusions Endothelial progenitor cells have a particular role in prevention and treatment of certain cardiovascular diseases.However,many challenges remain in understanding differentiation of endothelial progenitor cells,their mobilization and revascularization.

  7. Latent progenitor cells as potential regulators for tympanic membrane regeneration

    Science.gov (United States)

    Kim, Seung Won; Kim, Jangho; Seonwoo, Hoon; Jang, Kyung-Jin; Kim, Yeon Ju; Lim, Hye Jin; Lim, Ki-Taek; Tian, Chunjie; Chung, Jong Hoon; Choung, Yun-Hoon

    2015-06-01

    Tympanic membrane (TM) perforation, in particular chronic otitis media, is one of the most common clinical problems in the world and can present with sensorineural healing loss. Here, we explored an approach for TM regeneration where the latent progenitor or stem cells within TM epithelial layers may play an important regulatory role. We showed that potential TM stem cells present highly positive staining for epithelial stem cell markers in all areas of normal TM tissue. Additionally, they are present at high levels in perforated TMs, especially in proximity to the holes, regardless of acute or chronic status, suggesting that TM stem cells may be a potential factor for TM regeneration. Our study suggests that latent TM stem cells could be potential regulators of regeneration, which provides a new insight into this clinically important process and a potential target for new therapies for chronic otitis media and other eardrum injuries.

  8. 5-azacytidine promotes terminal differentiation of hepatic progenitor cells.

    Science.gov (United States)

    He, Yun; Cui, Jiejie; He, Tongchuan; Bi, Yang

    2015-08-01

    5-azacytidine (5-azaC) is known to induce cardiomyocyte differentiation. However, its function in hepatocyte differentiation is unclear. The present study investigated the in vitro capability of 5-azaC to promote maturation and differentiation of mouse embryonic hepatic progenitor cells, with the aim of developing an approach for improving hepatic differentiation. Mouse embryonic hepatic progenitor cells (HP14.5 cells) were treated with 5-azaC at concentrations from 0 to 20 μmol/l, in addition to hepatocyte induction culture medium. Hepatocyte induction medium induces HP14.5 cell differentiation. 5-azaC may enhance the albumin promotor-driven Gaussia luciferase (ALB-GLuc) activity in induced HP14.5 cells. In the present study 2 μmol/l was found to be the optimum concentration with which to achieve this. The expression of hepatocyte-associated factors was not significantly different between the group treated with 5-azaC alone and the control group. The mRNA levels of ALB; cytokeratin 18 (CK18); tyrosine aminotransferase (TAT); and cytochrome p450, family 1, member A1 (CYP1A1); in addition to the protein levels of ALB, CK18 and uridine diphosphate glucuronyltransferase 1A (UGT1A) in the induced group with 5-azaC, were higher than those in the induced group without 5-azaC, although no significant differences were detected in expression of the hepatic stem cell markers, DLK and α-fetoprotein, between the two groups. Treatment with 5-azaC alone did not affect glycogen synthesis or indocyanine green (ICG) metabolic function in HP14.5 cells, although it significantly increased ICG uptake and periodic acid-Schiff-positive cell numbers amongst HP14.5 cells. Therefore, the present study demonstrated that treatment with 5-azaC alone exerted no effects on the maturation and differentiation of HP14.5 cells. However, 5-azaC exhibited a synergistic effect on the terminal differentiation of induced hepatic progenitor cells in association with a hepatic induction medium. PMID

  9. Characterization of vascular endothelial progenitor cells from chicken bone marrow

    Directory of Open Access Journals (Sweden)

    Bai Chunyu

    2012-05-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPC are a type of stem cell used in the treatment of atherosclerosis, vascular injury and regeneration. At present, most of the EPCs studied are from human and mouse, whereas the study of poultry-derived EPCs has rarely been reported. In the present study, chicken bone marrow-derived EPCs were isolated and studied at the cellular level using immunofluorescence and RT-PCR. Results We found that the majority of chicken EPCs were spindle shaped. The growth-curves of chicken EPCs at passages (P 1, -5 and -9 were typically “S”-shaped. The viability of chicken EPCs, before and after cryopreservation was 92.2% and 81.1%, respectively. Thus, cryopreservation had no obvious effects on the viability of chicken EPCs. Dil-ac-LDL and FITC-UAE-1 uptake assays and immunofluorescent detection of the cell surface markers CD34, CD133, VEGFR-2 confirmed that the cells obtained in vitro were EPCs. Observation of endothelial-specific Weibel-Palade bodies using transmission electron microscopy further confirmed that the cells were of endothelial lineage. In addition, chicken EPCs differentiated into endothelial cells and smooth muscle cells upon induction with VEGF and PDGF-BB, respectively, suggesting that the chicken EPCs retained multipotency in vitro. Conclusions These results suggest that chicken EPCs not only have strong self-renewal capacity, but also the potential to differentiate into endothelial and smooth muscle cells. This research provides theoretical basis and experimental evidence for potential therapeutic application of endothelial progenitor cells in the treatment of atherosclerosis, vascular injury and diabetic complications.

  10. ECM-Dependence of Endothelial Progenitor Cell Features.

    Science.gov (United States)

    Siavashi, Vahid; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Vafaei, Rana; Sariri, Reyhaneh

    2016-08-01

    Preserving self-renewal, multipotent capacity, and large-scale expansion of highly functional progenitor cells, including endothelial progenitor cells (EPCs), is a controversial issue. These current limitations, therefore, raise the need of developing promising in vitro conditions for prolonged expansion of EPCs without loss of their stemness feature. In the current study, the possible role of three different natural extracellular substrates, including collagen, gelatin, and fibronectin, on multiple parameters of EPCs such as cell morphology, phenotype, clonogenic, and vasculogenic properties was scrutinized. Next, EPCs from GFP-positive mice were pre-expanded on each of these ECM substrates and then systemically transplanted into sublethaly irradiated mice to analyze the potency of these cells for marrow reconstitution. Our results revealed considerable promise for fibronectin for EPC expansion with maintenance of stemness characteristics, whereas gelatin and collagen matrices directed the cells toward a mature endothelial phenotype. Transplantation of EPCs pre-expanded on fibronectin resulted in widespread distribution and appropriate engraftment to various tissues with habitation in close association with the microvasculature. In addition, fibronectin pre-expanded cells were gradually enriched in the bone marrow after transplantation, resulting in marrow repopulation and hematologic recovery, leading to improved survival of recipient mice whereas gelatin- and collagen-expanded cells failed to reconstitute the bone marrow. This study demonstrated that, cell characteristics of in vitro expanded EPCs are determined by the subjacent matrix. Fibronectin-expanded EPCs are heralded as a source of great promise for bone marrow reconstitution and neo-angiogenesis in therapeutic bone marrow transplantation. J. Cell. Biochem. 117: 1934-1946, 2016. © 2016 Wiley Periodicals, Inc. PMID:26756870

  11. Influence of microglia on retinal progenitor cell turnover and cell replacement.

    Science.gov (United States)

    Dick, A D

    2009-10-01

    Microglia within the retina are continually replaced from the bone marrow and are the resident myeloid-derived cells within the retina. Throughout life, microglial function is conditioned by the microenvironment affording immunomodulation to control inflammation as well as functioning to enable normal development and, during adulthood, maintain normal retinal function. In adulthood, recent evidence supports the concept that the retina continues to replace cells to maintain optimal function. Although in some cases after injury, degeneration, or inflammation there remains an inextricable decline in visual function inferring a deficit in cell replacement, the deficit could be explained by microglial cell activation influencing the ability of either retinal progenitor cells or recruited progenitor cells to integrate and differentiate appropriately. Myeloid cell response differs depending on insult: it is evident that during inflammation microglia and the infiltrating myeloid cell function are conditioned by the cytokine environment. Indeed, modulating myeloid cell function therapeutically suppresses disease in experimental models of autoimmunity, whereas in non-inflammatory models microglia have little or no effect on the course of degeneration. The extent of myeloid activation can help determine retinal progenitor cell turnover. Retinal progenitor cells may be isolated from adult human retina, which, albeit limited, display mitotic activity and can differentiate. Microglial activation secreting IL-6 limits progenitor cell turnover and the extent to which differentiation to post-mitotic retinal cells occurs. Such experimental data illustrate the need to develop methods to replenish normal retinal myeloid cell function facilitating integration, either by cell transplantation or by encouraging retinal progenitor cells to recover retinal function.

  12. Isolation and characterization of progenitor cells in uninjured, adult rat lacrimal gland

    DEFF Research Database (Denmark)

    Shatos, Marie A; Haugaard-Kedstrom, Linda; Hodges, Robin R;

    2012-01-01

    PURPOSE: The purpose of this study was to investigate the presence of progenitor cells in the uninjured, adult rat lacrimal gland (LG). METHODS: The presence of progenitor cells was examined in LG sections from male rats using antibodies against selected stem cell markers and α-smooth muscle actin...

  13. Development and application of human adult stem or progenitor cell organoids

    NARCIS (Netherlands)

    Rookmaaker, Maarten B; Schutgens, Frans; Verhaar, Marianne C; Clevers, Hans

    2015-01-01

    Adult stem or progenitor cell organoids are 3D adult-organ-derived epithelial structures that contain self-renewing and organ-specific stem or progenitor cells as well as differentiated cells. This organoid culture system was first established in murine intestine and subsequently developed for sever

  14. From Here to There, Progenitor Cells and Stem Cells Are Everywhere in Lung Vascular Remodeling.

    Science.gov (United States)

    Heise, Rebecca L; Link, Patrick A; Farkas, Laszlo

    2016-01-01

    The field of stem cell biology, cell therapy, and regenerative medicine has expanded almost exponentially, in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), or pulmonary arterial hypertension (PAH). Extensive research activity is exploring the lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field. PMID:27583245

  15. From here to there, progenitor cells and stem cells are everywhere in lung vascular remodeling

    Directory of Open Access Journals (Sweden)

    Rebecca L. Heise

    2016-08-01

    Full Text Available The field of stem cell biology, cell therapy and regenerative medicine has expanded almost exponentially in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD, chronic obstructive pulmonary disease (COPD, idiopathic pulmonary fibrosis (IPF or pulmonary arterial hypertension (PAH. Extensive research activity is exploring lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field.

  16. Fractalkine expression induces endothelial progenitor cell lysis by natural killer cells.

    Directory of Open Access Journals (Sweden)

    Dilyana Todorova

    Full Text Available BACKGROUND: Circulating CD34(+ cells, a population that includes endothelial progenitors, participate in the maintenance of endothelial integrity. Better understanding of the mechanisms that regulate their survival is crucial to improve their regenerative activity in cardiovascular and renal diseases. Chemokine-receptor cross talk is critical in regulating cell homeostasis. We hypothesized that cell surface expression of the chemokine fractalkine (FKN could target progenitor cell injury by Natural Killer (NK cells, thereby limiting their availability for vascular repair. METHODOLOGY/PRINCIPAL FINDINGS: We show that CD34(+-derived Endothelial Colony Forming Cells (ECFC can express FKN in response to TNF-α and IFN-γ inflammatory cytokines and that FKN expression by ECFC stimulates NK cell adhesion, NK cell-mediated ECFC lysis and microparticles release in vitro. The specific involvement of membrane FKN in these processes was demonstrated using FKN-transfected ECFC and anti-FKN blocking antibody. FKN expression was also evidenced on circulating CD34(+ progenitor cells and was detected at higher frequency in kidney transplant recipients, when compared to healthy controls. The proportion of CD34(+ cells expressing FKN was identified as an independent variable inversely correlated to CD34(+ progenitor cell count. We further showed that treatment of CD34(+ circulating cells isolated from adult blood donors with transplant serum or TNF-α/IFN-γ can induce FKN expression. CONCLUSIONS: Our data highlights a novel mechanism by which FKN expression on CD34(+ progenitor cells may target their NK cell mediated killing and participate to their immune depletion in transplant recipients. Considering the numerous diseased contexts shown to promote FKN expression, our data identify FKN as a hallmark of altered progenitor cell homeostasis with potential implications in better evaluation of vascular repair in patients.

  17. Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors

    Science.gov (United States)

    Sukhai, Mahadeo A.; Prabha, Swayam; Hurren, Rose; Rutledge, Angela C.; Lee, Anna Y.; Sriskanthadevan, Shrivani; Sun, Hong; Wang, Xiaoming; Skrtic, Marko; Seneviratne, Ayesh; Cusimano, Maria; Jhas, Bozhena; Gronda, Marcela; MacLean, Neil; Cho, Eunice E.; Spagnuolo, Paul A.; Sharmeen, Sumaiya; Gebbia, Marinella; Urbanus, Malene; Eppert, Kolja; Dissanayake, Dilan; Jonet, Alexia; Dassonville-Klimpt, Alexandra; Li, Xiaoming; Datti, Alessandro; Ohashi, Pamela S.; Wrana, Jeff; Rogers, Ian; Sonnet, Pascal; Ellis, William Y.; Corey, Seth J.; Eaves, Connie; Minden, Mark D.; Wang, Jean C.Y.; Dick, John E.; Nislow, Corey; Giaever, Guri; Schimmer, Aaron D.

    2012-01-01

    Despite efforts to understand and treat acute myeloid leukemia (AML), there remains a need for more comprehensive therapies to prevent AML-associated relapses. To identify new therapeutic strategies for AML, we screened a library of on- and off-patent drugs and identified the antimalarial agent mefloquine as a compound that selectively kills AML cells and AML stem cells in a panel of leukemia cell lines and in mice. Using a yeast genome-wide functional screen for mefloquine sensitizers, we identified genes associated with the yeast vacuole, the homolog of the mammalian lysosome. Consistent with this, we determined that mefloquine disrupts lysosomes, directly permeabilizes the lysosome membrane, and releases cathepsins into the cytosol. Knockdown of the lysosomal membrane proteins LAMP1 and LAMP2 resulted in decreased cell viability, as did treatment of AML cells with known lysosome disrupters. Highlighting a potential therapeutic rationale for this strategy, leukemic cells had significantly larger lysosomes compared with normal cells, and leukemia-initiating cells overexpressed lysosomal biogenesis genes. These results demonstrate that lysosomal disruption preferentially targets AML cells and AML progenitor cells, providing a rationale for testing lysosomal disruption as a novel therapeutic strategy for AML. PMID:23202731

  18. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Joon; Seo, Ha-Rim [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Jeong, Hyo Eun [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Choi, Seung-Cheol; Park, Jae Hyung; Yu, Cheol Woong; Hong, Soon Jun [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Chung, Seok [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Lim, Do-Sun, E-mail: dslmd@kumc.or.kr [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.

  19. Effect of endothelial progenitor cells in neovascularization and their application in tumor therapy

    Institute of Scientific and Technical Information of China (English)

    DONG Fang; HA Xiao-qin

    2010-01-01

    Objective To review the effect of endothelial progenitor cells in neovascularization as well as their application to the therapy of tumors.Data sources The data used in this review were mainly from PubMed for relevant English language articles published from 1997 to 2009. The search term was "endothelial progenitor cells".Study selection Articles regarding the role of endothelial progenitor cells in neovascularization and their application to the therapy of tumors were selected.Results Endothelial progenitor cells isolated from bone marrow, umbilical cord blood and peripheral blood can proliferate, mobilize and differentiate into mature endothelial cells. Experiments suggest endothelial progenitor cells take part in forming the tumor vascular through a variety of mechanisms related to vascular endothelial growth factor, matrix metalloproteinases, chemokine stromal cell-derived factor 1 and its receptor C-X-C receptor-4, erythropoietin, Notchsignal pathway and so on. Evidence demonstrates that the number and function change of endothelial progenitor cells in peripheral blood can be used as a biomarker of the response of cancer patients to anti-tumor therapy and predict the prognosis and recurrence. In addition, irradiation temporarily increased endothelial cells number and decreased the endothelial progenitor cell counts in animal models. Meanwhile, in preclinical experiments, therapeutic gene-modified endothelial progenitor cells have been approved to attenuate tumor growth and offer a novel strategy for cell therapy and gene therapy of cancer.Conclusions Endothelial progenitor cells play a particular role in neovascularization and have attractively potential prognostic and therapeutic applications to malignant tumors. However, a series of problems, such as the definitive biomarkers of endothelial progenitor cells, their interrelationship with radiotherapy and their application in cell therapy and gene therapy of tumors, need further investigation.

  20. Comparison of isolation and expansion techniques for equine osteogenic progenitor cells from periosteal tissue

    OpenAIRE

    McDuffee, Laurie A.

    2012-01-01

    Stem cell therapy and cell-based therapies using other progenitor cells are becoming the treatment of choice for many equine orthopedic lesions. Important criteria for obtaining autogenous equine progenitor cells in vitro for use in clinical cell-based therapy include the ability to isolate and expand cells repeatedly to high numbers (millions) required for therapy, in a clinically relevant time frame. Cells must also maintain their ability to differentiate into the tissue type of choice. The...

  1. Endothelial Progenitor Cells in Sprouting Angiogenesis: Proteases Pave the Way.

    Science.gov (United States)

    Laurenzana, A; Fibbi, G; Margheri, F; Biagioni, A; Luciani, C; Del Rosso, M; Chillà, A

    2015-01-01

    Sprouting angiogenesis consists of the expansion and remodelling of existing vessels, where the vascular sprouts connect each other to form new vascular loops. Endothelial Progenitor Cells (EPCs) are a subtype of stem cells, with high proliferative potential, able to differentiate into mature Endothelial Cells (ECs) during the neovascularization process. In addition to this direct structural role EPCs improve neovascularization, also secreting numerous pro-angiogenic factors able to enhance the proliferation, survival and function of mature ECs, and other surrounding progenitor cells. While sprouting angiogenesis by mature ECs involves resident ECs, the vasculogenic contribution of EPCs is a high hurdle race. Bone marrowmobilized EPCs have to detach from the stem cell niche, intravasate into bone marrow vessels, reach the hypoxic area or tumour site, extravasate and incorporate into the new vessel lumen, thus complementing the resident mature ECs in sprouting angiogenesis. The goal of this review is to highlight the role of the main protease systems able to control each of these steps. The pivotal protease systems here described, involved in vascular patterning in sprouting angiogenesis, are the matrix-metalloproteinases (MMPs), the serineproteinases urokinase-type plasminogen activator (uPA) associated with its receptor (uPAR) and receptorassociated plasminogen/plasmin, the neutrophil elastase and the cathepsins. Since angiogenesis plays a critical role not only in physiological but also in pathological processes, such as in tumours, controlling the contribution of EPCs to the angiogenic process, through the regulation of the protease systems involved, could yield new opportunities for the therapeutic prospect of efficient control of pathological angiogenesis. PMID:26321757

  2. Culture materials affect ex vivo expansion of hematopoietic progenitor cells.

    Science.gov (United States)

    LaIuppa, J A; McAdams, T A; Papoutsakis, E T; Miller, W M

    1997-09-01

    Ex vivo expansion of hematopoietic cells is important for applications such as cancer treatment, gene therapy, and transfusion medicine. While cell culture systems are widely used to evaluate the biocompatibility of materials for implantation, the ability of materials to support proliferation of primary human cells in cultures for reinfusion into patients has not been addressed. We screened a variety of commercially available polymer (15 types), metal (four types), and glass substrates for their ability to support expansion of hematopoietic cells when cultured under conditions that would be encountered in a clinical setting. Cultures of peripheral blood (PB) CD34+ cells and mononuclear cells (MNC) were evaluated for expansion of total cells and colony-forming unit-granulocyte monocyte (CFU-GM; progenitors committed to the granulocyte and/or monocyte lineage). Human hematopoietic cultures in serum-free medium were found to be extremely sensitive to the substrate material. The only materials tested that supported expansion at or near the levels of polystyrene were tissue culture polystyrene, Teflon perfluoroalkoxy, Teflon fluorinated ethylene propylene, cellulose acetate, titanium, new polycarbonate, and new polymethylpentene. MNC were less sensitive to the substrate materials than the primitive CD34+ progenitors, although similar trends were seen for expansion of the two cell populations on the substrates tested. CFU-GM expansion was more sensitive to substrate materials than was total cell expansion. The detrimental effects of a number of the materials on hematopoietic cultures appear to be caused by protein adsorption and/or leaching of toxins. Factors such as cleaning, sterilization, and reuse significantly affected the performance of some materials as culture substrates. We also used PB CD34+ cell cultures to examine the biocompatibility of gas-permeable cell culture and blood storage bags and several types of tubing commonly used with biomedical equipment

  3. Jun is required in Isl1-expressing progenitor cells for cardiovascular development.

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    Full Text Available Jun is a highly conserved member of the multimeric activator protein 1 transcription factor complex and plays an important role in human cancer where it is known to be critical for proliferation, cell cycle regulation, differentiation, and cell death. All of these biological functions are also crucial for embryonic development. Although all Jun null mouse embryos die at mid-gestation with persistent truncus arteriosus, a severe cardiac outflow tract defect also seen in human congenital heart disease, the developmental mechanisms are poorly understood. Here we show that murine Jun is expressed in a restricted pattern in several cell populations important for cardiovascular development, including the second heart field, pharyngeal endoderm, outflow tract and atrioventricular endocardial cushions and post-migratory neural crest derivatives. Several genes, including Isl1, molecularly mark the second heart field. Isl1 lineages include myocardium, smooth muscle, neural crest, endocardium, and endothelium. We demonstrate that conditional knockout mouse embryos lacking Jun in Isl1-expressing progenitors display ventricular septal defects, double outlet right ventricle, semilunar valve hyperplasia and aortic arch artery patterning defects. In contrast, we show that conditional deletion of Jun in Tie2-expressing endothelial and endocardial precursors does not result in aortic arch artery patterning defects or embryonic death, but does result in ventricular septal defects and a low incidence of semilunar valve defects, atrioventricular valve defects and double outlet right ventricle. Our results demonstrate that Jun is required in Isl1-expressing progenitors and, to a lesser extent, in endothelial cells and endothelial-derived endocardium for cardiovascular development but is dispensable in both cell types for embryonic survival. These data provide a cellular framework for understanding the role of Jun in the pathogenesis of congenital heart disease.

  4. Growth factor-and cytokine-stimulated endothelial progenitor cells in post-ischemic cerebral neovascularization

    Institute of Scientific and Technical Information of China (English)

    Philip V.Peplow

    2014-01-01

    Endothelial progenitor cells are resident in the bone marrow blood sinusoids and circulate in the peripheral circulation. They mobilize from the bone marrow after vascular injury and home to the site of injury where they differentiate into endothelial cells. Activation and mobilization of endothelial progenitor cells from the bone marrow is induced via the production and release of endothelial progenitor cell-activating factors and includes speciifc growth factors and cytokines in response to peripheral tissue hypoxia such as after acute ischemic stroke or trauma. Endotheli-al progenitor cells migrate and home to speciifc sites following ischemic stroke via growth factor/cytokine gradients. Some growth factors are less stable under acidic conditions of tissue isch-emia, and synthetic analogues that are stable at low pH may provide a more effective therapeutic approach for inducing endothelial progenitor cell mobilization and promoting cerebral neovas-cularization following ischemic stroke.

  5. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    Science.gov (United States)

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  6. Ischemia-induced neural stem/progenitor cells express pyramidal cell markers

    NARCIS (Netherlands)

    Clausen, Martijn; Nakagomi, Takayuki; Nakano-Doi, Akiko; Saino, Orie; Takata, Masashi; Taguchi, Akihiko; Luiten, Paul; Matsuyama, Tomohiro

    2011-01-01

    Adult brain-derived neural stem cells have acquired a lot of interest as an endurable neuronal cell source that can be used for central nervous system repair in a wide range of neurological disorders such as ischemic stroke. Recently, we identified injury-induced neural stem/progenitor cells in the

  7. Effects of hematopoietic growth factors on purified bone marrow progenitor cells

    NARCIS (Netherlands)

    F.J. Bot (Freek)

    1992-01-01

    textabstractWe have used highly enriched hematopoietic progenitor cells and in-vitro culture to examine the following questions: 1. The effects of recombinant lL-3 and GM-CSF on proliferation and differentiation of enriched hematopoietic progenitor cells have not been clearly defined: - how do IL~3

  8. An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2011-01-01

    Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression.

  9. Erythropoietin Receptor Positive Circulating Progenitor Cells and Endothelial Progenitor Cells in Patients with Different Stages of Diabetic Retinopathy

    Institute of Scientific and Technical Information of China (English)

    Liu-mei Hu; Guo-xu Xu; Guo-tong XU; Wei-ye Li; Xia Lei; Bo Ma; Yu Zhang; Yan Yan; Ya-lan Wu; Ge-zhi Xu; Wen Ye; Ling Wang

    2011-01-01

    Objective To investigate the possible involvement of erythropoietin (EPO)/erythropoietin receptor(EPOR) system in neovascularization and vascular regeneration in diabetic retinopathy (DR).Methods EPOR positive circulating progenitor cells (CPCs: CD34+) and endothelial progenitor cells (EPCs: CD34+KDR+) were assessed by flow cytometry in type 2 diabetic patients with different stages of DR. The cohort consisted of age- and sex-matched control patients without diabetes (n=7), non-prolif-erative DR (NPDR, n=7), proliferative DR (PDR, n=8), and PDR complicated with diabetic nephropathy (PDR-DN, n=7). Results The numbers of EPOR+ CPCs and EPOR+ EPCs were reduced remarkably in NPDR compared with the control group (both P<0.01), whereas rebounded in PDR and PDR-DN groups in varying degrees. Similar changes were observed in respect of the proportion of EPOR+ CPCs in CPCs (NPDR vs.control, P< 0.01) and that of EPOR+ EPCs in EPCs (NPDR vs. control, P< 0.05). Conclusion Exogenous EPO, mediated via the EPO/EPOR system of EPCs, may alleviate the im-paired vascular regeneration in NPDR, whereas it might aggravate retinal neovascularization in PDR due to a rebound of EPOR+ EPCs associated with ischemia.

  10. GREAT PROMISE OF TISSUE-RESIDENT ADULT STEM/PROGENITOR CELLS IN TRANSPLANTATION AND CANCER THERAPIES

    OpenAIRE

    Mimeault, Murielle; Batra, Surinder K.

    2012-01-01

    Recent progress in tissue-resident adult stem/progenitor cell research has inspired great interest because these immature cells from your own body can act as potential, easily accessible cell sources for cell transplantation in regenerative medicine and cancer therapies. The use of adult stem/progenitor cells endowed with a high self-renewal ability and multilineage differentiation potential, which are able to regenerate all the mature cells in the tissues from their origin, offers great prom...

  11. Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Madonna, Rosalinda [The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Texas (United States); Institute of Cardiology, and Center of Excellence on Aging, ' G. d' Annunzio' University, Chieti (Italy); Shelat, Harnath; Xue, Qun; Willerson, James T. [The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Texas (United States); The Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, Texas (United States); De Caterina, Raffaele [Institute of Cardiology, and Center of Excellence on Aging, ' G. d' Annunzio' University, Chieti (Italy); Geng, Yong-Jian, E-mail: yong-jian.geng@uth.tmc.edu [The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Texas (United States); The Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, Texas (United States)

    2009-10-15

    Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiac myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.

  12. File list: His.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 Histone Blood Granulocyte-Macro...edbc.jp/kyushu-u/mm9/assembled/His.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  13. File list: His.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 Histone Blood Granulocyte-Macro...edbc.jp/kyushu-u/mm9/assembled/His.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  14. File list: His.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 Histone Blood Granulocyte-Macro...edbc.jp/kyushu-u/mm9/assembled/His.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  15. File list: His.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 Histone Blood Granulocyte-Macro...edbc.jp/kyushu-u/mm9/assembled/His.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  16. Stem cells and exosomes in cardiac repair.

    Science.gov (United States)

    Singla, Dinender K

    2016-04-01

    Cardiac diseases currently lead in the number of deaths per year, giving rise an interest in transplanting embryonic and adult stem cells as a means to improve damaged tissue from conditions such as myocardial infarction and coronary artery disease. After testing these cells as a treatment option in both animal and human models, it is believed that these cells improve the damaged tissue primarily through the release of autocrine and paracrine factors. Major concerns such as teratoma formation, immune response, difficulty harvesting cells, and limited cell proliferation and differentiation, hinder the routine use of these cells as a treatment option in the clinic. The advent of stem cell-derived exosomes circumvent those concerns, while still providing the growth factors, miRNA, and additional cell protective factors that aid in repairing and regenerating the damaged tissue. These exosomes have been found to be anti-apoptotic, anti-fibrotic, pro-angiogenic, as well as enhance cardiac differentiation, all of which are key to repairing damaged tissue. As such, stem cell derived exosomes are considered to be a potential new and novel approach in the treatment of various cardiac diseases. PMID:26848944

  17. The Novel Methods for Analysis of Exosomes Released from Endothelial Cells and Endothelial Progenitor Cells

    OpenAIRE

    Jinju Wang; Runmin Guo; Yi Yang; Bradley Jacobs; Suhong Chen; Ifeanyi Iwuchukwu; Gaines, Kenneth J.; Yanfang Chen; Richard Simman; Guiyuan Lv; Keng Wu; Bihl, Ji C.

    2016-01-01

    Exosomes (EXs) are cell-derived vesicles that mediate cell-cell communication and could serve as biomarkers. Here we described novel methods for purification and phenotyping of EXs released from endothelial cells (ECs) and endothelial progenitor cells (EPCs) by combining microbeads and fluorescence quantum dots (Q-dots®) techniques. EXs from the culture medium of ECs and EPCs were isolated and detected with cell-specific antibody conjugated microbeads and second antibody conjugated Q-dots by ...

  18. Autologous bone marrow-derived progenitor cell transplantation for myocardial regeneration after acute infarction

    Directory of Open Access Journals (Sweden)

    Obradović Slobodan

    2004-01-01

    Full Text Available Background. Experimental and first clinical studies suggest that the transplantation of bone marrow derived, or circulating blood progenitor cells, may beneficially affect postinfarction remodelling processes after acute myocardial infarction. Aim. This pilot trial reports investigation of safety and feasibility of autologous bone marrow-derived progenitor cell therapy for faster regeneration of the myocardium after infarction. Methods and results. Four male patients (age range 47-68 years with the first extensive anterior, ST elevation, acute myocardial infarction (AMI, were treated by primary angioplasty. Bone marrow mononuclear cells were administered by intracoronary infusion 3-5 days after the infarction. Bone marrow was harvested by multiple aspirations from posterior cristae iliacae under general anesthesia, and under aseptic conditions. After that, cells were filtered through stainless steel mesh, centrifuged and resuspended in serum-free culture medium, and 3 hours later infused through the catheter into the infarct-related artery in 8 equal boluses of 20 ml. Myocardial viability in the infarcted area was confirmed by dobutamin stress echocardiography testing and single-photon emission computed tomography (SPECT 10-14 days after infarction. One patient had early stent thrombosis immediately before cell transplantation, and was treated successfully with second angioplasty. Single average ECG revealed one positive finding at discharge, and 24-hour Holter ECG showed only isolated ventricular ectopic beats during the follow-up period. Early findings in two patients showed significant improvement of left ventricular systolic function 3 months after the infarction. There were no major cardiac events after the transplantation during further follow-up period (30-120 days after infarction. Control SPECT for the detection of ischemia showed significant improvement in myocardial perfusion in two patients 4 months after the infarction

  19. Nitrative Stress Participates in Endothelial Progenitor Cell Injury in Hyperhomocysteinemia

    Science.gov (United States)

    Dong, Yu; Sun, Qi; Liu, Teng; Wang, Huanyuan; Jiao, Kun; Xu, Jiahui; Liu, Xin; Liu, Huirong; Wang, Wen

    2016-01-01

    In order to investigate the role of nitrative stress in vascular endothelial injury in hyperhomocysteinemia (HHcy), thirty healthy adult female Wistar rats were randomly divided into three groups: control, hyperhomocysteinemia model, and hyperhomocysteinemia with FeTMPyP (peroxynitrite scavenger) treatment. The endothelium-dependent dilatation of thoracic aorta in vitro was determined by response to acetylcholine (ACh). The histological changes in endothelium were assessed by HE staining and scanning electron microscopy (SEM). The expression of 3-nitrotyrosine (NT) in thoracic aorta was demonstrated by immunohistochemistry and immunofluorescence, and the number of circulating endothelial progenitor cells (EPCs) was quantified by flow cytometry. Hyperhomocysteinemia caused significant endothelial injury and dysfunction including vasodilative and histologic changes, associated with higher expression of NT in thoracic aorta. FeTMPyP treatment reversed these injuries significantly. Further, the effect of nitrative stress on cultured EPCs in vitro was investigated by administering peroxynitrite donor (3-morpholino-sydnonimine, SIN-1) and peroxynitrite scavenger (FeTMPyP). The roles of nitrative stress on cell viability, necrosis and apoptosis were evaluated with 3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium (MTT) assay, lactate dehydrogenase (LDH) release assay and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, respectively. Also, the phospho-eNOS expression and tube formation in Matrigel of cultured EPCs was detected. Our data showed that the survival of EPCs was much lower in SIN-1 group than in vehicle group, both the apoptosis and necrosis of EPCs were much more severe, and the p-eNOS expression and tube formation in Matrigel were obviously declined. Subsequent pretreatment with FeTMPyP reversed these changes. Further, pretreatment with FeTMPyP reversed homocysteine-induced EPC injury. In conclusion, this study indicates that

  20. Nitrative Stress Participates in Endothelial Progenitor Cell Injury in Hyperhomocysteinemia.

    Science.gov (United States)

    Dong, Yu; Sun, Qi; Liu, Teng; Wang, Huanyuan; Jiao, Kun; Xu, Jiahui; Liu, Xin; Liu, Huirong; Wang, Wen

    2016-01-01

    In order to investigate the role of nitrative stress in vascular endothelial injury in hyperhomocysteinemia (HHcy), thirty healthy adult female Wistar rats were randomly divided into three groups: control, hyperhomocysteinemia model, and hyperhomocysteinemia with FeTMPyP (peroxynitrite scavenger) treatment. The endothelium-dependent dilatation of thoracic aorta in vitro was determined by response to acetylcholine (ACh). The histological changes in endothelium were assessed by HE staining and scanning electron microscopy (SEM). The expression of 3-nitrotyrosine (NT) in thoracic aorta was demonstrated by immunohistochemistry and immunofluorescence, and the number of circulating endothelial progenitor cells (EPCs) was quantified by flow cytometry. Hyperhomocysteinemia caused significant endothelial injury and dysfunction including vasodilative and histologic changes, associated with higher expression of NT in thoracic aorta. FeTMPyP treatment reversed these injuries significantly. Further, the effect of nitrative stress on cultured EPCs in vitro was investigated by administering peroxynitrite donor (3-morpholino-sydnonimine, SIN-1) and peroxynitrite scavenger (FeTMPyP). The roles of nitrative stress on cell viability, necrosis and apoptosis were evaluated with 3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium (MTT) assay, lactate dehydrogenase (LDH) release assay and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, respectively. Also, the phospho-eNOS expression and tube formation in Matrigel of cultured EPCs was detected. Our data showed that the survival of EPCs was much lower in SIN-1 group than in vehicle group, both the apoptosis and necrosis of EPCs were much more severe, and the p-eNOS expression and tube formation in Matrigel were obviously declined. Subsequent pretreatment with FeTMPyP reversed these changes. Further, pretreatment with FeTMPyP reversed homocysteine-induced EPC injury. In conclusion, this study indicates that

  1. Derivation of Myogenic Progenitors Directly From Human Pluripotent Stem Cells Using a Sphere-Based Culture

    OpenAIRE

    Hosoyama, Tohru; McGivern, Jered V.; Van Dyke, Jonathan M.; Allison D Ebert; Suzuki, Masatoshi

    2014-01-01

    The authors present a novel protocol for deriving myogenic progenitors from human embryonic stem cells and induced pluripotent stem cells using free-floating spherical culture. Results show that sphere-based cultures of human pluripotent stem cells, expanded in medium containing high concentrations of fibroblast growth factor and epidermal growth factor, can propagate myogenic progenitors from human embryonic stem cells and healthy and disease-specific induced pluripotent stem cells.

  2. Secreted proteome of the murine multipotent hematopoietic progenitor cell line DKmix.

    Science.gov (United States)

    Luecke, Nina; Templin, Christian; Muetzelburg, Marika Victoria; Neumann, Detlef; Just, Ingo; Pich, Andreas

    2010-03-15

    Administration of the multipotent hematopoietic progenitor cell (HPC) line DKmix improved cardiac function after myocardial infarction and accelerated dermal wound healing due to paracrine mechanisms. The aim of this study was to analyse the secreted proteins of DKmix cells in order to identify the responsible paracrine factors and assess their relevance to the wide spectrum of therapeutic effects. A mass spectrometry (MS)-based approach was used to identify secreted proteins of DKmix cells. Serum free culture supernatants of DKmix-conditioned medium were collected and the proteins present were separated, digested by trypsin and the resulting peptides were then analyzed by matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) MS. Overall 95 different proteins were identified. Among them, secretory proteins galectin-3 and gelsolin were identified. These proteins are known to stimulate cell migration and influence wound healing and cardiac remodelling. The remaining proteins originate from intracellular compartments like cytoplasm (69%), nucleus (12%), mitochondria (4%), and cytoplasmic membrane (3%) indicating permeable or leaky DKmix cells in the conditioned medium. Additionally, a sandwich immunoassay was used to detect and quantify cytokines and chemokines. Interleukin-6 (IL-6), interleukin-13 (IL-13), monocyte-chemoattractant protein-1 (MCP-1), monocyte-chemoattractant protein-3 (MCP-3), monocyte-chemoattractant protein-1alpha (MIP-1alpha) and monocyte-chemoattractant protein-1beta (MIP-1beta) were detected in low concentrations. This study identified a subset of proteins present in the DKmix-conditioned medium that act as paracrine modulators of tissue repair. Moreover, it suggests that DKmix-derived conditioned medium might have therapeutic potency by promoting tissue regeneration. PMID:20127908

  3. Mast cells and basophils: trojan horses of conventional lin- stem/progenitor cell isolates.

    Science.gov (United States)

    Heneberg, Petr

    2011-11-01

    Cancer microenvironment is increasingly recognized as an important factor affecting cancer onset and progression. Since Wirchow reported in 1863 that tumors contain inflammatory cells, the field shifted significantly forward, and immune cells residing in tumors appear to be attractive targets of cancer therapies. For some methods, such as stem/progenitor cell isolation from both cancer and healthy tissues, removal of contaminating immune cells is crucial to achieve consistent, reproducible and accurate results. Despite current methods of lineage negative selection accounts for removal of over 99 % of immune cells from stem/progenitor cell isolates, the vast majority of lineage antibody cocktails retain basophils, dendritic cells, and mast cells. Here we discuss the ability of the most commonly used lineage markers to bind to the plasma membrane of mast cells and/or basophils, and suggest alternatives, which may be used for negative selection of these cellular populations. Both, mast cells and basophils, were shown to participate actively in cancer-associated angiogenesis, tissue remodeling and recruitment of other immune cell types, including eosinophils, B cells, memory T cells and Treg cells. In turn, tumor-derived peptides and chemotactic factors are known to recruit and activate mast cells in neoplasias, resulting in altered tumor progression. Repeated findings of CD34+ populations of mast cells and basophils further highlight necessity of their separation from stem/progenitor cell isolates in both, preclinical experiments and clinical praxis. PMID:22103846

  4. 5-azacytidine promotes the transdifferentiation of cardiac cells to skeletal myocytes.

    Science.gov (United States)

    Kaur, Keerat; Yang, Jinpu; Eisenberg, Carol A; Eisenberg, Leonard M

    2014-10-01

    The DNA methylation inhibitor 5-azacytidine is widely used to stimulate the cardiac differentiation of stem cells. However, 5-azacytidine has long been employed as a tool for stimulating skeletal myogenesis. Yet, it is unclear whether the ability of 5-azacytidine to promote both cardiac and skeletal myogenesis is dependent strictly on the native potential of the starting cell population or if this drug is a transdifferentiation agent. To address this issue, we examined the effect of 5-azacytidine on cultures of adult mouse atrial tissue, which contains cardiac but not skeletal muscle progenitors. Exposure to 5-azacytidine caused atrial cells to elongate and increased the presence of fat globules within the cultures. 5-Azacytidine also induced expression of the skeletal myogenic transcription factors MyoD and myogenin. 5-Azacytidine pretreatments allowed atrial cells to undergo adipogenesis or skeletal myogenesis when subsequently cultured with either insulin and dexamethasone or low-serum media, respectively. The presence of skeletal myocytes in atrial cultures was indicated by dual staining for myogenin and sarcomeric α-actin. These data demonstrate that 5-azacytidine converts cardiac cells to noncardiac cell types and suggests that this drug has a compromised efficacy as a cardiac differentiation factor. PMID:25090621

  5. Alternative splicing in the differentiation of human embryonic stem cells into cardiac precursors.

    Directory of Open Access Journals (Sweden)

    Nathan Salomonis

    2009-11-01

    Full Text Available The role of alternative splicing in self-renewal, pluripotency and tissue lineage specification of human embryonic stem cells (hESCs is largely unknown. To better define these regulatory cues, we modified the H9 hESC line to allow selection of pluripotent hESCs by neomycin resistance and cardiac progenitors by puromycin resistance. Exon-level microarray expression data from undifferentiated hESCs and cardiac and neural precursors were used to identify splice isoforms with cardiac-restricted or common cardiac/neural differentiation expression patterns. Splice events for these groups corresponded to the pathways of cytoskeletal remodeling, RNA splicing, muscle specification, and cell cycle checkpoint control as well as genes with serine/threonine kinase and helicase activity. Using a new program named AltAnalyze (http://www.AltAnalyze.org, we identified novel changes in protein domain and microRNA binding site architecture that were predicted to affect protein function and expression. These included an enrichment of splice isoforms that oppose cell-cycle arrest in hESCs and that promote calcium signaling and cardiac development in cardiac precursors. By combining genome-wide predictions of alternative splicing with new functional annotations, our data suggest potential mechanisms that may influence lineage commitment and hESC maintenance at the level of specific splice isoforms and microRNA regulation.

  6. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  7. File list: NoD.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  8. File list: NoD.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  9. File list: InP.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Adipose_progenitor_cells mm9 Input control Adipocyte Adipose proge...nitor cells SRX127370,SRX127367 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  10. File list: InP.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Adipose_progenitor_cells mm9 Input control Adipocyte Adipose proge...nitor cells SRX127370,SRX127367 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  11. File list: NoD.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  12. File list: NoD.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  13. File list: InP.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.05.AllAg.Adipose_progenitor_cells mm9 Input control Adipocyte Adipose proge...nitor cells SRX127367,SRX127370 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  14. File list: InP.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Neural_progenitor_cells mm9 Input control Neural Neural progenitor... cells SRX109476,SRX315272,SRX315273,SRX109475,SRX668239,SRX667382 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  15. File list: InP.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Neural_progenitor_cells mm9 Input control Neural Neural progenitor... cells SRX109476,SRX315272,SRX315273,SRX109475,SRX668239,SRX667382 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  16. File list: InP.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Neural_progenitor_cells mm9 Input control Neural Neural progenitor... cells SRX109476,SRX315272,SRX315273,SRX109475,SRX667382,SRX668239 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  17. File list: Pol.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 RNA polymerase Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  18. File list: DNS.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 DNase-seq Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  19. File list: DNS.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 DNase-seq Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  20. File list: Unc.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 Unclassified Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  1. File list: DNS.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 DNase-seq Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  2. File list: Unc.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 Unclassified Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  3. File list: Oth.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 TFs and others Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  4. File list: Unc.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 Unclassified Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  5. File list: Pol.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 RNA polymerase Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  6. File list: InP.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 Input control Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  7. File list: InP.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 Input control Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  8. File list: InP.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 Input control Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  9. File list: Oth.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 TFs and others Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  10. File list: NoD.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 No description Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  11. File list: Unc.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 Unclassified Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  12. File list: Oth.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 TFs and others Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  13. File list: Pol.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 RNA polymerase Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  14. File list: Pol.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 RNA polymerase Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  15. File list: DNS.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 DNase-seq Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  16. File list: NoD.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 No description Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  17. File list: Oth.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 TFs and others Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  18. File list: NoD.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 No description Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  19. File list: NoD.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 No description Blood Granulocyte-Macro...phage Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  20. File list: Unc.Neu.05.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Fetal_neural_progenitor_cells hg19 Unclassified Neural Fetal neural... progenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.05.AllAg.Fetal_neural_progenitor_cells.bed ...

  1. File list: Oth.Neu.20.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Fetal_neural_progenitor_cells hg19 TFs and others Neural Fetal neural... progenitor cells SRX109477 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.20.AllAg.Fetal_neural_progenitor_cells.bed ...

  2. File list: Pol.Neu.20.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Fetal_neural_progenitor_cells hg19 RNA polymerase Neural Fetal neural... progenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.20.AllAg.Fetal_neural_progenitor_cells.bed ...

  3. File list: His.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 Histone Neural Fetal neural pro...genitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  4. File list: ALL.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 All antigens Neural Fetal neural... progenitor cells SRX109477,SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  5. File list: DNS.Neu.10.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Fetal_neural_progenitor_cells hg19 DNase-seq Neural Fetal neural p...rogenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.10.AllAg.Fetal_neural_progenitor_cells.bed ...

  6. File list: NoD.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 No description Neural Fetal neural... progenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  7. File list: Oth.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 TFs and others Neural Fetal neural... progenitor cells SRX109477 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  8. File list: ALL.Neu.10.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Fetal_neural_progenitor_cells hg19 All antigens Neural Fetal neural... progenitor cells SRX109477,SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.10.AllAg.Fetal_neural_progenitor_cells.bed ...

  9. File list: InP.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 Input control Neural Fetal neural... progenitor cells SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  10. File list: Pol.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 RNA polymerase Neural Fetal neural... progenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  11. File list: ALL.Neu.05.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Fetal_neural_progenitor_cells hg19 All antigens Neural Fetal neural... progenitor cells SRX109477,SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.05.AllAg.Fetal_neural_progenitor_cells.bed ...

  12. File list: InP.Neu.10.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Fetal_neural_progenitor_cells hg19 Input control Neural Fetal neural... progenitor cells SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.10.AllAg.Fetal_neural_progenitor_cells.bed ...

  13. File list: Unc.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 Unclassified Neural Fetal neural... progenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  14. Methods and Strategies for Lineage Tracing of Mesenchymal Progenitor Cells.

    Science.gov (United States)

    Scott, R Wilder; Underhill, T Michael

    2016-01-01

    Mesenchymal progenitors (MP) are found to varying extents in most tissues and organs. Their relationship to bone marrow-derived mesenchymal stem cells (MSCs) remains unclear, however, both populations appear to share a number of properties as defined by functional assays, clonogenic activity, and genetic and cell surface markers. MSCs were originally defined by their in vitro colony forming unit-fibroblast (CFU-F) activity and their ability to contribute to various mesenchymal lineages (i.e. cartilage, bone, and fat). MSCs also appear to exhibit some unique properties, in that expanded clones in the absence of bone-inducing factors generate bone spicules/organs in vivo. Subsequent analysis of these elements has demonstrated that the transplanted cells directly contribute to multiple mesenchymal lineages. Our ability to study MP and/or MSC behavior and lineage potential in vivo has been hampered by a lack of suitable Cre lines in which to effectively genetically mark and follow the fate and activity of these cells in development, growth, homeostasis and following injury or in disease. The emergence of several new genetic lines is enabling us to now address critical questions regarding MP/MSC location, behavior, function, and fate. The use of these lines and others in conjunction with suitable reporter lines will be described for MP/MSC cell fate analysis. PMID:27236672

  15. Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain.

    Science.gov (United States)

    Pilaz, Louis-Jan; McMahon, John J; Miller, Emily E; Lennox, Ashley L; Suzuki, Aussie; Salmon, Edward; Silver, Debra L

    2016-01-01

    Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly.

  16. Cardiac cell proliferation assessed by EdU, a novel analysis of cardiac regeneration.

    Science.gov (United States)

    Zeng, Bin; Tong, Suiyang; Ren, Xiaofeng; Xia, Hao

    2016-08-01

    Emerging evidence suggests that mammalian hearts maintain the capacity for cardiac regeneration. Rapid and sensitive identification of cardiac cellular proliferation is prerequisite for understanding the underlying mechanisms and strategies of cardiac regeneration. The following immunologically related markers of cardiac cells were analyzed: cardiac transcription factors Nkx2.5 and Gata 4; specific marker of cardiomyocytes TnT; endothelial cell marker CD31; vascular smooth muscle marker smooth muscle myosin IgG; cardiac resident stem cells markers IsL1, Tbx18, and Wt1. Markers were co-localized in cardiac tissues of embryonic, neonatal, adult, and pathological samples by 5-ethynyl-2'-deoxyuridine (EdU) staining. EdU was also used to label isolated neonatal cardiomyocytes in vitro. EdU robustly labeled proliferating cells in vitro and in vivo, co-immunostaining with different cardiac cells markers. EdU can rapidly and sensitively label proliferating cardiac cells in developmental and pathological states. Cardiac cell proliferation assessed by EdU is a novel analytical tool for investigating the mechanism and strategies of cardiac regeneration in response to injury. PMID:25480318

  17. Investigating the regulation of stem and progenitor cell mitotic progression by in situ imaging.

    Science.gov (United States)

    Gerhold, Abigail R; Ryan, Joël; Vallée-Trudeau, Julie-Nathalie; Dorn, Jonas F; Labbé, Jean-Claude; Maddox, Paul S

    2015-05-01

    Genome stability relies upon efficacious chromosome congression and regulation by the spindle assembly checkpoint (SAC). The study of these fundamental mitotic processes in adult stem and progenitor cells has been limited by the technical challenge of imaging mitosis in these cells in situ. Notably, how broader physiological changes, such as dietary intake or age, affect mitotic progression in stem and/or progenitor cells is largely unknown. Using in situ imaging of C. elegans adult germlines, we describe the mitotic parameters of an adult stem and progenitor cell population in an intact animal. We find that SAC regulation in germline stem and progenitor cells is distinct from that found in early embryonic divisions and is more similar to that of classical tissue culture models. We further show that changes in organismal physiology affect mitotic progression in germline stem and progenitor cells. Reducing dietary intake produces a checkpoint-dependent delay in anaphase onset, and inducing dietary restriction when the checkpoint is impaired increases the incidence of segregation errors in mitotic and meiotic cells. Similarly, developmental aging of the germline stem and progenitor cell population correlates with a decline in the rate of several mitotic processes. These results provide the first in vivo validation of models for SAC regulation developed in tissue culture systems and demonstrate that several fundamental features of mitotic progression in adult stem and progenitor cells are highly sensitive to organismal physiological changes.

  18. Current status of gene transfer into haemopoietic progenitor cells: application to Langerhans cell histiocytosis.

    OpenAIRE

    M. Brenner

    1994-01-01

    A number of recent studies have shown that it is possible to obtain significant levels of gene transfer and expression in marrow progenitor cells and their progeny by using retroviral vectors. The data obtained from these studies and the possible applications to Langerhans cell histiocytosis (LCH) are reviewed.

  19. Transient expression of Olig1 initiates the differentiation of neural stem cells into oligodendrocyte progenitor cells

    NARCIS (Netherlands)

    Balasubramaniyan, [No Value; Timmer, N; Kust, B; Boddeke, E; Copray, S

    2004-01-01

    In order to develop an efficient strategy to induce the in vitro differentiation of neural stem cells (NSCs) into oligodendrocyte progenitor cells (OPCs), NSCs were isolated from E14 mice and grown in medium containing epidermal growth factor and fibroblast growth factor (FGF). Besides supplementing

  20. Low- and high-LET radiation drives clonal expansion of lung progenitor cells in vivo.

    Science.gov (United States)

    Farin, Alicia M; Manzo, Nicholas D; Kirsch, David G; Stripp, Barry R

    2015-01-01

    Abundant populations of epithelial progenitor cells maintain the epithelium along the proximal-to-distal axis of the airway. Exposure of lung tissue to ionizing radiation leads to tissue remodeling and potential cancer initiation or progression. However, little is known about the effects of ionizing radiation on airway epithelial progenitor cells. We hypothesized that ionizing radiation exposure will alter the behavior of airway epithelial progenitor cells in a radiation dose- and quality-dependent manner. To address this hypothesis, we cultured primary airway epithelial cells isolated from mice exposed to various doses of 320 kVp X ray or 600 MeV/nucleon (56)Fe ions in a 3D epithelial-fibroblast co-culture system. Colony-forming efficiency of the airway epithelial progenitor cells was assessed at culture day 14. In vivo clonogenic and proliferative potentials of airway epithelial progenitor cells were measured after exposure to ionizing radiation by lineage tracing and IdU incorporation. Exposure to both X rays and (56)Fe resulted in a dose-dependent decrease in the ability of epithelial progenitors to form colonies in vitro. In vivo evidence for increased clonogenic expansion of epithelial progenitors was observed after exposure to both X rays and (56)Fe. Interestingly, we found no significant increase in the epithelial proliferative index, indicating that ionizing radiation does not promote increased turnover of the airway epithelium. Therefore, we propose a model in which radiation induces a dose-dependent decrease in the pool of available progenitor cells, leaving fewer progenitors able to maintain the airway long-term. This work provides novel insights into the effects of ionizing radiation exposure on airway epithelial progenitor cell behavior. PMID:25564721

  1. Research progress of adult cardiac stem cells

    OpenAIRE

    Zheng, Nan; Ning-kun ZHANG; Lian-ru GAO

    2013-01-01

    The traditional view is that the heart is a terminal organ. This dogma, however, has been widely questioned with the discovery of adult cardiac stem cells (CSCs). Since CSCs have a highly self-renewal capacity and specific myocardial differentiation potential, nowadays they have been regarded as the most promising type of stem cells used in ischemic heart disease and other replacement therapy of end-stage heart disease. The present paper will focus on current results of scientific research on...

  2. Targeting pancreatic progenitor cells in human embryonic stem cell differentiation for the identification of novel cell surface markers.

    Science.gov (United States)

    Fishman, Bettina; Segev, Hanna; Kopper, Oded; Nissenbaum, Jonathan; Schulman, Margarita; Benvenisty, Nissim; Itskovitz-Eldor, Joseph; Kitsberg, Danny

    2012-09-01

    New sources of beta cells are needed in order to develop cell therapies for patients with diabetes. An alternative to forced expansion of post-mitotic beta cells is the induction of differentiation of stem-cell derived progenitor cells that have a natural self-expansion capacity into insulin-producing cells. In order to learn more about these progenitor cells at different stages along the differentiation process in which they become progressively more committed to the final beta cell fate, we took the approach of identifying, isolating and characterizing stage specific progenitor cells. We generated human embryonic stem cell (HESC) clones harboring BAC GFP reporter constructs of SOX17, a definitive endoderm marker, and PDX1, a pancreatic marker, and identified subpopulations of GFP expressing cells. Using this approach, we isolated a highly enriched population of pancreatic progenitor cells from hESCs and examined their gene expression with an emphasis on the expression of stage-specific cell surface markers. We were able to identify novel molecules that are involved in the pancreatic differentiation process, as well as stage-specific cell markers that may serve to define (alone or in combination with other markers) a specific pancreatic progenitor cell. These findings may help in optimizing conditions for ultimately generating and isolating beta cells for transplantation therapy.

  3. Mechanical communication in cardiac cell synchronized beating

    Science.gov (United States)

    Nitsan, Ido; Drori, Stavit; Lewis, Yair E.; Cohen, Shlomi; Tzlil, Shelly

    2016-05-01

    Cell-cell communication, which enables cells to coordinate their activity and is essential for growth, development and function, is usually ascribed a chemical or electrical origin. However, cells can exert forces and respond to environment elasticity and to mechanical deformations created by their neighbours. The extent to which this mechanosensing ability facilitates intercellular communication remains unclear. Here we demonstrate mechanical communication between cells directly for the first time, providing evidence for a long-range interaction that induces long-lasting alterations in interacting cells. We show that an isolated cardiac cell can be trained to beat at a given frequency by mechanically stimulating the underlying substrate. Deformations are induced using an oscillatory mechanical probe that mimics the deformations generated by a beating neighbouring cardiac cell. Unlike electrical field stimulation, the probe-induced beating rate is maintained by the cell for an hour after the stimulation stops, implying that long-term modifications occur within the cell. These long-term alterations provide a mechanism for cells that communicate mechanically to be less variable in their electromechanical delay. Mechanical coupling between cells therefore ensures that the final outcome of action potential pacing is synchronized beating. We further show that the contractile machinery is essential for mechanical communication.

  4. Multipotent adult progenitor cell and stem cell plasticity

    OpenAIRE

    Jahagirdar, Balkrishna N; Verfaillie, Catherine

    2005-01-01

    Stem cells are defined by their biological function. A stem cell is an undifferentiated cell that self-renews to maintain the stem cell pool and at the single-cell level differentiates into more than one mature, functional cell. In addition, when transplanted, a stem cell should be capable of replacing a damaged organ or tissue for the lifetime of the recipient. Some would argue that stem cells should also be capable of functionally integrating into nondamaged tissues. Stem cells are critical...

  5. A Transcriptomic Signature of Mouse Liver Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Adam M. Passman

    2016-01-01

    Full Text Available Liver progenitor cells (LPCs can proliferate extensively, are able to differentiate into hepatocytes and cholangiocytes, and contribute to liver regeneration. The presence of LPCs, however, often accompanies liver disease and hepatocellular carcinoma (HCC, indicating that they may be a cancer stem cell. Understanding LPC biology and establishing a sensitive, rapid, and reliable method to detect their presence in the liver will assist diagnosis and facilitate monitoring of treatment outcomes in patients with liver pathologies. A transcriptomic meta-analysis of over 400 microarrays was undertaken to compare LPC lines against datasets of muscle and embryonic stem cell lines, embryonic and developed liver (DL, and HCC. Three gene clusters distinguishing LPCs from other liver cell types were identified. Pathways overrepresented in these clusters denote the proliferative nature of LPCs and their association with HCC. Our analysis also revealed 26 novel markers, LPC markers, including Mcm2 and Ltbp3, and eight known LPC markers, including M2pk and Ncam. These markers specified the presence of LPCs in pathological liver tissue by qPCR and correlated with LPC abundance determined using immunohistochemistry. These results showcase the value of global transcript profiling to identify pathways and markers that may be used to detect LPCs in injured or diseased liver.

  6. The role of stem cells and progenitors in the genesis of medulloblastoma.

    Science.gov (United States)

    Wang, Jun; Wechsler-Reya, Robert J

    2014-10-01

    Cancer results from dysregulation of growth and survival pathways in normal stem cells and progenitors. Identifying the cells from which a tumor arises can facilitate the development of animal models and point to novel targets for therapy. Medulloblastoma is an aggressive tumor of the cerebellum that occurs predominantly in children. Recent genomic studies suggest that medulloblastoma consists of 4 major subgroups, each with distinct mutations and signaling pathway deregulations, and each potentially arising from distinct populations of stem cells and progenitors. Here we review the major types of progenitor cells in the cerebellum and discuss their role in the genesis of medulloblastoma.

  7. Distribution and characterization of progenitor cells within the human filum terminale.

    Directory of Open Access Journals (Sweden)

    Lisa Arvidsson

    Full Text Available BACKGROUND: Filum terminale (FT is a structure that is intimately associated with conus medullaris, the most caudal part of the spinal cord. It is well documented that certain regions of the adult human central nervous system contains undifferentiated, progenitor cells or multipotent precursors. The primary objective of this study was to describe the distribution and progenitor features of this cell population in humans, and to confirm their ability to differentiate within the neuroectodermal lineage. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that neural stem/progenitor cells are present in FT obtained from patients treated for tethered cord. When human or rat FT-derived cells were cultured in defined medium, they proliferated and formed neurospheres in 13 out of 21 individuals. Cells expressing Sox2 and Musashi-1 were found to outline the central canal, and also to be distributed in islets throughout the whole FT. Following plating, the cells developed antigen profiles characteristic of astrocytes (GFAP and neurons (β-III-tubulin. Addition of PDGF-BB directed the cells towards a neuronal fate. Moreover, the cells obtained from young donors shows higher capacity for proliferation and are easier to expand than cells derived from older donors. CONCLUSION/SIGNIFICANCE: The identification of bona fide neural progenitor cells in FT suggests a possible role for progenitor cells in this extension of conus medullaris and may provide an additional source of such cells for possible therapeutic purposes. Filum terminale, human, progenitor cells, neuron, astrocytes, spinal cord.

  8. GD3+ cells in the adult rat optic nerve are ramified microglia rather than O-2Aadult progenitor cells.

    Science.gov (United States)

    Wolswijk, G

    1994-04-01

    The adult central nervous system (CNS) contains a population of adult oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells (O-2Aadult progenitor cells). These cells may provide a source of the new oligodendrocytes that are needed to repair demyelinated lesions. In order to examine the role of O-2Aadult progenitor cells in the regeneration of the oligodendrocyte population following demyelinating damage, it is essential to be able to identify such cells unambiguously in sections of adult CNS tissue. The present study examined whether antibodies to the ganglioside GD3 specifically label O-2Aadult progenitor cells in cultures and sections of adult optic nerve, since previous studies on the developing CNS had suggested that O-2Aperinatal progenitor cells were GD3+ in vitro and in vivo. Evidence is presented indicating that, although O-2Aadult progenitor cells in vitro were labelled with the R24 mAb (an anti-GD3 mAb), all GD3+ cells in sections of adult optic nerve bound the OX-42 mAb and the B4 isolectin derived from Griffonia Simplicifolia, and thus were not O-2Aadult progenitor cells, but ramified microglia. The data suggest that O-2Aadult progenitor cells become GD3+ when placed in culture and that ramified microglia lose GD3-expression in vitro.

  9. Research progress of adult cardiac stem cells

    Directory of Open Access Journals (Sweden)

    Nan ZHENG

    2013-04-01

    Full Text Available The traditional view is that the heart is a terminal organ. This dogma, however, has been widely questioned with the discovery of adult cardiac stem cells (CSCs. Since CSCs have a highly self-renewal capacity and specific myocardial differentiation potential, nowadays they have been regarded as the most promising type of stem cells used in ischemic heart disease and other replacement therapy of end-stage heart disease. The present paper will focus on current results of scientific research on human adult CSCs and epicardium-derived cell (EPDC, as well as the treatment strategies in the field of cardiac regeneration, and the problems and prospect disclosed in the research.

  10. miR-375 Inhibits Proliferation of Mouse Pancreatic Progenitor Cells by Targeting YAP1

    Directory of Open Access Journals (Sweden)

    Zhen-Wu Zhang

    2013-12-01

    Full Text Available Background/Aims: The Hippo signaling pathway regulates expansion and differentiation of stem cells and tissue progenitor cells during organ development and tissue regeneration. Previous studies have shown that YAP1, a potent effector of the Hippo signaling pathway, plays a crucial role in pancreas development, but the function of YAP1 in pancreatic progenitor cells is less known. Methods: The spatio-temporal expression pattern of YAP1 in mouse developing pancreata was detected by in situ hybridization. The effect of silencing YAP1 on the proliferation of pancreatic progenitor cells was analyzed by CCK-8 assay and Ki67 immunostaining. The regulation of miR-375 on YAP1 expression was determined by dual luciferase reporter assay, QRT-PCR and western blot. Finally, the influence of miR-375 on proliferation of pancreatic progenitor cells was analyzed by CCK-8 assay and Ki67 immunostaining. Results: We found that YAP1 was highly expressed in embryonic and adult pancreatic progenitor cells. Knocking down YAP1 by siRNA inhibited the proliferation of pancreatic progenitor cells. The mouse YAP1 was a target gene of miR-375, and miR-375 could target the 3' UTR of YAP1 mRNA to decrease its protein and mRNA levels. Similar to silencing YAP1 by siRNA, the proliferation of pancreatic progenitor cells was inhibited significantly by miR-375. Conclusion: Our results indicate that YAP1 is necessary for the proliferation of pancreatic progenitor cells and miR-375 participates in regulating YAP1 expression during pancreatic progenitor cells differentiation.

  11. Absence of a relationship between immunophenotypic and colony enumeration analysis of endothelial progenitor cells in clinical haematopoietic cell sources

    Directory of Open Access Journals (Sweden)

    Turner Marc L

    2007-07-01

    Full Text Available Abstract Background The discovery of adult endothelial progenitor cells (EPC offers potential for vascular regenerative therapies. The expression of CD34 and VEGFR2 by EPC indicates a close relationship with haematopoietic progenitor cells (HPC, and HPC-rich sources have been used to treat cardiac and limb ischaemias with apparent clinical benefit. However, the laboratory characterisation of the vasculogenic capability of potential or actual therapeutic cell autograft sources is uncertain since the description of EPC remains elusive. Various definitions of EPC based on phenotype and more recently on colony formation (CFU-EPC have been proposed. Methods We determined EPC as defined by proposed phenotype definitions (flow cytometry and by CFU-EPC in HPC-rich sources: bone marrow (BM; cord blood (CB; and G-CSF-mobilised peripheral blood (mPB, and in HPC-poor normal peripheral blood (nPB. Results As expected, the highest numbers of cells expressing the HPC markers CD34 or CD133 were found in mPB and least in nPB. The proportions of CD34+ cells co-expressing CD133 is of the order mPB>CB>BM≈nPB. CD34+ cells co-expressing VEGFR2 were also most frequent in mPB. In contrast, CFU-EPC were virtually absent in mPB and were most readily detected in nPB, the source lowest in HPC. Conclusion HPC sources differ in their content of putative EPC. Normal peripheral blood, poor in HPC and in HPC-related phenotypically defined EPC, is the richest source of CFU-EPC, suggesting no direct relationship between the proposed EPC immunophenotypes and CFU-EPC potential. It is not apparent whether either of these EPC measurements, or any, is an appropriate indicator of the therapeutic vasculogenic potential of autologous HSC sources.

  12. The isolation and in vitro expansion of hepatic Sca-1 progenitor cells

    International Nuclear Information System (INIS)

    The intra-hepatic population of liver progenitor cells expands during liver injury when hepatocyte proliferation is inhibited. These cells can be purified by density gradient centrifugation and cultured. Separated by size only this population contains small cells of hematopoietic, epithelial and endothelial lineages and is thought to contain liver stem cells. The identity of liver stem cells remains unknown although there is some evidence that tissue Sca1+ CD45- cells display progenitor cell characteristics. We identified both intra-hepatic and gall bladder Sca1+ cells following liver injury and expanded ex vivo Sca1 cells as part of heterogenous cell culture or as a purified population. We found significant difference between the proliferation of Sca-1 cells when plated on laminin or collagen I while proliferation of heterogenous population was not affected by the extracellular matrix indicating the necessity for culture of Sca1+ cells with laminin matrix or laminin producing cells in long term liver progenitor cell cultures.

  13. Oct-4+/Tenascin C+ neuroblastoma cells serve as progenitors of tumor-derived endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Annalisa Pezzolo; Silvia Deaglio; Fabio Malavasi; Vito Pistoia; Federica Parodi; Danilo Marimpietri; Lizzia Raffaghello; Claudia Cocco; Angela Pistorio; Manuela Mosconi; Claudio Gambini; Michele Cillj

    2011-01-01

    Neuroblastoma (NB)-associated endothelial microvessels (EMs) may be lined by tumor-derived endothelial cells (TECs),that are genetically unstable and chemoresistant.Here we have addressed the identification of TEC progenitors in NB by focusing on Octamer-binding transcription factor 4 (Oct-4) as a putative marker.Oct-4+ cells were detected in primary NB samples (n = 23),metastatic bone marrow aspirates (n = 10),NB cell lines (n = 4),and orthotopic tumors (n = 10) formed by the HTLA-230 NB cell line in immunodeficient mice.Most Oct-4+ cells showed a perivascular distribution,with 5% of them homing in perinecrotic areas.All Oct-4+ cells were tumor-derived since they shared amplification of MYCN oncogene with malignant cells.Perivascular Oct-4+ cells expressed stem cellrelated,neural progenitor-related and NB-related markers,including surface Tenascin C (TNC),that was absent from perinecrotic Oct-4+ cells and bulk tumor cells.TNC+ but not TNC- HTLA-230 cells differentiated in vitro into endothelial-like cells expressing vascular-endothellal-cadherin,prostate-specific membrane antigen and CD31 upon culture in medium containing vascular endothelial growth factor (VEGF).TNC+ but not TNC- HTLA-230 cells formed neurospheres when cultured in serum-free medium.Both cell fractions were tumorigenic,but only tumors formed by TNC+ cegs contained EMs fined by TECs.In conclusion,we have identified in NB tumors two putative niches containing Oct-4+ tumor cells.Oct-4+/TNC+ perivascular NB cells displayed a high degree of plasticity and served as progenitors of TECs.Therapeutic targeting of Oct4+/TNC+ progenitors may counteract the contribution of NB-derived ECs to tumor relapse and chemoresistance.

  14. Therapeutic Roles of Tendon Stem/Progenitor Cells in Tendinopathy

    Science.gov (United States)

    Zhang, Xin; Lin, Yu-cheng; Rui, Yun-feng; Xu, Hong-liang; Chen, Hui; Wang, Chen; Teng, Gao-jun

    2016-01-01

    Tendinopathy is a tendon disorder characterized by activity-related pain, local edema, focal tenderness to palpation, and decreased strength in the affected area. Tendinopathy is prevalent in both athletes and the general population, highlighting the need to elucidate the pathogenesis of this disorder. Current treatments of tendinopathy are both conservative and symptomatic. The discovery of tendon stem/progenitor cells (TSPCs) and erroneous differentiation of TSPCs have provided new insights into the pathogenesis of tendinopathy. In this review, we firstly present the histopathological characteristics of tendinopathy and explore the cellular and molecular cues in the pathogenesis of tendinopathy. Current evidence of the depletion of the stem cell pool and altered TSPCs fate in the pathogenesis of tendinopathy has been presented. The potential regulatory factors for either tenogenic or nontenogenic differentiation of TSPCs are also summarized. The regulation of endogenous TSPCs or supplementation with exogenous TSPCs as therapeutic targets for the treatment of tendinopathy is proposed. Therefore, inhibiting the erroneous differentiation of TSPCs and regulating the differentiation of TSPCs into tendon cells might be important areas of future research and could provide new clinical treatments for tendinopathy. The current evidence suggests that TSPCs are promising therapeutic targets for the management of tendinopathy. PMID:27195010

  15. Severe insulin resistance alters metabolism in mesenchymal progenitor cells.

    Science.gov (United States)

    Balhara, Bharti; Burkart, Alison; Topcu, Vehap; Lee, Youn-Kyoung; Cowan, Chad; Kahn, C Ronald; Patti, Mary-Elizabeth

    2015-06-01

    Donohue syndrome (DS) is characterized by severe insulin resistance due to mutations in the insulin receptor (INSR) gene. To identify molecular defects contributing to metabolic dysregulation in DS in the undifferentiated state, we generated mesenchymal progenitor cells (MPCs) from induced pluripotent stem cells derived from a 4-week-old female with DS and a healthy newborn male (control). INSR mRNA and protein were significantly reduced in DS MPC (for β-subunit, 64% and 89% reduction, respectively, P consumption in both the basal state (87% higher, P =.09) and in response to the uncoupler carbonyl cyanide-p-triflouromethoxyphenylhydrazone (2-fold increase, P =.06). Although mitochondrial DNA or mass did not differ, oxidative phosphorylation protein complexes III and V were increased in DS (by 37% and 6%, respectively; P < .05). Extracellular acidification also tended to increase in DS (91% increase, P = .07), with parallel significant increases in lactate secretion (34% higher at 4 h, P < .05). In summary, DS MPC maintain signaling downstream of the INSR, suggesting that IGF-1R signaling may partly compensate for INSR mutations. However, alterations in receptor expression and pathway-specific defects in insulin signaling, even in undifferentiated cells, can alter cellular oxidative metabolism, potentially via transcriptional mechanisms. PMID:25811318

  16. Estrogen Stimulates Homing of Endothelial Progenitor Cells to Endometriotic Lesions.

    Science.gov (United States)

    Rudzitis-Auth, Jeannette; Nenicu, Anca; Nickels, Ruth M; Menger, Michael D; Laschke, Matthias W

    2016-08-01

    The incorporation of endothelial progenitor cells (EPCs) into microvessels contributes to the vascularization of endometriotic lesions. Herein, we analyzed whether this vasculogenic process is regulated by estrogen. Estrogen- and vehicle-treated human EPCs were analyzed for migration and tube formation. Endometriotic lesions were induced in irradiated FVB/N mice, which were reconstituted with bone marrow from FVB/N-TgN (Tie2/green fluorescent protein) 287 Sato mice. The animals were treated with 100 μg/kg β-estradiol 17-valerate or vehicle (control) over 7 and 28 days. Lesion growth, cyst formation, homing of green fluorescent protein(+)/Tie2(+) EPCs, vascularization, cell proliferation, and apoptosis were analyzed by high-resolution ultrasonography, caliper measurements, histology, and immunohistochemistry. Numbers of blood circulating EPCs were assessed by flow cytometry. In vitro, estrogen-treated EPCs exhibited a higher migratory and tube-forming capacity when compared with controls. In vivo, numbers of circulating EPCs were not affected by estrogen. However, estrogen significantly increased the number of EPCs incorporated into the lesions' microvasculature, resulting in an improved early vascularization. Estrogen further stimulated the growth of lesions, which exhibited massively dilated glands with a flattened layer of stroma. This was mainly because of an increased glandular secretory activity, whereas cell proliferation and apoptosis were not markedly affected. These findings indicate that vasculogenesis in endometriotic lesions is dependent on estrogen, which adds a novel hormonally regulated mechanism to the complex pathophysiology of endometriosis. PMID:27315780

  17. Impact of Lipid Nutrition on Neural Stem/Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Nobuyuki Sakayori

    2013-01-01

    Full Text Available The neural system originates from neural stem/progenitor cells (NSPCs. Embryonic NSPCs first proliferate to increase their numbers and then produce neurons and glial cells that compose the complex neural circuits in the brain. New neurons are continually produced even after birth from adult NSPCs in the inner wall of the lateral ventricle and in the hippocampal dentate gyrus. These adult-born neurons are involved in various brain functions, including olfaction-related functions, learning and memory, pattern separation, and mood control. NSPCs are regulated by various intrinsic and extrinsic factors. Diet is one of such important extrinsic factors. Of dietary nutrients, lipids are important because they constitute the cell membrane, are a source of energy, and function as signaling molecules. Metabolites of some lipids can be strong lipid mediators that also regulate various biological activities. Recent findings have revealed that lipids are important regulators of both embryonic and adult NSPCs. We and other groups have shown that lipid signals including fat, fatty acids, their metabolites and intracellular carriers, cholesterol, and vitamins affect proliferation and differentiation of embryonic and adult NSPCs. A better understanding of the NSPCs regulation by lipids may provide important insight into the neural development and brain function.

  18. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells

    International Nuclear Information System (INIS)

    Notch signaling has been implicated in the regulation of cell-fate decisions such as self-renewal of adult stem cells and differentiation of progenitor cells along a particular lineage. Moreover, depending on the cellular and developmental context, the Notch pathway acts as a regulator of cell survival and cell proliferation. Abnormal expression of Notch receptors has been found in different types of epithelial metaplastic lesions and neoplastic lesions, suggesting that Notch may act as a proto-oncogene. The vertebrate Notch1 and Notch4 homologs are involved in normal development of the mammary gland, and mutated forms of these genes are associated with development of mouse mammary tumors. In order to determine the role of Notch signaling in mammary cell-fate determination, we have utilized a newly described in vitro system in which mammary stem/progenitor cells can be cultured in suspension as nonadherent 'mammospheres'. Notch signaling was activated using exogenous ligands, or was inhibited using previously characterized Notch signaling antagonists. Utilizing this system, we demonstrate that Notch signaling can act on mammary stem cells to promote self-renewal and on early progenitor cells to promote their proliferation, as demonstrated by a 10-fold increase in secondary mammosphere formation upon addition of a Notch-activating DSL peptide. In addition to acting on stem cells, Notch signaling is also able to act on multipotent progenitor cells, facilitating myoepithelial lineage-specific commitment and proliferation. Stimulation of this pathway also promotes branching morphogenesis in three-dimensional Matrigel cultures. These effects are completely inhibited by a Notch4 blocking antibody or a gamma secretase inhibitor that blocks Notch processing. In contrast to the effects of Notch signaling on mammary stem/progenitor cells, modulation of this pathway has no discernable effect on fully committed, differentiated, mammary epithelial cells. These studies

  19. Hepatic progenitor cell resistance to TGF-β1's proliferative and apoptotic effects

    International Nuclear Information System (INIS)

    The success of hepatocellular therapies using stem or progenitor cell populations is dependent upon multiple factors including the donor cell, microenvironment, and etiology of the liver injury. The following experiments investigated the impact of TGF-β1 on a previously described population of hepatic progenitor cells (HPC). The majority of the hepatic progenitor cells were resistant to endogenously produced TGF-β1's proapoptotic and anti-proliferative effects unlike more well-differentiated cellular populations (e.g., mature hepatocytes). Surprisingly, in vitro TGF-β1 supplementation significantly inhibited de novo hepatic progenitor cell colony formation possibly via an indirect mechanism(s). Therefore despite the HPC's direct resistance to supplemental TGF-β1, this cytokine's inhibitory effect on colony formation could have a potential negative impact on the use of these cells as a therapy for patients with liver disease

  20. Ultrastructure of human neural stem/progenitor cells and neurospheres

    Institute of Scientific and Technical Information of China (English)

    Yaodong Zhao; Tianyi Zhang; Qiang Huang; Aidong Wang; Jun Dong; Qing Lan; Zhenghong Qin

    2009-01-01

    BACKGROUND: Biological and morphological characteristics of neural stern/progenitor cells (NSPCs) have been widely investigated.OBJECTIVE: To explore the ultrastructure of human embryo-derived NSPCs and neurospheres cultivated in vitro using electron microscopy.DESIGN, TIME AND SETTING: A cell biology experiment was performed at the Brain Tumor Laboratory of Soochow University, and Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University between August 2007 and April 2008.MATERIALS: Human fetal brain tissue was obtained from an 8-week-old aborted fetus; serum-free Dulbecco's modified Eagle's medium/F12 culture medium was provided by Gibco, USA; scanning electron microscope was provided by Hitachi instruments, Japan; transmission electron microscope was provided by JEOL, Japan.METHODS: NSPCs were isolated from human fetal brain tissue and cultivated in serum-free Dulbecco's modified Eagle's medium/F12 culture medium. Cells were passaged every 5-7 days. After three passages, NSPCs were harvested and used for ultrastructural examination.MAIN OUTCOME MEASURES: Ultrastructural examination of human NSPCs and adjacent cells in neurospheres.RESULTS: Individual NSPCs were visible as spherical morphologies with rough surfaces under scanning electron microscope. Generally, they had large nuclei and little cytoplasm. Nuclei were frequently globular with large amounts of euchromatin and a small quantity of heterochromatin, and most NSPCs had only one nucleolus. The Golgi apparatus and endoplasmic reticulum were underdeveloped; however, autophagosomes were clearly visible. The neurospheres were made up of NSPCs and non-fixiform material inside. Between adjacent cells and at the cytoplasmic surface of apposed plasma membranes, there were vesicle-like structures. Some membrane boundaries with high permeabilities were observed between some contiguous NSPCs in neurospheres, possibly attributable to plasmalemmal fusion between adjacent cells.CONCLUSION: A large number

  1. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors

    OpenAIRE

    Henry, C J; Casas-Selves, M.; Kim, J; Zaberezhnyy, V.; Aghili, L.; Daniel, A.E.; Jimenez, L; Azam, T.; McNamee, E.N.; Clambey, E.T.; Klawitter, J; Serkova, N.J.; Tan, A.C.; Dinarello, C A; DeGregori, J.

    2015-01-01

    The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRASV1...

  2. Rosiglitazone promotes development of a novel adipocyte population from bone marrow–derived circulating progenitor cells

    OpenAIRE

    Crossno, Joseph T.; Majka, Susan M.; Grazia, Todd; Gill, Ronald G.; Klemm, Dwight J.

    2006-01-01

    Obesity and weight gain are characterized by increased adipose tissue mass due to an increase in the size of individual adipocytes and the generation of new adipocytes. New adipocytes are believed to arise from resident adipose tissue preadipocytes and mesenchymal progenitor cells. However, it is possible that progenitor cells from other tissues, in particular BM, could also contribute to development of new adipocytes in adipose tissue. We tested this hypothesis by transplanting whole BM cell...

  3. Ascl3 marks adult progenitor cells of the mouse salivary gland.

    Science.gov (United States)

    Rugel-Stahl, Anastasia; Elliott, Marilyn E; Ovitt, Catherine E

    2012-05-01

    The Ascl3 transcription factor marks a subset of salivary gland duct cells present in the three major salivary glands of the mouse. In vivo, these cells generate both duct and secretory acinar cell descendants. Here, we have analyzed whether Ascl3-expressing cells retain this multipotent lineage potential in adult glands. Cells isolated from mouse salivary glands were cultured in vitro as non-adherent spheres. Lineage tracing of the Ascl3-expressing cells within the spheres demonstrates that Ascl3+ cells isolated from adult glands remain multipotent, generating both duct and acinar cell types in vitro. Furthermore, we demonstrate that the progenitor cells characterized by Keratin 5 expression are an independent population from Ascl3+ progenitor cells. We conclude that the Ascl3+ cells are intermediate lineage-restricted progenitor cells of the adult salivary glands.

  4. Identification of Different Classes of Luminal Progenitor Cells within Prostate Tumors

    Directory of Open Access Journals (Sweden)

    Supreet Agarwal

    2015-12-01

    Full Text Available Primary prostate cancer almost always has a luminal phenotype. However, little is known about the stem/progenitor properties of transformed cells within tumors. Using the aggressive Pten/Tp53-null mouse model of prostate cancer, we show that two classes of luminal progenitors exist within a tumor. Not only did tumors contain previously described multipotent progenitors, but also a major population of committed luminal progenitors. Luminal cells, sorted directly from tumors or grown as organoids, initiated tumors of adenocarcinoma or multilineage histological phenotypes, which is consistent with luminal and multipotent differentiation potentials, respectively. Moreover, using organoids we show that the ability of luminal-committed progenitors to self-renew is a tumor-specific property, absent in benign luminal cells. Finally, a significant fraction of luminal progenitors survived in vivo castration. In all, these data reveal two luminal tumor populations with different stem/progenitor cell capacities, providing insight into prostate cancer cells that initiate tumors and can influence treatment response.

  5. Distal airway epithelial progenitor cells are radiosensitive to High-LET radiation

    Science.gov (United States)

    McConnell, Alicia M.; Konda, Bindu; Kirsch, David G.; Stripp, Barry R.

    2016-01-01

    Exposure to high-linear energy transfer (LET) radiation occurs in a variety of situations, including charged particle radiotherapy, radiological accidents, and space travel. However, the extent of normal tissue injury in the lungs following high-LET radiation exposure is unknown. Here we show that exposure to high-LET radiation led to a prolonged loss of in vitro colony forming ability by airway epithelial progenitor cells. Furthermore, exposure to high-LET radiation induced clonal expansion of a subset of progenitor cells in the distal airway epithelium. Clonal expansion following high-LET radiation exposure was correlated with elevated progenitor cell apoptosis, persistent γ-H2AX foci, and defects in mitotic progression of distal airway progenitors. We discovered that the effects of high-LET radiation exposure on progenitor cells occur in a p53-dependent manner. These data show that high-LET radiation depletes the distal airway progenitor pool by inducing cell death and loss of progenitor function, leading to clonal expansion. Importantly, high-LET radiation induces greater long-term damage to normal lung tissue than the relative equivalent dose of low-LET γ-rays, which has implications in therapeutic development and risk assessment. PMID:27659946

  6. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Koury, M.J.; Bondurant, M.C. (Vanderbilt Univ. Medical Center, Nashville, TN (USA) Veterans Administration Medical Center, Nashville, TN (USA))

    1990-04-20

    The mechanism by which erythropoietin controls mammalian erythrocyte production is unknown. Labeling experiments in vitro with ({sup 3}H) thymidine demonstrated DNA cleavage in erythroid progenitor cells that was accompanied by DNA repair and synthesis. Erythropoietin reduced DNA cleavage by a factor of 2.6. In the absence of erythropoietin, erythroid progenitor cells accumulated DNA cleavage fragments characteristic of those found in programmed cell death (apoptosis) by 2 to 4 hours and began dying by 16 hours. In the presence of erythropoietin, the progenitor cells survived and differentiated into reticulocytes. Thus, apoptosis is a major component of normal erythropoiesis, and erythropoietin controls erythrocyte production by retarding DNA breakdown and preventing apoptosis in erythroid progenitor cells.

  7. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    LaBarge, Mark A; Nelson, Celeste M; Villadsen, Rene; Fridriksdottir, Agla; Ruth, Jason R; Stampfer, Martha R; Petersen, Ole W; Bissell, Mina J

    2008-09-19

    In adult tissues, multi-potent progenitor cells are some of the most primitive members of the developmental hierarchies that maintain homeostasis. That progenitors and their more mature progeny share identical genomes, suggests that fate decisions are directed by interactions with extrinsic soluble factors, ECM, and other cells, as well as physical properties of the ECM. To understand regulation of fate decisions, therefore, would require a means of understanding carefully choreographed combinatorial interactions. Here we used microenvironment protein microarrays to functionally identify combinations of cell-extrinsic mammary gland proteins and ECM molecules that imposed specific cell fates on bipotent human mammary progenitor cells. Micropatterned cell culture surfaces were fabricated to distinguish between the instructive effects of cell-cell versus cell-ECM interactions, as well as constellations of signaling molecules; and these were used in conjunction with physiologically relevant 3 dimensional human breast cultures. Both immortalized and primary human breast progenitors were analyzed. We report on the functional ability of those proteins of the mammary gland that maintain quiescence, maintain the progenitor state, and guide progenitor differentiation towards myoepithelial and luminal lineages.

  8. Endothelial progenitor cells display clonal restriction in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Dai Kezhi

    2006-06-01

    Full Text Available Abstract Background In multiple myeloma (MM, increased neoangiogenesis contributes to tumor growth and disease progression. Increased levels of endothelial progenitor cells (EPCs contribute to neoangiogenesis in MM, and, importantly, covary with disease activity and response to treatment. In order to understand the mechanisms responsible for increased EPC levels and neoangiogenic function in MM, we investigated whether these cells were clonal by determining X-chromosome inactivation (XCI patterns in female patients by a human androgen receptor assay (HUMARA. In addition, EPCs and bone marrow cells were studied for the presence of clonotypic immunoglobulin heavy-chain (IGH gene rearrangement, which indicates clonality in B cells; thus, its presence in EPCs would indicate a close genetic link between tumor cells in MM and endothelial cells that provide tumor neovascularization. Methods A total of twenty-three consecutive patients who had not received chemotherapy were studied. Screening in 18 patients found that 11 displayed allelic AR in peripheral blood mononuclear cells, and these patients were further studied for XCI patterns in EPCs and hair root cells by HUMARA. In 2 patients whose EPCs were clonal by HUMARA, and in an additional 5 new patients, EPCs were studied for IGH gene rearrangement using PCR with family-specific primers for IGH variable genes (VH. Results In 11 patients, analysis of EPCs by HUMARA revealed significant skewing (≥ 77% expression of a single allele in 64% (n = 7. In 4 of these patients, XCI skewing was extreme (≥ 90% expression of a single allele. In contrast, XCI in hair root cells was random. Furthermore, PCR amplification with VH primers resulted in amplification of the same product in EPCs and bone marrow cells in 71% (n = 5 of 7 patients, while no IGH rearrangement was found in EPCs from healthy controls. In addition, in patients with XCI skewing in EPCs, advanced age was associated with poorer clinical status

  9. Cyclosporin in cell therapy for cardiac regeneration.

    Science.gov (United States)

    Jansen Of Lorkeers, S J; Hart, E; Tang, X L; Chamuleau, M E D; Doevendans, P A; Bolli, R; Chamuleau, S A J

    2014-07-01

    Stem cell therapy is a promising strategy in promoting cardiac repair in the setting of ischemic heart disease. Clinical and preclinical studies have shown that cell therapy improves cardiac function. Whether autologous or allogeneic cells should be used, and the need for immunosuppression in non-autologous settings, is a matter of debate. Cyclosporin A (CsA) is frequently used in preclinical trials to reduce cell rejection after non-autologous cell therapy. The direct effect of CsA on the function and survival of stem cells is unclear. Furthermore, the appropriate daily dosage of CsA in animal models has not been established. In this review, we discuss the pros and cons of the use of CsA on an array of stem cells both in vitro and in vivo. Furthermore, we present a small collection of data put forth by our group supporting the efficacy and safety of a specific daily CsA dosage in a pig model. PMID:24831573

  10. Cyclosporin in cell therapy for cardiac regeneration.

    Science.gov (United States)

    Jansen Of Lorkeers, S J; Hart, E; Tang, X L; Chamuleau, M E D; Doevendans, P A; Bolli, R; Chamuleau, S A J

    2014-07-01

    Stem cell therapy is a promising strategy in promoting cardiac repair in the setting of ischemic heart disease. Clinical and preclinical studies have shown that cell therapy improves cardiac function. Whether autologous or allogeneic cells should be used, and the need for immunosuppression in non-autologous settings, is a matter of debate. Cyclosporin A (CsA) is frequently used in preclinical trials to reduce cell rejection after non-autologous cell therapy. The direct effect of CsA on the function and survival of stem cells is unclear. Furthermore, the appropriate daily dosage of CsA in animal models has not been established. In this review, we discuss the pros and cons of the use of CsA on an array of stem cells both in vitro and in vivo. Furthermore, we present a small collection of data put forth by our group supporting the efficacy and safety of a specific daily CsA dosage in a pig model.

  11. Radiosensitivity of human haematopoietic stem/progenitor cells

    International Nuclear Information System (INIS)

    The haematopoietic system is regenerative tissue with a high proliferative potential; therefore, haematopoietic stem cells (HSCs) are sensitive to extracellular oxidative stress caused by radiation and chemotherapeutic agents. An understanding of this issue can help predict haematopoietic recovery from radiation exposure as well as the extent of radiation damage to the haematopoietic system. In the present study, the radiosensitivity of human lineage-committed myeloid haematopoietic stem/progenitor cells (HSPCs), including colony-forming unit–granulocyte macrophage, burst-forming unit–erythroid and colony-forming unit–granulocyte–erythroid–macrophage–megakaryocyte cells, which are contained in adult individual peripheral blood (PB) and fetus/neonate placental/umbilical cord blood (CB), were studied. The PB of 59 healthy individual blood donors and the CB of 42 neonates were investigated in the present study. HSPCs prepared from PB and CB were exposed to 0.5 or 2 Gy x-irradiation. The results showed that large individual differences exist in the surviving fraction of cells. In the case of adult PB, a statistically significant negative correlation was observed between the surviving fraction observed at a dose of 0.5 Gy and the age of the blood donors; however, none of these correlations were observed after 2 Gy x-irradiation. In addition, seasonal and gender variation were observed in the surviving fraction of CB HSPCs. The present results suggest that there are large individual differences in the surviving fraction of HSPCs contained in both adult PB and fetus/neonate CB. In addition, some factors, including the gender, age and season of birth, affect the radiosensitivity of HSPCs, especially with a relatively low-dose exposure. (paper)

  12. Epigenetic therapy of cancer stem and progenitor cells bytargeting DNA methylation machineries

    Institute of Scientific and Technical Information of China (English)

    Patompon Wongtrakoongate

    2015-01-01

    Recent advances in stem cell biology have shed light onhow normal stem and progenitor cells can evolve to acquiremalignant characteristics during tumorigenesis. The cancercounterparts of normal stem and progenitor cells might beoccurred through alterations of stem cell fates includingan increase in self-renewal capability and a decreasein differentiation and/or apoptosis. This oncogenicevolution of cancer stem and progenitor cells, which oftenassociates with aggressive phenotypes of the tumorigeniccells, is controlled in part by dysregulated epigeneticmechanisms including aberrant DNA methylation leadingto abnormal epigenetic memory. Epigenetic therapy bytargeting DNA methyltransferases (DNMT) 1, DNMT3Aand DNMT3B via 5-Azacytidine (Aza) and 5-Aza-2'-deoxycytidine (Aza-dC) has proved to be successfultoward treatment of hematologic neoplasms especially forpatients with myelodysplastic syndrome. In this review,I summarize the current knowledge of mechanismsunderlying the inhibition of DNA methylation by Aza andAza-dC, and of their apoptotic- and differentiation-inducingeffects on cancer stem and progenitor cells in leukemia,medulloblastoma, glioblastoma, neuroblastoma, prostatecancer, pancreatic cancer and testicular germ cell tumors.Since cancer stem and progenitor cells are implicatedin cancer aggressiveness such as tumor formation,progression, metastasis and recurrence, I proposethat effective therapeutic strategies might be achievedthrough eradication of cancer stem and progenitor cellsby targeting the DNA methylation machineries to interferetheir "malignant memory".

  13. "String theory" of c-kit(pos) cardiac cells: a new paradigm regarding the nature of these cells that may reconcile apparently discrepant results.

    Science.gov (United States)

    Keith, Matthew C L; Bolli, Roberto

    2015-03-27

    Although numerous preclinical investigations have consistently demonstrated salubrious effects of c-kit(pos) cardiac cells administered after myocardial infarction, the mechanism of action remains highly controversial. We and others have found little or no evidence that these cells differentiate into mature functional cardiomyocytes, suggesting paracrine effects. In this review, we propose a new paradigm predicated on a comprehensive analysis of the literature, including studies of cardiac development; we have (facetiously) dubbed this conceptual construct "string theory" of c-kit(pos) cardiac cells because it reconciles multifarious and sometimes apparently discrepant results. There is strong evidence that, during development, the c-kit receptor is expressed in different pools of cardiac progenitors (some capable of robust cardiomyogenesis and others with little or no contribution to myocytes). Accordingly, c-kit positivity, in itself, does not define the embryonic origins, lineage capabilities, or differentiation capacities of specific cardiac progenitors. C-kit(pos) cells derived from the first heart field exhibit cardiomyogenic potential during development, but these cells are likely depleted shortly before or after birth. The residual c-kit(pos) cells found in the adult heart are probably of proepicardial origin, possess a mesenchymal phenotype (resembling bone marrow mesenchymal stem/stromal cells), and are capable of contributing significantly only to nonmyocytic lineages (fibroblasts, smooth muscle cells, and endothelial cells). If these 2 populations (first heart field and proepicardium) express different levels of c-kit, the cardiomyogenic potential of first heart field progenitors might be reconciled with recent results of c-kit(pos) cell lineage tracing studies. The concept that c-kit expression in the adult heart identifies epicardium-derived, noncardiomyogenic precursors with a mesenchymal phenotype helps to explain the beneficial effects of c

  14. "String theory" of c-kit(pos) cardiac cells: a new paradigm regarding the nature of these cells that may reconcile apparently discrepant results.

    Science.gov (United States)

    Keith, Matthew C L; Bolli, Roberto

    2015-03-27

    Although numerous preclinical investigations have consistently demonstrated salubrious effects of c-kit(pos) cardiac cells administered after myocardial infarction, the mechanism of action remains highly controversial. We and others have found little or no evidence that these cells differentiate into mature functional cardiomyocytes, suggesting paracrine effects. In this review, we propose a new paradigm predicated on a comprehensive analysis of the literature, including studies of cardiac development; we have (facetiously) dubbed this conceptual construct "string theory" of c-kit(pos) cardiac cells because it reconciles multifarious and sometimes apparently discrepant results. There is strong evidence that, during development, the c-kit receptor is expressed in different pools of cardiac progenitors (some capable of robust cardiomyogenesis and others with little or no contribution to myocytes). Accordingly, c-kit positivity, in itself, does not define the embryonic origins, lineage capabilities, or differentiation capacities of specific cardiac progenitors. C-kit(pos) cells derived from the first heart field exhibit cardiomyogenic potential during development, but these cells are likely depleted shortly before or after birth. The residual c-kit(pos) cells found in the adult heart are probably of proepicardial origin, possess a mesenchymal phenotype (resembling bone marrow mesenchymal stem/stromal cells), and are capable of contributing significantly only to nonmyocytic lineages (fibroblasts, smooth muscle cells, and endothelial cells). If these 2 populations (first heart field and proepicardium) express different levels of c-kit, the cardiomyogenic potential of first heart field progenitors might be reconciled with recent results of c-kit(pos) cell lineage tracing studies. The concept that c-kit expression in the adult heart identifies epicardium-derived, noncardiomyogenic precursors with a mesenchymal phenotype helps to explain the beneficial effects of c

  15. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  16. Multiple Lineages of Human Breast Cancer Stem/Progenitor Cells Identified by Profiling with Stem Cell Markers

    OpenAIRE

    Hwang-Verslues, Wendy W.; Wen-Hung Kuo; Po-Hao Chang; Chi-Chun Pan; Hsing-Hui Wang; Sheng-Ta Tsai; Yung-Ming Jeng; Jin-Yu Shew; Kung, John T.; Chung-Hsuan Chen; Lee, Eva Y-H. P.; King-Jen Chang; Wen-Hwa Lee

    2009-01-01

    Heterogeneity of cancer stem/progenitor cells that give rise to different forms of cancer has been well demonstrated for leukemia. However, this fundamental concept has yet to be established for solid tumors including breast cancer. In this communication, we analyzed solid tumor cancer stem cell markers in human breast cancer cell lines and primary specimens using flow cytometry. The stem/progenitor cell properties of different marker expressing-cell populations were further assessed by in vi...

  17. The progenitor cell compartment in the feline liver: an (immuno)histochemical investigation.

    Science.gov (United States)

    Ijzer, J; Kisjes, J R; Penning, L C; Rothuizen, J; van den Ingh, T S G A M

    2009-07-01

    The hepatic progenitor compartment is of vital importance in liver regeneration when hepatocellular replication is impaired, as it occurs in acute fulminant hepatitis or severe liver fibrosis. It consists of resident progenitor cells in the normal liver, and ductular reaction and intermediate hepatobiliary cells in diseased livers. An histologic and immunohistochemical study was conducted to demonstrate putative hepatic progenitor cells in the normal liver (n = 5) and in a range of hepatic diseases (n = 13) in the cat. Formalin-fixed, paraffin-embedded specimens were stained with HE, the van Gieson stain, and the reticulin stain according to Gordon and Sweet, and immunohistochemically stained for cytokeratin-7 (CK7), human hepatocyte marker 1 (Hepar1), and multidrug resistance-binding protein-2/ATP binding cassette C2 (MRP2). The normal feline liver contains a liver progenitor cell morphologically similar to humans and dogs, which resides in the canal of Hering. In acute and chronic feline liver diseases a ductular reaction is present, whether in the parenchyma or in a portal or septal location. The putative progenitor cells could easily be demonstrated by staining for CK7, whereas they were generally negative for Hepar1 and MRP2. In a parenchymal ductular reaction mitotic figures and cells with an intermediate hepatobiliary phenotype could be demonstrated. This is the first account of hepatic progenitor cells in feline liver. PMID:19329493

  18. Thymic anlage is colonized by progenitors restricted to T, NK, and dendritic cell lineages.

    Science.gov (United States)

    Masuda, Kyoko; Itoi, Manami; Amagai, Takashi; Minato, Nagahiro; Katsura, Yoshimoto; Kawamoto, Hiroshi

    2005-03-01

    It remains controversial whether the thymus-colonizing progenitors are committed to the T cell lineage. A major problem that has impeded the characterization of thymic immigrants has been that the earliest intrathymic progenitors thus far identified do not necessarily represent the genuine thymic immigrants, because their developmental potential should have been influenced by contact with the thymic microenvironment. In the present study, we examined the developmental potential of the ontogenically earliest thymic progenitors of day 11 murine fetus. These cells reside in the surrounding mesenchymal region and have not encountered thymic epithelial components. Flow cytometric and immunohistochemical analyses demonstrated that these cells are exclusively Lin(-)c-kit(+)IL-7R(+). Limiting dilution analyses disclosed that the progenitors with T cell potential were abundant, while those with B cell potential were virtually absent in the region of day 11 thymic anlage. Clonal analyses reveled that they are restricted to T, NK, and dendritic cell lineages. Each progenitor was capable of forming a large number of precursors that may clonally accommodate highly diverse TCRbeta chains. These results provide direct evidence that the progenitors restricted to the T/NK/dendritic cell lineage selectively immigrate into the thymus.

  19. Endothelial Progenitor Cells in Diabetic Microvascular Complications: Friends or Foes?

    Directory of Open Access Journals (Sweden)

    Cai-Guo Yu

    2016-01-01

    Full Text Available Despite being featured as metabolic disorder, diabetic patients are largely affected by hyperglycemia-induced vascular abnormality. Accumulated evidence has confirmed the beneficial effect of endothelial progenitor cells (EPCs in coronary heart disease. However, antivascular endothelial growth factor (anti-VEGF treatment is the main therapy for diabetic retinopathy and nephropathy, indicating the uncertain role of EPCs in the pathogenesis of diabetic microvascular disease. In this review, we first illustrate how hyperglycemia induces metabolic and epigenetic changes in EPCs, which exerts deleterious impact on their number and function. We then discuss how abnormal angiogenesis develops in eyes and kidneys under diabetes condition, focusing on “VEGF uncoupling with nitric oxide” and “competitive angiopoietin 1/angiopoietin 2” mechanisms that are shared in both organs. Next, we dissect the nature of EPCs in diabetic microvascular complications. After we overview the current EPCs-related strategies, we point out new EPCs-associated options for future exploration. Ultimately, we hope that this review would uncover the mysterious nature of EPCs in diabetic microvascular disease for therapeutics.

  20. Cardiac stem cell therapy research in China

    Institute of Scientific and Technical Information of China (English)

    Junbo GE

    2006-01-01

    @@ For more than two decades, the morbidity and mortality of coronary artery disease (CAD) has been increasing rapidly in China. Despite tremendous advances in treatment strategies of CAD, heart failure after acute myocardial infarction (AMI) continues to be one of the greatest medical challenges throughout the world. In 1994, Soonpaa and colleagues first reported the possibility of cardiomyocytes implantation and suggested that intracardiac cell grafting might provide a useful approach for myocardial repair.1 Cell implantation has become a novel therapeutic option for ischemic cardiac injury and heart failure.

  1. Regulation of the survival and differentiation of hepatic stem/progenitor cells by acyclic retinoid

    OpenAIRE

    Kamiya, Akihide

    2015-01-01

    During embryonic liver development, hepatic stem/progenitor cells (HpSCs) have a high proliferative ability and bipotency to differentiate into hepatocytes and cholangiocytes. Retinoic acid is a derivative of vitamin A and is involved in the proliferation and differentiation of stem/progenitor cells in several tissues. However, whether retinoic acid regulates the characteristics of HpSCs in the normal liver is still unknown. A recent study has shown that acyclic retinoid regulates the surviva...

  2. PROPERTIES OF PROLIFERATION AND DIFFERENTIATION OF NEONATAL RAT RETINAL PROGENITOR CELLS IN VITRO

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Neural stem or progenitor cells are i mmature,multipotent cells that have the capacityto differenti-ate into the three CNSlineages(neurons,astrocytesand oligodendrocytes)[1].Neuronal degeneration isthe cause of visual i mpair ment associated with prev-alent ocular diseases such as retinitis pigmentosa,age-related macular degeneration,retinal detach-ment and glaucoma[2].Transplantation of culturedneural stemcells/progenitors may helprestore visionby repopulating the damaged retina and replacingthe degenerati...

  3. Innate lymphoid cell development requires TOX-dependent generation of a common ILC progenitor

    OpenAIRE

    Seehus, Corey R.; Aliahmad, Parinaz; de la Torre, Brian; Iliev, Iliyan D.; Spurka, Lindsay; Funari, Vincent A; Kaye, Jonathan

    2015-01-01

    Diverse innate lymphoid cell (ILC) subtypes have been defined, based on effector function and transcription factor expression. ILCs derive from common lymphoid progenitors, although the transcriptional pathways leading to ILC lineage specification remain poorly characterized. Here we demonstrate that transcriptional regulator TOX is required for the in vivo differentiation of common lymphoid progenitors to ILC lineage-restricted cells. In vitro modeling demonstrates that TOX deficiency result...

  4. Epithelial progenitor cell lines as models of normal breast morphogenesis and neoplasia

    DEFF Research Database (Denmark)

    Petersen, Ole William; Gudjonsson, Thorarinn; Villadsen, René;

    2003-01-01

    The majority of human breast carcinomas exhibit luminal characteristics and as such, are most probably derived from progenitor cells within the luminal epithelial compartment. This has been subdivided recently into at least three luminal subtypes based on gene expression patterns. The value of kn......% of breast cancers arise in TDLUs and more than 90% are also cytokeratin 19-positive, we suggest that this cell population contains a breast-cancer progenitor....

  5. Transplantable progenitors of natural killer cells are distinct from those of T and B lymphocytes.

    OpenAIRE

    Hackett, J; Bosma, G C; Bosma, M J; Bennett, M.; Kumar, V

    1986-01-01

    We have utilized a mouse mutant (C.B-17 scid) that lacks functional T and B lymphocytes to examine the relationship among transplantable progenitors of natural killer (NK) cells, T cells, and B cells. The NK-progenitor cells contained in the bone marrow were detected by their ability to generate mature NK cells, following transfer of bone marrow cells into NK cell-depleted and lethally irradiated mice. Regeneration of NK activity in the recipient mice was monitored by two different assays: th...

  6. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    International Nuclear Information System (INIS)

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma

  7. Cardiac Cells Beating in Culture: A Laboratory Exercise

    Science.gov (United States)

    Weaver, Debora

    2007-01-01

    This article describes how to establish a primary tissue culture, where cells are taken directly from an organ of a living animal. Cardiac cells are taken from chick embryos and transferred to culture dishes. These cells are not transformed and therefore have a limited life span. However, the unique characteristics of cardiac cells are maintained…

  8. MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development.

    Science.gov (United States)

    Wood, William M; Etemad, Shervin; Yamamoto, Masakazu; Goldhamer, David J

    2013-12-01

    Skeletal myogenesis in the embryo is regulated by the coordinated expression of the MyoD family of muscle regulatory factors (MRFs). MyoD and Myf-5, which are the primary muscle lineage-determining factors, function in a partially redundant manner to establish muscle progenitor cell identity. Previous diphtheria toxin (DTA)-mediated ablation studies showed that MyoD+ progenitors rescue myogenesis in embryos in which Myf-5-expressing cells were targeted for ablation, raising the possibility that the regulative behavior of distinct, MRF-expressing populations explains the functional compensatory activities of these MRFs. Using MyoD(iCre) mice, we show that DTA-mediated ablation of MyoD-expressing cells results in the cessation of myogenesis by embryonic day 12.5 (E12.5), as assayed by myosin heavy chain (MyHC) and Myogenin staining. Importantly, MyoD(iCre/+);R26(DTA/+) embryos exhibited a concomitant loss of Myf-5+ progenitors, indicating that the vast majority of Myf-5+ progenitors express MyoD, a conclusion consistent with immunofluorescence analysis of Myf-5 protein expression in MyoD(iCre) lineage-labeled embryos. Surprisingly, staining for the paired box transcription factor, Pax7, which functions genetically upstream of MyoD in the trunk and is a marker for fetal myoblasts and satellite cell progenitors, was also lost by E12.5. Specific ablation of differentiating skeletal muscle in ACTA1Cre;R26(DTA/+) embryos resulted in comparatively minor effects on MyoD+, Myf-5+ and Pax7+ progenitors, indicating that cell non-autonomous effects are unlikely to explain the rapid loss of myogenic progenitors in MyoD(iCre/+);R26(DTA/+) embryos. We conclude that the vast majority of myogenic cells transit through a MyoD+ state, and that MyoD+ progenitors are essential for myogenesis and stem cell development. PMID:24055173

  9. Cryopreservation of hematopoietic stem/progenitor cells for therapeutic use.

    Science.gov (United States)

    Watt, Suzanne M; Austin, Eric; Armitage, Sue

    2007-01-01

    the Bone Marrow Donors Worldwide registry. In this chapter, we describe several protocols that we have used to cryopreserve these different sources of hematopoietic stem/progenitor cells, keeping in mind that the protocols may vary among transplant processing centers.

  10. Molecular imaging to target transplanted muscle progenitor cells.

    Science.gov (United States)

    Gutpell, Kelly; McGirr, Rebecca; Hoffman, Lisa

    2013-01-01

    Duchenne muscular dystrophy (DMD) is a severe genetic neuromuscular disorder that affects 1 in 3,500 boys, and is characterized by progressive muscle degeneration. In patients, the ability of resident muscle satellite cells (SCs) to regenerate damaged myofibers becomes increasingly inefficient. Therefore, transplantation of muscle progenitor cells (MPCs)/myoblasts from healthy subjects is a promising therapeutic approach to DMD. A major limitation to the use of stem cell therapy, however, is a lack of reliable imaging technologies for long-term monitoring of implanted cells, and for evaluating its effectiveness. Here, we describe a non-invasive, real-time approach to evaluate the success of myoblast transplantation. This method takes advantage of a unified fusion reporter gene composed of genes (firefly luciferase [fluc], monomeric red fluorescent protein [mrfp] and sr39 thymidine kinase [sr39tk]) whose expression can be imaged with different imaging modalities. A variety of imaging modalities, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), optical imaging, and high frequency 3D-ultrasound are now available, each with unique advantages and limitations. Bioluminescence imaging (BLI) studies, for example, have the advantage of being relatively low cost and high-throughput. It is for this reason that, in this study, we make use of the firefly luciferase (fluc) reporter gene sequence contained within the fusion gene and bioluminescence imaging (BLI) for the short-term localization of viable C2C12 myoblasts following implantation into a mouse model of DMD (muscular dystrophy on the X chromosome [mdx] mouse). Importantly, BLI provides us with a means to examine the kinetics of labeled MPCs post-implantation, and will be useful to track cells repeatedly over time and following migration. Our reporter gene approach further allows us to merge multiple imaging modalities in a single living

  11. CXCL12/Stromal-Cell-Derived Factor-1 Effectively Replaces Endothelial Progenitor Cells to Induce Vascularized Ectopic Bone

    NARCIS (Netherlands)

    Eman, Rhandy M; Hoorntje, Edgar T; Oner, F Cumhur; Kruyt, Moyo C; Dhert, Wouter J A; Alblas, Jacqueline

    2014-01-01

    Bone defect healing is highly dependent on the simultaneous stimulation of osteogenesis and vascularization. In bone regenerative strategies, combined seeding of multipotent stromal cells (MSCs) and endothelial progenitor cells (EPCs) proves their mutual stimulatory effects. Here, we investigated wh

  12. Sox10 Regulates Stem/Progenitor and Mesenchymal Cell States in Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Christopher Dravis

    2015-09-01

    Full Text Available To discover mechanisms that mediate plasticity in mammary cells, we characterized signaling networks that are present in the mammary stem cells responsible for fetal and adult mammary development. These analyses identified a signaling axis between FGF signaling and the transcription factor Sox10. Here, we show that Sox10 is specifically expressed in mammary cells exhibiting the highest levels of stem/progenitor activity. This includes fetal and adult mammary cells in vivo and mammary organoids in vitro. Sox10 is functionally relevant, as its deletion reduces stem/progenitor competence whereas its overexpression increases stem/progenitor activity. Intriguingly, we also show that Sox10 overexpression causes mammary cells to undergo a mesenchymal transition. Consistent with these findings, Sox10 is preferentially expressed in stem- and mesenchymal-like breast cancers. These results demonstrate a signaling mechanism through which stem and mesenchymal states are acquired in mammary cells and suggest therapeutic avenues in breast cancers for which targeted therapies are currently unavailable.

  13. Stroke and cardiac cell death: Two peas in a pod.

    Science.gov (United States)

    Gonzales-Portillo, Chiara; Ishikawa, Hiroto; Shinozuka, Kazutaka; Tajiri, Naoki; Kaneko, Yuji; Borlongan, Cesar V

    2016-03-01

    A close pathological link between stroke brain and heart failure may exist. Here, we discuss relevant laboratory and clinical reports demonstrating neural and cardiac myocyte cell death following ischemic stroke. Although various overlapping risk factors exist between cerebrovascular incidents and cardiac incidents, stroke therapy has largely neglected the cardiac pathological consequences. Recent preclinical stroke studies have implicated an indirect cell death pathway, involving toxic molecules, that originates from the stroke brain and produces cardiac cell death. In concert, previous laboratory reports have revealed a reverse cell death cascade, in that cardiac arrest leads to ischemic cell death in the brain. A deeper understanding of the crosstalk of cell death pathways between stroke and cardiac failure will facilitate the development of novel treatments designed to arrest the global pathology of both diseases thereby improving the clinical outcomes of patients diagnosed with stroke and heart failure.

  14. Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors

    OpenAIRE

    Teixeira, Vitor H.; Nadarajan, Parthiban; Graham, Trevor A; Pipinikas, Christodoulos P; Brown, James M; Falzon, Mary; Nye, Emma; Poulsom, Richard; Lawrence, David; Wright, Nicholas A.; McDonald, Stuart; Giangreco, Adam; Simons, Benjamin D; Janes, Sam M.

    2013-01-01

    eLife digest As air flows into our lungs, the lining of the nasal cavity, the throat and the rest of the respiratory tract prevents microbes, bacteria, dust and other small particles from entering the lungs. The lining of these airways is made up of many different types of cells, which must be continuously replaced as they become damaged. Experiments in mice have shown that cells called basal cells act as progenitor cells to keep the lining supplied with new cells. Progenitor cells are simila...

  15. Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1.

    OpenAIRE

    Shinobu Tsuzuki; Dengli Hong; Rajeev Gupta; Keitaro Matsuo; Masao Seto; Tariq Enver

    2007-01-01

    Editors' Summary Background. Blood contains red blood cells (which carry oxygen round the body), platelets (which help the blood to clot), and white blood cells (which fight off infections). All these cells, which are regularly replaced, are derived from hematopoietic stem cells, blood-forming cells present in the bone marrow. Like all stem cells, hematopoietic stem cells self-renew (reproduce themselves) and produce committed progenitor cells, which develop into mature blood cells in a proce...

  16. Ex Vivo and In Vivo Lentivirus-Mediated Transduction of Airway Epithelial Progenitor Cells.

    Science.gov (United States)

    Leoni, Giulia; Wasowicz, Marguerite Y; Chan, Mario; Meng, Cuixiang; Farley, Raymond; Brody, Steven L; Inoue, Makoto; Hasegawa, Mamoru; Alton, Eric W F W; Griesenbach, Uta

    2015-01-01

    A key challenge in pulmonary gene therapy for cystic fibrosis is to provide long-term correction of the genetic defect. This may be achievable by targeting airway epithelial stem/progenitor cells with an integrating vector. Here, we evaluated the ability of a lentiviral vector, derived from the simian immunodeficiency virus and pseudotyped with F and HN envelope proteins from Sendai virus, to transduce progenitor basal cells of the mouse nasal airways. We first transduced basal cell-enriched cultures ex vivo and confirmed efficient transduction of cytokeratin-5 positive cells. We next asked whether progenitor cells could be transduced in vivo. We evaluated the transduction efficiency in mice pretreated by intranasal administration of polidocanol to expose the progenitor cell layer. Compared to control mice, polidocanol treated mice demonstrated a significant increase in the number of transduced basal cells at 3 and 14 days post vector administration. At 14 days, the epithelium of treated mice contained clusters (4 to 8 adjacent cells) of well differentiated ciliated, as well as basal cells suggesting a clonal expansion. These results indicate that our lentiviral vector can transduce progenitor basal cells in vivo, although transduction required denudation of the surface epithelium prior to vector administration. PMID:26471068

  17. Poised Regeneration of Zebrafish Melanocytes Involves Direct Differentiation and Concurrent Replenishment of Tissue-Resident Progenitor Cells.

    Science.gov (United States)

    Iyengar, Sharanya; Kasheta, Melissa; Ceol, Craig J

    2015-06-22

    Efficient regeneration following injury is critical for maintaining tissue function and enabling organismal survival. Cells reconstituting damaged tissue are often generated from resident stem or progenitor cells or from cells that have dedifferentiated and become proliferative. While lineage-tracing studies have defined cellular sources of regeneration in many tissues, the process by which these cells execute the regenerative process is largely obscure. Here, we have identified tissue-resident progenitor cells that mediate regeneration of zebrafish stripe melanocytes and defined how these cells reconstitute pigmentation. Nearly all regeneration melanocytes arise through direct differentiation of progenitor cells. Wnt signaling is activated prior to differentiation, and inhibition of Wnt signaling impairs regeneration. Additional progenitors divide symmetrically to sustain the pool of progenitor cells. Combining direct differentiation with symmetric progenitor divisions may serve as a means to rapidly repair injured tissue while preserving the capacity to regenerate.

  18. Aristaless related homeobox gene, Arx, is implicated in mouse fetal Leydig cell differentiation possibly through expressing in the progenitor cells.

    Directory of Open Access Journals (Sweden)

    Kanako Miyabayashi

    Full Text Available Development of the testis begins with the expression of the SRY gene in pre-Sertoli cells. Soon after, testis cords containing Sertoli and germ cells are formed and fetal Leydig cells subsequently develop in the interstitial space. Studies using knockout mice have indicated that multiple genes encoding growth factors and transcription factors are implicated in fetal Leydig cell differentiation. Previously, we demonstrated that the Arx gene is implicated in this process. However, how ARX regulates Leydig cell differentiation remained unknown. In this study, we examined Arx KO testes and revealed that fetal Leydig cell numbers largely decrease throughout the fetal life. Since our study shows that fetal Leydig cells rarely proliferate, this decrease in the KO testes is thought to be due to defects of fetal Leydig progenitor cells. In sexually indifferent fetal gonads of wild type, ARX was expressed in the coelomic epithelial cells and cells underneath the epithelium as well as cells at the gonad-mesonephros border, both of which have been described to contain progenitors of fetal Leydig cells. After testis differentiation, ARX was expressed in a large population of the interstitial cells but not in fetal Leydig cells, raising the possibility that ARX-positive cells contain fetal Leydig progenitor cells. When examining marker gene expression, we observed cells as if they were differentiating into fetal Leydig cells from the progenitor cells. Based on these results, we propose that ARX acts as a positive factor for differentiation of fetal Leydig cells through functioning at the progenitor stage.

  19. Lineage tracing of resident tendon progenitor cells during growth and natural healing.

    Directory of Open Access Journals (Sweden)

    Nathaniel A Dyment

    Full Text Available Unlike during embryogenesis, the identity of tissue resident progenitor cells that contribute to postnatal tendon growth and natural healing is poorly characterized. Therefore, we utilized 1 an inducible Cre driven by alpha smooth muscle actin (SMACreERT2, that identifies mesenchymal progenitors, 2 a constitutively active Cre driven by growth and differentiation factor 5 (GDF5Cre, a critical regulator of joint condensation, in combination with 3 an Ai9 Cre reporter to permanently label SMA9 and GDF5-9 populations and their progeny. In growing mice, SMA9+ cells were found in peritendinous structures and scleraxis-positive (ScxGFP+ cells within the tendon midsubstance and myotendinous junction. The progenitors within the tendon midsubstance were transiently labeled as they displayed a 4-fold expansion from day 2 to day 21 but reduced to baseline levels by day 70. SMA9+ cells were not found within tendon entheses or ligaments in the knee, suggesting a different origin. In contrast to the SMA9 population, GDF5-9+ cells extended from the bone through the enthesis and into a portion of the tendon midsubstance. GDF5-9+ cells were also found throughout the length of the ligaments, indicating a significant variation in the progenitors that contribute to tendons and ligaments. Following tendon injury, SMA9+ paratenon cells were the main contributors to the healing response. SMA9+ cells extended over the defect space at 1 week and differentiated into ScxGFP+ cells at 2 weeks, which coincided with increased collagen signal in the paratenon bridge. Thus, SMA9-labeled cells represent a unique progenitor source that contributes to the tendon midsubstance, paratenon, and myotendinous junction during growth and natural healing, while GDF5 progenitors contribute to tendon enthesis and ligament development. Understanding the mechanisms that regulate the expansion and differentiation of these progenitors may prove crucial to improving future repair strategies.

  20. Regenerative Medicine for the Kidney: Renotropic Factors, Renal Stem/Progenitor Cells, and Stem Cell Therapy

    Directory of Open Access Journals (Sweden)

    Akito Maeshima

    2014-01-01

    Full Text Available The kidney has the capacity for regeneration and repair after a variety of insults. Over the past few decades, factors that promote repair of the injured kidney have been extensively investigated. By using kidney injury animal models, the role of intrinsic and extrinsic growth factors, transcription factors, and extracellular matrix in this process has been examined. The identification of renal stem cells in the adult kidney as well as in the embryonic kidney is an active area of research. Cell populations expressing putative stem cell markers or possessing stem cell properties have been found in the tubules, interstitium, and glomeruli of the normal kidney. Cell therapies with bone marrow-derived hematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells, and amniotic fluid-derived stem cells have been highly effective for the treatment of acute or chronic renal failure in animals. Embryonic stem cells and induced pluripotent stem cells are also utilized for the construction of artificial kidneys or renal components. In this review, we highlight the advances in regenerative medicine for the kidney from the perspective of renotropic factors, renal stem/progenitor cells, and stem cell therapies and discuss the issues to be solved to realize regenerative therapy for kidney diseases in humans.

  1. Stem Cells and Progenitor Cells for Tissue-Engineered Solutions to Congenital Heart Defects

    OpenAIRE

    Yang Gao; Jacot, Jeffrey G.

    2015-01-01

    Synthetic patches and fixed grafts currently used in the repair of congenital heart defects are nonliving, noncontractile, and not electrically responsive, leading to increased risk of complication, reoperation, and sudden cardiac death. Studies suggest that tissue-engineered patches made from living, functional cells could grow with the patient, facilitate healing, and help recover cardiac function. In this paper, we review the research into possible sources of cardiomyocytes and other cardi...

  2. Differentiation of insulin-producing cells from human neural progenitor cells.

    Directory of Open Access Journals (Sweden)

    Yuichi Hori

    2005-04-01

    Full Text Available BACKGROUND: Success in islet-transplantation-based therapies for type 1 diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Islets and neurons share features, including common developmental programs, and in some species brain neurons are the principal source of systemic insulin. METHODS AND FINDINGS: Here we show that brain-derived human neural progenitor cells, exposed to a series of signals that regulate in vivo pancreatic islet development, form clusters of glucose-responsive insulin-producing cells (IPCs. During in vitro differentiation of neural progenitor cells with this novel method, genes encoding essential known in vivo regulators of pancreatic islet development were expressed. Following transplantation into immunocompromised mice, IPCs released insulin C-peptide upon glucose challenge, remained differentiated, and did not form detectable tumors. CONCLUSION: Production of IPCs solely through extracellular factor modulation in the absence of genetic manipulations may promote strategies to derive transplantable islet-replacement tissues from human neural progenitor cells and other types of multipotent human stem cells.

  3. Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells.

    Science.gov (United States)

    Holst, Jeff; Watson, Sarah; Lord, Megan S; Eamegdool, Steven S; Bax, Daniel V; Nivison-Smith, Lisa B; Kondyurin, Alexey; Ma, Liang; Oberhauser, Andres F; Weiss, Anthony S; Rasko, John E J

    2010-10-01

    Surprisingly little is known about the effects of the physical microenvironment on hemopoietic stem and progenitor cells. To explore the physical effects of matrix elasticity on well-characterized primitive hemopoietic cells, we made use of a uniquely elastic biomaterial, tropoelastin. Culturing mouse or human hemopoietic cells on a tropoelastin substrate led to a two- to threefold expansion of undifferentiated cells, including progenitors and mouse stem cells. Treatment with cytokines in the presence of tropoelastin had an additive effect on this expansion. These biological effects required substrate elasticity, as neither truncated nor cross-linked tropoelastin reproduced the phenomenon, and inhibition of mechanotransduction abrogated the effects. Our data suggest that substrate elasticity and tensegrity are important mechanisms influencing hemopoietic stem and progenitor cell subsets and could be exploited to facilitate cell culture. PMID:20890282

  4. Progenitor cells in liver regeneration: molecular responses controlling their activation and expansion

    DEFF Research Database (Denmark)

    Santoni-Rugiu, Eric; Jelnes, Peter; Thorgeirsson, Snorri S;

    2005-01-01

    biliary cells to restore liver homeostasis. In recent years, hepatic progenitor cells have been the subject of increasing interest due to their therapeutic potential in numerous liver diseases as alternative or supportive/complementary tools to liver transplantation. While the first investigations on......Although normally quiescent, the adult mammalian liver possesses a great capacity to regenerate after different types of injuries in order to restore the lost liver mass and ensure maintenance of the multiple liver functions. Major players in the regeneration process are mature residual cells......, including hepatocytes, cholangiocytes and stromal cells. However, if the regenerative capacity of mature cells is impaired by liver-damaging agents, hepatic progenitor cells are activated and expand into the liver parenchyma. Upon transit amplification, the progenitor cells may generate new hepatocytes and...

  5. It Is All in the Blood: The Multifaceted Contribution of Circulating Progenitor Cells in Diabetic Complications

    Directory of Open Access Journals (Sweden)

    Gian Paolo Fadini

    2012-01-01

    Full Text Available Diabetes mellitus (DM is a worldwide growing disease and represents a huge social and healthcare problem owing to the burden of its complications. Micro- and macrovascular diabetic complications arise from excess damage through well-known biochemical pathways. Interestingly, microangiopathy hits the bone marrow (BM microenvironment with features similar to retinopathy, nephropathy and neuropathy. The BM represents a reservoir of progenitor cells for multiple lineages, not limited to the hematopoietic system and including endothelial cells, smooth muscle cells, cardiomyocytes, and osteogenic cells. All these multiple progenitor cell lineages are profoundly altered in the setting of diabetes in humans and animal models. Reduction of endothelial progenitor cells (EPCs along with excess smooth muscle progenitor (SMP and osteoprogenitor cells creates an imbalance that promote the development of micro- and macroangiopathy. Finally, an excess generation of BM-derived fusogenic cells has been found to contribute to diabetic complications in animal models. Taken together, a growing amount of literature attributes to circulating progenitor cells a multi-faceted role in the pathophysiology of DM, setting a novel scenario that puts BM and the blood at the centre of the stage.

  6. Circulating endothelial progenitor cells in kidney transplant patients.

    Directory of Open Access Journals (Sweden)

    Giovana S Di Marco

    Full Text Available BACKGROUND: Kidney transplantation (RTx leads to amelioration of endothelial function in patients with advanced renal failure. Endothelial progenitor cells (EPCs may play a key role in this repair process. The aim of this study was to determine the impact of RTx and immunosuppressive therapy on the number of circulating EPCs. METHODS: We analyzed 52 RTx patients (58±13 years; 33 males, mean ± SD and 16 age- and gender-matched subjects with normal kidney function (57±17; 10 males. RTx patients received a calcineurin inhibitor (CNI-based (65% or a CNI-free therapy (35% and steroids. EPC number was determined by double positive staining for CD133/VEGFR2 and CD34/VEGFR2 by flow cytometry. Stromal cell-derived factor 1 alpha (SDF-1 levels were assessed by ELISA. Experimentally, to dissociate the impact of RTx from the impact of immunosuppressants, we used the 5/6 nephrectomy model. The animals were treated with a CNI-based or a CNI-free therapy, and EPCs (Sca+cKit+ and CD26+ cells were determined by flow cytometry. RESULTS: Compared to controls, circulating number of CD34+/VEGFR2+ and CD133+/VEGFR2+ EPCs increased in RTx patients. There were no correlations between EPC levels and statin, erythropoietin or use of renin angiotensin system blockers in our study. Indeed, multivariate analysis showed that SDF-1--a cytokine responsible for EPC mobilization--is independently associated with the EPC number. 5/6 rats presented decreased EPC counts in comparison to control animals. Immunosuppressive therapy was able to restore normal EPC values in 5/6 rats. These effects on EPC number were associated with reduced number of CD26+ cells, which might be related to consequent accumulation of SDF-1. CONCLUSIONS: We conclude that kidney transplantation and its associated use of immunosuppressive drugs increases the number of circulating EPCs via the manipulation of the CD26/SDF-1 axis. Increased EPC count may be associated to endothelial repair and function in

  7. Dysregulation of Vascular Endothelial Progenitor Cells Lung-Homing in Subjects with COPD

    Directory of Open Access Journals (Sweden)

    Brittany M. Salter

    2016-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterized by fixed airflow limitation and progressive decline of lung function and punctuated by occasional exacerbations. The disease pathogenesis may involve activation of the bone marrow stimulating mobilization and lung-homing of progenitor cells. We investigated the hypothesis that lower circulating numbers of vascular endothelial progenitor cells (VEPCs are a consequence of increased lung-sequestration in COPD. Nonatopic, current or ex-smokers with diagnosed COPD and nonatopic, nonsmoking normal controls were enrolled. Blood and induced sputum extracted primitive hemopoietic progenitors (HPCs and VEPC were enumerated by flow cytometry. Migration and adhesive responses to fibronectin were assessed. In sputum, VEPC numbers were significantly greater in COPD compared to normal controls. In blood, VEPCs were significantly lower in COPD versus normal controls. There were no differences in HPC levels between the two groups in either compartment. Functionally, there was a greater migrational responsiveness of progenitors from COPD subjects to stromal cell-derived factor-1alpha (SDF-1α compared to normal controls. This was associated with greater numbers of CXCR4+ progenitors in sputum from COPD. Increased migrational responsiveness of progenitor cells may promote lung-homing of VEPC in COPD which may disrupt maintenance and repair of the airways and contribute to COPD disease pathogenesis.

  8. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Daniel Zeve

    Full Text Available Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicate that muscle, in a non-autonomous manner, regulates adipose progenitor homeostasis, highlighting a role for muscle-derived secreted factors. These findings support a humoral link between skeletal muscle and adipose progenitors and indicate that manipulation of adipose stem cell function may help address obesity and diabetes.

  9. Post-Transcriptional Mechanisms Regulating Epidermal Stem and Progenitor Cell Self-Renewal and Differentiation.

    Science.gov (United States)

    Li, Jingting; Sen, George L

    2016-04-01

    Epidermal stem and progenitor cells exist within the basal layer of the epidermis and serve to replenish the loss of differentiated cells because of normal turnover or injury. Current efforts have focused on elucidating the transcriptional regulation of epidermal stem cell self-renewal and differentiation. However, recent studies have pointed to an emerging and prominent role for post-transcriptional regulation of epidermal cell fate decisions. In this review, we will focus on post-transcriptional mechanisms including noncoding RNAs, RNA binding proteins, and mRNA decay-mediated control of epidermal stem and progenitor cell function in the skin.

  10. Absent or rare human immunodeficiency virus infection of bone marrow stem/progenitor cells in vivo.

    OpenAIRE

    Davis, B. R.; Schwartz, D H; Marx, J C; Johnson, C.E.; Berry, J. M.; Lyding, J; Merigan, T C; Zander, A

    1991-01-01

    An important question in human immunodeficiency virus (HIV) pathogenesis is whether HIV-infected bone marrow CD34+ stem/progenitor cells serve as a significant reservoir of virus in HIV-infected individuals. Our data indicate that infection of bone marrow stem/progenitor cells with HIV occurs rarely, if ever, in vivo. In the present study, CD34+ cells were immunomagnetically purified from the bone marrow of HIV-seropositive individuals, and purified cells or colony-forming cells of the granul...

  11. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    Science.gov (United States)

    Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z.; Gimzewski, James K.; Nakano, Atsushi

    2013-04-01

    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.

  12. Human endothelial progenitor cells internalize high-density lipoprotein.

    Science.gov (United States)

    Srisen, Kaemisa; Röhrl, Clemens; Meisslitzer-Ruppitsch, Claudia; Ranftler, Carmen; Ellinger, Adolf; Pavelka, Margit; Neumüller, Josef

    2013-01-01

    Endothelial progenitor cells (EPCs) originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL), and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate), cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal intraellular

  13. Human endothelial progenitor cells internalize high-density lipoprotein.

    Directory of Open Access Journals (Sweden)

    Kaemisa Srisen

    Full Text Available Endothelial progenitor cells (EPCs originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL, and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate, cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal

  14. Characterization of a human hematopoietic progenitor cell capable of forming blast cell containing colonies in vitro.

    OpenAIRE

    J. Brandt; Baird, N; Lu, L; Srour, E; R. HOFFMAN

    1988-01-01

    A hematopoietic cell (CFU-B1) capable of producing blast cell containing colonies in vitro was detected using a semisolid culture system. The CFU-B1 has the capacity for self-renewal and commitment to a number of hematopoietic lineages. Monoclonal antibody to the human progenitor cell antigen-1 (HPCA-1) and a monoclonal antibody against the major histocompatibility class II antigen (HLA-DR) were used with fluorescence activated cell sorting to phenotype the CFU-B1. The CFU-B1 was found to exp...

  15. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells

    OpenAIRE

    Daniel Zeve; Millay, Douglas P.; Jin Seo; Graff, Jonathan M.

    2016-01-01

    Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicat...

  16. Osteogenic differentiation capacity of human skeletal muscle-derived progenitor cells.

    Directory of Open Access Journals (Sweden)

    Teruyo Oishi

    Full Text Available Heterotopic ossification (HO is defined as the formation of ectopic bone in soft tissue outside the skeletal tissue. HO is thought to result from aberrant differentiation of osteogenic progenitors within skeletal muscle. However, the precise origin of HO is still unclear. Skeletal muscle contains two kinds of progenitor cells, myogenic progenitors and mesenchymal progenitors. Myogenic and mesenchymal progenitors in human skeletal muscle can be identified as CD56(+ and PDGFRα(+ cells, respectively. The purpose of this study was to investigate the osteogenic differentiation potential of human skeletal muscle-derived progenitors. Both CD56(+ cells and PDGFRα(+ cells showed comparable osteogenic differentiation potential in vitro. However, in an in vivo ectopic bone formation model, PDGFRα(+ cells formed bone-like tissue and showed successful engraftment, while CD56(+ cells did not form bone-like tissue and did not adapt to an osteogenic environment. Immunohistological analysis of human HO sample revealed that many PDGFRα(+ cells were localized in proximity to ectopic bone formed in skeletal muscle. MicroRNAs (miRNAs are known to regulate many biological processes including osteogenic differentiation. We investigated the participation of miRNAs in the osteogenic differentiation of PDGFRα(+ cells by using microarray. We identified miRNAs that had not been known to be involved in osteogenesis but showed dramatic changes during osteogenic differentiation of PDGFRα(+ cells. Upregulation of miR-146b-5p and -424 and downregulation of miR-7 during osteogenic differentiation of PDGFRα(+ cells were confirmed by quantitative real-time RT-PCR. Inhibition of upregulated miRNAs, miR-146b-5p and -424, resulted in the suppression of osteocyte maturation, suggesting that these two miRNAs have the positive role in the osteogenesis of PDGFRα(+ cells. Our results suggest that PDGFRα(+ cells may be the major source of HO and that the newly identified mi

  17. Isolation and characterization of portal branch ligation-stimulated Hmga2-positive bipotent hepatic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Hiroshi [Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B51, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Tagawa, Yoh-ichi, E-mail: ytagawa@bio.titech.ac.jp [Frontier Research Center, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B51, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Tamai, Miho [Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B51, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Motoyama, Hiroaki [Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Ogawa, Shinichiro [Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); McEwen Center for Regenerative Medicine, University Health Network, 190 Elizabeth Street, Toronto, Ont., Canada M5G 2C4 (Canada); Soeda, Junpei; Nakata, Takenari; Miyagawa, Shinichi [Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2010-12-17

    Research highlights: {yields} Hepatic progenitor cells were isolated from the portal branch-ligated liver of mice. {yields} Portal branch ligation-stimulated hepatic progenitor cells (PBLHCs) express Hmga2. {yields} PBLHCs have bidirectional differentiation capability in vitro. -- Abstract: Hepatic stem/progenitor cells are one of several cell sources that show promise for restoration of liver mass and function. Although hepatic progenitor cells (HPCs), including oval cells, are induced by administration of certain hepatotoxins in experimental animals, such a strategy would be inappropriate in a clinical setting. Here, we investigated the possibility of isolating HPCs in a portal branch-ligated liver model without administration of any chemical agents. A non-parenchymal cell fraction was prepared from the portal branch-ligated or non-ligated lobe, and seeded onto plates coated with laminin. Most of the cells died, but a small number were able to proliferate. These proliferating cells were cloned as portal branch ligation-stimulated hepatic cells (PBLHCs) by the limiting dilution method. The PBLHCs expressed cytokeratin19, albumin, and Hmga2. The PBLHCs exhibited metabolic functions such as detoxification of ammonium ions and synthesis of urea on Matrigel-coated plates in the presence of oncostatin M. In Matrigel mixed with type I collagen, the PBLHCs became rearranged into cystic and tubular structures. Immunohistochemical staining demonstrated the presence of Hmga2-positive cells around the interlobular bile ducts in the portal branch-ligated liver lobes. In conclusion, successful isolation of bipotent hepatic progenitor cell clones, PBLHCs, from the portal branch-ligated liver lobes of mice provides the possibility of future clinical application of portal vein ligation to induce hepatic progenitor cells.

  18. The number of fetal nephron progenitor cells limits ureteric branching and adult nephron endowment.

    Science.gov (United States)

    Cebrian, Cristina; Asai, Naoya; D'Agati, Vivette; Costantini, Frank

    2014-04-10

    Nephrons, the functional units of the kidney, develop from progenitor cells (cap mesenchyme [CM]) surrounding the epithelial ureteric bud (UB) tips. Reciprocal signaling between UB and CM induces nephrogenesis and UB branching. Although low nephron number is implicated in hypertension and renal disease, the mechanisms that determine nephron number are obscure. To test the importance of nephron progenitor cell number, we genetically ablated 40% of these cells, asking whether this would limit kidney size and nephron number or whether compensatory mechanisms would allow the developing organ to recover. The reduction in CM cell number decreased the rate of branching, which in turn allowed the number of CM cells per UB tip to normalize, revealing a self-correction mechanism. However, the retarded UB branching impaired kidney growth, leaving a permanent nephron deficit. Thus, the number of fetal nephron progenitor cells is an important determinant of nephron endowment, largely via its effect on UB branching.

  19. Pro-angiogenic Hematopoietic Progenitor Cells and Endothelial Colony Forming Cells in Pathological Angiogenesis of Bronchial and Pulmonary Circulation

    OpenAIRE

    Duong, Heng; Erzurum, Serpil; Asosingh, Kewal

    2011-01-01

    Dysregulation of angiogenesis is a common feature of many disease processes. Vascular remodeling is believed to depend on the participation of endothelial progenitor cells, but the identification of endothelial progenitors in postnatal neovascularization remains elusive. Current understanding posits a role for circulating pro-angiogenic hematopoietic cells, which interact with local endothelial cells to establish an environment that favors angiogenesis in physiologic and pathophysiologic resp...

  20. MYC Expression Promotes the Proliferation of Neural Progenitor Cells in Culture and In Vivo

    Directory of Open Access Journals (Sweden)

    Dan Fults

    2002-01-01

    Full Text Available Primitive neuroectodermal tumors. (20PNETs are pediatric brain tumors that result from defects in signaling molecules governing the growth and differentiation of neural progenitor cells. We used the RCAS-TVA system to study the growth effects of three genetic alterations implicated in human PNETs on a subset of neural progenitor cells that express the intermediate filament protein, nestin. The genetic alterations tested were: 1 overexpression of the cellular oncoprotein, MYC; 2 activation of transcription factor, β-catenin; and 3 haploinsufficiency of Ptc, the hedgehog receptor gene. The RCAS-TVA system uses an avian retroviral vector, RCAS, to target gene expression to specific cell types in transgenic mice. To express exogenous genes in neural progenitor cells, we used Ntv-a mice. In these mice, the Nestin gene promoter drives expression of TVA, the cell surface receptor for the virus. Ectopic expression of MYC, but not activated β-catenin, promoted the proliferation of neural progenitor cells in culture and in the cerebral leptomeninges in vivo. These effects were equally penetrant in mice with Ptc+/− and Ptc+/+ genetic backgrounds. Although overexpression of MYC is not sufficient to cause intraparenchymal tumors, it may facilitate PNET formation by sustaining the growth of undifferentiated progenitor cells.

  1. Generation of Tripotent Neural Progenitor Cells from Rat Embryonic Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Zhenkun Wang; Xiaoyang Zhao; Zhonghua Liu; Liu Wang; Qi Zhou; Chao Sheng; Tianda Li; Fei Teng; Lisi Sang; Fenglin Cao; Ziwei Wang; Wanwan Zhu; Wei Li

    2012-01-01

    Rat is a valuable model for pharmacological and physiological studies.Germline-competent rat embryonic stem (rES) cell lines have been successfully established and the molecular networks maintaining the self-renewing,undifferentiated state of rES cells have also been well uncovered.However,little is known about the differentiation strategies and the underlying mechanisms of how these authentic rat pluripotent stem cells give rise to specific cell types.The aim of this study is to investigate the neural differentiation capacity of rES cells.By means of a modified procedure based on previous publications - combination of mitogen-activated protein kinase (MAPK) and glycogen synthase kinase 3 (GSK3) inhibitors (two inhibitors,"2i") with feeder-conditioned medium,we successfully obtained high-quality rat embryoid bodies (rEBs) from rES cells and then differentiated them to tripotent neural progenitors.These rES cell-derived neural progenitor cells (rNPCs) were capable of self-renewing and giving rise to all three neural lineages,including astrocytes,oligodendrocytes,and neurons.Besides,these rES cell-derived neurons stained positive for y-aminobutyric acid (GABA) and tyrosine hydroxylase (TH).In summary,we develop an experimental system for differentiating rES cells to tripotent neural progenitors,which may provide a powerful tool for pharmacological test and a valuable platform for studying the pathogenesis of many neurodegenerative disorders such as Parkinson's disease and the development of rat nervous system.

  2. Identification of human embryonic progenitor cell targeting peptides using phage display.

    Directory of Open Access Journals (Sweden)

    Paola A Bignone

    Full Text Available Human pluripotent stem (hPS cells are capable of differentiation into derivatives of all three primary embryonic germ layers and can self-renew indefinitely. They therefore offer a potentially scalable source of replacement cells to treat a variety of degenerative diseases. The ability to reprogram adult cells to induced pluripotent stem (iPS cells has now enabled the possibility of patient-specific hPS cells as a source of cells for disease modeling, drug discovery, and potentially, cell replacement therapies. While reprogramming technology has dramatically increased the availability of normal and diseased hPS cell lines for basic research, a major bottleneck is the critical unmet need for more efficient methods of deriving well-defined cell populations from hPS cells. Phage display is a powerful method for selecting affinity ligands that could be used for identifying and potentially purifying a variety of cell types derived from hPS cells. However, identification of specific progenitor cell-binding peptides using phage display may be hindered by the large cellular heterogeneity present in differentiating hPS cell populations. We therefore tested the hypothesis that peptides selected for their ability to bind a clonal cell line derived from hPS cells would bind early progenitor cell types emerging from differentiating hPS cells. The human embryonic stem (hES cell-derived embryonic progenitor cell line, W10, was used and cell-targeting peptides were identified. Competition studies demonstrated specificity of peptide binding to the target cell surface. Efficient peptide targeted cell labeling was accomplished using multivalent peptide-quantum dot complexes as detected by fluorescence microscopy and flow cytometry. The cell-binding peptides were selective for differentiated hPS cells, had little or no binding on pluripotent cells, but preferential binding to certain embryonic progenitor cell lines and early endodermal hPS cell derivatives. Taken

  3. In vitro Differentiation of Murine Innate Lymphoid Cells from Common Lymphoid Progenitor Cells

    OpenAIRE

    Seehus, Corey; Kaye, Jonathan

    2016-01-01

    Subtypes of innate lymphoid cells (ILC), defined based on their cytokine secretion profiles and transcription factor expression, are important for host protection from pathogens and maintaining tissue homeostasis. ILCs develop from common lymphoid progenitors (CLP) in the bone marrow. Using the methods described here, we have previously shown that loss of the transcriptional regulator TOX (Thymocyte-selection associated HMG-box protein) leads to specific changes in ILC development and differe...

  4. Simulated Microgravity Exerts an Age-Dependent Effect on the Differentiation of Cardiovascular Progenitors Isolated from the Human Heart.

    Directory of Open Access Journals (Sweden)

    Tania I Fuentes

    Full Text Available Microgravity has a profound effect on cardiovascular function, however, little is known about the impact of microgravity on progenitors that reside within the heart. We investigated the effect of simulated microgravity exposure on progenitors isolated from the neonatal and adult human heart by quantifying changes in functional parameters, gene expression and protein levels after 6-7 days of 2D clinorotation. Utilization of neonatal and adult cardiovascular progenitors in ground-based studies has provided novel insight into how microgravity may affect cells differently depending on age. Simulated microgravity exposure did not impact AKT or ERK phosphorylation levels and did not influence cell migration, but elevated transcripts for paracrine factors were identified in neonatal and adult cardiovascular progenitors. Age-dependent responses surfaced when comparing the impact of microgravity on differentiation. Endothelial cell tube formation was unchanged or increased in progenitors from adults whereas neonatal cardiovascular progenitors showed a decline in tube formation (p<0.05. Von Willebrand Factor, an endothelial differentiation marker, and MLC2v and Troponin T, markers for cardiomyogenic differentiation, were elevated in expression in adult progenitors after simulated microgravity. DNA repair genes and telomerase reverse transcriptase which are highly expressed in early stem cells were increased in expression in neonatal but not adult cardiac progenitors after growth under simulated microgravity conditions. Neonatal cardiac progenitors demonstrated higher levels of MESP1, OCT4, and brachyury, markers for early stem cells. MicroRNA profiling was used to further investigate the impact of simulated microgravity on cardiovascular progenitors. Fifteen microRNAs were significantly altered in expression, including microRNAs-99a and 100 (which play a critical role in cell dedifferentiation. These microRNAs were unchanged in adult cardiac progenitors

  5. Alveolar progenitor and stem cells in lung development, renewal and cancer

    OpenAIRE

    Desai, Tushar J.; Brownfield, Douglas G.; Krasnow, Mark A.

    2014-01-01

    Alveoli are gas-exchange sacs lined by squamous alveolar type (AT) 1 cells and cuboidal, surfactant-secreting AT2 cells. Classical studies suggested AT1 arise from AT2 cells, but recent studies propose other sources. Here we use molecular markers, lineage tracing, and clonal analysis to map alveolar progenitors throughout the mouse lifespan. We show that during development AT1 and AT2 cells arise directly from a bipotent progenitor, whereas after birth new AT1 derive from rare, self-renewing,...

  6. Common molecular pathways involved in human CD133+/CD34+ progenitor cell expansion and cancer

    Directory of Open Access Journals (Sweden)

    Vêncio Ricardo Z

    2007-06-01

    Full Text Available Abstract Background Uncovering the molecular mechanism underlying expansion of hematopoietic stem and progenitor cells is critical to extend current therapeutic applications and to understand how its deregulation relates to leukemia. The characterization of genes commonly relevant to stem/progenitor cell expansion and tumor development should facilitate the identification of novel therapeutic targets in cancer. Methods CD34+/CD133+ progenitor cells were purified from human umbilical cord blood and expanded in vitro. Correlated molecular changes were analyzed by gene expression profiling using microarrays covering up to 55,000 transcripts. Genes regulated during progenitor cell expansion were identified and functionally classified. Aberrant expression of such genes in cancer was indicated by in silico SAGE. Differential expression of selected genes was assessed by real-time PCR in hematopoietic cells from chronic myeloid leukemia patients and healthy individuals. Results Several genes and signaling pathways not previously associated with ex vivo expansion of CD133+/CD34+ cells were identified, most of which associated with cancer. Regulation of MEK/ERK and Hedgehog signaling genes in addition to numerous proto-oncogenes was detected during conditions of enhanced progenitor cell expansion. Quantitative real-time PCR analysis confirmed down-regulation of several newly described cancer-associated genes in CD133+/CD34+ cells, including DOCK4 and SPARCL1 tumor suppressors, and parallel results were verified when comparing their expression in cells from chronic myeloid leukemia patients Conclusion Our findings reveal potential molecular targets for oncogenic transformation in CD133+/CD34+ cells and strengthen the link between deregulation of stem/progenitor cell expansion and the malignant process.

  7. Brief Azacytidine Step Allows The Conversion of Suspension Human Fibroblasts into Neural Progenitor-Like Cells

    Directory of Open Access Journals (Sweden)

    Fahimeh Mirakhori

    2015-04-01

    Full Text Available In recent years transdifferentiation technology has enabled direct conversion of human fibroblasts to become a valuable, abundant and accessible cell source for patient-specific induced cell generation in biomedical research. The majority of transdifferentiation approaches rely upon viral gene delivery which due to random integration with the host genome can cause genome instability and tumorigenesis upon transplantation. Here, we provide a simple way to induce neural progenitor-like cells from human fibroblasts without genetic manipulation by changing physicochemical culture properties from monolayer culture into a suspension in the presence of a chemical DNA methyltransferase inhibitor agent, Azacytidine. We have demonstrated the expression of neural progenitor-like markers, morphology and the ability to spontaneously differentiate into neural-like cells. This approach is simple, inexpensive, lacks genetic manipulation and could be a foundation for future chemical neural transdifferentiation and a safe induction of neural progenitor cells from human fibroblasts for clinical applications.

  8. No Monkeying Around : Clonal Tracking of Stem Cells and Progenitors in the Macaque

    NARCIS (Netherlands)

    Dykstra, Brad; Bystrykh, Leonid V.

    2014-01-01

    Clonal tracking of hematopoietic stem and progenitor cells (HSPCs) has proven valuable for studying their behavior in murine recipients. Now in Cell Stem Cell, Kim et al. (2014) and Wu et al. (2014) extend these analyses to nonhuman primates, providing insights into dynamics of HSPC expansion and li

  9. Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development

    NARCIS (Netherlands)

    Barker, N.; Rookmaaker, M.B.; Kujala, P.; Ng, A.; Leushacke, M.; Snippert, H.; van de Wetering, M.; Tan, S.; van Es, J.H.; Huch, M.; Poulsom, R.; Verhaar, M.C.; Peters, P.J.; Clevers, H.

    2012-01-01

    Multipotent stem cells and their lineage-restricted progeny drive nephron formation within the developing kidney. Here, we document expression of the adult stem cell marker Lgr5 in the developing kidney and assess the stem/progenitor identity of Lgr5(+ve) cells via in vivo lineage tracing. The appea

  10. Lgr5(+ve) Stem/Progenitor Cells Contribute to Nephron Formation during Kidney Development

    NARCIS (Netherlands)

    Barker, Nick; Rookmaaker, Maarten B.; Kujala, Pekka; Ng, Annie; Leushacke, Marc; Snippert, Hugo; van de Wetering, Marc; Tan, Shawna; Van Es, Johan H.; Huch, Meritxell; Poulsom, Richard; Verhaar, Marianne C.; Peters, Peter J.; Clevers, Hans

    2012-01-01

    Multipotent stem cells and their lineage-restricted progeny drive nephron formation within the developing kidney. Here, we document expression of the adult stem cell marker Lgr5 in the developing kidney and assess the stem/progenitor identity of Lgr5(+ve) cells via in vivo lineage tracing. The appea

  11. The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation.

    NARCIS (Netherlands)

    Walasek, M.A.; Bystrykh, L.; Boom, V. van den; Olthof, S.; Ausema, A.; Ritsema, M.; Huls, G.A.; Haan, G. de; Os, R. van

    2012-01-01

    Despite increasing knowledge on the regulation of hematopoietic stem/progenitor cell (HSPC) self-renewal and differentiation, in vitro control of stem cell fate decisions has been difficult. The ability to inhibit HSPC commitment in culture may be of benefit to cell therapy protocols. Small molecule

  12. The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation

    NARCIS (Netherlands)

    Walasek, Marta A.; Bystrykh, Leonid; van den Boom, Vincent; Olthof, Sandra; Ausema, Albertina; Ritsema, Martha; Huls, Gerwin; de Haan, Gerald; van Os, Ronald

    2012-01-01

    Despite increasing knowledge on the regulation of hematopoietic stem/progenitor cell (HSPC) self-renewal and differentiation, in vitro control of stem cell fate decisions has been difficult. The ability to inhibit HSPC commitment in culture may be of benefit to cell therapy protocols. Small molecule

  13. An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models

    LENUS (Irish Health Repository)

    Donatello, Simona

    2011-04-26

    Abstract Background Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression. Methods Primary cultures were established from human breast tumour and adjacent non-tumour tissue. Putative progenitor cell populations were isolated based on co-expression or concomitant absence of the epithelial and myoepithelial markers EPCAM and CALLA respectively. Results Significant reductions in cellular senescence were observed in tumour versus non-tumour cultures, accompanied by a stepwise increase in proliferation:senescence ratios. A novel correlation between tumour aggressiveness and an imbalance of putative progenitor subpopulations was also observed. Specifically, an increased double-negative (DN) to double-positive (DP) ratio distinguished aggressive tumours of high grade, estrogen receptor-negativity or HER2-positivity. The DN:DP ratio was also higher in malignant MDA-MB-231 cells relative to non-tumourogenic MCF-10A cells. Ultrastructural analysis of the DN subpopulation in an invasive tumour culture revealed enrichment in lipofuscin bodies, markers of ageing or senescent cells. Conclusions Our results suggest that an imbalance in tumour progenitor subpopulations imbalances the functional relationship between proliferation and senescence, creating a microenvironment favouring tumour progression.

  14. Potential role of endometrial stem/progenitor cells in the pathogenesis of early-onset endometriosis.

    Science.gov (United States)

    Gargett, C E; Schwab, K E; Brosens, J J; Puttemans, P; Benagiano, G; Brosens, I

    2014-07-01

    The pathogenesis of early-onset endometriosis has recently been revisited, sparked by the discovery of endometrial stem/progenitor cells and their possible role in endometriosis, and because maternal pregnancy hormone withdrawal following delivery induces uterine bleeding in the neonate. The neonatal uterus has a large cervix to corpus ratio which is functionally blocked with mucous, supporting the concept of retrograde shedding of neonatal endometrium. Only 5% show overt bleeding. Furthermore, the presence of endometriosis in pre-menarcheal girls and even in severe stage in adolescents supports the theory that early-onset endometriosis may originate from retrograde uterine bleeding soon after birth. Endometrial stem/progenitor cells have been identified in menstrual blood suggesting that they may also be shed during neonatal uterine bleeding. Thus, we hypothesized that stem/progenitor cells present in shedding endometrium may have a role in the pathogenesis of early-onset endometriosis through retrograde neonatal uterine bleeding. During the neonatal and pre-pubertal period, shed endometrial stem/progenitor cells are postulated to survive in the pelvic cavity in the absence of circulating estrogens supported by niche cells also shed during neonatal uterine bleeding. According to this hypothesis, during thelarche, under the influence of rising estrogen levels, endometrial stem/progenitor cells proliferate and establish ectopic endometrial lesions characteristic of endometriosis. This New Research Horizon review builds on recent discussions on the pathogenesis of early-onset endometriosis and raises new avenues for research into this costly condition. PMID:24674992

  15. Induction of Excess Centrosomes in Neural Progenitor Cells during the Development of Radiation-Induced Microcephaly.

    Directory of Open Access Journals (Sweden)

    Mikio Shimada

    Full Text Available The embryonic brain is one of the tissues most vulnerable to ionizing radiation. In this study, we showed that ionizing radiation induces apoptosis in the neural progenitors of the mouse cerebral cortex, and that the surviving progenitor cells subsequently develop a considerable amount of supernumerary centrosomes. When mouse embryos at Day 13.5 were exposed to γ-rays, brains sizes were reduced markedly in a dose-dependent manner, and these size reductions persisted until birth. Immunostaining with caspase-3 antibodies showed that apoptosis occurred in 35% and 40% of neural progenitor cells at 4 h after exposure to 1 and 2 Gy, respectively, and this was accompanied by a disruption of the apical layer in which mitotic spindles were positioned in unirradiated mice. At 24 h after 1 Gy irradiation, the apoptotic cells were completely eliminated and proliferation was restored to a level similar to that of unirradiated cells, but numerous spindles were localized outside the apical layer. Similarly, abnormal cytokinesis, which included multipolar division and centrosome clustering, was observed in 19% and 24% of the surviving neural progenitor cells at 48 h after irradiation with 1 and 2 Gy, respectively. Because these cytokinesis aberrations derived from excess centrosomes result in growth delay and mitotic catastrophe-mediated cell elimination, our findings suggest that, in addition to apoptosis at an early stage of radiation exposure, radiation-induced centrosome overduplication could contribute to the depletion of neural progenitors and thereby lead to microcephaly.

  16. Characterization of TLX Expression in Neural Stem Cells and Progenitor Cells in Adult Brains

    OpenAIRE

    Shengxiu Li; Guoqiang Sun; Kiyohito Murai; Peng Ye; Yanhong Shi

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analo...

  17. Direct and indirect effects of immune and central nervous system-resident cells on human oligodendrocyte progenitor cell differentiation.

    Science.gov (United States)

    Moore, Craig S; Cui, Qiao-Ling; Warsi, Nebras M; Durafourt, Bryce A; Zorko, Nika; Owen, David R; Antel, Jack P; Bar-Or, Amit

    2015-01-15

    In multiple sclerosis, successful remyelination within the injured CNS is largely dependent on the survival and differentiation of oligodendrocyte progenitor cells. During inflammatory injury, oligodendrocytes and oligodendrocyte progenitor cells within lesion sites are exposed to secreted products derived from both infiltrating immune cell subsets and CNS-resident cells. Such products may be considered either proinflammatory or anti-inflammatory and have the potential to contribute to both injury and repair processes. Within the CNS, astrocytes also contribute significantly to oligodendrocyte biology during development and following inflammatory injury. The overall objective of the current study was to determine how functionally distinct proinflammatory and anti-inflammatory human immune cell subsets, implicated in multiple sclerosis, can directly and/or indirectly (via astrocytes) impact human oligodendrocyte progenitor cell survival and differentiation. Proinflammatory T cell (Th1/Th17) and M1-polarized myeloid cell supernatants had a direct cytotoxic effect on human A2B5(+) neural progenitors, resulting in decreased O4(+) and GalC(+) oligodendrocyte lineage cells. Astrocyte-conditioned media collected from astrocytes pre-exposed to the same proinflammatory supernatants also resulted in decreased oligodendrocyte progenitor cell differentiation without an apparent increase in cell death and was mediated through astrocyte-derived CXCL10, yet this decrease in differentiation was not observed in the more differentiated oligodendrocytes. Th2 and M2 macrophage or microglia supernatants had neither a direct nor an indirect impact on oligodendrocyte progenitor cell differentiation. We conclude that proinflammatory immune cell responses can directly and indirectly (through astrocytes) impact the fate of immature oligodendrocyte-lineage cells, with oligodendrocyte progenitor cells more vulnerable to injury compared with mature oligodendrocytes.

  18. Changes of number of cells expressing proliferation and progenitor cell markers with age in rabbit intervertebral discs

    Institute of Scientific and Technical Information of China (English)

    Miersalijiang Yasen; Qinming Fei; William C Hutton; Jian Zhang; Jian Dong; Xiaoxing Jiang; Feng Zhang

    2013-01-01

    Basic knowledge about the normal regeneration process within the intervertebral disc (IVD) is important to the understanding of the underlying biology.The presence of progenitor and stem cells in IVD has been verified.However,changes of number of progenitor and stem cells with age are still unknown.In this study,changes of cell proliferation and progenitor cell markers with age in IVD cells from rabbits of two different ages were investigated using flow cytometry,immunohistochemistry,real-time polymerase chain reaction,and western blot analysis.Proliferating cell nuclear antigen (PCNA) was chosen as a marker for proliferation,and Notch1,Jagged1,C-KIT,CD166 were chosen as stem/progenitor cell markers.Cell cycle analysis showed that cell number in the G2/M phase of the young rabbits was significantly higher than that of mature rabbits.Immunohistochemical staining demonstrated the expression of PCNA,C-KIT,CD166,Notch1,and Jagged1 in both young and mature annulus fibrosus (AF).Protein expressions of these cell markers in the young rabbits were all significantly higher than those in the mature rabbits.The expression levels of PCNA,CD166,C-KIT,Jagged1 were significantly higher in the AF,and PCNA,C-KIT in the nucleus pulposus from young rabbits than those from the mature rabbits.These findings demonstrated that both proliferation and progenitor cells exist in rabbit IVDs and the number of cells expressing proliferation and progenitor cell markers decreases with age in the rabbit IVD cells.Methods that are designed to maintain the endogenous progenitor cells and stimulate their proliferation could be successful in preventing or inhibiting degenerative disc disease.

  19. The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor.

    Science.gov (United States)

    Seehus, Corey R; Aliahmad, Parinaz; de la Torre, Brian; Iliev, Iliyan D; Spurka, Lindsay; Funari, Vincent A; Kaye, Jonathan

    2015-06-01

    Diverse innate lymphoid cell (ILC) subtypes have been defined on the basis of effector function and transcription factor expression. ILCs derive from common lymphoid progenitors, although the transcriptional pathways that lead to ILC-lineage specification remain poorly characterized. Here we found that the transcriptional regulator TOX was required for the in vivo differentiation of common lymphoid progenitors into ILC lineage-restricted cells. In vitro modeling demonstrated that TOX deficiency resulted in early defects in the survival or proliferation of progenitor cells, as well as ILC differentiation at a later stage. In addition, comparative transcriptome analysis of bone marrow progenitors revealed that TOX-deficient cells failed to upregulate many genes of the ILC program, including genes that are targets of Notch, which indicated that TOX is a key determinant of early specification to the ILC lineage.

  20. Nucleic Acid Encoding A Lectin-Derived Progenitor Cell Preservation Factor

    Science.gov (United States)

    Colucci, M. Gabriella; Chrispeels, Maarten J.; Moore, Jeffrey G.

    2001-10-30

    The invention relates to an isolated nucleic acid molecule that encodes a protein that is effective to preserve progenitor cells, such as hematopoietic progenitor cells. The nucleic acid comprises a sequence defined by SEQ ID NO:1, a homolog thereof, or a fragment thereof. The encoded protein has an amino acid sequence that comprises a sequence defined by SEQ ID NO:2, a homolog thereof, or a fragment thereof that contains an amino acid sequence TNNVLQVT. Methods of using the encoded protein for preserving progenitor cells in vitro, ex vivo, and in vivo are also described. The invention, therefore, include methods such as myeloablation therapies for cancer treatment wherein myeloid reconstitution is facilitated by means of the specified protein. Other therapeutic utilities are also enabled through the invention, for example, expanding progenitor cell populations ex vivo to increase chances of engraftation, improving conditions for transporting and storing progenitor cells, and facilitating gene therapy to treat and cure a broad range of life-threatening hematologic diseases.

  1. Generation of cardiac pacemaker cells by programming and differentiation.

    Science.gov (United States)

    Husse, Britta; Franz, Wolfgang-Michael

    2016-07-01

    A number of diseases are caused by faulty function of the cardiac pacemaker and described as "sick sinus syndrome". The medical treatment of sick sinus syndrome with electrical pacemaker implants in the diseased heart includes risks. These problems may be overcome via "biological pacemaker" derived from different adult cardiac cells or pluripotent stem cells. The generation of cardiac pacemaker cells requires the understanding of the pacing automaticity. Two characteristic phenomena the "membrane-clock" and the "Ca(2+)-clock" are responsible for the modulation of the pacemaker activity. Processes in the "membrane-clock" generating the spontaneous pacemaker firing are based on the voltage-sensitive membrane ion channel activity starting with slow diastolic depolarization and discharging in the action potential. The influence of the intracellular Ca(2+) modulating the pacemaker activity is characterized by the "Ca(2+)-clock". The generation of pacemaker cells started with the reprogramming of adult cardiac cells by targeted induction of one pacemaker function like HCN1-4 overexpression and enclosed in an activation of single pacemaker specific transcription factors. Reprogramming of adult cardiac cells with the transcription factor Tbx18 created cardiac cells with characteristic features of cardiac pacemaker cells. Another key transcription factor is Tbx3 specifically expressed in the cardiac conduction system including the sinoatrial node and sufficient for the induction of the cardiac pacemaker gene program. For a successful cell therapeutic practice, the generated cells should have all regulating mechanisms of cardiac pacemaker cells. Otherwise, the generated pacemaker cells serve only as investigating model for the fundamental research or as drug testing model for new antiarrhythmics. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  2. Generation of cardiac pacemaker cells by programming and differentiation.

    Science.gov (United States)

    Husse, Britta; Franz, Wolfgang-Michael

    2016-07-01

    A number of diseases are caused by faulty function of the cardiac pacemaker and described as "sick sinus syndrome". The medical treatment of sick sinus syndrome with electrical pacemaker implants in the diseased heart includes risks. These problems may be overcome via "biological pacemaker" derived from different adult cardiac cells or pluripotent stem cells. The generation of cardiac pacemaker cells requires the understanding of the pacing automaticity. Two characteristic phenomena the "membrane-clock" and the "Ca(2+)-clock" are responsible for the modulation of the pacemaker activity. Processes in the "membrane-clock" generating the spontaneous pacemaker firing are based on the voltage-sensitive membrane ion channel activity starting with slow diastolic depolarization and discharging in the action potential. The influence of the intracellular Ca(2+) modulating the pacemaker activity is characterized by the "Ca(2+)-clock". The generation of pacemaker cells started with the reprogramming of adult cardiac cells by targeted induction of one pacemaker function like HCN1-4 overexpression and enclosed in an activation of single pacemaker specific transcription factors. Reprogramming of adult cardiac cells with the transcription factor Tbx18 created cardiac cells with characteristic features of cardiac pacemaker cells. Another key transcription factor is Tbx3 specifically expressed in the cardiac conduction system including the sinoatrial node and sufficient for the induction of the cardiac pacemaker gene program. For a successful cell therapeutic practice, the generated cells should have all regulating mechanisms of cardiac pacemaker cells. Otherwise, the generated pacemaker cells serve only as investigating model for the fundamental research or as drug testing model for new antiarrhythmics. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel

  3. Thickness-controllable electrospun fibers promote tubular structure formation by endothelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Hong JK

    2015-02-01

    Full Text Available Jong Kyu Hong,1,2 Ju Yup Bang,3 Guan Xu,4 Jun-Hee Lee,1 Yeon-Ju Kim,1 Ho-Jun Lee,5 Han Seong Kim,3 Sang-Mo Kwon1,2,6 1Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea; 2Conversence Stem Cell Research Center, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, South Korea; 3Department of Organic Material Science, Pusan National University, Geumjeong-gu, Busan, South Korea; 4Department of Radiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA; 5Department of Electrical Engineering, Pusan National University, Geumjeong-gu, Busan, South Korea; 6Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Department of Physiology, Pusan National University School of Medicine, Yangsan, South Korea Abstract: Controlling the thickness of an electrospun nanofibrous scaffold by altering its pore size has been shown to regulate cell behaviors such as cell infiltration into a three-dimensional (3D scaffold. This is of great importance when manufacturing tissue-engineering scaffolds using an electrospinning process. In this study, we report the development of a novel process whereby additional aluminum foil layers were applied to the accumulated electrospun fibers of an existing aluminum foil collector, effectively reducing the incidence of charge buildup. Using this process, we fabricated an electrospun scaffold with a large pore (pore size >40 µm while simultaneously controlling the thickness. We demonstrate that the large pore size triggered rapid infiltration (160 µm in 4 hours of cell culture of individual endothelial progenitor cells (EPCs and rapid cell colonization after seeding EPC spheroids. We confirmed that the 3D, but not two-dimensional, scaffold structures regulated tubular structure formation by the EPCs. Thus, incorporation of stem cells into a highly

  4. Pre-transplantation specification of stem cells to cardiac lineage for regeneration of cardiac tissue.

    Science.gov (United States)

    Mayorga, Maritza; Finan, Amanda; Penn, Marc

    2009-03-01

    Myocardial infarction (MI) is a lead cause of mortality in the Western world. Treatment of acute MI is focused on restoration of antegrade flow which inhibits further tissue loss, but does not restore function to damaged tissue. Chronic therapy for injured myocardial tissue involves medical therapy that attempts to minimize pathologic remodeling of the heart. End stage therapy for chronic heart failure (CHF) involves inotropic therapy to increase surviving cardiac myocyte function or mechanical augmentation of cardiac performance. Not until the point of heart transplantation, a limited resource at best, does therapy focus on the fundamental problem of needing to replace injured tissue with new contractile tissue. In this setting, the potential for stem cell therapy has garnered significant interest for its potential to regenerate or create new contractile cardiac tissue. While to date adult stem cell therapy in clinical trials has suggested potential benefit, there is waning belief that the approaches used to date lead to regeneration of cardiac tissue. As the literature has better defined the pathways involved in cardiac differentiation, preclinical studies have suggested that stem cell pretreatment to direct stem cell differentiation prior to stem cell transplantation may be a more efficacious strategy for inducing cardiac regeneration. Here we review the available literature on pre-transplantation conditioning of stem cells in an attempt to better understand stem cell behavior and their readiness in cell-based therapy for myocardial regeneration.

  5. Human primordial germ cell-derived progenitors give rise to neurons and glia in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Yincheng [Department of Gynecology and Obstetrics, The 6th People' s Hospital, School of Medicine, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai 200233 (China); Chen, Bin [Center for Developmental Biology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai 200092 (China); Tao, Minfang, E-mail: Taomf@126.com [Department of Gynecology and Obstetrics, The 6th People' s Hospital, School of Medicine, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai 200233 (China)

    2009-12-18

    We derived a cell population from cultured human primordial germ cells from early human embryos. The derivates, termed embryoid body-derived (EBD) cells, displayed an extensive capacity for proliferation and expressed a panel of markers in all three germ layers. Interestingly, EBD cells were also positive for markers of neural stem/progenitor cells, such as nestin and glial fibrillary acidic protein. When these cells were transplanted into the brain cavities of fetal sheep and postnatal NOD-SCID mice or nerve-degenerated tibialis anterior muscles, they readily gave rise to neurons or glial cells. To our knowledge, our data are the first to demonstrate that EBD cells can undergo further neurogenesis under suitable environments in vivo. Hence, with the abilities of extensive expansion, self-renewal, and differentiation, EBD cells may provide a useful donor source for neural stem/progenitor cells to be used in cell-replacement therapies for diseases of the nervous system.

  6. Efficient Isolation of Cardiac Stem Cells from Brown Adipose

    Directory of Open Access Journals (Sweden)

    Zhiqiang Liu

    2010-01-01

    Full Text Available Cardiac stem cells represent a logical cell type to exploit in cardiac regeneration. The efficient harvest of cardiac stem cells from a suitable source would turn promising in cardiac stem cell therapy. Brown adipose was recently found to be a new source of cardiac stem cells, instrumental to myocardial regeneration. Unfortunately, an efficient method for the cell isolation is unavailable so far. In our study we have developed a new method for the efficient isolation of cardiac stem cells from brown adipose by combining different enzymes. Results showed that the total cell yield dramatically increased (more than 10 times, P<.01 compared with that by previous method. The content of CD133-positive cells (reported to differentiate into cardiomyocytes with a high frequency was much higher than that in the previous report (22.43% versus 3.5%. Moreover, the isolated cells could be the efficiently differentiated into functional cardiomyocytes in optimized conditions. Thus, the new method we established would be of great use in further exploring cardiac stem cell therapy.

  7. Advances in Liver Regeneration: Revisiting Hepatic Stem/Progenitor Cells and Their Origin.

    Science.gov (United States)

    Sadri, Ali-Reza; Jeschke, Marc G; Amini-Nik, Saeid

    2016-01-01

    The liver has evolved to become a highly plastic organ with extraordinary regenerative capabilities. What drives liver regeneration is still being debated. Adult liver stem/progenitor cells have been characterized and used to produce functional hepatocytes and biliary cells in vitro. However, in vivo, numerous studies have questioned whether hepatic progenitor cells have a significant role in liver regeneration. Mature hepatocytes have recently been shown to be more plastic than previously believed and give rise to new hepatocytes after acute and chronic injury. In this review, we discuss current knowledge in the field of liver regeneration and the importance of the serotonin pathway as a clinical target for patients with liver dysfunction.

  8. Effects of lipopolysaccharide on oligodendrocyte progenitor cells are mediated by astrocytes and microglia.

    Science.gov (United States)

    Pang, Y; Cai, Z; Rhodes, P G

    2000-11-15

    Oligodendrocytes are the primary cells injured in periventricular leukomalacia (PVL), a predominant form of brain white matter lesion in preterm infants. To explore the possible linkage between white matter injury and maternal infection, purified rat O-2A progenitor (Oligodendrocyte-type 2 astrocyte progenitor) cell cultures were used as a model in studying the effects of lipopolysaccharide (LPS), an endotoxin, on survival and differentiation of oligodendrocytes and the involvement of other glial cells in the effects of LPS. O-2A progenitor cells were cultured from optic nerves of 7-day-old rat pups in a chemically defined medium (CDM). Astrocyte and microglia cell cultures were prepared from the cortex of 1-day-old rat brains in the CDM. Direct treatment of LPS (1 microg/ml) to O-2A cells had no effect on viability or differentiation of these cells. When O-2A progenitor cells were cultured in the conditioned medium obtained from either astrocyte or microglial cell cultures for 48 hr, survival rate and differentiation of O-2A cells into mature oligodendrocytes were greatly enhanced as measured by the MTT assay and immunocytochemistry. The conditioned medium obtained from astrocytes or microglia treated with LPS for 48 hr, however, failed to show such a promotional effect on viability and differentiation of O-2A cells. When 5 microg/ml LPS was used to stimulate astrocytes or microglia, the conditioned medium from these glial cell cultures caused O-2A cell injury. The overall results indicate that astrocytes and microglia may promote viability and differentiation of O-2A progenitor cells under physiological conditions, but they may also mediate cytotoxic effects of LPS on oligodendrocytes under an infectious disease biochemical environment.

  9. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  10. Type 2 diabetes mellitus is associated with an imbalance in circulating endothelial and smooth muscle progenitor cell numbers

    NARCIS (Netherlands)

    van Ark, J.; Moser, J.; Lexis, C. P. H.; Bekkema, F.; Pop, I.; van der Horst, I. C. C.; Zeebregts, C. J.; van Goor, H.; Wolffenbuttel, B. H. R.; Hillebrands, J. L.

    2012-01-01

    Individuals with type 2 diabetes mellitus have increased rates of macrovascular disease (MVD). Endothelial progenitor cells (EPCs), circulating angiogenic cells (CACs) and smooth muscle progenitor cells (SMPCs) are suggested to play a role in the pathogenesis of MVD. The relationship between vasoreg

  11. To stay or to leave: Stem cells and progenitor cells navigating the S1P gradient

    Institute of Scientific and Technical Information of China (English)

    Andrew; Hsu; Jen-Fu; Lee; Daniel; E; Cramer; Menq-Jer; Lee

    2011-01-01

    Most hematopoietic stem progenitor cells (HSPCs) reside in bone marrow (BM), but a small amount of HSPCs have been found to circulate between BM and tissues through blood and lymph. Several lines of evidence suggest that sphingosine-1-phosphate (S1P) gradient triggers HSPC egression to blood circulation after mobilization from BM stem cell niches. Stem cells also visit certain tissues. After a temporary 36 h short stay in local tissues, HSPCs go to lymph in response to S1P gradient between lymph and tissue and eventually enter the blood circulation. S1P also has a role in the guidance of the primitive HSPCs homing to BM in vivo, as S1P analogue FTY720 treatment can improve HSPC BM homing and engraftment. In stress conditions, various stem cells or progenitor cells can be attracted to local injured tissues and participate in local tissue cell differentiation and tissue rebuilding through modulation the expression level of S1P1, S1P2 or S1P3 receptors. Hence, S1P is important for stem cells circulation in blood system to accomplish its role in body surveillance and injury recovery.

  12. CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells.

    Science.gov (United States)

    Skelton, Rhys J P; Brady, Bevin; Khoja, Suhail; Sahoo, Debashis; Engel, James; Arasaratnam, Deevina; Saleh, Kholoud K; Abilez, Oscar J; Zhao, Peng; Stanley, Edouard G; Elefanty, Andrew G; Kwon, Murray; Elliott, David A; Ardehali, Reza

    2016-01-12

    The generation of tissue-specific cell types from human embryonic stem cells (hESCs) is critical for the development of future stem cell-based regenerative therapies. Here, we identify CD13 and ROR2 as cell-surface markers capable of selecting early cardiac mesoderm emerging during hESC differentiation. We demonstrate that the CD13+/ROR2+ population encompasses pre-cardiac mesoderm, which efficiently differentiates to all major cardiovascular lineages. We determined the engraftment potential of CD13+/ROR2+ in small (murine) and large (porcine) animal models, and demonstrated that CD13+/ROR2+ progenitors have the capacity to differentiate toward cardiomyocytes, fibroblasts, smooth muscle, and endothelial cells in vivo. Collectively, our data show that CD13 and ROR2 identify a cardiac lineage precursor pool that is capable of successful engraftment into the porcine heart. These markers represent valuable tools for further dissection of early human cardiac differentiation, and will enable a detailed assessment of human pluripotent stem cell-derived cardiac lineage cells for potential clinical applications.

  13. CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Rhys J.P. Skelton

    2016-01-01

    Full Text Available The generation of tissue-specific cell types from human embryonic stem cells (hESCs is critical for the development of future stem cell-based regenerative therapies. Here, we identify CD13 and ROR2 as cell-surface markers capable of selecting early cardiac mesoderm emerging during hESC differentiation. We demonstrate that the CD13+/ROR2+ population encompasses pre-cardiac mesoderm, which efficiently differentiates to all major cardiovascular lineages. We determined the engraftment potential of CD13+/ROR2+ in small (murine and large (porcine animal models, and demonstrated that CD13+/ROR2+ progenitors have the capacity to differentiate toward cardiomyocytes, fibroblasts, smooth muscle, and endothelial cells in vivo. Collectively, our data show that CD13 and ROR2 identify a cardiac lineage precursor pool that is capable of successful engraftment into the porcine heart. These markers represent valuable tools for further dissection of early human cardiac differentiation, and will enable a detailed assessment of human pluripotent stem cell-derived cardiac lineage cells for potential clinical applications.

  14. Fibroblast Growth Factor-9 Activates c-Kit Progenitor Cells and Enhances Angiogenesis in the Infarcted Diabetic Heart

    Directory of Open Access Journals (Sweden)

    Dinender Singla

    2016-01-01

    Full Text Available We hypothesized that fibroblast growth factor-9 (FGF-9 would enhance angiogenesis via activating c-kit positive stem cells in the infarcted nondiabetic and diabetic heart. In brief, animals were divided into three groups: Sham, MI, and MI+FGF-9. Two weeks following MI or sham surgery, our data suggest that treatment with FGF-9 significantly diminished vascular apoptosis compared to the MI group in both C57BL/6 and db/db mice (p<0.05. Additionally, the number of c-kit+ve/SM α-actin+ve cells and c-kit+ve/CD31+ve cells were greatly enhanced in the MI+FGF-9 groups relative to the MI suggesting FGF-9 enhances c-Kit cell activation and their differentiation into vascular smooth muscle cells and endothelial cells, respectively (p<0.05. Histology shows that the total number of vessels were quantified for all groups and our data suggest that the FGF-9 treated groups had significantly more vessels than their MI counterparts (p<0.05. Finally, echocardiographic data suggests a significant improvement in left ventricular output, as indicated by fractional shortening and ejection fraction in both nondiabetic and diabetic animals treated with FGF-9 (p<0.05. Overall, our data suggests FGF-9 has the potential to attenuate vascular cell apoptosis, activate c-Kit progenitor cells, and enhance angiogenesis and neovascularization in C57BL/6 and db/db mice leading to improved cardiac function.

  15. Environmental cues from CNS, PNS, and ENS cells regulate CNS progenitor differentiation

    DEFF Research Database (Denmark)

    Brännvall, Karin; Corell, Mikael; Forsberg-Nilsson, Karin;

    2008-01-01

    Cellular origin and environmental cues regulate stem cell fate determination. Neuroepithelial stem cells form the central nervous system (CNS), whereas neural crest stem cells generate the peripheral (PNS) and enteric nervous system (ENS). CNS neural stem/progenitor cell (NSPC) fate determination...... was investigated in combination with dissociated cultures or conditioned media from CNS, PNS, or ENS. Cells or media from ENS or PNS cultures efficiently promoted NSPC differentiation into neurons, glia, and smooth muscle cells with a similar morphology as the feeder culture. Together with CNS cells or its...... conditioned medium, NSPC differentiation was partly inhibited and cells remained immature. Here, we demonstrate that secreted factors from the environment can influence CNS progenitor cells to choose a PNS-like cell fate....

  16. Regulation of progenitor cell proliferation and neuronal differentiation in enteric nervous system neurospheres.

    Directory of Open Access Journals (Sweden)

    Sokratis Theocharatos

    Full Text Available Enteric nervous system (ENS progenitor cells isolated from mouse and human bowel can be cultured in vitro as neurospheres which are aggregates of the proliferating progenitor cells, together with neurons and glial cells derived from them. To investigate the factors regulating progenitor cell proliferation and differentiation, we first characterised cell proliferation in mouse ENS neurospheres by pulse chase experiments using thymidine analogs. We demonstrate rapid and continuous cell proliferation near the neurosphere periphery, after which postmitotic cells move away from the periphery to become distributed throughout the neurosphere. While many proliferating cells expressed glial markers, expression of the neuronal markers β-tubulin III (Tuj1 and nitric oxide synthase was detected in increasing numbers of post-mitotic cells after a delay of several days. Treatment of both mouse and human neurospheres with the γ-secretase inhibitor N-[N-(3,5-Difluorophenacetyl-L-alanyl]-S-phenylglycine t-butyl ester (DAPT reduced expression of the transcription factors Hes1 and Hes5, demonstrating inhibition of Notch signaling. DAPT treatment also inhibited progenitor cell proliferation and increased the numbers of differentiating neurons expressing Tuj1 and nitric oxide synthase. To confirm that the cellular effects of DAPT treatment were due to inhibition of Notch signaling, siRNA knockdown of RBPjκ, a key component of the canonical Notch signaling pathway, was demonstrated both to reduce proliferation and to increase neuronal differentiation in neurosphere cells. These observations indicate that Notch signaling promotes progenitor cell proliferation and inhibits neuronal differentiation in ENS neurospheres.

  17. Effects of Substrate and Co-Culture on Neural Progenitor Cell Differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Erin Boote [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    In recent years the study of stem and progenitor cells has moved to the forefront of research. Since the isolation of human hematopoietic stem cells in 1988 and the subsequent discovery of a self renewing population of multipotent cells in many tissues, many researchers have envisioned a better understanding of development and potential clinical usage in intractable diseases. Both these goals, however, depend on a solid understanding of the intracellular and extracellular forces that cause stem cells to differentiate to a specific cell fate. Many diseases of large scale cell loss have been suggested as candidates for stem cell based treatments. It is proposed that replacing the function of the damaged or defective cells by specific differentiation of stem or progenitor cells could treat the disease. Before cells can be directed to specific lineages, the mechanisms of differentiation must be better understood. Differentiation in vivo is an intensively complex system that is difficult to study. The goal of this research is to develop further understanding of the effects of soluble and extracellular matrix (ECM) cues on the differentiation of neural progenitor cells with the use of a simplified in vitro culture system. Specific research objectives are to study the differentiation of neural progenitor cells in response to astrocyte conditioned medium and protein substrate composition and concentration. In an effort to reveal the mechanism of the conditioned medium interaction, a test for the presence of a feedback loop between progenitor cells and astrocytes is presented along with an examination of conditioned medium storage temperature, which can reveal enzymatic dependencies. An examination of protein substrate composition and concentration will help to reveal the role of any ECM interactions on differentiation. This thesis is organized into a literature review covering recent advances in use of external modulators of differentiation such as surface coatings, co

  18. Effects of Substrate and Co-Culture on Neural Progenitor Cell Differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Erin Boote Jones

    2008-08-18

    In recent years the study of stem and progenitor cells has moved to the forefront of research. Since the isolation of human hematopoietic stem cells in 1988 and the subsequent discovery of a self renewing population of multipotent cells in many tissues, many researchers have envisioned a better understanding of development and potential clinical usage in intractable diseases. Both these goals, however, depend on a solid understanding of the intracellular and extracellular forces that cause stem cells to differentiate to a specific cell fate. Many diseases of large scale cell loss have been suggested as candidates for stem cell based treatments. It is proposed that replacing the function of the damaged or defective cells by specific differentiation of stem or progenitor cells could treat the disease. Before cells can be directed to specific lineages, the mechanisms of differentiation must be better understood. Differentiation in vivo is an intensively complex system that is difficult to study. The goal of this research is to develop further understanding of the effects of soluble and extracellular matrix (ECM) cues on the differentiation of neural progenitor cells with the use of a simplified in vitro culture system. Specific research objectives are to study the differentiation of neural progenitor cells in response to astrocyte conditioned medium and protein substrate composition and concentration. In an effort to reveal the mechanism of the conditioned medium interaction, a test for the presence of a feedback loop between progenitor cells and astrocytes is presented along with an examination of conditioned medium storage temperature, which can reveal enzymatic dependencies. An examination of protein substrate composition and concentration will help to reveal the role of any ECM interactions on differentiation. This thesis is organized into a literature review covering recent advances in use of external modulators of differentiation such as surface coatings, co

  19. Inhibition of Progenitor Dendritic Cell Maturation by Plasma from Patients with Peripartum Cardiomyopathy: Role in Pregnancy-associated Heart Disease

    Directory of Open Access Journals (Sweden)

    Jane E. Ellis

    2005-01-01

    Full Text Available Dendritic cells (DCs play dual roles in innate and adaptive immunity based on their functional maturity, and both innate and adaptive immune responses have been implicated in myocardial tissue remodeling associated with cardiomyopathies. Peripartum cardiomyopathy (PPCM is a rare disorder which affects women within one month antepartum to five months postpartum. A high occurrence of PPCM in central Haiti (1 in 300 live births provided the unique opportunity to study the relationship of immune activation and DC maturation to the etiology of this disorder. Plasma samples from two groups (n = 12 of age- and parity-matched Haitian women with or without evidence of PPCM were tested for levels of biomarkers of cardiac tissue remodeling and immune activation. Significantly elevated levels of GM-CSF, endothelin-1, proBNP and CRP and decreased levels of TGF- were measured in PPCM subjects relative to controls. Yet despite these findings, in vitro maturation of normal human cord blood derived progenitor dendritic cells (CBDCs was significantly reduced (p < 0.001 in the presence of plasma from PPCM patients relative to plasma from post-partum control subjects as determined by expression of CD80, CD86, CD83, CCR7, MHC class II and the ability of these matured CBDCs to induce allo-responses in PBMCs. These results represent the first findings linking inhibition of DC maturation to the dysregulation of normal physiologic cardiac tissue remodeling during pregnancy and the pathogenesis of PPCM.

  20. Multipotent adult progenitor cells : their role in wound healing and the treatment of dermal wounds

    NARCIS (Netherlands)

    Herdrich, B. J.; Lind, R. C.; Liechty, K. W.

    2008-01-01

    The use of cellular therapy in the treatment of dermal wounds is currently an active area of investigation. Multipotent adult progenitor cells (MAPC) are an attractive choice for cytotherapy because they have a large proliferative potential, the ability to differentiate into different cell types and

  1. Myocardial regeneration by transplantation of modified endothelial progenitor cells expressing SDF-1 in a rat model

    DEFF Research Database (Denmark)

    Schuh, A.; Kroh, A.; Konschalla, S.;

    2012-01-01

    into injured tissue. The aim of the present study was to investigate the role of exogenously applied and endogenously mobilized cells in a regenerative strategy for MI therapy. Lentivirally SDF-1a-infected endothelial progenitor cells (EPCs) were injected after 90 min. of ligation and reperfusion of the left...

  2. Control of AC133/CD133 and impact on human hematopoietic progenitor cells through nucleolin.

    Science.gov (United States)

    Bhatia, S; Reister, S; Mahotka, C; Meisel, R; Borkhardt, A; Grinstein, E

    2015-11-01

    AC133 is a prominent surface marker of CD34+ and CD34- hematopoietic stem/progenitor cell (HSPC) subsets. AC133+ HSPCs contain high progenitor cell activity and are capable of hematopoietic reconstitution. Furthermore, AC133 is used for prospective isolation of tumor-initiating cells in several hematological malignancies. Nucleolin is a multifunctional factor of growing and cancer cells, which is aberrantly active in certain hematological neoplasms, and serves as a candidate molecular target for cancer therapy. Nucleolin is involved in gene transcription and RNA metabolism and is prevalently expressed in HSPCs, as opposed to differentiated hematopoietic tissue. The present study dissects nucleolin-mediated activation of surface AC133 and its cognate gene CD133, via specific interaction of nucleolin with the tissue-dependent CD133 promoter P1, as a mechanism that crucially contributes to AC133 expression in CD34+ HSPCs. In mobilized peripheral blood (MPB)-derived HSPCs, nucleolin elevates colony-forming unit (CFU) frequencies and enriches granulocyte-macrophage CFUs. Furthermore, nucleolin amplifies long-term culture-initiating cells and also promotes long-term, cytokine-dependent maintenance of hematopoietic progenitor cells. Active β-catenin, active Akt and Bcl-2 levels in MPB-derived HSPCs are nucleolin-dependent, and effects of nucleolin on these cells partially rely on β-catenin activity. The study provides new insights into molecular network relevant to stem/progenitor cells in normal and malignant hematopoiesis. PMID:26183533

  3. Xenotransplantation of human neural progenitor cells to the subretinal space of nonimmunosuppressed pigs

    DEFF Research Database (Denmark)

    Warfvinge, Karin; Schwartz, Philip H; Kiilgaard, Jens Folke;

    2011-01-01

    To investigate the feasibility of transplanting human neural progenitor cells (hNPCs) to the retina of nonimmunosuppressed pigs, cultured hNPCs were injected into the subretinal space of 5 adult pigs after laser burns were applied to promote donor cell integration. Postoperatively, the retinal ve...... that modulation of host immunity is likely necessary for prolonged xenograft survival in this model....

  4. The canine hepatic progenitor cell niche : molecular characterisation in health and disease

    NARCIS (Netherlands)

    Kruitwagen, H S; Spee, B; Viebahn, C S; Venema, H B; Penning, L C; Grinwis, G C M; Favier, R P; van den Ingh, T S G A M; Rothuizen, J; Schotanus, B A

    2014-01-01

    Hepatic progenitor cells (HPCs) are an adult stem cell compartment in the liver that contributes to liver regeneration when replication of mature hepatocytes is insufficient. In this study, laser microdissection was used to isolate HPC niches from the livers of healthy dogs and dogs with lobular dis

  5. Estradiol increases hematopoietic stem and progenitor cells independent of its actions on bone

    NARCIS (Netherlands)

    Illing, Anett; Liu, Peng; Ostermay, Susanne; Schilling, Arndt; de Haan, Gerald; Krust, Andree; Amling, Michael; Chambon, Pierre; Schinke, Thorsten; Tuckermann, Jan P.

    2012-01-01

    Hematopoietic stem and progenitor cells reside in vascular and endosteal niches in the bone marrow. Factors affecting bone remodeling were reported to influence numbers and mobilization of hematopoietic stem cells. We therefore analyzed the effects of estradiol acting anabolic on bone integrity. Her

  6. Xenotransplantation of human neural progenitor cells to the subretinal space of nonimmunosuppressed pigs

    DEFF Research Database (Denmark)

    Warfvinge, Karin; Schwartz, Philip H; Kiilgaard, Jens Folke;

    2011-01-01

    To investigate the feasibility of transplanting human neural progenitor cells (hNPCs) to the retina of nonimmunosuppressed pigs, cultured hNPCs were injected into the subretinal space of 5 adult pigs after laser burns were applied to promote donor cell integration. Postoperatively, the retinal ve...

  7. Hypercholesterolemia Tunes Hematopoietic Stem/Progenitor Cells for Inflammation and Atherosclerosis

    OpenAIRE

    Xiaojuan Ma; Yingmei Feng

    2016-01-01

    As the pathological basis of cardiovascular disease (CVD), atherosclerosis is featured as a chronic inflammation. Hypercholesterolemia is an independent risk factor for CVD. Accumulated studies have shown that hypercholesterolemia is associated with myeloid cell expansion, which stimulates innate and adaptive immune responses, strengthens inflammation, and accelerates atherosclerosis progression. Hematopoietic stem/progenitor cells (HSPC) in bone marrow (BM) expresses a panel of lipoprotein r...

  8. 3D culture for cardiac cells.

    Science.gov (United States)

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  9. Quantifying intrinsic and extrinsic control of single-cell fates in cancer and stem/progenitor cell pedigrees with competing risks analysis.

    Science.gov (United States)

    Cornwell, J A; Hallett, R M; der Mauer, S Auf; Motazedian, A; Schroeder, T; Draper, J S; Harvey, R P; Nordon, R E

    2016-01-01

    The molecular control of cell fate and behaviour is a central theme in biology. Inherent heterogeneity within cell populations requires that control of cell fate is studied at the single-cell level. Time-lapse imaging and single-cell tracking are powerful technologies for acquiring cell lifetime data, allowing quantification of how cell-intrinsic and extrinsic factors control single-cell fates over time. However, cell lifetime data contain complex features. Competing cell fates, censoring, and the possible inter-dependence of competing fates, currently present challenges to modelling cell lifetime data. Thus far such features are largely ignored, resulting in loss of data and introducing a source of bias. Here we show that competing risks and concordance statistics, previously applied to clinical data and the study of genetic influences on life events in twins, respectively, can be used to quantify intrinsic and extrinsic control of single-cell fates. Using these statistics we demonstrate that 1) breast cancer cell fate after chemotherapy is dependent on p53 genotype; 2) granulocyte macrophage progenitors and their differentiated progeny have concordant fates; and 3) cytokines promote self-renewal of cardiac mesenchymal stem cells by symmetric divisions. Therefore, competing risks and concordance statistics provide a robust and unbiased approach for evaluating hypotheses at the single-cell level. PMID:27250534

  10. Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult.

    Science.gov (United States)

    Silva, A C; Rodrigues, S C; Caldeira, J; Nunes, A M; Sampaio-Pinto, V; Resende, T P; Oliveira, M J; Barbosa, M A; Thorsteinsdóttir, S; Nascimento, D S; Pinto-do-Ó, P

    2016-10-01

    A main challenge in cardiac tissue engineering is the limited data on microenvironmental cues that sustain survival, proliferation and functional proficiency of cardiac cells. The aim of our study was to evaluate the potential of fetal (E18) and adult myocardial extracellular matrix (ECM) to support cardiac cells. Acellular three-dimensional (3D) bioscaffolds were obtained by parallel decellularization of fetal- and adult-heart explants thereby ensuring reliable comparison. Acellular scaffolds retained main constituents of the cardiac ECM including distinctive biochemical and structural meshwork features of the native equivalents. In vitro, fetal and adult ECM-matrices supported 3D culture of heart-derived Sca-1(+) progenitors and of neonatal cardiomyocytes, which migrated toward the center of the scaffold and displayed elongated morphology and excellent viability. At the culture end-point, more Sca-1(+) cells and cardiomyocytes were found adhered and inside fetal bioscaffolds, compared to the adult. Higher repopulation yields of Sca-1(+) cells on fetal ECM relied on β1-integrin independent mitogenic signals. Sca-1(+) cells on fetal bioscaffolds showed a gene expression profile that anticipates the synthesis of a permissive microenvironment for cardiomyogenesis. Our findings demonstrate the superior potential of the 3D fetal microenvironment to support and instruct cardiac cells. This knowledge should be integrated in the design of next-generation biomimetic materials for heart repair. PMID:27424216

  11. Production of human glucocerebrosidase in mice after retroviral gene transfer into multipotential hematopoietic progenitor cells

    International Nuclear Information System (INIS)

    The human glucocerebrosidase (GC) gene has been transferred efficiently into spleen colony-forming unit (CFU-S) multipotential hematopoietic progenitor cells, and production of human GC RNA and protein has been achieved in transduced CFU-S colonies. High-titer retroviral vectors containing the human GC cDNA were constructed. Four vectors were compared with respect to gene-transfer efficiency into CFU-S progenitors. One vector (G vector) required high concentrations of interleukins 3 and 6 during stimulation and coculture for efficient transduction of CFU-S progenitors. The remaining three vectors (NTG, GTN, and GI vectors) transduced these progenitors at infection frequencies approaching 100% using low concentrations of hematopoietic growth factors to simulate cell division prior to and during the infection. Vectors using the viral long terminal repeat enhancer/promoter to drive the human GC cDNA produced high levels of human GC RNA in the progeny of CFU-S progenitors after gene transfer. All three vectors producing human GC RNA in CFU-S colonies can generate human GC as detected by immunochemical analysis of CFU-S colonies. The capacity of the viral long terminal repeat and the internal thymidine kinase promoter to direct synthesis of RNA in transduced bone marrow and spleen cells 5 months after bone marrow transplantation reflected the performance of these promoters in NTG-transduced CFU-S colonies

  12. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration.

    Science.gov (United States)

    Ye, Lihua; Robertson, Morgan A; Mastracci, Teresa L; Anderson, Ryan M

    2016-01-15

    As one of the key nutrient sensors, insulin signaling plays an important role in integrating environmental energy cues with organism growth. In adult organisms, relative insufficiency of insulin signaling induces compensatory expansion of insulin-secreting pancreatic beta (β) cells. However, little is known about how insulin signaling feedback might influence neogenesis of β cells during embryonic development. Using genetic approaches and a unique cell transplantation system in developing zebrafish, we have uncovered a novel role for insulin signaling in the negative regulation of pancreatic progenitor cell differentiation. Blocking insulin signaling in the pancreatic progenitors hastened the expression of the essential β cell genes insulin and pdx1, and promoted β cell fate at the expense of alpha cell fate. In addition, loss of insulin signaling promoted β cell regeneration and destabilization of alpha cell character. These data indicate that insulin signaling constitutes a tunable mechanism for β cell compensatory plasticity during early development. Moreover, using a novel blastomere-to-larva transplantation strategy, we found that loss of insulin signaling in endoderm-committed blastomeres drove their differentiation into β cells. Furthermore, the extent of this differentiation was dependent on the function of the β cell mass in the host. Altogether, our results indicate that modulation of insulin signaling will be crucial for the development of β cell restoration therapies for diabetics; further clarification of the mechanisms of insulin signaling in β cell progenitors will reveal therapeutic targets for both in vivo and in vitro β cell generation. PMID:26658317

  13. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration.

    Science.gov (United States)

    Ye, Lihua; Robertson, Morgan A; Mastracci, Teresa L; Anderson, Ryan M

    2016-01-15

    As one of the key nutrient sensors, insulin signaling plays an important role in integrating environmental energy cues with organism growth. In adult organisms, relative insufficiency of insulin signaling induces compensatory expansion of insulin-secreting pancreatic beta (β) cells. However, little is known about how insulin signaling feedback might influence neogenesis of β cells during embryonic development. Using genetic approaches and a unique cell transplantation system in developing zebrafish, we have uncovered a novel role for insulin signaling in the negative regulation of pancreatic progenitor cell differentiation. Blocking insulin signaling in the pancreatic progenitors hastened the expression of the essential β cell genes insulin and pdx1, and promoted β cell fate at the expense of alpha cell fate. In addition, loss of insulin signaling promoted β cell regeneration and destabilization of alpha cell character. These data indicate that insulin signaling constitutes a tunable mechanism for β cell compensatory plasticity during early development. Moreover, using a novel blastomere-to-larva transplantation strategy, we found that loss of insulin signaling in endoderm-committed blastomeres drove their differentiation into β cells. Furthermore, the extent of this differentiation was dependent on the function of the β cell mass in the host. Altogether, our results indicate that modulation of insulin signaling will be crucial for the development of β cell restoration therapies for diabetics; further clarification of the mechanisms of insulin signaling in β cell progenitors will reveal therapeutic targets for both in vivo and in vitro β cell generation.

  14. Periodontal Bioengineering: A Discourse in Surface Topographies, Progenitor Cells and Molecular Profiles

    Science.gov (United States)

    Dangaria, Smit J.

    2011-12-01

    Stem/progenitor cells are a population of cells capable of providing replacement cells for a given differentiated cell type. We have applied progenitor cell-based technologies to generate novel tissue-engineered implants that use biomimetic strategies with the ultimate goal of achieving full regeneration of lost periodontal tissues. Mesenchymal periodontal tissues such as cementum, alveolar bone (AB), and periodontal ligament (PDL) are neural crest-derived entities that emerge from the dental follicle (DF) at the onset of tooth root formation. Using a systems biology approach we have identified key differences between these periodontal progenitors on the basis of global gene expression profiles, gene cohort expression levels, and epigenetic modifications, in addition to differences in cellular morphologies. On an epigenetic level, DF progenitors featured high levels of the euchromatin marker H3K4me3, whereas PDL cells, AB osteoblasts, and cementoblasts contained high levels of the transcriptional repressor H3K9me3. Secondly, we have tested the influence of natural extracellular hydroxyapatite matrices on periodontal progenitor differentiation. Dimension and structure of extracellular matrix surfaces have powerful influences on cell shape, adhesion, and gene expression. Here we show that natural tooth root topographies induce integrin-mediated extracellular matrix signaling cascades in tandem with cell elongation and polarization to generate physiological periodontium-like tissues. In this study we replanted surface topography instructed periodontal ligament progenitors (PDLPs) into rat alveolar bone sockets for 8 and 16 weeks, resulting in complete attachment of tooth roots to the surrounding alveolar bone with a periodontal ligament fiber apparatus closely matching physiological controls along the entire root surface. Displacement studies and biochemical analyses confirmed that progenitor-based engineered periodontal tissues were similar to control teeth and

  15. Nephron Progenitor But Not Stromal Progenitor Cells Give Rise to Wilms Tumors in Mouse Models with β-Catenin Activation or Wt1 Ablation and Igf2 Upregulation

    Directory of Open Access Journals (Sweden)

    Le Huang

    2016-02-01

    Full Text Available Wilms tumor, a common childhood tumor of the kidney, is thought to arise from undifferentiated renal mesenchyme. Variable tumor histology and the identification of tumor subsets displaying different gene expression profiles suggest that tumors may arise at different stages of mesenchyme differentiation and that this ontogenic variability impacts tumor pathology, biology, and clinical outcome. To test the tumorigenic potential of different cell types in the developing kidney, we used kidney progenitor-specific Cre recombinase alleles to introduce Wt1 and Ctnnb1 mutations, two alterations observed in Wilms tumor, into embryonic mouse kidney, with and without biallelic Igf2 expression, another alteration that is observed in a majority of tumors. Use of a Cre allele that targets nephron progenitors to introduce a Ctnnb1 mutation that stabilizes β-catenin resulted in the development of tumors with a predominant epithelial histology and a gene expression profile in which genes characteristic of early renal mesenchyme were not expressed. Nephron progenitors with Wt1 ablation and Igf2 biallelic expression were also tumorigenic but displayed a more triphasic histology and expressed early metanephric mesenchyme genes. In contrast, the targeting of these genetic alterations to stromal progenitors did not result in tumors. These data demonstrate that committed nephron progenitors can give rise to Wilms tumors and that committed stromal progenitors are less tumorigenic, suggesting that human Wilms tumors that display a predominantly stromal histology arise from mesenchyme before commitment to a stromal lineage.

  16. Isolation and culture of porcine neural progenitor cells from embryos and pluripotent stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Hall, Vanessa Jane; Hyttel, Poul

    2013-01-01

    therapy. The pig has become recognized as an important large animal model and establishment of in vitro-derived porcine NPCs would allow for preclinical safety testing by transplantation in a porcine biomedical model. In this chapter, a detailed method for isolation and in vitro culture of porcine NPCs......The isolation and culture of neural progenitor cells (NPCs) from pluripotent stem cells has facilitated in vitro mechanistic studies of diseases related to the nervous system, as well as discovery of new medicine. In addition, NPCs are envisioned to play a crucial role in future cell replacement....... The cells have the potential of long-term culture and the ability to differentiate into neural and glial cells....

  17. Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential

    International Nuclear Information System (INIS)

    The neural crest (NC) is a model system used to investigate multipotency during vertebrate development. Environmental factors control NC cell fate decisions. Despite the well-known influence of extracellular matrix molecules in NC cell migration, the issue of whether they also influence NC cell differentiation has not been addressed at the single cell level. By analyzing mass and clonal cultures of mouse cephalic and quail trunk NC cells, we show for the first time that fibronectin (FN) promotes differentiation into the smooth muscle cell phenotype without affecting differentiation into glia, neurons, and melanocytes. Time course analysis indicated that the FN-induced effect was not related to massive cell death or proliferation of smooth muscle cells. Finally, by comparing clonal cultures of quail trunk NC cells grown on FN and collagen type IV (CLIV), we found that FN strongly increased both NC cell survival and the proportion of unipotent and oligopotent NC progenitors endowed with smooth muscle potential. In contrast, melanocytic progenitors were prominent in clonogenic NC cells grown on CLIV. Taken together, these results show that FN promotes NC cell differentiation along the smooth muscle lineage, and therefore plays an important role in fate decisions of NC progenitor cells

  18. Moclobemide up-regulates proliferation of hippocampal progenitor cells in chronically stressed mice

    Institute of Scientific and Technical Information of China (English)

    Yun-feng LI; You-zhi ZHANG; Yan-qin LIU; Heng-lin WANG; Li YUAN; Zhi-pu LUO

    2004-01-01

    AIM: To explore the action mechanism of antidepressants. METHODS: The PC12 cell proliferation was detected by flow cytometry,. The proliferation of hippocampal progenitor cells and level of brain-derived neurotrophic factor (BDNF) were measured by immunohistochemistry. RESULTS: Treatment with N-methylaspartate (NMDA)600 μmol/L for 3 d significantly decreased the percentage of S-phase in PC12 cells, while in the presence of classical antidepressant, moclobemide (MOC) 2 and 10 μmol/L, the percentage in S-phase increased. Furthermore,the proliferation of progenitor cells in hippocampal dentate gyrus (subgranular zone), as well as the level of BDNF in hippocampus significantly decreased in chronically stressed mice, while chronic administration with MOC 40mg/kg (ip) up-regulated the progenitor cell proliferation and BDNF level in the same time course. CONLUSION:Up-regulation of the proliferation of hippocampal progenitor cells is one of the action mechanisms for MOC, which may be closely related to the elevation of BDNF level at the same time. These results also extend evidence for our hypothesis that up-regulation of the hippocampal neurogenesis is one of the common mechanisms for antidepressants.

  19. Moclobemide up-regulates proliferation of hippocampal progenitor cells in chronically stressed mice

    Institute of Scientific and Technical Information of China (English)

    Yun-fengLI; You-zhiZHANG; Yan-qinLIU; Heng-linWANG; LiYUAN; Zhi-puLUO

    2004-01-01

    AIM: To explore the action mechanism of antidepressants. METHODS: The PC 12 cell proliferation was detected by flow cytometry,. The proliferation of hippocampal progenitor cells and level of brain-derived neurotrophic factor (BDNF) were measured by immunohistochemistry. RESULTS: Treatment with N-methylaspartate (NMDA)600 μmol/L for 3 d significantly decreased the percentage of S-phase in PC12 cells, while in the presence of classical antidepressant, moclobemide (MOC) 2 and 10 μnol/L, the percentage in S-phase increased. Furthermore,the proliferation of progenitor cells in hippocampal dentate gyrus (subgranular zone), as well as the level of BDNF in hippocampus significantly decreased in chronically stressed mice, while chronic administration with MOC 40 mg/kg (ip) up-regulated the progenitor cell proliferation and BDNF level in the same time course. CONLUSION:Up-regulation of the proliferation of hippocampal progenitor cells is one of the action mechanisms for MOC, which may be closely related to the elevation of BDNF level at the same time. These results also extend evidence for our hypothesis that up-regulation of the hippocampal neurogenesis is one of the common mechanisms for antidepressants.

  20. File list: NoD.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Neural_progenitor_cells mm9 No description Neural Neural progenito...SRX346675,SRX298043 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  1. File list: NoD.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Neural_progenitor_cells mm9 No description Neural Neural progenito...SRX346817,SRX346814 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  2. File list: NoD.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Neural_progenitor_cells mm9 No description Neural Neural progenito...SRX346675,SRX346817 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  3. File list: NoD.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Neural_progenitor_cells mm9 No description Neural Neural progenito...SRX346675,SRX298043 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  4. File list: ALL.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 All antigens Blood Granulocyte-Macro...ciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  5. File list: ALL.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 All antigens Blood Granulocyte-Macro...ciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  6. File list: ALL.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 All antigens Blood Granulocyte-Macro...ciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  7. File list: ALL.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 All antigens Blood Granulocyte-Macro...ciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  8. Cell Therapy for Diabetic Neuropathy Using Adult Stem or Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Ji Woong Han

    2013-04-01

    Full Text Available Diabetic neuropathy (DN is the most common and disabling complication of diabetes that may lead to foot ulcers and limb amputations. Despite widespread awareness of DN, the only effective treatments are glucose control and pain management. A growing body of evidence suggests that DN is characterized by reduction of vascularity in peripheral nerves and deficiency in neurotrophic and angiogenic factors. Previous studies have tried to introduce neurotrophic or angiogenic factors in the form of protein or gene for therapy, but the effect was not significant. Recent studies have shown that bone marrow (BM-derived stem or progenitor cells have favorable effects on the repair of cardiovascular diseases. Since these BM-derived stem or progenitor cells contain various angiogenic and neurotrophic factors, these cells have been attempted for treating experimental DN, and turned out to be effective for reversing various manifestations of experimental DN. These evidences suggest that cell therapy, affecting both vascular and neural components, can represent a novel therapeutic option for treatment of clinical DN.

  9. Pre-malignant lymphoid cells arise from hematopoietic stem/progenitor cells in chronic lymphocytic leukemia.

    Science.gov (United States)

    Kikushige, Yoshikane; Miyamoto, Toshihiro

    2015-11-01

    Human malignancies progress through a multistep process that includes the development of critical somatic mutations over the clinical course. Recent novel findings have indicated that hematopoietic stem cells (HSCs), which have the potential to self-renew and differentiate into multilineage hematopoietic cells, are an important cellular target for the accumulation of critical somatic mutations in hematological malignancies and play a central role in myeloid malignancy development. In contrast to myeloid malignancies, mature lymphoid malignancies, such as chronic lymphocytic leukemia (CLL), are thought to originate directly from differentiated mature lymphocytes; however, recent compelling data have shown that primitive HSCs and hematopoietic progenitor cells contribute to the pathogenesis of mature lymphoid malignancies. Several representative mutations of hematological malignancies have been identified within the HSCs of CLL and lymphoma patients, indicating that the self-renewing long-lived fraction of HSCs can serve as a reservoir for the development of oncogenic events. Novel mice models have been established as human mature lymphoma models, in which specific oncogenic events target the HSCs and immature progenitor cells. These data collectively suggest that HSCs can be the cellular target involved in the accumulation of oncogenic events in the pathogenesis of mature lymphoid and myeloid malignancies.

  10. Animal Models of Cardiac Disease and Stem Cell Therapy

    OpenAIRE

    Ou, Lailiang; Li, Wenzhong; Liu, Yi; Zhang, Yue(Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125, U.S.A.); Jie, Shen; Kong, Deling; Steinhoff, Gustav; Ma, Nan

    2010-01-01

    Animal models that mimic cardiovascular diseases are indispensable tools for understanding the mechanisms underlying the diseases at the cellular and molecular level. This review focuses on various methods in preclinical research to create small animal models of cardiac diseases, such as myocardial infarction, dilated cardiomyopathy, heart failure, myocarditis and cardiac hypertrophy, and the related stem cell treatment for these diseases.

  11. Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells.

    Science.gov (United States)

    Chou, Song; Lodish, Harvey F

    2010-04-27

    Previously we showed that the ~2% of fetal liver cells reactive with an anti-CD3epsilon monoclonal antibody support ex vivo expansion of both fetal liver and bone marrow hematopoietic stem cells (HSCs); these cells express two proteins important for HSC ex vivo expansion, IGF2, and angiopoietin-like 3. Here we show that these cells do not express any CD3 protein and are not T cells; rather, we purified these HSC-supportive stromal cells based on the surface phenotype of SCF(+)DLK(+). Competitive repopulating experiments show that SCF(+)DLK(+) cells support the maintenance of HSCs in ex vivo culture. These are the principal fetal liver cells that express not only angiopoietin-like 3 and IGF2, but also SCF and thrombopoietin, two other growth factors important for HSC expansion. They are also the principal fetal liver cells that express CXCL12, a factor required for HSC homing, and also alpha-fetoprotein (AFP), indicating that they are fetal hepatic stem or progenitor cells. Immunocytochemistry shows that >93% of the SCF(+) cells express DLK and Angptl3, and a portion of SCF(+) cells also expresses CXCL12. Thus SCF(+)DLK(+) cells are a highly homogenous population that express a complete set of factors for HSC expansion and are likely the primary stromal cells that support HSC expansion in the fetal liver.

  12. Interactions of primary neuroepithelial progenitor and brain endothelial cells: distinct effect on neural progenitor maintenance and differentiation by soluble factors and direct contact

    Institute of Scientific and Technical Information of China (English)

    Miguel A Gama Sosa; Rita De Gasperi; Anne B Rocher; Gissel M Perez; Keila Simons; Daniel E Cruz; Patrick R Hof; Gregory A Elder

    2007-01-01

    Neurovascular interactions are crucial for the normal development of the central nervous system. To study such interactions in primary cultures, we developed a procedure to simultaneously isolate neural progenitor and endothelial cell fractions from embryonic mouse brains. Depending on the culture conditions endothelial cells were found to favor maintenance of the neuroprogenitor phenotype through the production of soluble factors, or to promote neuronal differentiation of neural progenitors through direct contact. These apparently opposing effects could reflect differential cellular interactions needed for the proper development of the brain.

  13. FGF-dependent midline-derived progenitor cells in hypothalamic infundibular development.

    Science.gov (United States)

    Pearson, Caroline Alayne; Ohyama, Kyoji; Manning, Liz; Aghamohammadzadeh, Soheil; Sang, Helen; Placzek, Marysia

    2011-06-01

    The infundibulum links the nervous and endocrine systems, serving as a crucial integrating centre for body homeostasis. Here we describe that the chick infundibulum derives from two subsets of anterior ventral midline cells. One set remains at the ventral midline and forms the posterior-ventral infundibulum. A second set migrates laterally, forming a collar around the midline. We show that collar cells are composed of Fgf3(+) SOX3(+) proliferating progenitors, the induction of which is SHH dependent, but the maintenance of which requires FGF signalling. Collar cells proliferate late into embryogenesis, can generate neurospheres that passage extensively, and differentiate to distinct fates, including hypothalamic neuronal fates and Fgf10(+) anterior-dorsal infundibular cells. Together, our study shows that a subset of anterior floor plate-like cells gives rise to Fgf3(+) SOX3(+) progenitor cells, demonstrates a dual origin of infundibular cells and reveals a crucial role for FGF signalling in governing extended infundibular growth. PMID:21610037

  14. In vitro characterization of a human neural progenitor cell coexpressing SSEA4 and CD133

    DEFF Research Database (Denmark)

    Barraud, Perrine; Stott, Simon; Møllgård, Kjeld;

    2007-01-01

    The stage-specific embryonic antigen 4 (SSEA4) is commonly used as a cell surface marker to identify the pluripotent human embryonic stem (ES) cells. Immunohistochemistry on human embryonic central nervous system revealed that SSEA4 is detectable in the early neuroepithelium, and its expression....... Therefore, we propose that SSEA4 associated with CD133 can be used for both the positive selection and the enrichment of neural stem/progenitor cells from human embryonic forebrain....... decreases as development proceeds. Flow cytometry analysis of forebrain-derived cells demonstrated that the SSEA4-expressing cells are enriched in the neural stem/progenitor cell fraction (CD133(+)), but are rarely codetected with the neural stem cell (NSC) marker CD15. Using a sphere-forming assay, we...

  15. Mast Cell-activated Bone Marrow Mesenchymal Stromal Cells Regulate Proliferation and Lineage Commitment of CD34+ Progenitor cells

    Directory of Open Access Journals (Sweden)

    Zoulfia eAllakhverdi

    2013-12-01

    Full Text Available Background: Shortly after allergen exposure, the number of bone marrow and circulating CD34+ progenitors increases. We aim to analyze the possible mechanism whereby the allergic reaction stimulates bone marrow to release these effector cells in increased numbers. We hypothesize that mast cells may play a predominant role in this process. Objective: To examine the effect of IgE-activated mast cells on bone marrow mesenchymal stromal cells which regulate proliferation and differentiation of CD34+ progenitors. Methods: Primary mast cells were derived from CD34+ precursors and activated with IgE/anti-IgE. Bone marrow mesenchymal stromal cells were co-cultured with CD34+ progenitor cells and stimulated with IL1/TNF or IgE/anti-IgE activated mast cells in Transwell system. Results: Bone marrow mesenchymal stromal cells produce low level of TSLP under steady state conditions, which is markedly increased by stimulation with proinflammatory cytokines IL-1 and TNF or IgE-activated mast cells. The latter also triggers BM-MSCs production of G-CSF, and GM-CSF while inhibiting SDF-1. Mast cell-activated mesenchymal stromal cells stimulate CD34+ cells to proliferate and to regulate their expression of early allergy-associated genes. Conclusion and Clinical Relevance: This in vitro study indicates that IgE-activated mast cells trigger bone marrow mesenchymal stromal cells to release TSLP and hematopoietic growth factors and to regulate the proliferation and lineage commitment of CD34+ precursor cells. The data predict that the effective inhibition of mast cells should impair mobilization and accumulation of allergic effector cells and thereby reduce the severity of allergic diseases.

  16. Wnt signaling induces differentiation of progenitor cells in organotypic keratinocyte cultures

    Directory of Open Access Journals (Sweden)

    Liu Bob Y

    2007-02-01

    Full Text Available Abstract Background Interfollicular skin develops normally only when the activity of the progenitor cells in the basal layer is counterbalanced by the exit of cells into the suprabasal layers, where they differentiate and cornify to establish barrier function. Distinct stem and progenitor compartments have been demonstrated in hair follicles and sebaceous glands, but there are few data to describe the control of interfollicular progenitor cell activity. Wnt signaling has been shown to be an important growth-inducer of stem cell compartments in skin and many other tissues. Results Here, we test the effect of ectopic Wnt1 expression on the behavior of interfollicular progenitor cells in an organotypic culture model, and find that Wnt1 signaling inhibits their growth and promotes terminal differentiation. Conclusion These results are consistent with the phenotypes reported for transgenic mice engineered to have gain or loss of function of Wnt signaling in skin, which would recommend our culture model as an accurate one for molecular analysis. Since it is known that canonical ligands are expressed in skin, it is likely that this pathway normally regulates the balance of growth and differentiation, and suggests it could be important to pathogenesis.

  17. FGF8 activates proliferation and migration in mouse post-natal oligodendrocyte progenitor cells.

    Directory of Open Access Journals (Sweden)

    Pablo Cruz-Martinez

    Full Text Available Fibroblast growth factor 8 (FGF8 is a key molecular signal that is necessary for early embryonic development of the central nervous system, quickly disappearing past this point. It is known to be one of the primary morphogenetic signals required for cell fate and survival processes in structures such as the cerebellum, telencephalic and isthmic organizers, while its absence causes severe abnormalities in the nervous system and the embryo usually dies in early stages of development. In this work, we have observed a new possible therapeutic role for this factor in demyelinating disorders, such as leukodystrophy or multiple sclerosis. In vitro, oligodendrocyte progenitor cells were cultured with differentiating medium and in the presence of FGF8. Differentiation and proliferation studies were performed by immunocytochemistry and PCR. Also, migration studies were performed in matrigel cultures, where oligodendrocyte progenitor cells were placed at a certain distance of a FGF8-soaked heparin bead. The results showed that both migration and proliferation was induced by FGF8. Furthermore, a similar effect was observed in an in vivo demyelinating mouse model, where oligodendrocyte progenitor cells were observed migrating towards the FGF8-soaked heparin beads where they were grafted. In conclusion, the results shown here demonstrate that FGF8 is a novel factor to induce oligodendrocyte progenitor cell activation, migration and proliferation in vitro, which can be extrapolated in vivo in demyelinated animal models.

  18. Meis1 regulates Foxn4 expression during retinal progenitor cell differentiation

    Directory of Open Access Journals (Sweden)

    Mohammed M. Islam

    2013-09-01

    The transcription factor forkhead box N4 (Foxn4 is a key regulator in a variety of biological processes during development. In particular, Foxn4 plays an essential role in the genesis of horizontal and amacrine neurons from neural progenitors in the vertebrate retina. Although the functions of Foxn4 have been well established, the transcriptional regulation of Foxn4 expression during progenitor cell differentiation remains unclear. Here, we report that an evolutionarily conserved 129 bp noncoding DNA fragment (Foxn4CR4.2 or CR4.2, located ∼26 kb upstream of Foxn4 transcription start site, functions as a cis-element for Foxn4 regulation. CR4.2 directs gene expression in Foxn4-positive cells, primarily in progenitors, differentiating horizontal and amacrine cells. We further determined that the gene regulatory activity of CR4.2 is modulated by Meis1 binding motif, which is bound and activated by Meis1 transcription factor. Deletion of the Meis1 binding motif or knockdown of Meis1 expression abolishes the gene regulatory activity of CR4.2. In addition, knockdown of Meis1 expression diminishes the endogenous Foxn4 expression and affects cell lineage development. Together, we demonstrate that CR4.2 and its interacting Meis1 transcription factor play important roles in regulating Foxn4 expression during early retinogenesis. These findings provide new insights into molecular mechanisms that govern gene regulation in retinal progenitors and specific cell lineage development.

  19. A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver

    International Nuclear Information System (INIS)

    Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or α-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.

  20. Regulatory Systems in Bone Marrow for Hematopoietic Stem/Progenitor Cells Mobilization and Homing

    Directory of Open Access Journals (Sweden)

    P. Alvarez

    2013-01-01

    Full Text Available Regulation of hematopoietic stem cell release, migration, and homing from the bone marrow (BM and of the mobilization pathway involves a complex interaction among adhesion molecules, cytokines, proteolytic enzymes, stromal cells, and hematopoietic cells. The identification of new mechanisms that regulate the trafficking of hematopoietic stem/progenitor cells (HSPCs cells has important implications, not only for hematopoietic transplantation but also for cell therapies in regenerative medicine for patients with acute myocardial infarction, spinal cord injury, and stroke, among others. This paper reviews the regulation mechanisms underlying the homing and mobilization of BM hematopoietic stem/progenitor cells, investigating the following issues: (a the role of different factors, such as stromal cell derived factor-1 (SDF-1, granulocyte colony-stimulating factor (G-CSF, and vascular cell adhesion molecule-1 (VCAM-1, among other ligands; (b the stem cell count in peripheral blood and BM and influential factors; (c the therapeutic utilization of this phenomenon in lesions in different tissues, examining the agents involved in HSPCs mobilization, such as the different forms of G-CSF, plerixafor, and natalizumab; and (d the effects of this mobilization on BM-derived stem/progenitor cells in clinical trials of patients with different diseases.

  1. Proneurotrophin-3 promotes cell cycle withdrawal of developing cerebellar granule cell progenitors via the p75 neurotrophin receptor.

    Science.gov (United States)

    Zanin, Juan Pablo; Abercrombie, Elizabeth; Friedman, Wilma J

    2016-07-19

    Cerebellar granule cell progenitors (GCP) proliferate extensively in the external granule layer (EGL) of the developing cerebellum prior to differentiating and migrating. Mechanisms that regulate the appropriate timing of cell cycle withdrawal of these neuronal progenitors during brain development are not well defined. The p75 neurotrophin receptor (p75(NTR)) is highly expressed in the proliferating GCPs, but is downregulated once the cells leave the cell cycle. This receptor has primarily been characterized as a death receptor for its ability to induce neuronal apoptosis following injury. Here we demonstrate a novel function for p75(NTR) in regulating proper cell cycle exit of neuronal progenitors in the developing rat and mouse EGL, which is stimulated by proNT3. In the absence of p75(NTR), GCPs continue to proliferate beyond their normal period, resulting in a larger cerebellum that persists into adulthood, with consequent motor deficits.

  2. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells

    International Nuclear Information System (INIS)

    The CD133 antigen, identified as a hematopoietic stem cell marker, appears in various human embryonic epithelia including the neural tube, gut, and kidney. We herein investigated whether CD133+ cells isolated from human hepatocellular carcinoma cell lines possess cancer stem/progenitor cell-like properties. Among the three cell lines studied, the CD133 antigen was found to be expressed only on the surface of Huh-7 cells. CD133+ cells from Huh-7 performed a higher in vitro proliferative potential and lower mRNA expressions of mature hepatocyte markers, glutamine synthetase and cytochrome P450 3A4, than CD133- population of Huh-7 cells. When either CD133+ or CD133- cells were subcutaneously injected into SCID mice, CD133+ cells formed tumors, whereas CD133- cells induced either a very small number of tumors or none at all. Taken together, the identification of CD133+ cells could thus be a potentially powerful tool to investigate the tumorigenic process in the hepatoma system and to also develop effective therapies targeted against hepatocellular carcinoma

  3. Low antigenicity of hematopoietic progenitor cells derived from human ES cells

    Directory of Open Access Journals (Sweden)

    Eun-Mi Kim

    2010-02-01

    Full Text Available Eun-Mi Kim1, Nicholas Zavazava1,21Department of Internal Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, Iowa, USA; 2Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USAAbstract: Human embryonic stem (hES cells are essential for improved understanding of diseases and our ability to probe new therapies for use in humans. Currently, bone marrow cells and cord blood cells are used for transplantation into patients with hematopoietic malignancies, immunodeficiencies and in some cases for the treatment of autoimmune diseases. However, due to the high immunogenicity of these hematopoietic cells, toxic regimens of drugs are required for preconditioning and prevention of rejection. Here, we investigated the efficiency of deriving hematopoietic progenitor cells (HPCs from the hES cell line H13, after co-culturing with the murine stromal cell line OP9. We show that HPCs derived from the H13 ES cells poorly express major histocompatibility complex (MHC class I and no detectable class II antigens (HLA-DR. These characteristics make hES cell-derived hematopoietic cells (HPCs ideal candidates for transplantation across MHC barriers under minimal immunosuppression.Keywords: human embryonic stem cells, H13, hematopoiesis, OP9 stromal cells, immunogenicity

  4. LIVER AND BONE MARROW STEM/PROGENITOR CELLS AS REGULATORS OF REPARATIVE REGENERATION OF DAMAGED LIVER

    Directory of Open Access Journals (Sweden)

    А. V. Lundup

    2010-01-01

    Full Text Available In this review the modern information about effectiveness of liver insufficiency treatment by stem/ progenitor cells of liver (oval cells and bone marrow (hemopoietic cells and mesenchymal cells was presented. It is shown that medical action of these cells is referred on normalization of liver cell interaction and reorganization of processes of a reparative regeneration in damaged liver. It is believed that application of mesenchymal stromal cells from an autological bone marrow is the most perspective strategy. However, for definitive judgement about regenerative possibilities of the autological bone marrow cells it is necessary to carry out large-scale double blind clinical researches. 

  5. Eotaxin-Rich Proangiogenic Hematopoietic Progenitor Cells and CCR3+ Endothelium in the Atopic Asthmatic Response.

    Science.gov (United States)

    Asosingh, Kewal; Vasanji, Amit; Tipton, Aaron; Queisser, Kimberly; Wanner, Nicholas; Janocha, Allison; Grandon, Deepa; Anand-Apte, Bela; Rothenberg, Marc E; Dweik, Raed; Erzurum, Serpil C

    2016-03-01

    Angiogenesis is closely linked to and precedes eosinophilic infiltration in asthma. Eosinophils are recruited into the airway by chemoattractant eotaxins, which are expressed by endothelial cells, smooth muscles cells, epithelial cells, and hematopoietic cells. We hypothesized that bone marrow-derived proangiogenic progenitor cells that contain eotaxins contribute to the initiation of angiogenesis and inflammation in asthma. Whole-lung allergen challenge of atopic asthma patients revealed vascular activation occurs within hours of challenge and before airway inflammation. The eotaxin receptor CCR3 was expressed at high levels on submucosal endothelial cells in patients and a murine model of asthma. Ex vivo exposure of murine endothelial cells to eotaxins induced migration and angiogenesis. In mechanistic studies, wild-type mice transplanted with eotaxin-1/2-deficient bone marrow had markedly less angiogenesis and inflammation in an atopic asthma model, whereas adoptive transfer of proangiogenic progenitor cells from wild-type mice in an atopic asthma model into the eotaxin-1/2-deficient mice led to angiogenesis and airway inflammation. The findings indicate that Th2-promoting hematopoietic progenitor cells are rapidly recruited to the lung upon allergen exposure and release eotaxins that coordinately activate endothelial cells, angiogenesis, and airway inflammation. PMID:26810221

  6. Lipidome of midbody released from neural stem and progenitor cells during mammalian cortical neurogenesis

    Directory of Open Access Journals (Sweden)

    Yoko eArai

    2015-08-01

    Full Text Available Midbody release from proliferative neural progenitor cells is tightly associated with the neuronal commitment of neural progenitor cells during the progression of neurogenesis in the mammalian cerebral cortex. While the central portion of the midbody, a cytoplasmic bridge between nascent daughter cells, is engulfed by one of the daughter cell by most cells in vitro, it is shown to be released into the extracellular cerebrospinal fluid in vivo in mouse embryos. Several proteins have been involved in midbody release; however, few studies have addressed the participation of the plasma membrane’s lipids in this process. Here, we show by Shotgun Lipidomic analysis that phosphatydylserine (PS, among other lipids, is enriched in the released midbodies compared to lipoparticles and cellular membranes, both collected from the cerebrospinal fluid of the developing mouse embryos. Moreover, the developing mouse embryo neural progenitor cells released two distinct types of midbodies carrying either internalized PS or externalized PS on their membrane. This strongly suggests that phagocytosis and an alternative fate of released midbodies exists. HeLa cells, which are known to mainly engulf the midbody show almost no PS exposure, if any, on the outer leaflet of the midbody membrane. These results point towards that PS exposure might be involved in the selection of recipients of released midbodies, either to be engulfed by daughter cells or phagocytosed by non-daughter cells or another cell type in the developing cerebral cortex.

  7. Otospheres derived from neonatal mouse cochleae retain the progenitor cell phenotype after ex vivo expansions.

    Science.gov (United States)

    Lou, Xiang-Xin; Nakagawa, Takayuki; Ohnishi, Hiroe; Nishimura, Koji; Ito, Juichi

    2013-02-01

    Because of their limited regenerative potential, cochlear hair cell loss is one of the major causes of permanent hearing loss in mammals. However, recent studies have shown that postnatal cochlear epithelia retain the progenitor cells that form otospheres. Otospheres are capable of self-renewing and differentiating into inner ear cell lineages, thereby suggesting a promising source for hair cell regeneration. We investigated retention of the progenitor cell phenotype in otospheres after ex vivo expansion, which is crucial for transplantation approaches. Reverse transcriptase-polymerase chain reaction and immunocytochemical analyses showed that otospheres derived from neonatal mice retained expression of stem and cochlear cell markers. After in vitro differentiation, otosphere-consisting cells differentiated into hair cell phenotypes after ex vivo expansion. However, the capacity of otospheres for self-renewal weakened with subsequent generations of ex vivo expansion. Our results indicate that ex vivo expanded-otospheres are useful experimental tools for studying hair cell regeneration in transplantation approaches and that the mechanisms for retention of the progenitor cell phenotype in otospheres should be investigated. PMID:23238450

  8. Smoking decreases the level of circulating CD34+ progenitor cells in young healthy women - a pilot study

    Directory of Open Access Journals (Sweden)

    Baumann Gert

    2010-05-01

    Full Text Available Abstract Background Decreased levels of circulating bone marrow-derived progenitor cells have been associated with risk factors and cardiovascular diseases. Smoking is the most important modifiable risk factor for atherosclerosis in young women. The aim of this pilot study was to assess in healthy premenopausal women without other risk factors for cardiovascular disease the influence of nicotine abuse on the number of circulating progenitor cells in relation to endothelial function. Methods The number of endothelial progenitor cells, measured as colony-forming units in a cell-culture assay (EPC-CFU and the number of circulating CD34 + and CD34 + /CD133 + cells, measured by flow cytometry, was estimated in 32 women at the menstrual phase of the menstrual cycle. In addition, flow-mediated dilation (FMD was assessed as a marker for vascular function. In a subgroup of these women (n = 20, progenitor cells were also investigated at the mid-follicular and luteal phases of the menstrual cycle. Results Compared to non-smokers, the abundance of circulating CD34 + cells was significantly lower in smoking women in the menstrual, mid-luteal, and mid-follicular phases of the menstrual cycle. The number of CD34 + progenitor cells was revealed to have significant positive correlation with FMD in young healthy women, whereas CD34 + /CD133 + progenitor cells and EPC-CFU showed no significant correlation. Conclusion The number of CD34 + progenitor cells positively correlates with FMD in young healthy women and is decreased by smoking.

  9. Multifactorial treatment increases endothelial progenitor cells in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Reinhard, H; Jacobsen, P Karl; Lajer, Marianne;

    2010-01-01

    Endothelial progenitor cells (EPC) augment vascular repair and neovascularisation. Patients with type 2 diabetes have reduced EPC and increased risk of cardiovascular disease (CVD), which is reduced by multifactorial intervention. Our aim, therefore, was to evaluate in type 2 diabetic patients...

  10. Ischemia-Induced Neural Stem/Progenitor Cells in the Pia Mater Following Cortical Infarction

    NARCIS (Netherlands)

    Nakagomi, Takayuki; Molnar, Zoltan; Nakano-Doi, Akiko; Taguchi, Akihiko; Saino, Orie; Kubo, Shuji; Clausen, Martijn; Yoshikawa, Hiroo; Nakagomi, Nami; Matsuyama, Tomohiro

    2011-01-01

    Increasing evidence shows that neural stem/ progenitor cells (NSPCs) can be activated in the nonconventional neurogenic zones such as the cortex following ischemic stroke. However, the precise origin, identity, and subtypes of the ischemia-induced NSPCs (iNSPCs), which can contribute to cortical neu

  11. Characterization of calcium responses and electrical activity in differentiating mouse neural progenitor cells in vitro

    NARCIS (Netherlands)

    de Groot, Martje W G D M; Dingemans, Milou M L; Rus, Katinka H; de Groot, Aart; Westerink, Remco H S

    2014-01-01

    In vitro methods for developmental neurotoxicity (DNT) testing have the potential to reduce animal use and increase insight into cellular and molecular mechanisms underlying chemical-induced alterations in the development of functional neuronal networks. Mouse neural progenitor cells (mNPCs) differe

  12. BSHI Guideline: HLA matching and donor selection for haematopoietic progenitor cell transplantation.

    Science.gov (United States)

    Little, A-M; Green, A; Harvey, J; Hemmatpour, S; Latham, K; Marsh, S G E; Poulton, K; Sage, D

    2016-10-01

    A review of the British Society for Histocompatibility and Immunogenetics (BSHI) "Guideline for selection and HLA matching of related, adult unrelated donors and umbilical cord units for haematopoietic progenitor cell transplantation" was undertaken by a BSHI appointed writing committee. Literature searches were performed, and the data extracted were presented as recommendations according to the GRADE nomenclature. PMID:27503599

  13. Conditionally reprogrammed normal and transformed mouse mammary epithelial cells display a progenitor-cell-like phenotype.

    Directory of Open Access Journals (Sweden)

    Francisco R Saenz

    Full Text Available Mammary epithelial (ME cells cultured under conventional conditions senesce after several passages. Here, we demonstrate that mouse ME cells isolated from normal mammary glands or from mouse mammary tumor virus (MMTV-Neu-induced mammary tumors, can be cultured indefinitely as conditionally reprogrammed cells (CRCs on irradiated fibroblasts in the presence of the Rho kinase inhibitor Y-27632. Cell surface progenitor-associated markers are rapidly induced in normal mouse ME-CRCs relative to ME cells. However, the expression of certain mammary progenitor subpopulations, such as CD49f+ ESA+ CD44+, drops significantly in later passages. Nevertheless, mouse ME-CRCs grown in a three-dimensional extracellular matrix gave rise to mammary acinar structures. ME-CRCs isolated from MMTV-Neu transgenic mouse mammary tumors express high levels of HER2/neu, as well as tumor-initiating cell markers, such as CD44+, CD49f+, and ESA+ (EpCam. These patterns of expression are sustained in later CRC passages. Early and late passage ME-CRCs from MMTV-Neu tumors that were implanted in the mammary fat pads of syngeneic or nude mice developed vascular tumors that metastasized within 6 weeks of transplantation. Importantly, the histopathology of these tumors was indistinguishable from that of the parental tumors that develop in the MMTV-Neu mice. Application of the CRC system to mouse mammary epithelial cells provides an attractive model system to study the genetics and phenotype of normal and transformed mouse epithelium in a defined culture environment and in vivo transplant studies.

  14. In Vitro Differentiation and Expansion of Human Pluripotent Stem Cell-Derived Pancreatic Progenitors

    OpenAIRE

    Chmielowiec, Jolanta; Borowiak, Malgorzata

    2014-01-01

    Recent progress in understanding stem cell biology has been remarkable, especially in deciphering signals that support differentiation towards tissue-specific lineages. This achievement positions us firmly at the beginning of an era of patient-specific regenerative medicine and human disease modeling. It will be necessary to equip the progress in this era with a reliable source of self-renewing progenitor cells that differentiate into functional target cells. The generation of pancreatic prog...

  15. Bmi1 reprograms CML B-lymphoid progenitors to become B-ALL–initiating cells

    OpenAIRE

    Sengupta, Amitava; Ficker, Ashley M.; Dunn, Susan K.; Madhu, Malav; Cancelas, Jose A.

    2012-01-01

    The characterization and targeting of Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL)–initiating cells remains unresolved. Expression of the polycomb protein Bmi1 is up-regulated in patients with advanced stages of chronic myelogenous leukemia (CML). We report that Bmi1 transforms and reprograms CML B-lymphoid progenitors into stem cell leukemia (Scl) promoter-driven, self-renewing, leukemia-initiating cells to result in B-lymphoid leukemia (B-ALL) in vivo. In vitro,...

  16. Efficient in vitro generation of functional thymic epithelial progenitors from human embryonic stem cells

    OpenAIRE

    Min Su; Rong Hu; Jingjun Jin; Yuan Yan; Yinhong Song; Ryan Sullivan; Laijun Lai

    2015-01-01

    Thymic epithelial cells (TECs) are the major components of the thymic microenvironment for T cell development. TECs are derived from thymic epithelial progenitors (TEPs). It has been reported that human ESCs (hESCs) can be directed to differentiate into TEPs in vitro. However, the efficiency for the differentiation is low. Furthermore, transplantation of hESC-TEPs in mice only resulted in a very low level of human T cell development from co-transplanted human hematopoietic precursors. We show...

  17. Maternal neoangiogenesis during pregnancy partly derives from fetal endothelial progenitor cells

    OpenAIRE

    Nguyen Huu, Sau; Oster, Michèle; Uzan, Serge; Chareyre, Fabrice; Aractingi, Sélim; Khosrotehrani, Kiarash

    2007-01-01

    Fetal progenitor cells enter the maternal circulation during pregnancy and can persist for decades. We aimed to determine the role of these cells in tissue inflammation during pregnancy. WT female mice were mated to males transgenic for the EGFP (ubiquitous) or the luciferase gene controlled by the VEGF receptor 2 (VEGFR2; V-Luc) promoter. A contact hypersensitivity reaction was triggered during such pregnancies. Fetal cells were tracked by using real-time quantitative amplification of the tr...

  18. Hematopoietic stem and progenitor cells in HIV/AIDS and immune reconstitution

    Institute of Scientific and Technical Information of China (English)

    Jielin Zhang; Clyde S Crumpacker

    2010-01-01

    @@ The human immunodeficiency virus type 1 (HIV-1) causes an acquired immunodeficiency syndrome (AIDS).HIV-1 infects human immune cells,specifically CD4+ lymphocytes, which leads to AIDS and undermines reconstitution of immunity. The unique challenges of HIV/AIDS have triggered multidisciplinary investigators to study the virology of the pathogen and the biology of the host cells, especially the interactions of HIV-1 with T-lymphocytes,macrophages, and hematopoietic stem and progenitor cells (HSPC) [1-8].

  19. The Chondrogenic Potential of Progenitor Cells Derived from Peripheral Blood: A Systematic Review.

    Science.gov (United States)

    Wang, Shao-Jie; Yin, Meng-Hong; Jiang, Dong; Zhang, Zheng-Zheng; Qi, Yan-Song; Wang, Hai-Jun; Yu, Jia-Kuo

    2016-08-15

    An increasing number of studies have detected mesenchymal stromal cells (MSCs) and mesenchymal progenitor cells (MPCs) in the peripheral blood (PB). This study aimed to systematically review the possibility of using the PB as a source for chondrogenic progenitors. PubMed, the Web of Science, and Embase were searched for relevant articles. The findings of the studies were reviewed to evaluate the biological characteristics of PB-derived MSCs, chondrogenic MPCs, and their applications in cartilage repair. Thirty-six articles were included in the final analysis, 29 of which indicated that PB is a potential source for chondrogenic progenitor cells. Thirty-two studies reporting in vitro data, including 79.2% (19/24) of studies on PB MSCs and 75% (6/8) of studies on chondrogenic PB MPCs, confirmed the existence of PB MSCs and PB MPCs, respectively; all in vivo investigations showed that using PB as a cell source enhanced cartilage repair. PB MSCs were found in most of the animal studies (12/13), whereas 7 of 11 human studies described the presence of PB MSCs. This systematic review strongly indicates the existence of MSCs in the PB of animals, whereas the presence of MSCs in human PB is less clear. Although the presence of both MSCs and chondrogenic MPCs in the PB, as well as a few favorable outcomes associated with the use of PB-derived progenitors for cartilage repair in vivo, suggests that the PB is a potential alternative source of chondrogenic progenitor cells for cartilage repair, the efficacy of these cells has not been compared to those from other sources, such as bone marrow or adipose tissue in controlled studies. PMID:27353075

  20. Transplantation of progenitor cells after reperfused acute myocardial infarction: evaluation of perfusion and myocardial viability with FDG-PET and thallium SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Doebert, Natascha; Berner, Uwe; Menzel, Christian; Hamscho, Nadja; Gruenwald, Frank [Department of Nuclear Medicine, University of Frankfurt (Germany); Britten, Martina; Assmus, Birgit; Lehmann, Ralf; Schaechinger, Volker; Zeiher, Andreas M. [Department of Cardiology, University of Frankfurt (Germany); Dimmeler, Stefanie [Department of Molecular Cardiology, University of Frankfurt (Germany)

    2004-08-01

    Clinical outcome after myocardial infarction depends on the extent of irreversibly damaged myocardium. Implantation of bone marrow-/circulating blood-derived progenitor cells has been shown to improve contractile cardiac function after myocardial infarction in both experimental and initial clinical studies. In the present study, first observations of the effect of local intracoronary progenitor cell infusion on the regeneration of infarcted cardiac tissue after acute myocardial infarction was evaluated by means of {sup 18}F-fluorodeoxyglucose positron emission tomography (PET) and {sup 201}Tl single-photon emission computed tomography (SPECT). Twenty-six patients underwent intracoronary infusion of bone marrow-derived (BMCs) (15 patients) or circulating blood-derived endothelial progenitor cells (EPCs) (11 patients) 4{+-}2 days after acute myocardial infarction. Based on a left ventricular segmentation model (17 segments), mean signal intensities as a parameter of viability and perfusion in the infarct zone and non-infarct areas were calculated quantitatively by PET and SPECT at baseline and at 4 months of follow-up. Transplantation of progenitor cells was associated with a significant increase in the mean signal intensity (MSI) in the infarct zone from 54.5% (25th and 75th percentiles: 47.7%, 60.0%) to 58.0% (52.7%, 66.7%) on PET (P=0.013) and from 58.0% (49.5%, 63.0%) to 61.5% (52.5%, 70.2%) on SPECT (P=0.005). Global left ventricular ejection fraction (LVEF) increased from 53.5% (42.6%, 60.0%) to 58.0% (53.0%, 65.8%) (P<0.001). In the five patients without an increase in MSI on PET, LVEF changed from 60.0% (50.0%, 64.0%) to 72.0% (64.0%, 75.5%) at follow-up. PET and SPECT did not show any significant changes in MSI in the non-infarct areas [from 73% (68.5%, 76.2%) to 73% (69.7%, 78.0%) for PET and from 72.0% (66.5%, 77.6%) to 73.0% (67.5%, 78.2%) for SPECT]. There were no significant differences in myocardial viability and perfusion between BMC and EPC infusion

  1. Cardiac Electromechanical Models: From Cell to Organ

    Directory of Open Access Journals (Sweden)

    Natalia A Trayanova

    2011-08-01

    Full Text Available The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computation physiology and medicine. This review focuses on electromechanical (EM models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single cell models and the second half addresses organ models. At the subcelluar level, myofilament models represent actin-myosin interaction and Ca-based activation. Myofilament models and their refinements represent an overview of the development in the field. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered the cellular basis of the Frank-Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction-diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and

  2. Treatment with granulocyte colony-stimulating factor decreases the capacity of hematopoietic progenitor cells for generation of lymphocytes in human immunodeficiency virus-infected persons

    DEFF Research Database (Denmark)

    Nielsen, S D; Clark, D R; Hutchings, M;

    1999-01-01

    An obstacle to stem cell gene therapy for AIDS is the limited numbers of hematopoietic progenitors available. Granulocyte colony-stimulating factor (G-CSF) is used for mobilization of progenitors, but little is known about the functional characteristics of mobilized progenitors, and immature and T...... cell progenitors may not be mobilized. This study examined the effect of G-CSF on the function of progenitors. Ten human immunodeficiency virus-infected patients received G-CSF (filgrastim, 300 microgram/day) for 5 days. Absolute numbers of immature and T cell progenitors did not increase. The ability...

  3. Production of hemizygous and homozygous embryonic stem cell-derived neural progenitor cells from the transgenic alszheimer göttingen minipis

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Jacobsen, J.; Gunnarsson, A.;

    2011-01-01

    Production of hemizygous and homozygous embryonic stem cell-derived neural progenitor cells from the transgenic alszheimer göttingen minipis......Production of hemizygous and homozygous embryonic stem cell-derived neural progenitor cells from the transgenic alszheimer göttingen minipis...

  4. Effect of Intracoronary Infusion of Bone Marrow Mononuclear Cells or Peripheral Endothelial Progenitor Cells on Myocardial Ischemia-reperfusion Injury in Mini-swine

    Institute of Scientific and Technical Information of China (English)

    Chong-jian Li; Ji-lin Chen; Jian-jun Li; Run-lin Gao; Yue-jin Yang; Feng-huan Hu; Wei-xian Yang; Shi-jie You; Lai-feng Song; Ying-mao Ruan; Shu-bin Qiao

    2010-01-01

    Objective To simulate and assess the clinical effect of intracoronary infusion of bone marrow mono-nuclear cells or peripheral endothelial progenitor cells on myocardial reperfusion injury in mini-swine model.Methods Twenty-three mini-swine with myocardial reperfusion injury were used as designed in the study protocol. About (3.54+0.90)x108 bone marrow mononudear cells (MNC group, n=9) or (1.16± 1.07)×10 endothelial progenitor cells (EPC group, n=7) was infused into the affected coronary segment of the swine. The other mini-swine were infused with phosphate buffered saline as control (n=7). Echocardio-graphy and hemodynamic studies were performed before and 4 weeks after cell infusion. Myocardium infarc-tion size was calculated. Stem cell differentiation was analyzed under a transmission electromicroscope.Results Left ventricular ejection fraction dropped by 0% in EPC group, 2% in MNC group, and 10% in the control group 4 weeks after cell infusion, respectively (P0.05). EPC decreased total infarction size more than MNC did (1.60±0.26 cm vs. 3.71±1.38 cm, P<0.05). Undermature endothelial cells and myocytes were found under transmission electromicroscope.Conclusions Transplantation of either MNC or EPC may be beneficial to cardiac systolic function, but might not has obvious effect on diastolic function, Intracoronary infusion of EPC might be better than MNC in controlling infarction size. Both MNC and EPC may stimulate angiogenesis, inhibit fibrogenesis, and differentiate into myocardial cells.

  5. Stage-specific requirement for cyclin D1 in glial progenitor cells of the cerebral cortex.

    Science.gov (United States)

    Nobs, Lionel; Baranek, Constanze; Nestel, Sigrun; Kulik, Akos; Kapfhammer, Josef; Nitsch, Cordula; Atanasoski, Suzana

    2014-05-01

    Despite the vast abundance of glial progenitor cells in the mouse brain parenchyma, little is known about the molecular mechanisms driving their proliferation in the adult. Here we unravel a critical role of the G1 cell cycle regulator cyclin D1 in controlling cell division of glial cells in the cortical grey matter. We detect cyclin D1 expression in Olig2-immunopositive (Olig2+) oligodendrocyte progenitor cells, as well as in Iba1+ microglia and S100β+ astrocytes in cortices of 3-month-old mice. Analysis of cyclin D1-deficient mice reveals a cell and stage-specific molecular control of cell cycle progression in the various glial lineages. While proliferation of fast dividing Olig2+ cells at early postnatal stages becomes gradually dependent on cyclin D1, this particular G1 regulator is strictly required for the slow divisions of Olig2+/NG2+ oligodendrocyte progenitors in the adult cerebral cortex. Further, we find that the population of mature oligodendrocytes is markedly reduced in the absence of cyclin D1, leading to a significant decrease in the number of myelinated axons in both the prefrontal cortex and the corpus callosum of 8-month-old mutant mice. In contrast, the pool of Iba1+ cells is diminished already at postnatal day 3 in the absence of cyclin D1, while the number of S100β+ astrocytes remains unchanged in the mutant.

  6. Apoptotic neurons induce proliferative responses of progenitor cells in the postnatal neocortex.

    Science.gov (United States)

    Petrenko, Volodymyr; Mihhailova, Jevgenia; Salmon, Patrick; Kiss, Jozsef Z

    2015-11-01

    Apoptotic cell death is the leading cause of neuronal loss after neonatal brain injury. Little is known about the intrinsic capacity of the immature cerebral cortex for replacing dead cells. Here we test the hypothesis that neuronal apoptosis is able to trigger compensatory proliferation in surrounding cells. In order to establish a "pure" apoptotic cell death model and to avoid the confounding effects of broken blood-brain barrier and inflammatory reactions, we used a diphtheria toxin (DT) and diphtheria toxin receptor (DTR) system to induce ablation of layer IV neurons in the rodent somatosensory cortex during the early postnatal period. We found that DT-triggered apoptosis is a slowly progressing event lasting about for 7 days. While dying cells expressed the morphological features of apoptosis, we could not detect immunoreactivity for activated caspase-3 in these cells. Microglia activation and proliferation represented the earliest cellular responses to apoptotic cell death. In addition, we found that induced apoptosis triggered a massive proliferation of undifferentiated progenitor cell pool including Sox2 as well as NG2 cells. The default differentiation pattern of proliferating progenitors appears to be the glial phenotype; we could not find evidence for newly generated neurons in response to apoptotic neuronal death. These results suggest that mitotically active progenitor populations are intrinsically capable to contribute to the repair process of injured cortical tissue and may represent a potential target for neuronal replacement strategies.

  7. Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands

    International Nuclear Information System (INIS)

    Salivary gland stem/progenitor cells are thought to be present in intercalated ductal cells, but the fact is unclear. In this study, we sought to clarify if stem/progenitor cells are present in submandibular glands using colony assay, which is one of the stem cell assay methods. Using a low-density culture of submandibular gland cells of neonatal rats, we developed a novel culture system that promotes single cell colony formation. Average doubling time for the colony-forming cells was 24.7 (SD = ±7.02) h, indicating high proliferative potency. When epidermal growth factor (EGF) and hepatocyte growth factor (HGF) were added to the medium, the number of clonal colonies increased greater than those cultured without growth factors (13.2 ± 4.18 vs. 4.5 ± 1.73). The RT-PCR and immunostaining demonstrated expressing acinar, ductal, and myoepithelial cell lineage markers. This study demonstrated the presence of the salivary gland stem/progenitor cells that are highly proliferative and multipotent in salivary glands

  8. Illustration of extensive extracellular matrix at the epithelial-mesenchymal interface within the renal stem/progenitor cell niche

    Directory of Open Access Journals (Sweden)

    Minuth Will W

    2012-09-01

    Full Text Available Abstract Background Stem/progenitor cells are promising candidates to treat diseased renal parenchyma. However, implanted stem/progenitor cells are exposed to a harmful atmosphere of degenerating parenchyma. To minimize hampering effects after an implantation investigations are in progress to administer these cells within an artificial polyester interstitum supporting survival. Learning from nature the renal stem/progenitor cell niche appears as a valuable model. At this site epithelial stem/progenitor cells within the collecting duct ampulla face mesenchymal stem/progenitor cells. Both cell types do not have close contact but are separated by a wide interstitium. Methods To analyze extracellular matrix in this particular interstitium, special contrasting for transmission electron microscopy was performed. Kidneys of neonatal rabbits were fixed in solutions containing glutaraldehyde (GA or in combination with cupromeronic blue, ruthenium red and tannic acid. Results GA revealed a basal lamina at the ampulla and a bright but inconspicuously looking interstitial space. In contrast, GA containing cupromeronic blue exhibits numerous proteoglycan braces lining from the ampulla towards the interstitial space. GA containing ruthenium red or tannic acid demonstrates clouds of extracellular matrix protruding from the basal lamina of the ampulla to the surface of mesenchymal stem/progenitor cells. Conclusions The actual data show that the interstitium between epithelial and mesenchymal stem/progenitor cells contains much more and up to date unknown extracellular matrix than earlier observed by classical GA fixation.

  9. Electrical stimulation to optimize cardioprotective exosomes from cardiac stem cells.

    Science.gov (United States)

    Campbell, C R; Berman, A E; Weintraub, N L; Tang, Y L

    2016-03-01

    Injured or ischemic cardiac tissue has limited intrinsic capacity for regeneration. While stem cell transplantation is a promising approach to stimulating cardiac repair, its success in humans has thus far been limited. Harnessing the therapeutic benefits of stem cells requires a better understanding of their mechanisms of action and methods to optimize their function. Cardiac stem cells (CSC) represent a particularly effective cellular source for cardiac repair, and pre-conditioning CSC with electrical stimulation (EleS) was demonstrated to further enhance their function, although the mechanisms are unknown. Recent studies suggest that transplanted stem cells primarily exert their effects through communicating with endogenous tissues via the release of exosomes containing cardioprotective molecules such as miRNAs, which upon uptake by recipient cells may stimulate survival, proliferation, and angiogenesis. Exosomes are also effective therapeutic agents in isolation and may provide a feasible alternative to stem cell transplantation. We hypothesize that EleS enhances CSC-mediated cardiac repair through its beneficial effects on production of cardioprotective exosomes. Moreover, we hypothesize that the beneficial effects of biventricular pacing in patients with heart failure may in part result from EleS-induced preconditioning of endogenous CSC to promote cardiac repair. With future research, our hypothesis may provide applications to optimize stem cell therapy and augment current pacing protocols, which may significantly advance the treatment of patients with heart disease. PMID:26880625

  10. Endothelial progenitor cell differentiation using cryopreserved, umbilical cord blood-derived mononuclear cells

    Institute of Scientific and Technical Information of China (English)

    Jun-ho JANG; Hugh C KIM; Sun-kyung KIM; Jeong-eun CHOI; Young-jin KIM; Hyun-woo LEE; Seok-yun KANG; Joon-seong PARK; Jin-hyuk CHOI; Ho-yeong LIM

    2007-01-01

    Aim: To investigate the endothelial differentiation potentiality of umbilical cord blood (UCB), we induced the differentiation of endothelial progenitor cells (EPC)from cryopreserved UCB-derived mononuclear cells (MNC). Methods: MNC from cryopreserved UCB and peripheral blood (PB) were cultured in M199 medium with endothelial cell growth supplements for 14 d. EPC were characterized by RT-PCR,flow cytometry, and immunocytochemistry analysis. The proliferation of differen-tiated EPC was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTI') assay, and vascular endothelial growth factor (VEGF) concentra-tion was measured using an ELISA kit. Characteristics of UCB-derived EPC were compared with those of PB-derived EPC. Results: A number of round-shaped cells were loosely attached to the bottom after 24 h culture, and numerous spindle-shaped cells began to appear from the round-shaped ones on d 7. Those cells expressed endothelial markers such as, Fit-1/VEGFR-1, ecNOS, VE-cadherin, yon Willebrand factor, and secreted VEGF. The patterns of endothelial markers of EPC from PB and UCB did not show striking differences. The results of the prolifera-tion and secretion of VEGF were also similar. Conclusion: We successfully cul-tured UCB cells stored at -196 ℃ into cells with the quality of endothelial cells.Those EPC could be used for angiogenic therapeutics by activating adjacent endothelial cells and enhancing angiogenesis.

  11. Isolation and characterization of liver epithelial progenitor cells from normal adult rhesus monkeys (Macaca mulatta)

    Institute of Scientific and Technical Information of China (English)

    Lifang Jin; Shaohui Ji; Xianghui Tang; Xiangyu Guo; Yongqing Lu; Hongwei Chen; Hongkui Deng; Qi Zhou; Weizhi Ji

    2009-01-01

    @@ Dear Editor, Based on their ability to proliferate and the capacity to differentiate into specific cell types, hepatic progenitor/stem cells (HPCs) from adult human liver may have potential therapeutic effects on end-stage liver failure. In addition, adult HPCs have a reduced risk of teratoma formation and are not subject to the same ethical issues as fetal HPCs or embryonic stem cells [1]. The HPCs from rhesus monkeys are relevant because they may serve as a valuable preclinical model for assessment of cell therapy in humans. To date, there are no reports of HPCs or liver epithelial progenitor cells (LEPCs) isolated from normal adult rhesus monkey although a few studies in other species were reported [2, 3]. We report here for the first time the successful isolation of rhesus monkey LEPCs (mLEPCs) from normal adult livers (n=12).

  12. Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function

    Directory of Open Access Journals (Sweden)

    Loic Auderset

    2016-01-01

    Full Text Available The central nervous system (CNS is a highly organised structure. Many signalling systems work in concert to ensure that neural stem cells are appropriately directed to generate progenitor cells, which in turn mature into functional cell types including projection neurons, interneurons, astrocytes, and oligodendrocytes. Herein we explore the role of the low density lipoprotein (LDL receptor family, in particular family members LRP1 and LRP2, in regulating the behaviour of neural stem and progenitor cells during development and adulthood. The ability of LRP1 and LRP2 to bind a diverse and extensive range of ligands, regulate ligand endocytosis, recruit nonreceptor tyrosine kinases for direct signal transduction and signal in conjunction with other receptors, enables them to modulate many crucial neural cell functions.

  13. IL-11 produced by breast cancer cells augments osteoclastogenesis by sustaining the pool of osteoclast progenitor cells

    Directory of Open Access Journals (Sweden)

    McCoy Erin M

    2013-01-01

    Full Text Available Abstract Background Interleukin (IL-11, a cytokine produced by breast cancer, has been implicated in breast cancer-induced osteolysis (bone destruction but the mechanism(s of action remain controversial. Some studies show that IL-11 is able to promote osteoclast formation independent of the receptor activator of NF-κB ligand (RANKL, while others demonstrate IL-11 can induce osteoclast formation by inducing osteoblasts to secrete RANKL. This work aims to further investigate the role of IL-11 in metastasis-induced osteolysis by addressing a new hypothesis that IL-11 exerts effects on osteoclast progenitor cells. Methods To address the precise role of breast cancer-derived IL-11 in osteoclastogenesis, we determined the effect of breast cancer conditioned media on osteoclast progenitor cells with or without an IL-11 neutralizing antibody. We next investigated whether recombinant IL-11 exerts effects on osteoclast progenitor cells and survival of mature osteoclasts. Finally, we examined the ability of IL-11 to mediate osteoclast formation in tissue culture dishes and on bone slices in the absence of RANKL, with suboptimal levels of RANKL, or from RANKL-pretreated murine bone marrow macrophages (BMMs. Results We found that freshly isolated murine bone marrow cells cultured in the presence of breast cancer conditioned media for 6 days gave rise to a population of cells which were able to form osteoclasts upon treatment with RANKL and M-CSF. Moreover, a neutralizing anti-IL-11 antibody significantly inhibited the ability of breast cancer conditioned media to promote the development and/or survival of osteoclast progenitor cells. Similarly, recombinant IL-11 was able to sustain a population of osteoclast progenitor cells. However, IL-11 was unable to exert any effect on osteoclast survival, induce osteoclastogenesis independent of RANKL, or promote osteoclastogenesis in suboptimal RANKL conditions. Conclusions Our data indicate that a IL-11 plays an

  14. Tracking erythroid progenitor cells in times of need and times of plenty.

    Science.gov (United States)

    Koury, Mark J

    2016-08-01

    Red blood cell production rates increase rapidly following blood loss or hemolysis, but the expansion of erythropoiesis in these anemic states is tightly regulated such that rebound polycythemia does not occur. The erythroid cells that respond to erythropoietic stimulation or suppression are the progenitor stages of burst-forming units-erythroid (BFU-Es) and colony-forming units-erythroid (CFU-Es). Results from an early study of the changes in the size, location, and cell cycling status of BFU-E and CFU-E populations in mice under normal conditions, erythropoietic stimulation, and erythropoietic suppression are used as reference points to review subsequent developments related to erythroid progenitor populations and regulation of their size. The review concerns development of erythroid progenitor populations mainly in mice and humans, with a focus on the mechanisms related to the rapid but highly regulated expansion of erythropoiesis in spleens of erythropoietically stimulated mice. Current knowledge is used as a model of erythroid progenitor populations in mice under normal, erythropoietically suppressed, and erythropoietically stimulated conditions. Clinical applications of information learned from studies of erythropoietic expansion, in terms of current therapies for anemia, are reviewed. PMID:26646992

  15. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues.

    Directory of Open Access Journals (Sweden)

    Eduardo K Moioli

    Full Text Available Poor angiogenesis is a major road block for tissue repair. The regeneration of virtually all tissues is limited by angiogenesis, given the diffusion of nutrients, oxygen, and waste products is limited to a few hundred micrometers. We postulated that co-transplantation of hematopoietic and mesenchymal stem/progenitor cells improves angiogenesis of tissue repair and hence the outcome of regeneration. In this study, we tested this hypothesis by using bone as a model whose regeneration is impaired unless it is vascularized. Hematopoietic stem/progenitor cells (HSCs and mesenchymal stem/progenitor cells (MSCs were isolated from each of three healthy human bone marrow samples and reconstituted in a porous scaffold. MSCs were seeded in micropores of 3D calcium phosphate (CP scaffolds, followed by infusion of gel-suspended CD34(+ hematopoietic cells. Co-transplantation of CD34(+ HSCs and CD34(- MSCs in microporous CP scaffolds subcutaneously in the dorsum of immunocompromised mice yielded vascularized tissue. The average vascular number of co-transplanted CD34(+ and MSC scaffolds was substantially greater than MSC transplantation alone. Human osteocalcin was expressed in the micropores of CP scaffolds and was significantly increased upon co-transplantation of MSCs and CD34(+ cells. Human nuclear staining revealed the engraftment of transplanted human cells in vascular endothelium upon co-transplantation of MSCs and CD34(+ cells. Based on additional in vitro results of endothelial differentiation of CD34(+ cells by vascular endothelial growth factor (VEGF, we adsorbed VEGF with co-transplanted CD34(+ and MSCs in the microporous CP scaffolds in vivo, and discovered that vascular number and diameter further increased, likely owing to the promotion of endothelial differentiation of CD34(+ cells by VEGF. Together, co-transplantation of hematopoietic and mesenchymal stem/progenitor cells may improve the regeneration of vascular dependent tissues such as bone

  16. Sonic hedgehog signaling regulates mode of cell division of early cerebral cortex progenitors and increases astrogliogenesis

    Directory of Open Access Journals (Sweden)

    Geissy LL Araújo

    2014-03-01

    Full Text Available The morphogen Sonic Hedgehog (SHH plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.

  17. Substrate stiffness and matrix composition coordinately control the differentiation of liver progenitor cells.

    Science.gov (United States)

    Kourouklis, Andreas P; Kaylan, Kerim B; Underhill, Gregory H

    2016-08-01

    Recent approaches have utilized microfabricated platforms to examine combinations of microenvironmental signals that regulate stem and progenitor cell differentiation. However, the majority of these efforts have focused on the biochemical properties of extracellular matrix (ECM) or soluble factors without simultaneously exploring the biomechanical effects of cell-substrate interactions. To address this need, we combined a high-throughput approach for the analysis of combinatorial ECM cues with substrates of modular stiffness and traction force microscopy. This integrated approach enabled the characterization of cell-generated traction stress and phenotypic expression in response to ECM cues. We investigated the impact of substrate stiffness and ECM composition on the differentiation of bipotential mouse embryonic liver (BMEL) progenitor cells. We observed that hepatocyte differentiation was primarily regulated by ECM composition, and cholangiocyte differentiation was cooperatively influenced by ECM proteins and stiffness properties. In particular, stiffness-mediated cholangiocyte differentiation was observed for cells cultured on fibronectin, while collagen IV promoted differentiation independent of substrate stiffness. We demonstrated the influence of cell contractility and traction stress in early cholangiocyte specification and further uncovered the roles of ERK and ROCK in this differentiation process. Overall, these findings illustrate the involvement of biomechanical signals in liver progenitor differentiation. Further, this approach could enable investigations for a broad range of cell types and ECM proteins, providing an integrated platform for evaluating the combinatorial effects of biochemical and biophysical signals in cell differentiation.

  18. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    Science.gov (United States)

    Kasten, Annika; Siegmund, Birte J.; Grüttner, Cordula; Kühn, Jens-Peter; Frerich, Bernhard

    2015-04-01

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time.

  19. Self-renewing Pten-/- TP53-/- protospheres produce metastatic adenocarcinoma cell lines with multipotent progenitor activity.

    Directory of Open Access Journals (Sweden)

    Wassim Abou-Kheir

    Full Text Available Prostate cancers of luminal adenocarcinoma histology display a range of clinical behaviors. Although most prostate cancers are slow-growing and indolent, a proportion is aggressive, developing metastasis and resistance to androgen deprivation treatment. One hypothesis is that a portion of aggressive cancers initiate from stem-like, androgen-independent tumor-propagating cells. Here we demonstrate the in vitro creation of a mouse cell line, selected for growth as self-renewing stem/progenitor cells, which manifests many in vivo properties of aggressive prostate cancer. Normal mouse prostate epithelium containing floxed Pten and TP53 alleles was subjected to CRE-mediated deletion in vitro followed by serial propagation as protospheres. A polyclonal cell line was established from dissociated protospheres and subsequently a clonal daughter line was derived. Both lines demonstrate a mature luminal phenotype in vitro. The established lines contain a stable minor population of progenitor cells with protosphere-forming ability and multi-lineage differentiation capacity. Both lines formed orthotopic adenocarcinoma tumors with metastatic potential to lung. Intracardiac inoculation resulted in brain and lung metastasis, while intra-tibial injection induced osteoblastic bone formation, recapitulating the bone metastatic phenotype of human prostate cancer. The cells showed androgen receptor dependent growth in vitro. Importantly, in vivo, the deprivation of androgens from established orthotopic tumors resulted in tumor regression and eventually castration-resistant growth. These data suggest that transformed prostate progenitor cells preferentially differentiate toward luminal cells and recapitulate many characteristics of the human disease.

  20. Disruption of cell-matrix interactions by heparin enhances mesenchymal progenitor adipocyte differentiation

    International Nuclear Information System (INIS)

    Differentiation of marrow-derived mesenchymal progenitors to either the osteoblast or adipocyte lineage is reciprocally regulated. Factors that promote osteoblastogenesis inhibit adipogenesis, while adipogenic factors are inhibitory to osteoblast differentiation. Heparin, a soluble glycosaminoglycan, inhibits bone formation in vivo and osteoblast cell differentiation and function in vitro, and has been shown to promote adipocyte differentiation. To elucidate the role that heparin plays in the adipogenic induction of murine mesenchymal progenitors, we studied immortalized marrow stromal cells (IM-MSC), the MSC cell line, ST2, and 3T3L1 pre-adipocytes. Heparin alone was not sufficient to induce adipogenesis, but enhanced the induction under a variety of adipogenic cocktails. This effect was both dose- and time-dependent. Heparin showed a positive effect at concentrations > 0. 1 μg/ml when applied before day 3 during the induction course. Heparin's effect on adipogenesis was independent of cell proliferation, cell density, and extracellular lipid. This effect is likely related to the unique structure of heparin because another polyanionic glycosaminoglycan, dextran sulfate, did not promote adipogenic differentiation. Heparin treatment altered morphology and adhesion characteristics of progenitor cells, resulting in cell rounding and aggregation. As well, heparin counteracted the known inhibitory effect of fibronectin on adipogenesis and decreased basal focal adhesion kinase and paxillin phosphorylation. We conclude that heparin-mediated disruption of cell-matrix adhesion enhances adipogenic potential